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Abstract

In this thesis we study three problems:

1. Knapsack: The Knapsack problem is a classic combinatorial optimization problem.
We give a collection of improved exact and approximation algorithms for Knapsack
and some of its variants. Our study is guided by the connection between Knapsack
and min-plus convolution, a central problem in fine-grained complexity.

2. Sublinear Edit Distance: The edit distance is a popular and practically motivated
measure of similarity between texts. We focus on sublinear-time algorithms, which
aim to approximate the edit distance 𝑘 of two texts without reading them entirely.
Our main result is a 𝑘𝑜 (1)-approximation in time 𝑂 (𝑛/𝑘 + 𝑘2+𝑜 (1)). This constitutes a
quadratic improvement over the previous state of the art, and matches an uncondi-
tional lower bound for small 𝑘 (up to subpolynomial factors in the running time and
approximation factor).

3. Negative Weight Single-Source Shortest Paths: Computing shortest paths from a source
in a weighted directed graph is a fundamental problem. When all edge weights are
nonnegative, the classic Dijkstra’s algorithm solves this problem in near-linear time.
It has been a long-standing open question to obtain a near-linear time algorithm
when the graph contains negative edge weights. This has been solved recently
in a breakthrough by Bernstein, Nanongkai and Wulff-Nilsen, who presented an
algorithm in time 𝑂 (𝑚 log8 𝑛 log𝑊 ). Our contribution is an improvement by nearly
6 log factors.

1





Zusammenfassung

In dieser Doktorarbeit untersuchen wir drei Probleme:

1. Knapsack: Knapsack ist ein klassisches kombinatorisches Optimierungsproblem.
Wir präsentieren eine Sammlung von verbesserten exakten und approximativen
Algorithmen für Knapsack und einige seiner Varianten. Unsere Studie wird geleitet
von der Verbindung zwischen Knapsack und der Min-Plus-Faltung, einem zentralen
Problem der feinkörnigen Komplexität.

2. Sublineare Editierdistanz: Die Editierdistanz ist ein beliebtes und praktisch motiviertes
Maß für die Ähnlichkeit zwischen Texten. Wir konzentrieren uns auf Algorithmen
mit sublinearer Zeit, die darauf abzielen, die Editierdistanz 𝑘 von zwei Texten zu
approximieren, ohne sie vollständig zu lesen. Unser Hauptergebnis ist eine 𝑘𝑜 (1)-
Approximation in der Zeit𝑂 (𝑛/𝑘+𝑘2+𝑜 (1)). Dies stellt eine quadratische Verbesserung
gegenüber dem bisherigen Stand der Technik dar und entspricht einer unbedingten
unteren Schranke für kleine 𝑘 (bis auf Subpolynomialfaktoren in der Laufzeit und im
Approximationsfaktor).

3. Negativ gewichtete kürzeste Pfade von einer Quelle: Die Berechnung der kürzesten
Pfade von einer Quelle in einem gewichteten gerichteten Graphen ist ein grundle-
gendes Problem. Wenn alle Kantengewichte nicht-negativ sind, löst der klassische
Dijkstra-Algorithmus dieses Problem in nahezu linearer Zeit. Es ist seit langem
eine offene Frage, einen Algorithmus mit nahezu linearer Zeit zu erhalten wenn
der Graph negative Kantengewichte enthält. Diese Frage wurde kürzlich in einem
Durchbruch von Bernstein, Nanongkai und Wulff-Nilsen beantwortet, mit einen
Algorithmus in der Zeit 𝑂 (𝑚 log8 𝑛 log𝑊 ). Unser Beitrag ist eine Verbesserung um
fast 6 log-Faktoren.
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Preface

This thesis is divided into three independent parts. The first part focuses on algorithms
for various knapsack problems. The second on sublinear-time algorithms for computing
the edit distance. The third and final part is devoted to the negative weight single source
shortest paths problem in graphs.
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32:1–32:20. doi: 10.4230/LIPIcs.ICALP.2022.32.

7

https://doi.org/10.4230/LIPIcs.ICALP.2022.31
https://doi.org/10.4230/LIPIcs.ESA.2023.24
https://doi.org/10.4230/LIPIcs.ESA.2023.24
https://doi.org/10.1109/FOCS57990.2023.00038
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.9
https://doi.org/10.4230/LIPIcs.ICALP.2022.30
https://doi.org/10.4230/LIPIcs.ICALP.2022.30
https://doi.org/10.1145/3519935.3519990
https://doi.org/10.4230/LIPIcs.ICALP.2022.32


[Bri+24] Karl Bringmann, Alejandro Cassis, Nick Fischer, and Tomasz Kociumaka.
“Faster Sublinear-Time Edit Distance.” In: SODA. SIAM, 2024, pp. 3274–3301.
doi: 10.1137/1.9781611977912.117.

[CKW23] Alejandro Cassis, Tomasz Kociumaka, and Philip Wellnitz. “Optimal Al-
gorithms for Bounded Weighted Edit Distance.” In: FOCS. IEEE, 2023,
pp. 2177–2187. doi: 10.1109/FOCS57990.2023.00135.

These publications can be categorized as follows. In [Bri+21] and [Bri+22a] we
established a fine-grained classification of a large class of optimization problems, these
two papers were obtained as extensions to my Master’s thesis. In [BC22; BC23] we
studied various knapsack problems in different settings, these two publications form
the core of Part I. In [Bri+22b; Bri+22c; Bri+24; CKW23] we studied edit distance in
various settings. Two of these papers, [Bri+22b] and [Bri+24] focus on sublinear-time
algorithms for edit distance, which are the focus of Part II. Finally, in [BCF23] we studied
the negative single source shortest paths problem, which constitutes Part III.
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1 Knapsack and MinPlus

Convolution

This part of the thesis is based on the publications [BC22; BC23]. I contributed an equal
share of the work, and more than half of the write-up.

[BC22] Karl Bringmann and Alejandro Cassis. “Faster Knapsack Algorithms via
Bounded Monotone Min-Plus-Convolution.” In: ICALP. Vol. 229. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 31:1–31:21. doi:
10.4230/LIPIcs.ICALP.2022.31.

[BC23] Karl Bringmann and Alejandro Cassis. “Faster 0-1-Knapsack via Near-
ConvexMin-Plus-Convolution.” In: ESA. Vol. 274. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023, 24:1–24:16. doi: 10.4230/LIPIcs.
ESA.2023.24.

An integer linear program (ILP) is an optimization problem that can be compactly
expressed as computing

max{ 𝑐𝑇𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ∈ Z𝑛≥0, 𝑥 ≤ 𝑢 },

where the input consists of 𝐴 ∈ Z𝑚×𝑛, 𝑏 ∈ Z𝑚, 𝑐 ∈ Z𝑛 and 𝑢 ∈ Z𝑛≥0. ILPs can model a
large variety of problems, and have been extensively studied both in theory and practice.
In this part of the thesis we study one of the simplest types of ILPs, the Knapsack

problem. Here, we are given a set I of 𝑛 items with weights 𝑤1, . . . , 𝑤𝑛 ∈ N and profits
𝑝1, . . . , 𝑝𝑛 ∈ N, along with a knapsack capacity𝑊 ∈ N. The goal is to find a subset
of the items with total weight at most𝑊 that maximizes the total profit. This can be
expressed as computing

OPT := max
{

𝑛∑︁
𝑖=1

𝑝𝑖𝑥𝑖 |
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤𝑊,𝑥 ∈ { 0, 1 }𝑛
}
.

That is, Knapsack is an ILP with 𝑛 variables and one constraint.
Knapsack is a classical and fundamental problem lying in the intersection of com-

puter science and operations research, and has been studied for decades. To show-
case its centrality, we remark that (i) Knapsack is among Karp’s 21 NP-hard prob-
lems [Kar72], (ii) Bellman gave an algorithm for it running in pseudopolynomial time
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1 Knapsack and MinPlus Convolution

𝑂 (𝑛 ·min{𝑊,OPT }) as a prime example of dynamic programming [Bel57] (which has
become a textbook algorithm) and (iii) it was among the first problems to have a fully
polynomial-time approximation scheme (FPTAS) [IK75]. We refer the reader to [KPP04]
for an entire book on the topic and its variants.
Despite the ubiquity and long history of Knapsack, it is still intensely studied, and

several questions remain open about its complexity. At a birds’ eye, our work in this
thesis aims to find best possible algorithms for Knapsack problems.

An Inspiring Story: Subset Sum In the Subset Sum problem, we are given a set of
𝑛 integers 𝐴 = { 𝑎1, . . . , 𝑎𝑛 }, and a target integer 𝑡 . The task is to decide if there is a
subset of 𝐴 whose sum equals 𝑡 . This can be modeled as deciding the feasibility of the
following ILP with one constraint {∑𝑖 𝑎𝑖𝑥𝑖 = 𝑡 | 𝑥 ∈ { 0, 1 }𝑛 }.
In this sense, we can think of Subset Sum as one-dimensional version of Knapsack:

in the former we decide feasibility of an ILP with one constraint, in the latter we
additionally have an objective function that we want to maximize.

Similarly as for Knapsack, a textbook dynamic programming algorithm solves Subset
Sum in time 𝑂 (𝑛𝑡). In a breakthrough result, Koiliaris and Xu improved this running
time to 𝑂 (

√
𝑛𝑡) [KX19]1. This constituted the first polynomial-time improvement over

the dynamic programming algorithm in about 60 years. Shortly after, Bringmann further
improved the running time to𝑂 (𝑛+𝑡) [Bri17] (later improved by polylogarithmic factors
by Jin and Wu [JW19]). Remarkably, this running time has a matching lower bound (up
to subpolynomial factors) under both the Set Cover Hypothesis [Cyg+16] and the Strong
Exponential Time Hypothesis [Abb+22b]. In that sense, the 𝑂 (𝑛 + 𝑡)-time algorithm is
best possible.

This yields a clean understanding of the complexity of pseudopolynomial-time algo-
rithms for Integer Linear Programming in arguably its simplest form (up to subpoly-
nomial factors). Moreover, this line of research has sparked the study of Subset Sum
in multiple new directions, like output sensitive algorithms e.g. [BN20], conditionally
optimal approximation schemes e.g. [BN21] and conditionally optimal algorithms for
variants of the problem [Axi+21; CI21; Kle22; DMZ23]. Along the way, this research
developed a rich algorithmic toolkit (notably, the partition and convolve paradigm that
has been used in many recent algorithms for Subset Sum, Knapsack and related prob-
lems see e.g. [Bri17; Bat+18; BC22; Bri+22d; JR23; Cha18; KX19; DJM23; BN21; KPR23])
as well as conditional lower bound technology [Abb+22b] that has been successfully
applied to other problems [Abb+22a; HMS22; JR23].

As mentioned earlier, Subset Sum can be seen as the simplest type of Integer Linear
Programming: it consists in checking feasibility of an ILP with one constraint. Its success
story inspires our work to develop an analogous understanding of the “next step” in ILPs,
namely Knapsack. The hope is to develop algorithmic tools that are applicable to other
problems. More ambitiously, this can be seen as a stepping stone towards an analogous

1. In this chapter, we use 𝑂 (·) to suppress polylogarithmic factors in the input size and the largest input
number.

16



1.1 Our Results

understanding of general ILPs (i.e. with an arbitrary number of constraints).

Our Focus: Knapsack The aforementioned conditional lower bounds for Subset
Sum carry over to Knapsack. In particular, there is no algorithm for Knapsack in time
𝑊 1−𝛿2𝑜 (𝑛) for any 𝛿 > 0 under the Strong Exponential Time Hypothesis and the Set
Cover Hypothesis [Abb+22b; Cyg+16]. A natural question is whether there is an analog
to Bringmann’s Subset Sum algorithm for Knapsack. Namely, is there an algorithm for
Knapsack in time 𝑂 (𝑛 +𝑊 )?

This question was answered negatively independently by Cygan, Mucha, Węgrzycki
and Włodarczyk [Cyg+19] and Künnemann, Paturi and Schneider [KPS17]. They gave
a conditional lower bound showing that there is no algorithm that solves Knapsack
instances on 𝑛 items with capacity𝑊 = Θ(𝑛) in time 𝑂 (𝑛2−𝛿 ) for any 𝛿 > 0. (We give
more details about this result and its associated hardness hypothesis in Section 1.2.)
This means that we cannot hope to match the running time of Bringmann’s Subset Sum
algorithm. Moreover, this shows that Bellman’s dynamic programming algorithm in
time 𝑂 (𝑛𝑊 ) is conditionally optimal.

However, this is not the end of the story. There are different ways in which one could
circumvent this conditional lower bound to obtain faster algorithms than Bellman’s in
some parameter regimes. For example, it is open whether there is an 𝑂 (𝑛2 +𝑊 )-time
algorithm for Knapsack (or even in time𝑂 (𝑛2 +𝑊 1.99)). Observe that this running time
is faster than Bellman’s when 𝑛 ≪𝑊 , and that the lower bound does not rule it out.
Another way to overcome the lower bound is to measure the running time in terms of
other parameters. Two of the most natural parameters are the maximum profit among
the items 𝑝max, and the maximum weight𝑤max. Note that we can assume without loss of
generality that 𝑝max ≤ OPT and 𝑤max ≤𝑊 . Therefore, a small polynomial dependence
on these parameters can lead to faster algorithms compared to the standard dynamic
programming algorithm on instances where 𝑝max ≪ OPT or 𝑤max ≪𝑊 .

All of our results are driven by trying to develop faster Knapsack algorithms than the
standard dynamic programming approach and/or circumventing the existing conditional
lower bound.

1.1 Our Results

Our main contribution is a collection of algorithms for various Knapsack problems.

1.1.1 Pseudopolynomial Algorithms for Knapsack

Our first set of results are exact algorithms to solve Knapsack, where we parameterize
the running time by the number of items 𝑛, the maximum weight 𝑤max, the knapsack
capacity𝑊 , the maximum profit 𝑝max and the optimal value of the instance OPT. Note
that since any feasible solution includes at most all 𝑛 items, we can assume without loss
of generality that𝑊 ≤ 𝑛 ·𝑤max and OPT ≤ 𝑛 ·𝑝max. There is a long line of works that has
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1 Knapsack and MinPlus Convolution

developed algorithms for Knapsack using these parameters, starting with the seminal
dynamic programming algorithm of Bellman which runs in time 𝑂 (𝑛min{OPT,𝑊 }).
Table 1.1 contains a table of the known results.

Table 1.1: Pseudopolynomial-time algorithms for Knapsack. The results are displayed
in chronological order.

Reference Running Time

Bellman [Bel57] 𝑂 (𝑛 ·min{𝑊,OPT })
Pisinger [Pis99] 𝑂 (𝑛 · 𝑝max ·𝑤max)
Kellerer and Pferschy [KP04], also [Bat+18; AT19] 𝑂 (𝑛 +𝑤max ·𝑊 )
Bateni, Hajiaghayi, Seddighin and Stein [Bat+18] 𝑂 (𝑛 + 𝑝max ·𝑊 )
Bateni, Hajiaghayi, Seddighin and Stein [Bat+18] 𝑂 ((𝑛 +𝑊 ) ·min{𝑤max, 𝑝max })
Axiotis and Tzamos [AT19] 𝑂 (𝑛 ·min{𝑤2

max, 𝑝
2
max })

Polak, Rohwedder and Węgrzycki [PRW21] 𝑂 (𝑛 +min{𝑤3
max, 𝑝

3
max })

Main Theorem 1.1 𝑂 (𝑛 + (𝑊 + OPT)1.5)
Main Theorem 1.2 𝑂 (𝑛 ·𝑤max · 𝑝2/3

max)
Main Theorem 1.3 𝑂 (𝑛 · 𝑝max ·𝑤2/3

max)
He and Xu [HX24] 𝑂 (𝑛1.5 ·min{ 𝑝max, 𝑤max })
Jin [Jin23b], He and Xu [HX24] 𝑂 (𝑛 +min{𝑤max, 𝑝max }2.5)
Chen, Lian, Mao and Zhang [Che+24] 𝑂 (𝑛 +min{𝑤max, 𝑝max }2.4)
Bringmann [Bri23], Jin [Jin23a] 𝑂 (𝑛 +min{𝑤max, 𝑝max }2)

Due to the interplay of all five parameters, some of the running times in Table 1.1
are incomparable. However, note that when 𝑝max ≈ 𝑤max ≈𝑊 ≈ OPT ≈ 𝑛, all existing
algorithms up to 2021 require at least quadratic time Ω(𝑛2). In our first result, we give
the first algorithm to break this quadratic barrier by considering the combined weight
and profit parameter𝑊 + OPT.

Main Theorem 1.1. There is a randomized algorithm for Knapsack that runs in time

𝑂 (𝑛 + (𝑊 + OPT)1.5)

and succeeds with high probability.

We prove Main Theorem 1.1 in Section 3.3.
Next, we focus on the parameterization by themaximum profit 𝑝max and themaximum

weight 𝑤max in the item set. Note that when 𝑝max ≈ 𝑤max ≈ 𝑛 and𝑊 ≈ OPT ≈ 𝑛2, all
known algorithms up until 2022 require time Ω(𝑛3). In particular, up to this point, in
this regime the algorithm in time 𝑂 (𝑛𝑤max 𝑝max) of Pisinger from 1999 [Pis99] was the
best known. Our next two results are the first to break this cubic barrier.
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1.1 Our Results

Main Theorem 1.2. There is a randomized algorithm for Knapsack that runs in time

𝑂 ((𝑝max𝑊 )2/3(𝑛𝑤max)1/3 + 𝑛𝑤max)

and succeeds with high probability. Using the bound𝑊 ≤ 𝑛𝑤max, this running time is at
most 𝑂 (𝑛𝑤max 𝑝

2/3
max).

Symmetrically, we obtain the following:

Main Theorem 1.3. There is a randomized algorithm for Knapsack that runs in time

𝑂 ((𝑤maxOPT)2/3(𝑛 𝑝max)1/3 + 𝑛 𝑝max)

and succeeds with high probability. Using the bound OPT ≤ 𝑛 𝑝max, this running time is
at most 𝑂 (𝑛 𝑝max𝑤

2/3
max).

We prove Main Theorems 1.2 and 1.3 in Section 2.3

Follow-upWork As can be seen in Table 1.1, there has been a tremendous amount of
progress in Knapsack after the publication of our works [BC22; BC23]. The chronology
is as follows. On 17.05.2022 we published a preprint of [BC22] which contains Main
Theorem 1.1. Later, on 02.05.2023, we published a preprint of [BC23] which proves
Main Theorems 1.2 and 1.3. On 18.06.2023 Jin published [Jin23b], giving an algorithm
in time 𝑂 (𝑛 + min{𝑤max, 𝑝max }2.5). On 24.07.2023 Chen, Lian, Mao and Zhang pub-
lished [Che+24], giving an algorithm in time 𝑂 (𝑛 + min{𝑤max, 𝑝max }2.4), improving
upon Jin’s result. On 06.08.2023 Bringmann published [Bri23], giving an algorithm
in time 𝑂 (𝑛 + min{𝑤max, 𝑝max }2). On the next day, Jin published [Jin23a] indepen-
dently obtaining the same running time as Bringmann (up to log factors). Bring-
mann’s and Jin’s results subsume the earlier results by Jin and Chen et al.’s. Finally, on
22.08.2023 He and Xu published a preprint of [HX24], giving two algorithms that run
time 𝑂 (𝑛1.5 min{𝑤max, 𝑝max }) and 𝑂 (𝑛 +min{ 𝑝max, 𝑤max }2.5), respectively.
Combining He and Xu’s [HX24] algorithm in time 𝑂 (𝑛1.5 min{𝑤max, 𝑝max }) and

Bringmann’s [Bri23] and Jin’s [Jin23a] algorithm in time𝑂 (𝑛+min{ 𝑝max, 𝑤max }2) yields
a strict improvement in all parameter regimes over our algorithms in time𝑂 (𝑛𝑤max𝑝

2/3
max)

and 𝑂 (𝑛𝑝max𝑤
2/3
max) given by Main Theorems 1.2 and 1.3.

However, our more complicated running time 𝑂 ((𝑝max𝑊 )2/3(𝑛𝑤max)1/3 + 𝑛𝑤max)
given by Main Theorem 1.2 (or its symmetric counterpart in Main Theorem 1.3) is still
the best-known in some regimes. For example, when𝑤max ≈ 𝑝max and𝑊 = Θ(𝑛1.5), our
running time becomes𝑂 (𝑛1+1/3𝑤max), which is faster than Bringmann’s and Jin’s result
whenever 𝑛1+1/3 ≪ 𝑤max.

Our algorithm in time 𝑂 (𝑛 + (𝑊 + OPT)1.5) (Main Theorem 1.1) is generally incom-
parable to these later results. For example, as advertised earlier, in the regime when
𝑤max,𝑊 , 𝑝max,OPT = Θ(𝑛), our algorithm is still the only known result which runs in
subquadratic time.
Finally, we remark that our techniques are generally different from these follow-up

works.
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1 Knapsack and MinPlus Convolution

1.1.2 Pseudopolynomial Algorithms for Unbounded Knapsack

For our next set of results, we study the closely related Unbounded Knapsack problem.
Here, the input is the same as for Knapsack, namely a set I of 𝑛 items with weights
𝑤1, . . . , 𝑤𝑛 ∈ N and profits 𝑝1, . . . , 𝑝𝑛 ∈ N, along with a knapsack capacity𝑊 ∈ N. The
goal is to compute

OPT := max
{

𝑛∑︁
𝑖=1

𝑝𝑖𝑥𝑖 |
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤𝑊,𝑥 ∈ N𝑛

}
.

That is, the difference2 is that now any item can be chosen an arbitrary number of times
in a solution, i.e. 𝑥 ∈ N𝑛 instead of 𝑥 ∈ { 0, 1 }𝑛 .

Bellman’s dynamic program extends to the unbounded setting seamlessly, and gives
an algorithm in time 𝑂 (𝑛min{𝑊,OPT }). Here, we shall be specifically concerned
with algorithms parameterized by 𝑝max and 𝑤max. Note that unlike Knapsack, it is not
necessarily the case that𝑊 ≤ 𝑛 · 𝑤max and OPT ≤ 𝑛 · 𝑝max, since a solution might
include more than 𝑛 copies of an item. Therefore, obtaining an algorithm with only
a polynomial dependence in 𝑛, 𝑝max and 𝑤max seems more challenging (in particular,
it does not follow directly from the dynamic programming algorithm). Indeed, the
first result of this type was by given by Tamir in 2009, who gave an algorithm for the
problem in time 𝑂 (𝑛2 min{ 𝑝max, 𝑤max }2) [Tam09]. A series of more recent works have
progressively improved upon Tamir’s algorithm, see Table 1.2 for an overview. To
compare these running times, note that in Unbounded Knapsack we can assume that
𝑛 ≤ 𝑤max without loss of generality since if there are multiple items with the same
weight, we can discard all except the one with the largest profit. Similarly, we can
assume without loss of generality that 𝑛 ≤ 𝑝max. With this in mind, observe that the
best known running time previous to our work is due to Chan and He [CH22] who gave
an algorithm in time 𝑂 (𝑛min{𝑤max, 𝑝max }).

Note that when 𝑤max ≈ 𝑝max ≈ 𝑛 all algorithms in Table 1.2 require at least quadratic
time Ω(𝑛2). In our next result, we overcome this quadratic barrier by considering the
combined parameter 𝑤max + 𝑝max.

Main Theorem 1.4. There is a randomized algorithm for Unbounded Knapsack that runs
in expected time 𝑂 (𝑛 + (𝑝max +𝑤max)1.5).

We prove Main Theorem 1.4 in Section 3.2.

1.1.3 Approximation Schemes for Unbounded Knapsack

Since Unbounded Knapsack is well known to be NP-hard [Kar72], it is natural to study
approximation algorithms. In particular, a fully polynomial-time approximation scheme
(FPTAS) given 0 < 𝜀 < 1 computes a solution with total weight at most𝑊 (i.e. a feasible

2. Some works refer to Knapsack as “0-1 Knapsack” to distinguish it from Unbounded Knapsack.

20



1.1 Our Results

Table 1.2: Pseudopolynomial-time algorithms for Unbounded Knapsack. The results are
displayed in chronological order.

Reference Running Time

Bellman [Bel57] 𝑂 (𝑛 ·min{𝑊,OPT })
Tamir [Tam09] 𝑂 (𝑛2 ·𝑤2

max)
Bateni, Hajiaghayi, Seddighin and Stein [Bat+18] 𝑂 (𝑛 ·𝑤2

max)
Eisenbrand and Weismantel [EW20] 𝑂 (𝑛 ·min{𝑤2

max, 𝑝
2
max })

Axiotis and Tzamos [AT19] 𝑂 (𝑛 +min{𝑤2
max, 𝑝

2
max })

Jansen and Rohwedder [JR23] 𝑂 (𝑛 +min{𝑤2
max, 𝑝

2
max })

Chan and He [CH22] 𝑂 (𝑛 ·min{𝑤max, 𝑝max })
Main Theorem 1.4 𝑂 (𝑛 + (𝑤max + 𝑝max)1.5)

solution) and total profit at least (1 − 𝜀)OPT in time poly(𝑛, 1/𝜀). The first FPTAS for
Unbounded Knapsack was designed by Ibarra and Kim in 1975 [IK75] and runs in time
𝑂 (𝑛 + (1/𝜀)4). In 1979 Lawler [Law79] improved the running time to 𝑂 (𝑛 + (1/𝜀)3).
This was the best known until Jansen and Kraft in 2018 [JK18] presented an FPTAS
running in time 𝑂 (𝑛 + (1/𝜀)2). This algorithm has a matching conditional lower ruling
out time 𝑂 ((𝑛 + 1/𝜀)2−𝛿 ) for any 𝛿 > 0 [Cyg+19; KPS17; MWW19].
Our next result is a new FPTAS for Unbounded Knapsack which (we believe) is

simpler than Jansen and Kraft’s, and has a lower order improvement in the running
time:

Theorem 1.5. Unbounded Knapsack has a deterministic FPTAS that runs in time

𝑂

(
𝑛 + (1/𝜀)2

2Ω(
√

log(1/𝜀))

)
.

Weak Approximation for Unbounded Knapsack Motivated by the matching
upper and conditional lower bounds for FPTASs for Unbounded Knapsack, we study
the relaxed notion of weak approximation as coined in [MWW19]: we relax the weight
constraint and seek a solution with total weight at most (1+ 𝜀)𝑊 and total profit at least
(1− 𝜀)OPT. Note that OPT is still the optimal value of any solution with weight at most
𝑊 . This can be interpreted as bicriteria approximation (approximating both the weight
and profit constraint) or as resource augmentation (the optimal algorithm is allowed
weight𝑊 while our algorithm is allowed a slightly larger weight of (1 + 𝜀)𝑊 ). All of
these are well-established relaxations of the standard (=strong3) notion of approximation.
Such weaker notions of approximation are typically studied when a PTAS for the strong
notion of approximation is not known. More generally, studying these weaker notions

3. By “strong” approximation we mean the standard (non-weak) notion of approximation.
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is justified whenever there are certain limits for strong approximations, to see whether
these limits can be overcome by relaxing the notion of approximation. In particular, we
want to understand whether this relaxation can overcome the conditional lower bound
ruling out time 𝑂 ((𝑛 + 1/𝜀)2−𝛿 ) for any 𝛿 > 0. For the related Subset Sum problem this
question has been resolved positively: Bringmann and Nakos [BN21] conditionally ruled
out strong approximation algorithms in time 𝑂 ((𝑛 + 1/𝜀)2−𝛿 ) for any 𝛿 > 0, but Mucha,
Węgrzycki and Włodarczyk [MWW19] designed a weak FPTAS in time 𝑂 (𝑛 + (1/𝜀)5/3),
which was subsequently improved to time 𝑂 (𝑛 + (1/𝜀)3/2) by Wu and Chen [WC22].

Our next result gives a positive answer for Unbounded Knapsack:

Main Theorem 1.6. Unbounded Knapsack has a weak approximation scheme running in
expected time 𝑂 (𝑛 + ( 1

𝜀
)1.5).

We prove Theorem 1.5 and Main Theorem 1.6 in Section 3.4.

RelatedWork: FPTAS forKnapsack Very recently (specifically, after the publication
of our papers [BC22; BC23]) Mao [Mao23] and Chen, Lian, Mao and Zhang [Che+23]
independently gave FPTASs for Knapsack in time 𝑂 (𝑛 + 1/𝜀2), which is conditionally
optimal. This culminated a line of works that aimed to obtain quadratic dependence
on 1/𝜀 [IK75; Law79; KP04; Rhe15; Cha18; Jin19; DJM23].

1.2 Min-Plus Convolution

All of our results stated in Section 1.1 are obtained by studying Knapsack through its
intimate connection to min-plus convolution. Given functions 𝑓 , 𝑔 : [𝑛] ↦→ Z, their min-
plus convolution is the function ℎ : [2𝑛] ↦→ Z defined as ℎ(𝑥) = min𝑥 ′ 𝑓 (𝑥′) + 𝑔(𝑥 − 𝑥′)
for 𝑥 ∈ [2𝑛]. Simply evaluating this definition, yields an algorithm to compute the min-
plus convolution in time𝑂 (𝑛2). This running time can be improved to𝑛2/2Ω(

√
log𝑛)-time

via a reduction to min-plus matrix product due to Bremner et al. [Bre+14], and using
Williams’ algorithm for the latter [Wil18] (which was derandomized later by Chan and
Williams [CW21]). The lack of faster algorithms has led to the Min-Plus Convolution
Hypothesis, which postulates that there is no algorithm in time 𝑂 (𝑛2−𝛿 ) for any 𝛿 > 0
for this problem [Cyg+19; KPS17]. Many problems have lower bounds conditioned on
this hypothesis, see for example [BIS17; CH21; Cyg+19; JR23; KPS17; LRC14; BN21;
Kle22; KP23].

Central to our work is a reduction frommin-plus convolution to Unbounded Knapsack
shown independently by Cygan, Mucha, Węgrzycki and Włodarczyk [Cyg+19] and
Künnemann, Paturi and Schneider [KPS17]. In particular, they showed that if Unbounded
Knapsack with 𝑛 items and knapsack capacity𝑊 = 𝑂 (𝑛) can be solved in subquadratic
time, then min-plus convolution can be solved in subquadratic time. This reduction
immediately implies matching conditional lower bounds for some of the known exact
algorithms for Unbounded Knapsack with running times𝑂 (𝑛𝑊 ) [Bel57],𝑂 (𝑤2

max) [JR23;
AT19] and 𝑂 (𝑛𝑤max) [CH22].
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The same reduction extends to the dual case, i.e., an exact subquadratic-time algorithm
for Unbounded Knapsack with OPT = 𝑂 (𝑛) would result in a subquadratic-time algo-
rithm for min-plus convolution. This establishes matching conditional lower bounds for
the algorithms in time𝑂 (𝑛 ·OPT) [Bel57],𝑂 (𝑝2

max) [JR23; AT19] and𝑂 (𝑛 𝑝max) [CH22].
Moreover, by setting 𝜀 = Θ(1/OPT), an FPTAS for Unbounded Knapsack would yield
an exact algorithm for min-plus convolution, establishing that the 𝑂 (𝑛 + (1/𝜀)2)-time
FPTAS by Jansen and Kraft [JK18] is conditionally optimal. This last observation was
pointed out in [MWW19].
The same reduction is also known for Knapsack [Cyg+19; KPS17], so a similar

discussion applies to Knapsack. In particular, the algorithms due to Bringmann [Bri23]
and Jin [Jin23a] in time 𝑂 (𝑛 +min{𝑤max, 𝑝max }2) are conditionally optimal.

Circumventing the Lower Bound By inspecting the conditional lower bound of
Cygan et al. [Cyg+19] and Künnemann et al. [KPS17], we observe that the reduction
constructs hard instances of knapsack where only the profit parameters or only the
weight parameters are under control; one of the two must be very large to obtain a
hardness reduction. In more detail, the reduction produces instances with 𝑛 items where
𝑝max,OPT = 𝑂 (𝑛) but𝑤max,𝑊 = Ω(𝑛2), and (conditionally) rules out algorithms in time
𝑂 (𝑛2−𝛿 ) for any 𝛿 > 0. Some of our results exploit this observation to circumvent the
lower bound:

• To obtain Main Theorem 1.4, we consider the combined profit and weight parameter
𝑤max + 𝑝max. Since the reduction produces instances where 𝑤max = Ω(𝑛2), a sub-
quadratic algorithm in terms of 𝑤max + 𝑝max does not contradict the quadratic lower
bound.

• Similarly, for Main Theorem 1.1 we consider the combined parameter OPT +𝑊 . Our
result does not contradict the lower bound since the reduction produces instances
with weight budget𝑊 = Ω(𝑛2).

• For our weak approximation scheme given byMain Theorem 1.6, the usage of resource
augmentation allows us to bypass the lower bound. More precisely, recall that the
weak approximation scheme is allowed to find a solution with total weight at most
(1 + 𝜀)𝑊 . Thus, to obtain a feasible solution (i.e. a solution with weight at most
𝑊 ) by running such weak approximation scheme as a black-box, we have to set
𝜀 = Θ(1/𝑊 ). Since the reduction produces instances with𝑊 = Ω(𝑛2), this means
that a subquadratic algorithm in terms of 1/𝜀 does not contradict the lower bound.

1.2.1 Faster algorithms via Structured Min-Plus Convolution

Despite the Min-Plus Convolution Hypothesis, there are structured instances of min-
plus convolution that can be solved in subquadratic time [Agg+87; Bat+18; Bus+94;
CL15; Chi+22]. Some of these improvements have been instrumental to obtain many of
the Knapsack and Unbounded Knapsack algorithms listed in Table 1.1 and Table 1.2:
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• When one of the functions is convex, their min-plus convolution can be computed in
time𝑂 (𝑛) using the SMAWK algorithm [Agg+87]. This has been used for Knapsack in-
directly4 by Kellerer and Pferschy [KP04], and explicitly by Axiotis and Tzamos [AT19],
Polak, Rohwedder and Węgrzycki [PRW21], Chen, Lian, Mao and Zhang [Che+24],
Jin [Jin23b; Jin23a] and Bringmann [Bri23].

• Bateni, Hajiaghayi, Seddighin and Stein [Bat+18] introduced the prediction technique
to show that the min-plus convolution of certain instances arising from Knapsack
can be computed efficiently. More precisely, let ℎ be the min-plus convolution of two
given functions 𝑓 , 𝑔 : [𝑛] ↦→ Z. They show that if one is given 𝑛 intervals [𝑥𝑖 . . 𝑦𝑖] for
𝑖 ∈ [𝑛] satisfying (i) |ℎ(𝑖 + 𝑗) − (𝑓 (𝑖) + 𝑔( 𝑗)) | ≤ Δ for every 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑥𝑖 . . 𝑦𝑖],
(ii) for every output ℎ(𝑘) there exists at least one 𝑖 such that 𝑓 (𝑖) + 𝑔(𝑘 − 𝑖) = ℎ(𝑘)
and 𝑘 − 𝑖 ∈ [𝑥𝑖 . . 𝑦𝑖] and (iii) 0 ≤ 𝑥𝑖, 𝑦𝑖 < 𝑛 for all intervals and 𝑥𝑖 ≤ 𝑥 𝑗 , 𝑦𝑖 ≤ 𝑦 𝑗 for all
𝑖 < 𝑗 ; then ℎ can be computed in time 𝑂 (𝑛 · Δ). They showed that this is applicable
in the context of Knapsack and Unbounded Knapsack and used their technique to
obtain various algorithms (see Table 1.1 and Table 1.2).

All of our results for Knapsack and Unbounded Knapsack fall into the same category of
improvements. More precisely, we (i) design a new algorithm for instances that are
near-convex that naturally arise in the context of Knapsack, and (ii) show how to apply
a known (subquadratic) algorithm for bounded and monotone instances of min-plus
convolution for Knapsack. We expand on these two improvements below.

Near Convex MinPlus Convolution To prove Main Theorem 1.2 and Main The-
orem 1.3 we design an efficient algorithm for a new class of structured instances of
min-plus convolution, namely near convex functions: We say that 𝑓 : [𝑛] ↦→ Z is Δ-near
convex, if there is a convex function 𝑓 : [𝑛] ↦→ Q such that 𝑓 (𝑖) ≤ 𝑓 (𝑖) ≤ 𝑓 (𝑖) + Δ for
all 𝑖 ∈ [𝑛]. Our theorem reads as follows:

Main Theorem 1.7 (Near Convex MinPlus Convolution). Let 𝑓 : [𝑛] ↦→ [−𝑈 . .𝑈 ], and
𝑔 : [𝑚] ↦→ [−𝑈 . .𝑈 ] be given as inputs where 𝑛,𝑚,𝑈 ∈ N. Let Δ ≥ 1 such that both 𝑓
and 𝑔 are Δ-near convex. Then the min-plus convolution of 𝑓 and 𝑔 can be computed in
deterministic time 𝑂 ((𝑛 +𝑚) · Δ).

We view this as a replacement for the prediction technique by Bateni et al. [Bat+18].
Indeed, all uses of the prediction technique exploit near-convexity to ensure its pre-
conditions, and thus all uses that we are aware of can be replaced by our Main Theo-
rem 1.7. Since the prediction technique is both difficult to state and difficult to apply,
we view Main Theorem 1.7 as replacing the prediction technique by an easily applicable
tool with a concise statement. To showcase its usefulness, we apply this new tool to
prove Main Theorems 1.2 and 1.3, making progress on Knapsack. We expect it to have
wider applicability. We prove Main Theorem 1.7 in Section 2.2.

4. Kellerer and Pferschy did not use SMAWK, but gave a different algorithm for computing the min-plus
convolution of these instances in time 𝑂 (𝑛 log𝑛).
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Bounded Monotone Min-Plus Convolution A central special case of min-plus
convolution that we study is when the input functions 𝑓 , 𝑔 : [𝑛] ↦→ [𝑂 (𝑛)] are monotone
non-decreasing, and have bounded domain. We call the task of computing the min-plus
convolution of such sequences Bounded Monotone MinPlus Conv.

In a breakthrough result, Chan and Lewenstein gave an algorithm for Bounded Mono-
tone MinPlus Conv that runs in expected time 𝑂 (𝑛1.859) [CL15]. As a big hammer, their
algorithm uses the famous Balog-Szemerédi-Gowers theorem from additive combina-
torics in a beautiful algorithmic way. Recently, Chi, Duan, Xie and Zhang showed how
to avoid this big hammer and improved the running time to expected 𝑂 (𝑛1.5) [Chi+22]
via a simple and elegant algorithm.

To prove Main Theorem 1.1, Main Theorem 1.4 and Main Theorem 1.6 we use the
algorithm of Chi, Duan, Xie and Zhang for Bounded Monotone MinPlus Conv as a sub-
routine. More precisely, our algorithms are phrased as reductions from various knapsack
problems to Bounded Monotone MinPlus Conv. Therefore, any future improvements
on Bounded Monotone MinPlus Conv immediately carries over to our results (replacing
the exponent 1.5 by whatever is the improvement). Moreover, we complement our
results with reductions in the opposite direction–thereby establishing some form of
equivalence between Bounded Monotone MinPlus Conv and various parameterizations
of Knapsack, see Section 3.5 for details.

1.3 Open Problems

We leave some open problems about Knapsack and related problems that we find most
exciting:
1. Subset Sum parameterized by the smallest number.

In Subset Sum we are given a set of numbers 𝑋 and a target number 𝑡 , the task is
to decide if a subset of 𝑋 sums to 𝑡 . For the unbounded case, where the goal is to
find whether a multiset of items in 𝑋 sums to 𝑡 , Jansen and Rohwedder [JR23] gave
an algorithm in time 𝑂 (𝑛 + 𝑢) where 𝑢 is the largest number in the input. For the
more standard “0-1” case where we ask for a subset of 𝑋 summing to 𝑡 , the best
known running times are 𝑂 (𝑛 + 𝑡) [Bri17; JW19], 𝑂 (𝑛𝑢) [Pis99], 𝑂 (𝑛 + 𝑢2/𝑛) by
combining [GM91] and [Bri17; JW19], and 𝑂 (𝑛 + 𝑢3/2) by combining [GM91] and
[Bri17; JW19] and [Pis99]; see also [BW21; PRW21] for generalizations to 𝑋 being a
multiset and related results. Is there an algorithm in time 𝑂 (𝑛 + 𝑢)?

2. Even faster Knapsack algorithms.
The recent works of Bringmann [Bri23] and Jin [Jin23a] gave conditionally optimal
algorithms for Knapsack in time 𝑂 (𝑛 +min{𝑤max, 𝑝max }2). Can they be improved
to time 𝑂 (𝑛min{𝑤max, 𝑝max })? This would match the best known algorithm for
Unbounded Knapsack due to Chan and He [CH22].

3. Subquadratic Knapsack algorithm.
Is there an algorithm for Knapsack in time 𝑂 (𝑛 + (𝑤max + 𝑝max)1.999), in the spirit
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of our result for Unbounded Knapsack (Main Theorem 1.4)? This would break the
current quadratic barrier in the regime when 𝑤max, 𝑝max = Θ(𝑛).

4. Weak approximation for Knapsack.
We showed that it is possible to get a subquadratic (in terms of 1/𝜀) weak FPTAS for
Unbounded Knapsack (Main Theorem 1.6). Can this be extended to Knapsack? That
is, is there a weak FPTAS for Knapsack in time 𝑂 (𝑛 + 1/𝜀1.999)?

5. Improved near-convex min-plus convolution.
Our min-plus convolution for near convex functions (Main Theorem 1.7) assumes
that both functions are near-convex. Can it be generalized to assume that only
one function is near-convex? This would constitute a natural generalization of the
SMAWK algorithm which computes the min-plus convolution of one convex function
and an arbitrary one in linear time [Agg+87].

6. Derandomization.
The algorithms given by Main Theorems 1.1, 1.2, 1.4 and 1.6 are all randomized. If we
insist on deterministic algorithms, we note that by applying Chan and Lewenstein’s
deterministic𝑂 (𝑛1.864)-time algorithm for Bounded Monotone MinPlus Conv [CL15],
we can obtain deterministic versions of Main Theorem 1.4 and Main Theorem 1.6
with exponent 1.864 instead of 1.5 (i.e. the only part where we use randomness is
in applying Chi, Duan, Xie and Zhang’s algorithm [Chi+22]). On the other hand,
we do not know how to derandomize Main Theorem 1.1 and Main Theorem 1.2.
As a concrete barrier, we note that Main Theorem 1.1 algorithm closely follows
Bringmann’s algorithm for Subset Sum [Bri17], whose derandomization is a notorious
open problem.

7. Improved algorithms for ILPs.
Consider an ILP of the form

max{ 𝑐𝑇𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ∈ Z𝑛≥0 },

where 𝐴 ∈ Z𝑚×𝑛, 𝑐 ∈ Z𝑛 and 𝑏 ∈ Z𝑛. Let Δ be an upper bound on the magnitude
of the largest entry in 𝐴. Here, we consider𝑚 to be a fixed constant, and we are
interested in algorithms parameterized by Δ and 𝑛. When𝑚 = 1, this ILP corresponds
to Unbounded Knapsack. Jansen and Rohwedder gave an algorithm to solve these
ILPs in time 𝑂 (𝑛 + Δ2𝑚), and proved a matching conditional lower bound [JR23].
However, consider ILPs where each entry of 𝑥 has an upper bound, i.e. ILPs of the
form

max{ 𝑐𝑇𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ∈ Z𝑛≥0, 𝑥 ≤ 𝑢 }, (1.1)
where 𝐴 ∈ Z𝑚×𝑛, 𝑐 ∈ Z𝑛, 𝑢 ∈ Z𝑛≥0 and 𝑏 ∈ Z𝑛 . In this case, the best algorithm is
due to Eisenbrand and Weismantel and runs in time 𝑂 (𝑛Δ𝑚(𝑚+1)) [EW20]. Is there
an algorithm for ILPs of the form (1.1) in time 𝑂 (𝑛 + Δ2𝑚)?5 For the special case

5. Obtaining time 𝑂 (𝑛 + Δ𝑂 (𝑚) ) instead of 𝑂 (𝑛 + Δ𝑂 (𝑚2 ) ) would already be of interest.
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of Knapsack (i.e. when 𝑚 = 1 and 𝑢 = 𝟙𝑛, 𝑐 ∈ Z𝑛≥0), this question was answered
affirmatively by Bringmann [Bri23] and Jin’s [Jin23a] algorithms in time 𝑂 (𝑛 + Δ2)6.
It is a tantalizing open problem to understand whether their techniques extend to
general ILPs of the form (1.1).

1.4 Organization

The rest of this part of the thesis is organized as follows. In Section 1.5 we fix some
notation that will be used throughout. Then, we split our results in two chapters: In
Chapter 2 we give our new algorithm for near-convex min-plus convolution, and give an
algorithm for Knapsack based on it. In Chapter 3 we give our results that are obtained
via the usage of bounded monotone min-plus convolution.

1.5 Notation

In what follows, we fix some notation and state some preliminaries that will be used
throughout this part of the thesis.
We denote the integers by Z and the nonnegative integers by N. For 𝑡 ∈ N we let
[𝑡] = { 0, 1, . . . , 𝑡 }. We use the notation poly(𝑛) = 𝑛𝑂 (1) and polylog(𝑛) = (log𝑛)𝑂 (1) .
Let 𝐴 ∈ Z𝑛+1 be an integer sequence, i.e., 𝐴[𝑖] ∈ Z for 𝑖 ∈ [𝑛]. Sometimes we will

refer to such a sequence as a function 𝐴 : [𝑛] ↦→ Z. With this in mind, we use the
notation −𝐴 to denote the entry-wise negation of 𝐴.

Given 𝑎, 𝑏 ∈ R with 𝑎 ≤ 𝑏, we define

[𝑎 . . 𝑏] := {max(0, ⌊𝑎⌋),max(0, ⌊𝑎⌋) + 1, . . . , ⌈𝑏⌉ − 1, ⌈𝑏⌉ }.

The non-standard rounding and capping at 0 in the definition of [𝑎 . . 𝑏] is useful to
index a subsequence 𝐴[𝑎 . . 𝑏] when 𝑎 and 𝑏 might not be nonnegative integers.

We formally recap the definitions of the main problems we study, Knapsack and
Unbounded Knapsack.

Problem 1.8 (Knapsack). Given a set of 𝑛 items I with weights 𝑤1, . . . , 𝑤𝑛 ∈ N and
profits 𝑝1, . . . , 𝑝𝑛 ∈ N along with a knapsack capacity𝑊 ∈ N. The task is to compute
max{∑𝑖 𝑝𝑖𝑥𝑖 |

∑
𝑖 𝑤𝑖𝑥𝑖 ≤𝑊,𝑥 ∈ { 0, 1 }𝑛 }.

Problem 1.9 (Unbounded Knapsack). Given a set of 𝑛 items I with weights𝑤1, . . . , 𝑤𝑛 ∈
N and profits 𝑝1, . . . , 𝑝𝑛 ∈ N along with a knapsack capacity𝑊 ∈ N. The task is to
compute max{∑𝑖 𝑝𝑖𝑥𝑖 |

∑
𝑖 𝑤𝑖𝑥𝑖 ≤𝑊,𝑥 ∈ N𝑛 }.

6. In fact, Bringmann’s algorithm works for the more general case of 𝑢 ∈ Z𝑛
≥0 [Bri23], which is called

“Bounded Knapsack”.
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1 Knapsack and MinPlus Convolution

Max-plus convolution. The max-plus convolution of two sequences 𝐴[0 . . 𝑛] ∈
Z𝑛+1, 𝐵 [0 . .𝑚] ∈ Z𝑚+1, denoted byMaxConv(𝐴, 𝐵), is a sequence of length 𝑛 +𝑚 + 1
where for each 𝑘 ∈ [𝑛 +𝑚] we have MaxConv(𝐴, 𝐵) [𝑘] := max𝑖+ 𝑗=𝑘 𝐴[𝑖] + 𝐵 [ 𝑗] (we
interpret out-of-bounds entries as −∞). The min-plus convolutionMinConv(𝐴, 𝐵) is
defined analogously, but replacing max by a min. Note that by negating the entries of
the sequences, these two operations are equivalent.

Fact 1.10. For any𝐴 ∈ Z𝑛+1, 𝐵 ∈ Z𝑚+1, we haveMaxConv(𝐴, 𝐵) = −MinConv(−𝐴,−𝐵).

We will use the following handy notation: Given sequences 𝐴[0 . . 𝑛], 𝐵 [0 . . 𝑛] and
intervals 𝐼 , 𝐽 ⊆ [𝑛] and 𝐾 ⊆ [2𝑛], we denote by 𝐶 [𝐾] := MaxConv(𝐴[𝐼 ], 𝐵 [𝐽 ]) the
computation of 𝐶 [𝑘] := max{𝐴[𝑖] + 𝐵 [ 𝑗] | 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , 𝑖 + 𝑗 = 𝑘 } for each 𝑘 ∈ 𝐾 .

Proposition 1.11. If max-plus convolution of length-𝑛 sequences can be solved in time
𝑇 (𝑛), then 𝐶 [𝐾] = MaxConv(𝐴[𝐼 ], 𝐵 [𝐽 ]) can be computed in time 𝑂 (𝑇 ( |𝐼 | + |𝐽 |) + |𝐾 |).

Proof. After shifting the indices, we can assume that 𝐴[𝐼 ] and 𝐵 [𝐽 ] start from the
index 0, i.e., 𝐴′[0 . . |𝐼 | − 1] and 𝐵′[0 . . |𝐽 | − 1]. Compute 𝐶′ := MaxConv(𝐴′, 𝐵′) in
time 𝑇 ( |𝐴| + |𝐵 |). By shifting the indices back, we can infer the values of the entries
𝐶 [𝐼 + 𝐽 ] = MaxConv(𝐴[𝐼 ], 𝐵 [𝐽 ]). Thus, we can simply read off the entries in 𝐶 [𝐾]
from the array 𝐶′. □

MachineModel Wework with the standard word RAMmodel of computation. Given
as input an item set I with weights𝑤1, . . . , 𝑤𝑛 ∈ N profits 𝑝1, . . . , 𝑝𝑛 ∈ N, and knapsack
capacity𝑊 ∈ N, we assume the words have size Θ(log(𝑛) + log(𝑊 ) + log(𝑝max)). Here,
𝑝max is the largest profit in the item set, i.e. 𝑝max = max𝑖 𝑝𝑖 . That is, we assume we can
store the total weight and total profit of any feasible solution to the given knapsack
instance in a single machine word.
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2 Algorithms via Near Convex

Min-Plus Convolution

This chapter contains our algorithm for min-plus convolution for near-convex functions
and its application to Knapsack. The content is based on our publication [BC23].

Organization The outline of this chapter is as follows. We start with brief prelimi-
naries in Section 2.1. In Section 2.2 we present our algorithm for min-plus convolution,
proving Main Theorem 1.7. Finally, in Section 2.3 we apply this result to obtain our
Knapsack algorithms, proving Main Theorem 1.2 and Main Theorem 1.3.

2.1 Preliminaries

We say that a function 𝑓 : [𝑛] ↦→ Q is convex if 𝑓 (𝑖) − 𝑓 (𝑖 − 1) ≤ 𝑓 (𝑖 + 1) − 𝑓 (𝑖) holds
for every 𝑖 ∈ [1 . . 𝑛 − 1]. We say that 𝑓 is concave if −𝑓 is convex.

Definition 2.1 (Near Convex and Near Concave Functions). For Δ ≥ 0, we say that a
function 𝑓 : [𝑛] ↦→ Z is Δ-near convex, if there is a convex function 𝑓 : [𝑛] ↦→ Q such
that 𝑓 (𝑖) ≤ 𝑓 (𝑖) ≤ 𝑓 (𝑖) + Δ. We say that 𝑓 is Δ-near concave if the function −𝑓 is Δ-near
convex.

If the input consists of𝑁 numbers in [−𝑈 . .𝑈 ], we denote𝑂 (𝑇 ) = ⋃
𝑐≥0𝑂 (𝑇 log𝑐 (𝑁𝑈 )).

2.2 MinPlus Convolution for Near-Convex Sequences

In this section we prove Main Theorem 1.7, which we restate for convenience.

Main Theorem 1.7 (Near Convex MinPlus Convolution). Let 𝑓 : [𝑛] ↦→ [−𝑈 . .𝑈 ], and
𝑔 : [𝑚] ↦→ [−𝑈 . .𝑈 ] be given as inputs where 𝑛,𝑚,𝑈 ∈ N. Let Δ ≥ 1 such that both 𝑓
and 𝑔 are Δ-near convex. Then the min-plus convolution of 𝑓 and 𝑔 can be computed in
deterministic time 𝑂 ((𝑛 +𝑚) · Δ).

Before diving into the technical details, we start with a high level overview.
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2 Algorithms via Near Convex Min-Plus Convolution

Proof Overview Let 𝑓 , 𝑔 : [𝑛] ↦→ Z be the input functions, and let ℎ be their min-plus
convolution, which we aim to compute. First we observe that we can obtain the convex
approximations 𝑓 , 𝑔 witnessing the Δ-near convexity of 𝑓 and 𝑔, and compute their
min-plus convolution ℎ̆ efficiently (see Lemma 2.7). By exploiting ℎ̆ and the convexity of
𝑓 and 𝑔, we identify a structured set 𝑅 ⊆ [𝑛]2 with the property that any (𝑖, 𝑗) ∈ [𝑛]2 \𝑅
satisfies 𝑓 (𝑖) + 𝑔( 𝑗) > ℎ(𝑖 + 𝑗). Then, we give a simple recursive algorithm to cover 𝑅
with a collection C of disjoint dyadic boxes 𝐼 × 𝐽 , where (𝐼 , 𝐽 ) ∈ C satisfies 𝐼 , 𝐽 ⊆ [𝑛]
and 𝐼 × 𝐽 ⊆ 𝑅. Thus, we can infer ℎ by computing the sumset

𝐴 := { (𝑖, 𝑓 (𝑖)) | 𝑖 ∈ 𝐼 } + { ( 𝑗, 𝑔( 𝑗)) | 𝑗 ∈ 𝐽 }

and taking ℎ(𝑘) = min{𝑦 | (𝑘,𝑦) ∈ 𝐴 } for every (𝐼 , 𝐽 ) ∈ C (see Algorithm 2). To
implement this plan efficiently, we observe that inside 𝐼 and 𝐽 , the functions 𝑓 [𝐼 ] and
𝑔[𝐽 ] are close to linear functions with the same slope up to an additive error of ±𝑂 (Δ)
(which follows from their Δ-near convexity, see Lemma 2.9). This implies that their
sumset is small; more precisely it has size 𝑂 (( |𝐼 | + |𝐽 |)Δ) (see Lemma 2.10). Finally, we
make use of known tools that can compute a sumset in time proportional to its size
(see Theorem 2.5).

The idea of identifying a covering with small sumsets to efficiently compute the min-
plus convolution is inspired by Chan and Lewenstein’s [CL15] algorithm for computing
the min-plus convolution of bounded monotone sequences (in which they do not use
convexity in any form). Our algorithm shares some similarities with the prediction
technique by Bateni, Hajiaghayi, Seddighin and Stein [Bat+18]. In particular, the
covering by dyadic boxes where functions are near-linear resembles the way in which
they exploit the intervals [𝑥𝑖 . . 𝑦𝑖] required by their algorithm.

2.2.1 Preparations

Throughout this section, fix the functions 𝑓 : [𝑛] ↦→ [−𝑈 . .𝑈 ], 𝑔 : [𝑚] ↦→ [−𝑈 . .𝑈 ].
Recall that we say that 𝑓 : [𝑛] ↦→ Z is Δ𝑓 -near convex, if there is a convex function
𝑓 : [𝑛] ↦→ Q such that 𝑓 (𝑖) ≤ 𝑓 (𝑖) ≤ 𝑓 (𝑖) + Δ𝑓 for all 𝑖 ∈ [𝑛] (see Definition 2.1). First
observe that the lower convex hull of the points { (𝑖, 𝑓 (𝑖)) | 𝑖 ∈ [𝑛] } gives the pointwise
maximal convex function 𝑓 with 𝑓 ≤ 𝑓 . This can be computed in time𝑂 (𝑛) by Graham’s
scan [Gra72], since the points are already sorted by 𝑥-coordinate. Then, we can infer
Δ𝑓 = max{ 1, max𝑖∈[𝑛] 𝑓 (𝑖) − 𝑓 (𝑖) }. Thus, from now on we assume that we know
𝑓 ,Δ𝑓 , 𝑔,Δ𝑔. Set Δ := max{ Δ𝑓 ,Δ𝑔 }. Let ℎ̆ := MinConv(𝑓 , 𝑔) and ℎ := MinConv(𝑓 , 𝑔).
The goal is to compute ℎ.

Let’s start by introducing some notation. We call (𝑖, 𝑗) ∈ [𝑛] × [𝑚] a point. We
visualize a point (𝑖, 𝑗) as lying on the 𝑖-th row and 𝑗-th column of an 𝑛 ×𝑚 grid, where
(0, 0) is on the bottom-left corner and (𝑛,𝑚) on the top right corner. A point (𝑖, 𝑗) lies
on diagonal 𝑖 + 𝑗 . For any 𝛿 ≥ 0, a point (𝑖, 𝑗) is 𝛿-relevant if 𝑓 (𝑖) + 𝑔( 𝑗) ≤ ℎ̆(𝑖 + 𝑗) + 𝛿 .
We denote by 𝑅𝛿 the set of all 𝛿-relevant points.
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Points that are 0-relevant are important because of the following observation: We
call 𝑖 a witness for ℎ̆(𝑘) if 𝑓 (𝑖) + 𝑔(𝑘 − 𝑖) = ℎ̆(𝑘). Thus, observe that 𝑖 is a witness for
ℎ̆(𝑘) if and only if (𝑖, 𝑘 − 𝑖) is a 0-relevant point.

The importance of 2Δ-relevant points is captured by the following lemma:

Lemma 2.2. If (𝑖, 𝑗) ∉ 𝑅2Δ then 𝑓 (𝑖) + 𝑔( 𝑗) > ℎ(𝑖 + 𝑗).

That is, points that are not 2Δ-relevant can be ignored for the purpose of computing
ℎ.

Proof. Since (𝑖, 𝑗) is not 2Δ-relevant, it holds that 𝑓 (𝑖)+𝑔( 𝑗) ≥ 𝑓 (𝑖)+𝑔( 𝑗) > ℎ̆(𝑖+ 𝑗)+2Δ.
Let 𝑘 := 𝑖 + 𝑗 , and let 𝑖∗ be a witness for ℎ̆(𝑘), i.e., 𝑓 (𝑖∗) + 𝑔(𝑘 − 𝑖∗) = ℎ̆(𝑘). Then,

ℎ(𝑘) ≤ 𝑓 (𝑖∗) + 𝑔(𝑘 − 𝑖∗) ≤ 𝑓 (𝑖∗) + Δ + 𝑔(𝑘 − 𝑖∗) + Δ = ℎ̆(𝑘) + 2Δ < 𝑓 (𝑖) + 𝑔( 𝑗). □

We say that a set of points 𝑃 is a monotone path if for every 𝑘 ∈ [𝑛 +𝑚] 𝑃 contains
exactly one point (𝑖𝑘 , 𝑗𝑘) on diagonal𝑘 , andwe have (𝑖𝑘+1, 𝑗𝑘+1) ∈ { (𝑖𝑘+1, 𝑗𝑘), (𝑖𝑘 , 𝑗𝑘+1) }
for every 𝑘 ∈ [𝑛 +𝑚 − 1], see Figure 2.1a for an illustration. For any 𝛿 > 0, we let

𝑃+
𝛿

:= { (𝑖, 𝑘 − 𝑖) | 𝑘 ∈ [𝑛 +𝑚], 𝑖 ∈ [𝑛] is maximal s.t. (𝑖, 𝑘 − 𝑖) is 𝛿-relevant },
𝑃−
𝛿

:= { (𝑖, 𝑘 − 𝑖) | 𝑘 ∈ [𝑛 +𝑚], 𝑖 ∈ [𝑛] is minimal s.t. (𝑖, 𝑘 − 𝑖) is 𝛿-relevant }.

The next two lemmas show that 𝑃+
𝛿
, 𝑃−
𝛿
are monotone paths and that 𝑃+

𝛿
, 𝑃−
𝛿
form the

boundary of 𝑅𝛿 , see Figure 2.1c for an illustration. This establishes the structure of 𝑅𝛿
that we will exploit later.

(0, 0)

(n,m)

P

(a) A monotone path 𝑃
(0, 0)

(n,m)

P

above

below

(b) Points above and below 𝑃

P+
δ

P−
δ

(0, 0)

(n,m)

Rδ

(c) 𝑅𝛿 is between 𝑃+
𝛿
and 𝑃−

𝛿

Figure 2.1: Visualizations for concepts used in Section 2.2.

Lemma 2.3 (Monotone Paths). For any 𝛿 ≥ 0, 𝑃−
𝛿
, 𝑃+
𝛿
are monotone paths.

Proof. Since for each 𝑘 ∈ [𝑛+𝑚], ℎ̆(𝑘) has a witness, there is a 0-relevant point (𝑖, 𝑘 − 𝑖).
Since every 0-relevant point is also 𝛿-relevant, it follows that 𝑃−

𝛿
contains exactly one

point (𝑖𝑘 , 𝑗𝑘) with 𝑖𝑘 + 𝑗𝑘 = 𝑘 for every 𝑘 ∈ [𝑛 +𝑚].
In the following, we show that 𝑖𝑘−1 ≤ 𝑖𝑘 ≤ 𝑖𝑘−1 + 1 holds for all 𝑘 ∈ [1 . . 𝑛 +𝑚].

Since 𝑖𝑘 + 𝑗𝑘 = 𝑘 , it then also follows that 𝑘 − 1 − 𝑗𝑘−1 ≤ 𝑘 − 𝑗𝑘 ≤ 𝑘 − 1 − 𝑗𝑘−1 + 1,
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2 Algorithms via Near Convex Min-Plus Convolution

which yields 𝑗𝑘−1 ≤ 𝑗𝑘 ≤ 𝑗𝑘−1 + 1. Since 𝑖𝑘+1 + 𝑗𝑘+1 = 𝑘 + 1 = 𝑖𝑘 + 𝑗𝑘 + 1, it follows that
(𝑖𝑘 , 𝑗𝑘) ∈ { (𝑖𝑘−1 + 1, 𝑗𝑘−1), (𝑖𝑘−1, 𝑗𝑘−1 + 1) }. So it remains to prove 𝑖𝑘−1 ≤ 𝑖𝑘 ≤ 𝑖𝑘−1 + 1.
We distinguish two cases.

Case 1: 𝒊𝒌 ≤ 𝒊𝒌−1. We show that in this case 𝑖𝑘 ≥ 𝑖𝑘−1 (and thus 𝑖𝑘 = 𝑖𝑘−1). Let 𝑖∗𝑘−1 be a
witness for ℎ̆(𝑘 − 1). Note that 𝑖∗

𝑘−1 ≥ 𝑖𝑘−1 by definition of 𝑃−
𝛿
. We have

𝑓 (𝑖𝑘) + 𝑔(𝑘 − 𝑖𝑘) ≤ ℎ̆(𝑘) + 𝛿 ≤ 𝑓 (𝑖∗𝑘−1) + 𝑔(𝑘 − 𝑖
∗
𝑘−1) + 𝛿,

where the first inequality follows due to the definition of 𝑃−
𝛿
and the second due to the

definition of ℎ̆. Rearranging, we get

𝑔(𝑘 − 𝑖𝑘) − 𝑔(𝑘 − 𝑖∗𝑘−1) ≤ 𝑓 (𝑖
∗
𝑘−1) − 𝑓 (𝑖𝑘) + 𝛿. (2.1)

Since 𝑖∗
𝑘−1 ≥ 𝑖𝑘−1 ≥ 𝑖𝑘 , we have 𝑘 − 𝑖𝑘 ≥ 𝑘 − 𝑖∗𝑘−1. By convexity of 𝑔, we obtain

𝑔(𝑘 − 1 − 𝑖𝑘) − 𝑔(𝑘 − 1 − 𝑖∗
𝑘−1) ≤ 𝑔(𝑘 − 𝑖𝑘) − 𝑔(𝑘 − 𝑖

∗
𝑘−1). (2.2)

Combining (2.1) and (2.2) and rearranging, we obtain

𝑓 (𝑖𝑘) + 𝑔(𝑘 − 1 − 𝑖𝑘) ≤ 𝑓 (𝑖∗𝑘−1) + 𝑔(𝑘 − 1 − 𝑖∗
𝑘−1) + 𝛿 = ℎ̆(𝑘 − 1) + 𝛿,

where the last equality is by definition of 𝑖∗
𝑘−1. Thus, (𝑖𝑘 , 𝑘 − 1 − 𝑖𝑘) is 𝛿-relevant, and

since 𝑖𝑘−1 is minimal such that (𝑖𝑘−1, 𝑘 − 1 − 𝑖𝑘−1) is 𝛿-relevant we obtain 𝑖𝑘−1 ≤ 𝑖𝑘 , as
desired.

Case 2: 𝒊𝒌 > 𝒊𝒌−1. We show that in this case 𝑖𝑘 ≤ 𝑖𝑘−1 + 1 (and thus, 𝑖𝑘 = 𝑖𝑘−1 + 1). Let
𝑖∗
𝑘
be a witness for ℎ̆(𝑘). By definition of 𝑃−

𝛿
, we have 𝑖∗

𝑘
≥ 𝑖𝑘 . Moreover,

𝑓 (𝑖𝑘−1) + 𝑔(𝑘 − 1 − 𝑖𝑘−1) ≤ ℎ̆(𝑘 − 1) + 𝛿 ≤ 𝑓 (𝑖∗
𝑘
− 1) + 𝑔(𝑘 − 𝑖∗

𝑘
) + 𝛿,

where the first inequality is due to the definition of 𝑃−
𝛿
and the second due to the

definition of ℎ̆. Rearranging, we get

𝑔(𝑘 − 1 − 𝑖𝑘−1) − 𝑔(𝑘 − 𝑖∗𝑘) ≤ 𝑓 (𝑖
∗
𝑘
− 1) − 𝑓 (𝑖𝑘−1) + 𝛿. (2.3)

Since 𝑖∗
𝑘
− 1 ≥ 𝑖𝑘 − 1 ≥ 𝑖𝑘−1 and by the convexity of 𝑓 , we have

𝑓 (𝑖∗
𝑘
− 1) − 𝑓 (𝑖𝑘−1) ≤ 𝑓 (𝑖∗𝑘) − 𝑓 (𝑖𝑘−1 + 1). (2.4)

Combining and rearranging (2.3) and (2.4), we obtain

𝑓 (𝑖𝑘−1 + 1) + 𝑔(𝑘 − 1 − 𝑖𝑘+1) ≤ 𝑓 (𝑖∗𝑘) − 𝑔(𝑘 − 𝑖
∗
𝑘
) + 𝛿 = ℎ̆(𝑘) + 𝛿,

where the last equality holds by definition of 𝑖∗
𝑘
. Hence, (𝑖𝑘−1 + 1, 𝑘 − 1 − 𝑖𝑘+1) is

𝛿-relevant. Since its diagonal is 𝑘 , 𝑖𝑘−1 + 1 is a possible choice for 𝑖𝑘 . By minimality of
𝑖𝑘 (due to the definition of 𝑃−

𝛿
), we obtain that 𝑖𝑘 ≤ 𝑖𝑘−1 + 1.
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In both cases we obtain 𝑖𝑘 ∈ { 𝑖𝑘−1, 𝑖𝑘−1 + 1 }, proving the claim. This finishes the
proof for 𝑃−

𝛿
. The proof for 𝑃+

𝛿
is symmetric (replacing the roles of 𝑓 and 𝑔 essentially

flips 𝑃−
𝛿
and 𝑃+

𝛿
). □

Let (𝑖, 𝑗) be a point and 𝑃 a monotone path. Let (𝑎, 𝑏) ∈ 𝑃 be the unique point on the
same diagonal as (𝑖, 𝑗), i.e., 𝑎 + 𝑏 = 𝑖 + 𝑗 . We say that (𝑖, 𝑗) is below 𝑃 if 𝑖 < 𝑎, above 𝑃 if
𝑖 > 𝑎, and on 𝑃 if 𝑖 = 𝑎, see Figure 2.1b for an illustration.

Lemma 2.4. For any 𝛿 ≥ 0, 𝑅𝛿 consists of all points (𝑖, 𝑗) that are on or below 𝑃+
𝛿
and on

or above 𝑃−
𝛿
.

Proof. Fix 𝑘 ∈ [𝑛 +𝑚] and let (𝑖+, 𝑘 − 𝑖+), (𝑖−, 𝑘 − 𝑖−) be the point on diagonal 𝑘 in 𝑃+
𝛿

and 𝑃−
𝛿
, respectively. Consider any (𝑖, 𝑗) ∈ 𝑅𝛿 on diagonal 𝑘 . By maximality of 𝑖+ we

have 𝑖 ≤ 𝑖+, and similarly 𝑖 ≥ 𝑖− by the minimality of 𝑖−. Thus, no point in 𝑅𝛿 is above
𝑃+
𝛿
or below 𝑃−

𝛿
. It remains to show that for any 𝑖− ≤ 𝑖 ≤ 𝑖+ we have (𝑖, 𝑘 − 𝑖) ∈ 𝑅𝛿 .

Note that the function 𝑟 (𝑖) := 𝑓 (𝑖) + 𝑔(𝑘 − 𝑖) is convex (since it is the sum of convex
functions). Since (𝑖+, 𝑘 − 𝑖+) is 𝛿-relevant, we have 𝑟 (𝑖+) ≤ ℎ̆(𝑘) + 𝛿 . Similarly, since
(𝑖−, 𝑘 − 𝑖−) is 𝛿-relevant, we have 𝑟 (𝑖−) ≤ ℎ̆(𝑘) + 𝛿 . By convexity of 𝑟 , we obtain that
𝑟 (𝑖) ≤ ℎ̆(𝑘) + 𝛿 for all 𝑖− ≤ 𝑖 ≤ 𝑖+. Hence, we conclude that for each 𝑖− ≤ 𝑖 ≤ 𝑖+ we
have (𝑖, 𝑘 − 𝑖) ∈ 𝑅𝛿 . □

Finally, we need some background on sumsets. Given𝐴, 𝐵 ⊆ [−𝑈 . .𝑈 ]2 where𝑈 ∈ N,
we define 𝐴 + 𝐵 = { 𝑎 + 𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 } as their sumset, where the addition 𝑎 + 𝑏 is
done componentwise. The naive way to compute 𝐴 + 𝐵 takes time 𝑂 ( |𝐴| · |𝐵 |). For
our application, we want to compute the sumset in time near linear in its size |𝐴 + 𝐵 |.
For this end, we will use the following tool to compute sparse nonnegative convolution.
Given vectors 𝑃,𝑄 ∈ N𝑛 , their convolution 𝑃 ★𝑄 ∈ N2𝑛−1 is defined coordinate-wise by
(𝑃 ★𝑄) [𝑘] = ∑

𝑖+ 𝑗=𝑘 𝑃 [𝑖] ·𝑄 [ 𝑗].

Theorem 2.5 (Deterministic Sparse Convolution [BFN22]). There is a deterministic
algorithm to compute the convolution of two nonnegative vectors 𝐴, 𝐵 ∈ N𝑛 in time
𝑂 (𝑡 polylog(𝑛Δ)), where 𝑡 is the number of non-zero entries in 𝐴★ 𝐵 and Δ is the largest
entry in 𝐴 and 𝐵.

See also [BFN21] for improvements in the log-factors at the cost of randomization
and [CH02; Nak20; GGC20] for prior randomized algorithms with similar guarantees.

Corollary 2.6 (Output Sensitive Sumset Computation). Given 𝐴, 𝐵 ⊆ [−𝑈 . .𝑈 ]2, with
|𝐴 + 𝐵 | ≤ 𝑁 , 𝐴 + 𝐵 can be computed in time 𝑂 (𝑁 ).

Proof. Let𝐴′ := { (𝑥+𝑈 ) ·5𝑈 +(𝑦+𝑈 ) | (𝑥,𝑦) ∈ 𝐴 } and similarly, let 𝐵′ := { (𝑥+𝑈 ) ·5𝑈 +
(𝑦 +𝑈 ) | (𝑥,𝑦) ∈ 𝐵 }. Observe that this is a one-to-one embedding of 𝐴, 𝐵 ⊆ [−𝑈 . .𝑈 ]2
into 𝐴′, 𝐵′ ⊆ [Θ(𝑈 2)]. Moreover, one can check that given 𝐶′ := 𝐴′ + 𝐵′ we can infer
𝐶 := 𝐴 + 𝐵 (the choice of 5𝑈 prevents any interactions between coordinates when
summing them up).
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Thus, it suffices to compute 𝐴′ + 𝐵′. To this end, construct their indicator vectors
𝑃𝐴′, 𝑃𝐵′ ∈ NΘ(𝑈 2) and compute the convolution 𝑃𝐶′ = 𝑃𝐴′ ★ 𝑃𝐵′ . The non-zero entries in
𝑃𝐶′ correspond to the elements of 𝐴′ + 𝐵′. By Theorem 2.5, this runs in time 𝑂 ( |𝐴′ +
𝐵′| polylog(𝑁,𝑈 )) = 𝑂 (𝑁 ). □

2.2.2 Algorithm

We are ready to describe our algorithm. Recall that we have access to the functions
𝑓 , 𝑓 , 𝑔, 𝑔 and the value Δ = max{ Δ𝑓 ,Δ𝑔 }.

Computing �̆� = MinConv(𝒇, �̆�). Consider the pseudocode given in Algorithm 1.

Algorithm 1 Given convex functions 𝑓 : [𝑛] ↦→ Q, 𝑔 : [𝑚] ↦→ Q, the algorithm com-
putes ℎ̆ = MinConv(𝑓 , 𝑔).
1 𝑖∗0 ← 0, ℎ̆(0) ← 𝑓 (0) + 𝑔(0)
2 for 𝑘 = 1, . . . , 𝑛 +𝑚 do

3 𝑖∗
𝑘
← argmin{ 𝑓 (𝑖) + 𝑔(𝑘 − 𝑖) + 𝑖

2𝑛 | 𝑖 ∈ { 𝑖
∗
𝑘−1, 𝑖

∗
𝑘−1 + 1 } ∩ [𝑛] }

4 ℎ̆(𝑘) ← 𝑓 (𝑖∗
𝑘
) + 𝑔(𝑘 − 𝑖∗

𝑘
)

Lemma 2.7. Algorithm 1 computes ℎ̆ = MinConv(𝑓 , 𝑔) in time 𝑂 (𝑛 +𝑚).

Proof. The running time is immediate. To see correctness, focus on 𝑖∗
𝑘
for 𝑘 ∈ [𝑛 +𝑚] as

computed in Algorithm 1. We claim that the path 𝑃−0 equals { (𝑖∗
𝑘
, 𝑘 − 𝑖∗

𝑘
) | 𝑘 ∈ [𝑛 +𝑚] }.

That is, we want to argue that 𝑖∗
𝑘
is the minimum witness of ℎ̆(𝑘) for each 𝑘 ∈ [𝑛 +𝑚].

Indeed, by Lemma 2.3, 𝑃−0 is a monotone path. Thus, 𝑖∗
𝑘
∈ { 𝑖∗

𝑘−1, 𝑖
∗
𝑘−1 + 1 }. Observe that

in Line 3 we pick 𝑖∗
𝑘
as the minimizer of 𝑓 (𝑖) + 𝑔(𝑘 − 𝑖) + 𝑖

2𝑛 where 𝑖 ∈ { 𝑖∗
𝑘−1, 𝑖

∗
𝑘−1 + 1 }.

Therefore, the algorithm correctly computes 𝑖∗
𝑘
(the additive term 𝑖/(2𝑛) ensures that we

choose the minimal 𝑖). Since 𝑖∗
𝑘
is a minimum witness of ℎ̆(𝑘), the algorithm correctly

computes ℎ̆(𝑘) for all 𝑘 ∈ [𝑛 +𝑚]. □

Computing 𝒉 = MinConv(𝒇, 𝒈). Recall that 𝑓 : [𝑛] ↦→ Z and 𝑔 : [𝑚] ↦→ Z. As
a final simplification, we argue that we can assume without loss of generality that
𝑛 =𝑚, and 𝑛 + 1 is a power of 2. To this end, let 𝑁 be the smallest power of 2 greater
than max{𝑛,𝑚 }. We pad the functions to length 𝑁 by setting 𝑓 (𝑛 + 𝑗) := 2 𝑗 ·𝑊 for
𝑗 ∈ [1 . . 𝑁 − 1−𝑛] and 𝑔(𝑚 + 𝑗) := 2 𝑗 ·𝑊 for 𝑗 ∈ [1 . . 𝑁 − 1−𝑚], where𝑊 is an integer
larger than max𝑖∈[𝑛] 𝑓 (𝑖) +max 𝑗∈[𝑚] 𝑔( 𝑗). Observe that the entries ℎ(0), . . . , ℎ(𝑛 +𝑚) of
the result ℎ = MinConv(𝑓 , 𝑔) are unchanged (due to the choice of sufficiently large𝑊 ),
so we can read off the original result from the result of the padded functions. Moreover,
observe that the padding does not change the parameters Δ𝑓 and Δ𝑔.
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Now we can describe the algorithm. After running Algorithm 1 we can assume that
we have computed ℎ̆ and the witness path 𝑃−0 = { (𝑖∗

𝑘
, 𝑘 − 𝑖∗

𝑘
) | 𝑘 ∈ [𝑛 +𝑚] }. We will

make use of the following boolean subroutines:

• Relevant(𝑖, 𝑗): returns 𝑓 (𝑖) + 𝑔( 𝑗) ≤ ℎ̆(𝑖 + 𝑗) + 2Δ.

• BelowWitnessPath(𝑖, 𝑗): returns 𝑖 < 𝑖∗𝑖+ 𝑗
• AboveWitnessPath(𝑖, 𝑗): returns 𝑖 > 𝑖∗𝑖+ 𝑗

Now we can compute ℎ = MinConv(𝑓 , 𝑔,) by calling RecMinConv( [0 . . 𝑛], [0 . .𝑚]).
See Algorithm 2 for the pseudocode.

Algorithm 2 Given intervals 𝐼 = [ 𝑖𝐴 . . 𝑖𝐵 ], 𝐽 = [ 𝑗𝐴 . . 𝑗𝐵 ], the algorithm computes the
contribution of 𝑓 [𝐼 ] and 𝑔[𝐽 ] toMinConv(𝑓 , 𝑔).
1 procedure RecMinConv(𝐼 = [ 𝑖𝐴 . . 𝑖𝐵 ], 𝐽 = [ 𝑗𝐴 . . 𝑗𝐵 ])
2 if AboveWitnessPath(𝑖𝐴, 𝑗𝐵) and NotRelevant(𝑖𝐴, 𝑗𝐵) then ⊲ Case 1
3 return ℎ̃(𝑘) = ∞ for all 𝑘 ∈ [𝑖𝐴 + 𝑗𝐴 . . 𝑖𝐵 + 𝑗𝐵]
4 if BelowWitnessPath(𝑖𝐴, 𝑗𝐵) and NotRelevant(𝑖𝐵, 𝑗𝐴) then ⊲ Case 2
5 return ℎ̃(𝑘) = ∞ for all 𝑘 ∈ [𝑖𝐴 + 𝑗𝐴 . . 𝑖𝐵 + 𝑗𝐵]
6 if Relevant(𝑖𝐴, 𝑗𝐵) and Relevant(𝑖𝐵, 𝑗𝐴) then ⊲ Case 3
7 Compute 𝐶 ← { (𝑖, 𝑓 (𝑖)) | 𝑖 ∈ 𝐼 } + { ( 𝑗, 𝑔( 𝑗)) | 𝑗 ∈ 𝐽 } using Corollary 2.6
8 Infer ℎ̃(𝑘) ← min{𝑦 | (𝑘,𝑦) ∈ 𝐶 } for all 𝑘 ∈ [𝑖𝐴 + 𝑗𝐴 . . 𝑖𝐵 + 𝑗𝐵]
9 return ℎ̃

10 else ⊲ Case 4
11 Split 𝐼 into two intervals 𝐼1, 𝐼2 of equal length, similarly split 𝐽 into 𝐽1, 𝐽2
12 Recursively compute 𝑔𝑖, 𝑗 ← RecMinConv(𝐼𝑖, 𝐽 𝑗 ) for 𝑖, 𝑗 ∈ { 1, 2 }
13 return the pointwise minimum of the functions 𝑔𝑖, 𝑗 for 𝑖, 𝑗 ∈ { 1, 2 }

Algorithm 2 recursively computes the contribution of 𝑓 [𝑖𝐴 . . 𝑖𝐵] and 𝑔[ 𝑗𝐴 . . 𝑗𝐵] to
ℎ = MinConv(𝑓 , 𝑔). We next discuss its four cases; see Figure 2.2 for illustrations of
Cases 1-3. If (𝑖𝐴, 𝑗𝐵) is above the witness path 𝑃−0 and is not 2Δ-relevant (Case 1), then
as we argue below no point in 𝐼 × 𝐽 contributes to the output ℎ, so in this case we return
a dummy function (which is +∞ everywhere). Case 2 is symmetric, where (𝑖𝐵, 𝑗𝐴) is
above 𝑃−0 and not 2Δ-relevant, and we again return a dummy function. Case 3 applies
when (𝑖𝐴, 𝑗𝐵) and (𝑖𝐵, 𝑗𝐴) are both 2Δ-relevant. In this case, we explicitly compute
ℎ̃ = MinConv(𝑓 [𝑖𝐴 . . 𝑖𝐵], 𝑔[ 𝑗𝐴 . . 𝑗𝐵]) by computing the sumset 𝐶 = { (𝑖, 𝑓 (𝑖)) | 𝑖 ∈
𝐼 } + { ( 𝑗, 𝑔( 𝑗)) | 𝑗 ∈ 𝐽 } and inferring ℎ̃(𝑘) as the minimum 𝑦 such that (𝑘,𝑦) ∈ 𝐶 ,
which by definition of the sumset equals the minimum 𝑓 (𝑖) + 𝑔( 𝑗) such that 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽
and 𝑖 + 𝑗 = 𝑘 . Note that this step can be done for all 𝑘 ∈ [𝑖𝐴 + 𝑗𝐴 . . 𝑖𝐵 + 𝑗𝐵] in total time
𝑂 ( |𝐶 |) by once scanning over all elements of 𝐶 .

Finally, if none of the above cases apply, then we split both intervals 𝐼 and 𝐽 into
equal halves and recurse on all 4 combinations of halves. We combine them by taking
the pointwise minimum of all computed functions. This case is essentially brute force.
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Figure 2.2: Visualization of Cases 1-3 of Algorithm 2. The green box represents the
current subproblem.

Correctness

We start by analyzing the correctness of the algorithm.

Lemma 2.8 (Correctness of Algorithm 2). RecMinConv( [0 . . 𝑛], [0 . .𝑚]) (Algorithm 2)
correctly computes ℎ = MinConv(𝑓 , 𝑔).

Proof. Let 𝑘 ∈ [𝑛+𝑚] and consider a point (𝑖∗, 𝑗∗) in diagonal 𝑘 such that 𝑓 (𝑖∗) +𝑔( 𝑗∗) =
ℎ(𝑘), i.e., a witness for ℎ(𝑘). We argue that some recursive call computes 𝑓 (𝑖∗) + 𝑔( 𝑗∗).
This is clear in Case 4, as (𝑖∗, 𝑗∗) is covered by one recursive subproblem. It is also clear
in Case 3, since then 𝑓 (𝑖∗) + 𝑔( 𝑗∗) is explicitly computed.
To finish correctness, we argue that (𝑖∗, 𝑗∗) can never be in a subproblem to which

Case 1 or 2 applies. Recall that Case 1 applies to a subproblem 𝐼 = [𝑖𝐴 . . 𝑖𝐵], 𝐽 = [ 𝑗𝐴 . . 𝑗𝐵]
if (𝑖𝐴, 𝑗𝐵) is above 𝑃−0 and (𝑖𝐴, 𝑗𝐵) is not 2Δ-relevant. Since (𝑖𝐴, 𝑗𝐵) is not 2Δ-relevant,
by Lemma 2.4 (𝑖𝐴, 𝑗𝐵) must be above 𝑃+2Δ or below 𝑃−2Δ. Since (𝑖𝐴, 𝑗𝐵) is above 𝑃−0 , it
can only be above 𝑃+2Δ. Furthermore, since (𝑖𝐴, 𝑗𝐵) is the lower right corner of 𝐼 × 𝐽 , it
follows that all points in 𝐼 × 𝐽 are above 𝑃+2Δ. Thus, by Lemma 2.4 all points in 𝐼 × 𝐽 are
not 2Δ-relevant. If we assume for the sake of contradiction that (𝑖∗, 𝑗∗) ∈ 𝐼 × 𝐽 , then
Lemma 2.2 implies 𝑓 (𝑖∗) +𝑔( 𝑗∗) > ℎ(𝑘), contradicting the choice of (𝑖∗, 𝑗∗) as a witness
for ℎ(𝑘). Hence, (𝑖∗, 𝑗∗) can never be in a Case 1 subproblem. Case 2 is symmetric. This
finishes the correctness proof. □

Running Time

Next, we analyze the running time. The key insight is that in relevant regions both
functions are essentially linear, with the same slope (see Lemma 2.9). This implies
that the sumset computed in Case 3 is small (see Lemma 2.10), so it can be computed
efficiently using Corollary 2.6. In the following two lemmas, let 𝐼 = [𝑖𝐴 . . 𝑖𝐵] ⊆ [𝑛] and
𝐽 = [ 𝑗𝐴 . . 𝑗𝐵] ⊆ [𝑚] be intervals of the same length |𝐼 | = |𝐽 |.
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Lemma 2.9 (Near Linearity inside Relevant Region). If 𝐼 × 𝐽 ⊆ 𝑅2Δ then there are
𝑎, 𝑏, 𝑐 ∈ R such that |𝑓 (𝑖) − (𝑎 · 𝑖 + 𝑏) | ≤ 2Δ for all 𝑖 ∈ 𝐼 and |𝑔( 𝑗) − (𝑎 · 𝑗 + 𝑐) | ≤ 2Δ for
all 𝑗 ∈ 𝐽 .

Proof. Consider the linear interpolation between (𝑖𝐴, 𝑓 (𝑖𝐴)) and (𝑖𝐵, 𝑓 (𝑖𝐵)):

𝐹 (𝑥) := (𝑖𝐵 − 𝑥) 𝑓 (𝑖𝐴) + (𝑥 − 𝑖𝐴) 𝑓 (𝑖𝐵)
𝑖𝐵 − 𝑖𝐴

.

Similarly, consider
𝐺 (𝑥) := ( 𝑗𝐵 − 𝑥)𝑔( 𝑗𝐴) + (𝑥 − 𝑗𝐴)𝑔( 𝑗𝐵)

𝑗𝐵 − 𝑗𝐴
.

By convexity of 𝑓 and 𝑔, we have

𝑓 (𝑖) ≤ 𝐹 (𝑖) ∀𝑖 ∈ 𝐼 , 𝑔( 𝑗) ≤ 𝐺 ( 𝑗) ∀𝑗 ∈ 𝐽 . (2.5)

Consider the diagonal 𝑘 := 𝑖𝐴 + 𝑗𝐵 and note that for all 𝑖 ∈ 𝐼 we have 𝑘 − 𝑖 ∈ 𝐽 due to
|𝐼 | = |𝐽 |. Thus, for each 𝑖 ∈ 𝐼 the point (𝑖, 𝑘 − 𝑖) is 2Δ-relevant, and we obtain

ℎ̆(𝑘) ≤ 𝑓 (𝑖) + 𝑔(𝑘 − 𝑖) ≤ ℎ̆(𝑘) + 2Δ ∀𝑖 ∈ 𝐼 (2.6)

This implies
ℎ̆(𝑘) ≤ 𝐹 (𝑖) +𝐺 (𝑘 − 𝑖) ≤ ℎ̆(𝑘) + 2Δ ∀𝑖 ∈ 𝐼 , (2.7)

since by (2.6) these inequalities hold for 𝑖 ∈ { 𝑖𝐴, 𝑖𝐵 } and by the linear interpolation,
they also hold in between.

Now for any 𝑖 ∈ 𝐼 we have

𝑓 (𝑖)
(2.6)
≥ ℎ̆(𝑘) −𝑔(𝑘 − 𝑖)

(2.5)
≥ ℎ̆(𝑘) −𝐺 (𝑘 − 𝑖)

(2.7)
≥ ℎ̆(𝑘) − (ℎ̆(𝑘) + 2Δ − 𝐹 (𝑖)) = 𝐹 (𝑖) − 2Δ.

Thus, 𝑓 (𝑖) ∈ [𝐹 (𝑖) − 2Δ . . 𝐹 (𝑖)], and by 𝑓 ≤ 𝑓 ≤ 𝑓 + Δ𝑓 ≤ 𝑓 + Δ, we obtain that
|𝑓 (𝑖) − 𝐹 (𝑖) | ≤ 2Δ.
For 𝑔( 𝑗) for any 𝑗 ∈ 𝐽 we bound

𝑔( 𝑗)
(2.6)
≥ ℎ̆(𝑘) − 𝑓 (𝑘 − 𝑗)

(2.5)
≥ ℎ̆(𝑘) − 𝐹 (𝑘 − 𝑗),

and
𝑔( 𝑗)

(2.5)
≤ 𝐺 ( 𝑗)

(2.7)
≤ ℎ̆(𝑘) − 𝐹 (𝑘 − 𝑗) + 2Δ.

Therefore, |𝑔( 𝑗) − (ℎ̆(𝑘) − 𝐹 (𝑘 − 𝑗) + Δ) | ≤ Δ. By linearity of 𝐹 we can write 𝐹 (𝑘 − 𝑗) =
𝐹 (𝑘) − 𝐹 ( 𝑗) + 𝐹 (0). This yields |𝑔( 𝑗) − (𝐹 ( 𝑗) + 𝜆) | ≤ Δ for 𝜆 := ℎ̆(𝑘) − 𝐹 (𝑘) − 𝐹 (0) + Δ.
Since |𝑔( 𝑗) − 𝑔( 𝑗) | ≤ Δ𝑔 ≤ Δ we obtain |𝑔( 𝑗) − (𝐹 ( 𝑗) + 𝜆) | ≤ 2Δ. Since 𝐹 is linear,
writing 𝐹 (𝑖) = 𝑎 · 𝑖 + 𝑏 and 𝐹 ( 𝑗) + 𝜆 = 𝑎 · 𝑗 + 𝑐 finishes the proof. □

Lemma 2.10 (Relevant Regions have Small Sumsets). If 𝐼 × 𝐽 ⊆ 𝑅2Δ then the sumset
{ (𝑖, 𝑓 (𝑖)) | 𝑖 ∈ 𝐼 } + { ( 𝑗, 𝑓 ( 𝑗)) | 𝑗 ∈ 𝐽 } has size 𝑂 (Δ · ( |𝐼 | + |𝐽 |)).
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2 Algorithms via Near Convex Min-Plus Convolution

Proof. By Lemma 2.9, for any (𝑖, 𝑗) ∈ 𝐼 × 𝐽 with 𝑖 + 𝑗 = 𝑘 we have

𝑓 (𝑖) + 𝑔( 𝑗) = (𝑎 · 𝑖 + 𝑏) + (𝑎 · 𝑗 + 𝑐) ±𝑂 (Δ) = 𝑎 · 𝑘 + 𝑏 + 𝑐 ±𝑂 (Δ).

Thus, for each of the |𝐼 | + |𝐽 | − 1 𝑥-coordinates (i.e., choices of 𝑖 + 𝑗 ), there are 𝑂 (Δ)
different 𝑦-coordinates (i.e., values 𝑓 (𝑖) + 𝑔( 𝑗)) in the sumset. □

Lemma 2.11 (Running Time of Algorithm 2). RecMinConv( [0 . . 𝑛], [0 . .𝑚]) (Algo-
rithm 2) runs in time 𝑂 (𝑛Δ).

Proof. We first analyze the running time of one recursive subproblem, ignoring the
cost of recursive calls. Note that in Cases 1 and 2 it suffices to return a dummy value,
i.e., we do not need to iterate over 𝑘 ∈ [𝑖𝐴 + 𝑗𝐴 . . 𝑖𝐵 + 𝑗𝐵] to explicitly return ℎ̃(𝑘) = ∞.
Thus, Cases 1 and 2 run in time 𝑂 (1). We charge this time to the parent of the current
subproblem, which is a Case 4-subproblem.

Consider Case 4. Ignoring the cost of the recursive subproblems, Case 4 runs in time
𝑂 (1), which also covers the charging from children which fall in Cases 1 and 2.

Consider Case 3, and let 𝑠 := 𝑖𝐵 − 𝑖𝐴 + 1 = 𝑗𝐵 − 𝑗𝐴 + 1 be the current side length.
By Lemma 2.10, the sumset computed in Line 7 has size𝑂 (Δ𝑠). Thus, it can be computed
in time 𝑂 (Δ𝑠) using Corollary 2.6, and the function ℎ̃ can be inferred from it in time
𝑂 (Δ𝑠).

Now we bound the total running time across subproblems. Fix a side length 𝑠 and
consider all possible subproblems of side length 𝑠 , i.e., all boxes

𝐵𝑠𝑥,𝑦 := [𝑥 · 𝑠 . . 𝑥 · 𝑠 + 𝑠 − 1] × [𝑦 · 𝑠 . . 𝑦 · 𝑠 + 𝑠 − 1], where 𝑥,𝑦 ∈ [𝑛/𝑠] .

Consider a diagonal 𝐷𝑠,𝑑 := { 𝐵𝑠
𝑥,𝑥+𝑑 | 𝑥 ∈ [𝑛/𝑠] } of these boxes, see Figure 2.3a. Note

that a box in 𝐷𝑠,𝑑 that lies fully above 𝑃+Δ corresponds to a Case 1-subproblem. A box in
𝐷𝑠,𝑑 that lies fully below corresponds to a Case 2-subproblem. A box that is below or
on 𝑃+2Δ and above or on 𝑃−2Δ corresponds to a Case 3-subproblem. The remaining boxes
intersect 𝑃+2Δ or 𝑃−2Δ and correspond to Case 4.
Note that by monotonicity of 𝑃+2Δ, 𝑃

−
2Δ, at most two boxes in 𝐷𝑠,𝑑 are intersected by

𝑃+2Δ or 𝑃−2Δ and thus at most two boxes in 𝐷𝑠,𝑑 can appear as Case 4-subproblems. Thus,
Case 4 incurs time 𝑂 (1) per diagonal. We argue that among the boxes in 𝐷𝑠,𝑑 , at most
two can appear as Case 3-subproblems. Indeed, if these would be at least three such
boxes, then the parent of the middle box would also be between 𝑃+2Δ and 𝑃−2Δ, and thus
the parent would already be a Case 3-subproblem, see Figures 2.3b and 2.3c. Thus, the
middle box would not get split, and it would not become a recursive subproblem. Hence,
per diagonal 𝐷𝑠,𝑑 , Case 3 incurs time 𝑂 (Δ𝑠) for each of at most two boxes.
It remains to sum up over all side lengths 1 ≤ 𝑠 ≤ 𝑛 where 𝑠 = 2ℓ is a power of 2

(recall that at each recursive level we split the side length in two equal parts), and over
all 𝑂 (𝑛/𝑠) diagonals 𝑑 , to obtain total time

∑log𝑛
ℓ=1 𝑂 (𝑛/2ℓ) ·𝑂 (Δ2ℓ) = 𝑂 (Δ𝑛). Note that

the sum over ℓ only adds another log-factor, which is hidden by the 𝑂-notation. □
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(0, 0)

(n,m)

(a) A diagonal of boxes 𝐷𝑠,𝑑

(0, 0)

(n,m)

R2∆

(b) Three boxes inside 𝑅2Δ

(0, 0)

(n,m)

R2∆

(c) The parent box is already
contained in 𝑅2Δ

Figure 2.3: Visualizations for the proof of Lemma 2.11.

2.3 Faster Knapsack Algorithm

In this section we prove Main Theorem 1.2, restated for convenience.

Main Theorem 1.2. There is a randomized algorithm for Knapsack that runs in time

𝑂 ((𝑝max𝑊 )2/3(𝑛𝑤max)1/3 + 𝑛𝑤max)

and succeeds with high probability. Using the bound𝑊 ≤ 𝑛𝑤max, this running time is at
most 𝑂 (𝑛𝑤max 𝑝

2/3
max).

Let (I,𝑊 ) be a Knapsack instance. Throughout, we denote the number of items by
𝑛 := |I |. We identify the item set I with { 1, . . . , 𝑛 }. We denote by 𝑝max := max𝑖 𝑝𝑖 the
maximum profit and by 𝑤max := max𝑖 𝑤𝑖 the maximum weight in I. We represent a
solution to the knapsack instance (i.e., a subset of I), by an indicator vector 𝑥 ∈ { 0, 1 }𝑛 .
For a subset of the items J ⊆ I, we put 𝑤J (𝑥) :=

∑
𝑖∈J 𝑤𝑖𝑥𝑖 and 𝑝J (𝑥) :=

∑
𝑖∈J 𝑝𝑖𝑥𝑖 .

We define the profit sequence PI [·], where for each 𝑗 ∈ N we have

PI [ 𝑗] = max{ 𝑝I (𝑥) | 𝑥 ∈ { 0, 1 }𝑛, 𝑤I (𝑥) ≤ 𝑗 }.

Observe that PI is monotone non-decreasing, and that OPT = PI [𝑊 ]. The textbook
way to compute PI [0 . . 𝑗] is to use dynamic programming:

Fact 2.12. For any 𝑗 ∈ N the sequence PI [0 . . 𝑗] can be computed in time 𝑂 (𝑛𝑗).

Before presenting the algorithm, we make two simple observations about the given
Knapsack instance (I,𝑊 ). First, by ignoring items with weight larger than the capacity
𝑊 , we can assume without loss of generality that 𝑤max ≤𝑊 . Now every single item is
a feasible solution, so we have 𝑝max ≤ OPT. Second, observe that if𝑊 ≥ 𝑛 ·𝑤max, then
the instance is trivial since we can pack all items. Thus, we can assume without loss of
generality that𝑊 ≤ 𝑛 ·𝑤max. Moreover, since any feasible solution consists of at most
all the 𝑛 items, it follows that OPT ≤ 𝑛 · 𝑝max.
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2 Algorithms via Near Convex Min-Plus Convolution

The Algorithm

We now describe the algorithm. We set the parameters

𝑞 := min{ (𝑛/𝑝max)2/3(𝑊 /𝑤max)1/3,𝑊 /𝑤max }

rounded down to the closest power of 2, Δ := 𝑤max𝑊 /𝑞 and 𝜂 := 11 log𝑛. For each
ℓ ∈ [log𝑞] we define the interval 𝐽 ℓ := [𝑊

𝑞
2ℓ −
√
Δ2ℓ𝜂 . . 𝑊

𝑞
2ℓ +
√
Δ2ℓ𝜂].

We start by splitting the items I into 𝑞 groups I0
1 , . . . ,I0

𝑞 uniformly at random. The
idea will be to compute an array 𝐶0

𝑗 associated to each I0
𝑗 , and then combine them in

a tree-like fashion. A crucial aspect for the running time is that we only compute |𝐽 ℓ |
entries of each array 𝐶ℓ𝑗 . In detail, we proceed as follows:

Base Case For each I0
𝑗 , we use Fact 2.12 to compute PI0

𝑗
[0 . . 𝑊

𝑞
+
√
Δ𝜂] and define the

subarray 𝐶0
𝑗 [𝐽 0] := PI0

𝑗
[𝐽 0].

Combination Iterate over the levels ℓ = 1, . . . 𝑞. For 𝑗 ∈ [1 . . 𝑞/2ℓ] we set Iℓ𝑗 :=
Iℓ−1

2 𝑗−1 ∪ Iℓ−1
2 𝑗 . Then, compute the subarray 𝐶ℓ𝑗 [𝐽 ℓ] by taking the relevant entries of the

max-plus convolution of 𝐶ℓ−1
2 𝑗−1 [𝐽 ℓ−1] and 𝐶ℓ−1

2 𝑗 [𝐽 ℓ−1].

Returning the answer (Note that when ℓ = log(𝑞), it holds that Ilog𝑞
1 = I.) We

return the value 𝐶 log𝑞
1 [𝑊 ].

Refer to Algorithm 3 for the complete pseudocode.

Correctness

We start by analyzing the correctness of the algorithm. The following lemma shows
that the weight of any solution restricted to one of the sets Iℓ𝑗 is concentrated around
its expectation.

Lemma 2.13 (Concentration). Let 𝑥 ∈ { 0, 1 }𝑛 be a solution to the given Knapsack
instance. Fix a level ℓ ∈ [0 . . log𝑞] and 𝑗 ∈ [1 . . 𝑞/2ℓ]. Then, with probability at least
1 − 1/𝑛4 it holds that: ����𝑤Iℓ𝑗 (𝑥) − 𝑤I (𝑥) · 2ℓ𝑞

���� ≤ √Δ2ℓ · 10 log𝑛.

Proof. Recall that the item set I is partitioned randomly into I0
1 , . . . ,I0

𝑞 . Thus, observe
that Iℓ𝑗 is a random subset of I, where each item is included with probability 𝑝 := 2ℓ/𝑞.
For 𝑖 ∈ [1 . . 𝑛], let 𝑍𝑖 be a random variable which equals 𝑤𝑖 · 𝑥𝑖 with probability 𝑝 , and
0 with probability 1 − 𝑝 . Then, observe that 𝑤Iℓ

𝑗
(𝑥) is distributed as 𝑍 :=

∑𝑛
𝑖=1 𝑍𝑖 , and

therefore, E(𝑍 ) = 𝑤I (𝑥)𝑝 .
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2.3 Faster Knapsack Algorithm

Algorithm 3 Knapsack Algorithm. Given a set of items I and a weight budget𝑊 , the
algorithm computes the maximum attainable profit.
1 𝑞 ← min{ (𝑛/𝑝max)2/3(𝑊 /𝑤max)1/3,𝑊 /𝑤max } rounded down to the closest power

of 2
2 Δ← 𝑤max𝑊 /𝑞
3 𝜂 ← 11 log𝑛
4 I0

1 , . . . ,I0
𝑞 ← random partitioning of I into 𝑞 groups

5 for 𝑖 = 1 . . . 𝑞 do
6 Compute PI0

𝑗
[0 . . 𝑊

𝑞
+
√
Δ𝜂] using standard dynamic programming (Fact 2.12)

7 𝐽 0 ← [𝑊
𝑞
−
√
Δ𝜂 . . 𝑊

𝑞
+
√
Δ𝜂]

8 𝐶0
𝑗 [𝐽 0] ← PI0

𝑗
[𝐽 0]

9 for ℓ = 1 . . . log(𝑞) do
10 𝐽 ℓ ← [𝑊

𝑞
2ℓ −
√
Δ2ℓ𝜂 . . 𝑊

𝑞
2ℓ +
√
Δ2ℓ𝜂]

11 for 𝑗 = 1, . . . , 𝑞/2ℓ do
12 Iℓ𝑗 ← Iℓ−1

2 𝑗−1 ∪ Iℓ−1
2 𝑗

13 Compute 𝐶ℓ𝑗 [𝐽 ℓ] ← MaxConv(𝐶ℓ−1
2 𝑗−1 [𝐽 ℓ−1],𝐶ℓ−1

2 𝑗 [𝐽 ℓ−1]) using
Main Theorem 1.7

14 return 𝐶
log𝑞
1 [𝑊 ]

To prove the statement, we will use Bernstein’s inequality (see e.g. [DP09, Theorem
1.2]) which states that

P( |𝑍 − E(𝑍 ) | ≥ 𝑡) ≤ 2 exp
(
− 𝑡2

2 Var(𝑍 ) + 2
3𝑡 ·𝑤max

)
≤ 2 exp

(
−min

{
𝑡2

4 Var(𝑍 ) ,
𝑡

2𝑤max

})
. (2.8)

Set 𝑡 :=
√︁
𝑝 ·𝑤max𝑊 · 10 log𝑛. We first bound 𝑡2/(4 Var(𝑍 )). Note that we can give an

upper bound on the variance as follows:

Var(𝑍 ) =
𝑛∑︁
𝑖=1

𝑝 (1 − 𝑝)𝑤2
𝑖 𝑥

2
𝑖 ≤ 𝑝 ·𝑤max

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 = 𝑝 ·𝑤max𝑤I (𝑥) ≤ 𝑝 ·𝑤max𝑊 .

Therefore, 𝑡2/(4 Var(𝑍 )) ≥ 10 log𝑛. Next, we bound 𝑡/(2𝑤max). Using that𝑞 ≤𝑊 /𝑤max,
we have that 𝑝 = 2ℓ

𝑞
≥ 𝑤max2ℓ

𝑊
≥ 𝑤max

𝑊
. Thus,

𝑡

2𝑤max
=

√︁
𝑝 ·𝑤max𝑊 · 10 log𝑛

2𝑤max
≥ 5 log𝑛.

Combining the above, we obtain from (2.8) that

|𝑤Iℓ
𝑗
(𝑥) −𝑤I (𝑥)2ℓ/𝑞 | = |𝑍 − E(𝑍 ) | ≤ 𝑡 =

√︁
𝑝𝑤max𝑊 · 10 log𝑛 =

√
Δ2ℓ · 10 log𝑛
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2 Algorithms via Near Convex Min-Plus Convolution

holds with probability at least 1 − 2/𝑛5 ≥ 1 − 1/𝑛4. □

Using Lemma 2.13, we can argue that at level ℓ it suffices to compute a subarray of
length 𝑂 (

√
Δ2ℓ) around𝑊 2ℓ/𝑞. The following lemma makes this precise:

Lemma 2.14. Let 𝑥 ∈ { 0, 1 }𝑛 be a solution to the given Knapsack instance satisfying
𝑤I (𝑥) ∈ [𝑊 −𝑤max . .𝑊 ]. With probability at least 1− 1/𝑛2, for all levels ℓ ∈ [0 . . log𝑞]
and all 𝑗 ∈ [1 . . 𝑞/2ℓ] it holds that:

• 𝑤Iℓ
𝑗
(𝑥) ∈ 𝐽 ℓ = [𝑊

𝑞
2ℓ −
√
Δ2ℓ𝜂 . . 𝑊

𝑞
2ℓ +
√
Δ2ℓ𝜂], and

• 𝐶ℓ𝑗 [𝑤Iℓ𝑗 (𝑥)] ≥ 𝑝Iℓ𝑗 (𝑥).

Proof. By Lemma 2.13, for each ℓ ∈ [0 . . log𝑞] and 𝑗 ∈ [1 . . 𝑞/2ℓ] it holds that

|𝑤Iℓ
𝑗
(𝑥) −𝑤I (𝑥)2ℓ/𝑞 | ≤

√
Δ2ℓ · 10 log𝑛 (2.9)

with probability at least 1 − 1/𝑛4. Note that 𝑞 ≤ 𝑊 /𝑤max ≤ 𝑛. Thus, we can afford a
union bound and conclude that (2.9) holds for all ℓ ∈ [0 . . log𝑞] and 𝑗 ∈ [1 . . 𝑞/2ℓ] with
probability at least 1 − 1/𝑛2. From now on, we condition on this event.
We start by showing the first item of the statement. Fix ℓ ∈ [log𝑞] and 𝑗 ∈ [1 . . 𝑞/2ℓ].

By (2.9), it holds that |𝑤Iℓ
𝑗
(𝑥) −𝑤I (𝑥)2ℓ/𝑞 | ≤

√
Δ2ℓ · 10 log𝑛. By assumption, we have

that 𝑤I (𝑥) ∈ [𝑊 −𝑤max . .𝑊 ]. Hence,

|𝑤Iℓ
𝑗
(𝑥) −𝑊 2ℓ/𝑞 | ≤ |𝑤Iℓ

𝑗
(𝑥) −𝑤I (𝑥)2ℓ/𝑞 | + 2ℓ

𝑞
|𝑤I (𝑥) −𝑊 |

≤
√
Δ2ℓ10 log𝑛 +𝑤max2ℓ/𝑞 ≤

√
Δ2ℓ · 11 log𝑛.

The last inequality holds since we can use that 2ℓ ≤ 𝑞 and 𝑤max ≤ 𝑊 to obtain that
𝑤max2ℓ/𝑞 ≤

√
𝑤max𝑊 ·

√︁
2ℓ/𝑞 =

√
Δ2ℓ . Since 𝜂 = 11 log𝑛, this implies that 𝑤Iℓ

𝑗
(𝑥) ∈

𝐽 ℓ = [𝑊
𝑞

2ℓ −
√
Δ2ℓ𝜂 . . 𝑊

𝑞
2ℓ +
√
Δ2ℓ𝜂]. This concludes the proof of the first item.

Next, we prove the second item of the lemma by induction. Consider the base
case ℓ = 0. By the first item, for any 𝑗 ∈ [1 . . 𝑞] we have that 𝑤I0

𝑗
(𝑥) ∈ 𝐽 0. In

particular, it holds that 𝐶0
𝑗 [𝑤I0

𝑗
(𝑥)] = PI0

𝑗
[𝑤I0

𝑗
(𝑥)] (see Line 8). Then, since PI0

𝑗
[𝑖]

is the maximum profit of a subset of items from I0
𝑗 of weight at most 𝑖 , it holds that

PI0
𝑗
[𝑤I0

𝑗
(𝑥)] ≥ 𝑝I0

𝑗
(𝑥), which completes the proof of the base case.

Now we proceed with the inductive step: Fix ℓ ≥ 1 and assume that𝐶ℓ−1
𝑗 [𝑤Iℓ−1

𝑗
(𝑥)] ≥

𝑝Iℓ−1
𝑗
(𝑥) hold for all 𝑗 ∈ [1 . . 𝑞/2ℓ−1]. By the first item of the lemma, for each 𝑗 ∈

[1 . . 𝑞/2ℓ] we have that 𝑤Iℓ
𝑗
(𝑥) ∈ 𝐽 ℓ . Thus, by the computation of Line 13, it holds that

𝐶ℓ𝑗 [𝑤Iℓ𝑗 (𝑥)] = max{𝐶ℓ−1
2 𝑗−1 [𝑖] +𝐶ℓ2 𝑗 [𝑖′] | 𝑖, 𝑖′ ∈ 𝐽 ℓ−1, 𝑖 + 𝑖′ = 𝑤Iℓ

𝑗
(𝑥) }

≥ 𝐶ℓ−1
2 𝑗−1 [𝑤Iℓ−1

2𝑗−1
(𝑥)] +𝐶ℓ2 𝑗 [𝑤Iℓ−1

2𝑗
(𝑥)]

≥ 𝑝Iℓ−1
2𝑗−1
(𝑥) + 𝑝Iℓ−1

2𝑗
(𝑥) = 𝑝Iℓ

𝑗
(𝑥).
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In the second step, we used that 𝑤Iℓ−1
2𝑗−1
(𝑥), 𝑤Iℓ−1

2𝑗
(𝑥) ∈ 𝐽 ℓ−1 as shown earlier. The

third step follows from the induction hypothesis. The last equality holds since Iℓ𝑗 =

Iℓ−1
2 𝑗−1 ∪ Iℓ−1

2 𝑗 . □

Lemma 2.15 (Correctness of Algorithm 3). Let 𝑥∗ ∈ { 0, 1 }𝑛 be an optimal solution to the
given Knapsack instance. Then, for every 𝑖 ∈ [𝑤I (𝑥∗) . .𝑊 ], it holds that𝐶 log𝑞

1 [𝑖] = PI [𝑖]
with probability at least 1 − 1/𝑛2.

Proof. We can check in linear time 𝑂 (𝑛) whether the optimal solution consists of all
items, in which case the instance is trivial. Thus, we can assume without loss of
generality that 𝑥∗ does not include all items. In particular, 𝑥∗ leaves at least one item out
and therefore its weight satisfies 𝑤I (𝑥∗) ∈ [𝑊 −𝑤max . .𝑊 ]. By Lemma 2.14, it holds
that 𝐶 log𝑞

1 [𝑤I (𝑥∗)] ≥ 𝑝I (𝑥∗) = PI [𝑤I (𝑥∗)] with probability at least 1 − 1/𝑛2. From
now on we condition on this event. We will use the following auxiliary claim:

▷ Claim 2.16. The sequence 𝐶 log𝑞
1 [𝐽 log𝑞] is monotone non-decreasing, and satisfies

𝐶
log𝑞
1 [𝑖] ≤ PI [𝑖] for all 𝑖 ∈ 𝐽 log𝑞 .

Proof . First we argue monotonicity by induction. Note that in the base case ℓ = 0, the
sequence 𝐶0

𝑗 [𝐽 0] = PI0
𝑗
[𝐽 0] is monotone non-decreasing due to the definition of PI0

𝑗
.

For level ℓ > 0, the sequence 𝐶ℓ𝑗 is computed by taking the max-plus convolution of
sequences of level ℓ − 1. The result follows by observing that the max-plus convolution
of two monotone non-decreasing sequences is monotone non-decreasing.
The second part of the claim follows since (inductively) every entry 𝐶 log𝑞

1 [𝑖] for
𝑖 ∈ 𝐽 log𝑞 corresponds to the profit of a subset of items of I of weight at most 𝑖 . ◁

Since 𝑥∗ is an optimal solution, it holds that PI [𝑖] = 𝑝I (𝑥∗) for all 𝑖 ∈ [𝑤I (𝑥∗) . .𝑊 ].
Thus, Claim 2.16 yields that 𝐶 log𝑞

1 [𝑖] = PI [𝑖] for all 𝑖 ∈ [𝑤I (𝑥∗) . .𝑊 ], completing the
proof. □

Running Time

Now we analyze the running time of Algorithm 3. The key speedup comes from the
computation in Line 13, where we use Main Theorem 1.7 to perform the max-plus
convolution. Since Main Theorem 1.7 is phrased in terms of min-plus convolution of
near-convex functions, we will use the following corollary:

Corollary 2.17. Let 𝑓 : [𝑛] ↦→ [−𝑈 . .𝑈 ] and 𝑔 : [𝑚] ↦→ [−𝑈 . .𝑈 ] be given as in-
puts, where 𝑈 ∈ N. Let Δ ≥ 1 be such that both 𝑓 and 𝑔 are Δ-near concave. Then,
MaxConv(𝑓 , 𝑔) can be computed in time 𝑂 ((𝑛 +𝑚)Δ)

Proof. Noting that −𝑓 and −𝑔 are Δ-near convex (Definition 2.1), the result follows from
Main Theorem 1.7 and Fact 1.10. □
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The following lemma shows that the max-plus convolution of two near-concave
sequences remains near-concave.

Lemma 2.18. Let 𝑓 : [𝑛] ↦→ Z be Δ𝑓 -near concave and 𝑔 : [𝑚] ↦→ Z be Δ𝑔-near concave.
Then, ℎ := MaxConv(𝑓 , 𝑔) is Δℎ-near concave with Δℎ ≤ max{ Δ𝑓 ,Δ𝑔 }.

Proof. Let 𝑓 , 𝑔 be pointwise minimal concave functions with 𝑓 ≥ 𝑓 , 𝑔 ≥ 𝑔 and let
ℎ̆ := MaxConv(𝑓 , 𝑔). We will show that ℎ̆ ≥ ℎ ≥ ℎ̆ −max{ Δ𝑓 ,Δ𝑔 }, which implies the
statement.
To show that ℎ̆ ≥ ℎ, fix 𝑘 ∈ [𝑛 +𝑚] and let 𝑖∗ be a witness for ℎ(𝑘), i.e., ℎ(𝑘) =

𝑓 (𝑖∗) + 𝑔(𝑘 − 𝑖∗). Then, ℎ̆(𝑘) ≥ 𝑓 (𝑖∗) + 𝑔(𝑘 − 𝑖∗) ≥ 𝑓 (𝑖∗) + 𝑔(𝑘 − 𝑖∗) = ℎ(𝑘). So ℎ̆ ≥ ℎ.
To show thatℎ ≥ ℎ̆−Δ for Δ := max{ Δ𝑓 ,Δ𝑔 }, fix𝑘 ∈ [𝑛+𝑚] and let 𝑖∗ be a witness for

ℎ̆(𝑘), i.e., ℎ̆(𝑘) = 𝑓 (𝑖∗) +𝑔(𝑘−𝑖∗). Note that 𝑓 is piecewise a linear interpolation between
points on 𝑓 . In particular, there exist 𝑖𝐿 ≤ 𝑖∗ ≤ 𝑖𝑅 such that 𝑓 (𝑖𝐿) = 𝑓 (𝑖𝐿), 𝑓 (𝑖𝑅) = 𝑓 (𝑖𝑅)
and 𝑓 (𝑖) is linear for 𝑖 ∈ [𝑖𝐿 . . 𝑖𝑅]. Similarly, for 𝑗∗ := 𝑘 − 𝑖∗ there exist 𝑗𝐿 ≤ 𝑗∗ ≤ 𝑗𝑅
such that 𝑔( 𝑗𝐿) = 𝑔( 𝑗𝐿), 𝑔( 𝑗𝑅) = 𝑔( 𝑗𝑅) and 𝑔( 𝑗) is linear for 𝑗 ∈ [ 𝑗𝐿 . . 𝑗𝑅]. We pick the
maximum 𝑖𝐿, 𝑗𝐿 and minimum 𝑖𝑅, 𝑗𝑅 with this property.
Let 𝚤𝐿 := max{ 𝑖𝐿, 𝑘 − 𝑗𝑅 }, 𝚤𝑅 := min{ 𝑖𝑅, 𝑘 − 𝑗𝐿 }. Observe that the function 𝑠 (𝑖) :=

𝑓 (𝑖) + 𝑔(𝑘 − 𝑖) is linear for 𝑖 ∈ [𝚤𝐿 . . 𝚤𝑅], and that 𝚤𝐿 ≤ 𝑖∗ ≤ 𝚤𝑅 . Moreover, by definition
of ℎ̆ we have that 𝑠 (𝑖) = 𝑓 (𝑖) + 𝑔(𝑘 − 𝑖) ≤ ℎ̆(𝑘) for 𝑖 ∈ [𝚤𝐿 . . 𝚤𝑅]. Since 𝑖∗ is a witness
of ℎ̆(𝑘), we have 𝑠 (𝑖∗) = ℎ̆(𝑘). Combining the above, we obtain that 𝑠 (𝑖) = ℎ̆(𝑘) for all
𝑖 ∈ [𝚤𝐿 . . 𝚤𝑅]. In particular, 𝑓 (𝚤𝐿) + 𝑔(𝑘 − 𝚤𝐿) = ℎ̆(𝑘), and thus

ℎ(𝑘) ≥ 𝑓 (𝚤𝐿) + 𝑔(𝑘 − 𝚤𝐿)
= 𝑓 (𝚤𝐿) + 𝑔(𝑘 − 𝚤𝐿) + (𝑓 (𝚤𝐿) − 𝑓 (𝚤𝐿)) + (𝑔(𝑘 − 𝚤𝐿) − 𝑔(𝑘 − 𝚤𝐿))
= ℎ̆(𝑘) + (𝑓 (𝚤𝐿) − 𝑓 (𝚤𝐿)) + (𝑔(𝑘 − 𝚤𝐿) − 𝑔(𝑘 − 𝚤𝐿)) . (2.10)

Finally, since 𝚤𝐿 ∈ { 𝑖𝐿, 𝑘 − 𝑗𝑅 } and 𝑓 (𝑖𝐿) = 𝑓 (𝑖𝐿) and 𝑔( 𝑗𝑅) = 𝑔( 𝑗𝑅), one of the two
last summands in (2.10) must be 0. Using the near-concavity of 𝑓 and 𝑔, we can bound
the other summand by 𝑓 (𝚤𝐿) − 𝑓 (𝚤𝐿) ≥ −Δ𝑓 or 𝑔(𝑘 − 𝚤𝐿) − 𝑔(𝑘 − 𝚤𝐿) ≥ −Δ𝑔. This
yields ℎ(𝑘) ≥ ℎ̆(𝑘) − Δ𝑓 or ℎ(𝑘) ≥ ℎ̆(𝑘) − Δ𝑔. In any case, we conclude that ℎ(𝑘) ≥
ℎ̆(𝑘) −max{ Δ𝑓 ,Δ𝑔 } holds for every 𝑘 ∈ [𝑛 +𝑚]. □

The next lemma shows that the sequences we combine in Line 13 are near-concave.

Lemma 2.19 (Near Concavity). For every level ℓ ∈ [1 . . 𝑞] and every 𝑗 ∈ [1 . . 𝑞/2ℓ], it
holds that 𝐶ℓ𝑗 [𝐽 ℓ] is 𝑝max-near concave.

Proof. We prove the statement using induction. Focus in the base case ℓ = 0. For
each 𝑗 ∈ [1 . . 𝑞], we have that 𝐶0

𝑗 [𝐽 0] = PI0
𝑗
[𝐽 0]. In what follows, we argue that PI0

𝑗

is 𝑝max-near concave. Consider the fractional greedy solution for Knapsack: sort the
items (𝑝1, 𝑤1), . . . , (𝑝𝑚, 𝑤𝑚) in I0

𝑗 non-decreasingly by their profit-to-weight ratio, i.e.,
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so that 𝑝1/𝑤1 ≥ 𝑝2/𝑤2 ≥ · · · ≥ 𝑝𝑚/𝑤𝑚 . Let𝑀 :=
∑𝑚
𝑖=1𝑤𝑖 . Then, construct the sequence

P̃ [0 . . 𝑀] by setting breakpoints

P̃ [0] = 0, P̃ [𝑤1] = 𝑝1, P̃ [𝑤1 +𝑤2] = 𝑝1 + 𝑝2, . . . , P̃ [𝑤1 + · · · +𝑤𝑚] = 𝑝1 + · · · + 𝑝𝑚,

and a linear interpolation between every pair of consecutive breakpoints. In this
way, P̃ [𝑖] corresponds the optimal solution to the fractional version of Knapsack with
capacity 𝑖 , i.e., in the setting where items can be fractionally packed in a solution.

▷Claim 2.20. The sequence P̃ is concave, and it holds that P̃ [𝑖] ≥ PI0
𝑗
[𝑖] ≥ P̃ [𝑖]−𝑝max

for every 𝑖 ∈ [𝑀].

Proof . For each 𝑖 ∈ [1 . . 𝑀 − 1] it holds that P̃ [𝑖] − P̃ [𝑖 − 1] ≥ P̃ [𝑖 + 1] − P̃ [𝑖] since the
slopes of the linear pieces between breakpoints are non-decreasing due to the sorting
by profit-to-weight ratio. This means that P̃ is concave.
For each 𝑖 ∈ [𝑀], it holds that P̃ [𝑖] ≥ PI0

𝑗
[𝑖] since P̃ [𝑖] is the optimal solution of

the fractional Knapsack. Moreover, observe that the solution attaining P̃ [𝑖] contains
at most one item allocated fractionally. By removing that item, we obtain a feasible
(integral) solution to the Knapsack of capacity 𝑖 , and the profit is reduced by at most
𝑝max. This implies that PI0

𝑗
[𝑖] ≥ P̃ [𝑖] − 𝑝max. ◁

By Claim 2.20, we conclude that PI0
𝑗
[0 . . 𝑀] is 𝑝max-near concave (see Definition 2.1),

and therefore 𝐶0
𝑗 [𝐽 0] is as well, which completes the proof of the base case.

For the inductive step, consider a level ℓ > 0. Fix a 𝑗 ∈ [1 . . 𝑞/2ℓ]. By the inductive
hypothesis,𝐶ℓ−1

2 𝑗−1 [𝐽 ℓ−1] and𝐶ℓ−1
2 𝑗 [𝐽 ℓ−1] are 𝑝max-near concave. Thus, by Lemma 2.18 we

obtain that𝐶ℓ𝑗 [𝐽 ℓ] = MaxConv(𝐶ℓ−1
2 𝑗−1 [𝐽 ℓ−1],𝐶ℓ−1

2 𝑗 [𝐽 ℓ−1]) is 𝑝max-near concave, complet-
ing the proof. □

Lemma 2.21. Fix a level ℓ ∈ [1 . . 𝑞] and an iteration 𝑗 ∈ [1 . . 𝑞/2ℓ]. The computation of
𝐶ℓ𝑗 in Line 13 takes time 𝑂 (𝑝max

√
Δ2ℓ)

Proof. By Lemma 2.19, the sequences 𝐶ℓ−1
2 𝑗−1 [𝐽 ℓ−1],𝐶ℓ−1

2 𝑗 [𝐽 ℓ−1] are 𝑝max-near concave.
Thus, using Corollary 2.17, we can compute their max-plus convolution in time

𝑂 (𝑝max |𝐽 ℓ |) = 𝑂 (𝑝max
√
Δ2ℓ),

where we used 𝜂 = 𝑂 (1). □

Lemma 2.22 (Running Time of Algorithm 3). Algorithm 3 runs in time

𝑂 ((𝑝max𝑊 )2/3(𝑛𝑤max)1/3 + 𝑛𝑤max).

Proof. Recall that 𝑞 = min{ (𝑛/𝑝max)2/3(𝑊 /𝑤max)1/3,𝑊 /𝑤max } (up to a factor of 2).
Since𝑊 ≤ 𝑛𝑤max, we have that 𝑞 ≤ 𝑛. Moreover, since we assume without loss of
generality that𝑤max ≤ 𝑛, note that 𝑞 < 1 if and only if 𝑞 = (𝑛/𝑝max)2/3(𝑊 /𝑤max)1/3 < 1.
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This implies that 𝑝max > 𝑛
√︁
𝑊 /𝑤max. But in this case, the claimed running time is

Ω(𝑛𝑊 ), so the standard 𝑂 (𝑛𝑊 ) dynamic programming algorithm (Fact 2.12) already
achieves our time bound. Thus, we can assume without loss of generality that 1 ≤ 𝑞 ≤ 𝑛,
i.e., 𝑞 is a valid choice for the number of groups in which we split the item set I.
We start bounding the running time of the base case, i.e., the computation of the

arrays 𝐶0
𝑗 for 𝑗 ∈ [1 . . 𝑞] in Line 5. By Fact 2.12, and the definition Δ = 𝑤max𝑊 /𝑞 this

takes time

𝑂

(
𝑞∑︁
𝑗=1
|I0
𝑗 | (𝑊𝑞 +

√
Δ𝜂)

)
= 𝑂

(
𝑛(𝑊

𝑞
+
√
Δ𝜂)

)
= 𝑂

(
𝑛𝑊
𝑞
+ 𝑛

√︃
𝑤max𝑊
𝑞

)
. (2.11)

Now we bound the time of the combination step done in Lines 9 to 14. At level
ℓ ∈ [1 . . 𝑞] and iteration 𝑗 ∈ [1 . . 𝑞/2ℓ] the execution of Line 13 takes time𝑂 (𝑝max

√
Δ2ℓ)

by Lemma 2.21. Thus, we can bound the overall time as

log𝑞∑︁
ℓ=1

𝑞/2ℓ∑︁
𝑗=1
𝑂 (𝑝max

√
Δ2ℓ) =

log𝑞∑︁
ℓ=1

𝑞

2ℓ𝑂
(
𝑝max

√︃
𝑤max𝑊
𝑞

2ℓ
)
=

log𝑞∑︁
ℓ=1

𝑂

(
𝑝max

√︃
𝑞𝑤max𝑊

2ℓ

)
,

since this is a geometric series, it is bounded by the first term 𝑂 (𝑝max
√︁
𝑞𝑤max𝑊 ). Com-

bining this with (2.11), we obtain overall time

𝑂

(
𝑝max

√︁
𝑞𝑤max𝑊 + 𝑛𝑊𝑞 + 𝑛

√︃
𝑤max𝑊
𝑞

)
.

Recalling that 𝑞 = Θ(min{ (𝑛/𝑝max)2/3(𝑊 /𝑤max)1/3,𝑊 /𝑤max }), we obtain overall time

𝑂 ((𝑝max𝑊 )2/3(𝑛𝑤max)1/3 + 𝑛𝑤max + (𝑝max𝑊 )1/3(𝑛𝑤max)2/3).

Finally, note that using the inequality √𝑥𝑦 ≤ 𝑥 + 𝑦 for all 𝑥,𝑦 ≥ 0, we have

(𝑝max𝑊 )1/3(𝑛𝑤max)2/3 =
√︃
(𝑝max𝑊 )2/3(𝑛𝑤max)1/3𝑛𝑤max

≤ 𝑂 ((𝑝max𝑊 )2/3(𝑛𝑤max)1/3 + 𝑛𝑤max).

Thus, the overall running time is 𝑂 ((𝑝max𝑊 )2/3(𝑛𝑤max)1/3 + 𝑛𝑤max), as claimed. □

Proof of Main Theorem 1.2. Run Algorithm 3. Lemma 2.15 guarantees that Ilog𝑞
1 [𝑊 ] =

OPT with probability at least 1 − 1/𝑛2, which proves correctness. The running time is
immediate from Lemma 2.22. Observe that we can obtain success probability 1 − 1/𝑛𝑐
for any constant 𝑐 ≥ 2 by repeating the algorithm 𝑐/2 times. □
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Proof Sketch of Main Theorem 1.3 Our presentation focused on proving Main The-
orem 1.2. The proof of the symmetric variant stated in Main Theorem 1.3 is very similar,
thus we only sketch the required changes. Essentially, we need to exchange profits
with weights everywhere, which in turn means exchanging max-plus convolutions by
min-plus convolutions. In more detail: Instead of working with the profit sequence PI ,
we work with the weight sequenceWI , where the entryWI [ 𝑗] stores the minimum
weight of a solution with profit at least 𝑗 . We do not know OPT, but we can compute
an approximation �̃� satisfying �̃� − 𝑝max ≤ OPT ≤ �̃� in linear time (see e.g. [KPP04,
Theorem 2.5.4]). In the algorithm, we exchange all occurrences of 𝑤max by 𝑝max and all
occurrences of𝑊 by �̃� . With these changes, the functions𝐶ℓ𝑗 are now𝑤max-near convex
(instead of 𝑝max-near concave) so we use Main Theorem 1.7 directly instead of Corol-
lary 2.17. In this way, we obtain the array 𝐶 log𝑞

1 [�̃� − 𝑝max . . �̃� ] =WI [�̃� − 𝑝max . . �̃� ].
Then, we can infer OPT as the largest 𝑖 ∈ [�̃� − 𝑝max . . �̃� ] such thatWI [𝑖] ≤𝑊 .

Reconstructing an optimal solution So far we were only concerned with returning
the optimal profit of a given Knapsack instance. To reconstruct a solution 𝑥 ∈ { 0, 1 }𝑛
such that 𝑝I (𝑥) = OPT, we proceed as follows. After running Algorithm 3, we obtain
the sequences 𝐶ℓ1 [𝐽 ℓ] for every ℓ ∈ [log𝑞] and 𝑗 ∈ [1 . . 𝑞/2ℓ]. For the output entry
𝐶

log𝑞
1 [𝑊 ], we find a witness 𝑖 ∈ 𝐽 log𝑞−1, i.e., an index 𝑖 such that𝐶 log𝑞−1

1 [𝑖]+𝐶 log𝑞−1
2 [𝑊 −

𝑖] = 𝐶
log𝑞
1 [𝑊 ]. This can be done in time |𝐽 log𝑞−1 | = 𝑂 (

√︁
Δ𝑞/2) by simply trying

all possibilities. Then, we continue recursively finding witnesses for 𝑖 and 𝑊 − 𝑖 .
Eventually, we reach one entry in each array 𝐶0

𝑗 for 𝑗 ∈ [1 . . 𝑞]. Note that this takes
time proportional to the length of all sequences

∑log𝑞
ℓ=0 𝑞/2ℓ · 𝑂 ( |𝐽 ℓ |) = 𝑂 (𝑞

√
Δ) =

𝑂 (
√︁
𝑞𝑤max𝑊 ) ≤ 𝑂 (𝑛𝑤max), where the last step uses 𝑞 ≤ 𝑊 /𝑤max and𝑊 ≤ 𝑛𝑤max.

Finally, observe each array𝐶0
𝑗 was computed using the standard dynamic programming

algorithm of Fact 2.12, which allows to retrieve a solution for a fixed entry 𝐶0
𝑗 [𝑖] in the

same time it takes to compute it. Thus, we can retrieve the optimal solution with no
extra overhead on the overall running time.
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3 Algorithms via Bounded Monotone

Min-Plus Convolution

This chapter contains our algorithmic results obtained via Bounded Monotone min-plus
convolution. The content is based on our publication [BC22].

Organization The outline of the chapter is as follows. We start with preliminaries
in Section 3.1. In Section 3.2 we give our exact algorithm for Unbounded Knapsack,
proving Main Theorem 1.4. In Section 3.3 we give our exact algorithm for Knapsack,
establishingMain Theorem 1.1. Then, we turn to approximation schemes for Unbounded
Knapsack in Section 3.4, where we prove Theorem 1.5 and Main Theorem 1.6. Finally,
in Section 3.5 we give an equivalence (see Theorem 3.32) between Bounded Monotone
min-plus convolution and the problems we studied.

3.1 Preliminaries

We use the notation 𝑂 (𝑇 ) = ⋃
𝑐≥0𝑂 (𝑇 log𝑐 (𝑇 )) to suppress polylogarithmic factors.

Let I be a set of 𝑛 items with weights 𝑤1, . . . , 𝑤𝑛 ∈ N and profits 𝑝1, . . . , 𝑝𝑛 ∈ N. We
identify the item set I with the set { 1, . . . , 𝑛 }. We denote by 𝑥 ∈ N𝑛 a multiset of items,
where 𝑥𝑖 is the number of copies of the 𝑖-th item1. Sometimes we refer to 𝑥 as a solution.
Furthermore, we write 𝑝I (𝑥) for the total profit of 𝑥 , i.e., 𝑝I (𝑥) :=

∑
𝑖 𝑥𝑖 · 𝑝𝑖 . Similarly,

we write 𝑤I (𝑥) :=
∑
𝑖 𝑥𝑖 · 𝑤𝑖 for the weight of 𝑥 . When the item set I is clear from

context, we drop the subscript and simply write 𝑝 (𝑥) and 𝑤 (𝑥). We denote the number
of items contained in a solution 𝑥 by ∥𝑥 ∥1 :=

∑
𝑖 𝑥𝑖 . A solution 𝑥 is feasible if it satisfies

the constraint 𝑤 (𝑥) ≤ 𝑊 . We denote by 𝑝max := max𝑖 𝑝𝑖 the maximum profit and by
𝑤max := max𝑖 𝑤𝑖 the maximum weight of the input set I.

Bounded Monotone MaxPlus Convolution Recall that the min-plus convolution
of two integer sequences 𝐴[0 . . 𝑛], 𝐵 [0 . . 𝑛] is the sequence 𝐶 [0 . . 2𝑛] where 𝐶 [𝑘] =
min𝑖+ 𝑗=𝑘 𝐴[𝑖] + 𝐵 [𝑘]. For the special case when 𝐴 and 𝐵 are monotone increasing and
have bounded entries, Chi, Duan, Xie and Zhang proved the following remarkable
result:

1. When we work with Knapsack, we restrict 𝑥 ∈ { 0, 1 }𝑛
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3 Algorithms via Bounded Monotone Min-Plus Convolution

Theorem 3.1 (Bounded Monotone MinPlus Conv [Chi+22]). There is an algorithm
that given monotone increasing sequences 𝐴[0 . . 𝑛] and 𝐵 [0 . . 𝑛] with entries 𝐴[𝑖], 𝐵 [𝑖] ∈
[𝑂 (𝑛)] for all 𝑖 ∈ [𝑛], computes MinConv(𝐴, 𝐵) in expected time 𝑂 (𝑛1.5).
For our applications, we shall be concerned with the max-plus convolution of bounded

sequences, formally defined as follows.

Problem 3.2 (Bounded Monotone MaxPlus Conv). Given monotone non-decreasing
sequences 𝐴[0 . . 𝑛] and 𝐵 [0 . . 𝑛] with entries 𝐴[𝑖], 𝐵 [𝑖] ∈ [𝑂 (𝑛)] ∪ { −∞ } for all 𝑖 ∈ [𝑛].
The task is to compute their max-plus convolution 𝐶 = MaxConv(𝐴, 𝐵).
The following simple corollary shows that the result of Chi, Duan, Xie and Zhang

can be used to solve Bounded Monotone MaxPlus Conv:

Corollary 3.3 (Bounded Monotone MaxPlus Conv [Chi+22]). There is an algorithm
that solves Bounded Monotone MaxPlus Conv in expected time 𝑂 (𝑛1.5).
Proof. We describe how to reduce Bounded Monotone MaxPlus Conv to min-plus
convolution on monotone increasing sequences and values in [𝑂 (𝑛)] via a simple chain
of reductions:

• Removing −∞: Let 𝐴[0 . . 𝑛], 𝐵 [0 . . 𝑛] be an instance of Bounded Monotone MaxPlus
Conv, i.e., 𝐴, 𝐵 are monotone non-decreasing and 𝐴[𝑖], 𝐵 [𝑖] ∈ [𝑂 (𝑛)] ∪ { −∞ }. We
start by reducing it to an equivalent instance of max-plus convolution on monotone
non-decreasing sequences and values in [𝑂 (𝑛)] (i.e. we remove the −∞ entries). Let
Δ be the maximum entry of 𝐴 and 𝐵. Construct a new sequence 𝐴′[0 . . 𝑛] where
𝐴′[𝑖] := 0 if 𝐴[𝑖] = −∞, and 𝐴′[𝑖] := 𝐴[𝑖] + 2Δ otherwise. Construct 𝐵′[0 . . 𝑛] from 𝐵

in the same way. Note that 𝐴′ and 𝐵′ are monotone non-decreasing and have values
in [𝑂 (𝑛)]. Let 𝐶 := MaxConv(𝐴, 𝐵) and 𝐶′ := MaxConv(𝐴′, 𝐵′). Observe that we
can infer the values of any entry 𝐶 [𝑘] from 𝐶′: if 𝐶′[𝑘] ≤ 3Δ then 𝐶 [𝑘] = −∞ and
otherwise 𝐶 [𝑘] = 𝐶′[𝑘] − 4Δ.

• Reducing to max-plus convolution on non-increasing sequences: Now we reduce an
instance 𝐴[0 . . 𝑛], 𝐵 [0 . . 𝑛] of max-plus convolution on monotone non-decreasing
sequences and values in [𝑂 (𝑛)] to an instance of min-plus convolution on monotone
non-increasing sequences and values in [𝑂 (𝑛)]. Let Δ be the maximum entry of 𝐴
and 𝐵. Construct two new sequences 𝐴′ and 𝐵′ by setting 𝐴′[𝑖] := Δ − 𝐴[𝑖] and
𝐵′[𝑖] := Δ − 𝐵 [𝑖]. Then 𝐴′ and 𝐵′ are monotone non-increasing and given their
min-plus convolution we can easily infer the max-plus convolution of 𝐴 and 𝐵.

• Reducing to min-plus convolution on increasing sequences: Next, we reduce an instance
𝐴[0 . . 𝑛], 𝐵 [0 . . 𝑛] of min-plus convolution on monotone non-increasing sequences
and values in [𝑂 (𝑛)] to an instance of min-plus convolution on increasing sequences
and values in [𝑂 (𝑛)]. Construct two new sequences𝐴′ and 𝐵′ by reversing and adding
a linear function to 𝐴 and 𝐵, i.e., set 𝐴′[𝑖] := 𝐴[𝑛 − 𝑖] + 𝑖 and 𝐵′[𝑖] := 𝐵 [𝑛 − 𝑖] + 𝑖 for
every 𝑖 ∈ [𝑛]. Note that 𝐴′ and 𝐵′ are monotone increasing sequences, and given
their min-plus convolution we can infer the min-plus convolution of 𝐴 and 𝐵.
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Combining the reductions above, we conclude that Bounded Monotone MaxPlus
Conv can be reduced in linear time to min-plus convolution on monotone increasing
sequences with values in [𝑂 (𝑛)]. Applying Theorem 3.1 yields the corollary. □

Witnesses Let 𝐴[0 . . 𝑛], 𝐵 [0 . . 𝑛] and let 𝐶 := MaxConv(𝐴, 𝐵). Given 𝑘 ∈ [2𝑛], we
say that 𝑖 ∈ [𝑛] is a witness for𝐶 [𝑘] if𝐶 [𝑘] = 𝐴[𝑖] + 𝐵 [𝑘 − 𝑖]. We say that𝑀 [0 . . 2𝑛] is
a witness array, if each entry𝑀 [𝑘] contains some witness for 𝐶 [𝑘].

For the general case of max-plus convolution (i.e. not the bounded monotone version)
it is well known (e.g. [Sei95; Alo+92]) that computing the witness array has the same
time complexity as max-plus convolution, up to a polylog(𝑛) overhead. This reduction
does not immediately apply to BoundedMonotoneMaxPlus Conv because the sequences
might not remain monotone. However, in what follows we show how to make it work.

Fix an instance 𝐴[0 . . 𝑛], 𝐵 [0 . . 𝑛] of Bounded Monotone MaxPlus Conv and let 𝐶 :=
MaxConv(𝐴, 𝐵). To compute the witness array 𝑀 [0 . . 2𝑛], we first show that if an
entry 𝐶 [𝑘] has a unique witness then we can easily find it. Then we reduce to the
unique witness case with randomization.
Lemma 3.4. If Bounded Monotone MaxPlus Conv on length-𝑛 sequences can be computed
in time 𝑇 (𝑛), then in time 𝑂 (𝑇 (𝑛)) we can compute an array 𝑈 [0 . . 2𝑛] such that for
every 𝑘 ∈ [2𝑛], if 𝐶 [𝑘] has a unique witness𝑀 [𝑘], then 𝑈 [𝑘] = 𝑀 [𝑘]. The output 𝑈 [𝑘]
is undefined otherwise.

Proof. We will describe how to compute the unique witness bit by bit. For each bit
position 𝑏 ∈ [⌈log𝑛⌉] let 𝑖𝑏 ∈ { 0, 1 } be the 𝑏-th bit of 𝑖 . Construct sequences 𝐴𝑏, 𝐵𝑏
defined as 𝐴𝑏 [𝑖] := 2𝐴[𝑖] + 𝑖 + 𝑖𝑏 and 𝐵𝑏 [𝑖] := 2𝐵 [𝑖] + 𝑖 for 𝑖 ∈ [𝑛]. Note that 𝐴𝑏, 𝐵𝑏
are still monotone non-decreasing and have entries bounded by 𝑂 (𝑛). Compute 𝐶𝑏 :=
MaxConv(𝐴𝑏, 𝐵𝑏). For each 𝑘 ∈ [2𝑛], we set the 𝑏-th bit of 𝑈 [𝑘] to 𝐶𝑏 [𝑘] mod 2. It
is not hard to see that for those entries 𝐶 [𝑘] which have unique witnesses𝑈 [𝑘], this
procedure indeed gives the 𝑏-th bit of 𝑈 [𝑘]. Indeed, note that because we double every
entry in 𝐴𝑏, 𝐵𝑏 and add a linear function, adding 𝑖𝑏 does not change the maximizer.
Therefore, if 𝐶 [𝑘] has a unique witness then 𝐶′[𝑘] has a unique witness whose 𝑏-th
bit can be read from the least significant bit of 𝐶′[𝑘]. Thus, by repeating this over all
bit positions 𝑏 ∈ [⌈log𝑛⌉], we compute the entire array of unique witnesses 𝑈 using
𝑂 (log𝑛) invocations to Bounded Monotone MaxPlus Conv, as desired. □

Lemma 3.5 (Witness Finding). If Bounded Monotone MaxPlus Conv can be computed in
time 𝑇 (𝑛), then a witness array𝑀 [0 . . 2𝑛] can be computed in time 𝑂 (𝑇 (𝑛)).
Proof. Fix a set 𝑆 ⊆ [𝑛]. We say that an entry 𝐶 [𝑘] gets isolated by 𝑆 if the number of
witnesses of𝐶 [𝑘] in 𝑆 is exactly one. We will now describe how to find the witnesses of
all entries isolated by 𝑆 (the idea and argument is similar as in the proof of Lemma 3.4).
Construct sequences 𝐴′, 𝐵′ where for each 𝑖 ∈ [𝑛] we set

𝐴′[𝑖] :=
{

2𝐴[𝑖] + 𝑖 + 1 if 𝑖 ∈ 𝑆
2𝐴[𝑖] + 𝑖 otherwise
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and 𝐵′[𝑖] := 2𝐵 [𝑖] +𝑖 . Note that these sequences are monotone non-decreasing and have
entries bounded by𝑂 (𝑛). Let𝐶′ := MaxConv(𝐴′, 𝐵′). We claim that if an entry𝐶 [𝑘] is
isolated by 𝑆 , then 𝐶′[𝑘] has a unique witness. To see this, note that if no witness of
𝐶 [𝑘] gets included in 𝑆 , then we have that 𝐶′[𝑘] = 2𝐶 [𝑘] + 𝑘 . If at least one witness
gets included in 𝑆 , then 𝐶′[𝑘] = 2𝐶 [𝑘] + 𝑘 + 1. In particular, if a witness gets isolated
then𝐶′[𝑘] will have a unique witness, as claimed. Thus, by Lemma 3.4 we can compute
in time 𝑂 (𝑇 (𝑛)) an array 𝑈 [0 . . 2𝑛] which contains the witnesses of all entries that
are isolated by 𝑆 . Note that some entries of 𝑈 might be undefined, but we can simply
check in time 𝑂 (𝑛) which entries of 𝑈 are true witnesses, by iterating over 𝑘 ∈ [2𝑛]
and checking whether the equality 𝐶 [𝑘] = 𝐴[𝑈 [𝑘]] + 𝐵 [𝑘 −𝑈 [𝑘]] holds.
Now we show how to select appropriate sets 𝑆 . Fix an entry 𝐶 [𝑘] and denote by

𝑅 ∈ [𝑛] its number of witnesses. We sample 𝑆 ⊆ [𝑛] by including each element
𝑖 ∈ [𝑛] independently with probability 𝑝 := 2−𝛼 where 𝛼 ∈ N is chosen such that
2𝛼−2 ≤ 𝑅 ≤ 2𝛼−1. Let 𝑋 be the random variable counting the number of witnesses of
𝐶 [𝑘] that get sampled in 𝑆 . By keeping the first two terms in the inclusion-exclusion
formula we have thatP[𝑋 ≥ 1] ≥ 𝑝 ·𝑅−

(𝑅
2
)
𝑝2, and by a union boundP[𝑋 ≥ 2] ≤

(𝑅
2
)
𝑝2.

Thus,
P[𝑋 = 1] = P[𝑋 ≥ 1] − P[𝑋 ≥ 2] ≥ 𝑝 · 𝑅(1 − 𝑝 · 𝑅) ≥ 1/8

where the last inequality holds because 1/8 ≤ 𝑝 · 𝑅 ≤ 1/4 due to the choice of 𝛼 . In
particular, 𝑆 isolates 𝐶 [𝑘] with probability at least 1/8.
We now put the pieces together. Iterate over the 𝑂 (log𝑛) possible values for 𝛼 .

Sample a set 𝑆 and find all witnesses of entries isolated by 𝑆 as described earlier in
time 𝑂 (𝑇 (𝑛)). As we argued above, if 𝐶 [𝑘] has 𝑅 witnesses and 2𝛼−2 ≤ 𝑅 ≤ 2𝛼−1, then
𝐶 [𝑘] gets isolated with constant probability. Thus, by repeating this step with the same
𝛼 for 𝑂 (log𝑛) freshly sampled sets 𝑆 we find a witness for all such entries 𝐶 [𝑘] with
probability at least 1− 1/poly(𝑛). Combining the results across iterations we obtain the
array of witnesses𝑀 [0 . . 2𝑛] in time 𝑂 (𝑇 (𝑛)), as desired.
Finally, we note that this procedure can be derandomized with a polylogarithmic

overhead using 𝜀-biased sets, as in [AN96]. □

Niceness assumptions on time bounds In order to phrase our reductions, we make
the following assumptions about time bounds.

Assumption 3.6 (Niceness Assumptions). For all time bounds 𝑇 (𝑛) in this chapter, we
assume that

1. 𝑇 (𝑂 (𝑛)) ≤ 𝑂 (𝑇 (𝑛)),

2. 𝑘 ·𝑇 (𝑛) ≤ 𝑂 (𝑇 (𝑘𝑛)) for any 𝑘, 𝑛 ≥ 1.

Note that these assumptions are satisfied by all natural time bounds of polynomial-time
or pseudopolynomial-time algorithms. In particular, it holds for all functions of the
form 𝑇 (𝑛) = Θ(𝑛𝛼 log𝛽 𝑛) for any constants 𝛼 ≥ 1, 𝛽 ≥ 0.
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3.2 Exact algorithm for Unbounded Knapsack

This section is devoted to prove the following theorem:

Theorem 3.7. If Bounded Monotone MaxPlus Conv on length-𝑛 sequences can be solved
in time 𝑇 (𝑛), then Unbounded Knapsack can be solved in time 𝑂 (𝑛 + 𝑇 (𝑝max + 𝑤max)),
where 𝑝max is the largest profit of any item and 𝑤max is the largest weight of any item.

Note that Main Theorem 1.4 follows as an immediate corollary of Theorem 3.7 by
plugging in Chi, Duan, Xie and Zhang’s algorithm (Corollary 3.3).
For the rest of this section, fix an instance (I,𝑊 ) of Unbounded Knapsack. We

define the profit sequence PI [·], where for each 𝑗 ∈ N, the entry PI [ 𝑗] is defined the
maximum profit achievable with capacity 𝑗 , i.e.,

PI [ 𝑗] := max{ 𝑝I (𝑥) | 𝑥 ∈ N𝑛, 𝑤I (𝑥) ≤ 𝑗 }.

Note that PI [0] = 0.
Given an integer 𝑘 ≥ 0 we also define the sequence PI,𝑘 [0 . .𝑊 ], where we restrict to

solutions with at most 2𝑘 items, for any nonnegative integer 𝑘 . That is, for any 𝑗 ∈ [𝑊 ]
we set

PI,𝑘 [ 𝑗] := max{ 𝑝I (𝑥) | 𝑥 ∈ N𝑛, 𝑤(𝑥) ≤ 𝑗, ∥𝑥 ∥1 ≤ 2𝑘 }.
When I is clear from context, we will drop the subscript and write P[0 . .𝑊 ] and
P𝑘 [0 . .𝑊 ]. Throughout this section we set Δ := 𝑝max +𝑤max.
We start with a high level overview of the proof of Theorem 3.7.

Proof Overview Since each item has weight at least 1, any feasible solution consists
of at most𝑊 items. Thus, our goal is to compute the value P⌈log𝑊 ⌉ [𝑊 ] = OPT. The
natural approach is to use dynamic programming: since P0 consists of solutions of at
most one item, it can be computed in time 𝑂 (𝑛). For 𝑖 > 0 we can compute P𝑖 [0 . .𝑊 ]
by taking the max-plus convolution of P𝑖−1 [0 . .𝑊 ] with itself. This gives an algorithm
in time 𝑂 (𝑊 2 log𝑊 ).
Jansen and Rohwedder [JR23] and Axiotis and Tzamos [AT19] showed that instead

of convolving sequences of length𝑊 , it suffices to convolve only 𝑂 (𝑤max) entries of
P𝑖−1 in each iteration. This improves the running time to 𝑂 (𝑤2

max log𝑊 ) by using the
naive algorithm for max-plus convolution. In more detail, the approach of Jansen and
Rohwedder [JR23] is the following. Suppose 𝑥 is the optimal solution for a target value
P𝑖 [ 𝑗]. They showed that 𝑥 can be split into two solutions 𝑥1, 𝑥2 such that (i) the number
of items in each part is at most 2𝑖−1 and (ii) the difference between the weights of both
parts is at most 𝑂 (𝑤max). Thus, (i) guarantees that both 𝑥1 and 𝑥2 are optimal solutions
for two entries of P𝑖−1, and (ii) implies that these entries lie in an interval in P𝑖−1 of
length 𝑂 (𝑤max). In this way, they can afford to perform the max-plus convolution of
only 𝑂 (𝑤max) entries in P𝑖−1.

To show the existence of such a partitioning of 𝑥 they used Steinitz’ Lemma [Ste13].
This lemma states that any collection of𝑚 vectors in R𝑑 with infinity norm at most 1,
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whose sum is 0, can be permuted such that every prefix sum has norm at most 𝑂 (𝑑)
(see Lemma 3.8 for the precise statement). The partitioning of 𝑥 follows from Steinitz’
Lemma by taking the weights of the items picked by 𝑥 as 1-dimensional vectors. The
usage of Steinitz’ Lemma to reduce the number of states in dynamic programs was
pioneered by Eisenbrand and Weismantel [EW20], and further refined by Jansen and
Rohwedder [JR23].

In our algorithm, we use Steinitz’ Lemma in a similar way to split the number of items
and the weight of 𝑥 , but additionally we use it to ensure that the profits of the solutions
𝑥1, 𝑥2 differ by at most 𝑂 (𝑝max) (see Lemma 3.9). In this way, by carefully handling the
subproblems P𝑖−1 we can enforce that the values of the 𝑂 (𝑤max) entries that need to be
convolved have values in a range of size 𝑂 (𝑝max). Since the arrays P𝑖 are monotone
non-decreasing, we can then apply the algorithm for Bounded Monotone MaxPlus Conv,
and thus handle each subproblem in time 𝑂 ((𝑝max +𝑤max)1.5). The resulting total time
to compute P𝑖 [𝑊 ] is 𝑂 (𝑛 + 𝑘 · 𝑇 (Δ)). With additional preprocessing we ensure that
𝑘 = 𝑂 (logΔ) (see Lemma 3.13), turning the running time into 𝑂 (𝑛 +𝑇 (Δ)).

3.2.1 Preparations

We need to show that when computing the optimal answer for some entry P𝑖 [ 𝑗], we
can split it in such a way that both its total profit and its total weight are roughly halved.
Our main tool to show this is the Steinitz Lemma [GS80; Ste13]. A beautiful proof for it
can be found in [Mat10, Miniature 20].

Lemma 3.8 ([Ste13; GS80, Steinitz Lemma]). Let ∥ · ∥ be a norm in R𝑚 and let𝑀 be an
arbitrary collection of 𝑡 vectors in R𝑚 such that ∥𝑣∥ ≤ 1 for every 𝑣 ∈ 𝑀 and

∑
𝑣∈𝑀 𝑣 = 0.

Then, it is possible to permute the vectors in 𝑀 into a sequence (𝑣1, . . . , 𝑣𝑡 ) such that
∥𝑣1 + · · · + 𝑣𝑘 ∥ ≤ 𝑚 holds for every 𝑘 ∈ [𝑡].

We use the Steinitz Lemma to argue that the items in a solution can be split in two
parts in such a way that both the total profit and the total weight are roughly halved:

Lemma 3.9 (Splitting Lemma). Let 𝑖 ≥ 1 and consider a solution 𝑥 ∈ N𝑛 with ∥𝑥 ∥1 ≤ 2𝑖 .
Then there is a partition of 𝑥 into two solutions 𝑥1, 𝑥2 ∈ N𝑛 with the following properties:

1. (Splitting of Items) ∥𝑥1∥1, ∥𝑥2∥1 ≤ 2𝑖−1 and 𝑥 = 𝑥1 + 𝑥2,

2. (Approximate Splitting of Weight) |𝑤 (𝑥1) − 1
2𝑤 (𝑥) | ≤ 2Δ and |𝑤 (𝑥2) − 1

2𝑤 (𝑥) | ≤ 2Δ,

3. (Approximate Splitting of Value) |𝑝 (𝑥1) − 1
2𝑝 (𝑥) | ≤ 2Δ and |𝑝 (𝑥2) − 1

2𝑝 (𝑥) | ≤ 2Δ.

Proof. Let 𝑡 := ∥𝑥 ∥1 ≤ 2𝑖 . First assume that 𝑡 is even; we will remove this assumption
later. Write 𝑥 =

∑𝑡
𝑗=1 𝑥

( 𝑗) where each 𝑥 ( 𝑗) corresponds to one copy of some item, i.e.
∥𝑥 ( 𝑗) ∥1 = 1, and set 𝑣 ( 𝑗) =

(
𝑤 (𝑥 ( 𝑗 ) )
𝑝 (𝑥 ( 𝑗 ) )

)
. Note that ∥𝑣 ( 𝑗) ∥∞ ≤ Δ. By applying the Steinitz
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Lemma on the vectors 𝑣 ( 𝑗) − 1
𝑡

(
𝑤 (𝑥)
𝑝 (𝑥)

)
(after normalizing by Δ), we can assume that the

𝑣 ( 𝑗)’s are ordered such that  𝑡/2∑︁
𝑗=1

𝑣 ( 𝑗) − 1
2

(
𝑤 (𝑥)
𝑝 (𝑥)

) 
∞
≤ 2Δ. (3.1)

Fix this ordering, and let 𝑥1 = 𝑥
(1) + . . . + 𝑥 (𝑡/2) , corresponding to 𝑣 (1), . . . , 𝑣 (𝑡/2) , and let

𝑥2 = 𝑥 (𝑡/2+1) + . . . + 𝑥 (𝑡) , corresponding to the remaining vectors 𝑣 (𝑡/2+1), . . . , 𝑣 (𝑡) . We
now check that 𝑥1, 𝑥2 satisfy the properties of the lemma:

• Property 1 is clearly satisfied by construction.

• For property 2, note that (3.1) implies |𝑤 (𝑥1) − 1
2𝑤 (𝑥) | ≤ 2Δ. Since 𝑤 (𝑥2) = 𝑤 (𝑥) −

𝑤 (𝑥1), we have that |𝑤 (𝑥2) − 1
2𝑤 (𝑥) | = |

1
2𝑤 (𝑥) −𝑤 (𝑥1) | ≤ 2Δ.

• Property 3 follows in the same way as property 2.

If 𝑡 is odd, then 𝑡 + 1 ≤ 2𝑖 , so we can add a dummy vector 𝑥 (𝑡+1) = 0 with corresponding
𝑣 (𝑡+1) :=

( 0
0
)
and repeat the same argument with 𝑡 := 𝑡 + 1. □

When we apply Lemma 3.9 to an optimal solution corresponding to an entry of the
array P𝑖 , we obtain the following lemma.

Lemma 3.10. Let 𝛽 > 0. For any index 𝑗 ∈ [𝛽 − 8Δ . . 𝛽 + 8Δ] ∩ [𝑊 ] there are indices
𝑗1, 𝑗2 ∈ [ 𝛽2 − 8Δ . . 𝛽2 + 8Δ] ∩ [𝑊 ] with the following properties:

(i) 𝑗1 + 𝑗2 = 𝑗 ,

(ii) P𝑖 [ 𝑗] = P𝑖−1 [ 𝑗1] + P𝑖−1 [ 𝑗2],

(iii) |P𝑖−1 [ 𝑗1] − 1
2P𝑖 [ 𝑗] | ≤ 2Δ and |P𝑖−1 [ 𝑗2] − 1

2P𝑖 [ 𝑗] | ≤ 2Δ.

Proof. Let 𝑥 ∈ N𝑛 be an optimal solution for P𝑖 [ 𝑗], that is, we have 𝑝 (𝑥) = P𝑖 [ 𝑗],
𝑤 (𝑥) ≤ 𝑗 , and ∥𝑥 ∥1 ≤ 2𝑖 . We apply Lemma 3.9 to 𝑥 and obtain 𝑥1, 𝑥2 ∈ N𝑛 such that
𝑥1 + 𝑥2 = 𝑥 . We do a case distinction based on 𝑤 (𝑥1), 𝑤(𝑥2):

• 𝑤 (𝑥1), 𝑤(𝑥2) ∈ [ 𝑗2 − 4Δ . . 𝑗2 + 4Δ]: Let 𝑗1 := 𝑤 (𝑥1) and 𝑗2 := 𝑗 − 𝑗1; note that 𝑗1, 𝑗2 ∈
[ 𝑗2 − 4Δ . . 𝑗2 + 4Δ] ⊆ [ 𝛽2 − 8Δ . . 𝛽2 + 8Δ]. We argue that 𝑝 (𝑥1) = P𝑖−1 [ 𝑗1] and 𝑝 (𝑥2) =
P𝑖−1 [ 𝑗2]. Indeed, since 𝑤 (𝑥1) = 𝑗1 the solution 𝑥1 is feasible for weight 𝑗1, so 𝑝 (𝑥1) ≤
P𝑖−1 [ 𝑗1]. Similarly, since 𝑤 (𝑥2) = 𝑤 (𝑥) − 𝑤 (𝑥1) ≤ 𝑗 − 𝑤 (𝑥1) = 𝑗2 the solution 𝑥2 is
feasible for weight 𝑗2, so 𝑝 (𝑥2) ≤ P𝑖−1 [ 𝑗2]. Moreover, by optimality of 𝑥 we have
𝑝 (𝑥1) + 𝑝 (𝑥2) = 𝑝 (𝑥) = P𝑖 [ 𝑗] ≥ P𝑖−1 [ 𝑗1] + P𝑖−1 [ 𝑗2], so we obtain 𝑝 (𝑥1) = P𝑖−1 [ 𝑗1]
and 𝑝 (𝑥2) = P𝑖−1 [ 𝑗2]. Using these equations together with 𝑝 (𝑥) = P𝑖 [ 𝑗], property (ii)
follows from 𝑝 (𝑥) = 𝑝 (𝑥1) +𝑝 (𝑥2), property (iii) follows from Property 3 of Lemma 3.9,
and property (i) holds by definition of 𝑗2.
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• 𝑤 (𝑥1) < 𝑗

2 − 4Δ: Property 2 of Lemma 3.9 implies that |𝑤 (𝑥1) − 𝑤 (𝑥2) | ≤ 4Δ, and
thus 𝑤 (𝑥2) ≤ 𝑗

2 . Therefore, 𝑥1 and 𝑥2 are feasible for weights 𝑗1 := ⌊ 𝑗2⌋ and 𝑗2 := ⌈ 𝑗2⌉,
respectively. Note that 𝑗1, 𝑗2 ∈ [ 𝛽2 − (4Δ + 1) . . 𝛽2 + (4Δ + 1)] ⊆ [ 𝛽2 − 8Δ . . 𝛽2 + 8Δ].
Property (i) is obvious, and properties (ii) and (iii) now follow as in the first case.

• 𝑤 (𝑥1) > 𝑗

2 + 4Δ: Similarly as the previous case, property 2 of Lemma 3.9 implies that
𝑤 (𝑥2) ≥ 𝑗

2 . Therefore, we have 𝑤 (𝑥) = 𝑤 (𝑥1) +𝑤 (𝑥2) > 𝑗 + 4Δ, which contradicts the
assumption 𝑤 (𝑥) ≤ 𝑗 .

• 𝑤 (𝑥2) < 𝑗

2 − 4Δ or 𝑤 (𝑥2) > 𝑗

2 + 4Δ: Symmetric to the previous two cases. □

3.2.2 The algorithm

We are now ready to present our algorithm. The idea is to use the Splitting Lemma 3.9
to convolve smaller sequences which are bounded and monotone.

Recall that since any feasible solution contains at most𝑊 items, to compute the value
of the optimal solution it suffices to compute P𝑘 [𝑊 ] where 𝑘 := ⌈log𝑊 ⌉. Our approach
is as follows. We do binary search for OPT in the range [0 . . 𝑝max ·𝑊 ]. Suppose we have
the current guess 𝛼 . Instead of computing the arrays P𝑖 , we compute clipped versions
𝐶𝑖 , which has the property that 𝐶𝑖 [ 𝑗] ≥ 𝛼 if and only if P𝑖 [ 𝑗] ≥ 𝛼 .

We compute 𝐶𝑖 as follows: At every step, we only compute the values for 𝑂 (Δ)
weights 𝐶𝑖 [𝑊 · 2𝑖−𝑘 − 8Δ . .𝑊 · 2𝑖−𝑘 + 8Δ]. For the base case 𝑖 = 0, we simply set
𝐶0 [0 . . 8Δ] := P0 [0 . . 8Δ]. Note that this can be done in time𝑂 (𝑛+Δ) by doing one pass
over the item set, since P0 only considers solutions with at most one item. Moreover,
observe that 𝐶0 [0 . . 8Δ] is monotone non-decreasing by definition of P0.

For the general case 𝑖 > 0 we first compute an array 𝐴𝑖 [𝑊 · 2𝑖−𝑘 − 8Δ . .𝑊 · 2𝑖−𝑘 + 8Δ]
by taking the max-plus convolution of 𝐶𝑖−1 [𝑊 · 2𝑖−1−𝑘 − 8Δ . .𝑊 · 2𝑖−1−𝑘 + 8Δ] with
itself. To obtain 𝐶𝑖 [𝑊 · 2𝑖−𝑘 − 8Δ . .𝑊 · 2𝑖−𝑘 + 8Δ], we clip the values in 𝐴𝑖 which are
too large, and set to −∞ the values which are too small. This ensures that all values in
𝐶𝑖 lie within a range of 𝑂 (Δ), except for values that are −∞. Consult Algorithm 4 for
the pseudocode.

Lemma 3.11. Algorithm 4 runs in time 𝑂 (𝑛 + 𝑇 (Δ) log𝑊 ), where 𝑇 (Δ) is the time
complexity of Bounded Monotone MaxPlus Conv on sequences of length Δ, and computes a
value 𝐶𝑘 [𝑊 ] which satisfies 𝐶𝑘 [𝑊 ] ≥ 𝛼 if and only if OPT = P𝑘 [𝑊 ] ≥ 𝛼 .

Proof. We start with the running time analysis. As mentioned above, the initialization
in Line 2 takes time 𝑂 (𝑛 + Δ) since it suffices to scan the item set. Due to the clipping,
at every execution of Line 6 we compute a max-plus convolution of sequences of length
𝑂 (Δ) and values in [𝑂 (Δ)] ∪ { −∞ } (after shifting the indices and values appropriately).
Furthermore, note that all convolutions involve monotone non-decreasing sequences.
Indeed, as noted above the starting sequence 𝐶0 is monotone non-decreasing. Convolv-
ing it with itself produces a monotone non-decreasing sequence again, and the clipping
in Line 7 preserves monotonicity. The same argument applies for further iterations.
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Algorithm 4 Given an instance (I,𝑊 ) of Unbounded Knapsack and a guess 𝛼 ∈ [𝑝max ·
𝑊 ], the algorithm computes a value 𝐶𝑘 [𝑊 ] satisfying the guarantee in Lemma 3.11.
1 𝑘 := ⌈log𝑊 ⌉
2 Initialize 𝐶0 [0 . . 8Δ] := P0 [0 . . 8Δ] by iterating over the item set I once
3 𝐽 0 := [𝑊 · 2−𝑘 − 8Δ . .𝑊 · 2−𝑘 + 8Δ]
4 for 𝑖 = 1, . . . , 𝑘 do

5 𝐽 𝑖 := [𝑊 · 2𝑖−𝑘 − 8Δ . .𝑊 · 2𝑖−𝑘 + 8Δ]
6 𝐴𝑖 [𝐽 𝑖] := MaxConv(𝐶𝑖−1 [𝐽 𝑖−1],𝐶𝑖−1 [𝐽 𝑖−1])

7 For every 𝑗 ∈ 𝐽 𝑖 set 𝐶𝑖 [ 𝑗] :=


⌈𝛼 · 2𝑖−𝑘⌉ + 24Δ if 𝐴𝑖 [ 𝑗] > 𝛼 · 2𝑖−𝑘 + 24Δ
−∞ if 𝐴𝑖 [ 𝑗] < 𝛼 · 2𝑖−𝑘 − 40Δ
𝐴𝑖 [ 𝑗] otherwise

8 return 𝐶𝑘 [𝑊 ]

The running time of the clipping step in Line 7 takes time 𝑂 (Δ) ≤ 𝑂 (𝑇 (Δ)). Thus, the
running time of Algorithm 4 is 𝑂 (𝑛 +𝑇 (Δ) log𝑊 ), where 𝑇 (Δ) is the running time to
compute Bounded Monotone MaxPlus Conv on sequences of length Δ.

Next we argue about correctness. For each 𝑖 ∈ [𝑘], let 𝐽 𝑖 = [𝑊 ·2𝑖−𝑘−8Δ . .𝑊 ·2𝑖−𝑘+8Δ]
be as defined in Algorithm 4. The correctness hinges on the following claim.

▷ Claim 3.12. For every 𝑖 ∈ [𝑘] and every index 𝑗 ∈ 𝐽 𝑖 ∩ [𝑊 ] the following holds:

• If P𝑖 [ 𝑗] ∈ [𝛼 · 2𝑖−𝑘 − 40Δ . . 𝛼 · 2𝑖−𝑘 + 24Δ], then 𝐶𝑖 [ 𝑗] = P𝑖 [ 𝑗].

• If P𝑖 [ 𝑗] > 𝛼 · 2𝑖−𝑘 + 24Δ, then 𝐶𝑖 [ 𝑗] = ⌈𝛼 · 2𝑖−𝑘⌉ + 24Δ.

• If P𝑖 [ 𝑗] < 𝛼 · 2𝑖−𝑘 − 40Δ, then 𝐶𝑖 [ 𝑗] = −∞.

Intuitively, the claim says that entries “close” to the (scaled) guess 𝛼 ·2𝑖−𝑘 get computed
exactly, while entries below and above get clipped appropriately.

Proof . We prove the claim by induction on 𝑖 . For the base case, consider 𝑖 = 0. Note
that since 𝛼 ∈ [0 . . 𝑝max ·𝑊 ] and 𝑘 = ⌈log𝑊 ⌉, we have 𝛼 · 2−𝑘 ≤ 𝑝max ≤ Δ. Thus,
[𝛼 · 2−𝑘 − 40Δ . . 𝛼 · 2−𝑘 + 24Δ] contains the whole interval [0 . . Δ] of possible values of
P0 [ 𝑗] = 𝐶0 [ 𝑗] (for any 0 ≤ 𝑗 ≤ 8Δ).
Nowwe show that the claim holds for any 1 ≤ 𝑖 ≤ 𝑘 assuming it holds for 𝑖−1. Fix any

𝑗 ∈ 𝐽 𝑖 . Note that the clipping in Line 7 does not increase any entry, hence𝐶𝑖 [ 𝑗] ≤ 𝐴𝑖 [ 𝑗].
Moreover, since inductively 𝐶𝑖−1 [ 𝑗 ′] ≤ P𝑖−1 [ 𝑗 ′] holds for all 𝑗 ′, by definition of 𝐴𝑖 we
have 𝐴𝑖 [ 𝑗] ≤ P𝑖 [ 𝑗]. Hence, we obtain 𝐶𝑖 [ 𝑗] ≤ P𝑖 [ 𝑗]. We use this observation to obtain
the claim, by showing an appropriate lower bound for 𝐶𝑖 [ 𝑗] in the following.
Pick indices 𝑗1 + 𝑗2 = 𝑗 as guaranteed by Lemma 3.10. Note that 𝑗1, 𝑗2 ∈ 𝐽 𝑖−1. Since

in Line 6 we set 𝐴𝑖 [𝐽 𝑖] = MaxConv(𝐶𝑖−1 [𝐽 𝑖−1],𝐶𝑖−1 [𝐽 𝑖−1]), we conclude that 𝐴𝑖 [ 𝑗] ≥
𝐶𝑖−1 [ 𝑗1] +𝐶𝑖−1 [ 𝑗2].

We proceed by a case distinction on the values of the entries P𝑖−1 [ 𝑗1] and P𝑖−1 [ 𝑗2]:
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Case 1: P𝑖−1 [ 𝑗1],P𝑖−1 [ 𝑗2] ∈ [𝛼 · 2𝑖−1−𝑘 − 40Δ . . 𝛼 · 2𝑖−1−𝑘 + 24Δ]. By the induction
hypothesis, both values are computed exactly, that is,𝐶𝑖−1 [ 𝑗1] = P𝑖−1 [ 𝑗1] and𝐶𝑖−1 [ 𝑗2] =
P𝑖−1 [ 𝑗2]. Thus,𝐴𝑖 [ 𝑗] ≥ 𝐶𝑖−1 [ 𝑗1]+𝐶𝑖−1 [ 𝑗2] = P𝑖−1 [ 𝑗1]+P𝑖−1 [ 𝑗2] = P𝑖 [ 𝑗], using property
(ii) of Lemma 3.10. Since we observed above that𝐴𝑖 [ 𝑗] ≤ P𝑖 [ 𝑗], we obtain𝐴𝑖 [ 𝑗] = P𝑖 [ 𝑗].
The clipping in Line 7 yields the claim for this case.

Case 2: P𝑖−1 [ 𝑗1] > 𝛼 ·2𝑖−1−𝑘+24Δ. Property (iii) of Lemma 3.10 implies that |P𝑖−1 [ 𝑗1]−
P𝑖−1 [ 𝑗2] | ≤ 4Δ, and hence P𝑖−1 [ 𝑗2] ≥ 𝛼 · 2𝑖−1−𝑘 + 20Δ. Thus, property (ii) of Lemma 3.10
implies P𝑖 [ 𝑗] = P𝑖−1 [ 𝑗1] + P𝑖−1 [ 𝑗2] > 𝛼 · 2𝑖−𝑘 + 24Δ. Therefore, we want to show that
𝐶𝑖 [ 𝑗] = ⌈𝛼 · 2𝑖−𝑘⌉ + 24Δ.

By the induction hypothesis, we have 𝐶𝑖−1 [ 𝑗1] = ⌈𝛼 · 2𝑖−1−𝑘⌉ + 24Δ and 𝐶𝑖−1 [ 𝑗2] ≥
𝛼 · 2𝑖−1−𝑘 + 20Δ. Hence, 𝐴𝑖 [ 𝑗] ≥ 𝐶𝑖−1 [ 𝑗1] +𝐶𝑖−1 [ 𝑗2] > 𝛼 · 2𝑖−𝑘 + 40Δ. Due to the clipping
in Line 7, we conclude that 𝐶𝑖 [ 𝑗] = ⌈𝛼 · 2𝑖−𝑘⌉ + 24Δ, as desired.

Case 3: P𝑖−1 [ 𝑗1] < 𝛼 · 2𝑖−𝑘 − 40Δ. Similarly as in case 2, property (iii) of Lemma 3.10
implies that P𝑖−1 [ 𝑗2] ≤ 𝛼 ·2𝑖−1−𝑘−36Δ. Thus, P𝑖 [ 𝑗] = P𝑖−1 [ 𝑗1]+P𝑖−1 [ 𝑗2] < 𝛼 ·2𝑖−𝑘−76Δ.
Since 𝐶𝑖 [ 𝑗] ≤ P𝑖 [ 𝑗], but 𝐶𝑖 [ 𝑗] takes values in { −∞ } ∪ [𝛼 · 2𝑖−𝑘 − 40Δ . . 𝛼 · 2𝑖−𝑘 + 40Δ]
it follows that 𝐶𝑖 [ 𝑗] = −∞. ◁

Given the claim, it is easy to see that 𝐶𝑘 [𝑊 ] ≥ 𝛼 if and only if P𝑘 [𝑊 ] ≥ 𝛼 . Along
with the running time analysis argued earlier, we obtain the claimed lemma. □

Given Lemma 3.11, we can do binary search to find the optimal value. This gives
an algorithm for Unbounded Knapsack in time 𝑂 ((𝑛 +𝑇 (Δ)) log𝑊 log OPT). To shave
the polylog(𝑊,OPT) factors and obtain the running time𝑂 (𝑛 +𝑇 (Δ)) claimed in Theo-
rem 3.7, we make use of the following lemma. It allows us to reduce the capacity of the
instance by repeatedly adding copies of the item with maximum profit-to-weight ratio.
Similar proximity results have been shown for general ILPs [EW20], for Unbounded
Knapsack [Bat+18] and for the Coin Change problem [CH22]. For completeness, we
include the proof by Chan and He [CH22, Lemma 4.1].2

Lemma 3.13. Let (𝑝𝑖∗, 𝑤𝑖∗) := argmax(𝑝,𝑤)∈I
𝑝

𝑤
. If𝑊 ≥ 2𝑤3

max, then there exists an
optimal solution containing (𝑝𝑖∗, 𝑤𝑖∗).

Proof. Consider an optimal solution 𝑥 that does not contain item (𝑝𝑖∗, 𝑤𝑖∗). If there is an
item (𝑝 𝑗 , 𝑤 𝑗 ) that appears at least 𝑤𝑖∗ times in 𝑥 , then we can replace 𝑤𝑖∗ of the copies
of item (𝑝 𝑗 , 𝑤 𝑗 ) by 𝑤 𝑗 copies of item (𝑝𝑖∗, 𝑤𝑖∗). By definition of (𝑝𝑖∗, 𝑤𝑖∗), this does not
decrease the total profit of the solution, so by optimality of 𝑥 the new solution 𝑥′ is also
optimal. Therefore, some optimal solution contains (𝑝𝑖∗, 𝑤𝑖∗).
It remains to consider the case that 𝑥 contains less than 𝑤𝑖∗ copies of every item, so

its total weight is at most 𝑛 · 𝑤𝑖∗ · 𝑤max. Note that 𝑛 ≤ 𝑤max, because without loss of

2. Both Chan and He [CH22] and Bateni et al. [Bat+18] show that the same conclusion of the lemma
holds if𝑊 > 𝑤2

𝑖∗ , with a slightly more involved argument. For our purposes, this simple variant is
enough.
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generality there is at most one item per distinct weight (otherwise we can keep only the
item with the largest profit for each weight). Thus, the total weight of 𝑥 is at most 𝑤3

max.
It follows that𝑊 < 𝑤3

max +𝑤𝑖∗ ≤ 2𝑤3
max, since otherwise we could add at least one copy

of (𝑝𝑖∗, 𝑤𝑖∗) to 𝑥 , contradicting its optimality. □

We now put all pieces together to prove Theorem 3.7.

Proof of Theorem 3.7. As a preprocessing step we repeatedly add the item (𝑝𝑖∗, 𝑤𝑖∗) to
our solution and decrease𝑊 by 𝑤𝑖∗ , as long as𝑊 > 2𝑤3

max. This is correct due to
Lemma 3.13. After this preprocessing, it holds that𝑊 = 𝑂 (𝑤3

max) = 𝑂 (Δ3), and thus
OPT ≤𝑊 · 𝑝max = 𝑂 (Δ4). Then we do binary search for OPT, using Algorithm 4 as a
decision procedure. By Lemma 3.11, the overall running time is 𝑂 ((𝑛 +𝑇 (Δ)) log2 Δ) =
𝑂 (𝑛 +𝑇 (Δ)). □

3.2.3 Solution Reconstruction

The algorithm we described gives us the value OPT of the optimal solution. In this
section we will describe how to use witness arrays (Lemma 3.5) to reconstruct a feasible
solution 𝑥 ∈ N𝑛 such that 𝑝 (𝑥) = OPT with only a polylogarithmic overhead in the
overall running time.

Lemma 3.14. An optimal solution 𝑥 can be reconstructed in time𝑂 (𝑛 +𝑇 (𝑝max +𝑤max)).

Proof Sketch. Let 𝑘 = ⌈log𝑊 ⌉ be as in Algorithm 4. After determining the value of
OPT, run Algorithm 4 again with the guess 𝛼 = OPT. For every max-plus convolution
computed in Line 6, we additionally compute the witness array 𝑀𝑖 corresponding to
𝐴𝑖 via Lemma 3.5. This takes time 𝑂 (𝑛 + 𝑇 (𝑝max + 𝑤max)). Now, the idea is to start
from 𝐶𝑘 [𝑊 ] and traverse the computation tree of Algorithm 4 backwards. That is, we
look at the pair of entries 𝐶𝑘−1 [𝑀𝑘 [𝑊 ]],𝐶𝑘−1 [𝑊 − 𝑀𝑘 [𝑊 ]] which define the value
of 𝐶𝑘 [𝑊 ] and recursively obtain the pair of entries in 𝐶𝑘−2 determining the value
of 𝐶𝑘−1 [𝑀𝑘 [𝑊 ]], etc. By proceeding in this way, we eventually hit the leaves, i.e.,
the entries of 𝐶0 [0 . . 8Δ] = P0 [0 . . 8Δ], which correspond to the items in an optimal
solution. A naive implementation of this idea takes time 𝑂 (∑𝑖≤𝑘 2𝑖) = 𝑂 (2𝑘) = 𝑂 (𝑊 ),
which is too slow for us.

Now we describe an efficient implementation of the same idea. For each 𝑖 ∈ [𝑘]
construct an array 𝑍𝑖 [𝑊 · 2𝑖−𝑘 − 8Δ . .𝑊 · 2𝑖−𝑘 + 8Δ] initialized to zeros. Set 𝑍𝑘 [𝑊 ] := 1.
We will maintain the invariant that 𝑍𝑖 [ 𝑗] stores the number of times we arrive at 𝐶𝑖 [ 𝑗]
by traversing the computation tree starting at 𝐶𝑘 [𝑊 ]. This clearly holds for 𝑍𝑘 [𝑊 ] = 1
by definition. Now we describe how to fill the entries for the levels below. Iterate
over 𝑖 = 𝑘, 𝑘 − 1, . . . , 1. For each entry 𝑗 ∈ [𝑊 · 2𝑖−𝑘 − 8Δ . .𝑊 · 2𝑖−𝑘 + 8Δ] ∩ [𝑊 ] add
𝑍𝑖 [ 𝑗] to its witness entries in the level below, i.e., increase 𝑍𝑖−1 [𝑀𝑖 [ 𝑗]] by 𝑍𝑖 [ 𝑗] and
𝑍𝑖−1 [ 𝑗 −𝑀𝑖 [ 𝑗]] by 𝑍𝑖 [ 𝑗]. The invariant is maintained by definition of the witnesses, and
because Algorithm 4 guarantees that𝑀𝑖 [ 𝑗], 𝑗 −𝑀𝑖 [ 𝑗] ∈ [𝑊 · 2𝑖−1−𝑘 − 8Δ . .𝑊 · 2𝑖−1−𝑘 +
8Δ] ∩ [𝑊 ]. Note that this procedure takes time 𝑂 (𝑘Δ) = 𝑂 (Δ).
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3 Algorithms via Bounded Monotone Min-Plus Convolution

Finally, note that for the base case we have that each 𝑍0 [ 𝑗] for 𝑗 ∈ [8Δ] counts the
number of times that we hit the entry 𝐶0 [ 𝑗] = P0 [ 𝑗] in the computation tree starting
from 𝐶𝑘 [𝑊 ]. Recall that by definition, P0 [ 𝑗] is the maximum profit of an item in I
with weight at most 𝑗 . Hence, every entry P0 [ 𝑗] corresponds to a unique item in I.
Therefore, we can read off from 𝑍0 [0 . . 8Δ] the multiplicity of each item included in
an optimal solution. The overall time of the procedure is 𝑂 (𝑛 + 𝑇 (𝑝max + 𝑤max)), as
claimed. □

3.3 Exact Algorithm for Knapsack

In this section we prove the following reduction:

Theorem 3.15. If BoundedMonotoneMaxPlus Conv on length-𝑛 sequences can be solved in
time𝑇 (𝑛), then Knapsack can be solved in time𝑂 (𝑛 +𝑇 (𝑊 +OPT)) with high probability.

Observe that Main Theorem 1.1 follows immediately, by combining Theorem 3.15
with the algorithm for Bounded Monotone MaxPlus Conv of Chi et al. (Corollary 3.3).

Our starting point is the following result of Cygan, Mucha, Węgrzycki and Włodar-
czyk [Cyg+19], showing a reduction from Knapsack to Bounded Monotone MaxPlus
Conv:

Theorem 3.16 ([Cyg+19, Theorem 13]). If the max-plus convolution of length-𝑛 sequences
can be computed in time 𝑇 (𝑛), then Knapsack can be solved in time

𝑂 (𝑇 (𝑊 log𝑊 ) log3(𝑛/𝛿) log𝑛)

with probability at least 1 − 𝛿 .

Their reduction is a generalization of Bringmann’s algorithm for Subset Sum [Bri17],
which can be seen as a reduction from Subset Sum to Boolean convolution. Cygan et al.
showed that the reduction for Knapsack can be obtained by essentially replacing the
Boolean convolutions by max-plus convolutions in Bringmann’s algorithm.
For our purposes, we observe that essentially the same reduction yields sequences

of length 𝑂 (𝑊 ) which are monotone and have entries bounded by OPT. In particular,
these are Bounded Monotone MaxPlus Conv instances.

Proof of Theorem 3.15. The proof is virtually the same as [Cyg+19, Theorem 13], so
we omit some details. In particular, we emphasize how the constructed instances can
be seen to be monotone and bounded, but we omit some details of the correctness
argument.

Given the item set I, we work with the profit sequence PI [·], where for each 𝑗 ∈ N
we have

PI [ 𝑗] = max{ 𝑝I (𝑥) | 𝑥 ∈ { 0, 1 }𝑛, 𝑤I (𝑥) ≤ 𝑗 }.
Our goal will be to compute OPT = PI [𝑊 ].
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The idea of the algorithm is the following: split the item set I into groups𝐺 (𝑎,𝑏) ⊆ I
such that all items (𝑝,𝑤) ∈ I with 2𝑎−1 ≤ 𝑝 < 2𝑎 and 2𝑏−1 ≤ 𝑤 < 2𝑏 are in group 𝐺 (𝑎,𝑏) .
That is, all items within each group have weights and profits within a factor of 2 of
each other, and thus there are𝑂 (log𝑊 log OPT) many groups. We will describe how to
compute P𝐺 (𝑎,𝑏 ) [0 . .𝑊 ] for each 𝐺 (𝑎,𝑏) . Having that, we simply combine all the profit
arrays into PI [0 . .𝑊 ] using max-plus convolutions. Since we have 𝑂 (log𝑊 log OPT)
groups, and each profit array is a monotone non-decreasing sequence of length𝑊 with
entries bounded by OPT, the combination step takes time 𝑂 (𝑇 (𝑊 + OPT)).
Fix some group 𝐺 (𝑎,𝑏) . Since every (𝑝,𝑤) ∈ 𝐺 (𝑎,𝑏) has 𝑤 ≥ 2𝑎−1 and 𝑝 ≥ 2𝑏−1, any

feasible solution from 𝐺 (𝑎,𝑏) consists of at most 𝑧 := ⌈min{𝑊 /2𝑎−1,OPT/2𝑏−1 }⌉ items.
Thus, by splitting the items in 𝐺 (𝑎,𝑏) randomly into 𝑧 subgroups𝐺 (𝑎,𝑏),1, . . . ,𝐺 (𝑎,𝑏),𝑧 , any
fixed feasible solution has at most 𝑂 (log 𝑧) items in each subgroup 𝐺 (𝑎,𝑏),𝑘 with high
probability. To see this, fix a solution 𝑥 and note that,

P[at least 𝑟 items from 𝑥 fall in 𝐺 (𝑎,𝑏),𝑘] ≤
(
𝑧

𝑟

) (
1
𝑧

)𝑟
≤

(𝑒 · 𝑧
𝑟

)𝑟 (
1
𝑧

)𝑟
=

(𝑒
𝑟

)𝑟
,

where the first inequality follows due to a union bound over all subsets of items of size
𝑟 . By setting 𝑟 = 𝑂 (log 𝑧), we can bound this probability by 𝑧−𝑐 for any constant 𝑐 . So
by a union bound, none of the 𝑧 groups 𝐺 (𝑎,𝑏),1, . . . ,𝐺 (𝑎,𝑏),𝑧 has more than 𝜅 := 𝑂 (log 𝑧)
elements from the fixed solution 𝑥 with probability at least 1 − 1/poly(𝑧).
Therefore, to obtain the value of any fixed solution it suffices to compute the optimal

solution consisting of at most 𝜅 items from 𝐺 (𝑎,𝑏),𝑘 for every target weight ≤ 𝑂 (2𝑎𝜅),
and then merge the results. More precisely, for every 1 ≤ 𝑖 ≤ 𝑧 we compute the array
P𝐺 (𝑎,𝑏 ),𝑖 ,𝜅 [0 . . 𝑂 (2𝑎𝜅)] defined as

P𝐺 (𝑎,𝑏 ),𝑖 ,𝜅 [ 𝑗] := max{ 𝑝 (𝑥) | 𝑥 is a solution from 𝐺 (𝑎,𝑏),𝑖 with 𝑤 (𝑥) ≤ 𝑗, ∥𝑥 ∥1 ≤ 𝜅 }

for each 𝑗 ∈ [𝑂 (2𝑎𝜅)]. For ease of notation, we denote the array by P𝐺𝑖 ,𝜅 := P𝐺 (𝑎,𝑏 ),𝑖 ,𝜅 .
Then, we merge the P𝐺𝑖 ,𝜅 ’s using max-plus convolutions to obtain P𝐺 (𝑎,𝑏) . Now we

describe these two steps in more detail:

Computing P𝐺𝑖 ,𝜅 [0 . . 𝑂 (2𝑎𝜅)] Since we only care about solutions with at most 𝜅
items, we use randomization again3: split the items in𝐺 (𝑎,𝑏),𝑖 into 𝜅2 buckets𝐴1, . . . , 𝐴𝜅2 .
By the birthday paradox, with constant probability it holds that any fixed solution is
shattered among the buckets, i.e., each bucket contains at most 1 item of the solution.
Thus, for each bucket 𝐴𝑘 we construct the array P𝐴𝑘 ,1 [0 . . 2𝑎]. This is defined as above,
namely,

P𝐴𝑘 ,1 [ 𝑗] := max{ 𝑝 (𝑥) | 𝑥 is a solution from 𝐴𝑘 with 𝑤 (𝑥) ≤ 𝑗, ∥𝑥 ∥1 ≤ 1 }

for each entry 𝑗 ∈ [2𝑎]. Then, we merge P𝐴1,1,P𝐴2,1, . . . ,P𝐴𝜅2 ,1 using max-plus convolu-
tions. By definition, every P𝐴𝑖 ,1 is a monotone non-decreasing sequence of length 2𝑎
with entries bounded by 2𝑏 . Thus, the merging step takes time 𝑂 (𝑇 ((2𝑎 + 2𝑏) · 𝜅2) · 𝜅2).
3. This step is called “Color Coding” in [Bri17; Cyg+19].
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Each entry of the resulting array has the correct value P𝐺𝑖 ,𝜅 [ 𝑗] with constant prob-
ability, since a corresponding optimal solution is shattered with constant probabil-
ity. By repeating this process 𝑂 (log 𝑧) times and keeping the entrywise maximum
among all repetitions, we boost the success probability to 1 − 1/poly(𝑧). Thus, by a
union bound over the 𝑧 subgroups 𝐺 (𝑎,𝑏),1, . . . ,𝐺 (𝑎,𝑏),𝑧 , we get that any 𝑧 fixed entries
P𝐺1,𝜅 [ 𝑗1], . . . ,P𝐺𝑧 ,𝜅 [ 𝑗𝑧] corresponding to a solution which is partitioned among the 𝑧
subgroups get computed correctly with probability at least 1 − 1/poly(𝑧). This adds an
extra 𝑂 (log 𝑧) = 𝑂 (𝜅) factor to the running time.

Merging P𝐺1,𝜅, . . . ,P𝐺𝑧 ,𝜅 This computation is done in a binary tree-like fashion. That
is, in the first level we compute

MaxConv(P𝐺1,𝜅,P𝐺2,𝜅),MaxConv(P𝐺3,𝜅,P𝐺4,𝜅), . . . ,MaxConv(P𝐺𝑧−1,𝜅,P𝐺𝑧 ,𝜅).

In the second level we merge the results from the first level in a similar way. We proceed
in the same way with further levels. Since we merge 𝑧 sequences, we have ⌈log 𝑧⌉ levels
of computation. In the 𝑗-th level, we compute the max-plus convolution of 𝑧/2 𝑗 many
monotone non-decreasing sequences of length 𝑂 (2 𝑗 · 2𝑎 · 𝜅) with entries bounded by
𝑂 (2 𝑗 · 2𝑏 · 𝜅). Therefore, overall the merging takes time

𝑂

( ⌈log 𝑧⌉∑︁
𝑗=1

𝑧

2 𝑗 ·𝑇 ((2
𝑎 + 2𝑏) · 2 𝑗 · 𝜅)

)
≤ 𝑂 (𝑇 ((2𝑎 + 2𝑏) · 𝑧)),

where we used both points in Assumption 3.6, namely, that 𝑘 ·𝑇 (𝑛) ≤ 𝑂 (𝑇 (𝑘 · 𝑛)) for
any 𝑘 > 1 and that 𝑇 (𝑂 (𝑛)) ≤ 𝑂 (𝑇 (𝑛)). Since 𝑧 = ⌈min{𝑊 /2𝑎−1,OPT/2𝑏−1 }⌉, we can
bound this running time as

𝑂 (𝑇 ((2𝑎 + 2𝑏) · 𝑧) = 𝑂 (𝑇 (𝑊 + OPT)) .

Wrapping up To recap, the algorithm does the following steps:

1. Split the items into 𝑂 (log𝑊 log OPT) groups 𝐺 (𝑎,𝑏) . This takes time 𝑂 (𝑛).

2. Randomly split each group 𝐺 (𝑎,𝑏) into 𝑧 := ⌈min{𝑊 /2𝑎−1,OPT/2𝑏−1 }⌉ subgroups
𝐺 (𝑎,𝑏),𝑖 for 𝑖 ∈ [𝑧].

3. For each 𝐺 (𝑎,𝑏),𝑖 compute the array P𝐺𝑖 ,𝜅 [0 . . 𝑂 (2𝑎𝜅)] in time 𝑂 (𝑇 ((2𝑎 + 2𝑏)𝜅2) · 𝜅2).
Since 𝜅 = 𝑂 (log 𝑧), the total time over all 𝑖 ∈ [𝑧] is

𝑂 (𝑧 ·𝑇 ((2𝑎 + 2𝑏)𝜅2) · 𝜅2) ≤ 𝑂 (𝑇 ((2𝑎 + 2𝑏) · 𝑧 · 𝜅2)𝜅2) ≤ 𝑂 (𝑇 ((2𝑎 + 2𝑏) · 𝑧))
≤ 𝑂 (𝑇 (𝑊 + OPT)) .

Note that here we used the niceness Assumption 3.6 on 𝑇 (𝑛). In particular, first we
used that 𝑘 ·𝑇 (𝑛) ≤ 𝑂 (𝑇 (𝑘 · 𝑛)) for any 𝑘 > 1, and then that 𝑇 (𝑂 (𝑛)) ≤ 𝑂 (𝑇 (𝑛)).

62



3.4 Approximation Schemes for Unbounded Knapsack

4. Merge the arrays P𝐺1,𝜅 . . .P𝐺𝑧 ,𝜅 using max-plus convolutions in a tree-like fashion
in total time 𝑂 (𝑇 (𝑊 + OPT)) to obtain P𝐺 (𝑎,𝑏 ) [0 . .𝑊 ].

5. Merge the arrays P𝐺 (𝑎,𝑏 ) using𝑂 (log𝑊 log OPT) max-plus convolutions in total time
𝑂 (𝑇 (𝑊 + OPT)).

Thus, the overall time of the algorithm is 𝑂 (𝑛 +𝑇 (𝑊 + OPT)). Note that as mentioned
earlier in the proof, the algorithm succeeds in computing any fixed entry PI [ 𝑗] with
probability at least 1 − 1/poly(𝑧). In particular, this is sufficient to compute the optimal
solution PI [𝑊 ] with good probability.
As described, the algorithm only returns the value of the optimal solution. We can

easily reconstruct an optimal solution 𝑥 ∈ N𝑛 for which 𝑝 (𝑥) = OPT, as we sketch now.
Note that at the end of the algorithm, we will have a sequence whose entries correspond
to P[0 . .𝑊 ]. This sequence was obtained as the max-plus convolution of two distinct
other sequences, call them 𝐴[0 . .𝑊 ], 𝐵 [0 . .𝑊 ]. For the output entry P[𝑊 ], we can
find its witness 𝑖 ∈ [𝑊 ], i.e. the index 𝑖 such that P[𝑊 ] = 𝐴[𝑖] + 𝐵 [𝑊 − 𝑖]. Note
that we can find 𝑖 in time 𝑂 (𝑊 ) by simply trying all possibilities. Then, we continue
recursively finding the witnesses for 𝑖 and for𝑊 − 𝑖 . Eventually, we will reach the
entries of the arrays P𝐴𝑘 ,0 which correspond to single items from I, and these form
the solution 𝑥 . The crucial observation is that because the algorithm never convolves a
sequence with itself (unlike our algorithm in Theorem 3.7 for Unbounded Knapsack),
this recursive process finds at most one witness per convolution. Hence, the total time
spent is proportional to the total length of the convolved sequences 𝑂 (𝑊 ). □

3.4 Approximation Schemes for Unbounded Knapsack

In this section we turn to approximation schemes for Unbounded Knapsack. Our goal is
to prove Theorem 1.5 and Main Theorem 1.6, which we restate for convenience.

Theorem 1.5. Unbounded Knapsack has a deterministic FPTAS that runs in time

𝑂

(
𝑛 + (1/𝜀)2

2Ω(
√

log(1/𝜀))

)
.

Main Theorem 1.6. Unbounded Knapsack has a weak approximation scheme running in
expected time 𝑂 (𝑛 + ( 1

𝜀
)1.5).

Before diving in the details, we start with a high level technical overview.

Proof Overview Let (I,𝑊 ) be an instance of Unbounded Knapsack. The starting
point is the following “repeated squaring” approach. Namely, recall that we denote by
P𝑖 [0 . .𝑊 ] the sequence where P𝑖 [ 𝑗] is the maximum profit of any solution of weight
at most 𝑗 and with at most 2𝑖 items. Since𝑊 /𝑤min is an upper bound on the number of
items in the optimal solution, we have that Plog(𝑊 /𝑤min) [𝑊 ] = OPT. We can compute
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P𝑖 [0 . .𝑊 ] by taking the max-plus convolution of P𝑖−1 [0 . .𝑊 ] with itself. This yields
an algorithm in time 𝑂 (𝑊 2 log𝑊 /𝑤min).
Although this exact algorithm is not particularly exciting or new, it can be nicely

extended to the approximate setting. In Section 3.4.2 we show that by replacing the exact
max-plus convolutions with approximate ones, we obtain an FPTAS for Unbounded
Knapsack in time 𝑂 (𝑛 + 1/𝜀2). To this end, we preprocess the item set to get rid of
light items with weight smaller than 𝜀 ·𝑊 , and cheap items with profit smaller than
𝜀 · OPT, while decreasing the optimal value by only𝑂 (𝜀 · OPT) (see Lemma 3.20). After
this preprocessing, we have that the maximum number of items in any solution is
𝑊 /𝑤min < 1/𝜀. Thus, we only need to approximate 𝑂 (log 1/𝜀) convolutions. For this
we use an algorithm due to Chan [Cha18], which in our setting without cheap items runs
in time 𝑂 (1/𝜀2) (see Lemma 3.22). Thus, after applying the preprocessing in time 𝑂 (𝑛),
we compute a (1 + 𝜀)-approximation of P[0 . .𝑊 ] by applying 𝑂 (log 1/𝜀) approximate
max-plus convolutions in overall time 𝑂 (𝑛 + (1/𝜀)2). , yielding Theorem 1.5.
In Section 3.4.3 we treat the case of weak approximation. The main steps of the

algorithm are virtually the same as before. The crucial difference is that now we can
afford to round weights. In this way, we can adapt Chan’s algorithm and construct
max-plus convolution instances which are monotone non-decreasing and have bounded
entries (see Lemma 3.27). This yields Bounded Monotone MaxPlus Conv instances, and
by using Chi, Duan, Xie and Zhang’s algorithm for this special case [Chi+22], we can
compute a weak approximation of max-plus convolution in time𝑂 ((1/𝜀)1.5). By similar
arguments as for the strong approximation, this yields a weak approximation scheme
running in time 𝑂 (𝑛 + (1/𝜀)1.5), proving Main Theorem 1.6.

3.4.1 Preparations

Notions of Approximation Here formalize the notions of approximation that we
will be working with. We say that an algorithm gives a strong (1 + 𝜀)-approximation for
Unbounded Knapsack if it returns a solution 𝑥 ∈ N𝑛 with weight 𝑤 (𝑥) ≤𝑊 and profit
𝑝 (𝑥) ≥ (1 − 𝜀) · OPT. An algorithm gives a weak (1 + 𝜀)-approximation for Unbounded
Knapsack if it returns a solution 𝑥 ∈ N𝑛 with profit 𝑝 (𝑥) ≥ (1 − 𝜀) · OPT and weight
𝑤 (𝑥) ≤ (1+𝜀) ·𝑊 . We stress that here OPT still denotes the optimum value with weight
at most𝑊 , i.e., OPT = max{ 𝑝 (𝑥) | 𝑥 ∈ N𝑛, 𝑤 (𝑥) ≤𝑊 }.

Greedy 2-approximation The fractional solution for an instance (I,𝑊 ) of Un-
bounded Knapsack has a simple structure: pack the entire capacity𝑊 greedily with the
most efficient item 𝑖∗. That is, choose the item (𝑝𝑖∗, 𝑤𝑖∗) ∈ I which maximizes the ratio
𝑝𝑖∗/𝑤𝑖∗ and add it𝑊 /𝑤𝑖∗ many times. Since ⌊𝑊 /𝑤𝑖∗⌋ copies forms a feasible integral
solution, it holds that ⌊𝑊 /𝑤𝑖∗⌋ · 𝑝𝑖∗ ≤ OPT ≤ (𝑊 /𝑤𝑖∗) · 𝑝𝑖∗ . By𝑊 /𝑤𝑖∗ ≥ 1, we have
⌊𝑊 /𝑤𝑖∗⌋ ≥ 1/2 ·𝑊 /𝑤𝑖∗ . Thus, the greedy solution is a 2-approximation to OPT. Note
that we can find this solution in time 𝑂 (𝑛).
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Profit Sequence Similarly as in Section 3.2, given an item set I we work with the
profit sequence PI [·]. For 𝑗 ∈ N, this is defined as

PI [ 𝑗] := max{ 𝑝 (𝑥) | 𝑤 (𝑥) ≤ 𝑗 }.
Moreover, for 𝑘 ≥ 0 we define PI,𝑘 [·] where for 𝑗 ∈ N we set

PI,𝑘 := max{ 𝑝 (𝑥) | 𝑤 (𝑥) ≤ 𝑗, ∥𝑥 ∥1 ≤ 2𝑖 }.

When the item set I is clear from context, we drop it and write P[·] and P𝑘 [·].

Connection to max-plus convolution The following lemma shows that if we know
P𝑖−1, we can compute P𝑖 by applying a max-plus convolution of P𝑖−1 with itself.

Lemma 3.17 (Halving Lemma). For any 𝑖 ≥ 1 and 𝑤 ≥ 0, it holds that

P𝑖 [0 . .𝑊 ] = MaxConv(P𝑖−1 [0 . .𝑊 ],P𝑖−1 [0 . .𝑊 ]).

Proof. We denote the right hand side by 𝐶 := MaxConv(P𝑖−1 [0 . .𝑊 ],P𝑖−1 [0 . .𝑊 ]).
Fix some 𝑗 ∈ [𝑤]. We will show that P𝑖 [ 𝑗] = 𝐶 [ 𝑗]:
P𝑖 [ 𝑗] ≥ 𝐶 [ 𝑗]: This holds since 𝐶 [ 𝑗] corresponds to the profit of some solution with

at most 2𝑖 items, but by definition P𝑖 [ 𝑗] is the maximum profit among all such solutions.
P𝑖 [ 𝑗] ≤ 𝐶 [ 𝑗]: Let 𝑥 ∈ N𝑛 be the solution corresponding to P𝑖 [ 𝑗], i.e. such that

𝑝 (𝑥) = P𝑖 [ 𝑗], 𝑤 (𝑥) ≤ 𝑗 and ∥𝑥 ∥1 ≤ 2𝑖 . Split 𝑥 in two solutions 𝑥 = 𝑥1 + 𝑥2 of
roughly the same size ∥𝑥1∥ ≈ ∥𝑥2∥1 ≈ ∥𝑥 ∥1/2 (if ∥𝑥 ∥1 is odd, put an extra item to
𝑥1 or 𝑥2). In this way, it holds that both 𝑥1 and 𝑥2 are solutions of at most 2𝑖−1 items
and weight at most 𝑗 and therefore by the optimality of P𝑖−1 it holds that 𝑝 (𝑥1) ≤
P𝑖−1 [𝑤 (𝑥1)] and 𝑝 (𝑥2) ≤ P𝑖−1 [𝑤 (𝑥2)]. Hence, by definition of 𝐶 we conclude that
𝐶 [ 𝑗] ≥ P𝑖−1 [ 𝑗 −𝑤 (𝑥2)] + P𝑖−1 [𝑤 (𝑥2)] ≥ 𝑝 (𝑥1) + 𝑝 (𝑥2) = P𝑖 [ 𝑗]. □

Since any item has weight at least 1, the optimal solution consists of at most𝑊 items.
Thus, we can use Lemma 3.17 to compute OPT = P⌈log𝑊 ⌉ [𝑊 ] by applying 𝑂 (log𝑊 )
max-plus convolutions (note that the base case P0 [0 . .𝑊 ] corresponds to solutions
of at most one item, and thus can be computed easily). Our approximation schemes
will implement this “repeated squaring” algorithm by appropriately approximating the
max-plus convolutions.

3.4.2 A simplified FPTAS

In this section we prove the following reduction from approximating Unbounded Knap-
sack to max-plus convolution.

Theorem 3.18. If max-plus convolution can be solved in time 𝑇 (𝑛), then Unbounded
Knapsack has an FPTAS in time 𝑂 (𝑛 +𝑇 (1/𝜀)).

This proves Theorem 1.5 by plugging in the deterministic bound 𝑛2/2Ω(
√

log𝑛) for
max-plus convolution [Bre+14; CW21].
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Preprocessing

To give the FPTAS we start with some preprocessing to remove items with small profit
and items with small weight.

Step 1: Remove cheap items We first remove items with small profit. Let 𝑃0 be the
value of the greedy 2-approximation and set 𝑇 := 2𝜀𝑃0. Split the items into expensive
I𝐸 := { (𝑝,𝑤) ∈ I | 𝑝 > 𝑇 }, and cheap I𝐶 := I \ I𝐸 . Let 𝑖∗ := argmax𝑖∈I𝐶

𝑝𝑖
𝑤𝑖

be the item
corresponding to the greedy 2-approximation for the cheap items and set 𝑟 := ⌈𝑇 /𝑝𝑖∗⌉.
We delete all cheap items from I and add an item corresponding to 𝑟 copies of (𝑝𝑖∗, 𝑤𝑖∗),
i.e., we set I′ := I𝐸 ∪ { (𝑟 · 𝑝𝑖∗, 𝑟 ·𝑤𝑖∗) }. Note that now any item in I′ has profit at least
𝑇 . These steps are summarized in Algorithm 5. The following lemma shows that this
decreases the total profit of any solution by at most 𝑂 (𝜀 · OPT).

Algorithm 5 Preprocessing-Profits(I,𝑊 ): Preprocessing to remove low profit
items.
1 Let 𝑃0 be the value of the greedy 2-approximation of (I,𝑊 )
2 𝑇 := 2 · 𝜀 · 𝑃0
3 I𝐸 := { (𝑝,𝑤) ∈ I | 𝑝 > 𝑇 },I𝐶 := I \ I𝐸
4 𝑖∗ := argmax𝑖∈I𝐶

𝑝𝑖
𝑤𝑖

5 𝑟 := ⌈𝑇 /𝑝𝑖∗⌉
6 return I𝐸 ∪ { (𝑟 · 𝑝𝑖∗, 𝑟 ·𝑤𝑖∗) }

Lemma 3.19 (Preprocessing Profits). Let I′ be the result of running Algorithm 5 on
(I,𝑊 ). Then, for every 𝑤 ∈ [𝑊 ], it holds that PI′ [𝑤] ≥ PI [𝑤] − 4𝜀 · OPT. Moreover,
the minimum profit in I′ is 𝑝min > 𝜀OPT.
Proof. Fix some weight𝑤 ∈ [𝑊 ] and let 𝑥 ∈ N|I | be the solution from I corresponding
to the entry PI [𝑤]. We denote by 𝑥𝐶 the cheap items in 𝑥 , i.e., those with profit
≤ 𝑇 = 2𝜀𝑃0. Thus, we can write 𝑤I (𝑥) = 𝑤I (𝑥𝐶) +𝑤I (𝑥 − 𝑥𝐶) and similarly 𝑝I (𝑥) =
𝑝I (𝑥𝐶) + 𝑝I (𝑥 − 𝑥𝐶).

Now we construct a solution 𝑥′ ∈ N|I′ | from the preprocessed I′ which will satisfy
𝑤I′ (𝑥′) ≤ 𝑤 and 𝑝I′ (𝑥′) ≥ 𝑝 − 𝜀 · OPT, yielding the lemma. We start from 𝑥 and
remove all the cheap items 𝑥𝐶 , replacing them by ⌊𝑤I (𝑥𝐶)/(𝑟 · 𝑤𝑖∗)⌋-many copies of
(𝑟 · 𝑝𝑖∗, 𝑟 · 𝑤𝑖∗) ∈ I′. Note that in this way, 𝑤I′ (𝑥′) ≤ 𝑤. Now we lower bound the
profit. Since (𝑝𝑖∗, 𝑤𝑖∗) is the item corresponding to the greedy 2-approximation from
the cheap items, it follows that 𝑝I (𝑥𝐶) ≤ 𝑤I (𝑥𝐶 )

𝑤𝑖∗
· 𝑝𝑖∗ . Further, by definition of 𝑟 it holds

that 𝑟 ≤ 𝑇 /𝑝𝑖∗ + 1. Thus,
𝑝I′ (𝑥′) = 𝑝I (𝑥 − 𝑥𝐶) + 𝑟 · 𝑝𝑖∗ · ⌊𝑤 (𝑥𝐶)/(𝑟 ·𝑤𝑖∗)⌋

≥ 𝑝I (𝑥 − 𝑥𝐶) + 𝑝I (𝑥𝐶) − 𝑟 · 𝑝𝑖∗ ≥ 𝑝I (𝑥) −𝑇 − 𝑝𝑖∗ .
Since 𝑝𝑖∗ ≤ 𝑇 = 2𝜀 · 𝑃0, we conclude that 𝑝I′ (𝑥′) ≥ 𝑝I (𝑥) − 4𝜀 · 𝑃0. Therefore,
PI′ [𝑤] ≥ 𝑝I′ (𝑥′) ≥ 𝑝I (𝑥) − 4𝜀 · 𝑃0 ≥ PI [𝑤] − 4𝜀 · OPT, as desired.
Finally, note that by construction we have that 𝑝min > 2𝜀𝑃0 ≥ 𝜀OPT. □
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Step 2: Remove light items Having removed all items with low profit, we proceed
similarly to remove items of low weight. More precisely, we say that an item is light if
its weight is less than 𝜀 ·𝑊 . We remove all light items except for the most profitable
one (i.e. the one with the best profit to weight ratio), which we copy enough times to
make it have weight at least 𝜀 ·𝑊 . The details are shown in Algorithm 6.

Algorithm 6 Preprocessing-Profits-And-Weights(I,𝑊 ): Preprocessing to remove
items of low profit and low weight.

1 Ĩ := Preprocessing-Profits(I,𝑊 ) (Algorithm 5)
2 I𝐿 := { (𝑝,𝑤) ∈ Ĩ | 𝑤 < 𝜀 ·𝑊 },I𝐻 := Ĩ \ I𝑆
3 𝑖∗ := argmax𝑖∈I𝐿

𝑝𝑖
𝑤𝑖

4 𝑟 := ⌈𝜀·𝑊
𝑤𝑖∗
⌉

5 return I𝐻 ∪ { (𝑟 · 𝑝𝑖∗, 𝑟 ·𝑤𝑖∗) }

The following lemma shows that removing cheap and light items as in Algorithm 6
only decreases the profit of any solution by 𝑂 (𝜀OPT).
Lemma 3.20 (Preprocessing Profits and Weights). Let I′ be the result of running Algo-
rithm 6 on (I,𝑊 ). Then any solution for I′ has a corresponding solution for I with the
same profit and weight. Further, for any𝑤 ∈ [𝑊 ] it holds that PI′ [𝑤] ≥ PI [𝑤] −8𝜀 ·OPT.
Moreover, the minimum profit and minimum weight in I′ satisfy 𝑝min > 𝜀OPT and
𝑤min > 𝜀𝑊 .

Proof. Fix𝑤 ∈ [𝑊 ] and 𝑝 := PI [𝑤]. Let Ĩ be the item set obtained in Line 1. Lemma 3.19
guarantees that there is a solution 𝑥 from Ĩ with 𝑝Ĩ (𝑥) ≥ 𝑝 − 4𝜀 · OPT and 𝑤Ĩ (𝑥) ≤ 𝑤.
Let 𝑥𝐿 be the light items in 𝑥 , i.e., those with weight < 𝜀 ·𝑊 . We construct a solution
𝑥′ of items from I′ by taking 𝑥 , removing all the items in 𝑥𝐿 and replacing them by
⌊𝑤Ĩ (𝑥𝐿)/(𝑟 ·𝑤𝑖∗)⌋-many copies of (𝑟 · 𝑝𝑖∗, 𝑟 ·𝑤𝑖∗). Then, the total profit of 𝑥′ is

𝑝I′ (𝑥′) = 𝑝Ĩ (𝑥 − 𝑥𝐿) +
⌊
𝑤Ĩ (𝑥𝐿)
𝑟 ·𝑤𝑖∗

⌋
· 𝑟 · 𝑝𝑖∗ ≥ 𝑝Ĩ (𝑥 − 𝑥𝐿) +

𝑤Ĩ (𝑥𝐿)
𝑟 ·𝑤𝑖∗

· 𝑟 · 𝑝𝑖∗ − 𝑟 · 𝑝𝑖∗

≥ 𝑝Ĩ (𝑥 − 𝑥𝐿) + 𝑝Ĩ (𝑥𝐿) − 𝑟 · 𝑝𝑖∗ = 𝑝Ĩ (𝑥) − 𝑟 · 𝑝𝑖∗, (3.2)

where the second inequality 𝑝 (𝑥𝐿) ≤ 𝑤 (𝑥𝐿)
𝑟 ·𝑤𝑖∗
· 𝑟 · 𝑝𝑖∗ follows since by definition (𝑝𝑖∗, 𝑤𝑖∗)

is the most efficient of the light items. Now we argue that we can bound the last term
𝑝𝑖∗ · 𝑟 by 𝑂 (𝜀OPT). As 𝑤𝑖∗ is a light item, we have 𝑤𝑖∗ ≤ 𝜀𝑊 . Since for any number
𝑧 ≥ 1 we have that ⌈𝑧⌉ ≤ 2𝑧, it follows that 𝑟 = ⌈(𝜀𝑊 )/𝑤𝑖∗⌉ ≤ 2𝜀𝑊 /𝑤𝑖∗ . Since packing
⌊𝑊 /𝑤𝑖∗⌋ copies of item 𝑖∗ is a feasible solution, it holds that OPT ≥ ⌊𝑊 /𝑤𝑖∗⌋𝑝𝑖∗ ≥ 𝑊𝑝𝑖∗

2𝑤𝑖∗
.

Combining both inequalities we get that 𝑟 · 𝑝𝑖∗ ≤ 2𝜀𝑊𝑝𝑖∗/𝑤𝑖∗ ≤ 4𝜀 · OPT. Therefore,
by (3.2) we conclude that 𝑝I′ (𝑥′) ≥ 𝑝Ĩ (𝑥) − 𝑟 · 𝑝𝑖∗ ≥ 𝑝Ĩ (𝑥) − 4𝜀 · OPT ≥ 𝑝 − 8𝜀 · OPT.

Similarly, we can bound the total weight of 𝑥′ as

𝑤I′ (𝑥′) = 𝑤Ĩ (𝑥 − 𝑥𝐿) +
⌊
𝑤Ĩ (𝑥𝐿)
𝑟 ·𝑤𝑖∗

⌋
· 𝑟 ·𝑤𝑖∗ ≤ 𝑤Ĩ (𝑥 − 𝑥𝐿) +𝑤Ĩ (𝑥𝐿) ≤ 𝑤Ĩ (𝑥) ≤ 𝑤.
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Finally, note that 𝑝min > 𝜀OPT follows directly from Lemma 3.19 and 𝑤min > 𝜀𝑊 by
construction. □

The Algorithm

To obtain the FPTAS, we first preprocess the set of items I using Algorithm 6 and
obtain a set I′. Then, by Lemma 3.20, it holds that PI′ [𝑊 ] ≥ (1 −𝑂 (𝜀)) · OPT, so to
obtain a (1 +𝑂 (𝜀))-approximation of PI [𝑊 ] it suffices to give a (1 + 𝜀)-approximation
of PI′ [𝑊 ].
In fact, we solve a slightly more general problem, and compute a sequence which

gives a (pointwise) (1 + 𝜀)-approximation of the entire sequence PI′ [0 . .𝑊 ], according
to the following definition.

Definition 3.21 (Strong Approximation of a Sequence). We say that a sequence𝐴[0 . . 𝑛]
(pointwise) (1 + 𝜀)-approximates a sequence 𝐵 [0 . . 𝑛] if 𝐵 [𝑖]/(1 + 𝜀) ≤ 𝐴[𝑖] ≤ 𝐵 [𝑖] for
every 𝑖 ∈ [𝑛].

Our main ingredient will be the following approximate max-plus convolution intro-
duced by Chan [Cha18] (the proof is very similar to that of Lemma 3.27, which we give
in the next section).

Lemma 3.22 ([Cha18, Item (i) from Lemma 1]). Let 𝐴[0 . . 𝑛], 𝐵 [0 . . 𝑛] be two mono-
tone non-decreasing sequences with 𝑡1 and 𝑡2 steps, respectively. Let 𝑝max, 𝑝min be the
maximum and minimum non-zero values in 𝐴, 𝐵. Then, for any 𝜀 ∈ (0, 1) a monotone
non-decreasing sequence 𝐶 with 𝑂 (1/𝜀 · log(𝑝max/𝑝min)) steps which gives a (pointwise)
1 +𝑂 (𝜀)-approximation of MaxConv(𝐴, 𝐵) can be computed in time

𝑂 ((𝑡1 + 𝑡2 +𝑇 (1/𝜀)) · log(𝑝max/𝑝min))

where 𝑇 (𝑛) is the time needed to compute the min-plus convolution of two length-𝑛
sequences.

Now we are ready to describe the main routine. Since after the preprocessing we have
that 𝑤min > 𝜀𝑊 , any feasible solution contains at most𝑊 /𝑤min < 1/𝜀 items. Thus, to
approximate the optimal solution in I′, we apply Lemma 3.17 for 𝑂 (log 1/𝜀) iterations,
but replace the max-plus convolutions with the approximate ones from Lemma 3.22.
The pseudocode is written in Algorithm 7.

Lemma 3.23. Let (I,𝑊 ) be an instance of Unbounded Knapsack on 𝑛 items with 𝑝min >

𝜀OPT and𝑤min > 𝜀𝑊 . Then, on input (I,𝑊 ) Algorithm 7 computes a pointwise (1+𝑂 (𝜀))-
approximation of PI [0 . .𝑊 ] in time 𝑂 (𝑛 +𝑇 (1/𝜀)), where 𝑇 (𝑛) is the time to compute
Bounded Monotone MaxPlus Conv on length-𝑛 sequences.

Proof. First we argue about correctness. We claim that if the max-plus convolutions of
Line 3 were exact, then for each 𝑖 we have that 𝑆𝑖 = P𝑖 [0 . .𝑊 ]. For the base case 𝑖 = 0,
this holds by definition. For further iterations, this holds inductively by Lemma 3.17.
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Algorithm 7 FPTAS(I,𝑊 ): Given an instance (I,𝑊 ) of Unbounded Knapsack with
𝑤min > 𝜀𝑊 , the algorithm returns a (1 +𝑂 (𝜀))-approximation of PI [0 . .𝑊 ]
1 Initialize 𝑆0 := P0 [0 . .𝑊 ], stored implicitly
2 for 𝑖 = 1, . . . , ⌈log 1/𝜀⌉ do
3 Approximate 𝑆𝑖 := (MaxConv(𝑆𝑖−1, 𝑆𝑖−1)) [0 . .𝑊 ]

using Lemma 3.22 with error parameter 𝜀′ := 𝜀/log(1/𝜀)
4 return 𝑆 ⌈log 1/𝜀⌉ [0 . .𝑊 ]

Since we replaced the exact computations with approximate ones with error parameter
𝜀′ = 𝜀/log(1/𝜀), and since there are 𝑂 (log 1/𝜀) iterations where the error accumulates
multiplicatively, we conclude that 𝑆 ⌈log 1/𝜀⌉ [0 . .𝑊 ] is a pointwise (1 + 𝜀′)𝑂 (log(1/𝜀)) =
1 + 𝑂 (𝜀′ log(1/𝜀)) = (1 + 𝑂 (𝜀))-approximation of P⌈log 1/𝜀⌉ [0 . .𝑊 ]. Finally, note that
since we assume that𝑤min > 𝜀𝑊 , any feasible solution consists of at most𝑊 /𝑤min < 1/𝜀
items. This implies that P⌈log 1/𝜀⌉ [0 . .𝑊 ] = P[0 . .𝑊 ].
Now we argue about the running time. The initialization in Line 1 takes time 𝑂 (𝑛),

since by definition P0 [0 . .𝑊 ] has 𝑛 steps corresponding to the 𝑛 solutions containing
one item. Next, we look at the for-loop in Line 2. For each iteration, we use Lemma 3.22
to approximate the convolutions. Note that each application involves sequences with
𝑂 (𝑛 + 1/𝜀 log(𝑝∗/𝑝min)) steps by the guarantee of Lemma 3.22 (the 𝑛 term arising from
the steps of 𝑆0) where 𝑝∗ is the maximum entry in any of the involved sequences. Since
each entry in any of the sequences corresponds to a feasible solution for the instance,
we have that 𝑝∗ ≤ OPT. Moreover, by assumption we have that 𝑝min ≥ 𝜀OPT, and
hence 𝑝∗/𝑝min ≤ 𝑂 (1/𝜀). Therefore, each iteration takes time 𝑂 (𝑛 + 1/𝜀 +𝑇 (1/𝜀)), and
the overall time is bounded by

⌈log 1
𝜀
⌉∑︁

𝑖=1
𝑂

(
𝑛 + 1

𝜀
+𝑇 (1/𝜀)

)
= 𝑂 (𝑛 +𝑇 (1/𝜀)) .

Note that in this proof we are using the niceness Assumption 3.6 that 𝑇 (𝑂 (𝑛)) =

𝑂 (𝑇 (𝑛)). □

We put the pieces together to conclude the proof of the main theorem of this section.

Proof of Theorem 3.18. Given an instance of (I,𝑊 ) of Unbounded Knapsack, we first
run the preprocessing from Algorithm 6 and obtain a new instance (I′,𝑊 ). Then, we
run Algorithm 7 on (I′,𝑊 ) and obtain a sequence 𝑆 [0 . .𝑊 ]. We claim that 𝑆 [𝑊 ] gives
the desired (1 +𝑂 (𝜀))-approximation to OPT in the desired running time.
To see the running time, note that after the preprocessing it holds that 𝑝min > 2𝜀𝑃0 ≥

𝜀OPT and𝑤min > 𝜀𝑊 . Hence, we can apply Lemma 3.23 and conclude that the procedure
runs in the desired running time. To argue about correctness, note that by Lemma 3.20
it holds that PI′ [𝑊 ] ≥ (1 − 8𝜀)OPT. Combining this with the fact that 𝑆 [0 . .𝑊 ]
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(1 +𝑂 (𝜀))-approximates PI′ [0 . .𝑊 ] due to Lemma 3.23, we conclude that

𝑆 [𝑊 ] ≥ PI
′ [𝑊 ]

1 +𝑂 (𝜀) ≥
(1 − 8𝜀)OPT

1 +𝑂 (𝜀) ≥ OPT
1 +𝑂 (𝜀) ,

as desired. □

3.4.3 Faster Weak FPTAS

In this section we prove the following theorem.

Theorem 3.24. If Bounded Monotone MaxPlus Conv can be solved in time 𝑇 (𝑛), then
Unbounded Knapsack has a weak approximation scheme in time 𝑂 (𝑛 +𝑇 (1/𝜀)).

Note that Main Theorem 1.6 follows as an immediate corollary by plugging in Chi,
Duan, Xie and Zhang’s algorithm (Corollary 3.3).

The Algorithm

Our approach is similar to the FPTAS from the previous section. The main difference is
that since now we can overshoot the weight constraint by an additive term of 𝜀𝑊 , we
can afford to round the weights of the items. By doing so, we can adapt the algorithm
from Lemma 3.22 to use an algorithm for Bounded Monotone MaxPlus Conv.

We start by specifying the notion of approximation for monotone sequences we will
be working with. In the following definition, it is helpful to think of the indices as
weights and the entries as profits.

Definition 3.25 (Weak Approximation of a Sequence). We say that a sequence𝐴[0 . . 𝑛′]
weakly (1 + 𝜀)-approximates a sequence 𝐵 [0 . . 𝑛] if the following two properties hold:

(i) Good approximation for every entry. For every 𝑗 ∈ [𝑛], there exists 𝑗 ′ ∈ [𝑛′]
with 𝐴[ 𝑗 ′] ≥ 𝐵 [ 𝑗]/(1 + 𝜀) and 𝑗 ′ ≤ (1 + 𝜀) 𝑗 .

(ii) No approximate entry is better than a true entry. For every 𝑗 ′ ∈ [𝑛′], there
exists 𝑗 ∈ [𝑛] such that 𝐴[ 𝑗 ′] ≤ 𝐵 [ 𝑗] and 𝑗 ′ ≥ 𝑗 .

The following lemma shows that our notion of weak approximations is transitive.
In particular, it implies that a weak approximation of the max-plus convolution of two
weakly approximated sequences gives a (slightly worse) weak approximation of the
convolution of the original sequences.

Lemma 3.26. If 𝐴 weakly (1 + 𝜀)-approximates 𝐵 and 𝐵 weakly (1 + 𝜀′)-approximates 𝐶 ,
then 𝐴 weakly (1 + 𝜀) (1 + 𝜀′)-approximates 𝐶 .

70



3.4 Approximation Schemes for Unbounded Knapsack

Proof. First we check that 𝐴 and 𝐶 satisfy property (i) of Definition 3.25. Fix an entry
𝐶 [𝑘]. Since 𝐵 weakly (1 + 𝜀′)-approximates 𝐶 , by property (i) there exists an index
𝑗 such that 𝐵 [ 𝑗] ≥ 𝐶 [𝑘]/(1 + 𝜀′) and 𝑗 ≤ (1 + 𝜀′)𝑘 . Thus, since 𝐴 weakly (1 + 𝜀)-
approximates 𝐵 we apply property (i) once more to conclude that there is an index 𝑖
such that 𝐴[𝑖] ≥ 𝐵 [ 𝑗]/(1 + 𝜀) ≥ 𝐶 [𝑘]

(1+𝜀) (1+𝜀′) and 𝑖 ≤ (1 + 𝜀) 𝑗 ≤ (1 + 𝜀) (1 + 𝜀
′)𝑘 .

We can similarly check that 𝐴 and𝐶 satisfy property (ii). Fix an entry 𝐴[𝑖] and apply
property (ii) to obtain an index 𝑗 such that 𝐴[𝑖] ≤ 𝐵 [ 𝑗] and 𝑖 ≥ 𝑗 . Applying property
(ii) once more to 𝑗 yields an index 𝑘 such that 𝐵 [ 𝑗] ≤ 𝐶 [𝑘] and 𝑗 ≥ 𝑘 . Combining, we
conclude that 𝐴[𝑖] ≤ 𝐶 [𝑘] and 𝑖 ≥ 𝑘 , as desired. □

We extend Lemma 3.22 to give a weak approximation of the max-plus convolution of
two sequences. Given two pairs of integers (𝑤, 𝑝), (𝑤′, 𝑝′), we say that (𝑤, 𝑝) dominates
(𝑤′, 𝑝′) if 𝑤 ≤ 𝑤′ and 𝑝 > 𝑝′. Given a list of pairs 𝐷 = [(𝑤1, 𝑝1), . . . , (𝑤𝑚, 𝑝𝑚)], we can
remove all dominated pairs from 𝐷 in near-linear time for example by sorting.

Lemma 3.27. Let 𝐴[0 . . 𝑛], 𝐵 [0 . . 𝑛] be two monotone non-decreasing sequences with
𝑡1 and 𝑡2 steps, respectively. Let 𝑝max, 𝑝min be the maximum and minimum non-zero
values in 𝐴, 𝐵 and let 𝑤min = min{ 𝑖 | 𝐴[𝑖] ≠ 0 or 𝐵 [𝑖] ≠ 0 }. Then, for any 𝜀 ∈
(0, 1) a monotone non-decreasing sequence 𝐶 which is a weak 1 +𝑂 (𝜀)-approximation of
(MaxConv(𝐴, 𝐵)) [0 . . 2𝑛] and consists of 𝑂 (1/𝜀 · log(𝑝max/𝑝min) · log(𝑁 /𝑤min)) steps
can be computed in time

𝑂 ((𝑡1 + 𝑡2 +𝑇 (1/𝜀)) · log(𝑝max/𝑝min) log(𝑁 /𝑤min))

where 𝑇 (𝑛) is the time needed to compute Bounded Monotone MaxPlus Conv on sequences
of length 𝑛.

Proof. Let 𝐶 := MaxConv(𝐴, 𝐵). For this proof it will be convenient to work directly
with the steps of the monotone sequences 𝐴, 𝐵 and 𝐶 . So suppose we are given 𝐴 as
a list of steps 𝐴 = [(𝑤1, 𝑝1), . . . , (𝑤𝑡1, 𝑝𝑡1)] where each step (𝑤, 𝑝) represents an entry
𝑝 = 𝐴[𝑤] at which 𝐴 changes, i.e., 𝐴[𝑤 − 1] < 𝐴[𝑤] (or 𝑤 = 0). Similarly, 𝐵 and 𝐶 are
represented as lists of steps.
Fix integers 𝑝∗, 𝑤∗ > 0 and define a sequence of steps 𝐴′ by keeping every step
(𝑤, 𝑝) ∈ 𝐴 with𝑤 ≤ 𝑤∗ and 𝑝 ≤ 𝑝∗ and rounding it to (⌈𝑤/(𝜀𝑤∗)⌉, ⌊𝑝/(𝜀𝑝∗)⌋). Let 𝐵′ be
defined analogously. Compute𝐶′ := MaxConv(𝐴′, 𝐵′), and scale each step (𝑤′, 𝑝′) ∈ 𝐶′
back, i.e., set 𝑤 := 𝑤′ · (𝜀𝑤∗) and 𝑝 := 𝑝 · (𝜀𝑝∗), obtaining a sequence of steps 𝐶′′.

▷ Claim 3.28. The following holds:

(a) For every step (𝑤, 𝑝) ∈ 𝐶 for which 𝑤∗/2 ≤ 𝑤 ≤ 𝑤∗ and 𝑝∗/2 ≤ 𝑝 ≤ 𝑝∗, there is a
step (𝑤′′, 𝑝′′) ∈ 𝐶′′ such that 𝑤′′ ≤ (1 + 4𝜀)𝑤 and 𝑝′′ ≥ 𝑝/(1 + 8𝜀).

(b) For every step (𝑤′′, 𝑝′′) ∈ 𝐶′′ there is a step (𝑤, 𝑝) ∈ 𝐶 such that 𝑤′′ ≥ 𝑤 and
𝑝′′ ≤ 𝑝 .
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Proof . We first prove Item (a). Fix one step (𝑤, 𝑝) ∈ 𝐶 and let (𝑤𝑎, 𝑝𝑎) ∈ 𝐴, (𝑤𝑏, 𝑝𝑏) ∈ 𝐵
be the corresponding steps such that 𝑤 = 𝑤𝑎 +𝑤𝑏 and 𝑝 = 𝑝𝑎 + 𝑝𝑏 . Note that (𝑤𝑎, 𝑝𝑎)
has a corresponding rounded step (𝑤′𝑎, 𝑝′𝑎) ∈ 𝐴′ since 𝑤 ≤ 𝑤∗ and 𝑝 ≤ 𝑝∗ imply that
(𝑤𝑎, 𝑝𝑎) were included (after rounding) to𝐴′. Similarly, (𝑤𝑏, 𝑝𝑏) has a corresponding step
(𝑤′

𝑏
, 𝑝′
𝑏
) ∈ 𝐵′. Hence, 𝐶′[𝑤′𝑎 +𝑤′𝑏] ≥ 𝑝

′
𝑎 + 𝑝′𝑏 , and therefore there is a step (𝑤′′𝑐 , 𝑝′′𝑐 ) ∈ 𝐶′′

such that
𝑤′′𝑐 ≤ (𝑤′𝑎 +𝑤′𝑏) · 𝜀𝑤

∗ ≤ (𝑤/(𝜀𝑤∗) + 2) · 𝜀𝑤∗ ≤ (1 + 4𝜀)𝑤,
where we used the definition of 𝑤′𝑎, 𝑤′𝑏 in the second inequality, and 𝑤∗/2 ≤ 𝑤 in the
last one. Similarly, we have that

𝑝′′𝑐 ≥ (𝑝′𝑎 + 𝑝′𝑏) · 𝜀𝑝
∗ ≥ (𝑝/(𝜀𝑝∗) − 2) · 𝜀𝑝∗ ≥ (1 − 4𝜀)𝑝 ≥ 𝑝/(1 + 8𝜀),

where in the last step we assumed 𝜀 ≤ 1
8 , which is without loss of generality. This

proves Item (a).
Item (b) follows because each step (𝑤′′, 𝑝′′) ∈ 𝐶′′ is a (scaled) sum of steps (𝑤′𝑎, 𝑝′𝑎) ∈ 𝐴′

and (𝑤′
𝑏
, 𝑝′
𝑏
) ∈ 𝐵′ which by construction are rounded steps (𝑤𝑎, 𝑝𝑎) ∈ 𝐴, (𝑤𝑏, 𝑝𝑏) ∈ 𝐵.

Thus,

𝑤′′ = (𝑤′𝑎 +𝑤′𝑏) · 𝜀𝑤
∗ = (⌈𝑤𝑎/(𝜀𝑤∗)⌉ + ⌈𝑤𝑏/(𝜀𝑤∗)⌉) · 𝜀𝑤∗ ≥ 𝑤𝑎 +𝑤𝑏,

𝑝′′ = (𝑝′𝑎 + 𝑝′𝑏) · 𝜀𝑝
∗ = (⌊𝑝𝑎/(𝜀𝑝∗)⌋ + ⌊𝑝𝑏/(𝜀𝑝∗)⌋) · 𝜀𝑝∗ ≤ 𝑝𝑎 + 𝑝𝑏,

which implies that there is a step (𝑤, 𝑝) ∈ 𝐶 such that 𝑤 ≤ 𝑤𝑎 + 𝑤𝑏 ≤ 𝑤′′ and 𝑝 ≥
𝑝𝑎 + 𝑝𝑏 ≥ 𝑝′′. ◁

Claim 3.28 implies that if we apply the described procedure for every𝑤min ≤ 𝑤∗ ≤ 2𝑁
and 𝑝min ≤ 𝑝∗ ≤ 𝑝max which are powers of 2 and combine the results by keeping the
set of non-dominated steps, we obtain a weak (1 +𝑂 (𝜀))-approximation of 𝐶 . Indeed,
Item (a) implies property (i) of Definition 3.25 and Item (b) implies property (ii). The
overall procedure is summarized in Algorithm 8.
Now we analyze the running time. For each 𝑝∗ and 𝑤∗, we spend 𝑂 (𝑡1 + 𝑡2) time

to construct 𝐴′ and 𝐵′ in Line 6 and Line 7. The key step is the computation of 𝐶′
in Line 9. Note that the steps constructed in Line 6 for 𝐴′ define a monotone sequence
𝐴′[1 . . ⌊1/𝜀⌋] where 𝐴′[𝑖] := max{ 𝑝′ | (𝑤′, 𝑝′) ∈ 𝐴′, 𝑤′ ≤ 𝑖 }, and 𝐵′[1 . . ⌊1/𝜀⌋] is
defined similarly. Thus,𝐴′, 𝐵′ are monotone non-decreasing sequences of length𝑂 (1/𝜀),
and due to the rounding their entries are bounded by 𝑂 (1/𝜀). Thus, we can compute 𝐶′
in time 𝑇 (1/𝜀) and the overall running time of the algorithm is 𝑂 ((𝑡1 + 𝑡2 +𝑇 (1/𝜀)) ·
log(𝑝max/𝑝min) log(𝑁 /𝑤min)). □

Now we are ready to give the main algorithm. The idea is the same as in the FPTAS
in Algorithm 7, except that we replace the max-plus convolution computations, i.e., we
use Lemma 3.27 instead of Lemma 3.22. The full pseudocode is in Algorithm 9.

For the analysis, we will use the following notation. Given a sequence 𝐴[0 . . 𝑛], and
an integer 𝑖 ≥ 1we denote by (𝐴[0 . . 𝑛])𝑖 the result of applying 2𝑖 max-plus convolutions
of 𝐴 with itself, i.e., produced by the following process:
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Algorithm 8 Given monotone non-decreasing sequences 𝐴, 𝐵 represented as lists
of steps, the algorithm returns the steps of a weak (1 + 𝑂 (𝜀))-approximation of
MaxConv(𝐴, 𝐵).
1 𝑆 := [ ]
2 for 𝑖 = 0, 1, 2, . . . , ⌈log(𝑝max/𝑝min)⌉ do
3 𝑝∗ := 2𝑖 · 𝑝min
4 for 𝑗 = 0, 1, 2, . . . , ⌈log(𝑁 /𝑤min)⌉ do
5 𝑤∗ := 2 𝑗 ·𝑤min
6 𝐴′ :=

[
(⌈ 𝑤
𝜀·𝑤∗ ⌉, ⌊

𝑝

𝜀·𝑝∗ ⌋) | (𝑤, 𝑝) ∈ 𝐴, 𝑤 ≤ 𝑤
∗, 𝑝 ≤ 𝑝∗

]
7 𝐵′ :=

[
(⌈ 𝑤
𝜀·𝑤∗ ⌉, ⌊

𝑝

𝜀·𝑝∗ ⌋) | (𝑤, 𝑝) ∈ 𝐵, 𝑤 ≤ 𝑤
∗, 𝑝 ≤ 𝑝∗

]
8 Remove dominated pairs from 𝐴′ and 𝐵′
9 Compute 𝐶′ := MaxConv(𝐴′, 𝐵′) using Corollary 3.3
10 𝐶′′ := [(𝑤 · 𝜀𝑤∗, 𝑝 · 𝜀𝑝∗) | (𝑤, 𝑝) ∈ 𝐶′]
11 Append 𝐶′′ to 𝑆
12 Remove dominated pairs in 𝑆 and sort the remaining points
13 return 𝑆

1 𝐵 := MaxConv(𝐴,𝐴)
2 repeat 2𝑖 − 2 times

3 𝐵 := MaxConv(𝐴, 𝐵)
4 (𝐴[0 . . 𝑛])𝑖 := 𝐵
If 𝑖 = 0, we set (𝐴[0 . . 𝑛])0 := 𝐴[0 . . 𝑛]. Note that the length of the resulting sequence
is 2𝑖 · 𝑛 + 1. Moreover, note that by definition, for 𝑖 ≥ 1 it holds that (𝐴[0 . . 𝑛])𝑖 =
MaxConv((𝐴[0 . . 𝑛])𝑖−1, (𝐴[0 . . 𝑛])𝑖−1).

Algorithm 9Weak-FPTAS(I,𝑊 ): Given an instance (I,𝑊 ) of Unbounded Knapsack,
the algorithm returns a weak (1 +𝑂 (𝜀))-approximation of (PI,0 [0 . .𝑊 ]) ⌈log 1/𝜀⌉

1 Initialize 𝑆0 := P0 [0 . .𝑊 ], stored implicitly
2 for 𝑖 = 1, . . . , ⌈log 1/𝜀⌉ do
3 Approximate 𝑆𝑖 := MaxConv(𝑆𝑖−1, 𝑆𝑖−1) using Lemma 3.27

with error parameter 𝜀′ := 𝜀/log(1/𝜀)
4 return 𝑆 ⌈log 1/𝜀⌉

Lemma 3.29. Let (I,𝑊 ) be an instance of Unbounded Knapsack on 𝑛 = |I | items, where
𝑝min > 𝜀OPT and 𝑤min > 𝜀𝑊 . Then, on input (I,𝑊 ) Algorithm 9 computes a weak
(1 + 𝑂 (𝜀))-approximation of (P0 [0 . .𝑊 ]) ⌈log 1/𝜀⌉ in time 𝑂 (𝑛 + 𝑇 (1/𝜀)), where 𝑇 (𝑛) is
the time needed to compute Bounded Monotone MaxPlus Conv on length-𝑛 sequences.

Proof. First we argue correctness. We will show by induction that for every 𝑖 ≥ 0
it holds that 𝑆𝑖 is a weak (1 + 𝜀′)𝑖-approximation of (P0 [0 . .𝑊 ])𝑖 . For the base case
𝑖 = 0, this holds by definition of 𝑆0. For the inductive step, take 𝑖 > 0 and assume the
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claim holds for 𝑖 − 1. By the computation in line 3 of Algorithm 9, 𝑆𝑖 weakly (1 + 𝜀′)-
approximates MaxConv(𝑆𝑖−1, 𝑆𝑖−1). And by the inductive hypothesis, 𝑆𝑖−1 is a weak
(1 + 𝜀′)𝑖−1-approximation of (P0 [0 . .𝑊 ])𝑖−1. Therefore, by Lemma 3.26 it follows that
𝑆𝑖 weakly (1 + 𝜀′)𝑖-approximates

MaxConv((P0 [0 . .𝑊 ])𝑖−1, (P0 [0 . .𝑊 ])𝑖−1) = (P0 [0 . .𝑊 ])𝑖 .

Since 𝜀′ = 𝜀/log(1/𝜀), we conclude that 𝑆 ⌈log 1/𝜀⌉ is a weak (1 + 𝜀′)𝑖 = (1 + 𝑂 (𝜀))-
approximation of (P0 [0 . .𝑊 ]) ⌈log 1/𝜀⌉ , as desired.

Now we analyze the running time. The initialization in Line 1 takes time𝑂 (𝑛). Then,
in each execution of Line 3 of the for-loop we apply Lemma 3.27 to approximate the
max-plus convolutions. When 𝑖 = 1 the input sequences have 𝑂 (𝑛) steps, and we
obtain a sequence with 𝑂 (1/𝜀 log(𝑝max/𝑝min) log(𝑊 /𝑤min)) steps which approximates
MaxConv(P0 [0 . .𝑊 ],P[0 . .𝑊 ]). Continuing inductively, in the 𝑖-th iteration we
approximate the max-plus convolution of sequences with

𝑂 (𝑛 + 1/𝜀 log(2𝑖𝑝max/𝑝min) log(2𝑖𝑊 /𝑤min))

steps. Since 𝑖 ≤ 𝑂 (log 1/𝜀), and by assumption 𝑝min > 𝜀OPT and 𝑤min > 𝜀𝑊 it follows
that the number of steps of the input sequences in every iteration are bounded by
𝑂 (𝑛 + 1/𝜀). Therefore, each iteration takes time𝑂 (𝑛 +𝑇 (1/𝜀)). Thus, we can bound the
overall running time by

⌈log 1
𝜀
⌉∑︁

𝑖=1
𝑂

(
𝑛 + 1

𝜀
+𝑇 (1/𝜀)

)
= 𝑂 (𝑛 +𝑇 (1/𝜀)) .

Note that here we are using the niceness Assumption 3.6 that 𝑇 (𝑂 (𝑛)) = 𝑂 (𝑇 (𝑛)). □

Now we can put things together to prove the main theorem.

Proof of Theorem 3.24. Given a instance of (I,𝑊 ) of Unbounded Knapsack, we first
preprocess it with Algorithm 6 and obtain a new instance (I′,𝑊 ). Then, we run Algo-
rithm 9 on (I′,𝑊 ) and obtain as output a sequence 𝑆 := 𝑆 ⌈log 1/𝜀⌉ . We claim that 𝑝 := 𝑆 [ℓ]
where ℓ := (1 +𝑂 (𝜀))𝑊 (for a sufficiently large hidden constant given by the guarantee
of Lemma 3.29) is the profit of a feasible solution with profit 𝑝 ≥ OPT/(1 +𝑂 (𝜀)) and
weight at most (1 +𝑂 (𝜀))𝑊 , and that we can compute it in the desired running time.

To see the claim, first note that after the preprocessing, Lemma 3.20 guarantees that
𝑝min > 2𝜀𝑃0 ≥ 𝜀OPT and 𝑤min > 𝜀𝑊 . Hence, we can apply Lemma 3.29 and conclude
that we can compute 𝑆 (and therefore 𝑆 [ℓ]) in the desired running time.
To argue about correctness, let 𝑥∗ be the optimal solution for the original instance
(I,𝑊 ), i.e., PI [𝑊 ] = 𝑝 (𝑥∗) = OPT. By Lemma 3.20, there is a solution 𝑥 from I′ which
satisfies 𝑝 (𝑥) ≥ (1 − 8𝜀)𝑝 (𝑥∗) = (1 − 8𝜀)OPT and 𝑤 (𝑥) ≤ 𝑤 (𝑥∗) ≤𝑊 . Thus, it suffices
to argue that 𝑆 [ℓ] corresponds to a solution from I′ which weakly-approximates 𝑥 .
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Since the maximum number of items in any feasible solution for (I′,𝑊 ) is at most
𝑊 /𝑤min < 1/𝜀, we can apply Lemma 3.17 inductively to obtain that

(PI′,0 [0 . .𝑊 ]) ⌈log 1/𝜀⌉ [0 . .𝑊 ] = PI′ [0 . .𝑊 ] . (3.3)

Putting things together, observe that Lemma 3.29 guarantees that the output sequence 𝑆
is a weak (1 +𝑂 (𝜀))-approximation of (PI′,0 [0 . .𝑊 ]) ⌈log 1/𝜀⌉ . Therefore, by combining
(3.3), property (i) of Definition 3.25 and monotonicity we conclude that 𝑆 [ℓ] ≥ OPT/(1+
𝑂 (𝜀)). Moreover, property (ii) of Definition 3.25 guarantees that 𝑆 [ℓ] indeed corresponds
to a solution from I′ of weight at most (1 +𝑂 (𝜀))𝑊 , completing the proof. □

3.4.4 Solution Reconstruction

For both our strong and weak approximation schemes presented in Section 3.4, we only
described how to obtain an approximation of the value of the optimal solution. We
can also reconstruct the solution itself by computing the witnesses of each max-plus
convolution (see Lemma 3.5), as we show in the following lemma.

Lemma 3.30. A solution attaining the value given by Algorithm 9 can be found in time
𝑂 (𝑛 +𝑇 (1/𝜀)), where 𝑇 (𝑛) is the time to compute Bounded Monotone MaxPlus Conv on
length-𝑛 sequences.

Proof Sketch. We run Algorithm 9, but additionally compute witnesses for each convolu-
tion. More precisely, consider the sequence 𝑆𝑖 obtained at each iteration 𝑖 of Algorithm 9.
Note that via Lemma 3.5 we can obtain the witness array for every step in 𝑆𝑖 by comput-
ing the witnesses of each max-plus convolution computed inside Lemma 3.27, which
only adds a polylogarithmic overhead to the running time. After doing this, for every
step in 𝑆𝑖 we can obtain the corresponding two steps in 𝑆𝑖−1 that define it in constant
time (by doing a lookup in the witness arrays). Thus, to reconstruct the optimal solution
we proceed by obtaining the steps which define the solution 𝑆 ⌈log 1/𝜀⌉ [(1 + 𝑂 (𝜀))𝑊 ],
and recursively find the steps which define them in the previous level. Proceeding in
this way, we eventually hit the entries of P0, which correspond to the items from I′
which correspond to the solution found. The correctness of this procedure follows
simply because we trace back the computation which led to the output value and
store the items found in the first level. Since we can lookup the witnesses in constant
time and at the 𝑖-th level of recursion we have 2𝑖 subproblems, the running time is
𝑂 (∑𝑖≤log 1/𝜀 2𝑖) = 𝑂 (1/𝜀). □

With an analogous proof we can show the same for the strong FPTAS:

Lemma 3.31. A solution attaining the value given by Algorithm 7 can be found in time
𝑂 (𝑛 + 𝑇 (1/𝜀)), where 𝑇 (𝑛) is the time to compute max-plus convolution on length-𝑛
sequences.
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3.5 Equivalence

We complement the algorithmic results of this chapter by showing reductions in the
opposite direction: Following the same chain of reductions as in [Cyg+19; KPS17]
but starting from bounded monotone instances of max-plus convolution, we reduce
Bounded Monotone MaxPlus Conv to 𝑂 (𝑛) instances of Unbounded Knapsack with
𝑂 (
√
𝑛) items each, where it holds that𝑤max, 𝑝max,𝑊 and OPT are all bounded by𝑂 (

√
𝑛).

Instantiating this reduction for the exact and approximate setting, we show the following
theorem.
Theorem 3.32 (Equivalence). For any problems 𝐴 and 𝐵 from the following list, if 𝐴
can be solved in time 𝑂 (𝑛2−𝛿 ) for some 𝛿 > 0, then 𝐵 can be solved in randomized time
𝑂 (𝑛2−𝛿/2):
1. Bounded Monotone MaxPlus Conv on sequences of length 𝑛

2. Unbounded Knapsack on 𝑛 items and𝑊,OPT = 𝑂 (𝑛)

3. Knapsack on 𝑛 items and𝑊,OPT = 𝑂 (𝑛)

4. Weak (1 + 𝜀)-approximation for Unbounded Knapsack on 𝑛 items and 𝜀 = Θ(1/𝑛)
On the one hand, Main Theorem 1.4 solves Unbounded Knapsack in time 𝑂 (𝑛 +
(𝑝max +𝑤max)1.5) by using Chi, Duan, Xie and Zhang’s subquadratic Bounded Monotone
MaxPlus Conv algorithm [Chi+22] (Corollary 3.3). On the other hand, Theorem 3.32
shows that any algorithm solving Unbounded Knapsack in time𝑂 (𝑛 + (𝑝max +𝑤max)2−𝛿 )
can be transformed into a subquadratic Bounded Monotone MaxPlus Conv algorithm.
This shows that both our exact and approximation algorithms take essentially the only
possible route to obtain subquadratic algorithms, by invoking a Bounded Monotone
MaxPlus Conv algorithm.

Proof Overview As mentioned in Section 1.2, Cygan et al. [Cyg+19] and Künne-
mann et al. [KPS17] independently showed a reduction from max-plus convolution to
Unbounded Knapsack. In Section 3.5.1 we show that following the same chain of re-
ductions from max-plus convolution to Unbounded Knapsack but instead starting from
Bounded Monotone MaxPlus Conv, with minor adaptations we can produce instances
of Unbounded Knapsack with𝑊,OPT = 𝑂 (𝑛).
Together with our exact algorithm for Unbounded Knapsack, which we can phrase

as a reduction to Bounded Monotone MaxPlus Conv, we obtain an equivalence of
Bounded Monotone MaxPlus Conv and Unbounded Knapsack with𝑊,OPT = 𝑂 (𝑛)
— if one of these problems can be solved in subquadratic time, then both can. Note
that for Unbounded Knapsack with𝑊,OPT = 𝑂 (𝑛) a weak (1 + 𝜀)-approximation for
𝜀 = Θ(1/𝑛) already computes an exact optimal solution. This yields the reduction from
Bounded Monotone MaxPlus Conv to the approximate version of Unbounded Knapsack.
We similarly obtain a reduction to Knapsack with𝑊,OPT = 𝑂 (𝑛). This yields our
equivalences from Theorem 3.32.
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3.5.1 Retracing known reductions

We follow the reduction frommax-plus convolution to Unbounded Knapsack of [Cyg+19]
and [KPS17], but starting from Bounded Monotone MaxPlus Conv instead of general
instances. In particular, we closely follow the structure of Cygan et al.’s proof. Their
reduction proceeds in three steps using the following intermediate problems. Note that
we define the bounded monotone (BM) versions of their problems.

Problem 3.33 (BMMaxConv UpperBound). Given monotone non-decreasing sequences
𝐴[0 . . 𝑛], 𝐵 [0 . . 𝑛],𝐶 [0 . . 2𝑛] with entries in [𝑂 (𝑛)]. The task is to decide whether for all
𝑘 ∈ [2𝑛] we have 𝐶 [𝑘] ≥ max𝑖+ 𝑗=𝑘 𝐴[𝑖] + 𝐵 [ 𝑗].

Problem 3.34 (BMSuperAdditivity Testing). Given a monotone non-decreasing sequence
𝐴[0 . . 𝑛] with entries in [𝑂 (𝑛)]. The task is to decide whether for all 𝑘 ∈ [𝑛] we have
𝐴[𝑘] ≥ max𝑖+ 𝑗=𝑘 𝐴[𝑖] +𝐴[ 𝑗]

The first step is to reduce Bounded Monotone MaxPlus Conv to its decision version
BMMaxConv UpperBound. The technique used in this step traces back to a reduction
from min-plus matrix product to negative weight triangle detection in graphs due to
Vassilevska Williams and Williams [WW18]. Our proof is very similar to [Cyg+19,
Theorem 5.5], but we need some extra care to ensure that the constructed instances
have bounded entries.

Proposition 3.35. Given an algorithm for BMMaxConv UpperBound in time 𝑇 (𝑛), we
can find a violated constraint 𝐶 [𝑖 + 𝑗] < 𝐴[𝑖] + 𝐵 [ 𝑗] if it exists in time 𝑂 (𝑇 (𝑛) · log𝑛).

Proof. Suppose 𝐴, 𝐵,𝐶 form a NO-instance of BMMaxConv UpperBound and let 𝑘∗ =
𝑖∗+ 𝑗∗ be the smallest index for whichwe have a violated constraint𝐶 [𝑘∗] < 𝐴[𝑖∗]+𝐵 [ 𝑗∗].
Note that for any 𝑘 < 𝑘∗ the prefixes𝐴[0 . . 𝑘], 𝐵 [0 . . 𝑘],𝐶 [0 . . 𝑘] form a YES instance of
BMMaxConv UpperBound. Thus, we can do binary search over prefixes to find 𝑘∗. □

Lemma 3.36 (Bounded Monotone MaxPlus Conv→ BMMaxConv UpperBound). If
BMMaxConv UpperBound can be solved in time 𝑇 (𝑛), then Bounded Monotone MaxPlus
Conv can be solved in time 𝑂 (𝑛 ·𝑇 (

√
𝑛)).

Proof. Let𝐴[0 . . 𝑛], 𝐵 [0 . . 𝑛] be an input instance of Bounded Monotone MaxPlus Conv.
We will describe a procedure which given a sequence 𝐶 of length 2𝑛 + 1, outputs for
each 𝑘 ∈ [2𝑛] whether 𝐶 [𝑘] ≥ max𝑖+ 𝑗=𝑘 𝐴[𝑖] + 𝐵 [ 𝑗]. Given this procedure, we can
determine all entries of MaxConv(𝐴, 𝐵) by a simultaneous binary search using 𝐶 in
𝑂 (log𝑛) calls. Since 𝐴, 𝐵 are monotone non-decreasing, the sequence of guessed values
𝐶 will remain monotone in all iterations.
We split the input sequences of Bounded Monotone MaxPlus Conv as follows. Let

Δ = 𝑂 (𝑛) be the largest value in𝐴 and 𝐵. Given an interval 𝐼 ⊆ [𝑛], we denote by𝐴𝐼 the
contiguous subsequence of 𝐴 indexed by 𝐼 . Among the indices 𝑖 ∈ [𝑛], we mark every
multiple of ⌈

√
𝑛⌉. We also mark the smallest index 𝑖 with 𝐴[𝑖] ≥ 𝑗 · ⌈

√
Δ⌉, for every

integer 1 ≤ 𝑗 ≤
√
Δ. Then we split 𝐴 at every marked index, obtaining subsequences
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𝐴𝐼0, . . . , 𝐴𝐼𝑎 for 𝑎 ≤ 𝑛′ := ⌈
√
𝑛⌉ + ⌈

√
Δ⌉. We analogously construct intervals 𝐽0, . . . , 𝐽𝑏

with 𝑏 ≤ 𝑛′ which partition 𝐵.
We denote by 𝐶 [0 . . 2𝑛] the sequence which we use to binary search the values

of MaxConv(𝐴, 𝐵). Recall that our goal is to determine for each 𝑘 whether 𝐶 [𝑘] ≥
max𝑖+ 𝑗=𝑘 𝐴[𝑖] + 𝐵 [ 𝑗]. We will describe an iterative procedure which returns a binary
array 𝑀 [0 . . 2𝑛] where 𝑀 [𝑘] = 1 if we have determined that 𝐶 [𝑘] < max𝑖+ 𝑗=𝑘 𝐴[𝑖] +
𝐵 [ 𝑗], and𝑀 [𝑘] = 0 otherwise.
Initialize 𝑀 [𝑘] = 0 for all 𝑘 ∈ [2𝑛]. Iterate over each (𝑥,𝑦) ∈ [𝑎] × [𝑏]. We now

describe how to check if 𝐴[𝑖] + 𝐵 [ 𝑗] ≤ 𝐶 [𝑖 + 𝑗] holds for all 𝑖 ∈ 𝐼𝑥 and 𝑗 ∈ 𝐼𝑦 , or
otherwise find a violated constraint using the oracle for BMMaxConv UpperBound. Let
𝐿 := min𝐴𝐼𝑥 +min𝐵 𝐽𝑦 and 𝑈 := max𝐴𝐼𝑥 +max𝐵 𝐽𝑦 . We proceed in the following two
steps:

1. Identify all indices 𝑘 ∈ 𝐼𝑥 + 𝐼𝑦 for which 𝐶 [𝑘] < 𝐿. Since 𝐴[𝑖] + 𝐵 [ 𝑗] ≥ 𝐿 for every
𝑖 ∈ 𝐼𝑥 , 𝑗 ∈ 𝐽𝑦 , we conclude that 𝐶 [𝑘] < max𝑖+ 𝑗=𝑘 𝐴[𝑖] + 𝐵 [ 𝑗], and thus set𝑀 [𝑘] = 1
for every such index.

2. Add extra dummy entries𝐶 [2𝑛 + 1] := ∞, and𝑀 [2𝑛 + 1] = 0. Let next(𝑘) := min{ 𝑗 |
𝑗 ≥ 𝑘,𝑀 [ 𝑗] = 0 }. We construct a new sequence 𝐶′ by setting for every index
𝑘 ∈ 𝐼𝑥 + 𝐼𝑦 :

𝐶′[𝑘] := min{𝐶 [next(𝑘)],𝑈 + 1 }.

The purpose of the dummy entries is to set𝐶′[𝑘] := 𝑈 +1 if there is no 𝑘 ≤ 𝑗 ≤ 2𝑛 for
which𝑀 [ 𝑗] = 0. Due to the monotonicity of 𝐶 , it follows that 𝐶′ is also monotone.
Further, it holds that 𝐿 ≤ 𝐶′[𝑘] ≤ 𝑈 + 1 for every entry 𝑘 . Intuitively, the purpose of
next(𝑘) is to ignore the entries which already have been marked𝑀 [𝑘] = 1 in step 1,
or in previous iterations.
Now we want to find a violating index 𝐶′[𝑖 + 𝑗] < 𝐴𝐼𝑥 [𝑖] + 𝐵 𝐽𝑦 [ 𝑗] if it exists, using
the BMMaxConv UpperBound oracle. In order to do so, we shift the values of𝐴𝐼𝑥 , 𝐵 𝐽𝑦
and 𝐶′ appropriately. More precisely, let 𝐿𝐴 := min𝐴𝐼𝑥 and 𝐿𝐵 := min𝐵 𝐽𝑦 be the
lowest numbers in 𝐴𝐼𝑥 , 𝐵 𝐽𝑦 respectively. We subtract 𝐿𝐴 from every element in 𝐴𝐼𝑥 ,
𝐿𝐵 from every element in 𝐵 𝐽𝑦 and 𝐿𝐴 + 𝐿𝐵 from every element in 𝐶′. This makes all
entries bounded by 𝑂 (𝑛′) = 𝑂 (

√
𝑛), and a violating index in the resulting instance is

a violating index before shifting since we subtract the same quantity from both sides
of the inequality 𝐶′[𝑖 + 𝑗] < 𝐴𝐼𝑥 [𝑖] + 𝐵 𝐽𝑦 [ 𝑗]. Thus, we can use Proposition 3.35 to
find a violating index 𝑘 = 𝑖 + 𝑗 if it exists, and if so, set𝑀 [next(𝑘)] := 1.

We repeat step 2 until we find no more violating indices (recomputing the sequence
𝐶′ in each iteration). Then we repeat the process with the next pair (𝑥,𝑦).

We claim that in this way, we correctly compute the array of violated indices𝑀 . To
see correctness, note that step 1 is trivially correct due to the lower bound on any pair
of sums. For step 2, note that if we find a violating index 𝑘 = 𝑖 + 𝑗 and next(𝑘) = 𝑘 , then
setting 𝑀 [𝑘] = 1 is clearly correct. If next(𝑘) ≠ 𝑘 , it means that we had marked the
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index𝑀 [𝑘] = 1 in a previous iteration or in step 1. Due to the monotonicity of 𝐴, 𝐵 and
𝐶 and the definition of 𝑧 := next(𝑘), we have that

𝐶 [𝑧] = 𝐶′[𝑘] = 𝐶′[𝑖 + 𝑗] < 𝐴[𝑖] + 𝐵 [ 𝑗] ≤ max
𝑖′+ 𝑗 ′=𝑘

𝐴[𝑖′] + 𝐵 [ 𝑗 ′] ≤ max
𝑖′+ 𝑗 ′=𝑧

𝐴[𝑖′] + 𝐵 [ 𝑗 ′],

so marking 𝑀 [𝑧] = 1 is correct. Conversely, for any index 𝑘 = 𝑖 + 𝑗 such that 𝐶 [𝑘] <
𝐴[𝑖] + 𝐵 [ 𝑗] at some iteration we will consider the subsequences where 𝑖 ∈ 𝐼𝑥 and 𝑗 ∈ 𝐼𝑦
holds. Since we repeat step 2 until no more violating indices are found, the index 𝑘 will
be marked during some iteration.
Finally, we analyze the running time of the reduction. We consider 𝑂 (𝑛) pairs

𝑥,𝑦 ∈ [𝑎] × [𝑏]. For each such pair, step 1 takes time 𝑂 (𝑛′) = 𝑂 (
√
𝑛). We execute

step 2 at least once for each pair (𝑥,𝑦), and in total once for every index that we
mark as violated. Since every index 𝑘 gets marked at most once, this amounts to 𝑂 (𝑛)
calls to Proposition 3.35, which results in 𝑂 (𝑛 log𝑛) calls to the oracle of BMMaxConv
UpperBound. Each such call takes time 𝑂 (𝑇 (

√
𝑛)). Since we do a simultaneous binary

search over 𝐶 , the overall time of the reduction is 𝑂 (𝑛 ·𝑇 (
√
𝑛) · log2 𝑛). □

The next step is to reduce BMMaxConv UpperBound to BMSuperAdditivity Testing.
The proof is exactly the same as [Cyg+19, Theorem 5.4]; we include it for completeness.

Lemma 3.37 (BMMaxConv UpperBound→ BMSuperAdditivity Testing). If BMSuper-
Additivity Testing can be solved in time𝑇 (𝑛), then BMMaxConv UpperBound can be solved
in time 𝑂 (𝑇 (𝑛)).
Proof. Let Δ = 𝑂 (𝑛) be the maximum number in the input sequences 𝐴, 𝐵,𝐶 of BM-
MaxConv UpperBound. We construct an equivalent instance 𝐸 [0 . . 4𝑛 + 3] of BMSu-
perAdditivity Testing as follows: for each 𝑖 ∈ [𝑛] set 𝐸 [𝑖] := 0, 𝐸 [𝑛 + 1 + 𝑖] := Δ +𝐴[𝑖],
𝐸 [2𝑛 + 2 + 𝑖] := 4Δ + 𝐵 [𝑖] and 𝐸 [3𝑛 + 3 + 𝑖] := 5Δ +𝐶 [𝑖]. Note that |𝐸 | = 𝑂 (𝑛) and all
values are bounded by 𝑂 (Δ) = 𝑂 (𝑛).

If there are indices 𝑖, 𝑗 ∈ [𝑛] such that𝐴[𝑖] +𝐵 [ 𝑗] > 𝐶 [𝑖 + 𝑗], then 𝐸 [𝑛+1+𝑖] +𝐸 [2𝑛+
2 + 𝑗] > 𝐸 [3𝑛 + 3 + 𝑖 + 𝑗], so 𝐸 is a NO instance. Otherwise, let 𝑖 ≤ 𝑗 with 𝑖 + 𝑗 ≤ 4𝑛 + 3
be any pair of indices. If 𝑖 ≤ 𝑛, then since 𝐸 [𝑖] = 0 we have 𝐸 [𝑖] + 𝐸 [ 𝑗] ≤ 𝐸 [𝑖 + 𝑗]. So
assume 𝑖 > 𝑛. If 𝑗 ∈ [𝑛 + 1 . . 2𝑛 + 1] then 𝐸 [𝑖] +𝐸 [ 𝑗] ≤ 4Δ ≤ 𝐸 [𝑖 + 𝑗]. Hence, since 𝑖 ≤ 𝑗
and 𝑖 + 𝑗 ≤ 4𝑛 + 3 we have that 𝑖 ∈ [𝑛 + 1 . . 2𝑛 + 1] and 𝑗 ∈ [2𝑛 + 2 . . 3𝑛 + 2]. For these
ranges, the super-additivity of 𝐸 corresponds exactly to the BMMaxConv UpperBound
condition of 𝐴, 𝐵,𝐶 . □

Finally, we reduce BMSuperAdditivity Testing to Unbounded Knapsack. The idea
is essentially the same as [Cyg+19, Theorem 5.3], but in their proof they construct
instances of Unbounded Knapsack where the maximum profit could be as large as
𝑝max = 𝑂 (𝑛2); we improve this to 𝑝max = 𝑂 (𝑛). (More precisely, the variable𝐷 is defined
as 𝐷 :=

∑
𝑖 𝐴[𝑖] in their proof, while we show that it is enough to set 𝐷 = 𝑂 (𝐴[𝑛]).)

Lemma 3.38 (BMSuperAdditivity Testing→ Unbounded Knapsack). There is a linear-
time reduction from BMSuperAdditivity Testing on sequences of length 𝑛 to an instance of
Unbounded Knapsack on 𝑛 items with𝑊,OPT = 𝑂 (𝑛).
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Proof. Let 𝐴[0 . . 𝑛] be an instance of BMSuperAdditivity Testing. We construct an
equivalent instance of Unbounded Knapsack as follows. Set𝐷 := 5 ·𝐴[𝑛] and𝑊 := 2𝑛+1.
For every 𝑖 ∈ [𝑛] we create a light item (𝐴[𝑖], 𝑖) and a heavy item (𝐷 − 𝐴[𝑖],𝑊 − 𝑖),
where the first entry of each item is its profit and the second is its weight. We set the
weight constraint to𝑊 .

Suppose𝐴[0 . . 𝑛] is a NO instance. Then, there exist 𝑖, 𝑗 ∈ [𝑛] such that𝐴[𝑖] +𝐴[ 𝑗] >
𝐴[𝑖+ 𝑗]. Hence, (𝐴[𝑖], 𝑖), (𝐴[ 𝑗], 𝑗) and (𝐷−𝐴[𝑖+ 𝑗],𝑊 −𝑖− 𝑗) form a feasible solution for
Unbounded Knapsack with weight𝑊 and total profit𝐴[𝑖] +𝐴[ 𝑗] +𝐷 −𝐴[𝑖 + 𝑗] ≥ 𝐷 + 1.
On the other hand, suppose we start from a YES instance. Consider any feasible

solution to the Unbounded Knapsack instance. We make two observations. First, if
the solution contains any two light items (𝐴[𝑖], 𝑖) and (𝐴[ 𝑗], 𝑗) with 𝑖 + 𝑗 ≤ 𝑛, then
since 𝐴 is a YES instance, we can replace both items by (𝐴[𝑖 + 𝑗], 𝑖 + 𝑗) and the profit
is at least as good. The second observation is that any feasible solution can contain at
most one heavy item, since every such item has weight at least 𝑛 + 1 and the weight
constraint is𝑊 = 2𝑛 + 1. Now, suppose that OPT contains one heavy item of the form
(𝐷 − 𝐴[𝑘],𝑊 − 𝑘). By the first observation, the most profitable way of packing the
remaining capacity is to include the item (𝐴[𝑘], 𝑘). Thus, in this case, we have that the
value of OPT is 𝐷 − 𝐴[𝑘] + 𝐴[𝑘] = 𝐷 . If OPT does not contain any heavy item, note
that by the first observation it consists of at most 4 light items. Therefore, its value is at
most 4𝐴[𝑛] < 𝐷 = 5𝐴[𝑛]. □

Putting together the previous lemmas, we obtain the following theorem.

Theorem 3.39. If Unbounded Knapsack on instances with 𝑛 items with𝑊,OPT = 𝑂 (𝑛)
can be solved in time 𝑇 (𝑛), then Bounded Monotone MaxPlus Conv on sequences of length
𝑛 can be solved in time 𝑂 (𝑛 ·𝑇 (

√
𝑛)).

We will also need the following reduction from Unbounded Knapsack to Knapsack
from [Cyg+19, Theorem 5.1]; we include the proof for completeness.

Lemma 3.40 (Unbounded Knapsack→ Knapsack). If Knapsack on instances with 𝑛
items and𝑊,OPT = 𝑂 (𝑛) can be solved in time 𝑇 (𝑛), then Unbounded Knapsack on
instances with 𝑛 items and𝑊,OPT = 𝑂 (𝑛) can be solved in time 𝑂 (𝑇 (𝑛)).

Proof. Let I = { (𝑝𝑖, 𝑤𝑖) }𝑖∈[𝑛] with capacity𝑊 be an instance of Unbounded Knapsack.
We construct an equivalent instance of Knapsack with the item set

I′ := {(2 𝑗𝑝𝑖, 2 𝑗𝑤𝑖) | (𝑝𝑖, 𝑤𝑖) ∈ I, 0 ≤ 𝑗 ≤ log𝑊 },

and the same capacity 𝑊 . Let 𝑥 ∈ N𝑛 be a solution of the Unbounded Knapsack
instance I, where 𝑥𝑖 is the multiplicity of item (𝑝𝑖, 𝑤𝑖). We can construct an equivalent
solution 𝑥′ ∈ { 0, 1 } |I′ | of the Knapsack instance I′ by expressing each 𝑥𝑖 ≤𝑊 in binary
and adding to 𝑥′ the items from I′ corresponding to the non-zero coefficients. In this
way, 𝑤I (𝑥) = 𝑤I′ (𝑥′) and 𝑝I (𝑥) = 𝑝I′ (𝑥′). It is easy to see that this mapping can be
inverted, which establishes the equivalence between the instances.
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Note that this reduction does not change𝑊 and OPT, and 𝑛 increases to 𝑛 log𝑊 =

𝑂 (𝑛 log𝑛). Thus, for Unbounded Knapsack we obtain running time 𝑂 (𝑇 (𝑛 log𝑛)) =
𝑂 (𝑇 (𝑛)). Here we used the niceness Assumption 3.6 on 𝑇 (𝑛). □

3.5.2 Consequences

In this section we combine the reductions from Section 3.5.1, as well as our algorithms
from Section 3.4, Section 3.2, and Section 3.3, to prove Theorem 3.32.

We start by showing how a weak approximation for Unbounded Knapsack gives an
exact algorithm for Bounded Monotone MaxPlus Conv.

Lemma 3.41 (Bounded Monotone MaxPlus Conv→ Approximate Unbounded Knap-
sack). If Unbounded Knapsack has a weak approximation scheme running in time 𝑇 (𝑛, 𝜀),
then Bounded Monotone MaxPlus Conv can be solved in time 𝑂 (𝑛 ·𝑇 (

√
𝑛, 1/
√
𝑛)).

Proof. Note that a weak approximation scheme for Unbounded Knapsack allows us
to solve instances exactly by setting 𝜀 := Θ(1/(𝑊 + OPT)). Since the reduction
from Theorem 3.39 produces 𝑂 (𝑛) instances of Unbounded Knapsack with

√
𝑛 items

and𝑊,OPT = 𝑂 (
√
𝑛), we obtain an algorithm for Bounded Monotone MaxPlus Conv

by setting 𝜀 = Θ(1/
√
𝑛). The overall running time becomes 𝑂 (𝑛 ·𝑇 (

√
𝑛, 1/
√
𝑛)). □

Finally, we put the pieces together to prove Theorem 3.32.

Proof of Theorem 3.32. In the following, we write 𝐴 → 𝐵 to denote a reduction from
problem 𝐴 to problem 𝐵. For every reduction stated in the following list, we obtain the
stronger guarantee that if 𝐵 can be solved in time𝑂 (𝑛2−𝛿 ), then 𝐴 can be solved in time
𝑂 (𝑛2−𝛿 ), i.e. without any loss in the exponent:

• (2) → (1): Follows from Theorem 3.7.

• (2) → (3): Follows from Lemma 3.40.

• (3) → (1): Follows from Theorem 3.15.

• (4) → (1): Follows from Theorem 3.24.

For the remaining two reductions below, we obtain the weaker guarantee as stated in
the theorem. Namely, if 𝐵 can be solved in time 𝑂 (𝑛2−𝛿 ), then 𝐴 can be solved in time
𝑂 (𝑛2−𝛿/2):

• (1) → (2): Follows from Theorem 3.39.

• (1) → (4): Follows from Lemma 3.41.

Finally, note that for any pair of problems 𝐴 and 𝐵 in the theorem statement, we can
reduce 𝐴 to 𝐵 by chaining the reductions written in the previous two lists and use at
most one reduction which reduces the saving to 𝛿/2. This guarantees that if 𝐵 can be
solved in time 𝑂 (𝑛2−𝛿 ), then 𝐴 can be solved in time 𝑂 (𝑛2−𝛿/2), as desired. □
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4 Introduction to Sublinear Edit

Distance

This part of the thesis is based on our publication [Bri+24]. I contributed an equal share
of the work, and more than half of the write-up. The main result in [Bri+24] builds
upon our earlier publication [Bri+22b], which appeared in Nick Fischer’s thesis. Here,
for the sake of completeness, we extend the presentation of [Bri+24] by giving more
details on the pieces that are based on [Bri+24].

[Bri+22b] Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos.
“Almost-optimal sublinear-time edit distance in the low distance regime.”
In: STOC. ACM, 2022, pp. 1102–1115. doi: 10.1145/3519935.3519990.

[Bri+24] Karl Bringmann, Alejandro Cassis, Nick Fischer, and Tomasz Kociumaka.
“Faster Sublinear-Time Edit Distance.” In: SODA. SIAM, 2024, pp. 3274–3301.
doi: 10.1137/1.9781611977912.117.

Comparing texts is an essential primitive in computer science, with many appli-
cations in document processing, natural language processing, computational biology
and many more domains. One of the most popular and well-studied ways to quantify
the (dis)similarity of two strings 𝑋 and 𝑌 is the edit distance ED(𝑋,𝑌 ) (also known as
Levenshtein distance [Lev66]), which is defined as the minimum number of character
insertions, deletions, and substitutions to transform 𝑋 into 𝑌 . A famous textbook dy-
namic programming algorithm computes the edit distance of two length-𝑛 strings in
time 𝑂 (𝑛2) [Vin68; NW70; WF74; Sel74], and, despite considerable effort, this running
time could only be improved by log-factors [MP80; Gra16]. More than 50 years after
the initial efforts, this quadratic barrier can be explained using the modern toolkit from
fine-grained complexity theory. More precisely, it has been shown that there is no
𝑂 (𝑛2−𝛿 )-time algorithm for any 𝛿 > 0 under the Orthogonal Vectors Hypothesis [BI18;
ABW15; BK15; Abb+16], which, in turn, follows from the Strong Exponential Time
Hypothesis [IP01; IPZ01]. At the time though, Landau and Vishkin [LV88], building
upon earlier results of Ukkonen [Ukk85] and Myers [Mye86], gave an elegant algorithm
bypassing this barrier: It computes the edit distance of two strings in time 𝑂 (𝑛 + 𝑘2),
where the running time depends on the actual edit distance 𝑘 = ED(𝑋,𝑌 ). Note that
indeed, this running time is subquadratic for 𝑘 ≤ 𝑛0.99. There is little hope to optimize
the 𝑂 (𝑛 + 𝑘2) time (beyond lower-order factors): Even restricted to instances with
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𝑘 = Θ(𝑛𝜅) for some 𝜅 ∈ ( 12 , 1], a hypothetical𝑂 (𝑛+𝑘
2−𝛿 )-time algorithm would directly

yield an 𝑂 (𝑛2−𝛿 )-time algorithm for arbitrary edit distances, violating the fine-grained
lower bound. Moreover, for 𝜅 ∈ [0, 1

2 ], the dominating 𝑂 (𝑛) term is necessary simply
to read the input strings.

Even before the aforementioned hardness results for exact edit distance were known,
an extensive and beautiful body of work focused on approximating the edit distance
in subquadratic time. The first major milestones of this long line of research include
various polynomial-factor approximations [LMS98; Bar+04; BES06], a subpolynomial
𝑛𝑜 (1)-factor approximation in almost-linear time 𝑛1+𝑜 (1) by Andoni and Onak [AO12]
(based on the Ostrovsky-Rabani embedding of edit distance into ℓ1 [OR07]), and a poly-
logarithmic (log𝑛)𝑂 (1/𝜀)-factor approximation in almost-linear time𝑂 (𝑛1+𝜀) by Andoni,
Krauthgamer and Onak [AKO10]. This polylogarithmic approximation remained the
state of the art for several years until, only recently, Chakraborty, Das, Goldenberg,
Koucký and Saks [Cha+20] achieved a breakthrough. Inspired by a quantum algorithm
due to Boroujeni, Ehsani, Ghodsi, Hajiaghayi and Seddighin [Bor+21], they gave the
first constant-factor approximation in subquadratic time 𝑂 (𝑛12/7).1 Their work was
later extended in two incomparable directions: On the one hand, subsuming [BR20;
KS20b], Andoni and Nosatzki [AN20] improved the running time and developed a
constant-factor approximation time 𝑂 (𝑛1+𝜀) for any 𝜀 > 0 (where the approximation
factor is a function that depends only on 𝜀). On the other hand, Goldenberg, Saha
and Rubinstein [GRS20] obtained an improved approximation factor of 3 + 𝜀 (for any
constant 𝜀 > 0) in truly subquadratic time 𝑛1.6+𝑜 (1) (subsuming in running time [And20;
Cha+20], which achieve the same approximation factor).

These results form an impressive state of the art for edit distance approximations, and
it might seem that a constant-factor approximation in almost-linear time is close to the
best that could be hoped for. However, it is, in principle, possible to expect sublinear-time
approximation algorithms. In this regime it is standard to study approximations in the
guise of the (𝑘, 𝐾)-gap edit distance problem, where one is given random access to the
strings 𝑋 and 𝑌 , and the goal is to distinguish whether their edit distance at most 𝑘 or
more than 𝐾 . An algorithm for this gap problem naturally extends to an approximation
algorithm with multiplicative error 𝐾/𝑘 (the “gap”).
To showcase that sublinear-time is a reasonable goal, let’s consider as an inspiring

success story the case of Hamming distance. Recall that the Hamming distance of two
length-𝑛 strings is the number of positions in which they differ. This can be trivially
computed in time𝑂 (𝑛). Moreover, a simple algorithm2 solves the (𝑘,𝑂 (𝑘))-gap problem
in time 𝑂 (𝑛/𝑘). This running time is unconditionally optimal, since there is a folklore
Ω(𝑛/𝑘)-time lower bound.

1. For readability in this introduction, we write 𝑂 (·), Ω̃(·) and Θ̃(·) to hide polylogarithmic factors
(log𝑛)𝑂 (1) . We also write 𝑂 (·), Ω̂(·) and Θ̂(·) to hide subpolynomial factors 𝑛𝑜 (1) . We do not use this
notation in the technical parts to avoid ambiguities.

2. To distinguish e.g. 𝑘 vs 4𝑘 Hamming distance, sample 𝑛/(3𝑘) indices uniformly at random, and output
“≤ 𝑘” if and only if no mismatch is found among the sampled positions. We spare the details to the
reader.
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4.1 Our Results

Coming back to edit distance, the natural question is whether we can match the
linear-time state of the art by sublinear-time algorithms. Specifically:

Question 1: Is (𝑘, 𝑘1+𝑜 (1))-gap edit distance in truly sublinear time?
What about (𝑘,𝑂 (𝑘))-gap edit distance?

Of course, for small 𝑘 , we cannot expect any sublinear-time improvements (as already
distinguishing the all-zeros string from a string with a single one unconditionally
requires reading Ω(𝑛) characters), so by “truly sublinear” we mean running in time
𝑛1−Ω(1) for 𝑘 ≥ 𝑛Ω(1) .

Fueled by this driving question, a line of research developed progressively better
sublinear-time algorithms; see also Table 4.1 for the following list of relevant previous
work. The first result in this direction is a seminal paper due to Batu, Ergün, Kilian,
Magen, Raskhodnikova, Rubinfeld and Sami [Bat+03] who solved the (𝑘,Θ(𝑛))-gap edit
distance problem in sublinear time𝑂 (𝑘2/𝑛 +

√
𝑘) (subject to the restriction that 𝑘 < 𝑛1−𝜀

for some constant 𝜀 > 0). The aforementioned Andoni–Onak 𝑛𝑜 (1)-approximation
algorithm can be applied to obtain an algorithm for the (𝑘, 𝐾)-gap edit distance problem
in time𝑂 (𝑛2𝑘/𝐾2) (provided that𝐾 is polynomially larger than𝑘) [AO12]. More recently,
based on the Landau–Vishkin algorithm, Goldenberg, Krauthgamer and Saha [GKS19]
and Kociumaka and Saha [KS20a] solved the (𝑘,Θ(𝑘2))-gap problem in time𝑂 (𝑛/𝑘 + 𝑘2).
Their algorithm allows for various other trade-offs between gap and running time (see
Table 4.1). In a combined effort [Gol+22], they later developed a different algorithm
(inspired by [Bat+03; AO12]) that runs in 𝑂 (𝑛

√
𝑘/𝐾 + 𝑛𝑘2/𝐾2) ⊆ 𝑂 (𝑛𝑘/𝐾) time for

𝐾 ≥ 𝑘1+Ω(1) . This solution is non-adaptive (i.e., the queried positions in the string can
be fixed in advance). Moreover, they provided a strong barrier and proved that any
non-adaptive algorithm for the (𝑘, 𝐾)-gap problem requires Ω(𝑛

√
𝑘/𝐾) queries. In that

sense, their algorithm is optimal for 𝐾 ≥ 𝑘3/2.

4.1 Our Results

Concurrently to the work of Goldenberg, Kociumaka, Krauthgamer and Saha [Gol+22],
we resolved Question 1 and developed the first truly sublinear algorithm with a sub-
polynomial gap [Bri+22b]. The algorithm is adaptive, as is necessary by the previously
mentioned lower bound [Gol+22]. In fact, we obtained the following two theorems
which attain subpolynomial and polylogarithmic gap, with a small tradeoff in the
running time.

Theorem 4.1. The (𝑘, 𝑘 · 2Θ(
√

log𝑘 log log𝑘))-gap edit distance problem is in time 𝑂 (𝑛/𝑘 +
𝑘2+𝑜 (1)).

Theorem 4.2. For any 𝜀 ∈ (0, 1), the (𝑘, 𝑘 · (log𝑘)𝑂 (1/𝜀))-gap edit distance problem is in
time 𝑂 (𝑛/𝑘1−𝜀 + 𝑘4+𝑜 (1)).
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Table 4.1: A comparison of sublinear-time algorithms for the (𝑘, 𝐾)-gap edit distance
problem for different gap parameters 𝑘 and 𝐾 . All algorithms in this table are
randomized and succeed with high probability.

Source Running time Assumptions

Batu, Ergün, Kilian, Magen, Raskhodnikova,
Rubinfeld, Sami [Bat+03]

𝑂 (𝑘2/𝑛 +
√
𝑘) (𝑘 = 𝑛1−Ω (1)

and 𝐾 = Ω(𝑛))
Andoni, Onak [AO12] 𝑂 (𝑛2𝑘/𝐾2) (𝐾 > 𝑘1+Ω (1) )
Goldenberg, Krauthgamer, Saha [GKS19] 𝑂 (𝑛𝑘/𝐾 + 𝑘3) (𝐾 > 𝑘1+Ω (1) )
Kociumaka, Saha [KS20a] 𝑂 ((𝑛𝑘 +

√
𝑛𝑘5)/𝐾 +

𝑘2)
(𝐾 > 𝑘1+Ω (1) )

Brakensiek, Charikar, Rubinstein [BCR20] 𝑂 ((𝑛 +𝑘2) · 𝑘3/2/𝐾) (𝐾 ≥ 𝑘3/2)
Goldenberg, Kociumaka, Krauthgamer,
Saha [Gol+22]

𝑂 (𝑛
√
𝑘/𝐾) (𝐾 ≥ 𝑘3/2)

Goldenberg, Kociumaka, Krauthgamer,
Saha [Gol+22]

𝑂 (𝑛𝑘2/𝐾2) (𝑘3/2 > 𝐾 >

𝑘1+Ω (1) )
Bringmann, Cassis, Fischer, Nakos [Bri+22b] 𝑂 (𝑛/𝑘 + 𝑘4) (𝐾 = Θ̂(𝑘))
This work (Corollary 4.4) 𝑂 (𝑛/𝑘 + 𝑘2) (𝐾 = Θ̂(𝑘))
This work (Corollary 4.6) 𝑂 (𝑛/𝐾 +

√
𝑛𝑘 + 𝑘2) (𝐾 > 𝑘1+Ω (1) )

For simplicity, we will throughout refer to the algorithm yielding Theorems 4.1
and 4.2 as the BCFN algorithm. In summary, the BCFN algorithm provides a satisfying
and, perhaps, surprising answer to the question of whether we can expect accurate
approximations in truly sublinear time. Nevertheless, the range of parameters for which
it becomes effective is quite limited. For instance, for 𝑘 ≥ 𝑛 1

4−𝑜 (1) the BCFN algorithm is
even outperformed by the classic Landau–Vishkin algorithm [LV88] that computes the
edit distance exactly in time 𝑂 (𝑛 + 𝑘2). This state of affairs naturally raises the equally
important follow-up question:

Question 2: What is the time complexity of the (𝑘, 𝑘1+𝑜 (1))-gap edit distance problem?

The strongest known unconditional lower bound is Ω̂(𝑛/𝑘 +
√
𝑛) [Bat+03; AN10], where

the 𝑛/𝑘 term is necessary already for the gap Hamming distance problem. In light of
this lower bound, the BCFN running time𝑂 (𝑛/𝑘 + poly(𝑘)) has the right format, except
that it remains to optimize the additive poly(𝑘) term.
Our contribution is that we drastically reduce the poly(𝑘) term, thereby making

significant progress towards our driving Question 2. Specifically, our main result is
the following technical theorem that we will shortly instantiate for several interesting
parameter settings:
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Main Theorem 4.3. Let 2 ≤ Δ ≤ 𝑛 be a parameter. Then, there is a randomized algorithm
that solves the (𝑘, 𝐾)-gap edit distance problem in time𝑂 (𝑛/𝐾+𝑘𝐾)·Δ3·(log𝑛)𝑂 (logΔ 𝑛) and
succeeds with constant probability, provided that 𝐾/𝑘 ≥ (log𝑛)𝑐 ·logΔ (𝑛) for a sufficiently
large constant 𝑐 > 0.

The main consequence of Main Theorem 4.3 is a significant improvement for the
(𝑘, 𝑘1+𝑜 (1))-gap edit distance problem.

Corollary 4.4 (Subpolynomial Gap). The (𝑘, 𝑘 · 2Θ(
√

log𝑘 log log𝑘))-gap edit distance prob-
lem is in time 𝑂 (𝑛/𝑘 + 𝑘2+𝑜 (1)).

Corollary 4.4 constitutes a quadratic improvement over the BCFN algorithm [Bri+22b].
As a consequence, we extend the range of parameters for which we know truly sublinear-
time algorithms for the (𝑘, 𝑘1+𝑜 (1))-gap problem to 𝑛𝜀 ≤ 𝑘 ≤ 𝑛 1

2−𝜀 . In a slightly narrower
range of 𝑛𝜀 ≤ 𝑘 ≤ 𝑛 1

3−𝜀 , our algorithm matches the unconditional lower bound [Bat+03;
AN10] and is therefore almost-optimal, up to subpolynomial factors in the gap and in
the running time.

Another notable consequence is that our running time is never out-performed by the
Landau-Vishkin algorithm. In other words, our algorithm can even be viewed as an
alternative to the 𝑂 (𝑛 + 𝑘2)-time Landau–Vishkin algorithm: It runs in faster sublinear
time 𝑂 (𝑛/𝑘 + 𝑘2) at the cost of returning an approximate result.

Similarly to the BCFN algorithm, we also build on the original framework of Andoni,
Krauthgamer and Onak [AKO10]. As a consequence, our Main Theorem 4.3 allows for
more precise approximations with polylogarithmic gap, at the mild cost of increasing
the running time by a small polynomial factor:

Corollary 4.5 (Polylogarithmic Gap). For any constant 𝜀 > 0, the (𝑘, 𝑘 · (log𝑘)Θ(1/𝜀))-gap
edit distance problem is in time 𝑂 (𝑛/𝑘1−𝜀 + 𝑘2+𝜀).

Finally, we also give new results in the regime where 𝐾 is polynomially larger than 𝑘 .

Corollary 4.6 (Polynomial Gap). Let 𝑘, 𝐾 be such that 𝐾 > 𝑘1+𝜀 for some constant 𝜀 > 0.
Then the (𝑘, 𝐾)-gap edit distance problem is in time 𝑂 (𝑛/𝐾 +

√
𝑛𝑘 + 𝑘2).

This polynomial gap regime was not explicitly studied in our previous work [Bri+22b].
However, using the BCFN algorithm as a black-box, one can infer an algorithm for this
task in time 𝑂 (𝑛/𝐾 + 𝑛0.8 + 𝑘4). Our Corollary 4.6 improves upon this in all parameter
regimes.

4.2 Technical Overview

In this section, we give a high-level overview of our new ideas used to obtain Main
Theorem 4.3. The starting point for our result is the BCFN algorithm. It is based
on two main ingredients: (1) The Andoni–Krauthgamer–Onak framework providing
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an efficient recursion scheme, based on the so-called precision sampling technique,
and (2) a structure-versus-randomness dichotomy that is used to bound the number of
recursive subproblems by poly(𝑘). Since the algorithm is quite complex, and since our
improvements are only concerned with the second ingredient, we omit an extensive
description of the BCFN algorithm here; we refer the interested reader to our technical
Chapter 5 (or to the original paper [Bri+22b] for a thorough overview).3 Instead, we
focus on highlighting our new key concepts.

One of the central ideas behind the BCFN algorithm is the notion of block periodicity,
formally defined as follows:

Definition 4.7 (Block Periodicity). Let𝑋 be a string and 𝑝 ≥ 1 be an integer. The 𝑝-block
periodicity BP𝑝 (𝑋 ) of 𝑋 is the smallest integer 𝐿 such that 𝑋 can be partitioned into 𝐿
substrings, 𝑋 =

⊙𝐿

ℓ=1𝑋ℓ , so that each substring 𝑋ℓ is 𝑝-periodic, that is, the period of 𝑋ℓ
is at most 𝑝 .

The block periodicity is a natural measure of structure in a string: On the one hand,
strings with minimal block periodicity (BP𝑝 (𝑋 ) = 1) are simply periodic. On the other
hand, strings with very large block periodicity are composed of many non-repetitive
parts and often behave like random strings. A frequent phenomenon in string algorithms
is that specialized techniques for these two extreme cases ultimately lead to algorithms
for the entire spectrum.

An important stepping stone towards the general BCFN algorithm for the (𝑘, 𝑘1+𝑜 (1))-
gap edit distance problem is the special case where 𝑋 has bounded block periodicity
BP𝑝 (𝑋 ) ≤ 𝐵 whereas 𝑌 can be arbitrary. Let us refer to this special case as the block-
periodic case. In our setting, 𝑝 and 𝐵 are parameters subject to some technical conditions
(such as 𝑝, 𝐵 ≥ 𝑘) that will not concern us here. The BCFN algorithm can be interpreted
in the following way:

1. An efficient algorithm for the block-periodic case. Specifically, it follows from our pre-
vious work [Bri+22b] that the block-periodic case can be solved in time𝑂 (𝑛/𝑘 + 𝐵𝑝𝑘).

2. A reduction from the general to the block-periodic case. This reduction picks as
parameters 𝑝, 𝐵 = 𝑂 (𝑘) and requires an additional multiplicative overhead of 𝑘 . In
combination with the previous item, the running time thus becomes 𝑂 (𝑛/𝑘 + 𝑘4).

We remark that this interpretation is not immediate from the original paper [Bri+22b]
and requires rearranging the algorithm up to some degree.4 In this work, we achieve
our results by separately improving both of these steps.

3. In particular, throughout this overview, we will ignore the term “𝑛/𝑘” in all running times as dealing
with these terms requires precision sampling which is not our focus here. More precisely, while in
this overview we implicitly pretend that in each subproblem we query the strings at𝑂 (𝑛/𝑘 + poly(𝑘))
positions, we in fact query at 𝑂 (𝑝𝑛 + poly(𝑘)) positions where 𝑝 is a precision parameter distributed
with E(𝑝) ≤ 𝑂 (1/𝑘).

4. In particular, in [Bri+22b] we did not explicitly studied the block-periodic case as a subproblem, nor
did we consider 𝑝 and 𝐵 as parameters on their own.
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Improvement 1: Speed-Up for the Block-Periodic Case As our first major contri-
bution, we achieve a factor-𝑘 speed-up for the block-periodic case; see the following
simplified statement:

Lemma 4.8 (Simplified Version of Lemma 5.1). Let 𝑋 be a string with block periodicity
BP𝑝 (𝑋 ) ≤ 𝐵. The (𝑘, 𝑘1+𝑜 (1))-gap edit distance problem for 𝑋 and an arbitrary string 𝑌 is
in time 𝑂 (𝑛/𝑘 + 𝐵𝑝).

Our strategy refines the approach by [Bri+22b] as follows. Intuitively, the algorithm
keeps splitting the string 𝑋 into smaller substrings 𝑋1, . . . , 𝑋𝑁 until all of them are
𝑝-periodic. Since the block periodicity of 𝑋 was initially bounded by 𝐵, we construct at
most 𝑁 = 𝑂 (𝐵) many substrings in this way. Moreover, for almost all such substrings
𝑋𝑖 , we can assume that they perfectly match their respective substrings 𝑌𝑖 up to some
shift—if there are more than𝑘 exceptions, we can immediately infer that the edit distance
between 𝑋 and 𝑌 exceeds 𝑘 and terminate the algorithm. So far, there is no difference
to the original BCFN algorithm. Our improvement lies in the treatment of the periodic
pieces (𝑋𝑖, 𝑌𝑖). Specifically, we show the following lemma.

Lemma 4.9 (Simplified Version of Lemma 5.12). Let 𝑋,𝑌 be strings of lengths 𝑛 and
𝑛 + 𝑘 , respectively. Given an integer 𝑝 that is a period of both strings, we can compute
𝑂 (1)-approximations of the edit distances ED(𝑋,𝑌 [𝑖 . . 𝑛 + 𝑖)) (for 𝑖 ∈ [0 . . 𝑘]) in time
𝑂 (𝑝 + 𝑘).

In comparison, the analogous result in [Bri+22b] computes the edit distances exactly
(capped with 𝑂 (𝑘)), but the running time increases by a multiplicative factor 𝑘 . The
reason why we have to compute the edit distance for many shifts is due to the intricate
recursion scheme of the Andoni–Krauthgamer–Onak framework, which is applied
throughout under the hood.

Lemma 4.9 is proven by combining two ideas: First, using structural insights on the
edit distance of periodic strings, we can reduce the problem to strings of length 𝑂 (𝑝)
(see Lemma 5.21; here, we incur a factor-3 loss in the approximation ratio). Second, we
apply in a black-box fashion a known algorithm that computes the edit distance between
two strings for many shifts. The Andoni–Onak algorithm [AO12] is suitable for this task
but only attains a subpolynomial approximation. To improve our approximation factor
to polylogarithmic, we instead use the very recent dynamic edit distance approximation
algorithm by Kociumaka, Mukherjee, and Saha [KMS23]; see Section 5.3.1 for more
details.

In summary, these ideas are sufficient to improve the BCFN algorithm to run in time
𝑂 (𝑛/𝑘 + 𝑘3). The following insights further reduce the running time to 𝑂 (𝑛/𝑘 + 𝑘2).

Improvement 2: Block Periodicity Decomposition Our second and technically
much more challenging contribution is to improve the reduction from the general case
to the block-periodic case. Specifically, building on the 𝑂 (𝑛/𝑘 + 𝐵𝑝)-time algorithm for
the block-periodic case, our goal is to develop an 𝑂 (𝑛/𝑘 + 𝑘2)-time algorithm for the
general (𝑘, 𝑘1+𝑜 (1))-gap edit distance problem.
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Our reduction diverges completely from the approach of [Bri+22b]. It instead hinges
on more structural insights related to the block periodicity, especially on the notion
of breaks. For a string 𝑋 , we say that a position 𝑖 is a 𝑝-break if 𝑖 is a multiple of 𝑝
and 𝑋 [𝑖 . . 𝑖 + 3𝑝) is not 𝑝-periodic (see Definition 6.1). We exploit breaks in two ways.
First, we observe that the number of 𝑝-breaks approximates the 𝑝-block periodicity of a
string within a constant factor (see Lemma 6.2). Since we can test if 𝑋 [𝑖 . . 𝑖 + 3𝑝) is a
𝑝-break in time 𝑂 (𝑝) [KJP77], this insight yields an efficient sublinear-time subroutine
estimating the block periodicity of a string. In the BCFN algorithm, the block periodicity
of a string was never explicitly computed, and this new “Block Periodicity Test” on its
own already vastly streamlines the BCFN algorithm.

Second, we use breaks to solve the (𝑘, 𝑘1+𝑜 (1))-gap problem in a more direct way.
Suppose that ED(𝑋,𝑌 ) ≤ 𝑘 and fix an optimal edit distance alignment between𝑋 and 𝑌 .
Let us sample indices 𝑖 which are multiples of 𝑘 at rate ≈ 1/𝑘2 and identify all 𝑘-breaks
in 𝑋 among them. Then, with constant probability, none of the sampled breaks contain
errors from the optimal alignment. In particular, we can infer how the optimal alignment
matches each of the sampled breaks. If the alignment matches a break at position 𝑖 , then
the break must have an exact occurrence in 𝑌 at position 𝑗 ∈ [𝑖 − ⌊𝑘/2⌋ . . 𝑖 + ⌊𝑘/2⌋]
(recall that we assume |𝑋 | = |𝑌 |). Moreover, since the break is not 𝑘-periodic, it cannot
have more than one such exact occurrence. For each sampled break, we use exact
pattern matching [KJP77] to find the unique match in 𝑌 . This allows us to split the
instance into substrings 𝑋1, . . . , 𝑋1 and 𝑌1, . . . , 𝑌𝑠 such that

∑
𝑖 ED(𝑋𝑖, 𝑌𝑖) = ED(𝑋,𝑌 ).

Moreover, by the aforementioned correspondence between breaks and block periodicity,
with good probability the 𝑘-block periodicity of each substring 𝑋𝑖 is bounded by 𝑂 (𝑘).
This splitting procedure forms the heart of our algorithm (see Lemma 6.3).

This suggests the following algorithm. If the 𝑘-block periodicity of 𝑋 is 𝑂 (𝑘), then
the instance falls into the block-periodic case, and it can be solved directly using
Lemma 4.8 in time 𝑂 (𝑛/𝑘 + 𝐵𝑝) = 𝑂 (𝑛/𝑘 + 𝑘2). Otherwise, we apply the splitting
routine to partition the strings into substrings 𝑋1, . . . , 𝑋𝑠 and 𝑌1, . . . , 𝑌𝑠 in such a way
that ED(𝑋,𝑌 ) = ∑

𝑖 ED(𝑋𝑖, 𝑌𝑖) and the block periodicity of each piece 𝑋𝑖 is bounded by
BP𝑘 (𝑋𝑖) ≤ 𝑂 (𝑘). It remains to distinguish whether

∑
𝑖 ED(𝑋𝑖, 𝑌𝑖) ≤ 𝑘 or

∑
𝑖 ED(𝑋𝑖, 𝑌𝑖) >

𝐾 (for 𝐾 = 𝑘1+𝑜 (1)).

Naively recursing on all subproblems is not efficient enough as there could be too
many of them. Instead, a more careful approach is to subsample the subproblems and to
recurse only on few of them. This is exactly the right task for the precision sampling
technique, which has already proven to be an instrumental tool for approximate edit
distance [AKO10; Bri+22b; Bri+22c; KMS23]. We remark that, in our algorithm in
Chapter 6, we apply the technique in a more elementary way, similar to [IW05]. This
variant incurs an𝑂 (log𝐾)-factor loss in the approximation, but we can still use it, even
when aiming for a polylogarithmic gap, because our recursion is relatively shallow
compared to [AKO10].
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4.3 Open Problems

We leave some open problems interwoven with some reflections:

1. Closing the gap between upper and lower bounds.
While our result makes considerable progress towards answering Question 2 above,
it does not settle it. In particular, is there an algorithm for the (𝑘, 𝑘1+𝑜 (1))-gap edit
distance problem in time 𝑂 (𝑛/𝑘 +

√
𝑛)? Alternatively, can we prove a stronger

(possibly conditional) lower bound?

2. Constant gap.
Perhaps the most interesting future direction is to improve the gap from subpoly-
nomial to constant. More precisely, can the (𝑘,𝑂 (𝑘))-gap edit distance problem
be solved in time 𝑂 (𝑛/𝑘 + poly(𝑘))? We believe that our approach is hopeless to
answer this question since we build upon the Andoni–Krauthgamer–Onak frame-
work [AKO10], which inherently incurs a polylogarithmic factor in the approxima-
tion.
Most previous sublinear-time algorithms for edit distance (including ours) have more
or less followed a recipe: take a known exact or approximate algorithm for edit
distance, and try to implement a sublinear-time version of it (by using subsampling
and further ideas). For instance, [GKS19; KS20a; BCR20] can all be seen as sublinear-
time implementations of the Landau–Vishkin algorithm [LV88]; while our work
[Bri+22b; Bri+24] can be seen as a sublinear-time implementation of the Andoni–
Krauthgamer–Onak algorithm [AKO10]. Thus, a natural speculative approach to
answer the aforementioned open problem is to try to obtain a sublinear-time im-
plementation of the Andoni–Nosatzki algorithm [AN20]. Since the latter is very
technically involved, a reasonable first step might be to simplify that result in itself.
Indeed, we believe that simplifying Andoni–Nosatzki can prove fruitful not just for
sublinear-time algorithms, but could lead to further developments for edit distance
in other settings.5

3. Simple(r) algorithms?
We acknowledge that unpacking the complete details of our work is a non-trivial task.
The main reason is that we build upon the Andoni–Krauthgamer–Onak framework,
which is in itself complicated.6 This state of affairs begs the question: Is there a
simple algorithm for the (𝑘, 𝑘1+𝑜 (1))-gap edit distance in time 𝑂 (𝑛/𝑘 + poly(𝑘))? Of
course, what constitutes as simple is rather elusive. For us, a measurable bar would
be an algorithm that does not use precision sampling (which even though after
some insights can become “intuitive”, it greatly complicates the technical details and

5. As an example: the simplified re-interpretation of the Andoni–Onak–Krauthgamer algorithm [AKO10]
that we presented in [Bri+22b] already led to improvements in edit distance computation with prepro-
cessing [Bri+22c] and in dynamic edit distance [KMS23].

6. As far as we are aware, we were the first authors that modified/extended their work. This happened
more than 10 years after the publication of [AKO10].
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4 Introduction to Sublinear Edit Distance

obfuscates a high level description) and/or departs from the recursive scheme of the
Andoni–Krauthgamer–Onak algorithm [AKO10] (more precisely, that does not use
the tree distance, see Chapter 5 for details).

4.4 Outline

We structure the remainder of this part of the thesis as follows. In Section 4.5 we
state some formal preliminaries. In Chapter 5 we present the improved algorithm for
the block-periodic case (Improvement 1 from the overview). Finally, in Chapter 6 we
present our main algorithm (Improvement 2 from the overview) and prove our Main
Theorem 4.3 and its corollaries.

4.5 Preliminaries

For integers 𝑖, 𝑗 ∈ Z, we write [𝑖 . . 𝑗) := { 𝑖, 𝑖 + 1, . . . , 𝑗 − 1 } and [𝑖 . . 𝑗] := { 𝑖, 𝑖 +
1, . . . , 𝑗 }. The sets (𝑖 . . 𝑗] and (𝑖 . . 𝑗) are defined analogously. We set poly(𝑛) = 𝑛𝑂 (1)
and polylog(𝑛) = (log𝑛)𝑂 (1) .

Strings A string 𝑋 = 𝑋 [0] . . . 𝑋 [𝑛− 1] ∈ Σ𝑛 is a sequence of |𝑋 | = 𝑛 symbols from an
alphabet Σ. We usually denote strings by capital letters 𝑋,𝑌, 𝑍 . For integers 𝑖, 𝑗 we de-
note by 𝑋 [𝑖 . . 𝑗) the substring with indices in [𝑖 . . 𝑗). Sometimes we call 𝑋 [𝑖 . . 𝑗) a frag-
ment of𝑋 . If the indices are out of bounds, we set𝑋 [𝑖 . . 𝑗) = 𝑋 [max(0, 𝑖) . . min( 𝑗, |𝑋 |)),
and similarly for 𝑋 [𝑖 . . 𝑗].

For a string 𝑋 and an integer 𝑠 , we denote by 𝑋⟳𝑠 the cyclical rotation of 𝑋 defined
as 𝑋⟳𝑠 [𝑖] = 𝑌 [(𝑖 + 𝑠) mod |𝑋 |] for 𝑖 ∈ [0 . . |𝑋 |). We say that 𝑋 is primitive if all the
non-trivial rotations of 𝑋 are distinct from itself. For a string 𝑄 , we denote by 𝑄∗ the
infinite-length string obtained by repeating𝑄 . We say that 𝑋 is periodic with period𝑄 if
𝑋 = 𝑄∗ [0 . . |𝑋 |). For an integer 𝑞 ≥ 1, we say that 𝑋 is 𝑞-periodic if it is periodic with
some period of length at most 𝑞. We refer to the smallest period length of 𝑋 as per(𝑋 ).

Hamming and Edit Distances Given two strings 𝑋,𝑌 of the same length, we define
their Hamming distance HD(𝑋,𝑌 ) := |{ 𝑖 | 𝑋 [𝑖] ≠ 𝑌 [𝑖] }| as the number of indices in
which they differ. For two strings 𝑋,𝑌 (with possibly different lengths), we define their
edit distance ED(𝑋,𝑌 ) as the minimum number of insertions, deletions or substitutions
necessary to transform 𝑋 into 𝑌 . We refer to insertions, deletions and substitutions as
edits.
Given strings 𝑋 and 𝑌 , an alignment is a monotonically non-decreasing function

𝐴 : { 0, . . . , |𝑋 | } ↦→ { 0, . . . , |𝑌 | } such that 𝐴(0) = 0 and 𝐴( |𝑋 |) = |𝑌 |. We say that 𝐴 is
an optimal alignment if it satisfies

ED(𝑋,𝑌 ) =
|𝑋 |−1∑︁
𝑖=0

ED(𝑋 [𝑖], 𝑌 [𝐴(𝑖) . . 𝐴(𝑖 + 1))).
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Intuitively, alignments correspond to a sequence of edits to transform 𝑋 into 𝑌 . More
precisely, alignments correspond to paths in the DAG defined by the standard dynamic
programming algorithm to compute the edit distance between𝑋 and𝑌 . Thus, an optimal
alignment corresponds to a path of minimum cost.

The following simple proposition will be useful later.

Proposition 4.10 (Alignments Have Small Stretch). Let 𝑋,𝑌 be strings of equal length.
If 𝐴 is an optimal alignment between 𝑋 and 𝑌 , then |𝑖 − 𝐴(𝑖) | ≤ 1

2 ED(𝑋,𝑌 ) holds for
all 0 ≤ 𝑖 ≤ |𝑋 |.

Proof. Since 𝐴 is an optimal alignment between 𝑋 and 𝑌 , we can write the edit distance
ED(𝑋,𝑌 ) as

ED(𝑋,𝑌 ) = ED(𝑋 [0 . . 𝑖), 𝑌 [0 . . 𝐴(𝑖))) + ED(𝑋 [𝑖 . . |𝑋 |), 𝑌 [𝐴(𝑖) . . |𝑌 |)).

Both edit distances in the right-hand side are at least |𝑖 − 𝐴(𝑖) |, which is the length
difference of these strings, respectively. It follows that ED(𝑋,𝑌 ) ≥ 2 · |𝑖 − 𝐴(𝑖) |, as
claimed. □

We formally define the gap edit distance problem as follows.

Definition 4.11 (Gap Edit Distance). The GapED(𝑘, 𝐾) problem is to distinguish, given
two strings 𝑋,𝑌 , whether

• ED(𝑋,𝑌 ) ≤ 𝑘 (return Close in this case), or

• ED(𝑋,𝑌 ) > 𝐾 (return Far in this case).

We say that an algorithm correctly solves the GapED(𝑘, 𝐾) problem if it returns the
correct answer with constant probability.

Machine Model We work under the standard word RAM model, where the words
have size logarithmic in the input size of the problem. That is, given input strings𝑋,𝑌 of
total length 𝑛 over an alphabet Σ, we assume the words have size𝑤 = Θ(log𝑛+ log |Σ|).
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Periodicity

The goal of this chapter is to prove the following technical lemma, which constitutes a
crucial stepping stone to obtain Main Theorem 4.3 (which we prove in Chapter 6).

Lemma 5.1 (Faster Algorithm for Bounded Block Periodicity). There exists an algo-
rithm AlgSmallBP that, given two strings 𝑋,𝑌 of length at most 𝑛, and parameters
𝑘, 𝐾, 𝑝, 𝐵,Δ ∈ Z+ such that (i) BP𝑝 (𝑋 ) ≤ 𝐵, (ii) 𝑝, 𝐵 ≥ 𝑘 , (iii) (16 log𝐾)2 ≤ Δ ≤ 𝑛, and
(iv) 𝐾/𝑘 ≥ (log𝑛)𝛽 ·logΔ (𝑛) where 𝛽 > 0 is a constant, solves the GapED(𝑘, 𝐾) problem with
probability at least 0.9 and runs in time

𝑂

(( 𝑛
𝐾
· Δ + 𝑝𝐵 · Δ

)
· (log𝑛)𝛼 ·logΔ (𝑛)

)
for some constant 𝛼 > 0.

The proof of Lemma 5.1 closely follows the approach of our previous paper [Bri+22b],
which will be referred throughout as the BCFN algorithm.

Organization The outline of this chapter is as follows. In Section 5.1 we introduce the
general tree distance framework pioneered by Andoni, Krauthgamer and Onak [AKO10],
which is the starting point for our algorithm. In Section 5.2.1 we give the necessary
technology to efficiently approximate the tree distance. Finally, in Section 5.3 we present
and analyze the complete algorithm.

5.1 Tree Distance Framework

We start by introducing the general setup of the Andoni-Onak-Krauthgamer algo-
rithm. The starting point is devising a way to split the computation of the edit distance
into independent subtasks. A natural approach to do so would be to divide the two
strings into equally sized blocks, compute the edit distances of the smaller blocks re-
cursively, and combine the results. The difficulty in doing this is that the edit distance
depends on a global alignment, which determines how the blocks should align and
therefore the subproblems are not independent (e.g. the optimal alignment of one block
might affect the optimal alignment of the next block). However, this can be overcome
by computing the edit distances of one block in one string with several shifts of its
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5 Algorithm for Bounded Block Periodicity

corresponding block in the other string, and carefully combining the results. This
type of hierarchical decomposition appeared in previous algorithms for approximat-
ing edit distance [AO12; AKO10; Bat+03; OR07]. In particular, Andoni, Krauthgamer
and Onak [AKO10] define a string similarity measure called the tree distance1 which
gives a good approximation of the edit distance and cleanly splits the computation into
independent subproblems.

To define the tree distance, we first need an underlying partition tree.

Definition 5.2 (Partition Tree). Let 𝑋 and 𝑌 be length-𝑛 strings. A partition tree 𝑇 for 𝑋
and 𝑌 is a balanced ℓ-ary tree with 𝑛 leaves numbered from 0 to 𝑛 − 1 (from left to right).
Each node 𝑣 in 𝑇 is associated with a multiplicative accuracy 𝛼𝑣 > 1 and a rate 𝑟𝑣 ≥ 0.

For each node 𝑣 in 𝑇 , we define the substring 𝑋𝑣 as follows: If the subtree below 𝑣 spans
from the 𝑖-th to the 𝑗-th leaf, then we set 𝑋𝑣 = 𝑋 [𝑖 . . 𝑗). Similarly, for a shift 𝑠 ∈ Z, we set
𝑌𝑣,𝑠 = 𝑌 [𝑖 + 𝑠 . . 𝑗 + 𝑠) (the substring of 𝑌 relevant at 𝑣 for one specific shift 𝑠).

With this at hand, we define the shift-restricted tree distance:

Definition 5.3 (Shift-Restricted tree distance). Let 𝑇 be a partition tree for length-𝑛
strings 𝑋 and 𝑌 , and let 𝐿 ≥ 0 be an integer. For every node 𝑣 in 𝑇 and every shift
𝑠 ∈ [−𝐿 . . 𝐿], we define the 𝐿-restricted tree distance TD𝐿

𝑣,𝑠 (𝑋,𝑌 ) as follows:

• If 𝑣 is a leaf, then TD𝐿
𝑣,𝑠 (𝑋,𝑌 ) = ED(𝑋𝑣, 𝑌𝑣,𝑠).

• If 𝑣 is a node with children 𝑣0, . . . , 𝑣ℓ−1, then

TD𝐿
𝑣,𝑠 (𝑋,𝑌 ) =

ℓ−1∑︁
𝑖=0

T̃D𝐿

𝑣𝑖 ,𝑠
(𝑋,𝑌 ), (5.1)

where
T̃D𝐿

𝑣𝑖 ,𝑠
(𝑋,𝑌 ) = min

𝑠′∈[−𝐿 . . 𝐿]

(
TD𝐿

𝑣𝑖 ,𝑠
′ (𝑋,𝑌 ) + 2|𝑠 − 𝑠′|

)
. (5.2)

Since we restrict to shifts in [−𝐿 . . 𝐿], we define the substring of 𝑌 relevant at a node
𝑣 as 𝑌𝑣 := 𝑌 [𝑖 − 𝐿 . . 𝑗 + 𝐿).

Figure 5.1 gives an illustration of this definition. We remark that compared to the
tree distance definition in [AKO10; Bri+22b], in our Definition 5.3 we restrict the shifts
to the set [−𝐿 . . 𝐿]. The following lemma captures the relationship between the tree
distance and edit distance.

Lemma 5.4 (Tree Distance is a good approximation of Edit Distance). Let𝑇 be a partition
tree for length-𝑛 strings𝑋 and𝑌 , and let 𝐿 ≥ 0 be an integer. Suppose that𝑇 has maximum
degree ℓ and height (the maximum distance from the root to a leaf) at most ℎ. Then, the
TD𝐿 (𝑋,𝑌 ) can be bounded as follows:

1. Andoni et al. call the measure the E-distance. However, in a talk by Robert Krauthgamer he recoined
the name to tree distance. We decided to stick to this more descriptive name.
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5.1 Tree Distance Framework

Figure 5.1: Illustrates the tree distance TD𝐿
𝑣,𝑠 (𝑋,𝑌 ) at a node 𝑣 with interval 𝐼𝑣 = [𝑖 . . 𝑗],

shift 𝑠 and children 𝑣0, . . . , 𝑣3. The dashed lines denote the shift given by 𝑠 .
The bold lines show the “local” shifts 𝑠′ for each of the children (explicitly
labeled for 𝑣0). Note that some of these local shifts overlap.
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• TD𝐿 (𝑋,𝑌 ) ≥ ED(𝑋,𝑌 );

• TD𝐿 (𝑋,𝑌 ) ≤ (2(ℓ − 1)ℎ + 1) ED(𝑋,𝑌 ) provided that ED(𝑋,𝑌 ) ≤ 𝐿.

Proof. For the lower bound, we inductively prove that

ED(𝑋𝑣, 𝑌𝑣,𝑠) ≤ TD𝐿
𝑣,𝑠 (𝑋,𝑌 ) and ED(𝑋𝑣, 𝑌𝑣,𝑠) ≤ T̃D𝐿

𝑣,𝑠 (𝑋,𝑌 )

hold for every node 𝑣 and every shift 𝑠 ∈ [−𝐿 . . 𝐿].
The first claim holds trivially if 𝑣 is a leaf. Otherwise, we have 𝑋𝑣 =

⊙ℓ−1
𝑖=0 𝑋𝑣𝑖 as well

as 𝑌𝑣,𝑠 =
⊙ℓ−1

𝑖=0 𝑌𝑣𝑖 ,𝑠 . The subadditivity of edit distance and the inductive assumption
imply

ED(𝑋𝑣, 𝑌𝑣,𝑠) ≤
ℓ−1∑︁
𝑖=0

ED(𝑋𝑣𝑖 , 𝑌𝑣𝑖 ,𝑠) ≤
ℓ−1∑︁
𝑖=0

T̃D𝐿

𝑣𝑖 ,𝑠
(𝑋,𝑌 ) = TD𝐿

𝑣,𝑠 (𝑋,𝑌 ).

To prove the second claim, observe that the following holds for every 𝑠′ ∈ [−𝐿 . . 𝐿]:

ED(𝑋𝑣, 𝑌𝑣,𝑠) ≤ ED(𝑋𝑣, 𝑌𝑣,𝑠′) + ED(𝑌𝑣,𝑠′, 𝑌𝑣,𝑠) ≤ TD𝐿
𝑣,𝑠′ (𝑋,𝑌 ) + 2|𝑠 − 𝑠′|.

Consequently,

ED(𝑋𝑣, 𝑌𝑣,𝑠) ≤ min
𝑠′∈[−𝐿 . . 𝐿]

(
TD𝐿

𝑣,𝑠′ (𝑋,𝑌 ) + 2|𝑠 − 𝑠′|
)
= T̃D𝐿

𝑣,𝑠 (𝑋,𝑌 ).

For the upper bound, we prove the following claim for every node 𝑣 and every shift
𝑠 ∈ [−𝐿 . . 𝐿]. Denote by ℎ𝑣 the height of the subtree rooted at 𝑣 (that is, the maximum
distance from 𝑣 to a descendant of 𝑣). For two fragments 𝑌 [𝑝 . . 𝑞) and 𝑌 [𝑝′ . . 𝑞′), denote
|𝑌 [𝑝 . . 𝑞) △ 𝑌 [𝑝′ . . 𝑞′) | = |𝑝 − 𝑝′| + |𝑞 − 𝑞′|.
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▷ Claim 5.5. Let 𝑌 ′𝑣 be a fragment of 𝑌 such that ED(𝑋𝑣, 𝑌 ′𝑣 ) + |𝑌𝑣,0 △ 𝑌 ′𝑣 | ≤ 𝐿. Then,

T̃D𝐿

𝑣,𝑠 (𝑋,𝑌 ) ≤ (2(ℓ − 1)ℎ𝑣 + 1) ED(𝑋𝑣, 𝑌 ′𝑣 ) + |𝑌𝑣,𝑠 △ 𝑌 ′𝑣 |. (5.3)

Moreover, if |𝑌𝑣,𝑠 △𝑌 ′𝑣 | =
��|𝑌𝑣,𝑠 | − |𝑌 ′𝑣 |��, i.e., one of the fragments is contained in the other,

then
TD𝐿

𝑣,𝑠 (𝑋,𝑌 ) ≤ (2(ℓ − 1)ℎ𝑣 + 1) ED(𝑋𝑣, 𝑌 ′𝑣 ) + |𝑌𝑣,𝑠 △ 𝑌 ′𝑣 |. (5.4)

Let us first prove (5.4). If 𝑣 is a leaf, then ℎ𝑣 = 0 and simply

TD𝐿
𝑣,𝑠 (𝑋,𝑌 ) = ED(𝑋𝑣, 𝑌𝑣,𝑠) ≤ ED(𝑋𝑣, 𝑌 ′𝑣 ) + ED(𝑌 ′𝑣 , 𝑌𝑣,𝑠) ≤ ED(𝑋𝑣, 𝑌 ′𝑣 ) + |𝑌𝑣,𝑠 △ 𝑌 ′𝑣 |.

Next, suppose that 𝑣 has children 𝑣𝑖 for 𝑖 ∈ [0 . . ℓ). Decompose𝑋𝑣 =
⊙ℓ−1

𝑖=0 𝑋 [𝑥𝑖 . . 𝑥𝑖+1)
so that 𝑋𝑣𝑖 = 𝑋 [𝑥𝑖 . . 𝑥𝑖+1) and 𝑌𝑣,𝑠 =

⊙ℓ−1
𝑖=0 𝑌 [𝑦𝑖 . . 𝑦𝑖+1) so that 𝑌𝑣𝑖 ,𝑠 = 𝑌 [𝑦𝑖 . . 𝑦𝑖+1).

Moreover, decompose 𝑌 ′𝑣 =
⊙ℓ−1

𝑖=0 𝑌 [𝑦′𝑖 . . 𝑦′𝑖+1), denoting 𝑌 ′𝑣𝑖 = 𝑌 [𝑦′𝑖 . . 𝑦′𝑖+1), so that
ED(𝑋𝑣, 𝑌 ′𝑣 ) =

∑ℓ−1
𝑖=0 ED(𝑋𝑣𝑖 , 𝑌 ′𝑣𝑖 ).

We shall inductively apply (5.3) for 𝑋𝑣𝑖 ,𝑠 and 𝑌 ′𝑣𝑖 . For this, note that

ED(𝑋𝑣𝑖 , 𝑌 ′𝑣𝑖 ) + |𝑌𝑣𝑖 ,0 △ 𝑌
′
𝑣𝑖
| = ED(𝑋𝑣𝑖 , 𝑌 ′𝑣𝑖 ) + |𝑥𝑖 − 𝑦

′
𝑖 | + |𝑥𝑖+1 − 𝑦′𝑖+1 |

≤ ED(𝑋𝑣𝑖 , 𝑌 ′𝑣𝑖 ) + |(𝑥𝑖 − 𝑥0) − (𝑦′𝑖 − 𝑦′0) | + |𝑥0 − 𝑦′0 |
+ |(𝑥ℓ − 𝑥𝑖+1) − (𝑦′ℓ − 𝑦′𝑖+1) | + |𝑥ℓ − 𝑦′ℓ |

≤ ED(𝑋 [𝑥𝑖 . . 𝑥𝑖+1), 𝑌 [𝑦′𝑖 . . 𝑦′𝑖+1)) + ED(𝑋 [𝑥0 . . 𝑥𝑖), 𝑌 [𝑦′0 . . 𝑦′𝑖 ))
+ |𝑥0 − 𝑦′0 | + ED(𝑋 [𝑥𝑖+1 . . 𝑥ℓ), 𝑌 [𝑦′𝑖+1 . . 𝑦′ℓ)) + |𝑥ℓ − 𝑦′ℓ |

= ED(𝑋𝑣, 𝑌 ′𝑣 ) + |𝑌𝑣,0 △ 𝑌 ′𝑣 |
≤ 𝐿

Consequently, (5.3) yields

T̃D𝐿

𝑣𝑖 ,𝑠
(𝑋,𝑌 ) ≤ (2(ℓ − 1)ℎ𝑣𝑖 + 1) ED(𝑋𝑣𝑖 , 𝑌 ′𝑣𝑖 ) + |𝑦𝑖 − 𝑦

′
𝑖 | + |𝑦𝑖+1 − 𝑦′𝑖+1 |.

The assumption |𝑌𝑣,𝑠 △ 𝑌 ′𝑣 | =
��|𝑌𝑣,𝑠 | − |𝑌 ′𝑣 |�� translates to |𝑦0 −𝑦′0 | + |𝑦ℓ −𝑦′ℓ | = | (𝑦ℓ −𝑦0) −

(𝑦′ℓ − 𝑦′0) |. Thus, the following holds for every 𝑖 ∈ [0 . . ℓ]:

2|𝑦𝑖 − 𝑦′𝑖 | = | (𝑦𝑖 − 𝑦0) − (𝑦′𝑖 − 𝑦′0) + (𝑦0 − 𝑦′0) | + |(𝑦𝑖 − 𝑦ℓ) − (𝑦′𝑖 − 𝑦′ℓ) + (𝑦ℓ − 𝑦′ℓ) |
≤ |(𝑦𝑖 − 𝑦0) − (𝑦′𝑖 − 𝑦′0) | + |𝑦0 − 𝑦′0 | + |(𝑦𝑖 − 𝑦ℓ) − (𝑦′𝑖 − 𝑦′ℓ) | + |𝑦ℓ − 𝑦′ℓ |
= | (𝑦𝑖 − 𝑦0) − (𝑦′𝑖 − 𝑦′0) | + |(𝑦ℓ − 𝑦𝑖) − (𝑦′ℓ − 𝑦′𝑖 ) | + |(𝑦ℓ − 𝑦0) − (𝑦′ℓ − 𝑦′0) |
= | (𝑥𝑖 − 𝑥0) − (𝑦′𝑖 − 𝑦′0) | + |(𝑥ℓ − 𝑥𝑖) − (𝑦′ℓ − 𝑦′𝑖 ) | + |(𝑥ℓ − 𝑥0) − (𝑦′ℓ − 𝑦′0) |
≤ ED(𝑋 [𝑥0 . . 𝑥𝑖), 𝑌 [𝑦′0 . . 𝑦′𝑖 )) + ED(𝑋 [𝑥𝑖 . . 𝑥ℓ), 𝑌 [𝑦′𝑖 . . 𝑦′ℓ))

+ ED(𝑋 [𝑥0 . . 𝑥ℓ), 𝑌 [𝑦′0 . . 𝑦′ℓ))
= 2 ED(𝑋𝑣, 𝑌 ′𝑣 ).
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5.1 Tree Distance Framework

Summing up over 𝑖 ∈ (0 . . ℓ), due to ℎ𝑣𝑖 ≤ ℎ𝑣 − 1, we obtain

TD𝐿
𝑣,𝑠 (𝑋,𝑌 ) =

ℓ−1∑︁
𝑖=0

T̃D𝐿

𝑣𝑖 ,𝑠
(𝑋,𝑌 )

≤
ℓ−1∑︁
𝑖=0

(
(2(ℓ − 1)ℎ𝑣𝑖 + 1) ED(𝑋𝑣𝑖 , 𝑌 ′𝑣𝑖 ) + |𝑦𝑖 − 𝑦

′
𝑖 | + |𝑦𝑖+1 − 𝑦′𝑖+1 |

)
≤ (2(ℓ − 1) (ℎ𝑣 − 1) + 1) ED(𝑋𝑣, 𝑌 ′𝑣 )
+ 2(ℓ − 1) ED(𝑋𝑣, 𝑌 ′𝑣 ) + |𝑦0 − 𝑦′0 | + |𝑦ℓ − 𝑦′ℓ |

= (2(ℓ − 1)ℎ𝑣 + 1) ED(𝑋𝑣, 𝑌 ′𝑣 ) + |𝑌𝑣,𝑠 △ 𝑌 ′𝑣 |.

It remains to argue that (5.3) follows from (5.4). Due to T̃D𝐿

𝑣,𝑠 (𝑋,𝑌 ) ≤ TD𝐿
𝑣,𝑠 (𝑋,𝑌 ),

this is immediate if | (𝑦ℓ −𝑦0) − (𝑦′ℓ −𝑦′0) | =
��|𝑌𝑣,𝑠 | − |𝑌 ′𝑣 |�� = |𝑌𝑣,𝑠 △𝑌 ′𝑣 | = |𝑦0−𝑦′0 | + |𝑦ℓ −𝑦′ℓ |.

Thus, we henceforth assume
��|𝑌𝑣,𝑠 | − |𝑌 ′𝑣 |�� = ��|𝑦0 − 𝑦′0 | − |𝑦ℓ − 𝑦′ℓ |

��. By symmetry, we
may also assume without loss of generality that |𝑦0 − 𝑦′0 | ≤ |𝑦ℓ − 𝑦′ℓ |, which implies��|𝑌𝑣,𝑠 | − |𝑌 ′𝑣 |�� = |𝑦ℓ − 𝑦′ℓ | − |𝑦0 − 𝑦′0 |.
In this case, we set 𝑠′ := 𝑦′0 − 𝑥0. Note that |𝑠′| = |𝑥0 − 𝑦′0 | ≤ |𝑌𝑣,0 △ 𝑌 ′𝑣 | ≤ 𝐿, and thus

𝑠′ ∈ [−𝐿 . . 𝐿]. Moreover,

|𝑌𝑣,𝑠′ △ 𝑌 ′𝑣 | = | (𝑥0 + 𝑠′) − 𝑦′0 | + |(𝑥ℓ + 𝑠′) − 𝑦′ℓ |
= | (𝑥ℓ + 𝑠′ − 𝑥0 − 𝑠′) − (𝑦′ℓ − 𝑦′0) |
=

��|𝑌𝑣,𝑠′ | − |𝑌 ′𝑣 |��
=

��|𝑌𝑣,𝑠 | − |𝑌 ′𝑣 |��
= |𝑦ℓ − 𝑦′ℓ | − |𝑦0 − 𝑦′0 |
= |𝑦0 − 𝑦′0 | + |𝑦ℓ − 𝑦′ℓ | − 2|𝑦0 − 𝑦′0 |
= |𝑌𝑣,𝑠 △ 𝑌 ′𝑣 | − 2|𝑠 − 𝑠′|.

In particular, |𝑌𝑣,𝑠′ △ 𝑌 ′𝑣 | =
��|𝑌𝑣,𝑠′ | − |𝑌 ′𝑣 |�� lets us apply (5.4) for 𝑠′, and thus

T̃D𝐿

𝑣,𝑠 (𝑋,𝑌 ) ≤ TD𝐿
𝑣,𝑠′ (𝑋,𝑌 ) + 2|𝑠 − 𝑠′|

≤ (2(ℓ − 1)ℎ𝑣 + 1) ED(𝑋𝑣, 𝑌 ′𝑣 ) + |𝑌𝑣,𝑠′ △ 𝑌 ′𝑣 | + 2|𝑠 − 𝑠′|
= (2(ℓ − 1)ℎ𝑣 + 1) ED(𝑋𝑣, 𝑌 ′𝑣 ) + |𝑌𝑣,𝑠 △ 𝑌 ′𝑣 |

holds as claimed. □

For our purpose, we will be using the tree distance with shifts restricted in [−𝑘 . . 𝑘],
i.e. setting 𝐿 := 𝑘 in Definition 5.3.
We are now ready to formally define the computational problem we are aiming to

solve. Intuitively, we aim to compute the tree distance as defined in Definition 5.3.
However, since we are aiming for sublinear time, we can only afford to approximate it.
Recall that each node 𝑣 in a partition tree 𝑇 has an associated multiplicative accuracy
𝛼𝑣 > 0 and a rate 𝑟𝑣 ≥ 0. The task for each node in 𝑣 is the following.
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5 Algorithm for Bounded Block Periodicity

Definition 5.6 (Tree Distance Problem). Let 𝜇 > 0 be a parameter to be set. For every
node 𝑣 in the partition tree 𝑇 , compute numbers 𝜂𝑣,−𝑘 , . . . , 𝜂𝑣,𝑘 such that

1
𝛼𝑣

ED(𝑋𝑣, 𝑌𝑣,𝑠) −
1
𝑟𝑣
≤ 𝜂𝑣,𝑠 ≤ 𝛼𝑣 TD𝑘

𝑣,𝑠 (𝑋,𝑌 ) +
𝜇

𝑟𝑣
. (5.5)

5.2 Toolkit to Approximate the Tree Distance

In this section we introduce the tools needed to solve the tree distance problem. In
Section 5.2.1 we introduce the technology that was used by Andoni, Krauthgamer and
Onak to device their polylogarithmic near-linear time approximation for edit distance.
Then, in Section 5.2.2 we introduce the ideas that were needed to obtain a sublinear-time
implementation for the BCFN algorithm.

5.2.1 Andoni-Krauthgamer-Onak Tools

Suppose we are at some node 𝑣 in the partition tree and we have already computed the
values𝜂𝑤,· for all its children𝑤 as per Definition 5.6. Wewant to use these approximations
to compute the values 𝜂𝑣,· at 𝑣 using the recursive definition of the tree distance given
by Definition 5.3. If we do this naively, the additive error across the children adds up,
which is prohibitely high. In order to control it, we use the following tool known as the
precision sampling lemma as introduced by Andoni, Krauthgamer and Onak [AKO10].
Lemma 5.7 (Precision Sampling Lemma [And17]). Fix parameters 𝛿, 𝜀 > 0. Let 𝛼 ≥ 1
and 𝛽 ≥ 0. There is a distribution D = D(𝜀, 𝛿) supported over (0, 1] from which samples
can be drawn in expected time 𝑂 (1), that satisfies the following:
Accuracy Let 𝑎1, . . . , 𝑎ℓ ≥ 0 be reals, and independently sample 𝑢1, . . . , 𝑢ℓ ∼ D. There is
an 𝑂 (ℓ · 𝜀−2 log(𝛿−1))-time algorithm Recover satisfying for all 𝑎1, . . . , 𝑎ℓ , with success
probability at least 1 − 𝛿 :
• If 𝑎𝑖 ≥ 1

𝛼
· 𝑎𝑖 − 𝛽 · 𝑢𝑖 for all 𝑖 , then Recover(𝑎1, . . . , 𝑎ℓ , 𝑢1, . . . , 𝑢ℓ) ≥ 1

(1+𝜀)𝛼 ·
∑
𝑖 𝑎𝑖 − 𝛽 .

• If 𝑎𝑖 ≤ 𝛼 · 𝑎𝑖 + 𝛽 ·𝑢𝑖 for all 𝑖 , then Recover(𝑎1, . . . , 𝑎ℓ , 𝑢1, . . . , 𝑢ℓ) ≤ (1 + 𝜀)𝛼
∑
𝑖 𝑎𝑖 + 𝛽 .

Efficiency Sample 𝑢 ∼ D. Then, for any 𝑁 ≥ 1 there is an event E = E(𝑢) happening
with probability at least 1−1/𝑁 , such thatE𝑢∼D ( 1/𝑢 | E ) ≤ 𝑂 (𝜀−2 polylog(𝑁, 𝛿−1, 𝜀−1)).
The Precision Sampling Lemma was first shown in [AKO10] and later refined and

simplified in [AKO11; And17]. We refer the reader to [Bri+22b, Appendix B] for a proof
incorporating the simplifications hinted by Andoni [And17].

To efficiently evaluate the tree distance at some node 𝑣 from the values of its children,
we need the following efficient routine.
Lemma 5.8. There is an 𝑂 (𝑘)-time algorithm for the following problem: Given integers
𝐴−𝑘 , . . . , 𝐴𝑘 , compute for all 𝑠 ∈ [−𝑘 . . 𝑘]:

𝐵𝑠 = min
𝑠′∈[−𝑘 . . 𝑘]

𝐴𝑠′ + 2 · |𝑠 − 𝑠′|.
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5.2 Toolkit to Approximate the Tree Distance

Proof. The idea is to compute for each 𝑠 ∈ [−𝑘 . . 𝑘] the auxiliary values

𝐵≤𝑠 = min
𝑠′∈[−𝑘 . . 𝑠]

𝐴𝑠′ + 2𝑠 − 2𝑠′,

𝐵≥𝑠 = min
𝑠′∈[𝑠 . . 𝑘]

𝐴𝑠′ − 2𝑠 + 2𝑠′,

as then returning 𝐵𝑠 = min(𝐵≤𝑠 , 𝐵≥𝑠 ) is correct.
We show how to compute 𝐵≤𝑠 for all 𝑠 using dynamic programming; the values 𝐵≥𝑠

are symmetric. For the base case we set 𝐵≤(−𝑘) = 𝐴−𝑘 , which is correct by definition. We
then compute 𝐵≤𝑠 for all 𝑠 = −𝑘 + 1,−𝑘 + 2 . . . , 𝑘 as follows:

𝐵≤𝑠 = min
{
𝐵≤𝑠−1 + 2, 𝐴𝑠

}
.

For the correctness, we distinguish two cases. Let 𝑠′ ≤ 𝑠 be the index which attains the
minimum in the definition of 𝐵≤𝑠 . On the one hand, if 𝑠′ < 𝑠 , then 𝐵≤𝑠 = 𝐵≤

𝑠−1 + 2 and thus
the first term in the minimum is correct. On the other hand, if 𝑠′ = 𝑠 , then the second
term in the minimum is correct by definition. Finally, observe that we can compute 𝐵≤𝑠
for all 𝑠 ∈ [−𝑘 . . 𝑘] by sweeping from left to right over all values in [−𝑘 . . 𝑘] exactly
once, hence the running time is bounded by 𝑂 (𝑘). □

Using precision sampling (Lemma 5.7) together with Lemma 5.8 to evaluate the
tree distance essentially yields the original Andoni-Onak-Krauthgamer algorithm. See
[Bri+22b, Appendix D] for our re-interpretation of their result.

5.2.2 Sublinear Tools: Property Testers

In order to obtain sublinear time, one needs a few more ideas and ingredients. The
key idea used in the BCFN algorithm [Bri+22b] is to prune the computation of the tree
distance once we reach nodes where we can easily infer the desired 𝜂 values, instead of
recursing to compute them. To this end, we introduced the following property testers.

The first is a simple (and folklore) tester to approximately test equality of strings.

Lemma 5.9 (Equality Test [Bri+22b, Lemma 23]). Let 𝑋,𝑌 be two strings of the same
length, and let 𝑟 > 0 be a sampling rate. There is an algorithm which returns one of the
following two outputs:

• Close, in which case HD(𝑋,𝑌 ) ≤ 1/𝑟 .

• Far, in which case 𝑋 ≠ 𝑌 .

The algorithm runs in time 𝑂 (𝑟 |𝑋 | log(𝛿−1)) and is correct with probability at least 1 − 𝛿 .

Proof sketch. Sample 𝑟 |𝑋 | log(1/𝛿) positions 𝑖 ∈ [0 . . |𝑋 |) uniformly at random and test
if 𝑋 [𝑖] = 𝑌 [𝑖]. If no error is found, return Close; otherwise, return Far. If 𝑋 = 𝑌 , then
the algorithm always returns Close. If HD(𝑋,𝑌 ) > 1/𝑟 , then the algorithm returns Far
probability at least 1 − 𝛿 . □
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Next, we designed an algorithm to test whether a string is close to being periodic.

Lemma 5.10 (𝑝-Periodicity Test [Bri+22b, Lemma 17]). Let 𝑋 be a string, let 𝑝 ≥ 1 be
an integer parameter and let 𝑟 > 0 be a sampling rate. There is an algorithm which returns
one of the following two outputs:

• Close(𝑄), where 𝑄 is a primitive string of length ≤ 𝑝 with HD(𝑋,𝑄∗ [0 . . |𝑋 |)) ≤ 1/𝑟 .

• Far, in which case 𝑋 is not 𝑝-periodic.

The algorithm runs in time 𝑂 (𝑟 |𝑋 | log(𝛿−1) + 𝑝) and is correct with probability 1 − 𝛿 .

Proof. We start analyzing the length-2𝑝 prefix 𝑌 = 𝑋 [0 . . 2𝑝]. In time 𝑂 (𝑝) we can
compute the smallest string 𝑄 with |𝑄 | ≤ 𝑝 such that 𝑌 = 𝑄∗ [0 . . |𝑌 |] by searching
for the first match of 𝑌 in 𝑌 ◦ 𝑌 , e.g. using the Knuth-Morris-Pratt pattern matching
algorithm [KJP77]. If no such match exists, we can immediately report Far. So suppose
that we find a period 𝑄 . It must be primitive (since it is the smallest such period) and it
remains to test whether 𝑋 globally follows the period. For this task we use the Equality
Test (Lemma 5.9) with inputs 𝑋 and 𝑄∗ (of course, we cannot write down the infinite
string𝑄∗, but we provide oracle access to𝑄∗ which is sufficient here). On the one hand,
if 𝑋 is indeed periodic with period 𝑄 , then the Equality Test reports Close. On the
other hand, if 𝑋 is 1/𝑟 -far from any periodic string, then it particular HD(𝑋,𝑄∗) > 1/𝑟
and therefore the Equality Test reports Far. The only randomized step is the Equality
Test. We therefore set the error probability of the Equality Test to 𝛿 and achieve total
running time 𝑂 (𝑟 |𝑋 | log(𝛿−1) + 𝐾). □

We say that a node 𝑣 in the partition tree is matched if there is a shift 𝑠∗ ∈ [−𝑘 . . 𝑘]
such that 𝑋𝑣 = 𝑌𝑣,𝑠∗ . The final and most intricate property tester checks whether a node
is close to being matched, in the sense defined above.

Lemma 5.11 (Matching Test [Bri+22b, Lemma 18]). Let 𝑋,𝑌 be strings such that |𝑌 | =
|𝑋 | + 2𝑘 , and let 𝑟 > 0 be a sampling rate. There is an algorithm which returns one of the
following two outputs:

• Close(𝑠∗), where 𝑠∗ ∈ [−𝑘 . . 𝑘] satisfies HD(𝑋,𝑌 [𝑘 + 𝑠∗ . . |𝑋 | + 𝑘 + 𝑠∗)) ≤ 1/𝑟 .

• Far, in which case there is no 𝑠∗ ∈ [−𝑘 . . 𝑘] with 𝑋 = 𝑌 [𝑘 + 𝑠∗ . . |𝑋 | + 𝑘 + 𝑠∗).

The algorithm runs time𝑂 (𝑟 |𝑋 | log(𝛿−1) + 𝑘 log |𝑋 |) and is correct with probability 1− 𝛿 .

Proof. For convenience, we write𝑌𝑠 = 𝑌 [𝐾+𝑠 . . |𝑋 |+𝐾+𝑠]. Our goal is to obtain a single
candidate shift 𝑠∗ (that is, knowing 𝑠∗ we can exclude all other shifts from consideration).
Having obtained a candidate shift, we can use the Equality Test (Lemma 5.9 with
parameters 𝑟 and 𝛿/3) to verify whether we indeed have 𝑋 = 𝑌𝑠∗ . In the positive case,
Lemma 5.9 implies that HD(𝑋,𝑌𝑠∗) ≤ 1/𝑟 , hence returning 𝑠∗ is valid. The difficulty lies
in obtaining the candidate shift. Our algorithm proceeds in three steps:
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1. Aligning the Prefixes: We start by computing the set 𝑆 consisting of all shifts 𝑠 for
which 𝑋 [0 . . 2𝐾] = 𝑌𝑠 [0 . . 2𝐾]. One way to compute this set in linear time 𝑂 (𝐾) is
by using a pattern matching algorithm with pattern 𝑋 [0 . . 2𝐾] and text 𝑌 [0 . . 4𝐾]
(like the Knuth-Morris-Pratt algorithm [KJP77]). It is clear that 𝑆 must contain any
shift 𝑠 for which globally 𝑋 = 𝑌𝑠 . For that reason we can stop if |𝑆 | = 0 (in which
case we return Far) or if |𝑆 | = 1 (in which case we test the unique candidate shift
𝑠∗ ∈ 𝑆 and report accordingly).

2. Testing for Periodicity: After running the previous step we can assume that |𝑆 | ≥ 2.
Take any elements 𝑠 < 𝑠′ from 𝑆 ; we have that 𝑋 [0 . . 2𝐾] = 𝑌𝑠 [0 . . 2𝐾] = 𝑌𝑠′ [0 . . 2𝐾].
It follows that 𝑋 [0 . . 2𝐾 − 𝑠′ + 𝑠] = 𝑋 [𝑠′ − 𝑠 . . 2𝐾], and thus by the periodicity
lemma [FW65] we conclude that 𝑋 [0 . . 2𝐾] is periodic with period 𝑃 = 𝑋 [0 . . 𝑠′ − 𝑠],
where |𝑃 | ≤ 𝑠′ − 𝑠 ≤ 2𝐾 . Obviously the same holds for 𝑌𝑠 [0 . . 2𝐾] and 𝑌𝑠′ [0 . . 2𝐾].
We will now test whether 𝑋 and 𝑌𝑠 are also globally periodic with this period 𝑃 .
To this end, we apply the Equality Test two times (each time with parameters 2𝑟
and 𝛿/3) to check whether 𝑋 = 𝑃∗ [0 . . |𝑋 |] and 𝑌𝑠 = 𝑃∗ [0 . . |𝑌𝑠 |]. If both tests
return Close, then Lemma 5.9 guarantees that HD(𝑋, 𝑃∗ [0 . . |𝑋 |]) ≤ 1/(2𝑟 ) and
HD(𝑌𝑠, 𝑃∗ [0 . . |𝑌𝑠 |]) ≤ 1/(2𝑟 ) and hence, by the triangle inequality, HD(𝑋,𝑌𝑠) ≤ 1/𝑟 .
Note that we have witnessed a matching shift 𝑠∗ = 𝑠 .

3. Aligning the Leading Mismatches: Assuming that the previous step did not
succeed, one of the Equality Tests returned Far(𝑖0) for some position 𝑖0 > 2𝐾
with 𝑋 [𝑖0] ≠ 𝑃∗ [𝑖0] or 𝑌𝑠 [𝑖0] ≠ 𝑃∗ [𝑖0]. Let us refer to these indices as mismatches.
Moreover, we call a mismatch 𝑖 a leading mismatch if the 2𝐾 positions to the left of 𝑖
are not mismatches. We continue in two steps: First, we find a leading mismatch.
Second, we turn this leading mismatch into a candidate shift.

3a Finding a LeadingMismatch: To find a leadingmismatch, we use the following
binary search-style algorithm: Initialize 𝐿 ← 0 and 𝑅 ← 𝑖0. We maintain the
following two invariants: (i) All positions in [𝐿 . . 𝐿 + 2𝐾] are not mismatches,
and (ii) 𝑅 is a mismatch. Both properties are initially true. We will now iterate
as follows: Let 𝑀 ← ⌈(𝐿 + 𝑅)/2⌉ and test whether there is a mismatch 𝑖 ∈
[𝑀 . .𝑀 + 2𝐾]. If there is such a mismatch 𝑖 , we update 𝑅 ← 𝑖 . Otherwise, we
update 𝐿 ← 𝑀 . It is easy to see that in both cases both invariants are maintained.
Moreover, this procedure is guaranteed to make progress as long as 𝐿+4𝐾 < 𝑅. If
at some point 𝑅 ≤ 𝐿 + 4𝐾 , then we can simply check all positions in [𝐿 . . 𝑅]—one
of these positions must be a leading mismatch 𝑖 .

3b Finding a Candidate Shift: Assume that the previous step succeeded in finding
a leading mismatch 𝑖 . Then we can produce a single candidate shift as follows:
Assume without loss of generality that𝑋 [𝑖] ≠ 𝑃∗ [𝑖], and let 𝑖 ≤ 𝑗 be the smallest
position such that 𝑌𝑠 [ 𝑗] ≠ 𝑃∗ [ 𝑗]. Then 𝑠∗ = 𝑠 + 𝑗 − 𝑖 is the only candidate shift
(if it happens to fall into the range { −𝐾, . . . , 𝐾 }).
Indeed, for any 𝑠′′ > 𝑠∗ we can find a position where 𝑋 and 𝑌𝑠′′ differ. To see
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this, we should assume that 𝑠′′ respects the period (i.e., 𝑃∗ = 𝑃∗ [𝐾 + 𝑠′′ . .∞]),
since otherwise we find a mismatch in the length-2𝐾 prefix. But then

𝑌𝑠′′ [ 𝑗 + 𝑠 − 𝑠′′] = 𝑌𝑠 [ 𝑗] (5.6)
≠ 𝑃∗ [ 𝑗] (5.7)
= 𝑃∗ [ 𝑗 + 𝑠 − 𝑠′′] (5.8)
= 𝑋 [ 𝑗 + 𝑠 − 𝑠′′], (5.9)

which proves that 𝑋 ≠ 𝑌𝑠′′ and thereby disqualifies 𝑠′′ as a feasible shift. Here we
used (5.6) the definition of 𝑌𝑠 , (5.7) the assumption that 𝑌𝑠 [ 𝑗] ≠ 𝑃∗ [ 𝑗], (5.8) the
fact that both 𝑠 and 𝑠′′ respect the period 𝑃 and (5.9) the assumption that 𝑖 was a
leading mismatch which implies that 𝑋 matches 𝑃∗ at the position 𝑗 + 𝑠 − 𝑠′′ < 𝑖 .
A similar argument works for any shift 𝑠′′ < 𝑠∗. In this case one can show
that 𝑋 [𝑖] ≠ 𝑃∗ [𝑖] = 𝑌𝑠′′ [𝑖] which also disqualifies 𝑠′′ as a candidate shift.

We finally bound the error probability and running time of this algorithm. We only
use randomness when calling the Equality Test which runs at most three times. Since
each time we set the error parameter to 𝛿/3, the total error probability is 𝛿 as claimed.
The running time of the Equality Tests is bounded by 𝑂 (𝑟 |𝑋 | log(𝛿−1)) by Lemma 5.9.
In addition, steps 1 and 2 take time 𝑂 (𝐾). Step 3 iterates at most log |𝑋 | times and
each iteration takes time 𝑂 (𝐾). Thus, the total running time is 𝑂 (𝑟 |𝑋 | log(𝛿−1) +
𝐾 log |𝑋 |). □

We remark that after the publication of [Bri+22b], we found out that Kociumaka and
Saha had presented essentially the same algorithm as Lemma 5.11 in [KS20a, Proposition
3.4], but was used for a different purpose and phrased in a different way.

5.3 Algorithm

Now we are ready to present the algorithm yielding Lemma 5.1. The idea is to approx-
imately evaluate the tree distance (Definition 5.3) over the partition tree. In order to
obtain sublinear running time, we want to avoid recursing over the entire tree. For that
end, we use the insight that whenever we encounter as a node 𝑣 that is matched and
𝑝-periodic (which we can test using Lemmas 5.10 and 5.11), we can stop the recursive
computation and approximate the values 𝜂𝑣,𝑠 directly for all shifts 𝑠 ∈ [−𝑘 . . 𝑘], as
captured by Lemma 5.13. The rest of the algorithm combines the recursive results
from the children using Lemma 5.7 and Lemma 5.8. Consult Algorithm 10 for the full
pseudocode.

We start by proving Lemma 5.13. To achieve that, we provide an algorithm that can
efficiently approximate the edit distance of strings that are periodic. More precisely, we
leverage the following result whose proof is defered to Section 5.3.1.
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Algorithm 10
Input: Strings 𝑋,𝑌 , a node 𝑣 in the partition tree 𝑇 , integers 𝑘, 𝐾, 𝑝 ≥ 0 and a rate 𝑟𝑣
Output: 𝜂𝑣,𝑠 for all shifts 𝑠 ∈ [−𝑘 . . 𝑘]
1 if 𝑣 is a leaf then
2 Compute and return 𝜂𝑣,𝑠 = ED(𝑋𝑣, 𝑌𝑣,𝑠) for all 𝑠 ∈ [−𝑘 . . 𝑘]
3 Run the Matching Test (Lemma 5.11) for 𝑋𝑣, 𝑌𝑣 (with 𝑟 = 3𝑟𝑣 and 𝛿 = 0.01/𝑛)
4 Run the 𝑝-Periodicity Test (Lemma 5.10) for 𝑌𝑣 (with 𝑟 = 3𝑟𝑣 and 𝛿 = 0.01/𝑛)
5 if the Matching Test returns Close(𝑠∗) then
6 if the Periodicity Test returns Close(𝑄) then
7 Compute and return 𝜂𝑣,𝑠 for all 𝑠 ∈ [−𝑘 . . 𝑘] using Lemma 5.13
8 for each 𝑖 ∈ [0 . . ℓ) do
9 Let 𝑣𝑖 be the 𝑖-th child of 𝑣 and sample 𝑢𝑣𝑖 ∼ D(𝜀 := (2 log𝑛)−1, 𝛿 := 0.01/(𝑘𝑛))
10 Recursively compute 𝜂𝑣𝑖 ,𝑠 with rate 𝑟𝑣/𝑢𝑣𝑖 for all 𝑠 ∈ [−𝑘 . . 𝑘]
11 Compute 𝐴𝑖,𝑠 = min𝑠′∈[−𝑘 . . 𝑘] 𝜂𝑣𝑖 ,𝑠′ + 2 · |𝑠 − 𝑠′| using Lemma 5.8
12 for each 𝑠 ∈ [−𝑘 . . 𝑘] do
13 𝜂𝑣,𝑠 = Recover(𝐴0,𝑠, . . . , 𝐴ℓ−1,𝑠, 𝑢𝑣0, . . . , 𝑢𝑣ℓ−1)
14 return 𝜂𝑣,𝑠 for all 𝑠 ∈ [−𝑘 . . 𝑘]

Lemma 5.12. Given a positive integer 𝑝 , two strings 𝑃 and 𝑇 with period 𝑝 and lengths
𝑚 ≤ 𝑛, respectively, and an integer Δ ∈ [2 . . 𝑝], one can compute, for all 𝑖 ∈ [0 . . 𝑛 −𝑚],
multiplicative (log𝑝)𝑂 (logΔ 𝑝)-approximations of ED(𝑃,𝑇 [𝑖 . . 𝑖 +𝑚)) in time 𝑂 (𝑛 −𝑚) +
𝑝Δ · (log𝑝)𝑂 (logΔ 𝑝) correctly w.h.p.

Lemma 5.13 (Fast Shifted ED for Periodic Strings). Let 𝑣 be a node for which theMatching
Test correctly returns Close(𝑠∗) and the Periodicity Test correctly returns Close(𝑄) (i.e.,
Lines 5 to 6 succeed). Then, with high probability, given integers 𝑝 ≥ |𝑄 | and Δ ∈ [2 . . 𝑝],
we can compute values 𝜂𝑣,𝑠 for all 𝑠 ∈ [−𝑘 . . 𝑘] such that

ED(𝑋𝑣, 𝑌𝑣,𝑠) − 1
𝑟𝑣
≤ 𝜂𝑣,𝑠 ≤ (log𝑝)𝑂 (logΔ (𝑝)) ·

(
ED(𝑋𝑣, 𝑌𝑣,𝑠) + 1

𝑟𝑣

)
,

in total time 𝑂
(
𝑝 (log𝑝)𝑂 (logΔ (𝑝))Δ + 𝑘

)
.

Proof. Denote 𝑇 = 𝑄∗ [0 . . |𝑌𝑣 |) and 𝑆 = 𝑇 [𝑘 − 𝑠∗ . . |𝑋𝑣 | + 𝑘 − 𝑠∗). Since the Periodicity
Test in Line 4 correctly returned Close(𝑄), we have HD(𝑌𝑣,𝑇 ) ≤ 1

3𝑟𝑣 . In particular, this
implies HD(𝑌𝑣,𝑠,𝑇 [𝑘 − 𝑠 . . |𝑋𝑣 | + 𝑘 − 𝑠)) ≤ 1

3𝑟𝑣 for every 𝑠 ∈ [−𝑘 . . 𝑘]. Similarly, since
the Matching Test in Line 3 correctly returned Close(𝑠∗), we have HD(𝑋𝑣, 𝑌𝑣,𝑠∗) ≤ 1

3𝑟𝑣 .
Consequently, HD(𝑋𝑣, 𝑆) ≤ HD(𝑋𝑣, 𝑌𝑣,𝑠∗) +HD(𝑌𝑣,𝑠∗, 𝑆) ≤ 2

3𝑟𝑣 . By the triangle inequality,
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for every 𝑠 ∈ [−𝑘 . . 𝑘], we have�� ED(𝑋𝑣, 𝑌𝑣,𝑠) − ED(𝑆,𝑇 [𝑘 − 𝑠 . . |𝑋𝑣 | + 𝑘 − 𝑠))
��

≤ ED(𝑋𝑣, 𝑆) + ED(𝑌𝑣,𝑠,𝑇 [𝑘 − 𝑠 . . |𝑋𝑣 | + 𝑘 − 𝑠))
≤ HD(𝑋𝑣, 𝑆) + HD(𝑌𝑣,𝑠,𝑇 [𝑘 − 𝑠 . . |𝑋𝑣 | + 𝑘 − 𝑠))
≤ 2

3𝑟𝑣 +
1

3𝑟𝑣 =
1
𝑟𝑣
.

Strings 𝑆 and 𝑇 both have a period |𝑄 | ≤ 𝑝 and thus also a period |𝑄 | · ⌈𝑝/|𝑄 |⌉ ∈
[𝑝 . . 2𝑝). We apply Lemma 5.12 with the latter period, and return the approximation of
ED(𝑆,𝑇 [𝑘 − 𝑠 . . |𝑋𝑣 | + 𝑘 − 𝑠)) as 𝜂𝑣,𝑠 .
Since |𝑇 | − |𝑆 | = 2𝑘 , the running time is 𝑂 (𝑘) + 𝑝Δ · (log𝑝)𝑂 (logΔ 𝑝) , and each value

𝜂𝑣,𝑠 is an (log𝑝)𝑂 (logΔ 𝑝)-approximation of ED(𝑆,𝑇 [𝑘 − 𝑠 . . |𝑋𝑣 | + 𝑘 − 𝑠)), that is,

ED(𝑆,𝑇 [𝑘 − 𝑠 . . |𝑋𝑣 | + 𝑘 − 𝑠)) ≤ 𝜂𝑣,𝑠 ≤ (log𝑝)𝑂 (logΔ 𝑝) · ED(𝑆,𝑇 [𝑘 − 𝑠 . . |𝑋𝑣 | + 𝑘 − 𝑠)).

Due to
�� ED(𝑋𝑣, 𝑌𝑣,𝑠) − ED(𝑆,𝑇 [𝑘 − 𝑠 . . |𝑋𝑣 | + 𝑘 − 𝑠))

�� ≤ 1
𝑟𝑣
, we conclude that

ED(𝑋𝑣, 𝑌𝑣,𝑠) − 1
𝑟𝑣
≤ 𝜂𝑣,𝑠 ≤ (log𝑝)𝑂 (logΔ (𝑝)) ·

(
ED(𝑋𝑣, 𝑌𝑣,𝑠) + 1

𝑟𝑣

)
,

holds as claimed. □

Now we are ready to prove the main result of this section, which we restate for
convenience.

Lemma 5.1 (Faster Algorithm for Bounded Block Periodicity). There exists an algo-
rithm AlgSmallBP that, given two strings 𝑋,𝑌 of length at most 𝑛, and parameters
𝑘, 𝐾, 𝑝, 𝐵,Δ ∈ Z+ such that (i) BP𝑝 (𝑋 ) ≤ 𝐵, (ii) 𝑝, 𝐵 ≥ 𝑘 , (iii) (16 log𝐾)2 ≤ Δ ≤ 𝑛, and
(iv) 𝐾/𝑘 ≥ (log𝑛)𝛽 ·logΔ (𝑛) where 𝛽 > 0 is a constant, solves the GapED(𝑘, 𝐾) problem with
probability at least 0.9 and runs in time

𝑂

(( 𝑛
𝐾
· Δ + 𝑝𝐵 · Δ

)
· (log𝑛)𝛼 ·logΔ (𝑛)

)
for some constant 𝛼 > 0.

Setting Rates and Accuracies Recall that 𝑘, 𝐾, 𝑝 and 𝐵 are given parameters. Let 𝑇
be a partition tree of degree ℓ for 𝑋,𝑌 . For now, we keep ℓ ≥ 2 as a variable that will be
set later. Note that 𝑇 has at most 2𝑛 nodes in total, and its depth is bounded by ⌈logℓ 𝑛⌉.

Let 𝛾 = (log𝑝)𝑐 logΔ (𝑝) where the constant 𝑐 > 0 is chosen so that the approximation
factor given by Lemma 5.13 does not exceed 𝛾 . We specify the rates and multiplicative
accuracies for every node 𝑣 in 𝑇 in the following way:

• Multiplicative accuracy: if 𝑣 is the root, we set 𝛼𝑣 = 10 · 𝛾 . Otherwise, if 𝑣 is a child of
𝑤, we set 𝛼𝑤 = 𝛼𝑣 · (1 − (2 log𝑛)−1). Note that since the depth of the tree is bounded
by log𝑛, for every node 𝑣 in 𝑇 it holds that 𝛼𝑣 ≥ 10𝛾 = 𝛼root.
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• Rate: if 𝑣 is the root, we set 𝑟𝑣 = 10000𝛾2/𝐾 . Otherwise, if 𝑣 is a child of𝑤 then sample
𝑢𝑣 ∼ D(𝜀 := (2 log𝑛)−1, 𝛿 := 0.01 · (𝑘𝑛)−1) (see Lemma 5.7) and set 𝑟𝑣 := 𝑟𝑤/𝑢𝑣 .

Recall that our goal is to solve the tree distance problem, that is, for every node 𝑣
compute values 𝜂𝑣,𝑠 satisfying (5.5). We set the parameter 𝜇 in Definition 5.6 to 𝜇 := 𝛾 .

Correctness We start by analyzing the correctness of Algorithm 10.

Lemma 5.14 (Correctness of Algorithm 10). Let 𝑋,𝑌 be strings. Given any node 𝑣 in
the partition tree, Algorithm 10 correctly solves the Tree Distance Problem (Definition 5.6),
with probability 0.9.

Proof. We proceed by induction over the depth of the partition tree. That is, we will
prove that for every node 𝑣, the algorithm correctly solves 𝑣 (as per Definition 5.6)
assuming that the recursive calls are correct.
For the base case, we consider all the nodes solved in Lines 1 to 7. If the node is

solved in Lines 1 to 2, then we compute the tree distance exactly. If the node 𝑣 is solved
in Lines 5 to 7, then assuming that the calls to Lemma 5.13 succeed (we will bound the
error probability later) the algorithm computes values 𝜂𝑣,𝑠 satisfying

ED(𝑋𝑣, 𝑌𝑣,𝑠) − 1/𝑟𝑣 ≤ 𝜂𝑣,𝑠 ≤ 𝛾 · ED(𝑋𝑣, 𝑌𝑣,𝑠) + 𝛾/𝑟𝑣 .

Wewant to show that these values satisfy (5.5). Observe that the lower bound is satisfied
(without additive error). For the upper bound, recall that 𝛼𝑣 = 10𝛾 · (1 − (2 log𝑛)−1)𝑑 ,
where 𝑑 ≤ log𝑛 is the depth of 𝑣. In particular, observe that 𝛼𝑣 ≥ 𝛾 . By Lemma 5.4, it
holds that ED(𝑋𝑣, 𝑌𝑣,𝑠) ≤ TD𝑘 (𝑋𝑣, 𝑌𝑣,𝑠). Therefore, we obtain 𝜂𝑣,𝑠 ≤ 𝛼𝑣 · TD𝑘 (𝑋𝑣, 𝑌𝑣,𝑠) +
𝛾/𝑟𝑣 , as required (since 𝜇 = 𝛾 ).

For the inductive step, fix some node 𝑣 and assume that all values 𝜂𝑣𝑖 ,𝑠′ recursively
computed in Line 10 are correct (i.e. they satisfy (5.5)). (We will bound the error
probability later.) In Line 11, the algorithm computes a value 𝐴𝑖,𝑠 satisfying

𝐴𝑖,𝑠 = min
𝑠′∈[−𝑘 . . 𝑘]

𝜂𝑣𝑖 ,𝑠′ + 2|𝑠 − 𝑠′| ≤ min
𝑠′∈[−𝑘 . . 𝑘]

𝛼𝑣𝑖 TD𝑘
𝑣𝑖 ,𝑠
′ (𝑋,𝑌 ) + 2|𝑠 − 𝑠′| + 𝛾/𝑟𝑣𝑖 (5.10)

𝐴𝑖,𝑠 = min
𝑠′∈[−𝑘 . . 𝑘]

𝜂𝑣𝑖 ,𝑠′ + 2|𝑠 − 𝑠′| ≥ min
𝑠′∈[−𝑘 . . 𝑘]

1/𝛼𝑣𝑖 ED𝑘
𝑣𝑖 ,𝑠
′ (𝑋,𝑌 ) + 2|𝑠 − 𝑠′| − 1/𝑟𝑣𝑖 (5.11)

Recall that for each child 𝑣𝑖 the rate 𝑟𝑣𝑖 is set to 𝑟𝑣𝑖 = 𝑟𝑣/𝑢𝑣𝑖 , where 𝑢𝑣𝑖 is an independent
sample from the distribution D(𝜀 = (2 log𝑛)−1, 𝛿 = 0.01/(𝑘𝑛)). Similarly, recall that
the multiplicative accuracy 𝛼𝑣𝑖 is set to 𝛼𝑣𝑖 = 𝛼𝑣 (1 − (2 log𝑛)−1) and is the same for all
children.
We prove that the values 𝜂𝑣,𝑠 computed in Line 13 satisfy the upper and lower bounds

of (5.5):
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Upper Bound Note that by Definition 5.3 it holds that

TD𝑘
𝑣,𝑠 (𝑋,𝑌 ) =

ℓ−1∑︁
𝑖=0

𝐴𝑖,𝑠, 𝐴𝑖,𝑠 = min
𝑠′∈[−𝑘 . . 𝑘]

TD𝑘
𝑣𝑖 ,𝑠
′ (𝑋,𝑌 ) + 2|𝑠 − 𝑠′|.

In particular, combining the above we obtain that 𝐴𝑖,𝑠 ≤ 𝛼𝑣 (1− (2 log𝑛)−1)𝐴𝑖,𝑠 +𝛾𝑢𝑣𝑖/𝑟𝑣 .
Therefore, we apply Lemma 5.7 (with 𝛼 = 𝛼𝑣 (1−(2 log𝑛)−1) and 𝛽 = 𝛾/𝑟𝑣) to infer that

in Line 13, the call to Recover(𝐴0,𝑠, . . . , 𝐴ℓ−1,𝑠, 𝑢𝑣0, . . . , 𝑢𝑣ℓ−1) computes a value satisfying
(again, we assume that the output is correct and bound the error probability later)

Recover(·) ≤ (1 + 𝜀)𝛼
(
ℓ−1∑︁
𝑖=0

𝐴𝑖,𝑠

)
+ 𝛾/𝑟𝑣

= (1 + (2 log𝑛)−1)𝛼𝑣 (1 − (2 log𝑛)−1) TD𝑘
𝑣,𝑠 (𝑋,𝑌 ) + 𝛾/𝑟𝑣

≤ 𝛼𝑣 TD𝑘
𝑣,𝑠 (𝑋,𝑌 ) + 𝛾/𝑟𝑣,

which concludes the proof for the upper bound.

Lower Bound Let 𝑠0, . . . , 𝑠ℓ−1 be the shifts chosen by the algorithm in Line 11. Thus,
from (5.11) we have that 𝐴𝑖,𝑠 ≥ 1/𝛼𝑣𝑖 (ED(𝑋𝑣𝑖 , 𝑌𝑣𝑖 ,𝑠𝑖 ) + 2|𝑠 − 𝑠𝑖 |) − 1/𝑟𝑣𝑖 . Similarly as
for the upper bound, suppose that the call to Recover in Line 13 succeeds. Then, by
Lemma 5.7 (instantiated with parameters 𝛼 = 𝛼𝑣 (1 − (2 log𝑛)−1) and 𝛽 = 1/𝑟𝑣) the call
to Recover(𝐴0,𝑠, . . . , 𝐴ℓ−1,𝑠, 𝑢𝑣0, . . . , 𝑢𝑣ℓ−1) satisfies

Recover(·) ≥ 1
(1 + 𝜀)𝛼

(
ℓ−1∑︁
𝑖=0

ED(𝑋𝑣𝑖 , 𝑌𝑣𝑖 ,𝑠𝑖 ) + 2|𝑠 − 𝑠𝑖 |
)
− 1/𝑟𝑣

≥ 1
(1 + 𝜀)𝛼

(
ℓ−1∑︁
𝑖=0

ED(𝑋𝑣𝑖 , 𝑌𝑣𝑖 ,𝑠𝑖 ) + ED(𝑌𝑣𝑖 ,𝑠, 𝑌𝑣𝑖 ,𝑠𝑖 )
)
− 1/𝑟𝑣

≥ 1
(1 + 𝜀)𝛼

(
ℓ−1∑︁
𝑖=0

ED(𝑋𝑣𝑖 , 𝑌𝑣𝑖 ,𝑠)
)
− 1/𝑟𝑣

≥ 1
(1 + 𝜀)𝛼 ED(𝑋𝑣, 𝑌𝑣,𝑠) − 1/𝑟𝑣

The second inequality holds because we can transform 𝑌𝑣𝑖 ,𝑠 into 𝑌𝑣𝑖 ,𝑠𝑖 by inserting and
deleting |𝑠 − 𝑠𝑖 | characters. The third one by the triangle inequality. And the last
inequality by the subadditivity of edit distance.

Finally, recall that 𝛼 = 𝛼𝑣 (1 − (2 log𝑛)−1) and 𝜀 = (2 log𝑛)−1. Hence,

1
(1 + 𝜀)𝛼 =

1
(1 + (2 log𝑛)−1) (1 − (2 log𝑛)−1)𝛼𝑣

≥ 1
𝛼𝑣
,

which concludes the lower bound.
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Error Probability There are four sources of randomness in the algorithm: the Match-
ing and Periodicity tests in lines Lines 3 and 4, the call to Lemma 5.13 in Line 7, and the
call to the recovery algorithm of precision sampling (Lemma 5.7) in Line 13. For each
node, at least one of the Matching and Periodicity tests fails with probability at most
2𝛿 = 0.02/𝑛. For every leaf, the call to Lemma 5.13 fails with probability 0.01/𝑛. We
apply the recovery algorithm of Lemma 5.7 with 𝛿 = 0.01/(𝑘𝑛) for 2𝑘 shifts in every
node, hence the error probability is bounded by 0.02/𝑛 as well. By a union bound, the
error probability for one node is bounded by 0.05/𝑛. Since there are at most 2𝑛 nodes in
the tree, the total error probability is bounded by 0.1. □

Running Time Analysis We say that a node 𝑣 in the partition tree is active if the
recursive computation of Algorithm 10 reaches 𝑣.
Recall that we say that a node 𝑣 in the partition tree is matched if there is a shift

𝑠∗ ∈ [−𝑘 . . 𝑘] such that 𝑋𝑣 = 𝑌𝑣,𝑠∗ . If 𝑣 is not matched, we call it unmatched. The
following lemma shows that if ED(𝑋,𝑌 ) ≤ 𝑘 , then there are not many unmatched
nodes.

Lemma 5.15 (Number of Unmatched Nodes). Assume that ED(𝑋,𝑌 ) ≤ 𝑘 . If the partition
tree has depth 𝐷 , then there are at most 𝑘𝐷 nodes which are not matched.

Proof. Focus on any level in the partition tree and let 0 = 𝑖0 < · · · < 𝑖𝑤 = 𝑛 denote the
partition induced by that level, i.e., let [𝑖ℓ . . 𝑖ℓ+1] = 𝐼𝑣 where 𝑣 is the ℓ-th node in the
level (from left to right). Let 𝐴 be an optimal alignment between 𝑋 and 𝑌 , then:

ED(𝑋,𝑌 ) =
𝑤−1∑︁
ℓ=0

ED(𝑋 [𝑖ℓ . . 𝑖ℓ+1], 𝑌 [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1)]).

Since we assumed that ED(𝑋,𝑌 ) ≤ 𝐾 , there can be at most 𝐾 nonzero terms in the sum.
For any zero term we have that 𝑋 [𝑖ℓ . . 𝑖ℓ+1] = 𝑌 [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1)] and therefore the ℓ-th
node in the current level is matched with shift 𝐴(𝑖ℓ) − 𝑖ℓ . By Proposition 4.10 we have
that |𝐴(𝑖ℓ) − 𝑖ℓ | ≤ ED(𝑋,𝑌 ) ≤ 𝐾 . This completes the proof. □

Lemma 5.16 (Number of Active Nodes). Suppose that ED(𝑋,𝑌 ) ≤ 𝑘 . If the partition
tree has depth 𝐷 , then the number of active nodes is𝑂 (𝑘𝐷ℓ + BP𝑝 (𝑋 )𝐷ℓ) with probability
at least 0.96.

Proof. Recall that there are at most 2𝑛 nodes in the partition tree. Hence, by a union
bound, all Matching Tests in Line 3 succeed with probability at least 1 − 0.02 = 0.98.
Similarly, all Periodicity Tests in Line 4 succeed with probability at least 0.98. Thus,
by a union bound, all Matching Tests and Periodicity Tests succeed with probability at
least 0.96. We condition on this event for the rest of the proof.
There are 3 kinds of active nodes 𝑣: (i) 𝑣 and all its ancestors are unmatched, (ii) 𝑣 is

matched and all its ancestors are unmatched, and (iii) some ancestor of 𝑣 (and thus 𝑣
itself) is matched.
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By Lemma 5.15, the number of nodes of type (i) is 𝑂 (𝑘𝐷). A node of type (ii) has
a parent of type (i), so there are 𝑂 (𝑘𝐷ℓ) such nodes in total. Finally, there can be at
most 𝑂 (BP𝑝 (𝑋 )𝐷ℓ) nodes of type (iii) in total. To see this, observe that such a node
will be active only if the periodicity test failed at its parent node. But by definition of
block periodicity (Definition 4.7), at most𝑂 (BP𝑝 (𝑋 )) nodes per level fail the periodicity
test. □

Lemma 5.17 (Running time of Algorithm 10). Let 𝑋,𝑌 be strings with 𝑘 ≤ 𝑝 , 𝑘 ≤
BP𝑝 (𝑋 ) ≤ 𝐵 and ED(𝑋,𝑌 ) ≤ 𝑘 . Let 2 ≤ Δ ≤ 𝑛 be a parameter. Then, Algorithm 10 runs
in time ( 𝑛

𝐾
Δ + 𝑝𝐵 · Δ

)
(log𝑛)𝑂 (logΔ (𝑛))

with probability at least 0.9.

Proof. We will set the degree ℓ of the partition tree in terms of Δ later. First we bound
the expected running time of a single execution of Algorithm 10, ignoring the cost of
recursive calls.

• Lines 1 and 2: If 𝑣 is a leaf, then |𝑋𝑣 | = 1. Therefore, computing 𝜂𝑣,𝑠 for each 𝑠 takes
𝑂 (1) time. Thus, the overall time is 𝑂 (𝑘).

• Lines 3 and 4: Running the Matching and Periodicity Tests (Lemmas 5.10 and 5.11)
takes time 𝑂 (𝑟𝑣 |𝑋𝑣 | log𝑛 + 𝑘 log |𝑋𝑣 | + 𝑝) ≤ 𝑂 (𝑟𝑣 |𝑋𝑣 | log𝑛 + 𝑘 log𝑛 + 𝑝).

• Lines 5 to 7: Running Lemma 5.13 takes time

𝑂 (𝑝 (log𝑝)𝑂 (logΔ (𝑝))Δ + 𝑘) ≤ 𝑝 (log𝑝)𝑂 (logΔ (𝑝))Δ.

Here we used the assumption that 𝑘 ≤ 𝑝 .

• Lines 8 to 11: The loop runs for ℓ iterations. In each iteration, we sample a precision
in Line 9 in expected 𝑂 (1)-time, perform a recursive computation which we ignore
here, and apply Lemma 5.8 in time 𝑂 (𝑘). The total time is 𝑂 (𝑘ℓ).

• Lines 12 to 13: The loop runs for 𝑂 (𝑘) iterations and in each iteration we apply
the recovery algorithm from Lemma 5.7 with parameters 𝜀 = Ω(1/log𝑛) and 𝛿 ≥
1/poly(𝑛). Each execution takes time 𝑂 (ℓ𝜀−2 log(𝛿−1)) = 𝑂 (ℓ polylog(𝑛)). Hence,
the total time is 𝑂 (𝑘ℓ polylog(𝑛)).

Thus, the overall time for one execution is

𝑂 (𝑟𝑣 |𝑋𝑣 | log𝑛 + 𝑘ℓ polylog(𝑛) + 𝑝 (log𝑝)𝑂 (logΔ (𝑝))Δ). (5.12)

We will simplify this term by plugging in the (expected) rate 𝑟𝑣 for any node 𝑣.
Recall that 𝑟𝑣 = 10000𝛾2 · (𝐾 · 𝑢𝑣1 . . . 𝑢𝑣𝑑 )−1 where 𝑣0, 𝑣1, . . . , 𝑣𝑑 = 𝑣 is the root-to-

node path leading to 𝑣 and each 𝑢𝑖 is sampled fromD(𝜀 = (2 log𝑛)−1, 𝛿 = 0.01 · (𝑘𝑛)−1),
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independently. Using the efficiency property of Lemma 5.7 with 𝑁 = 200𝑛, there exist
events E𝑤 happening each with probability 1 − 1/𝑁 such that

E(1/𝑢𝑤 | E𝑤) ≤ 𝑂 (𝜀−2 polylog(𝑁, 𝛿−1, 𝜀−1)) ≤ polylog(𝑛).

Taking a union bound over all nodes in 𝑇 (there are at most 2𝑛 many), the event
E :=

∧
𝑤 E𝑤 happens with probability at least 0.99; we will condition on E from now

on. Under this condition, we have:

E(𝑟𝑣 | E) =
10000 · 𝛾2

𝐾

𝑑∏
𝑖=1
E(1/𝑢𝑣𝑖 | E𝑣𝑖 )

≤ 𝛾
2 · (log𝑛)𝑂 (𝑑)

𝐾
≤ 𝛾

2 · (log𝑛)𝑂 (logℓ (𝑛))

𝐾
.

Let 𝑐 be a large enough constant so that in the bound above we have (log𝑛)𝑂 (logℓ (𝑛)) ≤
(log𝑛)𝑐 logℓ (𝑛) . We now set ℓ = ⌈(log𝑛)𝑐 logΔ (𝑛)⌉, so that (log𝑛)𝑐 logℓ (𝑛) ≤ Δ. Therefore,
E(𝑟𝑣 | E) ≤ 𝛾2Δ/𝐾 .
Finally, we can bound the total expected running time (conditioned on E) sum-

ming (5.12) over all active nodes 𝑣:∑︁
𝑣

𝑂

(
|𝑋𝑣 | ·

𝛾2 · Δ
𝐾
+ 𝑘ℓ polylog(𝑛) + 𝑝 (log𝑝)𝑂 (logΔ (𝑝))Δ

)
.

To bound the first term, we use that
∑
𝑤 |𝑋𝑤 | = 𝑛 whenever𝑤 ranges over all nodes on a

fixed level in the partition tree, and thus
∑
𝑣 |𝑋𝑣 | ≤ 𝑛 · 𝐷 where 𝑣 ranges over all nodes.

Thus, recalling that 𝛾 = (log𝑝)𝑂 (logΔ (𝑝)) we can bound the first term in the sum by

𝑛

𝐾
· Δ · (log𝑝)𝑂 (logΔ (𝑝)) .

The other terms get multiplied by the number of active nodes. By Lemma 5.16, the
number of active nodes is𝑂 (𝑘𝐷ℓ + BP𝑝 (𝑋 )𝐷ℓ) ≤ 𝑂 (𝐵𝐷ℓ) with probability at least 0.96
(here we used that BP𝑝 (𝑋 ) ≤ 𝐵 and 𝑘 ≤ 𝐵). Conditioned on this, the expected time for
the second and third terms is bounded by

𝑂

(
𝑘ℓ polylog(𝑛) · 𝐵𝐷ℓ + 𝑝 (log𝑝)𝑂 (logΔ (𝑝))Δ · 𝐵𝐷ℓ

)
.

Using that 𝑘 ≤ 𝑝 , and that 𝐷 ≤ log𝑛, this is bounded by

𝑂 (𝑝 (log𝑝)𝑂 (logΔ (𝑝))Δ · 𝐵ℓ2 polylog(𝑛)) ≤ 𝑝 (log𝑛)𝑂 (logΔ (𝑛))Δ · 𝐵.

In the last step we used that ℓ = (log𝑛)𝑂 (logΔ (𝑛)) and 𝑝 ≤ 𝑛.
Combining the above, we conclude that the overall expected running time is bounded

by
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𝑛

𝐾
· Δ · (log𝑝)𝑂 (logΔ (𝑝)) + 𝑝 (log𝑛)𝑂 (logΔ (𝑛))Δ · 𝐵

≤
( 𝑛
𝐾
· Δ + 𝑝𝐵 · Δ

)
· (log𝑛)𝑂 (logΔ (𝑛)) .

We conditioned on two events: The event E and the event that the number of active
nodes is bounded by 𝑂 (𝐵𝐷ℓ) (Lemma 5.16). Both happen with probability at least 0.96,
thus the total success probability is at least 0.9. □

Proof of Lemma 5.1. We run Algorithm 10 with 10 times the time budget( 𝑛
𝐾
Δ + 𝑝𝐵 · Δ

)
(log𝑛)𝑂 (logΔ (𝑛))

given by Lemma 5.17. If the algorithm exceeds the time budget, we interrupt the
computation and return Far. By the guarantee of Lemma 5.17 and Markov’s inequality,
returning Far in this case is correct with probability at least 0.9.

If the algorithm terminates, then it computes a value 𝜂 = 𝜂𝑟,0 where 𝑟 is the root node
of the partition tree. By Lemma 5.14, this value satisfies

ED(𝑋,𝑌 )
10𝛾 − 0.0001𝐾

𝛾2 ≤ 𝜂 ≤ 10𝛾 TD𝑘 (𝑋,𝑌 ) + 0.0001𝐾
𝛾

.

Recall that here, 𝛾 = (log𝑝)𝑂 (logΔ (𝑝)) is the approximation factor of Lemma 5.13. If
ED(𝑋,𝑌 ) ≤ 𝑘 , then by Lemma 5.4 we obtain that

𝜂 ≤ 10𝛾 · 3𝐷ℓ ED(𝑋,𝑌 ) + 0.0001𝐾
𝛾

≤ (log𝑛)𝑂 (logΔ (𝑛)) · 𝑘 + 0.0001𝐾
𝛾

where we used that the depth 𝐷 of the tree satisfies 𝐷 ≤ log𝑛, that ℓ = (log𝑛)𝑂 (logΔ (𝑛))

and that 𝑝 ≤ 𝑛. Conversely, if ED(𝑋,𝑌 ) > 𝐾 then

𝜂 ≥ ED(𝑋,𝑌 )
10𝛾 − 0.0001𝐾

𝛾2 >
0.099𝐾
𝛾

.

Thus, to distinguish these two cases we need that

0.099𝐾
𝛾

> (log𝑛)𝑂 (logΔ (𝑛)) · 𝑘 + 0.0001𝐾
𝛾

.

Using that 𝑝 ≤ 𝑛, this holds if 𝐾/𝑘 > (log𝑛)Θ(logΔ (𝑛)) for a sufficiently large hidden
constant. □
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Comments and digest. The algorithm just presented to prove Lemma 5.1 closely
follows the structure of the BCFN algorithm of Theorems 4.1 and 4.2 [Bri+22b]. However,
there are some important differences.2 Notoriously, our presentation is simplified based
on the fact that the algorithm we gave can distinguish a gap which is a function of 𝑛, and
not 𝑘 (i.e. 𝐾/𝑘 > (log𝑛)Θ(logΔ (𝑛)) is a condition of Lemma 5.1). In the BCFN algorithm
we had to do some more work to deal the case when 𝑘 ≪ 𝑛; note that the issue in this
case, is that an algorithm solving e.g. the (𝑘, 𝑘 · 𝑛𝑜 (1))-gap problem is not sufficient to
solve the desired (𝑘, 𝑘1+𝑜 (1))-gap. In particular, in [Bri+22b] we had to do some technical
tricks, like stopping the depth of the recursion at depth polylog(𝑘), which complicated
the presentation and added some technical annoyances. The reason we can afford to do
these simplifications here (i.e. obtain a gap as a function of 𝑛 instead of 𝑘), is that to
prove our Corollaries 4.4 and 4.5, we make use of Theorems 4.1 and 4.2 as blackboxes
whenever 𝑘 ≪ 𝑛 (see Section 6.3).

5.3.1 Fast Edit Distance Approximation for Periodic Strings

In this section, we prove Lemma 5.12. Our main tool is the following recent result:

Theorem 5.18 (Dynamic Approximate ED [KMS23, Theorem 7.10]). There exists a
dynamic algorithm that, initialized with integers 2 ≤ 𝑏 ≤ 𝑛, maintains (initially
empty) strings 𝑋,𝑌 ∈ Σ≤𝑛 subject to character edits and, after each update, outputs
an 𝑂 (𝑏 log𝑏 𝑛)-approximation of ED(𝑋,𝑌 ). The amortized expected cost of each update
is 𝑏2 · (log𝑛)𝑂 (log𝑏 𝑛) , and each answer is correct with high probability. The probabilistic
guarantees hold against an oblivious adversary.

First, let us change the parametrization to be consistent with the remainder of this
chapter.

Corollary 5.19. There exists a dynamic algorithm that, initialized with integers 2 ≤ Δ ≤
𝑛, maintains (initially empty) strings 𝑋,𝑌 ∈ Σ≤𝑛 subject to character edits and, after each
update, outputs an (log𝑛)𝑂 (logΔ 𝑛)-approximation of ED(𝑋,𝑌 ). The amortized expected
cost of each update is Δ · (log𝑛)𝑂 (logΔ 𝑛) , and each answer is correct with high probability.
The probabilistic guarantees hold against an oblivious adversary.

Proof. Let 𝑏 = (log𝑛)𝑐 logΔ 𝑛 , where the constant 𝑐 is chosen so that the update time of
Theorem 5.18 does not exceed 𝑏2 · (log𝑛)𝑐 log𝑏 𝑛 .

If 𝑏 ≤ 𝑛, we simply use the algorithm of Theorem 5.18. Note that Δ = (log𝑛)𝑐 log𝑏 𝑛 ,
so the approximation ratio is 𝑂 (𝑏 log𝑏 𝑛) = 𝑂 ((log𝑛)𝑐 logΔ 𝑛 · log𝑛) = (log𝑛)𝑂 (logΔ 𝑛) ,
whereas the update time can be expressed as 𝑏2 · (log𝑛)𝑐 log𝑏 𝑛 = (log𝑛)2𝑐 logΔ 𝑛 · Δ =

Δ · (log𝑛)𝑂 (logΔ 𝑛) .
If 𝑏 > 𝑛, then 𝑛 ≤ (log𝑛)𝑂 (logΔ 𝑛) , so it suffices to provide 𝑛-approximations of

ED(𝑋,𝑌 ) with 𝑂 (𝑛) time per update. For this, we simply maintain 𝑋 and 𝑌 , check

2. This paragraph is only relevant for those readers trying to figure out in which way our presentation
here differs from [Bri+22b].
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whether 𝑋 = 𝑌 for upon each update, and, depending on the outcome, report 0 or 𝑛 as
the 𝑛-approximation of ED(𝑋,𝑌 ). □

We apply Corollary 5.19 to estimate the distances between a pattern 𝑃 and substrings
of a text 𝑇 .

Lemma5.20. Given strings 𝑃 and𝑇 of lengths𝑚 ≤ 𝑛, respectively, and integerΔ ∈ [2 . . 𝑛],
one can compute, for all 𝑖 ∈ [0 . . 𝑛 −𝑚], multiplicative (log𝑛)𝑂 (logΔ 𝑛)-approximations of
ED(𝑃,𝑇 [𝑖 . . 𝑖 +𝑚)) in total time 𝑛Δ · (log𝑛)𝑂 (logΔ 𝑛) correctly w.h.p.

Proof. We apply Corollary 5.19 with the same parameters. Starting with empty 𝑋
and 𝑌 , we use 2𝑚 edits to set 𝑋 := 𝑃 and 𝑌 := 𝑇 [0 . .𝑚). Next, we iteratively set
𝑌 := 𝑇 [𝑖 . . 𝑖 +𝑚) for subsequent 𝑖 ∈ [0 . . 𝑛−𝑚] to obtain (log𝑛)𝑂 (logΔ 𝑛)-approximations
of ED(𝑃,𝑇 [𝑖 . . 𝑖 +𝑚)). For this, we note that two edits (one insertion and one deletion)
are enough to transform 𝑇 [𝑖 . . 𝑖 +𝑚) to 𝑇 [𝑖 + 1 . . 𝑖 +𝑚 + 1).
Overall, we use Corollary 5.19 for an oblivious sequence of 2𝑛 edits. Consequently,

the total expected running time is 𝑛Δ · (log𝑛)𝑂 (logΔ 𝑛) and all the answers are correct
with high probability.

By Markov’s inequality, the probability that the algorithm exceeds twice its expected
time bound is 1/2. By interrupting the algorithm after this time, and repeating the
overall process 𝑂 (log𝑛) times, we obtain the lemma statement. □

Our next goal is to improve the running time provided that both strings have a
common period. We start with an auxiliary combinatorial lemma that yields a 3-
approximation of the edit distance between two 𝑝-periodic strings of the same length.

Lemma 5.21. Let 𝑃,𝑄 be strings of positive length 𝑝 , let 𝑛 be a positive integer, and
denote 𝑑 = ⌊𝑛/𝑝⌋ and 𝑟 = 𝑛 mod 𝑝 . Then, the edit distance of strings 𝑋 = 𝑃∗ [0 . . 𝑛) and
𝑌 = 𝑄∗ [0 . . 𝑛) satisfes

ED(𝑋,𝑌 ) ≤ ED(𝑃 [0 . . 𝑟 ), 𝑄 [0 . . 𝑟 )) +min
𝑠∈Z
(𝑑 · ED(𝑃,𝑄⟳𝑠) + 2|𝑠 |) ≤ 3 ED(𝑋,𝑌 ).

Proof. Let us start with the lower bound. Fix 𝑠 ∈ Z and observe that the triangle
inequality and the sub-additivity of edit distance yield

ED(𝑋,𝑌 ) ≤ ED(𝑃𝑑 , 𝑄𝑑) + ED(𝑃 [0 . . 𝑟 ), 𝑄 [0 . . 𝑟 ))
≤ ED(𝑃𝑑 , (𝑄⟳𝑠)𝑑) + ED(𝑄𝑑 , (𝑄⟳𝑠)𝑑) + ED(𝑃 [0 . . 𝑟 ), 𝑄 [0 . . 𝑟 ))
≤ 𝑑 · ED(𝑃,𝑄⟳𝑠) + 2|𝑠 | + ED(𝑃 [0 . . 𝑟 ), 𝑄 [0 . . 𝑟 )) .

To prove upper bound, let us partition 𝑌 =
⊙𝑑

𝑖=0𝑌 [𝑦𝑖 . . 𝑦𝑖+1) so that

ED(𝑋,𝑌 ) =
𝑑−1∑︁
𝑖=0

ED(𝑃,𝑌 [𝑦𝑖 . . 𝑦𝑖+1)) + ED(𝑃 [0 . . 𝑟 ), 𝑌 [𝑦𝑑 . . 𝑛)) .
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Fix 𝑗 ∈ [0 . . 𝑑) such that ED(𝑃,𝑌 [𝑦 𝑗 . . 𝑦 𝑗+1)) does not exceed the average
1
𝑑
(ED(𝑋,𝑌 ) − ED(𝑃 [0 . . 𝑟 ), 𝑌 [𝑦𝑑 . . 𝑛))) .

Take 𝑠 := 𝑦 𝑗 − 𝑝 𝑗 so that 𝑄⟳𝑠 = 𝑌 [𝑦 𝑗 . . 𝑦 𝑗 + 𝑝). Thus, by the triangle inequality,

ED(𝑃,𝑄⟳𝑠) ≤ ED(𝑃,𝑌 [𝑦 𝑗 . . 𝑦 𝑗+1)) + ED(𝑌 [𝑦 𝑗 . . 𝑦 𝑗+1), 𝑌 [𝑦 𝑗 . . 𝑦 𝑗 + 𝑝))
= ED(𝑃,𝑌 [𝑦 𝑗 . . 𝑦 𝑗+1)) + |𝑦 𝑗+1 − 𝑦 𝑗 − 𝑝 |
≤ 2 ED(𝑃,𝑌 [𝑦 𝑗 . . 𝑦 𝑗+1))
≤ 2

𝑑
(ED(𝑋,𝑌 ) − 2 ED(𝑃 [0 . . 𝑟 ), 𝑌 [𝑦𝑑 . . 𝑛))) .

Similarly, 𝑄 [0 . . 𝑟 ) = 𝑌 [𝑝𝑑 . . 𝑛) implies

ED(𝑃 [0 . . 𝑟 ), 𝑄 [0 . . 𝑟 )) ≤ ED(𝑃 [0 . . 𝑟 ), 𝑌 [𝑦𝑑 . . 𝑛)) + ED(𝑌 [𝑝𝑑 . . 𝑛), 𝑌 [𝑦𝑑 . . 𝑛))
≤ ED(𝑃 [0 . . 𝑟 ), 𝑌 [𝑦𝑑 . . 𝑛)) + |𝑦𝑑 − 𝑝𝑑 |
≤ 2 ED(𝑃 [0 . . 𝑟 ), 𝑌 [𝑦𝑑 . . 𝑛)) .

At the same time,

2|𝑠 | = 2|𝑦 𝑗 − 𝑝 𝑗 | ≤ ED(𝑋 [0 . . 𝑝 𝑗), 𝑌 [0 . . 𝑦 𝑗 )) + ED(𝑋 [𝑝 𝑗 . . 𝑛), 𝑌 [𝑦 𝑗 . . 𝑛)) = ED(𝑋,𝑌 ).

Overall, we have

ED(𝑃 [0 . . 𝑟 ), 𝑄 [0 . . 𝑟 )) + 𝑑 · ED(𝑃,𝑄⟳𝑠) + 2|𝑠 |
≤ 2 ED(𝑃 [0 . . 𝑟 ), 𝑌 [𝑦𝑑 . . 𝑛))

+ 𝑑 · 2
𝑑
(ED(𝑋,𝑌 ) − ED(𝑃 [0 . . 𝑟 ), 𝑌 [𝑦𝑑 . . 𝑛)))

+ ED(𝑋,𝑌 )
= 3 ED(𝑋,𝑌 ),

completing the proof. □

We are now ready to prove Lemma 5.12, whose statement is repeated below for
readers’ convenience.

Lemma 5.12. Given a positive integer 𝑝 , two strings 𝑃 and 𝑇 with period 𝑝 and lengths
𝑚 ≤ 𝑛, respectively, and an integer Δ ∈ [2 . . 𝑝], one can compute, for all 𝑖 ∈ [0 . . 𝑛 −𝑚],
multiplicative (log𝑝)𝑂 (logΔ 𝑝)-approximations of ED(𝑃,𝑇 [𝑖 . . 𝑖 +𝑚)) in time 𝑂 (𝑛 −𝑚) +
𝑝Δ · (log𝑝)𝑂 (logΔ 𝑝) correctly w.h.p.

Proof. Let us first argue that, without loss of generality, we can change the length of 𝑇
to𝑚 + 𝑝 − 1 while preserving its string period 𝑇 [0 . . 𝑝).

• If 𝑛 < 𝑚 + 𝑝 − 1, then the distances ED(𝑃,𝑇 [𝑖 . . 𝑖 + 𝑚)) for 𝑖 ∈ [0 . . 𝑛 − 𝑚] are
unaffected by the extension. Moreover, extending 𝑇 does not affect the claimed
asymptotic runtime because the 𝑂 (𝑛 −𝑚) term is dominated by 𝑂 (𝑝).
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• if 𝑛 > 𝑚 + 𝑝 − 1, then the distances ED(𝑃,𝑇 [𝑖 . . 𝑖 +𝑚)) for 𝑖 ∈ [0 . . 𝑝) are unaffected
by the reduction. The remaining distances satisfy ED(𝑃,𝑇 [𝑖 . . 𝑖 +𝑚)) = ED(𝑃,𝑇 [𝑖 −
𝑝 . . 𝑖 − 𝑝 +𝑚)), so the approximation of the latter distance can be returned as the
approximation of the former. This post-processing costs 𝑂 (𝑛 −𝑚) extra time.

Thus, we henceforth assume 𝑛 =𝑚 + 𝑝 − 1.
We apply Lemma 5.20 twice: for 𝑃 [0 . . 𝑝) and 𝑇 [0 . . 2𝑝 − 1), as well as for 𝑃 [0 . . 𝑟 )

and 𝑇 [0 . . 𝑝 + 𝑟 − 1), where 𝑟 =𝑚 mod 𝑝 . Suppose that, for each 𝑖 ∈ [0 . . 𝑝), this yields
values 𝑒𝑖 and 𝑓𝑖 that are (log𝑝)𝑂 (logΔ 𝑝)-approximations of ED(𝑃 [0 . . 𝑝),𝑇 [𝑖 . . 𝑖 +𝑝)) and
ED(𝑃 [0 . . 𝑟 ),𝑇 [𝑖 . . 𝑖 + 𝑟 )), respectively. For every 𝑖 ∈ [0 . . 𝑝), our algorithm returns

𝑔𝑖 := 𝑓𝑖 + min
𝑗∈[0 . . 𝑝)

(⌊𝑚/𝑝⌋ · 𝑒 𝑗 + 2 min( |𝑖 − 𝑗 |, 𝑝 − |𝑖 − 𝑗 |)).

The values 𝑔𝑖 can be computed as 𝑢-to-𝑤𝑖 distances in a weighted graph𝐺 consisting of
2𝑝 + 1 vertices 𝑢, 𝑣0, . . . , 𝑣𝑝−1, 𝑤0, . . . , 𝑤𝑝−1 and the following edges for each 𝑖 ∈ [0 . . 𝑝):

• 𝑢 → 𝑣𝑖 of length ⌊𝑚/𝑝⌋ · 𝑒𝑖 ;

• 𝑣𝑖 ↔ 𝑣 (𝑖+1) mod 𝑝 of length 2;

• 𝑣𝑖 → 𝑤𝑖 of length 𝑓𝑖 .

This is because the shortest path of the form 𝑢 → 𝑣 𝑗 { 𝑣𝑖 → 𝑤𝑖 is of length precisely
⌊𝑚/𝑝⌋ · 𝑒 𝑗 + 2 min( |𝑖 − 𝑗 |, 𝑝 − |𝑖 − 𝑗 |) + 𝑓𝑖 .
The running time is 𝑝Δ · (log𝑝)𝑂 (logΔ 𝑝) for the applications of Lemma 5.20 plus

𝑂 (𝑝 log𝑝) for Dijkstra’s single-source shortest paths algorithm. The first of these terms
dominates.
The correctness stems from Lemma 5.21, which implies that, for every 𝑖 ∈ [0 . . 𝑝),

the following quantity is a 3-approximation of ED(𝑃,𝑇 [𝑖 . . 𝑖 +𝑚)):

ED(𝑃 [0 . . 𝑟 ),𝑇 [𝑖 . . 𝑖 + 𝑟 ))
+ min
𝑗∈[0 . . 𝑝)

{⌊𝑚/𝑝⌋ · ED(𝑃 [0 . . 𝑝),𝑇 [ 𝑗 . . 𝑗 + 𝑝)) + 2 min( |𝑖 − 𝑗 |, 𝑝 − |𝑖 − 𝑗 |)}

If we replace the two edit distances by their (log𝑝)𝑂 (logΔ 𝑝)-approximations, we get a
3 · (log𝑝)𝑂 (logΔ 𝑝)-approximation of ED(𝑃,𝑇 [𝑖 . . 𝑖 +𝑚)). □
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6 Faster Sublinear Algorithm

The goal of this chaper is to prove our Main Theorem 4.3.

Organization The outline is as follows: In Section 6.1 we introduce the crucial notion
of breaks and their usage as a proxy for the block periodicity. In Section 6.2 we give our
main algorithm, in which we leverage the result from the previous chapter (Lemma 5.1).
Finally, we put things together in Section 6.3 where we prove our main result and its
corollaries.

6.1 Breaks and their Usage

We start by formally defining breaks.

Definition 6.1 (Break). Let 𝑋 be a string of length 𝑛 and let 𝑘 ≥ 2 be an integer. A
position 𝑖 ∈ [0 . . 𝑛−3𝑘] is a 𝑘-break in𝑋 if 𝑖 is a multiple of 𝑘 and per(𝑋 [𝑖 . . 𝑖 +3𝑘)) > 𝑘 ,
that is, 𝑋 [𝑖 . . 𝑖 + 3𝑘) is not 𝑘-periodic.

The importance of breaks is that their number is a good approximation of the block
periodicity of a string, as captured by the following lemma.

Lemma 6.2. Let 𝑏 be the number of 𝑘-breaks in 𝑋 . Then, 1
3𝑏 ≤ BP𝑘 (𝑋 ) ≤ 𝑏 + 3.

Proof. We first argue that BP𝑘 (𝑋 ) ≤ 𝑏 + 3. For this, we partition 𝑋 into (at most) 𝑏 + 3
pieces, splitting 𝑋 at position 𝑖 + 2𝑘 for every break 𝑖 , as well as at positions 𝑘 and
𝑛 − 𝑘 . It suffices to prove that each of the resulting pieces has period at most 𝑘 . This
property is trivially satisfied for pieces contained within 𝑋 [0 . . 𝑘) and 𝑋 [𝑛 − 𝑘 . . 𝑛)
(their length does not exceed 𝑘). So, consider a piece 𝑋 [𝑝 . . 𝑞) with 𝑘 ≤ 𝑝 < 𝑞 ≤ 𝑛 − 𝑘
and let 𝑟 ∈ [𝑝 . . 𝑞] be the largest position such that per(𝑋 [𝑝 . . 𝑟 )) ≤ 𝑘 . For a proof by
contradiction, suppose that 𝑟 < 𝑞. Consider an integer 𝑖 ∈ (𝑟 − 3𝑘 . . 𝑟 − 2𝑘] that is a
multiple of 𝑘 . Observe that 𝑟 ≥ 𝑝 + 𝑘 ≥ 2𝑘 implies 𝑖 ≥ 0 and 𝑟 < 𝑞 ≤ 𝑛 − 𝑘 implies
𝑖 ≤ 𝑛 − 3𝑘 . Moreover, there is no piece starting at position 𝑖 + 2𝑘 ∈ (𝑟 −𝑘 . . 𝑟 ] ⊆ (𝑝 . . 𝑟 ],
and thus 𝑖 is not a break. This means that per(𝑋 [𝑖 . . 𝑖 + 3𝑘)) ≤ 𝑘 . If 𝑖 ≤ 𝑝 , then
per(𝑋 [𝑝 . . 𝑖 + 3𝑘]) ≤ per(𝑋 [𝑖 . . 𝑖 + 3𝑘)) ≤ 𝑘 , contradicting the choice of 𝑟 < 𝑖 + 3𝑘 .
Otherwise, the intersection 𝑋 [𝑖 . . 𝑟 ) of 𝑋 [𝑖 . . 𝑖 + 3𝑘) and 𝑋 [𝑝 . . 𝑟 ) contains at least 2𝑘
characters. By the periodicity lemma [FW65], since both fragments have periods at
most 𝑘 , their union 𝑋 [𝑝 . . 𝑖 + 3𝑘) also has period at most 𝑘 , contradicting the choice of
𝑟 .
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6 Faster Sublinear Algorithm

Next, we argue that 𝑏 ≤ 3 BP𝑘 (𝑋 ). Let 𝐿 := BP𝑘 (𝑋 ). By definition, we can write 𝑋 as
𝑋 = 𝑋1𝑋2 · · ·𝑋𝐿 , where each 𝑋𝑖 is 𝑘-periodic. Observe that every substring inside some
𝑋𝑖 is 𝑘-periodic, so no break can be contained inside any 𝑋𝑖 . In particular, every break
contains the starting position of at least some 𝑋𝑖 . Moreover, the starting position of any
𝑋𝑖 is contained in at most three breaks (since breaks overlap). Therefore, the number of
breaks is bounded by 3𝐿. □

At the heart of our algorithm is the following splitting algorithm. The idea is to
use breaks in order to split an instance into independent subproblems, where each
subproblem has smaller block periodicity.

Lemma 6.3 (Splitting). There is an algorithm Split(𝑋,𝑌, 𝑘, 𝐾, 𝛿) that, given as input
two length-𝑛 strings 𝑋,𝑌 , two thresholds 1 ≤ 𝑘 ≤ 𝐾 , and a parameter 𝛿 ∈ (0, 1], returns
partitions 𝑋 = 𝑋1 · · ·𝑋𝑠 and 𝑌 = 𝑌1 · · ·𝑌𝑠 such that:

1. With probability at least 1−𝛿 , the inequality BP𝑘 (𝑋𝑖) ≤ 4𝐾 is satisfied for all 𝑖 ∈ [1 . . 𝑠].

2. If ED(𝑋,𝑌 ) ≤ 𝑘 , then
∑𝑠
𝑖=1 ED(𝑋𝑖, 𝑌𝑖) = ED(𝑋,𝑌 ) holds with probability at least

1 − 3𝑘
𝐾

log 𝑛
𝛿
.

The algorithm runs in expected time 𝑂
(
𝑛
𝐾

log 𝑛
𝛿

)
.

Proof. We sample indices 𝑖 ∈ [0 . . 𝑛 − 3𝑘] which are multiples of 𝑘 uniformly at random
with rate 1

𝐾
log 𝑛

𝛿
. We identify all 𝑘-breaks in 𝑋 among the sampled indices. For each

𝑘-break 𝑖 , we try to find a position 𝑗 ∈ [𝑖 − ⌊𝑘/2⌋ . . 𝑖 + ⌊𝑘/2⌋] such that 𝑋 [𝑖 . . 𝑖 + 3𝑘) =
𝑌 [ 𝑗 . . 𝑗 + 3𝑘). Since 𝑖 is a break, there is at most one such position 𝑗 . If there are none,
we set 𝑗 := 𝑖 . In either case, we split 𝑋 and 𝑌 at positions 𝑖 and 𝑗 , respectively. See
Algorithm 11 for the pseudocode.

Let us first analyze the running time. For each index 𝑖 , computing per(𝑋 [𝑖 . . 𝑖 + 3𝑘))
and finding the occurrences of 𝑋 [𝑖 . . 𝑖 + 3𝑘) within 𝑌 [𝑖 − ⌊𝑘/2⌋ . . 𝑖 + 3𝑘 + ⌊𝑘/2⌋) takes
𝑂 (𝑘) time since period finding and pattern matching are in linear time [KJP77]. In
expectation, the number of sampled indices 𝑖 ∈ [0 . . 𝑛 − 3𝑘] that are multiples of 𝑘 is
𝑂 (𝑛

𝑘
· 1
𝐾

log 𝑛
𝛿
). Therefore, the algorithm runs in 𝑂 ( 𝑛

𝐾
log 𝑛

𝛿
) expected time, as desired.

Next, let us analyze the correctness. For property (1), note that it suffices to show that
we sample at least one 𝑘-break out of every 𝐾 consecutive 𝑘-breaks. Indeed, if this claim
holds, then, by Lemma 6.2, we obtain that every phrase𝑋𝑖 satisfies BP𝑘 (𝑋𝑖) ≤ 𝐾+3 ≤ 4𝐾 .
We proceed to bound the probability of this event. Fix 𝐾 consecutive breaks. The
probability that we do not sample any of them is(

1 − log(𝑛/𝛿)
𝐾

)𝐾
≤ exp(− log(𝑛/𝛿)) = 𝛿

𝑛
.

By a union bound over the at most 𝑛 choices of 𝐾 consecutive 𝑘-breaks, we get property
(1).

For property (2), suppose that ED(𝑋,𝑌 ) ≤ 𝑘 and fix an optimal alignment. Then,
the optimal alignment performs at least one edit in at most 3𝑘 fragments 𝑋 [𝑖 . . 𝑖 + 3𝑘)
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Algorithm 11
1 procedure Split(𝑋,𝑌, 𝑘, 𝐾, 𝛿)
2 Sample a set 𝑆 ⊆ [0 . . 𝑛 − 3𝑘] of multiples of 𝑘

including each element independently with probability 1
𝐾

log 𝑛
𝛿

3 Let 𝑖1 < 𝑖2 < · · · < 𝑖𝑠−1 be the 𝑘-breaks in 𝑆
4 for ℓ ∈ [1 . . 𝑠) do
5 if there exists 𝑧 ∈ [𝑖ℓ − ⌊𝑘/2⌋ . . 𝑖ℓ + ⌊𝑘/2⌋]

such that 𝑋 [𝑖ℓ . . 𝑖ℓ + 3𝑘) = 𝑌 [𝑧 . . 𝑧 + 3𝑘) then
6 𝑗ℓ := 𝑧
7 else

8 𝑗ℓ := 𝑖ℓ
9 Set 𝑖0 := 𝑗0 := 0 and 𝑖𝑠 := |𝑋 |, 𝑗𝑠 := |𝑌 |
10 Set 𝑋ℓ := 𝑋 [𝑖ℓ−1 . . 𝑖ℓ), 𝑌ℓ := [ 𝑗ℓ−1 . . 𝑗ℓ) for ℓ ∈ [1 . . 𝑠]
11 return 𝑋1, 𝑌1, . . . , 𝑋𝑠, 𝑌𝑠

where 𝑖 ∈ [0 . . 𝑛 − 3𝑘) is a multiple of 𝑘 . Thus, the probability that we do not sample
any such index 𝑖 is at least(

1 − log(𝑛/𝛿)
𝐾

)3𝑘
≥ 1 − 3𝑘

𝐾
log 𝑛

𝛿
.

Condition on this event. This means that the fixed optimal alignment matches the
sampled breaks perfectly to fragments of 𝑌 . Moreover, since they are breaks, they have
a unique perfect match in 𝑌 . This implies the claim. □

6.2 Algorithm

We are now ready to present our algorithm. Since this is the most technically involved
part of our work, we start with an informal overview to convey some intuition.

Algorithm Overview The high-level idea of the algorithm is as follows: If the block
periodicity of 𝑋 is bounded, say BP𝑘 (𝑋 ) ≤ 𝐾 , then we can solve the GapED(𝑘, 𝐾)
problem directly using Lemma 5.1. Otherwise, we apply Lemma 6.3 to split the strings
into pieces 𝑋1, 𝑌1, . . . , 𝑋𝑠, 𝑌𝑠 so that ED(𝑋,𝑌 ) = ∑

𝑖 ED(𝑋𝑖, 𝑌𝑖). It remains to distinguish
whether ED(𝑋,𝑌 ) =

∑
𝑖 ED(𝑋𝑖, 𝑌𝑖) < 𝑘 , or ED(𝑋,𝑌 ) =

∑
𝑖 ED(𝑋𝑖, 𝑌𝑖) > 𝐾 . Split

guarantees that, with good probability, the block periodicity of each piece is bounded.
Hence, we naturally want to recurse on some of these pieces. However, we cannot
afford to naively recurse on all them since their total size is too large, and we are aiming
for sublinear time. This is exactly the task where we can apply the precision sampling
technique, which enables us to recurse in a few subproblems of total length ≈ 𝑛/𝐾 . To
obtain our desired running time, we additionally need that the recursive calls run in
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6 Faster Sublinear Algorithm

time proportional to their edit distance ED(𝑋𝑖, 𝑌𝑖), so that we can distribute our time
budget among them.
To implement the ideas above, we need to overcome some obstacles. Importantly,

observe that Split (see Lemma 6.3) guarantees that
∑
𝑖 ED(𝑋𝑖, 𝑌𝑖) = ED(𝑋,𝑌 ) holds

with good probability only in the case when ED(𝑋,𝑌 ) ≤ 𝑘 . If ED(𝑋,𝑌 ) > 𝑘 or Split
fails, then all we know is that the split satisfies

∑
𝑖 ED(𝑋𝑖, 𝑌𝑖) ≥ ED(𝑋,𝑌 ) due to subad-

ditivity of edit distance. Moreover, note that a priori there is no way to know whether∑
𝑖 ED(𝑋𝑖, 𝑌𝑖) = ED(𝑋,𝑌 ) holds. With this in mind, we design two routines AlgMain

andAlgBoosted, see Algorithm 12 for the pseudocode. These routines receive as inputs
strings𝑋,𝑌 , thresholds 𝑘 < 𝐾 and a parameter 𝑝 with the promise that BP𝑝 (𝑋 ) ≤ 𝐾/𝑘 ·𝑝
(additionally, AlgBoosted receives a parameter 𝛿 that determines its failure probability).
Intuitively, AlgMain solves the GapED(𝑘, 𝐾) problem and runs in the desired running
time1 𝑂 (𝑛/𝐾 + 𝑘𝐾) if we have the promise that ED(𝑋,𝑌 ) ≤ 𝑘 (i.e. in the Close case).
AlgBoosted solves the GapED(𝑘, 𝐾) problem with high probability and runs in time
𝑂 (𝑛/𝐾 + min(𝑘, ED(𝑋,𝑌 )) · 𝐾). Crucially, one of the terms in the running time of
AlgBoosted is proportional to ED(𝑋,𝑌 ) (this allows us to distribute the time budget
among subproblems) and unlike AlgMain, it does not assume that ED(𝑋,𝑌 ) ≤ 𝑘 .
AlgMain carries out the ideas described above—namely, if the block periodicity

is bounded then we solve the problem directly using Lemma 5.1 in Line 13 (after
handling some trivial base cases in Lines 8 to 11). Otherwise, we call Split in Line 15
and perform precision sampling in Lines 16 to 21. In order to distribute the time
budget among the sampled subproblems, we make calls to AlgBoosted in Line 18.
AlgBoosted in turn solves the GapED(𝑘, 𝐾) by calling to AlgMain. In order to run
in time 𝑂 (𝑛/𝐾 +min(𝑘, ED(𝑋,𝑌 ))𝐾), we use exponential search in Lines 2 to 4. Since
AlgMain only satisfies its running time guarantee when we are in the Close case, each
call in Line 4 needs to be stopped and interrupted if it exceeds this time budget. Note
that each time that AlgMain calls AlgBoosted, the block periodicity is reduced so the
recursion eventually stops.

Running Time and Correctness Analysis Formally, we prove the following lemma:

Lemma 6.4. There is an algorithm that given strings𝑋,𝑌 of total length 𝑛, and parameters
𝑘, 𝐾, 𝑝 and Δ ∈ Z+ such that: (i) 𝑝 ≤ 𝑛, (ii) BP𝑝 (𝑋 ) ≤ 𝐾

𝑘
𝑝 , (iii) (256 log𝐾)2 ≤ Δ ≤ 𝑛, and

(iv) 𝐾/𝑘 > (log𝑛)𝑐 logΔ (𝑛) for a sufficiently large constant 𝑐 > 0, solves the GapED(𝑘, 𝐾)
problem with probability at least 2/3. The algorithm runs in time( 𝑛

𝐾
Δ +min(𝐸, 𝑘) · 𝐾Δ3

)
· (log𝑛)𝑂 (logΔ (𝑛)),

where 𝐸 := ED(𝑋,𝑌 ).

1. For this informal overview, we use the notation 𝑂 (·) to ignore subpolynomial factors 𝑛𝑜 (1) for the
purpose of readability, the actual proof does not hide these factors.
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Algorithm 12
1 procedure AlgBoosted(𝑋,𝑌, 𝑘, 𝐾, 𝑝, 𝛿)
2 for �̃� = 0, 1, 2, 4, . . . , 𝑘 do

3 repeat Θ(log(log(𝑘)/𝛿)) times

4 Run AlgMain(𝑋,𝑌, �̃�, 𝐾, 𝑝) and store the outcome. If it
does not finish within time budget
𝑂

((
𝑛
𝐾
Δ + �̃�𝐾 · Δ3

)
· (log𝑛)𝛼 ·logΔ (𝑛) · (log𝑛)14 logΔ (𝑝)

)
interrupt the execution and store Far

5 if the majority of the outcomes is Close then return Close
6 return Far
7 procedure AlgMain(𝑋,𝑌, 𝑘, 𝐾, 𝑝)
8 if 𝐾 > |𝑋 | + |𝑌 | then
9 return Close
10 if 𝑘 = 0 then

11 return output of Equality Test (Lemma 5.9) for𝑋,𝑌 with 𝑟 := 1/𝐾, 𝛿 := 0.001

12 if 𝑝 ≤ 𝑘Δ then

13 return AlgSmallBP(𝑋,𝑌, 𝑘, 𝐾, 𝑘Δ, 𝐾Δ) (Lemma 5.1)
14 else

15 Let 𝑋1, 𝑌1, . . . , 𝑋𝑠, 𝑌𝑠 be the output of Split(𝑋,𝑌, 𝑘, 𝐾, 0.01)
16 for 𝑑 = 1, 2, 4, . . . , 𝐾 do

17 Sample a set 𝑆 ⊆ [1 . . 𝑠] including each element
independently with probability 108𝑑 log𝐾 log(1/𝛿)

𝐾
, where 𝛿 :=

0.01/log𝐾
18 Run AlgBoosted(𝑋𝑖, 𝑌𝑖, 𝑑 𝑘𝐾 64 log𝐾,𝑑, 16𝑘 log𝐾, 0.01/𝑛2) for all 𝑖 ∈ 𝑆
19 if at least 12 log(1/𝛿) of the answers are Far then

20 return Far
21 return Close

Proof. We prove the lemma using mutual induction over both AlgBoosted and Al-
gMain. Formally, we have the following inductive hypothesis.

Inductive Hypothesis Let 𝑋,𝑌 be strings of total length 𝑛, and let 𝑘, 𝐾, 𝑝,Δ ∈ Z+ be
parameters such that: (i) 𝑝 ≤ 𝑛, (ii) BP𝑝 (𝑋 ) ≤ 𝐾

𝑘
𝑝 , (iii) (256 log𝐾)2 ≤ Δ, and (iv) and

𝐾/𝑘 ≥ (log𝑛)𝛽 logΔ (𝑛)+14 logΔ (𝑝) , where 𝛽 > 0 is the same constant as in Lemma 5.1. Then,
the following holds:

(i) Let 𝐸 := ED(𝑋,𝑌 ). AlgBoosted(𝑋,𝑌, 𝑘, 𝐾, 𝑝, 𝛿) solves the GapED(𝑘, 𝐾) problem
with probability at least 1 − 𝛿 and runs in time

𝑂

(( 𝑛
𝐾
Δ +min(𝐸, 𝑘)𝐾 · Δ3

)
(log𝑛)𝛼 ·logΔ (𝑛) · (log𝑛)14 logΔ (𝑝) · log(log(𝑘)/𝛿) log𝑘

)
.
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6 Faster Sublinear Algorithm

(ii) With probability at least 0.9, AlgMain(𝑋,𝑌, 𝑘, 𝐾, 𝑝) solves theGapED(𝑘, 𝐾) prob-
lem. Moreover, if ED(𝑋,𝑌 ) ≤ 𝑘 , then, with probability at least 0.9, it runs in time

𝑂

(( 𝑛
𝐾
Δ + 𝑘𝐾 · Δ3

)
· (log𝑛)𝛼 ·logΔ (𝑛) · (log𝑛)14 logΔ (𝑝)

)
.

For both running times above, 𝛼 > 0 is the constant in the running time of Lemma 5.1.

Base Case Let 𝑋,𝑌 be strings of total length 𝑛 and let 𝑘, 𝐾, 𝑝 be integers satisfying
the conditions of the inductive hypothesis. For the base case, we prove statement (ii)
when 𝑛 < 4, 𝐾 > 𝑛, 𝑘 = 0 or 𝑝 ≤ 𝑘Δ. If 𝑛 < 4, then we can solve the problem directly
trivially in time 𝑂 (1) (we omit this trivial case from the pseudocode for brevity). If
𝐾 > 𝑛, then we can return Close since ED(𝑋,𝑌 ) ≤ 𝑛. If 𝑘 = 0, then the task is to
distinguish whether 𝑋 = 𝑌 or ED(𝑋,𝑌 ) > 𝐾 . Since HD(𝑋,𝑌 ) ≥ ED(𝑋,𝑌 ), the Equality
Test (see Lemma 5.9) correctly solves the problem in Line 11 in time 𝑂 (𝑛/𝐾); this
is correct with probability 0.99. Otherwise, since 𝑝 ≤ 𝑘Δ, the subproblem is solved
directly in Line 13. By assumption, we know that BP𝑝 (𝑋 ) ≤ 𝐾/𝑘 · 𝑝 ≤ 𝐾Δ and that
𝐾/𝑘 ≥ (log𝑛)𝛽 logΔ (𝑛)+14 logΔ (𝑝) . This means that the call to AlgSmallBP is valid. Hence,
by Lemma 5.1, the base case is solved with probability 0.9 in overall time

𝑂

(
(𝑛/𝐾Δ + 𝑘𝐾Δ3) (log𝑛)𝛼 ·logΔ (𝑛)

)
,

which satisfies (ii).

Inductive Step for AlgBoosted Let 𝑋,𝑌 be strings of total length 𝑛 and let 𝑘, 𝐾, 𝑝
be integers satisfying the conditions of the inductive hypothesis. Suppose that (ii) holds
for any parameters 𝑛′ ≤ 𝑛, 𝑘′ ≤ 𝑘, 𝐾′ ≤ 𝐾, 𝑝′ ≤ 𝑝 (which satisfy the conditions of the
inductive hypothesis). We will prove that (i) holds for 𝑋,𝑌, 𝑘, 𝐾, 𝑝 .
Consider the execution of AlgBoosted(𝑋,𝑌, 𝑘, 𝐾, 𝑝, 𝛿). The calls that it makes in

Line 4 to AlgMain satisfy (ii) as we just argued. We start by showing correctness.
First, suppose that 𝐸 := ED(𝑋,𝑌 ) ≤ 𝑘 . Consider any iteration of the loop in Line 2
with parameter �̃� ≤ 𝐸. Since 𝐸 ≤ 𝑘 , returning Close is correct, so if the majority of
outcomes is Close then we correctly return Close. If none of these iterations return
Close, consider the iteration when �̃�/2 < 𝐸 ≤ �̃� . At this iteration, by (ii), each call
to AlgMain correctly returns Close and runs in the time budget with probability at
least 0.8. Since we take the majority outcome out of Θ(log(log(𝑘)/𝛿)) repetitions, by
Chernoff’s bound, we conclude that for this iteration we return Close in Line 5 with
probability at least 1 − 𝛿/log𝑘 ≥ 1 − 𝛿 .

Now, consider the case when 𝐸 > 𝐾 . Fix some iteration of the loop in Line 2. By (ii),
for each call to AlgMain in Line 4, we correctly store Far with probability at least 0.9
(regardless of whether we interrupt the algorithm or not). Thus, by Chernoff’s bound,
we do not return Close in Line 5 with probability at least 1−𝛿/log𝑘 . By a union bound,
we conclude that we do not return Close in any of 𝑂 (log𝑘) iterations of the loop in
Line 2 with probability at least 1 − 𝛿 .
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Now, we argue about the running time. As shown above, if 𝐸 ≤ 𝑘 , then with
probability at least 1 − 𝛿 we return Close in the iteration when �̃�/2 < 𝐸 ≤ �̃� . If 𝐸 > 𝐾 ,
then we execute all the log𝑘 iterations of the loop in Line 2. Thus, the overall running
time is bounded by

𝑂

(( 𝑛
𝐾
Δ +min(𝐸, 𝑘)𝐾 · Δ3

)
· (log𝑛)𝛼 ·logΔ (𝑛) · (log𝑛)14 logΔ (𝑝) log(log(𝑘)/𝛿) · log𝑘

)
.

Inductive Step for AlgMain Consider strings 𝑋,𝑌 of total length 𝑛 and let 𝑘, 𝐾, 𝑝
be integers satisfying the conditions of the inductive hypothesis. Suppose that (i) holds
for any parameters 𝑛′ ≤ 𝑛, 𝑘′ ≤ 𝑘, 𝐾′ ≤ 𝐾 and 𝑝′ < 𝑝 (note that here 𝑝′ is strictly less
than 𝑝). We proceed to prove statement (ii) for 𝑋,𝑌, 𝑘, 𝐾, 𝑝 .

The cases of 𝑛 < 4, 𝐾 > 𝑛, 𝑘 = 0 or 𝑝 ≤ 𝑘Δ were handled by the base case, so assume
that 𝑛 ≥ 4, 𝐾 ≤ 𝑛, 𝑘 ≥ 1 and 𝑝 > 𝑘Δ. Therefore, the algorithm continues in Lines 15
to 21 and makes recursive calls to AlgBoosted.
First, we analyze the running time. For this, we can assume that 𝐸 = ED(𝑋,𝑌 ) ≤ 𝑘 .

The call to Split in Line 15 runs in expected time 𝑂 ( 𝑛
𝐾

log𝑛). By Lemma 6.3, with
probability at least 1− 3𝑘

𝐾
log(𝑛/0.01), its output𝑋1, 𝑌1, . . . , 𝑋𝑠, 𝑌𝑠 satisfies

∑
𝑖 ED(𝑋𝑖, 𝑌𝑖) =

𝐸, and BP𝑘 (𝑋𝑖) ≤ 4𝐾 for every 𝑖 ∈ [1 . . 𝑠] with probability 0.99. By assumption, we have
that 𝐾/𝑘 ≥ (log𝑛)𝛽 logΔ (𝑛)+14 logΔ (𝑝) where 𝛽 > 0 is a sufficiently large constant. Thus, by
a union bound, can bound the overall success probability by 1 − 3(𝑘/𝐾) log(𝑛/0.01) −
0.01 ≥ 0.98. From now on, we condition on this event. Let 𝐸𝑖 := ED(𝑋𝑖, 𝑌𝑖) and
𝑛𝑖 := |𝑋𝑖 | + |𝑌𝑖 |.

▷ Claim 6.5. Every call to AlgBoosted(𝑋𝑖, 𝑌𝑖, 𝑘′, 𝐾′, 𝑝′, 𝛿′) in Line 18 satisfies:

(1) 𝑝′ ≤ 𝑝/Δ1/2 and 𝑝′ ≤ 𝑛′ where 𝑛′ = |𝑋𝑖 | + |𝑌𝑖 |,

(2) BP𝑝′ (𝑋𝑖) ≤ (𝐾′/𝑘′) · 𝑝′,

(3) 𝐾′/𝑘′ ≥ (log𝑛𝑖)𝛽 logΔ (𝑛𝑖 )+14 logΔ (𝑝′) ,

(4) Δ > (256 log𝐾′)2.

Proof . Observe that, in Line 18, the algorithm sets 𝑝′ = 256𝑘 log𝐾 and
𝐾′

𝑘′
=

𝑑

𝑑 (𝑘/𝐾)64 log𝐾 =
𝐾

64𝑘 log𝐾 .

To show (2), note that since for each 𝑋𝑖 it holds that BP𝑘 (𝑋𝑖) ≤ 4𝐾 , it follows that
BP𝑝′ (𝑋𝑖) ≤ 4𝐾 = (𝐾′/𝑘′) · 𝑝′. Since 𝑝 > 𝑘Δ and Δ > (256 log𝐾)2, we obtain
that 𝑝′ < 𝑝/Δ1/2. For the corner case when 256𝑘 log𝐾 > 𝑛′, note that setting 𝑝′ =
min(𝑛′, 256𝑘 log𝐾) we still have that 𝑝′ < 𝑝/Δ1/2, and (2) remains valid too (we omitted
this case from the pseudocode for readability). Therefore, we obtain (1).
To obtain (3), we use the assumption that 𝐾/𝑘 ≥ (log𝑛)𝛽 logΔ (𝑛)+14 logΔ (𝑝) and that

𝐾 ≤ 𝑛 (since the case 𝐾 > 𝑛 was handled by the base case), yielding

𝐾′/𝑘′ = 𝐾/(64𝑘 log𝐾) ≥ (log𝑛)𝛽 logΔ (𝑛)+14 logΔ (𝑝)−1/64.
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We continue bounding this expression. By (1), we have that logΔ(𝑝) ≥ logΔ(𝑝′Δ1/2) =
logΔ(𝑝′) + 1/2. Hence, using that 64 ≤ (log𝑛)6 (the case 𝑛 < 4 was handled by the base
case) and 𝑛𝑖 = |𝑋𝑖 | + |𝑌𝑖 | ≤ 𝑛, we obtain that 𝐾′/𝑘′ ≥ (log𝑛𝑖)𝛽 logΔ (𝑛𝑖 )+14 logΔ (𝑝′) .
Finally, (4) follows since 𝐾′ ≤ 𝐾 and by assumption Δ > (256 log𝐾)2. ◁

To bound the expected running time of Lines 16 to 21, observe that, for a fixed value
of 𝑑 , the probability that a subproblem 𝑋𝑖, 𝑌𝑖 is called in Line 18 is 108𝑑

𝐾
log𝐾 log(1/𝛿),

where 𝛿 = 0.01/log𝐾 . Let 𝐸𝑖 := ED(𝑋𝑖, 𝑌𝑖) and 𝑛𝑖 := |𝑋𝑖 | + |𝑌𝑖 |. Claim 6.5 implies that
we can use the inductive hypothesis (i) to bound the running time for each call to
AlgBoosted. Hence, the expected running time of one iteration of the loop in Line 16
can be bounded as

𝑂

(
𝑠∑︁
𝑖=1

𝑑

𝐾

(𝑛𝑖
𝑑
Δ + 𝐸𝑖𝑑Δ3

)
(log𝑛𝑖)𝛼 logΔ (𝑛𝑖 ) (log𝑛𝑖)14 logΔ (𝑝′) log2 𝑛 log𝐾 log(1/𝛿)

)
.

Here, we bounded the factors log(log(𝑘′)/𝛿′) log(𝑘′) ≤ 𝑂 (log2 𝑛) in the running time
of AlgBoosted given by (i), since the parameter 𝛿′ in the call to AlgBoosted is set to
𝛿′ = 0.01/𝑛2, and 𝑘′ ≤ 𝐾 ≤ 𝑛.

By Claim 6.5 we have 𝑝′ ≤ 𝑝/Δ1/2, and therefore 14 logΔ(𝑝′) ≤ 14 logΔ(𝑝) − 5. Since
𝑛𝑖 ≤ 𝑛, 𝐾 ≤ 𝑛, and 1/𝛿 ≤ 𝑛2, we can bound

(log𝑛𝑖)14 logΔ (𝑝′) log2 𝑛 log𝐾 log(1/𝛿) ≤ 𝑂 ((log𝑛)14 logΔ (𝑝)−1).

By the guarantees of split, we know that
∑
𝑖 𝑛𝑖 = 𝑛 and

∑
𝑖 𝐸𝑖 = 𝐸. Thus, combining the

above, we can bound the expected running time of one iteration of the loop in Line 16
as

𝑂

(( 𝑛
𝐾
Δ + 𝐸𝐾Δ3

)
(log𝑛)𝛼 logΔ (𝑛) (log𝑛)14 logΔ (𝑝)−1

)
,

where we bounded 𝐸𝑑2/𝐾 ≤ 𝐸𝐾 using that 𝑑 ≤ 𝐾 . The overall expected running
time across the 𝑂 (log𝐾) iterations of the for loop in Line 16 adds another 𝑂 (log𝐾) ≤
𝑂 (log𝑛) factor. Hence, we obtain expected time

𝑂

(( 𝑛
𝐾
Δ + 𝐸𝐾Δ3

)
(log𝑛)𝛼 logΔ (𝑛) (log𝑛)14 logΔ (𝑝)

)
.

Finally, by Markov’s inequality, the algorithm does not exceed 20 times this time bound
with probability at least 0.95. Together with the initial conditioning on the success of
Split, we obtain total success probability at least 0.9. This completes the proof of the
running time for (ii).

Now we argue about the correctness of Lines 16 to 21. Due to Claim 6.5, we can
use the inductive hypothesis on the calls to AlgBoosted in Line 18. Thus, each call is
correct with probability at least 1 − 0.01/𝑛2 ≥ 1 − 0.01/(𝑠 log𝐾) and hence, all the calls
are correct with probability at least 0.99. The correctness of the algorithm follows from
the following claim:
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▷ Claim 6.6. Consider an execution of Lines 16 to 20. Suppose all recursive calls are
correct. Let 𝐸𝑖 := ED(𝑋𝑖, 𝑌𝑖) for 𝑖 ∈ [1 . . 𝑠]. Let E be the event that, if

∑
𝑖 𝐸𝑖 > 𝐾 , then

we return Far and, if
∑
𝑖 𝐸𝑖 ≤ 𝑘 , then we return Close. Then, P(E) ≥ 0.99.

Before proving the claim, let us see how to derive correctness from it. As argued in the
running time analysis, if ED(𝑋,𝑌 ) ≤ 𝑘 then with probability at least 0.99 the call to Split
succeeds, and we obtain

∑
𝑖 𝐸𝑖 = ED(𝑋,𝑌 ) ≤ 𝑘 (see Lemma 6.3). Then, by Claim 6.6

we return Close. To bound the error probability, we take a union bound over all the
𝑂 (𝑠 log𝐾) calls toAlgBoosted, the call to Split, and Claim 6.6. All calls toAlgBoosted
succeed with probability at least 0.99, the call to Split succeeds with probability 0.99,
and Claim 6.6 succeeds with probability 0.99. Thus, the overall success probability is at
least 0.95. On the other hand, if ED(𝑋,𝑌 ) > 𝐾 , then by the subadditivity of edit distance,
the partition returned by Split satisfies

∑
𝑖 𝐸𝑖 ≥ ED(𝑋,𝑌 ) > 𝐾 (deterministically). Thus,

assuming that the calls to AlgBoosted are correct, Claim 6.6 guarantees that we return
Far. Similarly as before, the success probability is at least 0.95. It remains to prove the
claim.

Proof of Claim 6.6. First, consider the case where
∑
𝑖 𝐸𝑖 > 𝐾 . For ℓ ≥ 0, define

𝐿ℓ := { 𝑗 | 2ℓ ≤ min(𝐸 𝑗 , 𝐾 + 1) < 2ℓ+1 }.

Thus, note that there are at most 𝑇 := ⌊log(𝐾 + 1)⌋ + 1 non-empty sets 𝐿ℓ . The key
observation is that since

∑
𝐸𝑖 > 𝐾 , there exists a level ℓ∗ such that |𝐿ℓ∗ | ≥ 𝐾/(2ℓ

∗+1𝑇 ).
Indeed, note that otherwise we obtain

𝐾 ≤
𝑠∑︁
𝑗=1

min(𝐸 𝑗 , 𝐾 + 1) ≤
⌊log(𝐾+1)⌋∑︁

ℓ=0
2ℓ+1 |𝐿ℓ | <

⌊log(𝐾+1)⌋∑︁
ℓ=0

2ℓ+1 𝐾

2ℓ+1𝑇 = 𝐾 ;

a contradiction.
Fix such a level ℓ∗ and focus on the iteration of the loop in Line 16 when 𝑑 = 2ℓ∗ . For

each 𝑖 ∈ 𝐿ℓ∗ , let 𝐼𝑖 be the indicator random variable which equals 1 if 𝑖 is included in the
sample 𝑆 . Let 𝐼 :=

∑
𝑖∈𝐿ℓ∗ 𝐼𝑖 . Since we sample 𝑆 with rate 108𝑑

𝐾
log𝐾 log(1/𝛿), it follows

that

E(𝐼 ) = |𝐿ℓ∗ | ·
108𝑑
𝐾

log𝐾 log(1/𝛿) ≥ 𝐾

2𝑑𝑇 ·
108𝑑
𝐾

log𝐾 log(1/𝛿) = 54
𝑇

log𝐾 log(1/𝛿).

Since 𝑇 = ⌊log(𝐾 + 1)⌋ + 1 ≤ log(𝐾) + 2 ≤ 3 log𝐾 , we obtain that E(𝐼 ) ≥ 18 log(1/𝛿).
Note that the algorithm correctly returns Far if 𝐼 ≥ 12 log(1/𝛿) (see Line 19). By a
Chernoff bound, we bound the error probability by

P(𝐼 < 12 log(1/𝛿)) = P(𝐼 < (1 − 1/3) E(𝐼 )) ≤ exp(−18 log(1/𝛿)/(2 · 9)) = 𝛿.

Now, consider the case when
∑
𝑖 𝐸𝑖 ≤ 𝑘 . Let 𝑔 := 𝐾/(64 · 𝑘 log𝐾) be the gap which

the recursive call to AlgBoosted distinguishes. Define �̃�ℓ := { 𝑗 | 𝐸 𝑗 ≥ 2ℓ/𝑔 }. Note
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that for all ℓ , it holds that |�̃�ℓ | ≤ 𝐾/(64 · 2ℓ log𝐾). Indeed, if there was some ℓ with
|�̃�ℓ | > 𝐾/(64 · 2ℓ log𝐾) then

𝑘 ≥
𝑠∑︁
𝑖=1

𝐸𝑖 ≥ |�̃�ℓ |
2ℓ
𝑔

>
𝐾

64𝑔 log𝐾 = 𝑘 ;

a contradiction. Focus on iteration 𝑑 = 2ℓ of the for-loop in Line 16. For every 𝑖 ∈ �̃�ℓ ,
define the indicator random variable 𝐼𝑖 which equals one if 𝑖 ∈ 𝑆 . Let 𝐼 :=

∑
𝑖∈�̃�ℓ 𝐼𝑖 . Since

we sample 𝑆 with rate 108𝑑
𝐾

log𝐾 log(1/𝛿), it follows that

E(𝐼 ) = |�̃�ℓ | ·
108𝑑
𝐾

log𝐾 log(1/𝛿) ≤ 𝐾

64𝑑 log𝐾 ·
108𝑑
𝐾

log𝐾 log(1/𝛿) ≤ 1.7 log(1/𝛿) .

Note that the set �̃�ℓ contains all subproblems 𝐸𝑖 for which AlgBoosted may return Far.
Thus, the algorithm correctly returns Close if for every iteration 𝐼 < 12 log(1/𝛿) (see
Line 19). By a Chernoff bound we can bound this error probability as

P(𝐼 ≥ 12 log(1/𝛿)) ≤ P(𝐼 ≥ 7E(𝐼 )) ≤ 2−7E(𝐼 ) ≤ exp(− log(1/𝛿)) = 𝛿.

The claim follows by taking a union bound over the log𝐾 iterations and recalling our
choice of 𝛿 = 0.01/log𝐾 . ◁

Finally, note that the lemma statement follows by the inductive hypothesis (i), that is,
by calling AlgBoosted with error probability 𝛿 := 1/3. □

6.3 Main Theorem

We now put things together to prove Main Theorem 4.3 and its corollaries.

Main Theorem 4.3. Let 2 ≤ Δ ≤ 𝑛 be a parameter. Then, there is a randomized algorithm
that solves the (𝑘, 𝐾)-gap edit distance problem in time𝑂 (𝑛/𝐾+𝑘𝐾)·Δ3·(log𝑛)𝑂 (logΔ 𝑛) and
succeeds with constant probability, provided that 𝐾/𝑘 ≥ (log𝑛)𝑐 ·logΔ (𝑛) for a sufficiently
large constant 𝑐 > 0.

Proof. We run Lemma 6.4 with parameters 𝑋,𝑌, 𝑘, 𝐾,Δ′ := max(Δ, (256 log𝐾)2) and
𝑝 := 𝑛. Note that BP𝑝 (𝑋 ) = 1 ≤ 𝑝 ·𝐾/𝑘 holds, so the call is valid. If Δ ≥ (256 log𝐾)2, the
lemma follows immediately by the guarantees of Lemma 6.4. If 2 ≤ Δ < (256 log𝐾)2,
then observe that by settingΔ′ = (256 log𝐾)2 the gap and the running time of Lemma 6.4
do not increase compared to the lemma statement, which completes the proof. □

Corollary 4.4 (Subpolynomial Gap). The (𝑘, 𝑘 · 2Θ(
√

log𝑘 log log𝑘))-gap edit distance prob-
lem is in time 𝑂 (𝑛/𝑘 + 𝑘2+𝑜 (1)).
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Proof. If 𝑘6 < 𝑛, run the algorithm of [Bri+22b, Corollary 2] to solve the problem
directly in time 𝑂 (𝑛/𝑘). So we can assume that 𝑛 ≤ 𝑘6. In particular, log𝑛 = Θ(log𝑘).
We use Main Theorem 4.3 setting Δ = 2

√
log𝑘 log log𝑘 . This gives an algorithm for

the (𝑘, 𝐾)-gap problem running in time 𝑂
(
(𝑛/𝐾 + 𝑘𝐾) · 2𝑐0·

√
log𝑘 log log𝑘)

)
for some

constant 𝑐0 > 0, where 𝐾/𝑘 ≥ 2𝑐
√

log𝑘 log log𝑘 with 𝑐 > 0 sufficiently large. Thus, setting
𝐾 = 𝑘 · 2𝜇·

√
log𝑘 log log𝑘 where 𝜇 > 𝑐0 + 𝑐 yields the result. □

Corollary 4.5 (Polylogarithmic Gap). For any constant 𝜀 > 0, the (𝑘, 𝑘 · (log𝑘)Θ(1/𝜀))-gap
edit distance problem is in time 𝑂 (𝑛/𝑘1−𝜀 + 𝑘2+𝜀).

Proof. If 𝑘6 < 𝑛, we solve the problem directly in time 𝑂 (𝑛/𝑘1−𝜀) using the algorithm
of [Bri+22b, Corollary 3]. Thus, we can assume from now on that 𝑛 ≤ 𝑘6 and therefore
log𝑛 = Θ(log𝑘). We use Main Theorem 4.3 choosing Δ := 𝑘𝛿/3 for some 0 < 𝛿 < 𝜀, and
𝐾 = 𝑘 (log𝑘)𝑂 (1/𝜀) with large enough hidden constant. This yields an algorithm for the
desired gap running in time

(𝑛/𝑘 + 𝑘2) · 𝑘𝛿 · (log𝑘)𝑂 (1/𝛿) ≤ 𝑂 (𝑛/𝑘1−𝜀 + 𝑘2+𝜀). □

Corollary 4.6 (Polynomial Gap). Let 𝑘, 𝐾 be such that 𝐾 > 𝑘1+𝜀 for some constant 𝜀 > 0.
Then the (𝑘, 𝐾)-gap edit distance problem is in time 𝑂 (𝑛/𝐾 +

√
𝑛𝑘 + 𝑘2).

Proof. If 𝐾 < 2(log𝑛)2/3 , then we can solve the (𝑘, 𝐾)-gap edit distance problem exactly
using the Landau Vishkin algorithm in time 𝑂 (𝑛 + 𝑘2) ⊆ 𝑂 (𝑛1+𝑜 (1)/𝐾 + 𝑘2). Hence,
since 𝐾 > 𝑘1+𝜀 we can assume from now on that 𝐾/𝑘 ≥ 2Θ((log𝑛)2/3) .
Instantiating Main Theorem 4.3 with Δ = 2

√
log𝑛 log log𝑛, we obtain an algorithm

that can distinguish the gap �̃�/𝑘 ≥ 2Θ(
√

log𝑛 log log𝑛) in time 𝑂 ((𝑛/�̃� + 𝑘�̃�) · 𝑛𝑜 (1)). If
𝐾 <

√︁
𝑛/𝑘 then running this algorithm with �̃� := 𝐾 solves the (𝑘, 𝐾)-gap problem in

time 𝑂 (𝑛1+𝑜 (1)/𝐾). (Here we used the assumption that 𝐾/𝑘 ≥ 2Θ((log𝑛)2/3) , since this is
larger than the minimum gap distinguishable by Main Theorem 4.3.) Otherwise, note
that running this algorithm with �̃� := max(

√︁
𝑛/𝑘, 𝑘 · 2Θ(

√
log𝑛 log log𝑛)) correctly solves

the (𝑘, 𝐾)-gap problem, since we do not increase the gap. In this case, the running time
is 𝑂 ((

√
𝑛𝑘 + 𝑘2) · 𝑛𝑜 (1)). Combining the above yields the claimed running time. □
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7 Introduction to SSSP

This part of the thesis is based on our publication [BCF23]. I contributed an equal share
of the work, and at least one third of the write-up.

[BCF23] Karl Bringmann, Alejandro Cassis, and Nick Fischer. “Negative-Weight
Single-Source Shortest Paths in Near-Linear Time: Now Faster!” In: FOCS.
IEEE, 2023, pp. 515–538. doi: 10.1109/FOCS57990.2023.00038.

In this part of the thesis, we study the Single-Source Shortest Paths (SSSP) problem
with possibly negative integer edge weights: Given a directed weighted graph 𝐺 and a
designated source vertex 𝑠 , compute the distances from 𝑠 to all other vertices in𝐺 . This is
possibly the most fundamental weighted graph problem with wide-ranging applications
in computer science, including routing, data networks, artificial intelligence, planning,
and operations research.

While it is well known for almost 60 years that SSSP with nonnegative edge weights
can be solved in near-linear time by Dijkstra’s algorithm [Dij59; Wil64; FT87], the case
with negative weights has a more intriguing history: The Bellman-Ford algorithm was
developed in the ’50s [Shi55; For56; Bel58; Moo59] and runs in time 𝑂 (𝑚𝑛), and this
time bound remained the state of the art for a long time. Starting in the ’80s, the scaling
technique was developed and lead to time 𝑂 (𝑚

√
𝑛 log𝑊 ) [Gab83; GT89; Gol95]; here

and throughout,𝑊 is the magnitude of the smallest negative edge weight in the graph.1
Other papers focused on specialized graph classes, leading e.g. to near-linear time
algorithms for planar directed graphs [LRT79; Hen+97; FR06; KMW09], and improved
algorithms for dense graphs with small weights [San05].
An alternative approach is to model SSSP as a minimum-cost flow problem.2 In

the last decade, an impressive combination of convex optimization techniques and
dynamic algorithms have resulted in a series of advancements in minimum-cost flow
computations [Coh+17; AMV20; Bra+20; Bra+21] and thus also for negative-weight SSSP,
with running times 𝑂 (𝑚10/7) [Coh+17], 𝑂 (𝑚4/3) [AMV20] and 𝑂 (𝑚 + 𝑛3/2) [Bra+20].

1. Strictly speaking,𝑊 ≥ 0 is the smallest integer such that all edge weights satisfy 𝑤 (𝑒) ≥ −𝑊 . By
slight abuse of notation we write 𝑂 (log𝑊 ) to express 𝑂 (max{ 1, log𝑊 }).

2. To model SSSP as a minimum-cost flow problem, interpret each edge 𝑒 with weight 𝑤 (𝑒) as an edge
with infinite capacity and cost 𝑤 (𝑒). Moreover, add an artificial sink vertex 𝑡 to the graph, and add
unit-capacity cost-0 edges from all vertices 𝑣 to 𝑡 . Then any minimum-cost flow routing 𝑛 units from 𝑠

to 𝑡 corresponds exactly to a shortest path tree in the original graph (assuming that it does not contain
a negative-weight cycle).
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7 Introduction to SSSP

This line of research recently culminated in a randomized almost-linear𝑚1+𝑜 (1)-time
algorithm, by Chen, Kyng, Liu, Peng, Probst Gutenberg and Sachdeva [Che+22] (very
recently derandomized by van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg,
Sachdeva and Sidford [Bra+23]).
Finally, at the same time as the breakthrough in computing minimum-cost flows,

Bernstein, Nanongkai and Wulff-Nilsen [BNW22] found an astonishing3 near-linear
𝑂 (𝑚 log8(𝑛) log(𝑊 ))-time algorithm for negative-weight SSSP. We will refer to their
algorithm as the BNW algorithm. The BNW algorithm is combinatorial and arguably
simple (certainly simpler than the minimum-cost flow algorithms), and thus a satisfying
answer to the coarse-grained complexity of the negative-weight SSSP problem. However,
the story does not end here. In this work, we press further and investigate the following
question which was left open by Bernstein, Nanongkai and Wulff-Nilson [BNW22]:

Can we further improve the number of log-factors
in the running time of negative-weight SSSP?

For comparison, the nonnegative-weights SSSP problem underwent a long series of
lower-order improvements in the last century [Dij59; FT87; FW93; FW94; Tho00; Ram96;
Ram97; Emd77; EKZ77; MN90; Ahu+90; CGS99; Tho04], including improvements by
log-factors or even just loglog-factors.4 In the same spirit, we initiate the fine-grained
study of lower-order factors for negative-weight shortest paths.

7.1 Our Results

In our main result we make significant progress on our driving question, and improve
the BNW algorithm by nearly six log-factors:

Main Theorem 7.1 (Negative-Weight SSSP). There is a Las Vegas algorithm which,
given a directed graph 𝐺 and a source node 𝑠 , either computes a shortest path tree from 𝑠

or finds a negative cycle in 𝐺 , running in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )) with
high probability (and in expectation).

We obtain this result by optimizing the BNW algorithm, pushing it to its limits. Aaron
Bernstein remarked in a presentation of their result that “something like log5 is inherent
to [their] current framework”.5 It is thus surprising that we obtain such a dramatic
improvement to nearly three log-factors within the same broader framework. Despite
this speed-up, our algorithm is still modular and simple in its core. In Section 7.2 we
discuss the technical similarities and differences between our algorithm and the BNW
algorithm in detail.

3. If the reader is reluctant to our choice of adjectives to describe these results, we refer them to the recent
CACM article “Historic Algorithms Help Unlock Shortest-Path Problem Breakthrough” [Edw23].

4. In these papers, the Dijkstra running time 𝑂 (𝑚 + 𝑛 log𝑛) was improved to the current state of the
art 𝑂 (𝑚 + 𝑛 log log min{𝑛,𝐶}) [Tho04], where 𝐶 is the largest weight in the graph.

5. https://youtu.be/Bpw3yqWT_d0?t=3721
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7.1 Our Results

Recall that computing shortest paths is only reasonable in graphs without negative
cycles (as otherwise two nodes are possibly connected by a path of arbitrarily small
negative weight). In light of this, we solve the negative-weight SSSP problem in its
strongest possible form in Main Theorem 7.1: The algorithm either returns a shortest
path tree, or returns a negative cycle as a certificate that no shortest path tree exists. In
fact, the subproblem of detecting negative cycles has received considerable attention on
its own in the literature (see e.g. the survey [CG99]).

In the presence of negative cycles, a natural alternative to finding one such cycle is to
compute all distances in the graph anyway (where some of the distances are −∞ or∞).
This task can be solved in the same running time:

Theorem 7.2 (Negative-Weight Single-Source Distances). There is a Las Vegas algorithm,
which, given a directed graph 𝐺 and a source 𝑠 ∈ 𝑉 (𝐺), computes the distances from 𝑠

to all other vertices in the graph (these distances are possibly −∞ or∞), running in time
𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )) with high probability (and in expectation).

Owing to the countless practical applications of shortest paths problems, it is an
important question to ask whether there is a negative-weights shortest paths algorithm
that has a competitive implementation. The typical practical implementation in com-
petitive programming uses optimized variants of Bellman-Ford’s algorithm, such as the
“Shortest Path Faster Algorithm” [Moo59; Con23] (see also [Che+08] for an experimental
evaluation of other more sophisticated variants of Bellman-Ford). However, it is easy to
find instances for which these algorithms require time Ω(𝑚𝑛). It would be exciting if,
after decades of competitive programming, there finally was an efficient implementa-
tion to deal with these instances. With its nine log-factors, the BNW algorithm does
not qualify as a practical candidate. We believe that our work paves the way for a
comparably fast implementation.

In addition to our main result, we make progress on two closely related problems:
Computing the minimum cycle mean, and low-diameter decompositions in directed
graphs. We describe these results in the following sections.

Minimum Cycle Mean

In a directed weighted graph, the mean of a cycle 𝐶 is defined as the ratio �̄� (𝐶) =
𝑤 (𝐶)/|𝐶 | where 𝑤 (𝐶) is the total weight of 𝐶 . The Minimum Cycle Mean problem is
to compute, in a given directed weighted graph, the minimum mean across all cycles,
min𝐶 �̄� (𝐶). This is a central problem in the context of network flows [AMO93], with
applications to verification and reactive systems analysis [Cha+14].
There is a large body of literature on computing the Minimum Cycle Mean. In

1987, Karp [Kar78] established an 𝑂 (𝑚𝑛)-time algorithm, which is the fastest strongly
polynomial time algorithm to this date. In terms of weakly polynomial algorithms,
Lawler observed that the problem is equivalent to detecting negative cycles, up to a
factor 𝑂 (log(𝑛𝑊 )) [Law66; Law76]. Indeed, note that one direction is trivial: The
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graph has a negative cycle if and only if the minimum cycle mean is negative. For the
other direction, he provided a reduction to detecting negative cycles on 𝑂 (log(𝑛𝑊 ))
graphs with modified rational edge weights. Thus, following Lawler’s observation, any
negative-weight SSSP algorithm can be turned into a Minimum Cycle Mean algorithm
in a black-box way with running time overhead 𝑂 (log(𝑛𝑊 )).
There are also results specific to Minimum Cycle Mean computations: Orlin and

Ahuja [OA92] designed an algorithm in time 𝑂 (𝑚
√
𝑛 log(𝑛𝑊 )) (improving over the

baseline 𝑂 (𝑚
√
𝑛 log2(𝑛𝑊 )) which follows from the SSSP algorithms by [Gab83; GT89;

Gol95]). For the special case of dense graphs with 0-1-weights, an𝑂 (𝑛2)-time algorithm
is known [BC92]. Finally, in terms of approximation algorithms it is known how to
compute a (1 + 𝜀)-approximation in time 𝑂 (𝑛𝜔 log(𝑊 )/𝜀) [Cha+14].

As for negative-weight SSSP, all these algorithms are dominated by the recent BNW
algorithm: By Lawler’s observation, their algorithm computes the minimum cycle mean
in time𝑂 (𝑚 log8(𝑛) log2(𝑛𝑊 )). In fact, it is implicit in their work that the running time
can be reduced to 𝑂 (𝑚 log8(𝑛) log(𝑛𝑊 )). Our contribution is again that we reduce the
number of log-factors from nine to nearly three:

Theorem 7.3 (Minimum Cycle Mean). There is a Las Vegas algorithm, which given a
directed graph𝐺 finds a cycle𝐶 with minimummean weight �̄� (𝐶) = min𝐶′ �̄� (𝐶′), running
in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )) with high probability (and in expectation).

Directed Low-Diameter Decompositions

A crucial ingredient to the BNW algorithm is a Low-Diameter Decomposition (LDD) in
directed graphs. Our SSSP algorithm differs in that regard from the BNW algorithm,
and does not explicitly use LDDs. Nevertheless, as a side result of this work we improve
the best known LDD in directed graphs.

LDDs have been first studied by Awerbuch almost 40 years ago [Awe85] and have ever
since found several applications, mostly for undirected graphs and mostly in distributed,
parallel and dynamic settings [Awe+89; AP92; Awe+92; LS93; Bar96; Ble+14; MPX13;
Pac+18; FG19; CZ20; BGW20; FGV21; BNW22]. The precise definitions in these works
mostly differ, but the common idea is to select a small subset of edges 𝑆 such that after
removing all edges in 𝑆 from the graph, the remaining graph has (strongly) connected
components with bounded diameter.
For directed graphs, we distinguish two types of LDDs: Weak LDDs ensure that

for every strongly connected component 𝐶 in the graph 𝐺 \ 𝑆 , the diameter of 𝐶 in
the original graph is bounded. A strong LDD exhibits the stronger property that the
diameter of 𝐶 in the graph 𝐺 \ 𝑆 is bounded.

Definition 7.4 (Directed Low-Diameter Decomposition). A weak Low-Diameter De-
composition with overhead 𝜌 is a Las Vegas algorithm that, given a directed graph𝐺 with
nonnegative edge weights 𝑤 and a parameter 𝐷 > 0, computes an edge set 𝑆 ⊆ 𝐸 (𝐺) with
the following properties:
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• Sparse Hitting: For any edge 𝑒 ∈ 𝐸, P(𝑒 ∈ 𝑆) ≤ 𝑂 (𝑤 (𝑒)
𝐷
· 𝜌 + 1

poly(𝑛) ).

• Weak Diameter: Every SCC 𝐶 in 𝐺 \ 𝑆 has weak diameter at most 𝐷
(that is, for any two vertices 𝑢, 𝑣 ∈ 𝐶 , we have dist𝐺 (𝑢, 𝑣) ≤ 𝐷).

We say that the Low-Diameter Decomposition is strong if it additionally satisfies the
following stronger property:

• Strong Diameter: Every SCC 𝐶 in 𝐺 \ 𝑆 has diameter at most 𝐷
(that is, for any two vertices 𝑢, 𝑣 ∈ 𝐶 , we have dist𝐺\𝑆 (𝑢, 𝑣) ≤ 𝐷).

For directed graphs, the state-of-the-art weak LDD was developed by Bernstein,
Nanongkai and Wulff-Nilsen [BNW22] as a tool for their shortest paths algorithm.
Their result is a weak LDD with polylogarithmic overhead 𝑂 (log2 𝑛) running in near-
linear time 𝑂 (𝑚 log2 𝑛 + 𝑛 log2 𝑛 log log𝑛). In terms of strong LDDs, no comparable
result is known. While it is not hard to adapt their algorithm to compute a strong
LDD, this augmentation suffers from a slower running time Ω(𝑛𝑚). Our contribution is
designing the first strong LDD computable in near-linear time, with only slightly worse
overhead 𝑂 (log3 𝑛):

Theorem 7.5 (Strong Low-Diameter Decomposition). There is a strong Low-Diameter
Decomposition with overhead 𝑂 (log3 𝑛), computable in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛)
with high probability (and in expectation).

7.2 Technical Overview

Our algorithm is inspired by BNW algorithm and follows its general framework, but
differs in many aspects. In this section we give a detailed comparison.

The Framework

The presentation of our algorithm is modular: We will first focus on the SSSP problem
on a restricted class of graphs (to which we will simply refer as restricted graphs, see the
next Definition 7.6). In the second step we demonstrate how to obtain our results for
SSSP on general graphs, for finding negative cycles, and for computing the minimum
cycle mean by reducing to the restricted problem in a black-box manner.

Definition 7.6 (Restricted Graphs). An edge-weighted directed graph 𝐺 = (𝑉 , 𝐸,𝑤) with
a designated source vertex 𝑠 ∈ 𝑉 is restricted if it satisfies:

• The edge weights are integral and at least −1.

• The minimum cycle mean is at least 1.

• The source 𝑠 is connected to every other vertex by an edge of weight 0.
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In particular, note that restricted graphs do not contain negative cycles, and therefore
it is always possible to compute a shortest path tree. The Restricted SSSP problem is to
compute a shortest path tree in a given restricted graph 𝐺 . We write 𝑇RSSSP(𝑚,𝑛) for
the optimal running time of a Restricted SSSP algorithm with error probability 1

2 , say.

Improvement 1: Faster Restricted SSSP via Better Decompositions

Bernstein et al. [BNW22] proved that𝑇RSSSP(𝑚,𝑛) = 𝑂 (𝑚 log5 𝑛). Our first contribution
is that we shave nearly three log-factors and improve this bound to 𝑇RSSSP(𝑚,𝑛) =
𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛) (see Theorem 8.1).

At a high level, the idea of the BNW algorithm is to decompose the graph by finding
a subset of edges 𝑆 suitable for the following two subtasks: (1) We can recursively
compute shortest paths in the graph 𝐺 \ 𝑆 obtained by removing the edges in 𝑆 , and
thereby make enough progress to incur in total only a small polylogarithmic overhead
in the running time. And (2), given the outcome of the recursive call, we can efficiently
“add back” the edges from 𝑆 to obtain a correct shortest path tree for 𝐺 . For the latter
task, the crucial property is that 𝑆 intersects every shortest path in 𝐺 at most 𝑂 (log𝑛)
times (in expectation), as then a simple generalization of Dijkstra’s and Bellman-Ford’s
algorithm can adjust the shortest path tree in near-linear time (see Lemma 8.8).

For our result, we keep the implementation of step (2) mostly intact, except that we use
a faster implementation of Dijkstra’s algorithm due to Thorup [Tho04] (see Lemma 8.8).
The most significant difference takes place in step (1), where we change how the
algorithm selects 𝑆 . Specifically, Bernstein et al. used a directed Low-Diameter Decom-
position to implement the decomposition. We are following the same thought, but
derive a more efficient and direct decomposition scheme. To this end, we define the
following key parameter:

Definition 7.7. Let 𝐺 be a restricted graph with designated source 𝑠 . We define 𝜅 (𝐺) as
the maximum number of negative edges (that is, edges of weight exactly −1) in any simple
path 𝑃 which starts at 𝑠 and has nonpositive weight 𝑤 (𝑃) ≤ 0.

Our new decomposition can be stated as follows.

Lemma 7.8 (Decomposition). Let 𝐺 be a restricted graph with source vertex 𝑠 ∈ 𝑉 (𝐺)
and 𝜅 ≥ 𝜅 (𝐺). There is a randomized algorithm Decompose(𝐺,𝜅) running in expected
time 𝑂 ((𝑚 + 𝑛 log log𝑛) log𝑛) that computes an edge set 𝑆 ⊆ 𝐸 (𝐺) such that:

1. Progress: With high probability, for any strongly connected component 𝐶 in 𝐺 \ 𝑆 , we
have (i) |𝐶 | ≤ 3

4 |𝑉 (𝐺) | or (ii) 𝜅 (𝐺 [𝐶 ∪ { 𝑠 }]) ≤
𝜅
2 .

2. Sparse Hitting: For any shortest 𝑠-𝑣-path 𝑃 in 𝐺 , we have E( |𝑃 ∩ 𝑆 |) ≤ 𝑂 (log𝑛).

The sparse hitting property is exactly what we need for (2). With the progress
condition, we ensure that |𝑉 (𝐺) | · 𝜅 (𝐺) reduces by a constant factor when recurring on
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the strongly connected components of𝐺 \ 𝑆 . The recursion tree therefore reaches depth
at most 𝑂 (log(𝑛 · 𝜅 (𝐺))) = 𝑂 (log𝑛). In summary, with this new idea we can compute
shortest paths in restricted graphs in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛).

Improvement 2: Faster Scaling

It remains to lift our Restricted SSSP algorithm to the general SSSP problem at the
expense of at most one more log-factor log(𝑛𝑊 ). In comparison, the BNW algorithm
spends four log-factors 𝑂 (log3 𝑛 log𝑊 ) here. As a warm-up, we assume that the given
graph is promised not to contain a negative cycle.

Warm-Up: From Restricted Graphs to Graphs without Negative Cycles This
task is a prime example amenable to the scaling technique from the ’80s [Gab83; GT89;
Gol95]: By rounding the weights in the given graph𝐺 from𝑤 (𝑒) to ⌈3𝑤 (𝑒)

𝑊 +1 ⌉ +1 we ensure
that (i) all weights are at least −1 and (ii) the minimum cycle mean is at least 1, and thus
we turn 𝐺 into a restricted graph 𝐻 (see Lemma 8.20). We compute the shortest paths
in 𝐻 and use the computed distances (by means of a potential function) to augment
the weights in the original graph 𝐺 . If 𝐺 has smallest weight −𝑊 , in this way we can
obtain an equivalent graph 𝐺′ with smallest weight −3

4𝑊 , where equivalence is defined
as follows:
Definition 7.9 (Equivalent Graphs). We say that two graphs 𝐺,𝐺′ over the same set of
vertices and edges are equivalent if (1) any shortest path in 𝐺 is also a shortest path in 𝐺′

and vice versa, and (2) for any cycle 𝐶 , 𝑤𝐺 (𝐶) = 𝑤𝐺 ′ (𝐶).

Hence, by (1) we continue to compute shortest paths in 𝐺′. At first glance it seems
that repeating this scaling step incurs only a factor log𝑊 to the running time, but for
subtle reasons the overhead is actually log(𝑛𝑊 ). Another issue is that the Restricted
SSSP algorithm errs with constant probability. The easy fix loses another log𝑛 factor
due to boosting (this is how Bernstein et al. obtain their algorithm SPMonteCarlo,
see [BNW22, Theorem 7.1]). Fortunately, we can “merge” the scaling and boosting steps
to reduce the overhead to log(𝑛𝑊 ) in total, see Theorem 8.19.

From Restricted Graphs to Arbitrary Graphs What if𝐺 contains a negative cycle?
In this case, our goal is to find and return one such negative cycle. Besides the obvious
advantage that it makes the output more informative, this also allows us to strengthen
the algorithm from Monte Carlo to Las Vegas, since both a shortest path tree and a
negative cycle serve as certificates that can be efficiently tested. Using the scaling
technique as before, we can easily detect whether a given graph contains a negative
cycle in time𝑂 (𝑇RSSSP(𝑚,𝑛) · log(𝑛𝑊 )) (even with high probability, see Corollary 8.24),
but we cannot find such a cycle.
We give an efficient reduction from finding negative cycles to Restricted SSSP with

overhead𝑂 (log(𝑛𝑊 )). This reduction is the technically most involved part of our work.
In the following paragraphs we attempt to give a glimpse into the main ideas.
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A Noisy-Binary-Search-Style Problem For the rest of this overview, we phrase
our core challenge as abstract as possible, and omit further context. We will use the
following notation: given a directed graph𝐺 and an integer𝑀 , we write𝐺+𝑀 to denote
the graph obtained by adding𝑀 to every edge weight of𝐺 . Consider the following task:

Definition 7.10 (Threshold). Given a weighted graph 𝐺 , compute the smallest integer
𝑀∗ ≥ 0 such that the graph 𝐺+𝑀

∗
, which is obtained from 𝐺 by adding 𝑀∗ to all edge

weights, does not contain a negative cycle.

Our goal is to solve the Threshold problem in time 𝑂 (𝑇RSSSP(𝑚,𝑛) log(𝑛𝑊 )) (from
this it follows that we can find negative cycles in the same time, see Lemma 8.26). As a
tool, we are allowed to use the following lemma as a black-box (which can be proven
similarly to the warm-up case):

Lemma 7.11 (Informal Lemma 8.30). There is an 𝑂 (𝑇RSSSP(𝑚,𝑛))-time algorithm that,
given a graph 𝐺 with minimum weight −𝑊 , either returns an equivalent graph 𝐺′ with
minimum weight −3

4𝑊 , or returns NegativeCycle. If 𝐺 does not contain a negative cycle,
then the algorithm returns NegativeCycle with error probability at most 0.01.

Morally, Lemma 7.11 provides a test whether a given graph 𝐺 contains a negative
cycle. A natural idea is therefore to find𝑀∗ by binary search, using Lemma 7.11 as the
tester. However, note that this tester is one-sided: If𝐺 contains a negative cycle, then
the tester is not obliged to detect one. Fortunately, we can turn the tester into a win-win
algorithm to compute𝑀∗.
We first describe our Threshold algorithm in an idealized setting where we assume

that the tester from Lemma 7.11 has error probability 0. We let 𝑑 = 1
5𝑊 , and run the

tester on the graph 𝐺+𝑑 . There are two cases:

• The tester returns NegativeCycle: In the idealized setting we can assume that 𝐺+𝑑
indeed contains a negative cycle. We therefore compute the threshold of 𝐺+𝑑 recur-
sively, and return that value plus 𝑑 . Note that the minimum weight of 𝐺+𝑑 is at least
−𝑊 + 𝑑 = −4

5𝑊 .

• The tester returns an equivalent graph 𝐺′: In this case, we recursively compute and
return the threshold value of (𝐺′)−𝑑 . Note that the graphs𝐺 and (𝐺′)−𝑑 share the same
threshold value, as by Definition 7.9 we have𝑤 (𝐺 ′)−𝑑 (𝐶) = 𝑤𝐺 ′ (𝐶) −𝑑 = 𝑤𝐺+𝑑 (𝐶) −𝑑 =

𝑤𝐺 (𝐶) for any cycle 𝐶 . Moreover, since𝐺+𝑑 has smallest weight −4
5𝑊 , the equivalent

graph 𝐺′ has smallest weight at least −3
4 ·

4
5𝑊 = −3

5𝑊 by Lemma 7.11. Therefore,
(𝐺′)−𝑑 has smallest weight at least −3

5𝑊 − 𝑑 = −4
5𝑊 .

In both cases, we recursively compute the threshold of a graph with smallest weight at
least −4

5𝑊 . Therefore, the recursion reaches depth 𝑂 (log𝑊 ) until we have reduced the
graph to constant minimum weight and the problem becomes easy.
The above algorithm works in the idealized setting, but what about the unidealized

setting, where the tester can err with constant probability? We could of course first boost
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7.3 Summary of Log Shaves

the tester to succeed with high probability. In combination with the above algorithm,
this would solve the Threshold problem in time 𝑂 (𝑇RSSSP(𝑚,𝑛) log(𝑛𝑊 ) log𝑛).
However, the true complexity of this task lies in avoiding the naive boosting. By

precisely understanding the unidealized setting with constant error probability, we
improve the running time for Threshold to 𝑂 (𝑇RSSSP(𝑚,𝑛) log(𝑛𝑊 )). To this end, it
seems that one could apply the technique of noisy binary search (see e.g. [Pel89; Fei+94;
Pel02]). Unfortunately, the known results do not seem applicable to our situation, as
Lemma 7.11 only provides a one-sided tester. Our solution to this final challenge is
an innovative combination of the algorithm sketched above with ideas from noisy
binary search. The analysis makes use of drift analysis (see e.g. [Len17]), which involves
defining a suitable drift function (a quantity which in expectation decreases by a constant
factor in each step and is zero if and only if we found the optimal value 𝑀∗) and an
application of a drift theorem (see Theorem 8.34) to prove that the drift function rapidly
approaches zero.

7.3 Summary of Log Shaves

Finally, to ease the comparison with the BNW algorithm, we compactly list where
exactly we shave the nearly six log-factors. We start with the improvements in the
Restricted SSSP algorithm:

• We use Thorup’s priority queue [Tho04] to speed up Dijkstra’s algorithm in Lemma 8.8.
This reduces the cost of one log-factor to a loglog-factor.

• The Sparse Hitting property of our decomposition scheme (Lemma 7.8) incurs only an
𝑂 (log𝑛) overhead in comparison to the𝑂 (log2 𝑛) overhead due to the Low-Diameter
Decomposition in the BNW algorithm.

• The Progress property of our decomposition scheme (Lemma 7.8) ensures that the
recursion depth of our Restricted SSSP algorithm is just 𝑂 (log𝑛). The analogous
recursion depth in the BNW algorithm is 𝑂 (log2 𝑛) (depth log𝑛 for reducing the
number of nodes 𝑛 times depth log𝑛 for reducing max𝑣 𝜂𝐺 (𝑣)).

Next, we summarize the log-factors shaved in the scaling step:

• The BNW algorithm amplifies the success probability of the Restricted SSSP algorithm
by repeating it𝑂 (log𝑛) times. We combine the boosting with the scaling steps which
saves this log-factor.

• We improve the overall reduction from finding a negative cycle to Restricted SSSP.
In particular, we give an implementation of Threshold which is faster by two log-
factors (see Lemmas 8.26 and 8.32). This is where we use an involved analysis via a
drift function.
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7 Introduction to SSSP

7.4 Open Problems

We leave several interesting open questions:

1. Can the number of log𝑛 factors be improved further?
In our algorithm, we suffer three log-factors because of (i) the scaling technique
(log(𝑛𝑊 )) to reduce to restricted graphs, and on restricted graphs (ii) the inherent
log𝑛 overhead of the graph decomposition and (iii) the recursion depth log𝑛 to
progressively reduce 𝜅 (𝐺), all of which seem unavoidable. We therefore believe
that it is hard to improve upon our algorithm without substantially changing the
framework.

2. Can the loss due to the scaling technique be reduced from log(𝑛𝑊 ) to log𝑊 ?
The classical scaling technique, as a reduction to graphs with weights at least −1,
requires only log𝑊 iterations [Gol95]. But in our setting, due to the stronger con-
ditions for restricted graphs (and due to the boosting), we need log(𝑛𝑊 ) iterations.
Can we do better?

3. Can the log𝑊 factor be removed from the running time altogether?
That is, is there a strongly polynomial algorithm in near-linear time? In terms of
strongly polynomial algorithms, perhaps surprisingly, the Bellman-Ford algorithm
with running time 𝑂 (𝑛𝑚) has remained the state of the art for a long time. Only
very recently, a preprint by Fineman [Fin23] claims an algorithm in time 𝑂 (𝑚𝑛8/9),
breaking through this barrier.6

4. Can the algorithm be derandomized?
The fastest deterministic algorithm for negative-weight SSSP is obtained via the
recent almost-linear 𝑂 (𝑚1+𝑜 (1) log𝑊 )-time deterministic minimum-cost flow algo-
rithm by van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva and
Sidford [Bra+23]. Can we obtain a deterministic near-linear time algorithm for
negative-weight SSSP? The current barrier to derandomize our approach (and BNW’s)
is that the sparse hitting property of Lemma 7.8 is inherently probabilistic.

5. Simpler and practical algorithms
The recent breakthroughs showing that minimum cost flow is in almost linear time
[Che+22; Bra+23], settled the right time complexity of various fundamental graph
problems like maximum bipartite matching, optimal transport, edge/vertex connec-
tivity, etc. However, the current techniques used by these works are very far from
being practical or to any notion of “simple”. We believe that trying to obtain simple
and practical algorithms in almost linear time for any of these problems is a very
interesting and important research direction.

6. In fact, Fineman considers the more challenging setting where the edge weights might be real numbers
(in a reasonable machine model). Any scaling-based approach inherently breaks to solve this variant.
See another related recent result by Karczmarz, Nadara and Sokolowski [KNS24] where they study
SSSP with rational weights and improve upon Bellman-Ford in this setting.
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7.5 Outline

Our work (building upon the BNW algorithm [BNW22]) can be seen as a step in
that direction: Besides the theoretical importance of improving the running time of
negative-weight SSSP, a driving research question for us has been trying to obtain a
practical algorithm for this fundamental problem. We believe that our work paves
the way for such an implementation. Another very recent example that goes in that
direction is an improved “combinatorial” algorithm for maximum bipartite matching
by Chuzhoy and Khanna [CK24].

7.5 Outline

The remaining of this part of the thesis is structured as follows. In Section 7.6 we
give some formal preliminaries. Chapter 8 is devoted to present our algorithm for
negative-weight SSSP, proving Main Theorem 7.1. In Chapter 9 we present our side
results: in Section 9.1 we give our result for computing the minimum cycle mean
(Theorem 7.3), and in Section 9.2 we give our strong Low-Diameter Decomposition for
directed graphs (Theorem 7.5).

7.6 Preliminaries

We write [𝑛] = { 1, . . . , 𝑛 } and𝑂 (𝑇 ) = 𝑇 · (log𝑇 )𝑂 (1) . We say that an event occurs with
high probability if it occurs with probability 1 − 1/𝑛𝑐 for an arbitrarily large constant
𝑐 (here, 𝑛 is the number of vertices in the input graph). Unless further specified, our
algorithms are Monte Carlo algorithms that succeed with high probability.

Directed Graphs We work with directed edge-weighted graphs 𝐺 = (𝑉 , 𝐸,𝑤). Here,
𝑉 = 𝑉 (𝐺) is the set of vertices and 𝐸 = 𝐸 (𝐺) ⊆ 𝑉 (𝐺)2 is the set of edges. All edge
weights are integers, denoted by 𝑤 (𝑒) = 𝑤 (𝑢, 𝑣) for 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (𝐺). We typically
set 𝑛 = |𝑉 (𝐺) | and𝑚 = |𝐸 (𝐺) |. We write 𝐺 [𝐶] to denote the induced subgraph with
vertices 𝐶 ⊆ 𝑉 (𝐺) and write 𝐺 \ 𝑆 to denote the graph 𝐺 after deleting all edges in
𝑆 ⊆ 𝐸. We write deg(𝑣) for the (out-)degree of 𝑣, that is, the number of edges starting
from 𝑣.

A strongly connected component (SCC) is a maximal set of vertices𝐶 ⊆ 𝑉 (𝐺) in which
all pairs are reachable from each other. It is known that every directed graph can be
decomposed into a collection of SCCs, and the graph obtained by compressing the SCCs
into single nodes is acyclic. It is also known that the SCCs can be computed in linear
time:

Lemma 7.12 (Strongly Connected Components, [Tar72]). In any directed graph𝐺 , the
strongly connected components can be identified in time 𝑂 (𝑛 +𝑚).

For a set of edges 𝑆 (such as a path or a cycle), we write𝑤 (𝑆) = ∑
𝑒∈𝑆 𝑤 (𝑒). A negative

cycle is a cycle 𝐶 with 𝑤 (𝐶) < 0. For vertices 𝑢, 𝑣, we write dist𝐺 (𝑢, 𝑣) for the length
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7 Introduction to SSSP

of the shortest 𝑢-𝑣-path. If there is a negative-weight cycle in some 𝑢-𝑣-path, we set
dist𝐺 (𝑢, 𝑣) = −∞, and if there is no path from 𝑢 to 𝑣 we set dist𝐺 (𝑢, 𝑣) = ∞.

Definition 7.13 (Balls). For a vertex 𝑣, and a nonnegative integer 𝑟 , we denote the out-ball
centered at 𝑣 with radius 𝑟 by 𝐵out

𝐺
(𝑣, 𝑟 ) = {𝑢 ∈ 𝑉 (𝐺) : dist𝐺 (𝑣,𝑢) ≤ 𝑟 }. Similarly, we

denote the in-ball centered at 𝑣 with radius 𝑟 by 𝐵in
𝐺
(𝑣, 𝑟 ) = {𝑢 ∈ 𝑉 (𝐺) : dist𝐺 (𝑢, 𝑣) ≤ 𝑟 }.

Further, we write 𝜕𝐵out
𝐺
(𝑣, 𝑟 ) = { (𝑢,𝑤) ∈ 𝐸 : 𝑢 ∈ 𝐵out (𝑣, 𝑟 ) ∧𝑤 ∉ 𝐵out (𝑣, 𝑟 ) } to denote the

boundary edges of an out-ball, and 𝜕𝐵in
𝐺
(𝑣, 𝑟 ) = { (𝑢,𝑤) ∈ 𝐸 : 𝑢 ∉ 𝐵in(𝑣, 𝑟 )∧𝑤 ∈ 𝐵in(𝑣, 𝑟 ) }

for an in-ball.

In all these notations, we occasionally drop the subscript 𝐺 if it is clear from context.
The Single-Source Shortest Paths (SSSP) problem is to compute the distances dist𝐺 (𝑠, 𝑣)

for a designated source vertex 𝑠 ∈ 𝑉 (𝐺) to all other vertices 𝑣 ∈ 𝑉 (𝐺). When𝐺 does not
contain negative cycles, this is equivalent to compute a shortest path tree from 𝑠 (that is,
a tree in which every 𝑠-to-𝑣 path is a shortest path in 𝐺). For graphs with nonnegative
edge weights, Dijkstra’s classical algorithm solves the SSSP problem in near-linear time.
We use the following result by Thorup, which replaces the log𝑛 overhead by log log𝑛
(in the RAM model, see the paragraph on the machine model below).

Lemma 7.14 (Dijkstra’s Algorithm, [Dij59; Tho04]). In any directed graph 𝐺 with
nonnegative edge weights, the SSSP problem can be solved in time 𝑂 (𝑚 + 𝑛 log log𝑛).

Lemma 7.15 (Bellman-Ford’s Algorithm, [Shi55; For56; Bel58; Moo59]). In any directed
graph 𝐺 , the SSSP problem can be solved in time 𝑂 (𝑚𝑛).

Potentials Let𝐺 be a directed graph. We refer to functions 𝜙 : 𝑉 (𝐺) → Z as potential
functions. We write 𝐺𝜙 for the graph obtained from 𝐺 by changing the edge weights
to 𝑤𝜙 (𝑢, 𝑣) = 𝑤 (𝑢, 𝑣) + 𝜙 (𝑢) − 𝜙 (𝑣).

Definition 7.9 (Equivalent Graphs). We say that two graphs 𝐺,𝐺′ over the same set of
vertices and edges are equivalent if (1) any shortest path in 𝐺 is also a shortest path in 𝐺′

and vice versa, and (2) for any cycle 𝐶 , 𝑤𝐺 (𝐶) = 𝑤𝐺 ′ (𝐶).

Lemma 7.16 (Johnson’s Trick, [Joh77]). Let 𝐺 be a directed graph, and let 𝜙 be an
arbitrary potential function. Then 𝑤𝜙 (𝑃) = 𝑤 (𝑃) + 𝜙 (𝑢) − 𝜙 (𝑣) for any 𝑢-𝑣-path 𝑃 ,
and 𝑤𝜙 (𝐶) = 𝑤 (𝐶) for any cycle 𝐶 . It follows that 𝐺 and 𝐺𝜙 are equivalent.

Lemma 7.17 ([Joh77]). Let 𝐺 be a directed graph without negative cycles and let 𝑠 ∈ 𝑉
be a source vertex that can reach every other node. Then, for the potential 𝜙 defined as
𝜙 (𝑣) = dist𝐺 (𝑠, 𝑣), it holds that 𝑤𝜙 (𝑒) ≥ 0 for all edges 𝑒 ∈ 𝐸.

Machine Model We work in the standard word RAMmodel with word size Θ(log𝑛+
log𝑀), where 𝑛 is the number of vertices and𝑀 is an upper bound on the largest edge
weight in absolute value. That is, we assume that we can store vertex identifiers and
edge weights in a single machine word, and perform basic operations in unit time.
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8 Negative Weight SSSP

The goal of this chapter is to prove Main Theorem 7.1.

Organization The content is organized as follows. In Section 8.1 we present our
algorithm for negative-weight SSSP on restricted graphs. In Section 8.2 we extend the
algorithm from the previous section to work on general graphs without negative cycles.
Finally, in Section 8.3 we remove this assumption and strengthen the algorithm to find
negative cycles without worsening the running time.

Pedagogical note Most of the ideas at the core of our full algorithm can already
be seen at play under the assumption that the graph does not have negative cycles.
Moreover, under that assumption, the algorithm is simple, clean and hopefully easy to
understand. Thus, we encourage the reader to focus on Section 8.1 and Section 8.2 to
obtain the main ideas. Section 8.3, where we deal with negative cycles, is quite technical
and most of the work goes into shaving one log factor (for pedagogical purposes, we
give a simpler but slower version of an algorithm to find negative cycles in Section 8.3.2).

8.1 SSSP on Restricted Graphs

In this section we give an efficient algorithm for SSSP on restricted graphs (recall Defi-
nition 7.6). Specifically, we prove the following theorem:

Theorem 8.1 (Restricted SSSP). In a restricted graph 𝐺 with source vertex 𝑠 ∈ 𝑉 (𝐺), we
can compute a shortest path tree from 𝑠 in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛) with constant
error probability 1

2 . (If the algorithm does not succeed, it returns Fail.)

We develop this algorithm in two steps: First, we prove our decomposition scheme
for restricted graphs (Section 8.1.1) and then we use the decomposition scheme to build
an SSSP algorithm for restricted graphs (Section 8.1.2).

8.1.1 Decomposition for Restricted Graphs

In this section, we prove the decomposition lemma:

Lemma 7.8 (Decomposition). Let 𝐺 be a restricted graph with source vertex 𝑠 ∈ 𝑉 (𝐺)
and 𝜅 ≥ 𝜅 (𝐺). There is a randomized algorithm Decompose(𝐺,𝜅) running in expected
time 𝑂 ((𝑚 + 𝑛 log log𝑛) log𝑛) that computes an edge set 𝑆 ⊆ 𝐸 (𝐺) such that:
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8 Negative Weight SSSP

1. Progress: With high probability, for any strongly connected component 𝐶 in 𝐺 \ 𝑆 , we
have (i) |𝐶 | ≤ 3

4 |𝑉 (𝐺) | or (ii) 𝜅 (𝐺 [𝐶 ∪ { 𝑠 }]) ≤
𝜅
2 .

2. Sparse Hitting: For any shortest 𝑠-𝑣-path 𝑃 in 𝐺 , we have E( |𝑃 ∩ 𝑆 |) ≤ 𝑂 (log𝑛).

For the proof, we introduce some notation. Let 𝐺≥0 denote the graph obtained
by replacing negative edge weights by 0 in the graph 𝐺 . A vertex 𝑣 is out-heavy if
|𝐵out
𝐺≥0
(𝑣, 𝜅4 ) | >

𝑛
2 and out-light if |𝐵out

𝐺≥0
(𝑣, 𝜅4 ) | ≤

3𝑛
4 . Note that there can be vertices which

are both out-heavy and out-light. We similarly define in-light and in-heavy vertices
with “𝐵in

𝐺≥0
” in place of “𝐵out

𝐺≥0
”.

Lemma 8.2 (Heavy-Light Classification). There is an algorithm which, given a directed
graph 𝐺 , labels every vertex correctly as either in-light or in-heavy (vertices which are
both in-light and in-heavy may receive either label). The algorithm runs in time 𝑂 ((𝑚 +
𝑛 log log𝑛) log𝑛) and succeeds with high probability.

Note that by applying this lemma to the graph 𝐺𝑟𝑒𝑣 obtained by flipping the edge
orientations, we can similarly classify vertices into out-light and out-heavy. We omit
the proof for now as it follows easily from Lemma 9.6 which we state and prove in
Section 9.2.

We are ready to state the decomposition algorithm: First, label each vertex as out-light
or out-heavy and as in-light or in-heavy using the previous lemma. Then, as long as
𝐺 contains a vertex 𝑣 which is labeled out-light or in-light (say it is out-light), we will
carve out a ball around 𝑣. To this end, we sample a radius 𝑟 from the geometric distri-
bution Geom(20 log𝑛/𝜅), we cut the edges 𝜕𝐵out

𝐺≥0
(𝑣, 𝑟 ) (that is, the set of edges leaving

𝐵out
𝐺≥0
(𝑣, 𝑟 )) and we remove all vertices in 𝐵out

𝐺≥0
(𝑣, 𝑟 ) from the graph. We summarize the

procedure in Algorithm 13. In what follows, we prove correctness of this algorithm.

Lemma 8.3 (Sparse Hitting of Algorithm 13). Let 𝑃 be a shortest 𝑠-𝑣-path in 𝐺 and let 𝑆
be the output of Decompose(𝐺,𝜅). Then E( |𝑃 ∩ 𝑆 |) ≤ 𝑂 (log𝑛).

Proof. Focus on any edge 𝑒 = (𝑥,𝑦) ∈ 𝐸 (𝐺). We analyze the probability that 𝑒 ∈ 𝑆 . We
first analyze the probability of 𝑒 being included into 𝑆 in Line 7 (and the same analysis
applies to the case where the edge is included in Line 11). Focus on any iteration of the
loop in Line 5 for some out-light vertex 𝑣. There are three options:

• 𝑥,𝑦 ∉ 𝐵out
𝐺≥0
(𝑣, 𝑟 ): The edge 𝑒 is not touched in this iteration. It might or might not be

included in later iterations.

• 𝑥 ∈ 𝐵out
𝐺≥0
(𝑣, 𝑟 ) and 𝑦 ∉ 𝐵out

𝐺≥0
(𝑣, 𝑟 ): The edge 𝑒 is contained in 𝜕𝐵out

𝐺≥0
(𝑣, 𝑟 ) and thus

definitely included into 𝑆 .

• 𝑦 ∈ 𝐵out
𝐺≥0
(𝑣, 𝑟 ): The edge 𝑒 is definitely not included into 𝑆 . Indeed, 𝑒 ∉ 𝜕𝐵out

𝐺≥0
(𝑣, 𝑟 ), so

we do not include 𝑒 into 𝑆 in this iteration. Moreover, as we remove 𝑦 from 𝐺 after
this iteration, we will never consider the edge 𝑒 again.
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Algorithm 13 The graph decomposition. This algorithm Decompose(𝐺,𝜅) computes a
subset of edges 𝑆 ⊆ 𝐸 (𝐺) satisfying the properties in Lemma 7.8.

1 procedure Decompose(𝐺,𝜅)
2 Let 𝐿𝑖𝑛 ⊆ 𝑉 (𝐺) be the vertices labeled as in-light by Lemma 8.2 on 𝐺
3 Let 𝐿𝑜𝑢𝑡 ⊆ 𝑉 (𝐺) be the vertices labeled as out-light by Lemma 8.2 on 𝐺𝑟𝑒𝑣
4 𝑆 ← ∅
5 while there is 𝑣 ∈ 𝑉 (𝐺) ∩ 𝐿𝑜𝑢𝑡 do
6 Sample 𝑟 ∼ Geom(20 log𝑛/𝜅)
7 𝑆 ← 𝑆 ∪ 𝜕𝐵out

𝐺≥0
(𝑣, 𝑟 )

8 𝐺 ← 𝐺 \ 𝐵out
𝐺≥0
(𝑣, 𝑟 )

9 while there is 𝑣 ∈ 𝑉 (𝐺) ∩ 𝐿𝑖𝑛 do
10 Sample 𝑟 ∼ Geom(20 log𝑛/𝜅)
11 𝑆 ← 𝑆 ∪ 𝜕𝐵in

𝐺≥0
(𝑣, 𝑟 )

12 𝐺 ← 𝐺 \ 𝐵in
𝐺≥0
(𝑣, 𝑟 )

13 return 𝑆

Recall that the radius 𝑟 is sampled from the geometric distribution Geom(𝑝) for 𝑝 :=
20 log𝑛/𝜅. Therefore, we have that

P(𝑒 ∈ 𝑆) ≤ max
𝑣∈𝑉

P
𝑟∼Geom(𝑝)

(𝑦 ∉ 𝐵out𝐺≥0
(𝑣, 𝑟 ) | 𝑥 ∈ 𝐵out𝐺≥0

(𝑣, 𝑟 ))

= max
𝑣∈𝑉

P
𝑟∼Geom(𝑝)

(𝑟 < dist𝐺≥0 (𝑣,𝑦) | 𝑟 ≥ dist𝐺≥0 (𝑣, 𝑥))

≤ max
𝑣∈𝑉

P
𝑟∼Geom(𝑝)

(𝑟 < dist𝐺≥0 (𝑣, 𝑥) +𝑤𝐺≥0 (𝑒) | 𝑟 ≥ dist𝐺≥0 (𝑣, 𝑥))

By the memoryless property of geometric distributions, we may replace 𝑟 by the (non-
negative) random variable 𝑟 ′ := 𝑟 − dist𝐺≥0 (𝑣, 𝑥):

= max
𝑣∈𝑉

P
𝑟 ′∼Geom(𝑝)

(𝑟 ′ < 𝑤𝐺≥0 (𝑒))

= P
𝑟 ′∼Geom(𝑝)

(𝑟 ′ < 𝑤𝐺≥0 (𝑒))

≤ 𝑝 ·𝑤𝐺≥0 (𝑒).

The last inequality follows since we can interpret 𝑟 ′ ∼ Geom(𝑝) as the number of
coin tosses until we obtain heads, where each toss is independent and lands heads
with probability 𝑝 . Thus, by a union bound, P(𝑟 ′ < 𝑤𝐺≥0 (𝑒)) is upper bounded by the
probability that at least one of 𝑤𝐺≥0 (𝑒) coin tosses lands heads.

Now consider a shortest 𝑠-𝑣-path 𝑃 in𝐺 . Recall that𝑤𝐺 (𝑃) ≤ 0, since𝐺 is a restricted
graph. Hence, 𝑃 contains at most 𝜅 (𝐺) ≤ 𝜅 edges with negative weight (i.e., with weight
exactly −1). It follows that 𝑤𝐺≥0 (𝑃) ≤ 𝜅 and thus finally:

E( |𝑃 ∩ 𝑆 |) =
∑︁
𝑒∈𝑃
P(𝑒 ∈ 𝑆) =

∑︁
𝑒∈𝑃

𝑝 ·𝑤𝐺≥0 (𝑒) ≤ 𝑝 ·𝑤𝐺≥0 (𝑃) ≤ 𝑝𝜅 = 𝑂 (log𝑛). □
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8 Negative Weight SSSP

In what follows, we will need the following lemma.

Lemma 8.4. Let 𝐺 be a directed graph. Then min𝐶 �̄� (𝐶) = min𝑍 �̄� (𝑍 ) where 𝐶 ranges
over all cycles and 𝑍 ranges over all closed walks in 𝐺 .

Proof. Write 𝑐 = min𝐶 �̄� (𝐶) and 𝑧 = min𝑍 �̄� (𝑍 ). It suffices to prove that 𝑐 ≤ 𝑧. Take
the closed walk 𝑍 witnessing 𝑧 with the minimum number of edges. If 𝑍 is a cycle, then
we clearly have 𝑐 ≤ 𝑧. Otherwise, 𝑍 must revisit at least one vertex and can therefore
be split into two closed walks 𝑍1, 𝑍2. By the minimality of 𝑍 we have �̄� (𝑍1), �̄� (𝑍2) > 𝑧.
But note that

𝑧 · |𝑍 | = 𝑤 (𝑍 ) = 𝑤 (𝑍1) +𝑤 (𝑍2) > 𝑧 · |𝑍1 | + 𝑧 · |𝑍2 | = 𝑧 · |𝑍 |,

a contradiction. □

Lemma 8.5 (Progress of Algorithm 13). Let 𝑆 be the output of Decompose(𝐺,𝜅). Then,
with high probability, any strongly connected component 𝐶 in 𝐺 \ 𝑆 satisfies (i) |𝐶 | ≤
3
4 |𝑉 (𝐺) | or (ii) 𝜅 (𝐺 [𝐶]) ≤

𝜅
2 .

Proof. Throughout, condition on the event that the heavy-light classification was suc-
cessful (which happens with high probability). Observe that whenever we carve out
a ball 𝐵out

𝐺≥0
(𝑣, 𝑟 ) and include its outgoing edges 𝜕𝐵out

𝐺≥0
(𝑣, 𝑟 ) into 𝑆 , then any two ver-

tices 𝑥 ∈ 𝐵out
𝐺≥0
(𝑣, 𝑟 ) and 𝑦 ∉ 𝐵out

𝐺≥0
(𝑣, 𝑟 ) cannot be part of the same strongly connected

component in 𝐺 \ 𝑆 (as there is no path from 𝑥 to 𝑦). The same argument applies to
𝐵in
𝐺≥0
(𝑣, 𝑟 ).

Therefore, there are only two types of strongly connected components: (i) Those
contained in 𝐵out

𝐺≥0
(𝑣, 𝑟 ) or 𝐵in

𝐺≥0
(𝑣, 𝑟 ), and (ii) those in the remaining graph after it no

longer contains light vertices. We argue that each component of type (i) satisfies that
|𝐶 | ≤ 3

4 |𝑉 (𝐺) | (with high probability) and that each component of type (ii) satisfies
𝜅 (𝐺 [𝐶]) ≤ 𝜅

2 .
In case (i) we have |𝐶 | ≤ |𝐵out

𝐺≥0
(𝑣, 𝑟 ) |. Since 𝑣 is out-light, it follows that |𝐶 | ≤ 3

4 |𝑉 (𝐺) |
whenever 𝑟 ≤ 𝜅

4 . This event happens with high probability as:

P
𝑟∼Geom(20 log𝑛/𝜅)

(
𝑟 >

𝜅

4

)
≤

(
1 − 20 log𝑛

𝜅

) 𝜅
4
≤ exp(−5 log𝑛) ≤ 𝑛−5.

The number of iterations is bounded by 𝑛, thus by a union bound we never have 𝑟 > 𝜅
4

with probability at least 1−𝑛−4. A similar argument applies if we carve 𝐵in
𝐺≥0
(𝑣, 𝑟 ) when

𝑣 is in-light.
Next, focus on case (ii). Let 𝐶 be a strongly connected component in the remaining

graph 𝐺 after carving out all balls centered at light vertices. Suppose that 𝜅 (𝐺 [𝐶]) > 𝜅
2 .

We will construct a closed walk 𝑍 in 𝐺 with mean weight �̄� (𝑍 ) < 1, contradicting the
assumption that 𝐺 is restricted by Lemma 8.4. Let 𝑃 be the 𝑠-𝑣-path in 𝐺 [𝐶 ∪ { 𝑠 }] of
nonpositive weight witnessing the largest number of negative edges (i.e., the path that
witnesses 𝜅 (𝐺 [𝐶 ∪ { 𝑠 }])), and let 𝑢 be the first vertex (after 𝑠) on that path 𝑃 . Let 𝑃1 be
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8.1 SSSP on Restricted Graphs

the 𝑢-𝑣-path obtained by removing the 𝑠-𝑢-edge from 𝑃 . Since the 𝑠-𝑢-edge has weight 0,
we have that 𝑤 (𝑃1) ≤ 0 and that 𝑃1 contains more than 𝜅

2 negative-weight edges. Since
𝑢, 𝑣 are both out-heavy and in-heavy vertices in the original graph 𝐺 , we have that
|𝐵out
𝐺≥0
(𝑣, 𝜅4 ) |, |𝐵

in
𝐺≥0
(𝑢, 𝜅4 ) | >

𝑛
2 . It follows that these two balls must intersect and that

there exists a 𝑣-𝑢-path 𝑃2 of length 𝑤 (𝑃2) ≤ 𝜅
4 +

𝜅
4 = 𝜅

2 . Combining 𝑃1 and 𝑃2, we obtain
a closed walk 𝑍 with total weight 𝑤 (𝑍 ) ≤ 𝜅

2 containing more than 𝜅
2 (negative-weight)

edges. It follows that �̄� (𝑍 ) < 1 yielding the claimed contradiction. □

Proof of Lemma 7.8. The correctness is immediate by the previous lemmas: Lemma 8.5
proves the progress property, and Lemma 8.3 the sparse hitting property. Next, we
analyze the running time. Computing the heavy-light classification takes time 𝑂 ((𝑚 +
𝑛 log log𝑛) log𝑛) due to Lemma 8.2. Sampling each radius 𝑟 from the geometric distri-
bution Geom(20 log𝑛/𝜅) runs in expected constant time in the word RAM with word
size Ω(log𝑛) [BF13], so the overhead for sampling the radii is 𝑂 (𝑛) in expectation. To
compute the balls we use Dijkstra’s algorithm. Using Thorup’s priority queue [Tho04],
each vertex explored in Dijkstra’s takes time 𝑂 (log log𝑛) and each edge time 𝑂 (1).
Since every vertex contained in some ball is removed from subsequent iterations, a
vertex participates in at most one ball. Note that a naive implementation of this would
reinitialize the priority queue and distance array at each iteration of the while-loop.
To avoid this, we initialize the priority queue and array of distances once, before the
execution of the while-loops. Then, at the end of an iteration of the while-loop we
reinitialize them in time proportional to the removed vertices and edges (this is the
same approach as in the BNW algorithm [BNW22]). Thus, the overall time to compute
all the balls is indeed 𝑂 (𝑚 + 𝑛 log log𝑛). □

8.1.2 Proof of Theorem 8.1

With the graph decomposition in hand, we can present our full algorithm for Restricted
SSSP. The overall structure closely follows the BNW algorithm (see [BNW22, Algorithm
1]).

We start with the following crucial definition.

Definition 8.6. Let 𝐺 be a directed graph with a designated source vertex 𝑠 . For any
vertex 𝑣 ∈ 𝑉 (𝐺), we denote by 𝜂𝐺 (𝑣) the smallest number of negative-weight edges in
any shortest 𝑠-𝑣-path.

The next proposition captures the relationship between the parameters 𝜅 (𝐺) and
𝜂𝐺 (·) when 𝐺 is restricted (see Definitions 8.6 and 7.7).

Proposition 8.7. Let 𝐺 be a restricted graph with source vertex 𝑠 . Then, for every vertex
𝑣 ∈ 𝑉 it holds that 𝜂𝐺 (𝑣) ≤ 𝜅 (𝐺).

Proof. Fix a vertex 𝑣. Let 𝑃 be a shortest 𝑠-𝑣 path witnessing 𝜂𝐺 (𝑣) (see Definition 8.6).
Since 𝐺 is restricted, it does not contain negative cycles and thus 𝑃 is a simple path.
Furthermore, since there is an edge from 𝑠 to 𝑣 of weight 0, it follows that 𝑤𝐺 (𝑃) ≤ 0.
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8 Negative Weight SSSP

Recall that 𝜅 (𝐺) is the maximum number of negative edges in any simple path which
starts at 𝑠 and has nonpositive weight (see Definition 7.7). Therefore, it follows that
𝜂𝐺 (𝑣) ≤ 𝜅 (𝐺). □

Next, we use two lemmas from [BNW22]:

Lemma 8.8 (Dijkstra with Negative Weights, similar to [BNW22, Lemma 3.3]). Let 𝐺
be a directed graph with source vertex 𝑠 ∈ 𝑉 (𝐺) that does not contain a negative cycle.
There is an algorithm that computes a shortest path tree from 𝑠 in time 𝑂 (∑𝑣 (deg(𝑣) +
log log𝑛) · 𝜂𝐺 (𝑣)). (If 𝐺 contains a negative cycle, the algorithm does not terminate.)

The main differences to [BNW22, Lemma 3.3] are that we use a faster priority queue
for Dijkstra and that [BNW22, Lemma 3.3] is restricted to graphs of constant maximum
degree. Therefore, we devote Section 8.1.3 to a self-contained proof of Lemma 8.8.

Lemma 8.9 (DAG Edges, [BNW22, Lemma 3.2]). Let𝐺 be a directed graph with nonneg-
ative edge weights inside its SCCs. Then we can compute a potential function 𝜙 such that
𝐺𝜙 has nonnegative edge weights (everywhere) in time 𝑂 (𝑛 +𝑚).

Proof Sketch. For the complete proof, see [BNW22, Lemma 3.2]. The idea is to treat
the graph as a DAG of SCCs, and to assign a potential function 𝜙 to every SCC such
that the DAG edges become nonnegative. One way to achieve this is by computing a
topological ordering, and by assigning 𝜙 (𝑣) to be𝑊 times the rank of 𝑣’s SCC in that
ordering (here, −𝑊 is the smallest weight in 𝐺). Then 𝐺𝜙 satisfies the claim. □

The Algorithm We are ready to state the algorithm; see Algorithm 14 for the pseu-
docode. Recall that 𝜅 (𝐺) is the maximum number of negative edges in any path 𝑃
starting at 𝑠 with 𝑤 (𝑃) ≤ 0 (Definition 7.7). If 𝜅 (𝐺) ≤ 2, we run Lemma 8.8 to compute
the distances from 𝑠 . Otherwise, we start with applying our graph decomposition. That
is, we compute a set of edges 𝑆 , such that any strongly connected component 𝐶 in
the graph 𝐺 \ 𝑆 is either small or has an improved 𝜅-value. This constitutes enough
progress to solve the induced graphs𝐺 [𝐶∪{ 𝑠 }] recursively. The recursive calls produce
shortest path trees and thereby a potential function 𝜙1 such that𝐺𝜙1 has nonnegative
edge weights inside each SCC. We then add back the missing edges by first calling
Lemma 8.9 (to fix the edges 𝑒 ∉ 𝑆 between strongly connected components) and then
Lemma 8.8 (to fix the edges 𝑒 ∈ 𝑆). The correctness proof is easy:

Lemma 8.10 (Correctness of Algorithm 14). Let 𝐺 be an arbitrary directed graph (not
necessarily restricted), and let 𝜅 be arbitrary. Then, if RestrictedSSSP(𝐺,𝜅) terminates, it
correctly computes a shortest path tree from the designated source vertex 𝑠 .

Proof. If 𝜅 ≤ 2 and the call in Line 3 terminates, then it correctly computes a shortest
path tree due to Lemma 8.8. If 𝜅 > 2, then in Line 10 we compute a potential function 𝜙2
and in Line 11 we run Lemma 8.8 to compute a shortest path tree in the graph 𝐺𝜙2 .
Assuming that Lemma 8.8 terminates, this computation is correct since𝐺𝜙2 is equivalent
to 𝐺 . □
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8.1 SSSP on Restricted Graphs

Algorithm 14 Solves the negative-weight SSSP problem on restricted graphs. The
procedure RestrictedSSSP(𝐺,𝜅) takes a restricted graph 𝐺 and an upper bound 𝜅 ≥
𝜅 (𝐺), and computes a shortest path tree from the designated source vertex 𝑠 .

1 procedure RestrictedSSSP(𝐺,𝜅)
2 if 𝜅 ≤ 2 then

3 Run BF-Dijkstra on 𝐺 from 𝑠 and return the computed shortest path tree
4 Compute 𝑆 ← Decompose(𝐺,𝜅)
5 Compute the strongly connected components 𝐶1, . . . ,𝐶ℓ of 𝐺 \ 𝑆
6 for 𝑖 ← 1, . . . , ℓ do
7 if |𝐶𝑖 | ≤ 3𝑛

4 then 𝜅𝑖 ← 𝜅 else 𝜅𝑖 ← 𝜅
2

8 Recursively call RestrictedSSSP(𝐺 [𝐶𝑖 ∪ { 𝑠 }], 𝜅𝑖)
9 Let 𝜙1(𝑣) = dist𝐺 [𝐶𝑖∪{ 𝑠 }] (𝑠, 𝑣) for all 𝑣 ∈ 𝐶𝑖
10 Fix the DAG edges on (𝐺 \ 𝑆)𝜙1 to obtain a potential 𝜙2
11 Run BF-Dijkstra on 𝐺𝜙2 and return the computed shortest path tree

Lemma 8.11 (Running Time of Algorithm 14). Let𝐺 be a restricted graph with 𝜅 (𝐺) ≤ 𝜅 .
Then RestrictedSSSP(𝐺,𝜅) runs in expected time 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛).

Proof. We first analyze the running time of a single call to Algorithm 14, ignoring the
time spent in recursive calls. For the base case, when 𝜅 (𝐺) ≤ 2, the running time
of Line 3 is 𝑂 (𝑚 + 𝑛 log log𝑛) by Lemma 8.8 and Proposition 8.7. Otherwise, the call
to Decompose(𝐺,𝜅) in Line 4 runs in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log𝑛) by Lemma 7.8.
Computing the strongly connected components in𝐺 \ 𝑆 is in linear time 𝑂 (𝑚 + 𝑛), and
so is the call to Lemma 8.9 in Line 10.
Analyzing the running time of Line 11 takes some more effort. Recall that 𝜂𝐺𝜙2

(𝑣) is
the minimum number of negative edges in any 𝑠-𝑣 path in 𝐺𝜙2 (see Definition 8.6). Our
intermediate goal is to bound E(𝜂𝐺𝜙2

(𝑣)) = 𝑂 (log𝑛) for all vertices 𝑣. Let 𝑆 be the set of
edges computed by the decomposition, as in the algorithm. We proceed in three steps:

• Claim 1: 𝐺𝜙1 \ 𝑆 has nonnegative edges inside its SCCs. The recursive calls in Line 8
correctly compute the distances by Lemma 8.10. Hence, for any two nodes 𝑢, 𝑣 ∈ 𝐶𝑖 ,
we have that 𝑤𝜙1 (𝑢, 𝑣) = 𝑤 (𝑢, 𝑣) + dist𝐺 [𝐶𝑖∪{ 𝑠 }] (𝑠,𝑢) − dist𝐺 [𝐶𝑖∪{ 𝑠 }] (𝑠, 𝑣) ≥ 0, by the
triangle inequality.

• Claim 2: 𝐺𝜙2 \ 𝑆 has only nonnegative edges. This is immediate by Lemma 8.9.

• Claim 3: For every node 𝑣 we have E(𝜂𝐺𝜙2
(𝑣)) ≤ 𝑂 (log𝑛). Let 𝑃 be a shortest 𝑠-𝑣-path

in 𝐺 . Since 𝐺 and 𝐺𝜙2 are equivalent, 𝑃 is also a shortest path in 𝐺𝜙2 . By the previous
claim, the only candidate negative edges in 𝑃 are the edges in 𝑆 . Therefore, we have
that E(𝜂𝐺𝜙2

(𝑣)) ≤ E( |𝑃 ∩ 𝑆 |) = 𝑂 (log𝑛), by Lemma 7.8.
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8 Negative Weight SSSP

The expected running time of Line 11 is thus bounded by

𝑂
©«

∑︁
𝑣∈𝑉 (𝐺)

(deg(𝑣) + log log𝑛) · E(𝜂𝐺𝜙2
(𝑣))ª®¬ = 𝑂

©«
∑︁

𝑣∈𝑉 (𝐺)
(deg(𝑣) + log log𝑛) · log𝑛ª®¬

= 𝑂 ((𝑚 + 𝑛 log log𝑛) log𝑛).

Therefore, a single execution of Algorithm 14 runs in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log𝑛);
let 𝑐 denote the hidden constant in the 𝑂-notation.

We finally analyze the total running time, taking into account the recursive calls. We
inductively prove that the running time is bounded by 𝑐 (𝑚+𝑛 log log𝑛) log𝑛 · log4/3(𝑛𝜅).

We claim that for each recursive call on a subgraph𝐺 [𝐶𝑖∪{ 𝑠 }], where𝐶𝑖 is a strongly
connected component in 𝐺 \ 𝑆 , it holds that (i) 𝐺 [𝐶𝑖 ∪ { 𝑠 }] is a restricted graph and
that (ii) 𝜅 (𝐺 [𝐶𝑖 ∪ { 𝑠 }]) ≤ 𝜅𝑖 . To see (i), observe that any subgraph of 𝐺 containing 𝑠
is also restricted. To show (ii), we distinguish two cases: Either |𝐶𝑖 | ≤ 3𝑛

4 , in which
case we trivially have 𝜅 (𝐺 [𝐶𝑖 ∪ { 𝑠 }]) ≤ 𝜅 (𝐺) ≤ 𝜅 = 𝜅𝑖 . Or |𝐶𝑖 | > 3𝑛

4 , and in this case
Lemma 7.8 guarantees that 𝜅 (𝐺 [𝐶𝑖 ∪ { 𝑠 }]) ≤ 𝜅

2 = 𝜅𝑖 . It follows by induction that each
recursive call runs in time 𝑐 · ( |𝐸 (𝐺 [𝐶𝑖 ∪ { 𝑠 }]) | + |𝐶𝑖 | log log𝑛) log𝑛 · log4/3( |𝐶𝑖 |𝜅𝑖).
Moreover, observe that in either case we have |𝐶𝑖 |𝜅𝑖 ≤ 3

4𝑛𝜅. Therefore, the total time
can be bounded by

𝑐 (𝑚 + 𝑛 log log𝑛) log𝑛 +
ℓ∑︁
𝑖=1

𝑐 · ( |𝐸 (𝐺 [𝐶𝑖 ∪ { 𝑠 }]) | + |𝐶𝑖 | log log𝑛) log𝑛 · log4/3( |𝐶𝑖 |𝜅𝑖)

≤ 𝑐 (𝑚 + 𝑛 log log𝑛) log𝑛

+
ℓ∑︁
𝑖=1

𝑐 · ( |𝐸 (𝐺 [𝐶𝑖 ∪ { 𝑠 }]) | + |𝐶𝑖 | log log𝑛) log𝑛 · (log4/3(𝑛𝜅) − 1)

≤ 𝑐 (𝑚 + 𝑛 log log𝑛) log𝑛 + 𝑐 (𝑚 + 𝑛 log log𝑛) log𝑛 · (log4/3(𝑛𝜅) − 1)
= 𝑐𝑚 log𝑛 log log𝑛 · log4/3(𝑛𝜅),

where in the third step we used that
∑
𝑖 |𝐸 (𝐺 [𝐶𝑖 ∪ { 𝑠 }]) | ≤ 𝑚 and that

∑
𝑖 |𝐶𝑖 | ≤ 𝑛. This

completes the running time analysis. □

Proof of Theorem 8.1. This proof is almost immediate from the previous two Lemmas 8.10
and 8.11. In combination, these lemmas prove that Algorithm 14 is a Las Vegas algorithm
for the Restricted SSSP problem which runs in expected time𝑂 ((𝑚 +𝑛 log log𝑛) log2 𝑛).
By interrupting the algorithm after twice its expected running time (and returning
Fail in that case), we obtain a Monte Carlo algorithm with worst-case running time
𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛) and error probability 1

2 as claimed. □

We remark that Algorithm 14 is correct even if the input graph𝐺 is not restricted—
therefore, whenever 𝐺 contains a negative cycle, the algorithm cannot terminate.
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8.1.3 Lazy Dijkstra

This section is devoted to a proof of the following lemma, stating that Dijkstra’s al-
gorithm can be adapted to work with negative edges in time depending on the 𝜂𝐺 (𝑣)
values. Recall that 𝜂𝐺 (𝑣) denotes the minimum number of negative-weight edges in a
shortest 𝑠-𝑣 path in 𝐺 .

Lemma 8.8 (Dijkstra with Negative Weights, similar to [BNW22, Lemma 3.3]). Let 𝐺
be a directed graph with source vertex 𝑠 ∈ 𝑉 (𝐺) that does not contain a negative cycle.
There is an algorithm that computes a shortest path tree from 𝑠 in time 𝑂 (∑𝑣 (deg(𝑣) +
log log𝑛) · 𝜂𝐺 (𝑣)). (If 𝐺 contains a negative cycle, the algorithm does not terminate.)

This lemma is basically [BNW22, Lemma 3.3], but the statement differs slightly. We
provide a self-contained proof that morally follows the one in [BNW22, Appendix A].

We give the pseudocode for Lemma 8.8 in Algorithm 15. Throughout, let𝐺 = (𝑉 , 𝐸,𝑤)
be the given directed weighted graph with possibly negative edge weights. We write
𝐸≥0 for the subset of edges with nonnegative weight, and 𝐸<0 for the subset of edges
with negative weight. In the pseudocode, we rely on Thorup’s priority queue:

Lemma 8.12 (Thorup’s Priority Queue [Tho04]). There is a priority queue imple-
mentation for storing 𝑛 integer keys that supports the operations FindMin, Insert and
DecreaseKey in constant time, and Delete in time 𝑂 (log log𝑛).

For the analysis of the algorithm, we define two central quantities. Let 𝑣 be a vertex,
then we define

dist𝑖 (𝑣) = min{𝑤 (𝑃) : 𝑃 is an 𝑠-𝑣-path containing less than 𝑖 negative edges },

dist′𝑖 (𝑣) = min
dist𝑖 (𝑣), min

𝑢∈𝑉
𝑤 (𝑢,𝑣)<0

dist𝑖 (𝑢) +𝑤 (𝑢, 𝑣)
 .

Note that dist0(𝑣) = dist′0(𝑣) = ∞. We start with some observations involving these
quantities dist𝑖 and dist′𝑖 :

Observation 8.13. For all 𝑖 , dist𝑖 (𝑣) ≥ dist′𝑖 (𝑣) ≥ dist𝑖+1(𝑣).

Observation 8.14. For all 𝑣,

dist𝑖+1(𝑣) = min
dist𝑖 (𝑣), min

𝑢∈𝑉
dist𝑖 (𝑢)>dist′𝑖 (𝑢)

dist′𝑖 (𝑢) + dist𝐺≥0 (𝑢, 𝑣)
 .

Proof. The statement is clear if dist𝑖 (𝑣) = dist𝑖+1(𝑣), so assume that dist𝑖+1(𝑣) < dist𝑖 (𝑣).
Let 𝑃 be the path witnessing dist𝑖+1(𝑣), i.e., a shortest 𝑠-𝑣-path containing less than 𝑖 + 1
negative edges. Let (𝑥,𝑢) denote the last negative-weight edge in 𝑃 , and partition the
path 𝑃 into subpaths 𝑃1 𝑥 𝑢 𝑃2. Then the first segment 𝑃1 𝑥 is a path containing less
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Algorithm 15 The version of Dijkstra’s algorithm implementing Lemma 8.8.
1 Initialize 𝑑 [𝑠] ← 0 and 𝑑 [𝑣] ← ∞ for all vertices 𝑣 ≠ 𝑠
2 Initialize a Thorup priority queue 𝑄 with keys 𝑑 [·] and add 𝑠 to 𝑄
3 repeat

(The Dijkstra phase)
4 𝐴← ∅
5 while 𝑄 is nonempty do

6 Remove the vertex 𝑣 from 𝑄 with minimum 𝑑 [𝑣]
7 Add 𝑣 to 𝐴
8 for each edge (𝑣, 𝑥) ∈ 𝐸≥0

do

9 if 𝑑 [𝑣] +𝑤 (𝑣,𝑤) < 𝑑 [𝑥] then
10 Add 𝑥 to 𝑄
11 𝑑 [𝑥] ← 𝑑 [𝑣] +𝑤 (𝑣, 𝑥)

(The Bellman-Ford phase)
12 for each 𝑣 ∈ 𝐴 do

13 for each edge (𝑣, 𝑥) ∈ 𝐸<0
do

14 if 𝑑 [𝑣] +𝑤 (𝑣, 𝑥) < 𝑑 [𝑥] then
15 Add 𝑥 to 𝑄
16 𝑑 [𝑥] ← 𝑑 [𝑣] +𝑤 (𝑣, 𝑥)
17 until 𝑄 is empty
18 return 𝑑 [𝑣] for all vertices 𝑣

than 𝑖 negative-weight edges and the segment𝑢 𝑃2 does not contain any negative-weight
edges. Therefore,

dist𝑖+1(𝑣) = dist𝑖 (𝑥) +𝑤 (𝑥,𝑢) + dist𝐺≥0 (𝑢, 𝑣) ≥ dist′𝑖 (𝑢) + dist𝐺≥0 (𝑢, 𝑣).

Suppose, for the sake of contradiction, that dist𝑖 (𝑢) = dist′𝑖 (𝑢). Then

dist𝑖+1(𝑣) ≥ dist𝑖 (𝑢) + dist𝐺≥0 (𝑢, 𝑣) ≥ dist𝑖 (𝑣),

which contradicts our initial assumption. □

Observation 8.15. For all 𝑣,

dist′𝑖 (𝑣) = min

dist𝑖 (𝑣), min
𝑢∈𝑉

dist𝑖−1 (𝑢)>dist𝑖 (𝑢)
𝑤 (𝑢,𝑣)<0

dist𝑖 (𝑢) +𝑤 (𝑢, 𝑣)


Proof. The statement is clear if dist𝑖 (𝑣) = dist′𝑖 (𝑣), so suppose that dist′𝑖 (𝑣) < dist𝑖 (𝑣).
Then there is some vertex 𝑢 ∈ 𝑉 with 𝑤 (𝑢, 𝑣) < 0 such that dist′𝑖 (𝑣) = dist𝑖 (𝑢) +𝑤 (𝑢, 𝑣).
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It suffices to prove that dist𝑖−1(𝑢) > dist𝑖 (𝑢). Suppose for the sake of contradiction that
dist𝑖−1(𝑢) = dist𝑖 (𝑢). Then dist′𝑖 (𝑣) = dist𝑖−1(𝑢) +𝑤 (𝑢, 𝑣) ≥ dist′𝑖−1(𝑣), which contradicts
our initial assumption (by Observation 8.13). □

Lemma 8.16 (Invariants of Algorithm 15). Consider the 𝑖-th iteration of the loop in
Algorithm 15 (starting at 1). Then the following invariants hold:

1. After the Dijkstra phase (after Line 11):

a. 𝑑 [𝑣] = dist𝑖 (𝑣) for all vertices 𝑣, and
b. 𝐴 = { 𝑣 : dist𝑖−1(𝑣) > dist𝑖 (𝑣) }.

2. After the Bellman-Ford phase (after Line 16):

a) 𝑑 [𝑣] = dist′𝑖 (𝑣) for all vertices 𝑣, and
b) 𝑄 = { 𝑣 : dist𝑖 (𝑣) > dist′𝑖 (𝑣) }.

Proof. We prove the invariants by induction on 𝑖 .

First Dijkstra Phase We start with the analysis of the first iteration, 𝑖 = 1. The
execution of the Dijkstra phase behaves exactly like the regular Dijkstra algorithm.
It follows that 𝑑 [𝑣] = dist𝐺≥0 (𝑠, 𝑣) = dist1(𝑣), as claimed in Invariant 1a. Moreover,
we include in 𝐴 exactly all vertices which were reachable from 𝑠 in 𝐺≥0. Indeed, for
these vertices 𝑣 we have that dist1(𝑣) = dist𝐺≥0 (𝑠, 𝑣) < ∞ and dist0(𝑣) = ∞, and thus
𝐴 = { 𝑣 : dist0(𝑣) > dist1(𝑣) }, which proves Invariant 1b.

Later Dijkstra Phase Next, we analyze the Dijkstra phase for a later iteration,
𝑖 > 1. Letting 𝑑′ denote the state of the array 𝑑 after the Dijkstra phase, our goal is to
prove that 𝑑′[𝑣] = dist𝑖 (𝑣) for all vertices 𝑣. So fix any vertex 𝑣; we may assume that
dist𝑖+1(𝑣) < dist𝑖 (𝑣), as otherwise the statement is easy using that the algorithm never
increases 𝑑 [·]. A standard analysis of Dijkstra’s algorithm reveals that

𝑑′[𝑣] = min
𝑢∈𝑄
(𝑑 [𝑢] + dist𝐺≥0 (𝑢, 𝑣)),

where 𝑄 is the queue before the execution of Dijkstra. By plugging in the induction
hypothesis and Observation 8.14, we obtain that indeed

𝑑′[𝑣] = min
𝑢∈𝑉

dist𝑖−1 (𝑣)>dist′𝑖−1 (𝑣)

𝑑 [𝑢] + dist𝐺≥0 (𝑢, 𝑣) = dist𝑖 (𝑣),

which proves Invariant 1a.
To analyze Invariant 1b and the set 𝐴, first recall that we reset 𝐴 to an empty set

before executing the Dijkstra phase. Afterwards, we add to 𝐴 exactly those vertices
that are either (i) contained in the queue 𝑄 initially or (ii) for which 𝑑′[𝑣] < 𝑑 [𝑣]. Note
that these sets are exactly (i) { 𝑣 : dist𝑖 (𝑣) > dist′𝑖 (𝑣) } and (ii) { 𝑣 : dist′𝑖−1(𝑣) > dist𝑖 (𝑣) }
whose union is exactly { 𝑣 : dist𝑖−1(𝑣) > dist𝑖 (𝑣) } by Observation 8.13.
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8 Negative Weight SSSP

Bellman-Ford Phase The analysis of the Bellman-Ford phase is simpler. Writing
again 𝑑′ for the state of the array 𝑑 after the execution of the Bellman-Ford phase, by
Observation 8.15 we have that

𝑑′[𝑣] = min
𝑢∈𝐴

𝑤 (𝑢,𝑣)<0

𝑑 [𝑢] +𝑤 (𝑢, 𝑣) = min
𝑢∈𝑉

dist′𝑖−1 (𝑢)>dist𝑖 (𝑢)
𝑤 (𝑢,𝑣)<0

dist𝑖 (𝑢) +𝑤 (𝑢, 𝑣) = dist′𝑖 (𝑣),

which proves Invariant 2a. Here again we have assumed that dist′𝑖 (𝑣) < dist𝑖 (𝑣), as
otherwise the statement is trivial since the algorithm never increases 𝑑 [·].
Moreover, after the Dijkstra phase has terminated, the queue 𝑄 was empty. After-

wards, in the current Bellman-Ford phase, we have inserted exactly those vertices 𝑣 into
the queue for which dist𝑖 (𝑣) > dist′𝑖 (𝑣) and thus 𝑄 = { 𝑣 : dist𝑖 (𝑣) > dist′𝑖 (𝑣) }, which
proves Invariant 2b. □

From these invariants (and the preceding observations), we can easily conclude the
correctness of Algorithm 15:

Lemma 8.17 (Correctness of Algorithm 15). If the given graph 𝐺 contains a negative
cycle, then Algorithm 15 does not terminate. Moreover, if Algorithm 15 terminates, then it
has correctly computed 𝑑 [𝑣] = dist𝐺 (𝑠, 𝑣).

Proof. We show that after the algorithm has terminated, all edges (𝑢, 𝑣) are relaxed,
meaning that 𝑑 [𝑣] ≤ 𝑑 [𝑢] +𝑤 (𝑢, 𝑣). Indeed, suppose there is an edge (𝑢, 𝑣) which is not
relaxed, i.e., 𝑑 [𝑣] > 𝑑 [𝑢] +𝑤 (𝑢, 𝑣). Let 𝑖 denote the final iteration of the algorithm. By
Invariant 2a we have that 𝑑 [𝑥] = dist′𝑖 (𝑥) and by Invariant 2b we have that dist′𝑖 (𝑥) =
dist𝑖 (𝑥) (assuming that𝑄 = ∅), for all vertices 𝑥 . We distinguish two cases: If𝑤 (𝑢, 𝑣) ≥ 0,
then we have that dist𝑖 (𝑣) > dist𝑖 (𝑢) +𝑤 (𝑢, 𝑣)—a contradiction. And if𝑤 (𝑢, 𝑣) < 0, then
we have that dist′𝑖 (𝑣) = dist𝑖 (𝑢) +𝑤 (𝑢, 𝑣)—also a contradiction.

So far we have proved that if the algorithm terminates, all edges are relaxed. It is easy
to check that if 𝐺 contains a negative cycle, then at least one edge in that cycle cannot
be relaxed. It follows that the algorithm does not terminate whenever 𝐺 contains a
negative cycle.

Instead, assume that𝐺 does not contain a negative cycle. We claim that the algorithm
has correctly computed all distances. First, recall that throughout we have 𝑑 [𝑣] ≥
dist𝐺 (𝑠, 𝑣). Consider any shortest 𝑠-𝑣-path 𝑃 ; we prove that 𝑑 [𝑣] = 𝑤 (𝑃) by induction on
the length of 𝑃 . For |𝑃 | = 0, we have correctly set 𝑑 [𝑠] = 0 initially. (Note that dist𝐺 (𝑠, 𝑠)
cannot be negative as otherwise𝐺 would contain a negative cycle.) So assume that 𝑃
is nonempty and that 𝑃 can be written as 𝑃1𝑢 𝑣. Then by induction 𝑑 [𝑢] = dist𝐺 (𝑃1𝑢).
Since the edge (𝑢, 𝑣) is relaxed, we have that 𝑑 [𝑣] ≤ 𝑑 [𝑢] +𝑤 (𝑢, 𝑣) = 𝑤 (𝑃) = dist𝐺 (𝑠, 𝑣).
Recall that we also have 𝑑 [𝑣] ≥ dist𝐺 (𝑠, 𝑣) and therefore 𝑑 [𝑣] = dist𝐺 (𝑠, 𝑣). □

For us, the most relevant change in the proof is the running time analysis. Recall
that 𝜂𝐺 (𝑣) denotes the minimum number of negative edges in a shortest 𝑠-𝑣-path, and
that deg(𝑣) denotes the out-degree of a vertex 𝑣.

156



8.2 SSSP on Graphs without Negative Cycles

Lemma 8.18 (Running Time of Algorithm 15). Assume that𝐺 does not contain a negative
cycle. Then Algorithm 15 runs in time 𝑂 (∑𝑣 (deg(𝑣) + log log𝑛)𝜂𝐺 (𝑣)).

Proof. Consider a single iteration of the algorithm. Letting 𝐴 denote the state of the
set 𝐴 at the end of (Dijkstra’s phase of) the iteration, the running time of the whole
iteration can be bounded by:

𝑂

(∑︁
𝑣∈𝐴
(deg(𝑣) + log log𝑛)

)
.

Indeed, in the Dijkstra phase, in each iteration we spend time 𝑂 (log log𝑛) for deleting
an element from the queue (Lemma 8.12), but for each such deletion in 𝑄 we add a
new element to 𝐴. Moreover, both in the Dijkstra phase and the Bellman-Ford phase
we only enumerate edges starting from a vertex in 𝐴, amounting for a total number of
𝑂 (∑𝑣∈𝐴 deg(𝑣)) edges. The inner steps of the loops (in Lines 9 to 11 and Lines 14 to 16)
run in constant time each (Lemma 8.12).

Let us write 𝐴𝑖 for the state of 𝑖 in the 𝑖-th iteration. Then the total running time is

𝑂

( ∞∑︁
𝑖=1

∑︁
𝑣∈𝐴𝑖

(deg(𝑣) + log log𝑛)
)
= 𝑂

(∑︁
𝑣∈𝑉
|{ 𝑖 : 𝑣 ∈ 𝐴𝑖 }| · (deg(𝑣) + log log𝑛)

)
.

To complete the proof, it suffices to show that |{ 𝑖 : 𝑣 ∈ 𝐴𝑖 }| ≤ 𝜂𝐺 (𝑣). To see this, we
first observe that dist𝜂𝐺 (𝑣)+1(𝑣) = dist𝜂𝐺 (𝑣)+2 = · · · = dist𝐺 (𝑠, 𝑣). Since, by the invariants
above we know that 𝐴𝑖 = { 𝑣 : dist𝑖−1(𝑣) > dist𝑖 (𝑣) }, it follows that 𝑣 can only be
contained in the sets 𝐴1, . . . , 𝐴𝜂𝐺 (𝑣) . □

In combination, Lemmas 8.17 and 8.18 complete the proof of Lemma 8.8.

8.2 SSSP on Graphs without Negative Cycles

In this section we present the 𝑂 ((𝑚 + 𝑛 log log𝑛) log2(𝑛) log(𝑛𝑊 ))-time algorithm for
SSSP on graphs 𝐺 without negative cycles. Later in Section 8.3, we will remove the
assumption that 𝐺 does not contain negative cycles, and strengthen the algorithm to
find a negative cycle if it exists.

The main idea is to use scaling and some tricks for probability amplification in order
to extend our algorithm for restricted graphs developed in Section 8.1. More precisely,
we use the standard scaling technique [Gab83; GT89; Gol95; BNW22] to reduce the
computation of SSSP in an arbitrary graph (without negative cycles) to the case of
restricted graphs. Formally, we prove the following theorem:

Theorem 8.19 (Scaling Algorithm for SSSP). There is a Las Vegas algorithm which, given
a directed graph 𝐺 without negative cycles and with a source vertex 𝑠 ∈ 𝑉 (𝐺), computes a
shortest path tree from 𝑠 , running in time𝑂 (𝑇RSSSP(𝑚,𝑛) · log(𝑛𝑊 )) with high probability
(and in expectation).
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Algorithm 16 One step of the scaling algorithm. Given a graph 𝐺 with minimum
weight greater than −3𝑊 , Scale(𝐺) computes a potential 𝜙 such that𝐺𝜙 has minimum
weight greater than −2𝑊 . See Lemma 8.20.
1 procedure Scale(𝐺)
2 Let𝑊 be such that all weights in 𝐺 are greater than −3𝑊
3 Let 𝐻 be a copy of 𝐺 with edge weights 𝑤𝐻 (𝑒) = ⌈𝑤𝐺 (𝑒)/𝑊 ⌉ + 1, and add

an artificial source vertex 𝑠 to 𝐻 with weight-0 edges to all other vertices
4 Compute a shortest path tree from 𝑠 in the restricted graph𝐻 using Theorem 8.1
5 Let 𝜙 be the potential defined by 𝜙 (𝑣) =𝑊 · dist𝐻 (𝑠, 𝑣)
6 return 𝜙

One-Step Scaling The idea of the scaling algorithm is to increase the smallest weight
in 𝐺 step-by-step, while maintaining an equivalent graph. The following Lemma 8.20
gives the implementation of one such scaling step as a direct reduction to Restricted
SSSP.

Lemma 8.20 (One-Step Scaling). Let 𝐺 be a directed graph that does not contain a
negative cycle and with minimum weight greater than −3𝑊 (for some integer𝑊 ≥ 1).
There is an algorithm Scale(𝐺) computing 𝜙 such that𝐺𝜙 has minimum weight greater
than −2𝑊 , which succeeds with constant probability (if the algorithm does not succeed, it
returns Fail) and runs in time 𝑂 (𝑇RSSSP(𝑚,𝑛)).

Proof. We construct a restricted graph 𝐻 as a copy of 𝐺 with modified edge weights
𝑤𝐻 (𝑒) = ⌈𝑤𝐺 (𝑒)/𝑊 ⌉ + 1. We also add a source vertex 𝑠 to 𝐻 , and put edges of weight 0
from 𝑠 to all other vertices. We compute a shortest path tree from 𝑠 in 𝐻 using Theo-
rem 8.1, and return the potential 𝜙 defined by 𝜙 (𝑣) =𝑊 ·dist𝐻 (𝑠, 𝑣). For the pseudocode,
see Algorithm 16. Note that the running time is dominated by computing shortest paths
in a restricted graph.
To prove that the algorithm is correct, we first check that 𝐻 is indeed restricted (see

Definition 7.6):

• Each edge weight satisfies 𝑤𝐻 (𝑒) = ⌈𝑤𝐺 (𝑒)/𝑊 ⌉ + 1 ≥ ⌈(−3𝑊 + 1)/𝑊 ⌉ + 1 = −1.

• Consider any cycle 𝐶 in 𝐻 . Recall that 𝑤𝐺 (𝐶) ≥ 0 (as 𝐺 does not contain negative
cycles), and thus

�̄�𝐻 (𝐶) =
𝑤𝐻 (𝐶)
|𝐶 | =

1
|𝐶 |

∑︁
𝑒∈𝐶

𝑤𝐻 (𝑒) = 1 + 1
|𝐶 |

∑︁
𝑒∈𝐶

⌈
𝑤𝐺 (𝑒) ·

1
𝑊

⌉
≥ 1 + 𝑤𝐺 (𝐶)

𝑊 |𝐶 | ≥ 1.

In particular, the minimum cycle mean in 𝐻 is at least 1.

• Finally, we have artificially added a source vertex 𝑠 to 𝐻 with weight-0 edges to all
other vertices.
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Algorithm 17 The fast SSSP algorithm. In a given graph 𝐺 without negative cycles, it
computes a shortest path tree in 𝐺 from the given source vertex 𝑠 .
1 procedure SSSP(𝐺, 𝑠)
2 Let −𝑊 be the smallest edge weight in 𝐺
3 Let 𝐺0 be a copy of 𝐺 with edge weights 𝑤𝐺0 (𝑒) = 4𝑛 ·𝑤𝐺 (𝑒)
4 for 𝑖 ← 0, . . . , 𝐿 − 1 where 𝐿 = Θ(log(𝑛𝑊 )) do
5 𝜙𝑖 ← Scale(𝐺𝑖) (rerun the algorithm until it succeeds)
6 𝐺𝑖+1 ← (𝐺𝑖)𝜙𝑖
7 Let 𝐺∗ be a copy of 𝐺𝐿 with negative weights replaced by 0
8 return a shortest path tree in 𝐺∗ from 𝑠 , computed by Dijkstra’s algorithm

It remains to prove that the potential 𝜙 defined by 𝜙 (𝑣) = 𝑊 · dist𝐻 (𝑠, 𝑣) satisfies
that𝐺𝜙 has minimum edge weight more than −2𝑊 . Consider any edge 𝑒 = (𝑢, 𝑣). Since
by definition 𝑤𝐻 (𝑒) < 𝑤𝐺 (𝑒) · 1

𝑊
+ 2, we have that 𝑤𝐺 (𝑒) >𝑊 · (𝑤𝐻 (𝑒) − 2). It follows

that

𝑤𝐺𝜙
(𝑒) = 𝑤𝐺 (𝑒) + 𝜙 (𝑢) − 𝜙 (𝑣)

= 𝑤𝐺 (𝑒) +𝑊 · dist𝐻 (𝑠,𝑢) −𝑊 · dist𝐻 (𝑠, 𝑣)
> −2𝑊 +𝑊 ·𝑤𝐻 (𝑒) +𝑊 · dist𝐻 (𝑠,𝑢) −𝑊 · dist𝐻 (𝑠, 𝑣)
≥ −2𝑊 .

In the last step we have used the triangle inequality dist𝐻 (𝑠, 𝑣) ≤ dist𝐻 (𝑠,𝑢) +𝑤𝐻 (𝑢, 𝑣).
Finally, we argue that the algorithm succeeds with constant probability. Observe that

the algorithm succeeds if the computation of the shortest path tree from 𝑠 succeeds
in Line 4 (indeed, all other steps are deterministic). Since 𝐻 is restricted, Theorem 8.1
guarantees that this holds with constant probability, and if it does not succeed it returns
Fail, completing the proof. □

The Complete Scaling Algorithm We are ready to state the algorithm SSSP(𝐺, 𝑠)
which implements Theorem 8.19. We construct a graph 𝐺0 by multiplying every edge
weight of 𝐺 by 4𝑛. Then, for 𝑖 = 0, . . . , 𝐿 − 1 where 𝐿 = Θ(log(𝑛𝑊 )), we call Scale(𝐺𝑖)
(we repeat the call until it succeeds) to obtain a potential 𝜙𝑖 and set𝐺𝑖+1 := (𝐺𝑖)𝜙𝑖 . Next,
we construct a graph 𝐺∗ as a copy of 𝐺𝐿 , with every negative edge weight replaced by
0. Finally, we compute a shortest path tree in 𝐺∗ using Dijkstra’s algorithm. For the
details, see the pseudocode in Algorithm 17.

Lemma 8.21 (Running Time of Algorithm 17). If 𝐺 does not contain a negative cycle,
then SSSP(𝐺, 𝑠) runs in time 𝑂 (𝑇RSSSP(𝑚,𝑛) · log(𝑛𝑊 )) with high probability (and in
expectation).

Proof. We analyze the running time of the for-loop in Line 4, which runs for 𝐿 =

𝑂 (log(𝑛𝑊 )) iterations. Each iteration repeatedly calls Scale(𝐺𝑖) until one such call
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succeeds. By Lemma 8.20, a single call succeeds with constant probability (say, 1
2 )

and runs in time 𝑂 (𝑇RSSSP(𝑚,𝑛)). We can therefore model the running time of the
𝑖-th iteration by 𝑂 (𝑋𝑖 · 𝑇RSSSP(𝑚,𝑛)) where 𝑋𝑖 ∼ Geom( 12 ) is a geometric random
variable. Therefore, by Chernoff’s bound, the time of the for-loop is bounded by
𝑂 (∑𝐿−1

𝑖=0 𝑋𝑖 ·𝑇RSSSP(𝑚,𝑛)) = 𝑂 (𝑇RSSSP(𝑚,𝑛) ·𝐿) with probability at least 1−exp(−Ω(𝐿)) ≥
1 − 𝑛−Ω(1) . Finally, observe that 𝑇RSSSP(𝑚,𝑛) = Ω(𝑚 + 𝑛), and therefore the call to
Dijkstra’s algorithm in Line 8 is dominated by the time spent in the for-loop. □

Lemma 8.22 (Correctness of Algorithm 17). If 𝐺 does not contain a negative cycle, then
Algorithm 17 correctly computes a shortest path tree from 𝑠 .

Proof. Consider an execution of Algorithm 17. We prove that any shortest path in𝐺∗ is
a shortest path in 𝐺 , and hence the shortest path tree from 𝑠 computed in 𝐺∗ is also a
shortest path tree from 𝑠 in 𝐺 , implying correctness. We proceed in three steps:

• As 𝐺0 is a copy of 𝐺 with scaled edge weights 𝑤𝐺0 (𝑒) = 4𝑛 · 𝑤𝐺 (𝑒), any path 𝑃 also
has scaled weight 𝑤𝐺0 (𝑃) = 4𝑛 ·𝑤𝐺 (𝑃) and therefore 𝐺 and 𝐺0 are equivalent.

• Since the graphs𝐺0, . . . ,𝐺𝐿 are obtained from each other by adding potential functions,
they are equivalent (see Lemma 7.16). Moreover, by the properties of Lemma 8.20, the
smallest weight −𝑊 increases by a factor 2

3 in every step until𝐺𝐿 has smallest weight
at least −3. Here we use that 𝐿 = Ω(log(𝑛𝑊 )) for sufficiently large hidden constant.

• 𝐺∗ is the graph obtained from 𝐺𝐿 by replacing negative-weight edges by 0-weight
edges. Consider any non-shortest 𝑢-𝑣-path 𝑃 ′ in 𝐺𝐿 . We will show that 𝑃 ′ is also not
a shortest 𝑢-𝑣 path in 𝐺∗, which completes the argument. Towards that end, let 𝑃
be any shortest 𝑢-𝑣-path. Recall that𝐺𝐿 equals (𝐺0)𝜙 for some potential function 𝜙 .
Therefore:

𝑤𝐺𝐿
(𝑃 ′) −𝑤𝐺𝐿

(𝑃) = 𝑤𝐺0 (𝑃 ′) + 𝜙 (𝑢) − 𝜙 (𝑣) −𝑤𝐺0 (𝑃) − 𝜙 (𝑢) + 𝜙 (𝑣)
= 𝑤𝐺0 (𝑃 ′) −𝑤𝐺0 (𝑃)
≥ 4𝑛,

where the last inequality uses that the weights of 𝑃 and 𝑃 ′ in 𝐺0 differ by at least 4𝑛
(this is whywe scaled the edgeweights by 4𝑛 in𝐺0). Finally, recall that by transitioning
to 𝐺∗ we can increase the weight of any path by at most 3 · (𝑛 − 1). It follows that

𝑤𝐺∗ (𝑃 ′) −𝑤𝐺∗ (𝑃) ≥ 𝑤𝐺𝐿
(𝑃 ′) −𝑤𝐺𝐿

(𝑃) − 3 · (𝑛 − 1) ≥ 4𝑛 − 3 · (𝑛 − 1) > 0,

and therefore, 𝑃 ′ is not a shortest 𝑢-𝑣-path in𝐺∗. Hence, a shortest path in𝐺∗ is also a
shortest path in𝐺𝐿 , and since𝐺𝐿 is equivalent to𝐺 , it is also a shortest path in𝐺 . □

The proof of Theorem 8.19 is immediate by combining Lemmas 8.21 and 8.22.
We end this section with the following lemma, which will be useful in the next section.
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8.3 Finding Negative Cycles

Lemma 8.23. Let𝐺 be a directed weighted graph and 𝑠 ∈ 𝑉 (𝐺). If SSSP(𝐺, 𝑠) terminates,
then 𝐺 does not contain negative cycles.

Proof. Assume for the sake of contradiction that 𝐺 has a negative cycle 𝐶 and that
SSSP(𝐺, 𝑠) terminates. Consider the graph 𝐺𝐿 which is constructed in the last iteration
of the for-loop in Line 4. Note that 𝐺𝐿 is equivalent to 𝐺0, since it was obtained by
adding potential functions. Observe that the weight of 𝐶 in𝐺0 and𝐺𝐿 is at most −4𝑛,
since it was negative in𝐺 and we scaled by a factor 4𝑛 (see Lemma 7.16). Recall that we
chose 𝐿 = Θ(log(𝑛𝑊 )) with large enough hidden constant so that the smallest weight
in 𝐺𝐿 is at least −3. This implies that the weight of the minimum cycle in𝐺𝐿 is at least
−3𝑛, a contradiction. □

8.3 Finding Negative Cycles

In Section 8.2 we developed an algorithm to compute a shortest path tree with high
probability in a graph without negative cycles. In this section, we extend that result
to find a negative cycle if it exists. As a warm-up, we observe that the SSSP algorithm
developed in Theorem 8.19 can be used to detect the presence of a negative cycle with
high probability:

Corollary 8.24. Let 𝐺 be a directed graph. There is an algorithm DetectNegCycle(𝐺)
with the following properties:

• If 𝐺 has a negative cycle, then the algorithm reports NegCycle.

• If 𝐺 does not have a negative cycle, then with high probability it returns NoNegCycle

• It runs in time 𝑂 (𝑇RSSSP(𝑚,𝑛) log(𝑛𝑊 )).

Proof. The algorithm adds a dummy source 𝑠 connected with 0-weight edges to all
vertices in 𝐺 and runs SSSP(𝐺, 𝑠). If it finishes within its time budget, we return
NoNegCycle, otherwise we interrupt the computation and return NegCycle. The
running time follows immediately by the guarantee of Theorem 8.19.

Now we argue about correctness. If𝐺 contains no negative cycles, then the algorithm
returnsNoNegCyclewith high probability due to Theorem 8.19. If𝐺 contains a negative
cycle, then Lemma 8.23 implies that SSSP(𝐺, 𝑠) does not terminate, so in this case we
always report NegCycle. □

Finding the negative cycle though, requires some more work. Towards this end, we
follow the ideas of [BNW22]. They reduced the problem of finding a negative cycle to a
problem called Threshold, which we define next. We will use the following notation:
given a directed graph 𝐺 and an integer𝑀 , we write 𝐺+𝑀 to denote the graph obtained
by adding𝑀 to every edge weight of 𝐺 .

Definition 8.25 (Threshold). Given a directed graph 𝐺 , Threshold(𝐺) is the smallest
integer𝑀∗ ≥ 0 such that 𝐺+𝑀

∗
contains no negative cycle.
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8 Negative Weight SSSP

Algorithm 18 The procedure to find a negative cycle. Given a graph 𝐺 containing a
negative cycle, it finds one such negative cycle 𝐶 . See Lemma 8.26.

1 procedure FindNegCycle(𝐺)
2 Let 𝐺0 be a copy of 𝐺 with 𝑤𝐺0 (𝑒) = (𝑛3 + 1) ·𝑤𝐺 (𝑒)
3 Let𝑀∗ ← Threshold(𝐺0)
4 Let 𝐺1 be a copy of 𝐺+𝑀∗0 where we add an artificial source

vertex 𝑠 to 𝐺1 with weight-0 edges to all other vertices
5 Run SSSP(𝐺1, 𝑠) (see Algorithm 17) and set 𝜙 (𝑣) = dist𝐺1 (𝑠, 𝑣)
6 Let 𝐺2 be the graph (𝐺1)𝜙 where we remove all edges with weight greater than

𝑛

7 if there is a cycle 𝐶 in 𝐺2 then
8 if 𝐶 is negative in 𝐺 then return 𝐶

9 return FindNegCycle(𝐺) (i.e., restart)

For a graph𝐺 , we write𝑇Threshold(𝑚,𝑛) for the optimal running time of an algorithm
computing Threshold(𝐺) with high probability.
The remainder of the section is organized as follows: in Section 8.3.1 we give the

reduction from finding negative cycles to Threshold. In Section 8.3.2 we give an
implementation of Threshold which has an extra log-factor compared to the promised
Main Theorem 7.1, but it has the benefit of being simple. Finally, in Section 8.3.3 we
give a faster (but more involved) implementation of Threshold which yields Main
Theorem 7.1.

8.3.1 Reduction to Threshold

In this section we restate the reduction given by Bernstein et al. in [BNW22, Section
7.1] from finding a negative cycle if it exists, to Threshold and RestrictedSSSP (see
their algorithm SPLasVegas).

Lemma 8.26 (Finding Negative Cycles). Let 𝐺 be a directed graph with a negative cycle.
There is a Las Vegas algorithm FindNegCycle(𝐺) which finds a negative cycle in 𝐺 , and
runs in time 𝑂 (𝑇RSSSP(𝑚,𝑛) log(𝑛𝑊 ) +𝑇Threshold(𝑚,𝑛)) with high probability.

Proof. See the pseudocode in Algorithm 18 for a concise description. We start by defining
a graph 𝐺0 which is a copy of 𝐺 but with edge weights multiplied by 𝑛3 + 1. Then
we compute 𝑀∗ using Threshold(𝐺0), and let 𝐺1 be 𝐺+𝑀

∗
0 . Next, we add a dummy

source 𝑠 to 𝐺1 connected with 0-weight edges to all other vertices, and run SSSP on the
resulting graph from 𝑠 . We then use the distances computed to construct a potential 𝜙 ,
and construct a graph 𝐺2 by applying the potential 𝜙 to 𝐺1 and subsequently removing
all the edges with weight larger than 𝑛. Finally, we check if 𝐺2 contains any cycle (of
any weight) and if so, check it has negative weight in the original graph𝐺 and return it.
Otherwise, we restart the algorithm from the beginning.
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8.3 Finding Negative Cycles

The correctness is obvious: When the algorithm terminates, it clearly returns a
negative cycle. The interesting part is to show that with high probability the algorithm
finds a negative cycle𝐶 without restarting. The call to Threshold(𝐺0) in Line 3 returns
the smallest𝑀∗ ≥ 0 such that𝐺0 contains no negative cycle, with high probability. In this
case, by definition,𝐺1 does not contain a negative cycle, and therefore by Theorem 8.19
the call to SSSP(𝐺1, 𝑠) correctly computes a shortest path tree from 𝑠 . From now on, we
condition on these two events.

▷ Claim 8.27. It holds that𝑀∗ > 𝑛2.

Proof . Let 𝐶 be a simple cycle in 𝐺 with minimum (negative) weight. Since 𝐺1 = 𝐺
+𝑀∗
0

contains no negative cycles, the weight of 𝐶 in 𝐺1 is 0 ≤ 𝑤1(𝐶) = 𝑤0(𝐶) +𝑀∗ |𝐶 |. The
claim follows by noting that 𝑤0(𝐶) < −𝑛3 due to the scaling in Line 2, and that |𝐶 | ≤ 𝑛
because 𝐶 is simple. ◁

Next, we argue that a cycle of minimum weight in 𝐺 remains a cycle in 𝐺2, and
conversely that any simple cycle in 𝐺2 corresponds to a negative weight cycle in 𝐺 .
Note that this is enough to prove that the algorithm terminates with high probability
without a restart.

▷ Claim 8.28. Let𝐶 be a simple cycle in𝐺 of minimum weight. Then,𝐶 is a cycle in𝐺2.

Proof . First note that the weight of 𝐶 in 𝐺+𝑀∗0 (and thus also in 𝐺1) is at most 𝑛. This
holds since𝑀∗ is the smallest integer such that𝐺+𝑀∗0 contains no negative cycles, which
means that 𝑤0(𝐶) − |𝐶 | < 0. Second, note that since Line 5 correctly computes a
shortest path tree in 𝐺1, it holds that the edge weights in (𝐺1)𝜙 are all nonnegative
(by Lemma 7.17). Moreover, the weight of𝐶 in (𝐺1)𝜙 is the same as in𝐺1 (by Lemma 7.16).
Thus, we conclude that the removal of the edges of weight greater than 𝑛 in (𝐺1)𝜙 to
obtain 𝐺2 leaves 𝐶 untouched. ◁

▷ Claim 8.29. Any cycle 𝐶′ in 𝐺2 has negative weight in 𝐺 .

Proof . Note that 𝑤2(𝐶′) ≤ 𝑛2 since every edge in 𝐺2 has weight at most 𝑛. Moreover,
since 𝐺2 is obtained from 𝐺1 by adding a potential, it holds that 𝑤2(𝐶′) = 𝑤1(𝐶′)
(by Lemma 7.16). Therefore, 𝑤0(𝐶′) = 𝑤1(𝐶′) −𝑀∗ |𝐶′| ≤ 𝑛2 −𝑀∗ < 0 where the last
inequality holds since𝑀∗ > 𝑛2 by Claim 8.27. ◁

Finally, we analyze the running time. The call to Threshold(𝐺0) succeeds with high
probability (see Definition 8.25). Conditioned on this, 𝐺1 contains no negative cycles.
Thus by Theorem 8.19, the call to SSSP(𝐺, 𝑠) runs in time 𝑂 (𝑇RSSSP(𝑚,𝑛) log(𝑛𝑊 ))
with high probability. Note that the remaining steps of the algorithm take time 𝑂 (𝑚).
Therefore, we conclude that the overall running time is

𝑂 (𝑇RSSSP(𝑚,𝑛) log(𝑛𝑊 ) +𝑇Threshold(𝑚,𝑛))

with high probability. □
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8 Negative Weight SSSP

8.3.2 Simple Implementation of Threshold

In this section we give a simple implementation of Threshold which combined with
Lemma 8.26 yields an algorithm to find negative cycles in time

𝑂 (𝑇RSSSP(𝑚,𝑛) log𝑛 log(𝑛𝑊 )) .

This procedure shaves one log-factor compared to the analog in the BNW algorithm
(see their procedure FindThresh in [BNW22, Lemma 7.2]). Later, in Section 8.3.3, we
give an improved but more intricate algorithm.

As a building block, we will use the routine Scale from Lemma 8.20. The following
lemma boosts the probability of success of Scale and uses a different parameterization
of the minimum weight in the input graph, which will streamline our presentation.

Lemma 8.30 (Test Scale). Let 𝐺 be a directed graph with minimum weight at least −𝑊
where𝑊 ≥ 24, and let 0 < 𝛿 < 1 be a parameter. There is an algorithm TestScale(𝐺, 𝛿)
with the following properties:

• If 𝐺 does not contain a negative cycle, then with probability at least 1 − 𝛿 it succeeds
and returns a potential 𝜙 such that𝐺𝜙 has minimum weight at least −3

4𝑊 . If it does not
suceed, it returns Fail.

• It runs in time 𝑂 (𝑇RSSSP(𝑚,𝑛) · log(1/𝛿)).

Proof. We run Scale(𝐺) (see Lemma 8.20) for 𝑂 (log(1/𝛿)) repetitions. Each execution
either returns a potential 𝜙 , or it fails. We return Fail if and only if all these repetitions
fail. The running time analysis is immediate by Lemma 8.20.
Now we analyze correctness. First we look at the success probability. Lemma 8.20

guarantees that if𝐺 does not contain a negative cycle, then each invocation to Scale(𝐺)
returns a potential 𝜙 with constant probability. Thus, in this case, the probability that
all 𝑂 (log(1/𝛿)) repetitions fail and we return Fail is at most 𝛿 , as stated. Next, we
analyze the increase in the minimum weight of 𝐺𝜙 . Recall that the minimum weight
in 𝐺 is at least −𝑊 . Let 𝑘 be the largest integer such that𝑊 ≥ 3𝑘 , and let −𝑊 ′ denote
the minimum weight of 𝐺𝜙 . In particular, the minimum weight in 𝐺 is greater than
−3(𝑘 + 1), so Lemma 8.20 guarantees that

−𝑊 ′ > −2(𝑘 + 1) ≥ −2
3𝑊 − 2 ≥ −2

3𝑊 −
1
12𝑊 = −3

4𝑊,

where the last inequality uses the assumption that𝑊 ≥ 24. □

Lemma 8.31 (Slow Threshold). Let 𝐺 be a directed graph. There is an algorithm com-
puting Threshold(𝐺) (Definition 8.25) which succeeds with high probability and runs in
worst-case time 𝑂 (𝑇RSSSP(𝑚,𝑛) log𝑛 log(𝑛𝑊 )).
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Algorithm 19 The slow implementation of Threshold. Given a graph 𝐺 , it computes
the smallest integer𝑀∗ ≥ 0 such that𝐺+𝑀∗ contains no negative cycle. See Lemma 8.31.

1 procedure SlowThreshold(𝐺)
2 Let −𝑊 be the smallest weight in 𝐺
3 if𝑊 ≤ 48 then

4 for 𝑡 ← 47, . . . , 1, 0 do

5 if DetectNegCycle(𝐺+𝑡 ) = NegCycle then return 𝑡 + 1
6 return 0
7 else

8 Let𝑀 ← ⌈𝑊2 ⌉
9 if TestScale(𝐺+𝑀 , 𝑛−10) = 𝜙 then return SlowThreshold(𝐺𝜙 )
10 else return𝑀 + SlowThreshold(𝐺+𝑀 )

Proof. We summarize the pseudocode in Algorithm 19. Let −𝑊 be the smallest weight
in𝐺 . If𝑊 ≤ 48 (i.e., all weights are at least −48) we clearly have that the correct answer
lies in the range 0 ≤ 𝑀∗ ≤ 48. We brute-force the answer by exhaustively checking
which graph 𝐺+47, . . . ,𝐺+0 is the first one containing a negative cycle. For this test
we use the algorithm DetectNegCycle(𝐺). Corollary 8.24 guarantees that it reports
correct answers with high probability.
If𝑊 > 48, we make progress by reducing the problem to another instance with

larger minimum weight. Let𝑀 = ⌈𝑊2 ⌉, and run TestScale(𝐺+𝑀 , 𝛿) for 𝛿 := 1/𝑛10. We
distinguish two cases based on the outcome of TestScale:

• Case 1: TestScale(𝐺+𝑀 , 𝛿) = 𝜙 for a potential function 𝜙 . Then recursively compute
and return SlowThreshold(𝐺𝜙 ). First note that this is correct, i.e., that the answer
is unchanged by recursing on 𝐺𝜙 , since the potential does not change the weight of
any cycle (see Lemma 7.16). Second, note that we make progress by increasing the
smallest weight in𝐺𝜙 to least −11

12𝑊 : To see this, note that the minimum weight of
𝐺+𝑀 is at least −1

2𝑊 , and thus, Lemma 8.30 guarantees that the smallest weight in
𝐺+𝑀
𝜙

is at least −3
8𝑊 . Therefore, it follows that the smallest weight in 𝐺𝜙 is at least

−3
8𝑊 −𝑀 = 3

8𝑊 − ⌈
1
2𝑊 ⌉ ≥ −

7
8𝑊 − 1 > −7

8𝑊 −
1
24𝑊 = −11

12𝑊,

where the second inequality uses the assumption that𝑊 > 24.

• Case 2: TestScale(𝐺+𝑀 , 𝛿) = Fail. By Lemma 8.30, if𝐺+𝑀 does not contain a negative
cycle then with high probability the output is not Fail. Conditioned on this event, we
conclude that 𝐺+𝑀 contains a negative cycle. Thus, we know that the optimal answer
𝑀∗ satisfies𝑀∗ ≥ 𝑀 , and therefore we return𝑀 + SlowThreshold(𝐺+𝑀 ). Note that
this also improves the most negative edge weight to −𝑊 +𝑀 ≥ −11

12𝑊 .

We claim that the running time is bounded by 𝑂 (𝑇RSSSP(𝑚,𝑛) log𝑛 log(𝑛𝑊 )). To see
this, note that in the base case, when𝑊 ≤ 48, the algorithm calls DetectNegCycle(𝐺)

165
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and therefore takes time 𝑂 (𝑇RSSSP(𝑚,𝑛) · log(𝑛𝑊 )) (see Corollary 8.24). We claim that
the higher levels of the recursion take time 𝑂 (𝑇RSSSP(𝑚,𝑛) log𝑛 log𝑊 ) in total. Note
that each such level takes time 𝑂 (𝑇RSSSP(𝑚,𝑛) · log𝑛) due to the call to TestScale
(Lemma 8.30) and thus, it suffices to bound the recursion depth by 𝑂 (log𝑊 ). To this
end, observe that we always recur on graphs for which𝑊 has decreased by a constant
factor.

Finally note that each call to TestScale succeeds with high probability, and we make
one call for each of the 𝑂 (log𝑊 ) recursive calls. Thus, by a union bound the algorithm
succeeds with high probability. (Strictly speaking, for this union bound we assume
that log𝑊 ≤ 𝑛; if instead log𝑊 > 𝑛, we can simply use Bellman-Ford’s algorithm.) □

8.3.3 Fast Implementation of Threshold

In this section we give the fast implementation of Threshold.

Lemma 8.32 (Fast Threshold). Let𝐺 be a directed graph. There is an algorithm computing
Threshold(𝐺) (see Definition 8.25) which suceeds with high probability, and runs in worst-
case time 𝑂 (𝑇RSSSP(𝑚,𝑛) log(𝑛𝑊 )).

The algorithm is intricate, so we start with a high level description to convey some
intuition.

High-Level Idea Let Δ be a parameter and let 𝑀∗ ≥ 0 be the right threshold. Let
us look at what happens if we make a call to TestScale(𝐺+𝑊−Δ, 𝛿), where 1 − 𝛿 is the
success probability and −𝑊 is the minimum edge weight in 𝐺 . If 𝐺+𝑊−Δ does not have
negative cycles, then Lemma 8.30 guarantees that with probability at least 1 − 𝛿 we
obtain a potential 𝜙 . On the other hand, if 𝐺+𝑊−Δ contains a negative cycle, then we
have no guarantee from Lemma 8.30. That is, the algorithm might return a potential,
or it might return Fail. The upside is that as long as we obtain a potential, regardless
whether there is a negative cycle or not, we can make progress by (additively) increasing
the minimum edge weight by ≈ Δ. Moreover, if we obtain Fail, then we conclude
that with probability at least 1 − 𝛿 the graph 𝐺+𝑊−Δ contains a negative cycle. This
suggests the following idea. We make a call to TestScale(𝐺+𝑊−Δ, 𝛿), and consider the
two outcomes:

1. TestScale(𝐺+𝑊−Δ, 𝛿) = 𝜙 . Then, we set 𝐺 := 𝐺𝜙 and increase Δ := 2Δ.

2. TestScale(𝐺+𝑊−Δ, 𝛿) = Fail. Then, we decrease Δ := Δ/2.

If we are in Case 1, then the minimum edge weight −𝑊 ′ of𝐺𝜙 is increased by Δ. This in
turn, decreases the gap𝑊 ′−𝑀∗ (note that at all times𝑀∗ ≤𝑊 ′). Thus, larger Δ implies
larger progress in decreasing𝑊 ′ −𝑀∗. This is why in this case we double Δ. On the
other hand, if we are in Case 2 then by the guarantee of Lemma 8.30, we conclude that
with probability at least 1 − 𝛿 the graph 𝐺+𝑊−Δ contains a negative cycle. Intuitively,
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Algorithm 20 The fast implementation of Threshold. Given a graph 𝐺 , it computes
the smallest integer𝑀∗ ≥ 0 such that𝐺+𝑀∗ contains no negative cycle. See Lemma 8.32.

1 procedure FastThreshold(𝐺)
2 Let 𝐺0 ← 𝐺 and Δ0 ← 2
3 𝑇 ← Θ(log(𝑛𝑊 )) with sufficiently large hidden constant
4 for 𝑡 ← 0, . . . ,𝑇 − 1 do

5 Let −𝑊𝑡 be the smallest edge weight in 𝐺𝑡
6 if𝑊𝑡 ≤ 24 then

7 for 𝑗 ← 23, . . . , 1, 0 do

8 if FindNegCycle(𝐺+ 𝑗𝑡 ) = NegCycle then return 𝑗 + 1
9 if TestScale(𝐺+𝑊𝑡−Δ𝑡

𝑡 , 0.01) = 𝜙 then

10 𝐺𝑡+1 ← (𝐺𝑡 )𝜙 , Δ𝑡+1 ← 2 · Δ𝑡
11 else

12 𝐺𝑡+1 ← 𝐺𝑡 , Δ𝑡+1 ← max{1, Δ𝑡

2 }
13 return𝑊𝑇

this means that Δ is too large. Therefore, we halve Δ to eventually make progress in
Case 1 again.
In short, we know that when𝐺+𝑊−Δ does not have negative cycles, or equivalently

𝑊 −𝑀∗ ≥ Δ, then with probability at least 1 − 𝛿 we will make progress in Case 1 by
decreasing the gap𝑊 −𝑀∗. On the other hand, if we are in Case 2 and 𝐺+𝑊−Δ has a
negative cycle, or equivalently𝑊 −𝑀∗ < Δ, then we will make progress by decreasing
Δ.
Perhaps surprisingly, we will show that this idea can be implemented by choosing

𝛿 = 0.01, and not 1/poly(𝑛) as in the implementation of Lemma 8.31 (which was the
reason for getting an extra𝑂 (log𝑛)-factor there). For this, we will formalize the progress
as some drift function that decreases in expectation in each iteration, and then apply a
drift theorem (see Theorem 8.34).

The Algorithm Now we formalize this approach. We proceed in an iterative way.
At iteration 𝑡 , we have a graph 𝐺𝑡 with minimum weight −𝑊𝑡 , and we maintain a
parameter Δ𝑡 . We make a call to Scale(𝐺+𝑊𝑡−Δ𝑡 , 𝛿) with 𝛿 := 0.01. If we obtain a
potential 𝜙 as answer, we set𝐺𝑡+1 := (𝐺𝑡 )𝜙 and Δ𝑡+1 := 2Δ. Otherwise, we set𝐺𝑡+1 := 𝐺𝑡
and Δ𝑡+1 := 1

2Δ𝑡 . After 𝑇 = Θ(log(𝑛𝑊 )) iterations, we stop and return𝑊𝑇 as the
answer. The complete pseudocode (which additionally handles some corner cases) is
in Algorithm 20.

To quantify the progress made by the algorithm, we define the following drift function
at iteration 𝑡 :

𝐷𝑡 := (𝑊𝑡 −𝑀∗)20 ·max
{

2Δ𝑡
𝑊𝑡 −𝑀∗

,
𝑊𝑡 −𝑀∗

2Δ𝑡

}
, (8.1)

Observe that we always have Δ𝑡 ≥ 1 and𝑊𝑡 ≥ 𝑀∗ throughout the algorithm. To cover
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8 Negative Weight SSSP

the case𝑊𝑡 = 𝑀
∗ (where the above expression leads to a division by 0), formally we

actually define the drift function by

𝐷𝑡 := max
{
(𝑊𝑡 −𝑀∗)19 · 2Δ𝑡 ,

(𝑊𝑡 −𝑀∗)21

2Δ𝑡

}
. (8.2)

For the sake of readability, in the following we work with (8.1), with the understanding
that formally we mean (8.2).

We will show that 𝐷𝑡 decreases by a constant factor (in expectation) in each iteration
of the for-loop in Line 4. Note that when 𝐷𝑡 reaches 0, then we have that𝑊𝑡 = 𝑀

∗, so
we are done.

Lemma 8.33 (Negative Drift). For any 𝑑 > 0 and 𝑡 ≥ 0 it holds that

E(𝐷𝑡+1 | 𝐷𝑡 = 𝑑) ≤ 0.7 · 𝑑.

Before proving Lemma 8.33, let us see how to obtain Lemma 8.32 from it. For this,
we will use the following tool:

Theorem 8.34 (Multiplicative Drift, see e.g. [Len17, Theorem 18]). Let (𝑋𝑡 )𝑡≥0 be a
sequence of nonnegative random variables with a finite state space S of nonnegative
integers. Suppose that 𝑋0 = 𝑠0, and there exists 𝛿 > 0 such that for all 𝑠 ∈ S \ {0} and all
𝑡 ≥ 0, E(𝑋𝑡+1 | 𝑋𝑡 = 𝑠) ≤ (1 − 𝛿)𝑠 . Then, for all 𝑟 ≥ 0,

P(𝑋𝑟 > 0) ≤ 𝑒−𝛿 ·𝑟 · 𝑠0.

Proof. By Markov’s inequality, P(𝑋𝑟 > 0) = P(𝑋𝑟 ≥ 1) ≤ E(𝑋𝑟 ). By applying the
bound E(𝑋𝑡+1 | 𝑋𝑡 = 𝑑) ≤ (1 − 𝛿)𝑑 for 𝑟 times, we obtain that

P(𝑋𝑟 > 0) ≤ (1 − 𝛿)𝑟 · 𝑠0 ≤ exp(−𝛿𝑟 ) · 𝑠0. □

Proof of Lemma 8.32. See Algorithm 20 for the pseudocode. First we analyze the run-
ning time. During each iteration of the for-loop, it either holds that𝑊𝑡 ≤ 24 and we
solve the problem directly using at most 24 calls to DetectNegCycle, or we make a call
to TestScale. Each call to TestScale takes time𝑂 (𝑇RSSSP(𝑚,𝑛)) by Lemma 8.30, and we
onlymake the calls toDetectNegCycle oncewhich take total time𝑂 (𝑇RSSSP(𝑚,𝑛) log𝑛)
by Corollary 8.24. Since 𝑇 = Θ(log(𝑛𝑊 )), the overall running time is bounded by
𝑂 (𝑇RSSSP(𝑚,𝑛) log𝑛 +𝑇RSSSP(𝑚,𝑛) log(𝑛𝑊 )), as claimed.

Now we analyze correctness. Note that at every iteration, 𝐺𝑡 is equivalent to 𝐺 since
the only way we modify the graph is by adding potentials (see Lemma 7.16). Thus, if at
some point we have that𝑊𝑡 ≤ 24 then the correct answer lies in the range 0 ≤ 𝑀∗ ≤ 24.
The for-loop in Line 7 exhaustively checks which is the correct value by making calls to
DetectNegCycle. By Corollary 8.24, this is correct with high probability.

Now suppose the algorithm does not terminate in Line 8. We claim that the final drift
𝐷𝑇 is zero with high probability. Note that this implies correctness, since 𝐷𝑇 = 0 if and

168



8.3 Finding Negative Cycles

only if𝑊𝑇 = 𝑀∗ (to see this, observe that Δ𝑇 ≥ 1 due to Line 12). To prove the claim,
we will use Theorem 8.34. Note that Lemma 8.33 gives us that E(𝐷𝑡+1 | 𝐷𝑡 = 𝑑) ≤ 0.7𝑑 .
Moreover, we can bound the initial drift 𝐷0 as

𝐷0 = (𝑊 −𝑀∗)20 ·max
{

2Δ0
𝑊 −𝑀∗ ,

𝑊 −𝑀∗
2Δ0

}
≤ (𝑊 −𝑀∗)21 · 2Δ0 ≤ 4𝑊 21.

Hence, Theorem 8.34 yields thatP(𝐷𝑇 > 0) ≤ exp(−0.7𝑇 )·4𝑊 21. Since𝑇 = Θ(log(𝑛𝑊 )),
we conclude that P(𝐷𝑇 > 0) ≤ 𝑛−Ω(1) , which finishes the proof. □

Proof of Lemma 8.33. Focus on iteration 𝑡 of the for-loop in Line 4. Let 𝐸1 be the event
that we obtain a potential 𝜙 (i.e. that the if-statement in Line 9 succeeds) and let
𝐸2 := ¬𝐸1 be the complement. We start by observing how the parameters𝑊𝑡+1 and Δ𝑡+1
change depending on whether 𝐸1 or 𝐸2 occur.
▷ Claim 8.35. If 𝐸1 occurs, then𝑊𝑡+1 ≤𝑊𝑡 − Δ𝑡

4 , and Δ𝑡+1 = 2Δ𝑡 .
Proof . If the call to TestScale in Line 9 returns a potential 𝜙 , then we set𝐺𝑡+1 = (𝐺𝑡 )𝜙
and Δ𝑡+1 = 2Δ𝑡 . Observe that the minimum weight of𝐺+𝑊𝑡−Δ𝑡

𝑡 is Δ𝑡 . Hence, Lemma 8.30
guarantees that the minimum weight of (𝐺𝑡 )+𝑊𝑡−Δ𝑡

𝜙
is at least −3

4Δ𝑡 . Since 𝐺𝑡+1 = (𝐺𝑡 )𝜙
is defined by substracting𝑊𝑡 − Δ𝑡 from every edge weight in (𝐺𝑡 )+𝑊𝑡−Δ𝑡

𝜙
, we obtain that

−𝑊𝑡+1 ≥ −𝑊𝑡 + 1
4Δ𝑡 . ◁

▷ Claim 8.36. If 𝐸2 occurs, then𝑊𝑡+1 =𝑊𝑡 and Δ𝑡+1 = max{1,Δ𝑡/2} and 𝐷𝑡+1 ≤ 2𝐷𝑡 .
Proof . The first two statements are immediate by Line 12. Towards the third statement,
for the function 𝑓 (𝑥) := max{𝑥, 1/𝑥} we observe that if 𝑥,𝑦 > 0 differ by at most
a factor 2 then also 𝑓 (𝑥), 𝑓 (𝑦) differ by at most a factor 2. Now we use that 𝐷𝑡 =

(𝑊𝑡 −𝑀∗)20 · 𝑓 (2Δ𝑡/(𝑊𝑡 −𝑀∗)). Since Δ𝑡 ≥ 1, it holds that Δ𝑡 ,Δ𝑡+1 differ by at most a
factor 2, and thus 𝐷𝑡 , 𝐷𝑡+1 differ by at most a factor 2. ◁

With these claims, we proceed to bound the drift 𝐷𝑡+1 when 𝐷𝑡 > 0. Recall that we
defined

𝐷𝑡 = (𝑊𝑡 −𝑀∗)20 ·max
{

2Δ𝑡
𝑊𝑡 −𝑀∗

,
𝑊𝑡 −𝑀∗

2Δ𝑡

}
. (8.1)

Note that it always holds that𝑊𝑡 ≥ 𝑀∗ and𝑊𝑡+1 ≥ 𝑀∗. Moreover, since 𝐷𝑡 > 0, we can
assume that𝑊𝑡 −𝑀∗ > 0, since otherwise𝑊𝑡 −𝑀∗ = 0 and hence 𝐷𝑡 = 0. We proceed
making a case distinction based on the term that achieves the maximum in (8.1).

Case 1 Δ𝑡 ≥ 1
2 (𝑊𝑡 − 𝑀∗): Then, we have that 𝐷𝑡 = (𝑊𝑡 − 𝑀∗)19 · 2Δ𝑡 . If 𝐸1 occurs,

then by Claim 8.35 it holds that Δ𝑡+1 ≥ Δ𝑡 ≥ 1
2 (𝑊𝑡 −𝑀∗) ≥ 1

2 (𝑊𝑡+1 −𝑀∗). Therefore,
using (8.1) we can bound the drift 𝐷𝑡+1 by

𝐷𝑡+1 = (𝑊𝑡+1 −𝑀∗)19 · 2Δ𝑡+1
≤ (𝑊𝑡 −𝑀∗ − Δ𝑡

4 )
19 · 4Δ𝑡

≤ (𝑊𝑡 −𝑀∗ − 1
8 (𝑊𝑡 −𝑀∗))19 · 4Δ𝑡

≤ ( 78 )
19 · 2𝐷𝑡 ≤ 0.16𝐷𝑡 ,
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where we used Claim 8.35 in the first inequality, and the second inequality follows
since by the assumption of Case 1 we have that Δ𝑡

4 ≥
1
8 (𝑊𝑡 −𝑀∗).

If 𝐸2 occurs instead, we make a further case distinction:
Case 1.1 Δ𝑡 > 𝑊𝑡 − 𝑀∗: Note that if Δ𝑡 = 1, then since𝑊𝑡 and 𝑀∗ are integers it
follows that𝑊𝑡 = 𝑀

∗, and consequently 𝐷𝑡 = 0, which contradicts the assumption
that 𝐷𝑡 > 0. Therefore, we can assume that Δ𝑡 ≥ 2. In particular, by Claim 8.36 we
have Δ𝑡+1 = 1

2Δ𝑡 >
1
2 (𝑊𝑡 −𝑀∗) = 1

2 (𝑊𝑡+1 −𝑀∗). Thus, by (8.1) we can express the
drift 𝐷𝑡+1 as

𝐷𝑡+1 = (𝑊𝑡+1 −𝑀∗)19 · 2Δ𝑡+1 = (𝑊𝑡 −𝑀∗)19 · Δ𝑡 =
𝐷𝑡

2 .

Case 1.2 Δ𝑡 ≤ 𝑊𝑡 − 𝑀∗: Observe that in this case 𝐺+𝑊𝑡−Δ𝑡 contains no negative
cycle. Moreover, we can assume that𝑊𝑡 > 24 since otherwise the problem is solved
directly in Line 7. Therefore, by Lemma 8.30 we have that P(𝐸2) ≤ 0.01. Moreover,
by by Claim 8.36 we have 𝐷𝑡+1 ≤ 2𝐷𝑡 .

Combining the above, we conclude that for Case 1 it holds that

E(𝐷𝑡+1 | 𝐷𝑡 ) ≤ P(𝐸1) E(𝐷𝑡+1 | 𝐷𝑡 , 𝐸1) + P(𝐸2) E(𝐷𝑡+1 | 𝐷𝑡 , 𝐸2)
≤ 1 · 0.16𝐷𝑡 +max

{
1 · 1

2𝐷𝑡 , 0.01 · 2𝐷𝑡
}
≤ 0.66𝐷𝑡 .

Case 2 Δ𝑡 <
1
2 (𝑊𝑡 − 𝑀∗): Then, it holds that 𝐷𝑡 = (𝑊𝑡 − 𝑀∗)21/(2Δ𝑡 ). If 𝐸2 occurs,

then by the same argument as in Case 1.2 we have that 𝐷𝑡+1 ≤ 2𝐷𝑡 and P(𝐸2) ≤ 0.01.
If 𝐸1 occurs instead, then we make a further case distinction:
Case 2.1 Δ𝑡+1 < 1

2 (𝑊𝑡+1 −𝑀∗): Then using (8.1), it holds that

𝐷𝑡+1 =
(𝑊𝑡+1 −𝑀∗)21

2Δ𝑡+1
≤ (𝑊𝑡 −𝑀∗)21

4Δ𝑡
=
𝐷𝑡

2 ,

where the inequality holds due to Claim 8.35.
Case 2.2 Δ𝑡+1 ≥ 1

2 (𝑊𝑡+1 −𝑀∗): Then it holds that 𝐷𝑡+1 = (𝑊𝑡+1 −𝑀∗)19 · 2Δ𝑡+1. Since
by the assumption of Case 2 we have (𝑊𝑡 −𝑀∗)/(2Δ𝑡 ) ≥ 1 and by Claim 8.35 we
have Δ𝑡+1 = 2Δ𝑡 , we can bound 𝐷𝑡+1 as

𝐷𝑡+1 = (𝑊𝑡+1 −𝑀∗)19 · 2Δ𝑡+1

≤ (𝑊𝑡+1 −𝑀∗)19 · 4Δ𝑡 ·
(
𝑊𝑡 −𝑀∗

2Δ𝑡

)2

= (𝑊𝑡+1 −𝑀∗)19 · (𝑊𝑡 −𝑀∗)2 · 1
Δ𝑡
. (8.3)
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By Claim 8.35, we have that𝑊𝑡+1 ≤𝑊𝑡 − Δ𝑡

4 . Hence, can bound𝑊𝑡+1 −𝑀∗ as

𝑊𝑡+1 −𝑀∗ = 16
17 (𝑊𝑡+1 −𝑀∗) + 1

17 (𝑊𝑡+1 −𝑀∗)
≤ 16

17 (𝑊𝑡 −𝑀∗ − Δ𝑡

4 ) +
1
17 (𝑊𝑡+1 −𝑀∗)

= 16
17 (𝑊𝑡 −𝑀∗) − 16

17 ·
Δ𝑡

4 +
1
17 (𝑊𝑡+1 −𝑀∗). (8.4)

By Claim 8.35 and the assumption of Case 2.2, we have that 2Δ𝑡 = Δ𝑡+1 ≥ 1
2 (𝑊𝑡+1 −

𝑀∗). This implies that Δ𝑡

4 ≥
1
16 (𝑊𝑡+1 −𝑀∗). Plugging this into (8.4), we obtain that

𝑊𝑡+1 −𝑀∗ ≤ 16
17 (𝑊𝑡 −𝑀∗) − 1

17 (𝑊𝑡+1 −𝑀∗) + 1
17 (𝑊𝑡+1 −𝑀∗)

= 16
17 (𝑊𝑡 −𝑀∗). (8.5)

Finally, we combine (8.3) and (8.5) to obtain that

𝐷𝑡+1 ≤ (𝑊𝑡+1 −𝑀∗)19(𝑊𝑡 −𝑀∗)2 · 1
Δ𝑡

≤ ( 16
17 )

19(𝑊𝑡 −𝑀∗)21 · 1
Δ𝑡

= ( 16
17 )

19 · 2 · 𝐷𝑡
≤ 0.65𝐷𝑡

Combining the subcases considered, we conclude that for Case 2 it holds that

E(𝐷𝑡+1 | 𝐷𝑡 ) ≤ P(𝐸1) E(𝐷𝑡+1 | 𝐷𝑡 , 𝐸1) + P(𝐸2) E(𝐷𝑡+1 | 𝐷𝑡 , 𝐸2)
≤ 1 ·max

{ 1
2𝐷𝑡 , 0.65𝐷𝑡

}
+ 0.01 · 2𝐷𝑡 ≤ 0.67 · 𝐷𝑡 .

Since cases 1 and 2 are exhaustive, the proof is concluded. □

8.3.4 Putting Everything Together

Now we put the pieces together to prove our main theorem.

Main Theorem 7.1 (Negative-Weight SSSP). There is a Las Vegas algorithm which,
given a directed graph 𝐺 and a source node 𝑠 , either computes a shortest path tree from 𝑠

or finds a negative cycle in 𝐺 , running in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )) with
high probability (and in expectation).

Proof. The algorithm alternatingly runs the following two steps, and interupts each
step after it exceeds a time budget of 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )):

1. Run SSSP(𝐺, 𝑠). If this algorithm finishes in time and returns a shortest path tree, we
check that the shortest path tree is correct (by relaxing all edges and testing whether
any distance in the tree changes) and return this shortest path tree in the positive
case. Otherwise, we continue with step 2.
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2. Run FindNegCycle(𝐺) (using Lemma 8.32 to implement Threshold). If this algo-
rithm finishes in time and returns a negative cycle, we verify that the output is indeed
a negative cycle and return this negative cycle in the positive case. Otherwise, we
continue with step 1.

The algorithm is clearly correct: Whenever it terminates, it reports a correct solu-
tion. Let us focus on the running time. We distinguish two cases: First, assume that
𝐺 does not contain a negative cycle. By Theorem 8.19 step 1 runs in time 𝑂 ((𝑚 +
𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )) with high probability and is not interrupted in this case.
Moreover, the SSSP algorithm returns a correct shortest path tree with high probability,
and thereby terminates the algorithm after just one iteration of step 1.

On the other hand, suppose that𝐺 contains a negative cycle. The algorithm runs step 1
which is wasted effort in this case, but costs only time𝑂 ((𝑚+𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )).
Afterwards, by Lemmas 8.26 and 8.32, a single execution of step 2 runs within the time
budget with high probability. Moreover, since Lemma 8.26 is a Las Vegas algorithm, it
returns a true negative cycle and the algorithm terminates.

The previous two paragraphs prove that the algorithm terminates after successively
running step 1 and step 2 in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )) with high proba-
bility. Since we independently repeat these steps until the algorithm terminates, the
same bound applies to the expected running time. □

Next, we prove Theorem 7.2 using the previous Main Theorem 7.1 as a black-box.

Theorem 7.2 (Negative-Weight Single-Source Distances). There is a Las Vegas algorithm,
which, given a directed graph 𝐺 and a source 𝑠 ∈ 𝑉 (𝐺), computes the distances from 𝑠

to all other vertices in the graph (these distances are possibly −∞ or∞), running in time
𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )) with high probability (and in expectation).

Proof. First, remove all vertices from the graph not reachable from 𝑠 and return dis-
tance∞ for each such vertex. Then compute the set of strongly connected components
𝐶1, . . . ,𝐶ℓ in 𝐺 in time 𝑂 (𝑚 + 𝑛). For every SCC 𝐶𝑖 , run our SSSP algorithm from Main
Theorem 7.1 on 𝐺 [𝐶𝑖] to detect whether it contains a negative cycle. For every vertex
contained in a SCC with a negative cycle, we return distance −∞ (as this SCC is reach-
able from 𝑠 and contains a negative cycle, we can loop indefinitely). Similarly, report
−∞ for all vertices reachable from one of the −∞-distance vertices. After removing
all vertices at distance −∞, the remaining graph does no longer contain a negative
cycle. We may therefore run the SSSP algorithm on the remaining graph to compute
the missing distances.

Let 𝑛𝑖 and𝑚𝑖 denote the number of vertices and edges in the subgraph𝐺 [𝐶𝑖]. Then
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the total running time is

𝑂

(
𝑇SSSP(𝑚,𝑛,𝑊 ) +

∑︁
𝑖

𝑇SSSP(𝑚𝑖, 𝑛𝑖,𝑊 )
)

= 𝑂

((
𝑚 + 𝑛 log log𝑛 +

∑︁
𝑖

𝑚𝑖 +
∑︁
𝑖

𝑛𝑖 log log𝑛
)

log𝑛2 log(𝑛𝑊 )
)

= 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )),

using that
∑
𝑖𝑚𝑖 ≤ 𝑚 and that

∑
𝑖 𝑛𝑖 ≤ 𝑛. □

173





9 Further Results

In this chapter we present the following two side results: In Section 9.1 we present our
algorithm to compute the minimum cycle mean, proving Theorem 7.3. In Section 9.2 we
present our strong directed Low-Diameter Decomposition, establishing Theorem 7.5.

9.1 Minimum Cycle Mean

Recall that in a directed graph 𝐺 , the mean of a cycle 𝐶 is defined as �̄� (𝐶) = 𝑤 (𝐶)/|𝐶 |.
In this section we present our algorithm to computes the minimum cycle mean of a
graph 𝐺 :

Theorem 7.3 (Minimum Cycle Mean). There is a Las Vegas algorithm, which given a
directed graph𝐺 finds a cycle𝐶 with minimummean weight �̄� (𝐶) = min𝐶′ �̄� (𝐶′), running
in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )) with high probability (and in expectation).

Given a directed graph𝐺 , we denote by 𝜇∗(𝐺) the value of the minimum cycle mean,
i.e., 𝜇∗(𝐺) := min𝐶 �̄� (𝐶). To develop our algorithm, the following characterization of
the minimum cycle mean will be useful:

Lemma 9.1. Let 𝐺 be a directed graph. Then,

𝜇∗(𝐺) = −min{𝑄 ∈ Q | 𝐺+𝑄 contains no negative cycle}.

Proof. By definition, we have that 𝜇∗(𝐺) = min𝐶 �̄� (𝐶). Equivalently, 𝜇∗(𝐺) is the largest
rational number 𝜇 such that 𝜇 ≤ 𝑤 (𝐶)/|𝐶 | holds for all cycles 𝐶 in 𝐺 . In particular,
𝑤 (𝐶) − 𝜇 · |𝐶 | ≥ 0 holds for all cycles𝐶 , which is equivalent to𝐺−𝜇 not having negative
cycles. □

Recall that Threshold(𝐺), computes the minimum integer𝑀∗ ≥ 0 such that 𝐺+𝑀∗

contains no negative cycle (Definition 8.25). This is very similar to the characterization
of the minimum cycle mean given by Lemma 9.1, except that the latter minimizes over
rational numbers that are not necessarily nonnegative. To overcome this, we will use
the following simple propositions:

Proposition 9.2. Let 𝐺 be a directed graph and let 𝑎 ≥ 1, 𝑏 ≥ 0 be integers. Let 𝐻 be a
copy of 𝐺 where each edge has weight 𝑤𝐻 (𝑒) := 𝑎 · 𝑤𝐺 (𝑒) + 𝑏. Let 𝐶 be any cycle in 𝐺 .
Then, �̄�𝐻 (𝐶) = 𝑎 · �̄�𝐺 (𝐺) + 𝑏.

175



9 Further Results

Proof. Note that the weight of 𝐶 in 𝐻 is exactly 𝑤𝐻 (𝐶) = 𝑎 ·𝑤𝐺 (𝐶) + 𝑏 · |𝐶 |. Therefore,
the cycle mean of 𝐶 in 𝐻 equals �̄�𝐻 (𝐶) = 𝑎 ·𝑤𝐺 (𝐶)/|𝐶 | + 𝑏 = 𝑎 · �̄�𝐺 (𝐶) + 𝑏. □

Proposition 9.3. Let 𝐶 and 𝐶′ be two cycles in a directed graph 𝐺 with distinct means,
i.e. �̄� (𝐶) ≠ �̄� (𝐶′). Then, |�̄� (𝐶) − �̄� (𝐶′) | ≥ 1/𝑛2.

Proof. By definition, we can express |�̄� (𝐶) − �̄� (𝐶′) | as����𝑤 (𝐶)|𝐶 | − 𝑤 (𝐶′)|𝐶′| ���� = ����𝑤 (𝐶) |𝐶′| −𝑤 (𝐶′) |𝐶 ||𝐶 | · |𝐶′|

���� ≥ 1
|𝐶 | |𝐶′| ,

where we used that �̄� (𝐶) ≠ �̄� (𝐶′). Since |𝐶 |, |𝐶′| ≤ 𝑛, we have that this is at least
1/𝑛2. □

Wewill use the following lemma, which is a Las Vegas implementation of Lemma 8.32.

Lemma 9.4. Let𝐺 be a directed graph. There is a Las Vegas algorithm which computes
Threshold(𝐺) (see Definition 8.25) and runs in time𝑂 ((𝑚 +𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 ))
with high probability (and in expectation).

Proof. The algorithm computes𝑀∗ = Threshold(𝐺) using Lemma 8.32. By definition,
this returns the smallest integer 𝑀∗ such that 𝐺+𝑀∗ contains no negative cycles with
high probability (recall Definition 8.25). To turn it into a Las Vegas algorithm, we need
to verify that the output is correct. For this, we add a source vertex 𝑠 connected with
0-weight edges to all other vertices and use Main Theorem 7.1 to test if𝐺+𝑀∗ contains
no negative cycles and that 𝐺+𝑀∗−1 contains negative cycles. If either test fails, the
algorithm restarts.
The correctness of this procedure follows since Main Theorem 7.1 is a Las Vegas

algorithm. For the running time, observe that call to Lemma 8.32 (using the bound on
𝑇RSSSP(𝑚,𝑛) given by Theorem 8.1) and the calls to Main Theorem 7.1 run in time

𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )) .

Moreover, Lemma 8.32 guarantees that the value 𝑀∗ is correct with high probability.
Thus, the algorithm terminates in time

𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 ))

with high probability. □

Proof of Theorem 7.3. We construct a graph 𝐻 by copying𝐺 and modifying each edge
weight to 𝑛2𝑤 (𝑒) − 𝑛3𝐿, where 𝐿 is the largest edge-weight in 𝐺 . Then, we compute
𝑀∗ := Threshold(𝐻 ) using Lemma 9.4. Finally, we find a negative cycle in 𝐻+𝑀∗−1

using Lemma 8.26. See Algorithm 21 for the pseudocode.
The running time is dominated by the calls to Threshold and FindNegCycle. Us-

ing Lemma 9.4 the call to Threshold takes time 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 ))
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9.1 Minimum Cycle Mean

Algorithm 21 Given a graph𝐺 the procedure returns cycle𝐶 of minimummean weight
with high probability. See Theorem 7.3.

1 procedure MinCycleMean(𝐺)
2 Let 𝐿 be the largest weight in 𝐺
3 Let 𝐻 be a copy of 𝐺 with edge weights 𝑤𝐻 (𝑒) ← 𝑛2 ·𝑤𝐺 (𝑒) − 𝑛3𝐿.
4 Compute𝑀∗ ← Threshold(𝐻 ) using Lemma 9.4
5 𝐶 ← FindNegCycle(𝐻+𝑀∗−1)
6 return 𝐶

with high probability. By Lemma 8.26 the call to FindNegCycle, (using Lemma 8.32
to implement Threshold and Theorem 8.1 to bound 𝑇RSSSP(𝑚,𝑛)) takes time 𝑂 ((𝑚 +
𝑛 log log𝑛) log2 𝑛 log(𝑛𝑊 )) with high probability as well. Thus, the algorithm runs in
the claimed running time.
To analyze the correctness, note that Proposition 9.2 implies that a cycle 𝐶 is the

minimizer of �̄�𝐺 (𝐶) if and only if it is the minimizer of �̄�𝐻 (𝐶). Thus, it suffices to find
a cycle of minimum mean in 𝐻 . We will argue that the cycle found by the algorithm is
the minimizer.

▷ Claim 9.5. The value𝑀∗ computed in Line 4 satisfies𝑀∗ = ⌈−𝜇∗(𝐻 )⌉.

Proof . We observe that the minimum cycle mean in 𝐻 is non-positive, i.e., 𝜇∗(𝐻 ) ≤ 0.
To see this, note that any cycle 𝐶 in 𝐺 has weight at most 𝑤𝐺 (𝐶) ≤ 𝑛𝐿. Thus, by the
way we set the weights in 𝐻 , any cycle in 𝐻 has weight 𝑤𝐻 (𝐶) = 𝑛2𝑤𝐺 (𝐶) − 𝑛3𝐿 |𝐶 | ≤
𝑛3𝐿 − 𝑛3𝐿 = 0. This means that in Lemma 9.1 we can minimize over 𝑄 ≥ 0, i.e. that

𝜇∗(𝐻 ) = −min{0 ≤ 𝑄 ∈ Q | 𝐻+𝑄 contains no negative cycle}. (9.1)

Recall that by definition of Threshold(𝐻 ),𝑀∗ is the smallest nonnegative integer
such that 𝐻+𝑀∗ has no negative cycles, i.e.

𝑀∗ = min{0 ≤ 𝑀 ∈ Z | 𝐻+𝑀 contains no negative cycle}. (9.2)

Combining (9.1) and (9.2), we conclude that𝑀∗ = ⌈−𝜇∗(𝐻 )⌉, as claimed. ◁

It follows that 𝐻+𝑀∗−1 indeed contains a negative cycle. By Lemma 9.4, the call
to Threshold is correct. Hence, 𝐻+𝑀∗−1 contains a negative cycle and the call to
FindNegCycle is correct by Lemma 8.26. Let 𝐶 be the cycle obtained in Line 5. Since
it has negative weight in 𝐻+𝑀∗−1, its weight in 𝐻 is less than −|𝐶 | (𝑀∗ − 1). Hence, it
holds that �̄�𝐻 (𝐶) < −𝑀∗ + 1. Moreover, since 𝐻+𝑀∗ contains no negative cycle, every
cycle 𝐶′ has mean weight �̄�𝐻 (𝐶′) ≥ −𝑀∗.
Now consider a minimum mean cycle 𝐶′. As we have seen, we have

−𝑀∗ ≤ �̄�𝐻 (𝐶′) ≤ �̄�𝐻 (𝐶) < −𝑀∗ + 1. (9.3)
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Assume for the sake of contradiction that �̄�𝐻 (𝐶) ≠ �̄�𝐻 (𝐶′). Then by Proposition 9.3
we have that |�̄�𝐺 (𝐶) − �̄�𝐺 (𝐶′) | ≥ 1/𝑛2, and by Proposition 9.2 it holds that �̄�𝐻 (𝐶) =
𝑛2 · 𝑤𝐺 (𝐶) − 𝑛3𝐿 and �̄�𝐻 (𝐶′) = 𝑛2 · 𝑤𝐺 (𝐶′) − 𝑛3𝐿. Combining these facts, we obtain
that |�̄�𝐻 (𝐶) − �̄�𝐻 (𝐶′) | ≥ 1. This contradicts Equation (9.3). Hence, we obtain �̄�𝐻 (𝐶) =
�̄�𝐻 (𝐶′), so the computed cycle 𝐶 is a minimizer of �̄�𝐻 (𝐶) and thus also of �̄�𝐺 (𝐶). □

9.2 Low-Diameter Decomposition

In this section we establish our strong Low-Diameter Decomposition (LDD). Recall that
in a strong LDD (as defined in Definition 7.4), the goal is to select a small set of edges
𝑆 such that after removing the edges in 𝑆 , each strongly connected component in the
remaining graph has bounded diameter. Our result is the following theorem, which
proves that strong LDDs exist (which was known by [BNW22]) and can be efficiently
computed (which was open):

Theorem 7.5 (Strong Low-Diameter Decomposition). There is a strong Low-Diameter
Decomposition with overhead 𝑂 (log3 𝑛), computable in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log2 𝑛)
with high probability (and in expectation).

9.2.1 Heavy and Light Vertices

In the algorithm we will distinguish between heavy and light vertices, depending on
how large the out- and in-balls of these vertices are. To classify vertices as heavy or
light, we rely on the following simple lemmas:

Lemma 9.6 (Estimate Ball Sizes). Let 𝜀 > 0. Given a directed graph𝐺 with nonnegative
edge weights and 𝑟 > 0, we can approximate |𝐵out (𝑣, 𝑟 ) | with additive error 𝜀𝑛 for each
vertex 𝑣. With high probability, the algorithm succeeds and runs in time𝑂 (𝜀−2 log𝑛 · (𝑚 +
𝑛 log log𝑛)).

Proof. Sample random vertices 𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 (𝐺) (with repetition) for 𝑘 := 5𝜀−2 log𝑛.
Compute 𝐵in(𝑣𝑖, 𝑟 ) for all 𝑖 ∈ [𝑘]. Using Dijkstra’s algorithm with Thorup’s priority
queue [Dij59; Tho04], this step runs in time𝑂 (𝑘 · (𝑚 +𝑛 log log𝑛)) = 𝑂 (𝜀−2 log𝑛 · (𝑚 +
𝑛 log log𝑛)). Now return for each vertex 𝑣, the estimate

𝑏 (𝑣) := 𝑛

𝑘
· |{ 𝑖 ∈ [𝑘] | 𝑣 ∈ 𝐵in(𝑣𝑖, 𝑟 ) }|.

We claim that this estimate is accurate. Let 𝐼𝑖 denote the indicator variable whether
𝑣𝑖 ∈ 𝐵out (𝑣, 𝑟 ), and let 𝐼 :=

∑𝑘
𝑖=1 𝐼𝑖 . Then the random variable 𝑏 (𝑣) is exactly

𝑏 (𝑣) = 𝑛

𝑘
· 𝐼 .
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Note that P(𝐼𝑖 = 1) = |𝐵out (𝑣, 𝑟 ) |/𝑛. Therefore, in expectation we have

E(𝑏 (𝑣)) = 𝑛

𝑘
·
𝑘∑︁
𝑖=1
P(𝐼𝑖 = 1) = 𝑛

𝑘
· 𝑘
𝑛
· |𝐵out (𝑣, 𝑟 ) | = |𝐵out (𝑣, 𝑟 ) |.

Using Chernoff’s bound we have P( |𝐼 − E(𝐼 ) | > 𝑎) < 2 exp(−2𝑎2/𝑘). For 𝑎 := 𝜀𝑘 we
obtain

P( |𝑏 (𝑣) − E(𝑏 (𝑣)) | > 𝜀𝑛) = P( |𝐼 − E(𝐼 ) | > 𝜀𝑘) < 2 exp(−2𝜀2𝑘) ≤ 2𝑛−10.

Hence, with high probability the computed estimates are accurate. □

Lemma 9.7 (Heavy/Light Classification). There is an algorithm Light(𝐺, 𝑟 ) that, given
a directed graph 𝐺 and a radius 𝑟 , returns a set 𝐿 ⊆ 𝑉 (𝐺) with the following properties:

• For all 𝑣 ∈ 𝐿, it holds that |𝐵out (𝑣, 𝑟 ) | ≤ 7
8𝑛.

• For all 𝑣 ∈ 𝑉 (𝐺) \ 𝐿, it holds that |𝐵out (𝑣, 𝑟 ) | ≥ 3
4𝑛.

• Light(𝐺, 𝑟 ) runs in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log𝑛).

Proof. We run the previous Lemma 9.6 with parameter 𝜀 := 1
16 , and let 𝐿 be the subset

of vertices with estimated ball sizes at most 13
16𝑛. With high probability, the estimates

have additive error at most 𝜀𝑛 = 1
16𝑛. Therefore any vertex 𝑣 ∈ 𝐿 satisfies |𝐵out (𝑣, 𝑟 ) | ≤

13
16𝑛 +

1
16𝑛 = 7

8𝑛 and any vertex 𝑣 ∈ 𝑉 (𝐺) \ 𝐿 satisfies |𝐵out (𝑣, 𝑟 ) | ≥ 13
16𝑛 −

1
16𝑛 = 3

4𝑛. The
running time is dominated by Lemma 9.6 which runs in time 𝑂 ((𝑚 + 𝑛 log log𝑛) log𝑛)
as claimed. □

9.2.2 The Strong Low-Diameter Decomposition

The strong LDD works as follows: Let 𝑅 = 𝐷
10 log𝑛 . First, we run Lemma 9.7 on 𝐺 with

radius 𝑅 to compute a set 𝐿out and we run Lemma 9.7 on the reversed graph with radius
𝑅 to compute a set 𝐿in. We refer to the vertices in 𝐿out as out-light, to the vertices in 𝐿in
as in-light, and to the vertices in 𝑉 (𝐺) \ (𝐿out ∪ 𝐿in) as heavy. Then we distinguish two
cases:

• The heavy case: If there is a heavy vertex 𝑣 ∈ 𝑉 (𝐺) \ (𝐿out ∪ 𝐿in), we compute the
set of vertices𝑊 that both reach 𝑣 and are reachable from 𝑣 within distance 𝑅, i.e.,
𝑊 = 𝐵out (𝑣, 𝑅) ∩ 𝐵in(𝑣, 𝑅). Let 𝑇 out,𝑇 in denote the shortest path trees from 𝑣 to𝑊
and from𝑊 to 𝑣, respectively. Let 𝐶 be the union of vertices in 𝑇 out and 𝑇 in. We
collapse 𝐶 (that is, we replace all vertices in 𝐶 by a single super-vertex) and consider
the remaining (multi-)graph 𝐺/𝐶 . We recursively compute the strong LDD in 𝐺/𝐶 ,
resulting in a set of edges 𝑆 . In 𝑆 we uncollapse all edges involving the super-vertex
(i.e., for any edge (𝑣,𝑢) ∈ 𝐸 (𝐺) which became an edge (𝐶,𝑢) in the collapsed graph,
we revert (𝐶,𝑢) back to (𝑣,𝑢)) and return 𝑆 .
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Algorithm 22 The implementation of the strong Low-Diameter Decomposition (see
Theorem 7.5) that either returns a set of edges 𝑆 ⊆ 𝐸 (𝐺) or Fail.
1 procedure StrongLDD(𝐺,𝐷)
2 if 𝑛 ≤ 100 then return 𝐸 (𝐺)
3 Let 𝑅 := 𝐷

10 log𝑛
4 Compute 𝐿out ← Light(𝐺, 𝑅)
5 Compute 𝐿in ← Light(𝐺 rev, 𝑅) (here, 𝐺 rev is the graph 𝐺 with reversed edges)

(The heavy case)
6 if there is a heavy vertex 𝑣 ∈ 𝑉 (𝐺) \ (𝐿out ∪ 𝐿in) then
7 Let𝑊 ← 𝐵out (𝑣, 𝑅) ∩ 𝐵in(𝑣, 𝑅)
8 Compute shortest path trees 𝑇 out from 𝑣 to𝑊 , and 𝑇 in from𝑊 to 𝑣
9 Let 𝐶 be the union of vertices in 𝑇 out,𝑇 in

10 𝑆 ← StrongLDD(𝐺/𝐶, 𝐷 − 4𝑅)
11 return 𝑆 after uncollapsing all edges

(The light case)
12 𝑆 ← ∅
13 while there is 𝑣 ∈ 𝑉 (𝐺) ∩ 𝐿out do
14 𝑟 ∼ Geom(𝑅−1 · 10 log𝑛0)
15 if 𝑟 > 𝑅 then return Fail
16 𝑆 ← 𝑆 ∪ 𝜕𝐵out (𝑣, 𝑟 ) ∪ StrongLDD(𝐺 [𝐵out (𝑣, 𝑟 )], 𝐷)
17 𝐺 ← 𝐺 \ 𝐵out (𝑣, 𝑟 )
18 while there is 𝑣 ∈ 𝑉 (𝐺) ∩ 𝐿in do
19 𝑟 ∼ Geom(𝑅−1 · 10 log𝑛0)
20 if 𝑟 > 𝑅 then return Fail
21 𝑆 ← 𝑆 ∪ 𝜕𝐵in(𝑣, 𝑟 ) ∪ StrongLDD(𝐺 [𝐵in(𝑣, 𝑟 )], 𝐷)
22 𝐺 ← 𝐺 \ 𝐵in(𝑣, 𝑟 )
23 return 𝑆

• The light case: If there is no heavy vertex, then each vertex is out-light or in-light.
For each vertex 𝑣 (which is out-light, say) we can therefore proceed in the standard
way: Sample a radius 𝑟 from a geometric distribution with parameter𝑂 (log𝑛/𝐷), cut
the edges leaving 𝐵out (𝑣, 𝑟 ) and recur on both the inside and the outside of the ball
𝐵out (𝑣, 𝑟 ).

We summarize the pseudocode with the precise parameters in Algorithm 22. Throughout
this section, we denote by 𝑛0 the size of the original graph and by 𝑛 the size of the
current graph 𝐺 (in the current recursive call of the algorithm).

Lemma9.8 (StrongDiameter of Algorithm 22). With high probability, StrongLDD(𝐺, 𝐷)
either returns Fail or a set of edges 𝑆 ⊆ 𝐸 (𝐺) such that every strongly connected compo-
nent 𝐶 of 𝐺 \ 𝑆 has diameter at most 𝐷 , i.e., max𝑢,𝑣∈𝐶 dist𝐺 [𝐶] (𝑢, 𝑣) ≤ 𝐷 .
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Proof. With high probability, the heavy-light classification works correctly in the exe-
cution of StrongLDD(𝐺, 𝐷) (and all recursive calls). We condition on this event and
treat the classification as perfect.
As before, we have to distinguish the heavy and the light case. In the heavy case,

let 𝑣 be the heavy vertex and let𝑊,𝑇 out,𝑇 in,𝐶 be as in the algorithm. We claim that the
induced subgraph 𝐺 [𝐶] has diameter at most 4𝑅. Take any vertex 𝑥 ∈ 𝐶; it suffices to
prove that both dist𝐺 [𝐶] (𝑣, 𝑥) ≤ 2𝑅 and dist𝐺 [𝐶] (𝑥, 𝑣) ≤ 2𝑅. We show the former claim
and omit the latter. There are two easy cases: Either we have 𝑥 ∈ 𝑇 out in which case
we immediately have that dist𝐺 [𝐶] (𝑣, 𝑥) ≤ 𝑅 (as any path in 𝑇 out has length at most
𝑅). Or we have 𝑥 ∈ 𝑇 in, in which case there exists some intermediate vertex 𝑦 ∈ 𝑊
with dist𝐺 [𝐶] (𝑦, 𝑥) ≤ 𝑅. But then also dist𝐺 [𝐶] (𝑣,𝑦) ≤ 𝑅 and in combination we obtain
dist𝐺 [𝐶] (𝑣, 𝑥) ≤ 2𝑅 as claimed.
Recall that the algorithm collapses the vertices in 𝐶 , and computes a strong LDD 𝑆

on the remaining multigraph with parameter 𝐷 − 4𝑅. We assume by induction that
the recursive call computes a correct strong decomposition (for 𝐺/𝐶). To see that the
decomposition is also correct for 𝐺 , take any two vertices 𝑢, 𝑣 in the same strongly
connected component in𝐺 \𝑆 . We have that dist(𝐺/𝐶)\𝑆 (𝑢, 𝑣) ≤ 𝐷 − 4𝑅. If the shortest 𝑢-
𝑣-path in𝐺/𝐶 does not touch the supervertex, then we immediately have dist𝐺\𝑆 (𝑢, 𝑣) ≤
𝐷 − 4𝑅 ≤ 𝐷 . If the shortest path touches the supervertex, then we can replace the
path through 𝐶 by a path of length diam(𝐺 [𝐶]) ≤ 4𝑅. It follows that dist𝐺\𝑆 (𝑢, 𝑣) ≤
𝐷 − 4𝑅 + 4𝑅 ≤ 𝐷 .
The correctness of the light case is exactly as in the known LDD by [BNW22], and

similar to Lemma 7.8: For every ball 𝐵out (𝑣, 𝑟 ) (or 𝐵in(𝑣, 𝑟 )) that the algorithm carves out,
we remove all outgoing edges 𝜕𝐵out (𝑣, 𝑟 ) (or all incoming edges 𝜕𝐵in(𝑣, 𝑟 ), respectively).
Thus, two vertices 𝑥,𝑦 in the remaining graph are part of the same strongly connected
component only if both𝑥,𝑦 ∈ 𝐵out (𝑣, 𝑟 ) or both𝑥,𝑦 ∉ 𝐵out (𝑣, 𝑟 ). The algorithm continues
the loop on all vertices outside 𝐵out (𝑣, 𝑟 ) and recurs inside 𝐵out (𝑣, 𝑟 ). By induction, both
calls succeed and reduce the diameter to at most 𝐷 .

Eventually the algorithm reaches a base case where𝐺 contains only a constant number
of nodes and edges—in this case, we can select 𝑆 to be the whole set of edges. □

Lemma 9.9 (Sparse Hitting of Algorithm 22). For any edge 𝑒 ∈ 𝐸 (𝐺), the probability that
𝑒 is contained in the output of StrongLDD(𝐺, 𝐷) is at most 𝑂 (𝑤 (𝑒)

𝐷
· log3(𝑛0) + 1

poly(𝑛) ).
Proof. In this proof we condition on the event that the initially computed heavy/light
classification is correct. Since this event happens with high probability, we only increase
the hitting probabilities by 1

poly(𝑛) for all edges.
Let 𝑝 (𝑛,𝑤, 𝐷) be an upper bound on the probability that an edge of weight 𝑤 is

contained in the output of StrongLDD(𝐺, 𝐷), where 𝐺 is an 𝑛-vertex graph. We
inductively prove that 𝑝 (𝑛,𝑤, 𝐷) ≤ 𝑤

𝐷
· 1000 log(𝑛0) log2(𝑛) which is as claimed. We

distinguish the heavy and light case in Algorithm 22.

The Light Case. Suppose that the algorithm enters the light case (that is, there is
no vertex classified as heavy). Focus on some edge 𝑒 = (𝑥,𝑦) of weight 𝑤 = 𝑤 (𝑒). We
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distinguish three cases for each iteration. Suppose that the current iteration selects an
out-light vertex 𝑣.

• 𝑥,𝑦 ∉ 𝐵out (𝑣, 𝑟 ): The edge 𝑒 is not touched in this iteration and remains a part of
the graph𝐺 . It may or may not be included in the output, depending on the future
iterations.

• 𝑥 ∈ 𝐵out (𝑣, 𝑟 ) and 𝑦 ∉ 𝐵out (𝑣, 𝑟 ): In this case 𝑒 ∈ 𝜕𝐵out (𝑣, 𝑟 ) and thus the edge is
included into 𝑆 .

• 𝑦 ∈ 𝐵out (𝑣, 𝑟 ): The edge is not included in 𝜕𝐵out (𝑣, 𝑟 ). It may however be included
in the recursive call on 𝐵out (𝑣, 𝑟 ). In the recursive call we have that |𝐵out (𝑣, 𝑟 ) | ≤
|𝐵out (𝑣, 𝑅) | ≤ 7𝑛

8 , as 𝑟 ≤ 𝑅 (in the opposite case the algorithm fails and no edge is
returned) and by Lemma 9.7 as 𝑣 is out-light.

Combining these cases, we obtain the following recursion for 𝑝 (𝑛,𝑤, 𝐷). In the calcula-
tion we abbreviate 𝑞 := 𝑅−1 · 10 log(𝑛0):

𝑝 (𝑛,𝑤, 𝐷) ≤ max
𝑣∈𝑉 (𝐺)

P
𝑟∼Geom(𝑞)

(𝑦 ∉ 𝐵out (𝑣, 𝑟 ) | 𝑥 ∈ 𝐵out (𝑣, 𝑟 )) + 𝑝 ( 7𝑛8 , 𝑤, 𝐷)

≤ max
𝑣∈𝑉 (𝐺)

P
𝑟∼Geom(𝑞)

(𝑟 < dist(𝑣,𝑦) | 𝑟 ≥ dist(𝑣, 𝑥)) + 𝑝 ( 7𝑛8 , 𝑤, 𝐷)

≤ max
𝑣∈𝑉 (𝐺)

P
𝑟∼Geom(𝑞)

(𝑟 < dist(𝑣, 𝑥) +𝑤 | 𝑟 ≥ dist(𝑣, 𝑥)) + 𝑝 ( 7𝑛8 , 𝑤, 𝐷)

Let 𝑟 ′ := 𝑟 − dist(𝑣, 𝑥). Conditioned on the event 𝑟 ≥ dist(𝑣, 𝑥), 𝑟 ′ is a nonnegative
random variable and by the memoryless property of geometric distributions, 𝑟 ′ is
sampled from Geom(𝑞), too:

≤ max
𝑣∈𝑉 (𝐺)

P
𝑟 ′∼Geom(𝑞)

(𝑟 < 𝑤) + 𝑝 ( 7𝑛8 , 𝑤, 𝐷)

≤ 𝑤𝑞 + 𝑝 ( 7𝑛8 , 𝑤, 𝐷)

≤ 𝑤
𝐷
· 100 log(𝑛0) log(𝑛) + 𝑝 ( 7𝑛8 , 𝑤, 𝐷).

In the last step, we have plugged in𝑞 = 𝑅−1 ·10 log(𝑛0) = 1
𝐷
·100 log(𝑛0) log(𝑛). It follows

by induction that 𝑝 (𝑛,𝑤, 𝐷) ≤ 𝑤
𝐷
·100 log(𝑛0) log(𝑛) log8/7(𝑛) ≤ 𝑤

𝐷
·1000 log(𝑛0) log2(𝑛).

The same analysis applies also to the in-balls with “𝐵in” in place of “𝐵out”.

The Heavy Case. In the heavy case, the algorithm selects a heavy vertex 𝑣, computes
the sets𝑊 = 𝐵out (𝑣, 𝑅) ∩ 𝐵in(𝑣, 𝑅) and 𝐶 ⊇𝑊 and recurs on the graph 𝐺/𝐶 in which
we contract the vertex set 𝐶 to a single vertex. We have |𝐵out (𝑣, 𝑅) |, |𝐵in(𝑣, 𝑅) | > 3𝑛

4 by
Lemma 9.7 since 𝑣 is heavy. It follows that |𝐶 | ≥ |𝑊 | > 𝑛

2 and therefore the contracted
graph has size |𝑉 (𝐺/𝐶) | ≤ 𝑛

2 . As we call the algorithm recursively with parameter
𝐷 − 4𝑅 where 𝑅 = 𝐷

10 log𝑛 , we obtain the following recurrence:

𝑝 (𝑛,𝑤, 𝐷) ≤ 𝑝 (𝑛2 , 𝑤, 𝐷 − 4𝑅).
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9.2 Low-Diameter Decomposition

Using the induction hypothesis, we obtain:

𝑝 (𝑛,𝑤, 𝐷) ≤ 𝑤

𝐷 − 4𝑅 · 1000 log2(𝑛0) log(𝑛2 )

≤ 𝑤
𝐷
· 1

1 − 4
10 log𝑛

· 1000 log2(𝑛0) log(𝑛2 )

=
𝑤

𝐷
· log(𝑛)

log(𝑛) − 4
10
· 1000 log2(𝑛0) · (log(𝑛) − 1)

≤ 𝑤
𝐷
· 1000 log2(𝑛0) · log(𝑛). □

Lemma 9.10 (Running Time of Algorithm 22). The algorithm StrongLDD(𝐺, 𝐷) runs
in time 𝑂 ((𝑚 + 𝑛0 log log𝑛0) log2(𝑛0)).

Proof. First focus on a single call of the algorithm and ignore the cost of recursive calls.
It takes time 𝑂 ((𝑚 + 𝑛0 log log𝑛0) log(𝑛0)) to compute the heavy-light classification.
In the heavy case, we can compute𝑊,𝑇 out,𝑇 in,𝐶 in Dijkstra-time 𝑂 (𝑚 + 𝑛0 log log𝑛0).
In the light case, we can also carve out all balls 𝐵out (𝑣, 𝑟 ) and 𝐵in(𝑣, 𝑟 ) in total time
𝑂 (𝑚 + 𝑛0 log log(𝑛0)), although the formal analysis is more involved: Observe that we
explore each vertex at most once spending time𝑂 (log log𝑛0), and that we explore each
edge at most once spending time 𝑂 (1). Since the analysis is similar to Lemma 7.8, we
omit further details.
As the algorithm recurs on disjoint subgraphs of 𝐺 , where the number of nodes in

each subgraph is a constant factor smaller than the original number of nodes or less,
the running time becomes 𝑂 ((𝑚 + 𝑛0 log log𝑛0) log(𝑛0)2). □

Lemma 9.11 (Failure Probability of Algorithm 22). StrongLDD(𝐺,𝐷) returns Fail with
probability at most 𝑂 (𝑛−8

0 ).

Proof. As shown in detail in the previous lemmas, with every recursive call the num-
ber of vertices reduces by a constant factor and thus the recursion reaches depth at
most𝑂 (log𝑛0). In each recursive call, the loops in Lines 13 and 18 run at most 𝑛0 times.
For each execution, the error event is that 𝑟 > 𝑅, where 𝑟 ∼ Geom(𝑅−1 · 10 log(𝑛0)).
This event happens with probability at most exp(−10 log(𝑛0)) ≤ 𝑛−10

0 , and therefore
the algorithm returns Fail with probability at most 𝑂 (𝑛0 log𝑛0) · 𝑛−10

0 ≤ 𝑂 (𝑛−8
0 ). □

Proof of Theorem 7.5. To compute the claimed strong LDD we call StrongLDD(𝐺, 1
2𝐷)

with the following two modifications:
First, whenever some recursive call returns Fail, we simply restart the whole algo-

rithm.
Second, we test whether the returned set of edges 𝑆 ⊆ 𝐸 (𝐺) satisfies the Strong

Diameter property. To this end, we compute the strongly connected components in
𝐺 \ 𝑆 and compute, for any such component 𝐶 , a 2-approximation of its diameter. By
a standard argument, such a 2-approximation can be obtained in Dijkstra-time by (1)
selecting an arbitrary node 𝑣, (2) computing 𝑑𝑜𝑢𝑡 := max𝑢∈𝑉 (𝐺) 𝑑𝐺 (𝑣,𝑢) by solving SSSP
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9 Further Results

on 𝐺 , (3) computing 𝑑𝑖𝑛 := max𝑢∈𝑉 (𝐺) 𝑑𝐺 (𝑢, 𝑣) by solving SSSP on the reversed graph
of 𝐺 , and returning max{𝑑𝑖𝑛, 𝑑𝑜𝑢𝑡 }. If the diameter approximations are at most 𝐷2 in all
components, we return 𝑆 . Otherwise, we restart the whole algorithm.
This algorithm indeed never fails to satisfy the Strong Diameter property: Since

the diameter approximations have approximation factor at most 2, we have certified
that the diameter of any strongly connected component is at most 𝐷 in the graph
𝐺 \ 𝑆 . Moreover, with high probability the execution of Algorithm 22 passes both tests
with high probability (by Lemmas 9.8 and 9.11), and therefore we expect to repeat the
algorithm 𝑂 (1) times. Since the repetitions are independent of each other, the edge
hitting probability increases only by a constant factor and remains 𝑂 (𝑤 (𝑒)

𝐷
· log3(𝑛0))

by Lemma 9.9.
Finally, consider the running time. As argued before, with high probability we avoid

restarting Algorithm 22 altogether. Thus, with high probability the algorithm runs in
total time is 𝑂 ((𝑚 + 𝑛0 log log𝑛0) log2(𝑛0)) by Lemma 9.10. Since we expect to repeat
the algorithm at most 𝑂 (1) times, the same bound applies to the expected running
time. □
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