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Abstract 

Plasmids are extrachromosomal DNA molecules in bacteria and archaea, playing critical roles in horizontal gene transfer, antibiotic resistance, 
and pathogenicity. Since its first release in 2018, our database on plasmids, PLSDB, has significantly grown and enhanced its content and scope. 
From 34 513 records contained in the 2021 v ersion, PLSDB no w hosts 72 360 entries. Designed to provide life scientists with con v enient access 
to e xtensiv e plasmid data and to support computer scientists by offering curated datasets for artificial intelligence (AI) de v elopment, this latest 
update brings more comprehensive and accurate information for plasmid research, with interactive visualization options. We enriched PLSDB 

by refining the identification and classification of plasmid host ecosystems and host diseases. A dditionally, w e incorporated annotations for 
new functional str uct ures, including protein-coding genes and biosynthetic gene clusters. Further, we enhanced existing annotations, such as 
antimicrobial resistance genes and mobility typing. To accommodate these impro v ements and to host the increase plasmid sets, the w ebserv er 
architecture and underlying data structures of PLSDB ha v e been re-reconstructed, resulting in decreased response times and enhanced visu- 
alization of features while ensuring that users ha v e access to a more efficient and user-friendly interf ace. T he latest release of PLSDB is freely 
accessible at https:// www.ccb.uni-saarland.de/ plsdb2025 . 
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lasmids are extrachromosomal mobile genetic elements ca-
able of autonomous replication and transfer across host or-
anisms, from narrow to broad host range ( 1 ,2 ). These ge-
etic elements are present across different domains of life but
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have been extensively studied in bacteria ( 1–3 ). It is estimated
that approximately 50% of bacteria harbor one or more plas-
mids, making them a significant source of genetic variability
( 4 ). Consequently, plasmids have become a molecular corner-
stone in the One Health Era due to their capacity to spread
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antibiotic resistance and virulence factors through horizon-
tal gene transfer (HGT) events ( 1 ,5 ). Therefore, understanding
plasmid sequences has become crucial in microbiome studies,
as it allows for the analysis of their association with clinically
relevant traits and comprehension of these connections with
treatment responses. 

In this line, we have developed a database that facilitates
easy access to validated plasmids, PLSDB. Our repository has
been supporting plasmids research since its inception in 2018,
by offering a curated source of plasmids from NCBI ( 6 ) and
INSDC ( 7 ), free from chromosomal and redundant sequences
( 8 ,9 ). Plasmids in PLSDB are presented within a comprehen-
sive framework that includes functional annotation and ex-
tensive metadata. This metadata spans nucleotide and assem-
bly sequence information, host taxonomy, geographical and
ecological information, similarity to other plasmids, and func-
tional structures. Beyond allowing life scientists convenient
access to data collections, one ambition in developing such
resources is in facilitating computer scientists to have curated
data for artificial intelligence applications. Indeed, PLSDB has
also served as a foundation for advanced machine learning
models such as geNomad ( 10 ) and PLASMe ( 11 ), which pre-
dict plasmid sequences from metagenomic assemblies. These
models have facilitated significant advancements in plasmid
research, as exemplified by the IMG / PR database ( 12 ). This
database provides an extensive repository of 699 973 plas-
mid sequences identified from diverse microbiome samples,
offering a wealth of metadata including geographical, ecolog-
ical, and functional annotations. While the IMG / PR database
excels in breadth and diversity, our PLSDB stands out with
its carefully curated content. The complementary strengths of
both databases underscore the importance of having robust,
diverse resources to advance the field. 

To further support plasmid research, we have conducted a
major update of PLSDB, incorporating annotations for func-
tional structures and the visualization of features. These up-
dates aim to provide researchers with more comprehensive
tools for plasmid analysis, facilitating deeper insights into
plasmid dynamics, their role in microbial communities, and
their impact on public health through the spread of antibiotic
resistance. 

Materials and methods 

Data collection 

Records are retrieved from NCBI Nucleotide database
(Entrez Direct v.16.2) (INDSC -DDBJ, EMBL / ENA, Gen-
bak, RefSeq) on 31 / 05 / 2024 using the following query:
‘biomol_genomic[PROP] AND plasmid[FILT] AND (bacte-
ria[FILT] OR archaea[FILT]) NOT complete cds[TITL] NOT
gene[TITL] NOT genes[TITL] NOT contig[TITL] NOT
scaffold[TITL] NOT whole genome map[TITL] NOT partial
sequence[TITL] NOT (partial[TITL] AND plasmid[TITL])
NO T locus[TITL] NO T region[TITL] NO T fragment[TITL]
NOT integron[TITL] NOT transposon[TITL] NOT inser-
tion sequence[TITL] NOT insertion element[TITL] NOT
phage[TITL] NOT operon[TITL]’ ( 13 ). To broaden the
scope of PLSDB we have incorporated the Archaea kingdom
into our data collection query ( 8 ). Document summary
was fetched for each hit and subsequently linked to their
correspondent Biosample and Assembly record, when
available. The retrieval of BioSample attributes has been
improved by homogenizing the attribute’s name according 
to the BioSample Package guidelines provided by NCBI 
( https:// www.ncbi.nlm.nih.gov/ biosample/ docs/ attributes/ ). 
The current list of BioSample attributes incorporated into 

PLSDB can be found in https://www.ccb.uni-saarland.de/ 
plsdb2025/ static/ biosample _ attributes _ plsdb.csv . Finally,
measures have been implemented to exclude anomalous 
assemblies by systematically filtering out assemblies tagged 

as ‘anomalous’. 

Deduplication 

Identical sequence groups are identified using seqkit2 ( 14 ) 
(version 2.8.1; cla: ‘seqkit rmdup –by-seq‘). To ensure the 
inclusion of the most informative data while minimizing re- 
dundancy, for each group of identical sequences one record 

is selected based on the following criteria: (i) preference for 
RefSeq ( 15 ) records: prioritizing RefSeq records over those 
from INSDC repository; (ii) enriched metadata information: 
records enriched with supplementary details such as geo- 
graphical location, BioSample and Assembly information, are 
favoured. In addition, records with more recent assembly re- 
lease date, nucleotide creation date, and highest coverage,
are preferred. Despite the selection of a singular record for 
database inclusion, the associated information pertaining to 

their identical sequence mates is retained, preserving contex- 
tual information of biological relevance. 

Filtering of chromosomal sequences 

To remove non-plasmids or non-complete plasmid sequences,
descriptions were scanned as previously described ( 8 ). If as- 
sembly information was available, only records with the ‘com- 
pletness’, ‘lastest’ and ‘non-anomalous’ assembly status were 
retained. If no completeness tag was associated to the record,
then only the assembly tag was used and vice versa. Only the 
non-empty tags were used to remove the records. 

For the identification of chromosomal sequences incor- 
rectly identified as plasmids, putative chromosomal sequences 
are listed by performing a in silico rMLST ( 16 ) analysis (i.e 
searching the 53 rps genes) using Mash distances ( 17 ) (ver- 
sion 2.3, cla: ‘mash sketch –S 123 –k 21 –s 1000 –i’; ‘mash 

dist –d 0.00123693’) and verified with BLAST ( 18 ) as pre- 
viously described ( 8 ). Candidates for further screen are con- 
sidered if more than 5 unique rps genes are detected in the 
sequence. Subsequently, they are compared against a local 
chromosomal version of NCBI nucleotide database ( 6 ) us- 
ing Mash distances and Blast verification. The local chro- 
mosomal dataset was retrieved using the query: ‘(Bacteria 
OR Archaea) NOT plasmid [FILT] NOT complete cds[TITL] 
NO T gene[TITL] NO T genes[TITL] NO T contig[TITL] NO T 

scaffold[TITL] NOT whole genome map[TITL] NOT par- 
tial sequence[TITL] NOT locus[TITL] NOT region[TITL] 
NO T fragment[TITL] NO T integron[TITL] NO T transpo- 
son[TITL] NOT insertion sequence[TITL] NOT insertion el- 
ement[TITL] NOT phage[TITL] NOT operon[TITL] NOT 

whole genome shotgun[TITL] NOT assembly[TITL]’. Data 
available until 31 / 05 / 2024 date was included. Plasmid can- 
didates with at least one hit in the chromosomal dataset 
with at least 99% identity and 80% query coverage were 
considered as chromosomal sequences and excluded from 

the plasmid collection (version 2.15.0; cla ‘blastn -task 

megablast -perc_identity 99 -qcov_hsp_perc 80 -evalue 0.05 

-max_target_seqs 10 -max_hsp 10’). 

https://www.ncbi.nlm.nih.gov/biosample/docs/attributes/
https://www.ccb.uni-saarland.de/plsdb2025/static/biosample_attributes_plsdb.csv
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To further detect and discard biologically implausible
lasmids, plasmids with outlier’s values of GC content or

og10 sequence length were submitted to further manual
nspection. Values were considered outliers according to
he interquartile range criterion (value < Q 0.25 –1.5*IQR or
alue > Q 0.75 + 1.5*IQR). Candidate anomalous plasmids
ith a total absence of plasmid typing (including replicon, re-

axases, mate pore formatting, origin of transfer, and pMLST)
nd total absence of annotated genetic elements (i.e. genes,
nsertion sequences) were suppressed. Additionally, candi-
ate anomalous plasmids with a sequence length < 1 kb or
ength > 4 MB were further suppressed. 

cosystem and disease identification 

ach biosample record linked to a plasmid entry proves rich
ource of information and is automatically scanned for the
dentification of potential host-associated disease and ecosys-
em, as well as environmental-related ecosystems. Ecosystem
dentification now includes environmental-related habitats
nd is inferred from the following BioSample attributes:
ost, host_taxid, host_common_name, host_animal_breed,
nimal_env, local_class, soil_type, metagenome_source,
amp_mat_type, source_type, host_tissue_sampled, tis-
ue, host_body_habitat, isolation_source, env_medium,
nv_broad_scale and env_local_scale. Host-associated
cosystems are determinate utilizing NCBI Taxonomy
 19 ) and ETE4 ( 20 ) (version 4.1.0-beta). Diseases were
lassified according to Disease and Symptom Ontolo-
ies ( 21 ,22 ). Following automatic classification, identified
iseases and ecosystems undergo manual curation to val-
date and refine the classification process. In cases where
 sample was associated with multiple habitats and dis-
ases, all the corresponding habitats and diseases were
onsidered. 

eographical information 

eographical information for plasmid collection was re-
rieved from BioSample location name (geo_loc_name) or co-
rdinates (lat_lon) if available. When both attributes were
rovided, coordinates were preferred. Attributes were pro-
essed using the Geopy API of OpenStreetMap (planet dump
rom https://planet.osm.org ) and further compared with Bing

aps (accessed 10 July 2024, used under Microsoft Bing
aps Platform APIs’ Terms of Use). Manual inspection was

erformed when discrepancies between OpenStreetMap and
ing Maps arise. 

eatures annotation 

rotein-coding genes annotations were retrieved from the
utomatic NCBI Prokaryotic Genome Annotation Pipeline
PGAP) ( 23 ). Antimicrobial Resistance genes annotations
ere predicted by combining results from AMRFinder-
lus ( 24 ) (version 3.12.8, database version 2024-01-31.1,
la: ‘amrfinder –report_all_equal –plus –ident_min 0.95 –
overage_min 90’) and RGI ( 25 ) (version 6.0.3, CARD
ersion 3.2.9, cla:’rgi main –local –clean –low_quality
include_nudge’) through hAMRonization ( 26 ) (version
.1.4). To avoid redundancy, records sharing the same
ene symbol, strand, and genomic coordinates (range +-
0nt) were considered duplicates and only AMRFind-
rPlus records were retained. Biosynthethic Gene Clus-
er (BGCs) annotations were predicted with antiSMASH
( 27 ) (version 7.1.0; cla: ‘antismash –genefinding-tool =
prodigal-m’). 

Webserver 

For the improvement of the PLSDB webserver, we set up a
PostgreSQL database ( https:// www.postgresql.org/ ) that can
be browsed using DataTables ( https:// datatables.net/ ). Plas-
mid visualization is using CGView.js ( 28 ) ( https://js.cgview.
ca ) whereas the ecosystem network visualization is using cy-
toscape.js ( 29 ) ( https:// js.cytoscape.org/ ). 

Results 

Description and key content of PLSDB 2025 

The PLSDB (v. 2024_05_31_v2) contains a total of 72 360
dereplicated plasmids, with 7GB of sequence information, rep-
resenting a 110% increase versus 2021 version. Records pre-
sented a median length of 54kbp and a GC content of 49%
(Figure 1 A). Notably, 91.7% of these plasmids are annotated
as circular. 

The host plasmid distribution was predominated by bac-
terial hosts (71 753), with the most represented phylas be-
ing Pseudomonata (70.1%), Bacillota (19.8%), Actinomyce-
tota (3.4%), and Spirochaetota (1.8%). Archaeal hosts in-
cluded 607 plasmids, primarily from Euryarchaeota (94.4%)
and Thermoproteota (4.4%). A total of 4 787 different species
had plasmid representation, with Esc heric hia coli being the
most abundant (19.7%), followed by Klebsiella pneumoniae
(14.8%), Salmonella enterica (4.7%) and Staphylococcus au-
reus (2.9%) (Figure 1 B). 

Host-associated ecosystems were the main source of
plasmid isolation, accounting for 75% of the abundance.
Within these ecosystems, Homo sapiens (45%), Sus scrofa
(3.8%), Gallus gallus (3%) and Bos taurus (2.6%) were
the most frequent host species (Figure 1 C). Antimicrobial
resistance (AMR) genes were found across all ecosystems,
with highest percentage in anthropogenic (40%) and host-
associated (35%) ecosystems (Figure 1 C). The most frequent
AMR gene class was aminoglycoside (14.2%), followed by
beta-lactamases (12.6%), and cooper (7.7%) resistance genes
(Figure 1 D). 

Biosynthetic Gene Clusters (BGCs) were predominantly
predicted in the Pseudomonata phylum (Figure 1 E). They
mainly contained RiPP-like, NI-siderophore and NRPS
classes. Lastly, we identified that the most common proteins
in plasmids were related to mobility and AMR genes (Figure
1 F). 

Out of the total 72 360 plasmids analyzed, 80.7% were suc-
cessfully typed based on either replicon or relaxase elements
(Figure 2 A). Of these, 26.4% were classified solely by replicon
elements, 6.7% were categorized only by relaxase elements,
and 47.6% were identified through both replicon and relax-
ase typing methods. Remarkably, archaeal plasmids posed a
unique challenge, with only 19 out of 607 (3.1%) being typed
by either replicon or relaxase elements. Among the remaining
13 875 plasmids that could not be typed using replicon or re-
laxase elements, the most common host families were Enter-
obacteriaceae (15.6%), Borreliaceae (7.6%) and Bacillaceae
(4.7%). 

Plasmid typing frequency was predominated by MOBP re-
laxase family (Figure 2 B), representing 3.8% of all plasmids.

https://planet.osm.org
https://www.postgresql.org/
https://datatables.net/
https://js.cgview.ca
https://js.cytoscape.org/
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This was followed by IncFIB plasmids at 1.9%, MOBP-IncI-
gamma / K1 at 1.9%, and MOBQ at 1.8%. 

Case study 

PLSDB is frequently used to screen for potential plasmid
candidates or to identify the novelty of experimentally val-
idated ones ( 30 ,31 ) but can also be used to explore the
state-of-art of plasmids epidemiology ( 5 ). For demonstra-
tion purposes, we will investigate plasmids with Enterobac-
terales hosts, pathogens identified as critical priority group
by the WHO ( 32 ). For the analysis, we will use the reno-
vated browser tables, specifically the Summary table, filtering
for plasmids in Enterobacterales within the 40–50 kb range
that are rich in annotations, including AMR genes and mobil-
ity (MOB) typing, applying the ‘not empty’ filter. Further re-
finement included selecting plasmids with identical sequences
(‘NUCCORE has identical’), which filter for plasmids with
detected identical records. Among the hits, we will select the
plasmid NZ_KU761328.1 to illustrate the enhanced function-
alities and graphical output of PLSDB 2025. 

The taxonomical data of NZ_KU761328.1 and its iden-
tical sequences allowed us to identify the prevalence of this
plasmid among a variety of Enterobacterales hosts, includ-
ing Esc heric hia coli , Klebsiella pneumoniae and Enterobac-
ter hormaechei (Figure 2 C). Moreover, the ecosystem data
highlighted the plasmid’s versatility, as it is found in multi-
ple host-associated environments, including humans, chick-
ens, and ducks. This broad host range indicates its adaptabil-
ity and potential to cross species barriers, a critical trait that
enhances its role in the dissemination of antimicrobial resis-
tance. Geographic data further underscore its global distribu-
tion, with isolated collected from diverse locations such as the
United Arab Emirates, China, and the USA. 

Plasmid typing by MOB-typer detected the presence of
IncX3 replicon and MOBP relaxases. A closer examination of
the plasmid’s annotations revealed the presence of key AMR
genes, particularly blaNDM-5 and ble . The blaNDM-5 gene
is especially concerning as it confers resistance to carbapen-
ems, a class of last-resort antibiotics for many severe bacte-
rial infections. The ble gene further complicates the scenario
by providing resistance to bleomycin, an antibiotic utilized as
chemotherapy agent. Furthermore, MOB typing further iden-
tify mating-pair formating T system, suggesting a high po-
tential for horizontal gene transfer via the conjugation appa-
rattus, enhancing the plasmid’s ability to spread AMR genes
among bacterial populations. 

Overall, NZ_KU761328.1 exemplifies the complex chal-
lenges posed by plasmids in the global spread of antimicro-
bial resistance. PLSDB 2025 aims to support the study of such
elements by providing detailed data on the presence of viru-
lence and AMR factors, host adaptability, geographical distri-
bution, and mobility capabilities. 

Discussion 

With PLSDB, we have developed a resource that serves as a
cornerstone for the analysis and understanding of plasmids
within bacterial isolates and communities. Since its first release
in 2018, PLSDB has significantly expanded and improved,
evolving from an initial 13 789 records to now hosting 72
360 entries in this latest 2025 release. The database is widely
used, attracting approximately 20 000 users annually, which
highlights its importance and utility in the scientific commu- 
nity. This growth reflects our commitment to continuously up- 
date and enhance the database, integrating community feed- 
back to improve functionality, performance, and data quality.
The latest version of PLSDB includes refined identification and 

classification of plasmid host ecosystems and host diseases,
enriched annotations for new functional structures such as 
protein-coding genes, biosynthetic gene clusters, and conjuga- 
tion elements, and improved existing annotations for antimi- 
crobial resistance genes and mobility typing. These enhance- 
ments ensure that researchers have access to the most compre- 
hensive and accurate plasmid data available. Another devel- 
opment in the latest release of PLSDB, as for other databases 
and web services we develop, is the adoption of a year-based 

versioning system. Instead of using traditional numerical ver- 
sions, we now use the year of the respective update as the ver- 
sion identifier. This change is intended to make users more 
aware of the most current versions, ensuring they always have 
access to the latest data and tools. By adopting this system,
we aim to improve citation accuracy and encourage the use of 
the most up-to-date version of PLSDB, thereby maintaining 
its relevance and accuracy in ongoing and future research. 

Besides PLSDB, other resources for plasmids are emerging.
One example is the IMG / PR database that provides a vast 
and diverse repository of 699 973 plasmid sequences derived 

from genomes, metagenomes, and metatranscriptomes. Using 
the microbiome systematically as a source for plasmids along 
with offering rich metadata makes this database a comprehen- 
sive tool for researchers needing access to extensive plasmid 

data, e.g. for broader ecological studies. This broadness comes 
at the price of a lower degree of manual curation. Finally, the 
availability of complementary databases such as IMG / PR and 

PLSDB ensures that researchers have access to both extensive 
data diversity and high-quality curated datasets, facilitating 
a more thorough and nuanced understanding of plasmid dy- 
namics, their role in microbial communities, and their impact 
on human health and biotechnology. 

It is our ambition to continually enhance and refine PLSDB,
and the user feedback plays a crucial role in this process. We 
greatly value the insights and suggestions we receive through 

various channels, including our GitHub repository ( https:// 
github.com/ CCB-SB/ plsdb/ ), email, and personal interaction 

at conferences. We actively use this feedback to guide our 
updates and improvements. We are committed to addressing 
such requests from the life science and computer science do- 
mains to continuously improve PLSDB. 

Data availability 

The PLSDB webserver is freely accessible at https://www. 
ccb.uni-saarland.de/plsdb2025 . The Python package for API 
access is available on PLSDBapi GitHub ( https:// doi.org/ 10. 
6084/m9.figshare.27284961.v2 ). The data collection pipeline 
can be found on PLSDB GitHub ( https:// doi.org/ 10.6084/ m9. 
figshare.27283893 ) where we are also welcoming any user 
feedback. 

The underlaying data of PLSDB has been divided into 

several tables for dedicated information: Records, Identi- 
cal Records, Similar Records, BioSample, Assembly, Tax- 
onomy, Plasmid Host Diseases, Plasmid Typing, Antimi- 
crobial Resistance, Biosynthethic Gene Clusters and Plas- 
mid Annotated Elements. The tables are interconnected 

by unique identifiers such as NUCCORE_ACC, BIOSAM- 

https://github.com/CCB-SB/plsdb/
https://www.ccb.uni-saarland.de/plsdb2025
https://doi.org/10.6084/m9.figshare.27284961.v2
https://doi.org/10.6084/m9.figshare.27283893
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