
Universität des Saarlandes

From Component to System:
Evaluating Recursive Model Indexes
and Index Scan Execution Strategies

Marcel Maltry

A dissertation submitted towards the degree
Doctor of Engineering (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science
of Saarland University

Saarbrücken, 2024

Day of Colloquium
November 20, 2024

Dean of the Faculty
Prof. Dr. Roland Speicher

Examination Board
Chair

Prof. Dr. Jörg Hoffmann

Reviewers

Prof. Dr. Jens Dittrich
Prof. Dr. Sebastian Michel

Academic Assistant

Dr. Daniel Höller

Abstract

Indexes are crucial in database systems for ensuring efficient data retrieval and achieving peak
query performance. Traditionally, indexes are general-purpose data structures, agnostic to data
distributions. However, learned indexes, like the recursive model index (RMI), challenge this
conventional approach by using machine-learned models that exploit data-specific patterns.
This allows learned indexes to achieve both remarkable lookup performance and better space
efficiency than traditional indexes.

Constructing an RMI requires precise adjustment ofmultiple hyperparameters to attain optimal
performance. Therefore, we conduct a thorough analysis of the RMI’s hyperparameters in the
first part of this thesis, developing a practical guideline for its configuration. Compared to
exhaustive enumeration, our guideline achieves competitive lookup performance while being
more efficient, training at most two RMIs. The performance is also validated against state-of-
the-art indexes, both learned and traditional.

We integrate RMIs into a database system with a compiling query engine in the second part
of this thesis. We present a novel query engine that allows the query compiler to partially
execute queries during compilation. Based on this architecture, we develop three strategies
for accessing indexes in the context of an index scan. These strategies differ in which steps
of the index scan are executed during compilation versus at runtime. We evaluate the three
strategies based on query execution time, identifying the ideal query selectivities and workload
characteristics for each. Despite their benefits, our experiments show that RMIs do not improve
query performance of index scans compared to a simple baseline index, as index traversal time
proved negligible compared to overall query execution time.

Zusammenfassung

Indexe sind in Datenbanksystemen von entscheidender Bedeutung, um effiziente Datenabrufe
zu gewährleisten und optimale Abfrageleistung zu erzielen. Üblicherweise sind Indexe univer-
selle Datenstrukturen, deren Leistung unabhängig von der Datenverteilung ist. Gelernte Indexe
wie der Recursive-Model-Index (RMI) stellen diesen konventionellen Ansatz jedoch zuneh-
mend infrage, indem sie mittels maschinellem Lernen datenspezifische Muster ausnutzen und
so Indizes durch gelernte Modelle ersetzen. Dadurch erzielen gelernte Indexe bemerkenswerte
Abfrageleistung und sind zudem speicherplatzsparender als herkömmliche Indexe.

Die Konstruktion eines RMI erfordert präzises Anpassenmehrerer Hyperparamter, um optima-
le Leistung zu erzielen. Daher führen wir im ersten Teil der Arbeit eine umfassende Analyse
der Hyperparameter des RMI durch und entwickeln eine praxisorientierte Anleitung zum
Konfigurieren von RMIs. Verglichen mit vollständigem Aufzählen aller Konfigurationen erzielt
unser Ansatz konkurrenzfähige Abfrageleistung und ist gleichzeitig effizienter, da höchstens
zwei RMIs trainiert werden müssen. Die Leistung wird zudem gegenüber hochmodernen
Indexen, sowohl traditionellen als auch gelernten, validiert.

Im zweiten Teil der Arbeit integrieren wir RMIs in ein Datenbanksystem mit kompilierender
Query-Engine. Wir präsentieren eine neuartige Query-Engine, die es dem Query-Compiler
ermöglicht, Abfragen bereits während der Kompilierung teilweise auszuführen. Basierend
auf dieser Architektur entwickeln wir drei Strategien für den Indexzugriff im Kontext eines
Index-Scans. Diese Strategien unterscheiden sich darin, welche Schritte des Index-Scans wäh-
rend des Kompilierens und welche zur Laufzeit ausgeführt werden. Wir vergleichen die drei
Strategien hinsichtlich Abfrageleistung und ermitteln für jede Strategie die optimale Abfra-
geselektivitäten undWorkload-Eigenschaften. Trotz ihrer Vorteile zeigen unsere Experimente,
dass RMIs die Abfrageleistung von Index-Scans imVergleich zu einem einfachen Referenzindex
nicht verbessern, da die Indexzugriffszeit im Verhältnis zur gesamten Abfrageausführungszeit
vernachlässigbar ist.

Acknowledgements

First and foremost, I would like to express my sincerest gratitude to my advisor, Prof. Dr.
Jens Dittrich, for granting me the opportunity to pursue this doctoral research. His invaluable
guidance and insightful feedback have balanced academic freedom with academic support,
shaping my journey and contributing to the success of my research endeavors. His distinctive
approach to presenting research has left a lasting impact on me, and I am immensely thankful
for his mentorship and influence.

I would also like to thank Prof. Dr. Sebastian Michel for his constructive feedback as the second
reviewer of this thesis. His extensive expertise in our field of research has greatly contributed
to the refinement of this work.

Further, I am grateful for my current and former colleagues and friends, with whom I
have engaged in countless hours of fruitful discussions, spanning database-related topics and
beyond, both at work and in our private lives. Your companionship and support over the years
mean a great deal to me. I extend special thanks to Jannik, Joris, and Luca for their invaluable
help in proofreading this thesis.

I am deeply thankful to my family for their continuous support. My heartfelt gratitude go to
my wife, Elena, for her unwavering love and patience, which have been my greatest source of
strength, and my son, Marlon, whose presence has enriched my life in ways I never imagined,
constantly challenging me to question my worldview and priorities.

Additionally, I would like to acknowledge the use of OpenAI’s ChatGPT (versions GPT-4o and
GPT-3.5) to assist with improving and refining my writing and identifying grammatical errors.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Project Genesis and Research Questions . 3
1.3 Contributions . 7

2 A Critical Analysis of Recursive Model Indexes 11
2.1 Introduction . 11
2.2 Recursive Model Indexes . 13

2.2.1 Core Idea . 13
2.2.2 Index Lookup . 14
2.2.3 Training Algorithm . 15
2.2.4 Hyperparameters . 16

2.3 Related Work . 17
2.3.1 Learned Indexes . 17
2.3.2 Experiments and Analysis . 19

2.4 Experimental Setup . 20
2.4.1 Implementation . 20
2.4.2 Hyperparameters . 21
2.4.3 Datasets . 24
2.4.4 Workload . 25
2.4.5 Baselines . 25

2.5 Predictive Accuracy Analysis . 26
2.5.1 Segmentation . 26
2.5.2 Position Prediction . 29
2.5.3 Error Bounds . 32

2.6 Lookup Time Analysis . 32

2.6.1 Model Types . 34
2.6.2 Error Correction . 36

2.7 Build Time Analysis . 38
2.8 Configuration Guideline . 40
2.9 Comparison With Other Indexes . 42

2.9.1 Lookup Time . 43
2.9.2 Build Time . 48

2.10 Conclusion and Future Work . 50

3 Index Access Strategies for Index Scans 51
3.1 Introduction . 51
3.2 Query Processing . 53

3.2.1 Processing Pipeline . 53
3.2.2 Table Access Methods . 54
3.2.3 Query Execution Methods . 56
3.2.4 Execution Environments . 59

3.3 Query Compilation With Partial Execution . 61
3.3.1 General Architecture . 62
3.3.2 Index Scans as a Suitable Candidate . 64

3.4 Index Access Strategies . 64
3.4.1 Compiled Index Access Strategy . 65
3.4.2 Interpreted Index Access Strategy . 67
3.4.3 Hybrid Index Access Strategy . 69
3.4.4 Discussion . 71

3.5 Implementation Details . 72
3.5.1 System . 72
3.5.2 Index Access Strategies . 74
3.5.3 Indexes . 76

3.6 Experimental Evaluation . 77
3.6.1 Experimental Setup . 78
3.6.2 Comparing the Index Access Strategies 79
3.6.3 Configuring the Compiled Index Access Strategy 80
3.6.4 Configuring the Interpreted Index Access Strategy 82
3.6.5 Configuring the Hybrid Index Access Strategy 84
3.6.6 Choosing an Index . 85
3.6.7 Benefiting From Caching Compiled Plans 87

3.7 Related Work . 89
3.7.1 Index Scans in Compiling Database Systems 89
3.7.2 Adaptive Query Execution . 91
3.7.3 Reusing Cached Plans . 92

3.8 Conclusion and Future Work . 93

4 Conclusion 95
4.1 Summary . 95
4.2 Discussion . 97
4.3 Limitations . 97
4.4 Future Research Directions . 99

Bibliography 101

Chapter 1

Introduction

1.1 Motivation

The efficient storage and fast retrieval of data are paramount requirements across various
domains, including business operations, financial services, healthcare, e-commerce, and public
administration. These operations rely heavily on database systems, which form the backbone
of virtually all data management processes. For instance, e-commerce platforms use database
systems to handle millions of transactions per day, ensuring real-time inventory updates and
personalized customer experiences. In healthcare, database systems manage vast amounts of
patient data, supporting everything from electronic health records to complex analytics for
medical research. These examples illustrate the demanding requirements for database systems
in terms of performance, reliability, and scalability. To fulfill these challenging requirements,
database systems employ a wide range of techniques.

Among these techniques, indexes stand out as one of the most significant methods for fast data
retrieval, and they are the central focus of this thesis. An index is a specialized data structure
that enables access to specific data items without having to inspect the entire dataset. There
are different types of queries, each requiring specific types of indexes to efficiently support
these queries. The three most relevant query types, along with commonly used indexes that
support them, are listed in the following.

Point Queries – Point queries typically retrieve a single data item based on a specific key,
such as finding detailed information about a student with a particular matriculation number
in a student database. Point queries are commonly processed using hash indexes, which apply

2 CHAPTER 1. INTRODUCTION

a hash function to the key to quickly obtain the memory location of the requested data item.
Additionally, B-trees support point queries by traversing their tree structure based on the key
until reaching a leaf node that contains the desired data item.

Range Queries – Range queries retrieve a set of data items with values falling within a
specified range. For instance, a range query might seek information on all students born
between the years 2000 and 2003. Range queries are efficiently processed using tree-structured
indexes like B-trees or tries. Typically, to retrieve the desired data items, the query initiates
with a point query on the first value in the range, leading to the first qualifying data item
located in some leaf node. Continuing from there, the query scans the remainder of the leaf
node and the subsequent leaf nodes until the data items no longer fall within the specified
range of values.

Existence Queries – Existence queries determine whether a data item with a specific value is
present in the database, such as a student with a particular matriculation number. Both hash
indexes and B-trees support this type of query by performing a point query on the specified
value. Another commonly used index for existence queries is the Bloomfilter. This probabilistic
data structure efficiently processes existence queries by using multiple hash functions to set
and read bits in a bit array. Bloom filters may produce false positives, so in case of a positive
result, the actual data must be checked to confirm the existence of the data item.

The aforementioned indexes have in common that they are general-purpose data structures
that make no assumptions on the distribution or inherent properties of the data they index.
In fact, most components in database systems are designed to be general-purpose to support a
wide range of workloads and datasets, and to adapt to changes in these workloads and datasets
over time. For instance, query optimizers, although they use statistics to make informed
decisions, are designed to be general-purpose, computing efficient query execution plans for a
wide variety of workloads and data distributions, rather than being specialized for any single
workload and dataset.

However, the invention of learned indexes [37] has challenged the generality of both individual
database components and database systems as a whole. Learned indexes are based on the
observation that traditional indexes function as models of the underlying data. By exploiting
patterns and distributions within the data, learned indexes can significantly improve lookup
performance and space efficiency. These learned indexes leveragemachine learning techniques
to replace traditional indexes with learned models. The success of learned indexes sparked
a new line of research into instance-optimized database systems, where machine learning is
employed to optimize components for specific datasets andworkloads. This research extends to

1.2. PROJECT GENESIS AND RESEARCH QUESTIONS 3

areas including but not limited to storage layouts (e.g., [69, 13]), cardinality estimation (e.g., [28,
66, 64]), approximate query processing (e.g., [42, 70]), and even query optimizers (e.g., [48, 50]).

This thesis is dedicated to investigating the first learned range index, known as the recursive
model index (RMI). We aim to understand the sources of its improved performance and
efficiency over traditional indexes. By analyzing the hyperparameters involved in configuring
the RMI, we develop a practical guideline for its configuration. We conduct a performance
comparison between the RMI, traditional indexes, and other first-generation learned indexes,
which refer to the initial wave of learned indexes that emphasize lookup performance while
having limited or no support for updates. Furthermore, we examine the performance impact
of using RMIs in a system, particularly focusing on its effectiveness in performing index scans
as part of range queries. Additionally, we develop three strategies for accessing indexes in
the context of an index scan in a compiling database engine and conduct a comprehensive
comparison of these strategies to determine the best use case for each. Through detailed
analysis and experimentation, this thesis seeks to investigate the potential of learned indexes
to enhance database efficiency.

1.2 Project Genesis and Research Questions

Building on the motivation outlined above, this thesis examines indexes and their use from
two distinct perspectives: the component view and the system view. Chapter 2 takes on the
component view by analyzing and evaluating the performance of a specific index, the RMI, in
isolation. We shift towards the system view in Chapter 3, investigating the performance impact
of different strategies for accessing indexes in an index scan within a database system. Both
perspectives are crucial for a holistic understanding of index performance. The component
view provides foundational insights into the capabilities and limitations of the RMI, while the
system view demonstrates the practical implications and benefits of using indexes as part of
index scans. In the following sections, we will delve into the genesis of both research projects
that form the basis of Chapter 2 and 3 and outline their key research questions.

Component View – A Critical Analysis of Recursive Model Indexes

When the RMI was first introduced in December 2017 by Kraska et al. [36], it was met with
both recognition and skepticism [52, 4]. The novelty and impressive experimental results
brought much-needed innovation to a stagnant field of database research. However, there
was skepticism due to imprecise experiment descriptions and the absence of an open-source
implementation and accessible datasets. RMIs are based on the simple observation that

4 CHAPTER 1. INTRODUCTION

the position of a key in a sorted array can be computed using the cumulative distribution
function (CDF) of the underlying data. RMIs approximate this CDF through a hierarchical
model to predict the position of a given key in the sorted array. Despite the simplicity of
this concept, configuring RMIs involves precisely adjusting several hyperparameters, including
model types, number of layers, and layer sizes.

Driven by the desire to better understand RMIs and to reproduce the results from the paper, we
initially investigated RMIs as part of a Bachelor’s thesis. However, efficiently reimplementing
RMIs based on the paper proved challenging due to a lack of detailed information. After
intensive consultation with the authors, we managed to close some of the gaps and evaluate
an initial prototype implementation. While we were able to reproduce some of the key results,
our goal was to deepen our understanding of the intricacies of RMIs – their strengths and
weaknesses – and, to a certain degree, demystify RMIs and address some misconceptions about
them in the community.

Two years after the initial publication of the original paper, in 2019, colleagues of the author
finally published a reference implementation of RMIs along with an automatic optimizer for
configuring them [47]. Although this reference implementation differed from the original
description in some aspects, it enabled us to further improve our implementation to a point
where a comprehensive analysis was possible. Building on our initial exploration, we aimed to
address the following research questions to deepen our understanding of RMIs.

1. Are the results of the original paper reproducible?
One of our primary goals is to validate whether the results reported by Kraska et al. [37] are
reproducible. Given the difficulties in replicating the original experiments, we aim to assess
the performance of our independent implementation of RMIs and compare them against the
reported results.

2. How do the hyperparameters involved in configuring RMIs affect performance?
By closely examining the influence of various hyperparameters on the overall performance of
RMIs, we aim to identify patterns that indicate the optimal configuration for different scenarios.
Understanding these relationships is crucial for answering the next research question.

3. Is there a practical way for configuring RMIs beyond exhaustive enumeration?
The automatic optimizer of the reference implementation determines configurations through
time-consuming exhaustive enumeration. This process, while thorough, is not practical
for many real-world applications. Leveraging the insights gained from our hyperparameter

1.2. PROJECT GENESIS AND RESEARCH QUESTIONS 5

analysis, we aim to develop a more efficient and practical guideline for configuring RMIs. Our
goal is to simplify the configuration process, making it feasible for a wider range of use cases.

4. How do RMIs compare to other indexes in terms of performance and efficiency?
The performance benefits of RMIs cannot be fully evaluated without comparing them to other
indexes. To assess the performance of RMIs, we select a variety of indexes, both traditional
and learned, for comparison. This analysis will highlight the strengths and weaknesses of
RMIs relative to other options. Our goal is to identify specific scenarios where the use of RMIs
may be particularly advantageous.

5. How do RMIs and other learned indexes balance prediction and error correction?
Since all first-generation learned indexes approximate the CDF, we aim to investigate how the
different approaches to this approximation impact performance. Our analysis will not only
focus on pure lookup time but will also decompose performance into the prediction of the
position in the sorted array and the correction of imprecise predictions. By doing so, we seek
to determine whether one approach clearly dominates the others in terms of overall efficiency.

In conclusion, this study adopts the component view to investigate the performance and
efficiency of RMIs under ideal conditions. By isolating RMIs from a system and repeatedly
querying them, we enable the CPU to optimize cache usage. Our focus on the internal
workings and configurations of RMIs aims to provide valuable insights into their capabilities
and performance characteristics. While limited to the component view, this study serves as
a foundational step towards understanding the role of learned indexes in enhancing database
efficiency. However, it remains uncertain how the observed performance numbers transfer to
usage of RMIs in a real system.

System View – Index Access Strategies for Index Scans

Having thoroughly investigated RMIs in isolation, the natural next step was to evaluate them
in a real system. We decided to integrate RMIs into mutable [26], a database system designed
for research and fast prototyping, currently under development in our group. At the project’s
inception, mutable entirely lacked support for indexes, so we chose to focus on implementing
an index scan operator to enhance range queries.

mutable has a unique compiling query engine that generates WebAssembly code from an
optimized query execution plan (QEP) and then executes this WebAssembly code in an
embedded runtime. The embedded runtime isolates the execution from the host database
system, preventing direct access to host data, including tables and indexes. To circumvent this

6 CHAPTER 1. INTRODUCTION

restriction, tables are rewired [56] to theWebAssembly program’s memory region, allowing for
direct access. However, this approach requires reimplementing the entire table access logic in
WebAssembly. While rewiring and reimplementing access logic would be possible for indexes,
it would demand significant development effort, not only once but whenever a new type of
index is added. An alternative and de facto standard approach to access host data from within
the embedded runtime involves using host calls. Although this method is flexible and easy to
implement, host calls typically induce overhead due to context switching and marshalling of
function parameters and return values, potentially deteriorating performance.

To circumvent the restrictions of executing queries in an isolated environment, we developed a
novel query engine architecture that allows partial execution of QEPs during compilation using
an interpreter. This architecture enables certain operator, including parts of an index scan, to
be performed at compile time rather than at query runtime. Building on this foundation, we
examined the individual steps of an index scan and observed that the index is primarily used to
determine tuple IDs, which are the only required information within the embedded runtime.
Based on this observation, we developed three index access strategies as part of an index
scan in a compiling database engine: (1) compiled index access strategy, (2) interpreted index
access strategy, and (3) hybrid index access strategy. While these strategies were designed with
mutable’s execution model in mind, they are not limited to use within an isolated execution
environment and can also be applied in an integrated setting.

Initially centered around the application of RMIs in a real system, this project evolved into
a broader investigation of a novel query engine design and different strategies for accessing
indexes in the context of index scans. Despite this broader focus, RMIs remain a critical
component of our study. By comparing the performance impact of these strategies across two
indexes, including RMIs, we aim to highlight the specific advantages and limitations of each
strategy. This comprehensive analysis is guided by the following research questions.

1. When to use which strategy to achieve the best query execution performance?
By executing queries with range filter predicates of varying selectivity on different attribute
types, we aim to investigate if one of the strategies clearly dominates the others in terms of
query execution time. If no single strategy consistently outperforms the others, wewill identify
the best use cases for each strategy. By using simple queries, we aim to minimize the influence
of extraneous factors, ensuring that our evaluation focuses solely on the performance of each
strategy.

2. How to properly configure each index scan strategy?
Each index access strategy includes one or more configuration parameters. By evaluating a

1.3. CONTRIBUTIONS 7

wide range of selectivities, we will investigate the performance impact of these parameters to
identify the optimal settings for each strategy.

3. Can certain strategies benefit from caching compiled plans?
In two strategies, the generated code does not contain the filter predicate because the index is
accessed during query compilation. This prompts an important question: can cached plans
from similar queries be reused in these strategies? If so, it would eliminate the need for
recompilation, potentially reducing the compilation time of future similar queries and even
improving query execution time overall.

4. Can RMIs enhance the performance of index scans?
The index access strategies can be implemented with any range index. Our investigation
aims to determine whether using an RMI can improve the performance compared to a simple
baseline index.

In conclusion, this project adopts a system view to explore the integration of RMIs into the
mutable database system, focusing on enhancing range queries through index access strategies.
By implementing these strategies and conducting rigorous performance evaluations, our aim is
to uncover insights into the effectiveness and optimization of these strategies within real-world
systems. While our findings offer valuable insights, further research is essential to consolidate
conclusions regarding the utilization of learned indexes.

1.3 Contributions

This section presents a detailed overview of the key contributions made through the projects
covered in the subsequent chapters of this thesis. Each project addresses the aforementioned
research objectives and challenges.

Component View – A Critical Analysis of Recursive Model Indexes

Most of Chapter 2 has been previously published in:

Marcel Maltry and Jens Dittrich. “A Critical Analysis of Recursive Model Indexes.” In: Proc.
VLDB Endow. 15.5 (2022), pp. 1079–1091

We made the following contributions through this project.

1. Learned Index Review – We offer an overview of the extensive body of work on learned
indexes, contrasting RMIs with other first-generation learned indexes, and distinguish our

8 CHAPTER 1. INTRODUCTION

study from previous experimental research focused on comparing and understanding the
performance of learned indexes.

2. Training Optimization - We provide a comprehensive examination of RMIs by detailing
their core concepts, elucidating the mechanisms of lookups, and identifying the key hyperpa-
rameters for their effective configuration. Through thorough analysis of the training process,
we can improve training time by leveraging the monotonicity of the models used in RMIs.

3. Hyperparameter Analysis – We define our methodology and experimental setup in
detail, including the tested hyperparameter configurations, datasets, workloads, and other
indexes used as performance baselines. We conduct the first inventor-independent extensive
hyperparameter analysis and determine the impact of each hyperparameter on prediction
accuracy, lookup performance, and build time.

4. Configuration Guideline – Building on our hyperparameter analysis, we develop
a practical guideline for configuring RMIs. This guideline, which accepts a size budget
for the index, offers a simpler alternative to previous approaches that relied on extensive
enumeration. Although our method does not guarantee the best configuration in terms of
lookup performance, it significantly reduces training time by limiting the process to building
at most two instances of an RMI . Experimental results demonstrate that our guideline achieves
performance similar to the optimal configuration on datasets without extreme outliers.

5. Index Comparison – We compare our implementation of RMIs against the previously
released reference implementation of RMIs, as well as all publicly available first-generation
learned indexes, and a selection of traditional indexes, in terms of lookup time and build time.
Our implementation is configured using our guideline, while the reference implementation
uses exhaustive enumeration. We show that despite the simple configuration process, on
datasets without extreme outliers, our guideline is on par or even outperforms the reference
implementation. We also demonstrate the scalability of the indexes across datasets of varying
sizes. Additionally, we conduct a breakdown of lookup time into the time taken to traverse the
index and the time to search for the concrete entry, either in the leaf nodes of the index or a
flat array, analyzing how different indexes prioritize optimizing these aspects.

6. Open-Source Implementation – Our complete code consisting of an extensible imple-
mentation of RMIs and experiments, including scripts for reproducing our measurements and
plots, is publicly available onGitHub [43]. The code is licensed under Apache-2.0. Furthermore,
the experiments were deemed reproducible by the reproducibility committee of VLDB 2022.

1.3. CONTRIBUTIONS 9

System View – Index Access Strategies for Index Scans

We made the following contributions through this project.

1. Query Processing Review – We revisit the steps involved in processing a query in a
modern database system, explaining query execution by both interpretation and compilation
with a simple example. This example is further utilized to illustrate the index scan operation,
breaking down the operator into its multiple constituent steps.

2. Query Compilation With Partial Execution – We present a novel compiling query
engine architecture that allows the query compiler to partially execute QEPs during compi-
lation using an interpreter. Runtime observations, such as intermediate results, are leveraged
to enhance the generated code with additional information, enabling further optimizations by
the execution engine.

3. Index Access Strategies – Based on this architecture, we develop three distinct strategies
for accessing indexes in the context of an index scan. These strategies differ in terms of which
of the steps involved in an index scan are carried out during query compilation and which
are executed at query runtime. We identify different methods of implementing each strategy,
varying in how intermediate results are materialized and how the index is accessed based on
the execution environment. Additionally, we discuss other potential strategies and provide
arguments for why we consider them to be inferior.

4. Strategy Comparison – We conduct a comprehensive experimental study comparing the
performance of multiple variants of the three strategies, aiming to understand when each is
most effective. We consider both a simple sorted array and a recursive model index as basis
of the index scan to determine the performance impact of using a learned index. Additionally,
we examine whether caching compiled plans enhances the strategies by allowing previously
compiled plans to be reused for similar queries.

5. Open-Source Implementation – We illustrate the implementation of the three index
access strategies in mutable, a database system currently under development in our group.
We describe mutable’s query engine, which translates queries to WebAssembly and executes
them in an embedded runtime isolated from the rest of the system. Additionally, we explain the
implications of this system design on the implementation of the three index access strategies.
The complete code for the strategy implementations and experiments is publicly available on
GitHub [27] as part of mutable and licensed under AGPL-3.0.

Chapter 2

A Critical Analysis of Recursive
Model Indexes

2.1 Introduction

Machine learning and artificial intelligence are taking the world by storm. Research areas
that were believed to have been researched to completion have been revisited with exciting
new results, showing that considerable improvements are still possible if we factor in wisdom
from the machine learning world. Notable examples include natural language processing and
computer vision, which were completely revolutionized in the past decade by variants of deep
learning. In the database world, we witnessed a surge of similar reexploration endeavors
in the past five years. Recent notable examples of work in this space include cardinality
estimation [28, 66], auto-tuning [54, 2], and indexing [37, 18, 12, 16, 34]. We believe that
indexing is the most surprising result of these three areas because both cardinality estimation
and auto-tuning are optimization problems and thus naturally align with machine learning.
The connection to indexing becomes evident when we examine a special case of indexing.

Problem Statement – Given a sorted, densely packed array 𝐴 of keys and a query 𝑄 asking
for a particular key 𝑥𝑖 that may or may not exist in that array, return the array index 𝑖 of that
key 𝑥𝑖 .

In other words, we are looking for a function that assigns to each key its position in the sorted
array. Traditionally, this function is implemented by a suitable algorithm like binary search
or a data structure like a B-tree. In contrast, Kraska et al. [37] observe that this function can

12 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

be learned through regression, effectively making the indexing problem a machine learning
task. Based on this observation, Kraska et al. [37] present the recursive model index (RMI) as
the first learned index with remarkable results in terms of lookup performance. We wanted
to understand the performance benefits of RMIs early on and therefore tried to reproduce the
results. However, we quickly encountered several issues.

Hyperparameter configuration – Configuring RMIs involves setting several hyperparame-
ters. Unfortunately, the exact configurations with which the remarkable results were obtained
were not reported and, in some cases, even described misleadingly. The use of neural
networks is mentioned frequently throughout the experimental evaluation of the original
paper. However, the lowmodel evaluation times reported in Fig. 4 strongly suggest that none of
the best-performing configurations actually used neural networks. In personal communication
with the first author in August 2019, we learned that linear models should be preferred
over neural networks in most cases. In our experience, there is still a misconception in the
community today that RMIs internally use neural networks. Subsequent studies [33, 49]
involving inventors of the RMI investigated the performance benefits of learned indexes over
traditional indexes. However, hyperparameter configurations for the reported results were
obtained by a time-consuming enumeration process [47]. As a result, similar to the original
paper [37], the studies neither show how the choice of hyperparameters affects performance
nor do they give advice for configuring RMIs in practice besides enumeration.

Closed source – The source code of the original paper was never made available. A
so-called reference implementation [49], which differs from the descriptions in the original
paper (see Section 2.3.2), was published in December 2019, two years after the preprint [36].

Goals – We pursue the following objectives with this paper:

1. Conduct the first inventor-independent detailed analysis of RMIs to understand the
impact of each hyperparameter on prediction accuracy, lookup time, and build time.

2. Develop a clear and simple guideline for database architects on how to configure RMIs
with good lookup performance.

3. Provide a clean and easily extensible implementation of RMIs.

Contributions – We make the following contributions to achieve these goals:

1. Learned Indexes: We revisit in detail recursivemodel indexes [37] and explain how they
are trained and what hyperparameters to consider (Section 2.2). We provide a detailed

2.2. RECURSIVE MODEL INDEXES 13

overview on the design dimensions of learned indexes and the already large body of
work in that space (Section 2.3).

2. Hyperparameter Analysis: We present our experimental setup (Section 2.4) and
conduct a set of extensive experiments to analyze the impact of each hyperparameter
on predictive accuracy and error interval size (Section 2.5), lookup performance (Sec-
tion 2.6), and build time (Section 2.7).

3. Configuration Guideline: Based on our findings, we develop a simple guideline to
configure RMIs in practice (Section 2.8).

4. ComparisonWith Other Indexes: We compare the RMIs resulting from our guideline
in terms of lookup time and build time with a number of learned indexes like ALEX [12],
PGM-index [16], RadixSpline [34], and the reference implementation of RMIs [47], aswell
as state-of-the-art traditional indexes like B-tree [5], ART [39], and Hist-Tree [10] (Sec-
tion 2.9).

2.2 Recursive Model Indexes

In this section, we review recursive model indexes, covering the lookup process, training
methodology, and relevant hyperparameters.

2.2.1 Core Idea

RMIs are based on the observation that the position of a key in a sorted array can be computed
using the cumulative distribution function (CDF) of the data. Let 𝐷 be a dataset consisting
of 𝑛 = |𝐷 | keys. Further, let 𝑋 be a random variable that takes each key’s value with equal
probability, and let 𝐹𝑋 be the CDF of 𝑋 . Then, the position 𝑖 of each key 𝑥𝑖 ∈ 𝐷 in the sorted
array is computed as:

𝑖 = 𝐹𝑋 (𝑥𝑖) · 𝑛 = 𝑃 (𝑋 ≤ 𝑥𝑖) · 𝑛 (2.1)

Note that in the context of learned indexes, the term CDF is frequently used synonymously
for a mapping from key to position in the sorted array instead of its statistical definition as a
mapping from key to the probability that a random variable will take a value less than or equal
to that key. In the following, we adopt the former interpretation.

The core idea of an RMI is to approximate the CDF of a dataset using a hierarchical, multi-
layer model. Consider Figure 2.1 for an example of a three-layer RMI. Each model in an RMI
approximates a segment of the CDF; all models of a layer together approximate the entire CDF.

14 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

𝑓 00

𝑓 01 𝑓 11 · · ·

𝑓 02 𝑓 12 𝑓 22 · · ·
La
ye
r𝑙

2
La
ye
r𝑙

1
La
ye
r𝑙

0

Lookup key: 𝑥=42

27 29 32 35 36 37 39 42 44 46 49... ...

error interval
[pos − err, pos + err]

pos

Figure 2.1: Illustration of a three-layer RMI evaluated on key 42, producing an estimated
position pos (prediction). The estimated position pos is used to locate the key within the sorted
array by searching the error interval around the predicted position (error correction).

An RMI is best represented as a directed acyclic graph. Unlike a tree, a node (or model) in an
RMI may have multiple direct predecessors. We denote the 𝑖-th layer of a 𝑘-layered RMI by 𝑙𝑖
where 𝑖 ranges from 0 to 𝑘 − 1, and refer to the 𝑗-th model of the 𝑖-th layer by 𝑓 𝑗𝑖 . The first
layer 𝑙0 of an RMI always consists of a single root model 𝑓 00 . Each subsequent layer may consist
of an arbitrary number of models. The number of models of a layer 𝑙𝑖 is denoted by |𝑙𝑖 | and is
called the size of the layer.

2.2.2 Index Lookup

A lookup is performed in two steps:

1. Prediction: We evaluate the RMI on a given key yielding a position estimate.

2. Error Correction: We search the key in the area around the estimated position in the
sorted array to compensate for estimation errors.

We discuss both steps in more detail below.

Prediction – Consider again Figure 2.1, which shows an index lookup for key 42. We start by
evaluating the root model 𝑓 00 on key 42, yielding a position estimate. Based on this estimate,

2.2. RECURSIVE MODEL INDEXES 15

model 𝑓 01 in the next layer 𝑙1 is chosen for evaluation. This iterative process is continued until
the position estimate pos of the last layer is obtained.

Definition (Prediction) Let 𝑅 be a 𝑘-layer RMI trained on dataset 𝐷 consisting of 𝑛 = |𝐷 |
keys. Denote the value 𝑝 restricted to the interval [𝑎,𝑏] by

⟦𝑝⟧𝑏𝑎 := max
(
𝑎,min(𝑝, 𝑏)

)
. (2.2)

The predicted position for key 𝑥 of layer 𝑙𝑖 is recursively defined as

𝑓𝑖 (𝑥) =

𝑓 00 (𝑥) 𝑖 = 0

𝑓

⌊
⟦|𝑙𝑖 | ·𝑓𝑖−1 (𝑥)/𝑛⟧|𝑙𝑖 |−10

⌋
𝑖 (𝑥) 0 < 𝑖 < 𝑘

(2.3)

Intuitively, to determine the model in layer 𝑙𝑖 that is evaluated on key 𝑥 , the estimate 𝑓𝑖−1(𝑥)
of the previous layer is scaled to the size of the current layer. Note that 𝑓𝑖−1(𝑥) might be less
than 0 or greater than 𝑛 − 1. Thus, the result is restricted to [0, |𝑙𝑖 | − 1] to evaluate to a valid
model index. The predicted position for key 𝑥 of RMI 𝑅 is the output of layer 𝑙𝑘−1:

𝑅(𝑥) = 𝑓𝑘−1(𝑥) . (2.4)

Error correction – Based on the estimate 𝑅(𝑥) obtained by evaluating the RMI, the sorted
array is searched for the key. In Figure 2.1, the position estimate for key 42 points to key 37
in the sorted array. Since 37 is smaller than 42, we have to search to the right of 37 to find
42. To facilitate the search, an RMI may store error bounds that limit the size of the interval
that has to be searched. The RMI guarantees that if a key is present, then it can be found
within the provided error bounds. A simple way to achieve this is by storing the maximum
absolute error err of the RMI. The left and right search bounds, i.e., the error interval, are set
to [𝑅(𝑥) − err, 𝑅(𝑥) + err]. If the key exists, it must be within these bounds. We search the
interval for key 𝑥 using an appropriate algorithm such as binary search.

2.2.3 Training Algorithm

The goal of the training process is to minimize the prediction error. The training algorithm
is shown in Algorithm 1. Its core idea is to perform top-down, layer-wise bulk loading. We
start by assigning all keys to the root model (Line 4). Then, the root model is trained on those
keys (Line 7). Afterward, the keys are assigned to the next-layer models based on the root

16 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

model’s estimates (Lines 9 to 11). We proceed by training the models of the next layer on the
keys that were assigned to them. This process is repeated for each layer until the last layer
has been trained. Finally, if desired, error bounds can be computed for the trained RMI (after
Line 11).

Algorithm 1 RMI Training Algorithm
Input: Dataset 𝐷 , number of layers 𝑘 , array of layer sizes 𝑙
Output: RMI 𝑅
1: procedure BuildRMI(𝐷 , 𝑘 , 𝑙)
2: 𝑅 := Array2D() ⊲Initialize dynamic array to store models.
3: keys := Array2D() ⊲Initialize dynamic array to store each model’s keys.
4: keys[0, 0] := 𝐷 ⊲Assign all keys to the root model.
5: for 𝑖 ← 0 to 𝑘 − 1 do
6: for 𝑗 ← 0 to 𝑙 [𝑖] − 1 do
7: 𝑅 [𝑖, 𝑗] := TrainModel(keys[i, j]) ⊲Train model 𝑗 of layer 𝑖 .
8: if 𝑖 < 𝑘 − 1 then ⊲Check whether current layer is not last layer.
9: for all 𝑥 in keys[𝑖, 𝑗] do
10: 𝑝 := GetModelIndex(𝑥, 𝑅 [𝑖, 𝑗], 𝑙 [𝑖 + 1], |𝐷 |)
11: keys[𝑖 + 1, 𝑝] .add(𝑥) ⊲Assign key 𝑥 to next-layer model 𝑝 .
12: end for
13: end if
14: end for
15: end for
16: return 𝑅
17: end procedure

18: function GetModelIndex(𝑥, 𝑓 , 𝑞, 𝑛)
19: return

⌊
⟦𝑞 · 𝑓 (𝑥)/𝑛⟧𝑞−10

⌋
⊲Compute model index according to Equation (2.3).

20: end function

2.2.4 Hyperparameters

RMIs offer a high degree of flexibility in configuration and tuning. In the following, we briefly
describe each hyperparameter. We provide a set of possible configurations for each parameter
in Section 2.4.2 when describing the experimental setup.

Model Types – The choice of model types significantly influences the predictive quality of
RMIs. Simple models like linear regression are compact and efficient in training and evaluation,
whereas complex models such as neural networks may provide higher accuracy at the cost of
slower training and evaluation speeds.

2.3. RELATED WORK 17

Layer Count – The number of layers 𝑘 determines the depth of an RMI. Deeper RMIs may
distribute keys more evenly across the last-layer models, but they are larger and take longer to
train and evaluate.

Layer Sizes – The size of a layer defines the number of models within that layer. A larger
number of models leads to more accurate predictions, since the segments that the models have
to cover are smaller.

Error Bounds – Error bounds facilitate the error correction by limiting the size of the interval
that has to be searched. Error bounds can be chosen on different granularities or be omitted
altogether.

Search Algorithm – Depending on the error bounds, various search algorithms can be
employed for error correction. Examples include binary, linear, or exponential search.

2.3 Related Work

The introduction of learned indexes by Kraska et al. [37] caused both excitement and criticism
within the database community. Early criticismmainly focused on the lack of efficient updates,
the relatively weak baselines, and the absence of an open-source implementation [52, 4]. Later,
Crotty [10] argued that the performance advantages of learned indexes stem primarily from
implicit assumptions on the data, such as sortedness and immutability. Subsequently published
learned indexes addressed some of these weaknesses [18, 12, 16]. Nevertheless, the RMI
remains one of the fastest indexes in experimental evaluations [33, 49, 34, 10].

2.3.1 Learned Indexes

Existing learned indexes commonly approximate the CDF. These indexes most notably differ
in the type of model they use to approximate the CDF, whether they are trained bottom-up or
top-down, and whether they support updates.

FITing-tree – FITing-tree [18] models the CDF using piecewise linear approximation (PLA).
During training, a dataset is first divided into variable-sized segments by a greedy algorithm
in a single pass over the data. These segments are created so that their linear approximation
satisfies a user-defined error bound. Subsequently, segments are indexed by bulk loading them
into a B-tree. A lookup consists of traversing the B-tree to find the segment that contains
the key, computing an estimated position based on the linear approximation of the segment,
and searching for the key within the error bounds around the estimated position. FITing-tree

18 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

supports inserts, which can either be performed in-place by shifting existing keys within the
segment or using a buffering strategy. In the buffering strategy, each segment has a buffer that
is merged with the other keys in the segment whenever the buffer is full. Unfortunately, at the
time of writing, no open-source implementation of FITing-tree was available, which kept us
from including it in our experiments.

ALEX – ALEX [12] uses a variable-depth tree structure to approximate the CDF with linear
models. Internal nodes are linear models that, given a key, determine the appropriate child
node. Leaf nodes store the data, whose distribution is also approximated using a linear model.
During a lookup, the tree is traversed until a leaf node is reached. Then, a position is predicted
using the leaf’s linear model. Finally, the key is searched using exponential search. Similar to
RMI, ALEX is trained top-down. However, ALEX has a dynamic structure that is controlled by
a cost model, which decides how to split nodes. ALEX supports inserts by either splitting or
expanding full nodes.

PGM-index – PGM-index [16] also approximates the CDF using PLA. Similar to FITing-tree,
PGM-index starts by computing segments that adhere to a specified error bound. However,
unlike FITing-Tree, PGM-index creates a PLA-model that is optimal in the number of segments.
Each segment is represented by the smallest key in that segment and a linear function that
approximates the segment. Afterward, this process is continued recursively bottom-up by
again creating a PLA-model on the smallest keys of each segment. The recursion terminates
when only a single segment remains. So, unlike ALEX, each path from the root model to
a segment is of equal length. A lookup is an iterative process where on each level of the
PGM-index, a linear model predicts the next-layer segment containing the key and the correct
segment is searched within the error bounds around the prediction using binary search. This
process continues for the next-layer segment until the sorted array of keys is reached. Ferragina
and Vinciguerra [16] also introduce variants of PGM-index that support updates (dynamic
PGM-index) and compression at the segment level (compressed PGM-index). The size of
PGM-index depends on the number of segments required to satisfy the used-defined error
bound.

RadixSpline – In contrast to the aforementioned learned indexes, RadixSpline [34] approxi-
mates the CDF using a linear spline. The linear spline is fitted in a single pass over the data
and to satisfy a user-defined error bound. The resulting spline points are then inserted into a
radix table, which maps keys to the smallest spline point sharing the same prefix. The size of
the radix table is determined by a user-defined prefix length. A lookup consists of finding the
spline points surrounding the lookup key using the radix table, performing linear interpolation

2.3. RELATED WORK 19

between the spline points to obtain an estimated position, and applying binary search in the
error interval around the estimated position to locate the key. Similar to RMI, RadixSpline has
a fixed number of layers and does not support updates.

2.3.2 Experiments and Analysis

Marcus, Zhang, and Kraska [47] released an open-source reference implementation of RMIs
along with an automatic optimizer in December 2019. This reference implementation deviates
from the original description [37] in several aspects. For instance, model types like B-tree
nodes and neural networks are missing, and error bounds are determined on a different
granularity. Given a dataset, the optimizer uses exhaustive enumeration to determine a set of
Pareto-optimal (in terms of lookup time and index size) two-layer RMI configurations. These
configurations consist of first-layer and second-layer model types, and a second-layer size.
Instead of blindly performing this costly enumeration, our work aims to understand the impact
of each hyperparameter and to develop a simple guideline. Further, in addition to model types
and layer sizes, we also consider error bounds and search algorithms when configuring RMIs.

Kipf et al. [33] introduced the Search On Sorted Data (SOSD) benchmark, a benchmarking
framework for learned indexes. Besides providing a variety of index implementations, they
supply four real-world datasets. In their preliminary analysis, the authors conclude that RMI
and RadixSpline are able to outperform traditional indexes including ART [39], FAST [31],
and B-trees, despite being significantly smaller in size. The authors also state that the lack
of efficient updates, lengthy building times, and the necessity for hyperparameter tuning are
notable issues with learned indexes.

As a follow-up, Marcus et al. [49] conducted a more detailed experimental analysis of learned
indexes based on the framework and datasets from SOSD [33]. The authors performed a series
of experiments to explain the superior performance of learned indexes and conclude that a
combination of fewer cache misses, branch misses, and instructions largely accounts for the
improved performance compared to traditional indexes. Further, the authors show that learned
indexes are Pareto optimal in terms of size and lookup performance across datasets and key
sizes.

Both aforementioned studies [33, 49] involve inventors of the RMI and aim to explain the per-
formance of learned indexes in general. Since the evaluated RMI configurations were obtained
using the optimizer [47], the studies neither show the impact of incorrectly configuring an RMI,
nor do the studies provide advice on how to configure RMIs outside of using the optimizer. In

20 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

contrast, to the best of our knowledge, we conduct the first independent and holistic analysis
of RMIs that directly compares configurations and aims to explain their performance.

Ferragina, Lillo, and Vinciguerra [15] take a theoretical approach to understanding the benefits
of learned indexes, particularly those based on PLA. The authors demonstrate that for various
distributions, PGM-index [16], while achieving the same query time complexity as B-trees,
offers improved space complexity. To support their theoretical results, the authors conduct
several experiments both on synthetic and real-world datasets. The theoretical results provide
a solid foundation for further research. However, since RMIs are not limited to PLA and do not
aim to construct the optimal number of segments, the results cannot be transferred to RMIs.

2.4 Experimental Setup

In this section, we introduce the implementation, hyperparameters, datasets, and workload
used in our experiments and baselines considered for comparison. All experiments are
conducted on a Linux machine with an Intel® Xeon® E5-2620 v4 CPU (2.10GHz, 512 KiB L1,
4MiB L2, 20MiB L3) and 4x8GiB DDR4 RAM. Our code is compiled with clang-12.0.1 at
optimization level -O2 and executed single-threaded.

2.4.1 Implementation

Our implementation of RMIs is written in C++. RMI classes have a fixed number of layers, and
model types are passed as template arguments. This implies that all models in a layer are of
the same type, consistent with the reference implementation but differing from the original
paper [37], which allows individual models to be replaced by B-tree nodes if predication are
insufficiently accurate. Training algorithms of the model types are adapted from the reference
implementation [47].

When assigning keys to the next-layer models, the reference implementation always copies
keys to a new array. We optimized the training process based on the observation that the
models considered here are monotonic and will never create overlapping segments. Thus,
when assigning keys to next-layer models, we simply store iterators on the sorted array of
the first and last key of each segment. We then train the next-layer models by passing them
the respective iterators and thereby avoid copying the keys.

Further, instead of training all models on a mapping from key to position in the sorted array,
we train inner layers on a mapping from key to next-layer model index. The index is obtained
by scaling the position to the size of the next layer, akin to Equation (2.3). In other words, we

2.4. EXPERIMENTAL SETUP 21

Table 2.1: Evaluated model types

Abbreviation Method Formula

LR Linear Regression 𝑓 (𝑥) = 𝑎𝑥 + 𝑏
LS Linear Spline 𝑓 (𝑥) = 𝑎𝑥 + 𝑏
CS Cubic Spline 𝑓 (𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑
RX Radix 𝑓 (𝑥) = (𝑥 ≪ 𝑎) ≫ 𝑏

train inner layers directly on a targeted equal-width segmentation. This approach eliminates
a multiplication and division during lookup that would otherwise be required to compute the
model index from the position estimate.

2.4.2 Hyperparameters

In the following, we provide a list of hyperparameter configurations evaluated in our ex-
periments and briefly compare them to those considered by the optimizer of the reference
implementation [47].

Model Types – Table 2.1 lists the model types considered in our evaluation. Linear regres-
sion (LR) is a linear model that minimizes the mean squared error. Linear spline (LS) and cubic
spline (CS) fit a linear and cubic spline segment through the leftmost and rightmost data points
of a segment, respectively. Radix (RX) eliminates the common prefix and maps keys to their
most significant bits. Models most notably differ in three aspects:

1. Built Time: LS, CS, and RX are fast to build from the leftmost and rightmost key. LR,
being a regression method, is built on all keys.

2. Evaluation Time: RX is the fastest to evaluate with just two bit shifts. LR and LS are
equally fast to evaluate, while CS is the slowest.

3. Predictive Quality: LS and CS are spline techniques, their predictive quality is based on
how representative the leftmost and rightmost keys are. LR minimizes the error across
all keys. RX, being radix-based, is solely used for segmentation.

In addition to the four models listed, the optimizer [47] considers radix tables, histograms, and
a specialized variant of linear regression (see Section 2.9.1) for the first layer, and cubic splines
for the second layer. We decided to evaluate a smaller set of model types to analyze the impact

22 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

Table 2.2: Evaluated error bounds

Abbreviation Method Granularity

LInd Local Individual [37] Maximum +/- error per model
LAbs Local Absolute [47] Maximum absolute error per model
GInd Global Individual Maximum +/- error per RMI
GAbs Global Absolute Maximum absolute error per RMI
NB No Bounds [37] -

of model types in general. Since the optimizer always recommends LR for the second layer, we
focus solely on LR and LS for the second layer.

Layer Count – Like the optimizer [47], we only consider two-layer RMIs. It was previously
reported that in most cases, two layers are sufficient to accurately approximate a CDF [47, 49],
which we verified for the considered datasets in preliminary experiments. We plan to explore
multi-layer RMIs as part of future work.

Layer Size –We cover the same wide range of second-layer sizes between 26 and 225 in power
of two steps like the optimizer [47].

Error Bounds – We consider five different variants of error bounds listed in Table 2.2, which
differ in the granularity of the stored bounds in two respects:

1. Local vs. Global: Error bounds may be computed either for each last-layer model (local)
or for the entire RMI (global). Global bounds, while more memory efficient, are
susceptible to outliers because the single largest error determines the error interval size
of all lookups. Local bounds are more robust against outliers as an outlier only affects
the respective model.

2. Absolute vs. Individual: We can either store the maximum absolute error (absolute)
or both the maximum positive and negative error individually (individual). While the
former is again more space-efficient, the latter allows for tighter bounds, especially if a
model either overestimates or underestimates the actual position.

Additionally, we may choose not to store any bounds (NB). Both local individual (LInd) and
NB were suggested by Kraska et al. [37]. The reference implementation supports local absolute
bounds (LAbs) and NB, but the optimizer [47] consistently recommends LAbs.

2.4. EXPERIMENTAL SETUP 23

Table 2.3: Evaluated search algorithms

Abbreviation Method

Bin Binary Search
MBin Model-biased Binary Search [37]
MLin Model-biased Linear Search
MExp Model-biased Exponential Search [37]

Search Algorithm – The evaluated search algorithms are listed in Table 2.3. We generally
distinguish between two types of search algorithms:

1. Standard Search Algorithms: These search algorithms do not use the predicted
position from the RMI. They only consider the error bounds around the predicted
position.

2. Model-Biased Search Algorithms: These search algorithms use the predicted position
from the RMI as the starting point of the search [37].

Binary search is an example of a standard search algorithm. We search the key in the interval
between the two error bounds and ignore the position estimate.

However, binary search can be adapted to becomemodel-biased. Instead of choosing themiddle
element of the interval as a first comparison point, we pick the estimated position. Similarly,
linear search and exponential search can be adjusted to become model-biased. Instead of
searching the interval from left to right, we start the search from the estimated position and
search to the left or right, depending on whether the prediction is an overestimation or an
underestimation. The search terminates once it is certain that the key cannot be found further
in that direction. Initially, we also considered standard linear search and exponential search for
our experiments, but both consistently performed worse than their model-biased counterparts.

It is worth noting that not all combinations of error bounds and search algorithms make sense.
For instance, in the case of absolute error bounds, model-biased binary search and standard
binary search are essentially the same as the estimate is the center of the interval anyway.
Further, model-biased linear and exponential search do not make use of bounds.

Previous studies only compared binary [37, 33, 49], linear, and interpolation search [49]. Model-
biased variants of linear and exponential search have not been studied in the context of RMIs
thus far.

24 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

0.0 2.5 5.0 7.5
×1018

0.0

0.5

1.0

1.5

2.0
Po

sit
io

n
×108 books

0.0 0.5 1.0 1.5
×1019

fb

0.0 0.4 0.8 1.2
Key ×1019

0.0

0.5

1.0

1.5

2.0

Po
sit

io
n

×108 osmc

1.02 1.08 1.14 1.20
Key ×109

wiki

Figure 2.2: CDFs of the four real-world datasets from SOSD [33], each consisting of 200M 64-bit
unsigned integer keys. Zoom-ins depict 100 consecutive keys.

2.4.3 Datasets

Learned indexes are known to adapt well to artificial data sampled from statistical distribu-
tions [49]. Therefore, we use the four real-world datasets from the SOSD benchmark [33].
Each dataset consists of 200M 64-bit unsigned integer keys. The CDFs of the four datasets are
depicted in Figure 2.2; zoom-ins show 100 consecutive keys to indicate the amount of noise.

• books: Keys represent the popularity of books on Amazon.

• fb: Keys represent Facebook user IDs. This dataset contains a small number of extreme
outliers, which are several orders of magnitude larger than the rest of the keys at the
upper end of the key space. These outliers were not plotted in previous studies [33, 49].

• osmc: Keys represent cell IDs on OpenStreetMap. This dataset exhibits clusters that are
artifacts of projecting two-dimensional data into one-dimensional space [49].

• wiki: Keys are Wikipedia edit timestamps. This dataset uniquely contains duplicates.

2.4. EXPERIMENTAL SETUP 25

Table 2.4: Overview of the considered baselines

Method Type Hyperparameters Source

RMI (ref) [37] Model types, layer size [45]
ALEX [12] Sparsity [11]
PGM-index [16] Maximum error [63]
RadixSpline [34]

Learned

Radix width, maximum error [32]
B-tree [5] Sparsity [6]
Hist-Tree [10]

Tree
Number of bins, maximum error [59]

ART [39] Trie Sparsity [46]
Binary search Search - [9]

2.4.4 Workload

For the lookup performance, we consider lower bound queries where the index returns an
iterator pointing to the smallest element in the sorted array that is equal to or greater than
the queried key. The sorted array is maintained in memory. We perform 20M lookups per
run, where the keys are sampled from the sorted array uniformly at random with a fixed seed.
Reported execution times are the average execution time of the median of three separate runs.

2.4.5 Baselines

In Section 2.9, we compare our RMI implementation against several baselines listed in Table 2.4,
for whichwe use the referenced open-source implementations. Due to our focus on ranking the
performance of RMIs, we consider all publicly available learned indexes at the time of writing,
but only some representatives of traditional indexes.

Learned Indexes – ALEX [12], PGM-index [16], and RadixSpline [34] are learned indexes
discussed in Section 2.3.1. The index size of PGM-index and RadixSpline is varied based on
the maximum error parameter. Additionally, RadixSpline provides a parameter to adjust the
size of the radix table that is used to index the spline points. Since we do not consider update
performance here, we use the standard variant of PGM-index, which does not support updates.
ALEX does not provide any parameters itself, so we vary its size by adjusting the number
indexed keys (sparsity) by inserting only every 𝑘-th key. In addition, we also consider the
reference implementation of RMIs (RMI (ref)) [47], configured using its integrated optimizer.

26 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

Traditional Indexes – B-tree [5] and ART [39] are traditional in-memory index structures.
We vary the size of both B-tree and ART by adjusting the number of keys that are inserted.
Therefore, we use an implementation of ART that supports lower bound queries from
SOSD [33]. The recently published Hist-Tree [10] is a tree-structured index. Each inner node in
a Hist-Tree is a histogram that partitions the data into equal-width bins. Like learned indexes,
Hist-Tree exploits that the data is sorted. Hist-Tree provides two tuning parameters: the
number of bins determines the size of inner nodes and the maximum error defines a threshold
for the size of a terminal node. We use an implementation of a Compact Hist-Tree that does
not support updates in favor of lookup performance [59].

Binary Search – We also consider standard binary search over the sorted array as provided
by std::lower_bound [9] without any additional indexing.

2.5 Predictive Accuracy Analysis

In this section, we analyze the impact of hyperparameters on the predictive accuracy of RMIs.
Our analysis is divided into three parts:

1. Segmentation (Section 2.5.1): We investigate how various types of root models divide
the keys into segments.

2. Position Prediction (Section 2.5.2): We analyze how accurately various combinations
of models approximate the CDF.

3. Error Bounds (Section 2.5.3): We examine how various types of error bounds limit the
error interval to be searched.

2.5.1 Segmentation

An RMI divides the keys into distinct segments based on its root model’s approximation of the
CDF. Assuming a root model correctly predicts the position of each key, each segment would
consist of the same number of keys. Therefore, RMIs aim for an equal-depth segmentation by
design. This approach to segmentation has a crucial weakness: it ignores whether the resulting
segments can be accurately approximated by the next-layer models. Consequently, the quality
of an RMI’s segmentation cannot be assessed without considering the next layer. In contrast,
other learned indexes like PGM-index [16] and RadixSpline [34], which are built bottom-up,
explicitly create segments that meet a certain error tolerance.

2.5. PREDICTIVE ACCURACY ANALYSIS 27

0.0 2.5 5.0 7.5
×1018

0.0

0.5

1.0

1.5

2.0

Es
tim

at
ed

po
sit

io
n

×108 books

0.0 0.5 1.0 1.5
×1019

fb

0.0 0.4 0.8 1.2
Key ×1019

0.0

0.5

1.0

1.5

2.0

Es
tim

at
ed

po
sit

io
n

×108 osmc

1.02 1.08 1.14 1.20
Key ×109

wiki

CDF LR LS CS RX

Figure 2.3: CDF and its approximation by various types of root models, used to segment the
key space and distribute keys across the second-layer models.

Nevertheless, to compare the segmentation capabilities of various model types, we address
two problems that may occur when segmenting keys in an RMI: empty segments, which
do not contain any keys, and large segments, which contain significantly more keys than
other segments. For reference, Figure 2.3 shows the CDFs and the corresponding root model
approximations.

Empty Segments – Since there is a second-layer model for every segment, empty segments
increase the size of an RMI without improving the prediction accuracy. Thus, we should aim
for as few empty segments as possible. Figure 2.4 shows the percentage of empty segments of
each model type on each dataset for a varying number of segments. We generally observe that
the percentage of empty segments increases with an increasing number of segments. The more
accurately a model approximates the CDF, the fewer empty segments it creates. For instance,
CS produces empty segments on books only after a high number of segments is reached.

28 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

0%

20%

40%

60%

80%

100%

%
of

em
pt

y
se

gm
en

ts
books fb

28 212 216 220 224

of segments

0%

20%

40%

60%

80%

100%

%
of

em
pt

y
se

gm
en

ts

osmc

28 212 216 220 224

of segments

wiki

LR LS CS RX

Figure 2.4: Percentage of empty segments when segmenting keys using various model types
for a varying number of segments.

In contrast, radix predictions often do not cover the full range of positions, such as on the wiki
dataset, leaving the segments associated with the non-covered positions empty. The clustered
distribution of the osmc dataset causes percentages to be generally higher and to increase more
quickly since the keys are distributed over a small number of segments. Due to the few extreme
outliers that strongly affect the CDF approximation of fb, all modelsmap themajority of keys to
the same position, causing all of these keys to be assigned to the same segment. Increasing the
number of segments gradually removes the outliers from this segment, but the single segment
will continue to contain most keys.

Large Segments – Large segments contain more keys and thus potentially follow a more
complex distribution, making them more difficult to approximate accurately for the second-
layer models. Therefore, large partitions may negatively affect the prediction quality of an
RMI. Figure 2.5 shows the number of keys that reside in the largest segment. Again, the more
accurate a model approximates the CDF, the more evenly the keys are distributed over the

2.5. PREDICTIVE ACCURACY ANALYSIS 29

segments. Logically, the average segment size decreases as the number of segments increases.
However, this does not necessarily apply to the largest segment.

For LR, the size of the largest partition often remains near-constant. The reason for this is that
LR may produce estimates outside the range of valid positions. These out-of-range predictions
are then clamped to either the first or last valid position, depending on whether they are out
of range on the lower or upper end. All keys whose prediction is clamped to the same position
will be assigned to the same segment. Increasing the number of segments only decreases the
size of these segments until the segments consist exclusively of keys whose prediction had to
be clamped.

In contrast, CS, LS, and RX do not produce estimates outside the range of valid positions and,
therefore, do not exhibit this problem. As discussed before, on fb, almost all keys reside in a
single segment, regardless of the number of segments and type of the root models. As we will
see in subsequent experiments, the inability of the considered model types to segment datasets
with extreme outliers is the main reason for inaccurate predictions, large error intervals, and
ultimately slow lookups on fb.

Summary – When choosing a first-layer model type for segmentation, empty and large
segments should be avoided. In our experiments, LS and CS produced the most uniform
segments. RX tends to produce many empty segments. LR often creates large segments at
the upper and lower end of the key space due to clamping. If none of the models satisfactorily
segments the keys, as with fb, more complex models must be considered.

2.5.2 Position Prediction

To analyze the impact of model types on prediction accuracy, we train RMIs with all combi-
nations of first-layer and second-layer model types and varying second-layer sizes on the four
datasets. Figure 2.6 reports the median absolute error across all keys as a measure of deviation
between predicted position and actual position. We decided not to report the mean absolute
error because the median absolute error is more stable. Throughout the remainder, we denote
an RMI that uses RX and LR in the first layer and second layer, respectively, as RX ↦→LR.

As expected, RMIs with more segments, and thus more second-layer models, generally produce
more accurate predictions. On both the books and wiki datasets, RMIs with more than 219

second-layer models even achieve errors in single digits. The osmc and fb datasets are more
difficult to approximate. The osmc dataset has a clustered distribution that results in a high
number of empty segments, leading to larger non-empty segments on average. Additionally,

30 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

103

104

105

106

107

108

Si
ze

of
la

rg
es

ts
eg

m
en

t
books fb

28 212 216 220 224

of segments

103

104

105

106

107

108

Si
ze

of
la

rg
es

ts
eg

m
en

t

osmc

28 212 216 220 224

of segments

wiki

LR LS CS RX

Figure 2.5: Size of the largest segment when segmenting keys using various model types for a
varying number of segments.

these segments often exhibit significant noise and cannot be precisely approximated with the
models considered here. Similarly, the large prediction error of fb can also be attributed to the
single large segment. The sudden drop in prediction error between 215 and 217 segments occurs
because fewer outliers are assigned to the large segment. Although the distribution within that
large segment is close to uniform, considerable noise causes persistently high prediction errors.

Comparing the different RMI configurations, RMIs with LR, LS, and CS as root model achieve
similar errors, while RX performs slightly worse. This suggests that RX is less suitable
for segmentation in terms of prediction accuracy. Regarding the second-layer models, LR
consistently achieves lower errors than LS. This is expected since LR is the only regression
model and minimizes the mean squared error on the error bounds.

Summary – For the first layer, a segmentation that distributes the keys among many models
is crucial for high prediction accuracy. In the second layer, regression models like LR achieve
higher accuracy than spline models because regression models minimize the prediction error.

2.5. PREDICTIVE ACCURACY ANALYSIS 31

101

103

105

107

M
ed

ia
n

ab
so

lu
te

er
ro

r

books books

101

103

105

107

M
ed

ia
n

ab
so

lu
te

er
ro

r

fb fb

101

103

105

107

M
ed

ia
n

ab
so

lu
te

er
ro

r

osmc osmc

28 212 216 220 224

of segments

101

103

105

107

M
ed

ia
n

ab
so

lu
te

er
ro

r

wiki

28 212 216 220 224

of segments

wiki

CS ↦→ LR
CS ↦→ LS

LR ↦→ LR
LR ↦→ LS

LS ↦→ LR
LS ↦→ LS

RX ↦→ LR
RX ↦→ LS

Figure 2.6: Median absolute error when predicting positions using various combinations of
first-layer and second-layer model types across different segment counts.

32 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

Increasing the second-layer size of an RMI further improves its accuracy. Overall, LS ↦→LR
and CS ↦→LR achieve good accuracy across datasets, except for fb, where poor segmentation
adversely affects prediction accuracy.

2.5.3 Error Bounds

Error bounds facilitate correcting prediction errors by limiting the size of the error interval
that must be searched during a lookup. To evaluate the impact of different error bounds, we
again train RMIs with all combinations of first-layer and second-layer model types and varying
second-layer sizes. For each configuration, we compute error bounds of different types and
record the error interval sizes across all keys. In Figure 2.7, we present themedian error interval
size, which represents the median number of keys that have to be searched during a lookup.
We focus on two combinations of models, as the observations and conclusions drawn on the
error bounds apply equally to other combinations of model types.

Global bounds consistently lead to significantly larger error intervals than local bounds,
even though global bounds allow for more second-layer models and achieve more accurate
predictions at a similar index size. However, global bounds are susceptible to single bad
predictions, whereas local bounds aremore robust because they pertain to only onemodel. LInd
and LAbs achieve similar error interval sizes. Spline models, which tend to either overestimate
or underestimate, profit from LInd. LR, which often achieves similar positive and negative
errors, works better with LAbs, as LAbs allows for more second-layer models at a similar index
size.

Summary –When considering RMIs of similar size, local bounds consistently result in smaller
error intervals than global bounds. For the preferred second-layer model type LR, LAbs
achieves smaller intervals due to having more second-layer models at a similar index size.

2.6 Lookup Time Analysis

In this section, we analyze the impact of hyperparameters on the lookup performance of RMIs.
Our analysis is divided into two parts:

1. Model Types (Section 2.6.1): We investigate the lookup performance of various combi-
nations of first-layer and second-layer model types.

2. ErrorCorrection (Section 2.6.2): We analyze the impact of various types of error bounds
and search algorithms on lookup performance.

2.6. LOOKUP TIME ANALYSIS 33

102

104

106

108

M
ed

ia
n

er
ro

r
in

te
rv

al
siz

e

books (LS ↦→LR) books (RX ↦→LS)

102

104

106

108

M
ed

ia
n

er
ro

r
in

te
rv

al
siz

e

fb (LS ↦→LR) fb (RX ↦→LS)

102

104

106

108

M
ed

ia
n

er
ro

r
in

te
rv

al
siz

e

osmc (LS ↦→LR) osmc (RX ↦→LS)

10−3 10−2 10−1 100 101 102 103

Index size [MiB]

102

104

106

108

M
ed

ia
n

er
ro

r
in

te
rv

al
siz

e

wiki (LS ↦→LR)

10−3 10−2 10−1 100 101 102 103

Index size [MiB]

wiki (RX ↦→LS)

GAbs GInd LAbs LInd

Figure 2.7: Median error interval sizes when training two combinations of first-layer and
second-layer model types using various error bounds across different index sizes.

34 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

2.6.1 Model Types

To evaluate the impact of model types on lookup performance, we train RMIs with all
combinations of first-layer and second-layer model types and varying second-layer sizes. We
use no bounds and model-biased exponential search (NB+MExp) for error correction, as this
configuration relies solely on the predictive power of the RMI and thus most clearly illustrates
the differences between the various combinations of model types. In Figure 2.8, we report the
average lookup time of each configuration. The dashed horizontal lines are the average time
for obtaining a key using binary search.

For a fixed index size, the lookup times of different models within a dataset often differ only
slightly. For instance, on osmc and books, all combinations of models have similar lookup
times. However, lookup times vary significantly across different datasets. This observation is
consistent with the prediction errors we saw in Section 2.5.2. The reason for this is that lookup
time consists of evaluation time and error correction time. The error correction time accounts
for the majority of lookup time and is determined by the prediction error. However, balancing
evaluation time and error correction time is a trade-off that has to be carefully considered.

In our experiments, we only consider relatively simple models that are fast to evaluate, and as a
result, there are only minor differences in evaluation time. In preliminary experiments, we also
considered neural networks, which achieved higher prediction accuracy, but the faster error
correction was overshadowed by a significantly higher evaluation time, ultimately resulting in
considerably slower lookups. Among the models considered here, CS is the slowest to evaluate.
We can observe the impact of its slower evaluation time compared to LS on books where,
despite CS ↦→LR being slightly more accurate than LS ↦→LR, LS ↦→LR achieves faster lookups.
Differences in evaluation time are particularly noticeable when the error correction time is
relatively short, which often is the case for larger configurations.

Summary – Prediction accuracy is a strong indicator of lookup performance as it determines
the error correction time. Therefore, models like CS ↦→LR and LS ↦→LR that achieve good
accuracy across datasets should be chosen when optimizing lookup time. However, the more
accurate the predictions are, the more important differences in evaluation time become, and
models that are slightly less accurate but faster to evaluate have an advantage. Increasing the
second-layer size improves accuracy and causes the lookup time to converge.

2.6. LOOKUP TIME ANALYSIS 35

0

200

400

600

800

Lo
ok

up
tim

e
[n

s]

books books

0

500

1000

1500

Lo
ok

up
tim

e
[n

s]

fb fb

0

500

1000

1500

Lo
ok

up
tim

e
[n

s]

osmc osmc

10−3 10−2 10−1 100 101 102

Index size [MiB]

0

200

400

600

800

1000

Lo
ok

up
tim

e
[n

s]

wiki

10−3 10−2 10−1 100 101 102

Index size [MiB]

wiki

CS ↦→ LR CS ↦→ LS LR ↦→ LR LR ↦→ LS Binary search

Figure 2.8: Average lookup time for various combinations of first-layer and second-layer model
types with NB+MExp across different index sizes.

36 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

2.6.2 Error Correction

Next, we examine the impact of eight combinations of error bounds and search algorithms for
error correction on lookup time. We consider the following combinations. NB is evaluated with
MLin and MExp, as both search algorithms do not use bounds. GInd and LInd are evaluated
with MBin and Bin. GAbs and LAbs are evaluated with Bin only, as MBin and Bin are the same
in case of absolute bounds, as argued in Section 2.4.2.

In Figure 2.9, we report the average lookup time, showing two representative combinations of
first-layer and second-layer model types. However, our observations on various combinations
of error bounds and search algorithms also apply to the other combinations of model types.

We observe that configurations with either local bounds or no bounds perform best. Local
bounds generally perform better than global bounds, which is consistent with our observation
from Section 2.5.3. Nevertheless, binary search mitigates differences in error interval size
drastically. For instance, global and local bounds perform almost identical with LS ↦→LR on
books, although the error interval sizes differ by more than an order of magnitude. LInd and
LAbs also perform almost identical, with a maximum performance difference of factor 1.1x. As
observed in Section 2.5.3, LS performs better with LInd as it tends to either overestimate or
underestimate, whereas LR performs better with LAbs as its loss function balances overesti-
mations and underestimations. Considering LInd, there is hardly any difference between Bin
and MBin.

As observed in Section 2.6.1 in regard tomodel types, the choice of error bounds not only affects
error correction time but also evaluation time, as error bounds induce overhead for computing
the error interval’s limits. Hence, RMIs without error bounds are faster to evaluate. The faster
evaluation is particularly noticeable when RMIs achieve high prediction accuracy and thus fast
error correction. In these cases, NB+MExp performs better than configurations with bounds,
as can be seen with books and wiki.

To further analyze when to use NB+MExp over configurations with bounds, we also recorded
the mean log2 error as an estimate of the number of search steps required by MExp. Starting
with a mean log2 error of around 7 to 10, NB+MExp is faster than LAbs+Bin. NB+MLin requires
even lower errors to be similarly fast.

Summary – The best combination of error bounds and search algorithm depends on the
predictive accuracy of the RMI. If the mean log2 error is sufficiently small, NB+MExp achieves
the best lookup times due to being faster to evaluate. For larger errors, configuration with local
bounds, such as LAbs+Bin, perform better.

2.6. LOOKUP TIME ANALYSIS 37

0

200

400

600

800

Lo
ok

up
tim

e
[n

s]

books (LS ↦→LR) books (RX ↦→LS)

0

500

1000

1500

Lo
ok

up
tim

e
[n

s]

fb (LS ↦→LR) fb (RX ↦→LS)

0

500

1000

1500

Lo
ok

up
tim

e
[n

s]

osmc (LS ↦→LR) osmc (RX ↦→LS)

10−3 10−2 10−1 100 101 102 103

Index size [MiB]

0

200

400

600

800

1000

Lo
ok

up
tim

e
[n

s]

wiki (LS ↦→LR)

10−3 10−2 10−1 100 101 102 103

Index size [MiB]

wiki (RX ↦→LS)

GAbs+Bin
GInd+Bin

GInd+MBin
LAbs+Bin

LInd+Bin
LInd+MBin

NB+MExp
NB+MLin

Binary search

Figure 2.9: Average lookup time for two combinations of first-layer and second-layer model
types with various combinations of error bounds and search algorithms across different index
sizes.

38 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

10−3 10−2 10−1 100 101 102

Index size [MiB]

0

2

4

6

8

10

Bu
ild

tim
e

[s
]

books (NB)

CS ↦→LR
LR ↦→LR

LS ↦→LR
RX ↦→LR

(a) First-layer type

10−3 10−2 10−1 100 101 102

Index size [MiB]

0

2

4

6

8

10

Bu
ild

tim
e

[s
]

books (NB)

LS ↦→LR
LS ↦→LS

RX ↦→LR
RX ↦→LS

(b) Second-layer type

Figure 2.10: Build times when training various first-layer and second-layer model types with
NB on books across different index sizes.

2.7 Build Time Analysis

In this section, we analyze the build time of our implementation of RMIs and compare it with
the reference implementation [47]. Recall that the build process of a two-layer RMI consists
of four steps: (1) training the root model, (2) creating segments, (3) training the second-layer
models, and (4) computing error bounds. Figure 2.10 and 2.11 only show build times on books,
as build times are largely independent of the dataset, except for minor caching effects on large
configurations. We discuss each aspect that affects build time individually below.

First-Layer Type – Consider Figure 2.10a for a build time comparison of different root models.
Models in general, and root models in particular, not only differ in training time, which affects
step (1), but also in evaluation time, which affects steps (2) and (4). The most notable difference
between the models in terms of training time is whether a model considers all keys, like LR, or
a constant number of keys, like LS, CS, and RX. Since the evaluation time of LR and LS is the
same, the difference in build time in Figure 2.10a can be attributed entirely to the training time
of the root model. Like LS, RX also considers only two keys for training. Here, the faster build
time of RX is caused by the faster evaluation of RX during segmentation. CS is faster than LR
because it again only considers a constant number of keys but slower than LS because training
and evaluation are slightly slower.

2.7. BUILD TIME ANALYSIS 39

10−3 10−2 10−1 100 101 102 103

Index size [MiB]

0

2

4

6

8

10

Bu
ild

tim
e

[s
]

books (LS ↦→LR)

GAbs
GInd

LAbs
LInd

NB

Figure 2.11: Build times when training LS ↦→LR on books using various error bounds across
different index sizes.

Second-Layer Type – Consider Figure 2.10b for a build time comparison of different second-
layer models. Analogous to the root model type, the second-layer model type affects training
time and evaluation time. Second layers consisting of LS models take about two seconds less
to train than second layers consisting of LR models. As we do not compute bounds here, the
second layer is never evaluated. Otherwise, evaluation time would be the same for LR and LS.

Error Bounds – Consider Figure 2.11 for a build time comparison of different error bounds.
Computing error bounds requires evaluating the RMI on every key plus the actual computation
of the bounds. This additional effort explains the difference in built time between NB and
configurations with bounds. The difference between individual configurations with bounds
is mainly due to branch misses when calculating the bounds. At a similar index size, local
bounds trigger more branch misses than global bounds, and individual bounds trigger more
branch misses than absolute bounds.

Index Size – Consider again the RMI configuration without bounds in Figure 2.11. The build
time remains almost constant as long as the entire RMI fits in cache (20MiB). Once the RMI
no longer fits in cache, the build time increases due to cache misses. Next, consider the
configurations with bounds in Figure 2.11. Here, the previously described branch and cache
misses add up, and the build time already increases for configurations that are smaller than
the cache size. The increase in build time is less pronounced if a configuration produces many
empty segments due to less cache misses.

40 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

10−3 10−2 10−1 100 101 102

Index size [MiB]

0

10

20

30

40

Bu
ild

tim
e

[s
]

books (NB)

LS ↦→LR (ours)
RX ↦→LS (ours)

LS ↦→LR (ref)
RX ↦→LS (ref)

(a) No bounds

10−3 10−2 10−1 100 101 102 103

Index size [MiB]

0

10

20

30

40

Bu
ild

tim
e

[s
]

books (LAbs)

LS ↦→LR (ours)
RX ↦→LS (ours)

LS ↦→LR (ref)
RX ↦→LS (ref)

(b) Local absolute bounds

Figure 2.12: Build times when training two combinations of first-layer and second-layer model
types with NB and LAbs on books across different index sizes, both using our implementa-
tion (ours) and the reference implementation (ref).

Reference Implementation – Figure 2.12 shows build times of our implementation (ours)
and the reference implementation (ref). Figure 2.12a and Figure 2.12b compare configurations
with NB and LAbs, respectively. Build times for both types of bounds are almost identical for
the reference implementation because the reference implementation always computes bounds
during training and only decides later whether these computed bounds are kept or discarded.
Considering only configurations with LAbs, our implementation improves build times by 2.5x
to 6.3x. We attribute this improvement to our optimized segmentation for monotonous root
models, which avoids copying keys as described in Section 2.4.1.

Summary – RMIs can be built in a matter of seconds. For a given combination of models, the
build time remains almost constant as long as the RMI fits in the cache. The computation of
error bounds leads to additional cache and branch misses, which negatively impact build times.

2.8 Configuration Guideline

Based on our findings from the previous sections, we present a compact guideline for config-
uring RMIs. Our guideline does not guarantee to always suggest the optimal configuration in
terms of lookup time, but it is easy to follow and achieves competitive lookup performance.

2.8. CONFIGURATION GUIDELINE 41

10−2 10−1 100 101 102 103

Index size [MiB]

0

200

400

600

800

Lo
ok

up
tim

e
[n

s]

books

10−2 10−1 100 101 102 103

Index size [MiB]

0

300

600

900

1200
osmc

10−2 10−1 100 101 102 103

Index size [MiB]

0

200

400

600

800
wiki

RMI (fastest) RMI (guideline) Binary search

Figure 2.13: Average lookup time when performing lookups with RMIs configured using
exhaustive enumeration (fastest) and our guideline (guideline) across different index sizes.

Additionally, we address limitations of our guideline. Given a maximum allowed index size
budget, we propose to configure RMIs as follows.

Model Types – LS ↦→LR with the largest feasible second-layer size within the allocated budget.
CS and LS both segment most datasets well, but we choose LS as it is slightly faster to train
and evaluate. Although more accurate predictions can be obtained with CS, CS is only faster
for small RMIs, where the improvement in search time outweighs the longer evaluation time.
LR as second-layer model minimizes the error and thus always performs better than LS. Larger
RMIs generally achieve smaller errors and thus perform better, which is why we choose the
maximum number of second-layer models within the budget.

ErrorCorrection –Choose between LAbs+Bin or NB+MExp based on the prediction accuracy.
Our experiments show that LAbs+Bin performs better than NB+MExp until a certain error
threshold is reached. This error threshold is hardware-dependent and must be determined
empirically once. We use the mean log2 error as measure of error to estimate the number
of search steps with exponential search and determine the error threshold to be 5.8 on our
hardware. Whenever the mean log2 error of our RMI with NB is below that threshold, we use
NB+MExp; otherwise, we use LAbs+Bin.

Figure 2.13 compares the lookup times of configurations obtained by our guideline with the
fastest configurations obtained using exhaustive enumeration. As before, we omit fb as none
of the considered models segments fbwell. We consider size budgets between 2KiB and 1GiB.
Our guideline is on average only 2.0% slower than the fastest configuration with a maximum
performance decline of 11.3% on wiki.

42 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

Implementing our guideline requires training amaximumof two RMIs and entails the following
three steps:

1. Train an RMI with LS ↦→LR and NB within the allocated budget.

2. Calculate the mean log2 error of this RMI across all keys.

3. If the error exceeds the threshold, train and use an RMI with LAbs within budget.
Otherwise, use the existing RMI.

Limitations – In order to be simple and induce as little overhead as possible, our guideline
neglects some aspects that are required for optimal configuration.

1. Fixed Model Types: Our guideline uses fixed model types. While LS ↦→LR strikes a
good balance between fast training and accurate predictions for datasets without outliers,
datasets containing outliers require a more appropriate first-layer model.

2. Fixed Error Correction: Our guideline selects between LAbs+Bin and NB+MExp based
on a rough estimate of expected search steps. While LAbs+Bin generally performs
well and NB+MExp excels when prediction accuracy is high, there are scenarios, where
alternative error correction strategies prove to be marginally faster.

2.9 Comparison With Other Indexes

In this section, we compare our implementation of RMIs with the indexes introduced in
Section 2.4.5, varying the parameters listed in Table 2.4 to obtain indexes of various sizes.
Configurations of our RMI implementation are determined based on our guideline, while the
configuration of the reference implementation are chosen based on its optimizer [47]. The
comparison is divided into two parts:

1. Lookup Time (Section 2.9.1): We assess the lookup performance of various indexes
across both the four original datasets and scaled-down versions. Additionally, we analyze
the breakdown of lookup time into model evaluation and search time.

2. Build Time (Section 2.9.2): We examine the build time of various indexes across the four
datasets, varying the size of the indexes to assess how build time scales with index size.

2.9. COMPARISON WITH OTHER INDEXES 43

0

250

500

750

1000

1250

Lo
ok

up
tim

e
[n

s]

books fb

10−2 100 102 10410−3 10−1 101 103

Index size [MiB]

0

250

500

750

1000

1250

Lo
ok

up
tim

e
[n

s]

osmc

10−2 100 102 10410−3 10−1 101 103

Index size [MiB]

wiki

RMI (ours)
RMI (ref)

ALEX
PGM-index

RadixSpline
Hist-Tree

B-tree
ART

Binary search

Figure 2.14: Average lookup time for various indexes across different index sizes.

2.9.1 Lookup Time

Original Datasets – We first compare lookup times on the original datasets with respect to
index size. During a lookup, each index yields a search range, either through error bounds or
level of sparsity. We use binary search to find keys in that search range. In Figure 2.14, we
report average lookup times. For indexes with multiple hyperparameters, such as RadixSpline
and Hist-Tree, we present Pareto-optimal configurations in terms of index size and lookup time
to enhance readability. As a result, the number of data points shown differs across datasets for
these indexes. Furthermore, Hist-Tree and ART do not support duplicates and are therefore
not evaluated on wiki. Overall, our results are consistent with previous reports [33, 49, 29].

Let us first consider the traditional indexes. Hist-Tree is the fastest index on all datasets except
wiki, where it cannot be applied due to duplicates. However, Hist-Tree requires index sizes of
100MiB and more to reach its full potential. The best-performing configurations of Hist-Tree
use high branching factors, resulting in few levels, while achieving error intervals of less than

44 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

64 keys. B-tree is the only index whose performance is completely independent of the data
distribution but also the slowest index, barely beating binary search. ART is always faster than
B-tree but noticeably slower than all learned indexes except for ALEX.

The performance of learned indexes highly depends on the data distribution. Learned indexes
achieve the fastest lookup times up to a certain index size, beyondwhich Hist-Tree outperforms
the other indexes. This implies that learned indexes perform particularly well compared
to traditional indexes when limited space is available and space-efficient configurations are
required.

On books, fb, and wiki, either our implementation or the reference implementation of RMIs
dominates the other learned indexes across index sizes. On osmc, RadixSpline performs better
than RMIs, whereas PGM-index outperforms RMIs only at smaller index sizes. ALEX is clearly
the slowest learned index, which can be attributed to its more complex and adaptive structure.

Next, we compare our implementation and the reference implementation of RMIs [47]. On
books and wiki, our implementation dominates the reference implementation despite using
our guideline. There are two reasons for the improved performance of our implementation:

1. Neglecting Evaluation Time: Unlike the optimizer described [47], the publicly avail-
able implementation [45] does not consider evaluation time in its optimization process.
Instead, the optimizer selects configurations solely based on the lowest mean log2 error.
While this results in selecting the configuration with the fastest error correction time,
it does not guarantee to select the configuration with the fastest overall lookup time.
The configurations chosen by our guideline consistently have fast evaluation times at
the cost of potentially slower error correction.

2. Fixed Error Bounds: The optimizer of the reference implementation always picks LAbs.
Our experiments in Section 2.6.2 show that for accurate RMIs, NB+MExp performs better,
which is considered by our guideline.

On osmc, no implementation dominates the other. Here, RMIs are never sufficiently accurate
for our guidelines to deviate from LAbs+Bin. Thus, differences in performance are solely due
to the choice of model types.

On fb, the reference implementation clearly dominates our implementation. As discussed
before, LS is not suitable for segmenting datasets with extreme outliers. Here, the reference
implementation selects a variant of LR that ignores the lowest and highest 0.01% of keys during
training. This approach effectively eliminates the outliers in fb from the segmentation process

2.9. COMPARISON WITH OTHER INDEXES 45

but assumes that there are at most 0.01% of outliers at either end of the key space. We did not
include this model type in our evaluation because we believe that a more robust solution to
segmentation should be sought.

Scaled-Down Datasets – Next, we analyze the lookup performance on smaller datasets. For
this purpose, we reduced the size of the original datasets in steps by powers of ten through
downsampling and determined the best-performing configuration for each index on each of the
scaled-down datasets. The average lookup times are presented in Figure 2.15. It is important to
note that a scale factor of 100 represents the original, unscaled dataset. The symbol × indicates
instances where the corresponding index was not supported, either due to the presence of
duplicates (Hist-Tree and ART on the wiki dataset) or an optimizer crash (RMI reference
implementation on the fb dataset).

We anticipated identifying a threshold in dataset size beyond which using RMIs over binary
search would cease to be beneficial. Surprisingly, our implementation of RMIs consistently
outperforms binary search, even on very small data sets that fit entirely into the L1 cache,
despite the RMI exceeding the cache capacity. We attribute this to two factors.

1. High Prediction Accuracy: On smaller datasets, the prediction accuracy of RMIs is
exceptionally high, resulting in minimal or no need for error correction through search.

2. Optimal Caching: The repeated use of the same RMI allows the CPU to optimize
caching of the relevant parts of the RMI.

We do not expect RMIs to outperform binary search on small datasets with cold caches.
However, consistently measuring cold cache performance is challenging and outside the scope
of this work.

Comparing our RMI implementation, configured using our guideline, and the reference
implementation, configured using its optimizer, our implementation consistently outperforms
the reference implementation, except for the non-scaled version of the fb dataset. This finding
reinforces our assertion that optimizing search time alone is insufficient for optimal RMI
configuration. Additionally, it indicates that outliers are the primary cause of poor performance
on the fb dataset. The performance aligns with that of other datasets once the scaled-down
versions of the fb dataset no longer include outliers, which occurs at scale factors of 10-2 and
smaller.

All learned indexes outperform binary search on all but the smallest datasets, where PGM-
index, ALEX, and RadixSpline are slightly slower. Overall, Hist-Tree is the fastest index, either

46 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

100 10-1 10-2 10-3 10-4 10-5 10-6 10-7
0

200

400

600

Lo
ok

up
tim

e
[n

s]

books

100 10-1 10-2 10-3 10-4 10-5 10-6 10-7
0

200

400

600

Lo
ok

up
tim

e
[n

s]

×

fb

100 10-1 10-2 10-3 10-4 10-5 10-6 10-7
0

200

400

600

Lo
ok

up
tim

e
[n

s]

osmc

100 10-1 10-2 10-3 10-4 10-5 10-6 10-7

Scale factor

0

200

400

600

Lo
ok

up
tim

e
[n

s]

× × × × × × × ×× × × × × × × ×

wiki

RMI (ours)
RMI (ref)

ALEX
PGM-index

RadixSpline
Hist-Tree

B-tree
ART

Binary search

Figure 2.15: Average lookup time for the best-performing configuration of various indexes on
scaled-down datasets.

2.9. COMPARISON WITH OTHER INDEXES 47

RM
I(

ou
rs

)
RM

I(
re

f)
A

LE
X

PG
M

-in
de

x
Ra

di
xS

pl
in

e
H

ist
-T

re
e

B-
tre

e
A

RT
Bi

na
ry

se
ar

ch

0
200
400
600
800

Lo
ok

up
tim

e
[n

s] books

RM
I(

ou
rs

)
RM

I(
re

f)
A

LE
X

PG
M

-in
de

x
Ra

di
xS

pl
in

e
H

ist
-T

re
e

B-
tre

e
A

RT
Bi

na
ry

se
ar

ch

fb

RM
I(

ou
rs

)
RM

I(
re

f)
A

LE
X

PG
M

-in
de

x
Ra

di
xS

pl
in

e
H

ist
-T

re
e

B-
tre

e
A

RT
Bi

na
ry

se
ar

ch

osmc

RM
I(

ou
rs

)
RM

I(
re

f)
A

LE
X

PG
M

-in
de

x
Ra

di
xS

pl
in

e
H

ist
-T

re
e

B-
tre

e
A

RT
Bi

na
ry

se
ar

ch

× ×

wiki

Evaluation Search

Figure 2.16: Lookup time breakdown for the best-performing configuration of various indexes.

matching or outperforming RMIs on datasets without duplicates. Hist-Tree is notably more
space-efficient than RMIs, particularly on datasets with 20,000 or fewer keys, where Hist-Tree
occupies less than 1MiB of space compared to tens of MiB required by the RMIs. RadixSpline is
consistently slower than RMIs but, apart from the non-scaled version of the fb dataset, faster
than PGM-index and ALEX. ALEX and PGM-index are clearly inferior to the other learned
indexes.

Considering traditional indexes, B-tree outperforms binary search only on datasets with a
scaling factor between 10-6 and 10-5, which equals 200 to 2000 keys. On datasets withmore than
2000 keys, ART is faster than B-tree. On smaller datasets, B-tree is faster than ART. Both ART
and B-tree are generally slower than the top-performing learned indexes on the scaled-down
datasets.

Lookup Time Breakdown – Let us now break down lookup time into evaluation time (eval-
uating the model or traversing the tree) and search time (searching within the error interval or
data page). Figure 2.16 shows the average lookup time for the best-performing configuration
of each index divided into evaluation and search time on the original datasets.

There is a trade-off between fast evaluation and fast search. RMIs clearly prioritize fast
evaluation: The prediction leads to the correct segment in a fixed number of steps. However,
RMIs do not provide any guarantees on the prediction accuracy, resulting in potentially slow
error correction times. Adding more segments by increasing the number of second-layer
models continuously improves the lookup performance becausemore segments hardly increase
the evaluation time while simultaneously improving the search time. If the evaluation time
exhibited by our implementation is significantly faster than that of the reference implementa-

48 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

tion, it is not only due to differences in the selected models but primarily because the guideline
selected a configuration without bounds.

In contrast, PGM-index and RadixSpline prioritize fast error correction: Both indexes limit the
maximum error at the cost of a slower evaluation that requires traversing multiple layers or
performing intermediate searches. At a certain threshold, the reduced search time of a smaller
maximumerror does not outweigh the longer evaluation time, resulting inworse overall lookup
performance. Thus, despite having fewer hyperparameters than RMIs, achieving optimal
configurations for PGM-index and RadixSpline is an elaborate task.

Summary – Our analysis demonstrates that learned indexes generally outperform binary
search. However, Hist-Tree emerges as the fastest index. Furthermore, our RMI implemen-
tation consistently outperforms the reference implementation, underscoring the importance
of comprehensive optimization beyond search time alone. Traditional indexes like B-tree and
ART typically trail behind learned indexes in terms of both performance and space-efficiency.

2.9.2 Build Time

In the following, we compare the indexes in terms of build time. In Figure 2.17, we report
build times for the index configurations evaluated in terms of lookup time in Section 2.9.1.
We show the raw build times without the time required to determine hyperparameters, such
as by running the reference implementation’s optimizer [47] or determining Pareto-optimal
configurations of RadixSpline and Hist-Tree. Some indexes require data preparation to be built.
For instance, ALEX, B-tree, and ART are not only built on the keys but also explicitly require
the positions to which these keys should be mapped. Since these preparation steps could be
circumvented by a specialized implementation that implicitly computes this mapping during
bulk loading, we do not consider them part of the build time.

The index size of B-tree, ART, and ALEX is determined by the level of sparsity. In contrast
to learned indexes, these indexes are built on a subset of the keys and therefore provide fast
build times, particularly at smaller index sizes. However, at larger index sizes, the build time
increases considerably, as with an increasing number of keys, the structure of these indexes
becomes more complex, introducing more levels.

In contrast, RMI, PGM-index, and RadixSpline are constructed using the entire dataset, leading
to inherently higher build times. RMI and RadixSpline have a fixed number of layers. Therefore,
their build time is hardly impacted by the data distribution. Their build time only increases once
the index does not fit into cache anymore. The sudden decrease in build time of RMIs on books

2.9. COMPARISON WITH OTHER INDEXES 49

0

8

16

24

Lo
ok

up
tim

e
[n

s]

books fb

10−2 100 102 10410−3 10−1 101 103

Index size [MiB]

0

8

16

24

Lo
ok

up
tim

e
[n

s]

osmc

10−2 100 102 10410−3 10−1 101 103

Index size [MiB]

wiki

RMI (ours)
RMI (ref)

ALEX
PGM-index

RadixSpline
Hist-Tree

B-tree
ART

Figure 2.17: Build times for various indexes across different index sizes.

and wiki is caused by the guideline selecting a configuration without bounds, which is faster
to build. PGM-index, on the other hand, has a variable structure, in terms of both number of
layers and segments. Depending on the distribution and the desired error, more layers have to
be trained, leading to a steeper increase in build times compared to RadixSpline and RMI.

Differences in build time between our RMI implementation and the reference implementation
were discussed in Section 2.7. The reference implementation’s build time varies due to the
optimizer selecting different models. Hist-Tree initially shows similar build times to learned
indexes, but its build time increases rapidly as its size grows due to a deeper structure.

Summary – Learned indexes offer superior lookup performance but require significantly
longer build times. Hence, enhancing build efficiency should be a future priority.

50 CHAPTER 2. A CRITICAL ANALYSIS OF RECURSIVE MODEL INDEXES

2.10 Conclusion and Future Work

We provided an extensible open-source implementation of RMIs and conducted a comprehen-
sive hyperparameter analysis of RMIs focusing on prediction accuracy, lookup time, and build
time. Based on this analysis, we developed a simple-to-follow guideline for configuring RMIs,
which achieves competitive performance. Additionally, we improved the build time of RMIs by
leveraging the monotonicity of models, thus avoiding the need to copy keys during assignment
to second-layer models.

In the future, we plan to extend our implementation to also support multi-layer RMIs and
additional model types. Addressing the segmentation of datasets with extreme outliers is also
a priority. These enhancements aim to further optimize the performance and applicability of
RMIs across various datasets and use cases.

Chapter 3

Index Access Strategies for Index
Scans

3.1 Introduction

In modern database systems, efficient query processing is essential for extracting insight from
ever-increasing amounts of data. As databases grow in size and complexity, minimizing
query execution time becomes critical for applications ranging from real-time analytics to
large-scale data warehousing. To achieve this, database systems rely on different query engine
architectures, which fall into two fundamental approaches: interpretation and compilation.

Interpreting query engines process queries directly by mapping each operation to a set of
predefined instructions. This approach provides flexibility, as execution can adapt to runtime
observations, allowing for optimizations that are impossible ahead of time. However, inter-
pretation incurs overhead from frequent function calls and dynamic type checks. Compiling
query engines, in contrast, generate specialized code for a given query, which is then optimized
and executed. This approach improves performance by eliminating interpretation overhead.
However, once compiled, the query plan is fixed, leaving no opportunity to adjust execution
based on runtime information.

This lack of flexibility in compiled query execution limits optimization opportunities. Certain
information, such as the actual number of qualifying tuples in a selection, is only available at
runtime, yet traditional compiling engines cannot incorporate such insights into the generated
code. To address this limitation, we introduce a novel query engine architecture that allows

52 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

partial execution of query plans during compilation. By interpreting selected operations at
compile time, the engine can collect runtime observations and embed them into the generated
code, opening opportunities for additional optimizations and potentially improving overall
query performance.

A promising candidate for exploring this architecture is the index scan, a fundamental database
operation that consists of multiple steps. Determining which of these steps can benefit from
partial execution offers an opportunity to evaluate the effectiveness of this approach in practice.

Contributions –We investigate how integrating interpretation into a compiling query engine
can improve index scan performance. Specifically, we make the following contributions:

1. We present a novel compiling query engine architecture that allows the query compiler
to partially execute query plans, collect runtime observations, and incorporate then into
the generated code for improved execution.

2. We introduce three distinct index access strategies based on our novel query engine
architecture, each determining which steps of an index scan are executed during query
compilation versus at runtime. Additionally, we demonstrate their applicability across
two execution environments.

3. We implement these strategies in the modern database system mutable, an in-memory
database system currently under development in our group.

4. We conduct a comprehensive experimental analysis to compare the three strategies
in terms of performance, aiming to discern the optimal conditions for each strategy’s
application. Further, we investigatemultiple variants of each strategy and assesswhether
the strategies can benefit from caching compiled plans of previous queries.

Outline – The remainder of this work is structured as follows. Section 3.2 provides background
on query processing in database systems, focusing on execution by interpretation and compila-
tion. In Section 3.3, we present a novel compiling query engine that enables the query compiler
to partially execute QEPs during compilation. Based on this query engine, we introduce
three strategies for accessing indexes in the context of an index scan in Section 3.4 and
explore technical aspects of our implementation in Section 3.5. Our experimental evaluation
is presented in Section 3.6. We summarize related research in Section 3.7 and conclude in
Section 3.8.

3.2. QUERY PROCESSING 53

3.2 Query Processing

This section introduces fundamental aspects of query processing within a database sys-
tem. It covers the processing pipeline from submitting a query to obtaining the query
result (Section 3.2.1) and explores table access methods with a focus on table scan and index
scan (Section 3.2.2). In concludes with a discussion on query execution methods, encompassing
both interpretation and compilation (Section 3.2.3), and the differences between integrated and
isolated execution environments (Section 3.2.4).

3.2.1 Processing Pipeline

Processing a query written in Structured Query Language (SQL) involves several sequential
steps, illustrated in Figure 3.1. In the initial step, the query is checked for syntactical
correctness. This is achieved by running the query through a lexer and parser, resulting in
an abstract syntax tree (AST). Subsequently, semantic analysis is performed to verify that the
query is semantically correct. During this analysis, identifiers such as table and column names
are associated with the corresponding object in the database schema, and the AST is annotated
with additional details such as type information.

Syntactic
Analysis

Semantic
Analysis Optimizer Query

Engine

SQL
Query AST

Annot.
AST QEP

Query
Result

Figure 3.1: Overview of a generic query processing pipeline in a database system.

Following semantic analysis, query optimization is undertaken to determine the most efficient
execution plan. The optimization process generally involves two main stages. In the first stage,
the optimizer computes a join order and applies a set of optimization rules to obtain a logical
query plan [23]. A logical query plan represents the high-level, implementation-independent
sequence of operations required to execute a query. Typically, logical query plans are depicted
as directed acyclic graphs, where nodes represent relational algebra operators such as selection
or join [8], and edges illustrate the flow of data. In the second stage, the logical query plan is
transformed into an efficient physical plan, also known as the query execution plan (QEP). The
QEP specifies the sequence of operations chosen by the optimizer for efficiently executing the
query in the database system. This transformation involves selecting the appropriate physical
implementation of logical operators, like joins, and access paths to minimize resource usage
and execution time, thus ensuring optimal performance of the query.

54 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

𝜎T.x >= 13 AND T.x < 42

T

(a) Logical query plan

Branching Filter
T.x >= 13 AND T.x < 42

TableScan(T)

(b) QEP with table scan

IndexScan(T.x)
T.x >= 13 AND T.x < 42

(c) QEP with index scan

Figure 3.2: Logical query plan and two potential QEPs for the query in Listing 3.1.

Finally, the QEP is handed over to the query engine, which executes the plan and returns
the query result. Query engines generally fall into two categories: those that execute QEPs by
interpreting them and those that execute QEPs by compiling them. We explain both approaches
in more detail in Section 3.2.3.

Listing 3.1: An example query to illustrate query processing in a database system.
1 SELECT *

2 FROM T

3 WHERE T.x >= 13 AND T.x < 42;

Example – Consider the SQL query shown in Listing 3.1, which retrieves all tuples from
table T where attribute T.x is greater than or equal to 13 and less than 42. Figure 3.2a
illustrates the logical query plan for this query, where a selection operator (𝜎) applies the range
predicate (T.x >= 13 AND T.x < 42) to the tuples in table T.

Assuming there exists an index on attribute T.x, the optimizer has two options for transforming
the logical query plan into a QEP: a table scan with a filter operator (Figure 3.2b), or an index
scan (Figure 3.2c). In the QEP illustrated in Figure 3.2b, the optimizer selects a branching
implementation for the filter operator. Although this is a common choice, alternatives, like
predicated execution, are also viable. The subsequent section provides a detailed explanation
of the two table access methods, table scan and index scan.

3.2.2 Table Access Methods

Transforming a logical query plan into a QEP involves selecting suitable access methods for
retrieving tuples from the tables. Factors such as query predicates, index availability, and cost
estimates play a crucial role in this decision. In the following, we take a closer look at two
commonly used access methods: table scan and index scan.

Table Scan – In a table scan, all tuples of a table are sequentially loaded from the store. Filter
predicates are applied to each tuple only after it has been loaded. The table scan is a universal

3.2. QUERY PROCESSING 55

SELECT *
FROM T

WHERE T.x >= 13

AND T.x < 42 ;

7 ↦→ 2 13 ↦→ 1 36 ↦→ 3 49 ↦→ 0

>= 13 < 42

T
Tuple ID x · · ·

0 49 · · ·
1 36 · · ·
2 7 · · ·
3 13 · · ·
· · · · · · · · ·

Range Bounds

Index Offsets

Tuple IDs

1 Index Seeks

2 Index Sequential Scan

3 Random Table Access

Figure 3.3: The individual operations involved in performing an index scan.

access method suitable for situations where the majority of tuples in a table are needed, i.e.,
either no filter conditions or filter conditions with very low selectivity are specified. However,
a table scan can be inefficient for large tables if only a small subset of tuples is relevant, as it
requires scanning through a significant amount of unnecessary data. Consequently, table scans
are less optimal for queries that could benefit from more selective access methods.

Index Scan – An index scan leverages existing index structures to retrieve only the tuples
that satisfy a specified filter predicate on the indexed attribute, effectively evaluating the filter
predicate before loading the tuples. Unlike a table scan, which accesses tuples sequentially,
an index scan typically loads tuples from the store using random accesses, as the qualifying
tuples may not be stored consecutively in memory. These random accesses incur additional
costs, making index scans most efficient for queries with high selectivity, where only a small
subset of tuples is targeted, allowing for more efficient data retrieval compared to a table scan.

Although the index scan appears as a single operator in the QEP, it encompasses several distinct
steps, detailed below and illustrated in Figure 3.3. We assume an index where entries can be
sequentially scanned, such as the leaves of a B+Tree or index entries stored in a flat array.
Further, we address the general case of a range predicate, with equality predicates being a
specific instance where both bounds are identical. The steps involved are as follows:

1 Index Seeks: Perform index seeks on the range bounds extracted from the SQL statement
to locate the index offset for the first and last index entries within the queried range.

2 Index Sequential Scan: Sequentially scan the qualifying index entries between the
determined offsets to retrieve tuple IDs for the matching tuples. Depending on the
implementation, the index may also point directly to the tuples.

56 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

3 Random Table Access: Load the corresponding tuples from the store using the retrieved
tuple IDs through random table accesses.

An alternative approach would involve performing an index seek on the lower bound of the
range only and then sequentially scanning the entries until they no longer match the range.
However, this approach has significant disadvantages: we cannot determine the number of
qualifying tuples without performing the entire index sequential scan, and during the scan,
each entry must be checked to see if its corresponding key is within the desired range. Due to
these drawbacks, we do not consider this variant of an index scan here.

Ultimately, both, table scan with filter and index scan, yield the same result: they identify and
load the tuples that match the filter predicate. These tuples are then passed to subsequent
operators in the QEP for further processing, ensuring the final query results are accurate and
complete.

Example – Consider again the SQL query in Listing 3.1 along with the example data for table T
shown on the right side of Figure 3.3. When processing the query with a table scan and a filter
operator, as depicted in Figure 3.2b, each tuple is loaded from the table sequentially. After each
tuple is loaded, the filter predicate specified in the WHERE clause of the query is evaluated. This
process continues until all tuples have been processed, resulting in only the tuples with ID 1
and 3 being selected.

When processing the query with an index scan, as depicted in Figure 3.3, the lower bound (13,
inclusive) and upper bound (42, exclusive) are first extracted from the filter condition. Next,
index seeks are performed for these two bounds on the index on T.x, identifying the range of
qualifying index entries from offset 1 (inclusive) to offset 3 (exclusive). The qualifying index
entries are then sequentially scanned, and the corresponding tuples with tuple ID 1 and 3 are
retrieved from the table via random access.

3.2.3 Query Execution Methods

After the optimizer has computed a QEP with specific operators and access methods, the query
engine executes it to produce the query results. Various types of execution engines exist, with
the primary distinction being between interpreting and compiling methods, both of which are
explained below.

Interpretation – An interpreting query engine directly executes the operations of a QEP
using generic operator implementations. The query engine consists of a single component,
the interpreter, as illustrated in Figure 3.4a. This simple architecture makes interpreting query

3.2. QUERY PROCESSING 57

Interpreter
QEP

Query
Result

(a) Interpreting query engine

Query
Compiler

Execution
Engine

QEP IR
Query
Result

(b) Compiling query engine

Figure 3.4: Simplified architecture of interpreting and compiling query engines.

engines relatively easy to implement, debug, and maintain. Additionally, the interpreted
execution provides a high degree of flexibility, allowing for dynamic optimizations based on
runtime observations. However, interpretation introduces notable overhead due to frequent
function calls for passing tuples between operators and dynamic type checking during
expression evaluation. Historically, this overhead was insignificant in disk-based database
systems, where the primary bottleneck was data retrieval from disk. With the rise of modern
in-memory database systems, data retrieval is no longer the sole bottleneck, and computational
efficiency has become crucial for achieving optimal performance.

One key inefficiency of interpretation stems from its traditional association with a tuple-at-
a-time processing model, where individual tuples are processed sequentially. This approach
incurs repeated costs for interpreting the same set of instructions for each tuple. To mitigate
these inefficiencies, the vectorized processing model was developed [53, 7], allowing operators
to process blocks, or vectors, of tuples rather than handling them individually. Vectorization
reduces interpretation overhead by decreasing function calls, minimizing dynamic type checks,
improving data locality, and enabling CPU parallelism.

It is important to note that interpretation and vectorization address different aspects of query
execution: interpretation pertains to the execution strategy, while vectorization focuses on
the granularity of data processing. While vectorization was originally introduced within the
context interpretation, its principles can also be effectively applied to compilation.

Example – To illustrate the intricacies of interpreted execution, let us delve into the evaluation
of a filter condition on a tuple. We focus on this particular aspect of the query, to highlight
sources of interpretation overhead without delving into a specific execution model. This
approach allows us to clearly see inefficiencies of interpreted execution, setting the stage for
discussing the benefits of compiled execution.

The evaluation of a filter condition typically involves a function like eval() that is overloaded
on all types of expressions, such as binary expressions, unary expressions, identifiers, and
constants. In Listing 3.2, we present a code snippet showcasing the eval() function for
binary expressions and identifiers. When evaluating the filter expression from the SQL query

58 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

in Listing 3.1 on a tuple, we initially invoke eval() on the expression and the tuple. The
appropriate function is selected via dynamic dispatch by resolving the expression object’s type
at runtime.

Listing 3.2: Evaluating an expression in an interpreting query engine.
1 Value eval(BinaryExpression e, Tuple t) {

2 /* Determine expression operator. */

3 if (e.operator () == ’AND’) {

4 /* Recursively evaluate left and right operands. */

5 Value l = eval(e.left(), t);

6 Value r = eval(e.right(), t);

7 /* Return result of conjunction. */

8 return l and r;

9 }

10 ...

11 }

12

13 Value eval(Identifier i, Tuple t) {

14 /* Load value from tuple. */

15 return tuple.get_value(i);

16 }

In our scenario, the expression is a binary expression with an AND operator (Lines 1 and 3).
Subsequently, eval() recursively processes the expression’s left and right operands (Lines 5
and 6). This recursive process continues until it reaches a terminal, such as an identifier or a
constant. For instance, when it encounters the identifier x, it retrieves the corresponding value
from the tuple (Lines 13 to 15).

After evaluating both operands, eval() computes and returns the result of the AND opera-
tor (Line 8). This recursive traversal of the filter expression occurs for each tuple, introducing
significant overhead due to frequent function calls and dynamic dispatches.

Compilation – A compiling query engine processes a QEP by generating optimized code for
execution by the underlying hardware or runtime environment [55, 38]. The query engine
consists of two main components, as illustrated in Figure 3.4b. The query compiler generates
code from the QEP in the form of a low-level intermediate representation (IR). The execution
engine then processes this generated code to compute the query result. Depending on the
design of the query engine, the execution engine may further optimize and compile the IR into
native machine code or directly interpret the IR.

Each system implementing query compilation employs a certain processing model that defines
how the generated code handles data and control flow. In the following, we briefly explain the
approach of Neumann to generating data-centric code, which is considered the foundation for

3.2. QUERY PROCESSING 59

state-of-the-art execution engines [51]. Neumann proposes a processing model in which tuples
are conceptually pushed from the leaves to the root of the QEP, where operators are joined
into so-called pipelines, effectively blurring the boundaries of individual operators. Tuples are
pushed until they reach an operator that requires materialization of intermediate results to be
computed, for instance joins, grouping and aggregation, or sorting. This processing model has
the decisive advantage that values are kept in CPU registers for as long as possible andmemory
is only accessed to load new tuples or materialize inevitable intermediate results.

Compilation addresses the main drawbacks of interpretation. Dynamic type checking is
eliminated by generating code that is specialized for the attribute types. The number of
function calls is reduced by replacing predicate evaluation with primitive data comparisons
and employing a data-centric processing model that pushes tuples between operators instead
of pulling them via function calls. However, implementing a compiling execution engine
requires considerable engineering effort and is typically harder to debug compared to an
interpreting query engine. In addition, optimization and compilation is costly and introduces
a significant delay. While this optimization effort pays off for more complex analytical queries,
interpretation is often preferable for simpler queries, as it starts the execution right away.

Listing 3.3: Generated code for the QEP in Figure 3.2b using the data-centric processing model.
1 /* Scan operator. */

2 for (Tuple t : T) {

3 /* Branching filter operator. */

4 if (t.x >= 13 and t.x < 42)

5 output(t)

6 }

Example – Listing 3.3 illustrates the code generated from the QEP in Figure 3.2b. The table
scan operator on the bottom is transformed into a loop that iterates over all tuples in table
T. The branching filter operator is realized using a straightforward if statement, with the
filter predicate serving as the condition. Tuples that satisfy the condition are then returned.
This example shows the flow of data, where tuples are pushed from the scan operator to the
filter operator. In contrast to the interpreting approach for evaluating expressions depicted in
Listing 3.2, the generated code eliminates the need for function calls, adopts a simpler structure,
and implements the filter predicate using basic data comparisons.

3.2.4 Execution Environments

The execution environment is a crucial design aspect of a compiling query engine, defining
how the execution engine interacts with the rest of the database system. These environments

60 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

Query
Compiler

Execution
Engine

Table

Index

Direct
Access

QEP IR
Query
Result

(a) Integrated execution environment

Query
Compiler

Execution
Engine

Embedded
Runtime

Table

Index

Indirect
Access

QEP IR
Query
Result

(b) Isolated execution environment

Figure 3.5: Comparison of compiling query engines with integrated and isolated execution
environments.

range from tightly integrated setups to isolated configurations, as illustrated in Figures 3.5a
and Figure 3.5b. We explore these two primary approaches – integrated and isolated execution
environments – in detail below.

Integrated Environment – In an integrated execution environment, the execution engine
operates within the same process as the rest of the database system, enabling direct access to
data sources such as tables and indexes. This setup allows the execution engine to directly
invoke methods of these data structures, such as lookup methods for indexes, when executing
queries, facilitating efficient communication and data transfer. Since these methods are
compiled at system compile time, query compilation times are also reduced, as the execution
engine can directly utilize them. However, the tightly coupled nature of this architecture
often leads to monolithic designs, with reduced modularity and flexibility. This can make it
more challenging to adapt or extend the system in certain ways. Examples of compiling query
engines that operate within an integrated environment include HIQUE [38] and HyPer [51].

Isolated Environment – In contrast, an isolated execution environment separates the execu-
tion engine from the rest of the database by executing queries in an embedded runtime. This
separation offers greater flexibility, modularity, and portability, but also introduces challenges
for data access, as the execution engine cannot directly interact with tables and indexes in
the database system. To address this, such systems typically adopt one of two approaches to
facilitate communication between the execution engine and the database systems, which is
referred to as the host in this context: (1) explicitly exposing host memory to the embedded
runtime, or (2) using host calls to allow controlled interaction with other database components.

Exposing host memory allows the embedded runtime to directly access raw memory regions
containing tables and indexes. This approach facilitates fast data access, but requires significant

3.3. QUERY COMPILATION WITH PARTIAL EXECUTION 61

engineering effort to ensure that the memory layout is correctly interpreted within the
embedded runtime. As a result, the execution engine becomes tightly coupled with the host’s
memory layout. Any changes to the memory layout necessitate corresponding updates to the
access logic on both the host and the embedded runtime, increasing maintenance complexity.
Additionally, there are potential security concerns, as exposing raw memory can increase the
risk of unintended data manipulation or access violations. Furthermore, depending on the
embedded runtime, there may be restrictions on the amount and structure of the host memory
that can be safely exposed to the embedded runtime, potentially limiting the flexibility of this
approach.

Host calls allow the embedded runtime to communicate with the database system through
a predefined interface provided by the host. This approach offers better abstraction by
decoupling the execution engine from the memory layout of specific database components,
in contrast to the approach of exposing host memory. Instead, the execution engine interacts
with the host interface, which provides access to tables and indexes. Internally, host calls
may invoke methods on these data structures or utilize other abstractions provided by the
database system, streamlining access logic. The results of these host calls are communicated
back to the embedded runtime either directly as return values or by writing them to a shared
memory region accessible by the embedded runtime. Since the host interface is compiled
at system compile time, the use of host calls reduces query compilation times by allowing
the execution engine to utilize these precompiled interfaces, much like in an integrated
environment. However, host calls introduce significant performance overhead due to context
switches between the embedded runtime and the host. This overhead is further compounded by
marshalling and unmarshalling of call parameters, particularly in scenarios involving complex
and frequent interactions.

An example of a compiling query engine with an execution engine operating in an isolated
environment is mutable, which employs a combination of exposed host memory and host calls.
The mutable system is the basis for our experiments in Section 3.6.

3.3 Query Compilation With Partial Execution

Traditional query engines face a trade-off between compilation, which produces highly
optimized code but introduces compilation overhead, and interpretation, which allows for
immediate execution but suffers from interpretation overheads. A key advantage of inter-
pretation is its ability to dynamically adjust the execution based on runtime observations. For
instance, an interpreting query engine can monitor the selectivity of individual clauses within

62 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

Query
Compiler

Interpreter

Execution
Engine

QEP IR
Query
Result

QEP
Fragment

Runtime
Observations

Figure 3.6: Architecture of a compiling query engine with partial execution during query
compilation. The query compiler extracts a QEP fragment for interpretation and integrates
runtime observations into the generated IR code.

a conjunctive predicate and dynamically reorder them to evaluate the most selective clause
first. Our approach is a step towards bringing similar flexibility to compiled execution by
augmenting the compilation process with runtime observations, such as intermediate results or
statistical properties of the processed data. In the following sections, we introduce the general
architecture of our query engine (Section 3.3.1) and then explain why index scans are a suitable
candidate for applying this technique (Section 3.3.2).

3.3.1 General Architecture

Our architecture enhances IR generation by incorporating runtime observations. To achieve
this, we introduce a novel query engine design, shown in Figure 3.6, that allows the query
compiler to partially execute QEPs – or specific QEP fragments – during the compilation phase,
before the actual execution phase begins. This partial execution provides valuable insights,
such as statistical properties of the processed data or intermediate results, which the query
compiler then uses to enhance and optimize the generated IR code.

In this context, a QEP fragment is a subset of a QEP that consist of a data source, such as
a (partial) table scan or an index access, followed by any number of additional operators. Unlike
a full subtree of a QEP, the operators in a fragment do not necessarily represent a complete
execution step. Instead, operators may only execute a subset of their operations to gather
insights into specific execution behaviors or process a restricted portion of the tuples to obtain
empirical distribution information from a data sample.

When executing a query, the query compiler first receives the QEP and identifies relevant
QEP fragments for partial execution. These fragments are then sent to an interpreter, which
executes them and returns runtime observations along with intermediate results. Using these
insights, the query compiler incorporates the gathered information into the IR code generation
process.

3.3. QUERY COMPILATION WITH PARTIAL EXECUTION 63

Depending on the size of the QEP fragments that are interpreted, this approach enables us to
retain the performance benefits of full compilationwhile leveraging some runtime observations
to generate more informed and efficient IR code. This approach is particularly advantageous
in scenarios where precise knowledge of intermediate results can help the execution engine
further optimize the generated IR code. Additionally, the architecture allows for a more
fine-grained control over interactions with data sources like tables or indexes. Data sources
may either be accessed during compilation using interpreted execution or at runtime from
within the generated IR code using compiled execution. This flexibility is especially beneficial
in environments where accessing data sources at runtime is costly or impractical, such as
within an isolated execution environment, as it enables shifting these accesses to compile time.

The idea of executing parts of a program during compilation to gather insights for optimiza-
tions is not new and has been explored in various compilation techniques. Concepts such as
partial evaluation [17] leverage partial execution to specialize code based on known inputs.
Our architecture extends this general principle to query processing by enabling the query
compiler to execute QEP fragments at compile time. Unlike, traditional query optimization,
which relies on static cost models or limited sampling, this approach provides a flexible and
systematic way to incorporate empirical data into the compilation process, bridging the gap
between compile-time optimization and runtime adaptability.

Example –Consider a querywith a conjunctive predicate consisting ofmultiple clauses, where
each clause filters a portion of the data. The query compiler can extract a QEP fragment
that represents the evaluation of these clauses, and during partial execution, it can make a
runtime observation based on a sample of the data to estimate the selectivity of each individual
filter clause. Based on these observations, the query compiler can reorder the clauses in
the conjunctive predicate so that in the generated IR code, the most selective clauses are
evaluated first. This reordered evaluation allows the effective use of early stopping: for each
tuple, if a clause evaluates to false, the evaluation of the remaining clauses in the conjunctive
predicate can be skipped. Since the reordering improves the chances of filtering non-qualifying
tuples early, this avoids unnecessary work and has the potential to significantly speed up
the evaluation of the conjunctive predicate. Additionally, intermediate results containing
tuples already identified as qualifying can be embedded directly into the generated IR code,
eliminating redundant computations.

Another example of how runtime observations improve query execution is when the exact
number of intermediate results is known. Consider a scenario where a QEP fragment consists
of a table scan or an index scan that produces a set of qualifying tuples. With precise knowledge

64 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

of the number of qualifying tuples, the query compiler can apply optimizations like fully
unrolling loops that would otherwise be impossible with only static analysis. Additionally, by
determining the iteration range, unnecessary bound checks can be omitted, further reducing
execution time.

3.3.2 Index Scans as a Suitable Candidate

Index scans are particularly well-suited for integration with a query engine that supports
partial execution during compilation. Several characteristics make them an ideal candidate
for exploring the potential of this approach.

First, as outlined in Section 3.2.2, index scans naturally decompose into multiple distinct
operations. This decomposition provides a variety of potential QEP fragments that can be
selectively interpreted during compilation.

Second, as index scans occur at the leaves of a QEP, the corresponding QEP fragments typically
consist only of operations directly involved in the index scan. These QEP fragments can be
executed quickly in the interpreter, allowing us to efficiently gather runtime observations
without introducing significant overhead.

Third, index access patters typically do not suffer from the interpretation overhead seen in
other query operators. Since indexes are usually fully typed and traversing an index involves
only a fixed number of function calls, the overhead remains the same whether these calls are
made from an interpreted execution or from the generated code in a compiled execution. This
ensures that interpreting index-related QEP fragments incurs minimal additional cost while
still providing valuable insights for IR code generation.

These properties make index scans a natural candidate for exploring different ways of
integrating index access into the compilation process. Next, we introduce three distinct index
access strategies, which define how and to what extent interaction with an index is shifted
from the query execution phase into the compilation phase.

3.4 Index Access Strategies

This section introduces three distinct strategies for accessing indexes as part of an index
scan. Building on the architecture discussed in Section 3.3.1, these strategies define the
extent to which index operations are preformed during compilation rather than at runtime.
We present the compiled (Section 3.4.1), interpreted (Section 3.4.2), and hybrid index access

3.4. INDEX ACCESS STRATEGIES 65

. . .

3 Random Table Access

2 Index Sequential Scan

1 Index Seeks

Table

Index

(a) Compiled index access

. . .

3 Random Table Access

2 Index Sequential Scan

1 Index Seeks

Table

Index

(b) Hybrid index access

. . .

3 Random Table Access

2 Index Sequential Scan

1 Index Seeks

Table

Index

(c) Interpreted index access

Figure 3.7: Overview of three index access strategies, with colors indicating the component
responsible and the execution method for each operation in an index scan: interpreted
execution in the query compiler (orange) and compiled execution in the execution engine
(cyan).

strategies (Section 3.6.5), and conclude with a discussion of alternative approaches that were
excluded due to misalignment with our design goals (Section 3.4.4).

3.4.1 Compiled Index Access Strategy

In the compiled index access strategy (illustrated in Figure 3.7a), the query compiler generates
IR code for the entire QEP without extracting any QEP fragments for partial execution during
compilation. This means that index access operations, such as index seeks and index sequential
scan, and random table access are fully integrated into the generated IR code and executed
at runtime. Since all interactions with the index occur within the compiled query code, this
approach avoids reliance on runtime observations or intermediate results.

This strategy aligns with how most traditional compiling query engines operate, prioritizing
execution performance by completely eliminating interpretation overhead. However, the
effectiveness can vary depending on the system architecture. A key factor is whether the
generated IR code runs in the same integrated environment as the database system or in an
isolated environment.

Integrated Environment – When the compiled index access strategy is applied in an
integrated environment, the generated IR code can directly interact with data members and
invoke member functions of the database system. This allows seamless access to index
structures without additional abstraction layers. As a result, both index seeks and index

66 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

sequential scan are executed efficiently within the execution engine. Since member functions
are already part of the database system and compiled at system compile time, the execution
engine can utilize them as precompiled routines when executing the IR code. This reduces the
need for regenerating index access logic, leading to faster compilation times.

The combination of direct access to index structures and reduced compilation overhead makes
this approach the default in most compiling database systems that operate in an integrated
environment. By leveraging precompiled routines and avoiding unnecessary indirections,
these systems achieve both high performance and low query compilation latency.

Isolated Environment – When the compiled index access strategy is applied in an isolated
environment, the generated IR code cannot directly access index structures or invoke member
functions. To circumvent this restriction, one approach is for the host to provide an interface
for accessing the index. IR code generation in this case mirrors the integrated environment,
replacing direct member function calls with calls to the host-provided interface. While this
avoids regenerating access logic and benefits compilation time, the execution overhead from
context switches and marshalling remains. Batching multiple index operations into a single
call can reduce this overhead but comes at the cost of materializing larger intermediate results.

Another approach is for the host to expose raw memory, allowing the execution engine to
bypass host calls entirely. However, this requires replicating the index access logic in the target
IR language. This eliminates the need for host calls and their associated overhead but requires
significant engineering effort. While parts of this logic may be precompiled into libraries,
ensuring compatibility with the host’s memory layout remains a challenge.

Listing 3.4: Generated code for the QEP in Figure 3.2c using the compiled index access strategy.
1 /* Seek index on T.x to determine entry offsets. */

2 Offset lo = index.lower_bound (13)

3 Offset hi = index.lower_bound (42)

4 /* Sequentially scan index entries. */

5 while (lo < hi) {

6 Entry e = index.get_entry(lo)

7 /* Randomly access tuple in table T. */

8 Tuple t = store.load(T, e.tuple_id)

9 output(t)

10 lo++

11 }

Example – Listing 3.4 demonstrates the code generated from the QEP in Figure 3.2c using
the compiled index access strategy. In an integrated environment, function calls to index and
store are direct member function invocations. In contrast, in an isolated environment, these

3.4. INDEX ACCESS STRATEGIES 67

calls are made through the host interface. Note that we omit the code for the exposed host
memory case, as it would depend on the specific index type and memory layout of the host.

The code begin by performing two index seeks to determine the range of qualifying index
entries (Lines 2 and 3). Subsequently, these entries are scanned sequentially (Lines 5 and 6),
and the corresponding tuples are retrieved from the store via random table access (Line 8).

Summary – The compiled index access strategy aims to minimize interpretation overhead by
generating specialized IR code for the entire QEP, including all interactions with indexes. In an
integrated environment, the IR code can directly access data members and invoke member
functions. In an isolated environment, interaction with the index at runtime is facilitated
whether through potentially costly host calls or by operating on raw memory exposed by the
host.

3.4.2 Interpreted Index Access Strategy

In the interpreted index access strategy (illustrated in Figure 3.7c), the query compiler extracts
a QEP fragment that encapsulates all index interactions. This fragment includes index seeks
to determine offsets into the index entries, followed by an index sequential scan that retrieves
the tuple IDs of qualifying tuples. Instead of generating IR code for these operations, the query
compiler sends the fragment to the interpreter, which executes it during query compilation
and produces tuple IDs as the intermediate results. These results are then materialized and
integrated into the generated IR code. The materialization can be implemented in two ways:
inlining tuple IDs as constants directly in the IR code or by writing them to memory and
generating IR code that reads and processes them at runtime.

Materializing qualifying tuple IDs opens opportunities for the execution engine to apply addi-
tional optimizations. For instance, if the set of qualifying tuple IDs is known at query compile
time, the execution engine can fully unroll loops over these IDs, eliminating loop overhead
and reducing branching. Additionally, memory access patterns for loading tuples from the
store can be optimized by reordering accesses to improve cache locality and prefetching data
to minimize latency. Nonetheless, these optimizations come at the cost of having to materialize
the qualifying tuple IDs, which increases the size of the compiled query. As a result, the size
of the compiled query not only depends on algorithmic choices but also on the number of
qualifying tuples, potentially impacting the performance on resource-restricted devices – an
issue not present in the compiled index access strategy.

68 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

Compared to the compiled index access strategy, this approach is much less influenced by the
execution environment. By shifting all index interactions to query compilation, it eliminates
the need for index access during execution. However, subtle differences remain, particularly
in how intermediate results are stored and accessed at runtime

Integrated Environment – In an integrated environment, execution is straightforward. If
the tuple IDs are inlined as constants in the IR code, the execution engine directly loads the
corresponding tuples via random table access. If tuple IDs are materialized in memory, the
execution engine, operating within the same environment as the rest of the database system,
can directly access this memory to retrieve the tuple IDs at runtime and load the tuples
accordingly.

Isolated Environment – An isolated environment benefits from the interpreted index access
strategy entirely eliminating index interactions at runtime by shifting them to the query
compiler, which operates within the same environment as the rest of the database system. This
avoids both costly host calls and the need to replicate access logic for exposed host memory,
depending on the implementation.

If tuple IDs are inlined as constants, the execution behaves similarly to the integrated
environment. However, if tuple IDs are materialized in memory, the execution engine must
have access to that memory. This requires either allocating space within the embedded runtime
or exposing host memory to the embedded runtime.

Listing 3.5: Generated code for the QEP in Figure 3.2c using the interpreted index access
strategy.
1 /* Tuple IDs of qualifying tuples are inlined. */

2 List tuple_ids = [3, 1]

3 for (tuple_id : tuple_ids) {

4 /* Randomly access tuple in table T. */

5 Tuple t = store.load(T, tuple_id)

6 output(t)

7 }

Example – Listing 3.5 demonstrates the code generated from the QEP in Figure 3.2c using
the interpreted index access strategy with inlined intermediate results. Index seeks and index
sequential scan are already performed at compile time, and the resulting tuple IDs of the
qualifying tuples are inlined directly into the generated code (Line 2). The code then iterates
over these tuple IDs in a loop (Line 3), retrieving the corresponding tuples from the store via
random table access (Line 5). As there is no interaction with the index at query runtime, the

3.4. INDEX ACCESS STRATEGIES 69

code is identical whether it is executed in an integrated or isolated environment. In the isolated
environment, however, calls to the store are made through host calls.

Summary – The interpreted index access strategy extracts a QEP fragment that includes
index seeks and index sequential scan, effectively eliminating index interaction at runtime.
The tuple IDs resulting from executing the fragment are materialized to communicate them to
the execution engine. While integrating the tuple IDs into the generated IR code enables the
execution engine to perform additional optimizations, this approachmay also increasememory
consumption and code size of the compiled query.

3.4.3 Hybrid Index Access Strategy

The hybrid index access strategy (illustrated in Figure 3.7b) combines both interpretation and
compilation for the index access. The query compiler extracts a QEP fragment containing
only the index seeks, which it sends to the interpreter for execution during compilation. The
resulting offsets into the index are integrated into the generated IR code, again either by
inlining them as constant or by materializing them in memory. Based on these offsets, the
index sequential scan is performed at runtime.

Materializing the index offsets opens up several optimization opportunities, as it provides the
execution engine with knowledge of the exact number of qualifying tuples the index sequential
scan and random table accesses will produce. This foresight allows the execution engine
to optimize memory allocation and loop structures, such as preallocating memory for the
qualifying tuple IDs or unrolling loops based on the known number of results. However, if
the index offsets are materialized in memory the number of iterations is not explicitly present
in the generated IR code and the distribution of qualifying tuples remains unknown at compile
time, optimization potential is limited and certain optimizations, such as loop unrolling or
specialized data access patterns, cannot be applied.

Compared to the interpreted index access strategy, the hybrid index access strategy only mate-
rializes the index offsets, making the memory consumption of the compiled plan independent
of the number of qualifying tuples. However, like the compiled index access strategy, the
execution of the hybrid index access strategy is not independent of the execution environment,
as there is interaction with the index at query runtime.

Integrated Environment – In an integrated environment, execution is again straightforward.
If the offsets are inlined as constants in the IR code, the execution engine performs a fixed
number of loop iterations to sequentially scan the index entries and retrieve the corresponding

70 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

tuple IDs. When materialized in memory, the execution engine can access the offsets directly
since it operates within the same environment as the rest of the database system. Based on the
offsets, the execution engine then loops over the index entries and retrieves the tuple IDs in
the same manner.

Isolated Environment – In an isolated environment, the hybrid index access strategy benefits
from the partial elimination of index interactions at runtime. If host calls are used, the hybrid
index access strategy eliminates the host calls for index seeks by resolving them during the
query compilation. Similar to the compiled index access strategy, the remaining host calls,
needed for the index sequential scan, can be batched to retrieve multiple tuple IDs at once.
This reduces the overhead due to host calls compared to the compiled index access strategy
but still incurs more than the interpreted index access strategy. If exposed host memory is
used instead, only the logic for sequentially scanning index entries needs to be replicated in
the target language, leading to more duplication than in the compiled strategy but less than
in the interpreted index access strategy. As with the interpreted index access strategy, when
materializing index offsets in memory, care must be taken to ensure the embedded runtime can
access this memory at runtime to retrieve the index offsets.

Listing 3.6: Generated code for the QEP in Figure 3.2c using the hybrid index access strategy.
1 /* Index offsets are inlined. */

2 Offset lo = 1

3 Offset hi = 3

4 /* Sequentially scan index entries. */

5 while (lo < hi) {

6 Entry e = index.get_entry(lo)

7 /* Randomly access tuple in table T. */

8 Tuple t = store.load(T, e.tuple_id)

9 output(t)

10 lo++

11 }

Example – Listing 3.6 demonstrates the code generated from the QEP in Figure 3.2c using
the hybrid index access strategy. In this example, index seeks are executed during query
compilation, and the resulting index offsets are inlined in the generated code, defining the
range of qualifying index entries (Line 2 and 3). At runtime, the execution engine performs an
index sequential scan over this range (Lines 5 and 6) and retrieves the corresponding tuples
from the store via random table access (Line 8). In an integrated environment, calls to index

and store are direct member function invocations. In contrast, in an isolated environment,
these calls are made through the host interface. Again, we omit the code for the exposed host
memory case, as it would depend on the specific index type and memory layout of the host.

3.4. INDEX ACCESS STRATEGIES 71

The generated code closely resembles that of the compiled index access strategy, with the key
difference being that the range of qualifying entries is known at compile time, allowing for
additional compiler optimizations.

Summary – The hybrid index access strategy combines interpretation and compilation for
index access, executing index seeks during query compilation while performing the index
sequential scan at runtime. By determining the exact number of qualifying tuples at compile
time, it enables more optimizations than the compiled index access strategy but fewer than
the interpreted index access strategy. The approach introduces more interpretation overhead
than the compiled index access strategy but less than the interpreted one. Overall, the hybrid
index access strategy balances the optimization potential of the generated IR code with the
interpretation overhead of executing larger QEP fragments and cost of materializing larger
intermediate results.

3.4.4 Discussion

Two potential points of critique regarding the strategies are the exclusion of random table
accesses from interpretation during query compilation and the decision to statically switch
from interpretation to compilation. In the following, we will reason why these decisions were
made and discuss implications of each choice.

Excluding Random Table Access – Consider again Figure 3.7, which compares the three
strategies. Each of these strategies either employs an interpreting approach for index access
during compilation, a compiled approach for index access at runtime, or a combination of both.
However, all strategies consistently use a compiled approach for table access at runtime. There
are two key reasons why interpretation was not considered for table access.

First, our work is focused on index interaction and explores the potential of shifting those
interactions from runtime to the compilation phase. Second, interpreting table access is
typically inefficient, as it introduces significant overhead due to the need to process both
the data layout and the table schema. Additionally, interpreted table access would require
materializing the relevant attributes of all qualifying tuples instead of passing tuple IDs or
offsets into the index. This would increase both memory consumption and I/O costs, as the
tuples would need to be loaded and materialized during compilation and then processed again
at runtime. Furthermore, materializing tuples disrupts the pipelined execution model, where
tuples are typically passed directly between operations as they are produced, introducing
further inefficiencies. Therefore, we decided to not include a strategy that interprets the
random table access.

72 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

Fixed Transition Point – The presented strategies either transition from interpreted execu-
tion in the query compiler to compiled execution in the execution engine once (interpreted
and hybrid index access strategy), or do not use interpretation at all (compiled index access
strategy). Notably, none of the strategies involve transitioning back and forth between
interpreted and compiled execution. Below, we outline two potential implementations of such
a strategy and explain why we believe them to be inferior in terms of performance compared
to the presented strategies.

The first implementation would alternate between interpretation and a compilation phases.
Such an approach has two major disadvantages. Firstly, to communicate intermediate results
between two consecutive phases, these results must be fully materialized increasing memory
consumption and disrupting pipelined execution. Secondly, generated IR code must be
optimized and compiled whenever switching from interpretation to compilation, inducing
significant overhead. These factors likely negate any potential benefits from optimizations
or avoided host calls that this strategy may offer.

The second implementation involves using interpretation by calling an interpreter from the
generated code. Although this approach only requires a single compilation step, it limits
the opportunities of compiler optimizations. Furthermore, if executed within an isolated
environment, the interpreter must be invoked via host calls, incurring not only interpretation
overhead but also overhead from context switches. Therefore, we conclude that this strategy
does not provide advantages over the strategies presented.

3.5 Implementation Details

In this section, we delve into the specifics of the strategy implementations used in our
experimental evaluation. We start by outlining the architecture of mutable’s query engine,
which serves as the foundation of our implementation (Section 3.5.1). Next, we provide a
comprehensive overview of the different strategy variants we have implemented (Section 3.5.2).
Finally, we detail the integration of two indexes into mutable for use in index scans (Sec-
tion 3.5.3).

3.5.1 System

We implemented the strategies in mutable [26], a main-memory database system designed for
prototyping research ideas, written in C++. Its modular design and clear separation of concerns
allow researchers to replace specific components withminimal effort and to accuratelymeasure

3.5. IMPLEMENTATION DETAILS 73

Query
Compiler

Interpreter

WebAssembly
Compiler Hardware

QEP
WebAssembly

Code Executable
Query
Result

QEP
Fragment

Runtime
Observations

WebAssembly Runtime (V8)

Figure 3.8: Simplified architectural overview of mutable’s compiling query engine.

the impact of each change. mutable is a compiling database system that generates data-centric
code, as introduced in Section 3.2.3. Since our work focuses on different index access strategies
for index scans, we turn our attention to mutable’s query engine, a simplified architectural
overview of which is shown in Figure 3.8.

Query Compilation – mutable compiles QEPs into WebAssembly (WASM), a low-level code
format designed for efficient execution and compact representation [68]. EachQEP is translated
into a module, a static representation of a WebAssembly program. A module serves as a
logical unit consisting of functions and global variables with its own storage. This storage,
known as linear memory, is a contiguous array of uninterpreted bytes. The query compiler
first dissects a given QEP into pipelines and subsequently compiles each pipeline into a
separate function. Afterward, a main() function is created to coordinate the execution of these
pipelines. The generatedWebAssembly code assumes that the linear memory holds all required
tables. Additionally, the linear memory serves as heap for materializing intermediate and final
results.

We extended mutable’s query compiler to integrate an interpreter, enabling it to partially
execute QEPs during compilation. Currently, there is no clear separation or well-defined
interface between the query compiler and the interpreter. Instead, while traversing the QEP to
generate WebAssembly code, the query compiler may invoke interpreter routines as needed,
such as evaluating predicates on tuples or extracting bounds from conjunctive range predicates.
We plan to introduce a cleaner interface along with a dedicated data structure to represent QEP
fragments in the future.

WebAssembly Compilation and Execution – mutable delegates the compilation and
execution of WebAssembly code to V8 [21], Google’s JavaScript and WebAssembly engine.
V8 is embedded in mutable and executes the compiled queries in an isolated environment.
At the time of writing, V8 does not support directly importing memory from the host into a
module, despiteWebAssembly itself not imposing such a restriction [68]. To allow the modules
access to tables residing in the host, we use a patched version of V8 and a technique called

74 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

Table 3.1: Index access strategy variants applicable to an isolated execution environment.

Runtime Intermediate result Implementation
Strategy

index access materialization status

Host calls 3
Compiled index access

Exposed host memory
–

7

Code inlining 3
Interpreted index access –

Memory 3

Host calls Code inlining 3

Host calls Memory 3

Exposed host memory Code inlining 7
Hybrid index access

Exposed host memory Memory 7

rewiring [56]. The patched version of V8 lets us replace the linear memory of a compiled
module with arbitrary virtual memory. Rewiring enables us to map the physical memory of
several tables to contiguous virtual addresses.

During the execution, we first let V8 compile the module, resulting in an executable. We
then replace the module’s memory with a virtual address space containing all required tables
and start the execution by invoking the module’s main() function. The module writes query
results in its linear memory, which the host reads after completion. Using V8 offers several
benefits. Most notably, it supports dynamic tier-up, a form of adaptive execution where the
WebAssembly module is initially compiled without any optimizations to minimize latency,
while the code is optimized and recompiled in the background. This allows V8 to seamlessly
transition to the optimized execution at a later time. Additionally, V8 automatically caches
compiled modules, preventing the recompilation of previously compiled modules. For further
details on mutable’s query engine, consider the excellent work by my colleagues Haffner and
Dittrich [25].

3.5.2 Index Access Strategies

As previously detailed in Section 3.4, each strategy offers multiple implementation variants
primarily distinguished by how indexes are accessed at runtime (via host calls or exposed host
memory) and how intermediate results, such as tuple IDs and index offsets, are handled (ma-
terialized in memory or inlined in code). Table 3.1 provides an overview of these variants
applicable to mutable’s isolated execution environment.

3.5. IMPLEMENTATION DETAILS 75

We also indicate the implementation status of each variant. Currently, we have not imple-
mented any variant that uses exposed host memory for accessing the index at runtime. This
limitation is due to current restrictions in V8, which does not support importing host memory
directly into a module at the time of writing. To circumvent this restriction, rewiring [56] could
be employed, similar to how table accesses are implemented. However, such an approachwould
require both substantial modifications to mutable’s query engine and replication of the index
access logic in WebAssembly. Due to time constraints, we have been unable to implement
index access via exposed host memory. However, we intend to complete the implementation
of these variants as part of future work. Detailed implementation specifics for each strategy
are provided below.

Compiled Index Access Strategy – Our implementation of the compiled index access
strategy makes use of two host functions that are called to obtain the qualifying tuple IDs.
The first host function performs an index seek for a given key and returns the offset of the
corresponding index entry to the WebAssembly module. This function is called twice, once for
the left and once for the right bound according to the filter predicate. From those offsets, we
can compute the number of qualifying tuples.

The second host function returns the tuple ID stored in the index entry at a given offset. This
function performs the index sequential scan by being invoked on each offset within the range
from the first to the last offset obtained from the previous host function. Additionally, this
function accepts batches of offsets to scan multiple entries in a single host call. In contrast to
the host function performing the index seek, this function does not return the resulting tuple
ID by value but instead writes it to a provided memory address in the module’s linear memory.
The memory where the host function writes the tuple ID is allocated at runtime. This approach
enables us to easily extend the host function to support batching by writing multiple tuple IDs
per host call. We never allocate more memory than required by choosing the minimum of
specified batch size and number of qualifying tuples.

Interpreted Index Access Strategy – The interpreted index access strategy calls member
functions of the index to obtain the index entries matching the filter predicate. While iterating
over these entries, we materialize the qualifying tuple IDs either by inlining them in the
generated code or by writing them to memory. When inlining the tuple IDs, we define a
function in the WebAssembly module which, given a tuple ID, loads the respective tuple from
the store and further processes it according to the pipeline. The tuple IDs are then inlined by
generating a function call for every qualifying tuple ID. This approach avoids replicating the

76 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

code of the pipeline for each qualifying tuple and eliminates the loop over the qualifying tuple
IDs, resulting in overall simpler code.

When writing the tuple IDs to memory, we initially seek the first and last offset to determine
the number of qualifying tuples. Then, we allocate sufficient memory for all qualifying tuple
IDs in the virtual address space that later replaces the module’s linear memory. Next, we write
the tuple IDs to that memory. Finally, we generate code that iterates over this memory and
reads the tuple IDs, loads the corresponding tuples, and further processes them according to
the pipeline.

Hybrid Index Access Strategy – The hybrid index access strategy combines the implemen-
tation principles of both the compiled and the interpreted index access strategy. During query
compilation, we perform two index seeks to obtain the first and last offset. These offsets are
again either materialized by inlining or by writing them to memory. When offsets are inlined,
they are written into the code as constants and used for host calls to iterate over the qualifying
index entries. When offsets are written to memory, we allocate memory for the two offsets
in the virtual address space that becomes the module’s memory and write the offsets there.
The generated code then reads the two offsets and stores them in variables. In both cases, the
hybrid index access strategy uses the same host function as the compiled index access strategy
to perform the index sequential scan. Therefore, it also supports batching and ensures that no
more memory is allocated than necessary.

All strategies extract the bounds from the filter condition by traversing the corresponding
expression once during query compilation. Similarly, all strategies resolve the indexed
attribute’s type to produce fully specialized code once during query compilation. Both the host
functions and the member functions of the index, whether invoked within the host functions
or as part of interpretation, are specialized for that attribute’s type, thereby eliminating any
unnecessary interpretation overhead.

3.5.3 Indexes

While our evaluation focuses on comparing the three strategies, we also analyze each strategy
using two different types of indexes that we implemented in mutable.

Sorted Array – The first index is a contiguous array of sorted index entries, where each entry
consists of a key and a tuple ID. An index seek is carried out by performing binary search on
the entries. An index sequential scan iterates over a specific range of index entries.

3.6. EXPERIMENTAL EVALUATION 77

Recursive Model Index – The second index is the recursive model index (RMI) [37], a
read-optimized learned index, previously introduced in Section 2.2. The RMI is based on the
observation that the offset of an entry in a sorted array can be computed using the cumulative
distribution function (CDF) of the entries’ keys. The RMI aims to approximate this CDF with a
hierarchical model. Since the RMI only approximates the CDF, any prediction errors must be
corrected by performing a local search around the predicted offset.

The foundation of the RMI is again a sorted array, with a hierarchical model on top for faster
retrieval of entries. An index seek uses the hierarchical model to predict an offset in the sorted
array, followed by a local search for the desired entry. An index sequential scan is conducted
similarly to the sorted array by iterating over a range of index entries in the sorted array.
The RMI in mutable is a simplified version of our open-source implementation [43], utilizing a
fixed combination of model types for the hierarchical model: a linear spline model for the first
layer and linear regression models for the second layer. We use exponential search to correct
potential prediction errors and choose amodel-to-entry ratio of 0.01 for the second layer, which
is a sane choice for achieving good lookup performance [44].

To minimize any interpretation overhead, both indexes are specialized for the key type.
Consequently, the type only needs to be resolved once when processing a query, regardless
of whether interpretation or compilation is used. Both indexes are implemented as secondary
indexes and stored separately from the associated table. This implies that an index scan needs
to access both the index and the table. Further, both indexes map keys to tuple IDs, as mutable
uses tuple IDs in its interface to the store for loading single tuples via random access. Tuple
IDs are unsigned 32-bit integers.

3.6 Experimental Evaluation

In this section, we present our experimental evaluation of the three index access strategies.
We begin by outlining our experimental setup (Section 3.6.1). The evaluation is divided into
four parts: first, we compare the strategies in terms of execution time (Section 3.6.2); second,
we investigate when to use which variant of each strategy (Section 3.6.3, 3.6.4, and 3.6.5);
third, we examine how the choice of index impacts overall execution time (Section 3.6.6); and
fourth, we explore whether the strategies benefit from caching compiled plans of previous
queries (Section 3.6.7).

78 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

3.6.1 Experimental Setup

Machine – The experiments are conducted on a Linux machine with an Intel® Xeon® E5-2620
v4 CPU (2.10GHz, 512 KiB L1, 4MiB L2, 20MiB L3) and 4x8GiB DDR4 RAM. Our code is
compiled with clang-16.0.6 at optimization level -O2 and executed single-threaded.

System – We implemented the strategies in mutable, as described in Section 3.5.2. We set up
mutable to refrain from printing query results to the console, while ensuring that the query
results are materialized in memory to prevent loading instructions from being optimized away.
Unless explicitly stated otherwise, V8, responsible for compiling and executing the generated
code, is configured with both adaptive execution and caching of compiled modules turned off
to obtain stable and traceable measurements.

Indexes – For evaluating the index scan strategies, we implemented two types of secondary
indexes, as described in Section 3.5.3: a sorted array and an RMI. The sorted array serves as
the baseline index and is used in all experiments, unless explicitly specified otherwise.

Datasets – Our evaluation is based on four simple datasets, each comprising two columns: an
id column and a data column. The id column consists of 32-bit signed integers, sequentially
incremented starting from zero. The data column consists of unique and unordered numeric
values, generated uniformly at random. Each dataset uses a different data type for the
data column, either 32-bit or 64-bit floating-point numbers or 32-bit or 64-bit signed integers.
The datasets consist of 1M tuples and are stored in row layout to simplify address calculations
for random accesses. Indexes are constructed on the data column.

Workload – For each of the four datasets, we generate seven queries with filter predicates
varying in selectivity between 100 (all 1M tuples qualify) and 10−6 (a single tuple qualifies).
We strive to maintain simplicity in the generated queries to isolate the performance impact of
the strategies, ensuring that it is not overshadowed by other operators. The queries have the
following format:

1 SELECT T.id , T.data

2 FROM T

3 WHERE T.data >= x AND T.data <= y;

Constants x and y in the WHERE clause are chosen to match the target selectivity.

Measurements –We focus exclusively on times related to query execution and neglect query
optimization time, as the optimization effort remains identical across all queries and strategies
within our workload. Measurements are defined as follows:

3.6. EXPERIMENTAL EVALUATION 79

• Machine code compilation time refers to the time V8 takes to compile the generated
WebAssembly code into executable machine code.

• Execution time includes the time required for our query compiler to generate
WebAssembly code for a given QEP, potentially involving partial execution of QEP
fragments, plus the time V8 takes to compile and execute that code.

We execute experiments five times and report the median of the measured times, respectively.

Baseline – As a reference point, we benchmark the strategies against a sequential table scan
followed by a branching filter operator, as explained in Section 3.2.2.

3.6.2 Comparing the Index Access Strategies

The initial experiment compares the strategies in terms of execution time while using the
optimal variant of each strategy. To achieve this, we first ran the experiment with all
implemented strategy variants listed in Table 3.1, varying the batch size for the hybrid and
compiled index access strategies. We then determined the optimal execution time for each
strategy on each dataset and query selectivity. This implies that the same strategy is not
necessarily configured equally across datasets and selectivities. Subsequent experiments
explore each strategy in more detail, comparing the different variants of a strategy. Figure 3.9
presents a comparison of execution times among the three strategies and the baseline.

For each strategy, execution times increase when selectivity decreases. This increase is
expected, as a lower selectivity means that more index entries must be scanned, and more
tuples have to be loaded from the store and materialized as query result. In our experiment,
index scans outperform the table scan for selectivities higher than 10−1 (100k qualifying tuples),
while the table scan performs better at lower selectivities. Additionally, we observe slightly
higher execution times for 64-bit data types than for 32-bit data types, particularly visible at
lower selectivities. This is due to higher costs associated with materializing the query results.

Overall, the three strategies exhibit similar performance. The interpreted index access strategy
outperforms the other two strategies for selectivities of 10−1 (100k qualifying tuples) and
higher. At these selectivities, the avoidance of host calls associated with the interpreted
strategy outweighs the additional effort of materializing intermediate results, as the tuple
IDs remain relatively small. Additionally, the qualifying tuple IDs materialized during query
compilation still fit into the L1 cache, suggesting that the strategy benefits from at least partial
caching of the tuple IDs at runtime. For selectivities lower than 10−1, the hybrid and compiled
index access strategies perform slightly better than the interpreted index access strategy. Both

80 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

0

10

20

30

Ex
ec

ut
io

n
tim

e
[m

s]
�oat32

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

�oat64

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

Selectivity

0

10

20

30

Ex
ec

ut
io

n
tim

e
[m

s]

int32

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

Selectivity

int64

Table scan + �lter Compiled index access Hybrid index access Interpreted index access

Figure 3.9: Execution time for the fastest variant of each strategy across different query
selectivities.

strategies profit from their ability to retrieve qualifying tuple IDs in batches via calls to the host,
resulting in better caching behavior. When we ran the experiment on different hardware, we
generally observed the same trends, albeit with different absolute execution times and slightly
different thresholds for the best-performing strategies due to different cache sizes.

3.6.3 Configuring the Compiled Index Access Strategy

In this experiment, we analyze the compiled index access strategy to determine the optimal
batch size. Figure 3.10 compares execution times for varying batch sizes.

For selectivities of 10−3 (1k qualifying tuples) and higher, execution times remain nearly
identical across different batch sizes. Although smaller batch sizes require more host calls for
retrieving the qualifying tuple IDs, the overall execution time is primarily dominated by the
compilation time to machine code at these high selectivities. Additionally, our implementation

3.6. EXPERIMENTAL EVALUATION 81

10-6 10-5 10-4 10-3 10-2 10-1 100

101

102

Ex
ec

ut
io

n
tim

e
[m

s]

�oat32

10-6 10-5 10-4 10-3 10-2 10-1 100

�oat64

10-6 10-5 10-4 10-3 10-2 10-1 100

Selectivity

101

102

Ex
ec

ut
io

n
tim

e
[m

s]

int32

10-6 10-5 10-4 10-3 10-2 10-1 100

Selectivity

int64

Batch size = 1
Batch size = 10

Batch size = 100
Batch size = 1k

Batch size = 10k
Batch size = 100k

Batch size = 1M

Figure 3.10: Execution time for the compiled index access strategy across different batch sizes.

allocates at most as much memory as is necessary for all qualifying tuple IDs, meaning that
larger batch sizes effectively allocate the same amount of memory and make a single host call.

At selectivities of 10−2 (10k qualifying tuples) and lower, we observe a noticeable increase
in execution time for smaller batch sizes, particularly for batch sizes of 1 and 10. Here, the
compilation time to machine code no longer dominates the execution time, and the increased
number of host calls becomes a substantial factor.

Contrary to our initial expectation, the largest batch size, which retrieves all tuple IDs in a
single host call, does not perform the best. Instead, batch sizes of 1k to 100k, which require
multiple host calls, exhibit superior performance. We hypothesize that these batch sizes
achieve better caching behavior when transferring the tuple IDs from the host to the embedded
runtime, as a batch of tuple IDs fits well into L1 cache. This observation demonstrates that
there is a trade-off between the number of host calls and efficient cache usage. In summary,

82 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

101

102

103

104

Ex
ec

ut
io

n
tim

e
[m

s]
�oat32

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

�oat64

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

Selectivity

101

102

103

104

Ex
ec

ut
io

n
tim

e
[m

s]

int32

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

Selectivity

int64

Interpreted index access (code inlining) Interpreted index access (memory)

Figure 3.11: Execution time for the interpreted index access strategy across different material-
ization techniques.

batch sizes between 1k and 100k performed best, though these results may vary with different
hardware.

3.6.4 Configuring the Interpreted Index Access Strategy

When using the interpreted index access strategy, we have two options for materializing
qualifying tuple IDs: inlining them in the code or writing them to the WebAssembly memory
and reading them at runtime. This experiment aims to determinewhich technique is preferable.
Figure 3.11 compares execution times for both materialization techniques.

Both techniques exhibit similar performance for high selectivities, with inlining being slightly
faster. This slight advantage is due to faster compilation times to machine code, which
are particularly notable at higher selectivities, where compilation constitutes the majority
of execution time. The faster compilation is caused by reduced code complexity, as our

3.6. EXPERIMENTAL EVALUATION 83

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

Selectivity

100

101

102

103

104

M
ac

hi
ne

co
de

co
m

pi
la

tio
n

tim
e

[m
s]

int64

Interpreted index access (code inlining)
Interpreted index access (memory)

(a) Machine code compilation time

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

Selectivity

101

102

103

W
eb

As
se

m
bl

y
co

de
[K

iB
] int64

Interpreted index access (code inlining)
Interpreted index access (memory)

(b) WebAssembly code size

Figure 3.12: Compilation time to machine code and WebAssembly code size for the interpreted
index access strategy on the 64-bit integer dataset across different materialization techniques.

implementation of inlining eliminates the loop over the qualifying tuple IDs, as described in
Section 3.5.2.

However, this changes significantly as the selectivity decreases. Starting at a selectivity
of 10−4 (100 qualifying tuples), the execution time of inlining escalates dramatically. The main
reason for this slower execution time is a sharp increase in compilation time compared to
materialization in memory, as shown in Figure 3.12a for the 64-bit integer dataset. Figure 3.12b
illustrates the corresponding WebAssembly code sizes for both materialization techniques.

For inlining, the size of the WebAssembly code grows linearly with the number of qualifying
tuples, because with decreasing selectivity, more tuple IDs are inlined in the code. This larger
code volume requires more extensive optimization by V8, leading to longer compilation times.
Experimentation with larger datasets even caused V8 to crash due to exceeding the maximum
permitted function size.

In contrast, when materializing the tuple IDs in memory, the code size is independent of the
number of qualifying tuples and only differs in the number of loop passes required to read
the tuple IDs from memory. Consequently, the compilation time remains near constant across
different selectivities. In summary, when using the interpreted index access strategy, qualifying
tuple IDs should be materialized in memory. Inlining is only viable when very few tuples
qualify, typically in the tens.

84 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

0

10

20

30

Ex
ec

ut
io

n
tim

e
[m

s]
�oat32

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

�oat64

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

Selectivity

0

10

20

30

Ex
ec

ut
io

n
tim

e
[m

s]

int32

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 10
0

Selectivity

int64

Hybrid index access (code inlining) Hybrid index access (memory)

Figure 3.13: Execution time for the hybrid index access strategy across different materialization
techniques using the fastest batch size.

3.6.5 Configuring the Hybrid Index Access Strategy

When using the hybrid index access strategy, we need to select both a materialization
technique for the index offsets and an appropriate batch size. This experiment aims to
identify the optimal configuration for both parameters. Let us first consider the materialization
technique. Figure 3.13 shows the execution times for both materialization techniques using
the best-performing batch size. Execution times are almost identical, but inlining generally
performs slightly better. Unlike the interpreted index access strategy, the hybrid index access
strategy only inlines two index offsets, making the code size independent of the number of
qualifying tuples. Furthermore, when inlining, the number of loop passes is known at compile
time, allowing V8 to better optimize the code, which likely causes the slightly faster execution
times.

Given that inlining should generally be preferred when using the hybrid index access strategy,
we now turn to the batch sizes. Figure 3.14 depicts execution times using inlining for varying

3.6. EXPERIMENTAL EVALUATION 85

10-6 10-5 10-4 10-3 10-2 10-1 100

101

102

Ex
ec

ut
io

n
tim

e
[m

s]

�oat32

10-6 10-5 10-4 10-3 10-2 10-1 100

�oat64

10-6 10-5 10-4 10-3 10-2 10-1 100

Selectivity

101

102

Ex
ec

ut
io

n
tim

e
[m

s]

int32

10-6 10-5 10-4 10-3 10-2 10-1 100

Selectivity

int64

Batch size = 1
Batch size = 10

Batch size = 100
Batch size = 1k

Batch size = 10k
Batch size = 100k

Batch size = 1M

Figure 3.14: Hybrid index access strategy execution times with varying batch sizes using
inlining.

batch sizes. As with the compiled index access strategy, we observe a trade-off between the
number of host calls and efficient cache utilization. Again, batch sizes between 1k and 100k
performed best, which is in line with the L1 cache size. In summary, the hybrid index access
strategy performs best with inlined index offsets and a batch size that makes efficient use of
the available cache.

3.6.6 Choosing an Index

Up to this point, our experiments have exclusively utilized the sorted array as the index. In the
next experiment, we aim to explore the potential advantages of employing a more advanced
index, such as an RMI. For this purpose, we compare the execution times of all strategies using
both the sorted array and the RMI. Each strategy is optimally configured: the interpreted index
access strategy materializes the tuple IDs in memory, the compiled index access strategy uses

86 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

10-6 10-5 10-4 10-3 10-2 10-1 100
0

10

20

30

40

Ex
ec

ut
io

n
tim

e
[m

s]

�oat32

10-6 10-5 10-4 10-3 10-2 10-1 100

�oat64

10-6 10-5 10-4 10-3 10-2 10-1 100

Selectivity

0

10

20

30

40

Ex
ec

ut
io

n
tim

e
[m

s]

int32

10-6 10-5 10-4 10-3 10-2 10-1 100

Selectivity

int64

Compiled index access (Array)
Compiled index access (RMI)

Hybrid index access (Array)
Hybrid index access (RMI)

Interpreted index access (Array)
Interpreted index access (RMI)

Figure 3.15: Execution times of the interpreted, hybrid, and compiled index access strategies
when using either a sorted array or an RMI for the index scan.

a batch size of 10k, and the hybrid index access strategy materializes tuples using inlining with
a batch size of 10k. The results are depicted in Figure 3.15.

Overall, the sorted array and the RMI exhibit almost identical performance across strategies
and selectivities, with one exception: the 64-bit floating point dataset at selectivities 10−1

and 100 (100k and 1M qualifying tuples, respectively). Here, the execution times using an RMI
are several milliseconds slower. Unfortunately, we cannot explain this difference in execution
times, and further research is required to understand the underlying cause.

The similar performance on the other datasets and selectivities is explained by the fact that
only a tiny fraction of the execution time in the hundreds of nanoseconds is actually spent
traversing the index to determine the offsets. The majority of the time is spent scanning the
entries, loading the corresponding tuples from the store, and materializing the tuples as query
result. While the index traversal time increases if the index has more entries, this time is

3.6. EXPERIMENTAL EVALUATION 87

still negligible compared to the rest of the query execution. Consequently, advanced indexes
should primarily be used to implement operators that require frequent index traversal, such as
join operators or checking primary key constraints. In the context of index scans, it is more
important that contiguous index entries can be scanned efficiently.

3.6.7 Benefiting From Caching Compiled Plans

In the previous experiments, we explicitly disabled caching of compiledWebAssemblymodules
in V8 to obtain stable results. The next experiment examines whether the strategies benefit
from caching compiled plans when processing similar queries. For each dataset, we generate
five queries (Q0 to Q4) with arbitrary selectivity, following the same format as the queries in
previous experiments. We execute these queries with caching of compiled modules enabled.
The compiled and interpreted index access strategies were configured optimally: the compiled
index access strategy uses a batch size of 10k, the interpreted index access strategy materializes
tuple IDs in memory. For the hybrid index access strategy, we consider both materialization
techniques with a batch size of 10k. The rationale for considering both materialization
techniques will be elucidated when considering the results. For this experiment, we focus
on the compilation time from WebAssembly to machine code, as our goal is to improve this
compilation time through reusing cached modules.

Figure 3.16 presents the results of this experiment. The baseline and all strategies, except the
hybrid index access strategy with materialization in memory, exhibit similar compilation times
for all five queries. This consistency indicates that these strategies do not benefit from caching.

The compiled index access strategy exhibits the slowest compilation times. It generates code
with a nested loop: the outer loop performs the host calls to retrieve new tuple IDs, and the
inner loop iterates over the tuple IDs to load the corresponding tuples from the store. In
contrast, the baseline and the interpreted index access strategy produce simpler code with
a single loop, iterating over all tuple IDs or qualifying tuple IDs, respectively. V8 requires less
optimization time for this simpler code.

Similar to the compiled index access strategy, the hybrid index access strategy also generates
WebAssembly code with a nested loop, leading to comparably slow compilation times for the
first query Q0. When using inlining, the compilation time of subsequent queries remains high.
However, when materializing the offsets in memory, subsequent queries exhibit significantly
faster compilation times. This suggests that V8 caches the compiled module for the first query
and reuses it for subsequent queries. Since the offsets were stored in memory, the generated

88 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

without
caching

with
caching

without
caching

with
caching

without
caching

with
caching

without
caching

with
caching

without
caching

with
caching

0

5

10

M
ac

hi
ne

co
de

co
m

pi
la

tio
n

tim
e

[m
s] �oat32

without
caching

with
caching

without
caching

with
caching

without
caching

with
caching

without
caching

with
caching

without
caching

with
caching

0

5

10

M
ac

hi
ne

co
de

co
m

pi
la

tio
n

tim
e

[m
s] �oat64

without
caching

with
caching

without
caching

with
caching

without
caching

with
caching

without
caching

with
caching

without
caching

with
caching

0

5

10

M
ac

hi
ne

co
de

co
m

pi
la

tio
n

tim
e

[m
s] int32

without
caching

with
caching

without
caching

with
caching

without
caching

with
caching

without
caching

with
caching

without
caching

with
caching

0

5

10

M
ac

hi
ne

co
de

co
m

pi
la

tio
n

tim
e

[m
s]

Table scan
+ �lter

Compiled
index access

Interpreted
index access

Hybrid
index access

(code inlining)

Hybrid
index access

(memory)

int64

Q0 Q1 Q2 Q3 Q4

Figure 3.16: Machine code compilation times for five consecutive similar queries across five
index access strategies, with and without caching of compiled WebAssembly modules in V8.

3.7. RELATED WORK 89

WebAssembly code is independent of the filter predicate of the query, resulting in identical
generated code for queries with similar filter conditions.

Although the hybrid index access strategy with materialization in memory does not achieve
the fastest execution times overall, it demonstrates the unique advantage of benefiting from
caching compiled modules without additional effort. This feature may prove advantageous in
scenarios where similar queries, differing only in filter conditions, are frequently executed.

3.7 Related Work

In the following, we review related work on index scan execution in compiling database sys-
tems. We emphasize that compiling database engines commonly utilize integrated execution
using the compiled index access strategy and highlight various techniques to achieve this
integrated execution (Section 3.7.1). Furthermore, we compare the index access strategies to
adaptive query execution (Section 3.7.2). Lastly, we discuss related approaches for reusing
compiled query plans (Section 3.7.3).

3.7.1 Index Scans in Compiling Database Systems

Native Execution Systems – With the rise in popularity of compiling approaches to query
execution, a variety of such systems have been developed. Virtually all of these systems compile
queries into executable code that runs within the same environment as the database itself.
However, these systems take different paths to achieve this integrated execution. While the
term compiled index access strategy is specific to our work, it effectively captures the essence
of these systems’ approach to accessing indexes as part of an index scan. Below, we explore
three notable systems that exemplify this strategy in greater detail.

HIQUE [38] is one of the earliest compiling database systems that translates QEPs into C source
files by assembling and specializing prewritten operator templates. The generated source file
is then compiled into a shared library file using an external compiler and dynamically linked
at system runtime. The query is executed by invoking a function in the dynamically loaded
shared library, achieving execution in the same environment and enabling direct index access.

One notable drawback of HIQUE is the slow compilation times associated with optimizing
C/C++ compilers. To mitigate these lengthy compilation times, systems have increasingly
chosen to directly translate queries into a suitable intermediate representation. HyPer [51]
relies on the Low Level Virtual Machine (LLVM), which is an open-source compiler infras-
tructure project designed for optimization, compilation, and execution of programs written in

90 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

various programming languages. HyPer translates QEPs into LLVM’s intermediate represen-
tation (LLVM IR) using its own dedicated compiler. Complex algorithms and data structures,
such as indexes, are written in C++ and compiled alongside the system. Conveniently, C++
methods can be invoked directly from LLVM IR, facilitating seamless access to indexes within
the generated code. Essentially, the generated LLVM IR defines the control and data flow
by connecting precompiled C++ code. Subsequently, a carefully selected subset of LLVM
optimization passes is applied to the IR before it is compiled to executable machine code
through LLVM’s machine code generator and executed in the same environment.

Umbra [30] takes a further step by using its own intermediate representation, Umbra IR,
specifically designed to optimize reads and writes, albeit with reduced flexibility for IR
transformations compared to LLVM IR. Unlike LLVM IR, Umbra IR does not allow for directly
calling C++ functions. Instead, Umbra employs a system of proxies that acts as an interface
between Umbra IR and C++. The proxies eliminate the necessity of writing code to generate
Umbra IR for each functionality. Developers can alternatively implement functionality in C++
and call it from the generated Umbra IR code via the proxies. Although not explicitly stated by
the authors, it is likely that proxies are employed for accessing indexes and thus for performing
index scans.

In conclusion, HIQUE, HyPer, and Umbra employ different techniques to achieve integrated
execution, enabling direct access to tables and data structures like indexes. Each of these
systems generates code that directly accesses indexes at query runtime, aligning with our
definition of the compiled index access strategy.

JVM-Based Systems – Some database systems run compiled queries within the Java Virtual
Machine (JVM). While this sounds like execution in an isolated environment at first, these
systems are typically written in Java or Scala themselves and employ techniques to achieve
execution within the same JVM environment as the system, allowing for a shared view on the
data. Below, we briefly discuss three notable systems.

JAMDB [55] is a Java-based main-memory database prototype that translates QEPs into Java
classes. These Java classes are then dynamically loaded and executed via Java reflection in the
host environment, achieving integrated execution.

Apache Spark [3] is primarily a data analytics engine, not a database management system, and
as such does not support indexes. However, Apache Spark’s Tungsten engine [1] translates
queries into Java code and uses Janino [62], a light-weight Java compiler, to compile this

3.7. RELATED WORK 91

generated code into Java classes. These classes are then dynamically loaded through Janino’s
custom class loader to be executed within the same JVM as Apache Spark.

Babelfish [24] is a query engine for polyglot queries, that again defines its own intermediate
representation, Babelfish-IR. After optimizing the query, Babelfish leverages Truffle [65] and
Graal Compiler [22] to compile the query into machine code and install said machine code
directly into the JVM.

In conclusion, the discussed systems execute queries in the JVM but achieve integrated
execution by dynamically loading compiled code into the host environment. This approach
clearly distinguishes them from mutable, where isolated execution is inevitable.

3.7.2 Adaptive Query Execution

Given that both the hybrid and interpreted index access strategies transition from interpreted
to compiled execution, there is a natural proximity to adaptive query execution. We briefly
introduce adaptive query execution and contrast it with these two strategies below.

Query compilation incurs a significant upfront cost, adding notable latency, especially for
short-running queries. To alleviate this, Kohn, Leis, and Neumann [35] propose that a com-
piling query engine should support three execution modes: interpretation for short-running
queries, optimizing compilation for long-running queries, and unoptimized compilation as a
trade-off between the two.

Their architecture, implemented in HyPer, employs a model called morsel-wise execution [40]
to adaptively switch between these modes. Initially, the QEP is translated into LLVM IR, and
an LLVM bytecode generator produces the corresponding bytecode, which is then interpreted.
During this interpreted execution, the system monitors the execution progress to determine
if switching to compiled execution would be beneficial. If compiled execution is deemed
advantageous, the system starts the compilation process in the background. Once compilation
is complete, execution seamlessly transitions to the compiled code.

In follow-up work, Kersten, Leis, and Neumann further refine their approach, which is
implemented in Umbra [30]. Recognizing that interpreted execution remains excessively slow,
they decide to eliminate it. While keeping the optimizing compilation through LLVM, they
replace the unoptimized compilation through LLVM with a fast just-in-time (JIT) compilation
method using their own Umbra IR and a custom compiler named Flying Start. The objective
of this JIT compilation is to quickly generated slightly optimized machine code.

92 CHAPTER 3. INDEX ACCESS STRATEGIES FOR INDEX SCANS

Both adaptive execution and the index access strategies involve transitioning between execu-
tion modes, either from interpreted to compiled execution (HyPer and index access strategies)
or from unoptimized to optimized compiled execution (Umbra). However, there are several key
differences between the two.

First, as implied by the name, adaptive query execution dynamically shifts from one execution
mode to another depending on runtime observations. In contrast, the index access strategies
follow a static transition approach, switching either after determining the index offsets (hybrid
index access strategy) or obtaining the qualifying tuple IDs (interpreted index access strategy).

Second, when adaptive query execution transitions to another execution mode, both are based
on the same generated code. The index access strategies use interpretation during query
compilation and use compiled execution during the entire runtime of the compiled query. This
approach allows for integrating information, such as the exact number of qualifying tuples,
into the generated code, thereby enabling compiler optimizations.

Third, the morsel-wise execution allows adaptive query execution to switch execution modes
between the execution of two pipelines. In contrast, the index access strategies switch
execution modes after executing a QEP fragment, or more specifically, while executing the
index scan operator.

In the case of an isolated execution environment, unlike the interpreted index access strategy,
which leveraged host-side index access during query compilation to avoid host calls, adaptive
execution cannot eliminate these calls. This is because, with adaptive query execution, the
compiled query would be executed entirely within the isolated environment of the embedded
runtime, regardless of the execution mode.

3.7.3 Reusing Cached Plans

In Section 3.6.7, we observed that the hybrid index access strategy with offset materialization in
memory simplifies caching compiled queries by rendering the generated code independent of
constants in the filter expression. As a result, queries differing only in the filter predicate of the
index scan can reuse previously compiled QEPs and avoid recompilation. While we consider
this an incidental benefit of the strategy, there are systems that employ techniques to achieve
this effect explicitly.

SingleStore [58], formerly known as MemSQL, transforms incoming queries into so-called
parameterized queries by stripping out numeric and string constants [57]. SingleStore caches
compiled parameterized queries so that subsequent queries sharing the same parameterized

3.8. CONCLUSION AND FUTURE WORK 93

structure reuse the cached version instead of triggering a new compilation process. Similarly,
MapD [60], a GPU-accelerated database system, uses a comparable technique to extract
constants and avoid recompilation.

These techniques are also closely related to prepared statements – parameterized SQL queries
that are optimized and compiled once. Subsequently, these queries can be executed with
different parameters without needing recompilation. The key difference is that in a prepared
statement, the query must be explicitly parameterized, whereas the approaches above auto-
matically parameterize the query. The hybrid index access strategy goes a step further, as the
generated code inherently becomes independent of the constants in the filter condition.

3.8 Conclusion and Future Work

We introduced a novel query engine architecture that allows for partial execution of QEPs
during the compilation process. Based on this architecture, we developed three distinct
strategies for accessing indexes as part of an index scan within a compiling database system.
Each strategy is characterized by when and how the index is accessed during query execution.
While the compiled index access strategy interacts with the index solely at query runtime,
the interpreted index access strategy retrieves tuple IDs of qualifying tuples during query
compilation, incorporating them into the generated code. The hybrid index access strategy
combines elements of both, conducting lookups on the index to obtain index entry offsets
during query compilation but deferring the actual retrieval of tuple IDs until query runtime.

Our experimental evaluation indicates that none of the strategies universally outperforms the
others. Instead, the optimal strategy depends on specific conditions. The interpreted index
access strategy demonstrates efficacy when dealing with very few qualifying tuples, while
the compiled index access strategy excels under lower selectivities, leveraging its ability to
retrieve tuple IDs in batches to enhance caching efficiency. The hybrid index access strategy
offers the advantage of generating code independent of the filter predicate on the indexed
column, facilitating easy caching and reuse of compiled plans, thereby avoiding recompilation
for queries differing only in these filter predicates.

In future work, we plan to broaden our evaluation scope by implementing strategy variants
that access the index through exposed host memory, thereby directly interacting with the index
without intermediary host calls. Our approach of executing parts of a query by interpretation
during query compilation offers unique opportunities for augmenting the generated code.
Thus, we propose exploring the feasibility of extending our approach to other operators.

Chapter 4

Conclusion

4.1 Summary

The first project, detailed in Chapter 2, provides an in-depth investigation of RMIs and its
various hyperparameter’s impact on prediction accuracy, lookup time, and build time. Our
research led to the development of a practical guideline for configuring RMIs, achieving
near-optimal performance on datasets without outliers. Outliers pose significant challenges
for RMIs by increasing the range of values and affecting the tail behavior of the CDF. Simple
models like linear regression, which treat each data point equally, often result in ineffective
partitioning, with most data points falling into a single partition. While the reference
implementation shows that good performance is still achievable, automating this process
requires advanced data analysis to select an appropriate model before building the RMI in
order to avoid exhaustive enumeration.

Our comparison of indexes supports the claims made in the original paper. RMIs indeed
outperform traditional indexes such as B-trees and ART in terms of pure lookup performance,
while also being significantlymore space-efficient. However, this performance gain comeswith
trade-offs: RMIs have longer build times and limited applicability due to their immutability,
making them primarily suitable for read-only scenarios. It is worth noting that some progress
has been made on learned indexes that also support efficient updates (e.g. [67, 20, 41]), thereby
expanding applicability of learned indexes to more diverse workloads. Other first-generation
learned indexes, like RadixSpline or PGM-index, limit prediction error to optimize error
correction time. In contrast, RMIs prioritize fast predictions to optimize evaluation time at
the expense of potentially slower error correction. While this approach is effective when

96 CHAPTER 4. CONCLUSION

prediction accuracy is high, it makes the lookup performance of RMIs less robust compared
to other learned indexes.

The second project, detailed in Chapter 3, introduces a novel compiling query engine archi-
tecture that allows for partially executing query plans during compilation to integrate runtime
observations into the generated code. Based on this architecture, we introduce three strategies
for accessing indexes in an index scan. The compiled index access strategy generates code to
access the index at query runtime, similar to how most systems operate. The interpreted index
access strategy performs index accesses during query compilation, integrating the qualifying
tuple IDs into the generated code, thus eliminating any need to interact with the index at
query runtime. The hybrid index access strategy combines elements of both previous strategies,
looking up offsets into the index during query compilation and scanning the entries at query
runtime.

Our experimental evaluation reveals that no single strategy consistently outperforms the
others; the best-performing strategy varies depending on the number of qualifying tuples.
The interpreted index access strategy proves most effective for highly selective queries. These
queries execute quickly, and the reduced compilation time, due to the simpler code structure,
is particularly notable. In contrast, the compiled index access strategy excels with lower
selectivities, where compilation time becomes negligible compared to overall query execution
time, benefiting from positive caching effects through batching. The hybrid index access
strategy is particularly effective in scenarios where compiled plans are cached and queries
share a similar format. By generating code that only refers to offsets in the index rather than
specific filter predicates, the hybrid index access strategy can reuse previously compiled plans
for similar queries, eliminating the need for compilation.

We also analyzed the strategies with multiple indexes, including RMIs, to determine the
extent to which RMIs affect the performance of index scans. Although exhibiting exceptional
performance in isolation, RMIs could not improve the performance of index scans compared
to a simple baseline index. The main reason for this observation is that the index access
time (hundreds of nanoseconds) accounts for roughly 1/100th of the overall query processing
time (tens of microseconds), making its impact on performance negligible in the context of the
total query execution time.

4.2. DISCUSSION 97

4.2 Discussion

In our research, we investigated RMIs from both a component view and a system view,
each contributing to a comprehensive understanding of RMIs under different conditions.
The component view allowed us to evaluate RMIs in isolation, providing insights into their
maximum potential under ideal conditions, free from system complexities and external factors.
Conversely, the system view assessed RMIs within a real database system as part of an index
scan operator, offering a glimpse into their practical performance in real-world applications.

Our experiments uncovered a notable discrepancy between RMIs’ performance in isolated
conditions versus in real systems. While RMIs demonstrate superior performance over
baselines like binary search or B-trees in isolated scenarios, they did not outperform binary
search over a sorted array in index scan operations. This disparity primarily stems from
two reasons: first, the lookup time of an index is negligible compared to the overall query
processing time, resulting in only marginal potential improvement; second, the index scan
operator performs only two lookups, which is insufficient for the CPU to make optimizations
like partially caching the RMI.

Moreover, our findings caution against blindly replacing traditional indexes with RMIs in real
systems expecting automatic performance gains. Instead, the decision to integrate RMIs should
consider the specificworkload and application context. Due to their lack of support for updates,
RMIs are unsuitable for OLTP workloads but may benefit OLAP workloads, particularly in
read-only scenarios where fast lookup times are advantageous.

Furthermore, our research highlights that RMIs may not fully leverage their enhanced space
efficiency and lookup performance in scenarios with few consecutive lookups, such as index
scans. However, we anticipate better performance in contexts like index nested loop joins,
where RMIs are queried frequently in short intervals. These insights underscore the impor-
tance of context-specific evaluations and emphasize the need for further research to explore
the full potential and limitations of learned indexes across diverse database applications.

4.3 Limitations

While our research has provided valuable insights into the performance and applicability of
RMIs in database systems, it is important to recognize several limitations that constrain the
generalizability and scope of our findings. These limitations highlight areas where future
research can further expand and refine our understanding.

98 CHAPTER 4. CONCLUSION

A Critical Analysis of Recursive Model Indexes

Scope of Hyperparamter Configurations – Despite investigating a total of 1280 hyperpa-
rameter configurations, our evaluation of RMIs was not exhaustive. We examined only four
distinct model types: linear regression, linear spline, cubic spline, and radix. Notable exclusions
are histograms, polynomial models, and linear models optimizing the logarithmic error [14].
However, we do not anticipate that these additional model types would significantly alter our
primary conclusions, as these models also tend to struggle with outliers.

Focus on Early Learned Indexes – Our research primarily focused on RMIs, the first learned
range index. We compared RMIs to other first-generation learned indexes and traditional
indexes. Consequently, our conclusions might not extend to more recent learned indexes
that incorporate additional features, such as support for efficient updates and concurrent
queries. While studies including newer learned indexes exist, these studies use the reference
implementation of RMIs rather than our improved implementation [19, 61].

Index Access Strategies for Index Scans

Emphasis on Index Scan – Our study integrated RMIs into the mutable database system and
utilizes them in the index scan operator. While results indicate, that RMIs are not effective
for that particular use case in a real system, this does not imply that RMIs are ineffective in
general.

Partial Strategy Implementation – Due to time constraints, our evaluation of the index
access strategies did not include implementations that perform the index access within the
embedded runtime by making the memory region containing the index available to the
WebAssembly module through its linear memory. This implementation of the hybrid and
compiled index access strategies would eliminate host calls at the cost of setting up the linear
memory with the index prior to execution. Implementing these variants is crucial to exploring
this trade-off and providing a complete picture.

Evaluation Environment – We evaluated the strategies in a highly controlled environment,
where execution was single-threaded using synthetic datasets and workloads that aimed to
isolate the performance impact of the index scan as much as possible. While we expect our
primary observations to still hold in a more complex system under diverse workloads, our
experiments do not allow us to confirm this with certainty.

Specificity of Database System – The strategies were developed with the execution model
of mutable in mind and subsequently implemented in mutable. Consequently, our results are

4.4. FUTURE RESEARCH DIRECTIONS 99

specific to mutable. Although these strategies can be transferred to and implemented in other
database systems, those systems might produce different performance results, due to differing
architectures and optimizations.

By addressing these limitations, future research can build on our findings and further elucidate
the conditions under which RMIs can be most effectively utilized. This will help bridge the gap
between theoretical potential and practical application, ensuring that learned indexes can be
effectively integrated into a variety of database environments.

4.4 Future Research Directions

Given the insights and limitations outlined above, several avenues for future research emerge.
These directions aim to deepen our understanding of learned indexes, address challenges
identified in our current work, and explore the application of concepts in other contexts.

Addressing Outliers by Extending Hyperparameter Analysis – Extreme outliers sig-
nificantly impact the tail behavior of the CDF, posing challenges for RMIs and leading to
suboptimal lookup times across the evaluated configurations. This issue primarily stems from
the partitioning behavior of the model types used in the first layer of the RMIs. While these
models are efficient in training and evaluation, they often fail to accurately capture the complex
shapes of the CDF, resulting in skewed data distribution among the models in the second layer.

To mitigate this, future research should focus on expanding the hyperparameter analysis to
include a broader range of model types. This expansion should encompass not only simpler
models such as histograms and polynomial regression, but also more sophisticated approaches
like shallow neural networks. More complex models are likely to be slower to evaluate but
could offer better prediction accuracy, presenting a trade-off between evaluation time and
error correction time. By exploring these diverse model types, we aim to achieve more
robust partitioning of data points, thereby improving overall performance and adaptability of
RMIs. Additionally, our configuration guidelines should be extended accordingly, empowering
practitioners to effectively tailor RMIs to diverse and challenging datasets.

Expanding Index Scan Strategy Evaluation – We developed three strategies for accessing
indexes in an index scan that can be applied to various execution models. For implementation
and evaluation, we chose mutable, which generates WebAssembly code and executes it in an
embedded runtime. In this environment, the host memory containing the index cannot be
accessed directly. Accessing host memory can be achieved through host calls or by explicitly
exposing host memory to the WebAssembly program running in the embedded runtime.

100 CHAPTER 4. CONCLUSION

Due to time constraints and high engineering effort, we did not implement access through
exposed host memory. This approach involves not only creating a framework for exposing the
memory containing the indexes but also replicating the index access logic in WebAssembly,
as the program operates directly on the raw memory containing the index. Despite these
challenges, implementing and evaluating this method is essential for a comprehensive under-
standing of the index strategies. This variant is particularly important as it closely resembles
execution in an integrated environment used by most database systems.

Generalizing Strategies Across Database Operators – The interpreted and hybrid index
access strategies leverage efficiency gains by executing parts of the index scan operator during
query compilation. This approach not only simplifies the generated code by eliminating the
index access logic but also facilitates compiler optimizations, such as loop unrolling through
inlining of intermediate results. Moreover, avoiding the reimplementation of index access
logic significantly reduces the engineering effort. These advantages suggest an opportunity
to formalize and extend the strategies to other database operators. For instance, optimizing
hash table construction in simple hash joins or handling index-only subqueries during query
compilation are promising applications.

Integrating Learned Indexes Into Other Operators – We integrated RMIs into the index
scan operator of mutable as part of our evaluation of index scan strategies. In our experiments,
the use of RMIs did not enhance performance compared to binary search over a sorted array.
This is primarily because the time spent traversing the index is negligible compared to the
overall query processing time. To fully assess the performance of learned indexes in a real
system context, they must be integrated and evaluated within other operators.

A promising candidate is the index nested loop join, where each tuple in the probe relation
triggers an index lookup. These repeated lookups create a favorable access pattern for
learned indexes, enabling caching and leveraging their space efficiency. However, for equality
predicates, hash tables, often built on primary keys by default, are hard to beat. Thus,
examining joins with range predicates, known as range joins, is crucial since hash tables do
not support range predicates and cannot be applied here.

In conclusion, this thesis provides valuable insights into RMIs and index access strategies.
However, these findings are just one piece of the puzzle in advancing the field of learned indexes
within database systems. Further exploration will be crucial to unlocking their full potential.

Bibliography

[1] Sameer Agarwal, Davies Liu, and Reynold Xin. Apache Spark as a Compiler: Joining a

Billion Rows per Second on a Laptop. 2016. url: https : / /www.databricks . com /blog /
2016/05/23/apache-spark-as-a-compiler- joining-a-billion- rows-per- second-on-a-
laptop.html.

[2] Dana Van Aken et al. “Automatic DatabaseManagement System Tuning Through Large-
scale Machine Learning.” In: SIGMOD Conference. ACM, 2017, pp. 1009–1024.

[3] Apache Foundation. Apache Spark – Unified Engine for large-scale data analytics. 2024.
url: https://spark.apache.org/.

[4] Peter Balis et al. Don’t Throw Out Your Algorithms Book Just Yet: Classical Data Structures

That Can Outperform Learned Indexes. 2018. url: https://dawn.cs.stanford.edu/2018/01/
11/index-baselines/.

[5] Rudolf Bayer and Edward M. McCreight. “Organization and Maintenance of Large
Ordered Indexes.” In: SIGFIDET Workshop. ACM, 1970, pp. 107–141.

[6] Timo Bingmann. TLX: Collection of Sophisticated C++ Data Structures, Algorithms, and

Miscellaneous Helpers. 2018. url: https://github.com/tlx/tlx.

[7] Peter A. Boncz, Marcin Zukowski, and Niels Nes. “MonetDB/X100: Hyper-Pipelining
Query Execution.” In: CIDR. www.cidrdb.org, 2005, pp. 225–237.

[8] Edgar Frank Codd. “A Relational Model of Data for Large Shared Data Banks.” In:
Commun. ACM 13.6 (1970), pp. 377–387.

[9] cppreference.com. std::lower_bound. 2024. url: https : / / en . cppreference . com/w/cpp/
algorithm/lower_bound.

[10] Andrew Crotty. “Hist-Tree: Those Who Ignore It Are Doomed to Learn.” In: CIDR.
www.cidrdb.org, 2021.

https://www.databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://www.databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://www.databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://spark.apache.org/
https://dawn.cs.stanford.edu/2018/01/11/index-baselines/
https://dawn.cs.stanford.edu/2018/01/11/index-baselines/
https://github.com/tlx/tlx
https://en.cppreference.com/w/cpp/algorithm/lower_bound
https://en.cppreference.com/w/cpp/algorithm/lower_bound

102 BIBLIOGRAPHY

[11] Jialin Ding. ALEX: A library for building an in-memory, Adaptive Learned indEX. 2020.
url: https://github.com/microsoft/ALEX.

[12] Jialin Ding et al. “ALEX: An Updatable Adaptive Learned Index.” In: SIGMOD Conference.
ACM, 2020, pp. 969–984.

[13] Jialin Ding et al. “Instance-Optimized Data Layouts for Cloud Analytics Workloads.” In:
SIGMOD Conference. ACM, 2021, pp. 418–431.

[14] Martin Eppert, Philipp Fent, and Thomas Neumann. “A Tailored Regression for Learned
Indexes: Logarithmic Error Regression.” In: aiDM@SIGMOD. ACM, 2021, pp. 9–15.

[15] Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. “Why Are Learned Indexes So
Effective?” In: ICML. Vol. 119. PMLR, 2020, pp. 3123–3132.

[16] Paolo Ferragina and Giorgio Vinciguerra. “The PGM-index: a fully-dynamic compressed
learned index with provable worst-case bounds.” In: Proc. VLDB Endow. 13.8 (2020),
pp. 1162–1175.

[17] Yoshihiko Futamura. “Partial Evaluation of Computation Process - An Approach to a
Compiler-Compiler.” In: High. Order Symb. Comput. 12.4 (1999), pp. 381–391.

[18] Alex Galakatos et al. “FITing-Tree: A Data-aware Index Structure.” In: SIGMOD Confer-

ence. ACM, 2019, pp. 1189–1206.

[19] Jiake Ge et al. “Cutting Learned Index into Pieces: An In-depth Inquiry into Updatable
Learned Indexes.” In: ICDE. IEEE, 2023, pp. 315–327.

[20] Jiake Ge et al. “SALI: A Scalable Adaptive Learned Index Framework based on Probability
Models.” In: Proc. ACM Manag. Data 1.4 (2023), 258:1–258:25.

[21] Google. V8 JavaScript Engine. 2024. url: https://v8.dev/.

[22] GraalVM Project. Graal Compiler. 2024. url: https://www.graalvm.org/latest/reference-
manual/java/compiler/.

[23] Goetz Graefe and David J. DeWitt. “The EXODUS Optimizer Generator.” In: SIGMOD

Conference. ACM, 1987, pp. 160–172.

[24] Philipp Marian Grulich, Steffen Zeuch, and Volker Markl. “Babelfish: Efficient Execution
of Polyglot Queries.” In: Proc. VLDB Endow. 15.2 (2021), pp. 196–210.

[25] Immanuel Haffner and Jens Dittrich. “A Simplified Architecture for Fast, Adaptive
Compilation and Execution of SQL Queries.” In: EDBT. OpenProceedings.org, 2023.

[26] Immanuel Haffner and Jens Dittrich. “mutable: A Modern DBMS for Research and Fast
Prototyping.” In: CIDR. www.cidrdb.org, 2023.

https://github.com/microsoft/ALEX
https://v8.dev/
https://www.graalvm.org/latest/reference-manual/java/compiler/
https://www.graalvm.org/latest/reference-manual/java/compiler/

BIBLIOGRAPHY 103

[27] Immanuel Haffner et al. mutable: A Database System for Research and Fast Prototyping.
2022. url: https://github.com/mutable-org/mutable.

[28] Benjamin Hilprecht et al. “DeepDB: Learn from Data, not from Queries!” In: Proc. VLDB
Endow. 13.7 (2020), pp. 992–1005.

[29] Allen Huang et al. Learned Index Leaderboard. 2021. url: https://learnedsystems.github.
io/SOSDLeaderboard.

[30] Timo Kersten, Viktor Leis, and Thomas Neumann. “Tidy Tuples and Flying Start: fast
compilation and fast execution of relational queries in Umbra.” In: Proc. VLDB Endow.

30.5 (2021), pp. 883–905.

[31] Changkyu Kim et al. “FAST: fast architecture sensitive tree search on modern CPUs and
GPUs.” In: SIGMOD Conference. ACM, 2010, pp. 339–350.

[32] Andreas Kipf and Alexander van Renen. RadixSpline: A Single-Pass Learned Index. 2020.
url: https://github.com/learnedsystems/RadixSpline.

[33] Andreas Kipf et al. “SOSD: A Benchmark for Learned Indexes.” In: CoRR abs/1911.13014
(2019).

[34] Andreas Kipf et al. “RadixSpline: a single-pass learned index.” In: aiDM@SIGMOD. ACM,
2020, 5:1–5:5.

[35] André Kohn, Viktor Leis, and Thomas Neumann. “Adaptive Execution of Compiled
Queries.” In: ICDE. IEEE, 2018, pp. 197–208.

[36] Tim Kraska et al. “The Case for Learned Index Structures.” In: CoRR abs/1712.01208v1
(2017).

[37] Tim Kraska et al. “The Case for Learned Index Structures.” In: SIGMODConference. ACM,
2018, pp. 489–504.

[38] Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. “Generating code for holistic
query evaluation.” In: ICDE. IEEE, 2010, pp. 613–624.

[39] Viktor Leis, Alfons Kemper, and Thomas Neumann. “The adaptive radix tree: ARTful
indexing for main-memory databases.” In: ICDE. IEEE, 2013, pp. 38–49.

[40] Viktor Leis et al. “Morsel-driven parallelism: a NUMA-aware query evaluation frame-
work for the many-core age.” In: SIGMOD Conference. ACM, 2014, pp. 743–754.

[41] Pengfei Li et al. “DILI: A Distribution-Driven Learned Index.” In: Proc. VLDB Endow. 16.9
(2023), pp. 2212–2224.

https://github.com/mutable-org/mutable
https://learnedsystems.github.io/SOSDLeaderboard
https://learnedsystems.github.io/SOSDLeaderboard
https://github.com/learnedsystems/RadixSpline

104 BIBLIOGRAPHY

[42] Qingzhi Ma and Peter Triantafillou. “DBEst: Revisiting Approximate Query Processing
Engines with Machine Learning Models.” In: SIGMOD Conference. ACM, 2019, pp. 1553–
1570.

[43] Marcel Maltry. Code for our VLDB paper: A Critical Analysis of Recursive Model Indexes.
2021. url: https://github.com/BigDataAnalyticsGroup/analysis-rmi.

[44] Marcel Maltry and Jens Dittrich. “A Critical Analysis of Recursive Model Indexes.” In:
Proc. VLDB Endow. 15.5 (2022), pp. 1079–1091.

[45] Ryan Marcus. RMI: The recursive model index, a learned index structure. 2019. url: https:
//github.com/learnedsystems/RMI.

[46] Ryan Marcus, Andreas Kipf, and Alexander van Renen. SOSD: A Benchmark for Learned

Indexes. 2019. url: https://github.com/learnedsystems/SOSD.

[47] Ryan Marcus, Emily Zhang, and Tim Kraska. “CDFShop: Exploring and Optimizing
Learned Index Structures.” In: SIGMOD. ACM, 2020, pp. 2789–2792.

[48] RyanMarcus et al. “Neo: A LearnedQueryOptimizer.” In: Proc. VLDB Endow. 12.11 (2019),
pp. 1705–1718.

[49] Ryan Marcus et al. “Benchmarking Learned Indexes.” In: Proc. VLDB Endow. 14.1 (2020),
pp. 1–13.

[50] Ryan Marcus et al. “Bao: Making Learned Query Optimization Practical.” In: SIGMOD

Rec. 51.1 (2022), pp. 6–13.

[51] Thomas Neumann. “Efficiently Compiling Efficient Query Plans for Modern Hardware.”
In: Proc. VLDB Endow. 4.9 (2011), pp. 539–550.

[52] Thomas Neumann. The Case for B-Tree Index Structures. 2017. url: http : / /
databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html.

[53] Sriram Padmanabhan et al. “Block Oriented Processing of Relational Database Opera-
tions in Modern Computer Architectures.” In: ICDE. IEEE, 2001, pp. 567–574.

[54] Andrew Pavlo et al. “Self-Driving Database Management Systems.” In: CIDR.
www.cidrdb.org, 2017.

[55] Jun Rao et al. “Compiled Query Execution Engine using JVM.” In: ICDE. IEEE, 2006, p. 23.

[56] Felix Martin Schuhknecht, Jens Dittrich, and Ankur Sharma. “RUMA has it: Rewired
User-space Memory Access is Possible!” In: Proc. VLDB Endow. 9.10 (2016), pp. 768–779.

[57] SingleStore. Documentation – Query Compilation. 2024. url: https : / /docs .singlestore.
com / cloud / getting - started - with - singlestore - helios / about - singlestore - helios /
singlestore-helios-faqs/query-compilation/.

https://github.com/BigDataAnalyticsGroup/analysis-rmi
https://github.com/learnedsystems/RMI
https://github.com/learnedsystems/RMI
https://github.com/learnedsystems/SOSD
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
https://docs.singlestore.com/cloud/getting-started-with-singlestore-helios/about-singlestore-helios/singlestore-helios-faqs/query-compilation/
https://docs.singlestore.com/cloud/getting-started-with-singlestore-helios/about-singlestore-helios/singlestore-helios-faqs/query-compilation/
https://docs.singlestore.com/cloud/getting-started-with-singlestore-helios/about-singlestore-helios/singlestore-helios-faqs/query-compilation/

BIBLIOGRAPHY 105

[58] SingleStore. SingleStore. 2024. url: https://www.singlestore.com/.

[59] Mihail Stoian and Andreas Kipf. CHT: Implementation of the compact "Hist-Tree". 2021.
url: https://github.com/stoianmihail/CHT.

[60] Alex Suhan.MapD: Massive Throughput Database Queries with LLVM on GPUs. 2015. url:
https://developer.nvidia.com/blog/mapd-massive-throughput-database-queries-llvm-
gpus/.

[61] Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. “Learned Index: A Comprehensive
Experimental Evaluation.” In: Proc. VLDB Endow. 16.8 (2023), pp. 1992–2004.

[62] Arno Unkrig. Janino – A super-small, super-fast Java compiler. 2024. url: http://janino-
compiler.github.io/janino/.

[63] Giorgio Vinciguerra. PGM-index: State-of-the-art learned data structure. 2019. url: https:
//github.com/gvinciguerra/PGM-index.

[64] XiaoyingWang et al. “AreWeReady For Learned Cardinality Estimation?” In: Proc. VLDB
Endow. 14.9 (2021), pp. 1640–1654.

[65] ChristianWimmer and ThomasWürthinger. “Truffle: a self-optimizing runtime system.”
In: SPLASH. ACM, 2012, pp. 13–14.

[66] Lucas Woltmann et al. “Cardinality estimation with local deep learning models.” In:
aiDM@SIGMOD. ACM, 2019, 5:1–5:8.

[67] Chaichon Wongkham et al. “Are Updatable Learned Indexes Ready?” In: Proc. VLDB
Endow. 15.11 (2022), pp. 3004–3017.

[68] WorldWideWeb Consortium (W3C).WebAssembly Core Specification (2nd Edition). 2024.
url: https://www.w3.org/TR/wasm-core-2/.

[69] Zongheng Yang et al. “Qd-tree: Learning Data Layouts for Big Data Analytics.” In:
SIGMOD Conference. ACM, 2020, pp. 193–208.

[70] Meifan Zhang and Hongzhi Wang. “LAQP: Learning-based approximate query process-
ing.” In: Inf. Sci. 546 (2021), pp. 1113–1134.

https://www.singlestore.com/
https://github.com/stoianmihail/CHT
https://developer.nvidia.com/blog/mapd-massive-throughput-database-queries-llvm-gpus/
https://developer.nvidia.com/blog/mapd-massive-throughput-database-queries-llvm-gpus/
http://janino-compiler.github.io/janino/
http://janino-compiler.github.io/janino/
https://github.com/gvinciguerra/PGM-index
https://github.com/gvinciguerra/PGM-index
https://www.w3.org/TR/wasm-core-2/

	Introduction
	Motivation
	Project Genesis and Research Questions
	Contributions

	A Critical Analysis of Recursive Model Indexes
	Introduction
	Recursive Model Indexes
	Core Idea
	Index Lookup
	Training Algorithm
	Hyperparameters

	Related Work
	Learned Indexes
	Experiments and Analysis

	Experimental Setup
	Implementation
	Hyperparameters
	Datasets
	Workload
	Baselines

	Predictive Accuracy Analysis
	Segmentation
	Position Prediction
	Error Bounds

	Lookup Time Analysis
	Model Types
	Error Correction

	Build Time Analysis
	Configuration Guideline
	Comparison With Other Indexes
	Lookup Time
	Build Time

	Conclusion and Future Work

	Index Access Strategies for Index Scans
	Introduction
	Query Processing
	Processing Pipeline
	Table Access Methods
	Query Execution Methods
	Execution Environments

	Query Compilation With Partial Execution
	General Architecture
	Index Scans as a Suitable Candidate

	Index Access Strategies
	Compiled Index Access Strategy
	Interpreted Index Access Strategy
	Hybrid Index Access Strategy
	Discussion

	Implementation Details
	System
	Index Access Strategies
	Indexes

	Experimental Evaluation
	Experimental Setup
	Comparing the Index Access Strategies
	Configuring the Compiled Index Access Strategy
	Configuring the Interpreted Index Access Strategy
	Configuring the Hybrid Index Access Strategy
	Choosing an Index
	Benefiting From Caching Compiled Plans

	Related Work
	Index Scans in Compiling Database Systems
	Adaptive Query Execution
	Reusing Cached Plans

	Conclusion and Future Work

	Conclusion
	Summary
	Discussion
	Limitations
	Future Research Directions

	Bibliography

