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Abstract

Tyrosine phosphorylation, a highly regulated post-translational modification, is car-

ried out by the enzyme tyrosine kinase (TK). TKs are important mediators in signaling

cascades, facilitating diverse biological processes in response to stimuli. TKs may

acquire mutations leading to malignancy and are viable targets for anti-cancer drugs.

Mast/stem cell growth factor receptor KIT is a TK involved in cell differentiation,

whose dysregulation leads to various types of cancer, including gastrointestinal stro-

mal tumors, leukemia, and melanoma. KIT can be targeted by a range of inhibitors

that predominantly bind to the inactive state of the enzyme. A mutation Y823D in

the activation loop of KIT is known to be responsible for the loss of sensitivity to

some drugs in metastatic tumors. We used all-atom molecular dynamics simulations

to study the impact of Y823D on the KIT conformation and dynamics and compared

it to the effect of phosphorylation of Y823. We simulated in total 6.4 μs of wild-type,

mutant and phosphorylated KIT in the active- and inactive-state conformations. We

found that Y823D affects the protein dynamics differently: in the active state, the

mutation increases the protein stability, whereas in the inactive state it induces local

destabilization, thus shifting the dynamic equilibrium towards the active state, alter-

ing the communication between distant regulatory regions. The observed dynamics

of the Y823D mutant is similar to the dynamics of KIT phosphorylated at position

Y823, thus we hypothesize that this mutation mimics a constitutively active kinase,

which is not responsive to inhibitors that bind its inactive conformation.
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1 | INTRODUCTION

The human genome contains 518 genes encoding kinases, of which

90 encode protein tyrosine kinases (TKs).1,2 TKs are enzymes that

phosphorylate a tyrosine residue of a target protein or phosphorylate

their own tyrosines, leading to conformational changes and, typically,

activation of downstream signaling cascades. Thus, TKs function as

“on” or “off” switches in many cellular processes. The 90 TKs can be

grouped into two classes: 58 of them belong to receptor tyrosine

kinases (RTKs) and 32 of them are non-receptor tyrosine kinases

(NRTKs). The major difference between these two classes is that the

NRTKs, in contrast to RTKs, do not have the extracellular domain that

is responsible for binding of extracellular ligand molecules. From here

on, we will focus on RTKs. RTKs are cell surface receptors for several
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growth factors, hormones and cytokines. Beside the ligand-binding

extracellular domain, RTKs contain a single transmembrane helix sepa-

rating the intracellular TK domain from the extracellular domain.

The RTK activation involves binding of a ligand to the RTK monomer

leading to the dimerization of the receptors. Upon binding of a ligand to

the extracellular domain the receptor undergoes extensive conforma-

tional changes that induce and stabilize the receptor dimerization leading

to the stimulation of the kinase activity in the intracellular domain, thus

resulting in auto-phosphorylation of tyrosine residues in it. The intracel-

lular TK domain has a bi-lobar structure, with an ATP binding cleft

located between the N- and C-terminal lobes that catalyzes the auto-

phosphorylation and trans-phosphorylation of tyrosine residues and a

kinase insert domain.3 The N-lobe (residues 582-692) is composed of

antiparallel β sheets adjacent to the α-helix (αC-helix) and the C-lobe (res-

idues 763-935) shows predominantly the α-helical structure (Figure 1).

The C-lobe contains the G-helix that binds the kinase substrate and an

activation loop (A-loop) (residues 810-835) that begins with a highly con-

served DFG (residues 810-812) motif. The major autophosphorylation

sites are in the juxtamembrane region (JMR, residues 547-581) and in

the kinase domain (KD, residues 582-935).3 The phosphorylated tyrosine

residues of the activated receptor now act as a binding site for proteins

containing the Src homology 2 (SH2) and phosphotyrosine binding (PTB)

domains.

In its unphosphorylated state, the intracellular TK domain exists in

its inactive auto-inhibited conformation (Figure 1). As part of the activa-

tion process upon ligand binding to the extracellular domain, the A-loop

adjacent to the active site in the inactive state switches from its

auto-inhibitory position to a more open form. During this process, the

DFG motif at the N-terminus of the A-loop flips its side chain away from

the ATP binding site, thus allowing for binding of the ATP and Mg2+

cofactors. Following these structural changes, the JMR unwinds from its

buried position in the TK domain to a solvent-exposed position, and the

αC-helix undergoes orientational changes breaking the contacts with the

JM-B fragment of the JMR. Along with JM-B, the JM-Z fragment is also

involved in blocking the αC-helix, which regulates the catalytic activity of

the kinases4 and prevents the A-loop from adopting an active conforma-

tion, restricting the inter-lobe flexibility.

In 1984, the first connection between a viral oncogene, a mutated

RTK and human cancer was established.5 Since then it is well-

established that aberrant signaling by RTKs is critically involved in

human cancer. The profuse knowledge of the structure and activation

mechanism of RTKs and the variations of TK signal transduction path-

ways in proliferative disorders led to the idea that tyrosine kinase

inhibitors (TKIs) could have anticancer effects.2,6 As a result, the

development of target-specific TKIs and new anticancer drug discov-

ery has become a hot area of anticancer research.

Most of the TKIs are small hydrophobic compounds that can rap-

idly reach their specific intracellular targets and inhibit the activation

of the related TKs.2,7,8 Unfortunately, the patients who gained

remarkable benefit from the TKI therapy started showing increasing

evidence of acquired resistance.9-11 It is primarily due to the acquired

secondary drug-resistance mutations that change the protein confor-

mation and alter the drug binding site, leading to the therapy failure

and cancer relapse. These mutations may alter the tightly controlled

F IGURE 1 Structure of KIT cytoplasmic region. 3D structures of the native receptors in the inactive state (PDB id: 1T45) and in the active
state (PDB id: 1PKG) are represented as cartoons. The N-lobe in blue, the C-lobe in green, the αC-helix in cyan, the A-loop in red, and the JMR in
orange colors. The DFG motif and the mutation site Y823D are represented in sticks (yellow)
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functions of the protein including ligand binding, conformational tran-

sitions, allosteric regulation, inducing resistance to several first and

second line drugs.2,3,12 However, the exact molecular mechanisms of

the changes induced by such mutations are still not well understood.

KIT is a stem cell factor (SCF) receptor also known as proto-

oncogene receptor tyrosine kinase, a member of the class III of RTKs.

The activation of KIT proceeds similarly to other RTKs: a SCF mole-

cule binds to a KIT monomer in the extracellular domain leading to

dimerization, activation, and autophosphorylation of tyrosine residues

in the KD.13-16 During this process, the key regulatory regions in the

TK domain undergo extensive conformational changes. A gain-of-

function or an acquired secondary drug resistance mutation in the TK

domain can activate the protein in the absence of the ligand. D816V

is one of such mutations that has been studied extensively using the

molecular dynamics (MD) simulations.16-19 It has been shown that this

mutation in the inactive state disrupts the communication between

the A-loop and the JMR17,18 and causes a partial folding of a con-

served 310 helices in the A-loop leading to the changes in the local H-

bond network,16 the global structural reorganization of the JMR, and

constitutive activation of the protein.20 KIT harboring this mutation is

resistant towards several drugs including imatinib and sunitinib.21-23

Y823D is also a similar gain-of-function or a secondary mutation

which has been reported in several clinical cases.24,25 Y823D can con-

stitutively activate the PI3K/AKT, RAS-ERK, and JAK/STAT pathways

leading to tumorigenesis by inducing cell proliferation, growth pro-

gression or migration.21,26,27 This mutation is associated with various

forms of cancer including gastrointestinal stromal tumors, testicular

seminomas, melanogenesis, and in hematopoiesis.20,21,28 Yet, very lit-

tle is known about the impact of this mutation on the protein confor-

mational changes crucial for activation and ligand binding.

It has been reported that Y823D can cause stabilization of the

active conformation of the protein and that it is also responsible for

loss of sensitivity to drugs in metastatic tumors.29 This mutation is

located in the A-loop of the KD and occurs at the only tyrosine resi-

due in the A-loop. There exists literature evidence that this tyrosine

residue in the A-loop is the last residue that undergoes

autophosphorylation,15 suggesting it might not play a role in the acti-

vation mechanism. However, it has been shown that this tyrosine resi-

due is essential for the regulation of the kinase activity.15,23

In this present study, we explored the impact of the Y823D muta-

tion and tyrosine phosphorylation on protein conformation using MD

simulations. Specifically, we aimed to understand the differences in

dynamics within and between the different states of the protein,

which will enable us to identify the conformational changes that are

crucial for the activation and ligand binding.

2 | MATERIALS AND METHODS

2.1 | Target selection

We retrieved the crystallographic structures of the wild-type

(WT) inactive and active state of KIT protein from the Protein Data

Bank (PDB id of inactive state 1T45 and active state 1PKG).30 The

water molecules in the crystal structures were retained for the MD

simulations. The missing atoms in the crystal structure of the active

state of the protein were added using MODELLER 9.1731,32 and the

phosphorylated tyrosine residues at position 568 and 570 were

modeled back to their unphosphorylated state. In silico, substitution

of Tyr (Y) to Asp (D) at position 823 was performed using MODELLER

with the corresponding WT structures as the template for both active

and inactive states. Tyr (Y) at position 823 was also phosphorylated in

both monoanionic (TP1) and dianionic (TP2) states using CHARMM-

GUI.33-35 Generated models of the KIT, its MU Y823D, and two phos-

phorylated versions (TP1, TP2) are referred to as KIT-AWT, KIT-AMU,

KIT-ATP1, KIT-ATP2 and KIT-IWT, KIT-IMU, KIT-ITP1, and KIT-ITP2 for

active and inactive states, respectively.

2.2 | Preparation of the systems

MD simulations were performed using the GROMACS software pack-

age version 5.1.436 using two force fields, Amber99SB*-ILDN37,38 and

CHARMM36.39 The molecular systems KIT-AWT and KIT-AMU, KIT-

IWT and KIT-IMU were parameterized using the Amber99SB*-ILDN

force field.37,38 In a separate set, all generated models were parame-

terized using the CHARMM36 force field,39 and these variants are

further referred to as KIT-A*WT, KIT-A*MU, KIT-A*TP1, KIT-A*TP2 and

KIT-I*WT, KIT-I*MU, KIT-I*TP1, KIT-I*TP2. The molecules were centered

in a cubic box with a 1.5 nm buffer, under periodic boundary condi-

tions and the systems were explicitly solvated with TIP3P water mole-

cules. Counterions40 ClJ and NaJ for Amber99SB*-ILDN force field

simulations and Cl and Na for CHARMM36 force field simulations

were added when necessary to neutralize the overall charge

(0.15 mol/L concentration). Energy minimization for each of the

molecular systems was performed using the steepest descent algo-

rithm. A maximum of 50 000 steps was performed until a maximum

force of 1000.0 kJ mol−1 nm−1 was achieved. Following the energy

minimization, each of the molecular systems was subjected to two

consecutive steps of equilibration procedure. At first, each system

was maintained at a temperature of 310 K during the NVT ensemble

for 100 ps with a time step of 2 fs, followed by a 100 ps simulation in

the NPT ensemble with a time step of 2 fs maintaining the pressure at

1 bar to equilibrate the system.

2.3 | Production of trajectories

After the NPT ensemble simulations, we performed a total of

64 100 ns-long production simulations with eight replicas for each of

the systems parameterized by Amber99SB*-ILDN force field and four

replicas for each of the systems parameterized by CHARMM36 force

field. The coordinates were recorded at every 100 ps. The tempera-

tures of solute and solvent were separately coupled to the velocity

rescale thermostat (modified Berendsen thermostat)41 at 310 K with a

relaxation time of 0.1 ps. The pressure was maintained at 1 atm by

1436 SRIKAKULAM ET AL.
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isotropic coordinate scaling with a relaxation time of 5 ps using

Parrinello-Rahman barostat.42 A time step of 2 fs was used to inte-

grate the equations of motion based on the leap-frog algorithm.43

Lennard-Jones interactions were set to a cut-off of 1.4 nm, and the

Particle Mesh Ewald (PME) method44 was used to treat long-range

electrostatic interactions. All bonds were constrained using P-LINCS

algorithm.45

2.4 | Analysis of the trajectories

The resulting trajectories from the simulations were analyzed using

various tools including the tools from the GROMACS package. From

the root mean square deviation (RMSD) profiles, the first 10 ns were

considered to be a part of the equilibration process, therefore it was

ignored, and the last 90 ns were retained for further analysis except

for hydrogen bond (H-bond) calculations.

The secondary structure profiles were calculated using gmx

do_dssp program available in GROMACS that uses the DSSP algo-

rithm.46 The calculation was performed over the concatenated trajec-

tories of each system. The consensus secondary structure was

defined as the type of secondary structure most prevalent at a given

position over the whole simulation time (only α-helices and β-strands

were considered) and visualized using Biotite.47 The secondary struc-

ture elements such as 310-helix, pi-helix, bend, turn, bridge, and coil

were jointly marked as coil.

To study the coupling between JMR and KD in KIT proteins, two

characteristic distances were monitored over the MD simulations of

each system. The distance d1 between the centroid of the JM-B

region (residues 547-559 as C1) and the centroid of the residues in

the N-lobe (residues 582-692 as C1') and the distance d2 between

the centroid of the JM-S region (residues 560-570 as C2) and the cen-

troid of the residues in the C-lobe (residues 763-935 as C2').

From the MD trajectories, the H-bonds between key residues

were calculated using the program gmx hbond available in GROMACS.

H-bonds were defined with a DHA angle cutoff of 120� and a donor-

acceptor distance cutoff of 3.5 Å. The mean and standard error of the

mean was calculated using R.48

For the molecular systems parameterized by the CHARMM36

force field, we performed analysis of RMSD, RMSF, secondary struc-

ture, H-bonds, and principal component analysis.

2.5 | Principal component analysis

Principal component analysis (PCA) is a method for reducing the

dimensionality of a complex system. Before performing PCA, the

concatenated trajectories from replica simulations were superimposed

to minimize the variance over the ensemble.49 The key idea of PCA is

to identify the significant eigenvectors which define the dominant col-

lective motions. The calculation was performed using the gmx covar

module of GROMACS. The overlap between the first 10 modes of

each trajectory was calculated using the gmx anaeig module of

GROMACS. The perturbations of the systems can be described in

terms of only a few principal components by ordering the eigenvalues

of the diagonalized covariance matrix in a descending fashion. Thus,

PCA helps to extract the large-scale motions from MD trajectories by

isolating the dominant modes of internal motion.

2.6 | Mutual Information

Calculating mutual information (MI) between individual pairs of amino

acids allows to identify whether the changes in the pairs of conforma-

tional distributions of these amino acids are correlated, linearly or non-

linearly. It is assumed that such correlated changes can cause perturba-

tions to the energy landscape. Both backbone and side chain torsion

angles (φ, ψ , and χ) were used to study the correlated motion between

pairs of residues as they are assumed to contain the functionally relevant

perturbations and conformational changes.50 The MI between them was

estimated using MutInf method50 that allows us to capture significant

concerted conformational changes of two residues as it focuses on tor-

sion angles that are responsible for the low-frequency motions. We used

a bin size of 24 degrees to obtain discrete distributions of the dihedral

angles. The MI between pairs of residues are calculated as the individual

sum of their entropies and subtracting it from their joint entropy over

adaptive partitioning. Each MI value was then compared to the back-

ground distribution of all MI values for all pairs of amino acids in the tra-

jectories of the WT and mutant structures. A P-value threshold of .01

was applied for filtering of significant correlations (for more details refer

to the original article).50

To account for propagated error when comparing MI of WT and

MU, bootstrap sets were created, following the procedure as

described previously.51 For this purpose for each dataset torsion

angles were extracted from individual trajectories using the gmx g_chi

command in GROMACS and sampled with replacement n frames from

a simulation of length n. This procedure was repeated 10 times for

each of the replicas while preserving the same order across the differ-

ent dihedral angles and simulation runs. The mean and standard devia-

tion, μMIres and sdMIres, were then calculated for every pair of

correlated residues MIres from the 10 bootstrap sets. When comparing

the MI in the wild-type and mutant complexes, MIresWT and MIresMU,

only those residue pairs were retained, for which the following condi-

tion holds,

j μMIresMU
−μMIresWT

j >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd2MIresMU

+ sd2MIresWT

N

s
ð1Þ

Where, N is the total number of independent replica simulations.

To further eliminate the noise and weak interactions between corre-

lated residues, a cutoff (MI >0.8 kT for the inactive state, and MI

>1.7 kT for the active state) was chosen, so that pairs with a small

absolute difference between mean values were disregarded. This step

was necessary to select only the correlated residues that have largely

different mean MI values when comparing the WT and MU

simulations.

SRIKAKULAM ET AL. 1437
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2.7 | Partial least-squares regression

Partial least-squares regression (PLS) was applied to identify the col-

lective modes of internal dynamics associated with an external order

parameter of functional interest using the functional mode analysis

tool.52 For this analysis, the coordinates of the backbone atoms, back-

bone atoms without JMR region and all protein atoms excluding

hydrogen atoms were used as inputs to build the statistical models.

The constants 0 and 1 corresponding to the trajectories in WT and

MU simulations were used as the read-out variable to be

estimated.

To validate the statistical models generated, we applied the fol-

lowing adapted k-fold cross-validation (CV) technique for WT and MU

trajectories separately in the active and inactive states, again follow-

ing the procedure described before.51 The trajectories of WT and MU

of the inactive state KIT protein were concatenated and sup-

erimposed to minimize the variance over the ensemble.49 The

resulting trajectory was divided into four equal parts. Three parts of

the data with the labeled input containing equal parts from both WT

and MU were then used in each iteration to train a model. Based on

this we made predictions for the last part. The final number of PLS

modes/components were chosen based on the Pearson correlation

calculated between the actual and the predicted values, with a

compromise between the number of modes, the complexity and the

quality of prediction using the “elbow method.”53,54

3 | RESULTS

Structural features and internal dynamics of the KIT molecular sys-

tems were analyzed to investigate the differences between the con-

formations induced by the gain-of-function mutation Y823D and the

two variants of phosphorylation of Y823.

3.1 | General observations

The Root Mean Square Deviations (RMSDs) were calculated for the

backbone atoms and the key structural elements (αC-helix, JMR, and

A-loop) (Figure 2A and Figure S1A) of the kinase domain (KD) to

ascertain the time evolution of the structure. The backbone RMSD

profiles of the inactive and active states show that they conform

closely to their initial crystallographic structures. The RMSD mean

values were in the range of 0.16 to 0.25 nm for inactive state and

0.36 to 0.52 nm for active state in trajectories resulting from simula-

tions using both Amber99SB*-ILDN and CHARMM36 force fields.

F IGURE 2 A, The RMSD values calculated for backbone atoms (black), αC-helix (brown), A-loop (red), and JMR (orange) from all eight
trajectories of MD simulations of KITWT and KITMU in both the states (active and inactive). B, The RMSF values computed on the backbone atoms
of the concatenated trajectory of MD simulations of KITWT (black) and KITMU (red). The RMSF values of the A-loop are given in the insert. The
average conformation of the, C, active state KIT and D, inactive state KIT is represented as tubes. The highly flexible regions are shown in red,
highly stable residues are shown in blue, and the intermediate flexible residues are shown in white. The size of the tube is proportional to the
observed RMSF values in those regions, respectively [Color figure can be viewed at wileyonlinelibrary.com]

1438 SRIKAKULAM ET AL.

 10970134, 2020, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.25963 by Saarlaendische U

niversitaets- und L
andesbibliothek Saarbrücken, W

iley O
nline L

ibrary on [17/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


RMSD profiles show the conformational drift of the JMR in the inac-

tive state of the protein is larger than the other KIT regions. In the

active state, along with JMR, A-loop also was observed to have a large

RMSD, whereas the αC-helix is observed to be rigid in both the

states.

The protein flexibility was estimated by the root mean square

fluctuations (RMSFs) averaged over time for every residue. The RMSF

values of the backbone atoms (Figure 2B and Figure S1B) were com-

parable between different systems, ranging from 0.1 to 0.3 nm in the

inactive state and 0.1 to 0.4 nm for the active state in trajectories

resulting from simulations using both Amber99SB*-ILDN and

CHARMM36 force fields. From the RMSF plot (Figure S1B) we can

also observe how the MU and phosphotyrosines simulations con-

verge, showing that the Y823D mutation mimics the presence of a

phosphotyrosine. Both variants of the phosphotyrosine behave very

similarly in the simulation. Further, we can also observe that the WT

and MU simulations of both active and inactive states performed

using two different force fields agree very well with each other

(Figure S1B and S2).

3.2 | Secondary structure analysis

Upon analyzing the trajectories resulting from simulations using both

Amber99SB*-ILDN and CHARMM36 force fields, we observe that the

mutation does not significantly alter the secondary structure of JMR

in both states of the protein (Figures S3 and S4) compared to its WT,

but we observe slight changes in the secondary structure type during

our simulations.

The mutation Y823D is located in the A-loop and induces local

fluctuations in the inactive state of the protein. Unlike, other second-

ary mutations such as D816V/H/N/Y17,20 in the A-loop, the mutation

Y823D does not destabilize the 310-helix in the segment 817 to

819 in the trajectories resulting from Amber99SB*-ILDN force field (-

Figure S5), whereas in the active state almost all secondary structure

in the A-loop is lost. The 310-helix is better retained in the MU simula-

tion with the CHARMM36 force field, whereas in KIT-I*TP1, KIT-I*TP2

trajectories resulting from CHARMM36 force field (Figure S6), we

observe very little secondary structure in the A-loop. The 310-helix in

the A-loop is only observed in the inactive state of the protein and

destabilization of this segment has been reported to be associated

with the disruption of its integrity.20 Such destabilization of key

regions in the A-loop is associated with a major contribution to the

loss of drug sensitivity.20

3.3 | Dynamic behavior of receptors

The effect of the mutation on the collective dynamic behavior of

various KIT structural elements is markedly different in the active

and inactive states. The computed scalar products between the

first 10 PCA modes of KIT inactive state proteins indicate that the

collective motions differ between them (Figure S7A). It is

interesting to compare the dynamics of the WT and MU protein in

each state.

When the trajectories of the KIT-IWT and KIT-IMU are projected

into the subspace spanned by their first two PCs (Figure 3A), one can

observe a large overlap of the WT and MU parts of the trajectories,

and a considerable shift along the PC1 axis. Modes 1 and 2 of KIT-IMU

display a slightly higher amplitude compared to KIT-IWT (Figure S7B),

indicating increased flexibility of the protein upon mutation. These

modes correspond to atomic motions (Figure 3B,C) of JMR coupled to

deformations of the KD in the N-lobe, αC-helix, residues 626-631

preceding the αC-helix, orientational changes in the A-loop and the G-

helix in the C-lobe. Principal modes of KIT-IMU describe atomic

motions of JM-B coupled with a twist motion of the N-lobe and a dis-

placement of the A-loop and G-helix in the C-lobe. This displacement/

outward motion of the A-loop is not characteristic for the active con-

formation. The RMSF analysis along the individual modes (eigenvec-

tors) reveals that the JMR, A-loop portions are dominant in the total

backbone fluctuations along with kinase insert domain and minor per-

turbations of the αC-helix (data not shown).

Mapping KIT-AWT and KIT-AMU into the subspace spanned by

the first two principal components of their concatenated trajectories

shows that these trajectories occupy very different regions in it

(Figure 3D). Analysis of the first eigenvectors of KIT in active state

shows that there is a good agreement between the first principal mode

of KIT-AWT and KIT-AMU, but not so for the second mode (Figure S7C).

Accordingly, the WT trajectory occupies a similar region as the MU tra-

jectory along PC1, but differs much along PC2. The first eigenvalues

for both WT and MU trajectories in the active state are much higher

than those for the inactive state, indicating a generally higher flexibility

of the protein in the active state (Figure S7D). In KIT-AWT the first

mode is associated with displacement of JMR, A-loop, and unwinding

twist motion of the N-lobe (Figure 3E,F), while the KIT-AMU experi-

ences a conformational change in the JMR, its A-loop curtails from its

elongated conformation, and an opposite twisted motion along an axis

passing between the middle of the N- and C-lobe happens. The RMSF

analysis along the first eigenvector shows that the JMR, kinase insert

domain and the A-loop contribute the most to the backbone fluctua-

tions in both KIT-AWT and KIT-AMU (data not shown).

PCA on the inactive state trajectories from CHARMM36 force

field simulations confirm the similarity in the conformational distribu-

tion of the mutant and the phosphotyrosine simulations based on the

projection onto the subspace defined by the first two PCs (PC1 and

PC2; Figure S8).

3.4 | Coupling between JMR and KD in receptors

To check the possible coupling between JMR with KD in both states

of the protein, their relative positions were characterized using two

geometrical distances d1 and d2 (See Section 2). Monitoring of these

distances over the course of the MD indicates that the d1 and d2

distributions (Table 1) in the inactive and active states of the KIT are

very similar for both WT and MU. This demonstrates that the JMR is
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tightly coupled to the KD in both KIT conformations. The same can be

observed in the PCA analysis we observed that the A-loop is responsi-

ble for the dominant fluctuations during the simulations of the active

state (Figures 3E-F). Apart from these fluctuations, there are no major

conformational changes observed and the computed d2 distance devi-

ation between KIT-AWT and KIT-AMU is also negligible.

Frequency of H-bonds between key residues that maintain the

conformation of the KIT protein and the residues that are known to

be involved in establishing the allosteric communication between

JMR and KD, such as H-bond between D792 and Y82316,17,20,56 was

measured (Tables 2 and 3). In KIT-IWT, JMR binds to the C-lobe of KD

through stable H-bonds V560…N787, K558…I789, Y568…F848 and

Y570…Y846. These H-bonds are preserved in the mutated and phos-

phorylated structures of KIT indicating a strong coupling and stabiliza-

tion of the JMR attachment to KD and of the internal JMR contacts.

These data are consistent with the data from the coupling analysis

between JMR and KD.

The signal from A-loop to the JMR is propagated through the

C-loop, with Y823 as a key intermediate residue.18 The corresponding

H-bonds are affected upon the Y823D mutation and phosphoryla-

tion. The H-bond between residues Y823 and D792 is completely

lost in KIT-IMU, KIT-I*MU, KIT-I*TP1, and KIT-I*TP2 due to the chan-

ged properties of the residue at position 823. The interaction

between D792 and N797 is also observed less frequently. How-

ever, the H-bond between D792 and H790 is not affected. Such

modification in the local interaction network of the C-loop has

been shown to be accompanied by a decreased communication to

the distant KIT regulatory elements.18 These observations suggest

that the allosteric communication in the KIT inactive state between

the A-loop and JMR is disrupted by the mutation Y823D in the

A-loop. A beta-turn motif (residues 820-823) supported by a

H-bond D820…N822 also disappears in the mutated and phosphor-

ylated structures. It is known that this beta-turn motif is stabilized

by the H-bond D820…N822 in the protein inactive state, and dis-

ruption of this H-bond results in the unfolding of the beta-turn

motif.18 Importantly, we also observe different χ angle distributions

of D810 and F811 of the DFG motif between the KIT-IWT and

KIT-IMU (Figure S10).

F IGURE 3 PCA of KIT inactive and active states. The atomic motions are shown as interpolation between the extremes along the first

principal component of the, B,C, inactive state and, E,F, active state. The conformation distribution of different states (WT: cyan, MU: red) of KIT
projected onto the subspace defined by the first two principal components (PC1 and PC2) of the concatenated WT and MU trajectories in the
active, A, and in the inactive states, D [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Average distance between
centroids of (d1) JM-B and N-lobe and
(d2) JM-S and C-lobe

KIT-IWT KIT-IMU KIT-AWT KIT-AMU

d1 1.92 ± 0.01 1.92 ± 0.01 2.05 ± 0.04 2.08 ± 0.05

d2 2.3 ± 0.02 2.3 ± 0.02 3.05 ± 0.11 3.03 ± 0.09

Note: ± indicates standard error across independent simulations.
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In the KIT active state the residues D792, H790, and N797 of the

C-loop (catalytic loop) are involved in the formation of a local H-bond

interaction network that is stable along the MD trajectories. Further,

the H-bond analysis shows a stabilization of JMR, A-loop and C-loop

suggesting that the mutation Y823D and the phosphorylation of

Y823 cause stabilization of the active state. In particular, the H-bonds

R815…Y(D)823 and Y(D)823…Y846 are observed more frequently in

all simulations for the mutated and phosphorylated KIT in the active

state. These H-bonds are located either in the A-loop or connect the

A-loop and the C-lobe, probably stabilizing their mutual orientation.

On the contrary, in the mutated and phosphorylated protein in the

inactive state, the interactions of JMR with the KD is preserved, while

the A-loop is displaced and destabilized.

3.5 | Changes in the correlated motions of amino
acid residues

The correlation between the motions of all pairs of residues emerges

from the various ways, in which they interact with one another.

Here, we investigated how the mutation Y823D alters the concerted

motion between residues, which in turn can affect the allosteric

communication between distant regulatory regions of KIT. To do so,

we computed the MI between trajectories of individual residues. MI

reflects the degree to which two random variables are linked; high MI

indicates a low uncertainty in one random variable given the informa-

tion about the other. Interestingly, in both active and inactive states,

most of the correlations are between distant residues (Figure 4A,D

and Figure S9). We can observe that there are only a few residues in

the mutated protein in the active state showing changes in the corre-

lated motion and that almost all the residues involved in the interac-

tions are between 8 and 21 Å apart from one another. Additionally, in

the inactive state, we see that the changes in the pattern of correlated

motions are much stronger in the mutant protein when compared to

the WT.

Further, analysis of the correlated motion of residues in the inac-

tive state and the active state revealed that certain residues act as

hubs connected to several other residues (Figure 4B,E). However, the

residues acting as hubs are not the same for active and inactive states,

indicating that the correlated motions are different in different con-

formations of the same protein and that mutation Y823D affects

these conformations differently. In the inactive state, the residues

N797 and R888 act as hubs interacting with several key residues

(D810, R815, R830, and M836) of the protein (Figure 4B), suggesting

TABLE 2 Average H-bond number
between residues in Amber99SB*-ILDN
force field simulations

JMR…C-lobe KIT-IWT KIT-IMU KIT-AWT KIT-AMU

V560…N787 1.067 ± 0.01 1.08 ± 0.01 0.001 ± 0 0.008 ± 0.01

K558…I789 1.80 ± 0.03 1.87 ± 0.03 0 0.25 ± 0.25

Y568…F848 0.29 ± 0.6 0.35 ± 0.12 0.04 ± 0.04 0

Y570…Y846 1.23 ± 0.23 1.09 ± 0.24 0 0

E640…F811 0 0 0.71 ± 0.14 0.55 ± 0.13

JMS

V569…E561 1.02 ± 0.06 1.21 ± 0.16 0 0

A-loop

V824…L831 2.022 ± 0.01 1.9 ± 0.06 0 0

R815…Y823 0.89 ± 0.22 0.09 ± 0.04 0.32 ± 0.16 0.733 ± 0.3

D820…N822 2.68 ± 0.08 1.65 ± 0.21 0.97 ± 0.22 0.98 ± 0.23

A-loop…C-lobe

Y823…R796 1.254 ± 0.23 1.1 ± 0.46 0 0

Y823…Y846 0 0 0.22 ± 0.08 0.42 ± 0.2

C-loop

D792…H790 1.931 ± 0.01 1.93 ± 0.02 1.53 ± 0.12 1.7 ± 0.07

H790…N797 0 0.13 ± 0.1 0.15 ± 0.1 0.16 ± 0.1

D792…N797 2.088 ± 0.1 1.83 ± 0.18 1.4 ± 0.16 1.53 ± 0.22

C-loop…A-loop

D792…Y823 1.20 ± 0.19 0 0 0

C-loop…C-lobe

N797…C809 0.56 ± 0.12 0.87 ± 0.15 0.85 ± 0.14 0.55 ± 0.17

C-lobe

L799…K807 2 ± 0 2 ± 0 2 ± 0 2 ± 0

Note: ± indicates standard error across independent simulations.
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that any change in the motion of these residues will affect the corre-

lated motion of the other residues. Similarly, in the active state, the

residues E554 and the highly conserved residue R815 act as hubs and

we also see that overall more residue pairs are involved in correlated

motions in the WT than mutant protein (Figure 4E). Among the resi-

dues whose motion was most affected by the mutation in the inactive

state are the residues of the inhibitor binding site and the conserved

C-loop residues (residues 568, 797, 810, and 815), P+1 loop (the loop

immediately following the A-loop, residues 830 and 836), critical resi-

due of the DFG motif (residue 810) and F-helix (residue 861).

In KIT-IWT, the signal from A-loop to the JMR is propagated

through the C-loop residues, where Y823 acts as an intermediate resi-

due.18 From MI data, we can observe how mutation in this position

has changed the communication between distant regulatory regions

in the protein. Thus, the modification in the local interaction network

of the C-loop that we observed in the H-bond analysis is accompanied

by a reduction in the efficient communication to the distant KIT regu-

latory elements. In the active state of KIT we notice a different pat-

tern, where none of the correlated motions below the threshold

(1.7 kT) involving the key residues were affected by the mutation

(Figure 5B).

3.6 | Partial least-squares regression

The functional mode analysis based on the partial least-squares (PLS)

regression method aids in differentiating the major collective motions

between the WT and MU proteins. As input, we used the coordinates

of the backbone atoms as they proved to have the most predictive

power when creating the statistical models for the inactive state (data

for other input types not shown). For the active state, none of the

input features were able to provide a satisfactory model that could be

used to differentiate the collective motions between the WT and

mutant proteins. Therefore, only the results for the inactive state of

the protein are discussed.

We used fourfold cross validation (CV) technique to obtain the

statistical models and measured the prediction quality through

Pearson correlation score between the true and predicted label for

a given input feature. We chose models composed of three PLS

components to study the changes in the collective motions of the

protein, which was sufficient in the CV scenario to achieve a corre-

lation of .75 (Figure S11). Mapping the PLS results onto the back-

bone of the inactive state of KIT (Figure 5) showed that the

mutation induced changes in the collective motions in the JM-B,

TABLE 3 Average H-bond number between residues in CHARMM36 force field simulations

JMR…C-lobe KIT-I*WT KIT-I*MU KIT-I*TP1 KIT-I*TP2 KIT-A*WT KIT-A*MU KIT-A*TP1 KIT-A*TP2

V560…N787 1.03 ± 0 1.11 ± 0.02 1.1 ± 0.05 1.1 ± 0.02 0 0 0.02 ± 0.02 0.05 ± 0.04

K558…I789 1.54 ± 0.07 2 ± 0.16 1.65 ± 0.13 1.34 ± 0.13 0 0.01 ± 0.01 0 0

Y568…F848 0.23 ± 0.09 0.59 ± 0.14 0.59 ± .028 0.74 ± 0.27 0 0 0 0

Y570…Y846 0.3 ± 0.12 0.16 ± 0.05 0.32 ± 0.06 0.06 ± 0.01 0 0 0 0

E640…F811 0 0 0 0 0.85 ± 0.14 0.73 ± 0.2 0.57 ± 0.13 0.84 ± 0.08

JMS

V569…E561 1.13 ± 0.28 1.11 ± 0.09 1.11 ± 0.05 1.17 ± 0.14 0 0 0 0

A-loop

V824…L831 2.02 ± 0.01 1.33 ± 0.08 1.94 ± 0.06 1.64 ± 0.22 0 0 0 0

R815…Y823 0.79 ± 0.39 0 1.14 ± 0.35 0.89 ± 0.46 0.05 ± 0.03 0.16 ± 0.04 0.31 ± 0.17 2.09 ± 0.66

D820…N822 2.24 ± 0.05 0.99 ± 0.22 0.79 ± 0.14 0.36 ± 0.09 0.34 ± 0.09 0.33 ± 0.08 0.49 ± 0.24 0.23 ± 0.08

A-loop…C-lobe

Y823…R796 1.16 ± 0.11 0.57 ± 0.27 2.11 ± 0.54 2.87 ± 0.05 0 0 0 0

Y823…Y846 0 0 0 0 0.03 ± 0.02 0.1 ± 0.05 0.83 ± 0.45 0.08 ± 0.05

C-loop

D792…H790 1.51 ± 0.02 1.35 ± 0.17 1.65 ± 0.1 1.32 ± 0.1 1.35 ± 0.13 1.11 ± 0.15 1.26 ± 0.15 1.53 ± 0.1

H790…N797 0 0 0 0 0.06 ± 0.06 0.18 ± 0.18 0.2 ± 0.11 0.03 ± 0.02

D792…N797 2.01 ± 0.08 1.71 ± 0.09 1.72 ± 0.08 1.73 ± 0.05 1.39 ± 0.22 1.29 ± 0.26 0.95 ± 0.2 1.49 ± 0.14

C-loop…A-loop

D792…Y823 1.3 ± 0.1 0 0.57 ± 0.25 0 0 0 0 0

C-loop…C-lobe

N797…C809 0.34 ± 0.04 0.33 ± 0.16 0.52 ± 0.12 0.2 ± 0.08 0.45 ± 0.11 0.61 ± 0.15 0.59 ± 0.35 0.4 ± 0.17

C-lobe

L799…K807 2 ± 0 2 ± 0 2 ± 0 2 ± 0 2 ± 0 2 ± 0 1.99 ± 0.01 1.99 ± 0.01

Note: ± indicates standard error across independent simulations.
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JM-S, A-loop, and αC-helix. In agreement with this, we observe the

same regions to undergo large shifts in the PCA analysis (see

above).

4 | DISCUSSION

This study presents a first application of MD simulation aimed at

understanding the effects of the mutation Y823D and phosphoryla-

tion of Y823, which confer resistance among others to imatinib and

sunitinib29,55-57 and is a secondary mutation in gastrointestinal stro-

mal tumors,29,57,58 both in the active and inactive states of KIT. Phos-

phorylation of Y823 is known to stabilize the active conformation of

the A-loop most probably by strong electrostatic interactions of the

phosphate group.24,25 Mutations such as Y823D, which mimic Y823

phosphorylation, were suggested to stabilize the active conformation

of the A-loop,24-26 which was confirmed in our analysis. In the active

state of the protein we observe that this mutation as well as phos-

phorylation of the tyrosine stabilizes the protein's active conformation

by strengthening the H-bonds, particularly the one between R815

and Y823 which is known to stabilize the active conformation of the

protein.59 In line with our observations, mutations in the A-loop are

known to disrupt the inactive conformation by introducing charged

side chains into the pocket.26,56,57

F IGURE 4 A,D, Distance between correlated residues (MI greater than 0.8 kT in the inactive state and greater than 1.7 kT in the active state).
A gray line separates local (<6 Å) and long-range interactions. SD from the bootstrapped dataset is plotted as the error bars on top of the MI
values from the actual (not bootstrapped) simulations. B,E, Correlations with MI greater than 0.8 kT for the inactive state and MI greater than
1.7 kT for active state are only shown. C,F, Cylinders connecting residues represent differences in MI between those residues in MU (yellow) and
WT (gray), with the width of the cylinder proportional to the MI. Mutation site Y823D is represented as spheres in magenta [Color figure can be

viewed at wileyonlinelibrary.com]

F IGURE 5 Interpolation between the extremes of the inactive state
PLS models. Blue-to-magenta bands correspond to the interpolation
along the mode that relates to the true label of simulation, WT and MU,
to the underlying differences in the protein motions [Color figure can be
viewed at wileyonlinelibrary.com]
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The different analyses of the trajectories that we performed for

both active and inactive conformations of the wild-type, mutant and

phosphorylated KIT all demonstrate different dynamics in the same

regions of the structure: the active site residues and other key resi-

dues in the A- and C-loops (Figure S12). These differences are promi-

nent for the inactive state of KIT, but are much less significant for the

active state. The dynamics of the mutant protein in all cases resem-

bles the dynamics of the kinase phosphorylated at the mutation site

Y823. This can probably be explained by the fact that the substitution

to a negatively charged aspartate in the position of Y823 mimics the

effect of the phosphorylation at position Y823.

The biological significance of these structural regions was previously

reported in the literature.18,60-62 In particular, the C-loop is highly con-

served in terms of structure and sequence among all kinases.60 Another

structural element, the F-helix, whose motion was also affected in our

analysis, was shown to play an important role in protein kinase active

structures, as it is considered as the central hub connecting key areas

such as the substrate binding residues and the C-loop. Also the regula-

tory and catalytic spines are located at the N and C termini of the F-

helix.18,61,62 This puts the perturbations observed through RMSF analysis

in the JM-B, JM-S, A-loop, and the residues preceding the αC-helix in

the inactive state and the local destabilization of the A-loop through loss

of H-bonds into a proper functional context. Most importantly, we

observe the loss of allosteric communication, as evident from the

changes in the hydrogen bond network reported above, between distant

regulatory domains namely, JMR and the A-loop, which may be detri-

mental for kinase regulation. As observed from this analysis, the mutation

Y823D and the phosphorylation of Y823 stabilize the active conforma-

tion of the protein by contributing to the formation of more stable H-

bonds in the A- and C-loops.

The concerted alterations that we observe in all simulations of

the inactive state may potentially indicate mechanisms that could

affect the binding of drugs. Multiple lines of evidence presented here

suggest that the changes in the structural conformation of the inactive

state protein correspond to its destabilization upon mutation as well

as phosphorylation and a shift of the dynamic equilibrium away from

the inactive state, which is a primary target for many drugs. For exam-

ple, imatinib specifically binds to the inactive state of KIT,59,63 thus

these changes in the key regions of the inactive state of the protein

may alter the binding and/or the sensitivity to it and other drugs that

specifically targets the inactive state of KIT.

5 | CONCLUSIONS

In our simulations, we found that the mutation Y823D as well as

phosphorylation at this position in the A-loop of the protein TK KIT

compromise the communication between key regulatory regions of

the inactive state protein and induces local destabilization due to the

loss and reduction of key H-bonds. Further, we also observed changes

in the correlated motion of amino acids, especially between the muta-

tion site and the active site residues and other key residues such as

D792, R815, and Y82316,20,59 in the A-loop and catalytic loop that are

involved in drug binding and allosteric communication.

In summary, we collected multiple pieces of evidence demon-

strating that the mutation Y823D shifts the conformational equilib-

rium towards the active state. This is likely to lead to activating the

downstream signaling cascades and enhancing the expression of anti-

apoptotic, cell proliferation, and growth expression genes. It is worth

noting that Y823 in KIT is homologous to Y393 in the Abl kinase,

where phosphorylation of this residue is known to destabilize the

inactive conformation of the A-loop.24 In our simulations, we confirm

a similar trend for the mutation Y823D in KIT by conducting simula-

tions with a phosphorylated tyrosine at this position. Thus, we suggest

that an analogous mechanism of resistance evolved in a homologous

kinase leading to similar pathologic consequences.
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