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Simple Summary: Liver diseases are a significant contributor to global mortality, represent-
ing an escalating public health concern worldwide. Natural compounds, particularly herbal
derivatives, remain a primary source for therapeutic agents in liver disease management.
Among these, curcumin, the principal active compound in turmeric, has demonstrated
substantial therapeutic potential. However, its clinical application is limited by poor phar-
macokinetics, including low bioavailability and rapid metabolic degradation. This review
provides a comprehensive analysis of nanoparticle-based formulations designed to enhance
the pharmacokinetics of curcumin for the treatment of non-malignant liver diseases. By
examining advancements in nanomedicine, such as liposomal and polymeric delivery
systems for curcumin derivatives, this study highlights innovative strategies to address the
critical challenges associated with curcumin-based therapies. The insights presented here
consolidate the current knowledge on curcumin’s therapeutic potential in liver diseases,
with a focus on its incorporation into nanocarriers, providing a robust foundation for future
research into this promising herbal compound.

Abstract: Curcumin, a plant-derived polyphenol, shows promise in hepatology for treating
both malignant and non-malignant liver diseases and a subset of extrahepatic cancers.
Curcumin has hepatoprotective, anti-inflammatory, antifibrotic, and antiproliferative prop-
erties, as is evident in preclinical and clinical studies. This highlights its potential as an
adjunct to established cancer therapies, especially in the context of hepatocellular carcinoma
and secondary liver malignancies. Curcumin also demonstrates potential in metabolic
dysfunction-associated steatotic liver disease (MASLD), owing to its antifibrotic and lipid-
lowering effects. However, its clinical use is limited, relating to its poor bioavailability and
rapid metabolism. Nanotechnology, including liposomal and polymeric carriers, alongside
synthetic curcumin derivatives, offers strategies to enhance the bioavailability and pharma-
cokinetic properties. We propose to revisit the use of curcumin in nanoparticle preparations
in chronic liver disease and summarize current evidence in this review article.

Keywords: natural compounds; tumor microenvironment; Curcuma longa; hepatocellular
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1. Introduction
The liver, the largest solid organ in the human body, plays a vital role in the metabolism

of amino acids, carbohydrates, lipids, vitamins, and the synthesis of proteins. Apart from
its metabolic functions, it also acts as a primary filter, removing pathogens and exogenous
antigens from the circulation. All these metabolic and immunological activities of the liver
increase exposure to neo-antigens, necessitating unique immune mechanisms to balance
tolerance and responsiveness [1].

Chronic liver disease (CLD) is characterized by inflammation-driven fibrogenesis,
which can lead to a progressive decline in liver function. Hepatic inflammation, parenchy-
mal destruction, and regeneration eventually lead to end-stage liver disease (ESD) and
cirrhosis [2]. A lethal complication of cirrhosis is hepatocellular carcinoma (HCC), the most
prevalent type of primary liver cancer [3]. Despite recent progress with immunotherapy,
the prognosis of patients with HCC is still dismal due to the tumor’s inherited resistance to
chemotherapy [4].

Plants are a rich source for modern drug development [5]. It is estimated that approxi-
mately 11% of the 252 essential drugs recognized by the World Health Organization (WHO)
are exclusively plant-derived. One such example is curcumin, the principal curcuminoid,
chemically known as the polyphenol diferuloylmethane, found in turmeric (Curcuma
longa). In plants, curcumin plays a protective role, shielding them from oxidative stress
and microbial threats [6].

Curcumin has been well-recognized for centuries for its therapeutic value, especially
in traditional Chinese medicine and Ayurveda, as an herbal remedy. Beyond its medicinal
applications, curcumin is commonly used as a spice and in skincare formulations in the
Indo-Asia region. Beyond its traditional uses, curcumin has gained increasing attention
in modern Western medicine. Recent advancements in nanotechnology have facilitated
the encapsulation of curcumin in nanoparticles, which could enhance the bioavailability
of curcumin and, thereby, improve its therapeutic efficacy for treating various diseases
(Figure 1).
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Figure 1. Main functions of curcumin and curcumin nanoparticle.

Growing evidence has proven curcumin’s broad spectrum of pharmacological bene-
fits, such as anti-inflammatory [7], antioxidant [8,9], antisteatotic [10,11] antifibrotic, and
antitumor activity, rendering curcumin a valuable compound to treat malignant and non-
malignant liver disease [11–13].
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Despite all the positive effects, there are also safety concerns regarding the consump-
tion of curcumin, as excessive doses may cause drug-induced liver injury (DILI) [14].

In this review, we provide a comprehensive overview of curcumin and its pharmaco-
logical value in hepatology.

2. Antitumor Properties of Curcumin in Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer.

Despite recent advancements in therapeutic strategies, including immunotherapy, the
median overall survival rate of patients with advanced stage of HCC is limited to 2 years.
This poor prognosis in the advanced stage suggests the urgent need of pharmacological
agents, using different mechanisms, in addition to established regimes [15,16]. Curcumin
might offer an additional therapeutic benefit to established regimens, as it inhibits HCC
through multiple mechanisms (Figure 2). First, it suppresses cell proliferation by G2/M
phase cell cycle arrest in HCC [17]. Second, growth inhibition and apoptosis induction by
curcumin occurs by the downregulation of JAK2/STAT3 and PI3K/AKT signaling [9,18–20].
Third, curcumin-mediated HCC cell death involves other forms of programmed cell death,
such as pyroptosis, ferroptosis, cuproptosis, necroptosis, and autophagy [11,13,16,21].
Fourth, curcumin regulates the expression of various miRNAs in HCC, leading to cell
death [22–24]. Fifth, tumor-related cell proliferation and inflammation are inhibited by
interfering with the Wnt signaling and NF-κB pathways [25–27]. In addition to its effect on
established tumors, curcumin inhibits metastasis formation and epithelial–mesenchymal
transition (EMT) by the suppression of Smad2 and Snail [28]. Beyond this, curcumin exerts
a distinct effect on the surrounding tumor tissue, the tumor microenvironment (TME).
Curcumin has an antiangiogenic effect, hampering the supply of oxygen and nutrients to
the tumor [29,30]. In this regard, VEGF is one of the most proangiogenic factors, which
is mainly responsible for neovascularization in tumors [31]. Curcumin decreases VEGF
serum levels in different murine models of HCC, thereby inhibiting neovascularization
and restraining tumor growth and HCC development [32]. Curcumin also possesses an
immunomodulatory effect in the TME. It polarizes M2 tumor-associated macrophages
towards the M1 antitumor phenotype and impedes the recruitment and aggregation of
myeloid-derived suppressor cells [33]. In addition to its effect on immune cells, curcumin
also affects the stromal compartment in the TME, which represents the largest portion of the
TME [34]. Similar to macrophages, cancer-associated fibroblasts (CAFs) are reprogrammed
by curcumin towards an immunocompetent phenotype [35]. In the study, CAFs were
extracted from breast cancer tissue treated with curcumin ex vivo and, subsequently,
cocultured with corresponding peripheral blood mononuclear cells (PBMCs). The curcumin
treatment reduced CAF-related markers, such as α-SMA, COX-2, and the production of
PGE2 in CAFs, as well as markers for immunosuppression, e.g., FoxP3, TGF-β, IL-10, and
IL-4, while IFN-γ production was upregulated in PBMCs.

Curcumin has exhibited the potential to overcome drug resistance in HCC, which is
the most significant challenge in HCC therapy [36]. For instance, resistance to the second-
line drug Lenvatinib has been overcome by curcumin via blocking the EGFR pathways, a
common resistance mechanism in HCC [37].

In combination with checkpoint inhibitors, curcumin revealed synergistic effects with
the anti-PD-1 antibody and sorafenib, which are used for first- and second-line treatment
in HCC [38,39].

In addition to systemic therapy, curcumin combined with piperine and taurine aug-
mented the anticancer activity of transarterial chemoembolization therapy (TACE) in HCC
patients, which is an ablation procedure and the current standard therapy for patients with
intermediate-stage HCC [40].
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cells inhibited cell migration and invasiveness in wound healing assays [42]. While Gu et 
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Figure 2. Schematic representation of tumor suppressive mechanism induced by curcumin exhibits
multiple therapeutic actions, including antitumor effects through G2/M2 phase arrest and the
downregulation of JAK2/STAT3 (Janus kinase 2/signal transducer and activator of transcription
3), PI3K-AKT (phosphatidylinositol 3-kinase-protein kinase B), Wnt, and NF-κB (nuclear factor
kappa-light-chain-enhancer of activated B cells) pathways. Antimetastatic effects are achieved
via downregulation of Smad2 and Snail, along with CXCR4 (C-X-C motif chemokine receptor 4)
inhibition. Antiangiogenic effects occur through VEGF (vascular endothelial growth factor) reduction.
Immunomodulatory effects involve M2 to M1 macrophage polarization. Cancer-associated fibroblast
(CAF) reprogramming occurs through downregulation of α-SMA (alpha-smooth muscle actin),
PGE2 (prostaglandin E2), and COX-2 (cyclooxygenase-2). Drug resistance management is facilitated
through EGFR (epidermal growth factor receptor) pathway blockade and synergy with sorafenib,
anti-PD1 (programmed cell death protein 1), and TACE (transarterial chemoembolization).

Curcumin also protects against secondary liver cancer, where metastases originate
from colon or gastric cancer [41]. Although the exact molecular mechanism was not
revealed, the study by Herrero de la Parte et al. suggests that curcumin treatment in CC531
cells inhibited cell migration and invasiveness in wound healing assays [42]. While Gu et al.
proposed a mechanism for the metastasis restriction of primary gastric cancer cells through
a reduced number of circulating tumor cells due to curcumin-mediated inhibition of CXCR4
expression, a receptor necessary for tumor cells to home secondary organs [41]. However,
its therapeutic value as an antimetastatic agent may extend beyond gastrointestinal cancers,
as a synthetic curcuminoid suppressed lung and liver metastases in a murine B16F10
melanoma model [43].

3. Derivatives of Curcumin with Improved Antitumor Properties
Numerous synthetic and semisynthetic derivatives of curcumin have been developed

to improve its antitumor properties. These derivatives have demonstrated improved phar-
macological activities, including increased bioavailability and potency. Several derivatives
have exhibited promising activities against liver cancers and hepatic metastases, which are
presented in the following (Figure 3).
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3.1. Curcumin Diethyl Disuccinate (CurDD)

Curcumin diethyl disuccinate (CurDD) is an ester prodrug of curcumin with improved
chemical stability at pH 7.4 and enhanced transmembrane transport across Caco-2 (human
colon cancer cells) monolayers, leading to a higher amount of the bioavailable drug fraction.
CurDD increased apoptosis induction in HepG2 hepatoma cells by the suppression of Bcl-2
and the upregulation of Bax, followed by the activation of caspases 3 and 9 [44].

3.2. Monocarbonyl Analogs of Curcumin (MACs)

Monocarbonyl analogs of curcumin (MACs) are an especially prolific class of anticancer
active curcuminoids [45]. These include B5, EF24, HO-3867, GL63, C0818, and MePip-SF5.

3.2.1. B5

The 3-nitrocinnamate-modified monocarbonyl derivative B5 was more active than cur-
cumin against HepG2 cells and induced caspase 3-dependent apoptosis by downregulating
Bcl-2 and AKT. In addition, B5 inhibited the migration of HepG2 cells [46].

3.2.2. GL63

The brominated MAC GL63 inhibited HCC growth in vitro and in vivo by the suppres-
sion of the circRNA zinc finger protein 83 (circZNF83) upon the GL63-induced activation
of miR-324-p followed by the inhibition of CDK16 expression and downregulation of the
JAK2/STAT3 signaling pathway [47].

3.2.3. EF24

MACs derived from piperidin-4-ones have turned out to be particularly promis-
ing based on their improved anticancer activities and bioavailabilities. EF24 [3,5-bis-(2-
fluorobenzylidene)-4-piperidone] is the most prominent piperidin-4-one-based example
with pronounced antitumor properties [48]. Of note, EF24 was successfully incorporated
into drug delivery systems, which include pegylated liposomes as hydroxypropyl-β-
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cyclodextrin-encapsulated compounds in liposomes and as a covalent conjugate with
the coagulation factor VIIA [49–51]. In terms of antihepatoma activity, EF24 exhibited
anti-invasive and antimigratory activities against HCCLM-3 and HepG2 cells (HCC cells),
in accordance with suppressed filopodia formation on the surface of treated cells. The
inhibition of Src phosphorylation by EF24 was identified as the underlying mechanism
of action [52]. Moreover, EF24 inhibited HCC growth in vitro and in vivo associated with
strong apoptosis induction (Bax and caspase 3 activation, Bcl-2 suppression) and cell cycle
arrest in the G2/M phase (cyclin B1 and Cdc downregulation, p53 and p21 upregula-
tion) [53]. EF24 also overcame sorafenib resistance in hypoxic HCC by the promotion of
the VHL-mediated degradation of HIF-1α [54].

3.2.4. HO-3867

HO-3867 is a modified EF24 derivative (with a different position of the fluoro
substituent and a piperidin-4-one N-modified with a 1-hydroxy-2,2,5,5-tetramethyl-2,5-
dihydro-1H-pyrrole appendage) that showed considerable p38-dependent apoptosis induc-
tion, accompanied by HO-1 and caspase activation [55].

3.2.5. C0818

C0818, harboring the 3-hydroxy-4-methoxyphenyl moieties of curcumin, was more
antiproliferative than curcumin in HepG2 and Sk-Hep-1 HCC cells and led to distinct
apoptosis induction via the mitochondrial pathway. In addition, C0818 inhibited Hsp90 in
HCC cells, leading to the proteasomal degradation of proteins in the Ras-MAPK and PI3K-
AKT signaling pathways, which, as a consequence, were downregulated in C0818-treated
HCC cells [56].

3.2.6. MePip-Sf5

Our group has recently studied the promising anticancer effects of the pentafluorothio-
substituted analog MePip-SF5 [57,58]. This compound was well-tolerated by mice bearing
B16F10 murine melanoma and suppressed metastasis formation in vital organs, such as the
liver and lungs [57].

4. Curcumin in Steatotic Liver Disease (SLD) and Lipid Metabolism
Steatotic liver disease (SLD) is an umbrella term that encompasses a range of liver

diseases characterized by the accumulation of fat in hepatocytes. SLD is divided into
three main categories: metabolic dysfunction-associated steatotic liver disease (MASLD),
alcohol-related liver disease (ALD), and the mixed entity metALD [58]. MASLD refers to
fat accumulation in the liver not caused by alcohol consumption and can be either nonin-
flammatory or inflammatory. It affects approximately 30% of the global population, with
incidence rates rising, particularly in Western countries, due to factors such as a high-caloric
diet, sedentary lifestyles, and increasing rates of obesity [59]. The inflammatory subtype,
metabolic dysfunction-associated steatohepatitis (MASH), involves liver inflammation and
cell damage. Over time, inflammation leads to progressive fibrosis (scarring) that can
progress to cirrhosis, the end-stage of all chronic liver diseases associated with organ failure
and other life-threatening complications. Curcumin demonstrates promising therapeutic
efficacy against MASH and holds promise as an adjuvant therapy (Figure 4) [34]. Curcumin
has also been studied in patients with SLD progression and demonstrated a reduction in
glycerides and waist circumferences [60].
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illustrates how curcumin acts on the steatotic liver through multiple pathways. In adipose tissue,
curcumin leads to inhibited lipolysis and reduced free fatty acid release, ultimately reducing hepatic
steatosis; the downregulation of CHREBP (carbohydrate-responsive element-binding protein) and
SREBP (sterol regulatory element-binding protein) suppresses de novo lipogenesis; the upregulation
of CYP7a (cytochrome P450 7A1) and fatty acid transporter proteins enhances lipid metabolism; the
activation of AMPK (5′ adenosine monophosphate-activated protein kinase) promotes fatty acid
oxidation. These combined mechanisms result in reduced lipid accumulation in the liver.

The lipid-lowering effect of curcumin has gained attention for its potential in manag-
ing conditions related to dyslipidemia [61]. By reducing elevated levels of cholesterol and
triglycerides, curcumin acts as an effective antilipidemic agent, optimizing lipid homeosta-
sis [62]. This lipid-lowering effect of curcumin contributes to the prevention and treatment
of fatty liver diseases [63]. By inhibiting lipolysis, curcumin prevents free fatty acid (FFA)
release from adipose tissue, reducing hepatic steatosis. It also suppresses factors like
carbohydrate response element binding protein (ChREBP) and sterol regulatory element
binding protein (SREBP1c), which decrease de novo lipogenesis (DNL). This makes cur-
cumin a promising therapeutic option in addressing metabolic disorders, such as MASLD
or MASH [64].

Curcumin inhibits the activity of Acyl-CoA: cholesterol acyltransferase (ACAT) and
activates hormone-sensitive lipase aiding lipid mobilization. Additionally, curcumin in-
creases the secretion of bile acids and upregulates the expression of hepatic cholesterol
7a-hydroxylase (Cyp7a) and fatty acid transporter proteins, enhancing bile production and
lipid metabolism [65].

Curcumin also impacts lipid homeostasis by reducing the expression of LDL receptors
through the activation of peroxisome proliferator-activated receptor γ (PPAR γ) in hepatic
stellate cells [66]. At the same time, it upregulates LDL receptors and increases LDL
uptake in macrophages [67]. Macrophages can intake oxidized lipoproteins LDL and
VLDL through diverse mechanisms, such as micropinocytosis and phagocytosis, despite
the scavenger receptor-mediated pathways, such as LOX-1, SR-A1, CD36, and SR-B1 [68].
Furthermore, curcumin boosts AMP-activated protein kinase (AMPK) activity, promoting
fatty acid oxidation and reducing malonyl-CoA expression [67]. Musso et al. proved the
therapeutic effect of phytosomal curcumin (Meriva®, a curcumin–phosphatidylcholine
complex, containing 20% curcuminoids) for MASH in a double-blind, placebo-controlled,
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randomized clinical trial [69]. The authors state that MASH resolution occurred in 62%
of patients treated with curcumin versus 12% of patients in the placebo arm. Further,
histological fibrosis regression (at least 1 histological stage) was achieved in 50% in the
curcumin versus 8% in the placebo arm. The histological improvement was independent of
weight loss, and no differences in diet between the groups were observed. Meriva® also
revealed chemopreventive effects on hepatitis B virus-related HCC in transgenic mice [30].
In another interesting double-blind, randomized trial conducted by Y He et al., patients
with fatty liver disease received 500 mg per day curcumin or placebo over 24 weeks [70].
Hepatic fat content was assessed by FibroTouch-based controlled attenuation parameters
(CAPs), a non-invasive ultrasound-based method. Further, microbial composition and bile
acid metabolites were analyzed using 16S rRNA sequencing and metabolomics. Curcumin
consumption significantly reduced CAP value compared to placebo (−17.5 dB/m; 95%
confidence interval [CI]: −27.1, −7.8 dB/m; p < 0.001) and also induced a reduction in
weight (−2.6 kg; 95% CI: −4.4, −0.8 kg; p < 0.001) compared to the placebo group, which
is in contrast to the results presented by G Musso et al. [69], where patients showed
histological improvement without weight loss. In addition, blood parameters for free
fatty acid (p = 0.004), triglycerides (p < 0.001), fasting blood glucose (p = 0.038), and
hemoglobin A1c (p = 0.019) significantly improved. The treatment also had an effect on the
gut microbiota, decreasing the firmicutes-to-bacteroidetes ratio. Conclusively, curcumin
is an interesting phytopharmaceutical drug for MASH, the therapeutic benefits of which
could be enhanced when packaged in nanoparticles.

5. Pharmacokinetics of Curcumin
Curcumin has gained extensive attention for its remarkable therapeutic properties, in-

cluding anti-inflammatory, antioxidant, anticancer, and hepatoprotective effects. However,
despite its immense potential, curcumin faces significant pharmacokinetic challenges that
hinder its clinical application.

Following oral administration, curcumin demonstrates minimal absorption in the
gastrointestinal tract. Studies have reported that up to 90% of the ingested compound is
eliminated through fecal excretion, leaving only a small fraction available for systemic
circulation [71]. This issue is further compounded by its extensive first-pass metabolism
in the liver and plasma, where it undergoes glucuronidation and reduction, drastically
reducing its active concentrations in the bloodstream [72].

Additionally, curcumin is chemically unstable under alkaline conditions, degrading
rapidly into metabolites, such as ferulic acid, feruloyl methane, and vanillin, within ap-
proximately 30 min [73]. While it exhibits greater stability in acidic environments, its
solubility remains limited across neutral and acidic pH levels, adding to the complexity
of its bioavailability challenges [74]. Despite these limitations, curcumin is recognized as
Generally Recognized as Safe (GRAS) by the FDA, and clinical studies have shown that,
even at high doses of up to 12 g/day, it is well tolerated without causing significant adverse
effects [75].

To overcome these pharmacokinetic obstacles, researchers have pursued various
strategies aimed at enhancing curcumin’s bioavailability and therapeutic efficacy. One of
the most widely studied approaches is coadministration with piperine, a natural compound
found in black pepper, which inhibits glucuronidation processes and significantly increases
curcumin’s plasma concentrations [72]. In addition, advanced drug delivery systems,
such as liposomal formulations, curcumin nanoparticles, and phospholipid complexes,
have been developed to protect curcumin from rapid degradation. All this improves its
absorption and stability and facilitates its transport across biological membranes, thereby
enhancing its systemic availability [73,76].
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Furthermore, the synthesis of structural analogs, such as EF-24, has demonstrated
promising results in improving the half-life and bioavailability of curcumin, thus offering a
potential solution to its pharmacokinetic challenges [74]. Despite these advancements, the
clinical efficacy of these enhanced formulations compared to standard curcumin remains an
area requiring further investigation. Future research is essential to optimize these delivery
systems and analogs, thereby establishing their long-term safety and efficacy and deter-
mining the most effective dosing strategies to achieve therapeutic concentrations [71,77].
While significant progress has been made, realizing the full clinical potential of curcumin
continues to be a multidisciplinary challenge that combines pharmaceutical innovation
with rigorous clinical evaluation.

Nanocapsulation with carriers like liposomes or polymer-based nanoparticles can
improve the poor bioavailability and solubility of curcumin to certain extent. These nanofor-
mulations protect curcumin from rapid degradation in the gastrointestinal tract and en-
zymatic metabolism, while enabling controlled release and targeted delivery to specific
tissues. Additionally, modern nanomanufacturing techniques can address production
challenges by improving batch consistency and stability. By following the DELIVER frame-
work’s principles for nanomedicine development, researchers can systematically address
regulatory requirements and enhance the likelihood of successful clinical translation of
curcumin-based therapeutics [78]. Thus, nanocarriers can significantly enhance the phar-
macokinetics of curcumin by improving its stability and bioavailability to a great extent,
thereby optimizing its therapeutic application.

6. Nanocarriers Improve Pharmacokinetics of Curcumin
The therapeutic application of curcumin is critically limited because of its hydrophobic

nature, unstable chemical structure, rapid hydrolysis, and poor absorption. Chemical
modification can address some of these limitations, but guided organotropism remains
challenging. There have been efforts to overcome these challenges by the design and
synthesis of nanocarrier liposomes to establish better permeability, higher absorption,
greater stability for longer circulation, and improved resistance to the rapid metabolic
hydrolysis of curcumin in the body, improving hepatic delivery for the therapy of (non-
)malignant liver disease (Table 1).
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Table 1. Selected preclinical studies of curcumin-loaded nanoparticles in liver disease.

Study Curcumin
Derivative

Liver
Disease

Preclinical Models/
Clinical Models Nanotechnology Result Advantages References

Clinical CUR NAFLD - NAFLD in overweight/obese patients

Nanocurcumin capsules as
polylactic-co-glycolic acid (PLGA)
nanoparticles
provided by a company

- Improved glucose indices, lipids,
inflammation, waist
circumference, nesfatin, liver
transaminases, and fatty
liver degree.

Reduced appetite

- Elevated serum nesfatin levels [28,79,80]

Preclinical CUR Liver
fibrosis - CCl4 induced liver injury in Wistar rats

Curcumin-loaded solid lipid
nanoparticles (C-SLNs)

- Reduced liver damage
- Ameliorated inflammation
- Reduced steatosis state
- Reduced oxidative stress
- Suppressed proinflammatory

cytokine TNF-α

- Improved bioavailability
- Enhanced therapeutic efficacy

[81]

Preclinical CUR Liver
fibrosis

- CCl4 induced liver injury in
C57BL/6 mice

Curcumin containing silver
nanoparticles (AgNPs-curcumin)

- Prevented oxidative imbalance
- Prevented hepatic dysfunction
- Prevented tissue destruction
- Increased antioxidant activity

- Improved dispersion
- Improved bioavailability

[82]

Preclinical CUR HCC - HepG2 cell line
- HepG2 tumor-bearing BALB/c nude mice

Platelet membrane-coated CUR-loaded
polylactic-co-glycolic acid (PLGA)
nanoparticles

High anticancer efficacy without
obvious toxicity

- Immune evasion
- Improved accumulation at

tumor sites
- Prolonged circulation
- Increased cellular uptake

[83]

Preclinical C210 HCC - Mouse hepatoma H22 cells
- H22 tumor-bearing ICR mice

Redox-responsive lipidic
prodrugnanodelivery system of C210
(nanoparticles with single sulfide bond,
i.e., C210-S-OA nanoparticles)

Improved antitumor activity and
bioavailability

- Improved accumulation at
tumor sites

- Prolonged circulation
- Increased cellular uptake

[84]

Preclinical CUR HCC - HepG2 cell line
- HepG2 tumor-bearing BALB/c nude mice

Curcumin–paclitaxel lipid
nanoplatform (CU-PTX-LNP platform)

- Improved antitumor activity
and bioavailability

- Sustained release
- Long-lasting stability
- Enhanced curcumin absorption
- Excellent biosafety

[85]

Preclinical
CUR (in
combination
with berberine)

HCC
- Dual-cell research model

(SMMC7721 + LX-2)
- Orthotopic tumor-bearing mice

Mixed liposomes of curcumin loaded on
glycyrrhetinic acid-modified
nanocarriers and berberine loaded on
hyaluronic acid-modified nanocarriers
(CUR-GL/BBR-HL)

- Enhanced anticancer effect

- Inhibition of hepatic stellate cell
activation and ECM deposition

- Inhibition of proliferation and
metastasis of HCC

[86]

Preclinical CUR HCC
- HepG2, Huh7 cell lines
- Tumor-bearing Kunming mice injected

with H22 cells (mouse hepatoma cell line)

Galactose–morpholine modified
liposomes loaded with curcumin
(Gal-Mor-LPs)

- Enhanced tumor inhibition
efficacy

- Sustained drug release
- Dual hepatic and lysosomal targeting
- Enhanced cellular uptake

[87]

Preclinical
Curcumin
derivative
(CDF)

HCC - HepG2 cell line
- HepG2 tumor-bearing mice

Curcumin loaded on nanoscale G4
polyamidoamine (PAMAM)
dendrimers anchored to
galactosamine(PAMAM-Gal conjugate)

- Reduced cytotoxicity
- Antitumor response

- Enhanced aqueous solubility
- Better accumulation at tumor site
- Selective targeting
- Increased drug loading

[88]
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Table 1. Cont.

Study Curcumin
Derivative

Liver
Disease

Preclinical Models/
Clinical Models Nanotechnology Result Advantages References

Preclinical CUR HCC - DEN-induced hepatocellular model in
Wistar albino rats

- Biodegradable liver-specific
pullulan acetate nanoparticles
(PAC)

- Reduced liver enzyme levels
- Increased levels of

non-enzymatic antioxidants

- Improved encapsulation efficiency
- Enhanced hepatoprotective agent
- Enhanced solubility
- Enhanced stability

[89]

Preclinical CUR Liver
fibrosis - CCl4-induced liver fibrosis model in mice

- Curcumin loaded with
chitosan-coated green nano
silver particles

- Reduced liver enzyme levels
- Prevented tissue destruction
- Retained normal liver

architecture

- Improved encapsulation
- Increased permeability
- Increased intrahepatic bioavailability
- Enhanced aqueous solubility

[90]

Preclinical CUR Liver
fibrosis

- CCl4 induced liver damage study in
Wistar rats

- Curcumin loaded with
polycaprolactone

- Reduced deposition of fatty acid
- Reduced number of fibrotic cells
- Reduced liver enzyme levels

- Improved the permeability
- Enhanced cellular uptake

[91]

Preclinical CUR Fibrosis - Thioacetemide-intoxicated rats
- Commercially available

nanocurcumin (no further
information is provided)

- Hepatoprotective and
anti-inflammatory effect

- Less oxidative stress
- Improved liver biochemistry (ALT,

AST, ALP)
- Improved lobular architecture and

disappearance of inflammation
and cholestasis

[92]

CUR, curcumin; HCC, hepatocellular carcinoma; PLGA, poly(lactic-co-glycolic acid); C210, (1E,6E)-4-(4-hydroxy-3-methoxybenzyl)-1,7-bis(3,4,5-trimethoxy phenyl)hepta-1,6-diene-
3,5-dione); CU-PTX-LNP, a lipid nano platform for coloading encapsulating curcumin and paclitaxel at ratios of 2:1–80:1 (w/w); Cur@β-CD-PEG-Chol, Cur-loaded nanomicelles
developed by the conjugation of β-cyclodextrin (β-CD) and cholesterol onto both ends of the poly(ethylene glycol); IONs@Cur, curcumin capped iron oxide nanoparticles; Gal-Mor-LPs,
galactose–morpholine-modified liposomes loaded with curcumin; CCl4, carbon tetrachloride; CeO2@SiO2, cerium oxide–silica nanoparticles; PAMAM-Gal, polyamidoamine dendrimers
anchored to galactosamine; DEN, diethylnitrosamine; PAC, curcumin-loaded pullulan acetate nanoparticles; C-SLNs, curcumin-loaded solid lipid nanoparticles; NAFLD, nonalcoholic
fatty liver disease.
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In a set of double-blind, randomized, placebo-controlled clinical trials, Jazayeri-Tehrani
et al. demonstrated that curcumin, delivered via poly(lactic-co-glycolic acid) (PLGA)
nanoparticles, effectively improves inflammatory markers and nesfatin (anorexigenic neu-
ropeptide) levels and reduces appetite in obese patients with nonalcoholic fatty liver
(previous nomenclature of fatty liver disease) [79,80,93]. Then, compared to the placebo,
significant increases in high-density lipoprotein (HDL) and quantitative insulin sensitivity
check index (QUICKI) and significant decreases in fatty liver degree, liver transaminases,
waist circumference, fasting blood sugar and insulin (FBS and FBI), triglycerides (TG), total
cholesterol (TC), low-density lipoprotein (LDL), homeostasis model assessment insulin
resistance (HOMA-IR), tumor necrosis factor-α (TNF-α), high sensitive c-reactive protein
(hs-CRF), and interleukin-6 (IL-6) were reported in these clinical trials.

A study by Singh et al. compared the efficacy of the well-established hepatoprotectant,
silymarin, in combination with free curcumin versus curcumin packaged into solid lipid
nanoparticles (C-SLNs) in a rat model of CCl4-induced hepatic injury [81]. The histopatho-
logical examination of liver tissues in mice treated with vehicle control (VC; no treatment),
free curcumin (FC), SILY (sylmarin), and C-SLNs showed that C-SLNs were superior to
improve steatosis and to ameliorate inflammation. Highly elevated ALT levels due to CCl4
administration decreased significantly (p < 0.001) compared to VC-, FC-, and SILY- treated
groups (2.63-, 1.87-, and 1.97-fold reductions in C-SLNs, FC, and SILY groups, respectively).
A similar effect was also observed for AST levels. Moreover, a significant attenuation in
oxidative stress was achieved by C-SLN treatment compared to FC and SILY treatment.
The malondialdehyde (MDA) content, which is a measure of lipid peroxidation, increased
by 482.88 ± 58.83% after the CCl4 challenge, as compared to the VC group. Treatment with
C-SLNs resulted in an inhibition of 72.05 ± 1.14%, while inhibition levels were 58.15 ± 2.03
for FC and 51.46 ± 1.11% for SILY. Similar effects were also observed in superoxide dismu-
tase (SOD) and glutathione (GSH) levels, suggesting the improved attenuation of oxidative
stress in C-SLN group. Moreover, the inflammatory response was assessed by TNFα levels,
which was significantly elevated after the CCl4 challenge. The decrease in TNFa levels in
the C-SLN group (6.28-fold) was also significantly greater (p < 0.05) than those observed
in the SILY group (5.02-fold) and FC group (4.68-fold), suggesting a better resolution of
inflammation for curcumin loaded in nanoparticles.

A recent experiment by Wu et al. compared the efficacy of free curcumin, curcumin-
loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CPNPs), and platelet membrane-
coated, curcumin-loaded CPNPs (PCPNPs) in HepG2 tumor bearing BALB/c null mice.
Mice were treated by intravenous administration every 2 days for a total of seven times.
The higher resistance of curcumin to hydrolysis was evident for PCPNPs with a prolonged
circulation time, which was shown by significantly longer mean residence time (MRT) and
lower clearance (Cl). Area under drug concentration–time curve was found to be 3.44-fold
and 1.29-fold higher than that of free curcumin and CPNPs, respectively. Moreover, tumor-
targeting ability was higher for the nanoparticle formulation, as shown by significantly
increased accumulation in tumors. PCPNPs also had the highest potential of antitumor
activity with a tumor growth inhibition of 83.4% compared to that of the CPNPs (57%) and
free curcumin (28.9%) [83]. In another study, activated hepatic stellate cells (aHSC) and hep-
atoma cells were targeted using modified mixed nanoliposomes co-encapsulating berberin
and curcumin. Hyaluronic acid (HA)-modified nanoparticles targeted CD44, which is
overexpressed by aHSC. Glycyrrhetinic acid (GA)-modified carriers, on the other hand, can
accumulate in cancer cells by GA receptor-mediated internalization. H22 cell-bearing HCC
mice treated with the modified nanoliposomes carrying curcumin and berberine (CUR-
GL/BBR-HL) showed lower tumor volume than the free drug and non-modified liposomal
formulations with a tumor growth inhibition rate of 68.56%, which is 1.34- and 1.85-fold
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of non-modified liposomal carriers (CUR-L/BBR-L) (51.15%) and free drugs (CUR + BBR)
(36.93%), respectively. To further detect the antihepatoma efficacy, primary liver cancer was
induced using orthotopic-transplanted mice. The combined therapy significantly decreased
the size and number of tumors, together with lower levels of extracellular matrix deposition
(ECM). Moreover, CD31 immunohistochemistry (IHC) has shown that CUR-GL/BBR-HL
effectively inhibits neovascularization in the tumor microenvironment [86].

The liposomal formulations of curcumin were frequently studied in liver cancer mod-
els, and promising results were observed for curcumin formulations with modified lipo-
somes, such as galactose–morpholine- and hyaluronic acid–glycyrrhetinic acid-modified li-
posomes [86,87,94,95]. In one such study, Yang et al. successfully integrated galactose group
that recognizes asialoglycoprotein receptor (ASGPR) and morpholine group-targeting
lysosomes into nanoliposomes, which were used for the hepatocyte-targeted delivery of
curcumin [87]. In this context, ASGPR, which is primarily expressed on hepatocytes and
hepatoma cells, has long been studied as a promising candidate for receptor-mediated
hepatocyte targeting in this regard [96]. The tumor inhibition of dual-targeted nanolipo-
somal formulation (Gal-Mor-LPs) was shown to be improved compared to free curcumin,
curcumin loaded in unmodified liposomes (LPs), and galactose-modified liposomes (Gal-
LPs). The cellular uptake of Gal-Mor-LPs was approximately 1.5 times higher than that of
Gal-LPS both in vitro and in vivo. Gal-Mor-LPs treatment resulted in a superior antitumor
effect, as revealed by a smaller tumor volume and weight compared to controls. Moreover,
the Gal-Mor-LPS group showed more necrosis in the histopathological analysis [87].

The polymeric formulations of curcumin with PLGA and polyvinylpyrrolidone were
also described for liver cancer treatment [83,97–99]. Notably, a polymeric coformulation
of curcumin and sorafenib efficiently suppressed both growth and metastasis formation
in a murine HCC model (established by the subcoutenaous injection of human HCC
cell lines with high metastatic potential, namely MHCCLM3-RFP, in athymic BALB/c
nu/nu mice) in vivo [100]. Antihepatoma curcumin formulations using polysaccharides,
such as chitosan and angelica polysaccharide, were also reported [38,101]. Recently, a
sophisticated formulation of a europium metal organic framework coated with a lactoferrin-
modified, dextran-based chitosan enabled the efficient HCC-targeting of curcumin [102].
Thus, the pharmacokinetics and therapeutic efficacy of curcumin could be improved in
(non-)malignant liver disease when loaded with nanoparticles and liposomal formulations
in vivo.

7. Limitations of Curcumin Nanoparticles
Even though curcumin nanoformulations hold promise in addressing the intrinsic

limitations of curcumin, they face several challenges that hinder their broad clinical appli-
cation. A major limitation is the lack of clinical data, as most evidence supporting their
efficacy is derived from preclinical studies, highlighting a significant gap in translational
research [103].

Additionally, the poor bioavailability of curcumin remains a persistent issue, attributed
to its hydrophobic nature, rapid metabolism, and short systemic half-life, which collectively
restrict its therapeutic efficacy. Notably, even in nanoparticle formulations, curcumin
exhibits reduced bioavailability, posing a critical barrier to better therapeutic efficacy [104].

Furthermore, curcumin’s high susceptibility to photodegradation and its instability in
alkaline environments complicate its formulation, storage, and long-term application [105].
In oncology, the restricted loading capacity of nanoparticles of curcumin makes curcumin
low potent compared to conventional chemotherapeutic agents [106]. The curcumin for-
mulations could loss functionality over time which marks a significant concern [107].
Additionally, the long-term safety profiles of curcumin nanoparticles remain inadequately
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understood. Potential risks, such as organ accumulation or the cytotoxic effects associated
with the nanocarriers, necessitate rigorous investigation to ensure the safety of curcumin-
based therapies [108]. In this context, polyethylene glycol (PEG) chains, widely employed
in nanoparticles for their protein-repellent and immune system “stealth” properties, carry
the potential risk of forming PEG vacuoles in the kidneys, with uncertain long-term health
consequences. This concern underscores the advantage of using nanoparticles coated
with biocompatible alternatives, such as sarcosine, a naturally occurring amino acid, as a
probably safer option [109,110].

These multifaceted challenges emphasize the need for innovative and comprehensive
approaches to enhance the pharmacokinetics, stability, and clinical reliability of curcumin-
based therapies and curcumin nanoformulations, paving the way for their successful
translation into clinical practice.

8. Conclusions
In conclusion, curcumin is a multifaceted plant-derived drug with significant po-

tential in hepatology, particularly in the treatment of both malignant and non-malignant
liver diseases but also other malignant diseases outside the liver. Its hepatoprotective,
anti-inflammatory, antifibrotic, and anticancer properties, demonstrated in preclinical and
clinical studies, show its versatility as a therapeutic option. Curcumin’s ability to modulate
crucial signaling pathways, enhance immune responses, and impede angiogenesis and
metastasis formation renders it a promising adjunct to conventional cancer therapies, partic-
ularly in hepatocellular carcinoma (HCC) and secondary liver malignancies. Furthermore,
curcumin’s impact on metabolic dysfunction-associated steatotic liver disease (MASLD), no-
tably its antifibrotic and lipid-reducing effects, suggests its potential as a treatment strategy
for metabolism-associated liver conditions, like metabolic dysfunction-associated steato-
hepatitis (MASH). However, despite these promising properties, the clinical application of
curcumin is hampered by its poor bioavailability and rapid metabolism. Advances in nan-
otechnology, including liposomal and polymeric formulations, offer promising avenues to
overcome these limitations and enhance curcumin’s therapeutic efficacy, especially in liver
disease, where most of the nanoparticles accumulate in high doses after intravenous injec-
tion. Besides nanocarriers, synthetic curcumin derivatives have shown enhanced stability,
bioavailability, and antitumor activity, presenting further opportunities for improving liver
cancer treatment outcomes. Like any effective drug, possible side effects need to be taken
into account. Based on the National Health and Nutrition Examination Survey (NHANES),
six hepatotoxic botanical products were identified. It was found that turmeric is potent
enough to cause severe and even fatal liver damage when consumed in excessive doses.
Hence, there is a critical need for finding the right dose to reduce hepatotoxic risks [14].
Future clinical trials are warranted to validate the therapeutic efficacy of curcumin encap-
sulated in nanocarrier and curcumin derivatives, particularly in combination with existing
liver disease treatments. This could pave the way for integrative treatment approaches
in liver diseases, offering solutions to persistent therapeutic challenges, while addressing
critical unmet clinical needs.
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Abbreviations

CAP Controlled attenuation parameter
ESD End-stage liver disease
CLD Chronic liver disease
HCC Hepatocellular carcinoma
WHO World Health Organization
JAK Janus kinase
EMT Epithelial mesenchymal transition
COX-2 Cyclooxygenase-2
PGE2 Prostaglandin E synthase 2
EGFR Epidermal growth factor receptor
PI3K Phosphatidylinositol 3-kinase
AKT Protein kinase B
AMPK AMP-activated protein kinase
LDL Low-density lipoprotein
PPAR γ Peroxisome proliferator-activated receptor gamma
ACAT Acyl-CoA: cholesterol acyltransferase
DNL De novo lipogenesis
NAFLD Nonalcoholic fatty liver disease
ChREBP Carbohydrate response element binding protein
SREBP1c Sterol regulatory element binding protein
FFA Free fatty acid
PLGA Polylactic-co-glycolic acid
CAPs Controlled attenuation parameters
SLD Steatotic liver disease
ASGPR Asialoglycoprotein receptor
MRT Mean residence time
MASH Metabolic dysfunction-associated steatohepatitis
NF-κB Nuclear factor kappa B
PBMC Peripheral blood mononuclear cell
PLGA Polylactide co-glycolide
α-SMA α-smooth muscle actin
STAT3 Signal transducer and activator of transcription-3
TME Tumor microenvironment
VEGF Vascular endothelial growth factor
CAF Cancer-associated fibroblasts
TACE Transarterial chemoembolization therapy
CurDD Curcumin diethyl disuccinate
CXCR4 C-X-C chemokine receptor type 4
MACs Monocarbonyl analogs of curcumin
PLGA Polylactic-co-glycolic acid
Gal-Mor-LPs Galactose–morpholine modified liposomes
IONs@Cur Curcumin-capped iron oxide nanoparticles
CCl4 Carbon tetrachloride
CeO2@SiO2 Cerium oxide-silica nanoparticles
CSLNs Curcumin-loaded solid lipid nanoparticles
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PAMAM-Gal Polyamidoamine dendrimers anchored to galactosamine
DEN Diethylnitrosamine
PAC Pullulan acetate nanoparticles
C-SLNs Curcumin-loaded solid lipid nanoparticles
aHSC Activated hepatic stellate cells
IHC Immunohistochemistry
ASGPR Asialoglycoprotein receptor
MASLD Metabolic dysfunction-associated steatotic liver disease
MASH Metabolic dysfunction-associated steatohepatitis
ALD Alcoholic liver disease
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