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Abstract: This research provides a method for a reliable fatigue life estimation at high testing
frequencies. The investigations are based on the lifetime prediction method StressLifeHCF

considering test frequencies of 80 and 260 Hz for normalized SAE 1045 (C45E, 1.1191) steel.
Therefore, load increase tests and constant amplitude tests were carried out using a resonant
testing rig. To ensure a mechanism-oriented lifetime prediction, the material response to
dynamic loading is monitored via temperature and electrical resistance measurements.
Due to the higher energy input per time unit, when the test frequency is increased, the heat
dissipation also increases. For this reason, a precise differentiation between frequency- and
temperature-related effects for adequate fatigue assessment is challenging. To evaluate
the temperature’s influence on electrical resistance, an electrical resistance-temperature
hysteresis is measured, and the frequency influence is analyzed by considering cyclic
deformation curves. In addition to an extension of the fatigue life due to an increased test
frequency, the lifetime prediction method was validated for high frequencies. The generated
S-N curves show a reliable agreement with the data points from conventional constant
amplitude tests. In this context, the temperature correction of the electrical resistance
proved to be an important input variable for a reliable lifetime prediction.

Keywords: StressLife; fatigue life; lifetime prediction methods; material response;
resistivity; frequency; electrical resistance-temperature hysteresis; resonant testing; S-N
curves; NDT

1. Introduction
To describe the relationship between the load amplitude and fatigue life expressed in

terms of S-N curves, generally, a large number of specimens and fatigue tests are required.
For stress-controlled fatigue tests, a power law relationship, according to Basquin [1], is fre-
quently used to describe S-N curves in the high-cycle fatigue (HCF) regime mathematically,
according to Equation (1). The equation consists of the stress amplitude σa, the number of
cycles to failure N f , the fatigue strength coefficient σ′

f , and the fatigue strength exponent b.

σa = σ′
f

(
2 N f

)b
(1)
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Usually, fatigue tests in the low-cycle fatigue (LCF) regime are performed while strain-
controlled and can be mathematically described by the relationship according to Coffin and
Manson [2,3], which is given by Equation (2), using the plastic strain amplitude ϵa,p, the
fatigue ductility coefficient ϵ′f , and the fatigue ductility exponent c.

ϵa,p = ϵ′f

(
2 N f

)c
(2)

The fatigue behaviors in the LCF, HCF, and VHCF (very-high-cycle fatigue) regimes
are characterized by significantly differing damage mechanisms [4]. This is especially so
for the failure mechanisms in the VHCF regime, which particularly depend on the specific
material properties and heat treatment conditions. They are, therefore, crucial as they
influence the way cracks initiate and propagate, which is the reason why specific failure
mechanisms must be differentiated. Mughrabi distinguishes between type I and II materials.
While type I materials tend to be ductile metallic materials without internal defects, type II
materials have crack-like defects such as non-metallic inclusions or pores [5,6].

In the HCF and VHCF regimes, type I materials like SAE 1045 (C45E, 1.1191) steel
tend to show a microstructural degradation in terms of persistent slip bands (PSB), which
reach through grains to the material surface. PSBs are formed when local acting stresses
are above a critical threshold value [7,8]. Especially in the VHCF regime, where very high-
cycle numbers occur, the stress amplitudes are often below this threshold. Although PSBs
typically play a significant role in damage mechanisms, the continuous cyclic loading leads
to damage accumulation even at low-stress amplitudes. This accumulation can ultimately
result in premature failure of the material.

Investigations referring to the influence of frequency on fatigue behavior have already
been carried out by Jenkin in the early 1920s, which showed a significant increase in fatigue
life at higher frequencies. Within this research, it was assumed that loads that are sufficient
to cause fatigue and fracture for lower frequencies do not have enough time to activate this
effect at high test frequencies, and therefore, higher load amplitudes are needed [9]. Studies
by Laird and Charsley regarding the frequency effect on cyclic plastic deformation, damage
localization, dislocation movement, and fatigue crack growth in pure metals with body-
centered cubic (bcc) and face-centered cubic (fcc) structures were performed in the early
1980s [10]. Mayer [11] provided a more detailed review, demonstrating that a frequency
effect is differently pronounced depending on the lattice structure of the materials. Pure
fcc metals tend to be insensitive regarding an increase in test frequency since the critical
shear stress is low and largely unaffected by the strain rate; thus, the slip systems are
still active even under high test frequencies. As a result, increased test frequencies have
minimal impact on their behavior. In contrast, for pure bcc metals, the high activation
energy required for dislocation movement and a greater critical shear stress cause slip
systems to become inactive at high frequencies, thus making the frequency effect more
pronounced [12,13].

Investigations by Morrissey, McDowell, and Nicholas showed a frequency dependence
for different stress ratios concerning the HCF fatigue behavior of Ti-6Al-4V specimens [14].
Hu et al. [15] introduced a new possibility to assess whether a test frequency effect may
occur for high-temperature tests by defining a parameter that takes the homologous tem-
perature and material strength into account.

Morrow’s research [16] in the 1960s focused on the influence of plastic deformation
energy per cycle and its crucial role in the related damage evolution in material. Morrow
explored how cyclic loading leads to energy accumulation, contributing to material fatigue
over time, and introduced cyclic plastic strain energy as a critical metric for understanding
fatigue behavior. Based on his research, damage indicators were defined due to the heat
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generation derived from the dissipative energy associated with microstructural deforma-
tion mechanisms. These indicators can be derived from direct and indirect temperature
measurements and are used to estimate the fatigue strength of metallic materials [17–22].
Building on Morrow’s foundational work on cyclic plastic strain energy in fatigue behavior,
it is also essential to consider frequency-dependent self-heating in the context of fatigue
testing at higher frequencies. At elevated test frequencies, the rapid succession of plastic
deformation cycles leads to continuous heat accumulation in the material, as the limited
time available for heat dissipation between load cycles restricts heat dissipation [23].

In order to reduce the number of specimens and the required time to provide S-N
curves while achieving precise agreement between the calculated and experimental results,
various lifetime prediction methods (LPM) [24–32] have been developed recently. The
potential of non-destructive testing (NDT), the digitalization of measurement technology,
and signal processing are combined in these methods in order to achieve an increased level
of information regarding fatigue behavior. Since the generation of S-N curves requires
more than 20 tests according to the standard DIN 50100 [33], the previously mentioned
methods can demonstrably reduce the associated effort. For instance, high-resolution IR
cameras allow microstructure-resolved damage detection, which can be used as a basis
for a direct correlation with the degradation evolution of the materials [34,35]. Within
the presented research, the frequency dependence of the fatigue life is integrated into a
lifetime prediction method based on StressLife, which has been developed in previous
research [24,25]. Therefore, this method is used for the first time regarding the increased
test frequencies of 80 Hz and 260 Hz.

Apart from temperature-based methods, electrical resistance measurement methods
are also well suited for in situ measurements in fatigue tests, even on complex compo-
nents and structures. Changes in the electrical resistance can directly be correlated with
microstructural degradations [36]. This method is appropriate for in situ measurements as
well as for determinations in load-free intervals. In addition to the geometry, the electrical
resistance depends on the specific electrical resistance, which is made up of temperature-
independent and temperature-dependent portions, according to Matthiessen [37], as well
as changes during plastic deformation due to variations in defect density [38–40]. Due to
the reduction of the effective specimen cross-section, the electrical resistance exhibits a very
distinctive sensitivity concerning crack initiation and propagation.

As a consequence of the high self-heating of the specimens caused by the increased
test frequency [41], there is a temperature effect on the specimens in addition to a fre-
quency effect. In order to increase the sensitivity with regard to microstructural changes,
the temperature-dependent portion of the electrical resistance is minimized within the
framework of this research. However, an increased test frequency can result in a consid-
erable reduction in time and costs, but it has a material-dependent influence on fatigue
behavior [42]. Therefore, it is necessary to include these aspects in the lifetime prediction
for increased test frequencies.

Within this paper, information from an electrical resistance-temperature hysteresis
was used to minimize the temperature effects on electrical resistance measurements.
The temperature-corrected electrical resistance Rcorr corresponds to the temperature-
independent portions of the specific electrical resistance.

2. Materials and Methods
2.1. Materials

The investigated material is SAE 1045 (C45E, 1.1191) steel in normalized conditions
(“+N”), where the heat treatment is characterized by an austenitization at Taust. = 860 ◦C
for taust. = 45 min. Table 1 summarizes the chemical composition according to our own
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measurements obtained by spectrometric element analysis, along with specified limit values
according to DIN EN ISO 683-1 [43]. Mechanical properties from tensile tests that were
averaged over a total of five tests are summarized in Table 2. For assessing the hardness
HV 10 values, nine indents were analyzed, and an average hardness of 178 HV 10 was
determined.

Table 1. Chemical composition in wt.-% of the SAE 1045 steel according to DIN EN ISO 683-1 and
own analysis.

Material C Si Mn S Cr Mo Ni

SAE 1045
DIN EN ISO 683-1 0.420–0.500 0.100–0.400 0.500–0.800 ≤0.045 ≤0.400 ≤0.100 ≤0.400

Own analysis (+N) 0.427 0.232 0.742 0.007 0.070 0.020 0.078

Table 2. Mechanical and quasistatic properties of the SAE 1045 steel according to DIN standards and
own analysis.

Material Rm
[MPa]

Rp0.2
[MPa]

A
[%]

AG
[%]

SAE 1045
DIN EN ISO 683-1 ≥580 ≥305 ≥16 ≥13

Own analysis (+N) 620 423 26 17

Figure 1 displays micrographs of the specimens’ cross-sections (longitudinal and
transverse direction) etched with nital by using an Axio Imager.M1m microscope (Carl Zeiss
AG, Oberkochen, Germany), showing a ferritic-pearlitic microstructure. The longitudinal
section corresponds to the microstructure along the loading axis, while the transversal
section is perpendicular to it. Ferrite can be observed as clear, bright grains. Pearlite
reveals dark cementite lamellas with bright ferrite in between them. The average grain
size obtained by the linear intercept method is approx. dgrain = 11 µm. In the longitudinal
direction, microstructural banding can be observed (Figure 1a,b), where ferrite and pearlite
bands run parallel to the direction of rolling. This banded structure results from a low
cooling rate after heat treatment.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 5 of 18 
 

 

  
(a) (b) 

  
(c) (d) 
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ondary electron (SE) images of the specimens obtained by scanning electron microscopy 
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magnification focuses on the fine alternating ferrite and cementite layers that are charac-
teristic of pearlite, which define its morphology and were not that discernible in the pre-
vious light microscopy images.  

  

Figure 1. Light micrographs of cross-sections of SAE 1045 specimen in a longitudinal direction
with (a) 200× magnification and (b) 1000× magnification; in a transverse direction with (c) 200×
magnification and (d) 1000× magnification.
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To complement the light microscopy images, Figure 2 showcases high-resolution sec-
ondary electron (SE) images of the specimens obtained by scanning electron microscopy
(SEM) using the TESCAN Clara Mark III (TESCAN, Brno, Czech Republic). The enhanced
magnification focuses on the fine alternating ferrite and cementite layers that are character-
istic of pearlite, which define its morphology and were not that discernible in the previous
light microscopy images.
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2.2. StressLifeHCF Method 

In general, the StressLifeHCF method requires two load increase tests (LIT), with the 
first LIT being used for the basic characterization of the fatigue behavior of the material. 

Figure 2. Scanning electron microscopy (SEM) image in secondary electron (SE) mode of cross-
sections of SAE 1045 specimen in longitudinal direction with (a) 5580× magnification and (b) 20,300×
magnification; in traverse direction with (c) 5580× magnification and (d) 20,300× magnification.

The geometry of the fatigue specimens and their dimensions (in mm) are given in
Figure 3. A fatigue specimen with a cylindrical gauge length of 15 mm and a gauge
diameter of 5.6 mm was chosen to ensure a homogeneous stress distribution in the gauge
section and to minimize stress concentrations at the transitions.
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2.2. StressLifeHCF Method

In general, the StressLifeHCF method requires two load increase tests (LIT), with the
first LIT being used for the basic characterization of the fatigue behavior of the material.
LITs enable an estimation of the fatigue strength and provide initial information about the
stress amplitude at which a plastic material response can be expected. In general, LITs
are performed with a starting stress amplitude σa,start that is evidently below the fatigue
strength of the material, with a stepwise increase by ∆σa after every ∆N cycle [44]. To cover
a large range of stress amplitudes in a reasonable test time, a large increase in the stress
amplitude after a defined number of cycles is selected, which, however, leads to a decreased
number of data points in the plastic region, as the material fails more quickly due to the high
stresses. Therefore, a second LIT with a lower increase in stress amplitude for a more precise
assessment of elastic and plastic material behavior is necessary. The material responses
of the second LIT are averaged per load level and displayed in a Morrow equivalent plot
together with the respective stress amplitude. In this plot, the material response can be
divided into a range in which approximately no material response has taken place (elastic
area) and a range in which recognizable material responses have occurred (plastic area).
With the slopes of the allometric fit functions of these two ranges, the hardening exponent
ntotal for the HCF regime is determined from a weighted average of these slopes. The
weighting reflects the proportion of data points in the respective regions. This hardening
exponent is used to calculate the fatigue strength exponent b and the fatigue ductility
exponent c according to Equations (3) and (4). In addition, the material response M at half
of the number of cycles to failure (0.5·Nf) of two constant amplitude tests (CAT) is required
to separate the material response into elastic and plastic portions by applying a generalized
Coffin and Manson equation and a generalized Basquin equation. The stress amplitudes of
the CATs are selected, with one stress amplitude in the specific plastic range and one stress
amplitude in the elastic–plastic range of the already performed LIT. However, in this study,
only stress amplitudes from the plastic range could be used for the CATs, as previous tests
at the given frequencies in the elastic–plastic range had resulted in reaching the maximum
number of cycles for the tests without failure (run-outs). In a further step, the coefficients B
and C are calculated by Equations (5) and (6). Using a plot based on Ramberg–Osgood, the
material response of a calculated constant amplitude test CATcalc can be estimated. This
CATcalc is added in conjunction with the two other CATs to the Morrow equivalent plot
and is also fitted with an allometric fit function, which allows us to obtain the remaining
required parameters, which are used to describe an S-N curve by Equation (7) according to
StressLifeHCF [25].

b = − ntotal
5 ntotal + 1

(3)

c = − 1
5 ntotal + 1

(4)

C =

(
2 N f ,CAT1

)b
·MCAT2 −

(
2 N f ,CAT1

)b
·MCAT1(

2 N f ,CAT2

)c (5)

B =
MCAT1 − C·

(
2 N f ,CAT1

)c

(
2 N f ,CAT1

)b (6)

σa = K′·
[

B·
(

2 N f

)b
+ C·

(
2 N f

)c
]n′

(7)
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2.3. Testing Setup

All CATs and LITs are carried out using a resonant testing rig of the type MIKROTRON
(Russenberger Prüfmaschinen AG, Neuhausen am Rheinfall, Switzerland), with a maxi-
mum static loading capacity of 20 kN and a maximum force amplitude of 10 kN. The tests
were performed with a stress ratio of R = −1 at ambient temperature. According to [25],
the specimens’ surface temperature was measured in three sections using an IR camera of
the type thermoIMAGER TIM QVGA-HD (Micro-Epsilon Messtechnik GmbH & Co., KG,
Ortenburg, Germany) with a thermal sensitivity of 0.04 K. In order to avoid non-uniform
heating of the specimens during the tests due to the load cell, cooling rings were installed
on the upper and lower clamping.

In order to obtain the direct correlation between the change in temperature as a conse-
quence of frequency-induced self-heating effects during the fatigue tests and the measured
electrical resistance, a dependency function of these two variables was determined. There-
fore, a load-free specimen was heated up to 200 ◦C by a modified heating device, and the
associated change in electrical resistance was measured continuously. The heating device
consists of a small opening (d = 7.8 mm) in the center of the gauge length of the specimen.
During this procedure, the change in temperature in the middle of the specimen’s gauge
length was measured by an IR camera, while the electrical resistance Rtotal was traced by
using the four-point measuring method consisting of a current feed (3A DC), two Kelvin
clamps to measure the drop in voltage on the gauge length, a data acquisition card type
NI-9238 (National Instruments, München, Germany), an isolation plate to prevent the flow
of current through the machine, and one DC power supply of the type TOE 8851 (Toellner
Electronic Instrumente GmbH, Herdecke, Germany) with a setting resolution of 5 mA
and a setting accuracy of 0.2% + 10 mA. After reaching 200 ◦C, a cooling cycle to room
temperature followed. Based on the recorded data, a correlation function between the
electrical resistance and the change in temperature can be derived. A regression function
was used in order to describe the heating path as a square approximation of a second-
degree polynomial in accordance with [45]. This setup is shown in Figure 4 and differs only
slightly from the measurement setup during the fatigue tests. The current for the fatigue
tests was supplied directly at the clamping device instead of additional electrodes, as these
could start to vibrate during the tests.

With the use of this regression function, a temperature-dependent electrical resistance
value Rhys can be calculated by Equation (8), resulting in R0 as the y-intercept of the
regression function. Moreover, ∆T characterizes the change in temperature in the middle
of the heating spot, whereas α represents the linear fitting parameter, and β the square
fitting parameter. By inserting Rhys into Equation (9), a temperature-corrected electrical
resistance Rcorr can be determined, which is unaffected by the temperature flow and is only
dependent on microstructural changes, like the formation of dislocations or changes in
grain size and grain boundaries [20].

Rhys = R0 + α ·∆T + β·∆T2 (8)

Rcorr = Rtotal − Rhys (9)

The electrical resistance-temperature setup is illustrated in Figure 4, together with
the result of the hysteresis measurement, including the derived parameters used for the
correction of the electrical resistance values in the fatigue tests. Figure 4 depicts the direct
relation between the change in temperature and electrical resistance in terms of a hysteresis
loop (black curve), with an additional fitting function for the heating path (red curve). In
this method, the change in temperature is calculated from the specimen’s temperature T
during heating and cooling, depending on the initial temperature T0. The value of the first
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fitting parameter refers to the linear temperature coefficient of the material, which has a
positive value, as it is characteristic of metals [46]. Due to the fact that all investigated
specimens are from the same material batch, the value of the temperature coefficients can
be considered constant for the following investigations [47].

Appl. Sci. 2025, 15, x FOR PEER REVIEW 9 of 18 
 

 

Figure 4. Experimental setup of the resonant testing rig for the determination of the electrical re-
sistance temperature behavior: (1) unloaded fatigue specimen; (2) electrodes for electricity feed; (3) 
Kelvin clamps to measure the voltage drop; (4) heating device with an adaption for the geometry of 
the fatigue specimen; (5) IR camera; and (6) electrical resistance-temperature hysteresis, including 
the fitting (sequence: 30 °C to 200 °C to 30 °C). 

3. Results and Discussion 
3.1. Load Increase Test 

In previous applications of StressLifeHCF, fatigue tests were carried out at a lower test 
frequency of 5 Hz [25]. Within this research, the fatigue tests were performed at 80 and 
260 Hz, leading to a different progression of the material response in the form of a long-
lasting and low-expressed elastic material response and a shorter but very highly ex-
pressed plastic response in comparison to the tests at 5 Hz. As discussed in 2.2, two LITs 
need to be performed. For both test frequencies, an initial LIT with a starting stress ampli-
tude of 𝜎𝜎𝑎𝑎,𝑠𝑠𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠 = 100 MPa and a load increase of Δ𝜎𝜎𝑎𝑎 = 20 MPa after each ∆𝑁𝑁 = 1.8·105 
cycles was examined. The increased step length was chosen to ensure comparability of the 
total duration (in time) to the database of 5 Hz. The same step length was also used for 
the 260 Hz tests so that no further variations had to be taken into account and to enable a 
direct correlation of the results. 

As given in Figure 5, a starting stress amplitude of 𝜎𝜎𝑎𝑎,𝑠𝑠𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠 = 180 MPa and a load 
increase of Δ𝜎𝜎𝑎𝑎 = 5 MPa have been defined for the second LIT for both frequencies. Figure 
5 shows the cyclic deformation curves of the LITs considering the change in temperature 
(red), the directly measured change in electrical resistance (green), and the change in 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
(blue), which is derived from the total values calculated by Equations (8) and (9). 

Figure 4. Experimental setup of the resonant testing rig for the determination of the electrical
resistance temperature behavior: (1) unloaded fatigue specimen; (2) electrodes for electricity feed;
(3) Kelvin clamps to measure the voltage drop; (4) heating device with an adaption for the geometry
of the fatigue specimen; (5) IR camera; and (6) electrical resistance-temperature hysteresis, including
the fitting (sequence: 30 ◦C to 200 ◦C to 30 ◦C).

3. Results and Discussion
3.1. Load Increase Test

In previous applications of StressLifeHCF, fatigue tests were carried out at a lower
test frequency of 5 Hz [25]. Within this research, the fatigue tests were performed at
80 and 260 Hz, leading to a different progression of the material response in the form
of a long-lasting and low-expressed elastic material response and a shorter but very
highly expressed plastic response in comparison to the tests at 5 Hz. As discussed in 2.2,
two LITs need to be performed. For both test frequencies, an initial LIT with a starting
stress amplitude of σa,start = 100 MPa and a load increase of ∆σa = 20 MPa after each
∆N = 1.8 × 105 cycles was examined. The increased step length was chosen to ensure
comparability of the total duration (in time) to the database of 5 Hz. The same step length
was also used for the 260 Hz tests so that no further variations had to be taken into account
and to enable a direct correlation of the results.

As given in Figure 5, a starting stress amplitude of σa,start = 180 MPa and a load
increase of ∆σa = 5 MPa have been defined for the second LIT for both frequencies. Figure 5
shows the cyclic deformation curves of the LITs considering the change in temperature
(red), the directly measured change in electrical resistance (green), and the change in Rcorr

(blue), which is derived from the total values calculated by Equations (8) and (9).
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Figure 5. Cyclic deformation curves of load increase tests (LIT) for specimens of SAE 1045 +N
steel starting at σa,start = 180 MPa with ∆σa = 5 MPa and ∆N = 1.8 × 105 for (a) f = 80 Hz and
(b) f = 260 Hz.

Since the change in temperature for the LIT at 260 Hz exceeds the fit of the electrical
resistance-temperature hysteresis at the beginning of the load stage at 265 MPa, a correction
for Rcorr is not possible for that period, and the graph is displayed with an interruption
(black bars). The frequency effect can already be seen in these cyclic deformation curves,
represented by a shift in the first material response to higher stress amplitudes (220 MPa for
80 Hz and 240 MPa for 260 Hz), resulting in a higher portion of elastic data points. This first
material response can be used to estimate the fatigue strength. The increase in the fatigue
strength at higher frequencies can be explained by the fact that the dislocation movement
is increasingly limited by the reduced time available for their motion, resulting in reduced
plastic deformation in the specimen volume or shift of plastic deformation to higher stress
amplitudes at high test frequencies [9]. Another reason is the frequency sensitivity of bcc
metals (like ferritic-pearlitic SAE 1045), which are more susceptible to deactivated slip
systems due to the high critical shear stress and high dislocation activation energy caused
by the high test frequencies [12,13]. At the point where the initial material response occurs,
there is no significant change in temperature, indicating that this effect is solely caused
by the frequency effect. After the onset of the first material response, both curves show a
clear increase in the material response due to the cyclic softening of the material, which is
followed by a decrease in the material response in terms of cyclic hardening. In addition,
failure of the test frequency of 80 Hz already occurs at 240 MPa, whereas failure at a test
frequency of 260 Hz does not occur until 265 MPa.

3.2. Constant Amplitude Test

Due to the general increase in fatigue life, the stress amplitudes selected for the LPM at
260 Hz are also significantly higher compared to those at 80 Hz. The changes in temperature
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and electrical resistance are detected as analog to the LITs. The cyclic deformation curves
of the CATs are exemplary illustrated for the change in temperature in Figure 6a and for
the direct measured electrical resistance R and Rcorr in Figure 6b. A significantly more
pronounced material response in the case of 260 Hz is confirmed in both figures. It should
be noted that the data points at 0.5·Nf are highlighted since they are used within the
calculations according to StressLifeHCF.
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Figure 6. Cyclic deformation curves of constant amplitude tests (CAT) for specimens of SAE 1045
+N steel based on (a) change in temperature and (b) change in electrical resistance and change in
temperature-corrected electrical resistance.

In all fatigue tests, the slope of the increase in Rcorr is lower than the directly measured
electrical resistance.

The point where the maximum cyclic hardening occurs highly depends on the test
frequency. While maximum hardening at 80 Hz occurs in a range of approx. 50 % of the
fatigue life, it is observed at approx. 76 % of the fatigue life concerning a test frequency
of 260 Hz. An explanation for this frequency-related shift has already been given in
Section 3.1.

In general, competing processes must be taken into account. On the one hand, more
energy per time unit is induced in the specimen due to the increased test frequency, leading
to a higher amount of dissipated thermal energy. However, this energy cannot radiate
across the specimen quickly enough, and the portion of internal stored heat increases. Due
to this, dislocation movement is more facilitated, which tends to shorten the lifetime of the
specimens [48]. On the other hand, due to the higher test frequency, it takes considerably
longer until the necessary cumulative shear stresses are induced in the microstructure to
start the dislocation movements, which tends to extend the lifetime [49]. Depending on the
frequency, one of these two effects can dominate, resulting in different cyclic deformation
behaviors for different test frequencies. For example, the tests at 80 Hz exhibited a cyclic
hardening that extends over a significantly longer cycle range (approx. 105 cycles) than at
260 Hz (approx. 3 × 104 cycles). As already explained for the LITs, no temperature correc-
tion of the change in electrical resistance is possible for the CAT with a stress amplitude of
285 MPa for a few cycles (Figure 6b), as the change in temperature exceeds 180 K.
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3.3. Use of StressLifeHCF Within Increased Frequency Fatigue Testing

In this work, the mentioned LPM is applied twice for both test frequencies, once
based on the change in temperature and once based on the change in Rcorr. By using the
information from the LIT (Section 3.1), the average material responses of each load level
can be obtained and plotted in a Morrow equivalent plot for each test frequency with the
respective stress amplitudes, as shown exemplary for Rcorr in Figure 7.
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Figure 7. Stress amplitudes vs. average values for the material responses of each load step, including
the elastic material responses of both constant amplitude tests (CAT) and the total material responses
for a calculated CATcalc according to the StressLifeHCF of SAE 1045 +N steel based on the change in
temperature-corrected electrical resistance for (a) f = 80 Hz and (b) f = 260 Hz.

Using the slope of the allometric fits of the elastic (green) and plastic ranges (black)
in Figure 7, ntotal can be calculated for each test frequency by a weighted averaging of
the two determined exponents of the fit functions. From the mathematical description
given in Equations (3) and (4), the parameters can be determined in the form of the fatigue
strength exponent b and the fatigue ductility exponent c [25]. Furthermore, the separation
of material response in elastic portions and plastic portions, with the use of a generalized
Basquin equation (elastic), a generalized Coffin and Manson equation (plastic), and the
fatigue data of two CATs per test frequency from Section 3.2, coefficients B and C are
determined according to Equations (5) and (6). This allows the estimation of the material
response of a theoretically calculated CATcalc. The further final steps for calculating an S-N
curve according to StressLifeHCF can be found in [24,25,50]. To enable better comparability
of the S-N curve based on the change in temperature with the S-N curve based on Rcorr,
both curves are given in Figure 8a for 80 Hz and in Figure 8b for 260 Hz.

Noticeably, both curves in Figure 8a show a precise accuracy with regard to the
description of the CAT data points. Furthermore, the fatigue limit, which indicates the
maximum stress amplitude under which the material can withstand cyclic loading without
failure, can be estimated by the horizontal progression of the curves. This is in line with the
observations in Section 3.1, where the fatigue limit is at around 220 MPa for 80 Hz and 240
MPa for 260 Hz according to the load step of the first occurring material response from the
LITs in Figure 5 [51].

Furthermore, while the curves in the cycle range from approx. 105 cycles for 80 Hz
show a very similar course, the curves for 260 Hz differ more clearly. This can be observed
from the fatigue lifetime deviation LD in Table 3, which was determined according to
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Equation (10) using the mean fatigue lifetime per stress level N f ,val of the validation tests
and the calculated fatigue lifetime N f ,cal according to StressLifeHCF. Especially at higher
stress amplitudes, the curve based on Rcorr shows significantly smaller deviations from
the validation data points. This can be explained by the different temperatures in 80 Hz
(with a max. temperature change in the range of just 100 K) and 260 Hz tests (with a max.
temperature change in the range of 250 K). At 260 Hz, temperature changes occur rapidly
and may not immediately reflect the microstructural damage due to the material’s thermal
inertia, which may cause the measured temperature to lag behind the actual microstructural
change. As a result, the sensitivity of Rcorr to local microstructural changes compared to
the direct temperature measurement is significantly higher here, offering a more precise
correlation with material damage and thus improving the accuracy of the LPM.

LD =
N f ,cal − N f ,val

N f ,val
·100% (10)
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Figure 8. S-N curves according to StressLifeHCF for specimens of the SAE 1045 +N steel based on the
change in temperature and change in temperature-corrected electrical resistance, including constant
amplitude test (CAT) data points for validation for (a) f = 80 Hz and (b) f = 260 Hz.

Table 3. Deviation of S-N curves according to StressLifeHCF from the validation data points for
f = 260 Hz.

σa [MPa] 313 300 290 285 280 275 265 260 255 253

LD based
on ∆T [%] −59.26 −20.488 −9.23 12.02 −2.83 3.20 80.85 87.95 −58.86 49.21

LD based
on ∆Rcorr [%] −20.59 1.31 −4.52 7.81 −13.87 −15.00 34.05 0.45 −69.50 13.18

In contrast to the calculation based on the change in temperature, the two S-N curves
based on the change in Rcorr in Figure 9 have a similar curve progression from 105 to
106 cycles, which indicates a successful reduction in the temperature influence on the
electrical resistance values. The reduction in temperature influence was already investi-
gated by Wu et al. for a normalized SAE 1045 steel in [52]. Those tests were performed
at a test frequency of 5 Hz with additional load-free sequences in order to measure the
electrical resistance without the influence of temperature as well as applied load. The
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method used in this work can be applied without these sequences, using only an electrical
resistance-temperature hysteresis that was determined in advance.
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Figure 9. Comparison of the S-N curves according to StressLifeHCF for SAE 1045 +N steel based
on the change in temperature-corrected electrical resistance for 260 Hz (orange) and 80 Hz (blue),
including constant amplitude test (CAT) data points for f = 80 Hz and f = 260 Hz for validation.

The parameters obtained from the StressLifeHCF calculations for a test frequency of
80 Hz, as well as the results for a test frequency of 260 Hz, are both summarized in Table 4.

Table 4. Parameters from the StressLifeHCF calculation for SAE 1045 +N steel for f = 80 Hz and
f = 260 Hz.

Test Fre-
quency

[Hz]

Material
Response

n′
total
[-]

b
[-]

c
[-]

B
[K]

C
[K]

K′

[MPa·K−1]
n′

[-]

80 ∆T 0.039 −0.032 −0.839 42.73 3344421.32 184.18 0.065

260 ∆T 0.054 −0.043 −0.786 2.65 127611.30 226.25 0.096

Test Fre-
quency

[Hz]

Material
Response

n′
total
[-]

b
[-]

C
[-]

B
[µΩ]

C
[µΩ]

K′

[MPa·µΩ−1]
n′

[-]

80 ∆Rcorr 0.031 −0.026 −0.868 48.85 791644.00 113.01 0.205

260 ∆Rcorr 0.045 −0.037 −0.817 4.60 27908.99 175.35 0.327

4. Conclusions
Within this research, a lifetime prediction method based on StressLifeHCF was val-

idated for the first time regarding the use of higher frequency fatigue testing. It can be
stated that the temperature correction of the electrical resistance could be used to separate
the influence of frequency-induced self-heating and, therefore, provide a reliable input
variable for the StressLifeHCF method.

In summary, the following conclusions can be drawn:

1. The StressLifeHCF method is also useful and reliable for test frequencies above 5 Hz.
Therefore, an additional calculated value Rcorr is suitable as a material response for
the use of the method to compensate for the temperature influence occurring at high
test frequencies.
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2. Frequency influences can be seen in cyclic deformation curves of load increase tests,
where the first material response shifts to higher stress amplitudes for higher frequen-
cies, resulting in a general extension of fatigue lifetime. For constant amplitude tests,
a shift in the position of maximum cyclic softening to higher numbers of cycles at a
higher frequency was also observed.

3. Competing processes must be taken into account during higher frequency fatigue.
On the one hand, processes that reduce the fatigue lifetime due to heat build-up
resulting in very high temperatures of the specimen have an effect by increasing the
dislocation mobility. On the other hand, lifetime-extending processes have an effect,
as the dislocation movement is slowed down due to the high test frequencies.

In future research, different fatigue life stages will be investigated by means of scan-
ning electron microscopy and X-ray imaging to better understand the frequency-induced
microstructure evolution, which is crucial for identifying frequency-related damage mecha-
nisms and may also be implemented into the lifetime prediction method. The goal is to
obtain S-N curves for further test frequencies from the StressLifeHCF calculation using only
just one test frequency without having to execute additional tests at other frequencies. To
enable this conversion, a factor could be determined based on the frequency difference.
Since the electrical resistance-temperature hysteresis is acquired without dynamic stress
in a quasistatic system, the behavior may vary in a dynamic system. For this reason, air
cooling will be installed for future tests to counteract the forming heat build-up and to
reduce the temperature effects. Also, the test bench must be adapted to obtain higher
temperatures in the hysteresis by using a more powerful or comparable heat source. The
StressLifeHCF method at high test frequencies should also be verified with different heat
treatment conditions, austenitic materials, and further material groups. As a result of the
increasing importance of additively manufactured materials, an application to this type of
material appears highly relevant.
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