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Improved cutoff functions for short-range potentials and the Wolf summation
Martin H. Müser

Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany

ABSTRACT
A class of radial, polynomial cutoff functions fcn(r) for short-ranged pair potentials or related expressions is
proposed. Their derivatives up to order n and n + 1 vanish at the outer cutoff rc and an inner radius ri ,
respectively. Moreover, fcn(r ≤ ri) = 1 and fcn(r ≥ rc) = 0. It is shown that the used order n can
qualitatively affect results: stress and bulk moduli of ideal crystals are unavoidably discontinuous with
density for n = 0 and n = 1, respectively. Systematic errors on energies and computing times decrease
by 20–50% for Lennard-Jones with n = 2 or n = 3 compared to standard cutting procedures. Another
cutoff function turns out beneficial to compute Coulomb interactions using the Wolf summation, which
is shown to not properly converge when local charge neutrality is obeyed only in a stochastic sense.
However, for all investigated homogeneous systems with thermal noise (ionic crystals and liquids), the
modified Wolf summation, despite being infinitely differentiable at rc, converges similarly quickly as the
original summation. Finally, it is discussed how to reduce the computational burden of numerically
exact Monte Carlo simulations using the Wolf summation even when it does not properly converge.
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1. Introduction

The efficiency of molecular simulations hinges on the trunca-
tion of interaction potentials [1,2]. One possibility to achieve
that is to multiply the interaction potential, or, functions enter-
ing their calculation, with cutoff functions [3–5]. However,
there are two major, mutually exclusive requirements on
them. The cutoff radius rc should be as large as possible to
reduce systematic errors [6] but also be as small as possible
to boost computational efficiency. Similarly, given a particular
value for rc, fc(r) should be close to unity for as long as possible
to reduce discrepancies from the real energy. At the same time,
fc(r) should be decreased to zero as smoothly as possible to
avoid abnormally large forces or curvatures at large distances,
which generally induce undesired behaviour [7,8]. A compro-
mise is certainly needed, but it does not seem that a generally
applicable one has been identified. Another common strategy
to cut off short-range potentials is by making all their deriva-
tives up to n th order vanish continuously at rc through

Usn(r) = {U(r)− T [U(r), rc, n]}Q(rc − r), (1)

where U(r) is a pair-potential or a related local function,
T [U(r), rc, n] the n th order Taylor expansion of U(r) about
r = rc, and Q(r) the Heaviside function. A shifted-potential
(SP) potential is obtained for n = 0, a shifted-force (SF) poten-
tial for n = 1 [9–11], and a shifted-curvature (SC) potential for
n = 2. A disadvantage of the shifting procedure is that binding
or cohesive energies decrease rather quickly with n at fixed rc.
For this but also for other reasons, it is often desirable to sum
up potentials or other local functions so that the contribution
fromnearest neighbours is exact, for example, when computing
the embedding density within a potential based on the

embedded-atom method [12]. To achieve this, the partial den-
sities are multiplied with cutoff functions, fc(r), which are set to
unity up to an inner radius ri and then swiftly decreased toward
zero [4]. However, in order to avoid qualitative cutoff artifacts,
fc(r) has to approach zero in a sufficiently smooth fashion.

Good cutoff functions are central to balancing compu-
tational efficiency and systematic errors but are surprisingly
little discussed even in stellar textbooks on molecular simu-
lation [1,2]. Unfortunately, there is no unique optimum. It
would depend not only on the potential but also on the
property of interest. For example, when studying sublima-
tion, reproducing the energies themselves is crucial. How-
ever, forces and curvature of potentials determine
mechanical properties. In this context, it is useful to keep
in mind that an attractive potential that is cut without shift-
ing has a δ-function spike in the force. Its proper implemen-
tation will unavoidably lead not only to unphysical dynamics
but require non-trivial terms to be averaged when determin-
ing static properties like pressure [1]. In a cut-and-shift
potential, stress is still discontinuous in density for ideal
crystals (and thus potentially for other systems too) so that
upon reversion the density is discontinuous in pressure.
Each higher-order in a cut-and-shift procedure mitigates
artifact to one higher-order in the response function so
that n = 3 is the lowest cut-and-shift order, which systemati-
cally avoids a discontinuity of elastic properties with
pressure. In MD simulations based on standard symplectic
integrators, n ≥ 2 is needed to ensure energy conservation
[10] so that n = 2 can be seen as the lowest order of a gen-
erally applicable cutting-off procedure.

In this paper, cutoff functions with beneficial properties are
proposed. The cutoff functions are designed to take a value of

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

CONTACT Martin H. Müser martin.mueser@mx.uni-saarland.de

MOLECULAR SIMULATION
2022, VOL. 48, NO. 15, 1393–1401
https://doi.org/10.1080/08927022.2022.2094430

http://crossmark.crossref.org/dialog/?doi=10.1080/08927022.2022.2094430&domain=pdf&date_stamp=2022-09-01
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:martin.mueser@mx.uni-saarland.de
http://www.tandfonline.com


unity up to ri and to approach zero continuously as their argu-
ment approaches rc. Moreover, the function itself and its
derivatives up to order n vanish continuously at the outer
cutoff rc. It is demanded to be one order higher at the inner
cutoff, because artifacts arise not only when atoms or entire
neighbour shells cut through rc but also through ri. This choice
is made because short-ranged potentials, their forces and cur-
vatures tend to be larger at the inner radius than at the outer
cutoff, so more care is required at ri than at rc.

Shifting potentials have been discussed in particular in
regard to the Wolf summation [13–16]. Wolf et al. showed
that cutting and shifting the Coulomb interaction is equivalent
to placing a charge-balancing countercharge at rc, thereby
reproducing an important element of the Evjen summation
[17]. Applying the shifting procedure to the damped Coulomb
interaction arising in the real-space part of the Ewald sum-
mation [18] rather than to the original Coulomb interaction,
allows the convergence with increasing rc to be quickly
reached, even when neglecting the non-zero-wavenumber
contributions to the Fourier portion of the Ewald sum.
While systematic errors in the Wolf summation cannot be
made arbitrarily small with the same low computational cost
as with other Coulomb interaction summation techniques,
most notably the particle mesh Ewald method [19], it may
yet be interesting for a variety of reasons: It can be used (i)
for quick prototyping, (ii) in Monte Carlo simulations,
which, unlike molecular dynamics, does not benefit from the
simultaneous update or thermalisation of all degrees of free-
dom, and (iii) in conjunction with multiple-time stepping
schemes [20]. This is why cutoff functions in the context of
the Wolf summation are also investigated. This includes a dis-
cussion of how to effectively use the (modified) Wolf sum-
mations when it fails to converge.

2. Background

2.1. Conventional cutoff functions

In principle, any shifted potential can also be obtained with a
cutoff function defined implicitly through fc(r) ; Usn(r)/U(r),
where n is the largest-order derivative of the potential going
continuously to zero at the cutoff. The resulting cutoff function
would not be near unity at a typical nearest-neighbour distance
unless rc were very large. This is why shifting procedures
should generally be inferior to more general cutoff functions
with similar behaviour for U(n)(r & rc). We can therefore dis-
miss simple-shifting procedures as a competitive alternative to
well-designed shifting functions.

One of the most frequently used cutoff functions, suppo-
sedly proposed by Tersoff [4], is given by

fcF(r) = Q(ri − r)

+Q(r − ri)Q(rc − r)
2

1+ cos p
r − ri
rc − ri

( ){ }
. (2)

This function, just like SF potentials, makes the force go line-
arly to zero as r approaches rc but has a discontinuity in the
curvature. Since fcF(r) is mirror symmetric about (rm, 1/2),

where rm = (ri + rc)/2 can be called the mid-point, it has
the same non-analyticity at ri and rc.

An improved version of and thus replacement for the SP
potential can be generated with the cutoff function

fcP(r) = Q(ri − r)+Q(r − ri)Q(rc − r) sin
p

2
rc − r
rc − ri

( )
, (3)

which obeys the proposed rule of the cross-over function being
one order more continuous at ri than at rc. This rule is meant
to be useful when a potential decays with 1/r3 or faster,
because the relative number of interactions, inner versus
outer radius, where discontinuities in derivatives matters,
scales with (ri/rc)

2 in three spatial dimensions. For an electro-
static monomer-dipole interaction, the same order discontinu-
ity at ri and rc would be recommended as this would balance
errors at the inner radius and the outer cutoff. In lower dimen-
sions, the exponents have to be corrected appropriately.

Other cutoff functions exist [21], e.g. functions that also have
mirror symmetry about (rm, 1/2) but with higher-order vanish-
ing derivatives at ri and rc than fcF. However, they are not con-
sidered here, because they violate our mantra that more care
needs to be taken at the inner than at the outer radius, and/
or, because they havemore ‘structure’ than simple polynomials.
Finally, we note that this mantra does not apply to long-range
potentials, where it may be beneficial to have smaller errors at
rc than at ri, in particular if ri = 0 is chosen.

2.2. Polynomial cutoff functions

Cutoff-function proposed in prose in abstract and introduc-
tion are given by fcn(r) = 1− Pn(x) with
x = (r − ri)/(rc − ri) and

P1(x) = x2,

P2(x) = 4x3 − 3x4,

P3(x) = 15x4 − 24x5 + 10x6.

(4)

The Pn(x) are constructed as the lowest-order polynomials to
vanish with order 0, . . . , n+ 1 at x = 0 and to assume
P(1) = 1 while all derivatives up to order n vanish at x = 1.
The resulting cutoff function are depicted in Figure 1 together

Figure 1. Selected cutoff functions. Circles indicate the location of the inner
cutoff radius ri .
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with fcP and fc2. Inner cutoffs were chosen for aesthetic reasons
so that different functions do not cross.

We are confronted with the task of determining ‘optimal’
values for ri, which depends on the cutoff function in addition
to the (pair) potential and the property of interest. Since the
parametrisation of potential is done w.r.t. the cutoff function,
it seems in place to suggest a generic choice in the one-size-fits-
all spirit. Choosing ri = 0 and ri = rc are certainly lower and
upper bounds. However, they are obviously anything but help-
ful. One way of proceeding would be to demand that forces or
derivatives at r ≥ ri should not be greater in magnitude than at
r = ri. For a dispersive 1/r6 attraction, ri/rc would then turn
out to lie within 0.8049 and 0.8221 for all cutoff functions dis-
cussed so far, except for the popular fcF(r) cutting function,
which would require ri/rc = 0.7447. This smaller ratio arises
because the non-analyticity of fcF(r) at the inner cutoff is as sig-
nificant as at the outer cutoff. Thus, larger compromises would
have to be made on the cohesive energy using fcF(r) than for
the remaining cutoff functions. Unfortunately, the just
reported ri/rc ratios still turn out too aggressive for the Len-
nard-Jones potential: the equation of state of an ideal, face-
centred cubic (fcc) Lennard-Jones remains discontinuous.
This undesired behaviour could be eliminated by reducing
the ratio to ri/rc = 2/3.

2.3. Cutoff functions infinitely often differentiable at rc

Cutoff functions going to zero such that all their derivatives
vanish at rc can be beneficial, e.g. in the context of generalised
embedded-atom-method (EAM) based potentials, in which
derivatives of the charge density enter the definition of the
potential [22,23]. This can be achieved with a function
combining the Stillinger–Weber (SW) [3] cutoff function
and the idea of a polynomial expansion pursued in this
paper. Specifically,

fSWn(r) =
T [denom(r), 0, n]

1+ exp Drc
rc−r

( ) Q(rc − r) (5)

is such a cutoff function. Here, denom(r) is the denominator of
the quotient on the r.h.s. of the equation, T [ · · · ] denotes a
Taylor series expansion as above, and Drc determines, as a

function of n, how closely to rc the cutoff function assumes
the value 0.5. Some selected SW generalised cutoff functions
are shown in Figure 2. The original one proposed by Stillinger
and Weber corresponds to n = 0.

For Drc ≪ rc and/or large values of n, the effect of fSWn(r)
will be similar to that of a harsh cutoff, as fc(r) is close to
unity up to the immediate vicinity of rc, in which case the dis-
advantages from harsh cutoffs are inherited. We see no reason
to use fSWn(r) for regular short-range potentials, however, it
could benefit, for example, the systematically modified
embedded atommethod, [23] for which the embedding energy
depends on (higher-order) derivatives of the embedding den-
sity. Higher-order derivatives place higher demands on the
way in which the charge density is brought down to zero at
rc, in particular, when an individual atom breaks its final bond.

Although using fSWn is disadvised for regular short-range
potentials, it appears to be a suitable candidate to cut off
long-range potentials, since its analyticity is of higher order
at rc than at ri. In fact, a cutoff function closely related
to that proposed by Stillinger and Weber,
fm(r) =

∏m
q=1 (1− xq), was explored recently and found ben-

eficial for the Wolf summation [24]. For m � 1, fm(r) closely
resembles the SW function with Drc/rc = 1.2. Using higher-
order n in fSWn might further improve convergence. This
expectation is explored in the context of the Wolf summation
in Section 4.

3. Cutting short-range potentials

The generic (pair) potential used to describe non-bonded
interaction is the Lennard-Jones (LJ) potential

U(r) = U0
r0
r

( )12
−2

r0
r

( )6{ }
, (6)

where U0 is the binding energy of a dimer and r0 its equili-
brium bond length. The standard cutoff used for LJ is
rc = 2.5s, where s =

	
[

√
6]2r0 is also called the LJ radius.

Often, the LJ potential is merely shifted using this default
value. This procedure is standard practice and certainly
acceptable. Nonetheless, simultaneous improvements on
both accuracy and computing time should be possible, which
is explored next.

To demonstrate the effect of the various cutting schemes,
the fcc LJ crystal will be investigated. It allows artifacts to be
highlighted, while keeping computing times and numerical
errors minimal. The local structure certainly differs between
LJ crystals with well-defined neighbour shells and liquid Len-
nard–Jonesium, which is close to random-sphere packing. As a
consequence, typical bond distances at zero or what-would-be
ambient pressure are less than r0 in the crystal but greater r0 in
the liquid. Next-nearest neighbour distances and associated
coordination numbers, to be defined, e.g. through a skew-nor-
mal-distribution analysis of peaks in the radial distribution
g(r) [25], differ even more between crystal and liquid. Includ-
ing into the discussion the radial distribution functions arising
in (united-atom based) models of polymers makes it even
more difficult to identify guidelines for how to pick ri and rc
so that they both coincide with minima in g(r). Thus, any

Figure 2. Selected Stillinger–Weber inspired cutoff functions. All dashed lines use
Drc = 0.25rc.
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final choice should yield robust results no matter how ri and rc
relate to the maxima and minima in g(r) of any particular sys-
tem of interest. Any critical situation is included in the analysis
when analysing the cohesive energy and the equation of state
(EOS) in the range 0.85 ≤ a0/r0 ≤ 1.3, where a0 is the
(mean) nearest-neighbour bond length. This is because the
energy of an individual LJ bond is already positive at
r = 0.85r0, which is a situation of a very high compressive
stress or force. At the other end at a0 = 1.3r0, a LJ bond can
be considered broken, because this bond length is beyond
the inflection point of the LJ potential, i.e. past the point of
maximum tensile force.

The goal is to identify parameters for the cutoff function(s)
and radii that globally outperform the standard cut-and-shift
procedure. To this end, we chose arbitrarily rc = 2.5r0,
which reduces the interaction volume to 70% compared to
that of the default cutoff, rc = 2.5s, and thereby the number
of force evaluations by a similar percentage. Of course, it
would be a simple matter to include mean-field corrections
for the cohesive stress [26] so that smaller cutoff radii could
be trivially achieved without losing accuracy. However, they
would not be useful for heterogeneous systems, e.g. when sur-
faces are present. Moreover, such corrections are not always
available in popular software packages. This is why mean-
field corrections are not included in this study either.

For rc = 2.5r0, an inner cutoff of ri = 2rc/3 was found ben-
eficial. It makes the cohesive energy of an fcc crystal be just
below the default cut-and-shift procedure with rc = 2.5s, at
least in the ‘interesting range’ of 0.85 , a0/r0 , 1.3, which
is demonstrated in Figure 3, where the values of the pertinent
potential energies are almost within line width in panel (a).
Both the default cut-and-shift as well as the fc3(r) cutting
yield a similar minimum in the cohesive energy of about
8U0, per atom, while the nearest-shell approximation yields
exactly 6U0. The exact binding energy is about 8.59U0. Figure
3(a) also reveals that using a harsh, unshifted cutoff at 2.5r0
does not significantly lower the energy compared to a method
using the same cutoff radius but the high-order smoothing
function fc3(r). However, the discontinuities occurring when
using harsh cutoffs generally yield unacceptable behaviour.

Figure 3(b) resolves the error DU = U(appr.)− U(exact)
over a relevant range. Errors are multiplied with a30 to make
results approximately constant. Values turn out close to the
ones expected from the mean-field correction to the dispersive
interaction, i.e.

DUdisp

U0
≈

∫
r.rc

d3rr
r0
r

( )6
=

			
32

√
p

3
r60
r3ca

3
0
,

the numerical prefactor evaluating to approximately 0.38
after having inserted the fcc atomic number density of
r =

		
2

√
/a30. Since repulsion reduces the binding energies,

0.38 is merely a lower bound for the numbers reported in
Figure 3(b).

Since the energies of the various approximations schemes
are quite close to each other, so will their EOS. In fact, they
turn out to be within line width in Figure 3(c), except for
the nearest-neighbour approximation revealing a significantly
reduced (theoretical) maximum cohesive stress. However,

zooming into parts of the EOS resolves that the standard
cut-and-shift procedure induces a discontinuous EOS. Similar
discontinuities also occur under compression, however, their
relative effect is negligible. Of course, even minor thermal
fluctuations smear out the discontinuities, so one certainly
does not need to be concerned when using the standard
rc = 2.5s LJ cut-and-shift procedure. Nonetheless, they can
become relevant for other potentials or for smaller cutoffs.

It can be summarised that the fc2(r) and fc3(r) cutoff func-
tion lead to smaller errors than the standard cut-and-shift pro-
cedure for the cohesive energy and the EOS in the range what
we deemed to be interesting. At the same time, they require
only about 70% of the force evaluations. However, this latter
point is only advantages when look-up tables for interatomic
potentials and forces are used. Otherwise, the additionally
required floating-point operations needed to evaluate forces
from smoothly cut potentials would be prohibitively
expensive.

4. Wolf summation

4.1. Background

Ewald [18] demonstrated that Coulomb interactions in period-
ically repeated systems can be meaningfully summed up by
dividing the summation into a real-space and a Fourier or reci-
procal-space contribution. The latter contains two terms at
zero wave vector, one of which is the so-called self-interaction
energy and the other the electrostatic energy resulting from the
electrostatic field generated by the mean dielectric polarisation.
In detail, given a charge-density distribution of
r(r) =

∑
i qid(r− ri) with zero net charge, the electrostatic

energy reads [18,27]

UC({r}) =
∑
i,j.i

qiqj
4p10

erfc(kErij)

rij
−

∑
i

q2i
4p10

kE		
p

√

+ p2tot
2(21ext + 1)10V

+ 1
210V

∑
k,k=0

|r̃(k)|2
k2

e−k2/4k2E ,

(7)

whereV is the volume of the periodically repeated (simulation)
cell, r̃(k) is the Fourier transform of r(r), and ptot the total
dipole moment of the simulation cell, i.e.
ptot =

∑
i qi(ri − r0i) assuming the dipole moment for the

set of reference coordinates {r0} to vanish. Finally, 1ext is the
relative permittivity of an external embedding medium.
Including its effect matters for finite clusters, which are placed
into a simulation cell with a vacuum buffer, in which case
1ext = 1.

The last summand on the r.h.s. of Equation (7) can become
irrelevant for sufficiently small kE. This might have enticed
Wolf et al. [13] to ignore that term completely. In order to
effectively enforce charge-neutrality within rc, Wolf et al.
[13] used a cut-and-shift potential, and corrected the self-
interaction energy to

UDSPself (i) = − kE		
p

√ + erfc(kErc)
2rc

( )
q2i

4p10
. (8)
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Although simply cutting and shifting potentials is problematic
for reasons discussed above as well as in [6,11,14], this original
Wolf summation is taken as the reference for alternative cut-
ting procedures investigated here below.

Picking kE properly when performing a real Ewald sum-
mation is crucial to achieving a good compromise between
speed and accuracy. Using a fast Ewald method, kE can be
kept constant irrespective of the system size, or, particle num-
ber N. For the conventional Ewald sum, the apparently opti-
mum choice is kE / 1/

	
[

√
6]N, in which case the

computational effort to yield results with a target error scales
as N3/2, both in real as well as in reciprocal space [2,28]. For
both fast and conventional Ewald summation, increasing the
demand on accuracy by a given factor then only necessitates
an increase in computing time scaling sub-logarithmically in
this factor.

The large convergence rate of Ewald summations cannot be
achieved using the Wolf summation. However, even an alge-
braic dependence would be desirable, in particular in the con-
text of Monte Carlo simulations, which, unlike molecular-
dynamics simulation, does not profit from a parallel update
of all degrees of freedom. To ensure convergence using the
Wolf summation, kE must be made a function of rc. As dis-
cussed in more detail here below, the overall best choice
when using a Wolf summation turns out to satisfy
kE ≈ 1/

					
a0rc

√
, where a0 is a typical distance of adjacent anions

and cations.

4.2. Convergence for ideal and perturbed rock-salt
structures

A first convergence analysis for the Wolf summation is pre-
sented in Figure 4. Panel (a) shows the Madelung constant
aM, while panel (b) depicts themagnitude of its error. The latter
reveals that convergence is not only algebraic but even exponen-
tial with rc for this highly symmetric structure when using
kE = 1/

	
[

√
4]a30rc. While the original Wolf summation con-

verges the most quickly, kinks in aM indicate indirectly that
the original summationwill unavoidably lead to artifacts. Essen-
tially exponential convergence is also obtained for fc2 and fc3, for
which ri = rc/2 was used. Although rates are a little less than for
the original Wolf summation, the new summations are much
better behaved whenever a neighbour sell cuts through the
cutoff radius. The fSW2-data was obtained using ri = 0 and
Dr = rc. The general n = 2 expansion of the numerator on the
r.h.s. in Equation (5) reads 1+ exp (w̃){1+ r̃ + w̃(2+ w̃)r̃2/2}
with w̃ = Drc/rc and r̃ = r/r̃c.

Before proceeding to less idealised cases, some observations
will be reported. First, ideal rock salt was the only structure for
which choosing kE ≈ 1/

	
[

√
4]a30rc was clearly optimal. In all

other cases, kE ≈ 1/
					
a0rc

√
turned out to be the apparently

best option for reasons stated further below. Second, rock
salt was the only structure for which fc2 and fc3 ‘outperformed’
fSW2 at large rc. Third, making the order n at ri greater than at
rc, i.e. replacing 1− Pn(x) in the definition of fcn(r) with

Figure 3. Effect of various cutting procedures on (a,b) the fcc binding energy U(fcc) as function of nearest-neighbour distance a0 and on (c,d) the equation of state. (a)
Cohesive energies U(fcc) of various approximation schemes for fcc Lennard–Jonesium. (b) Weighted errors of various approximation schemes to the exact cohesive
energy. (c) Global equation of state (EOS). (d) Error in the pressure in the EOS.
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Pn(1− x), did not improve results. Fourth, fSW2 outperformed
all other fSWn. Observations 3 and 4, whose reasons we do not
yet understand, also hold for the other investigated structures.

Deviations from the ideal rock-salt structure were also
investigated. First, a small random distance was added to
each atomic coordinate so that the far field of an atoms is iden-
tical to that of a point charge augmented with a random dipole.
Second, the charge of each atom on an ideal lattice was aug-
mented or reduced randomly by half an elementary charge
with the constraint that the net charge remains unchanged.
The result is an ionic solid solution with positional disorder.
The such produced configurations will be called random-
dipole and random-charge crystals, respectively.

For sufficiently large systems, the Madelung constants of
both random crystals is identical to that of regular rock salt.
This is because (a) the field of a random dipole or higher-
order multipole has a random direction so that placing another
multipole into its field has, on average, zero potential energy
and (b) the expectation value of the product qiqj satisfies
〈qiqj〉 = 〈qi〉〈qj〉 in the limit of infinite particle numbers. In
finite systems, systematic deviations occur because the fluctu-
ation of a given charge is perfectly correlated with that of its

periodic images but slightly anti-correlated with all other
charges and their periodic images.

Figure 5(a) shows that the Wolf summation converges to
the proper effective or mean Madelung constant aM for the
random-dipole crystal (within statistical fluctuations from
one random realisation to the next) if kE is made an appropri-
ate function of rc, e.g. kE = k/(a0rc)

b with the prefactor
k = 1.2 and exponents b = 1/2 or b = 1/3. This is not sur-
prising, since the dipole-dipole interaction of oriented dipoles
is just no longer integrable in three spatial dimensions, so that
sums over randomly oriented dipoles are unconditionally
integrable or summable. Figure 5(a) allows the following,
additional observations to be made: The Wolf-summation
results can be fit quite accurately using aM = aM(1)+ b/rg

at large rc. A smaller exponent β leads to a smaller exponent
γ, however, the asymptotic scaling is reached at smaller rc/a0
ratios. In the given example, g = 1 for b = 1/3 and g = 3/2
for b = 1/2. Moreover, the modified Wolf summation has
the same asymptotic approach to aM(1) as the original
summation.

It is also noted that the SW2-modified Wolf summation
tends to be closer to the exact result than the original Wolf

Figure 5. Convergence of the mean Madelung constant aM for (a) random-dipole and (b) random-charge crystals containing 24× 24× 24 atoms in total. For
rc . 8a0, the Wolf sums were fit with aM = aM(1)+ b/rgc and shown as coloured, solid lines on the entire domain. The asymptotic values, aM(1), are drawn as
dashed lines in their respective color. In both panels, the Madelung constant of ideal rock salt is drawn as a solid, black line. (a) Plus symbols and crosses show
the original and a fSW2-modified Wolf summation, respectively. The Ewald parameter was chosen as kE = 1.2/(a1−b

0 rbc ) with b = 1/3 and b = 1/2. (b) Different sym-
bols refer to different prefactors κ used for kE = k/

					
a0rc

√
, i.e. k = 1.5 (triangles), k = 1 (circles) and k = 0.5 (squares). Crosses show the Evjen summation.

Figure 4. Convergence of Madelung constant aM in ideal rock salt with increasing cutoff radius rc in units of the bond length a0 for various cutting schemes for the
damped Coulomb interaction. (a) Absolute values. (b) Magnitude of deviation.
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summation, however, asymptotic scaling sets in at larger rc.
Besides producing continuous forces and potential curvatures
at rc, this is one reason why the use of the SW2-modified Wolf
summation would be suggested for simulations for which rc is
a fixed quantity. However, extrapolating aM(rc � 1) is more
easily done using the original Wolf summation, or, for
example, the fc3 -modified Wolf summation. For this reason,
most of the subsequent convergence analysis is made on the
original Wolf summation.

For the random-charge crystal, the Wolf summation no
longer converges to the correct Madelung constant, as is
revealed in Figure 5(b), at least as long as rc is less than half
the size of the periodically repeated cell. This time, the prefac-
tor κ to the kE = k/

					
a0rc

√
was varied. The exponent γ in the

(seemingly) asymptotic aM = aM(1)+ b/rg relation was
again not universal but turned g & 1/2 for k * 1. Thus,
being locally charge neutral in a stochastic sense is not a
sufficiently strong condition for the Wolf summation to con-
verge. If positive and negative charges separate deterministi-
cally, which can be caused by a structural heterogeneity on
scales exceeding rc, the Wolf summation will obviously be
even more erroneous than for random charge neutrality.

4.3. Convergence for crystalline and liquid silica

The convergence rate of the modified Wolf summation is also
explored on crystals of lower symmetry than rock salt and a
corresponding ionic melt, namely silica. As a reference crystal,
cristobalite was chosen. It is a polymorph of silica, in which the
silicon atoms form a cubic diamond lattice and the bridging
oxygen atoms predominantly rotate in a safe distance about
their average, crystallographic positions, which are located
halfway between two adjacent silicon atoms [29,30]. The
(local) symmetry of atoms in this polymorph is lower than
in rock salt, because the field gradients on oxygen atoms
even in the crystallographic positions are anisotropic, while
the anisotropy of fields of atomic positions in the ideal rock
salt structure appears first in its third spatial derivative. Since

the real positions of oxygen are quite distant from the crystal-
lographic ones, oxygen atoms tend to sit at sites with a rela-
tively rather large electric field. Silica is simulated with the
potential proposed by van Beest, Kramer, and van Santen
(BKS) [31] using a house-written code described before [30].
Despite some shortcomings, the BKS potential has reproduced
various properties of liquid [32] and crystalline [30,33] silica.

Figure 6 shows the relative error in the Coulomb energy,
which was obtained for silica melts at two different tempera-
tures as well as for cristobalite, one time with oxygen atoms
being constrained to their crystallographic positions and one
time at a temperature just above the phase transformation
temperature from the high-symmetry β-cristobalite phase to
the optically active α-cristobalite [34]. As expected, the Wolf
summation converges more quickly for the ideal, crystallo-
graphic crystal than for the thermal crystal, for which the
Wolf summation converges similarly quickly, or, depending
on viewpoint, slowly as the random-dipole crystal considered
in Section 4.2.

A surprising result of Figure 6 is the relatively fast conver-
gence of the Wolf summation for the ‘low-temperature’ (T =
3000 K) melt, which is not only faster than at T = 5500 K
melt but also faster than for the 750 K, thermal crystal. This
may have to do with the fact that Madelung sums should actu-
ally converge for homogeneous melts, even mixtures [16],
since the (partial) density autocorrelation function in dense
liquids are damped oscillations at large r not ‘suffering’ from
distant neighbour shells carrying large number of atoms and
thereby preventing lattice sums from unconditional conver-
gence. Ultimately, (twice) the electrostatic energy per point
charge can be cast as an integral over the charge-density auto-
correlation function, Crr(r) ; 〈r(0)r(r)〉 via

UC = 1
4p10

∫
0+
d3r

Crr(r)
r

= 1
10

∫1
0+
drrCrr(r), (9)

where 0+ is meant to indicate that self-interactions of charges at
r = 0 are excluded from the integral. The (negative) integrand in
the last term of Equation (9) is shown in Figure 7. It reveals that
subsequent peaks in the integrand becomes ever smaller in the
melt but not necessarily in the crystal. In dense, three-dimen-
sional liquid, this behaviour can be rationalised using the Orn-
stein–Zernike theory [35], which predicts the density
oscillations to obey asymptotically cos (r/l+ w) exp (− r/z),
where λ is a wavelength, φ a phase shift and ζ a correlation
length. Maxima and minima in the negative integrand, which
could be interpreted as aMadelung constant density, are located
near the maxima of the partial dislike and like-ion radial distri-
bution functions, respectively.While themagnitude of the inte-
grand for large r is clearly bound by a simple exponential in the
liquid, this is not true for the crystal, where the extrema at r * 9
Å and r & 10 Å aremore pronounced than those in the interval
7–8 Å.

As a small side remark to this article, we wish to note that
the computational burden of the regular Ewald summation can
be slightly reduced when the Fourier part of the interaction is
not evaluated every time step but only every O(a0kE) time
steps. Such a reduction is possible because the long-wavelength
dynamics are slower than the ones associated with short

Figure 6. Relative error in the Coulomb energy DaM/aM as a function of the
cutoff radius rc in units of Å for a modified Wolf summation. The studied systems
were a melt at 5500 K (circles) and at 3000 K (diamonds) as well as a thermal cris-
tobalite crystal at 750 K (red triangles up) and an ideal crystal at the same density,
for which, however, all atoms were placed onto their ideal lattice positions (tri-
angles down). Lines represent power laws with exponents g = 1.31, 1.43, 2.15,
3.8 (top to bottom).
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wavelengths. The CPU time needed for the real-space sum
would then scale as before with Nr3c , while the Fourier part
would be reduced from k3EN

2 to k4EN
2, assuming that, say, a

wavenumber cutoff of kc ≈ 4kE is generally acceptable. For
systems with stark (charge) heterogeneity on arbitrary wave-
lengths, it would be required to chose kc / 1/rc as to avoid
uncontrollable summation errors, which would otherwise
arise if a structural heterogeneity existed on a wavelength
exceeding simultaneously rc and 2p/kc. Minimising the total
CPU time through a proper choice of kE would then lead to
a N10/7 rather than a N3/2 scaling of the numerical effort
with particle number N.

5. Discussion and conclusions

The topic of this article is the proper balance between accuracy
and efficiency when cutting potentials. This is certainly an
important, albeit somewhat neglected issue, Ref. [10] being a
notable exception. The need for another discussion of cutting
and smoothing potentials was recognised while writing a
review on interatomic potentials [21], where it would have
been inappropriate to suggest new functions and their proper-
ties. Of course, the necessity for good cut-off or smoothing
functions is mitigated with advanced methods allowing the
long-range tails of interactions to be summed effectively
[36]. However, despite their efficiency, such methods are gen-
erally limited to pair interactions and are not always available.

This article emphasises that well-designed cutoff functions
should generally outperform cut-and-shift potentials and
that the discontinuities in cutoff functions at the inner radius
deserve at least the same attention as at the outer cutoff radius,
in particular for short-range potentials decaying more quickly
than 1/r3. On the simple Lennard-Jones potential, it shows
that the standard cutting procedure can be optimised in that
errors on pressure and energy could be reduced by roughly
20 to 50%. While these gains are relatively minor, the incred-
ibly large number of computations assuming Lennard-Jones
potentials might make it worthwhile implementing the cut-
ting-off procedure defined in this work.

Although theWolf summation [13] was scrutinised in excel-
lent earlier works [14,16,37], they remained somewhat vague
regarding the asymptotic scaling of errors with the cutoff radius,
the exact requirements for the homogeneity of matter for its

convergence, and how to best pick the Ewald parameter kE.
Here, we confirmed that it is well behaved for most homo-
geneous systems [16], but that local charge neutrality should
be obeyed more systematically than in a purely stochastic
sense. Previous work on random-sphere packing of Na+Cl−

did not identify the marginal, sixth-digit error in the Coulomb
energy, or potentially deemed it irrelevant [15]. The failure of
the Wolf summation for deterministic charge separation, e.g.
due to structural heterogeneity, had already been established
earlier [15,37]. Moreover, we found kE = 1/

					
a0rc

√
as a kind of

optimum choice in that it worked well for all investigated prac-
tical situations involving thermal or structural fluctuations. In
fact, this choice appears is the ‘sweet spot’, similar to a critically
damped case, where for the more general choice of
kE = k/(a1−b

0 rbc ), the scaling of aM with rc crosses over from
an ‘overdamped’ (convergence with small exponent) to oscil-
latory behaviour upon either an increasing β or decreasing κ.
It shall also be noted that the fSW2 -modified Wolf summation
allows one to keep intra-molecular potentials (essentially)
unmodified without affecting its properties. Assuming a cutoff
radius of 8 Å and a bond length of 2 Å, the smoothing function
assumes a value of close to 0.97, even within a radius of zero.

Despite being problematic when the charge density is not
strictly locally neutral, the Wolf summation can still be useful
under such conditions. However, an exact summation of the k-
space contribution would have to be made sporadically, in par-
ticular in Monte Carlo simulations, which, unlike molecular
dynamics, does not benefit from a simultaneous update of all
propagated degrees of freedom. The entire simulation between
two such k-space evaluations would then constitute one large
trial move so that the latest configuration after many steps
using only the Wolf summation would be considered a trial
configuration. That trial configuration could be accepted or
rejected using, for example, the Metropolis algorithm [38],
where the energy difference between new and old k-space con-
tribution, DUk, would enter the Boltzmann factor. While the
rejection of such a time-intensive trial move is certainly regret-
table, a reasonable scaling of the overall numerical effort with
particle number N should be achievable. Of course, as is the
case with the traditional Ewald summation as used in molecu-
lar dynamics [28], rc would have to increase algebraically with
N so that the absolute error induced by local ‘Wolf moves’
decreases with increasing N.

Figure 7.Weighted charge-density autocorrelation function,−rCrr(r), as a function of distance r for (a) β-cristobalite at 750 K and (b) a SiO2 at 3000 K. The dashed lines
are an exponential function proportional to + exp (− r/z) with z = 4 Å.
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