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ABSTRACT

In the event of speech distortions caused by echoes, reverberations, or background
noise like in a busy cafeteria, listening can be challenging even for individuals with
normal hearing thresholds. When noise hinders listening, the meaning of a message
perceived by a listener can be different from the intended meaning and it may lead
to misunderstandings or even communication breakdowns in extreme cases. Unlike
human speakers who can adapt speech to accommodate their interlocutor’s listening
difficulties, current spoken dialogue systems are limited in their ability to produce
noise-robust speech. Most algorithmic solutions to synthesize noise-robust speech
are based on acoustic modification, which is not beneficial in all cases as it may lead
to signal distortions, deteriorating the naturalness or the quality of the synthesized
speech. This thesis proposes to utilize an alternative strategy of utilizing paraphrases
to improve speech perception in noise, which involves no signal distortions.

Noise impacts lexical units differently – some are more noise-robust while others
are more prone to misperception. Hence, paraphrasing does not guarantee better
speech perception. If the lexical units used for paraphrasing are perceived in a
listening situation in a similar way to the original formulation, they do not represent
an improvement. Hence, the first study in this thesis aims to gain a better under-
standing of whether and to what extent a simple yet common paraphrasing strategy
– lexical replacement with synonyms – could reduce word misperceptions in noise.
Human listening experiments were conducted to capture the perception differences
among synonyms in noise. Analyzing the newly created dataset – Synonyms-in-
Noise – it was found that replacing a lexical unit with its synonym that is less
risky to be misheard can improve word recognition by up to 37% in a highly noisy
environment like babble noise at SNR−5 dB. Furthermore, a modeling experiment
was performed to explain the observed gain in intelligibility. The results show that
the intelligibility gain is attributed to the linguistic cues of synonyms, in low and
medium noisy conditions; while the gains are mainly driven by acoustic cues in
highly noisy conditions.

In order to consider more generic types of paraphrases, the second study of the
thesis focuses on sentential paraphrases and their impacts on the whole utterance
intelligibility. By collecting human speech perception data of sentential paraphrases,
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a new dataset called Paraphrases-in-Noise was created. It was found that the
intelligibility scores of sentential paraphrases are also significantly different in a
highly noisy condition and choosing the right paraphrase within a pair can introduce
an overall gain in intelligibility as high as 33%. Additionally, the study proposed
an intelligibility-aware paraphrase ranking model to correctly identify the more
intelligible paraphrases using their linguistic and acoustic features. The proposed
model outperformed both baseline models (random and majority), achieving the
highest performance of 67% at a high noise condition.

The final study of the thesis aims to generate acoustically better intelligible paraphrases,
which is potentially useful to build noise-adaptive spoken dialogue systems. The
investigation begins with an evaluation of the extent to which modern text generation
models such as Large Language Models (LLMs) can produce texts that fulfill both
textual (such as semantic equivalence) and non-textual attributes (such as acoustic
intelligibility). Modeling results showed that LLMs in standard prompting setups
struggle to improve acoustic intelligibility, while effectively maintaining semantic
equivalence. Additionally, it was found that the proposed post-processing approach –
prompt-and-select – performs better than fine-tuned models at generating paraphrases
that are acoustically more intelligible.

In summary, this thesis explored the potential of paraphrasing to improve speech
perception in noise. As a result, we created two new datasets and proposed a new
framework to synthesize noise-robust speech, which introduces no signal distortions.



ZUSAMMENFASSUNG

Im Falle von Sprachsignalverzerrungen durch Echos, Nachhall oder Hintergrundger-
äusche, wie zum Beispiel in einem belebten Café, kann das Zuhören selbst für
Personen mit normalem Hörvermögen eine Herausforderung darstellen. Wenn
Lärm das Zuhören behindert, kann die Bedeutung einer Nachricht, die der Hörer
wahrnimmt, von der vom Sprecher beabsichtigten Bedeutung abweichen. Das kann
zu Missverständnissen oder in extremen Fällen sogar zu Kommunikationsabbrüchen
führen. Im Gegensatz zu menschlichen Sprechern, die ihre Sprechweise an die
Hörschwierigkeiten ihres Gesprächspartners anpassen können, sind die derzeiti-
gen Sprachdialogsysteme nur begrenzt in der Lage, geräuschrobuste Sprache zu
produzieren. Die meisten algorithmischen Lösungen zur Synthese geräuschrobuster
Sprache basieren auf akustischen Modifikationen, die nicht in allen Fällen von
Vorteil sind, da sie zu Signalverzerrungen führen können, die die Natürlichkeit oder
Qualität der synthetisierten Sprache beeinträchtigen. In dieser Arbeit wird eine
alternative Strategie zur Verbesserung der Sprachwahrnehmung bei Störgeräuschen
vorgeschlagen, die keine Signalverzerrungen mit sich bringt: die Verwendung von
Paraphrasen.

Geräusche wirken sich unterschiedlich auf verschiedene lexikalische Einheiten
aus - einige sind geräuschresistenter, während andere anfälliger für Fehlwahrnehmun-
gen sind. Daher ist die Verwendung von Paraphrasen keine Garantie für eine bessere
Sprachwahrnehmung. Wenn die lexikalischen Einheiten, die zur Umschreibung
verwendet werden, in einer Hörsituation ähnlich wahrgenommen werden wie die
ursprüngliche Formulierung, stellen sie keine Verbesserung dar. Daher zielt die
erste Studie in dieser Arbeit darauf ab, ein besseres Verständnis dafür zu erlangen,
ob und inwieweit eine einfache, aber weit verbreitete Paraphrasierungsstrategie -
die lexikalische Ersetzung durch Synonyme - Wortfehlwahrnehmungen im Lärm
reduzieren kann. Es wurden Hörexperimente durchgeführt, um die Wahrnehmung-
sunterschiede zwischen Synonymen im Lärm zu erfassen. Die Analyse des zu
diesem Zweck neu erstellten Datensatzes – Synonyms-in-Noise (SiN) – ergab, dass
das Ersetzen einer lexikalischen Einheit durch ein Synonym mit geringerem Risiko,
falsch verstanden zu werden, die Worterkennung in einer stark verrauschten Umge-
bung (z.B. bei Babble Noise mit einem Signal-Rausch-Verhältnis von −5 dB) um bis
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zu 37% verbessern kann. Außerdem wurde ein Modellierungsexperiment durchge-
führt, um den beobachteten Gewinn an Verständlichkeit zu erklären. Die Ergebnisse
zeigen, dass der Verständlichkeitsgewinn bei geringem und mittlerem Lärm auf die
linguistischen Merkmale von Synonymen zurückzuführen ist, während der Gewinn
bei starkem Lärm hauptsächlich von akustischen Merkmale bestimmt wird.

Um allgemeinere Arten von Umschreibungen zu berücksichtigen, konzentriert
sich die zweite Studie der Arbeit auf Satzumschreibungen und ihre Auswirkungen
auf die Verständlichkeit der gesamten Äußerung. In weiteren Hörexperimenten
wurden Satzparaphrasen verglichen und ein neuer Datensatz namens Paraphrases-
in-Noise (PiN) erstellt. Es wurde festgestellt, dass sich die Verständlichkeitswerte
von verschiedenen Satzparaphrasen auch unter stark verrauschten Bedingungen
signifikant unterscheiden und die Wahl der richtigen Paraphrase innerhalb eines
Paares einen Gesamtgewinn an Verständlichkeit von bis zu 33% bewirken kann.
Darüber hinaus wurde in der Studie ein verständlichkeitsorientiertes Paraphrasen-
Ranking-Modell vorgeschlagen, um die verständlichsten Paraphrasen anhand ihrer
linguistischen und akustischen Merkmale korrekt zu identifizieren. Das vorgesch-
lagene Modell übertraf beide Basismodelle (Zufalls- und Mehrheitsmodell) und
erreichte mit 67% die höchste Verständlichkeit bei starkem Rauschen.

Die abschließende Studie dieser Arbeit zielt darauf ab, akustisch besser ver-
ständliche Paraphrasen zu generieren, die potenziell nützlich sein könnten, um ger-
äuschadaptive Sprachdialogsysteme zu entwickeln. Wir evaluieren, inwieweit mod-
erne Textgenerierungsmodelle wie Large Language Models (LLMs) Texte produzieren
können, die sowohl textuelle Anforderungen (z.B. semantische Äquivalenz) als
auch nicht-textuelle Anforderungen (z.B. akustische Verständlichkeit) erfüllen. Die
Ergebnisse der Studie zeigen, dass LLMs in Standard-Prompting-Setups Schwi-
erigkeiten haben, die akustische Verständlichkeit zu verbessern und gleichzeitig die
semantische Äquivalenz effektiv zu erhalten. Außerdem wurde festgestellt, dass
der vorgeschlagene Nachbearbeitungsansatz - prompt-and-select – besser abschneidet
als fein abgestimmte Modelle, wenn es darum geht, Paraphrasen zu erzeugen, die
akustisch besser verständlich sind.

Zusammenfassend lässt sich sagen, dass in dieser Arbeit das Potenzial der
Paraphrasierung zur Verbesserung der Sprachwahrnehmung im Lärm untersucht
wurde. Als Ergebnis haben wir zwei neue Datensätze erstellt und einen neuen
Rahmen für die Synthese von geräuschrobuster Sprache vorgeschlagen, der keine
Signalverzerrungen verursacht.
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1
I N T R O D U C T I O N

Conversations are critical for human life. However, not all conversational environments
are ideal for message exchanges. For instance, in real-world conversational setups,
there is often background noise like competing speech, appliance noise, automobile
noise, loud music, or public announcements. As noise distorts clean speech, listening
can be challenging in noisy environments, even for individuals with normal hearing
threshold. When a listener incorrectly recognizes the spoken sounds, the meaning
perceived by the listener can be different from the actual meaning intended by the
speaker, and it may lead to misunderstanding or even conversation breakdowns in
extreme cases (Grimshaw, 1980; Dua, 1990). This highlights the need to enhance the
intelligibility of speech produced in noisy environments.

With the growing presence of voice assistants in the modern world, human
mishearing is not just limited to human-human interactions; it can also occur in
human-machine interactions. However, mishearing mitigation efforts vary between
these types of interactions. In an extensive review on speech production, Cooke et al.
(2014) have showcased a wide range of speech modification strategies employed
by human speakers to reduce their interlocutors’ listening difficulties. They refer
to human speakers as listening talkers, indicating their potential to adapt speech, in
such a way that their interlocutors can hear and understand more easily. Compared
to human speakers, spoken dialogue systems (SDSs) are still less adaptive to the
listening challenges of their users. This could be a factor in limiting the scope of
SDS to only users in ideal listening conditions, ignoring a large set of individuals
who live or work in adverse listening conditions. In the last two decades, research in
speech technology has therefore focused on developing adaptive SDS to synthesize
noise-robust speech, thereby improving the human-machine interactions, especially
in adverse listening environments (Patel et al., 2006; Bonardo and Zovato, 2007;
Anumanchipalli et al., 2010; Cooke et al., 2013a; Rennies et al., 2020; Ohashi and
Higashinaka, 2022).

1



2 chapter 1. introduction

1.1 motivation

Interestingly, research on algorithmic solutions to enhance synthetic speech intelligib-
ility is predominantly driven by acoustic modification. In other words, text-to-speech
(TTS) systems are trained to modify a range of acoustic features like pitch, in-
tensity, and duration of synthesized speech to improve its intelligibility in noisy
environments (Mayo et al., 2012; Bollepalli et al., 2019). On one hand, such speech
modification strategies like imitating Lombard speech (Huang et al., 2010) have
resulted in improved intelligibility in noise. On the other hand, the benefits were
not large enough to bridge the gap in intelligibility introduced by the lack of lin-
guistic features like predictability – even with acoustic modification, words in less
predictable contexts remain less intelligible than words in highly predictable contexts
(Valentini-Botinhao and Wester, 2014). More critically, acoustic modification is not
beneficial in all cases as it may lead to signal distortions, which could negatively
influence the naturalness and the quality of the synthesized speech (Cooke and
Lecumberri, 2012; López-Peláez and Clark, 2014; Valentini-Botinhao and Wester,
2014). Given the ubiquity of voice assistants in today’s world (like in traffic nav-
igation, customer care services, and medical assistance), it has become critical to
additionally explore alternate strategies to improve the synthetic speech intelligibility in
noise.

Considering the fact that the ultimate objective of a dialogue exchange is to
convey the meaning of a message, enhancing the intelligibility of synthetic speech
can be achieved by performing not only acoustic modification but also linguistic
modification. In fact, human speakers are known for their ability to simplify the
linguistic structure and word complexity in speech, especially when they converse
with non-natives or kids in the early stage of language acquisition (Cooke et al., 2014).
This motivates us to investigate a speech modification strategy based on linguistic
modification to improve speech perception in noise. Notably, a linguistic-oriented
strategy could lead to an approach of enhancing speech intelligibility without introducing
any signal distortions.

To this end, we identified the three main objectives of this work and they are
described in the following section.
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1.2 research objectives

1. Verify the potential of paraphrases: It is well-established that noise impacts
words differently as linguistic features like word familiarity and predictability
can influence word intelligibility in noise (Luce and Pisoni, 1998; Kalikow
et al., 1977). Similarly, the underlying sounds of a word (ie., consonants and
vowels) are differently misrecognized in different listening conditions (Weber
and Smits, 2003), leading to higher misperceptions for some words than others.
It is however not understood whether the noise impact is different among
semantically equivalent phrases (ie., synonyms or paraphrases) and its interac-
tion with different noise levels. A significant intelligibility difference among
paraphrases is critically important, as paraphrasing may not be impactful
for improving perception if paraphrases exhibit similar intelligibility scores.
Therefore, we identify the need to study the intelligibility differences among
(spoken) paraphrases, which are synthesized by a TTS and listened to by native
listeners in different adverse listening environments.

2. Explain the potential of paraphrases: A rephrasing-based approach to en-
hance synthetic speech intelligibility was initially proposed in Zhang et al.
(2013). They focused on developing an objective metric to distinguish the para-
phrases’ intelligibility, with the assumption that all paraphrases are different
in intelligibility under all listening conditions. Their study focused little on
explaining why and to what extent paraphrasing supports better intelligibility
in noisy conditions and therefore it is essential to fill this gap in understanding
the potential of paraphrases. Since paraphrases consist of a wide range of
syntactic and lexical variations (Bhagat and Hovy, 2013), an elaborate analysis
to verify whether a simple yet common paraphrasing approach like lexical
replacement contributes to better utterance intelligibility in noise would be
beneficial for further research.

3. Utilize the potential of paraphrases: More recently, there has been an increas-
ing interest in building adaptive natural language generation (NLG) systems
that could adapt to users in different listening conditions (Ohashi and Higash-
inaka, 2022). They employed a word confusion model to simulate the noise
impact on the synthesized utterance. Then, the noisy utterance is given as input
to a natural language understanding (NLU) module to determine whether
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the generated utterance is understood as intended. Their study employed an
automatic speech recognition (ASR) system as a simulated listener to facilitate
large-scale analysis. However, actual listening is more complex than replacing
words based on a confusion model, especially in noisy environments, wherein
human listeners leverage their world knowledge and language proficiency
to compensate for their listening difficulties. Thus, the question of how to
employ paraphrasing for better perception of synthetic speech in noise remains
a challenge. For better understanding, it is also critical to evaluate proposed
approaches with human listeners in a given noisy environment.

1.3 contributions

This section discusses the main contributions of this thesis which address the
aforementioned research objectives.

• A method to improve the intelligibility of synthetic speech in noise without
signal distortions.
Instead of modifying the acoustic characteristics like pitch, intensity, and dura-
tion of an utterance, we employed paraphrasing, which introduces no signal
distortions, to improve the intelligibility of an utterance in noise. We demon-
strated that replacing a lexical item with an ideal synonym can significantly
improve word intelligibility in noisy conditions, even among native listen-
ers with no hearing impairments. Additionally, the outcome of our results
provides evidence that not just the individual word intelligibility, but even the
intelligibility of whole sentences can be improved by rephrasing sentences with
syntactic and lexical variations, especially in highly noisy conditions.

• An extensive investigation into why paraphrases improves hearing in noise.
We built models to explain the features that drive the intelligibility gain intro-
duced by paraphrases. Modeling experiment results show that the intelligibility
gain is primarily attributed to the linguistic characteristics of paraphrases, only
in listening setups with low/medium noise levels – words with higher lin-
guistic predictability were better recognized because the supporting context
was available to listeners, and that helped them in compensating the noisy
audio of target utterance. However, in a highly noisy condition, paraphrases
are differently perceivable because of their noise-robust acoustic cues – the
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sentence with more acoustic cues that survived the energetic masking was
significantly more audible than its paraphrase. Overall, the study explains the
factors that drive the intelligibility gain through paraphrases.

• Creation of two new datasets for paraphrases perceived in noise.
Evaluating the paraphrase intelligibility in noise involves speech perception
experiments with human subjects, which is expensive and time-consuming.
We created two large perception experiments on a crowd-sourcing platform
with about 200 native English listeners. Human annotations of paraphrases
perceived in different listening environments were collected and the resultant
datasets (Synonyms in Noise and Paraphrases in Noise) were released for
further research in this direction.

• Proposal of a new framework for noise-adaptive spoken dialogue systems.
Modern SDSs are less adaptive to the listening difficulties of human users, espe-
cially in noisy environments. The system utterances are typically synthesized
by a TTS module, which takes the input from an NLG module that generates
the text to convey a message. Considering the potential of paraphrases in
enhancing human hearing in noise, we proposed to employ paraphrasing in
an SDS framework to reduce misperceptions by users in adverse listening
conditions. We developed a paraphrase-pair ranking model that can be used
with any paraphrasing model, to identify the sentential paraphrases that are
more noise-robust for a given noise condition.

• Evaluation of Large Language Models for generating intelligible paraphrases.
The task of generating intelligible paraphrases involves both textual and non-
textual attributes: the generated text needs to be semantically equivalent to as
well as acoustically more intelligible than the given input sentence. Modeling res-
ults showed that in zero-shot and in-context learning setups, Large Language
Models (LLMs) fail to learn the non-textual attributes that are hard to describe
in text. Fine-tuning models with datasets of downstream tasks is another
approach for controllable text generation. However, it demands large-scale
datasets. We developed a data augmentation pipeline with an automatic speech
intelligibility metric to develop a large parallel dataset of paraphrases with dif-
ferent acoustic intelligibility. Finally, we proposed a new prompting approach
called prompt-and-select, which avoids the compute-intense fine-tuning step,
to generate text that satisfies both the desired textual and non-textual attributes.
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The contributions discussed in this dissertation center around the following
publications:

1. Anupama Chingacham, Vera Demberg and Dietrich Klakow (2021). Exploring
the Potential of Lexical Paraphrases for Mitigating Noise-Induced Comprehension
Errors. In Proceedings of the International Speech Communication Association
(INTERSPEECH). URL. Best student paper award.

2. Anupama Chingacham, Vera Demberg and Dietrich Klakow (2022). A Data-
Driven Investigation of Noise-Adaptive Utterance Generation with Linguistic Modi-
fication. In Proceedings of the IEEE Spoken Language Technology Workshop
(IEEE SLT). URL.

3. Anupama Chingacham, Miaoran Zhang, Vera Demberg and Dietrich Klakow
(2024). Human Speech Perception in Noise: Can Large Language Models Paraphrase to
Improve It? To appear in Proceedings of the Human-Centered Large Language
Modeling Workshop (HuCLLM @ ACL 2024).

1.4 thesis structure

This section provides a brief introduction to all chapters of this thesis.

Background. Conversations are prone to mishearing and misunderstanding, es-
pecially in adverse listening environments. This is true not only for human-human
interactions but also for human-machine interactions, wherein the human listeners
are located in a noisy environment. With the increasing presence of speech tech-
nologies in human life, it becomes critical to understand the different factors and
existing algorithms to improve speech perception in noisy conditions. In Chapter 2,
we present a survey of different factors that influence human misperceptions and
some of the mishearing mitigation strategies that are adopted by human speakers, to
reduce the listening challenges of interlocutors in less ideal environments. We also
describe the existing methods to define, measure, and represent misperception. We
then define paraphrases and introduce existing methods to identify and generate
paraphrases, which we will adopt in later chapters of this thesis. Overall, this chapter
sets the context and defines the scope of our investigation.

https://www.isca-archive.org/interspeech_2021/chingacham21_interspeech.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10022437
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Algorithmic solutions to improve speech perception in noise. Speech perception
is the task of recognizing spoken tokens (like phonemes, words, or sentences) in
an utterance. On the other hand, speech comprehension involves understanding
the meaning, in addition to recognizing spoken tokens. As our research focuses on
improving speech perception with paraphrases (ie., different linguistic forms of sim-
ilar meaning), it is then important to formally define speech perception and speech
comprehension and we present it in Chapter 3. We describe mishearing and how
paraphrasing is a potential solution to reduce comprehension errors introduced by
mishearing. In the same chapter, we discuss the two possible frameworks to mitigate
mishearing, highlighting the critical distinction between linguistic modification and
acoustic modification for enhancing the intelligibility of synthetic speech. Finally,
we present a strong motivation to use paraphrasing to improve speech perception,
showcasing how word confusions are influenced by masker types.

Lexical paraphrases to mitigate word misperception. Many studies have demon-
strated the significant influence of lexical characteristics on word intelligibility in
noise. More precisely, they showcase that noise impacts lexical units differently (Luce
and Pisoni, 1998; Vitevitch, 2002). We hypothesize that replacing a lexical unit with
its synonym which is more noise-robust, can improve the overall word intelligibility
in noise. But first, we need to study whether synonyms differ in intelligibility under
noisy listening conditions. This is a critical aspect of this investigation – if the mask-
ing effect of noise on a word and its synonyms are equally the same, then choosing
one over the other is less likely to improve intelligibility. In Chapter 4, we present
the listening experiment, which was conducted to collect human perception data of
synonyms in different noise conditions. We then describe the newly created dataset
called Synonyms in Noise (SiN), which is annotated by native listeners with normal
hearing thresholds. We found that synonyms’ intelligibility scores are significantly
different in noise, especially at a high noise level (SNR −5 dB). Interestingly, we
observed a similar pattern of intelligibility difference among synonyms, even when
they were presented with linguistic contexts. With further investigation using linear
regression models, we observed that the intelligibility gain introduced by synonyms
is mainly driven by their linguistic characteristics under clean/low noise conditions
and acoustic characteristics under high noise conditions.

Sentential paraphrases to improve intelligibility. At this point, we established
evidence that replacing a lexical unit with its synonym, which is more noise-robust,
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can significantly improve speech perception, leading to improved spoken language
comprehension. While this is an interesting finding, an intelligibility improvement
strategy solely based on lexical replacements is constrained by the availability of
synonyms that fit the context of a given sentence. Also, the words that undergo the
lexical replacement might not be crucial for the perception of the whole sentence, as
certain misperceptions can be corrected by high-level signals like linguistic contexts
or situational cues. It is then important to extend our investigations to sentential
paraphrases, which introduce both syntactic and lexical variations. We present in
Chapter 5, a new perception experiment that we conducted with 300 sentential
paraphrases and the resultant dataset called Paraphrases in Noise (PiN). To measure
the intelligibility difference between sentential paraphrases, we then define a metric
called Sentence-level Intelligibility (Sent-Int), which captures how well an utterance
is perceived by a group of listeners in a listening condition. Analyzing the perception
data, we observed that even at the sentence level, the noise impact is significantly dif-
ferent among sentential paraphrases, and choosing the more noise-robust paraphrase
can improve the overall perception with a relative gain of 33%, under high noise
conditions (babble noise at SNR −5 dB). Once again, we found that the intelligibility
difference among paraphrases is driven by their acoustic cues, highlighting the
benefits of paraphrasing to represent a message with a less energetic masking effect.
We also demonstrate the potential of building a noise-adaptive spoken dialogue
system, with a prototype of an intelligibility-aware paraphrase ranking model to
select the more noise-robust sentence within a pair of paraphrases.

Generate acoustically intelligible paraphrases. An intelligibility-aware para-
phrase ranking method is useful. However, the benefits of paraphrasing will be
limited by the diversity of paraphrases available for selection. In other words, when
the paraphrase candidates involve only trivial paraphrases (i.e., phrases that differ in
tense/voice) could lead to limited benefits in using one phrase over the other. Hence,
in Chapter 6, we shift our focus to specifically generate paraphrases that are acous-
tically more intelligible than an input sentence, in a given listening environment
(ie., babble noise at SNR −5 dB). The generation of paraphrases with better acoustic
cues involves both the textual attribute (semantic equivalence) and the non-textual
attribute (acoustic intelligibility in a listening condition). In other words, the objective
of this study is to perform a paraphrase generation task controlled by a non-textual
attribute. To do so, we use LLMs, which have shown an incredible capability for
several text generation tasks including paraphrase generation and controllable text
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generation. We observe that fine-tuning LLMs with a small dataset does not help
improve acoustic intelligibility. However, increasing the size of the fine-tuning
dataset helps the model generate paraphrases with improved acoustic intelligibility.
We also show that a pre-trained language model without any fine-tuning (ie., in
zero-shot and in-context learning setups), fails to generate text with the desired
non-textual attribute, while efficiently handling the desired textual attribute. We
propose a new approach called prompt-and-select, which involves generating multiple
paraphrases that are semantically equivalent to the input text and employing a
paraphrase selection method based on acoustic intelligibility, thereby decoupling the
desired textual and non-textual attributes in the text generation pipeline.

In summary, this thesis establishes the evidence that paraphrasing is a useful
strategy to improve the intelligibility of synthetic speech in noise and describes some
of the frameworks to use this potential of paraphrases to build better solutions for
noise-adaptive SDSs. An overview of this thesis is represented in Figure 1.1.

Generating Acoustically 
Intelligible Paraphrases

Ch. 6

Sentential Paraphrases to 
Improve Intelligibility

Ch. 5

Lexical Paraphrases to 
Mitigate Word Misperception

Ch. 4

Background
Ch. 2

Introduction
Ch. 1

Conclusion
Ch. 7

Formalizing Speech Perception 
Errors and Mitigation

Ch. 3

Figure 1.1: A pictorial representation of the thesis overview.





2B A C K G R O U N D

For humans, speech is one of the primitive modes of communication. Individuals with
no speaking and hearing disorders primarily use conversational speech to interact
with the external world. Typically, in a conversational setup, a speaker produces
speech in such a way that an intended message is realized with a sequence of sounds,
which listeners interpret by decoding a meaning from the perceived sounds. To
achieve conversational success, listeners must interpret the meaning as intended by
the speaker. Any deviation between the actual intended meaning and the perceived
meaning can lead to confusion and misinterpretations in the dialogue exchange. The
task of interpreting the meaning of an utterance – Spoken Language Comprehension
(SLC) – is not trivial; rather, it is a combination of several complex processes like
the auditory perception of sounds, the identification and the retrieval of meaningful
sounds from the human lexicon, decryption of the underlying meaning, integration
of contextual cues, etc. For successful retrieval of the intended meaning, listeners
must perceive the spoken tokens correctly in the first place.

In the last 50 years, several models and theories were proposed to explain the un-
derlying process of human speech perception (McClelland and Elman, 1986; Norris,
1994; Gaskell and Marslen-Wilson, 1997); for review see (Weber and Scharenborg,
2012). The two well-known frameworks – top-down and bottom-up processing –
have been frequently revisited in speech science to understand how humans process
speech to retrieve a message. Early proposed spoken word recognition models
demonstrated that humans utilize both bottom-up, data-driven systems as well as
top-down, knowledge-driven systems to map the low-level acoustic signals to high-
level meaning representations (Marslen-Wilson and Welsh, 1978). Existing models
of human speech recognition showed that high-level signals like linguistic and
situational contexts are particularly useful to compensate for ambiguous or weak
low-level acoustic information, such as in noisy listening environments.

Speech perception in noise. Speech perception in noisy listening environments is
particularly interesting for two reasons: (1) the real-world conversational setups are
usually noisy and less ideal, compared to the quiet lab environments, and (2) acoustic

11



12 chapter 2. background

noise distorts the clean speech signal, which may lead to challenges in bottom-up
processing, and studying this scenario is particularly useful to gain a better under-
standing on the role of top-down and bottom-up processing pipelines. Additionally,
prior work has shown that acoustic noise in the background can introduce listening
difficulties and such difficulties may lead to mishearing, misunderstandings, and
communication breakdowns (Grimshaw, 1980). Hence, to achieve communication
success in real-world noisy environments, human listeners should be able to perceive
speech with limited perception errors, even when they are interacting with another
human or a machine.

Mishearing occurs when a listener incorrectly recognizes the actual spoken tokens.
Mishearing is different from misunderstanding, which occurs when a listener incor-
rectly comprehends the meaning of the actual spoken message (see Section 3.1 for a
formal distinction). In speech science, mishearing is also referred to as Slips-of-the-Ear
(Bond, 1999) and misperception (Marxer et al., 2016a; Albert Felty et al., 2013; Cooke
et al., 2019), which indicates the deviation in the actual and perceived spoken tokens.
Errors in speech recognition are also used to compare the acoustic intelligibility of
speech produced by different speech synthesis systems or a group of speakers. More
precisely, speech that results in a lesser number of recognition errors is identified as
acoustically more intelligible.

Measuring misperception. Measuring misperception involves human listening
experiments to collect the perception data and compare the actual and perceived
speech. The recognition errors can be measured with different speech tokens like
phonemes, triphones, or words. Word Error Rate (WER) and Phoneme Error Rate
(PhER) refer to the proportion of insertion (I), deletion (D), and substitution (S)
of tokens in the perceived speech to be correctly recognized as the actual spoken
utterance, measured in terms of words and phonemes, respectively. To count the
errors, minimal edit distance is calculated between two sequences of spoken tokens
and perceived tokens. More generally, the error rate (ER) is defined as below:

ER =
#deletions + #insertions + #substitutions

#Total tokens in the spoken utterance
(2.1)

The minimum value for ER is zero when the perceived utterance is the same as
the spoken utterance. However, its ER value ranges from 0.0 to ∞, as the perceived
speech can (theoretically) be infinitely long. In a classical setting, all three error
types (ie., I, D, and S) have equal weight of 1.0. However, different weights can be
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assigned to error types to weigh them differently in the ER calculation.
Speech Reception Threshold (SRT) is another metric to measure the human ability

to perceive speech in noisy environments. The SRT calculation requires an adaptive
listening experiment wherein the noise level of stimuli audio is systematically
increased/decreased after each trial. SRT50 and SRT80 denote the Signal-to-Noise
Ratio (SNR) levels of audio, indicating the points where 50% and 80% of spoken
words are accurately recognized, respectively.

For simple perception experiments like word/phoneme recognition, the propor-
tion of correct recognitions of a token among all its listening instances is used to
represent its intelligibility. This score is referred to as recognition rate.

Representing misperception. Perception data is not only useful for identifying
the intelligibility of an utterance but also provides insights into the type of confu-
sion/misperception. Several research studies in the past have analyzed the patterns
of misperceptions under different listening setups, which are defined by the listener
groups and the noise in the listening environment. Their findings are summarized
in confusion matrices (Miller and Nicely, 1955; Weber and Smits, 2003; Cutler et al.,
2004; Phatak et al., 2008). For instance, Weber and Smits (2003) demonstrated the
confusion of vowels and consonants, in listening environments with babble noise,
among native English speakers with normal-hearing abilities. Figure 2.1 showcases
the summary of their perception experiment with babble noise at SNR 0 dB, illustrat-
ing how often a stimulus vowel is recognized correctly or misrecognized as another
vowel – all diagonal entries represent the correct recognitions of a vowel and all
non-diagonal values show their misperception.

In comparison to the intelligibility scores discussed above, a confusion matrix
provides a more detailed view of speech misperceptions in noise. For example, the
confusion matrix shows that the vowel in the lexical item hot is one of the most
misrecognized vowels and it is mostly misrecognized as the vowel in the lexical item
caught. Prior studies have also explored the potential of phoneme confusion matrices
to build a spoken word recognition model (Luce and Pisoni, 1998), phrasal confusion
models in a closed vocabulary domain (Cox and Vinagre, 2004), etc. However,
generating confusion matrices involves large-scale human listening experiments,
which demand both time and resources.
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Figure 2.1: The confusion matrix of vowels, recorded as part of a listening experiment
with native American English listeners in a listening condition with babble noise at
SNR 0 dB (Weber and Smits, 2003).

2.1 factors that influence misperception in noise

Even though misperception occurs at the listener’s end, every component of a
conversational setup – listener, speaker, communication channel, and the speech itself –
can influence the perception errors. In this section, the existing literature on each of
these factors is discussed in detail.

2.1.1 Listener

Listener characteristics like age, hearing ability, and language proficiency have shown
a significant influence on speech misperception, especially in noisy environments
(Rogers et al., 2012; Taitelbaum-Swead and Fostick, 2016; van Os et al., 2021). Their
findings demonstrate that the human ability to perceive speech in noise deteriorates
with aging, resulting in more perception errors among older adults compared to
younger adults. Similarly, listeners with hearing loss suffered more recognition errors
than individuals with normal hearing abilities in adverse listening setups (Jürgens
et al., 2010; Brons et al., 2014; van Knijff et al., 2018). Language proficiency of listeners
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is another feature that has shown a significant impact on perception errors in noise
(Warzybok et al., 2015); non-native listeners showed a native-like performance in
speech perception only for linguistically easy sentences. Also, compared to non-
natives, native listeners produced significantly fewer recognition errors, as they
compensate for their listening difficulties with their linguistic knowledge.

2.1.2 Speaker

Like listeners, the attributes of speakers such as age, gender, and language proficiency
have been studied in the context of speech perception in noise. For instance, the
intelligibility and listening efforts of accented speech and native speech have been
compared and it was found that they are significantly more different in noisy
environments (Munro, 1998; Van Engen and Peelle, 2014). More specifically, native
listeners in adverse listening environments produced far fewer perception errors
while listening to native speakers, compared to non-native speakers. Interestingly, it
was also demonstrated that the perceivable attributes of a speaker like age, gender,
and ethnicity influence listeners’ ability to perceive speech in noise (Drager, 2011;
Kutlu, 2023).

In addition to those common attributes, earlier research has investigated the
impact of rare speaker attributes such as speech impediments (like lisp speech)
and pathological disorders (like dysarthria) on intelligibility, in noisy environments.
The study by Eadie et al. (2021) demonstrated that speakers who are completely
intelligible in quiet, but exhibit mild speech impairments, are considerably more
vulnerable to the effects of background noise, compared to those speakers with intact
speech. Interestingly, non-linguistic factors like familiarity with the speaker/voice
have also shown that they can significantly improve spoken language processing in
noisy environments (Nygaard and Pisoni, 1998).

2.1.3 Communication Channel

The communication channel refers to the environment in which a conversation takes
place. Depending on the type of communication, speakers and listeners in conver-
sation may or may not share the same environment. For example, conversations
over a telephone network could result in a listening setup with the speaker in quiet
and the listener in a noisy environment or vice-versa. Despite such differences, both
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speech production and speech perception are considerably influenced by the adverse
communication channel, leading to increased efforts of participants in conversations.
In this section, we discussed some of the existing findings on recognition errors
induced by a noisy listening environment.

Acoustic noise is prevalent throughout the real world; hence, a majority of human
conversations occur in the presence of noises like road traffic, appliances/machinery
noise, or competing speech of other people in the background. Noise interferes
with spoken language comprehension, as it may distort the clean signal resulting
in a degraded signal that is difficult to perceive and understand. In early studies
on acoustic noise, Pollack (1975) have identified the two forms of noise masking –
energetic masking and informational masking – which could lead to listening difficulties
and perception errors. More specifically, energetic masking is defined as the signal
distortions introduced by masking the spectral features of the clean signal. However,
informational masking is not based on low-level acoustic characteristics; instead,
it pertains to high-level interference such as challenges in employing cognitive
resources like attention and working memory.

Energetic masking varies with masker type. In Cooke (2006), a speech perception
model was proposed for noisy environments by measuring the presence of glimpses –
spectrotemporal regions that survived the energetic masking. Noisy utterances with
better glimpse proportion are more intelligible. They also demonstrated that the
availability of glimpses varied with masker types – maskers with high spectral and
temporal energy modulations result in high glimpse proportion, leading to a better
perception. In other words, stationary maskers like speech-shaped noise resulted in a
limited amount of glimpses, compared to a masker type like single talker competing
speech, leading to more misperceptions in the presence of speech-shaped noise.

Acoustic noise can be categorized in several ways and one of the most commonly
used criteria is based on its source. On a high level, the source of noise can be of
two types: synthetic and naturalistic. Synthetic noise is generated by modifying the
acoustic properties of a signal. White noise, pink noise, speech shaped noise (SSN)
are some examples of artificially generated acoustic noise. Naturalistic noise, on the
other hand, occurs in everyday conversational environments such as babble noise,
traffic noise, etc. Noisex-92 is one of the early noise corpora that consists of eight
different types of naturalistic noises that were recorded at different physical locations
(Varga and Steeneken, 1993).

In addition to the source, acoustic noise is categorized based on a signal charac-
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teristic - stationarity. A signal is said to be stationary when its frequency or spectral
contents remain constant over some time. In other words, a signal with equal energy
distributed in all its time-frequency bands is stationary. Speech perception errors are
comparatively less in non-stationary noise, compared to those in stationary noises.
In prior literature, a common stationary signal - white noise - is also referred to as
non-fluctuating noise. On the other hand, signals with changing frequency/spectral
contents over time are non-stationary. Most of the naturalistic noise is non-stationary.

2.1.4 Spoken Tokens

Early investigations on misperceptions in noise were primarily concentrated on
sub-lexical units like vowels, consonants, and syllables (Miller and Nicely, 1955;
Pickett, 1957; Luce and Pisoni, 1998). The choice of sub-lexical sounds was motivated
by the need to study consistent confusions of sounds that occur in the presence of
a masker (Miller and Nicely, 1955; Pickett, 1957; Weber and Smits, 2003). Pickett
(1957) conducted an elaborate analysis of vowel perception errors in the presence
of white noise. They found that spoken vowels with higher natural intensity are
perceived better only in low-frequency noise conditions. In the case of high-frequency
noise, they observed that the second formant is masked by noise, leading to lower
intelligibility for high-intensity vowels.

Kalikow et al. (1977) demonstrated that word recognition errors are significantly
less when the linguistic context is highly predictable. In their work, they proposed a
hearing test called Speech Perception in Noise (SPIN) which is currently being used
in clinical analysis of human hearing ability in noise.

In addition to phonetic and linguistic features, lexical features like the length of
the target word is particularly important for word recognition. Several studies have
shown that longer words (which have fewer neighbors (Pisoni et al., 1985)) are easier
to recognize (Vitevitch, 2002; Vitevitch and Rodríguez, 2005). On the contrary, we can
also find evidence from the literature that familiar words (which are usually shorter
in length as per Zipf’s law) are easier to recognize. However, whether the word
familiarity favors its recognition in noise is not well documented in prior studies.

Since familiarity is a subjective measure, studies have also utilized objective
metrics like word frequency as its alternative. In addition, the Neighborhood
Activation Model (NAM) proposed by Luce and Pisoni (1998) demonstrated that
word recognitions are also influenced by additional factors such as the neighborhood
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density (i.e., the number of words that are easily confusable with the target word)
and the frequency of neighboring words.

2.2 mitigation of misperception

Because mishearing can negatively influence message comprehension, mitigating
mishearing is essential to achieving communication goals, especially in noisy envir-
onments. In the case of human-human interactions, both listeners and speakers in a
conversational setup have shown greater effort to reduce the instances of mishearing
as much as possible. However, in comparison to listeners, human speakers have
demonstrated a larger involvement in reducing mishearing, probably because of
their higher level of control over the rendered speech that could be misheard. In the
following sections, we will discuss some of the well-known strategies adopted by
humans and a handful of those implemented by algorithms.

2.2.1 Speaker Strategy

A large share of human-human interactions in the real world, occurs in noisy
environments with sounds like people talking in the background, vehicles/machines
being operated, or loud music/announcements being played. Yet, to a great extent,
humans manage to converse in such non-ideal listening setups. One reasonable
explanation for not breaking down in every conversation in the real world is that
human speakers can adapt their speech to accommodate the listening difficulties
of their interlocutors in a particular listening environment. In the review paper,
Cooke et al. (2014) demonstrated that humans employ almost 32 different speech
modification strategies in different listening setups to improve their interlocutor’s
hearing. They refer to human speakers as listening talkers. We identified that those
strategies can be classified broadly into two groups based on the underlying feature
that is being modified: (1) acoustic features and (2) linguistic features.

2.2.1.1 Modulating acoustics

Prior studies on speech production in noise have shown that human speakers attempt
to improve the audibility of the speech, even if they are present in a clean listening
environment but their interlocutors are in a noisy environment. It is the instinct of
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humans to modify speech by increasing acoustic features like pitch, intensity, and
duration. This modified speech is referred to as Lombard Speech. The benefits of
using Lombard speech have been extensively studied for several noise environments
and hence, it inspired the synthesis of Lombard speech in some of the recent Text-
To-Speech (TTS) systems. However, Lombard speech is less intelligible than normal
speech in quiet. Also, Lombard benefits are more likely to be influenced by the
linguistic features and thus it is critical to determine when to use Lombard speech,
if implemented as algorithms to produce speech in noise.

Human speech production in noise has also shown a phenomenon of enhanced
speech for information-bearing words and for those words which are easy to be
misheard. Slowing down the speech rate, using additional pauses, or increasing
the loudness are some of the commonly used speaker strategies to reduce the
hearing difficulties of their interlocutors. However, when implemented in the speech
synthesis pipeline, not all strategies were found to be beneficial. On the contrary,
some of the techniques were detrimental as they reduced the user’s attention and
engagement in the conversation, leading to poor comprehension.

2.2.1.2 Modulating linguistics

Earlier work in speech perception in noise has investigated how different speech
tokens such as vowels (Pickett, 1957; Cutler et al., 2004) or consonants (Weber and
Smits, 2003; Jürgens and Brand, 2009) are affected by noise, and have considered
word intelligibility in isolation (Luce and Pisoni, 1998; Clopper et al., 2010; Wilson
and Cates, 2008) as well as in context (Kalikow et al., 1977). Although earlier studies
on word misperception in noise (Albert Felty et al., 2013; Cooke et al., 2019; Marxer
et al., 2016a; Cooke, 2009) have shown that the noise impact is dependent on the
lexical items, very few studies have explored the potential of linguistic modification
to enhance speech perception in noise.

However, human speakers employ several modifications at the linguistic level
to reduce listening difficulties like the use of less complex words and phrases in
foreigner-directed speech (FDS) or hearing-impaired directed speech (HIDS). Sim-
ilarly, human speakers are known to use small sentences and common words in
infant-directed speech (IDS). More specifically, human speakers in noisy environ-
ments, use repetitions and rephrasing to produce noise-robust speech.

However, implementing repetitions as a template-based approach has shown no
significant improvement in speech perception (Cooke et al., 2014). The use of less
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confusable words was implemented earlier to improve the correct word recognition
in the ATC domain (Cox and Vinagre, 2004). Although it was shown as a useful
strategy, scaling it to large-vocabulary domains is still an open problem. Similarly,
even though paraphrasing is recognized as a useful human strategy to improve
noise-robustness, a model to generate noise-robust paraphrase is still an unexplored
area.

2.2.2 Listener Strategy

In addition to speakers, listeners in a conversational environment also engage in
mishearing mitigation strategies, which are also called as dialogue repair mechan-
isms. When listeners realize a certain message turn was too hard for them to hear or
it sounds in-coherent with the dialogue history, they usually probe the speaker for
clarification with statements like ‘huh’, ‘pardon’, ‘say it again’, ‘sorry, what was that?’,
etc. Such dialogues usually indicate an instance that suggests the speaker repeat or
rephrase the dialogue (Skantze, 2005).

In addition to those explicit actions, listeners also employ a few implicit actions
like integrating high-level signals such as linguistic cues (Van Os et al., 2022) and
situational cues (Ward et al., 2017), to complement the distorted audio in challenging
listening environments. Although such predictability has shown benefits in reducing
misperceptions in noise (Kalikow et al., 1977), a few studies have also demonstrated
the risk of false hearing, which occurs when an utterance is misheard as something
else with strong, but incorrect certainty (Rogers et al., 2012).

2.3 measures, methods, and models

In this section, we discuss some of the existing literature on different measures, meth-
ods, and models that contributed to a better understanding of human misperception
and mishearing mitigation strategies in noisy environments.

2.3.1 Measures

This section outlines the different acoustic and linguistic measures that are employed
in this thesis. The acoustic measures are used for capturing the characteristics of
noisy utterances. Linguistic measures are employed to define the underlying text of
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utterances, using features like predictability and the semantic equivalence between
two texts. These measures are later used in the thesis to define and evaluate our
proposed approach of using paraphrases to improve speech perception in noise.

Noise level. To measure the noise level in a processed/distorted signal, a com-
monly used metric is the signal-to-noise ratio (SNR). SNR represents the ratio of the
power of a clean (undistorted) signal and a noise signal, which combine to form the
distorted signal. Simply put, it is a fraction of powers as defined in Equation (2.2). It
is commonly measured on a logarithmic scale and referred to in units of decibels
(dB), as defined in Equation (2.3). The power of a signal is the sum of the absolute
squares of signal magnitudes averaged across the time domain. In other words, it
is the square of the root mean square (RMS) of the signal. Hence, SNR can also be
defined as the ratio of RMS values of clean and noise signals as shown in Equation
(2.4).

SNR =
Psignal

Pnoise
(2.2)

SNRdB = 10 log10(SNR) = 10 log10(
Psignal

Pnoise
) (2.3)

SNRdB = 20 log10(
RMSsignal

RMSnoise
) (2.4)

When a clean speech signal is mixed with a noise signal with equal power, the
SNR of the resultant distorted speech is 0 dB. Similarly, when the power of the clean
signal is higher than that of the noise, the SNR of the resultant signal is positive (> 0
dB). Higher SNR scores indicate better audibility. On the other hand, when the noise
power is more in the processed signal, the SNR value is negative (< 0 dB).

Speech Intelligibility measures. Automatic metrics support scalable and cheaper
methods to identify the intelligibility of audio. There are two types of Speech
Intelligibility (SI) metrics exist: (a) intrusive and non-intrusive. The underlying
theory of intrusive metrics is that the intelligibility of audio corresponds to the
amount of signal that survived the energetic masking effect. Hence, they require
both the distorted signal as well as its corresponding clean signal. On the other
hand, non-intrusive metrics do not require a clean signal and they require only the
distorted speech, which is used to estimate its clean signal and then its intelligibility.
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STOI. Short-Time Objective Intelligibility (STOI) is an intrusive measure (Taal
et al., 2010) that captures the similarity between a distorted/processed signal, x(n)
and the corresponding clean signal, s(n) of equal duration n. The similarity is
calculated by measuring the distance between the temporal envelopes of two (time-
aligned) signals in frequency sub-bands. This distance is also referred to as the
intermediate intelligibility index (dm) for a time segment m. More precisely, linear
correlation coefficients are calculated for the clean and distorted short-time envelope
spectrograms, and the overall intelligibility of the distorted signal is captured by
averaging the correlation coefficients (as shown in Equation 2.5) across all M time
segments.

d =
1
M

M

∑
m=1

dm (2.5)

Before calculating the correlation coefficients, the audio signals must undergo a
clipping procedure including normalization to avoid clipping on all Time-Frequency
units. The higher the STOI score, the better the intelligibility of the signal as it
indicates its better correlation with the clean audible signal. Because STOI represents
the correlation, the STOI value ranges between −1 (least intelligible) and +1 (most
intelligible).

Language Model score. The objective of a language model is to represent a natural
language (like Malayalam) such that the model is capable of identifying/generating a
plausible sequence of tokens, just like humans. In other words, an English language
model learns to assign a higher probability for the sentence s1 than s2 in the following
example, as s2 is grammatically incorrect and implausible in the language.

s1: They want to learn .

s2: They learn want to .

The probability of a sequence (e.g. s1) is then computed by combining the condi-
tional probabilities of all words in the sequence using the chain rule of probability.
The probability of each word in a sequence is conditioned on its context (ie., all words
until then) as shown below:

P(s1) = P(They) P(want|They) P(to|They want) P(learn|They want to)

P(.|They want to learn)
(2.6)
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Traditionally, language models were built using n-grams such that the context of
a word is approximated by a set of few previous n-grams (or words). For instance,
the conditional probabilities (in Equation 2.6) are further simplified by considering
only the previous word as the context of a word (ie., bigrams), forming the following
equation:

P(s1) = P(They) P(want|They) P(to|want) P(learn|to) P(.|learn) (2.7)

More recently, large language models have been built using an architecture of
more than a billion parameters and trained on an extremely large dataset (of size in
Terabytes). Despite its humongous size and the complexity of the model architecture,
the core of the language model remains the same - learn to predict the next token for a
given context. Such large language models are incredibly more powerful than small
n-gram models, as they consider a large context (of ≈ 1024 tokens) at each instance
of token prediction.

Hence, a trained language model (with parameters θ) is useful to estimate the
perplexity (PPL) of a sentence, x1:n (tokenized as x1, x2, . . . xn), as shown in Equation
2.8. More specifically, perplexity is the exponentiation of the average negative log
likelihood of a sentence. Thus, the sequence of tokens that has high perplexity
indicates a less likelihood in the linguistic domain of the trained language model.
We use a pre-trained language model to estimate the PPL of sentences, thereby
capturing the linguistic predictability of sentences. The perplexity value ranges from
zero to +∞.

PPL = exp− 1
n

n

∑
i

log pθ(xi|x<i) (2.8)

Semantic Textual Similarity. Comparing the semantic equivalence between a
pair of texts is particularly important in the NLP domain. On one hand, natural
languages permit their users to represent a meaning/message in different linguistic
forms by choosing different words, phrases, or syntactic structures. On the other
hand, this degree of freedom also introduces ambiguity and may risk a significant
deviation in the semantics of different linguistic realizations. Hence, the verification
of semantic equivalence has been a critical step for multiple language generation
tasks, including but not limited to, machine translation, question answering, and
story generation.
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In NLP, the task of verifying whether two texts are semantically equivalent is
referred to as paraphrase identification. In early studies, paraphrase identification
models were evaluated with human-annotated paraphrase corpus, in which the pairs
of texts are labeled as paraphrases or not. However, verifying whether a generated
text is semantically equivalent to the ground truth is more challenging, with the
latest text generation models that produce linguistically variant texts. Even though,
human annotations are the gold standard for evaluating text generation models,
several automatic metrics were proposed in recent years to address the cost and
scalability issues of human annotations.

Earlier, metrics like BLEU and ROUGE were used to validate the closeness in
the actual and expected text by considering the n-gram overlaps. More recently,
multi-dimensional representations of tokens were used to avoid the limitations of
n-gram-based metrics. Sentence-BERT, BERTScore, and BLEURT are some of the
recent STS metrics, which utilize the pre-trained models and their representations of
language tokens. For instance, BERTScore aggregates the individual representations
of tokens for each sequence in a pair and then the aggregated representation is
combined to get a single score.

2.3.2 Methods

This section briefly introduces some of the methods that we used in the human
perception experiments.

2.3.2.1 Additive noise mixing

The stimuli for the perception experiment are created by mixing a noise signal with
a clean speech signal. We used an open-source tool, audio-SNR (Sato, 2018: accessed
July 6, 2022) for noise-mixing. At first, a random snippet of the noise signal is
trimmed, for the same length as the clean signal. Both signals are then normalized
and depending on the SNR required energy of the clean signal is modified before
combining with the noise signal amplitudes. Audio clipping is performed to avoid
the glitches in noise-mixing.

2.3.2.2 Phonemization

A grapheme-to-phoneme (g2p) model is used for generating the phoneme sequence
of a text, which is represented in words/graphemes. Based on the phonemic sounds
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that exist in a language, IPA alphabets are used to represent the pronunciation of
individual letters/alphabets. A grapheme-to-phoneme model is trained to predict
the sequence of phonemes for a sequence of alphabets. This process of generating
phonemic sequence is hereafter referred to as phonemization. Depending on the
IPA representations that the model followed while training, the phonemic sequence
of a word/sentence varies with different models. In addition to the phonemes, the
model indicates the stress level of each phoneme with a digit next to the phoneme.
The stress indicator associated with the phoneme is useful for detailed analysis of
phones, however, we ignore this indicator as we concentrate only on the phoneme.

2.3.3 Data Modeling

In this section, we will discuss the data modeling techniques that we have used in
chapters 4, 5, and 6.

2.3.3.1 Linear regression models

Linear regression models are used to explain/predict a response (i.e., dependent)
variable using predictor (i.e., independent) variable(s). As the name suggests, simple
linear regression explains the variance of a response variable with a single predictor
variable. While a multi-variate regression model consists of more than one predictor
variable. For example, consider a model to predict the complexity of a word j, using
its lexical features such as word length, word familiarity, and, number of word
senses.

Before delving into the details of the model, let us define the notations used to
represent matrices and vectors here and elsewhere in the document. Following the
conventional notations, the boldfaced uppercase letters (e.g., A, B, C) denote the
multi-column matrices, and boldfaced lowercase letters (e.g., u, v, w) are used to
represent vectors. Scalars are denoted by plain lowercase letters (e.g., x, y, z).

Let yj be the scalar which represents the word complexity of j and xj =

[xj
1, xj

2 . . . xj
d]

T be the d-dimensional vector to represent its features. With an as-
sumption that predictor variables xi are linearly related to the response variable y,
we can define a linear regression model as shown in Equation (2.9). This model has
two types of parameters: intercept and slope. Together, they define a regression line
(in case of simple regression) or a regression sub-space (in case of multiple regres-
sion) which maps the predictor variable(s) to the response variable. The intercept of
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the model (β0) indicates the predictor variable value when none of the features were
given. The rest of the model parameters (β1, β2 . . . βd) are referred to as the slopes
of the regression sub-space with respect to the individual features. ϵ in Equation
(2.9) refers to all errors that are not captured by the defined model. In other words,
it captures all deviations in the expected model such as the measurement errors or
those introduced by external features which are not considered in the model.

yj = β0 +
d

∑
i=1

βi.x
j
i + ϵ (2.9)

Since the actual relationship between the response and predictor variables is
unknown, the model parameters in Equation (2.9) need to be estimated by fitting the
model to an observed set of (xj, yj) pairs. To this end, a prediction model is defined
as shown in Equation (2.10). By comparing the observed and predicted response
variables, parameter estimation attempts to reduce the error in prediction ((yj − ŷj),
also called as residuals) by choosing appropriate values for β̂i. For instance, a dataset
consisting of N pairs, i.e., (X, y) = ((x1, y1), (x2, y2) . . . (xN , yN)), the overall error in
prediction is usually measured as residual sum of squares (RSS) which is calculated
as shown in Equation (2.11).

ŷj = β̂0 +
d

∑
i=1

β̂i.x
j
i (2.10)

Further, parameter estimation algorithms like Least Square Error (LSE) are used
to reduce this error. LSE learns the model parameters by reducing the overall vertical
distance between the actual and the predicted point to exhibit minimal error in
prediction. More precisely, it will generate a set of equations by taking the partial
derivative of Equation (2.11) with respect to individual parameters and equating
them to zero.

RSS(y, ŷ) =
N

∑
j=1

(yj − ŷj)2

=
N

∑
j=1

(yj − (β̂0 +
d

∑
i=1

β̂i.x
j
i))

2

(2.11)

In the case of a simple linear regression, this results in the following Equation
2.12.
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β̂0 = µy − β̂1µx

β̂1 =
∑N

j=1(x
j − µx)(yj − µy)

∑N
i=1(xj − µx)2

(2.12)

For multiple linear regression, the estimated parameters can be represented in
matrix form for better readability. That is when model predictions are viewed as a
product of input features and the model parameters as shown in Equation (2.13),
the calculation of RSS is simply a set of matrix operations. For better readability,
a new multi-column matrix X1 = [1;X] is introduced here to consider the model
intercept (β̂0) by concatenating a column vector of ones to X. Thus the set of model
parameters becomes a d+1-dimensional column vector β̂ = [β̂0, β̂1 . . . β̂d]

T.

This results in the parameter estimation as shown in Equation (2.14).

ŷ = X1β̂

RSS(y, ŷ) = (y − X1β̂)(y − X1β̂)T
(2.13)

β̂ = (XT
1 X1)

−1XT
1 y (2.14)

The model parameters/coefficients associated with individual predictor variables
indicate the change in a response variable with a unit change in the corresponding
predictor. Because the model parameters are determined in the scale of individual
predictor variables, it is important to normalize the scale of predictor variables.
Model parameters are estimated based on the observed data pairs (X,y). It is
important to perform statistical significance of model estimations as it is expected
to exhibit a difference in estimation as and when the sample set changes slightly.
Statistical software platforms like R (R Core Team, 2019) perform hypothesis testing
with the null hypothesis that predictor variables have no effect on the response
variable (i.e., H0 : β̂i = 0). Thus the reported p-values indicate the significance of
predictor variables in explaining the variance of the response variable.

In chapters 3 and 4, we utilize the model coefficients and their corresponding p-
values to analyze the influence of different lexical and acoustic features on mishearing
in noise. Further, the feature importance was studied by calculating the model fitness
through a systematic addition (forward selection) or removal (backward selection) of
predictor variables.
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2.3.3.2 SVMRank

Support Vector Machines (SVM) is a well-established margin-based algorithm that
was initially proposed for classification problems (Vapnik et al., 1998). The core idea
of SVM is to determine the hyperplanes that separate an n-dimensional data space
into different parts. A hyperplane is a subspace that separates a space into two parts.
In other words, it is the higher dimensional generalization of a line in 2D space or a
plane in 3D space. The underlying assumption of SVM is that the data points are
linearly separable. However, in most cases this doesn’t hold and slack variables are
introduced in the model to account for the violations of this assumption. But, before
we delve into the details of non-linear SVM models, the notion of using such models
for ranking needs to be discussed.

SVMs are also known as maximum margin classifiers, as they optimize the model
parameters to maximize the margin. A margin is the shortest distance that’s possible
between a separating hyperplane and the data. Those data points that define the
margin of the model are referred to Support Vectors.

To formalize the model, consider a binary classification problem with input
variable x ∈ Rn and an output variable y ∈ {1,−1} which indicates the two classes.
Thus the hyperplane of this model is defined as:

w.x + b (2.15)

where w refers to the unit vector which is orthonormal to the hyperplane and
b which indicates its distance from the origin. Based on the sign of the hyperplane
equation, data points in different parts of a space are identified (i.e., points below
the hyperplane are negative values and those above are positive values). However,
in the case of n-class classification problem, the classification for each data point is
performed by conducting n − 1 binary classifications. That is, SVM identifies a sep-
arating hyperplane for every pair of classes and the ensemble of binary classification
outcomes is used to classify the data-point. The parameters w and b are optimized
for a dataset {(x1, y1), (x2, y2), . . . (xm, ym)} of m samples with the model objective of
maximizing the margin as shown below:

w, b = argmax
w,b

min
i=1,2,...m

|w.xi + b| (2.16)

such that yi.(w.xi + b) > 0.

Similar to the multi-class classification problem, ranking is performed by con-
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ducting multiple pairwise rankings and each pair-wise ranking is in turn a ternary
classification. More precisely, the outcome of a pair-wise ranking is the ordering
of items in each pair p = ((xi, yi), (xj, yj)), indicating whether the rank of first ele-
ment is better than the second, or the other way or, both are similar in their ranks
(rank(yi) >p rank(yj) ∈ {1,−1, 0}). yi represents the relevance of an item in each
pair which is unknown at the inference time. By considering a function f to predict
the relevance of an item in each pair p and their corresponding feature vectors Φi

and Φj, the core idea of ranking becomes the following two-way implication:

rank(yi) >p rank(yj) ⇐⇒ f (Φi) >p f (Φj) (2.17)

Assuming a linear function f (e.g., w.Φi + b) the implication becomes,

rank(yi) > rank(yj) ⇐⇒ w.(Φi − Φj) > 0 (2.18)

2.3.4 Text Generation Models

In the past, sequence generation models like Hidden Markov Models (HMMs) and
Recurrent Neural Networks (RNNs) were proposed for multiple text generation tasks
like machine translation, text summarization, and paraphrase generation. In the
last decade, with the introduction of new model architectures like encoder-decoder
and transformers, text generation tasks have gained an incredible performance,
surpassing their predecessors. More recently, Large Language Models (LLMs) pre-
trained on humongous training data, showcases its incomparable capacity to perform
several text generation tasks.

2.3.4.1 Large Language Models

The main objective of language models (LMs) is to learn the distribution of linguistic
units such as words, phrases, sentences, and paragraphs of a language. That is,
given a sequence of n linguistic tokens x1:n = (x1, x2, . . . xn), the goal of the language
model is to estimate p(x1:n).

By applying the chain rule of probability, a language model is decomposed into a
model to predict the next word, given all previous words in the sequence (Manning
and Schutze, 1999; Bengio et al., 2000):
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p(x1:n) = p(x1) p(x2|x1) . . . p(xn|x1, x2, ..., xn−1) (2.19)

=
n

∏
i=1

p(xi|x<i) (2.20)

=
n

∑
i=1

log p(xi|x<i) (2.21)

To train an LM, a dataset D = {x1, x2, x3 . . . x|D|} is required, as it represents a
wide range of valid sequences of linguistic tokens in a language. Current state-of-the-
art LMs (Radford et al., 2019; Wei et al., 2022a) have Transformer-based architectures
(Vaswani et al., 2017), which are represented by a huge set of parameters, Φ. Such
models are more commonly referred to as large language models (LLMs) because of
their large model capacity Φ and the enormous size of their training dataset D like
GPT-2 trained on 40 GB of text to learn model parameters of size 1.5B. The model
parameters are optimized to minimize the negative log-likelihood over D:

L(D) = − 1
|D|

|D|

∑
d=1

dn

∑
i=1

log pΦ(xd
i |xd

<i) (2.22)

where dn denotes the number of tokens in the sequence xd.

During inference, a new sequence of arbitrary length y1:m is generated by
sampling each token from the learned distribution: pΦ(y0), pΦ(y1|y<1), pΦ(y2|y<2)

. . . pΦ(ym|y<m). Because of the rich representational capabilities introduced by con-
textual embeddings (Vaswani et al., 2017) and its exposure to a humongous amount
of linguistic data, pre-trained LMs are widely used to build text-generation models.

2.3.4.2 Fine-tuning LLMs

The paraphrase generation task aims to generate a sequence of tokens y1:m for a
given input sequence x1:n, such that y1:m is semantically equivalent to x1:n. To this
end, a parallel dataset Dp = {(x1, y1), (x2, y2), (x3, y3) . . . (x|Dp|, y|Dp|)} is used to
fine-tune the model parameters and learn the distribution p(y|x). Again, the chain
rule of probability is applied to simplify the modeling objective:
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p(y1:m|x1:n [SEP]) =
m

∏
i=1

p(yi|x1:n [SEP] y<i) (2.23)

where [SEP] is a sequence of tokens that separates the input sequence (x1:n) and
output sequence (y1:m).

[SEP] tokens are particularly useful at inference time, as it signal the model to
perform task-specific text generation (like paraphrases). This process of re-training
the model parameters with a task-specific dataset is commonly known as model
fine-tuning. Similar to the pre-training phase, negative log-likelihood is the widely
used objective function for fine-tuning.

L(Dp) = − 1
|Dp|

|Dp|

∑
d=1

dm

∑
i=1

log pΦ(yd
i |xd

1:n [SEP] yd
<i) (2.24)

where dm denotes the number of tokens in the sequence yd.
As shown in the equation above, the fine-tuning loss is computed only for the

output sequence tokens (ie., tokens after [SEP]). During inference, the learned
distribution conditioned on the input sequence is used for sampling each con-
stituting token in the output sequence: pΦ(y0|x1:n [SEP]), pΦ(y1|x1:n [SEP] y<1),
pΦ(y2|x1:n [SEP] y<2) . . . pΦ(ym|x1:n [SEP] y<m).

2.4 conclusion

In this chapter, we discussed the existing literature on human misperceptions, es-
pecially in noisy environments. An ample amount of research in the past has
systematically studied the linguistic and non-linguistic factors that can influence mis-
perceptions in noisy environments. Additionally, researchers have also contributed
toward a better understanding of human strategies that are employed to reduce the
interlocutors’ mishearing in adverse listening setups. We have also discussed some
of the existing algorithmic solutions to mitigate mishearing in noise, as well as their
limitations. With such rich research in the background, we begin our investigation of
using paraphrases to improve speech perception in noise, which is elaborately discussed
in the following chapters.





3F O R M A L I Z I N G S P E E C H P E R C E P T I O N E R R O R S A N D
M I T I G AT I O N

Mishearing occurs when a listener incorrectly recognizes spoken words. Instances of
mishearing occur quite commonly in everyday conversations as neither the listener
nor the speaker confirms their interlocutor’s perception after each dialogue exchange.
Instead, they assume that their interlocutor correctly perceived words as spoken.
Mishearing impedes listeners from comprehending the intended meaning of the
spoken utterance and it may even lead to misunderstanding or communication
breakdowns in extreme cases Grimshaw (1980).

This chapter focuses on providing a formal definition of the problem of mishear-
ing. In Section 3.1, the distinction between mishearing and misunderstanding is
discussed in detail. Further, in Section 3.2, we outlined the two different approaches
to enhance the intelligibility of speech produced in noisy conditions. Overall, this
chapter provides a concise description of the technical terms that will be discussed
again in Chapters 4, 5, and 6.

3.1 spoken language processing

The theory of speech production (Levelt et al., 1999) explains that the process of
generating spoken words to convey a message undergoes a series of steps starting
with the preparation of a concept/meaning to be conveyed, followed by lexical selection
to realize the meaning, encoding the morphological and phonological features of the
selected lexical units and finally, the articulation step in which the sound waves are
produced. The flow diagram in Figure 3.1 depicts a simplified view of the speech
production theory discussed in Levelt et al. (1999). Thus the process of encoding a
meaning into an acoustic signal undergoes two critical steps: (1) text generation and (2)
utterance generation. Today, modern spoken dialogue systems (SDS) utilize a similar
pipeline to produce dialogue responses by employing a dialogue manager (DM) and
a Natural Language Generation (NLG) module to generate an intended response
and then converting the generated text to an utterance using a Text-To-Speech (TTS)

33
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Figure 3.1: A simplified view of speech production theory proposed by Levelt et al.
(1999)

system.

A speech production system can then be defined as a two-step mapping process:
(1) encoding a concept/meaning to linguistic forms as defined by the text generation
function t and (2) mapping linguistic forms to acoustic realizations by the utterance
generation function u, as defined in Equations (3.1) and ( 3.2), respectively. Here,
M is a set of K concepts, L is a set of J linguistic forms, and A is a set of I acoustic
signals.

t(M) = L, where M = {m1, m2, . . . mK} and L = {l1, l2, . . . lJ} (3.1)

u(L) = A, where L = {l1, l2, . . . lJ} and A = {a1, a2, . . . aI} (3.2)



3.1 spoken language processing 35

Neither t nor u is a one-on-one mapping function, which means that it is possible
for t to map a meaning mk ∈ M to distinct logistic forms in L, as shown in Equa-
tion (3.3). In linguistics, this approach of representing a meaning/concept with V
different linguistic forms is referred to as paraphrasing.

t(mk) = {lj, l1
j , l2

j . . . lV
j } ⊂ L (3.3)

In the above-given example, l1
j , l2

j , and lV
j are referred to as paraphrases as they

differ in wordings but represent the same semantics. Lexical paraphrases (i.e., syn-
onyms) are a special category of paraphrases that exist among single words (rather
than phrases or sentences). Similarly, u maps a linguistic form lj to V different
acoustic signals in A which utters the same linguistic form with varying acoustic
characteristics like intensity, pitch, and duration.

u(lj) = {ai, a1
i , a2

i . . . aV
i } ⊂ A (3.4)

On the other hand, Spoken Language Comprehension (SLC) is the process of
retrieving the meaning of an utterance from its audio signal. Understanding an
utterance begins with the recognition of spoken tokens (Davis and Johnsrude, 2003).
As observed in the extensive review by Weber and Scharenborg (2012), several speech
perception models were proposed in the late 20th century to explain and replicate
the human listeners’ ability to perceive spoken words from an utterance. Models like
Cohort (Marslen-Wilson and Welsh, 1978) and TRACE (McClelland and Elman, 1986)
explained spoken word recognition with a series of processing steps like activation
of multiple candidates in listener’s mental lexicon and selection of candidates that
best fit the input acoustic signal. This mapping process is referred to as either
speech perception (or spoken word recognition when the given utterance is a single
word). Merge is another word recognition model proposed in Norris et al. (2000),
accounting for the close relatedness of speech perception and speech production. It
is a bottom-up model that utilizes pre-lexical signals like acoustic/phonetic features
to recognize spoken words. Figure 3.2 plots a bottom-up schema similar to the
Merge model. Motivated by the earlier finding that speech comprehension results in
separate activations of lexical recognition and meaning comprehension (Norris et al.,
2006), we distinctly identify speech perception as the preliminary step in the speech
comprehension pipeline.

As depicted in Figure 3.2, decoding meaning from speech signal consists of two
critical steps: (1) perception of an audio signal to recognize the underlying text (or
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Speech Comprehension

meaning

audio 
signal

linguistic 
forms

Speech Perception

Figure 3.2: A speech comprehension pipeline involves speech perception, wherein
the acoustic signals are first mapped to lexical items and then lead to the meaning of
the utterance.

linguistic forms) and (2) retrieving a meaning from the recognized linguistic tokens.

More formally, let p be the perception function that maps an audio ai ∈ A to
linguistic token(s) lj ∈ L:

p(A) = L (3.5)

p is a many-to-one function as it is possible to perceive a linguistic form from two
distinct audio signals. For example, consider a1

i and a2
i , the two arbitrary acoustic

realizations of the same word lj, produced by two different voices of high pitch and
low pitch, then speech perception defines
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p(a1
i ) = p(a2

i ) = lj (3.6)

Speech comprehension comprises another decoding step in addition to p - the
utterance meaning is extracted from the perceived linguistic tokens. Thus, a speech
comprehension function c, maps an utterance audio signal ai to a meaning mk ∈ M
as defined below:

c(A) = c(p(A)) = c(L) = M (3.7)

These definitions of speech perception and speech comprehension are further
used in this thesis to define errors in perception and comprehension.

To begin with, let us consider a simple conversational setup with two speakers
S1 and S2, in a noisy environment. As both of them have no speaking/hearing
impairments, with native language proficiency, we assume that noise is the only
factor that contributes to the mishearing instances. To define misperception, consider
an instance of message exchange, where the speaker S1 produced an utterance ai
with an intended meaning mk (encoded in the linguistic form lj).

However, because of the acoustic noise in the background, the interlocutor S2

heard a distorted acoustic signal, ãi. S2 performs speech comprehension as defined
in Equation (3.7), by first decoding the ãi to linguistic forms through perception
p(ãi). If the speech perception by S2 results in the actual text lj, then there is no
mishearing/misperception. The listener is likely to receive the message as intended.
However, any deviation in the actual spoken utterance and the perceived utterance
is an indication of mishearing. In other words, mishearing occurs when

∆p(lj, p(ãi) ̸= 0 (3.8)

where ∆p is a function that measures the deviation in terms of linguistic forms.
In this thesis, such instances are also referred to as misperception/recognition errors.

Similarly, comprehension errors are represented as

∆c(mk, c(p(ãi)) ̸= 0 (3.9)

where ∆c captures the deviation in the semantics of the actual and perceived
message, which are also called as incomprehension/misunderstanding in the literature.
Equation 3.9 also highlights the need to reduce mishearing as the errors in speech
perception are likely to be propagated to the comprehension steps as discussed in
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prior research Grimshaw (1980); Wilson and Spaulding (2010); van Os et al. (2021).

Prior studies have employed different experimental designs to capture speech
perception and speech comprehension. For instance, “listen and repeat” is a common
speech perception task, where the participants are instructed to listen to audio signals
and repeat what they have heard either by uttering or transcribing the utterance
(Kalikow et al., 1977; Uslar et al., 2013; Wilson and Cates, 2008). On the other
hand, speech comprehension is evaluated with secondary tasks like drag-and-drop
experiments (Fontan et al., 2015), or by using measures like working memory capacity
(Wendt et al., 2016).

The current work consists of only native listeners – individuals with high lan-
guage proficiency. Thus, we assume that all instances of correct perception would
lead to correct comprehension, as the experiment involves day-to-day conversations
that are too easy to comprehend if perceived correctly. In other words, we simplify
the speech comprehension defined in Equation (3.7) as:

c(p(A)) ≈ p(A) ≈ L (3.10)

Thus, the deviation in speech perception is equated to the deviations in speech
comprehension ∆p = ∆c = ∆; i.e., misunderstanding occurs when linguistic tokens
are not perceived as intended.

In the next section, we will define the two different approaches to reduce percep-
tion errors in noise.

3.2 enhancing speech intelligibility in noise

The main objective of enhancing the speech intelligibility is to reduce misperceptions
(min ∆p). One of the commonly explored approaches to enhance the intelligibility
of synthesized speech is by leveraging the potential of acoustic modification to
synthesize different variations ({a1

i , a2
i . . . aVi }) of an intended audio signal ai, which

represents a meaning mk, as illustrated in Figure 3.3. Thus, by modifying acoustic
features like pitch, intensity, and speech rate, different variations of an intended ut-
terance are generated for the same underlying text/linguistic form (lj). Enhanced
speech intelligibility is ensured by selecting the audio signal that is less likely to be
misperceived in a listening condition.

In this work, we propose an alternative approach to generate a noise-robust
acoustic signal that represents the intended meaning (mk) – modify the linguistic
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Figure 3.3: An existing approach to synthesize noise-robust speech, employing
acoustic modification to generate different variations of an utterance. This approach
focuses on selecting the utterance, which is likely to introduce minimal misperception
(shaded in green), resulting in enhanced acoustic intelligibility.

form (lj) to generate different utterances. As defined in Equation (3.3), modifying
linguistic forms without altering the intended meaning, results in V paraphrases
such as l1

j , l2
j , l3

j . . . lV
j . Representing the intended message with different linguistic

representations results in V different acoustic signals a1
i , a2

i , a3
i . . . aV

i corresponding to
each paraphrase. As shown in Figure 3.4, paraphrasing results in different acoustic
signals, even in the absence of acoustic modification. Further, selecting the linguistic
representation that contributes to better perception in a listening environment,
ensures noise-robust speech synthesis, without any signal distortions.
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Figure 3.4: The proposed approach to synthesize noise-robust speech, employing
paraphrasing to generate different representations of the underlying meaning of
the intended message. This approach aims at selecting the linguistic form, which is
likely to introduce minimal misperception (shaded in green), thereby enhancing the
intelligibility of synthesized speech.

3.3 conclusion

This chapter provided a formal definition of the fundamental concepts of the pro-
posed approach – paraphrasing to improve speech perception in noise. However, it
is not clear whether the different acoustic signals generated through simple para-
phrasing methods like lexical replacement differ in their misperceptions under noisy
listening conditions. Also, to use the proposed strategy in modern SDSs, it is im-
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portant to understand why and to what extent paraphrasing is a useful strategy to
enhance synthetic speech intelligibility in noise. More crucially, we need a systematic
approach to measure misperceptions and determine whether a sentence is better
than its paraphrase. The rest of the chapters in this thesis are focused on under-
standing the potentials as well as the limitations of paraphrasing to improve speech
intelligibility in noise.





4L E X I C A L PA R A P H R A S E S T O M I T I G AT E W O R D
M I S P E R C E P T I O N

Words exhibit varying recognition rates when subjected to noisy listening conditions. As we
have seen in Chapters 2 and 3, in the past, several studies have demonstrated that
word intelligibility in a noisy environment is significantly influenced by linguistic
features like word familiarity and linguistic predictability, as well as by acoustic
features such as the masking effect of the noise, the underlying sounds in the
utterance, etc. However, this distinction of lexical units in terms of their noise-
robustness is seldom leveraged in speech synthesis systems to combat noise-induced
word recognition errors, produced by human listeners.

In this chapter, we set out to fill this gap by considering a specific linguistic
operation - lexical replacements with synonyms - to improve word intelligibility in
noise. Sections 4.1 and 4.2 outline the concept and the motivation to use lexical
paraphrases for better speech perception in noise, by elaborately discussing an
existing dataset. In Section 4.3, we explained the evaluation method used to study
whether intelligibility is improved by replacing lexical units with their synonyms
(i.e., lexical paraphrases). Perception data of synonyms in noise environments is
collected by conducting perception experiments with human subjects as elaborated
in Section 4.4. Additionally, we investigated why certain words are better intelligible
than their synonyms in noise, using modeling experiments, and the details are
sketched out in Section 4.5. The main contributions of this work are as follows:

• We established preliminary evidence that lexical paraphrases are capable of
reducing noise-induced comprehension errors.

• We created and published a new dataset1 of synonyms in noise (with/without
linguistic context) by conducting listening experiments with native listeners of
English who have normal hearing (NH) thresholds.

• We analyzed the benefit of the mishearing mitigation strategy with lexical
paraphrases under different noise levels with an explanation of the varying in-

1Dataset is publicly available here: https://github.com/SFB1102/A4-SynonymsInNoise.git

43
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fluence of linguistic and acoustic factors that drive the intelligibility differences,
for further research in this direction.

Overall, the experiments in this chapter become the foundational evidence of our
claim that paraphrasing is an effective strategy for improving word intelligibility in
noisy listening conditions.

4.1 introduction

To begin with, we performed a sanity check to analyze the phonemic distance
between the synonyms in English. This verification is important as synonyms that
sound alike are less likely to introduce a significant difference in their intelligibility in
noise. In other words, synonym pairs that are similar in pronunciation are equally
likely to be misheard in noise, and choosing one over the other might not reflect
a significant difference in comprehension errors. For this analysis, we considered
all synonym pairs in a lexical corpus, WordNet (Fellbaum, 1998). The edit distance
between the phonemic transcripts of two synonyms was calculated with a cost of
one for insertion, deletion, and substitution of tokens. As portrayed in Figure 4.1,
we found that about 65% of synonym pairs sound different by 4 − 8 phonemes and
it indicates that several words have a phonemically different synonym.

This observation is interesting as it suggests that some words can be more
noise-robust than their synonyms, presumably because of their differences in the
underlying sounds. However, whether this observed phonemic edit distance could
contribute to differences in human perception in noisy environments is unclear
without perception data. Thus to collect perception data of synonyms in different
noise environments, we propose to conduct human listening experiments. Using the
perception data, we systematically study the impact of lexical paraphrases on word
misperception in noise. To this end, we identified the two critical research questions
(RQs) of this work:

• RQ 1: Are lexical paraphrases different in their intelligibility under noise?

– 1a: lexical paraphrases without any linguistic context

– 1b: lexical paraphrases with linguistic context

• RQ 2: If there exists a difference in lexical intelligibility, why certain lexical units are

better recognized than their synonyms?
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Figure 4.1: Levenshtein edit distance between phonemic transcripts of synonym
pairs in the lexical corpus, WordNet. More than 80% of synonym pairs exhibited a
difference of 4 phonemes, indicating their distinction in the underlying sounds.

4.1.1 Motivation

The proposed approach of reducing word misperception through paraphrasing is
mainly motivated by the existing understanding that noise induces slips-of-the-ear
(Bond, 1999). Slips-of-the-ear are attributed to mishearing wherein a word/phrase
is incorrectly recognized as another spoken word(s). For example, perceiving the
spoken word ‘mouth’ as ‘mouse’ is a slip-of-the-ear instance. This section discusses a
preliminary analysis that we conducted with an existing dataset of human misper-
ceptions of words in noise, before collecting a new dataset. This analysis is focused
on verifying that word misperceptions vary under different noise environments and
are influenced by lexical features.

Marxer et al. (2016b) published a large dataset of word misperception in English
under three different types of maskers: stationary speech-shaped noise (SSN), four-
talker babble noise (BAB4), and three-talker babble modulated noise (BMN3). Stimuli
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utterances were generated with masker-specific SNR ranges like [−7 dB, −4 dB] for
SSN, [−8 dB, −3 dB] for BMN3, and [−3 dB, +1 dB] for BAB4. Their choice of three
masker types and corresponding noise levels were motivated by a similar study of
word misperception in Spanish (Tóth et al., 2015).

SSN: Stationary Speech-shaped Noise is generated by taking the long-term
average of the speech spectrum, which was formed by combining multiple speech
signals. This results in a noise signal, which has spectral properties almost identical
to that of the input speech signals. It is a stationary noise. This masker type is
commonly used to simulate an adverse listening environment.

BAB4: Babble noise is one of the most common real-world noise types, which
occurs when two or more people converse in the background of a listening setup.
It is more prevalent in public spaces like cafeterias, conference rooms, and parks.
The more the number of speakers in the background, the more it is noisy and
challenging for a listener to listen to the intended speech. Babble noise introduces a
better possibility than SSN to capture glimpses of the clean speech, however with an
increased risk that the listener may confuse the actual speech with the competing
speech. In the case of the BAB4 noise condition, the noise signal was generated
by mixing four continuous signals, which were created by concatenating randomly
sampled words in the recorded speech material.

BMN3: BMN3 is a three-talker babble-modulated noise, which is generated
by first estimating the envelopes of a three-talker babble noise signal and then,
modulating an SSN carrier signal based on those estimated envelopes. BMN3 shares
similar non-stationary properties with BAB4. Hence, their energetic masking effects
are similar. However, BMN3 has no recognizable speech, just like the SSN signal.
Thus BMN3 becomes slightly an easier noisy environment for perception, as it clubs
the benefits of both BAB4 and SSN conditions: allows capturing glimpses like in the
babble noise condition, but with a lesser impact of the competing speech as it is a
nonverbal noise signal.

Slips-of-the-Ear varies with masker type. Stimuli words for each masker type
varied with a little overlap. However, the average length (three phonemes) and the
mean frequency (3.99) of targets are the same across all three masker types. After
conducting several hours of perception experiments with a large pool of listeners
(212), their dataset lists all those lexical units that exhibited a consistent confusion at a
listening condition. Marxer et al. (2016b) defined consistent confusion as words that
are always misheard as another word by a group of listeners in a listening condition.
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Figure 4.2: A demonstration of the varying word misperception distance under three
maskers: BAB4 (four-talker babble noise), SSN (stationary speech-shaped noise),
and BMN3 (three-talker babble modulated noise). The misperception distance is
determined by calculating the edit distance between the phonemic transcripts of
the target word and its most confused word published in the dataset (Marxer et al.,
2016b).

In the published dataset of word confusions in English, they reported only those
word misperceptions that had a minimal consistency of 40% (i.e., at least 6 among
15 listeners misheard a word in the same way). The dataset also reported the edit
distance between the phonemic transcripts of a target word and its most confused
word to represent the distance/closeness in their sounds. Thus, slips-of-the-ear
can otherwise be considered as the errors introduced by insertion, deletion, and/or
substitution of speech tokens like phonemes in the target word.

Figure 4.2 reports the edit distance of a target word and its most confused word,
calculated with a cost of seven for insertions and deletions, and ten for substitutions.
A smaller value for the edit distance indicates that the confused word sounds a
lot similar to the target word. A smaller edit distance also highlights that such
misperceptions are possible even in the absence of noise, as they sound similar. On
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the other hand, a large edit distance highlights that a target word is phonetically far
away from its most confused word. One of the interesting observations from their
work is the significant influence of the masker type on the edit distance between a
target and its most confused word. For example, the consistent confusions in BAB4

are (phonetically) more distant compared to those in SSN and BMN3 noisy conditions.
A higher edit distance indicates an increased challenge in predicting the misperceived
word for a target word, as the search space is larger with more edit operations. This
observation aligns with earlier findings that a masker-type influences the nature
of misperception, as discussed in Section 2.1. Precisely it shows that compared
to stationary noise environments, word recognition is better in the presence of
non-stationary noise - glimpses of the intended speech are less available with a
steady state background noise. It was also shown that the type of misperception
varies with the masker type as showcased by different phoneme confusion matrices
published for different noisy setups (Miller and Nicely, 1955; Pickett, 1957). We
further extended their analysis on consistent confusion by calculating the mean edit
distance at different SNRs of a noise type. For better interpretation, actual SNR
values are rounded to their nearest integer. As portrayed in Figure 4.3, BAB4 is
different from the other two masker types in two ways: (a) there is a larger spread of
phonemic edit distance at BAB4, (b) noise level is a significant feature to determine
the mean edit distance of consistent confusions only under BAB4 noisy condition.
This indicates noise type as well as its SNR (in certain masker types) are critical for
determining the the nature of word misperception. More precisely, under the BAB4

noise condition where the competing speech in the background is spoken words
and recognizable speech, listeners are confused and wrongly perceive those words
spoken in the background. Those misperceived words can be phonetically more
distant from the actual spoken word. Additionally, we observed that when the SNR
level is less for BAB4, misperceived words are phonetically closer to the target words,
just like in SSN and BMN3 noise conditions.

Confusion Consistency is influenced by lexical features. In addition to the
phonemic edit distance, the dataset also provides a measure of confusion consistency
(ie., the number of participants who misheard a word as another one). We use
this measure to evaluate whether the lexical features of a target word or its most
confused word influence the consistency of misperception in noise. To this end,
we conducted a simple linear regression analysis by fitting the data for each of the
noise conditions separately. A complete model with five independent variables -
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Figure 4.3: An illustration of how misperception varies in the presence of different
types and levels of noise. An existing dataset of word confusions in English (Marxer
et al., 2016b) shows that, unlike the babble noise condition, in the presence of
nonverbal signals (like SSN and BMN3), words are confused with another word that
sounds similar.

length and frequency of a target word, length and frequency of the most confused
word, and the phonemic edit distance between a target word and its most confused
word - was considered to explain the dependent variable, confusion consistency. For
selecting a best-fit model, we performed a step-wise variable selection algorithm
implemented in the step function (Marhuenda et al., 2014) in R(R Core Team, 2019).

Our models showed that the influence of lexical features on misperception
consistency varied with the masker type. For instance, under SSN and BMN3, the
consistency of misperception increased when a confused word sounded closer to
its target word (β = −0.004; p < 0.05), indicating word misperception is driven
by sound-alike words in the vocabulary. Additionally, we found that confusion
consistency is better with longer target words (BMN3: β = 0.012, SSN: β = 0.014;
p < 0.05). Intuitively, this observation aligns with the earlier finding that shorter
words, which have high phonological neighborhood density (PND) introduce far
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more options in the vocabulary to be misheard as another word and hence, lower
confusion consistency. However, with longer words, the PND is less dense and there
exist fewer options for misperception of a target word, leading to more consistent
confusion among listeners. In contrast to the above observation, at the BAB4 noise
condition, neither the length of a target word nor its edit distance was significant
in determining the confusion consistency. Instead, the length of the most confused
word determines the confusion consistency. This agrees with our earlier observation
that word misperception under BAB4 is largely influenced by the words spoken in
the background noise. More precisely, confusion consistency was observed to be
better in BAB4, when the confused word is longer in length which in turn reflects
the impact of longer words in the competing speech on the consistency of a word
confusion.

In summary, this analysis demonstrates that word misperception in noisy envir-
onments is influenced by their linguistic characteristics as well as the masker type.
The results suggest that some words are more likely to be misheard than others,
in certain listening conditions. However, the existing dataset is not sufficient to
study whether lexical replacement with synonyms is an impactful strategy to reduce
mishearing in noise. This highlights the need for a dataset of spoken utterances of
paraphrases annotated by a pool of listeners, reporting both the correct and incorrect
instances of perception in noise.

4.2 lexical paraphrases

Natural languages provide the possibility of expressing an intended message in
several different forms using different sets of lexical units and syntactic structures,
which is often referred to as paraphrases. The potential of paraphrasing has been
widely studied in the context of several language processing tasks such as style
transfer, text summarization, text simplification, machine translation, and dialogue
generation. However, the current study of utilizing paraphrases to improve word
recognition is one of the initial attempts to improve comprehension under noise
with linguistic variations. To illustrate the methodology used in the current study,
consider the following incomplete utterance:

• and he runs away scared and dives into the .

Given that, a speaker is given a choice to fill the with a lexical unit that fits
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ocean
OW SH AH N

sea
S IY

lake
L EY K

pond
P AA N D

<a large water body>

Figure 4.4: An illustration of the potential of synonyms to represent meaning with
different acoustic realizations that vary in the underlying phonemes and acoustic
characteristics.

in the linguistic context (i.e., all words before the blank) and means <a large wa-
ter body>, lexical paraphrases in English provides multiple options like ’sea’, ’ocean’
and ’lake. As shown in Figure 4.4, although all options have similar semantics, the
underlying sounds (represented with their phonemic transcript and spectrogram)
are different. Because of this difference, introducing a variation at the linguistic
level indeed introduces a variation in the acoustic level. We hypothesize that for a
listener in noisy environments, the speaker’s choice of a lexical unit to represent
<a large water body> is critical, as some lexical units are less likely to be perceived in
noise due to the differing impact of noise on the underlying sounds. To validate our
hypothesis, it is important to conduct a pair-wise comparison of noise-robustness
among synonyms in noise. Additionally, it is also critical to study whether the
perception difference among synonyms is introduced by the target words themselves
or their interaction with the context.

In the following sections, we describe the experiments and data analysis that
were conducted to validate the proposed strategy. To reduce the complexity of the
experiment, the following assumptions were made:

• Although the noise in real-world conversational settings is highly unpredictable
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and hard to model, we made an assumption that the noise (type and its level )
in a listening environment is known in advance.

• Not all recognized words result in successful comprehension of the meaning.
A listener’s language proficiency is a critical factor for meaning comprehension.
In the current study, we controlled for this effect by selecting native speakers
as participants and familiar words for the stimuli. Thus, all instances of correct
word recognition are considered instances of correct comprehension as well.

With those assumptions, let’s look at the approaches we have taken to answer
current research questions.

4.3 measuring how synonyms influence word recognition

In order to validate our proposed method of utilizing lexical paraphrases to mitigate
mishearing, we need to study whether such variations introduced any recognition
differences under a particular listening environment. To this end, it was essential to
create a dataset comprising pairs of synonyms annotated with their (mis)perceived
words by multiple listeners.

We conducted two sets of listening experiments with a large pool of listeners
(125 in total) who have normal hearing thresholds: by presenting synonyms (a)
without linguistic context and (b) with linguistic context, under different listening
environments. Studying the recognition difference between synonyms in both
these scenarios is critical as the first one without context demonstrates whether a
background noise impacts the intelligibility of both synonyms in a pair equally or not.
More precisely, if the recognition of synonyms in a pair under a listening environment
is equally the same, then there is no real gain in recognition by performing the lexical
replacement. Also, it is important to study whether such lexical replacements can
introduce differences in synonym recognitions even in the presence of high-level
signals such as linguistic contexts.

Utilizing the data collected from these experiment setups, the primary question
that we explored was:

”Are synonyms significantly different in their recognition rates under noise? “.

Before we delve into the details of listening experiments and data modeling, let’s
begin this section by defining a measure to capture the recognition gain introduced
by lexical replacements.
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4.3.1 Word Intelligibility

The intelligibility of an utterance depends on how well its constituting spoken
tokens are recognizable by its listeners. A highly intelligible utterance is one with
fewer recognition errors. Hence, Speech Intelligibility (SI) is an inverse measure of
recognition errors. Such measures have been traditionally used in clinical audiology
to quantify human hearing capabilities. For instance, hearing tests such as Hear-
ing in Noise Test (Soli and Wong, 2008) and Speech in Noise (Etymotic Research,
1993) utilize recognition rates to identify hearing loss, hearing aids fitting, and so
on. Participants in those tests are usually instructed to ’listen and repeat‘ stimuli
utterances. Speech Reception Threshold (SRT) is an alternative metric when such
hearing tests are conducted with adaptive SNR levels (Taylor, 2003). SRT of an
individual participant refers to the maximum noise level/SNR at which 50% of
the speech material was recognizable. In literature, it is mainly used to compare
listeners/pools of listeners and is seldom used to compare stimuli items. Hence, SRT
is not identified as a suitable measure of intelligibility for the current study.

Human experiments of the type ’listen and repeat‘ were used in the past to
study a broad range of SI-related questions such as the influence of predictability on
word recognitions (Kalikow et al., 1977), hearing ability differences between younger
vs. older listeners (van Os et al., 2021), L1 vs. L2 listeners in noise, fluctuation
of Lombard effect with predictability, Lombard effect on L2 listeners (Cooke and
Lecumberri, 2012) and others. In most of these studies, intelligibility differences
between stimuli sets (eg: high vs. low predictable) or between listener sets (eg: L1 vs.
L2) were analyzed by averaging sentence-level recognition rates over a set of listeners
or stimuli items respectively. However, for the current study, the word intelligibility
needs to be calculated at the stimuli level as the scores are further used for pair-wise
comparison between synonyms. To this end, we defined a word intelligibility score
as the mean recognition rate of a word among a pool of listeners. For consistency,
we ensured that every stimulus was listened to by a fixed number of participants.

We refer to this metric as Human Recognition Score (HRS) and it is defined for
each spoken word (s) in a particular listening environment as shown below:

HRSw =
number of correct recognitionsw

total number of listenersw
(4.1)

To identify whether the perceived word is identical to the actual word, the
edit distance between phonemic transcripts of the target and perceived words was
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utilized. All listening instances with 0 phonemic edit distance are considered correct
recognition. This ensured that homophones (eg: sea vs see) of the target words are
identified as correct perception and minor spelling mistakes in transcriptions are
rectified in the intelligibility score calculation. Since HRS captures the proportion of
correctly recognized spoken words among all its listening instances, its value ranges
between 0.0 to 1.0.

4.3.2 Gain in the Word Intelligibility

The HRS score is further used to measure whether a choice of lexical units among
two synonyms (s1, s2) resulted in any intelligibility difference (∆p as described in
Equation 3.8 and refer to Section 3.1, for more details.) by taking the absolute
difference of their individual scores as defined in Equation (4.2). Hereafter, this
measure is referred to as the gain in word intelligibility, as it represents the
intelligibility improvement achieved by choosing the noise-robust lexical over its
synonym.

∆p = diff.HRS(s1,s2) = abs(HRSs1 − HRSs2) (4.2)

The value of diff.HRS ranges from 0.0 to 1.0, indicating no gain to maximum gain
in word intelligibility by choosing the noise-robust synonym. More precisely, this
score reflects whether there exists any difference in synonyms intelligibility given
that they were presented with the same linguistic context and the same acoustic
background noise. The mean diff.HRS in each listening environment is calculated to
analyze whether it is effective to utilize lexical paraphrases to reduce mishearing in
noise.

4.4 listening experiments

Human perception experiments were conducted to collect and create a dataset of
pairs of synonyms along with their corresponding (mis)perceptions in noise. To the
best of our knowledge, this dataset is the first of its kind2. The rest of this section is
focused on solving the first research question discussed in Section 4.1. Initially, we
studied the perception of synonyms without any linguistic context (RQ 1a). Then,

2The dataset is publicly available here: Synonyms-in-Noise (SiN)

https://github.com/SFB1102/A4-SynonymsInNoise.git
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synonyms with linguistic contexts were presented and their perception in noise was
recorded for analyzing the influence of context on synonyms under noise (RQ 1b).

4.4.1 RQ 1a: Synonyms in noise, without context

For synonym replacement to be a promising approach, we need to test whether
synonyms differ substantially concerning their intelligibility in noise. It only makes
sense to attempt to replace one with the other if this is the case.

4.4.1.1 Experimental setup

In our experiment, synonyms were presented separately to different participants as
spoken words in five different listening environments; clean (no noise), babble noise
at SNR 0 & SNR −5, and white noise at SNR 0 & SNR −5.

Stimuli: Lexical items for this experiment were generated by selecting the most
frequent words in a spoken corpus, Verbmobil (Wahlster, 1993). In order to make
sure that these words can later be substituted reliably without changing the meaning
of utterances, we further selected only those words that belong to a single synset in
the lexical database WordNet (Fellbaum, 1998). A few examples of pairs are:

• absolutely - perfectly

• film - movie

• eatery - restaurant

• usually - normally

A set of 189 synonym pairs (265 unique words) were selected and split into
multiple lists such that no two synonyms were presented to the same participants.
Stimuli for this experiment consisted of spoken words which were synthesized using
the Google Translate API (gTTS) (Durette, 2014: accessed July 30, 2020) and their
noisy signals were generated by performing additive noise mixing with noise files
retrieved from NOISEX-92 database (Varga and Steeneken, 1993). Additive noise
mixing was performed using a python library named audio-SNR, in which distorted
signals were generated by mixing noise signals at an arbitrary signal-to-noise ratio
(SNR). SNR, which is defined in (2.3), is the ratio between clean and noise signal
strengths. See Section 2.3.2.1 for more details on the noise-mixing procedure that we
followed.
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Design and procedure: The synthetic speech signals were categorized into
multiple blocks and it was ensured each block was presented to five different
listeners. Participants were instructed to write down what they heard after listening
to each spoken word. In the study instructions, we asked participants to ensure a
quiet environment and to use good-quality headphones in order to take part in the
experiment. Also, the significance of these recommendations was highlighted to
them by providing sample audio files and a warning that audio files will be played
only once.

Participants: The single-word listening experiment was deployed on a crowd-
sourcing platform, Prolific3 using LingoTurk framework Pusse et al. (2016) with 75

native British English speakers (53 females and 22 males) with an average age of 31

(ranges from 18 to 49).

Analysis: Participants’ responses were then utilized to calculate the HRS, as
defined in (2.1) of each stimulus. Further diff.HRS was calculated for each synonym
pair under different listening environments (as defined in (2.2)). We also calculated
individual participants’ performance for each listening environment to observe
if any outliers exist. With the outlier analysis outcomes, we decided to include
all participants for further analysis. From this experiment, we expect to find that
synonyms’ recognition would be significantly different under noise.

4.4.1.2 Results and discussion

Babble Noise. With the increase in noise (clean −→ SNR 0 −→ SNR −5), as
expected, the average HRS reduced significantly from 0.93 to 0.81 and 0.57 (p
< 0.001), as the increased masking effect of noise tampered word recognition.
However, the average recognition difference between synonym pairs steadily increased
from 0.09 to 0.28 (p < 0.05) and finally to 0.39 (p < 0.05). As presented in Figure 4.5,
in both noisy environments, there is a significant increase in the number of synonym
pairs that were distinct in their HRSs than those in the quiet listening environment.

The increased number of synonyms that differ substantially in intelligibility at
SNR 0 and SNR −5 indicates that choosing a word over its synonym can introduce
a significantly larger impact on noise-induced comprehension errors in noisy en-
vironments. At SNR 0, the average HRS of the more intelligible synonym in the
pair was 0.97, while the average HRS of the harder-to-perceive synonym was 0.69;
at SNR −5, the harder-to-perceive synonym had an average HRS of 0.37, while the

3https://www.prolific.co/
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Figure 4.5: In the newly created dataset, Synonyms-in-Noise, the number of synonym
pairs that were distinct in recognition significantly increased with an increase in
babble noise level (clean −→ SNR 0 −→ SNR −5), when they were presented without
context in different listening environments

more intelligible one in the pair had an average HRS of 0.77. These results reflect
that the relative gain in intelligibility by choosing a lexical unit over its synonym
which is at high risk of being misheard in babble noise is 40% at SNR 0 and 100% at
SNR −5. Our experiment hence demonstrated that synonyms can differ substantially
in intelligibility, especially at higher levels of babble noise. As an extension to this
conclusion, we also studied the mishearing of synonyms in listening environments
with a steady-state noise in the background.

White Noise. Similar to the babble noise condition, the presence of white noise in
the background also introduced a significant reduction of overall word intelligibility
of 0.93 at clean to 0.69 at SNR 0 and 0.52 at SNR −5 (p < 0.001), with an increasing
noise level. At SNR 0, listeners experienced more difficulty in word recognition with
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Figure 4.6: A comparison of word recognition performance under two different
maskers. The recognition data of synonyms in isolation (of the Synonyms-in-Noise
dataset) is used to plot the performance of participants under different listening
environments. Human listeners were more challenged in white noise than in babble
noise conditions.

white noise compared to babble noise, as observed in earlier work regarding the
effect of different noise types on speech perception (Taitelbaum-Swead and Fostick,
2016). However, participants’ performance was not significantly different with the
masker type at SNR −5 condition, as depicted in Figure 4.6.

As depicted in Figure 4.7, the overall difference in HRS between synonym pairs
increased steadily with reducing SNR of white noise, replicating the similar trend
observed with babble noise condition. Similarly, with more noise in the background,
the mean pairwise intelligibility difference increased from 0.09 (clean) to 0.30 (SNR 0)
and 0.37 (SNR −5). Data collected from this experiment also assured us that
appropriate choice of lexical paraphrases can improve intelligibility even in the
presence of static noise.

Babble Noise vs. White Noise. We observed that lexical paraphrases are signi-
ficantly different in their recognition in the presence of both stationary and non-
stationary noise. However, it is not yet investigated whether a lexical unit that is
more noise-robust (than its synonym) at babble noise condition remains as the more
recognizable synonym for the other masker type - white noise. For this purpose,
first, we ranked words in each lexical paraphrase pair based on their individual
HRS under a noisy listening environment. Then, we calculated the percentage of
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Figure 4.7: In the new dataset, Synonyms-in-Noise, the number of synonym pairs
that were distinct in recognition significantly increased with an increase in white noise
level (clean −→ SNR 0 −→ SNR −5), when they were presented without context in
different listening environments

synonym pairs that agreed (i.e., concordant pairs) on assigned ranks at a particular
noise level of two masker types. As shown in Table 4.1, almost half of the synonym
pairs disagreed (i.e., discordant pairs) on their ranking at both SNR 0 and SNR −5.
This indicates that the choice of a noise-robust lexical paraphrase is also influenced
by the type of acoustic noise present in the background.

For example, consider the synonym pair ’ethnic’-’cultural’ at SNR 0 noise condi-
tions. At white noise condition, we observed that the lexical unit ’ethnic’ / EH TH N
IH K was better perceived than its synonym, ’cultural’ / K AH L CH ER AH L, and it
was the reverse with babble noise. One possible explanation for such disagreements
is presumably because of the interaction of noise with underlying sounds - the
fricatives (like ‘CH’) are hard to recognize in white noise conditions, while plosives
(like ‘TH’) are more misheard in babble noise - as demonstrated in earlier studies
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- % Agreement Sample concordant pairs Sample discordant pairs

SNR 0 51.85 all-wholly finicky-picky
doodle-scribble excellent-splendid

SNR −5 46.56 absolutely-perfectly section-department
after-subsequently ethnic-cultural

Table 4.1: A comparison of pairwise ranking of synonyms, under two masker types
– babble noise and white noise. The agreement on ranking and a few samples of
concordant and discordant pairs are reported.

on confusions of consonants in babble noise (Cutler et al., 2004) and white noise
(Phatak et al., 2008). Similarly, past explorations on consonant misperceptions have
also demonstrated that recognition of consonants at the initial position is more
challenging than those at the final position (Weber and Smits, 2003; Cutler et al.,
2004). However, we also observed synonym pairs for which this explanation does
not hold and we hypothesize that it might have been caused by presenting stimuli
of spoken words rather than syllables or triphones, which were used in prior work.

To summarise, in this section, we observed that lexical replacement is a promising
avenue for mitigating misperception in different noisy conditions. The next step is
to test whether this effect also holds for words presented with linguistic context.

4.4.2 RQ 1b: Synonyms in noise, with context

In the previous section, we observed that synonyms in noise exhibit different noise-
robustness. However, whether such differences in perception still exist in the
presence of linguistic context is not yet investigated. This aspect is critical to be
studied as prior work has demonstrated evidence that context influences word
recognition. To this end, we designed a Short Utterance Listening (SUL) experiment
to present synonyms with linguistic contexts.

4.4.2.1 Experimental setup

Participants of this listening experiment were asked to listen to noisy utterances at
three listening setups: babble noise at SNR 5, 0, and -5. Unlike the noise levels in the
single-word listening experiment, a low noise environment was considered instead
of no noise as recognition in a quiet environment was close to a ceiling effect.

Stimuli: For generating stimuli for this experiment, initially a list of the top-most
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500 frequent words from the Spoken BNC2014 corpus (Love et al., 2017) and their
synonyms from WordNet(Fellbaum, 1998) was created. Next, this list was filtered to
identify synonym pairs such that both words from a pair semantically fit in a short
utterance taken from the Spoken BNC2014 corpus. For example, for the synonym
pair (sea, ocean), the following short utterances were used.

• and he runs away scared and dives into the sea

• and he runs away scared and dives into the ocean

This procedure resulted in 91 paired paraphrases, which were synthesized using
gTTS. Subsequently, babble noise from NOISEX-92 (Varga and Steeneken, 1993) was
added. For the noise mixing, the SNR was kept fixed across the target as well as its
context.

Design and Procedure: We used the participants’ transcription of what they
heard to identify whether words were recognized correctly. Since the position
of synonyms was not fixed across all utterances, participants were instructed to
transcribe the whole utterance. To mark those words that they couldn’t recognize in
an utterance, they were informed to use ’...’ (3 dots) as a placeholder. Every stimulus
was presented to six different participants in such a way that synonyms were not
presented to the same participant.

Participants: Similar to the earlier experiment, participants were recruited from
the crowd-sourcing platform, Prolific4. A total of 51 native British English speak-
ers (36 females and 15 males) with an average age of 34 (ranging from 20 to 50)
participated in this experiment.

Analysis: Participants’ responses were processed to identify whether target
words (i.e. synonyms that undergo the lexical replacement in pair paraphrases)
were recognized or not. For each stimulus, we again calculated HRS (as defined in
(4.1)). Further diff.HRS (as defined in (4.2)) was calculated for each paraphrase pair
under different listening environments. From this experiment, we expect to find
that synonyms’ recognition would be significantly different, even when they were
presented with a linguistic context in noise environments.

4.4.2.2 Results and discussion

Every lexical item in each synonym pair was then classified as either less intelligible
or more intelligible, based on their HRS values. HRSmin and HRSmax are used to

4https://www.prolific.co/
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refer to the HRS of the less intelligible and more intelligible synonyms in a pair.
Then, we compared the recognition score difference at each paraphrase pair and
analyzed the effect of a synonym replacement strategy under each noisy listening
condition. Figure 4.8 summarizes the intelligibility differences of synonyms when
they were presented with a linguistic context in noisy environments. The effect of
replacing a target word with its synonym is evidently the largest for highly noisy
environments. The mean difference in recognition score between a target and its
synonym, at SNR −5 (0.37, p < 0.001) is significantly higher than in SNR 5 (0.15).
However, the observed average difference at SNR 0 (0.21, p = 0.10) is not significantly
different from that in SNR 5.

babble, SNR 5 babble, SNR 0 babble, SNR -5

HRSminHRSmax HRSminHRSmax HRSminHRSmax
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Figure 4.8: An overview of the distinction between two groups of synonyms –
less intelligible (HRSmin) and more intelligible HRSmax – under different listening
environments. Synonym pairs were presented to native English listeners with
linguistic context.

This indicates that lexical replacement is most beneficial when there is a large
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amount of noise. The average HRSmin (0.84) and average HRSmax (0.98) of synonyms
at SNR 5 highlights that most of the target words were correctly recognized and
this limits the scope of improvement that can be achieved by lexical replacement.
At SNR 0, the average of HRSmin and HRSmax was 0.73 and 0.94 respectively. In
contrast to these environments, the average of HRSmin and HRSmax at SNR −5 was
0.29 and 0.66 and this assured that at highly noisy environments, lexical replacement
introduced a significant reduction in noise-induced comprehension errors. This
observed distinction in synonyms’ recognition, even when they were preceded by
naturalistic context such as in everyday conversations (Love et al., 2017) implicates
the usefulness of this strategy for generating noise-robust utterances.

4.5 explaining the gain in word intelligibility

In this section, we address RQ 2 to study different factors that contribute to the better
intelligibility of words over their synonyms in noise. The intelligibility difference
among lexical paraphrases is modeled using their linguistic and acoustic cues.
Findings from this modeling experiment explain the observed intelligibility gain,
which is introduced by lexical paraphrases.

In Section 4.4, we analyzed the data of listening experiments. Both experiments
have proven that lexical replacement can be a promising approach for improving
spoken language comprehension in noisy environments. In order to automatically
be able to choose the more intelligible synonym, it is necessary to classify word
intelligibility automatically. In this section, we explore the extent to which compu-
tational measures can explain the variance of word recognition in noise. We used
data collected from the Short Utterance Listening experiment for all models in this
section.

Modeling word recognition in noise has been primarily studied from the perspect-
ive of understanding the nature of word misperception. Prior studies concentrated
on identifying phoneme confusions under different noise and listening setups. Some
of the microscopic confusion matrices were even used to model the probability of
correct recognition of isolated words in noise. One such metric is FWNPR (Luce and
Pisoni, 1998), where the frequency of the target word, its neighborhood density, and
the frequency of its neighbors were considered for modeling word intelligibility in
noise.

Previous work on the misperception of words with linguistic context provided
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evidence that the predictability of the target item is a significant factor for its
intelligibility in noise. We evaluated the following acoustic and linguistic features of a
target word in context, by fitting a linear regression model (using its implementation
in R (R Core Team, 2019)) to the data of three different noisy listening environments,
separately.

(1) Linguistic predictability: A pre-trained LSTM-based language model(Merity
et al., 2018) was utilized to determine the predictability of a target word considering
its left context in an utterance. The language model was trained on the transcription
of a spoken corpus(Godfrey et al., 1992) since stimuli utterances were taken from a
speech corpus too. Log probability retrieved from this language model (hereafter
referred to as log.prob), is used to represent how predictable a target word is given
its linguistic context.

(2) Length of phonemic transcription: Number of phonemes is particularly an
important lexical feature for word recognition, as several studies have shown that
longer words (which have fewer neighbors that sound similar (Pisoni et al., 1985)) are
easier to recognize (Vitevitch, 2002; Vitevitch and Rodríguez, 2005). On the contrary,
we can also find evidence in the literature that familiar words (which are usually
shorter in length as per Zipf’s law) are easier to recognize. However, whether the
word familiarity favors its recognition in noise is not well documented in those
studies. Thus to study such effects on word intelligibility in noise, the length of
phonetic transcription (which was generated using a Grapheme-to-Phoneme(G2P)
converter (Epp, 2018: accessed by July 30, 2020)) was used to represent this feature
(hereafter referred to as ph.len).

(3) STOI: Short-Time Objective Intelligibility (STOI) (Taal et al., 2010) measure is
one of the classical SI metrics. By comparing temporal envelopes of clean and noisy
speech it captures the mean correlation between the energy of clean and distorted
time-frequency units over all frames and bands. STOI value ranges from −1.0 to 1.0,
representing least intelligible to most intelligible audio signals. Three STOI values
for each target word were then calculated by considering the clean and noisy signals
from all 3 listening environments.

4.5.1 Results and Discussion

As a first analysis, the significance of the above-mentioned features for determining
the HRS in noise was evaluated by fitting a linear regression model separately
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for each of the listening environment data. At SNR 5, the model identified log
probability (β̂ = 0.031, SE = 0.01, t = 2.16, p < 0.05) as the only significant feature for
explaining the variance in human recognition. At SNR 0, both log predictability (β̂ =
0.05, SE = 0.02, t = 2.66, p < 0.05) and phoneme length (β̂ = 0.04, SE = 0.02, t = 2.14,
p < 0.05) were significant predictors of HRS.

However, for babble noise with SNR −5, we find that phoneme length (β̂ = 0.06,
SE = 0.03, t = 2.09, p < 0.05) and STOI (β̂ = 0.06, SE = 0.03, t = 2.09, p < 0.05) are
significant predictors of HRS, but not predictability. This difference between noise
conditions may be due to difficulty with decoding the context: if the context cannot
be fully understood, then it cannot be used effectively for predicting upcoming
words.

HRS differences among synonyms. Next, we separate out overall effects of
the predictability of a word from the difference in predictability between the two
synonyms, in order to not only observe whether predictability as such is a significant
predictor of HRS but also whether the difference in predictability between the
synonyms makes a difference. Therefore, we encoded the response variable in terms
of the difference between the HRS scores in a pair of synonyms by subtracting the
HRS of the less intelligible synonym from the HRS of the more intelligible synonym.
The resulting diff.HRS scores thus range between 0 and 1, with 0 indicating that there
was no difference in intelligibility.

Furthermore, we used the variable log.prob to encode the predictability of the
more intelligible word in the pair and separately encoded the difference between
them in the variable diff.log.prob. Positive values of diff.log.prob thus mean that the
synonym with higher HRS was also more predictable. Similarly, we separately
encoded the word length of the better-recognized synonym in a pair as ph.len, and
the difference in length to the other synonym as diff.ph.len. A positive coefficient
value indicates that the lexical items with better perceptions are those words, which
are longer in length than its synonym. In addition, for each listening environment,
the intelligibility measure based on the acoustic features of the most recognized
synonym in a pair was encoded as STOI and its difference with the other synonym
as diff.STOI.

For the analysis, maximal models with all features were considered and the best
fitting model (which has the lowest Akaike Information Criterion (AIC)) selection
was performed using the step function in R (R Core Team, 2019). The maximal
model at SNR 5 identified the difference in synonyms’ predictability in context
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β̂ SE t value p-value

Babble, SNR 5
(Intercept) -0.775 0.501 -1.546 0.126

log.prob -0.034 0.014 -2.477 0.015 *
diff.log.prob 0.033 0.009 3.651 0.0 ***
ph.len 0.027 0.014 1.991 0.050 *
diff.ph.len 0.023 0.01 2.254 0.027 *
STOI 0.464 0.507 0.915 0.363

diff.STOI -0.664 0.386 -1.722 0.089 .

Babble, SNR 0
(Intercept) -0.608 0.43 -1.415 0.161

log.prob -0.045 0.015 -2.967 0.004 **
diff.log.prob 0.04 0.011 3.595 0.001 ***
ph.len 0.011 0.015 0.712 0.478

diff.ph.len 0.033 0.012 2.756 0.007 **
STOI 0.346 0.491 0.704 0.483

diff.STOI -0.175 0.33 -0.531 0.597

Babble, SNR −5
(Intercept) 1.134 0.449 2.523 0.014 *
log.prob -0.018 0.019 -0.927 0.356

diff.log.prob 0.011 0.013 0.836 0.406

ph.len -0.009 0.019 -0.473 0.637

diff.ph.len 0.025 0.015 1.749 0.084 .
STOI -1.428 0.495 -2.887 0.005 **
diff.STOI 0.694 0.324 2.142 0.035 *

Table 4.2: An evaluation of the Human Recognition Score (HRS) difference between
synonyms by fitting linear regression models to short utterance listening (SUL)
experiment data of babble noise at SNR 5, SNR 0 and SNR −5.

as well as their difference in the number of phonemes as significant features in
explaining the variance in diff.HRS; diff.log.prob (β̂ = 0.03, SE = 0.01, p < 0.001)
and diff.ph.len (β̂ = 0.02, SE = 0.01, p < 0.05), see also Table 4.5.1 for a detailed
report. As these predictors are in the direction of the response variable, it indicates
that replacing a lexical unit with its synonym which has better predictability in a
context leads to better recognition under a noisy environment in which the context
is intelligible. Similarly, the model shows that there is a gain in recognition when a
lexical unit is replaced by its synonym which has a greater number of phonemes.
These observations are congruent with earlier studies on the effect of predictability
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on word recognition (Kalikow et al., 1977) and the reduction of confusion with longer
words (Vitevitch, 2002; Vitevitch and Rodríguez, 2005). It is noteworthy that the
difference in STOI was not significant in the maximal model and hence the best-fit
model excluded acoustic-based features for explaining the variance in diff.HRS in a
low-noise environment.

The model exhibited similar effects at a medium noisy environment (SNR 0)
by identifying the significance of diff.log.prob (β̂ = 0.04, SE = 0.01, p <= 0.001) and
diff.ph.len (β̂ = 0.03, SE = 0.01, p < 0.01) for explaining the variance in improved
recognition. This reflects that under low/medium noisy environments, the gain in
recognition introduced by lexical replacement is better explained by the improved
predictability or the increased number of phonemes introduced by the replaced
lexical item. However, the difference in the intelligibility of synonyms didn’t have an
effect on their recognition in such low/medium noisy environments.

In contrast, the model for SNR −5 showed that neither diff.log.prob nor diff.ph.len
were significant predictors of the improvement in HRS through lexical replacement.
Instead, it revealed that the replacement of a lexical unit with its more intelligible
synonym can be predicted by the measure STOI and diff.STOI (β̂ = 0.69, SE = 0.32,
p < 0.05). This reflects that in highly noisy environments, choosing a lexical
unit that has better noise-robust acoustic cues than its synonym can significantly
improve its recognition.

4.6 conclusion

In this chapter, we investigated the potential of a new strategy of choosing noise-
robust lexical paraphrases to mitigate comprehension errors that are caused by noise
in listening environments. Listening experiments with human subjects were conduc-
ted to investigate whether the recognition of synonyms differs in an environment
with babble/white noise in the background. We found that the potential impact
of lexical replacement increased with an increase in the noise level (9% at clean,
∼ 28% at SNR 0, and ∼ 39% at SNR −5). Similar effects were also observed when
synonyms were presented with the linguistic context in noisy listening setups.

Further investigation on the observed reduction in noise-induced comprehension
errors by lexical replacement revealed that the intelligibility of a word in low and
medium noise conditions is primarily driven by a word’s predictability. On the other
hand, in more noisy environments, the intelligibility of a word was mainly driven
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by its acoustic features as captured by the STOI. This highlights that under high
noise environments, the availability of top-down expectations like linguistic context,
gets compromised and strong bottom-up signals like noise-robust acoustic cues are
essential for better word perception. Thus, we conclude this chapter with a key
observation that when an intended meaning needs to be realized as spoken words in
very noisy environments, choosing noise-robust lexical paraphrases is a promising
approach to improve comprehension.

For reducing word misperception in naturalistic dialogue environments, a speech
synthesis strategy solely based on lexical paraphrases limits its scope of application.
This leads to the need for a generic paraphrasing strategy and raises the question
of whether modifying linguistic characteristics at a sentence level reflects any im-
provement in the overall utterance perception, under noisy listening setups. We
will explore such questions in the next chapter, with a specific focus on sentential
paraphrases and measuring its impact on intelligibility at a sentence-level.
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5S E N T E N T I A L PA R A P H R A S E S T O I M P R O V E
I N T E L L I G I B I L I T Y

In the last chapter, we found that lexical paraphrases can significantly reduce word mis-
perception in noise. However, it raises an important question of whether lexical
replacements with synonyms can impact the overall utterance intelligibility - the
difference in noise-robustness of synonyms is not comprehensive to determine the
intelligibility difference between sentences, which consists of a word that undergoes
the replacement as well as its linguistic context. Thus, measuring noise-robustness
at the sentence level is critical and doubly so, when considering the application of
mishearing mitigation strategies such as in Spoken Dialog Systems (SDS), which
produce naturalistic utterances that are usually longer than single words. Addition-
ally, an intelligibility improvement strategy solely based on lexical replacements is
constrained by the availability of synonyms that can fit in a given linguistic context.

Hence, in this chapter, we shift our investigations toward sentence-level intelligib-
ility (as described in Section 5.3), employing sentential paraphrases (see Section 5.2)
to include different types of paraphrases in English (Lan et al., 2017), like elaboration,
word or phrase reordering, anaphora resolution, etc. The listening experiment that
we conducted to create the perception data of sentential paraphrases in noise, is
elaborately discussed in Section 5.4. Further, we proposed a working prototype for a
noise-adaptive SDS by developing an intelligibility-aware paraphrase-pair ranking
model (in Section 5.6), as it is critical to automatically identify the better intelligible
linguistic form among the list of candidate paraphrases. The main contributions of
the current work are the following:

• We demonstrated that the choice of linguistic forms to represent a message can
indeed influence its utterance intelligibility in noise.

• We created a perception dataset of sentential paraphrases in noise 5. The largest
publicly available corpus of its kind.

• We outlined a schema for noise-robust speech synthesis, which introduces no
signal distortion to synthesized utterances.

5Experiment data is publicly available here: Paraphrases-in-Noise (PiN)
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Overall, the findings in this chapter demonstrate the potential of sentential
paraphrases to proactively synthesize better intelligible speech in noise.

5.1 introduction

Lexical replacements with noise-robust synonyms are capable of mitigating word
misperception in noisy environments. However, the impact of such lexical replace-
ments on the whole utterance intelligibility is still unknown: the difference in human
recognition score (HRS) of synonyms may not correlate with the actual difference
in the intelligibility of the whole sentence that underwent the lexical replacement.
Measuring the impact of paraphrasing on the whole utterance intelligibility is also
critical as prior studies have shown that speech perception is facilitated by top-down
signals like linguistic cues and world knowledge, especially in adverse listening
conditions where the bottom-up acoustic signals are compromised Kalikow et al.
(1977); Schoof and Rosen (2015); Ward et al. (2017).

Consider the synonym pair (sentiment, view) that are equally likely to fit in a
given linguistic context:

but probably not the actual behind it

Filling the gap with one of the synonyms result in a pair of sentential paraphrases
s1 and s2:

• s1: but probably not the actual sentiment behind it

• s2: but probably not the actual view behind it

Based on the listening experiment described in Section 4.5, we observed that
under babble noise at SNR −5 dB, the lexical item sentiment exhibited higher per-
ception (i.e., high HRS) than the token view. However, it is still unknown whether
the whole utterance intelligibility of s1 is better than s2. Though sentences s1 and s2

are only different by a single lexical item, the impact of lexical replacement needs
to be measured at a sentence level – word(s) that underwent paraphrasing may or
may not influence the perception of the whole sentence and the ultimate objective
of paraphrasing is to improve the overall speech perception, rather than individual
word intelligibility. This signifies the need to determine the impact of paraphrasing on
intelligibility by measuring noise-robustness at a sentence-level, rather than the word-level
noise-robustness, which was defined in (4.1).
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Another limitation of the mishearing mitigation strategy proposed in Chapter 4

is the constrained lexical operation, which is associated with synonyms that fit in a
given linguistic context. To this end, we propose to extend this simple mitigation
strategy by considering sentential paraphrases, on top of lexical paraphrases, thereby
including different paraphrase phenomena. As elaborately discussed in Bhagat and
Hovy (2013), synonym replacement is just one of the many possibilities of creating
sentential paraphrases that are distinct in surface form and equivalent in semantics
(Lan et al., 2017).

One of the main objectives of the current study is to analyze whether the human
perception of sentential paraphrases is significantly different in noisy listening
conditions – if the noise impact on sentential paraphrases is equally the same, then
using one over the other is less likely to introduce any gain in intelligibility. Further,
it is also important to analyze why certain sentences are more intelligible than their
paraphrase if any difference exists. Prior experiments on sentence-level linguistic
characteristics like syntactic structure (Carroll and Ruigendijk, 2013; Van Kuyk
et al., 2018) and word order (Uslar et al., 2013) have demonstrated their influence
on the average utterance intelligibility. However, pair-wise comparisons are rarely
documented in the literature to analyze the benefits of paraphrasing on utterance
intelligibility. Hence, we perform pairwise analysis to explain whether and to what
extent sentential paraphrases can introduce an intelligibility-gain, in noise.

Finally, we propose an intelligibility-aware paraphrase ranking model, embed-
ded in a spoken dialogue system (SDS), to generate noise-robust utterances using
paraphrasing, as illustrated in Figure5.1.

The rest of this chapter is dedicated to discussing the following three research
questions:

• RQ 1: Do sentential paraphrases differ from one another concerning how
intelligible they are in noisy conditions?

• RQ 2: If so, what contributes to the observed intelligibility differences?

• RQ 3: Finally, how can we utilize paraphrasing to synthesize noise-robust
utterances?
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DM

ASR NLU

TTS

User in Noise

Generate
Paraphrases

Rank
Paraphrases NLG

Figure 5.1: The proposed framework to generate noise-adaptive system utterances, using
paraphrases. The framework propose to embed two new modules – paraphrase
generation and intelligibility-aware ranking – to a traditional spoken dialogue
system, which consists of automatic speech recognition (ASR), natural language
understanding (NLU), dialogue manager (DM), natural language generation (NLG),
and text-to-speech system (TTS).

5.2 sentential paraphrases

Paraphrases are phrases/sentences that represent a similar semantic meaning using
different wordings. In Chapter 4, we have seen one of the common strategies of
paraphrase generation: replacements of words in a sentence with their synonyms.
However, paraphrasing techniques at a sentence level are not limited to synonyms.
Instead, several linguistic modifications like the change of voice, person, specification,
etc were also recognized as paraphrasing types in large paraphrase datasets in
English (Bhagat and Hovy, 2013). A few examples of different types of sentential
paraphrases are given below:

• Change of voice:

– Simone prepared the agenda. ⇔ The agenda was prepared by Simone.

• Change of person:

– Vijay said, “I will stay home.” ⇔ Vijay said that he would stay home.

• General/Specific substitution:

– They are good with labradors. ⇔ They are good with dogs.
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Thus, to study the intelligibility differences between sentential paraphrases, it
is important to consider different types of paraphrases in the experiment. Pairs
of paraphrases can either be retrieved from a paraphrase corpus or it could be
synthesized using a paraphrase generation model. Because of the unavailability of a
paraphrase corpus for spoken data, stimuli for the listening experiment were created
using a paraphrase generation model.

However, the notion comes with the difficulty that two different sentences rarely
have the exact same meaning in all contexts, hence paraphrases, especially at the
sentence level, typically only approximate the original meaning (Bhagat and Hovy,
2013). On the one hand, generating sentential paraphrases which are exactly equivalent
in semantics leads to trivial patterns such as word order changes or minimal lexical
substitutions among paraphrases (Madnani and Dorr, 2010). This however can mean
that there is only a minimal difference in the effect of intelligibility in noise between
such paraphrases. On the other hand, the generation of non-trivial paraphrases
introduces better lexical/syntactic diversity, and may hence have larger effects on
intelligibility, but this in turn, demands more scrutiny for semantic similarity (Dolan
and Brockett, 2005).

In this chapter, we hence explore the effect of paraphrases that approximate
semantic equivalence instead of strict semantic equivalence. To include a large variety
of paraphrases, stimuli sentences were generated using a pre-trained text generation
model (Rajauria, 2020: accessed by March 21, 2022; Zhang et al., 2020) which was
fine-tuned on several paraphrase datasets like Quora Question Pairs, PAWS (Zhang
et al., 2019) etc. For the input sentences to the paraphrasing model, we selected a
list of short sentences (10-12 words) from the dialogue corpus Switchboard (Godfrey
et al., 1992). After paraphrase generation, we employed automatic filtering to select
the top two paraphrases for each input sentence, based on a semantic similarity
score (Zhang* et al., 2020). This resulted in a list of paraphrase triplets (s1, s2, s3),
consisting of different paraphrase types formed by lexical replacements, changes in
syntactic structure, reordering words, etc.

Since existing paraphrasing models lack the domain knowledge of spoken data, a
manual selection was performed to ensure the quality of the generated paraphrases
in terms of semantic equivalence. Every paraphrase triplet was converted to three
pairs: (s1, s2), (s2, s3) and (s1, s3). Then, every paraphrase pair was verified for
closeness in semantics. We identified about 300 triplets that exhibited approximate
semantic similarity in all three pairs. Those triplets were randomly split into three
groups of 100 (one for each listening environment). Hereafter, we refer to this dataset
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Sentence-ID Sentences

s1 They seem to give more of just the facts than opinions.
s2 They give more information than opinions.
s3 They seem to give more facts than opinions.

s1 You never hear about it really in the big ones.
s2 You don’t hear much about it in the big ones.
s3 In the big ones you don’t hear about it.

s1 It was a very close game and hard fought game.
s2 The game was close and hard fought.
s3 It was a very close game.

Table 5.1: A few sample paraphrase triplets from the newly created Paraphrases-in-
Noise (PiN) dataset.

Dataset Total SNR 5 SNR 0 SNR −5

PiN 900 300 300 300

PiNboth 332 104 123 105

PiNeither 596 195 205 196

Table 5.2: An overview of the number of paraphrase pairs per listening condition in
PiN dataset. PiNboth and PiNeither are subsets of the PiN dataset, created based on
human annotations.

as Paraphrases in Noise (PiN).
To ensure that the sentential paraphrases in the PiN dataset are indeed equivalent

in semantics, two annotators were asked to label the pairs as ‘paraphrase’ only if
they fit the definition of a ‘quasi-paraphrase’, i.e., sentences or phrases that convey
approximately the same meaning using different words (Bhagat and Hovy, 2013). Around
2
3 of PiN were identified as ‘quasi paraphrase’ by at least one of the two annotators
(hereafter referred to this subset as PiNeither) and 1

3 by both annotators (hereafter
referred to this subset as PiNboth). Table 5.2 shows details of these subsets per noise
condition.

5.3 measuring how paraphrases influence intelligibility

In Chapter 4, we defined a measure called Human Recognition Score (HRS) in
Equation (4.1), to calculate the noise-robustness of a lexical unit. Precisely, the HRS of
a lexical unit represents the rate of correct recognition among all its listening instances
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at a listening condition. Such lexical recognition scores were previously used in
literature to define sentence-specific intelligibility scores to study the differences in
sentence-specific characteristics like complexity (Uslar et al., 2013). Similarly, earlier
experiments have also used the percentage of correct keyword recognitions in an
utterance to compare intelligibility differences among sentences, synthesized by
different speech enhancement techniques (Cooke et al., 2013b), or to compare the
difference between speech perception and speech comprehension in noise (Fontan
et al., 2015).

We take a slightly different approach to measuring sentence-level intelligibility –
instead of calculating the exact recognition of the lexical units in a target utterance, we
measure the deviation of a perceived utterance from the target utterance. Specifically,
we utilize an edit distance algorithm to determine whether the perceived utterance
sounds similar to the actual utterance. A lower distance value indicates that the
perception is better and the actual utterance is more noise-robust. Unlike HRS-based
metrics, a sentence-level metric based on the edit distance captures the word order
and repeated words in a sentence. Additionally, edit distance provides flexibility for
calculating deviation at different granularities like words, characters, or phonemes
(see subsection below for a detailed discussion).

We utilize a sentence-level intelligibility metric to perform pairwise comparisons
among paraphrases, first, to determine whether their utterance intelligibility is dif-
ferent under noisy listening conditions. Further, we analyze the correlation between
the difference in HRS of synonyms that underwent the lexical replacement and
the difference in sentence-level intelligibility within their corresponding sentential
paraphrases. The primary objective of that correlation analysis is to understand
the significance of a sentence-level intelligibility score for comparing sentential
paraphrases, which were created by a single lexical replacement in a sentence.

5.3.1 Sentence-level Intelligibility

We defined a measure called sentence-level intelligibility which captures the noise-
robustness of an utterance (ie., a sentence). This measure is motivated by earlier
work on slips of the ear, where the proportion of listeners who misrecognized a word
w1 as another word w2 is considered as the consistency of a confusion (Marxer
et al., 2016b). Similarly, to measure how well a target utterance (T) is perceived in a
listening condition, the mean recognition rate of an utterance among a set of listeners
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(with normal hearing thresholds) was calculated, as shown in (5.1). For this purpose,
we ensured that every stimulus utterance was listened to by a set of n listeners.

Sent-Int(T) =
1
n

n

∑
i=1

Recog-Rate(T, Pi) (5.1)

Further, the rate of recognition at each listening instance i is calculated by
comparing the phonemic transcripts of the target (T) and perceived (Pi) utterances,
as shown in (5.2). The phonemic transcripts Tph and Pph

i were generated using a
Grapheme-to-Phoneme(G2P) converter (Kim, 2018: accessed by March 21, 2022).
The stress markers in the phonemic transcript were ignored while comparing the
transcripts. For string comparison, we used the Levenshtein distance (Lev), which
calculates the minimum number of edits (i.e., deletions/substitutions/insertions of
phonemes) required to change Tph into Pph

i .

Recog-Rate(T, Pi) = 1 −
Lev(Tph, Pph

i )

#phonemesTph
(5.2)

An equal cost (1) was assigned for all edit operations. The phoneme recognition
rate was then calculated by first normalizing the edit distance by the number of
phonemes in the target and then subtracting this value from 1. This ensures that
the noise-robustness measure is not sensitive to the target utterance length. The
intelligibility score for each utterance ranges between 0.0 (completely unintelligible)
and 1.0 (completely intelligible), indicating that utterances with higher Sent-Int are
better intelligible. As shown in the example reported in Table 5.3, the perceived
utterance P2 is closer to the target utterance (T) than P1, which is also captured in
their corresponding values for Recog-Rate.

We chose to calculate the Levenshtein distance between a target utterance and its
perceived utterance in terms of phonemes, as defined earlier in (5.2). However, this
measurement can be easily modified to calculate utterance intelligibility in terms of
words or characters. Figure 5.2 depicts the correlation between intelligibility scores
calculated using three different units: phonemes, characters, and words. With the
perception data in the SUL dataset, we observed that all three intelligibility scores
have a high Pearson correlation of above 0.9.

It should also be noteworthy that phoneme-based intelligibility is highly correl-
ated to character-based intelligibility scores. This observation aligns with the earlier
observation of high predictability in determining the spelling of English words from
their pronunciation (Berndt et al., 1987). On the other hand, we observed that the
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Type Transcripts

T you never hear about it really in the big ones
Tph Y UW N EH V ER HH IY R AH B AW T IH T R IH L IY IH N DH AH B IH G W AH N Z

P1 it really is the big one
Pph

1 IH T R IH L IY IH Z DH AH B IH G W AH N

Recog-Rate 0.5

P2 he went about it really in the big one
Pph

2 HH IY W EH N T AH B AW T IH T R IH L IY IH N DH AH B IH G W AH N

Recog-Rate 0.7

Table 5.3: A sample target utterance (T) and its two perceived utterances (P1 and P2)
are reported, along with their corresponding phonemic transcripts and recognition
rates for each perceived utterance. As indicated by the recognition rates, perception
is better at P2 instance.

intelligibility scores based on words were relatively less, compared to those based
on phonemes. This difference is primarily driven by minor morphological errors (eg:
calculation vs. calculate) or spelling mistakes (eg: practise vs. practice), which results
in a complete mismatch when measured in terms of words and a partial mismatch
when the deviation is measured using phonemes. The current study is to determine
the noise-robustness of an utterance. Therefore, we utilized the phoneme-based
intelligibility measure as it represents the similarity between the sounds of the actual
utterance and the perceived utterance.

5.3.2 Gain in Sentence-level Intelligibility

The Sent-Int score is further utilized to measure the difference in noise-robustness
between two sentences: s1 and s2. When the paired sentences are sentential para-
phrases, an absolute difference in the intelligibility of s1 and s2 indicates the impact
of paraphrasing on the overall utterance intelligibility. Hereafter, this measure is
referred to as Sent-Int-Gain and its value ranges from 0.0 (no gain) to 1.0 (maximum
gain).

Sent-Int-Gain(S1, S2) = | Sent-Int(S1)− Sent-Int(S2) | (5.3)

Sent-Int-Gain vs. diff.HRS: With noise-robustness measures defined at the
word level (HRS) and sentence level (Sent-Int), at first, we analyzed whether better-
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Figure 5.2: Correlation between three intelligibility scores, which are based on
different tokens phonemes (PhER), characters (ChER), and words (WER). The plot
entries are color-coded to distinguish the utterances of SUL dataset, perceived in the
presence of babble noise at SNR 5 (red), SNR 0 (green), and SNR −5 (blue).

intelligible synonyms guarantee better utterance intelligibility, in noisy environments.
To this end, we performed two different pair-wise rankings on the SUL dataset:
sentences in each paraphrase pair were ranked, first based on their Sent-Int and then,
based on the HRS of the synonyms that underwent the lexical replacement. This
ranking is further utilized to study whether a lexical unit that is more noise-robust
than its synonym leads to an utterance that is more intelligible than its sentence
paraphrase (which is formed by lexical replacement with synonym).

Our results show that the correlation between the two rankings is relatively weak
at all noise conditions: SNR 5 (r=0.33, p < 0.05), SNR 0 (r=0.32, p < 0.05), and
SNR −5 (r=0.44, p < 0.05). It indicates that just comparing the intelligibility of
lexical units that undergo the lexical replacement (i.e., a word vs. its synonym) is not
enough to determine the direction of sentence intelligibility, even when the rest of the
words in the sentence remains the same - it could be possible that those lexical items
that underwent the replacement are not critical for the overall utterance intelligibility.
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Once again, this highlights the need to measure the impact of paraphrasing at the
sentence-level, rather than just comparing the noise-robustness of lexical units that
undergo lexical modification.

5.4 listening experiments

Perception data of sentential paraphrases in noise is quintessential for studying their
potential to improve utterance intelligibility. However, the availability of such per-
ception data is very limited, owing to the limited prior explorations in this research
direction. The SUL dataset described in Section 4.4.2 only consists of sentential para-
phrase pairs which differ by a single lexical unit; excluding other paraphrasing styles
to generate sentential paraphrases. Thus we conducted a perception experiment
with paraphrase pairs in the PiN dataset, for a comprehensive study on perception
differences among sentential paraphrases in noise.

5.4.1 Experimental Setup

This section describes the listening experiment setup that we followed to elicit
(mis)perception of utterances in three different noisy listening conditions.

Stimuli: For audio stimuli creation, first, clean utterances for each sentence
were synthesized using the speech synthesizer API of Google Translate (Durette,
2014: accessed July 30, 2020). Then, corresponding noisy utterances were generated
by performing additive noise-mixing using the babble noise from the NOISEX-92
database (Varga and Steeneken, 1993) and the mixing tool audio-SNR (Sato, 2018:
accessed July 6, 2022). To avoid priming effects, 15 stimuli lists with 60 sentences,
were created while making sure none of the lists contained sentences that were
paraphrases of each other. Every stimuli list consisted of utterances in all three noisy
conditions.

Participants: The experiment was deployed on a crowd-sourcing platform, Pro-
lific6 using the LingoTurk framework (Pusse et al., 2016). It was conducted with a
group of 90 participants who are native speakers of British English, based in the UK.
The group consisted of 60 women, 29 men, and one non-binary person. The average
age of the cohort is 32.4 ranging from 19 to 50. Our experiment was not accessible
to individuals who reported to have hearing difficulties.

6https://www.prolific.co/
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Design and procedure: Every audio stimulus was presented to six different
participants. Participants were asked to transcribe after listening to each utterance.
Every participant had 60 listening instances (20 per noise level). Similar to the
perception experiment described in our previous study (Section 4.4.2), participants
were instructed to use a placeholder (...) to mark cases of completely unintelligible
words. They were also encouraged to guess, when necessary.

Analysis: Experiment execution was followed by the intelligibility calculation
(using Eq. 5.1) for all 900 utterances. The overall intelligibility in a listening en-
vironment was measured by averaging the sentence-level intelligibility across all
utterances in a particular listening condition.

Using this score, we conducted several analyses. First, we compared the overall
intelligibility at different noise levels for all three sets of paraphrase pairs: the full
dataset, and the two subsets of stricter paraphrase pairs which were annotated as
such by at least one or both the human judges. Further, we calculated the (absolute)
difference in intelligibility for each paraphrase pair, in order to infer whether a
variation in the linguistic form of a message introduces a gain in intelligibility,
otherwise known as the Sent-Int-Gain as defined in (5.3). Sent-Int-Gain is a proposed
metric to measure the impact of paraphrasing on speech perception, which was
referred to as ∆p in Section 3.1. The mean of this score represents the overall
impact of paraphrasing on utterance intelligibility, ranging from 0.0 (no effect) to 1.0
(maximum effect), see Figure 5.3 below.

5.4.2 Results and Discussion

In this section, we analyzed the impact of paraphrasing on utterance intelligibility in
noise, considering both quasi paraphrases (in PiN dataset) and strict paraphrases (in
PiNboth and PiNeither datasets).

PiN Dataset. The overall intelligibility in each listening environment was calcu-
lated by averaging the sentence-level intelligibility scores across different sets of
utterances. As expected, we observed a significant reduction (p < 0.05) in the overall
intelligibility with an increase in the noise level, as shown in Table 5.4.

This indicates the impact of noise on utterance intelligibility, even with those
individuals with NH thresholds. We noticed that listeners’ ability to recognize utter-
ances at SNR 0 is not as severely damaged as the SNR −5 condition. Reasons for this,
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SNR 5 SNR 0 SNR −5

0.97 0.94 0.71

Table 5.4: An overview of overall utterance intelligibility in the PiN dataset. The
overall intelligibility was reduced substantially, with an increase in the background
noise level.

besides the lower effect of sound masking, could be that listeners also understand the
context better and have more cognitive capacity available for generating predictions,
which in turn help them to recognize the words.

RQ 1: Impact of paraphrasing: To study the impact of paraphrasing on
utterance intelligibility, we looked at the intelligibility differences between paraphrase
pairs under each listening environment. Figure 5.3 illustrates the intelligibility
differences between paraphrase pairs for the PiN dataset. Further, we calculated
the average intelligibility differences between paraphrases at each LE. This value is
critical as it demonstrates whether the perception of paraphrases is different in a
particular listening environment. We observed that at SNR 5 and SNR 0, most of
the paraphrase pairs exhibit only a small difference in intelligibility. This is because
of the ceiling effect of word recognition in listening environments with low noise
levels. Although the mean intelligibility difference between paraphrases at SNR 0
(0.06, p < 0.05) is significantly above SNR 5 (0.04), their scores being close to 0.0
indicates the limited scope of paraphrasing to improve intelligibility under such
less noisy environments. However, at SNR −5, we observed a mean intelligibility
difference of 0.20 (p < 0.05) reflecting the increased number of pairs that are distinct
in their utterance intelligibility, compared to both SNR 5 and SNR 0 noisy setups.
This highlights that at a highly noisy condition, paraphrases are perceived with
considerably different rates of recognition and thus, choosing one lexical realization
of a message over its sentential paraphrase is crucial for the intelligibility of the
message.

PiNboth and PiNeither. Similar to earlier studies on sentential paraphrases, the
outcome of annotating PiN paraphrase pairs highlighted that the notion of semantic
equivalence at a sentence level is hard to define. As described in Section 5.2, the
paraphrase pair annotation task that exhibited a moderate annotator agreement
(κ = 0.42, p < 0.05), resulted in the formation of two subsets of stricter paraphrases:
(a) PiNboth and (b) PiNeither.
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Figure 5.3: Difference in the sentence-level intelligibility of paraphrase pairs in PiN
dataset. The number of paraphrase pairs that are distinct in their intelligibility
significantly increased with an increase in the babble noise level (SNR 5 −→ SNR 0
−→ SNR −5).

For both subsets, we observed a steady increase in the mean intelligibility dif-
ference among paraphrase pairs, starting with 0.03 at SNR 5, to 0.06 (p < 0.05) at
SNR 0 and 0.19 (p < 0.05) at SNR −5. As illustrated in Figures 5.4 and 5.5, the sets
of stricter paraphrases also followed the trend similar to PiN dataset: the significant
difference in intelligibility between paraphrases increased with an increase in the
noise level. This observation also aligns with our earlier finding that the recognition
difference between synonyms (i.e., lexical paraphrases) increases with an increase in
noise level (Chingacham et al., 2021).

This repeated pattern highlights the significance of the choice of surface real-
izations (of a meaning) under noisy environments, as it influences the utterance
intelligibility which in turn impacts the message comprehension. To assess the
performance of an oracle surface-form selector, we labeled utterances in every para-
phrase pair as either more intelligible or less intelligible by comparing their intelligibility
scores (ie., Sent-Int). Then, the relative gain in sentence-level intelligibility intro-
duced by the oracle selector is calculated with the assumption that more intelligible
paraphrase is always selected over its counterpart. This resulted in a relatively
low gain in intelligibility at SNR 5 (2%) and SNR 0 (5%), compared to that of an
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Figure 5.4: Difference in the sentence-level intelligibility of paraphrase pairs in
PiNboth dataset. The number of paraphrase pairs which are distinct in their intelli-
gibility significantly increased with an increase in the babble noise level (SNR 5 −→
SNR 0 −→ SNR −5).

incredibly high intelligibility-gain of 33% at SNR −5. It leads us to the conclusion
of this section that paraphrases can indeed introduce differences in sentence-level
intelligibility, suggesting the possibility of improving utterance intelligibility by
choosing a noise-robust sentential paraphrase.
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Figure 5.5: Difference in the sentence-level intelligibility of paraphrase pairs in
PiNeither dataset. The number of paraphrase pairs that are distinct in their intelli-
gibility significantly increased with an increase in the babble noise level (SNR 5 −→
SNR 0 −→ SNR −5).

5.5 explaining the intelligibility gain via paraphrasing

Prior work has shown that speech perception in noise is influenced by both acoustic
and linguistic characteristics. However, there is little documentation in the literature
to explain the features of sentential paraphrases that introduce a gain in intelligibility,
in noise. To this end, we conducted modeling experiments to study the impact of
paraphrasing on utterance intelligibility (RQ 2). For all experiments in this section,
we utilized the implementation of linear regression models in the statistical software
R (Version 3.6.1) (R Core Team, 2019). The following three features were used to
define the models’ dependent variables:

(1) Length of utterance: The length of utterance is an interesting correlate of
intelligibility, as previous studies on speech modifications found that humans tend
to shorten the utterance length to improve speech perception in noise (Cooke et al.,
2014). On the other hand, shorter words were found to be more confusing in noise
(Luce and Pisoni, 1998). Similarly, in the last chapter, we observed that among
synonym pairs, longer words were better perceived in noise, both with and without
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linguistic context (for more details, see Section 4.5). The length of an utterance is
represented by the number of phonemes (hereafter referred to as phLen).

(2) Linguistic predictability: Kalikow et al. (1977) showed that the predictability
of a word influences its intelligibility in noise. The surprisal theory in language
comprehension also demonstrates that the effort to process a word is inversely
proportional to its predictability in context (Hale, 2001). Similarly, earlier studies
observed that listeners’ perceptual difficulties are influenced by high-level signals
like linguistic predictability (Bhandari et al., 2021; Coene et al., 2016) and situational
cues (Ward et al., 2017). However, predictability may also lead to false hearing
instances (Rogers et al., 2012), where the listener is highly confident of the misheard
utterance. It is also interesting to study this feature in environments where the
actual context of a word in a sentence is (acoustically) noisy and different from the
linguistic context. To represent how hard to predict an utterance utt (u0, u1, u2...ut)

is, we utilized the definition of perplexity, as stated in (5.4). For estimating the
likelihood of a token from its preceding context, pθ(ui|u<i), a pre-trained dialog
response generation model (Zhang et al., 2020) was employed.

PPL(utt) = exp {−1
t

t

∑
i=1

log pθ(ui|u<i)} (5.4)

Thus, utterances that are less linguistically predictable are represented with high PPL
scores. Hereafter this feature is referred to as ppl.

(3) Speech Intelligibility: Speech Intelligibility (SI) metrics are widely used
to perform speech enhancements and noise reductions. The Short-Time Objective
Intelligibility (STOI) (Taal et al., 2010) measure is one of the intrusive SI metrics,
which requires the clean speech reference to estimate the intelligibility of a noisy
speech. The STOI value ranges between −1.0 and 1.0, as it captures the mean
correlation between the time-frequency units of the clean and the distorted signal.
Higher STOI values indicate better audibility. STOI scores were generated using a
Python module (Pariente, 2018: accessed July 30, 2020).

Analysis: Before modeling the gain in intelligibility induced by paraphrases,
we studied the influence of the above-listed features on sentence-level intelligibility
in noise. To this end, regression models were built separately for each noise level
in the PiN dataset, by considering Sent-Int as the response variable. All models
were fit to the data, after performing feature scaling with z-score normalization.
Similarly, for modeling the intelligibility-gain in noise, we considered the Sent-Int-
Gain as the response variable. We hypothesize that the observed gain in sentence-level
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intelligibility can be explained by the relative difference in sentence-level features of paired
paraphrases. For this purpose, first, we identified the ‘more intelligible’ utterance in
every paraphrase pair. Then, we calculated the feature difference between paraphrase
pairs, with respect to the ‘more intelligible’ utterance within each pair. The predictor
variables of this model are referred to as diff.phLen, diff.ppl and diff.STOI. In addition
to the PiN dataset, the two subsets of the dataset (as mentioned in Table 5.2) were
also considered to model the intelligibility gain among stricter paraphrase pairs.

5.5.1 Results and Discussion

In this section, we discussed the outcomes of our modeling experiment, which were
conducted to address RQ 2 – why certain sentences are better intelligible than their
sentential paraphrases in noise.

Sentence-level intelligibility: Under all three noisy listening conditions, the
selected three features exhibited only a weak correlation (< 0.15) with the dependent
variable, Sent-Int. We also ensured the independence of features by observing a lower
degree of multicollinearity (Variance Inflation Factor < 1.02) under all conditions. By
considering the PiN pairs at SNR 5, we found that sentences which are shorter in
length (phLen: β̂ = −0.015, p < 0.05) and linguistically more predictable (ppl: β̂ =
−0.007, p < 0.05) are better perceived (refer Table 5.5.1 for details). However, STOI
is not significant feature at SNR 5, which highlights the negligible effect of a masker
on perception, at a low noise level.

Moreover, we observed a main effect of acoustic cues, at higher noise levels like
SNR 0 (STOI: β̂ = 0.015, p < 0.05) and SNR −5 (STOI: β̂ = 0.070, p < 0.05), indicating
the relevance of noise-robust acoustic cues on speech perception. Our models also
showed a main effect of sentence predictability at higher noise levels: SNR 0 (ppl:
β̂ = −0.018, p < 0.05) and SNR −5 (ppl: β̂ = −0.049, p < 0.05). This observation
agrees with the earlier finding that linguistically predictable sentences are more
intelligible in fluctuating noise conditions (Schoof and Rosen, 2015). At SNR −5, in
addition to STOI and ppl, the model exhibited a main effect of phLen (β̂ = −0.031,
p < 0.05), indicating better perception in noise with shorter utterances. Overall,
models indicate that stronger cues in top-down (linguistics) as well as bottom-up
(acoustics) signals, lead to better utterance intelligibility in noise. Next, we model
the intelligibility-gain introduced by sentential paraphrases in noise.

Gain in sentence-level intelligibility: With stricter paraphrases in PiNboth data-
set, the model showed no impact of paraphrasing on intelligibility, at a less adverse
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Dependent variable: Sent-Int

Babble,SNR 5 Babble,SNR 0 Babble,SNR −5

scale(STOI) −0.002 0.015
∗∗∗

0.070
∗∗∗

(0.003) (0.004) (0.10)

scale(ppl) −0.007
∗∗∗ −0.018

∗∗∗ −0.049
∗∗∗

(0.003) (0.004) (0.010)

scale(phLen) −0.015
∗∗∗ −0.007 −0.031

∗∗∗

(0.003) (0.004) (0.010)

(intercept) 0.968
∗∗∗

0.938
∗∗∗

0.706
∗∗∗

(0.003) (0.004) (0.010)

Observations 300 300 300

R2
0.096 0.101 0.212

Adjusted R2
0.087 0.092 0.204

Residual Std. Error (df = 296) 0.052 0.071 0.179

F Statistic (df = 3; 596) 10.49
∗∗∗

11.05
∗∗∗

26.5∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.5: Modeling sentence-level intelligibility (Sent-Int) using linguistic and
acoustic features of utterances in the PiN dataset. Model coefficients of features
(with SEs in brackets) are reported, for all three noise levels.

listening setup (SNR 5). This outcome is expected, as we observed a ceiling effect
in sentence-level intelligibility at a low noise level (see Section 5.4.2). However, the
model exhibited a main effect of difference in acoustic-cues at both SNR 0 (diff.STOI:
β̂ = 0.014; p < 0.05) and SNR −5 (diff.STOI: β̂ = 0.066; p < 0.01), indicating: (a)
linguistic modifications can introduce utterances with better acoustic cues and (b)
the observed intelligibility-gain at both SNR 0 and SNR −5, is mainly driven by
noise-robust acoustic cues, which is captured in the STOI feature. See Table 5.5.1 for
more details.

By modeling the intelligibility-gain among PiNeither pairs at SNR 5, we found
that diff.phLen (β̂ = −0.008; p < 0.05) exhibits, a small but a significant effect on
Sent-Int-Gain (refer Table 5.5.1). It indicates that paraphrases that are shorter in
length than the given sentence, are better perceived in noise. This observation also
states the impact of approximation of semantic equivalence on the intelligibility
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Dependent variable: Sent-Int-Gain

(SNR 5) (SNR 0) (SNR −5)

scale(diff.STOI) −0.002 0.014
∗∗

0.066
∗∗∗

(0.004) (0.006) (0.014)

scale(diff.ppl) 0.002 −0.005 −0.016

(0.004) (0.006) (0.014)

scale(diff.phLen) 0.001 −0.008 −0.011

(0.004) (0.006) (0.014)

(intercept) 0.030
∗∗∗

0.062
∗∗∗

0.196
∗∗∗

(0.004) (0.006) (0.013)

Observations 104 123 105

R2
0.005 0.058 0.207

Adjusted R2 −0.025 0.034 0.184

Residual Std. Error 0.038 (df = 100) 0.064 (df = 119) 0.134 (df = 101)
F Statistic 0.157 (df = 3; 100) 2.449

∗ (df = 3; 119) 8.800
∗∗∗ (df = 3; 101)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.6: Modeling the gain in sentence-level intelligibility (Sent-Int-Gain) using
linguistic and acoustic features of paraphrases in PiNboth dataset. Model coefficients
of features (with SEs in brackets) are reported, for all three noise levels.

gain. More precisely, compared to the PiNeither subset, PiNboth consists of more
stricter paraphrases that are closer in semantics, but less different in their surface
form. Hence, the approximation in semantic equivalence among the PiNeither pairs
introduced a main effect of utterance length on intelligibility gain. Similarly, at
SNR −5, we observed the main effect of utterance length (phLen: β̂ = −0.03; p < 0.05),
in addition to STOI (β̂ = 0.04; p < 0.05), representing that the gain in intelligibility
being driven by both acoustic cues as well as the utterance length. However at SNR 0,
we only found the main effect of STOI (β̂ = 0.009; p < 0.05) on intelligibility-gain.

Like the PiNeither pairs, the paraphrases in the PiN dataset exhibited similar
effects on the intelligibility-gain, at SNR 5 and SNR −5 (refer Table 5.5.1). However,
at SNR 0, the paraphrase pairs in PiN dataset showed a main effect of phLen (β̂ =
−0.007, p < 0.05) in addition to STOI (β̂ = 0.007, p < 0.05), once again indicating the
significance of paraphrase type on the intelligibility-gain; the intelligibility difference
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Dependent variable: Sent-Int-Gain

(SNR 5) (SNR 0) (SNR −5)

scale(diff.STOI) 0.0002 0.009
∗∗

0.044
∗∗∗

(0.003) (0.004) (0.011)

scale(diff.ppl) 0.002 −0.005 −0.014

(0.003) (0.004) (0.011)

scale(diff.phLen) −0.008
∗∗ −0.006 −0.030

∗∗∗

(0.003) (0.004) (0.011)

(intercept) 0.034
∗∗∗

0.058
∗∗∗

0.197
∗∗∗

(0.003) (0.004) (0.010)

Observations 195 205 196

R2
0.031 0.033 0.140

Adjusted R2
0.016 0.018 0.126

Residual Std. Error 0.046 (df = 191) 0.060 (df = 201) 0.146 (df = 192)
F Statistic 2.049 (df = 3; 191) 2.257

∗ (df = 3; 201) 10.382
∗∗∗ (df = 3; 192)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.7: Modeling the gain in sentence-level intelligibility (Sent-Int-Gain) using
linguistic and acoustic features of paraphrases in PiNeither dataset. Model coefficients
of features (with SEs in brackets) are reported, for all three noise levels.

among semantically less strict paraphrase pairs are also driven by their difference in
sentence length.

Additionally, we noticed that the predictability of paraphrases showed no signi-
ficant effect on the intelligibility-gain, under all three noise levels. This observation
is expected at SNR 5, as most of the utterances were perceived correctly. However,
the absence of a predictability effect at higher noise levels indicates that the intelli-
gibility gain is less influenced by the difference in linguistic cues, introduced by the
paraphrases in this dataset. This could possibly be due to the limited variations in
the linguistic structure of stimuli sentences, which are generated by a paraphrasing
model.

Overall, we found that the intelligibility-gain in noise is mainly driven by para-
phrases with noise-robust acoustic cues. Additionally, shorter paraphrases also
improved intelligibility in noise, however this was mostly observed among para-
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Dependent variable: Sent-Int-Gain

(SNR 5) (SNR 0) (SNR −5)

scale(diff.STOI) 0.003 0.007 0.037
∗∗∗

(0.003) (0.004) (0.009)

scale(diff.ppl) 0.001 −0.006 −0.013

(0.003) (0.004) (0.008)

scale(diff.phLen) −0.010
∗∗∗ −0.007 −0.032

∗∗∗

(0.003) (0.004) (0.009)

(intercept) 0.035
∗∗∗

0.059
∗∗∗

0.199
∗∗∗

(0.003) (0.004) (0.008)

Observations 300 300 300

R2
0.040 0.028 0.123

Adjusted R2
0.031 0.018 0.114

Residual Std. Error (df = 296) 0.048 0.062 0.146

F Statistic (df = 3; 296) 4.137
∗∗∗

2.874
∗∗

13.784
∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.8: Modeling the gain in sentence-level intelligibility (Sent-Int-Gain) using
linguistic and acoustic features of paraphrases in PiN dataset. Model coefficients of
features (with SEs in brackets) are reported, for all three noise levels.

phrases which are less strict in semantic equivalence. In other words, the additional
effect of utterance length among less stricter paraphrases indicates, the trade-off
between the intelligibility-gain introduced by paraphrases and the strictness in their
semantic equivalence.

5.6 ranking paraphrase pair based on intelligibility

In this final section, we investigate the potential of the aforementioned findings to
identify the more intelligible utterance in a pair of paraphrases, under a particular
listening condition. For this purpose, we considered the task of pairwise ranking
to identify the paraphrase with better intelligibility. A pre-trained ranking model
could be a potential solution to RQ 3, by utilizing it in spoken dialogue systems to
select the linguistic representations that are more robust to the noise in a listening
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environment. This enables an SDS to be more adaptive to the listening difficulties of
their interlocutors in noisy listening environments.

In order to automatically choose the more intelligible utterance in a paraphrase
pair, we trained an SVMRank model to perform pairwise ranking for each listening
environment. For all our experiments, we utilized the model implementation by
Joachims (2006). Every model was trained with 80% of the data and evaluated on
the remaining 20%. Training models to rank sentences have already been explored
in the past for different text processing tasks such as simplification (Vajjala and
Meurers, 2014) and summarization (Madhuri and Kumar, 2019). However, our
models differ from earlier ones, both with respect to the objective of ranking as
well as the considerably small size of the dataset and feature set. To quantify the
performance of the ranking model, we used the percentage of correctly ranked pairs
among the test set, referred to as pairwise ranking accuracy. All ranking models
were trained and evaluated repeatedly with ten different train/test splits of the PiN
dataset; their mean values are reported in Table 5.9. We also performed an ablation
study to quantify the influence of sentence-level feature(s) on ranking accuracy.

Baselines: For comparison, two baseline models, uniform and majority were
considered. For each pair of paraphrases (s1, s2), the predicted pair ranking has three
options– s1 is ‘more intelligible’ than s2, s2 is ‘more intelligible’ than s1, both s1 and s2

are equal in intelligibility. In the case of the uniform baseline, an equal probability
is given to all possible pair rankings that exist in the training set. However for the
majority baseline, the model always predicted the class which occurred the most in
the training set. At SNR 5 and SNR 0, by sampling from a uniform distribution of all
three ranking types, the uniform baseline achieved an accuracy of ∼ 33%. However
at SNR −5, it achieved an accuracy of ∼ 50%, as all paraphrase pairs in the train set
differed in intelligibility. Meanwhile the majority baseline, performed equal to or
better than the uniform baseline.

Comparing the performance of ranking models with single features, we found
that phLen is a better feature than ppl and STOI at all noise levels. For instance, at
SNR 5, ranking paraphrase pairs in the PiN dataset solely based on their utterance
length achieved a ranking performance of 53%, while ranking based on predictability
and acoustic cues performed well only for 39% and 46%, respectively. Although
phLen achieved better performance than both baselines at SNR 5 and SNR 0, it
fails to perform better than the uniform baseline when the noise level is high. This
indicates the necessity to consider other features for ranking. Including predictability
in addition to the utterance length, ranking improved by 5% at both SNR 0 and
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Feature(s) SNR 5 SNR 0 SNR −5

STOI 46.0 +/- 2.5 49.0 +/- 3.7 53.0 +/- 3.1
ppl 39.0 +/- 2.5 52.0 +/- 3.1 55.0 +/- 3.1

phLen 53.0 +/- 3.7* 59.0 +/- 3.7* 56.0 +/- 3.7
+ ppl 53.0 +/- 3.7* 64.0 +/- 3.7* 61.0 +/- 3.1*
+ STOI 54.0 +/- 3.7* 60.0 +/- 4.3* 67.0 +/- 3.7*

majority 43.0 +/- 3.7 48.0 +/- 5.0 46.0 +/- 3.7
uniform 33.0 +/- 3.7 32.0 +/- 3.1 51.0 +/- 2.5

Table 5.9: The intelligibility based pairwise ranking accuracy of models built with
the PiN dataset. Each score is a mean over ten runs (+/- 95% CI). Scores with * are
significantly better than both baselines. Bold-faced scores are the minimal models
with considerably better accuracy at each noise level and the best score at SNR −5 is
highlighted.

SNR −5. Interestingly, including STOI in addition to ppl and phLen, further improved
the ranking performance by 6% at SNR −5. In other words, this model achieved
a relative improvement of 31.37%, in comparison to the uniform baseline. It also
highlights the earlier observation of a significant effect of noise-robust acoustic cues
on the intelligibility-gain among paraphrases. Similarly, we observed this importance
of STOI at SNR −5 being repeated for both subsets PiNboth and PiNeither by achieving
a high accuracy of 70% and 66% respectively (as reported in Tables 5.10 and 5.11).
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Feature(s) SNR 5 SNR 0 SNR −5

STOI 33.0 +/- 6.8 53.0 +/- 5.0 52.0 +/- 5.6
ppl 32.0 +/- 6.8 46.0 +/- 5.6 46.0 +/- 7.4

phLen 46.0 +/- 3.7 56.0 +/- 2.5* 61.0 +/- 5.0*
+ ppl 47.0 +/- 3.7 61.0 +/- 3.7* 63.0 +/- 7.4*
+ STOI 44.0 +/- 3.1 62.0 +/- 5.6* 70.0 +/- 4.3*

majority 43.0 +/- 6.8 45.0 +/- 5.6 50.0 +/- 6.2
uniform 37.0 +/- 7.4 32.0 +/- 5.0 42.0 +/- 1.5

Table 5.10: The pairwise ranking accuracy of models which are trained to perform
intelligibility-based ranking with PiNboth dataset. Each score is a mean over 10

runs with a 95% confidence interval. Scores with * are statistically significantly
better than both baseline models. Bold-faced scores are the minimal feature set with
considerably better accuracy at each LE and the best score at SNR −5 is highlighted.

Feature(s) SNR 5 SNR 0 SNR −5

STOI 45.0 +/- 3.1 51.0 +/- 5.6 51.0 +/- 4.3
ppl 38.0 +/- 5.6 49.0 +/- 3.1 55.0 +/- 6.2

phLen 52.0 +/- 3.7 57.0 +/- 3.7* 56.0 +/- 3.7
+ ppl 53.0 +/- 2.5 60.0 +/- 2.5* 59.0 +/- 4.3
+ STOI 52.0 +/- 3.7 62.0 +/- 2.5* 66.0 +/- 3.7*

majority 49.0 +/- 4.3 45.0 +/- 7.4 53.0 +/- 3.7
uniform 32.0 +/- 4.3 35.0 +/- 3.1 53.0 +/- 4.3

Table 5.11: The pairwise ranking accuracy of models which are trained to perform
intelligibility-based ranking with PiNeither dataset. Each score is a mean over 10

runs with a 95% confidence interval. Scores with * are statistically significantly
better than both baseline models. Bold-faced scores are the minimal feature set with
considerably better accuracy at each LE and the best score at SNR −5 is highlighted.

5.7 conclusion

A majority of existing algorithmic solutions to synthesize noise-robust speech are
driven by acoustic modifications. In this work, we explored the possibilities of utiliz-
ing linguistic modification – paraphrasing an utterance by modifying its constituting
words and sentence structure – to improve better utterance intelligibility in noise. We
conducted an extensive list of modeling experiments to first investigate whether the
proposed strategy is useful at all, at different levels of babble noise. Our experiments
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showed that by replacing a sentence with its noise-robust sentential paraphrase, a
relative gain in the intelligibility of about 33% is achievable at highly noisy conditions
like babble at SNR −5. Further experiments also demonstrated evidence that the
observed intelligibility gain in noise is mainly driven by paraphrases with better
acoustic cues. In addition to better acoustic cues, shorter paraphrases also improved
intelligibility; however, this was sometimes linked to omissions of some aspects of
the utterance meaning. Additionally, the current work introduced a new dataset
of its kind – Paraphrases in Noise – which we created to capture the intelligibility
differences between sentential paraphrases, in noisy listening conditions. We also
developed an intelligibility-aware paraphrase ranking model, which could be further
used in a traditional spoken dialogue system to generate noise-adaptive utterances.
We believe that current findings provide better resources to further explore the
possibility of controlling dialogue generation in SDS, with utterance intelligibility
attributes. Figure 5.6 depicts a short summary of this chapter highlighting the
proposed solution to improve utterance intelligibility in noise.

Two main limitations of the proposed intelligibility-aware ranking model are:
(a) pair-wise ranking is performed, instead of list-wise ranking and (b) the ranking
performance is below 70%. To improve the ranking model in terms of its scope
and performance, the availability of labeled data is one crucial factor. However, a
larger annotated dataset of sentential paraphrases demands further human listening
experiment, which is both expensive and time-consuming. One other approach
to handle the shortage of annotated data is to utilize automatic metrics, which
facilitates an approximate identification of the better intelligible sentence among a
list of paraphrases. In the next chapter, we adopt a similar approach to generating a
large pseudo-parallel dataset, employing a proxy intelligibility metric.
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6G E N E R AT I N G A C O U S T I C A L LY I N T E L L I G I B L E
PA R A P H R A S E S

In the previous chapter, we found that sentential paraphrases can improve speech perception
in noise. Replacing utterances with sentential paraphrases that have better acoustic
cues, resulted in an overall intelligibility gain of 33%, in a highly noisy environment.
However, human annotations were required to identify sentential paraphrases with
better intelligibility. Thus, the remaining open problem is the automated generation
of acoustically better intelligible paraphrases.

Hence, this chapter focuses on a novel text-generation task called PI-SPiN – para-
phrasing to improve speech perception in noise – which is described in Section 6.2.
Section 6.3 provides a detailed description of the models and metrics employed
in this work. LLMs are the focal point of the current exploration, as they have
exhibited incomparable performance on controlled text generation tasks. Section 6.4
is dedicated to showcasing the outcomes of using LLMs for generating acoustically
intelligible paraphrases, with/without fine-tuning the model. Finally, in Section 6.5,
a newly proposed approach for the PI-SPiN task is explained and evaluated. Overall,
our main contributions are as follows:

• We conduct an elaborate study on the evaluation of LLMs on a novel task
called PI-SPiN.

• Our results illustrate the weakness of standard textual prompting to control a
non-textual attribute – acoustic intelligibility.

• Our proposed approach prompt-and-select is an effective solution to generate
paraphrases that are more acoustically intelligible.

6.1 introduction

Paraphrase generation is the task of rephrasing a sentence while retaining its meaning
Bhagat and Hovy (2013). Humans perform paraphrasing in spoken conversations, to
enable their listeners to perceive spoken messages as intended Bulyko et al. (2005);
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PWR-STOI
: 0.86  ❌   

1.23  ✅  

1.05  ❌

…

step1: prompt LLM to generate multiple paraphrases.
step2: select the best candidate based on the pairwise ratio of STOI (PWR-STOI).

Generate a simple, intelligible, and spoken-styled 
paraphrase with 10-12 words for the given input 
sentence: I have a part-time job at a law firm.

LLM

standard prompting

prompt-and-select

paraphrase

paraphrase 1

paraphrase 2

…

paraphrase N

Generate N simple, intelligible, and spoken-styled 
paraphrases with 10-12 words for the given input 
sentence: I have a part-time job at a law firm.

LLM

Figure 6.1: A schematic representation of the proposed approach, prompt-and-select
and the standard prompting approach to generate acoustically intelligible para-
phrase in a noisy environment. A speech intelligibility metric, short-time objective
intelligibility measure (STOI) is employed to select the paraphrase that is more likely
to improve speech perception.

Bohus and Rudnicky (2008). Motivated by human speech production strategies,
paraphrasing has also been applied to speech synthesis systems, to enhance the
quality, naturalness Nakatsu and White (2006); Boidin et al. (2009), and intelligibility
of synthetic speech, especially in challenging acoustic conditions Zhang et al. (2013).
Additionally, our investigations to explain why certain sentences are more intelligible
than their paraphrases showed that the observed intelligibility gain in a noisy
listening environment is attributed to the rephrasing, which introduces more acoustic
cues that survived the masking effect of the noise (as discussed in Chapter 5).

The potential of paraphrasing is however, seldom used to build human-like
spoken dialogue systems that are adaptive to human listeners’ perception errors in
noise, presumably due to the limited investigations to generate paraphrases that are
acoustically more intelligible in a noise condition. Prior studies relied on human
annotations to identify the ideal paraphrase among a set of candidates Nakatsu and
White (2006); Zhang et al. (2013); Chingacham et al. (2023), with little discussion on
generating intelligible paraphrases. This raises the question of how to generate text
that is semantically equivalent to and acoustically more intelligible than the given input
sentence, for a noisy environment. We refer to this task as Paraphrase to Improve
Speech Perception in Noise (PI-SPiN).
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This task is particularly interesting in the context of generative LLMs, which
have shown incredible performance in natural language generation (NLG) tasks
such as paraphrase generation and dialogue generation Radford et al. (2019); Wei
et al. (2022b); Li et al. (2024a). Moreover, recent studies have demonstrated LLMs’
capability to control text generation for a wide range of style attributes like sentiment,
syntax, formality, and politeness Zhang et al. (2023); Sun et al. (2023). PI-SPiN differs
from those controllable text generation problems, as it aims to generate text that
satisfies the desired textual attributes (e.g., semantic equivalence), in addition to the
non-textual attribute (i.e. acoustic intelligibility), which is hard to describe textually.

To explore the potential of LLMs in PI-SPiN, we proposed to evaluate LLMs’
capability to generate acoustically intelligible paraphrases, without as well as with, model
fine-tuning. Through standard prompting methods like zero-shot learning (ZSL)
and in-context learning (ICL), we found that the model was able to capture textual
attributes, while consistently struggling to improve acoustic intelligibility. We also
observed that increasing the description of the desired non-textual attribute in the
prompt only confuses the model, and it may even lead to a deterioration in textual
attributes that were achievable otherwise. On the other hand, we found that when
an LLM is fine-tuned using the downstream data, it adapts to generate paraphrases,
while improving the acoustic intelligibility. This approach resulted in a small but
noteworthy improvement of 2.4% in acoustic intelligibility.

Finally, to effectively utilize LLMs for generating acoustically intelligible para-
phrases, we propose a simple approach called prompt-and-select (PAS), which guides
paraphrase generation by introducing the desired non-textual attribute in a post-
processing step (see Figure 6.1). It is a two-step process beginning with prompting
the LLM to generate multiple candidates and then selecting the best candidate
based on acoustic intelligibility, which is hard to capture in textual mode alone. We
found that PAS leads to a relative improvement of 8.4% in acoustic intelligibility,
compared to the standard prompting approach. By conducting a human evaluation
with native English listeners, who have no hearing impairments, we verified that
the LLM-generated paraphrases via prompt-and-select approach are indeed more
intelligible than original sentences, in a listening environment with babble noise at
SNR −5 dB.
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6.2 pi-spin task description

Typically, the paraphrase generation task focuses on generating text that is semantic-
ally equivalent to the given input text. However, the PI-SPiN task aims at generating
text that is semantically equivalent to, as well as, acoustically more intelligible than
the original input text, in an adverse listening condition.

For example, consider the following paraphrase triplet (s1, s2, s3) from the Paraphrases-
in-Noise dataset Chingacham et al. (2023):

s1: “i was raised in a generation we did need all those things.”

s2: “we did need all those things when i was a child.”

s3: “we did need all those things when i was young.”

s1 is a sentence retrieved from a spoken corpus, while s2 and s3 are outcomes of
a paraphrase generation pipeline. Though all sentences are semantically equivalent
to each other, they exhibited a significant difference in acoustic intelligibility under
noise. More precisely, when these sentences were uttered in a difficult listening
condition with babble noise at an SNR of −5 dB, humans perceived s2 with fewer
errors in perception compared to s1, while s3 was perceived much worse than s1.
PI-SPiN aims to generate paraphrases (like s2) that are likely to improve human
speech perception in such noisy conditions.

Speech intelligibility in noise is better when sentences are simple Carroll and
Ruigendijk (2013), shorter Coene et al. (2016), and linguistically more predictive
Valentini-Botinhao and Wester (2014). However, the intelligibility of an utterance in
noise is not only driven by its underlying text. The perception is also influenced
by the acoustic cues that survived the masking effect of the background noise
Cooke (2006). Hence, PI-SPiN is a text generation task, that involves both textual
attributes like semantic equivalence and a non-textual attribute that captures the
noise-robustness of an utterance.

To synthesize the acoustic realization of a sentence, we employed a text-to-speech
(TTS) system Shen et al. (2018a). Further, to create the noise-distorted signals, the
clean audio signals underwent a noise-mixing procedure using an open-sourced
tool, audio-SNR.7 The babble noise from the NOISEX-92 dataset Varga and Steeneken
(1993) was mixed with clean audio at SNR−5 dB. To determine whether the generated

7https://github.com/Sato-Kunihiko/audio-SNR

https://github.com/Sato-Kunihiko/audio-SNR
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text satisfies the desired outcome, we primarily relied on automatic metrics, which
are discussed in detail in the following section.

6.3 experimental setup

Models.

• ChatGPT8, one of the most popular LLMs, is the model that we for all our
experiments without fine-tuning. It is a generative model based on the trans-
former architecture, which is pre-trained on an extremely large and diverse
dataset. In comparison to its prior model variations – GPT-2 and GPT-3 – Chat-
GPT(Ouyang et al., 2022a) is trained on human feedback using reinforcement
learning, in addition to the supervised fine-tuning on multiple NLP datasets.
ChatGPT is a sibling model of InstructGPT (Ouyang et al., 2022b) of ≈ 1.3B
model size, which is significantly smaller than the originally proposed GPT
model of 175B parameters. It is a proprietary product of OpenAI 9; hence,
the model is not publicly available and only its APIs are available (with a
predetermined cost) to perform model inference and fine-tuning.

• Llama 2 is an open-source language model, developed by Meta AI. The model
is publicly available in different sizes (ranging from 7B to 70B) and we chose
to use the smallest model llama2-7B-chat, which is fine-tuned on conversation-
styled data. All experiments with model fine-tuning were conducted with
Llama 2.

LLMs have shown impressive performance on paraphrase generation with textual
style attributes, while its ability on acoustically intelligible paraphrasing remains
unclear.

Dataset. The evaluation dataset consists of 300 short sentences, which are spoken
in a conversational scenario. The dataset is created by filtering out sentences with 10
to 12 words from the top 1000 lines of the speech corpus, Switchboard Godfrey et al.
(1992).

8Version: gpt-3.5-turbo
9https://openai.com/blog/chatgpt
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Metrics. Human evaluation is the gold standard for most text-generation tasks.
However, human evaluation is expensive and time-consuming, which limits the scale
of evaluation. Thus, we perform an automatic evaluation of the whole evaluation
dataset and a human evaluation of a subset of the dataset. For automatic evaluation,
we employed a range of metrics, which determine the semantic equivalence between
the input and output texts, as well as, the linguistic and acoustic features that
contribute to the acoustic intelligibility in noise.

1. Semantic equivalence.. Semantic Textual Similarity (STS) measures how similar
two texts are in terms of their meaning. In the past, several STS scores were
proposed Bär et al. (2012); Han et al. (2013). More recently, Zhang* et al. (2020)
proposed BERTScore, which has shown encouraging results in correctly identifying
the semantic equivalence/distance between two texts. For all our evaluations, the
STS score is the BERTScore-f1 calculated using the distilled BERT model Sanh et al.
(2019). The higher the STS value, the better the semantic equivalence between two
texts.

2. Lexical deviation.. Lexical deviation (LD) shows to what extent two texts are
similar or different in terms of their surface form. The difference in wording between
the two texts is particularly interesting for paraphrase generation. Bandel et al. (2022)
showed that the deviation in the linguistic forms of paraphrases is one of the critical
factors that decides its quality – high-quality paraphrases exhibit high LD, as well
as, high STS as they differ lexically, yet maintain the semantics. As defined in Liu
and Soh (2022), we used the overlap in lexical tokens of the uncased lemmatized
form of two texts to capture the lexical deviation between the input sentence and
the model-generated paraphrase. The higher the LD score, the more difference in
paraphrased wording.

3. Utterance length.. It is a textual attribute that influences acoustic intelligibility,
as it was observed that shorter sentences introduce fewer misperceptions in noise
Chingacham et al. (2023). Though paraphrases of shorter lengths are more likely to
be perceived correctly, shorter paraphrases may risk missing some semantics of the
original text. Hence, it is critical to evaluate utterance length along with semantic
equivalence. To measure utterance length in terms of phonemes (i.e. PhLen), we used
a grapheme-to-phoneme model10 to generate the phonemic transcript of a sentence.

10https://pypi.org/project/g2p-en/

https://pypi.org/project/g2p-en/
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Further, to compare the length within each input-output pair, the pairwise ratio of
PhLen is calculated by dividing the length of the model output by that of its input
sentence (denoted as PWR-PhLen). Thus, when the model-generated text is similar
to the input text, PWR-PhLen value is close to 1.0, while a value much less than 1.0
reflects that the model-generated text is considerably shorter than the original text.

4. Linguistic predictability.. Several studies in the past have shown that when lexical
tokens are more predictable from the context, word misperceptions are less likely to
occur Kalikow et al. (1977); Uslar et al. (2013); Valentini-Botinhao and Wester (2014);
Schoof and Rosen (2015); Bhandari et al. (2021). Thus, we considered the perplexity
(PPL) score determined by a pre-trained language model, GPT-211 Radford et al.
(2019) to estimate the linguistic predictability of a sentence. To compare the linguistic
predictability among input and output texts, the pairwise ratio of the perplexity is
calculated by dividing the PPL of model-generated text by the input sentence PPL
(denoted as PWR-PPL). Higher PPL scores indicate lesser linguistic predictability.
Thus, a PWR-PPL value less than 1.0 indicates that the model-generated text is more
predictable than the input text.

5. Acoustic Intelligibility.. The acoustic intelligibility of an utterance in a noisy
environment is primarily driven by the acoustic cues that survived the energetic
masking of the noise – utterances with better noise-robust acoustic cues are better
perceived in noise Cooke (2006); Tang and Cooke (2016). We use the Speech Intelli-
gibility (SI) metric, STOI Taal et al. (2010), to capture the acoustic intelligibility of
an utterance. STOI is a non-textual attribute, as it measures the mean correlation of
short-time envelopes between the clean and noisy audio signals of an utterance. The
higher the STOI score, the higher the noise-robustness of an utterance. Similar to
other pairwise ratios, the pairwise ratio of STOI (PWR-STOI) is calculated by dividing
the STOI of model-generated text by the input text STOI. Thus, PI-SPiN aims at
generating paraphrases with PWR-STOI values above 1.0 indicating that the model
output is acoustically more intelligible than the input sentences.

All pairwise ratios range between 0.0 and +∞, while STS and LD range between
0.0 and 1.0. For the evaluation, we report each of these metrics, averaging across the
evaluation dataset.

11Version: distilgpt2
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6.4 evaluating llms for pi-spin

In our experiments, an LLM is prompted to generate a paraphrase for each input
sentence in the evaluation set with a prompt template: {prompt prefix} + {input text}. In
the following section, we described three methods that we employed and evaluated
for the task.

6.4.1 ZSL: Zero-shot Learning

In this setting, the model is prompted to generate an intelligible paraphrase given
an input sentence in a zero-shot manner. As shown in Table 6.1, we investigate three
types of prompts, which describe the desired attributes with different granularity:
low (pzsl−low), medium (pzsl−med), and high (pzsl−high). With the increasing number
of task-specific tokens in the prompt, the task description is more detailed. Prompts
are designed by including keywords like ‘paraphrase’ and ‘intelligible’ that represent
the desired outcome. Additionally, a few more tokens like ‘10-12 words’ and ‘spoken-
styled’ were used in the prompt to ensure that the generated paraphrase adheres
to the length and style of input sentences. We hypothesize that with additional
task-oriented tokens in the prompt, the model will steer the paraphrase generation
by optimizing the intelligibility.

Prompt-
ID

Prompt

pzsl−low Generate an intelligible paraphrase for the following input sentence:
{input text}

pzsl−med Generate a simple, intelligible, and spoken-styled paraphrase with
10-12 words for the following input sentence: {input text}

pzsl−high For a noisy listening environment with babble noise at SNR -5,
generate a simple, intelligible, and spoken-styled paraphrase with
10-12 words, for the following input sentence: {input text}

Table 6.1: Three prompts used in the zero-shot learning (ZSL) setup, with an
increasing level of detail in the task objective. Bold-faced words are task-specific
keywords in the prompt statement.
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Results and Analysis. Table 6.2 summarizes the results of all three prompts
that we used in standard prompting. We observed that ChatGPT can generate
high-quality paraphrases as indicated by high scores for semantic equivalence and
lexical deviation (i.e. STS and LD). More importantly, we found that the length
of paraphrases generated by the prompt pzsl−med (PhLen = 42.08) is considerably
shorter than those generated with the prompt pzsl−low (PhLen = 50.67), indicating
the effectiveness of additional keywords in pzsl−med to control a textual attribute –
length. However, the non-textual attribute, acoustic intelligibility (i.e. STOI) of model-
generated paraphrases is not significantly different from their corresponding input
sentences. Furthermore, paraphrases generated with a detailed task description
in pzsl−high, also resulted in a similar observation – LLM struggles to improve the
non-textual attribute while controlling textual attributes appropriately.

Prompt-ID STS↑ LD↑ PWR-PhLen↓ PWR-PPL↓ PWR-STOI ↑

pzsl−low 0.852 0.699 1.343* 1.086 0.992

pzsl−med 0.860 0.668 1.119* 1.042 0.991

pzsl−high 0.837 0.729 1.250* 1.236* 1.005

Table 6.2: An automatic evaluation of paraphrases generated by different prompts in
zero-shot learning. Pairwise ratios (PWR) significantly different from 1.0 (p < 0.05)
are marked with an asterisk (*). They indicate the significant difference between the
model-generated output and the input text.

Compared to pzsl−low and pzsl−med, pzsl−high resulted in worse performance, in-
dicated by considerably longer output texts despite prompting to control length
(PWR-PhLen = 1.250) and output texts that are linguistically less predictive (PWR-
PPL = 1.236). It is also reflected in a higher lexical deviation (LD = 0.723) at the
expense of lower textual similarity between input and output (STS = 0.837). To have
a deep understanding of its behavior, we conducted a qualitative analysis as shown
in Table 6.3. We noticed that the additional context of the non-textual attribute
confused the model in understanding the task objective and resulted in model
hallucination. In sum, using zero-shot learning setup may not effectively elicit
the model’s ability to generate paraphrases with the intended non-textual attribute,
which is beyond the model’s comprehension.
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Prompt-
ID

Sentences

— {input
text}

I also have a part-time job at a law firm.

pzsl−low {output} Additionally, I am employed part-time at a law firm.
pzsl−med {output} I work part time at a law firm as well.
pzsl−high {output} In a busy environment with loud chatter, I work

part-time at a law office.

— {input
text}

Is your father’s cafe, one that you could cater out of?

pzsl−low {output} Can you use your father’s cafe as a location for catering
purposes?

pzsl−med {output} Could you use your father’s cafe as a catering venue?
pzsl−high {output} Can your dad’s café be used for catering in a noisy

setting?

— {input
text}

I believe that the cure for polio is already founded.

pzsl−low {output} I hold the belief that the remedy for polio has already been
discovered.

pzsl−med {output} I think the polio cure has already been discovered.
pzsl−high {output} I think polio’s cure has already been discovered in a noisy

setting.

— {input
text}

I think you can do that for a little while.

pzsl−low {output} I believe you have the capability to do that temporarily.
pzsl−med {output} I believe you can manage that temporarily.
pzsl−high {output} I believe you can manage it temporarily amidst the loud

chatter.

Table 6.3: A qualitative analysis of model-generated text, {output}, for a given
{input text} under three standard prompts: pzsl−low, pzsl−med, pzsl−high. The
prompt pzsl−high generates several tokens that are irrelevant (bold-faced words)
to the task objective.

6.4.2 ICL: In-context Learning

Prior research has shown that LLMs can efficiently learn to control text generation
with demonstrations and perform better than just providing a task description
Brown et al. (2020). Thus for the in-context learning (ICL) setup, the input prompt is
modified to include a set of exemplars that represent the desired model behavior. In
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Prompt-
ID

Prompt

picl Look at the samples of a sentence and its intelligible paraphrase:
1. I don’t know if you are familiar with that. =>

I have no idea if you’re familiar with that.
2. what other long-range goals do you have besides college? =>

Apart from college, what are your other long-term objectives?
3. I don’t have access either. Although, I did at one time =>

In the past, I had access, but currently, I don’t.
4. Right now I’ve got it narrowed down to the top four teams. =>

At this point, I’ve trimmed my options and picked 4 top teams.
5. prohibition didn’t stop it and didn’t do anything really. =>

It continued despite the prohibition, which didn’t accomplish anything.

Similarly, generate an intelligible paraphrase for the input sentence:
{input text}

Table 6.4: The prompt used for generating intelligible paraphrase in in-context learning
setup.

other words, to instruct the model to generate acoustically intelligible paraphrases
in an ICL setting requires a set of sentences and their corresponding paraphrases
that are acoustically more intelligible in a noise condition.

To provide the best in-context demonstrations, we created another set of 300
short sentences from the Switchboard corpus excluding those in the evaluation set.
Then, their corresponding paraphrases were generated by prompting ChatGPT with
pzsl−med. Following speech synthesis and noise mixing with babble noise at SNR −5
dB, we identified the top 5 pairs that exhibited a larger pairwise difference in STOI
scores. Further, the sentences within each pair were rearranged in such a way that
the second sentence is always better intelligible than its paired paraphrase. Further,
the sentences within each demonstration pair were concatenated with a token (eg:
‘=>’) and embedded with pzsl−low for in-context learning. Table 6.4 represents the
exact prompt statement ( picl) that we used for the in-context learning.

Results and Analysis. As shown in Table 6.5, the model learned to generate
paraphrases, similar to those given as examples. Compared to the zero-shot learning
with minimal task description (pzsl−low), the model in the ICL setup (picl) generated
texts that are semantically more similar and lexically less divergent from the input
sentences. More interestingly, the model also learned to optimize the desired
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Prompt-ID STS↑ LD↑ PWR-PhLen↓ PWR-PPL↓ PWR-STOI ↑

picl 0.872 0.627 1.250* 0.947 0.997

Table 6.5: An evaluation of the ICL setup. LLM fails to improve acoustic intelligibility
(PWR-STOI < 1.0), though it learns to capture demonstrated textual attributes like
lexical deviation and predictability.

textual attributes like length (PWR-PhLen) and linguistic predictability (PWR-PPL)
of generated paraphrases, even in the absence of prompt tokens to explicitly control
those features. Nevertheless, the demonstrations are still not helpful in controlling
the non-textual attribute. We observed that the acoustic intelligibility scores of
output sentences were not significantly different from their input sentences (PWR-
STOI = 0.997). Once again, this shows the inability of the LLM to generate acoustically
intelligible paraphrases, even though it captures textual attributes from the given
exemplars.

6.4.3 SFT: Supervised Fine-tuning

Not all text-generation task objectives are achievable in zero-shot or in-context
learning setups. A few tasks require model fine-tuning with task-specific data
(Zhang et al., 2022; Li et al., 2024b). With supervised fine-tuning (SFT), the text
generation objective of an LLM is optimized to satisfy the linguistic patterns that are
captured in a fine-tuning dataset.

For the current task of generating acoustically intelligible paraphrases, SFT
requires a parallel dataset, Dp = {(x1, y1), (x2, y2), (x3, y3) . . . (x|Dp|, y|Dp|)}, which
consists of sentences (xi) and their corresponding paraphrases (yi) that are acoustic-
ally more intelligible than xi, for a (noisy) listening setup. LLM learns to optimize
its parameters, when the model is prompted to generate yi, for a given xi. In other
words, model parameters are optimized to reduce the overall cross-entropy loss of
not generating the desired output text yi, when the model is prompted to perform
PI-SPiN. We used the prompt shown in Table 6.6 for the SFT.

One of the main challenges of fine-tuning large language models is the demand
for high-compute resources and high-quality data. However, with recent advances in
parameter-efficient fine-tuning (PEFT) like Low-Rank Adaptation (LoRA) (Hu et al.,
2022), fine-tuning LLMs is possible with limited compute resources. Chowdhury et al.
(2022) is one of the recent studies that utilized LoRA to control a textual attribute
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Prompt-ID Prompt

ps f t For the given input text, generate an acoustically better intelligible
paraphrase with 10-12 words
###Input: xi

###Response: yi

######

Table 6.6: The prompt used for the supervised fine-tuning approach to generate
acoustically intelligible paraphrase.

– novelty – while generating paraphrases. However, the approach still demands a
large paraphrase corpus, annotated with acoustic intelligibility in different noise
conditions. Considering the limitations of time and cost to conduct large-scale
perception experiments, we proposed to use a pseudo-parallel dataset (PPD) for the
model fine-tuning.

A Pseudo-Parallel Dataset. Unlike the human-annotated parallel dataset, PiN,
which is discussed in Section 5.4.2, developing a PPD is significantly more scalable
and flexible. We utilize the speech intelligibility metric, STOI, as a proxy intelligibility
metric to determine the sentence that is more intelligible (yi) within each pair of
paraphrases. Technically, it is possible to build a pseudo-parallel dataset using any
existing dataset of paraphrase pairs like QQP (Chen et al., 2018), MRPC (Dolan
and Brockett, 2005), or PPDB 2.0 (Pavlick et al., 2015) Ḣowever, existing paraphrase
datasets have limited spoken-styled paraphrase pairs as a majority of them are built
based on text corpora.

For developing a PPD, first, we generated a list of short sentences (10− 12 words)
filtered from the spoken corpus SwitchBoard-Dialog Act (SWDA). The whole SWDA
corpus consists of ∼ 12K short utterances. But, we limited to the first 3380 sentences
for building the fine-tuning dataset. For each sentence in the filtered list, we used
the ChatGPT12 model to generate six paraphrases (using the prompt prefix ppas(n=6),
which is discussed later in Section 6.5). This resulted in a total of ∼ 24K sentences
(∼ 7 times 3.4K) and ∼ 141960 permutation pairs (ie., 3.4K times 7P2) in the dataset.

Paraphrase generation was then followed by clean speech synthesis using a TTS
model (Shen et al., 2018b) and additive noise mixing with a specific noise condition of
babble noise at SNR −5 dB. After noise-mixing, STOI scores were calculated for each

12Version: gpt-3.5-turbo
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utterance in the dataset. Individual STOI scores were then used to calculate the PWR-
STOI of each paraphrase pair. We ensured that the PPD consists of only pairs where
the output paraphrase is always more intelligible than the original input sentence,
by eliminating all pairs with a PWR-STOI below or equal to 1.0. Additionally, the
PWR-STOI was used to generate a subset of the PPD, by filtering out pairs below a
threshold value of 1.1. In other words, the PPD subset consists of paraphrase pairs,
that exhibit a significant improvement in acoustic intelligibility.

Results and Analysis. To evaluate the efficiency of model fine-tuning on the task
of generating intelligible paraphrases, firstly, we focus on the performance of the
base model (mbase) – Llama2-7B-Chat. Similar to the outcomes of pzsl−low, the (mbase)
also resulted in generating high-quality paraphrases (i.e., high LD and high STS)
with PWR-STOI score not significantly different from 1.0. Additionally, we noticed
that the generated paraphrases with mbase are linguistically less predictive than the
input sentences (PWR-PPL = 1.699), indicating the linguistic style difference between
the model input and output sentences. Table 6.7 provides a consolidated view of
the base model as well as the three fine-tuned models (mPiN, mPPD, and mPPD1.1)
developed using different subsets of datasets, PiN and PPD.

Model #pairs STS↑ LD↑ PWR-PhLen↓ PWR-PPL↓ PWR-STOI↑

mbase - 0.845 0.690 1.121* 1.699* 1.002

mPiN 300 0.915 0.357 0.950* 0.922 1.003

mPPD 10K 0.888 0.516 1.050* 0.972 1.013*
mPPD1.1 4K 0.879 0.553 1.049* 1.025 1.026*

Table 6.7: An automatic evaluation of LLM fine-tuning with human-annotated
dataset (PiN) and a pseudo-parallel dataset (PPD). Pairwise ratios (PWR) significantly
different from 1.0 (p < 0.05) are marked with an asterisk (*) and the best PWR-STOI
is bold-faced.

mbase vs. mPiN. mPiN is created by fine-tuning mbase on the PiNSNR-5 dataset,
which consists of 300 paraphrase pairs annotated with sentence-level intelligibility
(Sent-Int) scores. Thus, mPiN is a model fine-tuned on a small set of human-annotated
data. The fine-tuned model mPiN is particularly interesting as it demonstrates the
potential of model fine-tuning to capture the implicit linguistic characteristics of
the fine-tuning dataset. For instance, PiNSNR-5 dataset consists of paraphrase pairs
that are less lexically divergent (LD = 0.43); hence, the model fine-tuned on this
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dataset learned to generate paraphrases with less lexical deviation (LD = 0.357),
compared to those generated by mbase (LD = 0.690). Similarly, fine-tuning has also
guided the model mPiN to generate text of shorter length (PWR-PhLen = 0.922),
imitating the PiN dataset. However, fine-tuning with PiNSNR-5 subset does not alter
the non-textual attribute – STOI – even when the fine-tuning data demonstrates a
significant difference in STOI scores between input and output sentences (PWR-STOI
= 1.035). This highlights that fine-tuning with a small task-specific dataset did not
help the LLM to control the non-textual attribute – acoustic intelligibility.

mPiN and mPPD. In comparison to mPiN, the output text generated by mPPD exhibits
higher LD and slightly lower STS. However, mPPD-generated paraphrases have a
better semantic equivalence with input sentence, compared to the base model mbase.
Interestingly, we found that both fine-tuned models, mPPD and mPPD1.1 , learned to
generate text that is better intelligible than input sentences, as indicated by the
PWR-STOI scores significantly above 1.0 (p < 0.05). Table 6.7 also demonstrates
that models fine-tuned on the PPD generate more lexically diverse paraphrases than
those by the mPiN model. In comparison to the fine-tuned model mPPD, paraphrases
generated by the model mPPD1.1 exhibited a higher PWR-STOI on the evaluation set,
indicating the benefit of LLM fine-tuning with samples that have a strong indication
of the desired attribute – acoustic intelligibility. Overall, the findings from this
experiment highlight the ability of LLM to learn to generate acoustically intelligible
paraphrases, given fine-tuning data of sufficient size and quality. However, compared
to the base models, the best fine-tuned model only resulted in a relative improvement
of 2.4% in PWR-STOI.

6.5 pas: prompt-and-select

In this section, we discuss our proposed post-processing approach to generate text
that satisfies both textual and non-textual attributes.

Prior studies on dialogue generation Boidin et al. (2009); Nakatsu and White
(2006); Weston et al. (2018) have demonstrated the utility of a simple yet effective
pipeline of controlling text generation in two steps: first generating a candidate set
of dialogues, and then selecting the best candidate based on the task requirement.
Similarly, we proposed to decompose the current task into a two-step process: (1)
prompt the LLM to generate multiple output texts that are semantically equivalent
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Figure 6.2: An automatic evaluation of the quality of paraphrases generated through
standard prompting (n = 1) and the proposed prompt-and-select (n > 1) approach.
n is the number of candidates generated in the first prompting step (marked on
x-axis). The mean scores are reported with error bars (95% confidence interval).
Increasing n, results in generating paraphrases with high lexical deviation and less
semantic equivalence.

to the input text and (2) select the best candidate based on the acoustic intelligibility.

Our approach is similar to the prompt-and-rerank method proposed in Suzgun et al.
(2022). However, our approach deviates from theirs mainly in two ways: (1) instead
of using beam search at the decoding phase, we propose to utilize the potential of an
LLM to generate multiple (n) candidates that exhibit the desired textual attributes
and (2) the best candidate selection is based on a metric (i.e. PWR-STOI) that
represents a non-textual attribute, which is not considered in prior studies.

For the first step of paraphrase generation, we perform zero-shot prompting with
an appropriate task description, pzsl−med. Thus, pzsl−med is the prompt that generates
exactly one candidate and involves no selection; it is also referred to as ppas(n=1).
However, to generate multiple paraphrases (eg: n = 6), the prompt statement can be
simply modified to include the n value, as shown below

• Generate 6 simple, intelligible, and spoken-styled paraphrases with 10-12 words for the
given input sentence: {input text}

Following the creation of the candidate set, STOI scores are calculated for all
model-generated text as well as the input text, by first synthesizing the clean utter-
ances and then mixing babble noise at SNR −5 dB. Finally, the candidate with the
highest PWR-STOI is selected as the model output.
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Figure 6.3: An automatic evaluation of the pair-wise ratios of paraphrases generated
through standard prompting (n = 1) and the proposed prompt-and-select (n > 1)
approach. n is the number of candidates generated in the first prompting step
(marked on x-axis). The mean scores are reported with error bars (95% confidence
interval). The reference line marks when the input text feature is the same as the
output text feature. Increasing n improves the pairwise ratio of acoustic intelligibility
(PWR-STOI).

Results and Analysis. We begin our analysis by comparing the results of standard
prompting (n = 1) with the PAS approach, involving 6 candidates (n = 6). As shown
in Figure 6.2, PAS showcased a high quality of paraphrase generation as indicated by
high STS and high LD, similar to the standard prompting setup. Similarly, Figure 6.3
illustrates that other textual attributes like linguistic predictability (PWR-PPL =
1.056) and utterance length (PWR-PhLen = 1.192) of the PAS approach resulted in
similar outcomes of the standard prompting method – output texts are a bit longer
than input texts, while their linguistic predictability scores are similar. Importantly,
compared to the standard prompting, the prompt-and-select approach yielded a
noticeably high PWR-STOI (µ = 1.074, p < 0.05), which is significantly above 1.0.
This indicates that the model-generated text is considerably more intelligible than
their corresponding input sentences in the given noise condition. We can see more
clearly from Figure 6.3 that PAS (n = 6) leads to a relative improvement of 8.4%
in PWR-STOI compared to the standard prompting (n = 1). Our findings suggest
that introducing the desired non-textual attribute in a post-processing step is a
potential framework to generate desired text with multi-modal behavior.

This raises a follow-up question of whether generating more candidates in the
first step further improves the overall PWR-STOI of generated paraphrases. To this
end, we modify the number of candidates (n) in the prompt statement to double
the candidate pool size. We found that by increasing the candidate set, there is an
improvement in acoustic intelligibility. However, when n is increased from 6 to 12,
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there was only a limited improvement of 1.6% in PWR-STOI. On the other hand, we
observed that textual attributes like linguistic predictability and lexical deviation are
not significantly different under varying n values.

Interestingly, the pair-wise ratio of sentence length slightly increased, with more
choices in the candidate selection; however, the overall PWR-PhLen in this approach
is still below the standard prompting setup with no tokens to control length (pzsl−low).
Increasing n from 6 to 12 slightly reduced the overall semantic equivalence between
the model input and output paraphrase. This indicates that the choice of n introduces
a trade-off between the improvement in acoustic intelligibility (PWR-STOI) and the
overall semantic equivalence (STS) and one has to choose n considering this trade-off
between the gain in non-textual attribute and the need for semantic equivalence.

Subset STS↑ LD↑ PWR-PhLen ↓ PWR-PPL ↓ PWR-STOI ↑ PWR-Sent-Int ↑

top30 0.831 0.737 1.189* 1.428 1.22* 1.70*
random30 0.848 0.683 1.157* 1.314 1.07* 1.06

Table 6.8: The automatic and human evaluation of text generated with ppas(n=6).
Evaluation on two subsets: top 30 pairs with highest PWR-STOI (top30) and randomly
selected 30 pairs (random30). PWR-Sent-Int captures the pairwise ratio of human
speech perception in noise. * marks values significantly above 1.0 (p < 0.05).

6.5.1 Human Evaluation

In addition to the evaluation with automatic metrics, we also conducted a human
evaluation to verify whether the model output in the PAS setup (using ppas(n=6)) is
indeed more intelligible than their corresponding input sentences. For the human
perception experiment, we created two subsets of the evaluation dataset of 300
pairs: random30 and top30. random30 is a set of 30 pairs randomly selected from the
evaluation dataset, while top30 is the top 30 input-output pairs that exhibited the
larger improvements in STOI scores.

We followed the experiment design of our previous study Chingacham et al.
(2023) to capture the human speech perception of an utterance in a (noisy) listening
setup. After synthesizing the noisy utterances of each sentence using a TTS Shen
et al. (2018a) and a noise-mixing tool (audio-SNR), participants were asked to listen
and transcribe each sentence. Every utterance in the dataset was listened to by six
different participants. For each listening instance, the edit distance between the
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phonemic transcriptions of the actual and transcribed text is measured to determine
the rate of correct recognition. Furthermore, the sentence-level intelligibility (Sent-Int)
of each utterance is calculated by averaging the correct recognition rates exhibited
by the six listeners.

The perception experiment was conducted with 24 native English listeners with
no hearing impairments (14 females and 10 males; average age = 30.71). After data
collection, we calculated the pairwise ratio of sentence-level intelligibility (PWR-Sent-
Int) by dividing the Sent-Int scores of the output paraphrase by their corresponding
input sentence. A mean score of PWR-Sent-Int significantly above 1.0 indicates that
the model-generated paraphrase is significantly more intelligible than the input
sentence, in a given listening condition.

Results and Analysis. As illustrated in Table 6.8, top30 items signify that the
model-output paraphrases have considerably improved the human perception in a
noisy listening condition. We observed that the overall human speech perception
of model-output paraphrases (Sent-Int = 0.66) was considerably higher than the
input sentences (Sent-Int = 0.47), introducing a 40% relative gain in the overall
intelligibility. This is also reflected in the PWR-Sent-Int score that is significantly
above 1.0.

We observed the PWR-Sent-Int of random30 is not significantly above 1.0, even
though the PWR-STOI is significantly above 1.0. With further analysis of two subsets,
we found that the mean STOI of input sentences in top30 (µ = 0.507) is significantly
less than random30 (µ = 0.561). This means that random30 consists of sentences,
which are already better intelligible in noise. Also, we observed a strong negative
correlation (r = −0.442, p < 0.001) between the STOI of input sentences and the
gain in intelligibility (PWR-Sent-Int), which highlighted the limited benefits of
paraphrasing input sentences in random30. However, top30 consists of all input
sentences, which are more likely to benefit from paraphrasing in noisy listening
conditions and they reflected the same in the human evaluation. We conclude with
the observation PAS is a simple yet effective solution to alleviate the struggles of LLM
to generate text with textual and non-textual attributes, without model fine-tuning.
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6.6 conclusion

In this work, we evaluate LLMs on acoustically intelligible paraphrase generation
for better human speech perception in noise. Our results demonstrate the limita-
tions of LLMs in controlling text generation with a non-textual attribute – acoustic
intelligibility. To alleviate the struggles of LLMs in generating text that satisfies
both textual and non-textual attributes, we proposed a simple yet effective approach
called prompt-and-select. With human evaluation, we found that when the original
utterances are highly prone to misperceptions in noise, prompt-and-select can intro-
duce 40% of relative improvement in human perception. We hope the findings of
this work inspire further explorations to control LLMs’ text generation with different
real-world context cues, thereby building more human-like agents. An overview of
this chapter is represented in the following diagram. .
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7
C O N C L U S I O N

The final chapter summarizes the main contributions of this thesis. In addition, it discusses
the potential challenges and limitations of the current approach. The chapter
concludes the dissertation by outlining some of the implications and future directions
of this work.

7.1 summary of contributions

This thesis contributes towards a novel approach of using paraphrases to improve
the intelligibility of synthetic speech in noise, by conducting a series of empirical
analyses, starting with investigations on whether and to what extent replacing words
with lexical paraphrases improves word intelligibility in noise (Chapter 4), moving
to more generic sentential paraphrases with rigorous analysis to understand why
they can improve speech perception in noise (Chapter 5), and finally proposing new
frameworks to generate acoustically intelligible paraphrases (Chapter 6) for building
noise-adaptive spoken dialogue systems. Our contributions address the research
objectives presented in Section 1.2.

Lexical paraphrases mitigate word misperceptions in noise. Existing approaches
to enhance synthetic speech in noise are primarily focused on modifying acoustic
characteristics. One of the main limitations of using acoustic modification is the
signal distortions (as noted in several studies such as Langner and Black (2005);
Anumanchipalli et al. (2010); Cooke and Lecumberri (2012); Valentini-Botinhao and
Wester (2014)), which leads to compromised quality and naturalness of synthesized
speech. In Chapter 4, we made a critical contribution to this problem, showcasing the
potential of using an alternate approach – replacing words with lexical paraphrases
– to improve word recognition in noise. We conducted listening experiments with
human subjects (native listeners with no hearing impairments) and created new
datasets of selected English synonyms and their corresponding perceptions in noisy
environments. Based on human experiments, we observed that the selection of

121
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a synonym (either in isolation or within a context) to represent a meaning, has a
profound influence on mishearing, and choosing the more noise-robust synonym
can introduce a relative gain in perception of about 37%. With further analysis
of why certain words are more intelligible than their synonyms, we noted that
the intelligibility gain is mainly driven by the synonyms with better noise-robust
acoustic cues. The results of this experiment promised new avenues to improve
synthetic speech intelligibility with linguistic modification, which introduces no
signal distortions.

Paraphrases improve speech perception in noise. With such promising results,
our logical next step was to extend the study to sentential paraphrases in noise.
The outcomes of this study are imperative to understand the practical implications
of using paraphrases in noise, such as noise-adaptive spoken dialogue systems.
Linguistic modification purely based on synonyms and word intelligibility is not
sufficient for using this approach in naturalistic conversational environments, in
which the perception of the whole utterance is more important than individual word
intelligibility. In addition, estimating sentence intelligibility is not trivial, as several
high-level factors like the listener’s world knowledge and language proficiency could
impact speech perception, especially in noisy environments, where listeners utilize
high-level linguistic cues to compensate for the degraded, noisy acoustic signals.

We conducted a large-scale perception experiment to create a new dataset of
sentential paraphrases of selected utterances from a spoken corpus, annotated with
corresponding human perception in noise. We ensured to include paraphrases
of both syntactic and lexical variations, for better generalization of this approach.
The experiment results showed that paraphrasing can significantly boost speech
perception in highly noisy conditions. We built computational models to analyze the
linguistic and acoustic characteristics of paraphrases that contribute to the observed
intelligibility gain. Our models showed that the improved intelligibility is primarily
attributed to sentential paraphrases that better survived the energetic masking. The
results suggested the potential of using sentential paraphrases to build a noise-
adaptive spoken dialogue system (SDS), by modifying the text-to-speech input
sentence to its noise-robust paraphrase, for a given noise environment. We argue
such adaptive systems can be built by performing either paraphrase selection or
paraphrase generation, focusing on the non-textual attribute – acoustic intelligibility.
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Generate acoustically intelligible paraphrases. With modern-day Large Lan-
guage models (LLMs), rephrasing a sentence with fine-grained textual controls like
politeness, sentiment, and language, results in high-quality output text, compared
to other style transfer models. However, controlling the LLM text generation with
a non-textual attribute, which is hard to describe in text is still an under-explored
problem. The findings of this study discussed the limits as well as the potential of us-
ing LLMs for a text generation task that involves both textual control attributes (like
semantic equivalence) and non-textual control attributes (like acoustic intelligibility).
We analyzed the model’s capability in learning the desired attributes without any
fine-tuning as well as with fine-tuning. Our evaluation results showed that LLMs, in
zero-shot and in-context learning setups, struggle to capture the desired non-textual
attribute, even though it is efficient in controlling textual attributes.

We further showed that fine-tuning an LLM with a parallel dataset of paraphrases
with different acoustic intelligibility has guided the model to generate paraphrases
that are acoustically more intelligible. The resource-intensive model fine-tuning is not
a desirable approach, considering the need to adapt the model for each new listening
condition. We argued that acoustically intelligible paraphrases can be generated with
LLMs, by separating the desired textual and non-textual attributes, in a zero-shot
learning setup. Our proposed zero-shot learning framework – prompt-and-select – led
to generating text that is semantically equivalent to and acoustically more intelligible
than input sentences, outperforming fine-tuned models. The study highlights the
existing gap in LLMs’ capability to control text generation with non-textual attributes
and suggests more investigations in the future to improve the multi-modality of
LLMs.

7.2 limitations and challenges

In this work, we conducted rigorous investigations to showcase the under-explored
potential of paraphrasing to improve synthetic speech intelligibility in noisy condi-
tions. Nonetheless, the results must be interpreted with caution and the following
limitations must be considered.

Human misperception data is collected through an online experiment. Conduct-
ing perception experiments on an online platform, rather than in a lab environment,
has significantly helped in scaling up the experiment. However, an online experiment
suffers from limited control over the environment of the experiment - the actual
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environment of the listening experiment is not identical across all participants. Such
differences may have impacted some listening instances more negatively, leading to
misperceptions attributed to the listener’s environment that is outside the listening
experiment. In an attempt to reduce such variations, we instructed participants
to choose a quiet environment for the listening environment and restricted their
participation only through desktop systems.

The time and cost involved in collecting perception data is one of the main
challenges in expanding the scope of this work. Although, the current listening
setup – native English listeners in a listening environment with babble noise in
the background – covers a large group of listeners, the findings of this work need
to be evaluated in different listening conditions, for better generalization. Also,
augmenting human perception data with simulated listeners like Automatic Speech
Recognition (ASR) systems is limited at the moment, as much of the recent research
on ASRs is focused on improving their noise-robustness, with little explorations of
using ASRs to replicate human misperceptions in noisy environments.

Finally, the models that we employed to explain perception differences among
paraphrases used few hand-engineered features, with no non-linearity. This mod-
eling choice was taken to reduce the potential over-fitting issue that could arise in
modeling with limited data. It is possible to improve the current model capacity
with high-dimensional features, but it incurs a significant cost of creating a larger
human (mis)perception data.

7.3 implications and future work

This work raises several important questions for future work. In this last section, we
discussed some of this work’s implications and future directions.

Phoneme-based paraphrase generation. In Chapter 4, we showed that recognition
differences between synonyms are primarily attributed to their difference in noise-
robust acoustic cues. The findings of this study validate our hypothesis that the
difference in the constituting sounds (ie., phonemes) of paraphrases can introduce an
intelligibility difference among paraphrases in noisy conditions. However, it is not
clear whether any specific set of phonemes or sequences of phonemes has guided
such intelligibility differences. Although prior perception studies have demonstrated
how phonemes influence misperceptions in noisy environments (compared to vowels,
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consonants are more misrecognized in noise Cutler et al. (2004); fricatives are hard
to recognize in white noise compared to fluctuating noise conditions (Phatak et al.,
2008)), their perception data were mainly based on mono-syllabic/nonsensical word
recognition experiments. However, the noise influence on underlying sounds is
difficult to analyze among conversational data, which consists of linguistic tokens
and short sentences that are generally longer than a syllable or a triphone.

This raises a follow-up question of to what extent the perception of conversational
speech in noise is influenced by high-level cues like linguistic predictability and
situational contexts and low-level signals like noise-robust acoustic/phonetic cues.
A detailed analysis of their interaction could shed more light on understanding
human strategies to mitigate misperceptions in difficult listening environments.
More investigation must be done to verify whether the strength of noise-robustness
(ie., STOI) is predictable from the phonemic sequence of a word or a sentence. We
believe that building a model to predict the noise-robustness of a spoken utterance
can be further extended to build paraphrasing models that can employ fine-grained
controls on generating paraphrases with a desired set of phonemes. One can imagine
that such controlled paraphrasing models would be useful for personalizing spoken
dialogue systems to accommodate individual hearing difficulties.

Paraphrase selection based on meaning loss. In Chapters 4 and 5, we used an
annotation task – listen-and-transcribe – to measure the perception loss of an actual
(spoken) utterance and comparing with perceived utterances that are transcribed
by listeners. Then, the perception loss is compared among a set of paraphrases
to identify the ideal paraphrase, which has the minimum perception loss in a noisy
environment. However, not all perception losses result in comprehension errors.
As humans employ world knowledge and commonsense reasoning while compre-
hending speech, they auto-correct some of the misperceptions using linguistic and
situational cues, limiting the occurrences of misunderstanding. Thus, one could
replace perception loss with comprehension error, to select the ideal phrasing of a
message that is less likely to introduce any wrong interpretations of a message in
noise. Replacing perception error with comprehension error would also be useful
in systematically comparing the benefits of linguistic modification with acoustic
modification of utterances in noise.

Text generation controlled by non-textual attributes. In Chapter 6, we observed
that pre-trained LLMs, without fine-tuning or a post-processing step, fail to para-
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phrase with the desired non-textual attribute – acoustic intelligibility. However, such
non-textual attributes are highly critical for conversations in real-world scenarios. For
instance, attributes like cultural norms and situational demands influence how hu-
mans converse in daily life – using a term of endearment like "Sweetheart" or "Sweetie"
to a stranger is accepted as polite manners in some parts of American culture, while
it is considered inappropriate and derogatory in most of the East Asian cultures.
In other words, human language processing is guided by the knowledge that an
individual has learned and experienced through different life experiences; it is not
restricted to just what one has read. Considering the prevalence of LLMs in modern
natural language processing (NLP) pipelines, it raises an important question, to what
extent the language generation be controlled by those non-textual attributes, which
are hard to describe in a few sets of words or demonstrable examples? Enriching
the conversational context with modalities outside textual data could be potential
research in this direction.

Expanding the scope of the study. The current study has showcased that para-
phrasing is an effective strategy to improve the intelligibility of synthetic speech,
perceived by native English listeners (with no hearing impairments) in an adverse
listening environment with babble noise. Although the findings in this study are
promising evidence for developing a speech enhancement approach without any
signal distortions, it would be interesting to expand the scope of this work to other
languages, noise types, and listener groups. For instance, a speech enhancement
approach without signal distortions maintains the quality/naturalness of synthetic
speech and it would be particularly useful for noise-sensitive listener groups such
as non-natives (Cutler et al., 2004) and individuals with hearing aids, who suffer
from a severe drop in perception, in the presence of background noise. Similarly,
investigating the speech modification strategies among bilinguals (who could switch
from one language to another) in noisy environments would be another interesting
study to expand our knowledge of speech intelligibility enhancements with linguistic
modification.
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