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Abstract: Background: Sacroiliac screw fixation in elderly patients with pelvic fractures
remains a challenging procedure for stabilization due to impaired bone quality. To improve
it, we investigated the biomechanical properties of combined oblique sacroiliac and transil-
iosacral screw stabilization versus the additional cement augmentation of this construct
in a cadaver model of osteoporotic bone, specifically with respect to the maximal force
stability and fracture-site motion in the displacement and rotation of fragments. Methods:
Standardized complete sacral fractures with intact posterior ligaments were created in
osteoporotic cadaver pelvises and stabilized with a triangle of two oblique sacroiliac screws
from each side with an additional transiliosacral screw in S1 (n = 5) and using the same
pelvises with additional cement augmentation (n = 5). A short cyclic loading protocol was
applied, increasing the axial force up to 125 N. Sacral fracture-site motion in displacement
and rotation of the fragments was measured by optical motion tracking. Results: A max-
imum force of 65N +/− 12.2 N was achieved using the triangular screw stabilization of
the sacrum. Cement augmentation did not provide any significant gain in maximum force
(70 N +/− 29.2 N). Only low fragment displacement was observed (2.6 +/− 1.5 mm) and
fragment rotation (1.3 +/− 1.2◦) without increased stability (3.0 +/− 1.5 mm; p = 0.799;
1.7 +/− 0.4◦; p = 0.919) following the cement augmentation. Conclusions: Triangular
stabilization using two obliques and an additional transiliosacral screw provides sufficient
primary stability of the sacrum. Still, the stability achieved seems very low, considering the
forces acting in this area. However, additional cement augmentation did not increase the
stability of the sacrum. Given its lack of beneficial abilities, it should be used carefully, due
to related complications such as cement leakage or nerve irritation. Improving the surgical
methods used to stabilize the posterior pelvic ring will be a topic for future research.

Keywords: sacral insufficiency fractures; operative treatment; sacroiliacal screws; transsacral;
oblique
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1. Introduction
The incidence of pelvic fractures in the aging population has risen significantly, with

several studies reporting an increase in low-energy fractures, especially among the el-
derly [1–3] (estimated that this number will rise 2.4 times by 2030. These fractures result
from decreased mineral bone density and low-energy injury patterns (e.g., ground-level
falls) [4], with a yearly incidence up to 92/100,000 in the population aged over 65 years,
and up to 446/100,000 for the population aged over 85 years [5]. These fractures often
result in immobilization of the patients and persistent pain. Additionally, the literature
frequently describes fracture progression and secondary displacement, often leading to
immobilization and increased pain levels [6,7].

Most cases of fragility fractures can be treated conservatively with early mobilization
and adequate pain medication, which is the primary goal of this therapy. However, if
conservative treatment fails to alleviate the patient’s pain or the fracture displacement
progresses rapidly, surgical stabilization is recommended [8–11]. Therefore, numerous
techniques have been described for the fixation of the posterior pelvic ring. Iliosacral screw
fixation of the first or second sacral body is well-established and a preferred method for
stabilization [8,11–13], with technical variants regarding screw angulation, which can be
placed horizontally, oblique [14], or even transiliosacral through the other side [15].

However, high rates of screw loosening, migration, or cut-out can be seen during the
postoperative follow-up [10,16–19]. In particular, the reduced bone stock of the sacrum
in elderly or osteoporotic patients [20–24] results in screw loosening in up to 20% of all
cases [8]. Therefore, the placement of multiple or transiliosacral screws seems to reduce
this complication rate [8]. Many studies focused on the use of cement augmentation of
sacroiliac screws to improve screw fixation and add more stability to the construct [25].
Suero et al. showed that a single cemented screw provides the same biomechanical stability
as non-augmented double screws in the treatment of sacral fractures [25]. Although cement
augmentation increased the anchorage at the distal screw end, current studies show that
it cannot prevent the screws from loosening [9]. Furthermore, the use of cement can
result in complications such as cement leakage into the neuroforamina and damage to
the neurological structures. In the current study, we aimed to analyze the biomechanical
stability of a bilateral sacral fragility fracture, according to an FFP IVb or OF4 fracture,
which was stabilized by two oblique and one transiliosacral screw in the S1 body with and
without cement augmentation. We hypothesized that cement augmentation would increase
the stability of the construct.

2. Methods
2.1. Specimen

Approval of the institution’s ethics committee (Protocol Nr. 131/21) prior to the
start of this study was obtained. Cadavers were included after body donors gave written
informed consent during their lifetimes. A total of 5 adult human cadaver pelvis specimens
(complete pelvic ring including the fourth and fifth lumbar vertebrae) from the Institute of
Anatomy were obtained with consent from the donors for medical teaching and research.
The pelvises were fresh frozen at −20 ◦C and thawed 18 h before testing. The mean age of
the donors was 78.1 years (±18.3) and they were equally distributed between female (n = 3)
and male (n = 2).

Computed tomography (CT) scans were performed on all specimens using a clinical
128-slice Spiral CT scanner (Siemens Definition Edge, Siemens, Erlangen, Germany). Each
scan was conducted with a tube voltage of 120 kV and a tube current of 300 mAs. Image
reconstruction was carried out using the scanner’s manufacturer-provided reconstruction
kernels. A bone window was reconstructed with a dedicated kernel (I70h) at a slice



J. Clin. Med. 2025, 14, 1497 3 of 10

thickness of 0.5 mm, while a soft-tissue window was reconstructed using another dedicated
kernel (I41s) at a slice thickness of 1 mm. All CT images were oriented in the transverse
plane, saved in DICOM (Digital Imaging and Communication in Medicine) format, and
transferred to a workstation running Horos™ v3.3.5 for further analysis.

Bone density was assessed by measuring Hounsfield units (HU) in S1 within circular
regions of interest (ROIs) positioned midaxially and midsagittally in the S1 body [26]. The
mean bone density of the pelvises was 106.6 ± 44.2 HU, measured in the S1 body. All
specimens exhibited a bone density below 202 HU in the S1 body, classifying them as
osteoporotic (Table 1).

Table 1. All maximum forces achieved [in N] for the 4 osteosynthesis groups and bone density
[in HU].

Without
Augmentation

With Cement
Augmentation

Bone Density in
HU

1 0 75 77
2 75 50 107
3 75 125 192
4 0 50 82
5 50 50 75

Before testing, all soft tissues were removed from the pelvises, except for the anterior
and posterior sacroiliac ligaments, which remained intact. To simulate an instable sacral
bilateral fracture, a L-shaped wooden osteotomy saw gauge template was placed medial
to the posterior iliac spine and used in all specimens. Hereafter, using the saw gauge, an
osteotomy 1 cm medial to the posterior iliac spine was performed in the sacral ala bilateral
region of each pelvis with an oscillating saw. Each osteotomy was 2 mm wide and involved
the entire length of the sacrum; the posterior cortex and the posterior sacroiliac ligaments
were left intact [27]. This fracture pattern mimics an FFP-IVb/OF4 fracture [7,28].

To achieve anterior stability of the pelvic ring, so an anterior instability would not
interfere with the results for the posterior in this study, the symphysis was stabilized
using a 4-hole interlocking symphysis plate (Synthes, Oberdorf, Switzerland) in all pelvises
according to previous studies [29–31]

2.2. Sensors

To monitor the movement of fracture fragments, an optical measuring system with
four cameras (Prime 13®, Optitrack, Corvallis, OR, USA) was employed. This system,
with a resolution of 1280 × 1024 pixels, achieves an accuracy of 0.2 mm by attaching at
least two optical markers to each fragment. The system-specific software (Motive 2.1®,
version 2, Optitrack, Corvallis, OR, USA) processed the measurements into a corresponding
coordinate system and a 3D movement model. For analysis, three primary fragments were
identified: the “left sacral fragment”, “central fragment”, and “right sacral fragment”.
Each was marked with 2–3 optical markers using a standardized template to ensure
reproducible positioning. Mathematical calculations determined the relative movement of
these fragments in three spatial planes [29,31]. The maximum fracture displacement was
defined as the greatest fragment separation under loading conditions.

2.3. Experimental Setup

In this study, we investigated the following 2 groups (n = 5).
Group 1: In this group, we stabilized the sacral fracture using two partially threaded

sacroiliac screws from both sides, oblique inverted (cannulated, partial threaded steel screw
7.3 mm, DePuy Synthes, Raynham, MA, USA), and a fully threaded transiliosacral screw
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(cannulated, fully threaded steel screw 7.3 mm, DePuy Synthes, Raynham, MA, USA),
which led to a total of 6 cortical index osteosynthesis procedures of groups 1 and 2 together
(Figure 1A).
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Figure 1. (A) Schematic drawing of the triangular fixation of the sacrum. Two oblique screws in the S1
vertebra and a transiliosacral screw in the S2 vertebra. (B) Schematic drawing of the additional cement
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Group 2: In this group, additional cement augmentation with high-viscosity PMMA
(TraumacemTM V+, DePuy International Co., Ltd., Leeds, UK) was applied. To achieve that,
the oblique sacroiliac screws were removed partially, and then the cement was applied and
the screws were fastened immediately [32] (Figure 1B).

Sacroiliac screw osteosynthesis was conducted under fluoroscopic control using a
standard inlet/outlet fluoroscopic technique [33].

To allow a controlled load distribution, all pelvises were tested by a simulated bilateral-
leg stance model as described in previous studies [34]. Before mounting the pelvis in the
universal testing machine (Instron ElectroPuls E10000, Instron, Norwood, MA, USA),
6 optical markers (Optitrack, Corvallis, OR, USA) were added to the fracture fragments
(2 for each fragment) as recommended by the manufacturer (Figure 2). To simulate a
bilateral stance as it occurs during walking, bipolar cephalic hip prostheses (48 mm, Zimmer
Inc., Warsaw, IN, USA) were used and articulated with both acetabula. Both prostheses
were set up on ball-bearing slide plates, which allowed independent coronal movement,
and thus extrinsic stability of the mounted pelvis. After positioning the pelvises, axial
loading was applied with a ceramic hip prosthesis head (28 mm, Zimmer Inc., Warsaw, IN,
USA) that was articulated at 45◦ to the proximal sacrum in a fitting cement cup, which was
based on a custom-built mount. The mount was fixed on the L5 vertebra using Technovit
(Heraeus Kulzer, Wehrheim, Germany).
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Figure 2. Visualization of the biomechanical test setup with supplied fracture and inserted optical
markers. Dotted white line represents the fracture-lines. (a) optical marker, (b) holder on the base
plate, (c) mounting to the universal testing machine, (d) visible screw head.

After mounting the pelvises in the universal testing machine, a baseline pre-force of
25 N was applied. Each cycle consisted of a maximum load and a relief plateau, both held for
10 s. The first two loading cycles served as setting cycles, after which fracture displacement
was measured over the following five cycles. The applied force was incrementally increased
by 25 N steps, starting from the initial 25 N, until a fracture displacement of 2 mm was
reached, to prevent complete specimen failure. Osteosynthesis failure was defined as either
a fracture displacement of 2 mm or implant breakage/pelvic fracture.

The maximum load of 200 N was determined based on the existing literature, which
yielded comparable results [25,35].

Data Acquisition, Processing, and Statistical Analysis

Spatial instability and movement were recorded using an optical measurement system
(Prime 13®, Optitrack, Corvallis, OR, USA), with marker pairs placed in standardized
positions on each pelvis. Data analysis was conducted using the manufacturer’s software
(Motive 2.1®, Optitrack, Corvallis, OR, USA). Statistical analysis was performed using
SPSS (version 22.0, Chicago, IL, USA) and SigmaPlot (SigmaPlot 13.0; Systat Software Inc.,
San José, CA, USA). The Wilcoxon test was used to compare groups, and mean values
with standard deviations were calculated for continuous variables. A p-value of <0.05 was
considered statistically significant.
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3. Results
A mean displacement of 6.5 +/− 2.7 mm (p < 0.05), and rotational pivoting of

4.4 +/− 2.4◦; (p < 0.05) of the sacrum were detected for the triangular stabilization group
(vs. baseline load). The additional cement augmentation resulted in a tendency for lower
movement, but without significantly increasing the stability, when compared to the trian-
gular stabilization, respectively, 3.0 +/− 1.5 mm (p < 0.05) for translation and 1.7 +/− 0.4◦;
(p < 0.05) for rotation (Figure 3A,B).
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Figure 3. (A) Displacement of the sacral fragments from the central fragment in the different
osteosynthesis procedures. (B) Rotation of the sacral fragments in relation to the central fragment in
the different osteosynthesis procedures.

The load to failure reached 65 N +/− 12.2 N in the triangular group. The additional
cement augmentation allowed a slightly higher load to failure, but without significance
(70 N +/− 29.2 N, p > 0.05 vs. triangular screws). The maximum load to failure values are
shown in Table 1.

4. Discussion
The treatment of fractures in the geriatric population requires an improvement of

currently existing options. The results of the present study show that stable fixation using
triangular iliosacral screws can be achieved; however, additive cement augmentation did
not increase the stability of the triangular screw stabilization technique for the sacrum.
Previous studies have reported a prevalence of dysmorphic S1 vertebrae ranging from
14% to 64% [36–38]. Wagner et al. also found that in an additional 25% of analyzed cases,
the safe S1 corridor was deemed critical [37,38]. These findings highlight the need to
explore alternative fixation methods to ensure sacral stability. Based on these results, we
propose that alternative fixation methods should be considered to achieve stability of the
sacrum. It has been claimed that longer iliosacral screws provide a more stable construct,
because they have greater resistance to buckling and are more resistant to vertical shear
loading [15]. Griffin et al. used a range of different screw lengths to analyze their impact
on the failure rate; however, the only significant risk factor for fixation failure was the
vertical sacral fracture and not the length of the iliosacral screw [16]. Also, Tornetta et al.
found that a construct with a standard iliosacral screw combined with a long iliosacral
screw crossing the contralateral sacroiliac joint did not increase the results compared to
a construct with two iliosacral screws [10,16]. To further investigate these findings, this
present biomechanical study was designed to analyze the stability of iliosacral screws in
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osteoporotic bone without and with cement augmentation. For this study, only cadavers
with osteoporotic bone quality were selected to simulate unstable fractures of the geriatric
patient. The bone quality was analyzed in HU in a region of interest in the S1 vertebra as
described in the literature [26] and all pelvises showed an osteoporotic bone quality [24].
The groups were matched prior to testing for bone density, age, and sex. Although the
sample size with five pelvises was small, this is in line with studies responding to similar
scientific questions [39,40].

The fractures were created by an osteotomy according to previous studies [41] using
the saw gauge, and the fracture pattern created was similar in all pelvises of this study.
However, the fracture pattern created only mimicked fragility fractures of the FFP type
IVb/OF4 without a horizontal fracture line, which are considered the most unstable fragility
fractures, often resulting in prolonged episodes of pain [6]. Additionally, the symphysis
was stabilized, to increase the stability of the biomechanical testing setup, as in previous
studies [29–31].

For the biomechanical testing, a bilateral stance model was used [34,42]. Because
the axial loading force was applied directly to the sacrum to analyze the stability of the
osteosynthesis, an alternating single-leg stance model, which was also considered, was not
required [29,31,43]. Screw configurations were tested sequentially in the same specimens to
allow a direct comparison between the stabilization without cement augmentation and after
augmentation with cement, even in a small sample of pelvises. This cumulative loading
may influence the stiffness of the cadaveric model, but such testing sequences are commonly
used in comparable vitro studies [41]. In this study, a maximum load of 125 N was achieved,
due to the completely unstable bilateral transalar osteotomies and the exclusive use of
osteoporotic cadavers. These results are in line with the described maximum loading forces
in the literature [41,44]. Additionally, the displacement of >2 mm was considered a failure
in this study, whilst other authors allowed a larger scale of displacement during their
studies [41]. All pelvises in this study achieved sufficient stability after the osteosynthesis
using the triangular iliosacral screws. The combination of oblique iliosacral screws in
S1 and a transiliosacral screw in S2 was analyzed in the present study. Hasenboehler
et al. showed higher body means for S2 in patients with dysmorphic sacra [45]. Due to the
osteoporotic bone density, the construct remained fragile. To increase the stability, the use of
cement augmentation seems beneficial [9,18,19,25,32,46]. In their study, Frey et al. showed
that even a sacroplasty is beneficial after ten years [47]. Höch et al. also found reduced pain
after cement-augmented sacroiliac screws for fragility fractures in a 1-year follow-up [41].
However, in biomechanical studies, similar to our model, no improvement in stiffness in the
sacroiliac joint compared to a single non-augmented screw was found [18,41]. Ronchi et al.
highlighted the complexity of fragility fractures of the pelvis and the resulting biological
damage and physical impairment [48,49].

Additional to surgical therapy, controlled loading–unloading cycles through physi-
cal therapy and weight-bearing exercises to enhance bone strength should be considered
(https://theros.org.uk/information-and-support/bone-health/exercise-for-bones, accessed
on 15 January 2025). The results of the present study show that additive cement augmenta-
tion did not increase the stability of the osteosynthesis of the sacrum. Hence, the risk of
additional complications such as cement leakage should be considered carefully in view of
the lack of stability improvement produced by cement augmentation when compared to
triangular oblique/transiliosacral screw fixation without cement.

5. Limitations
There are several limitations to this study. Biomechanical testing using fresh frozen

specimens offers the ability to directly compare osteosynthesis techniques in a controlled

https://theros.org.uk/information-and-support/bone-health/exercise-for-bones
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setting. However, variations in bone and soft-tissue quality, as well as possible small varia-
tions in screw placement, may influence the results and may prevent a direct translation
of the findings to in vivo findings. Furthermore, the number of cases in this study with
isolated oblique and transiliosacral screws is low; however, when considering the highly
homogenous osteoporotic bones sampled, the small sample size can be regarded as reliable.

6. Conclusions
A triangular-shaped fixation technique for the sacrum results in a comparable stability

to that with cement augmentation of the screws, without the risk of cement leakage. As
such, we found that the latter did not improve primary stability in this biomechanical
study. However, further research on surgical techniques to stabilize fragility fractures of
the sacrum must be conducted.
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