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ABSTRACT
The split-charge equilibration method is extended to describe dissipative charge transfer similarly as the Drude model, whereby the complex-
valued frequency-dependent dielectric permittivities or conductivities of dielectrics and metals can be mimicked at non-zero frequencies.
To demonstrate its feasibility, a resistor–capacitor circuit is simulated using an all-atom representation for the resistor and capacitor. The
dynamics reproduce the expected charging process and Nyquist noise, the latter resulting from the thermal voltages acting on individual
split charges. The method bears promise to model friction caused by the motion of charged particles past metallic or highly polarizable
media.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0242185

I. INTRODUCTION

The electronegativity equalization method1–3 and its charge-
equilibration (QE)4 or fluctuating-charge5 variants are frequently
used in molecular simulations to assign partial charges on the fly. It
can be seen as a low-key coarse-grained approximation of density-
functional theory, where spatial discretization points coincide with
atomic positions.1–3,6 In the simplest case, the total energy of a sys-
tem is a quadratic polynomial in the set of partial charges {Qi}

7,8 [see
also Eq. (1)]. The zero-order coefficient generally depends strongly
on the environment and contains, e.g., pair repulsion and many-
body cohesion as described in the embedded-atom-method.9 The
first-order term is, depending on background or application, the
electronegativity of an isolated atom1–3 or the work function of a
metal,10 while the second-order term represents the self-interaction
of the charge plus Coulomb interactions between atoms. It can be
parameterized to reflect either the chemical hardness of an iso-
lated atom2,3 or the Thomas–Fermi screening length in a metal.11,12

Adding environment dependence to the QE parameters13 promises
to increase the transferability, such that properties of both isolated
atoms and solids, but potentially also any intermediate structure,
can be faithfully reproduced. However, even if successful, regular QE
schemes still face various intrinsic limitations. The two most relevant
to this work are that any QE solid has the static dielectric response

function of a metal.11 Moreover, QE is a pure equilibrium approach
lacking dissipation caused by time dependence.

The metallicity problem of regular QE approaches could be
solved with the split-charge equilibration (SQE) method.11,14,15 It
arose as a phenomenological split between the conventional QE and
a pure bond-polarizability model.16 In brief, SQE allows the transfer
of fractional charges only through chemical (covalent and metallic)
bonds. In non-metallic systems, this transfer is penalized through a
bond hardness term in addition to that caused by the chemical or
atomic hardness. The latter can also be loosely associated with the
Anderson U parameter describing the strength of the on-site charge
interaction in the Hubbard model.17 The dielectric permittivity of
a solid turns out to be inversely proportional to the bond hard-
ness.11 In the redox-SQE formalism, in which integer charges can be
donated from one atom or ion to another one without bond penalty,
(irreversible, contact-induced) electron-transfer dielectrics can be
simulated.18 This feature made it possible to simulate battery dis-
charge and recharge, such that all processes inside the battery were
modeled atomistically, including the buildup of voltage between the
electrodes.19 A “daemon resistor,” which was not modeled explicitly,
allowed current to flow externally between the electrodes according
to Ohm’s law. In this study, the roles of all-atom and daemon swap:
the battery is the daemon, while the electrical circuit component is
modeled explicitly.
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To achieve a self-containing all-atom representation of resistors
and capacitors, we add an inertial and, more importantly, a dissipa-
tive (D) term to the SQE formalism. The resulting D-SQE approach,
which can be seen as a hybrid of the Drude model, the polarizable-
ion model,20,21 and a related extension of polarizable force fields,22

can mimic frequency-dependent conductivities of metals or dielec-
tric permittivity of dielectrics over a broad frequency range and
not merely their quasi-static limits. Moreover, resistors can be put
together using (coarse-grained) atomic building blocks, and when
subjected to thermal random forces, or rather random voltages,
Nyquist noise in capacitors arises naturally.

When broken down to a truly atomic scale, for example,
to a hypothetical one-atom-thin wire, the model can certainly
not (yet?) reproduce the intricacies of Luttinger liquids.23 The
goal of the current work is to design simple microscopic charge-
transfer dynamics that produce the appropriate response functions
of bulk systems. Despite its simplicity, the pursued approach can be
expected to further improve the reliability of simulations of ions near
electrodes24–26 or related systems, where charged particles move rel-
ative to metallic or highly polarizable surfaces. Therefore, this work
should be viewed as a feasibility test rather than as an attempt to
describe a specific solid. To this end, the model is introduced first.
Next, its generic dielectric response functions are derived. Following
that, simulations of an RC element driven by either a battery or ther-
mal noise or by a fixed charge moving through the capacitance are
presented. Finally, conclusions are drawn.

II. MODEL AND THEORY
A. General model

In this study, all grid-points or (pseudo-) atoms participating in
charge-transfer are fixed in space. This allows us to ignore the zero-
order term U0({rij}), which can be argued to reflect the energy of
a system under the constraint that all atoms be neutral, or rather to
have an integer oxidation state. This “expansion coefficient” would
surely depend on the method used to assign partial charges. To pro-
ceed, let us make the unplausible but pragmatic assumption that
we identified one such method approved by readers, referees, and
authors alike. The relevant, remaining charge-transfer energy then
reads

ΔU = −∑
i

χiQi +
1
2∑i,j

{Jij(rij)QiQj + κijq2
i j}, (1)

in the split-charge formalism, where

Qi = nie +∑
j

qij , (2)

is the charge of atom i, while qij = −qji is the partial charge or split
charge donated from atom j to atom i, which is penalized via a
bond-hardness term κij. For reasons of simplicity, we assume neutral
rather than ionic references and, therefore, omit the oxidation state
ni in the following. The χi denotes the electronegativity of atom i to
which a potential bias or the interaction with external charges can
be added. The diagonal elements Jii represent the self-interaction or
(half) the chemical or atomic hardness of atom i. In the following,
mono-atomic model, they will be denoted as κa. The off-diagonal

elements Ji,j≠i represent the Coulomb interactions between atoms.
They can be damped at short distances to mirror the delocalization
of charge density.4 Here, they will simply be set to Ji,j≠i = 1/rij, where
rij is the distance between atoms i and j.

While split charges are not needed in the QE formalism for
the modeling of (singly connected) metals, in which ΔU is merely
minimized w.r.t. the set of charges {Q}, the locality of charge trans-
fer must be imitated whenever electron dynamics matter. To reflect
locality, κij is assumed to be zero between nearest neighbors in a
metal and approximated as infinitely large otherwise to make the
value and thereby the energy of that split charge vanish. In this zero-
order approach, split charges only need to be considered between
nearest neighbors.

The driving force or voltage acting on a split charge is
V ij = −∂ΔU/∂qij, i.e., when using ∂Qk/∂ij = δik − δjk,

Vij = −Jij(Qi −Qj) − κijqij + (χi − χj). (3)

To model dissipative dynamics locally rather than globally, as, e.g.,
through Eq. (3) in Ref. 26,

Lijq̈ij + Rijq̇ij + κijqij = −Φi +Φj − χi + χj + Vth(t), (4)

is proposed as the equation of motion, where Φi = ∑j JijQj is the
electrostatic potential of atom i produced by the explicitly treated
charges. Lij is a pseudo-inductance arising due to electronic inertia,
while Rij absorbs dissipative effects in a phenomenological fashion.
This generalization is similar in spirit to the (Lorentz-) Drude model
and will thus share many strengths and limitations. At finite tem-
perature, dissipation entails thermal noise V th(t), whose expectation
values must satisfy

⟨Vth(t)⟩ = 0, (5a)

⟨Vth(t)Vth(t
′
)⟩ = 2kBTRδ(t − t′), (5b)

for an instantaneous Ohmic voltage of Rq̇, according to the
fluctuation–dissipation theorem.27 Here, kBT is the thermal energy
and δ(t − t′) is Dirac’s delta function.

Connecting the resulting dissipative SQE model and the Drude
model is most easily performed by discretizing a metal into cubic ele-
ments, as this avoids the need for bookkeeping of Cartesian indices.
Alternatively, let us consider polonium, which is the only element
condensing into a simple cubic (sc) lattice. An instantaneous cur-
rent of an elementary charge e per time τ between each two nearest
neighbors along one principle direction implies a current density of
j = eρv → e(1/a3

0)(a0/τ) in the Drude model, where a0 is the bond
length. Replacing e/τ with q̇ means that the SQE current density is
q̇/a2

0. Ohm’s law is thus satisfied correctly if the split-charge resis-
tance is parameterized as R = ρa0, where ρ is the resistivity. Similarly,
the kinetic energy mv2

/2, m being the (effective) electron mass,
turns into Lq̇ 2

/2 with L = ma2
0/e

2. The numerical value of L can be
assigned to target the plasma frequency. Before addressing this and
other dielectric properties in more detail, the default unit system and
useful dimensionless constants are introduced.

The units for mass [m], charge [Q], and length [l] are the
electron mass me, the unit charge e, and the nearest-neighbor dis-
tance a0, respectively. The temperature T is expressed as thermal
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energy, while [E] = e2
/(4πεa0) is the unit of energy. Occasionally,

we will revert to extended SI units. This will be marked by an upper
index SI on the r.h.s. of pertinent equations. Otherwise, we use
reduced units. For sc α-Po, non-standard base units are a0 = 3.345 Å,
[E] = 4.305 eV, and [T] = 49 960 K, while selected derived units are
[t] = 0.3842 fs, resistivity [ρ] = 3.455 μΩ m, and L = 3.971 pF.

A central number of a mono-atomic SQE model is the dimen-
sionless chemical hardness Jii. Its value for polonium can be esti-
mated from its electron affinity A ≈ 8.42 eV and its ionization
energy I ≈ 1.9 eV to be Jii = A + I ≈ 10.3 eV/e2, i.e., ≈2.4 in reduced
units. This exceeds the Madelung constant of the rocksalt structure
(rs), αM = 1.7476. Therefore, even when using undamped Coulomb
interactions, a spontaneous symmetry breaking from sc to rs is ener-
getically unfavorable. Since rs is the softest charge-transfer direction
for the sc lattice,10 the pursued simple parameterization makes the
energy of a finite system be positive definite in the split charges.

B. Frequency-dependent dielectric constant
In former work,11 it was shown that the wave-number-

dependent, static dielectric permittivity of the SQE model on the
simple-cubic lattice is given by

ε̃SI
r (k) = 1 +

1
ε0a0(κb + κak2a2

0)
, (6)

in the SI unit system. Here, κb is the split-charge or bond (b)
hardness, which replaces the nearest-neighbor κij. Since the diverg-
ing next–nearest κij leads to (infinitesimally) small split-charges
and bond-charge energies, their effect can be ignored. The valid-
ity of Eq. (6) hinges on various approximations, such as undamped
Coulomb interactions and environment-independent κa, which,
however, can be accounted for in principle. In fact, simple-cubic-
lattice specific discretization corrections to the continuum Coulomb
(C) interaction, J̃C(k)∝ 1/k2, have proved important to reproduce
the Thomas–Fermi screening length ζ.11 It is also noted that κb is
supposedly the most difficult but also the most important coefficient
to be made environment dependent, as it will depend not only on
the distance but also on local coordination numbers or bond order.

We revert to the unit system of this study by replacing ε0
with 1/4π. Since all equations are linear, the static bond hardness
κb(ω = 0) only needs to be replaced with κb(ω) = −ω2L − iωR
+ κb(0) to yield

ε̃r(k, ω) = 1 +
4π/a0

−Lω2
− iRω + κb + κak2a2 . (7)

For a loss-free metal, R = κb = 0, it follows that the dielectric per-
mittivity obeys ϵr = 1 − ω2

p/ω2 at scales large compared to atomic
spacings (k→ 0), where ωp = 4π/(a0L) is the plasma frequency.
Therefore, when used to model the dielectric properties of a metal
(κb = 0) using a simple-cubic discretization, L can be parameterized
to reproduce the plasma frequency.

A second resonance frequency could be realized, for example,
by introducing next–nearest split charges. Another generalization
would be to account for atomic polarizability. In other words, the
D-SQE formalism allows for a quite flexible parameterization of
ε̃0(k, ω). However, the flexibility already contained in Eq. (7) should
suffice for most practical applications.

To overcome the limitation to sc structures, the derivation of
Eq. (6) must be repeated for other (Bravais) lattices. This leads to
a rescaling of the parameters L, R, κs, and κa in Eq. (7) with 2D/Z
and/or with aD

0 /Vec, where Z is the coordination number, D is the
spatial dimension, and Vec is the volume of the elementary cell.
However, for Eq. (7) to be accurate damping and continuum correc-
tions may have to be applied. Exploring this in more detail is beyond
the scope of the present feasibility test with its focus on a generic
demonstrator, which is discussed next.

C. Demonstrator model
The D-SQE model’s ability to capture charge-transfer dynamics

is examined using a generic, all-atom resistor–capacitor (RC) setup.
The RC element is coupled to an external voltage, thermal fluctua-
tions causing Nyquist noise, or a fixed charge passing through the
capacitor, as shown in Fig. 1.

All atoms and bonds of the RC element are treated equally.
Parameters are given without units; however, their values are
inspired by those describing polonium. This choice is not signifi-
cant, as the unit system could be based on mesoscopic rather than
atomistic discretization elements. Specifically, the nearest-neighbor
spacing is a0 = 1, while the atomic hardness is set to κa = 2.4. Atoms
have zero electronegativity, except for the two terminal atoms, for
which we set χ = ±V/2 when applying a voltage V . All split-charges
are given a unity pseudo-inductance for the author’s inability to find
a literature value for polonium’s plasma frequency. Any split-charge
resistance is set to Rsq = 0.1245.

A capacitor plate has a target radius of r ≈ 15a0, resulting
in Np = 717 atoms per plate. The two plates are separated by a
distance of d = 3a0, yielding a continuum-theory capacitance of

FIG. 1. Setup of the model in three modes of operation. Spheres represent atoms,
with colors indicating charges. Split charges connect adjacent atoms and wire
ends.
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C = Npa2
0/(4πd)→ 19. A better value for C is obtained by equally

distributing a total unit charge of opposite sign on the two plates
and computing the energy, which gives C = 26.4. Further correc-
tions have opposite signs. If factors related to atomic hardness were
included, the estimated capacitances would decrease, while account-
ing for the flexibility of some (excess) charge densities on the wires
and the plates’ rim would have the opposite effect.

Each wire strand consists of 39 atoms, leading to a total exter-
nal resistance of R = (2 × 39 + 1)Rsq given the extra split charge
between wire terminals. However, Ohmic dissipation also occurs
in the capacitance, even if the current flows in a plane rather than
through a wire. In order to reduce the relative importance of that
contribution to the overall resistance, split charges were also placed
between next–nearest neighbors, i.e., between atoms separated by
√

2a0. Note that this eliminates (a little more than) one split-charge
resistance at each of the four wire corners as well as that of the split-
charge connecting the wire ends to the plates. An improved guess
for the total resistance thus is R = 73Rsq → 9.1.

A few words on the split charge between the wire ends may
be appropriate. As long as no voltage is applied between these two
“atoms,” their bond is simply longer but has the same resistance
as any other bond. Turning the wire ends into (daemon) battery
terminals requires adding the voltage V to the battery split charge,
which, however, now represents ionic rather than electronic charge
donation. (This added voltage is the critical factor rather than assign-
ing electronegativities of ±V/2 to the two terminal atoms.) While it
would have been physically meaningful to assign a different, poten-
tially much larger value to the battery’s internal resistance than to
regular bonds, the original value was kept primarily so that the
circuit’s resistance did not depend on the specific mode of oper-
ation. Similar comments apply to the hardness of the terminal
atoms.

Before starting the charging simulation, the system is equi-
librated with an open switch, preventing (ionic) charge transfer
between the battery terminals at “negative times.” This results in a
marginal charge transfer between each electrode and the half RC
element it is connected to.

The Python code developed to simulate the demonstrator
model is available at https://github.com/mueser/D-SQE. The charg-
ing simulations of 200 000 time steps took about 92 s on a two-year-
old MacBook Pro when atoms with a nearest-neighbor distance were
connected through a total of Nsq = 2825 split charges. These num-
bers changed to 108 s and Nsq = 5533 when also next–nearest neigh-
bors were connected. The 15% increase in total computing time
after Nsq was essentially doubled implies that the excess comput-
ing time related to split charges was merely about 30%. Therefore,
the advantage of avoiding explicit split charges while reproducing
proper dissociation limits with a charge transfer model (QTM), such
as the one proposed by Gergs et al.,28 is primarily related to mem-
ory, not computation speed. Despite its elegance, it remains unclear
how to incorporate a targeted dielectric response function into that
QTM.

III. RESULTS
Before formally discussing the results in this section, we

encourage the reader to view the movies M1–M5 uploaded to the
electronic supplement, as this may facilitate the understanding of

the text. M1 illustrates the initial stages of the charging process of
the RC element. M2 extends the observation over a longer time span
but with lower temporal resolution, while M3 captures the oscil-
latory charging dynamics when the split-charge resistivity is set to
zero. M4 highlights the dynamics under thermal noise. Finally, M5
shows the effects in the presence of a fixed charge passing through
the capacitor.

The charging of the capacitor at zero temperature is addressed
first. As a reminder, the ordinary differential equation describing the
charging process of a macroscopic RC element coupled to a direct
current battery is

RQ̇ +
1
C

Q = VΘ(t − t0). (8)

Its solution for the initial condition Q(t = t0) = 0 is

Q(t) = CV{1 − exp (−(t − t0)/τ)}Θ(t − t0), (9)

with a relaxation time of τ = RC. Figure 2 shows that this equation
fits the data quite well. Moreover, the asymptotic charge of Q = 27.36
is surprisingly close to the value of Q = 26.4, which was “predicted”
in Sec. II C. Since the voltage is unity, capacitance and equilibrium
charge assume identical numerical values. From the relaxation time
τ = 248.7, an effective resistance of R = τ/C → 9.09 can be deduced.
This corresponds almost exactly to the simple estimate of R = 9.1,
which was also made in Sec. II C. Such a close agreement must bene-
fit to some degree from fortuitous error cancellation. The resistance
of each corner was slightly over- and that of the capacitor underes-
timated, each time by an amount, which certainly exceeds the 0.1%
deviation between the simulation result and the back-of-the-envelop
estimate. Here, and in the following, we would deem deviations
between simulation results and expectations as acceptable, whose
order does not exceed a0/r → 0.067, since this ratio gives the order
of magnitude of either the number of wire or rim atoms relative to
the number of atoms per plate.

Two further observations are worth discussing. First, the elec-
trical circuit is completed at time t = 0. However, the charge on the

FIG. 2. Time dependence of the charge Q as obtained in the D-SQE model (sym-
bols) and according to the solution of Q(t) (lines) [see Eq. (9)]. The inset highlights
the early time behavior.
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capacitor’s plates starts increasing noticeably only at t0 ≈ 11.0. This
delay results from the time it takes for the information to travel from
the “switch,” in this case the battery, to the front atom of the capac-
itance. Since the calculations for the dielectric permittivity does not
transfer directly to the one-dimensional wire geometry, we do not
know the precise wave speed c with which the split-charge travels
through the wire. However, it is plausible that it is of the order of
√

κaa/L→ 1.55.
A second interesting observation is that the plate connected

to the cathode is marginally positive before the circuit is com-
pleted. This occurs because the cathode has a higher electroneg-
ativity, attracting “electrons” to it even before charge-neutralizing
“ions” can flow between the two terminal atoms. Once the switch is
closed, charge compensation occurs. Current flows until the chemi-
cal potential of the atomic charges on the two opposing plates differs
by the voltage applied to the wire/battery terminals.

The D-SQE model no longer dissipates energy when the split-
charge resistance Rsq is set to zero. In this case, the model could
be called the SQE-ω method, in analogy to the so-called ACKS2ω
model,22 which motivates an on-site frequency dependent SQE
model from the bottom up rather than in a top-down fashion. (To
complete the isomorphism to the ACKS2 description, point dipoles
and potentially higher-order multipoles would have to be added to
the SQE description, while the resistance would have to be set to
zero.) Omitting the resistance changes the nature of the circuit from
an RC element to an LC element, where L stands for inductor. In the
given case, its inductance L would be a collective pseudo inductance,
which has a similar effect on the dynamics as a magnetic induc-
tance. Its value would be close to the sum of the inertia of individual
split charges. The corresponding oscillations of the LC element are
depicted in Fig. 3 for the same initial condition as for the RC circuit.
Small deviations from single-sinusoidal oscillations are noticeable.
They are due to a coupling of the capacitor’s (symmetrized) charge
to eigenmodes other than the slowest one, even if the slowest eigen-
mode clearly dominates the signal for the given initial boundary
condition.

The Nyquist noise was also investigated. To this end, the same
setup was used as before, except that both wire end atoms were
assigned the same chemical potential as the other atoms, and no

FIG. 3. Time dependence of the charge Q as obtained in the SQE-ω model
(symbols) and according to the formal solution Q(t) = Q0{1 − cos(ωt)}.

voltage was applied. The measured observable is the time auto-
correlation function (ACF) of the capacitor’s charge Q, from which
the noise spectrum can be deduced via a Fourier transform,

CQQ(Δt) = ⟨Q(t)Q(t + Δt)⟩. (10)

This ACF is not yet fully defined because the choice of charge
is not unique. It can be that of the capacitor plates connected to
the anode Qa or to the cathode Qc or the symmetrized charge
Qs = (Qa −Qc)/2. In a macroscopic capacitor, all three correlation
functions would yield indistinguishable results, while for a finite sys-
tem, the one based on Qs yields a different result than the other two.
Those of the individual plates are identical in our system because
the entire setup is ideally symmetric. Of course, the ACF of the
symmetrized charge must be used to deduce the (quasi-) static
capacitance of our circuit via the equipartition theorem

C =
CQQ(Δt = 0)

kBT
. (11)

Figure 4 shows results deduced from a run with 100 000 time
steps for equilibration and 64 × 106 time steps, Δt = 0.1, for observa-
tion using the D-SQE method. The fit to the ACF of the symmetrized
charge on 30 < t < 500 yields a value of C(0) = 0.1702 and a relax-
ation time of τ = 242. CQQ(0) can be converted into a capacitance
of C = CQQ(0)/kBT → 28.37. This is within 4% of the directly mea-
sured value. The correlation time of τ = 242 is even within 2.5% of
the relaxation time deduced earlier. Therefore, the thermal voltage of
the 5533 simulated split charges adds up to that of an individual large
resistor. Given the small deviation between “continuum theory” and
simulations, one could conclude that the continuum limit of text-
book RC circuits would be an excellent description of a 1554-atom
containing circuit if electrons only behaved like a Fermi liquid in
atom-thin wires.

While the D-SQE model could be used to model response func-
tions of regular dielectrics and metals, it is primarily meant as a tool
to properly capture the dynamics of ions moving past polarizable
but dissipative media. To show the feasibility of this application,

FIG. 4. Charge auto-correlation function (ACF), see Eq. (10), for the charge on
one plate (anode), Qa, and the symmetrized (symm.) charge (Qa − Qc)/2, at a
temperature of T = 0.006. The dashed line is a fit to the data at 20 < t < 500 to
the ACF of the symmetrized charge with an exponential function.
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FIG. 5. Main graph: Force on a unit charge moving at velocity v = 0.01 along
the symmetry axis of a plane-parallel capacitor with a radius of 15a0. Inset:
Damping force (scaled by a factor of 1000) obtained by symmetrizing the force
Fd = −(F(x) − F(−x))/2.

the force acting on a unit charge moving at a constant velocity of
v = 0.01 is computed and shown in Fig. 5. The motion of the unit
charge is confined to the radial direction of the capacitor as shown
in the bottom panel of Fig. 1, specifically midway between the two
planes and parallel to the arrow. The point charge experiences a
large attractive force shortly before entering the capacitor, a rather
small force while being between the plates, and again an attractive
force shortly after exiting. In the capacitor, atomic discreteness of
the two (commensurate) plates causes oscillations of the force with
the period of the lattice. These oscillations are rather minor in par-
ticular in light of the distance between the charge and either plate
being merely 3/2 times the lattice constant.

Zooming into the main panel of Fig. 5 near x = 0 reveals a small
deviation from a (pseudo-) steady state. This is mainly due to the
interaction of the moving ion with the two front atoms of the wire
being connected to capacitors. The effect is clearly visible in movie
M3, when the front atom of the upper wire briefly becomes blue
when the patch indicating induced charge density is centered near
the wire.

Any conservative force between charge and capacitor must
obey F(x) = −F(−x) due to the symmetry of the setup. However, the
motion of the charge causes a dynamical response in the capacitor
plates, leading to dissipation—to some minor degree even with-
out explicit Ohmic damping. In the split-charge model, this would
be because the split-charges in the wire-capacitor system will be
in motion after a charge has traveled through them, in close anal-
ogy to the damping caused by atom/solid-surface scattering.29 The
kinetic and potential energy contained in this motion will have to be
provided by the force acting on the moving charge.

The (frictional) work performed on the system when mov-
ing between two symmetry-related points is ∫

x0
−x0

dxF(x) so that the
symmetrized force Fd(x) = −(F(x) + F(−x))/2 can be interpreted
as an effective, instantaneous damping force as long as the moving
charge’s velocity is constrained to be constant. It is shown in the inset
of Fig. 5. Two contributions can be separated: one that is due to the
charging/decharging of the capacitor upon approach and retraction
of the charge, and another one due to the dragging of mirror charges
through the capacitance.

Although investigating the dissipation caused by the moving
charge in detail would certainly be an interesting exercise, which
might be performed in some loose analogy to the modeling of vis-
cous contact hysteresis, we restrict ourselves to a minimum analysis
here with a single reference velocity. Reducing the velocity by a fac-
tor of two makes the damping Fd(x) be almost exactly half of that of
the reference calculation. If the resistivity is halfed, only the damp-
ing for ∣x∣ ≲ r is halfed, while the hysteretic loss related to approach
and retraction is reduced less. Therefore, motion within the capac-
itor is impeded by Ohmic resistance, while the approach-retraction
hysteresis has additional contributions.

Given the results on the Stokes friction, the damping force
satisfies Fd ≈ mγv with mγ ≈ 0.02→ 4.74 × 10−17 N/s for the used
parameterization and setup. This would give a damping coefficient
of γ ≈ 4.11 GHz in the case of a lithium ion and, therefore, a slip
time of 0.243 ns. For comparison, the electronic damping coefficient
of nitrogen sliding past a lead surface is merely 0.05 GHz.30

IV. CONCLUSIONS
In this work, dissipative dynamics were added to the split-

charge model in a phenomenological fashion. It allows the mod-
eling of targeted dielectric properties in the framework of charge-
equilibration processes by introducing Ohmic damping to the trans-
fer of charge through a chemical bond. However, the approach is
not restricted to the atomic scale. It can be defined in a way such
that any linear-response dielectric permittivity of a metal or a dielec-
tric medium can be reproduced at coarse scales. The philosophy of
the approach is similar to the Drude model. However, the D-SQE
model reflects the charging of heterogeneous or contacting solids
in a natural way, while the Drude model would have to be gener-
alized to reflect local work functions. Once the bond hardness is
finite, the model is close in spirit to the Lorentz model. However,
the D-SQE model is meant to describe charge-transfer polarizabil-
ity, while the Lorentz model mimics on-site polarizability. Of course,
inducible point dipoles can be added to the model, as mentioned
above. To alleviate the computational burden, it may be advisable to
use large pseudo-inductances, as this allows large time steps to be
used. This would impair the accuracy of modeling conductivity near
optical frequencies, while the Ohmic response, which is typically the
most relevant for molecular dynamics applications, would remain
unaffected.

One shortcoming of the current formulation is that the Ohmic
resistance is added in an ad-hoc fashion. In reality, Ohmic resistance
has several origins, one of which is the scattering of phonons and
electrons.31 Such scattering can also occur naturally in the pursued
approach, e.g., when the pseudo-inductance is a time dependent
quantity due to fluctuating bond lengths. Temporo-spatial varia-
tions of the pseudo-inductance densities would most naturally lead
to the scattering of split-charge waves through the system. As long as
ions and split charges are treated classically and the temperature is
below the Debye temperature, that scattering should be small com-
pared to the real one. However, it might be possible to emulate the
phonon–electron scattering after quantizing the relevant degrees of
freedom, for example, through Feynman’s path-centroid density.32

Such an approach has successfully reproduced the damped dynam-
ics of a commensurate quantum mechanical Frenkel–Kontorova
model, including the gap closure at a sufficiently small mass.33
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Even without quantization, challenges remain for the D-SQE
approach when used in regular potential or force-field based sim-
ulations, i.e., when the bonds related to a split charge have varying
lengths and can break or form. Once a bond becomes long, κb should
increase and the pseudo-inductance (roughly linearly proportional)
with it. Such a scaling is not only physically meaningful because
electronic eigenfrequencies do not diverge when chemical bonds
break, but it is also numerically desirable, as it does not require the
time steps to be made extremely small. Nonetheless, the equation of
motion would be a modified Langevin equation with an extra damp-
ing term proportional to ṁq̇. This might be a minor task compared
to making force fields “learn” realistic values for pseudo inductances
and bond polarizabilities from calculations as those presented by
Cheng and Verstraelen.22

SUPPLEMENTARY MATERIAL

The supplementary material contains five movies. MP1.mp4
presents the initial phase of charging the RC circuit, while MP2.mp4
features later charging phases. In MP3.mp4, the charging process
occurs with the resistance of split charges set to zero. Thermal noise
is depicted in MP4.mp4, and MP5.mp4 illustrates the process of an
ion passing through a dissipative capacitance.
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