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Abstract 

MiRNAs represent a non-coding RNA class that regulate gene expression and pathways. While miRNAs are evolutionary conserved most data 
stems from Homo sapiens and Mus musculus . As miRNA expression is highly tissue specific, we developed miRNATissueAtlas to comprehen- 
siv ely e xplore this landscape in H. sapiens. We expanded the H. sapiens tissue repertoire and included M. musculus. In past years, the number 
of public miRNA expression datasets has grown substantially. Our previous releases of the miRNATissueAtlas represent a great frame w ork f or 
a uniformly pre-processed and label-harmonized resource containing information on these datasets. We incorporate the respective data in the 
ne w est release, miRNATissueAtlas 2025, which contains expressions from 9 classes of ncRNA from 799 billion reads across 61 593 samples 
for H. sapiens and M. musculus . The number of organs and tissues has increased from 28 and 54 to 74 and 373, respectiv ely. T his number 
includes ph y siological tissues, cell lines and e xtracellular v esicles. Ne w tissue specificity inde x calculations build atop the kno wledge of pre vious 
iterations. Calculations from cell lines enable comparison with ph y siological tissues, pro viding a v aluable resource f or translational research. 
Finally, between H. sapiens and M. musculus , 35 organs overlap, allowing cross-species comparisons. The updated miRNATissueAtlas 2025 is 
a v ailable at https:// www.ccb.uni-saarland.de/ tissueatlas2025 . 
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ntroduction 

on-coding RNAs such as miRNAs are critical for the modu-
ation of protein expression levels in tissues ( 1 ,2 ). MiRNAs
epresent one of the best studied classes across non-coding
NAs, differing from other small non-coding RNA in terms
f their size, biogenesis, targeting mechanism and downstream
unction. They are 21–23 nt short sequences that target the
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′ UTRs of mammalian mRNA, bind to them and degrade
them or disrupt their translation ( 3 ). Families of miRNA can
have over 400 such targeting interactions, with the interac-
tions being evolutionarily conserved ( 4 ). These interactions
can result in up or downregulation of entire pathways, mak-
ing them relevant to the study of diseases, either as drug tar-
gets or biomarkers ( 5 ,6 ). MiRNA sequences themselves are
tober 11, 2024. Accepted: October 21, 2024 
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also evolutionarily conserved. Two thirds of all known miR-
NAs are similar between large primates such as Homo sapi-
ens and Mus musculus ( 7 ,8 ). MiRNAs that are diverging be-
tween species can take on species-specific functionality. For
example, recently evolved H. sapiens miRNAs were shown to
be enriched for neuronal functions ( 7 ), hinting a possible role
of miRNA in the intelligence explosion in humans. Sequence
variation in a miRNA, even at a single base pair, can generate
isomiRs ( 9 ) which can alter its downstream targeting, e.g. by
seed shifting, and give rise to new functionality. If these func-
tionalities prove adaptive, these isomiRs can undergo natural
selection, become fixed in a species, and give rise to new miR-
NAs over time ( 10 ). The biogenesis of isomiRs can happen un-
der other conditions as well and are also relevant to the study
of diseases, being especially well-studied in cancer ( 11 ). MiR-
NAs are exclusively transcribed from the nuclear genome but
are localized to both cytoplasmic and mitochondrial subcellu-
lar compartments ( 12 ). This contrasts with other non-coding
RNAs such as rRNAs and tRNAs, which have copies both on
the nuclear and mitochondrial genomes ( 13 ,14 ). The process-
ing of tRNA can also generate tRFs in both the cytoplasm and
mitochondria and represents an emerging class of non-coding
RNA previously confused for miRNA ( 15 ,16 ). Moreover, the
near ubiquitious presence of miRNA offer a practical tool for
modulating gene dosage in synthetic biology, providing precise
control over gene expression ( 17 ,18 ), something that is be-
coming increasingly relevant with the rise of mRNA medicine
and gene therapy. The deregulation of miRNA has been im-
plicated in disease such as the neurodegeneration in Parkin-
son’s ( 9 ,19 ) or Alzheimer’s disease ( 10 , 11 , 20 , 21 ) in H. sapi-
ens . Beyond pathological mechanisms, miRNAs are involved
in physiological processes such as ageing, in H. sapiens ( 12–
14 ,22–24 ). 

The role miRNAs play in regulating a tissue’s transcrip-
tomic signature in turn implies tissue-specific expression. In-
deed, this was originally observed in the landmark study by
Landgraf et al. ( 25 ) and served as inspiration for the first it-
eration of the miRNATissueAtlas in 2016 ( 25 ,26 ). While it
was widely used by the research community, the use of mi-
croarray technology limited it to known miRNA and prohib-
ited the exploration of isomiRs. This motivated us to gen-
erate the next iteration of the miRNATissueAtlas in 2022
( 27 ) and its specialized isomiRDB ( 28 ). Using second gen-
eration NGS (Next Generation Sequencing), further, we ex-
panded the collection to more tissues and included M. mus-
culus . Using a high-quality, donor matched set of tissues al-
lowed us to explore not only the tissue-specificity of both
established and novel miRNA but also nine other classes of
non-coding RNA. The inclusion of M. musculus allowed us
to determine that this tissue-specific distribution is conserved
between species, with homologous miRNA having highly cor-
related tissue-specificity indices. This suggested that miRNA
tissue-specificity is evolutionarily conserved and thus critical
to the function of tissues. 

As a result of their importance to tissue function and dis-
ease, the sequencing data collected for non-coding RNA has
been growing at an exponential rate. Based on statistics from
the NCBI Sequence Read Archive ( 29 ), the total number of
such publicly available datasets have grown from 27 331 in
2022 to 46 468 in 2024 (SRA, https://www.ncbi.nlm.nih.gov/
sra , accessed 27 / 08 / 2024). Despite the rapid data growth,
our understanding of overall non-coding RNA expression is
still far from being complete. As a source to improve that un-
derstanding, atlas level resources for miRNA expression data 
continued to emerge. Notable examples include the human 

cell-line microRNAome ( 30 ), DIANA-miTED ( 31 ), isomiRdb 

( 28 ) and miSRA ( https:// arn.ugr.es/ misra/ ). Other atlases in- 
clude sub-sections of the FANTOM project ( 32 ), and the Im- 
munological Genome Consortium ( 33 ), both notable for their 
multi-omics approach. So far , however , a label-harmonized re- 
source for different classes of non-coding RNA from H. sapi- 
ens and M. musculus for physiological tissues, cell lines and 

extracellular vesicles from current publicly available sequenc- 
ing datasets is lacking. 

Our previous repositories with high quality labelling rep- 
resent a perfect framework to now add the 61593 samples 
comprising 799 billion reads and annotate them in a uniform 

manner. Of note, instead of following the previous naming 
schema we term our update resource as miRNATissueAtlas 
2025. Moving away from a classical version numbering by 
adding the year might help researchers to immediately gauge 
the recency of the resource they are using. We thus will use this 
naming convention, containing the year of publication, for all 
coming databases and web services. 

Material and methods 

The central goal of the new release of the miRNATissueAt- 
las is to have an up-to-date comprehensive collection of data.
We thus obtain a list of samples Accessions from the SRA 

using the search strings: ‘Search (Homo sapiens [Organism]) 
AND ‘"mirna seq’‘"[Strategy] Filters: Public; single; fastq’ 
and ‘Search ( (Mus musculus [Organism]) AND ’‘"mirna 
seq’"[Strategy] AND Filters: Public; single; fastq’ on the 16th 

of January 2024. Using the list of Accessions, we use pys- 
radb ( https:// github.com/ saketkc/ pysradb ) to fetch the meta- 
data available on SRA, and the SRAToolkit ( https://github. 
com/ ncbi/ sra-tools ) to download the fastq files. Adapter trim- 
ming is required before reads from fastq files can be mapped 

to a genome. Since adapter trimming is highly dependent on 

library preparation method, and since there are multiple such 

methods for single-end sequencing, we employ findadapt ( 34 ).
Findadapt is an automated library trimming tool that deter- 
mines adapter sequences by sampling reads from the fastq file.
As a preliminary QC step, we discarded fastq files where find- 
adapt could not detect an adapter sequence. On top of that we 
perform sequence-based filtering: fastq files that had either < 1 

million reads, had an exome percentage of > 1% or a genome 
coverage of > 1% were discarded. 

W e use GR Ch38 for H. sapiens and GRCm39 for M. mus- 
culus for alignment and subsequent exome and genome cov- 
erage percentage calculations. For non-coding RNA quantifi- 
cation we use the miRMaster2 pipeline ( 35 ) with the follow- 
ing ncRNA databases: miRBase version 22.1 ( 36 ), Ensemble 
ncRNA version 100 ( 37 ), RNACentral version 15 ( 14 ), GtR- 
NAdb version 18.1 ( 13 ) and NONCODE version 5 ( 38 ). 

Consistent labelling is critical to making use of ncRNA 

expression data. Since we found the meta-data on SRA and 

Biosample to be incomplete, we used geofetch ( https://github. 
com/ pepkit/ geofetch ) to obtain sample information for acces- 
sions having a Gene Expression Omnibus entry ( 39 ). We com- 
bined the text information mined from GEO into a string 
and used python scripts to map specific keywords from these 
strings to their Biotype, Organ and Tissue labels. To map key- 
words to label we manually parsed through the mined text.
We ensured that only a single label was used to refer to a sin- 

https://www.ncbi.nlm.nih.gov/sra
https://arn.ugr.es/misra/
https://github.com/saketkc/pysradb
https://github.com/ncbi/sra-tools
https://github.com/pepkit/geofetch
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le organ / tissue throughout all the datasets, thus harmonizing
abels across the entire resource. If we were unable to recover
he complete labelling for a sample, we did not include it in the
esource. We removed samples with empty values for labels,
ith the exception of Sex, where we labelled missing values
s ‘Unknown’. 

Leveraging the labelling, we calculate the tissue specificity
ndex (TSI) corresponding to each of the organs based on the
eads per million mapped reads (rpmm) from the samples. We
erform TSI calculations separately for the physiological tis-
ues and cell lines as the former is derived from living organ-
sm while the latter represent model systems. While we ex-
ect the model system to approximate the expression in phys-
ological tissue, we also expect there to be significant differ-
nces. The TSI table represents a central result and is avail-
ble for download for all classes of non-coding RNA from the
atabase website. TSI is calculated according to the following
quation: 

ts i j = 

N ∑ 

i = j 

1 − x̄ j,i 

N − 1 

Here j corresponds to a ncRNA, i corresponds to an or-
an, N corresponds to the total number of organs considered
nd x̄ j,i corresponds to the mean or median expression for the
cRNA j for the organ i . 
Finally, we reimplemented the backbone for handling this

ata from the ground up. Our previous implementation was
ritten with hundreds of samples in mind, whereas this it-

ration is approximately 250 times the size. The previous
ata tables are still available. The raw and normalized data
atrices from all the samples in the new database is avail-

ble in h5ad format ( 40 ). For data analysis, we use snake-
ake 8.16.0, python 3.8.16, matplotlib 3.7.2, matplotlib-

enn 1.1.1, scikit-learn 1.3.0, scipy 1.10.1, pandas 2.0.3,
lotly 5.6.0, pyarrow 16.1.0, anndata 0.9.2, mieaa 0.3.0,
qdm 4.66.5 and dash_cytoscape 0.2.0. The webserver was set
p using the Django Python web framework v3.2.18 and the
ostgreSQL database v14.5. It is deployed and managed as a
ontainer using docker v23.0.6 and docker-compose v2.29.2.
or development of the website, we utilized a django frame-
ork 3.2.18, django-bootstrap-v5 1.0.11, JavaScript ES6,
atatables 1.11.5, plotly 5.6.0 and jquery 3.5.1. 

esults and discussions 

xpanded data scope with meta-data 

armonization 

hile miRNA sequencing data are available for dozens of
rganisms, we cantered the miRNATissueAtlas to H. sapiens
nd M. musculus , likely the best studied organisms in terms
f miRNA research. From a starting point of 84 913 sam-
les, of which 65 914 are derived from H. sapiens and 18
99 from M. musculus , our stringent QC filtering retained
he 72.5% highest quality samples as the basis for miRNATis-
ueAtlas 2025. With 46 997 samples from H. sapiens and 14
96 samples for M. musculus, totalling 61 593 samples, this
ikely represents one of the largest sets of label-harmonized,
re-processed samples derived from H. sapiens and M. mus-
ulus. The quantity of the data is given by a total of 799 bil-
ion reads that we uniformly processed. Given the size and
readth of our dataset, evolutionary variation is expected to
e present in the dataset, both between and within species.
This variation is encapsulated partially in the expression of
isomiRs ( 9 ). We make the matrices of abundant isomiRs ( > 1
rpmm in at least 1% of samples) with a uniform nomencla-
ture available to users, with 123 938 and 100 253 isomiRs
for H. sapiens and M. musculus respectively. Although the ti-
tle of our resource, miRNATissueAtlas, implies that we con-
sider only miRNAs, we also detect and report other classes
of non-coding RNA and therefore include piRNA, miscRNA,
tRNA, snRNA, snoRNA, rRNA, scaRNA and lincRNA ex-
pression matrices as well (Figure 1 B). For historical reasons,
we decided to stay with the original name, also avoiding con-
fusion among researchers who have been using the previous
iterations of our resource. Apart from that, among all non-
coding RNA, the best-studied miRNAs remain the focus of
our database. 

While most of the samples are derived from SRA for both H.
sapiens and M. musculus (42485 and 11949 respectively), we
want to highlight several large-scale data sets we contributed.
For example, the Parkinson’s Progression Marker Initiative
cohort ( 19 ) represents 16.8% of all H. sapiens samples de-
rived from Blood (4327 out of 25 706). For M. musculus, we
added the Isakova 2019 mouse tissue atlas, a study demon-
strating the ability for ncRNA to classify tissues in M. muscu-
lus, thus highlighting their tissue specific nature ( 41 ). We have
also contributed significantly to aging datasets with studies
related to the Tabula Muris RNA sequencing studies ( 24 ,42–
44 ) (n = 2378). Taken together, our collaborators and us gen-
erated 2647 out of 14 596, i.e. 18.1% of all M. musculus
miRNA datasets sequenced so far (Figure 1 C). 

The contrast between number H. sapiens samples compared
to M. musculus samples is stark, with an approximately 3-
fold difference. We recovered definite Sex labels for 55.1%
samples in H. sapiens and 64.9% samples in M. musculus. In-
terestingly, we see similar proportions of labelling for Male
and Female in both species (24.5% male, 30.6% female in
H. sapiens and 36.2% male, 27.4% female in M. musculus )
(Figure 1 E). However, differences in sample count between
species are maintained when we decompose the datasets by
Biotype; most cell lines are derived from H. sapiens (5042 in
H. sapiens versus 434 in M. musculus ). This is reasonable as
M. musculus is itself meant to be a model organism for H. sapi-
ens; creating models of a model organism is somewhat redun-
dant. The label-harmonization of organs and tissues enable us
to compare similarities between H. sapiens and M. musculus :
out of 74 total organs, 35 are common to both species with
30 being specific to H. sapiens and only 9 being specific to
M. musculus (Figure 1 G). 

Zooming into finer tissue labels, which are sublocations and
cell lines assigned to organ labels, we see the degree of similar-
ity flip: only 59 labels match between H. sapiens and M. mus-
culus with 165 and 149 labels being unique to each species
respectively ( Supplementary Figure S1 A). Examination of the
frequencies of each individual label ( Supplementary Figure 
S1 B,C), we see that 103 of the 165 H. sapiens specific labels
are coming from cell lines. Meanwhile, 144 out of 149 of all
M. musculus specific labels are derived from the tissue subset.

This pattern reveals in part the motivation behind sampling
certain tissues; we want to sample cell lines to approximate in
vivo tissue and therefore it is reasonable to sample cell lines.
However, M. musculus tissue is already a model for in vivo
H. sapiens tissue, and therefore, it is not reasonable to sam-
ple cell lines, which would be a redundant model of a model
organism. The pattern also reveals the logistics behind sam-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1036#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1036#supplementary-data
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A B

C D

E

F

G

Figure 1. Overall description of the data available. ( A ) Exponential growth in available small-RNA NGS dataset. ( B ) Non-coding RNA type and 
corresponding number included in dataset from H. sapiens (hsa) and M. musculus (mmu). ( C ) No. of samples from each dataset included in database for 
H. sapiens (hsa) and M. musculus (mmu). ( D ) No. of samples corresponding to tissue, extracellular vesicle and cell line from both H. sapiens and M. 
musculus . ( E ) No. of samples corresponding to sex. Samples without sex data were labelled ‘Unknown’. ‘Pooled’ refers to samples where both Male 
and Female samples were combined. ( F ) Lollipop plot showing the number of samples corresponding to each organ group from H. sapiens and M. 
musculus . The columns are split based on if the organ group was found in only human, both human and mouse and only in mouse. For each label on the 
y -axis, the exact counts are mentioned as ( H. sapiens samples | M. musculus samples) next to the organ group. ( G ) Venn diagram of organ common 
between and exclusive to H. sapiens and M. musculus sets based on tissue subset from 1d. 
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ling, e.g. it is much more difficult to sample H. sapiens em-
ryonic development because of ethical concerns than it is to
ample M. musculus . This general pattern shows itself in the
armonized organ sets as well. Approximately 54.7% of all H.
apiens sample is derived from blood, while it only represents
2.4% of all M. musculus samples. 
The harmonized set of organs and tissues opens avenues

f cross-species investigation based on current data. The mis-
atches, on the other hand, highlights blind spots where data

an be collected to form a clearer picture of the role of miRNA
n those tissues. The development of embryos, for example, is
ne such critical area of research. Of note, there appears to be
 dearth of non-coding data derived from organoids, which
re quickly becoming an important model system, apart from
. musculus and cell lines. 

SI distributions across tissue and cell lines 

s previously mentioned, non-coding RNA tend to be ex-
ressed in a tissue specific manner, a property likely derived
rom their role as regulatory molecules. Tissue-specific expres-
ion, therefore, is taken to be a signal for functionality, mark-
ng non-coding RNA specific to certain tissues as important
o the functional identity of those tissues. Our previous itera-
ion of the miRNATissueAtlas (2022) calculated TSI based on
xpression in high-quality and source-matched matched tis-
ues. We build upon this foundation by calculating the TSI
rom our expanded set in the miRNATissueAtlas 2025. Inter-
stingly, plotting the TSI from the expanded miRNATissueAt-
as 2025 and the previous release miRNATissueAtlas2 from
022, we identify a striking correlation, with an R 

2 value of
.71 (Figure 2 A). suggesting that the tissue-specific expression
atterns are conserved in the expanded set of tissues. Compar-
ng the TSI distribution of different ncRNA classes between
pecies, we note similarities between the median TSI values of
. sapiens and M. musculus for piRNA, lincRNA, miRNA,

noRNA, snRNA, scaRNA and tRNA. However, statistical
esting shows that the distributions are significantly different
except for scaRNA, Supplementary Table S1 ), highlighting
hat TSI is only partially conserved between H. sapiens and

. musculus . Interestingly, piRNA appear to have the high-
st median for TSI compared to other classes of non-coding
NA. This is likely explained by their specific expression in

he testis ( 27 ). Conversely, tRNA has the lowest median for
SI, which is explained by its universal role in protein trans-

ation in all tissue. We also find there to be a high correlation
f TSI calculated from tissues with those calculated from cell
ines, with an R 

2 value of 0.66 ( Supplementary Figure S2 A),
uggesting that the miRNA function is at least partially con-
erved between tissue and cell lines. 

We select the set of miRNAs that have a TSI value over 0.8
nd which have been detected over a threshold of 10 rpmm
n at least 75% of the samples in an organ group to perform
 PCA embedding. Using the first 20 principal components,
e calculate a UMAP embedding to give an overview of the

elationship of organs and biotype to each other (Figure 2 C–
). As expected, blood forms the most dramatic cluster in H.
apiens. We notice that cell lines form their own clusters, while
V is primarily overlapping with samples derived from blood.

nterestingly, cell lines clustering away from tissues was pre-
iously observed in ( 45 ). This contrasts with the correlation
f TSI between physiological tissues and cell lines and sug-
ests that while the miRNA themselves are expressed in a
specific manner, the overall expression is not completely pre-
served between cell lines and physiological tissues, especially
since many cell lines are immortalized cells derived from tu-
mors. Meanwhile, the closeness of EV to Blood is likely due to
EVs primarily being derived from blood in H. sapiens. Over-
all, however, this suggests that the expression patterns are still
more similar within the biogroups than between. We are sim-
ilarly able to separate the organs in M. musculus samples,
where instead of blood, brain forms the most visibly separated
cluster . However , it is notable that the data is not perfectly
separable from the UMAP even after choosing the most tissue
specific miRNA, likely due to the unbalanced sets in the data
and the need for future higher resolution meta-data extrac-
tion. To maximize the usability of this dataset by interested
researchers, we make the data available in h5ad format on
the website, split by the class of non-coding RNA, with the
meta-data included in the h5ad files. 

Use case: mouse-human cross-organ similarity 

To demonstrate the capacities of the miRNATissueAtalas
2025, we performed a use-case describing the cross-organ sim-
ilarity between mice and humans. In preclinical studies, M.
musculus serves as an important model organism for H. sapi-
ens . Unfortunately, the number of therapies that make it all the
way through the development pipeline from preclinical studies
to the market is low and has been declining over time, with the
failure rates happening at the end stages of Phase II and Phase
III (the most expensive stages), suggesting that too many false
positives are let through in the earlier, less expensive phases
( 46 ,47 ). To reduce the number of false positives in the early
stages of research and development of miRNA therapeutics
development, a cross-species comparison of miRNA expres-
sion might be useful to identify the miRNA patterns might
translate and which might not. 

So, a potential use case is to compute and to list miRNA
expression patterns that are conserved between the species
(and, therefore, likely to translate between species). To calcu-
late this, we obtain the miRNA names from TargetScan fami-
lies ( 4 ). We then identify miRNA that have unified naming be-
longing the same family and obtain 324 miRNAs. Plotting the
TSI value of matched miRNA found in H. sapiens and M. mus-
culus (Figure 3 B), we find that they are highly correlated, with
an R 

2 value of 0.75. When we look at the maximum median
expression of each of these miRNAs and compare the organ
of maximum median expression between H. sapiens and M.
musculus we see that 52 out of 324 miRNAs having matching
organ. It is also of note that the miRNAs that are matching by
organ appear to be clustered to the top right of the scatterplot
(Figure 3 B), meaning that homologs that have higher TSI in
both H. sapiens and M. musculus also tend to have matching
tissues. 

To create an overview of similarity, we do pairwise compar-
isons of expression patterns in the organs. The chosen metric
here is cosine similarity as it summarizes how similar the di-
rection is of a set of expression values without being depen-
dant on their magnitude. In Figure 3 C, we highlight how the
cosine similarity of matching organs between H. sapiens and
M. musculus (red) compared to the other organs (blue). We
see, for example, that limb muscle has the highest similarity
between the two organisms, followed by feces. While the lat-
ter is surprising, it aligns with the results that the microbiome
of H. sapiens and M. musculus is highly similar at the phy-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1036#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1036#supplementary-data
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Figure 2. TSI and expression summary of non-coding RNA for tissue subset. ( A ) Comparison between TSI calculated for miRNATissueAtlas 2025 versus 
the previous iteration of the miRNATissueAtlas 2022. R 

2 value is reported from fitting a simple linear regression model. ( B ) TSI distribution for all 
included non-coding RNA groups for the tissue subset of miRNATissueAtlas 2025 for both H. sapiens (hsa) and M. musculus (mmu). ( C ) UMAP (Uniform 

Manif old Appro ximation and P rojection) o v ervie w of miRNATissueAtlas 2025 (2025) H. sapiens dataset using tissue-specific miRNA subset, colored b y 
biotype group. ( D ) UMAP o v ervie w of miRNATissueAtlas 2025 (2025) H. sapiens dataset using tissue-specific miRNA set, colored by organ group. ( E ) 
UMAP o v ervie w of miRNATissueAtlas 2025 M. musculus dataset using tissue-specific miRNA set, colored b y biotype group. ( F ) UMAP o v ervie w of 
miRNATissueAtlas 2025 M. musculus dataset using tissue-specific miRNA set, colored by organ group. 
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C

A B

Figure 3. Example use case of cross-species analysis using miRNA set of miRNATissueAtlas 2025. ( A ) Select homologous miRNAs based on 
calculations made in the TargetScan database. Using this set, we can compare the expression pattern per organ between H. sapiens and M. musculus. 
(Created with BioRender.com) ( B ) Correlation between TSI between H. sapiens and M. musculus for the set of homologous miRNAs. The miRNAs 
where the max median expression of organ match between human and mouse are highlighted on top of other homologous miRNAs. ( C ) Pairwise cosine 
similarity distribution of homologous miRNA for harmonized set of 35 organs. Each dot represents a pairwise comparison between a H. sapiens and M. 
musculus organ. The single dot on the left of each group on the x-axis is the comparison where organs are identical between H. sapiens and M. 
musculus . E.g. for the dots corresponding to blood on the x -axis the dot on the left represent the comparison with blood for M. musculus while dots on 
the right correspond to comparison between blood and brain, kidney, liver etc. correspondingly. 
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um level ( 48 ). While many factors account for the diversity
f the microbiome, we increasingly find that miRNA can in-
uence the gut microbiota composition ( 49 ). Taken together,
t is probable that the set of miRNAs homologous between H.
apiens and M. musculus is a contributing factor . However , a
eeper analysis is beyond the scope of this paper. 

imitations 

here are two limitations to keep in mind when utilizing this
tlas. The first is that, while the tissue and organ meta-data
abels were harmonized, they are by no means a complete de-
cription of the conditions under which the experiments where
onducted. This atlas represents the entire range of expression
ata on all miRNA sequencing experiments that are publicly
vailable. That includes conditions such as disease, knock-out,
verexpression experiments, different ages, sexes etc. The ef-
ects of organ identity generally overwhelm these effects in
ulk data. However, they introduce heterogeneity that must
be kept in mind when using the data. The second is the unbal-
anced nature of the labels. As previously mentioned, the logis-
tics and practicality of conducting experiments significantly
impacts the origin of the samples. This property of the dataset
might skew the results of analyses if not considered. Last not
least, experimental bias as the use of different sequencing pro-
tocols might have a significant impact on the results. Another
type of bias is the limitation to M. musculus and H. sapiens .
With growing data sets becoming available for other species,
we are confident to get more insights into the miRNA tissue
specificity and whether it is evolutionary conserved between
those other species as well. 
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Data availability 

All data are available through the miRNATissueAtlas
2025 web repository at https://www.ccb.uni-saarland.de/
tissueatlas2025 . 
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