
S I M U L AT I O N S A N D D ATA
S T R U C T U R E S T O S T U D Y D R U G

R E S I S TA N C E

Dissertation

zur Erlangung des Grades
des Doktors der Naturwissenschaften

der Fakultät für Mathematik und Informatik
der Universität des Saarlandes

vorgelegt von

Sanjay Kumar Srikakulam

Saarbrücken,

2024



Kolloqium: 03.12.2024

Dekan der Fakultät: Prof. Dr. Roland Speicher

Komitee:
Vorsitzender: Prof. Dr. Sven Rahmann
Gutachterin: Prof. Dr. Olga V. Kalinina
Gutachter: Prof. Dr. Volkhard Helms
Beisitzer: Dr. Alexander Gress

Sanjay Kumar Srikakulam: Simulations and data structures to study drug
resistance, © September 2024



A B S T R A C T

Drug resistance is a critical health issue that significantly impacts the suc-
cess of treatments across various diseases, often leading to relapse and
treatment failure. Over the recent decades, the emergence of drug resis-
tance has posed a significant barrier to effective therapeutic interventions.
It can develop due to several factors, most notably through mutations
in the genetic makeup of organisms or individual cells, which subse-
quently alter the structure and function of key proteins. Understanding
and addressing drug resistance requires a comprehensive approach that
combines advanced computational techniques with molecular insights.

In this thesis, we explore the impact of mutations by using modern
computational techniques to handle this challenge. The first project
uses molecular dynamics (MD) simulations to study how specific mu-
tations influence protein dynamics, structure, and function. Examining
the mutation-induced structural changes in proteins helps us under-
stand how mutations may decrease drug efficacy, which is particularly
relevant in diseases like cancer and viral infections. We explore two
case studies: the receptor tyrosine kinase KIT, where post-translational
modifications and mutations stabilize the active conformation, leading
to consecutive activation of the protein and reducing drug sensitivity in
cancers, and the NS3 protease in hepatitis C virus (HCV), where inter-
actions between mutations stabilize the protein structure, maintaining
resistance to direct-acting antiviral agents. These findings enhance our
understanding of drug resistance mechanisms and aid in developing
more effective therapeutic strategies.

To complement these molecular insights, the second project introduces
MetaProFi, a novel state-of-the-art computational tool developed to en-
hance large-scale genomic analysis. MetaProFi addresses the limitations
of traditional sequence analysis methods like BLAST, particularly when
dealing with large datasets. MetaProFi is unique in its ability to index
both nucleotide and amino acid sequences and offers the additional
feature of querying amino acid indexes using nucleotide sequences. This
feature is crucial for identifying functionally relevant genetic variants
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with greater accuracy, as protein sequences tend to be more conserved
across evolutionary distances. MetaProFi implements advanced opti-
mizations like data chunking, shared memory systems, and compression
algorithms and offers a scalable and efficient solution for large-scale
genomic analysis. This integration of molecular dynamics insights with
large-scale genomic analysis allows us to explore the genetic basis of
drug resistance more effectively, offering a comprehensive toolkit for
developing targeted and personalized therapeutic strategies.
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Z U S A M M E N FA S S U N G

Arzneimittelresistenz ist ein kritisches medizinischesproblem, das den
Erfolg von Behandlungen bei verschiedenen Krankheiten erheblich be-
einträchtigt und häufig zu Rückfällen und Behandlungsversagen führt.
In den letzten Jahrzehnten hat das Auftreten von Arzneimittelresistenzen
ein erhebliches Hindernis für wirksame therapeutische Interventionen
dargestellt. Sie kann durch verschiedene Faktoren entstehen, vor allem
durch Mutationen im Erbgut von Organismen oder einzelnen Zellen,
die in der Folge die Struktur und Funktion von Schlüsselproteinen ver-
ändern. Um Arzneimittelresistenzen zu verstehen und zu bekämpfen,
ist ein umfassender Ansatz erforderlich, der fortgeschrittene Computer-
techniken mit molekularen Erkenntnissen kombiniert.

In dieser Arbeit erforschen wir die Auswirkungen von Mutationen
mit Hilfe moderner Computertechniken, um diese Herausforderung zu
bewältigen. Das erste Projekt nutzt Simulationen der Molekulardynamik
(MD), um zu untersuchen, wie spezifische Mutationen die Dynamik,
Struktur und Funktion von Proteinen beeinflussen. Die Untersuchung
der mutationsbedingten strukturellen Veränderungen in Proteinen hilft
uns zu verstehen, wie Mutationen die Wirksamkeit von Medikamenten
verringern können, was bei Krankheiten wie Krebs und Virusinfek-
tionen besonders wichtig ist. Wir untersuchen zwei Fallstudien: die
Rezeptortyrosinkinase KIT, bei der posttranslationale Modifikationen
und Mutationen die aktive Konformation stabilisieren, was zu einer
konsekutiven Aktivierung des Proteins und einer geringeren Empfind-
lichkeit gegenüber Arzneimitteln bei Krebserkrankungen führt, und die
NS3-Protease des hepatitis-C-Virus (HCV), bei der Wechselwirkungen
zwischen Mutationen die Proteinstruktur stabilisieren und die Resis-
tenz gegenüber direkt wirkenden antiviralen Mitteln aufrechterhalten.
Diese Erkenntnisse verbessern unser Verständnis der Mechanismen der
Arzneimittelresistenz und helfen bei der Entwicklung wirksamerer the-
rapeutischer Strategien.

Um diese molekularen Erkenntnisse zu ergänzen, wird im Rahmen
des zweiten Projekts MetaProFi eingeführt, ein neuartiges, hochmoder-
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nes Computerprogramm, das zur Verbesserung der Genomanalyse in
großem Maßstab entwickelt wurde. MetaProFi überwindet die Gren-
zen herkömmlicher Sequenzanalysemethoden wie BLAST, insbesondere
bei großen Datensätzen. MetaProFi ist einzigartig in seiner Fähigkeit,
sowohl Nukleotid- als auch Aminosäuresequenzen zu indizieren und
bietet zusätzlich die Möglichkeit, Aminosäureindizes anhand von Nu-
kleotidsequenzen abzufragen. Diese Funktion ist entscheidend für die
Identifizierung funktionell relevanter genetischer Varianten mit größe-
rer Genauigkeit, da Proteinsequenzen dazu neigen, über evolutionäre
Distanzen hinweg besser konserviert zu sein. MetaProFi implementiert
fortschrittliche Optimierungen wie Data Chunking, Shared-Memory-
Systeme und Kompressionsalgorithmen und bietet eine skalierbare und
effiziente Lösung für groß angelegte Genomanalysen. Diese Integrati-
on von Erkenntnissen aus der Molekulardynamik mit groß angelegten
Genomanalysen ermöglicht es uns, die genetischen Grundlagen der
Arzneimittelresistenz effektiver zu erforschen und bietet ein umfassen-
des Instrumentarium für die Entwicklung gezielter und personalisierter
therapeutischer Strategien.
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1
I N T R O D U C T I O N

Life on Earth is believed to have originated approximately 3.5 to 4 bil-
lion years ago [1–3], starting as single-celled organisms that eventually
evolved into complex multicellular life forms. The intricate interplay
of genes, proteins, and regulatory networks has driven this transition.
According to the central dogma of molecular biology [4], DNA tran-
scribes to RNA, and RNA translates to protein, directing the flow of
genetic information within cells. Bioinformatics and computational bi-
ology have emerged as essential fields in molecular biology, providing
tools for analyzing and interpreting the vast amounts of data generated
by today’s research. The dawn of sequencing technologies, especially
next-generation sequencing (NGS) technologies, has transformed our
understanding of biological systems, leading to various OMICS dis-
ciplines focusing on comprehensive datasets characterizing different
biomolecular components. For example, genomics studies the complete
DNA within an organism, transcriptomics examines the RNA transcripts,
proteomics studies the entire proteins, and metabolomics explores the
metabolites within a biological sample. These fields collectively provide
insights into the mechanisms of gene expression, protein function, and
metabolic pathways.

Further advancements in these fields led to expansion into more spe-
cialized areas. This evolution has given rise to fields such as epigenetics,
which studies the chemical modifications of DNA and histones that
regulate gene expression; interactomics, which focuses on the complex
networks of protein interactions; and metagenomics, which explores
DNA from environmental samples. Bioinformatics and computational
biology play a crucial role in managing, processing, and analyzing the
unprecedented volumes of data produced by these diverse OMICS fields;
they also aid in facilitating the transformation and integration of diverse
data types, enabling the comprehensive mapping of information from
different fields and supporting the simulation of entire biological sys-
tems. Advances in sequencing technologies and large-scale initiatives
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2 introduction

have significantly enhanced our understanding of genetic and pheno-
typic diversity, with the Human Genome Project (HGP) [5] being a
landmark initiative in this regard.

Due to these advancements, we are experiencing overwhelming growth
of sequence data in public databases like the European Nucleotide
Archive (ENA) [6] and Sequence Read Archive (SRA) [7]. As the size
of the databases reached the petabyte scale, it has become difficult to
support online searches in these databases using classical tools like Basic
Local Alignment Search Tool (BLAST) [8]. This calls for a paradigm shift
in designing and developing novel tools to tackle such datasets. This
rapid growth creates a significant demand for effective management,
and the need for tools to process, store, and query these extensive collec-
tions of sequence data without high memory and storage requirements
constitutes a major computational challenge. Analyzing these abundant
data will lead to opportunities for great scientific discoveries, including
identifying novel genetic variants and mutations that affect protein func-
tion, which can provide insights into disease mechanisms, enhance drug
development, and uncover new therapeutic targets.

On the other end, proteins are fundamental to cellular function and
are crucial in this context. The protein’s primary structure, which is its
linear sequence of amino acids, fundamentally determines its higher-
order structures, as demonstrated by Christian Anfinsen in 1973 [9].
Techniques of structural biology, including X-ray crystallography, nuclear
magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy
(cryo-EM), have provided crucial insights into the three-dimensional
structures of proteins, revealing how these structures influence their
biological functions. Therefore, understanding protein structures and
dynamics is essential for deciphering their roles in biological processes
and disease mechanisms. Mutations in DNA sequences can lead to
changes in protein structures, potentially resulting in a change in protein
function, leading, among other consequences, to drug resistance. For
example, mutations can affect protein folding and stability or affinity
towards a ligand, leading to resistance against therapeutics. To address
these challenges, molecular dynamics (MD) simulations have been a vital
tool for studying protein dynamics at the atomistic level. MD simulations
(Chapter 2.8) provide insights into how proteins undergo conformational



introduction 3

changes and interact with ligands, which is crucial for drug design and
understanding resistance mechanisms.

In this thesis, we present two case studies (Chapter 3) that utilize
MD simulations to explore protein dynamics and the effects of post-
translational modifications and mutations on protein structures. The
first study investigates the phosphorylation at Y823 and the Y823D
mutation in the KIT receptor tyrosine kinase [10] (Chapter 3.2), which is
crucial for cell differentiation, proliferation, and survival. Dysregulation
of KIT, often due to such modifications or mutations, is associated with
various cancers, including gastrointestinal stromal tumors, leukemia,
and melanoma [11–13]. Our study demonstrates how phosphorylation
at Y823 stabilizes the protein’s active state while the Y823D mutation
similarly shifts the dynamic equilibrium, both contributing to drug
resistance. The second study examines the NS3-Q80K variant in the
NS3-4A protease of the Hepatitis C virus (HCV) [14] (Chapter 3.3),
known for its association with treatment failure of direct-acting antiviral
agents, destabilizing the protease’s fold. Despite this destabilization, the
NS3-Q80K variant maintains replicative fitness comparable to the wild-
type (WT) virus. This is achieved through epistatic interactions with
other amino acid substitutions, which stabilize the protein fold without
enhancing enzymatic activity or replicative fitness. MD simulations show
that these epistatic interactions increase the total number of residue
contacts, thereby compensating for protein folding instability.

Following this, we introduce a novel state-of-the-art tool, MetaProFi
[15] (Chapter 4) that can efficiently index protein and nucleotide se-
quence data with reduced computing requirements by combining effi-
cient probabilistic data structures with advanced computational methods
like optimized data chunking, shared memory systems, and compres-
sion algorithms. MetaProFi indexes both nucleotide and amino acid
sequences and offers the feature to query an amino acid database (index)
using nucleotide sequences as input. By enabling this, MetaProFi aims
to bridge the gap in sequence analysis, making it possible to explore
genetic variants with precision and efficiency and focusing directly on
those that impact protein function.



4 introduction

1.1 FIRST AUTHOR PUBLICATIONS RELATED TO DOCTORAL
STUDIES

Sanjay K. Srikakulam, Sebastian Keller, Fawaz Dabbaghie, Robert Bals,
Olga V Kalinina, "MetaProFi: an ultrafast chunked Bloom filter for stor-
ing and querying protein and nucleotide sequence data for accurate
identification of functionally relevant genetic variants", Bioinformatics,
Volume 39, Issue 3, March 2023, btad101
Abstract: Bloom filters are a popular data structure that allows rapid
searches in large sequence datasets. So far, all tools work with nucleotide
sequences; however, protein sequences are conserved over longer evo-
lutionary distances, and only mutations on the protein level may have
any functional significance. We present MetaProFi, a Bloom filter-based
tool that, for the first time, offers the functionality to build indexes
of amino acid sequences and query them with both amino acid and
nucleotide sequences, thus bringing sequence comparison to the biologi-
cally relevant protein level. MetaProFi implements additional efficient
engineering solutions, such as a shared memory system, chunked data
storage, and efficient compression. In addition to its conceptual novelty,
MetaProFi demonstrates state-of-the-art performance and excellent mem-
ory consumption-to-speed ratio when applied to various large datasets.

Georg Dultz†, Sanjay K. Srikakulam†, Michael Konetschnik†, Tetsuro Shi-
makami, Nadezhda T. Doncheva, Julia Dietz, Christoph Sarrazin, Ricardo
M. Biondi, Stefan Zeuzem, Robert Tampé, Olga V. Kalinina, Christoph
Welsch, "Epistatic interactions promote persistence of NS3-Q80K in
HCV infection by compensating for protein folding instability", Jour-
nal of Biological Chemistry, 297(3), 101031.
Abstract: The Q80K polymorphism in the NS3-4A protease of the hepati-
tis C virus is associated with treatment failure of direct-acting antiviral
agents. This polymorphism is highly prevalent in genotype 1a infec-
tions and stably transmitted between hosts. Here, we investigated the
underlying molecular mechanisms of evolutionarily conserved coevolv-
ing amino acids in NS3-Q80K and revealed potential implications of
epistatic interactions in immune escape and variants persistence. Using

†These authors contributed equally to this work.
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purified protein, we characterized the impact of epistatic amino acid
substitutions on the physicochemical properties and peptide cleavage
kinetics of the NS3-Q80K protease. We found that Q80K destabilized
the protease protein fold (p < 0.0001). Although NS3-Q80K showed re-
duced peptide substrate turnover (p < 0.0002), replicative fitness in an
H77S.3 cell culture model of infection was not significantly inferior to
the WT virus. Epistatic substitutions at residues 91 and 174 in NS3-Q80K
stabilized the protein fold (p < 0.0001) and leveraged the WT protease
stability. However, changes in protease stability inversely correlated with
enzymatic activity. In infectious cell culture, these secondary substitu-
tions were not associated with a gain of replicative fitness in NS3-Q80K
variants. Using molecular dynamics, we observed that the total number
of residue contacts in NS3-Q80K mutants correlated with protein folding
stability. Changes in the number of contacts reflected the compensatory
effect on protein folding instability by epistatic substitutions. In sum-
mary, epistatic substitutions in NS3-Q80K contribute to viral fitness by
mechanisms not directly related to RNA replication. By compensating
for protein-folding instability, epistatic interactions likely protect NS3-
Q80K variants from immune cell recognition.

Sanjay K. Srikakulam, Tomas Bastys, Olga V. Kalinina, "A shift of dy-
namic equilibrium between the KIT active and inactive states causes
drug resistance", Proteins. 2020; 88: 1434–1446.
Abstract: Tyrosine phosphorylation, a highly regulated post-translational
modification, is carried out by the enzyme tyrosine kinase (TK). TKs are
important mediators in signaling cascades, facilitating diverse biological
processes in response to stimuli. TKs may acquire mutations leading to
malignancy and are viable targets for anti-cancer drugs. Mast/stem cell
growth factor receptor KIT is a TK involved in cell differentiation, whose
dysregulation leads to various types of cancer, including gastrointestinal
stromal tumors, leukemia, and melanoma. KIT can be targeted by a
range of inhibitors that predominantly bind to the inactive state of the
enzyme. A mutation Y823D in the activation loop of KIT is known to be
responsible for the loss of sensitivity to some drugs in metastatic tumors.
We used all-atom molecular dynamics simulations to study the impact
of Y823D on the KIT conformation and dynamics and compared it to
the effect of phosphorylation of Y823. We simulated in total 6.4 µs of
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wild-type, mutant and phosphorylated KIT in the active- and inactive-
state conformations. We found that Y823D affects the protein dynamics
differently: in the active state, the mutation increases the protein stability,
whereas in the inactive state it induces local destabilization, thus shifting
the dynamic equilibrium towards the active state, altering the commu-
nication between distant regulatory regions. The observed dynamics of
the Y823D mutant is similar to the dynamics of KIT phosphorylated at
position Y823, thus we hypothesize that this mutation mimics a constitu-
tively active kinase, which is not responsive to inhibitors that bind its
inactive conformation.

1.2 COAUTHOR PUBLICATIONS DURING DOCTORAL STUDIES

Fawaz Dabbaghie, Sanjay K. Srikakulam, Tobias Marschall, Olga V Kalin-
ina, "PanPA: generation and alignment of panproteome graphs", Bioin-
formatics Advances, Volume 3, Issue 1, 2023, vbad167.
Abstract: Compared to eukaryotes, prokaryote genomes are more diverse
through different mechanisms, including a higher mutation rate and
horizontal gene transfer. Therefore, using a linear representative refer-
ence can cause a reference bias. Graph-based pangenome methods have
been developed to tackle this problem. However, comparisons in DNA
space are still challenging due to this high diversity. In contrast, amino
acid sequences have higher similarity due to evolutionary constraints,
whereby a single amino acid may be encoded by several synonymous
codons. Coding regions cover the majority of the genome in prokary-
otes. Thus, panproteomes present an attractive alternative leveraging
the higher sequence similarity while not losing much of the genome
in non-coding regions. We present PanPA, a method that takes a set of
multiple sequence alignments of protein sequences, indexes them, and
builds a graph for each multiple sequence alignment. In the querying
step, it can align DNA or amino acid sequences back to these graphs.
We first showcase that PanPA generates correct alignments on a pan-
proteome from 1350 Escherichia coli. To demonstrate that panproteomes
allow comparisons at longer phylogenetic distances, we compare DNA
and protein alignments from 1073 Salmonella enterica assemblies against
E.coli reference genome, pangenome, and panproteome using BWA,
GraphAligner, and PanPA, respectively; with PanPA aligning around
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22% more sequences. We also aligned a DNA short-reads whole genome
sequencing (WGS) sample from S.enterica against the E.coli reference
with BWA and the panproteome with PanPA, where PanPA was able to
find alignment for 68% of the reads compared to 5% with BWA.
My contribution: I contributed to the part of the code development for
the tool PanPA.

Alexander Gress, Sanjay K. Srikakulam, Sebastian Keller, Vasily Ramen-
sky, Olga V Kalinina, "d-StructMAn: Containerized structural annota-
tion on the scale from genetic variants to whole proteomes", GigaScience,
Volume 11, 2022, giac086.
Abstract: Structural annotation of genetic variants in the context of
intermolecular interactions and protein stability can shed light onto
mechanisms of disease-related phenotypes. Three-dimensional struc-
tures of related proteins in complexes with other proteins, nucleic acids,
or ligands enrich such functional interpretation, since intermolecular
interactions are well conserved in evolution. We present d-StructMAn, a
novel computational method that enables structural annotation of local
genetic variants, such as single-nucleotide variants and in-frame indels,
and implements it in a highly efficient and user-friendly tool provided as
a Docker container. Using d-StructMAn, we annotated several very large
sets of human genetic variants, including all variants from ClinVar and
all amino acid positions in the human proteome. We were able to pro-
vide annotation for more than 46% of positions in the human proteome
representing over 60% proteins. d-StructMAn is the first of its kind and
a highly efficient tool for structural annotation of protein-coding genetic
variation in the context of observed and potential intermolecular interac-
tions. d-StructMAn is readily applicable to proteome-scale datasets and
can be an instrumental building machine-learning tool for predicting
genotype-to-phenotype relationships.
My contribution: I contributed to the method development and designed
and implemented the containerization of the StructMAn application.

Christian Herr, Sebastian Mang, Bahareh Mozafari, Katharina Guenther,
Thimoteus Speer, Martina Seibert, Sanjay K. Srikakulam, Christoph Beis-
swenger, Felix Ritzmann, Andreas Keller, Rolf Mueller, Sigrun Smola,
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Dominic Eisinger, Michael Zemlin, Guy Danziger, Thomas Volk, Sabrina
Hoersch, Marcin Krawczyk, Frank Lammert, Thomas Adams, Gudrun
Wagenpfeil, Michael Kindermann, Constantin Marcu, Zuhair Wolf Diet-
rich Ataya, Marc Mittag, Konrad Schwarzkopf, Florian Custodis, Daniel
Grandt, Harald Schaefer, Kai Eltges, Philipp M Lepper, Robert Bals &
On behalf of the CORSAAR Study Group, "Distinct Patterns of Blood
Cytokines Beyond a Cytokine Storm Predict Mortality in COVID-19",
Journal of Inflammation Research, 14, 4651–4667.
Abstract: COVID-19 comprises several severity stages ranging from
oligosymptomatic disease to multi-organ failure and fatal outcomes. The
mechanisms why COVID-19 is a mild disease in some patients and pro-
gresses to a severe multi-organ and often fatal disease with respiratory
failure are not known. Biomarkers that predict the course of disease are
urgently needed. The aim of this study was to evaluate a large spectrum
of established laboratory measurements. Patients from the prospective
PULMPOHOM and CORSAAR studies were recruited and comprised
35 patients with COVID-19, 23 with conventional pneumonia, and 28
control patients undergoing elective non-pulmonary surgery. Venous
blood was used to measure the serum concentrations of 79 proteins by
Luminex multiplex immunoassay technology. Distribution of biomark-
ers between groups and association with disease severity and outcomes
were analyzed. The biomarker profiles between the three groups differed
significantly with elevation of specific proteins specific for the respec-
tive conditions. Several biomarkers correlated significantly with disease
severity and death. Uniform manifold approximation and projection
(UMAP) analysis revealed a significant separation of the three disease
groups and separated between survivors and deceased patients. Differ-
ent models were developed to predict mortality based on the baseline
measurements of several protein markers. A score combining IL-1ra,
IL-8, IL-10, MCP-1, SCF and CA-9 was associated with significantly
higher mortality (AUC 0.929). Several newly identified blood markers
were significantly increased in patients with severe COVID-19 (AAT,
EN-RAGE, myoglobin, SAP, TIMP-1, vWF, decorin) or in patients that
died (IL-1ra, IL-8, IL-10, MCP-1, SCF, CA-9). The use of established assay
technologies allows for rapid translation into clinical practice.
My contribution: I performed the statistical analysis of the biomarker
levels associated with disease severity.
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Robert Richter, Mohamed.A.M. Kamal, Mariel A. García-Rivera, Jerome
Kaspar, Maximilian Junk, Walid A.M. Elgaher, Sanjay K. Srikakulam,
Alexander Gress, Anja Beckmann, Alexander Grißmer, Carola Meier,
Michael Vielhaber, Olga Kalinina, Anna K.H. Hirsch, Rolf W. Hart-
mann, Mark Brönstrup, Nicole Schneider-Daum, Claus-Michael Lehr,
"A hydrogel-based in vitro assay for the fast prediction of antibiotic
accumulation in Gram-negative bacteria", Materials Today Bio, Volume
8, 2020, 100084, ISSN 2590-0064.
Abstract: The pipeline of antibiotics has been for decades on an alarm-
ingly low level. Considering the steadily emerging antibiotic resistance,
novel tools are needed for early and easy identification of effective
anti-infective compounds. In Gram-negative bacteria, the uptake of anti-
infectives is especially limited. We here present a surprisingly simple
in vitro model of the Gram-negative bacterial envelope, based on 20%
(w/v) potato starch gel, printed on polycarbonate 96-well filter mem-
branes. Rapid permeability measurements across this polysaccharide
hydrogel allowed to correctly predict either high or low accumulation
for all 16 tested anti-infectives in living Escherichia coli. Freeze-fracture
TEM supports that the macromolecular network structure of the starch
hydrogel may represent a useful surrogate of the Gram-negative bacterial
envelope. A random forest analysis of in vitro data revealed molecu-
lar mass, minimum projection area, and rigidity as the most critical
physicochemical parameters for hydrogel permeability, in agreement
with reported structural features needed for uptake into Gram-negative
bacteria. Correlating our dataset of 27 antibiotics from different struc-
tural classes to reported MIC values of nine clinically relevant pathogens
allowed to distinguish active from nonactive compounds based on their
low in vitro permeability specifically for Gram-negatives. The model
may help to identify poorly permeable antimicrobial candidates before
testing them on living bacteria.
My contribution: I implemented and performed the random forest
analysis of the in vitro data and wrote R scripts for data analysis.





2
B I O L O G I C A L B A C K G R O U N D

2.1 THE ORIGINS AND FUNDAMENTALS

Understanding the origin and evolution of life provides an essential
context for studying modern biological systems and developing com-
putational methods to analyze biological data. The Miller-Urey experi-
ment [16] in the 1950s demonstrated that organic compounds, including
amino acids, could be synthesized from inorganic precursors under con-
ditions thought to resemble those of the prebiotic Earth. This experiment
demonstrated the plausibility that the basic building blocks of life, such
as amino acids and nucleic acids, could form spontaneously, supporting
the chemical evolution theory [17], which posits that simple organic
molecules gradually assemble into complex macromolecules, eventually
giving rise to the first living organisms [3, 16, 18].

Among these molecules, RNA is thought to have played a critical role
in the early stages of life [2, 3]. The discovery that RNA can catalyze
chemical reactions, including the polymerization of nucleotides, supports
the idea that the first living systems comprised solely of RNA [2, 19]. The
RNA world hypothesis [19] suggests that RNA molecules were pivotal in
transitioning from non-living to living matter due to their ability to store
genetic information and catalyze biochemical reactions. RNA’s dual role
in serving as a template for and catalyzing its replication highlights
its significance in early molecular evolution [20, 21]. Over time, the
interactions between RNA and amino acids led to the development of
the more structured genetic code we see today. As evolution progressed,
DNA eventually replaced RNA as the primary genetic material due to
its greater stability [19]. This transition marked the establishment of the
central dogma of molecular biology [4]: the flow of genetic information
from DNA to RNA to protein (Figure 2.1).

The evolution of these early molecular systems into fully functional
cellular mechanisms illustrates a significant leap in complexity. The sim-
ple RNA-based systems initially gave rise to single-celled organisms,

11
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Figure 2.1: (Source: (Francis Crick, 1970)[4]) Overview of the Central Dogma of
Molecular Biology.

which over time evolved into more complex life forms with multicellular
organisms arising on several occasions. The development of prokaryotic
and eukaryotic cells marked a pivotal advancement in cellular evolu-
tion [1, 3, 22, 23]. The domains [1, 24] of Bacteria and Archaea include
prokaryotic cells lacking a nucleus and membrane-bound organelles.
Eukaryotic cells, characterized by a nucleus and organelles such as mi-
tochondria and chloroplasts, evolved through endosymbiosis [22, 25,
26] and allowed for the development of complex multicellular organ-
isms. This evolutionary milestone paved the way for the vast life forms
observed today.

In today’s biology, the central dogma is fundamental to understanding
the expression of hereditary information, which involves the intricate
processes of replication, transcription, and translation [27]. DNA, or de-
oxyribonucleic acid, is composed of nucleotides, which are the building
blocks containing a phosphate group, a deoxyribose sugar moiety, and
one of four nitrogenous bases (each such block is called a nucleotide):
adenine (A), thymine (T), guanine (G), and cytosine (C). DNA molecules
consist of two strands that form an antiparallel double-helix structure
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[28]. The strands are held together by hydrogen bonds between com-
plementary bases: adenine pairs with thymine, and guanine pairs with
cytosine. This stable structure ensures accurate replication of genetic
material during cell division.

Replication is the process through which a DNA molecule makes an
exact copy of itself. This process is crucial for cell division, allowing each
new cell to receive a complete set of genetic information. Transcription is
the process in which a segment of DNA is copied into RNA (ribonucleic
acid). RNA is similar to DNA but differs in a few key aspects: it contains
the ribose sugar moiety instead of deoxyribose and uses uracil (U) in
place of thymine. RNA is usually single-stranded, which allows it to fold
into various structures and perform multiple functions within the cell.
There are several types of RNA, with messenger RNA (mRNA) carrying
the transcript of the genetic information transferred from DNA to the
ribosome, the cellular machinery for protein synthesis. RNA polymerase
reads the DNA template during transcription and synthesizes a comple-
mentary RNA strand. This strand, known as mRNA, is then transported
to the ribosomes. Ribosomes are complex macromolecular machines
composed of proteins and ribosomal RNA (rRNA) that facilitate protein
synthesis. During translation, mRNA is read in chunks of three bases
(codons), each decoded into an amino acid. Peptide bonds link these
amino acids to form a polypeptide chain, which eventually folds into a
functional protein (Chapter 2.6.2).

Understanding the intricate processes of DNA replication, transcrip-
tion, and translation has provided deep insights into the molecular
mechanisms that govern life. The central dogma of molecular biology,
which supports our understanding of genetic information flow, sets the
stage for the next major steps: decoding and understanding the vast
amount of genetic data. Sequencing technologies have transformed our
capability to analyze and interpret genetic information. The detailed
analysis of genomes through these technologies has paved the way for
new insights into genetic variation, evolutionary biology, and the molec-
ular basis of diseases. In the next section, we will discuss the progression
of sequencing technologies, from their early development to the ad-
vanced techniques used today, and their significant impact on biological
research.
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2.2 SEQUENCING

Sequencing is a process of deciphering the precise order of nucleotides
in a DNA molecule, comprising several steps such as sample prepara-
tion, library preparation, sequencing, and finally, assembly and analysis.
Initially, DNA is extracted from biological samples. Following extraction,
the DNA is typically purified to remove contaminants. The DNA may be
fragmented into smaller pieces depending on the sequencing technology.
For some technologies that produce short stretches or runs of sequences,
fragmentation is a standard step. However, fragmentation may not be
necessary for technologies that produce long stretches or runs of se-
quences. Subsequently, the DNA fragments undergo library preparation,
where adapter molecules are attached to facilitate the binding of the
fragments to the sequencing platform, which then serves as the starting
point for the DNA synthesis. The sequencing process varies based on
the technologies used. The generated raw data from the sequencing step
comprises stretches or runs of DNA sequences, also known as reads. The
size of the reads varies between sequencing platforms. Some platforms
produce short reads between 250-800 base pairs, while others produce
long reads of lengths above 10, 000 base pairs [29] . These reads are
then processed and analyzed to reconstruct the original DNA sequence
in a process called assembly. The assembly is a post-processing step
involving merging reads into contiguous sequences, optionally mapping
the contiguous sequences with reference genomes, and putting all pieces
together to reconstruct the original genome sequence in question. Ana-
lyzing the sequencing data reveals genetic variations, mutations, gene
expression patterns, and various other genomic features.

2.2.1 GENETIC VARIATIONS

Genetic variations are differences in the DNA sequence among individ-
uals within a population. These differences can be due to mutations,
genetic recombination, and other evolutionary processes (e.g., positive
selection, heterogeneous selection, gene flow, natural selection, etc., to
name a few) [30]. Mutations are alterations in the sequence that can
be categorized into several types. Three major classes of mutations in-
clude structural variants, indels (insertions and deletions), and point
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mutations. Structural variants [31] involve large-scale alterations, such as
duplications, deletions, inversions, and translocations of DNA segments,
affecting multiple genes or large genomic regions . For example, dupli-
cations happen when a genome segment is copied more than once, often
due to errors during DNA replication or misalignment of chromosomes
during meiosis. Deletions involve the loss or removal of parts of the DNA
sequence, which can result from errors during DNA repair processes.
Inversions occur when a segment of DNA is flipped and reinserted in
the opposite orientation, usually due to double-strand breaks that are
incorrectly repaired, inverting the order of the DNA segment. Transloca-
tions usually arise from errors in chromosome segregation during cell
division or from interactions between different chromosomes, leading to
segments of DNA moving from one chromosome to another. These are
relatively rare but can lead to significant phenotypic changes (observable
traits or characteristics of an organism) or diseases [31]. Indels [32] are
medium-sized genetic changes that involve the insertion or deletion of
one or more bases in the DNA. Point mutations (silent, nonsense, and
missense), also known as single nucleotide polymorphisms (SNPs) or
single nucleotide variants (SNVs), are the most common form of genetic
variation [33]. SNPs refer to point mutations occurring in at least 1% of
the population, while SNVs are point mutations occurring in less than
1% of the population. The 1000 Genomes Project revealed 88 million
variants, of which 84.7 million are SNPs, 3.6 million short indels, and
60, 000 structural variants prevalent in the human genome [34, 35].

2.2.2 HISTORY OF SEQUENCING

In 1953, James Watson and Francis Crick revealed the double helix struc-
ture of DNA [28], emphasizing the importance of determining the exact
sequence of bases. The same year, Frederick Sanger sequenced two chains
of insulin protein [36], the first biological molecule to be sequenced, us-
ing a refined partition chromatography method to determine its amino
acid sequence. This approach involved fragmenting the protein into
smaller pieces, sequencing each fragment, and then overlapping these
sequences to reconstruct the full protein sequence. Sanger’s work with
proteins demonstrated the feasibility of sequencing complex biological
molecules and established foundational principles that would later be
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Figure 2.2: (Source: (Giani et al., 2020 [37])) Milestones in sequencing. This timeline
showcases major genome assembly achievements from the beginning of the sequencing
era to current large-scale projects. Each genome or project is color-coded according to the
sequencing technique used: light red for early methods, yellow for Sanger sequencing,
green for next-generation sequencing, and light blue for third-generation sequencing.

applied to nucleic acids laying the groundwork for modern sequencing
[37]. Advancements in RNA sequencing started in 1965, before DNA
sequencing, with the sequencing of alanine tRNA from Saccharomyces
cerevisiae [38]. This was possible because the methods to cleave RNA
fragments had been available since the 1940s [38]. Milestones in DNA se-
quencing included the phage λ cos-site in 1968 and the coat protein gene
from phage MS2 in 1972. In 1977, Sanger sequenced the ϕX174 genome
using chain-terminating ddNTPs, revolutionizing DNA sequencing [37]
(Figure 2.2).

Sequencing technology has evolved significantly over the last fifty
years (Figure 2.3). The first generation of DNA sequencing, pioneered by
Sanger in 1977 [39], provided the foundational methodology. The second
generation introduced high-throughput capabilities with platforms such
as Illumina [37, 40, 41] and Ion Torrent [37, 42], enabling rapid and cost-
effective sequencing of vast data compared to its previous generation.
The current third generation includes technologies like PacBio [43, 44]
and Oxford Nanopore [45], offering long-read and single-molecule se-
quencing capabilities. These advancements have significantly expanded
our ability to analyze complex genomes, providing critical insights into
genetic variation, evolutionary biology, and disease mechanisms, includ-
ing completing the first human genome. Sequencers produce strings
called reads containing the nucleotides A, T, G, C, and various IUPAC
codes representing ambiguous bases [46]. Determining the order of nu-
cleotides through sequencing technology has helped unlock the code in
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Figure 2.3: (Source: (Satam et al., 2023 [47])) Evolution of sequencing technologies.

several biological life forms and for understanding and treating genetic
diseases.

2.2.3 FIRST-GENERATION SEQUENCING

The first generation of sequencing technologies, known as Sanger se-
quencing, was invented by Sanger et al. in 1977 [39], followed by Maxam-
Gilbert sequencing, developed in the 1980s [48]. These groundbreaking
techniques fundamentally established the field of DNA sequencing,
enabling the study of the genetic code across various organisms and
driving the subsequent development of faster and more efficient sequenc-
ing technologies used today.

Sanger sequencing uses a single DNA strand as a representative of
the double-stranded DNA, and the sequencing is made by introduc-
ing chemically modified dideoxynucleotides, also known as ddNTPs
(ddATP, ddTTP, ddGTP, ddCTP), during the chain elongation that leads
to a termination of the elongation process. Chain elongation is a process
where nucleotides are added to the growing DNA strand in the five
prime (5’ end) to three prime (3’ end) direction, meaning that nucleotides
are added to the 3’ end of the new DNA strand. The 5’ and 3’ refer to the
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numbering of carbon atoms in the sugar moiety of the nucleotide; the 5’
end has a phosphate group attached, while the 3’ end has a hydroxyl
group. During chain elongation, DNA polymerase enzymes catalyze
the formation of phosphodiester bonds between adjacent nucleotides,
thereby extending the DNA strand. The elongation process terminates
when the DNA polymerase incorporates ddNTPs due to their lack of the
3’ hydroxyl group, which prevents the addition of further nucleotides.
As a result, fragments of varying lengths are generated and then sepa-
rated by gel electrophoresis. Originally, the Sanger method required the
cloning of DNA fragments to generate enough for sequencing, which
added complexity to the process. This method is still used today for
its high accuracy, although the throughput is limited. This method was
used to decipher the first ever human genome (Human Genome Project,
HGP) [5], and it’s assumed to have cost approximately 100 million US
dollars and took nearly 15 years to complete [49].

The Maxam-Gilbert sequencing method performs sequencing without
cloning , and it utilizes chemical reactions to cleave DNA at specific bases
and is most effective with small nucleotide polymers [50]. This method
involves labeling DNA fragments at one end and then subjecting them to
chemical reactions that generate breaks at specific bases, which are later
separated using gel electrophoresis. This method was less commonly
used due to its complexity, as it involves using toxic and radioactive
chemicals [50]; additionally, the emergence of automated Sanger sequenc-
ing, which significantly improved efficiency and throughput, made it a
less attractive alternative.

2.2.4 SECOND-GENERATION SEQUENCING

Due to a lack of alternative approaches, the cost and time required
for first-generation sequencing were disadvantages, even though the
technology was dominant for two to three decades. Second-generation
sequencing, also known as next-generation sequencing (NGS) or high-
throughput sequencing (HTS) technology, emerged in the 2000s and
shattered the limitations of first-generation sequencing. It has enabled
massively parallel sequencing of millions of short reads from multi-
ple samples at a much-reduced cost without the requirement for gel
electrophoresis.
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Short-read sequencing (Figure 2.4) is classified mainly into two ap-
proaches: sequencing by ligation (SBL) and sequencing by synthesis
(SBS) [51]. SBL is a DNA sequencing technique (example: AB SOLiD
sequencing platform, introduced in 2007) that involves identifying the
sequence of a DNA fragment by ligating short oligonucleotide probes
to the template DNA. These probes are designed to be complementary
to specific regions of the DNA. Each search is labeled with a unique
fluorescent tag, allowing the identification of the incorporated probe
during analysis. The process begins by hybridizing the probes to the
DNA template. A probe matches the template and gets ligated to the
DNA strand. After ligation, the fluorescent tag attached to the probe
is detected, indicating the identity of the base at that specific position.
This process is then repeated for multiple probes for the sequence of the
DNA fragment.

SBS utilizes DNA polymerase to synthesize a complementary strand
of DNA based on the template strand (employing the polymerase chain
reaction, PCR). However, each nucleotide added to the growing strand
is modified with a reversible fluorescent label and a blocking group.
The process involves adding one nucleotide at a time to the growing
strand. When a nucleotide is added, its fluorescent label is detected, and
the color indicates the incorporated base. Then, the fluorescent label
and blocking group are removed, allowing the next nucleotide to be
added. This repeated cycle generates a fluorescence signal sequence
corresponding to the DNA sequence. The generated sequence data is
processed and analyzed using both techniques to reconstruct the original
DNA sequence.

The emergence of these NGS techniques played a pivotal role in ge-
nomics, personalized medicine, metagenomics, epigenomics, and several
other OMICS research. For instance, 2003 marked the development of
Solexa’s SBS method, and Solexa was later acquired by Illumina in
2007 [37, 40, 41]. Illumina’s advancements include high throughput and
scalability, enabling rapid and cost-effective whole-genome sequencing.
However, its relatively short read lengths are a limitation [52]. Roche’s
454 [53] sequencing method, launched in 2010, determines DNA se-
quences through pyrosequencing by detecting pyrophosphate release
and light generation during nucleotide incorporation. This method pro-
vides read lengths of 400-500 base pairs and relatively high accuracy.
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Figure 2.4: (Source: (Satam et al., 2023 [47])) Overview of sequencing technologies of
different platforms that use different methods for sequencing.

It can sequence up to one billion bases a day but with limitations in
cost and accuracy in homopolymeric regions [37, 41, 47]. Ion Torrent
[42], launched in 2010, uses semiconductor sequencing technology. This
approach measures the pH variations induced by the release of hydro-
gen ions during DNA synthesis to determine the DNA sequence. This
method allows for faster and more cost-effective sequencing, though
it also faces challenges with homopolymer regions and shorter read
lengths [37, 41, 47, 54].

These advancements have significantly accelerated sequencing speed
and increased capacity, making it possible to conduct whole-genome
sequencing, transcriptome analysis, and targeted sequencing more ef-
ficiently than ever before. The major NGS platforms were Roche/454,
Illumina/Solexa, and ABI/SOLiD until the late 2010s [50]. This leap
has been crucial for exploring genetic variation, understanding disease
genomics, and advancing personalized medicine. For example, Roche’s
454 sequencing technology took only two months to sequence the human
genome and cost approximately one-hundredth of the cost compared
to the first-generation sequencing [49]. In contrast, Ion Torrent claimed
that their Ion Proton sequencer could be used to sequence the human
genome in a day and for the price of a thousand dollars [37]. However,
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due to their limitations, these platforms have declined in usage, and the
SBS method, taken over by Illumina, ultimately became the dominant
approach and the de facto choice for a wide range of genomic applica-
tions in the 2010s, accounting for more than 90% of all DNA sequence
data produced [37].

2.2.5 THIRD-GENERATION SEQUENCING

Third-generation sequencing is a cutting-edge DNA sequencing technol-
ogy that has exceeded the limits of previous generations, which emerged
at the end of the 2010s. It offers innovative solutions to the challenges
of prior methods and represents the latest technological developments.
Unlike the earlier generations, it offers long read lengths, real-time data
collection, and direct sequencing. This contributes to increased accuracy,
efficiency, and capacity for various applications.

A prominent example of third-generation sequencing is the single-
molecule, real-time (SMRT) sequencing of Pacific Biosciences (PacBio)
[41, 43, 44]. In SMRT sequencing, a DNA polymerase enzyme and a
single DNA molecule (template) are immobilized on a small, transparent
well, allowing for the observations of DNA synthesis in real-time as
nucleotides are incorporated. This process produces long reads that span
thousands to tens of thousands of nucleotides [42, 55]. Another third-
generation sequencing method includes nanopore (a nanopore is a hole
of nanometer size formed by proteins or synthetic materials) sequencing
from Oxford Nanopore Technologies [45]. This method involves passing
a single DNA strand through nanopores embedded in a membrane. As
individual nucleotides pass through the nanopore, they cause distinct
changes in electrical current. These electrical changes are detected and
recorded in real-time, generating a unique electrical signal for each
nucleotide, enabling the determination of the DNA sequence [37, 41].

Both first and second-generation technologies require the PCR ampli-
fication step (Figure 2.4), which often increases cost and time [47, 56].
Also, genomes are very complex and have many long, repetitive ele-
ments, copy numbers, and structural variations [47, 54, 57, 58]. However,
many complex elements are long, and short-read technologies cannot
solve them, making genome assembly more difficult. Third-generation
sequencing solves several problems of previous generations but at the
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cost of a higher error rate. However, error correction strategies and im-
provements in data analysis have contributed to the practical utility of
third-generation sequencing in OMICS research [41, 47, 55].

2.3 SEQUENCE DATA FORMATS

Sequence data is managed using specialized file formats, primarily
FASTA [59] and FASTQ [60]. The FASTA format encodes nucleotide
and protein sequences, whereas the FASTQ format, commonly used
for NGS reads, includes both nucleotide sequences and corresponding
quality scores. FASTA is a widely used text-based format for representing
nucleotide or protein sequences. Each entry in a FASTA file begins
with a single-line description starting with a greater-than (">") symbol,
followed by the sequence identifier and an optional description. The
subsequent lines contain the sequence data, a continuous string of letters
for nucleotides or amino acids. Meanwhile, the FASTQ format extends
the FASTA format by including quality scores for nucleotide sequences,
which are essential for evaluating the accuracy of high-throughput
sequencing reads. Each FASTQ entry consists of four lines: the first
line starts with an "@" symbol, followed by the sequence identifier; the
second line contains the nucleotide sequence; the third line begins with
a "+" symbol, optionally followed by the same identifier as the first
line; and the fourth line contains the quality scores. The quality scores
are ASCII characters derived from the Phred quality scores [61, 62].
The Phred scores indicate the probability of an error in base calling,
the process of converting raw sequencing data from high-throughput
sequencing machines into nucleotide sequences. Higher scores reflect
greater confidence in the accuracy of each nucleotide.

2.4 SEQUENCE ANALYSIS

Sequence analysis is the process of understanding and interpreting the
genetic information encoded within DNA, RNA, or protein sequences.
With the advent of NGS or HTS technologies, this field has grown im-
mensely due to the overwhelming amount of sequencing data generated
and the reduced costs of sequencing experiments [63]. This presents
unique opportunities and significant challenges in sequence similar-
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ity search. The crucial methods for sequence similarity search are cat-
egorized into alignment-based (reference-based) and alignment-free
(reference-free) approaches.

2.4.1 ALIGNMENT-BASED APPROACH

Alignment-based sequence analysis is the central approach in genomics
that involves comparing sequenced reads to a known reference genome,
allowing for the identification of similarities and differences [64]. Refer-
ence genomes are high-quality, well-annotated, and assembled sequences
of DNA that serve as a representative template for a particular organism
or a species [65]. The methods of this class offer insights into genetic
variations and functional elements by aligning the sequenced reads to
a reference. Sequence analysis through this method encompasses the
following steps: read mapping with pre- and post-processing stages,
variant calling and annotation, and genotype determination [66].

Reference-based analysis helps to identify disease-associated muta-
tions and population-specific variations to compare genomes across
species, infer evolutionary relationships, and identify conserved regions
[66]. The advantage of such methods is the accurate identification of
known genetic variations, which facilitates the interpretation of the func-
tional impact of variants based on the available annotations. However,
this method leads to a well-known problem, reference bias; it does not
correctly represent the population, leading to the underrepresentation
of specific alleles or genetic variants [67]. It might overlook variants
not present in the reference genome and falsely identify or misrepre-
sent variants that are incorrectly included, particularly in less-studied
populations.

Several alignment-based methods have been proposed in the last few
decades [64, 68–71]. Algorithms like Needleman-Wunsch [72] and Smith-
Waterman [73] use dynamic programming to find the optimal global
and local alignments given two sequences. Aligning two sequences is
referred to as pairwise sequence alignment. This key method compares
and aligns two biological sequences (proteins or DNA) to determine
their similarities and differences. The aim is to align the sequences to
match the maximum number of identical or similar characters, allowing
for gaps to be introduced where necessary to optimize this alignment.
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Sequence identity refers to the proportion of identical characters between
two aligned sequences, providing a measure of their similarity.

The larger set of possible characters with distinct chemical proper-
ties increases the complexity of protein sequence alignment. Therefore,
protein sequence alignment methods use substitution matrices, such as
BLOck SUbstitution Matrix (BLOSUM) [74] or Point Accepted Mutation
(PAM) matrix [75], to assign scores for matches, mismatches, and gaps
based on their similarity. These matrices help align sequences, even
when sequence identity is low, by assigning positive scores to similar
amino acids and penalties to dissimilar ones.

Local alignment identifies regions of high similarity within subse-
quences, making it ideal for only partially overlapping sequences. In
contrast, global alignment aims to align entire sequences end-to-end,
which is best suited for comparing two closely related sequences. Fol-
lowing the optimal alignment methods, heuristic algorithm-based tools
like BLAST were developed in 1990 and are used to find regions of local
similarity between sequences. It starts by finding short exact matches
(seeds) between the query and database sequences. These seeds are then
extended in both directions to form High-scoring Segment Pairs (HSP).
BLAST can use a scoring matrix (e.g., BLOSUM and PAM) to assign
scores to matches, mismatches, and gaps. The statistical significance of
alignments is evaluated using E-values (Expect value), which measure
the number of times one can expect to find a given sequence match by
chance in a database of a particular size, where lower E-values indicate
significant matches.

In later years, due to the emergence of NGS, sophisticated algorithms
and tools were required to efficiently align or map millions or billions of
genomic reads to reference genomes. While effective for smaller datasets,
traditional alignment tools are overwhelmed by NGS’s massive volume
of data. Tools like BLAST were designed for queries against relatively
small databases, leading to significant bottlenecks when processing
millions or billions of reads from NGS experiments. Additionally, the
computational requirements for BLAST increased exponentially with the
size of the dataset, making it impractical for large-scale genomic studies.
This inefficiency emphasized the need for sophisticated algorithms to
handle high-throughput sequencing data with greater speed, scalability,
and accuracy. Burrows-Wheeler Aligner (BWA) [76] and Bowtie [77] are
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two of the most prominent tools, among others. BWA is based on the
Burrows-Wheeler Transform (BWT) [78] method that rearranges the text
into a more compressible format by sorting its rotations lexicographically.
This process results in strings with runs of identical characters, thereby
significantly increasing the compression ratio and query efficiency [76].
The tool supports gapped and ungapped alignments and can handle
varying read lengths, from 70 base pairs to several kilobases. Bowtie is
another essential tool that is noted for its speed and minimal memory
usage. Bowtie employs the BWT and FM-index [79] to map millions of
reads efficiently. Bowtie uses a backtracking algorithm to align reads,
enabling it to quickly find optimal alignments for short reads (better
performance for less than 50 base pairs) [77]. While Bowtie does not
allow gaps in alignments, Bowtie2 [80], an improved version, supports
gapped alignments to handle indels. BWA is optimized for sensitivity
and accuracy, while Bowtie focuses on speed and efficiency [64, 68–70].

2.4.2 ALIGNMENT-FREE APPROACH

Alignment-free methods provide an alternative approach to traditional
alignment-based methods. In the case of genome assembly, instead of
aligning or mapping reads to a reference, these methods assemble the
sequenced reads into longer contiguous sequences, called contigs, with-
out relying on a template by piecing together the overlapping segments
from the reads, a process called de novo assembly [81]. Since references
significantly influence the quality of the downstream analysis, some ex-
periments cannot rely on them. In the case of metagenomes, for example,
a reference-based alignment does not apply to the full sample because
the dataset may comprise numerous organisms for which the reference
genome may not exist [82, 83]. This is especially true for populations yet
to be thoroughly explored. A wide range of alignment-free approaches
to sequence comparison have been developed. These approaches include
methods based on graph algorithms, k-mer (subsequences of length k,
also referred to as words in this context) or word counts, chaos theory,
information theory, and distance-based methods, among others [84]. In
the following, I briefly present a couple of these methods.

The graph-based methods [85] are divided into the Overlap-Layout-
Consensus (OLC) [86] and De Bruijn Graph (DBG) [64] methods. The
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OLC method is a classical approach that involves three key steps: overlap,
layout, and consensus. Assemblers start by detecting the overlaps among
the reads; in the layout step, these overlaps are used to construct a graph
where nodes represent reads and edges represent overlaps, and the aim
is to find the shortest Hamiltonian path that visits each node in the
overlap graph exactly once thereby representing an optimal overlap of
reads. Finally, the identified overlaps are combined in the consensus
step to create a final sequence. Some of the tools based on OLC include
PHRAP [87], CAP3 [88], and Celera [89]. Along with OLC , the DBG-
based method is another widely used approach. DBGs are constructed
by decomposing the reads into overlapping k-mers, which are then used
as nodes in the graph, and the edges are created between nodes that
overlap by k-1-mers. This allows for the reconstruction of sequences
by traversing the graph, making DBGs effective in handling repetitive
regions and short reads. At the same time, OLC is more accurate with
long reads but less practical for high-coverage short reads due to its
high computational requirements. Euler [90], Velvet [91], ABySS [92],
and SPAdes [93] are some of the tools based on DBGs [85].

The k-mer or word count-based methods [63, 82–84, 94, 95] is also
prominent in genomic sequence analysis, which uses the frequencies of
k-mers that can be used to identify patterns, classify sequences, detect
genomic similarities and differences across datasets, annotate functional
regions, identify variants, and sequencing error correction. The approach
involves several key steps: counting k-mers, calculating similarity/dis-
similarity measures, and clustering sequences. In the first step, tools
like Jellyfish [96], DSK (Disk Streaming of k-mers) [97], and KMC [98]
are used to count occurrences of k-mers in a sequence. The second step
involves computing similarity or dissimilarity between sequences based
on k-mer frequencies. Different metrics, such as Euclidean distance, Man-
hattan distance, Jensen-Shannon divergence, Hamming distance, and
Jaccard index, can be used [94, 95]. Some methods, like feature frequency
profiles (FFP), rely on observed word frequencies, while others, such
as d², d*², and CVTree, incorporate background word frequencies to
account for expected k-mer occurrences and enhance accuracy [99–104].
In the last step, clustering algorithms such as hierarchical clustering
and neighbor-joining use these similarity measures to group sequences
together. The k-mer approach is computationally efficient and scalable,
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making it well-suited for large-scale genomic datasets, metagenomics,
and de novo sequence analysis [94].

2.5 CHALLENGES IN SEQUENCE SEARCH: THE CASE FOR
METAPROFI

The explosion of genomic information, driven mainly by NGS technolo-
gies, has reached unprecedented amounts of biological sequencing data
available in public databases, as is evident from examples of the Euro-
pean Nucleotide Archive (ENA) [6] or Sequence Read Archive (SRA)
[7]. As of February 2024, SRA contains (Figure 2.5) approximately 91
petabases, including 53 petabases that are open access, meaning they
are freely available to the public without restrictions. These massive
amounts of data pose significant computational challenges for bioin-
formatics analysis, especially in sequence similarity search. Although
traditional alignment-based methods such as BLAST work well for
smaller datasets, they face significant challenges when dealing with
vast volumes of today’s genomic data, especially in analyzing metage-
nomic samples containing diverse and complex mixtures of organisms.
Alignment-based approaches inherently depend on reference genomes,
which may not exist for many species, resulting in biases and poten-
tial inaccuracies. This dependency is a significant limitation, especially
for analyzing novel or less-studied organisms with sparse references.
While alignment-free methods offer an alternative by eliminating the
need for reference sequences, they, too, encounter challenges due to the
ever-increasing size of genomic datasets.

These databases offer significant potential for scientific advancements
but also introduce major challenges regarding storage, efficient access,
and analysis. As the size of the databases reached the petabyte scale,
it has become difficult to support online searches in these databases.
This rapid growth creates a significant demand for effective manage-
ment, and the need for tools to process, store, and query these extensive
collections of sequence data without high memory and storage require-
ments constitutes a significant computational challenge. We address
these issues through MetaProFi (Chapter 4), our novel tool that offers
a scalable and efficient solution for sequence similarity search by in-
tegrating the advantages of alignment-free approaches with advanced
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Figure 2.5: (Source: https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/) Se-
quence Read Archive database growth over the time.

computational techniques. MetaProFi’s ability to efficiently index and
query nucleotide and protein sequences sets it apart from the existing
methods. This capability is crucial given the increasing complexity and
size of sequence databases. MetaProFi ensures real-time analysis and
accurate identification of functionally relevant genetic variants, making
it an important tool for modern bioinformatics.

2.6 PROTEINS: SEQUENCE TO FUNCTION

Proteins are essential molecules crucial in every biological process within
living organisms. They have diverse functions, including enzymatic catal-
ysis of biochemical reactions, providing structural support to cells and
tissues, regulating gene expression, facilitating cell signaling and cell
cycle, mediating immune responses, and transporting molecules. Un-
derstanding proteins, their structure, and their function is essential to
analyzing and interpreting biological data, as they are central to elu-
cidating disease mechanisms, understanding drug resistance, tracing
evolutionary relationships, and developing targeted therapies in preci-
sion medicine. Protein synthesis can be viewed as a part of the central

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/
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dogma of molecular biology [4], which describes the flow of genetic
information within a biological system. It states that genetic information
is transferred from DNA to RNA through a process called transcrip-
tion and from RNA to protein through a process known as translation.
Transcription is the process of transcribing DNA into the mRNA in the
cell nucleus. The mRNA serves as a template that carries the genetic
code from DNA to the ribosome, where protein synthesis occurs. During
translation, ribosomes read the mRNA sequence and translate it into a
specific sequence of amino acids, the building blocks of proteins. This
sequence of amino acids ultimately folds into a functional protein.

2.6.1 AMINO ACIDS: THE BUILDING BLOCKS

Amino acids [105] are organic molecules that serve as the building blocks
of proteins. There are 20 naturally occurring amino acids, each with a
unique side chain that determines their chemical properties and role
in protein structure. Each amino acid (Figure 2.6) consists of a central
carbon atom (α carbon) bonded to four different groups: an amino group
(NH2), a carboxyl group (COOH), a hydrogen atom (H), and a variable
side chain (R group) that differs among amino acids and determines
the amino acid’s identity and properties. The diversity of side chains
allows amino acids to form proteins with many structures and functions.
These side chains can be polar, nonpolar, charged, or aromatic; they are
how proteins fold and interact with other molecules. Peptide bonds link
amino acids together to form proteins. A peptide bond (Figure 2.7) is
a covalent bond that forms between the carboxyl group of one amino
acid and the amino group of another, releasing a water molecule in the
process. When more amino acids are added, this becomes a polypeptide,
which eventually folds into a functional protein.

The rigidity of the peptide bond restricts the polypeptide chain’s
flexibility, allowing rotation only around the bonds connected to the
alpha carbon (Cα). Two angles capture these rotations: Phi (ϕ), which
is the angle around the N-Cα bond, and Psi (ψ), which is the angle
around the Cα-C bond. These angles are limited by the steric hindrance
or spatial clashes between atoms, ensuring that the protein structure
avoids unfavorable overlaps and maintains stability. The Ramachandran
plot [106] is used to visualize the permissible combinations of these
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Figure 2.6: Structure of an amino acid showing the alpha (α) carbon, an amino group,
a carboxyl group, a hydrogen atom, and the variable side chain (R group).

Figure 2.7: (Source: https://en.wikipedia.org/wiki/Peptide_bond) A peptide
bond (red atoms) forms between two amino acids, leading to the release of water and
the creation of a dipeptide.

https://en.wikipedia.org/wiki/Peptide_bond
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angles, aiding in predicting and analyzing the three-dimensional (3D)
folding patterns of proteins.

2.6.2 PROTEIN FOLDING AND HIERARCHY

Protein folding is the process by which a linear chain of amino acids
acquires its 3D structure, and studying and understanding protein struc-
ture is crucial to understanding its biological function [107]. Molecular
chaperones are a group of proteins that assist in folding, ensuring pro-
teins fold into their native conformation [108]. Protein structure (Figure
2.8) is classified into four levels: primary, secondary, tertiary, and quater-
nary structures [109]. Each contributes to the protein’s overall shape and
function.

The protein’s primary structure, which is its linear sequence of amino
acids, fundamentally determines its higher-order structures, as demon-
strated by Christian Anfinsen in 1973 [9]. However, environmental fac-
tors, such as interactions with ligands, substrates, or other proteins, can
influence the 3D structure, leading to conformational changes. Addi-
tionally, some proteins contain intrinsically unstructured or disordered
regions [110] that do not adopt a fixed structure under physiological
conditions.

Secondary structure refers to the local spatial arrangement of a pro-
tein’s polypeptide chain, independent of its overall conformation. This
is due to the specific folding patterns and constraints imposed by pep-
tide bonds and hydrogen bonding interactions between the backbone
atoms of the polypeptide chain. The two prominent types of secondary
structure elements are the alpha (α) helix and beta (β) sheet, based on
the physical constraints of polypeptide chains [109, 111, 112]. These
structures are stabilized by hydrogen bonds between backbone atoms,
making them energetically favorable [113]. While α helices and β sheets
are the primary regular secondary structure elements, proteins also con-
tain other secondary structure elements, such as loops or coils and β
turns. Often found on the protein’s surface, these loops along with other
secondary structure elements can serve functional roles such as forming
active sites [113]. The active site is a specific region, typically a pocket
on the protein’s surface, where substrate molecules bind and undergo a
chemical reaction.
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The tertiary structure represents the overall 3D shape of a single
polypeptide chain formed by the interactions between secondary struc-
ture elements and amino acid side chains [113]. It is the functional
biological structure of most proteins. The overall shape of the tertiary
structure of a protein is commonly referred to as a fold, which describes
how secondary structure elements, like α helices and β sheets, are ar-
ranged in a 3D space. Folds can be associated with specific functions,
such as binding to nucleic acids, small molecules, or other proteins, as
well as facilitating enzymatic catalysis, stabilizing protein structures,
and mediating signal transduction pathways [109, 114, 115] . Folds of-
ten comprise distinct structural units known as domains and motifs,
contributing to their overall function and evolutionary history [109]. Do-
mains are compact, structurally stable regions within a protein, typically
consisting of 50 to 200 amino acids. They are identified based on their
sequence similarity and ability to fold into a stable, 3D structure inde-
pendently [116]. Larger proteins often comprise multiple domains, each
with unique functions or contributing to the protein’s overall structure
[117]. While the term domain is sometimes used interchangeably with
fold and motif, domains are generally defined by conserved sequences
and functional behavior, making them fundamental protein structure
and function units [109, 114, 118].

A structural motif is a smaller, repetitive unit within a protein that
forms part of these larger folds [119]. Unlike the broader folds, these
motifs are generally smaller and can be crucial in defining the protein’s
function. They often play critical roles in stabilizing protein structures
and facilitating the interaction with other molecules. Common exam-
ples of structural motifs include β-barrels and zinc fingers, which are
frequently observed motifs. β-barrels consist of β strands arranged in a
cylindrical shape, forming a barrel-like structure. It is often seen in trans-
port proteins and enzymes, where it aids in forming channels or binding
sites. The zinc finger is a highly conserved motif stabilized by a zinc ion
coordinated with cysteine and histidine residues, forming a finger-like
structure. It typically includes an α helix and β strands and is crucial for
DNA binding and gene regulation [109, 120]. While motifs are smaller
and can be repeated across different proteins, domains are larger and can
encompass several motifs, contributing to the overall protein architecture
and function. Many proteins function not as a single polypeptide chain
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Figure 2.8: (Source: https://commons.wikimedia.org/wiki/File:Protein_

structure_(full)-en.svg by Jmarchn, from Thomas Shafee. Licensed under CC
BY-SA 3.0 via Wikimedia Commons) Overview of protein structure hierarchy on the
example protein PCNA (PDB ID: 1AXC). The figure highlights the four levels of
protein structure: primary, secondary, tertiary, and quaternary.

https://commons.wikimedia.org/wiki/File:Protein_structure_(full)-en.svg
https://commons.wikimedia.org/wiki/File:Protein_structure_(full)-en.svg
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(subunit) or monomer but as a complex of multisubunits or multimers.
This structure refers to the precise spatial arrangement and interaction
of two or more independently folded polypeptide chains into a single
functional protein called the quaternary structure. These subunits can
be identical, forming a homomeric protein, or different, resulting in a
heteromeric protein. Various non-covalent forces stabilize their inter-
actions, such as hydrogen bonds, ionic interactions, and hydrophobic
effects [121].

Studying and understanding the protein sequence-to-function rela-
tionship requires thoroughly understanding their 3D structures. As
previously discussed, folding chains of polypeptides into specific confor-
mations defines their functional roles in biological processes. However,
elucidating the precise structures of proteins poses significant challenges
due to the complexity and dynamic nature of protein folding [122]. Ex-
perimental and computational methods have been developed to tackle
these challenges, providing insights into molecular architecture. These
techniques allow us to visualize the spatial arrangement of atoms within
a protein, facilitating studying protein interactions, dynamics, and func-
tions. The ability to accurately determine protein structures is essential
for advancing our understanding of biological processes and developing
new therapeutics. Complete structural information reveals how pro-
teins function, their dynamics, their interaction with other molecules,
and their contribution to cellular processes. This knowledge is vital for
designing targeted drugs and understanding disease mechanisms at a
molecular level. Therefore, experimental and computational methods to
determine protein structures have become key tools.

2.7 EXPERIMENTAL METHODS TO DETERMINE PROTEIN 3D
STRUCTURES

The first 3D structure of a protein (myoglobin) was experimentally
resolved in 1958 [123], marked a pivotal advancement in structural biol-
ogy, revealing the first detailed view of a protein’s atomic arrangement
through X-ray crystallography [124]. X-ray crystallography [125] is a
crucial method for determining the 3D structures of proteins. The pro-
cess begins with protein crystallization, where the protein must form a
crystal lattice. This often involves a lengthy trial-and-error procedure,
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as finding the right conditions for crystallization can take years [124].
Once a suitable crystal is obtained, it is subjected to X-ray diffraction.
X-rays pass through the crystal, and they are scattered by the electrons in
the protein, creating a diffraction pattern. Analyzing this pattern allows
for constructing the protein’s electron density map, from which the 3D
structure can be determined. The advantage of X-ray crystallography
is its ability to provide high-resolution structural details of proteins.
However, it has limitations, including difficulty crystallizing membrane
proteins and large complexes.

Nuclear magnetic resonance (NMR) spectroscopy [126] is another
method to determine 3D protein structures at the atomic level, which is
particularly useful for proteins that are challenging to crystallize. The
first step in NMR spectroscopy is to dissolve the purified protein in a
buffer solution, ensuring it remains stable. The solution is then placed
in an NMR spectrometer with a strong magnetic field. Radiofrequency
waves are then used to perturb the nuclei of the atoms in the protein.
NMR measures the interactions between atomic nuclei, providing in-
formation about their distances and angles. This data reconstructs the
protein’s 3D structure, revealing its conformation and dynamics. NMR
is advantageous because it can be applied to proteins in their native,
solution-state environments, providing insights into protein structure
dynamics and multiple conformations. This makes NMR invaluable for
understanding how proteins behave in physiological conditions and cap-
turing transient states that other methods might not capture. However,
NMR has limitations, including lower resolution than X-ray crystallogra-
phy and the size of the protein.

The third major experimental method used to determine the 3D struc-
ture of proteins and large molecular complexes is cryo-electron mi-
croscopy (cryo-EM) [127, 128]. The process involves rapidly freezing
protein samples to around -180 °C using liquid ethane to preserve them
in a near-native state and then imaging them using an electron micro-
scope. Unlike traditional electron microscopy, Cryo-EM does not require
staining or embedding, which helps maintain the protein’s structural
integrity [128]. The frozen samples are exposed to an electron beam, and
the resulting images are collected from various angles. These images
are then reconstructed using computational algorithms to generate a 3D
protein structure. Cryo-EM is beneficial as it can handle large, complex
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proteins and assemblies that are difficult to crystallize. It also allows for
observing proteins in a state that closely resembles their native state.
However, Cryo-EM has limitations, including lower resolution than X-ray
crystallography and challenges related to image processing for really
complex and large macromolecules [127].

2.8 COMPUTATIONAL METHODS TO DETERMINE PROTEIN 3D
STRUCTURES

Computational methods play a crucial role in determining and aiding
in the understanding of the protein structures in this rapidly advancing
field [129, 130]. With the advent of NGS, the availability of sequence
data has exploded. This surge in data, coupled with advancements in
analytical tools, has become a major driving force in developing and
applying computational methods to determine protein 3D structures
and bridge the protein sequence to structure gap [129]. These methods
complement the experimental techniques by offering insights into pro-
tein folding, dynamics, and interactions at an atomic level in a time
and cost-effective manner. Computational methods such as homology
modeling, ab initio modeling, molecular dynamics (MD) simulations,
and protein threading have become indispensable tools. In recent years,
the widespread development and application of deep neural networks
and advancements in artificial intelligence (AI) and computational algo-
rithms have led to significant breakthroughs in predicting protein 3D
structures through tools like AlphaFold [131]. Computational methods
enable the exploration of protein structures when experimental data is
limited or unavailable, allowing for the hypothesis of the 3D structures
of proteins, predicting functional sites, and understanding the molecular
mechanisms. We will present the most widely used methods, such as ho-
mology modeling, ab initio modeling, and molecular dynamics, that are
essential for understanding and predicting protein structures and their
dynamics. Methods like molecular dynamics are particularly relevant to
the work discussed in this thesis.

Homology modeling [113, 132], also known as comparative modeling,
is used to predict the 3D structure of a protein using a known structure
of a related homologous protein as a template. This method is based
on the principle that proteins with similar sequences often have similar
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structures. Protein structures are more stable and evolve more slowly
than the associated sequences. As a result, even when sequences un-
dergo changes, the overall structure remains largely conserved. Thus,
proteins with similar amino acid sequences typically adopt almost iden-
tical structures, and even proteins with distantly related sequences can
fold into similar structures [113, 133, 134]. Homology modeling begins
by searching structural databases (Chapter 2.9), such as the Protein Data
Bank (PDB) [135], for homologous sequences with known structures.
The target protein sequence is compared to these sequences through
sequence alignment approach (Chapter 2.4.1). Once a suitable homolo-
gous protein with a known structure is identified, this structure is used
as a template to build, optimize, and validate a structural model of the
target protein’s 3D structure. Homology modeling is highly effective
when reliable templates with significant sequence identity are available
and can provide insights into the function and interactions of proteins.
SWISS-MODEL [136] and MODELLER [137, 138], among several others,
are the most commonly used tools.

Ab initio modeling [113, 139, 140], or template-free modeling, predicts
protein structures from amino acid sequences without relying on existing
templates from homologous proteins. This method is based on Christian
Anfinsen’s principle that a protein will naturally fold into its most stable
and energetically favorable state, determined solely by its amino acid
sequence [9, 113]. An energetically favorable conformation is one that
minimizes the protein’s free energy [129]. The prediction process involves
exploring different possible structures of the target protein by using
libraries of known structural fragments derived from experimentally
resolved structures of short sequences. Techniques such as molecular
dynamics or Monte Carlo simulations [141] are employed to explore
these conformations and identify those with the lowest energy, reflecting
a stable structure [140]. This low-energy conformation is then refined
to resemble the native structure of the protein closely. I-TASSER [142]
and Rosetta [143] are the most commonly used tools for this type of
modeling, enabling the study of proteins with unknown templates.

Molecular dynamics (MD) [144–146] is a computational method that
simulates the movements of atoms and molecules over time, providing
insights into the dynamic behavior of proteins and other biomolecules.
The simulation begins with the system preparation step, where the
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protein’s 3D structure is set up, typically derived from experimental
and/or computational methods. The protein is placed in a virtual box,
typically surrounded by water molecules and ions to mimic physio-
logical conditions. Next, energy minimization is performed to resolve
steric clashes and ensure the structure is in an energetically favorable
conformation, corresponding to local minima on its potential energy
surface. The system then undergoes equilibration, starting with an NVT
(constant Number of particles, Volume, and Temperature) step. Dur-
ing this phase, the number of particles, the volume of the simulation
box, and the temperature are held constant while the system’s pressure
is allowed to vary to stabilize the system’s density. This is followed
by an NPT (constant Number of particles, Pressure, and Temperature)
step, where the number of particles, pressure, and temperature are kept
constant while the volume of the simulation box is adjusted. The NPT
step ensures the system reaches the correct density and overall stability
before moving to the production phase.The simulation uses a force field
to model the interactions between atoms. Finally, during the production
phase, Newton’s laws of motion are applied to track the trajectory of
each atom, providing insights into protein folding, interactions, and
responses to external forces.

MD is essential in studying protein dynamics, offering insights beyond
the static conformations provided by experimental methods. By simulat-
ing protein movements at the atomistic level, MD reveals how proteins
undergo conformational changes when interacting with ligands and
other biomolecules, which is essential for understanding complex bio-
logical processes and developing improved therapeutic strategies. These
simulations are vital for exploring protein-ligand binding interactions,
a fundamental aspect of drug design, allowing for the identification
of key binding sites. MD simulations also provide insights into how
mutations affect protein stability and functionality, contributing to our
understanding of disease mechanisms at the molecular level. This is
particularly important in studying diseases like cancer, where protein
misfolding and altered dynamics play crucial roles in tumorigenesis
and resistance [147, 148]. This method enhances our understanding of
molecular biology and is crucial in developing targeted therapeutics.
Hence, we have leveraged MD simulations in this thesis (Chapter 3) to
study the impact of specific mutations on protein conformations and
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dynamics, providing a deeper understanding of their role in disease
mechanisms.

2.9 PROTEIN SEQUENCE AND STRUCTURE DATA SOURCES

Two primary repositories for protein data are the Universal Protein
Knowledgebase (UniProtKB) [149] and the Protein Data Bank (PDB)
[135] database, which includes comprehensive information about pro-
tein sequences and their structures. The PDB is a crucial resource that
archives 3D structures of proteins and other molecules determined
through experimental methods discussed earlier. PDB assigns a unique
four-character code that identifies each entry in the PDB, and the 3D
data is organized in the PDB file format, a standard text format used
to describe 3D structures of proteins, nucleic acids, and other macro-
molecules. Each PDB file consists of a series of records, each providing
specific information about the structure. The ATOM record lists the coor-
dinates and other details of atoms in the protein, including atom name,
residue name, chain identifier, and atomic coordinates (x, y, z). HETATM
records are similar but used for non-standard residues or ligands.

On the other hand, UniProtKB is a database that offers detailed pro-
tein sequences and functional information. It is divided into two main
sections [150]: Swiss-Prot and TrEMBL. Swiss-Prot contains manually
curated, reviewed sequences with extensive annotations on protein func-
tion, sequence features, and biological roles. With the surge in genome
sequencing, the amount of sequence data has significantly increased,
leading to the development of TrEMBL. TrEMBL entries include com-
putationally predicted and unreviewed sequences. The sequences are
stored in the FASTA format, among other formats.
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M O L E C U L A R D Y N A M I C S I N S I G H T S I N T O
M U TAT I O N - I N D U C E D S T R U C T U R A L C H A N G E S A N D
D R U G R E S I S TA N C E : C A S E S T U D I E S O F T H E
R E C E P T O R P R O T E I N T Y R O S I N E K I N A S E K I T A N D
T H E N S 3 P R O T E A S E F R O M H C V

In this chapter, I present two molecular dynamics (MD) studies based
on my published work that explore the impact of mutations associated
with drug resistance. The chapter is structured as follows: it begins with
a unified materials and methods section that details the methodologies
employed across both studies. Following this, each sub-chapter begins
with a detailed background and literature review of the proteins stud-
ied, followed by the results and discussion specific to each study, and
concludes with a summary of findings.

The first case-study (Chapter 3.2) is based on the publication titled "A
shift of dynamic equilibrium between the KIT active and inactive states
causes drug resistance" [10], of which I was the first author. My contribu-
tion to this work involved designing and performing all the molecular
dynamics (MD) simulations, analyzing the resulting data, and writing
the manuscript. We performed MD simulations using two different force
fields in this study. The simulations using the Amber99SB*-ILDN [151,
152] force field and the resulting data analysis were part of my master’s
thesis and are included (Chapter 3.2) for completeness. During my PhD,
I extended this by exploring the effects of phosphorylation using the
CHARMM36 [153] force field. This extended study shows how phospho-
rylation impacts proteins structural dynamics and stability compared to
the mutation at the same site.

The second case-study (Chapter 3.3) is based on the publication titled
“Epistatic interactions promote persistence of NS3-Q80K in HCV infec-
tion by compensating for protein folding instability” [14], of which I was
a joint first author. My contribution to this work involved performing
MD simulations and analyzing the resulting data, which were critical in
elucidating the role of epistatic interactions in the persistence of the NS3-
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Q80K mutation in hepatitis C virus (HCV). The sub-chapter presents a
collaborative effort with Dr. Christoph Welsch’s experimental group at
the University Hospital Frankfurt. Only the results I contributed to the
publication have been taken from the publication and discussed here.
Based on the research outcomes, I have also summarized the experi-
mental results for completeness and included relevant figures from the
publication in Chapter 3.3.2.2.

3.1 UNIFIED METHODOLOGY FOR MD SIMULATIONS OF KIT
PROTEIN AND NS3 PROTEASE MODELS

In this section, we provide details of the methodology for MD simula-
tions applied to the KIT protein (Chapter 3.2) and NS3 protease (Chapter
3.3) models, reflecting the consistent and robust approach used across
these studies. KIT, a stem cell factor receptor involved in cell differ-
entiation, whose dysregulation leads to various types of cancer [154].
The NS3 protein, encoded by the HCV genome, is a multifunctional
enzyme crucial for viral replication and assembly, functioning as both
a protease and an RNA helicase [155]. By consolidating the methods
applied to these two studies, we highlight the shared techniques and
analysis strategies, emphasizing the versatility and reliability of our
MD simulations in exploring the dynamics and structural perturbations
caused by mutations and post-translational modifications studied in
different proteins.

3.1.1 TARGET SELECTION

For both case studies, crystallographic structures were retrieved from
the Protein Data Bank (PDB) [135] and were the foundation for modeling
and simulation.

The KIT protein’s wild-type (WT) inactive and active states were re-
trieved from the PDB (PDB ID of inactive state 1T45 [156] and active state
1PKG [157]). The water molecules in the crystal structures were retained
for the MD simulations. The missing atoms in the crystal structure of the
active state of the protein were added using MODELLER 9.17 [158, 159]
and the phosphorylated tyrosine residues at positions 568 and 570 were
modeled back to their unphosphorylated state. In silico substitution of
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Tyr (Y) to Asp (D) at position 823 was performed using MODELLER
with the corresponding WT structures as the template for both active and
inactive states. Tyr (Y) at position 823 was also phosphorylated in both
monoanionic (TP1) and dianionic (TP2) states using CHARMM-GUI
[160–162]. Generated models of the KIT wild-type (WT), its mutant (MU)
Y823D, and two phosphorylated versions (TP1, TP2) are referred to as
KIT-AWT, KIT-AMU, KIT-ATP1, KIT-ATP2 and KIT-IWT, KIT-IMU, KIT-ITP1,
KIT-ITP2 for active and inactive states, respectively.

The models for the NS3-Q80K protease mutants were created using
FoldX [163] based on the structure of the NS3 protease-helicase complex
from genotype 1b (PDB ID: 1CU1) [164], which is 92% identical to geno-
type 1a in the protease domain. The structure of the protein monomer
was extracted for further analysis.

3.1.2 PREPARATION OF THE SYSTEMS

MD simulations were performed using the GROMACS software package
version 5.1.4 [165] employing the Amber99SB*-ILDN [151, 152] and
CHARMM36 [153] force fields.

The molecular systems KIT-AWT, KIT-AMU, KIT-IWT, and KIT-IMU

were parameterized using the Amber99SB*-ILDN force field. In a sepa-
rate set, all generated models were parameterized using the CHARMM36
force field, and these variants are further referred to as KIT-A*WT, KIT-
A*MU, KIT-A*TP1, KIT-A*TP2 and KIT-I*WT, KIT-I*MU, KIT-I*TP1, KIT-I*TP2.
The molecules were centered in a cubic box with a 1.5 nm buffer un-
der periodic boundary conditions, and the systems were explicitly sol-
vated with TIP3P water molecules. Counterions [166] ClJ and NaJ were
added for Amber99SB*-ILDN force field simulations and Cl and Na for
CHARMM36 force field simulations to neutralize the overall charge (0.15
mol/L concentration). Energy minimization for each molecular system
was performed using the steepest descent algorithm. A maximum of
50000 steps was performed until a maximum force of 1000 kJ mol-1 nm-1

was achieved. Following the energy minimization, each of the molecular
systems was subjected to two consecutive steps of the equilibration pro-
cedure. At first, each system was maintained at a temperature of 310 K
during the NVT ensemble for 100 ps with a time step of 2 fs, followed
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by a 100 ps simulation in the NPT ensemble with a time step of 2 fs,
maintaining the pressure at 1 bar to equilibrate the system.

The NS3-Q80K protease models (WT protease and mutants: A91S,
A91T, S174N) were optimized, and MD simulations were performed
using the Amber99SB*-ILDN force field. The simulation parameters,
including energy minimization, equilibration, and production phases,
adhered to the procedures established for the KIT protein simulations
using the same Amber99SB*-ILDN force field.

3.1.3 PRODUCTION OF TRAJECTORIES

In both studies, production runs were conducted to analyze the dynamics
of the protein models, and coordinates were recorded at 100 ps intervals.

A total of 64 100 ns-long simulations were performed, with eight repli-
cas for each system parameterized by the Amber99SB*-ILDN force field
and four replicas for each system parameterized by the CHARMM36
force field. The temperatures of solute and solvent were separately cou-
pled to the velocity rescale thermostat (modified Berendsen thermostat)
[167] at 310 K with a relaxation time of 0.1 ps. The pressure was main-
tained at 1 atm by isotropic coordinate scaling with a relaxation time of 5
ps using Parrinello-Rahman barostat [168]. A time step of 2 fs was used
to integrate the equations of motion based on the leap-frog algorithm
[169]. Lennard-Jones interactions were set to a cut-off of 1.4 nm, and the
Particle Mesh Ewald (PME) method [170] was used to treat long-range
electrostatic interactions. All bonds were constrained using the P-LINCS
algorithm [171].

For the NS3-Q80K protease models, 28 simulations of 100 ns each were
performed, with four replicas for each of the NS3-Q80K models (WT
protease and NS3-Q80K mutants: A91S, A91T, and S174N). The same
production parameters were used as in the KIT protein simulations,
including recording coordinates at 100 ps intervals and maintaining
system conditions throughout.

3.1.4 ANALYSIS OF THE TRAJECTORIES

The resulting trajectories from the simulations were analyzed using
various tools, including those from the GROMACS package. For both
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studies, the first 10 ns were considered part of the equilibration process
and were therefore excluded from the analysis. The last 90 ns of each
trajectory were retained for further analysis, except for hydrogen bond
(H-bond) calculations in KIT.

The secondary structure profiles were calculated using the gmx do_dssp
program, which uses the DSSP algorithm [172], available in GROMACS.
The calculation was performed over the concatenated trajectories of each
system. The consensus secondary structure was defined as the type of
secondary structure most prevalent at a given position over the whole
simulation time (only α-helices and β-strands were considered) and
visualized using the Biotite [173] package in Python. The secondary
structure elements 310-helix, pi-helix, bend, turn, bridge, and coil were
jointly marked as coil.

Two characteristic distances were monitored over the MD simulations
of each system of KIT proteins to study the coupling between JMR and
KD. The distance d1 between the centroid of the JM-B region (residues
547-559 as C1) and the centroid of the residues in the N-lobe (residues
582-692 as C1’) and the distance d2 between the centroid of the JM-S
region (residues 560-570 as C2) and the centroid of the residues in the
C-lobe (residues 763-935 as C2’). From the MD trajectories, the H-bonds
between key residues were calculated using the program gmx hbond
available in GROMACS. H-bonds were defined with a DHA angle cutoff
of 120◦ and a donor-acceptor distance cutoff of 3.5 Å. The mean and
standard error of the mean were calculated by a custom script written in
R [174].

For the molecular systems parameterized by the CHARMM36 force
field, we conducted RMSD, RMSF, secondary structure, H-bonds, and
principal component analysis (PCA) for an in-depth analysis. These
analyses provided a comprehensive understanding of KIT protein con-
formations’ structural dynamics and stability under different conditions.
Through this approach, we identified the key conformational changes
and interactions that occur due to phosphorylation at Y823, highlighting
its significant impact on the overall behavior of the protein.

For the NS3-Q80K protease models, including the WT protease and
mutants (A91S, A91T, and S174N), we performed RMSD, RMSF, and
H-bond analyses alongside residue interaction networks (RINs). The
first ten ns were removed as part of the equilibration process, and the



46 mutations and drug resistance : md insights

rest of the 90 ns from each of the simulated protease models were
concatenated with their replicas. From each concatenated trajectory,
181 frames were extracted at equal time steps, and RINs were created
using the RINerator [175], a tool for analyzing molecular interactions
between individual amino acids, offering insights into structure-function
relationships. Custom scripts in Python were then developed and used
to investigate the number of contacts for each position of interest.

3.1.5 PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is a statistical method for reducing
the dimensionality of a complex system, such as the dynamic conforma-
tional space explored during MD simulations. By reducing the system’s
dimensionality, PCA allows for the extraction and interpretation of the
most significant collective motions that contribute to the overall behavior
of the protein.

Before performing PCA, the concatenated trajectories from replica
simulations were superimposed to minimize the variance over the en-
semble [176], ensuring that the analysis focuses on the protein’s intrinsic
motions and dynamics. The key idea of PCA is to identify the signif-
icant eigenvectors that define the dominant collective motions within
the system. These eigenvectors, or principal components, represent the
directions in which the system exhibits the most significant structural
fluctuations.

The calculation was performed using the gmx covar module of GRO-
MACS. The overlap between the first ten modes of each trajectory was
calculated using the gmx anaeig module of GROMACS. This overlap pro-
vides insights into how different conditions, such as the Y823D mutation
or phosphorylation at Y823, affect the protein’s dynamic behavior. The
perturbations of the systems can be described in terms of only a few
principal components by ordering the eigenvalues of the diagonalized
covariance matrix in a descending fashion. Thus, PCA helps extract
the large-scale motions from MD trajectories by isolating the dominant
modes of internal motion.
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3.1.6 MUTUAL INFORMATION

Calculating mutual information between individual pairs of amino acids
allows us to identify whether the changes in the pairs of conformational
distributions of these amino acids are correlated linearly or non-linearly.
It is assumed that such correlated changes can cause perturbations to
the energy landscape. Both backbone and side chain torsion angles
(ϕ, ψ, and χ) were used to study the correlated motion between pairs
of residues as they are assumed to contain the functionally relevant
perturbations and conformational changes [177]. The Mutual Information
(MI) between them was estimated using the MutInf method [177], which
allows us to capture significant concerted conformational changes of two
residues as it focuses on torsion angles responsible for the low-frequency
motions. We used a bin size of 24 degrees to obtain discrete distributions
of the dihedral angles. The MI between pairs of residues is calculated
as the individual sum of their entropies and subtracted from their joint
entropy over adaptive partitioning. Each MI value was then compared to
the background distribution of all MI values for all pairs of amino acids
in the trajectories of the WT and mutant structures. A p-value threshold
of 0.01 was applied to filter significant correlations.

To account for propagated error when comparing MI of WT and
MU, bootstrap sets were created, following the procedure as described
previously [178]. For this purpose, each dataset’s torsion angles were
extracted from individual trajectories using the gmx g_chi command in
GROMACS and sampled with replacement n frames from a simulation
of length n. This procedure was repeated ten times for each replica
while preserving the same order across the different dihedral angles and
simulation runs. The mean and standard deviation, µMIres and sdMIres,
were calculated for every pair of correlated residues MIres from the ten
bootstrap sets. When comparing the mutual information in the wild-type
and mutant complexes, MIresWT and MIresMUT , only those residue pairs
were retained, for which the following condition holds,

|µMIresMUT
− µMIresWT

| >

√
sd2IresMUT

+ sd2IresWT

N
(3.1.1)
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Where N is the total number of independent replica simulations. To
further eliminate the noise and weak interactions between correlated
residues, a cutoff (MI > 0.8 kT for the inactive state and MI > 1.7 kT for
the active state) was chosen, so pairs with a slight absolute difference
between mean values were disregarded. When comparing the WT and
MU simulations, this step was necessary to select only the correlated
residues with largely different mean MI values.

3.1.7 PARTIAL LEAST-SQUARES REGRESSION

Partial least-squares regression (PLS) was applied to identify the col-
lective modes of internal dynamics associated with an external order
parameter of functional interest using the functional mode analysis tool
[179]. For this analysis, the coordinates of the backbone atoms, backbone
atoms without JMR region, and all protein atoms, excluding hydrogen
atoms, were used to build the statistical models. The constants 0 and 1,
corresponding to the trajectories in WT and MU simulations, were used
as the read-out variable to be estimated.

To validate the generated statistical models, we applied the following
adapted k-fold cross-validation (CV) technique for WT and MU trajecto-
ries separately in the active and inactive states, following the procedure
described before [178]. The trajectories of WT and MU of the inactive
state KIT protein were concatenated and superimposed to minimize the
variance over the ensemble [176]. The resulting trajectory was divided
into four equal parts. Three parts of the data with the labeled input
containing equal parts from both WT and MU were then used in each
iteration to train a model. Based on this, we made predictions for the last
part. The final number of PLS modes/components was chosen based
on the Pearson correlation calculated between the actual and the pre-
dicted values, with a compromise between the number of modes, the
complexity, and the prediction quality using the "elbow method" [180,
181].
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3.2 STRUCTURAL DYNAMICS OF KIT: MD SIMULATIONS OF
Y823 PHOSPHORYLATION AND COMPARATIVE EFFECTS OF
Y823D

Here, we discuss the role of tyrosine kinases (TKs) [182, 183] in signaling
cascades and their potential as targets for anti-cancer drugs. Our focus
is on the stem cell factor receptor KIT, a TK involved in cell differenti-
ation, whose dysregulation leads to various types of cancer [154]. We
investigated the effect of phosphorylation of Y823 using MD simulations
with the CHARMM36 force field during my PhD. We compared it to the
impact of the mutation Y823D, which was studied during my master’s
using the Amber99SB*-ILDN force field. This comparison shows how
both phosphorylation and mutation at the same site affect the struc-
tural dynamics and stability of KIT, contributing to a comprehensive
understanding of the protein’s behavior in the context of drug resistance.
Previous studies, such as the one by Agarwal et al. [154], demonstrated
that Y823 phosphorylation is crucial for maintaining receptor activity,
preventing internalization and degradation, and sustaining downstream
signaling. My work extends this by comparing the dynamics of the
wild-type, mutant, and phosphorylated KIT conformations. We found
that phosphorylation at Y823 plays a critical role in stabilizing the active
conformation of KIT, similar to the effects observed with the Y823D
mutation. This study highlights how these modifications could influence
KIT’s response to inhibitors.

3.2.1 BACKGROUND: TYROSINE KINASES

The human genome contains 518 genes encoding kinases, of which 90
encode protein tyrosine kinases (TKs) [182, 183]. TKs are enzymes that
phosphorylate a tyrosine residue of a target protein or phosphorylate
their tyrosines, leading to conformational changes and, typically, activa-
tion of downstream signaling cascades. Thus, TKs function as "on" or
"off" switches in many cellular processes.



50 mutations and drug resistance : md insights

3.2.1.1 CLASSIFICATION

The 90 TKs can be grouped into two classes: 58 belong to receptor tyro-
sine kinases (RTKs), and 32 are non-receptor tyrosine kinases (NRTKs)
[184, 185]. The significant difference between these two classes is that
the NRTKs, in contrast to RTKs, do not have the extracellular domain
responsible for binding extracellular ligand molecules [186]. From here
on, we will focus on RTKs.

Figure 3.1: Structure of KIT cytoplasmic region. 3D structures of the native receptors
in the inactive state (PDB id: 1T45 [156]) and in the active state (PDB id: 1PKG[157])
are represented as cartoons. The N-lobe in blue, the C-lobe in green, the αC-helix in
cyan, the A-loop in red, and the JMR in orange colors. The DFG motif and the mutation
site Y823D are represented in the sticks (yellow).

3.2.1.2 RECEPTOR TYROSINE KINASES (RTKS)

Cell activity changes in response to the signals from their surround-
ing environment. Most of the activities are controlled by extracellular
signaling molecules. Transmembrane receptors often transduce these
signals across the cell membrane. One such type of membrane protein
is the RTK. RTKs are cell surface receptors for several growth factors,
hormones, and cytokines [187, 188]. Their structural characterization
divides RTKs into 20 subfamilies with a homologous domain specify-
ing the catalytic TK function [189]. The RTK family consists of growth
factor receptors, which include the platelet-derived growth factor recep-
tor (PGDF-R), the epidermal growth factor receptor (EGFR), fibroblast
growth factor (FGF), the vascular endothelial growth factor (VEGF), the
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insulin receptor family among others [188–190]. The RTKs consist of
a single transmembrane domain separating the intracellular tyrosine
kinase domain from the extracellular domain, and the tyrosine kinase
domain contains several conserved regions, including the ATP binding
site that catalyzes the auto-phosphorylation and transphosphorylation
of tyrosine residues [187, 188, 191, 192].

3.2.1.3 MECHANISM OF ACTIVATION AND SIGNALING

The RTK activation [187, 191, 192] involves binding a ligand to the RTK
monomer, leading to the dimerization of the receptor. Upon binding
a ligand to the extracellular domain, the receptor undergoes extensive
conformational changes that induce and stabilize the receptor dimer-
ization, stimulating the kinase activity in the intracellular domain and
thus resulting in auto-phosphorylation of tyrosine residues. The intra-
cellular TK domain has a bi-lobar structure, with an ATP binding cleft
located between the N- and C-terminal lobes that catalyze the auto-
phosphorylation and trans-phosphorylation of tyrosine residues and a
kinase insert domain [192, 193]. The N-lobe (residues 582-692) is com-
posed of antiparallel β sheets adjacent to the α-helix (αC-helix), and the
C-lobe (residues 763-935) shows predominantly the α-helical structure
(Figure 3.1) [194]. The C-lobe contains the G-helix that binds the kinase
substrate and an activation loop (A-loop) (residues 810-835) that begins
with a highly conserved DFG (residues 810-812) motif [194]. The ma-
jor autophosphorylation sites are in the juxtamembrane region (JMR,
residues 547-581) and the kinase domain (KD, residues 582-935) [193,
194]. The activated receptor’s phosphorylated tyrosine residues now act
as a binding site for proteins containing the Src homology 2 (SH2) and
phosphotyrosine binding (PTB) domains [195–197].

In its unphosphorylated state, the intracellular TK domain exists in
its inactive auto-inhibited conformation (Figure 3.1) [194, 198, 199]. As
part of the activation process [194, 200–202] upon ligand binding to the
extracellular domain, the A-loop adjacent to the active site in the inactive
state switches from its auto-inhibitory position to a more open form.
During this process, the DFG motif at the N-terminus of the A-loop
flips its side chain away from the ATP binding site, thus allowing for
the binding of the ATP and Mg2+ cofactors. Following these structural
changes, the JMR unwinds from its buried position in the TK domain
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to a solvent-exposed position, and the αC-helix undergoes orientational
changes, breaking the contacts with the JM-B fragment of the JMR.
Along with JM-B, the JM-Z fragment also blocks the αC-helix, which
regulates the catalytic activity of the kinases and prevents the A-loop
from adopting an active conformation, restricting the inter-lobe flexibility
[203–205].

3.2.1.4 TYROSINE KINASES AS TARGETS FOR ANTICANCER
AGENTS

In 1984, the first connection between a viral oncogene, a mutated RTK,
and human cancer was established [206]. Since then, it has been well
established that abnormal signaling by RTKs is critically involved in
human cancer [188]. The profuse knowledge of the structure and activa-
tion mechanism of RTKs and the variations of TK signal transduction
pathways in proliferative disorders led to the idea that tyrosine kinase
inhibitors (TKIs) could have anticancer effects [183, 188, 207, 208]. As a
result, the development of target-specific TKIs and new anticancer drug
discovery has become a hot area of anticancer research.

Most TKIs are small hydrophobic compounds that can rapidly reach
their specific intracellular targets and inhibit the activation of the related
TKs [183, 209, 210]. Unfortunately, the patients who gained remarkable
benefits from the TKI therapy showed increasing evidence of acquired
resistance [211–213]. It is primarily due to the acquired secondary drug-
resistance mutations that change the protein conformation and alter
the drug binding site, leading to therapy failure and cancer relapse
[214–216]. These mutations may alter the tightly controlled functions of
the protein, including ligand binding, conformational transitions, and
allosteric regulation, inducing resistance to several first and second-line
drugs [183, 193, 202]. However, the exact molecular mechanisms of the
changes caused by such mutations are still not well understood.

3.2.1.5 KIT PROTEIN TYROSINE KINASE

KIT is a stem cell factor (SCF) receptor, also known as proto-oncogene
receptor tyrosine kinase, a member of class III of RTKs. The activation
of KIT proceeds similarly to other RTKs: an SCF molecule binds to
a KIT monomer in the extracellular domain, leading to dimerization,
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activation, and autophosphorylation of tyrosine residues in the KD [157,
217–219]. During this process, the key regulatory regions in the TK
domain undergo extensive conformational changes. A gain-of-function
or an acquired secondary drug resistance mutation in the TK domain
can activate the protein without the ligand [182, 183, 192, 203]. D816V is
one such mutation studied extensively using MD simulations [194, 219–
221]. It has been shown that this mutation in the inactive state disrupts
the communication between the A-loop and the JMR [194, 220] and
causes a partial folding of conserved 310 helices in the A-loop, leading to
changes in the local hydrogen-bond (H-bond) network [219], the global
structural reorganization of the JMR, and constitutive activation of the
protein [11]. KIT harboring this mutation is resistant to several drugs,
including imatinib and sunitinib [12, 222, 223]. Y823D is a similar gain-
of-function or a secondary mutation reported in several clinical cases
[224–227]. Y823D can activate the PI3K/AKT, RAS-ERK, and JAK/STAT
pathways, leading to tumorigenesis by inducing cell proliferation, growth
progression, or migration [12, 154, 226]. This mutation is associated
with various forms of cancer, including gastrointestinal stromal tumors,
testicular seminomas, melanogenesis, and hematopoiesis [11–13]. Yet,
very little is known about the impact of this mutation on the protein
conformational changes crucial for activation and ligand binding.

It has been reported that Y823D can cause stabilization of the active
conformation of the protein and that it is also responsible for the loss
of sensitivity to drugs in metastatic tumors [228]. This mutation occurs
at the only tyrosine residue in the A-loop of the KD, which is the last
residue that undergoes autophosphorylation [154, 157, 229]. Although
this tyrosine residue is not essential for the initial activation of KIT, it
plays a crucial role in stabilizing the active conformation of the receptor.
This stabilization is important for downstream signaling and receptor
stability and influences drug sensitivity and cellular outcomes [154,
223, 227, 230]. It is also critical for regulating kinase activity and cell
survival and proliferation [154, 157, 204, 223]. In this study, we extend
our understanding of KIT protein function by emphasizing the role
of tyrosine phosphorylation in Y823. We explored the impact of the
Y823D mutation and tyrosine phosphorylation on protein conformation
using MD simulations. Our goal was to elucidate the differences in
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dynamics between various protein states, allowing us to identify the
conformational changes essential for activation and ligand binding.

3.2.2 RESULTS

In this study, we analyzed the KIT molecular systems’ structural fea-
tures and internal dynamics to investigate the differences between the
conformations induced by the gain-of-function mutation Y823D and the
two variants of Y823’s phosphorylation. We examined these differences
to understand their impact on KIT’s dynamics and stability, focusing on
the role of Y823 phosphorylation in modulating the receptor’s behavior.

I want to note that simulations using the Amber99SB*-ILDN force
field were conducted as part of my master’s thesis, which primarily
focused on the mutation Y823D. These results are included in this study
for completeness and comparative analysis. However, this work is ex-
tended by incorporating the results of Y823 phosphorylation using the
CHARMM36 force field. This extension explains how Y823 phosphory-
lation influences KIT dynamics, stability, and function.

3.2.2.1 MOLECULAR FLEXIBILITY OVERVIEW

The root mean square deviations (RMSDs) were calculated for the back-
bone atoms and the key structural elements (αC-helix, JMR, and A-loop)
(Figures 3.2A and 3.3A) of the kinase domain (KD) to ascertain the time
evolution of the structure. The backbone RMSD profiles of the inactive
and active states show that they conform closely to their initial crystal-
lographic structures. The RMSD mean values ranged from 0.16 to 0.25
nm for the inactive state and 0.36 to 0.52 nm for the active state in tra-
jectories resulting from simulations using both Amber99SB*-ILDN and
CHARMM36 force fields. RMSD profiles show that the conformational
drift of the JMR in the inactive state of the protein is larger than the
other KIT regions. In the active state, along with JMR, the A-loop also
had a large RMSD, whereas the αC-helix is rigid in both states.

The protein flexibility was estimated by the Root Mean Square Fluctu-
ations (RMSFs) averaged over time for every residue. The RMSF values
of the backbone atoms (Figures 3.2B and 3.3B) were comparable between
different systems, ranging from 0.1 to 0.3 nm in the inactive state and 0.1
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Figure 3.2: (A) The RMSD values were calculated for backbone atoms (black), αC-helix
(brown), A-loop (red), and JMR (orange) from all eight trajectories of MD simulations
of KITWT and KITMU in both the states (active and inactive). (B) The RMSF values
computed on the backbone atoms of the concatenated trajectory of MD simulations of
KITWT (black) and KITMU (red). The RMSF values of the A-loop are given in the insert.
The average conformation of the (C) active state KIT and (D) inactive state KIT is
represented as tubes. The highly flexible regions are shown in red, highly stable residues
in blue, and the intermediate flexible residues in white. The tube size is proportional to
the observed RMSF values in those regions.

to 0.4 nm for the active state in trajectories resulting from simulations
using both Amber99SB*-ILDN and CHARMM36 force fields. From the
RMSF plot Figure 3.3B), we can also observe how the MU and phospho-
tyrosine simulations converge, showing that the Y823D mutation mimics
the presence of phosphotyrosine. Both variants of the phosphotyrosine
behave very similarly in the simulation.

Further, we can also observe that the WT and MU simulations of
both active and inactive states performed using two different force fields
agree very well (Figures 3.3B and 3.4).
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Figure 3.3: (A) The RMSD values calculated for backbone atoms (black), αC-helix (red),
A-loop (green), and JMR (blue) from all four trajectories of MD simulations of KIT-
A*WT, KIT-A*MU, KIT-A*TP1, KIT-A*TP2 and KIT-I*WT, KIT-I*MU, KIT-I*TP1, KIT-
I*TP2. (B) The RMSF values were computed on the backbone atoms of the concatenated
trajectories resulting from simulations using Amber99SB*-ILDN and CHARMM36
force fields. The average conformation of the (C) active state KIT and (D) inactive
state KIT is represented as tubes. The highly flexible regions are shown in red, highly
stable residues in blue, and the intermediate flexible residues in white. The tube size is
proportional to the observed RMSF values in those regions.
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Figure 3.4: The RMSD values were calculated for backbone atoms of inactive and active
state WT and MU individual replicas resulting from simulations using Amber99SB*-
ILDN (black) and CHARMM36 (red) force fields.
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3.2.2.2 SECONDARY STRUCTURE ANALYSIS

Upon analyzing the trajectories resulting from simulations using both
Amber99SB*-ILDN and CHARMM36 force fields, we observe that the
mutation does not significantly alter the secondary structure of JMR in
both states of the protein (Figures 3.5 and 3.6) compared to its WT. Still,
we observe slight changes in the secondary structure type during our
simulations.

Figure 3.5: Secondary structure assignments of KIT JMR averaged over 720 ns MD
simulations of KIT-IWT, KIT-IMU, KIT-AWT, and KIT-AMU. Only the major secondary
structure elements (SSE) are shown. In the consensus representation, the coil SSE
includes 310-helix, pi-helix, bend, turn, bridge, and coil; helices are shown in blue,
sheets in red, and coils in gray.

The mutation Y823D is located in the A-loop and induces local fluc-
tuations in the inactive state of the protein. Unlike other secondary
mutations such as D816V/H/N/Y [11, 220] in the A-loop, the mutation
Y823D does not destabilize the 310-helix in the segment 817-819 in the
trajectories resulting from Amber99SB*-ILDN force field (Figure 3.7). In
contrast, almost all secondary structure elements in the A-loop are lost
in the active state. The 310-helix is better retained in the MU simulation
with the CHARMM36 force field, whereas in KIT-I*TP1 and KIT-I*TP2

trajectories resulting from the CHARMM36 force field (Figure 3.8), we
observe very little secondary structure in the A-loop. The 310-helix in
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Figure 3.6: Secondary structure assignments of KIT JMR averaged over 360 ns MD
simulations of KIT-I*WT, KIT-I*MU, KIT-A*WT, KIT-A*MU, KIT-I*TP1, KIT-I*TP2, KIT-
A*TP1, KIT-A*TP2. Only the major secondary structure elements (SSE) are shown.
In the consensus representation, the coil SSE includes 310-helix, pi-helix, bend, turn,
bridge, and coil; helices are shown in blue, sheets in red, and coils in gray.
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the A-loop is only observed in the inactive state of the protein, and
destabilization of this segment has been reported to be associated with
the disruption of its integrity [11]. Such destabilization of key regions
in the A-loop is associated with significantly contributing to the loss of
sensitivity to drugs [11].

Figure 3.7: Secondary structure assignments of KIT A-loop averaged over 720 ns MD
simulations of KIT-IWT, KIT-IMU, KIT-AWT, and KIT-AMU. Only the major secondary
structure elements (SSE) are shown. In the consensus representation, the coil SSE
includes 310-helix, pi-helix, bend, turn, bridge, and coil; helices are shown in blue,
sheets in red, and coils in gray.
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Figure 3.8: Secondary structure assignments of KIT A-loop averaged over 360 ns
MD simulations of KIT-I*WT, KIT-I*MU, KIT-A*WT, KIT-A*MU, KIT-I*TP1, KIT-I*TP2,
KIT-A*TP1, KIT-A*TP2. Only the major secondary structure elements (SSE) are shown.
In the consensus representation, the coil SSE includes 310-helix, pi-helix, bend, turn,
bridge, and coil; helices are shown in blue, sheets in red, and coils in gray.
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3.2.2.3 DYNAMIC BEHAVIOR OF RECEPTORS

The effect of the mutation on the collective dynamic behavior of various
KIT structural elements is markedly different in the active and inactive
states. The computed scalar products between the first 10 PCA modes of
KIT inactive state proteins indicate that their collective motions differ
(Figure 3.9A). It is interesting to compare the WT and MU protein
dynamics in each state.

Figure 3.9: Eigenvector and eigenvalue comparison of backbone PCA of KIT-IWT and
KIT-IMU(A-B), KIT-AWT and KIT-AMU (C-D).

When the trajectories of KIT-IWT and KIT-IMU are projected into the
subspace spanned by their first two PCs (Figure 3.10A), one can observe
a significant overlap of the WT and MU parts of the trajectories and a
considerable shift along the PC1 axis. Modes 1 and 2 of KIT-IMU display a
slightly higher amplitude than KIT-IWT (Figure 3.9), indicating increased
protein flexibility upon mutation. These modes correspond to atomic
motions (Figure 3.10B, C) of JMR coupled to KD deformations in the
N-lobe, αC-helix, residues 626-631 preceding the αC-helix, orientational
changes in the A-loop and the G-helix in the C-lobe. Principal modes of
KIT-IMU describe atomic motions of JM-B coupled with a twist motion of
the N-lobe and a displacement of the A-loop and G-helix in the C-lobe.
This displacement/outward motion of the A-loop is not characteristic of
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Figure 3.10: PCA of KIT inactive and active states. The atomic motions are shown as
an interpolation between the extremes along the first principal component of the (B, C)
inactive and (E, F) active states. The conformation distribution of different states (WT:
cyan, MU: red) of KIT is projected onto the subspace defined by the first two principal
components (PC1 and PC2) of the concatenated WT and MU trajectories in the active
(A) and inactive states (D).

the active conformation. The RMSF analysis along the individual modes
(eigenvectors) reveals that the JMR and A-loop portions dominate the to-
tal backbone fluctuations, kinase insert domain, and minor perturbations
of the αC-helix (data not shown).

Mapping KIT-AWT and KIT-AMU into the subspace spanned by the first
two principal components of their concatenated trajectories shows these
trajectories occupy very different regions (Figure 3.10D). Analysis of the
first eigenvectors of KIT in the active state indicates a good agreement
between the first principal mode of KIT-AWT and KIT-AMU, but not
so for the second mode (Figure 3.9C). Accordingly, the WT trajectory
occupies a region similar to the MU trajectory along PC1 but differs
much along PC2. The first eigenvalues for both WT and MU trajectories
in the active state are much higher than those for the inactive state,
indicating generally higher protein flexibility in the active state (Figure
3.9D). In KIT-AWT, the first mode is associated with displacement of
JMR, A-loop, and unwinding twist motion of the N-lobe (Figure 3.10E-F).
At the same time, the KIT-AMU experiences a conformational change
in the JMR; its A-loop curtails from its elongated conformation, and an
opposite twisted motion along an axis passing between the middle of the
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N- and C-lobe happens. The RMSF analysis along the first eigenvector
shows that the JMR, kinase insert domain, and the A-loop contribute the
most to the backbone fluctuations in KIT-AWT and KIT-AMU (data not
shown).

Figure 3.11: Time series projection of snapshots of KIT-I*WT (black), KIT-I*MU (red),
KIT-I*TP1 (green), and KIT-I*TP2 (blue) simulations onto the first two principal compo-
nents (PC1 and PC2).

PCA on the inactive state trajectories from CHARMM36 force field
simulations confirms the similarity in the conformational distribution of
the mutant and the phosphotyrosine simulations based on the projection
onto the subspace defined by the first two PCs (PC1 and PC2) (Figure
3.11).

3.2.2.4 COUPLING BETWEEN JMR AND KD IN RECEPTORS

To check the possible coupling between JMR and KD in both protein
states, their relative positions were characterized using two geometrical
distances, d1 and d2. Monitoring these distances over the MD trajectories
indicates that the d1 and d2 distributions (Table 3.1) in the inactive and
active states of the KIT are very similar for both WT and MU. This
demonstrates that the JMR is tightly coupled to the KD in both KIT
conformations. The same can be observed in the PCA analysis; we
observed that the A-loop is responsible for the dominant fluctuations
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during the simulations of the active state (Figures 3.10E-F). Apart from
these fluctuations, no major conformational changes are observed, and
the computed d2 distance deviation between KIT-AWT and KIT-AMU is
also negligible.

KIT-IWT KIT-IMU KIT-AWT KIT-AMU

d1 1.92± 0.01 1.92± 0.01 2.05± 0.04 2.08± 0.05
d2 2.3± 0.02 2.3± 0.02 3.05± 0.11 3.03± 0.09

Table 3.1: Average distance between centroids of (d1) JM-B and N-lobe and (d2) JM-S
and C-lobe. ± indicates standard error across independent simulations.

The frequency of H-bonds between key residues that maintain the
conformation of the KIT protein and the residues that are known to
be involved in establishing the allosteric communication between JMR
and KD, such as H-bond between D792 and Y823 [11, 219, 220, 231]
was measured (Tables 3.2, 3.3, and 3.4). In KIT-IWT, JMR binds to the C-
lobe of KD through stable H-bonds V560...N787, K558...I789, Y568...F848
and Y570...Y846. These H-bonds are preserved in KIT’s mutated and
phosphorylated structures, indicating a solid coupling and stabilization
of the JMR attachment to KD and the internal JMR contacts. These data
are consistent with the data from the coupling analysis between JMR
and KD.

The signal from the A-loop to the JMR is propagated through the C-
loop, with Y823 as a critical intermediate residue [194]. The correspond-
ing H-bonds are affected by the Y823D mutation and phosphorylation.
The H-bond between residues Y823 and D792 is wholly lost in KIT-IMU,
KIT-I*MU, KIT-I*TP1, and KIT-I*TP2 due to the changed properties of the
residue at position 823. The interaction between D792 and N797 is also
observed less frequently. However, the H-bond between D792 and H790
is not affected. A decreased communication to the distant KIT regulatory
elements [194] accompanies such modification in the local interaction
network of the C-loop. These observations suggest that the allosteric
communication in the KIT inactive state between the A-loop and JMR
is disrupted by the mutation Y823D in the A-loop. A beta-turn motif
(residues 820-823) supported by an H-bond D820...N822 also disappears
in the mutated and phosphorylated structures. It is known that the
H-bond D820...N822 stabilizes this beta-turn motif in the protein inac-
tive state, and disruption of this H-bond results in the unfolding of the



66 mutations and drug resistance : md insights

KIT-IWT KIT-IMU KIT-AWT KIT-AMU

JMR...C-lobe
V560...N787 1.067± 0.01 1.08± 0.01 0.001± 0 0.008± 0.01
K558...I789 1.80± 0.03 1.87± 0.03 0 0.25± 0.25
Y568...F848 0.29± 0.6 0.35± 0.12 0.04± 0.04 0

Y570...Y846 1.23± 0.23 1.09± 0.24 0 0

E640...F811 0 0 0.71± 0.14 0.55± 0.13

JMS
V569...E561 1.02± 0.06 1.21± 0.16 0 0

A-loop
V824...L831 2.022± 0.01 1.9± 0.06 0 0

R815...Y823 0.89± 0.22 0.09± 0.04 0.32± 0.16 0.733± 0.3
D820...N822 2.68± 0.08 1.65± 0.21 0.97± 0.22 0.98± 0.23

A-loop...C-lobe
Y823...R796 1.254± 0.23 1.1± 0.46 0 0

Y823...Y846 0 0 0.22± 0.08 0.42± 0.2

C-loop
D792...H790 1.931± 0.01 1.93± 0.02 1.53± 0.12 1.7± 0.07
H790...N797 0 0.13± 0.1 0.15± 0.1 0.16± 0.1
D792...N797 2.088± 0.1 1.83± 0.18 1.4± 0.16 1.53± 0.22

C-loop...A-loop
D792...Y823 1.20± 0.19 0 0 0

C-loop...C-lobe
N797...C809 0.56± 0.12 0.87± 0.15 0.85± 0.14 0.55± 0.17

C-lobe
L799...K807 2± 0 2± 0 2± 0 2± 0

Table 3.2: Average H-bond number between residues in Amber99SB*-ILDN force field
simulations. ± indicates standard error across independent simulations.
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KIT-I*WT KIT-I*MU KIT-A*WT KIT-A*MU

JMR...C-lobe
V560...N787 1.03± 0 1.11± 0.02 0 0

K558...I789 1.54± 0.07 2± 0.16 0 0.01± 0.01
Y568...F848 0.23± 0.09 0.59± 0.14 0 0

Y570...Y846 0.3± 0.12 0.16± 0.05 0 0

E640...F811 0 0 0.85± 0.14 0.73± 0.2

JMS
V569...E561 1.13± 0.28 1.11± 0.09 0 0

A-loop
V824...L831 2.02± 0.01 1.33± 0.08 0 0

R815...Y823 0.79± 0.39 0 0.05± 0.03 0.16± 0.04
D820...N822 2.24± 0.05 0.99± 0.22 0.34± 0.09 0.33± 0.08

A-loop...C-lobe
Y823...R796 1.16± 0.11 0.57± 0.27 0 0

Y823...Y846 0 0 0.03± 0.02 0.1± 0.05

C-loop
D792...H790 1.51± 0.02 1.35± 0.17 1.35± 0.13 1.11± 0.15
H790...N797 0 0 0.06± 0.06 0.18± 0.18
D792...N797 2.01± 0.08 1.71± 0.09 1.39± 0.22 1.29± 0.26

C-loop...A-loop
D792...Y823 1.3± 0.1 0 0 0

C-loop...C-lobe
N797...C809 0.34± 0.04 0.33± 0.16 0.45± 0.11 0.61± 0.15

C-lobe
L799...K807 2± 0 2± 0 2± 0 2± 0

Table 3.3: Average H-bond number between residues in CHARMM36 force field
simulations of KIT WT and MU. ± indicates standard error across independent
simulations.
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KIT-I*TP1 KIT-I*TP2 KIT-A*TP1 KIT-A*TP2

JMR...C-lobe
V560...N787 1.1± 0.05 1.1± 0.02 0.02± 0.02 0.05± 0.04
K558...I789 1.65± 0.13 1.34± 0.13 0 0

Y568...F848 0.59± 0.028 0.74± 0.27 0 0

Y570...Y846 0.32± 0.06 0.06± 0.01 0 0

E640...F811 0 0 0.57± 0.13 0.84± 0.08

JMS
V569...E561 1.11± 0.05 1.17± 0.14 0 0

A-loop
V824...L831 1.94± 0.06 1.64± 0.22 0 0

R815...Y823 1.14± 0.35 0.89± 0.46 0.31± 0.17 2.09± 0.66
D820...N822 0.79± 0.14 0.36± 0.09 0.49± 0.24 0.23± 0.08

A-loop...C-lobe
Y823...R796 2.11± 0.54 2.87± 0.05 0 0

Y823...Y846 0 0 0.83± 0.45 0.08± 0.05

C-loop
D792...H790 1.65± 0.1 1.32± 0.1 1.26± 0.15 1.53± 0.1
H790...N797 0 0 0.2± 0.11 0.03± 0.02
D792...N797 1.72± 0.08 1.73± 0.05 0.95± 0.2 1.49± 0.14

C-loop...A-loop
D792...Y823 0.57± 0.25 0 0 0

C-loop...C-lobe
N797...C809 0.52± 0.12 0.2± 0.08 0.59± 0.35 0.4± 0.17

C-lobe
L799...K807 2± 0 2± 0 1.99± 0.01 1.99± 0.01

Table 3.4: Average H-bond number between residues in CHARMM36 force field
simulations of TP1 and TP2. ± indicates standard error across independent simulations.
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beta-turn motif [194]. We also observe different χ angle distributions
of D810 and F811 of the DFG motif between the KIT-IWT and KIT-IMU

(Figure 3.12).

Figure 3.12: Distribution of D810 and F811 sidechain χ angles between KIT-IWT

(blue) and KIT-IMU (red).

In the KIT active state, the residues D792, H790, and N797 of the C-
loop (catalytic loop) form a stable local H-bond interaction network along
the MD trajectories. Further, the H-bond analysis shows stabilization
of JMR, A-loop, and C-loop, suggesting that the mutation Y823D and
the phosphorylation of Y823 cause stabilization of the active state. In
particular, the H-bonds R815...Y(D)823 and Y(D)823...Y846 are observed
more frequently in all simulations for the mutated and phosphorylated
KIT in the active state. These H-bonds are located either in the A-loop
or connect the A-loop and the C-lobe, probably stabilizing their mutual
orientation. On the contrary, in the mutated and phosphorylated protein
in the inactive state, the interactions of JMR with the KD are preserved,
while the A-loop is displaced and destabilized.
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3.2.2.5 CHANGES IN THE CORRELATED MOTIONS OF AMINO
ACID RESIDUES

The correlation between the motions of all pairs of residues emerges from
the various ways they interact. Here, we investigated how the mutation
Y823D alters the concerted movement between residues, affecting the
allosteric communication between distant regulatory regions of KIT. To
do so, we computed the mutual information (MI) between trajectories
of individual residues. MI reflects the degree to which two random
variables are linked; high MI indicates a low uncertainty in one random
variable given the information about the other. Interestingly, in active and
inactive states, most correlations are between distant residues (Figures
3.13A, 3.13D, and 3.14). We can observe that only a few residues in
the mutated protein in the active state show changes in the correlated
motion and that almost all the residues involved in the interactions are
between 8 and 21 Åapart from one another. Additionally, in the inactive
state, we see that the changes in the pattern of correlated motions are
much more substantial in the mutant protein than in the WT.

Figure 3.13: (A, D) Distance between correlated residues (MI > 0.8 kT in the inactive
state and > 1.7 kT in the active state). A grey line separates local (<6 Å) and long-range
interactions. Standard deviation from the bootstrapped dataset is plotted as the error
bars on top of the MI values from the actual (not bootstrapped) simulations. (B, E)
Correlations with MI greater than 0.8 kT for the inactive state and MI greater than 1.7
kT for the active state are only shown. (C, F) Cylinders connecting residues represent
differences in MI between those residues in MU (yellow) and WT (grey), with the width
of the cylinder proportional to the MI. Mutation site Y823D is represented as spheres
in magenta.
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Figure 3.14: The overall distribution of mutual information (MI) of WT (above the X
axis) and MU (below the X axis) of inactive and active states without a threshold.

Further, analysis of the correlated motion of residues in the inactive
and active states revealed that specific residues act as hubs connected to
several other residues (Figure 3.13B, E). However, the residues acting as
hubs are not the same for active and inactive states, indicating that the
correlated motions are different in different conformations of the same
protein and that mutation Y823D affects these conformations differently.
In the inactive state, the residues N797 and R888 act as hubs interacting
with several key residues (D810, R815, R830, M836) of the protein (Figure
3.13B), suggesting that any change in the motion of these residues will
affect the correlated movement of the other residues. Similarly, in the
active state, the residues E554 and the highly conserved residue R815
act as hubs. Overall, we see that more residue pairs are involved in
correlated motions in the WT than in the mutant protein (Figure 3.13E).
Among the residues whose movement was most affected by the mutation
in the inactive state are the residues of the inhibitor binding site and
the conserved C-loop residues (residues 568, 797, 810, and 815), P+1
loop (the loop immediately following the A-loop, residues 830, and 836),
critical residue of the DFG motif (residue 810) and F-helix (residue 861).

In KIT-IWT, the signal from the A-loop to the JMR is propagated
through the C-loop residues, where Y823 acts as an intermediate residue
[194]. From MI data, we can observe how a mutation in this position has
changed the communication between distant regulatory regions in the
protein. Thus, the modification in the local interaction network of the
C-loop that we observed in the H-bond analysis is accompanied by a
reduction in the efficient communication to the distant KIT regulatory
elements. In the active state of KIT, we notice a different pattern, where
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none of the correlated motions below the threshold (1.7 kT) involving
the key residues were affected by the mutation (Figure 3.13).

3.2.2.6 PARTIAL LEAST-SQUARES REGRESSION

The functional mode analysis based on the partial least-squares (PLS) re-
gression method aids in differentiating the significant collective motions
between the WT and MU proteins. We used the coordinates of the back-
bone atoms as input, which proved to have the most predictive power
when creating the statistical models for the inactive state (data for other
input types not shown). For the active state, none of the input features
could provide a satisfactory model that could be used to differentiate
the collective motions between the WT and mutant proteins. Therefore,
only the results for the inactive state of the protein are discussed.

Figure 3.15: Left: Cross validation: Correlation between predicted and true label for
the backbone of trajectory. Right: Interpolation between the extremes of the PLS models.
Blue-to-magenta bands correspond to the interpolation along the mode which relates to
the true label of simulation, wild-type and mutant, to the underlying differences in the
protein motions.

We used the four-fold cross-validation (CV) technique to obtain the
statistical models. We measured the prediction quality through the
Pearson correlation score between the true and predicted labels for a
given input feature. We chose models composed of 3 PLS components
to study the changes in the collective motions of the protein, which was
sufficient in the CV scenario to achieve a correlation of 0.75 (Figure 3.15).
Mapping the PLS results onto the backbone of the inactive state of KIT
(Figure 3.15) showed the mutation-induced changes in the collective
motions in the JM-B, JM-S, A-loop, and αC-helix. In agreement with
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this, we observe that the same regions undergo large shifts in the PCA
analysis.

3.2.3 DISCUSSION

These results from this case study represent an advancement by applying
MD simulations to investigate the effects of Y823 phosphorylation on the
KIT protein alongside the previously studied mutation Y823D . While
the mutation Y823D , which was the focus of my master’s thesis, has
been associated with resistance, among others, to imatinib and sunitinib
[228, 231–233] and is a secondary mutation in gastrointestinal stromal
tumors [228, 233, 234], this case study part of my PhD introduces new
insights into the role of Y823 phosphorylation, a modification known to
stabilize the active conformation of the A-loop, most probably by strong
electrostatic interactions of the phosphate group [224, 225]. One key
challenge in this study was parameterizing the phosphorylated residues
in the KIT protein models. Several attempts using Amber99SB*-ILDN
force fields were unsuccessful, as they did not adequately support the
complex interactions and charge distributions associated with these
residues. Consequently, we utilized the CHARMM36 force fields, which
allowed us to successfully parameterize the phosphorylated residues
in the KIT protein models by incorporating relevant parameters based
on the literature. This allowed us to study the stabilizing effects of
Y823 phosphorylation on the KIT protein, offering new insights into its
dynamic behavior and functional implications that were not previously
accessible.

Our analysis reveals that both the Y823D mutation and the phospho-
rylation of Y823 stabilize the protein’s active conformation, particularly
by strengthening the H-bonds, such as the one between R815 and Y823.
This stabilization is consistent with previous findings [154, 156, 224, 225],
and our study extends this understanding by showing how phosphory-
lation affects protein dynamics. We observe that in the active state, both
the mutation and phosphorylation improve the stability of the A-loop,
which is crucial for maintaining the active conformation. In line with our
observations, mutations in the A-loop are known to disrupt the inactive
conformation by introducing charged side chains into the pocket [154,
231, 233].
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In our comparative analysis, the different dynamics observed in the
active and inactive conformations of the wild-type, mutant, and phos-
phorylated KIT proteins demonstrate distinct behaviors in the same
structural regions: the active site residues and key residues in the A-
and C-loops (Figure 3.16). These dynamics are notably different for
the inactive state of KIT, whereas changes are less pronounced in the
active state. Notably, the dynamics of the mutant protein consistently
resemble those of the kinase phosphorylated at the mutation site Y823.
This similarity is likely due to the negatively charged aspartate at Y823
effectively mimicking the effects of phosphorylation at this site.

Figure 3.16: Active site residues were mapped on the KIT inactive state protein
structure.

The biological significance of these findings aligns with the established
literature [194, 235–237]. In particular, the C-loop is highly conserved
in structure and sequence among all kinases [235]. Another structural
element, the F-helix, whose motion was also affected in our analysis,
was shown to play an essential role in protein kinase active structures,
as it is considered the central hub connecting key areas such as the
substrate binding residues and the C-loop. Also, the regulatory and
catalytic spines are located at the N and C termini of the F-helix [194,
236, 237]. This puts the perturbations observed through RMSF analysis
in the JM-B, JM-S, A-loop, and the residues preceding the αC-helix in the
inactive state and the local destabilization of the A-loop through loss of
H-bonds into a proper functional context. Most importantly, we observe
the loss of allosteric communication, as evident from the changes in
the hydrogen bond network reported above, between distant regulatory
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domains, namely JMR and the A-loop, which may be detrimental to
kinase regulation. As observed from this analysis, the mutation Y823D
and the phosphorylation of Y823 stabilize the active conformation of the
protein by contributing to the formation of more stable H-bonds in the
A- and C-loops.

The concerted alterations that we observe in all simulations of the
inactive state may indicate mechanisms that affect the binding of drugs.
Multiple lines of evidence presented here suggest that the changes in
the structural conformation of the inactive state protein correspond to
its destabilization upon mutation and phosphorylation and a shift of the
dynamic equilibrium away from the inactive state, which is a primary
target for many drugs. For example, imatinib specifically binds to the
inactive state of KIT [156, 238]. Thus, these changes in the key regions of
the protein’s inactive state may alter its binding and/or sensitivity to it
and other drugs that explicitly target the inactive state of KIT.

In summary, we demonstrated that while the phosphorylation of Y823
and mutation Y823D stabilize the KIT protein’s active state, they do so
through distinct mechanisms. The mutation Y823D mimics the effects of
phosphorylation by introducing a negative charge at Y823, destabilizing
the inactive conformation and shifting the conformational equilibrium
towards the active state. This shift is accompanied by changes in the
correlated motion of amino acids, particularly between the mutation
site and the active site residues, and other key residues such as D792,
R815, and Y823 [11, 156, 219] in the A-loop and catalytic loop, which are
involved in drug binding and allosteric communication. This change will
likely activate downstream signaling cascades and enhance the expres-
sion of anti-apoptotic, cell proliferation, and growth expression genes.
Phosphorylation at Y823, on the other hand, enhances the stability of the
active state by forming more robust H-bonds and strengthening interac-
tions within the A-loop. Our comparative analysis suggests that while
both the mutation and phosphorylation promote the active conformation,
the mutation more directly disrupts the inactive state by compromising
the communication between vital regulatory regions of the protein and
inducing local destabilization due to the loss and reduction of key H-
bonds. Notably, Y823 in KIT is homologous to Y393 in the Abl kinase,
where phosphorylation of this residue is known to destabilize the inac-
tive conformation of the A-loop [224]. In our simulations, we confirm a
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similar trend for the mutation Y823D in KIT by conducting simulations
with a phosphorylated tyrosine at this position. Thus, we suggest that
an analogous resistance mechanism may have evolved in a homologous
kinase, leading to similar pathologic consequences.

3.3 EPISTATIC INTERACTIONS AND PERSISTENCE OF
NS3-Q80K IN HCV: A MOLECULAR DYNAMICS
PERSPECTIVE ON DRUG RESISTANCE

Here, we investigated how epistatic interactions, particularly between
substitutions A91S, A91T, and S174N, drive the persistence of the NS3-
Q80K mutation within the nonstructural protein NS3 of HCV. NS3,
encoded by the HCV genome, is a multifunctional protein crucial for vi-
ral replication and assembly, functioning as both a protease and an RNA
helicase. Understanding this persistence is vital for HCV pathophysiol-
ogy, as the NS3-Q80K mutation correlates with diminished treatment
response to direct-acting antiviral agents (DAAs). This study demon-
strates how these epistatic interactions compensate for protein folding
instability, thereby allowing the NS3-Q80K mutation to persist.

3.3.1 BACKGROUND: AN OVERVIEW OF HEPATITIS C VIRUS

HCV is a major bloodborne pathogen that causes chronic hepatitis,
cirrhosis, and hepatocellular carcinoma (HCC) and is considered a signif-
icant public health issue [239]. Six known genotypes (HCV-1 to HCV-6)
and more than 50 subtypes (e.g., 1a, 1b, 2a) have subsequently been iden-
tified, with different geographical and virulence patterns and responses
to conventional therapy [240]. At present, the World Health Organization
(WHO) estimates that about 50 million people are chronically infected
with HCV, and about 1.0 million new infections occur every year.

Hepatitis viruses A (infectious hepatitis virus) and B (serum hepatitis
virus) were only recognized from 1975 [241]. During tests applied to sera
from patients who acquired these viruses after transfusion, it was found
that none of the cases were caused by hepatitis A, resulting in the new
terminology non-A and non-B hepatitis [242]. Through classical virologi-
cal methods, it was characterized that transmissible agents cause these.
In 1989, the genome was cloned for the first time, and diagnostic tests
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were developed [243]. Soon after the non-A and non-B were renamed
as hepatitis C virus, it was identified that the biological and molecular
characteristics are closely related to the Flaviviridae virus family [241].

3.3.1.1 HCV GENOME

Hepatitis C virus (HCV) is an enveloped, single-stranded, positive-sense
RNA virus of approximately 50 nm in diameter of the Hepacivirus genus
of the family Flaviviridae [239, 244, 245]. Its genome, approximately
9.6 kilobases in length, encodes a single open reading frame (ORF)
flanked by untranslated regions (UTRs). Within this ORF, a polyprotein
precursor of about 3, 000 amino acids is synthesized, which is processed
into structural and non-structural proteins essential for viral replication
and assembly. Lipoproteins in HCV facilitate the entry of HCV into
hepatocytes by endocytosis [241]. The process involves several steps
involving viral proteins and host factors. Upon entry into the host cell,
the viral RNA is translated into a polyprotein, which is then cleaved
by viral and host proteases into nonstructural and structural proteins,
respectively.

The HCV RNA (Figure 3.17) contains an internal ribosome entry site
(IRES) within its 5’ UTR, which facilitates cap-independent translation
initiation, unlike the others in the Flaviridae genera, which are cap-
dependent. This allows the viral RNA to be efficiently translated into
protein despite lacking a 5’ cap structure typical of host mRNA. Similarly,
the flavivirus 3’ UTR is highly structured. In contrast, the HCV 3’ UTR
is short and less structured, holds a replication element comprising a
variable RNA stem-loop, and contains a polyuridine/polypyrimidine
tract of varying length.

The structural proteins (Figure 3.17) include the core protein (C) and
the envelope glycoproteins E1 and E2, essential for virion assembly and
entry into host cells. The nonstructural proteins (Figure 3.17), including
NS2, NS3, NS4A, NS4B, NS5A, and NS5B, are involved in viral replica-
tion, assembly, and evasion of host immune responses. The nonstructural
proteins play critical roles in HCV replication, forming complexes and
modifying host cell processes to create a favorable environment for viral
replication. For example, NS3 functions as a serine protease and helicase,
NS4A acts as a cofactor for NS3 protease activity, and NS4B, an integral
membrane protein, plays a crucial role in assembling the membranous
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Figure 3.17: (Source: (Chevaliez et al., 2006 [240])) HCV genome organization.

web, which serves as the organelle utilized for RNA replication. NS5A is
a phosphoprotein involved in viral RNA replication and modulation of
host cell signaling pathways and virus assembly, and NS5B serves as the
RNA-dependent RNA polymerase responsible for viral RNA synthesis.

3.3.1.2 HCV DRUG RESISTANCE

The emergence of resistance mutants poses a significant challenge to de-
veloping effective antiviral treatment regimens for HCV. Approximately
50 million people are chronically infected with HCV and are at risk of
developing cirrhosis, HCC, liver disease, etc., with an increasing number
of mortality cases. Due to the error-prone nature of viral RNA replication
and the lack of proofreading by the NS5B polymerase, the diversity of
HCV genotypes and subtypes contributes to variations in the clinical
outcomes of therapies. Resistance mutants have been observed to grow,
impacting the effectiveness of antiviral drugs targeting the key viral
proteins [246].

For the past decade, conventional therapy for patients with chronic
HCV infection consisted of administering pegylated interferon alfa (PEG-
IFN) alongside ribavirin (RBV). However, this treatment only achieved
sustained virologic response rates, defined as negative HCV-RNA, in
approximately 40-50% of patients [247]. Advancements in the field have
led to the understanding of the viral life cycle, and the crystal structure
of the essential viral proteins has paved the way for creating treatment
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protocols comprising interferon-free combinations of direct-acting antivi-
rals (DAAs) administered orally [246–248]. These regimens significantly
vary from previous therapies, providing improved efficacy and tolerabil-
ity [249]. DAAs specifically target the key viral proteins involved in viral
replication and assembly. Thus disrupting its lifecycle and inhibiting
its ability to replicate and spread. It offers the potential to intervene at
various stages of the viral lifecycle. Hence, the primary targets of these
DAAs are the nonstructural proteins of HCV, particularly the NS3/4A
protease, NS5A, and NS5B polymerase. By inhibiting the function of
these proteins, DAAs prevent viral replication and assembly [248].

3.3.1.3 NONSTRUCTURAL PROTEIN (NS3)

The multifunctional NS3, a 631 amino acids long protein encoded by the
HCV genome, is pivotal in viral replication and assembly. NS3 comprises
two distinct functional domains, which are separated by a deep cleft that
harbors the active site (Figure 3.18): the first domain, in the N-terminal
one-third of NS3, has a chymotrypsin-like serine protease necessary
for cleaving at four specific sites within the nonstructural region of the
HCV polyprotein. The remaining two-thirds (the C-terminal) of NS3
contain a helicase and a nucleic acid-stimulated nucleoside triphos-
phatase (NTPase) [155, 250, 251]. NS3 forms a non-covalent complex
with NS4A, a short protein of 54 amino acids, activating the NS3 pro-
tease [155, 252]. Without NS4A, the 30 N-terminal residues of NS3 lack
a defined structure and extend outward from the protein. However,
when an NS4A peptide is present, the overall structure of the C-terminal
domain remains unchanged. In contrast, the N-terminal domain under-
goes a structural change, forming eight-stranded β-barrel strands [250,
251, 253]. This β-barrel includes one strand contributed by NS4A and
tightly integrates with the N-terminal domain of NS3 through hydrogen
bonds, making it an essential part of the NS3 protease. This structural
arrangement enhances the stability and functionality of the NS3-4A com-
plex, facilitating its role in HCV replication and viral protein processing.
NS3’s protease activity is crucial for cleaving the viral polyprotein into
functional components necessary for viral replication, while its RNA
helicase activity facilitates the unwinding of viral RNA structures during
replication. Additionally, NS3 interacts with NS5A, another essential
nonstructural protein, regulating viral RNA replication and host cell
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signaling pathways. These interactions highlight how NS3 is crucial in
controlling different phases of the HCV lifecycle, including viral entry,
replication, and assembly inside host cells [251].

The HCV protease NS3/4A can cleave the cellular targets involved
in innate immunity and is essential for viral infectivity. Thus, it is a
promising target for antivirals [239]. However, resistance-associated sub-
stitutions (RASs) can hinder the effectiveness of DAA therapies for HCV.
Even before treatment, some patients may naturally harbor RASs, im-
pacting treatment outcomes. For instance, the presence of RAS Q80K, a
naturally occurring NS3 RAS, can reduce the effectiveness of simeprevir.
Therefore, guidelines suggest screening for Q80K in HCV genotype 1a
patients before treatment to ensure optimal therapy selection [254–257].
RASs, such as the Q80K, can significantly impact and alter the structural
and functional properties of NS3, rendering it less susceptible to inhibi-
tion by DAAs. Q80K mutation is known to have a negative impact on
several combinations of antivirals in clinical studies. Consequently, drug-
resistant variants of HCV emerge, hindering the efficacy of antiviral
therapies and posing challenges in managing HCV infections. Under-
standing the structural and functional changes due to such mutations
and the effects of compensating mutations is imperative for devising
effective strategies to combat drug resistance and enhance the efficacy of
antiviral treatments.

The S174N mutation is a significant phylogenetic marker [258, 259],
facilitating clade differentiation by being present exclusively in clade 1

sample and absent in clade 2. This mutation, along with A91S/T, forms
part of the epistatic interactions identified in the evolutionary trajectory
of the Q80K mutation within the NS3 protease [258, 259]. These inter-
actions potentially compensate for structural or functional alterations
induced by Q80K. Epistasis arises when the collective impact of multiple
mutations deviates from the simple addition of their individual effects,
suggesting interactions at the molecular level that influence protein func-
tion. Investigating such complex interactions sheds light on essential
intramolecular networks driving protein evolution and function. The
NS3 protease, a key target against HCV, is conserved across Flaviviri-
dae and is targeted by new drugs for emerging pathogens [240, 251,
260]. RASs in NS3 often incur fitness costs, primarily reducing RNA
replication capacity and, in some cases, impairing virus production [261].
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In this study, we explore the epistatic interactions that facilitate the
stabilization of the NS3 protease protein fold in Q80K variants, restoring
protein stability comparable to that of the wild-type (WT).

3.3.2 RESULTS

Along with our experimental collaborators, we explored how interactions
between different sites in the NS3 protease structure, known as epistasis,
may explain the persistence of NS3-Q80K in genotype 1a HCV infection.
Mutant patterns were selected based on a study [258]. We analyzed geno-
type 1a-infected patients with NS3-Q80K, examining epistatic secondary
substitutions at residue 91 and/or 174 based on sequence information
from DAA-experienced patients from the Frankfurt Resistance Database
and sequence information from DAA-naïve patients from the European
HCV database [262].

I will first present the bioinformatics analysis I carried out and partially
derived from our collaborative publication. Then, I will summarize the
experimental results for completeness and include relevant figures from
the publication in Chapter 3.3.2.2.

3.3.2.1 MOLECULAR DYNAMICS SIMULATIONS ANALYSIS

We analyzed the protein dynamics and inter-residue contacts that could
explain the protease fold stabilization in NS3-Q80K harboring epistatic
secondary substitutions. The Q80 residue resides in the protease–helicase
domain interface of NS3 close to the protease active site (Figure 3.18).
The epistatic site S174 resides near Q80 (approximately 3.9 Ådistance),
exhibiting hydrogen bonds between both residues. In contrast, the sec-
ond epistatic site, A91, is more than 20 Ådistant from residue Q80
(Figure 3.18). For simulations, we created protease mutant structures
corresponding to NS3-Q80K with or without epistatic amino acid substi-
tutions (A91S, A91T, S174N).

The Root Mean Square Deviations (RMSDs) were calculated for the
backbone atoms of the NS3 protease variants over the concatenated
trajectories, excluding the first 10 ns from each of the four 100 ns MD
simulations. The backbone RMSD profiles (Figure 3.19) show that they
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Figure 3.18: Protease structure with co-crystallized natural peptide substrate (in
orange) (PDB ID: 3M5O [263]); the protein backbone is shown as a ribbon model with
a transparent surface depiction. Residues of interest are highlighted as stick models and
colored as follows: residue 80, blue; residue 91, light green; and residue 174, dark green.
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conform closely to their initial crystallographic structures, and the mu-
tant variants exhibit minimal deviations.

Figure 3.19: The RMSD values were calculated for the backbone atoms of the con-
catenated trajectories, combining four replicate simulations for each variant. The data
compare the RMSF of the WT NS3 protease structure (PDB ID: 1CU1 [164]) with the
mutant structures carrying the NS3-Q80K mutation along with the epistatic amino
acid substitutions: A91S, A91T, and S174N.

The Root Mean Square Fluctuations (RMSF) (Figures 3.20 and 3.21)
show that the NS3-Q80K mutation leads to increased flexibility and po-
tential destabilization of the protein structure, as observed by increased
RMSF values upon Q80K mutation. However, introducing secondary
substitutions, such as S174N and/or A91S/T, alleviates this destabi-
lization (Figures 3.20 and 3.21). These epistatic substitutions reduce
flexibility and enhance protein stability, as reflected in the RMSF plots.
These findings highlight the significant role of epistatic substitutions in
counteracting the destabilizing effects of the NS3-Q80K mutation.

The modeling results are consistent with the protein denaturation
curves (Figure 3.23) observed for NS3-Q80K and epistatic secondary sub-
stitutions (Figures 3.20 and 3.21), indirectly supporting our hypothesis
on the differential effects of mutations on the bilobal structure of the
NS3 protease. Mutants containing S174N or A91T tended to stabilize
the fold, as observed from the RMSF values for each trajectory (Fig-
ure 3.20). We have quantified this observation by extracting 181 frames
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Figure 3.20: The RMSF values computed on the backbone atoms of the concatenated
trajectory of MD simulations. The data compare the RMSF of the WT NS3 protease
structure (PDB ID: 1CU1) with the mutant structures carrying the NS3-Q80K muta-
tion along with the epistatic amino acid substitutions: A91S, A91T, and S174N.

Figure 3.21: Protease protein flexibility averaged over time for different NS3-Q80K
mutant patterns. NS3 protease WT (PDB ID: 1CU1) and NS3-Q80K mutants are
represented as tubes. The highly flexible residues are shown in red, the highly stable
residues in blue, and the intermediate flexible residues in white. The size of the tubes is
proportional to the observed RMSF values in those regions (Figure 3.20), respectively.
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from the concatenated MD trajectory and computing the number of
contacts for each amino acid substitution at positions 80, 91, and 174
(Figure 3.22). We observe that while the number of contacts of individual
positions fluctuates, notably when the number of contacts of position
80 decreases upon Q80K mutation, the total number of contacts corre-
lated well with the RMSF values from the MD trajectories and with the
stability measurements (Figure 3.24), increasing with substitutions at
Q80K-A91T, Q80K-A91T-S174N, and Q80K-A91S-S174N. Notably, new
contacts and hydrogen bonds formed by the mutated amino acid at posi-
tion 91 contribute most to this trend. This finding agrees with previous
evidence that long-range contacts generally make a more significant
thermodynamic impact than contacts near in sequence and structure
[264].

Figure 3.22: The number of contacts quantified from concatenated MD trajectories.
The total number of contacts (left) and the number of hydrogen bonds (right) are shown
in equally spaced 181 frames from the MD trajectories.

3.3.2.2 A SUMMARY OF THE EXPERIMENTAL DATA ANALYSIS

To examine how the Q80K mutation in NS3 and its epistatic amino acid
substitutions S174N and A91S/T influence protein folding, our experi-
mental collaborators expressed and purified both the WT and mutant
NS3-4A proteins. Using a thermal shift assay, which measures protein
denaturation at increasing temperatures via fluorescence, they assessed
if NS3-Q80K with or without S174N and/or A91S/T affected protease
stability by measuring protein denaturation at increasing temperatures.
Results (Figures 3.23, 3.24) showed NS3-4A WT remained stable up to
a half-maximal denaturation (Tm) of 50.6◦C, while NS3-Q80K signifi-
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cantly destabilized at a Tm of 44.1◦C (p < 0.0001). All epistatic mutations
raised denaturation temperatures and stabilized the protease fold of
the respective expressed NS3-Q80K mutant proteins, except Q80K-A91S,
which did not reach WT protein stability levels (Figure 3.24). The double
mutants Q80K-A91T (Tm at 49.6◦C, p < 0.0001) and Q80K-S174N (Tm at
48.4◦C, p < 0.0001), along with triple mutants Q80K-A91S-S174N (Tm

at 48.6◦C, p = 0.018) and Q80K-A91T-S174N (Tm at 50.1◦C, p < 0.0001),
showed stability comparable to the WT protease (Figure 3.24, Table
3.5). Deviations from expected denaturation curves suggest Q80K af-
fects protease subdomains and communication between them, possibly
influencing catalytic activity at the active site. The Q80K mutation pre-
sented a distinct shoulder during denaturation (Figure 3.23A), indicating
differential effects on the bilobal structure of the protease and causing
separate denaturation of the subdomain with the mutation upon heating.
Additionally, epistatic secondary substitutions that compensate for Q80K
also displayed shoulders and non-parallel denaturation curves relative
to WT protein (Figure 3.23B-F), further supporting the disruption of
inter-lobal communication.

Variant KM (µM) kcat (/min) Tm (◦C)

WT (Q80) 2.71± 0.31 5.46± 0.26 50.6± 0.15
Q80K 1.44± 0.24 1.8± 0.1 44.1± 0.29
Q80K-A91S 0.56± 0.06 1.56± 0.06 45.0± 0.19
Q80K-A91T 0.48± 0.13 0.4± 0.03 49.6± 0.16
Q80K-S174N 0.14± 0.03 0.48± 0.02 48.4± 0.37
Q80K-A91S-S174N 8.16± 4.62 0.13± 0.04 48.6± 1.33
Q80K-A91T-S174N 0.67± 0.09 2.41± 0.11 50.1± 0.21

Table 3.5: Enzyme kinetic constants and protease protein Tms for the WT protease and
NS3-Q80K variants with epistatic amino acid substitutions. FRET-based protease and
thermal shift assay obtained Kinetic constants and melting temperatures, respectively.
The data shown represent the mean ± SD from at least three independent experiments.
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Figure 3.23: Thermal shift of the NS3-4A protease harboring NS3-Q80K and epistatic
amino acid substitutions. Data from real-time thermal stability assay using Sypro
Orange, a temperature-stable fluorophore that exhibits enhanced fluorescence upon
interacting with unfolded proteins. (A) The thermal stability of the WT protease, the
NS3-Q80K mutant, and (B-F) mutants harboring epistatic secondary substitutions
were assessed under increasing incubation temperatures—graphs showing the impact of
mutations on protease protein unfolding patterns characterized by fluorescence emission
curves.
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Figure 3.24: Impact of NS3-Q80K and epistatic amino acid substitutions on the pro-
tease protein fold. Tm from purified NS3-4A protease WT and mutants are determined
by fitting the sigmoidal melt curve, as shown in Figure 3.23, to the Boltzmann equation.
Error bars represent the mean ± SD from at least three independent experiments: *p ⩽
0.05, **p ⩽ 0.01, and ***p ⩽ 0.001, by two-sided t-test.

Further, they hypothesized that the interactions among amino acids in
NS3-4A might offset the replicative fitness decline caused by NS3-Q80K,
possibly explaining its high prevalence. An in vitro Fluorescence Reso-
nance Energy Transfer (FRET) based assay was conducted to evaluate
the enzymatic activity and determine whether the stabilization of the
protein structure affects the catalytic activity. The assay measures the
cleavage of the viral polyprotein substrate at the NS4A/4B cleavage site.
Results (Table 3.5 and Figure 3.25) showed that the NS3-Q80K protease
had a lower catalytic turnover and affinity than the WT. The NS3-Q80K
protease with the epistatic amino acid substitutions also shows reduced
turnover rates but increased substrate affinity. However, compensatory
effects were limited. Destabilizing the NS3-Q80K protease might enhance
interaction with substrates and may not limit viral replication.
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Figure 3.25: Impact of NS3-Q80K and epistatic amino acid substitutions on the
protease enzymatic function and reaction velocity. Reaction velocity and Michaelis-
Menten kinetics as assessed from the purified protein of WT protease and NS3-Q80K
mutants and the natural polyprotein substrate NS4A/4B. (A) reaction constants kcat
and (B) KM were calculated after fitting the nonlinear regression curve. Error bars
represent the mean ± SD from at least three independent experiments: *p ⩽ 0.05, **p
⩽ 0.01, and ***p ⩽ 0.001, by two-sided t-test. C, kinetic progress curves with reaction
velocities (RFU, relative fluorescence unit) for the NS3-4A protease and the natural
polyprotein substrate NS4A/4B as assessed from the purified protein of WT protease
and NS3-Q80K mutants.
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Results from the biochemical assays and MD simulations raised the
question of whether the epistatic interaction might also contribute to
viral replication by stabilizing the NS3-Q80K protease protein fold. To
test this, the experimental partners introduced amino acid changes into
the genotype 1a H77S.3 genome and examined their effect on viral RNA
replication in transfected cells. The NS3-Q80K protease with epistatic
substitutions showed minimal replication loss compared to the WT
at 72 hours post-transfection, reaching WT levels by 96 hours (Figure
3.26). However, none of the epistatic amino acid substitutions increased
replication compared to the parental H77S.3 genome or NS3-Q80K un-
expectedly, indicating that these substitutions did not enhance viral
replication.

Figure 3.26: Impact of epistatic amino acid substitutions on RNA replication of NS3-
Q80K variants. The medium was collected and replaced at 8, 24, 48, 72, and 96 h after
transfection of H77S.3/Gluc2A RNAs carrying the indicated mutations. Gluc activity
was determined at 72 h (left panel) and 96 h in time (right panel). Results normalized to
the 8h GLuc activity represent the mean of triplicate samples and multiple experiments.
Error bars represent the mean ± SD from at least three independent experiments: *p
⩽ 0.05, **p ⩽ 0.01, ***p ⩽ 0.001, and ****p ⩽ 0.0001, by two-way ANOVA. GLuc,
Gaussia luciferase.
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3.3.3 DISCUSSION

Compensatory mutations play a crucial role in the evolution of viral
quasispecies, but structural limitations constrain their potential [265,
266]. Several studies demonstrated that amino acid changes in NS3-4A
interact with NS3-Q80K, enhancing the stability of this polymorphism
within viral variants [254, 258, 267–270]. The mechanisms driving these
epistatic interactions in NS3-Q80K differ from those seen in compen-
satory mutations linked to resistance to protease inhibitors [271–274].
Despite their clinical significance in DAA treatment failures, the precise
mechanisms behind these interactions have yet to be elucidated.

Our study showed epistatic amino acid substitutions stabilized the
NS3-Q80K protein fold almost to the WT protease level. MD simula-
tions showed changes in the total number of contacts between protease
residues in NS3-Q80K and epistatic amino acid substitutions that reflect
destabilizing versus stabilizing effects on the protease protein structure.
This agrees with previous findings from [259], reporting variations in hy-
drogen bond occupancies from epistatic interactions in NS3-Q80K. Our
structural models’ total number of contacts agreed well with our protein
stability measurements. This reflects the compensatory effect on the
protein stability from epistatic amino acid substitutions in NS3-Q80K.

Our analysis of MD data has revealed that the Q80K mutation destabi-
lizes the protein by impacting the N-terminal subdomain of the protease.
This divergence in stability between the two domains alters the denatura-
tion curves, with the N-terminal domain starting denaturation at lower
temperatures due to destabilization by Q80K. This can be observed from
a small shoulder around 45◦C, exposing the bilobal protease fold. A
more pronounced change occurs when Q80K is combined with addi-
tional mutations at positions 91 and 174, resulting in early denaturation
followed by extended stability to higher temperatures due to epistatic
substitutions. However, the stability in NS3-Q80K due to epistatic sec-
ondary substitutions also restricts the replication fitness of these variants.
Our data suggest that replicative fitness may not be the main limiting
factor in selecting NS3-Q80K variants during virus evolution. Moreover,
in the protease activity assay using purified protein, none of the epistatic
secondary substitutions enhanced the functional level of NS3-Q80K
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protease, with some almost completely abolishing peptide substrate
turnover.

Our findings suggest that protein stability is crucial in the persis-
tence of NS3-Q80K variants. The amino acid substitutions associated
with NS3-Q80K stabilized the protein structure, balancing against pro-
tease function. These interactions likely contribute to the persistence of
NS3-Q80K through mechanisms not directly linked to RNA replication.
Stabilizing a protein region containing a key epitope for immune re-
sponses, epistatic interactions may protect NS3-Q80K variants from T
cell detection.
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M E TA P R O F I : A D VA N C E D D ATA S T R U C T U R E S F O R
R A P I D I D E N T I F I C AT I O N O F F U N C T I O N A L LY
R E L E VA N T G E N E T I C VA R I A N T S

This chapter is partly based on my publication, "MetaProFi: an ultrafast
chunked Bloom filter for storing and querying protein and nucleotide
sequence data for accurate identification of functionally relevant genetic
variants" [15], of which I was the first author. My contributions to this
work involved designing the project, conceptualizing and implementing
the method, developing the software, analyzing the data, and writing
the manuscript. This novel tool advances the field of sequence analysis
by allowing for the efficient indexing and querying of both protein and
nucleotide sequences. Unlike existing tools that are limited to nucleotide
sequences, MetaProFi supports amino acid sequence indexing and allows
nucleotide-based queries on these indices through an internal six-frame
translation of the query sequences. This is particularly significant given
that protein sequences are more conserved evolutionarily and often
represent the most functionally relevant level of genetic information.

MetaProFi employs a Bloom filter-based approach [275], enhanced
by several engineering optimizations such as shared memory systems,
chunked data storage, and advanced compression techniques. These
features enable MetaProFi to handle vast datasets with state-of-the-
art performance. It maintains an excellent balance between memory
consumption-to-speed ratio, making it a highly efficient tool for sequence
analysis.

This chapter presents the background, related work, developed under-
lying methodologies, and the tool’s application to large-scale nucleotide
and protein sequence datasets. This section will explore how MetaProFi’s
capabilities can be leveraged to rapidly and accurately identify function-
ally relevant genetic variants.
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4.1 BACKGROUND

As we explore indexing NGS data deeper, it becomes evident that the
exponential growth in genomic data necessitates innovative solutions for
efficiently storing and querying the extensive collections. The demand
for tools capable of effectively managing and analyzing these datasets
is more paramount than ever. While tools like BLAST [8] have been
vital in enabling sequence searches by aligning query sequences against
databases, they face significant challenges in scaling to the size of mod-
ern genomic databases, such as ENA. These traditional methods also
require assembled genomes and cannot be applied to sequencing reads,
as the results would contain only the matches within a single read. As
the limitations of traditional tools become more apparent in the context
of modern genomic data, relying solely on sequence alignment is no
longer sufficient. The challenge lies in scaling and the fundamental way
these tools store and query data. Addressing these issues requires a shift
toward more sophisticated data structures that can handle sequencing
reads’ vast diversity and volume without compromising efficiency. Such
tools rely on two fundamental core data structures: exact and approxi-
mate membership query data structures. In the subsequent sections, we
unravel their complexities and assess their effectiveness in managing the
ever-expanding landscape of NGS data. We explore how various tools
address these challenges and highlight how our method can efficiently
process and analyze the enormous amounts of NGS datasets.

4.1.1 EXACT MEMBERSHIP QUERY DATA STRUCTURES

Exact membership query data structures help to determine with certainty
(zero false positives) whether a particular element is present or absent
in a specific set. Examples of exact membership query data structures
include hash tables, binary search trees, tries, and linked lists. Hash ta-
bles [276, 277] utilize hash functions to map elements to specific buckets
where the element is stored. When performing a membership query,
the hash function calculates the bucket where the element should be
located, allowing for efficient retrieval and comparison. The strength of
hash tables lies in their average-case time complexity for lookups, which
is O(1). However, they require a good hash function to minimize colli-
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sions—cases where multiple elements map to the same bucket because
collisions can degrade performance and increase retrieval time.

Binary search trees (BSTs) [276, 277] organize elements in a hierarchical,
sorted structure, where each node has at most two children. The left
child contains elements smaller than the parent node, and the right
contains larger elements. Membership queries in a BST are executed by
traversing the tree, starting from the root, and comparing the queried
element with the current node’s value. This allows rapid member checks
by efficiently narrowing down the search space with an average-case
time complexity of O(logn). However, the performance can degrade to
O(n) if the tree becomes unbalanced, as in the case of inserting already
sorted data.

Tries, also known as prefix trees [276–278], are specialized data struc-
tures used for dynamic sets of strings. Each node in a trie represents a
single string character, and the paths from the root to a terminal node
(leaf) represent complete strings. Membership queries in tries are highly
efficient for strings because they are based on the string’s prefix, with
time complexity proportional to the length of the string (O(m), where
m is the string length). Tries suffer from significant memory overhead
due to the many nodes involved.

Linked lists [276, 277] are linear data structures where each element
(node) points to the next element in the sequence. Membership checks
in linked lists are performed by traversing the list from the head node to
the end, comparing each node’s value with the queried element. This
traversal results in an O(n) time complexity, making linked lists less
efficient for membership queries than the other structures mentioned.
However, linked lists offer advantages in scenarios where frequent inser-
tions and deletions are required, as these operations can be performed in
constant time, unlike in others where elements need to be shifted. Each
of these data structures offers a different balance of efficiency, memory
consumption, and operational complexity, making them suitable for
various applications.

Nevertheless, these data structures cannot be employed to represent
extensive collections of NGS data: even though they are famous for their
fast queries, they are computationally expensive and not directly space
efficient. These data structures are often more suitable for small datasets,
for example, in genome assembly processes.
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4.1.2 APPROXIMATE MEMBERSHIP QUERY DATA STRUCTURES

The shortcomings of the traditional data structures become increas-
ingly apparent when dealing with extensive collections of NGS datasets.
Approximate membership query (AMQ) data structures emerged as
a promising alternative to address these challenges [279]. To reduce
the required time and memory, a probabilistic data structure can be
used to summarize and deliver fast approximate answers. Probabilistic
membership data structures aid in determining whether an item/ele-
ment is present. Several such data structures are already available, e.g.,
Bloom filter [275], Cuckoo filter [280], Quotient filter [281], etc. These
data structures differ in their ability to offer approximation or definite
answers. They are used in streaming applications and database lookups
before performing expensive operations [282–285]. Importantly, these
data structures guarantee zero false negatives; thus, if such a data struc-
ture returns an answer of a non-existent key, the database fetch/read is
not required, saving time.

AMQ data structures offer several advantages over their exact coun-
terparts, particularly in managing extensive data collection. While tra-
ditional exact structures like hash tables and BSTs struggle to scale
efficiently with the exponential growth of data, approximate structures
excel in scalability. They optimize memory utilization without com-
promising query performance, making them well-suited for handling
massive datasets. They are inherently robust to errors introduced during
sequencing and processing, ensuring reliable query results. By employ-
ing probabilistic algorithms and space-efficient representations, AMQ
data structures balance scalability, memory efficiency, query speed, flexi-
bility, and robustness to errors. These make them the most widely used
in the field of bioinformatics to manage the ever-growing data, as they
have the potential to retrieve not only closely but also partially closely re-
lated sequences via approximation. Hence, we focus on AMQ structures
in this work. Next, we will describe some of these data structures and the
specific features that allow them to achieve this improved performance.
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4.1.3 WIDELY USED AMQ DATA STRUCTURES

The state-of-the-art AMQ data structures widely used for indexing NGS
data include Bloom, cuckoo, and quotient filters, which allow for storing
and managing vast and intricate genetic sequencing information. Several
reasons to choose these data structures include the ability to streamline
storage, retrieval, and analysis processes in bioinformatics tools, facilitate
deciphering biological complexities, and advance precision medicine.
This section illuminates the fundamental role of these structures.

4.1.3.1 BLOOM FILTER

Bloom filter [275] (BF) (Figure 4.1) is a probabilistic set-membership data
structure that stores the presence or absence of items/elements in a bit
vector. BFs guarantee zero false negatives and allow insert and query
operations. The data structure comprises a bit vector filled with binary
values where zero indicates absence, and one indicates presence. We
start by filling the bit vector with zeros; for each given string, we apply
h hash functions and use the return value of hashing as an index in the
bit vector to flip the zero in the corresponding index position to one.

Figure 4.1: Bloom filter data structure: Two hash functions are applied to each of the
three strings, and the return values of hashing are used as an index in the bit vector to
flip the zero in the corresponding index position to one.
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Both the insert and query operations have an O(h) time complexity
because h hash values need to be computed for every item regardless
of the number of items already in the filter, unlike other approximate
membership query data structures. Collisions (returning the same hash
value for different strings) can be avoided by using large BFs and perfect
hash functions, but in a realistic setting, this is not possible; thus, false
positives arise. Their number can be reduced by increasing the size of the
BF and the number of hash functions used. Assuming bit independence,
i.e., the state of one bit in the BF does not influence or depend on the
state of any other bit, the false positive rate can be calculated by,

p =

(
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)hn)h
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)h
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where p is the false positive rate, h is the number of hash functions
used, m is the size of the Bloom filter, n is the number of items inserted
(or to be inserted) into the Bloom filter, and
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is the probability that a specific bit is still 0 after inserting n items. An
optimal number of hash functions can be calculated by,

h =
m

n
ln(2) (4.1.3)

and the size of the Bloom filter can be estimated by,

m = −
n ln(p)

(ln(2))2
(4.1.4)

Tools utilizing Bloom filters and their variants are discussed in Chapter
4.2.
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4.1.3.2 CUCKOO FILTER

The Cuckoo filter (CF) [280] is an approximate membership query data
structure that supports dynamic inserts, deletes, and lookup operations
using partial-key Cuckoo hashing, a variant of Cuckoo hashing [286]
that stores only fingerprints - a bit string derived from the item using a
hash function instead of storing the keys.

Cuckoo hashing employs an open-addressing technique and uses
a hash table consisting of an array of buckets where each item has
two candidate buckets determined by two hash functions. The insert
operation takes the latest item and hashes it with the two hash functions,
then takes the resulting hash values, looks up the respective locations
in the hash table or the array, and checks if either of the two buckets is
empty; the algorithm then inserts the item to that free bucket. If neither
of the buckets is free, then a bucket is chosen from the two, and it
kicks out the existing item, inserts the latest item, and then relocates the
kicked-out item to its alternate location. This process may repeat until
a vacant bucket is found or until a maximum number of relocations
is reached. If no vacant bucket is available, this hash table is too full
to insert new items. The lookup operation checks both buckets to see
if either contains the item in the query; if so, it returns the item and
is successful. Similarly, the delete operation checks the target item’s
potential positions in the hash table. If the item is identified in either
position, it is removed from the hash tables. If the item is not found
in either of the hash tables, additional measures such as rehashing or
probing neighboring areas may be applied. The same can also be used
during the lookups. Cuckoo hashing has high space occupancy as it
keeps relocating earlier items placed in the bucket to make room for the
new items. Insert and delete operations take O(1). However, in worst
cases, it might require rehashing, leading to O(n), where n is the number
of items. Similarly, the lookup operations take O(1) in the worst case.

Cuckoo filters use a multi-way associative cuckoo hash table to of-
fer fast lookups and high table occupancy. Partial-key cuckoo hashing
hashes and stores a constant-sized fingerprint (f(x)), unlike cuckoo hash-
ing, which stores the items. In the cuckoo filter, the basic unit of the
hash table is called an entry, and each entry can store only one finger-
print. The hash table consists of an array of buckets where a bucket can
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have multiple entries. The insert operation, however, cannot rely on the
cuckoo hashing technique as there is no way to restore and rehash the
items to find their alternate locations, because it stores only the finger-
prints. However, partial-key cuckoo hashing can derive the index of item
x and its alternate location through the following two hash functions
[286, 287].

h1(x) := hash(x) (4.1.5)

h2(x) := h1(x)⊕ hash(f(x)) (4.1.6)

By defining these two hash functions, the insert operation can di-
rectly calculate the alternate location from the current location and the
fingerprint stored in the bucket. Therefore, this operation only uses
the information in the table without retrieving the original item. Using
partial-key cuckoo hashing, new items can be inserted dynamically. The
lookup and delete operations follow the same principle as the cuckoo
hashing; however, they might have an overhead because they depend on
the size of the buckets.

Cuckoo filters have lower space overhead than space-optimized Bloom
filters for applications that require low false positive rates. Previous
attempts to extend Bloom filters to support deletion have degraded
space or performance. The Cuckoo filter addresses these limitations and
outperforms other data structures that extend Bloom filters to support
deletions in both time and space [280]. In Cuckoo filters, the size of the
fingerprints is inversely proportional to the acceptable false positive rate
(FPR). The lower the desired FPR, the longer the fingerprint size needs
to be in order to reject false queries. The fingerprint size also grows
logarithmically with the number of items in the filter. As a result, the
space required for per-item overhead is higher for larger hash tables.
Tools like NGSReadsTreatment [288] use the Cuckoo filter to identify
and remove redundant reads in NGS datasets.

4.1.3.3 QUOTIENT FILTER

A quotient filter (QF) [281] is another space-efficient probabilistic data
structure. QF stores only a part of the item’s hash fingerprint along
with additional metadata bits. QF supports insert, lookup, and delete
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operations. QF data structure is a bit-array of length m with additional
metadata bits. The hash function generates a p-bit fingerprint. The p-
bits fingerprint is split into remainder (r), which consists of the least
significant bits of the p-bits fingerprint, while the quotient (q = p− r)

comprises the most significant bits. The size of the QF is m = 2q slots.
Upon initialization, all the bits in the QF are set to zero. The hash values
are split into quotient and remainder. The quotient is used to identify
the slot position while the remainder is stored in the slot in the QF. For
example, if the size of the QF is eight and the output of a hash function is
8 bits (p) long, then solving m = 2q, the quotient is 3, and the remainder
is 5.

Before looking into the operations allowed by the QF, let’s define some
QF terminologies. QF defines a canonical slot as the original slot to which
the quotient of the hash value points. A set of fingerprints with the same
quotient is called a run. Each slot is associated with three metadata bits:
is_occupied, is_continuation, and is_shifted. The metadata bit is_occupied
is set when a slot is canonical, and is_continuation is set when a slot
is occupied but not by the first remainder in a run. Finally, is_shifted
is set when the remainder in a slot is not in its canonical slot. A cluster
is a contiguous sequence of runs; it contains a canonical entry at the
beginning and does not contain an empty slot between the runs. A super
cluster is a contiguous sequence of clusters with no empty slots.

An item is hashed to perform an insert operation on an empty QF,
and the quotient and remainders are calculated. The quotient is then
used to identify the slot position; in other words, the quotient serves as
the index in the QF. The remainder is stored in the corresponding slot,
and the is_occupied metadata bit is set to 1. During the insert operation,
if multiple items’ hash values result in the same quotient, it is denoted
as a soft collision, and the appropriate metadata bits are set to 1. For
example, when a slot is already occupied and the new items’ quotient
points to the same slot, QF uses linear probing to find the next empty
slot and adds a reminder to it. Then, the is_continuation and is_shifted
metadata bits are set to one, indicating that the slot is occupied but not
by the first remainder in a run and that the remainder in the slot is not
in its canonical slot.

The lookup operation involves hashing the item, splitting the hash into
quotient and remainder, then looking for the remainder in the respective
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slot and verifying that the is_occupied metadata bit alone is set to one. If
the metadata bit is unset, the query item is not present in the QF. The
item may be present in the QF if it is set to one. The uncertainty is due
to the false positives caused by hard collisions (same hash values for
multiple items), the number of items already inserted in the QF, and the
size of the fingerprints. However, suppose the is_occupied metadata bit is
unset, and the other bits are set. In that case, we perform the same linear
probing operation we applied during the insert operation to find if the
query item is present in the QF.

The delete operation follows the same principles as the insert opera-
tion, but after removing the item from the QF, the super cluster entries
are shifted backwards.

All operations have an O(1) time complexity in the average case.
In some operations, the time increases with the size of the QF. Since
additional metadata is required for every entry, 25% more space is
needed. Also, when the occupancy of the hash table exceeds 75%, there is
a significant drop in performance because the likelihood of soft collisions
increases, which leads to more frequent linear probing when performing
insertions and lookups. On the other hand, QF is sensitive to false
positives due to collisions. The false positive rate depends on the size of
the fingerprints and the number of items inserted.

4.1.3.4 COUNTING QUOTIENT FILTER

Counting quotient filter (CQF) [289] represents a significant advancement
over traditional QF by addressing several limitations. CQF achieves this
by incorporating counters associated with each filter entry, effectively
addressing collision management issues, and enhancing accuracy by
maintaining item counts within the filter. This integration reduces the
likelihood of false positives, thereby supporting the reliability of AMQ.
CQFs restructure the metadata bits to speed up the operations (insert
and lookup) and maintain reliable performance up to a load factor of
95% of the filter. This restructuring optimizes lookup efficiency and
saves space by reducing the number of metadata bits allocated per
item. Additionally, CQF implementations leverage rank and select [290]
optimizations within the metadata structure to further increase efficiency
compared to traditional QFs. By utilizing these optimizations, CQFs
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streamline metadata operations, requiring only 2.125 bits for metadata
storage per item compared to the three metadata bits consumed by QFs.

4.1.3.5 SELECTING THE OPTIMAL FILTER

Choosing between Bloom, cuckoo, and quotient filters for NGS data
indexing depends on the application’s specific requirements. Though the
above-discussed data structures offer similar operations, the cuckoo and
quotient filter allow deleting keys, which can be helpful when indexing
extensive collections of NGS data, especially during sample replacement,
as this offers the native functionality to remove samples instead of
rebuilding the entire index just because of a single sample change.
Despite these filters presenting lower bounds compared to Bloom filter
(BF), BFs remain a valuable data structure to use for indexing extensive
collections of NGS data because of the following,

1. BFs provide a space-efficient way to store items, allow for fast
membership queries, and are well-suited for large datasets.

2. The lookup is straightforward in BF as the keys are not moved
around, unlike in CF and QF, where keys are moved around due
to collisions. This is particularly valuable when indexing extensive
collections of samples, as BFs maintain consistent insertion patterns.
In contrast, CF and QF require probing techniques that can alter
the insertion order due to collisions, potentially complicating large-
scale indexing and querying.

3. False positives do not affect the BFs in the case of sequence index-
ing, as the query sequences are usually large. The false positive
rate for the whole query sequence is low compared to that of an
individual k-mer, making BFs more reliable for large-scale queries.

4. Insertion and lookup times in BF are constant regardless of the
number of items already present in the filter. In contrast, CF and QF
involve key movement upon collisions, which can lead to variable
performance as the filter fills up.

5. BFs offer a simpler query process compared to CFs or QFs, par-
ticularly when indexing extensive collections of NGS data. Their
bit-array representation enables the use of various compression
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techniques, allowing for further optimizations that enhance the
efficiency and scalability of the indexing process while optimizing
storage utilization.

In addition to the above points, and as previously described, the
tools developed as part of the thesis aimed not only to index extensive
collections of NGS data but, more importantly, to address a significant
gap in the field of protein sequence indexing. While several tools can
index NGS data, none supports amino acid sequence indexing, which
creates a notable limitation. We aim to bridge this gap by proposing the
first tool capable of indexing both amino acid and nucleotide sequence
data. This tool also allows for querying amino acid-based indexes with
nucleotide queries by internally performing a six-frame translation, thus
filling a critical gap in how protein sequences can be stored and queried.

4.2 RELATED WORK

Before introducing the tools and methods that were implemented, here
is an overview and summary of the state-of-the-art tools, including their
implementations and the challenges they aim to address in nucleotide
sequence indexing.

4.2.1 SEQUENCE BLOOM TREE

The existing full-text indexing data structures, such as Burrows-Wheeler
transform [76], FM-index [79], or others, are currently unable to mine
data from databases like ENA and SRA containing several petabases.
None of the existing approaches can match a query sequence q that
spans many short reads. Sequence Bloom Trees (SBT) is a tool developed
to address these issues [291]. The tool is used to identify all samples in
a dataset containing a given query sequence q with reduced memory
requirements. SBT index is not limited to searching for known sequences
and can be built efficiently and stored in a limited additional space. In
addition to insertion and query operations, SBTs allow deletions and the
addition of new experiments.

An SBT (Figure 4.2) is a rooted binary tree built by repeatedly inserting
sequencing experiments. The first step involves the construction of
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Figure 4.2: (Source: (Solomon et al., 2016 [291])) Overview of sequence Bloom tree.
Each node in the structure includes a bloom filter that stores the k-mers identified in
the associated sequencing experiments. The parameter θ represents the proportion of
k-mers that must be present at each node to search its subtree. The SBT returns the
experiments most likely to include the query sequence, allowing for further analysis.

Bloom filters (BF) for k-mers present in the sequencing experiment.
The algorithm then navigates the tree, inserting the sample based on
the similarity of its Bloom filter to the existing nodes. To insert a new
experiment s into the tree T, a Bloom filter (b(s)) is computed for the
k-mers in s. The tree T is then traversed from the root towards the leaves,
and s is inserted at the bottom of T. If a node u has one child, insert a
new node representing s with b(s) as the second child of u. If u has two
children, compare b(s) with the Bloom filters of the left and right children
and choose the child with the more similar filter based on Hamming
distance, and this becomes the current node, and the process is repeated.
If u has no children, it represents another sequencing experiment s’. In
that case, a new union node v as a child of u’s parent is created. Now, v
has two children, u, and a new node representing s [291].

SBTs’ insertion process follows a greedy approach, aiming to group
similar experiments by their Bloom filters to reduce filter saturation and
query time. Filter saturation is a big challenge when scaling SBTs to ex-
tensive collections of sequencing experiments or experiments containing
diverse samples because BFs at higher levels of the tree tend to have
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more bits set to 1 in such cases, thus increasing the false-positive rates
and, in turn, increases the query time.

Given a query sequence q, the k-mers are extracted, and the tree is
traversed from the root. A threshold is defined between 0 and 1, which
governs the query’s error tolerance. Higher thresholds expect a greater
number of query k-mers to be present. During tree traversal from the
root at each node u, the Bloom filter in node b(u) is queried for the
presence or absence of each k-mer. If more k-mers are found than the
defined threshold, the traversal continues to all children of u. If fewer
k-mers are found, then the subtree is pruned, thus reducing the query
time directly at the higher levels of the tree. Only the tree topology and
the current filter are stored in the memory, leading to reduced memory
requirements.

The authors benchmarked SBT on a collection of 2652 human RNA-
seq samples containing blood, brain, and breast samples from SRA.
An SBT index was constructed and required 200 GB (2.3% of the size
of the original sequencing data) of storage with compression. It took
approximately three days to build the BFs using 20 threads, and the
construction of SBT with compression took roughly 34 hours using one
thread. A single transcript query from the dataset required 239 MB of
RAM and took approximately 20 minutes on a single core. The authors
assessed batches of 100 queries and found that SBT was an estimated
4056 times faster than SRA-BLAST [292] and STAR [293] alignment-
based methods.

4.2.2 SPLIT SEQUENCE BLOOM TREES

Traditional approaches like the SBT offer solutions but struggle with
scalability when dealing with petabases of data. The split sequence
Bloom tree (SSBT) [294] method develops as an enhancement to the SBT
and is designed to address the challenges of storage efficiency and query
performance in large-scale sequencing datasets.

SSBT (Figure 4.3) builds upon the SBT by introducing a new way
of managing Bloom filters to reduce redundancy and improve query
efficiency. In an SSBT, each node in the binary tree contains two distinct
Bloom filters: a similarity filter and a remainder filter. The similarity
filter captures k-mers that are universally present across the experiments
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Figure 4.3: (Source: (Solomon et al., 2018 [294])) An overview of uncompressed and
compressed SSBTs, where black represents a bit value of one, white represents a bit
value of zero, and grey bits indicate non-informative bits whose values are determined
by the parent filter.

within the node’s subtree. In contrast, the remainder filter stores the
k-mers that appear in at least one experiment but are not universal. This
dual-filter system reduces filter saturation. As the tree is traversed, the
SSBT’s structure allows for efficient pruning of subtrees. The method
checks the Bloom filters at each node when querying the tree with a
sequence. If the query’s k-mers are present in the similarity filter, the
traversal continues down the tree. If not, the subtree is pruned, skipping
checks and reducing the query time.

The performance of SSBT was benchmarked using a collection of
2652 human RNA-seq samples (the same as SBT). When comparing the
performance of SSBT to SBT, SSBT demonstrates significant improve-
ments in storage efficiency and query performance, albeit at the cost of
increased build time and memory usage. SSBT index construction took
78 hours, considerably longer than the 18 hours required for SBT. The
compression process was also slightly more time-consuming for SSBT,
taking 19 hours compared to SBT’s 17 hours. However, these are offset
by SSBT’s reduction in storage requirements. The final compressed size
of the SSBT index was 39.7 GB, significantly smaller than the 200 GB
required for the SBT index. In terms of query performance, SSBT out-
performs SBT substantially. For queries involving transcripts per million
(TPM) thresholds of 100, 500, and 1000, SSBT consistently computed
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the results in approximately 3.6 to 3.8 minutes, compared to the 19.7
to 20.7 minutes needed by SBT, demonstrating a fivefold improvement
in query speed. Although SSBT’s construction process is more complex
and requires more memory and time than SBT, its query performance
and storage efficiency make it a more effective solution for managing
and querying large-scale sequencing datasets.

4.2.3 ALLSOME SEQUENCE BLOOM TREES

AllSome sequence Bloom trees (SBT) [295] build upon the SBT and intro-
duce key construction and query efficiency improvements. In the original
SBT, each node is represented using a single bit vector compressed with
RRR [296], facilitating efficient look-ups without decompression. Insert-
ing a new bit vector into the SBT involves locating the appropriate child
subtree based on the Hamming distance or creating a new root if nec-
essary. Queries are executed by recursively traversing the tree, loading
nodes from the disk as needed, and matching queries at the leaf nodes.

The AllSome SBT (Figure 4.4) refines the SBT method by incorporating
three key improvements. Firstly, it utilizes a non-greedy construction
method through agglomerative hierarchical clustering, improving k-mer
matches’ localization. Instead of the original greedy insertion strategy,
this method merges pairs of SBTs based on the smallest Hamming
distance between their root bit vectors, leading to a more efficient tree
organization. This improved structure facilitates faster query resolution
by ensuring that related k-mers are clustered. Additionally, the AllSome
SBT introduces a new node representation using two-bit vectors: Ball(u)
and Bsome(u). Ball(u) captures bits present in all leaves of the subtree
rooted at node u, excluding those found in the leaves of the parent
node, while Bsome(u) contains bits present in some but not all leaves. This
representation reduces the bitwise operations and disk accesses required
during queries by resolving many k-mer matches earlier. For large-scale
queries, where a query might consist of millions of k-mers, the AllSome
SBT implements a dedicated large query algorithm. Instead of checking
each k-mer individually, this algorithm performs bitwise comparisons
using the entire query’s bit vector (AllSome SBT constructs a Bloom filter
for the entire query itself). This approach is significantly more efficient
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Figure 4.4: (Source: (Sun et al., 2018 [295])) Example AllSome SBT on a set of
sequences. Leaves are shown in blue and internal nodes in gray.

for handling large queries than the traditional method, which becomes a
bottleneck due to the time required for numerous individual checks.

The AllSome SBT demonstrates improvements over the SBT in several
areas benchmarked using the same collection of 2652 human RNA-
seq samples as in SBT. During construction, AllSome SBT reduces the
time required by 52.7%, taking 26 hours and 3 minutes to build the
internal nodes compared to 56 hours for SBT. The final disk space
usage is also lower, at 177 GB for AllSome SBT compared to 200 GB
for SBT. However, it requires more memory and disk space during the
construction, with peak memory usage of 908 MB compared to 726 MB
for SBT and temporary disk space of 2469 GB versus 1235 GB for SBT.

For regular queries, AllSome SBT achieves a 39%-85% reduction in
runtime compared to SBT. For instance, it processed 198, 074 queries
in 463 minutes, whereas SBT required over two days (3082 minutes).
The large query algorithm in AllSome SBT further accelerates perfor-
mance, up to 155 times faster than SBT, and efficiently handles large
queries. However, AllSome SBT uses more memory for large queries,
with maximum usage of 63 GB compared to SBT’s 22 GB for 198, 074
queries.

The combination of clustering and the AllSome representation to-
gether enhances performance. Clustering alone improves node look-up
efficiency by 36.5% and reduces query times by 19%-32%. Meanwhile,
the AllSome representation is particularly effective for queries target-
ing many leaves, with reductions in node look-ups of up to 27.4% for
high-hit queries.
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4.2.4 HOWDE-SBT

HowDe-SBT is a further improved representation of SBT [297]. The
authors present an alternative way to partition and organize the data in
an SBT, thereby improving the compression ratio and faster querying.
They also propose a culling procedure to remove non-informative nodes
from an SBT, thus creating a non-binary forest. An empty HowDe-SBT
(Figure 4.5) has a tree topology T with a bijection between its leaves and
the Bloom filters or the bit vectors of the datasets that will be created
and assigned to the internal nodes.

At each node u, two bitvectors, Bdet and Bhow, are constructed. Bdet

represents the positions that have the same value across each of the
leaves of node u, while Bhow is informative only for the positions in Bdet

and defines them as follows:

Bdet(u) ≜ B∩(u)∪ B∪(u) (4.2.1)

Bhow(u) ≜ B∩(u) (4.2.2)

Bhow(u) reflects the bits that are common (the same value) in all BFs
corresponding to the leaves of node u. Bdet(u) is the union of Bhow(u) and
any additional bits that are relevant, providing a detailed view of the
bit positions associated with node u. Computing Bdet and Bhow for each
node allows for efficient querying. Each k-mer in a query q is hashed
(only one hash function), and the respective positions in the BFs are
determined, and these positions are called unresolved positions. Two
zero-initialized counters are maintained, one for positions determined
to be 1 (present) and one for the positions determined to be 0 (absent).
The algorithm follows a recursive search starting at the root of T. When
comparing a k-mer in q against a node u, each unresolved position that
is 1 in Bdet(u) is removed from the unresolved list, and the corresponding
bit in Bhow(u) determines whether to increment the present or absent
counter. If the present counter reaches a set threshold value (between
0 and 1), the leaves of node u are added to the list of matches, and the
further search of the node’s subtree is pruned. If the absent counter
exceeds the set threshold, then u’s subtree search is pruned because
the query cannot match any of node u’s leaves. When neither condition
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Figure 4.5: (Source: (Harris et al., 2019 [297])) Example HowDe-SBT on a set of
sequences. Each box represents a tree node, with leaves in blue and internal nodes in
gray. The yellow boxes illustrate the processing of a nine k-mer query with a threshold
θ. The initial query is at the top, with bits for query k-mers marked as U. Bits are
marked as present (P) or absent (A) and are removed from further processing if counted
in the totals.
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holds, the algorithm continues to search the u’s children. The query
unresolved list becomes empty when it reaches the leaf, because the bit
vector Bdet is all ones at a leaf, and therefore, the algorithm terminates.

The algorithm is optimized to achieve a better compression ratio and
faster querying by identifying and removing inactive bit positions from
Bdet and Bhow bit vectors that will never be queried during the search
operation. Inactive positions are those already determined at a node
or its ancestors and are not queried. The active bits form compressed
bit vectors, further compressed using the RRR compression algorithm.
These compressed bit vectors constitute the final index.

HowDe-SBT was benchmarked with SSBT and AllSsome SBT using
the same human RNA seq dataset described in SBT, and they removed
samples from the dataset that did not contain reads longer than k.
HowDe-SBT took 9 hours to build an index, and this does not include
the time taken to construct the Bloom filters for each read sample or
a read file in the dataset. The authors mention that using multiple
threads to build the Bloom filters took several days. A total of 616 GiB
of storage was consumed in the build process, where the final index
took 14 GiB, showing that the index was constructed in less than 36% of
the time and with 39% less storage compared to other approaches. The
query performance was compared by creating four types of queries: a
single transcript, a batch of 10 transcripts, a batch of 100, and a batch of
1000. Comparing the query performance, HowDe-SBT shows over a 5x
speedup on single-transcript batches with a peak memory usage of <1.3
GiB for all batches for all tools.

4.2.5 MANTIS

Before discussing Mantis [298], let’s first look into color-aggregative
indexing to help better understand the tool.

Color-aggregative methods-based indexing involves grouping or ag-
gregating similar k-mers based on specific properties. The advantage of
color-aggregative methods is that a k-mer that appears in many samples
is represented only once in the union set, thus reducing the redundancy
but introducing the need to store additional color data along with the
k-mer data. This was first introduced by Iqbal et al. in the Cortex tool
[299]; it was developed for de novo assembly and detection and genotyp-
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ing of simple and complex genetic variants. This tool utilizes a simple
associative data structure to assign colors to k-mers by extending tra-
ditional De Bruijn Graphs (DBG) concepts. A DBG is a directed graph
that represents the overlaps between adjacent symbols. In sequencing
and k-mer indexing, the k-mers form nodes in the graph, while the
edges represent overlapping adjacent k-mers. This concept was extended
through Cortex tool by associating each k-mer with a color, denoted as
a colored DBG. The color can represent various attributes; however, in
our context, it usually denotes the origin or source of the sample or the
sequence. In a traditional DBG, the graph would only show the k-mer
overlaps without additional contextual information about the species
origin of each k-mer. In contrast, a colored DBG enhances this concept
by associating each k-mer with a specific color that typically represents
the sample or species origin. This coloring allows k-mers to be differen-
tiated from different samples or species, and is particularly useful for
identifying genetic variants like SNPs and other short variants. These
variants can be visualized in the graph through pairs of short paths
sharing common starting and ending nodes that indicate regions where
k-mers from different sources converge or diverge, thus highlighting
potential SNPs or other genetic variations [300].

Mantis is used to store and query large-scale sequencing datasets. It
leverages the colored De Bruijn Graph (cDBG) representation to organize
and index sequences. Mantis builds upon Squeakr [301], a tool that is
a wrapper for constructing a CQF. Squeakr’s role involves parsing the
input files, extracting k-mers, and inserting them into a CQF. In Mantis
(Figure 4.6), the color assigned to each k-mer within a cDBG corresponds
to the experiments where that k-mer is present. An exact CQF maintains
a table linking each k-mer to a unique color identifier (ID). In contrast,
another table maps color IDs to the specific experiments containing the
corresponding k-mer. To build an index, individual CQFs are constructed
for each input sample using Squeakr, while the tool also utilizes an off-
the-shelf compressor to store the bit-vectors. These individual CQFs are
merged into a unified CQF structure, which stores color IDs instead of
k-mer counts.

The authors assert that the existing approaches, such as the SSBT,
encounter challenges related to the fundamental limitations leading
to prolonged build and query durations, suboptimal space utilization,
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Figure 4.6: (Source: (Pandey et al., 2018 [298])) An overview of Mantis indexing and
query search.
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and the potential for many false positives. Through Mantis, the authors
address these issues by employing an optimization to index thousands
of raw-read experiments, facilitating large-scale sequence searches. In
their evaluation, the authors find that constructing the index with Mantis
is 6-108 times faster and yields a 20% smaller index than SSBT.

4.2.6 BITSLICED GENOMIC SIGNATURE INDEX

Unlike the color aggregative methods, which focus on reducing redun-
dancy by grouping similar k-mers across multiple samples, the BItsliced
Genomic Signature Index (BIGSI) [302] employs the k-mer aggregative
approach where the dataset is processed sample by sample rather than
pooling all k-mers from all samples to build an index. After processing,
the individual k-mer indices from each sample are aggregated using
various techniques to form a comprehensive index for the entire dataset.

SBTs were the first to offer a scalable approach to indexing extensive
collections of datasets. However, they are limited by a scaling dependence
on the union of the indexed dataset’s total number of k-mers. This means
that as the diversity of samples or k-mers increases, the efficiencies
offered by these tools are diminished. In contrast, BIGSI addresses this
limitation using a fixed-size binary signature for each dataset. BIGSI
was the first method to use BFs to represent an extensive collection of
447, 833 bacterial and viral whole-genome sequence datasets from ENA.
The BIGSI index required 1.5 TB of storage—only 1% of the original 170
TB size—to represent all the k-mers present, offering a more scalable
solution for managing large and diverse genomic datasets.

BIGSI approaches this as a document retrieval problem by internet
search engines that treat k-mers as the search or query terms, and the
documents are the read datasets or assembled genomes. In this approach
(Figure 4.7), a BF matrix is constructed where each column represents
a sample, represented by a filter of k-mers within a dataset, and the
rows correspond to the index of the k-mers. From the query point of
view, the BF matrix allows efficient (O(1)) retrieval as the index of every
k-mer from every sample appears as a consecutive block. Therefore, they
can be easily retrieved as a single slice (bitslice) of a bit vector. BIGSI
performs a bitwise AND operation between the retrieved bitslices to
obtain a bit-vector representing the presence or absence of the query



116 metaprofi : efficient sequence analysis and indexing

in each sample in the indexed dataset. Since BIGSI builds BF for every
sample and then aggregates them in a matrix, adding new samples is
as simple as creating a BF for the latest sample and then appending
the new BF to the end of the matrix as a new column. However, such
appending requires modifying every key in the BIGSI. They construct
an index for new samples in batches and perform a merge operation
instead of building an entirely new index.

Figure 4.7: (Source: (Bradley et al., 2019 [302])) An overview of construction and
query of a BIGSI.

The false positive rate of a BF is controlled by the choice of the size
of the BF and the number of hash functions used. In BIGSI, the authors
create indexes with relatively high per-k-mer error rates to achieve a
better compression rate, but this requires a longer minimum query
sequence length. The authors mention that the false positive rate per
Bloom filter can be as high as 0.3, and by requiring a longer minimum
query sequence (for example, 61), the false positive rate per query k-mer
decreases exponentially with each additional unique k-mer in the query.
Assuming independence of k-mer and Bloom filters, the expected number
of false discoveries (V) for a query (q) of length L can be expressed as
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q = E[V] = NpL, where N is the number of expected datasets, p is the
false positive rate of the Bloom filter, and L is the number of unique
k-mers in the query.

A BIGSI was constructed for the classic reference dataset that all k-mer
indexing tools benchmark against, the human RNA-seq dataset [291].
For BIGSI, the index size is 144 GB with a query time of 69 seconds. In
comparison, SBT has an index size of 200 GB and a query time of 238
seconds.

4.2.7 COMPACT BIT-SLICED SIGNATURE INDEX

COmpact Bit-sliced Signature Index (COBS) [303] represents a significant
advancement in k-mer indexing. It merges the q-gram (a q-gram is a
contiguous sequence of q symbols within a text) indexing approach with
Bloom filters to effectively index k-mers while reducing the k-mer space
size. This novel combination is like a variant of signature files from the
field of information retrieval, enabling rapid search for text data within
a highly compact data structure, reducing disk access.

Unlike its predecessor, BIGSI, COBS is designed to accommodate
samples with varying numbers of k-mers, addressing the challenge of
over-scaling filters for smaller samples. While a BIGSI index requires all
Bloom filters to be of the same size, resulting in denser bit vectors for
larger samples and sparser for smaller ones due to the dependence on
the number of q-gram terms or k-mers in a sample, COBS overcomes
this limitation by creating multiple matrices corresponding to different
filter sizes, thus optimizing space utilization. This crossover between
an inverted index and Bloom filters in COBS offers scalability to larger
document sets without requiring the complete index in RAM. COBS
adjusts the size of each Bloom filter bit array to the document it indexes,
maintaining a constant false positive rate. Despite potential concerns
about query efficiency from querying multiple arrays, COBS implements
SIMD instructions to enhance construction and query performance com-
pared to BIGSI while reducing the final index size, especially in cases
where sample sizes vary.

In its benchmarks, COBS outperforms other k-mer indexing tools
in construction and query time. It displays the fastest construction
time, significantly exceeding other tools such as ClaBS (BIGSI), Mantis,
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SeqOthello, and AllSome SBT. In index construction, COBS exceeds
its competitors by significantly. For instance, it takes only 43 seconds
to construct an index from 1, 000 documents, whereas ClaBS, Mantis,
SeqOthello, and AllSome SBT lag considerably. COBS demonstrates
superior speed, 2.3 times faster than ClaBS, 30 times faster than Mantis,
59 times faster than SeqOthello, and 83 times faster than AllSome SBT.
Moreover, COBS highlights efficiency in the processing time compared
to BIGSI, Mantis, and SeqOthello. Regarding query performance, COBS
outperforms, requiring only 114 seconds to execute queries. In contrast,
ClaBS takes 154 seconds, and Mantis and SeqOthello are even slower.

4.2.8 DYNAMIC SEARCHABLE PARALLEL COMPRESSED INDEX

The Dynamic seaRchablE pArallel coMpressed index (DREAM) [304]
framework addresses the limitations of traditional mapping-based meth-
ods for indexing large genomic databases. As the size of reference
databases used in genomic research has grown exponentially, traditional
methods like FM-indexing [79] have struggled to keep pace, particularly
with databases exceeding 10 GB. These methods require substantial time
and computational resources to build and lack the flexibility needed for
frequent updates, which is essential in fields like metagenomics, where
reference sequences are continually changing.

The DREAM framework (Figure 4.8) represents an advanced indexing
system that is developed to handle reads from Illumina and large-scale
genomic databases. It introduces a dynamic, distributed approach to
indexing that allows for efficient construction and fast search times. It
begins with a set of database sequences and sequencing reads, which
are split into smaller clusters or bins of similar sequences. Each cluster is
indexed with a method of choice appropriate for the approximate search
method, creating sub-indices. The framework has two main layers: the
dynamic operation distributor and the approximate search distributor.
The dynamic operation distributor manages updates by determining
which sub-indices require modification and executing these updates
in parallel. Meanwhile, the approximate search distributor determines
which sub-indices to search, conducts these searches in parallel, and then
consolidates the results. The effectiveness of this approach is enhanced
by placing similar sequences into the same sub-index, which also aids in
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Figure 4.8: (Source: (Dadi et al., 2018 [304])) Overview of the DREAM index frame-
work.

compression, although the specifics of compression were not discussed.
The sub-indices use FM indices for fast approximate querying and can
be dynamically rebuilt when necessary. The framework leverages the
k-mer counting lemma ([304]) and a new Interleaved Bloom Filter (IBF)
type for managing dynamic operations and approximate searches. The
binning of sequences utilizes TaxSBP [305], a clustering method based on
the NCBI Taxonomy database [306, 307], to group similar sequences. The
IBF combines multiple Bloom filters into a single structure. Conventional
BFs have limitations in storing binning bit vectors directly since they
only handle set membership queries. The IBF interleaves multiple Bloom
filters—one for each bin—into a unified Bloom filter. Each bit in the IBF
represents a sub-bit vector for one bin, allowing simultaneous manage-
ment of all bins. This interleaving technique improves query speed by
making data retrieval more cache-friendly. In the context of the DREAM
framework, the IBF helps determine which bins to search based on k-mer
presence and updates these bins as the database evolves. Additionally,
the Yara read mapper [308] is integrated into the DREAM framework,
leading to the development of DREAM-Yara. This tool enhances Yara’s
capabilities by managing read mapping in batches, using the IBF to
identify relevant bins, and consolidating results into a single output file.

DREAM-Yara was benchmarked using the set of archaeal and bacte-
rial complete genome sequences retrieved from the NCBI database. The
dataset comprised 15, 250 sequences representing 2991 species, summing



120 metaprofi : efficient sequence analysis and indexing

up to a total of 31.34 Gbp. DREAM-Yara completed the indexing in 1
hour and 7 minutes for the dataset partitioned into 1024 bins, mak-
ing it approximately nine times faster than Bowtie2 [80] and 26 times
faster than standard Yara. Memory consumption was also lower, with
DREAM-Yara using 16.15 GB of memory—62% less than BWA [76], the
next most efficient method in terms of memory usage. DREAM-Yara’s
advantage extends to index updating as well; it only required 7 minutes
to update the indices for the 155 new and one removed E. coli sequences,
demonstrating an improvement over tools like standard Yara, BWA, and
GEM [309], which would need to rebuild the entire index, taking up to a
day.

4.2.9 KMTRICKS

Kmtricks [310], was designed to address the challenges encountered in
indexing sequences generated by short-read technologies. Traditional
indexing methods often struggle with the uncertainty of eliminating
low-abundance k-mers while retaining erroneous ones, limiting their ap-
plicability in metagenomics and RNA-seq data analysis, especially in the
absence of extensive reference genomes. Kmtricks emerged as a solution
to optimize accuracy and efficiency in k-mer indexing by integrating
k-mer counting and Bloom filter construction. Through techniques such
as rescuing low-abundance k-mers, employing hash counting for simul-
taneous construction, and leveraging matrix transposition techniques,
kmtricks offers a joint multi-sample k-mer indexing, addressing the
shortcomings of traditional methods.

Kmtricks (Figure 4.9) workflow includes stages, such as partitioning,
counting, and merging, to optimize the construction of k-mer matrices
or Bloom filters from input sequencing data.

The partitioning strategy is based on minimizers to count k-mers
and construct super-k-mers. Minimizers are the smallest subsequences
within a sequence, while super-k-mers are sequences of k-mers that all
share the same minimizer. The partitioning scheme ensures a balanced
distribution of k-mers across partitions. This process involves sorting
all possible minimizers and dividing them into partitions with roughly
equal numbers of k-mers. In the counting stage, the super-k-mers for
each sample are computed and written into the corresponding partitions
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Figure 4.9: (Source: (Lemane et al., 2022 [310])) An overview of the kmtricks pipeline.

on the disk. These super-k-mers are used to deduplicate k-mer hash
values and determine the abundance of each distinct hash value within
each partition. During merging, hash value partitions combine to form
Bloom filters in the rescue phase. In this process, the row count vectors
are transformed into binary representations, and missing hash values
result in the appending of empty bit-vectors to the matrix. After the
merging step, the color-aggregative matrices are converted into k-mer
aggregative representation through a bit-matrix transposition.

Kmtricks was benchmarked by conducting a joint k-mer counting and
Bloom filter construction for a Tara Oceans dataset consisting of a 6.5
terabase metagenomics collection using under 50 GB of memory and 38
hours of construction time. It compared against the best alternatives by
at least 3.8 times in speed. However, it required two times more storage
compared with other tools.

Despite its strengths, kmtricks requires additional storage, posing chal-
lenges for resource-constrained environments. Furthermore, its reliance
on third-party tools like HowDe-SBT for index construction may limit
its applicability.

4.3 INTRODUCTION TO METAPROFI

In the last few years, several tools utilizing Bloom filter data structures
for storing and querying large sequence datasets became available: SBT
[291], SSBT [294], AllSome SBT [295], HowDe-SBT [297], BIGSI [302],
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COBS [303], DREAM-Yara [304], kmtricks [310], and others. Other tools
utilize other variants of probabilistic data structures: Squeakr [301]
in combination with Mantis [298] and BCALM2 [311] in combination
with REINDEER [312]. Custom indexes are built either from the raw
sequencing data or the data from curated databases, and later, the
sequences of interest are queried against these custom indexes to find
which samples in the index contain the query sequence.

This section introduces two variants of MetaProFi, MetaProFi-1 [15]
and MetaProFi-2. MetaProFi is a first-of-its-kind tool for indexing amino
acid sequences that also supports nucleotide sequence indexing. Due
to their numerous advantages and simplicity, MetaProFi is designed to
use Bloom filters (BFs) as the underlying data structure. As described
earlier, the Bloom filter (Figure 4.1) is a probabilistic set-membership
data structure that stores the presence or absence of items/elements in a
bit vector and can be queried for presence or absence.

MetaProFi (refers to both variants) combines the power of a variant of
BF data structure, which we call packed Bloom filter (Chapter 4.4.2), with
data chunking and compression to construct the BF matrix efficiently to
index all the observed k-mers (presence/absence) for fast queries with
reduced memory, storage, and runtime requirements.

4.3.1 NOVEL FEATURES

The novel features of MetaProFi include (1) indexing support for both
nucleotide and amino acid sequences; (2) a possibility for querying
amino acid sequence index using nucleotide sequences; (3) a seamless
update (possible only in MetaProFi-1) of previously built indexes with
new data/samples; (4) considerable storage reduction compared to the
state-of-the-art tools.

4.3.2 APPLICATIONS AND PRACTICAL USAGE EXAMPLES

MetaProFi serves various applications: One can index all the sequences
available in UniProtKB in a protein-based index. A possible application
of such an index would be a fast alignment-free sequence search that
can be used, for example, to find resistance-associated genes directly
from metagenomics data. MetaProFi allows exact query search expecting
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every k-mer in the query sequence to be present and also supports
approximate search using a threshold (T) when only the fraction of
k-mers larger than T have to be found. As a proof of concept, we have
constructed a MetaProFi-1 index for UniProtKB bacterial sequences
(amino acids) on two different levels (organism-level and sequence-level),
a MetaProFi (both versions of the tool) index for the Tara Oceans dataset
containing nucleotide metagenomic sequencing data collected across
all oceans. Additionally, we used the dataset described in HowDe-SBT,
which consists of 2585 human RNA-seq experiment results comprising
blood, brain, and breast samples to demonstrate the storage, memory,
run time, scalability, and query performance.

4.4 METAPROFI IMPLEMENTATION

MetaProFi (Figures 4.10, 4.11) is developed in Python and is parallelized
to take advantage of all the CPU cores available in today’s modern
computing systems to achieve the best performance. MetaProFi accepts
FASTA and FASTQ formats and uses pyfastx [313] Python library to
process the files. The implementation is available at https://github.

com/kalininalab/metaprofi.
For the downstream analysis of variants, we developed an API to

integrate MetaProFi with StructMAn [314] (Chapter 5.2.1), providing
efficient variant identification and structural annotation within a unified
environment. Structural annotation refers to mapping the identified
variants onto the 3D structure of proteins, to aid in understanding how
these mutations might affect protein function and interactions. This is
particularly useful in differentiating between benign and pathogenic
mutations and identifying mutations linked to drug resistance. This API
makes it easy to set up and configure MetaProFi and StructMAn tools
together in one a single computational environment thereby simplify-
ing their operations and compatibility. Once variants are identified, the
API coordinates the transfer of these variants to StructMAn for struc-
tural annotation and functional impact analysis. The API manages all
aspects of this process, including input management, error handling,
and output generation, providing a robust and automated workflow for
comprehensive analysis.

https://github.com/kalininalab/metaprofi
https://github.com/kalininalab/metaprofi
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Figure 4.10: Overview of MetaProFi-1 pipeline: (a) Chunked Bloom filter matrix
construction, (b) Index construction, and (c) Search/query pipeline.

Figure 4.11: Overview of MetaProFi-2 pipeline: (a) Chunked Bloom filter matrix
construction, (b) Index construction, and (c) Search/query pipeline.
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4.4.1 EFFICIENT HASHING WITH MURMURHASH2 IN
METAPROFI

MetaProFi implements a custom version of the MurmurHash2 algorithm
(https://github.com/aappleby/smhasher/), a high-performance, non-
cryptographic hash function designed to generate uniformly distributed
hash values from arbitrary input data. It is known for its simplicity,
speed, low collision rate, and good distribution. MurmurHash2 pro-
vides efficient and balanced data distribution across hash buckets. The
algorithm employs bitwise operations to produce the final hash value,
including shifts, XORs, and multiplications with constants. These oper-
ations ensure that even small changes in the input result in significant
changes in the hash output, thus reducing the likelihood of collisions
and providing a fast and efficient hashing mechanism [315–317].

4.4.2 CONSTRUCTION OF CHUNKED BLOOM FILTER MATRIX

MetaProFi builds BFs in the form of a matrix directly, unlike other tools
that construct individual BFs for each sample first and then construct a
matrix (and/or other forms) for indexing (Figures 4.10A and 4.11A). The
rows in the matrix represent hash indexes, while each column represents
a BF of length m of a sample. Since we cannot construct large matrices
in memory, MetaProFi employs carefully crafted chunk size calculations
to ensure efficient memory utilization and optimal performance during
the BF matrix and index construction (Chapter 4.4.3). The chunk size
is determined based on the user-defined configuration, particularly the
allocated memory limit (Mmax), the BF size m, and the number of input
samples (Y). MetaProFi splits the number of samples into N batches
of small samples, where N is estimated to fit within the user-defined
maximum memory usage threshold.

Given that MetaProFi was implemented in Python, which lacks a
native bit datatype, in the matrix, MetaProFi utilizes an 8-bit unsigned
integer (UINT8) data type to store bits for eight k-mers by applying bit
manipulations to a UINT8 integer. This effectively packs the BF (called a
packed BF) and reduces the memory footprint by eight.

The total memory required for storing the BFs for all samples is
calculated as,

https://github.com/aappleby/smhasher/


126 metaprofi : efficient sequence analysis and indexing

TotalBytes = PB× Y (4.4.1)

PB =

⌊
m+Z

8

⌋
(4.4.2)

Where PB represents the packed bytes per BF, Z is the number of zeros
added to align the bit count to the nearest byte boundary.

To determine the number of chunks needed, MetaProFi divides the
total required bytes by a fraction (85%) of the maximum memory allowed
by the user,

N =
TotalBytes
0.85×Mmax

(4.4.3)

this leaves a margin to ensure that operations remain within the
allocated memory. The chunk size in terms of the number of samples is
then calculated as,

Csamples =

⌊
Y

N

⌋
(4.4.4)

and the chunk size in terms of the number of rows is calculated as,

Crows =

⌊
PB

8×N

⌋
(4.4.5)

Here, dividing by eight accounts for the Bloom filter’s bit-packing into
a UINT8 integer. These carefully computed chunk sizes allow MetaProFi
to process a larger number of samples per iteration while staying within
memory limits, thus optimizing both memory utilization and processing
efficiency.

Once all k-mers in a batch of samples are hashed and the respective bits
are flipped in the BF matrix, MetaProFi applies a structured approach
to efficiently manage and store the matrix. This is achieved using Zarr
[318], an open-source library for storing and processing large, chunked
arrays. It is combined with compression techniques such as the Zstan-
dard algorithm (https://github.com/facebook/zstd) to reduce storage

https://github.com/facebook/zstd
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requirements for large-scale datasets. MetaProFi’s chunking strategy or-
ganizes the BF matrix into manageable chunks based on the previously
calculated chunk sizes (Csamples is the number of columns in the matrix,
and Crows is the number of rows in the matrix). Each chunk represents a
subset of the matrix, allowing for efficient processing and retrieval. Zarr
facilitates this process by supporting various storage backends, including
local file systems and cloud storage, allowing for independent access or
updates to each chunk. This integration with Zarr optimizes memory
usage, enhances processing speed, and ensures effective management
of large-scale sequence datasets, perfectly aligning with MetaProFi’s
objectives.

In MetaProFi-1, the BFs from all batch samples are divided into chunks
based on the calculated chunk sizes Csamples and Crows. Each chunk is then
compressed and written to the disk. The chunking strategy ensures that
a portion of the full BF matrix, corresponding to the number of samples
and rows defined by Csamples and Crows, can be loaded into memory for
processing.

Whereas MetaProFi-2 applies the following four-step compression
technique to each chunk (C) in the matrix: (1) each chunk is vector
transformed (flattened), (2) the vector is split into blocks that can fit into
the CPU cache, (3) a Bitshuffle [319] algorithm is applied to the blocks,
and (4) the Bitshuffled blocks are then compressed and the compressed
blocks are then stitched back to form a single vector. This compressed
vectored chunk is then written to the disk. MetaProFi-2 leverages the
Blosc (https://github.com/Blosc/c-blosc) tool to perform these oper-
ations.

By applying compression to each chunk, MetaProFi-1 achieves a sig-
nificantly better compression ratio than when compressing individual
Bloom filters, and through this, MetaProFi-1 offers a significant storage
reduction. MetaProFi-2 further improves this by incorporating a sophis-
ticated blocking and bit shuffling technique. Blocks in MetaProFi-2 are
sized to fit into the CPU cache, a small high-speed memory area on
the processor that temporarily holds frequently accessed data. By en-
suring smaller block sizes, the algorithm minimizes the need for slower
main memory accesses, enhancing processing speed and efficiency. The
Bitshuffle algorithm rearranges the bits into a matrix with dimensions
of the number of elements by the size of each element (in bits) and

https://github.com/Blosc/c-blosc
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then performs a transpose [319] operation, which aligns similar bits into
longer contiguous sequences (run lengths) that can be compressed better.
Combining optimal block size with bit shuffling leads to more effective
data compression, thereby reducing the storage to a greater extent than
any of the k-mer indexing tools.

This process is repeated for all N sample batches. Using the Zarr
library to store the chunks on disk ensures that the chunks from all
samples that correspond to the same set of Bloom filter rows are stored
in such a way that they can be assessed and loaded to memory simulta-
neously. The whole bit vector corresponding to a single hash value in all
Y samples can be extracted.

MetaProFi utilizes POSIX shared memory as the matrix backend,
enabling efficient, concurrent access to the matrix through multiple pro-
cesses. POSIX shared memory allows different processes on the same
machine to share a common memory space, providing a zero-copy
data transfer. This eliminates the need for redundant data copying be-
tween processes, significantly reducing the overhead associated with
inter-process communication and accelerating the Bloom filter construc-
tion time. The primary advantage of using a POSIX shared memory in
MetaProFi is its ability to enable multiple processes to work simultane-
ously on different columns (each column in the BF matrix is a sample)
of the BF matrix. This parallelization substantially reduces the time re-
quired to construct large BF matrices, as each process can directly access
and modify the shared matrix. This combination of shared memory opti-
mization, chunking strategy, and the Zarr library enhances MetaProFi’s
speed and scalability and optimizes memory usage.

4.4.3 INDEX CONSTRUCTION FOR THE BLOOM FILTER
MATRIX

Since MetaProFi’s BF matrix is stored in batches and chunks, direct
queries for a large number of k-mers need to enumerate all chunks and
likely will be slow. So, we build a dedicated, efficient index structure
(Figures 4.10B and 4.11B) for the BF matrix such that querying every
k-mer has a constant time cost [302] independent of the number of
batches.
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The indexing data structure of MetaProFi-1 is an array of size m (size
of the Bloom filter), where each cell in the array corresponds to a row
(or, equivalently, a bitslice [302]) across all samples (columns) from the
BF matrix. Whereas MetaProFi-2 constructs a type of sparse index to
store the bitslices where keys are chunk numbers, and the values are
the compressed vectors (more than one bitslice) and stores them in a
key-value database called LMDB (Lightning Memory-Mapped Database)
(https://lmdb.readthedocs.io/en/release/). LMDB provides several
advantages, including efficient memory mapping, which allows the
data to be accessed directly from the disk without loading it fully into
the memory. This memory-mapped approach significantly reduces the
memory overhead and enables faster access times by mapping disk files
into the process’s address space. Moreover, LMDB offers transaction
support, ensuring data integrity and reliability during concurrent read
and write operations. By leveraging these features, MetaProFi-2 enhances
its indexing efficiency and scalability, making it robust when handling
extensive data collections. The combination also speeds up data retrieval
and storage operations and efficiently manages large-scale datasets
without compromising performance or reliability.

To construct the index, MetaProFi re-creates a POSIX shared memory
matrix of size X ∗ Y, where Y is equal to the total number of samples in
the BF matrix and X = Crows is the number of rows that can be read into
the memory without crossing the maximum memory limit (Mmax) set
in the user configuration file. MetaProFi reads X rows from each chunk
spanning all N sample batches on the fly, unpacks the UINT8 packed
Bloom filter to individual bits, and writes the several unpacked bits of X
rows and Csamples corresponding to a batch to the shared memory matrix
in parallel.

Once again, to benefit from data chunking and compression, MetaProFi-
1 applies this technique to these X rows and distributes the compressed
chunks to multiple processes, which are then written to the disk. Mean-
while, MetaProFi-2 chunks these X rows, applying the four-step com-
pression technique (Chapter 4.4.2) to each chunk and then writing them
to the key-value database.

MetaProFi repeats the procedure until all rows from the BF matrix are
indexed. MetaProFi-1 supports updating the index to add new samples,
while MetaProFi-2 does not offer this feature yet.

https://lmdb.readthedocs.io/en/release/
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4.4.4 FAQINDEXING FOR FASTA/FASTQ FILES

MetaProFi can build the BF matrix using a collection of FASTA/FASTQ
files where each file is treated as a single sample or from a single FAS-
TA/FASTQ file, where every sequence is treated as an individual sample.
In the latter case, we introduce a dedicated indexing data structure
to accelerate the MetaProFi BF matrix construction, referred to here-
after as FAQIndex (FASTA/FASTQ Index). Inspired by pyfastx [313],
we implemented an LMDB-based indexing tool for compressed and
uncompressed FASTA/FASTQ files, leveraging LMDB as the storage
backend due to the advantages described earlier. FAQIndex is designed
to contain six columns: the sequence number, the name of the sequence,
the sequence start offset, the byte length of the sequence, and the number
of bases in the sequence. This indexing approach significantly enhances
the efficiency of sequence data processing by enabling rapid access to
specific sequences without the need to scan through entire files. By
knowing each sequence’s exact location and length in the file, MetaProFi
can quickly retrieve and process the sequence data, minimizing I/O
operations and reducing the time required to build the BF matrix.

A key advantage of FAQIndex over other FASTA/FASTQ indexing
tools is its support for concurrent access. FAQIndex allows multiple
processes to access and manipulate the index simultaneously. LMDB’s
architecture makes this concurrency possible, ensuring smooth and
efficient parallel processing. As a result, MetaProFi can parallelize the
construction of the BF matrix across multiple processes, leading to
a significant reduction in overall processing time; this also optimizes
memory usage by allowing MetaProFi to load only the data required
for the current operation into memory rather than loading the entire
file. This is advantageous where memory constraints can become a
bottleneck. FAQIndex is also designed to be space efficient, as we do not
store additional information, such as sequence type and read parameters,
requiring less storage than Pyfastx’s. Each row in FAQIndex is serialized
and compressed, reducing storage requirements. This decreases storage
(file size) and enhances access speed, as smaller indexes can be loaded
and searched more quickly.
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4.4.5 QUERYING/SEARCHING THE METAPROFI INDEX

MetaProFi accepts raw sequence and FASTA/FASTQ files as inputs for
querying the index (Figures 4.10C and 4.11C). When a multi-sequence
file is used for querying, MetaProFi automatically constructs a small
FAQIndex of the file to distribute the query sequences to multiple
cores/processes. MetaProFi collects the hashes of each k-mer from every
sequence in parallel processes. The MetaProFi index is queried with these
hash values, and bitslices corresponding to each k-mer are retrieved.

MetaProFi allows exact query search where every k-mer in the query
sequence is expected to be present in a sample and also supports ap-
proximate search using a threshold (T) when only a fraction of k-mers
larger than T have to be found. In addition to querying with an amino
acid sequence against an index built using amino acid samples and a
nucleotide sequence against a nucleotide index, MetaProFi allows query-
ing an amino acid index using nucleotide sequences (e.g., metagenomic
reads, contigs, or assembled genomes) directly. To this end, MetaProFi
performs a six-frame translation of the nucleotide sequences, which
means it translates each nucleotide sequence in all six possible reading
frames (three frames in the forward direction and three frames in the re-
verse direction) to generate six different amino acid sequences. These six
translated sequences are then used as queries to search the amino acid
index. This approach is not expected to create false positive hits because,
on average, a stop codon appears approximately every 21 codons in the
five non-biological frames. The genetic code contains three stop codons
out of 64 possible codons, meaning the probability of encountering a
stop codon is 3/64. Therefore, the expected average distance between
stop codons is roughly 64/3 = 21.33 codons. Hence, not more than ten
consecutive k-mers can be matched in a spurious translation frame.

4.4.6 FALSE-POSITIVE RATE

Bloom filters belong to the class of probabilistic data structures with a
zero false-negative rate, and they are prone to false positives by design.
However, the false-positive rate of the Bloom filters can be controlled by
increasing the size of the Bloom filter and the number of hash functions
used. As discussed in Chapter 4.1.3.1 and in [302] one can also calculate
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the false positive rate of the query, which depends on 1) the number of
samples in a dataset, 2) the size of the k-mer, 3) the maximum number of
acceptable false discoveries per query, and 4) the shortest length of the
query sequence to be supported. Using these parameters, a false positive
rate per query can be calculated. For example, the exact formulation for
the false positive rate calculation is presented in Chapter 4.1.3.1 and in
[302].

4.4.7 COMPUTING SETUP

Performance evaluations were done on a Dell server with the follow-
ing configuration: AMD EPYC 7702 2.0 GHz CPU with 1.5 TB RAM,
Intel SSD DC P4610 3.2 TB (2.9 TiB), and CentOS 7 operating system.
MetaProFi was allocated 64 cores and 60 GiB RAM for all its experi-
ments, and the same was done for other tools wherever possible during
benchmarking. All input files were stored on a non-RAID NVMe NFS
file system, and outputs were stored on the Intel SSD DC P4610 3.2 TB
disk.

4.5 BENCHMARKING DATASETS AND PARAMETERS

4.5.1 UNIPROTKB DATASET

Two types of MetaProFi-1 indexes, one at the organism level and one
at the sequence level were constructed for all bacterial sequences in the
UniProtKB (Swiss-Prot and TrEMBL) database downloaded in July 2021,
which has a total size of 64 GiB. The entire Swiss-Prot and TrEMBL
datasets were downloaded from UniProt’s FTP site, and the accession
IDs for all the bacterial sequences were downloaded by performing a
search with "taxonomy:bacteria" on UniProt’s search interface.

Three parameters define the architecture of Bloom filters in MetaProFi:
m, h, and k, where m is Bloom filter size, h is the number of hash
functions to be applied on every k-mer, and k is the size of the k-mer.
In MetaProFi-1, for organism-level indexing, we used the following
parameters: m = 600, 000, 000; h = 2; k = 11. With these parameters, the
false positive rate was 0.47, while the false positive rate per query is
10−6 if the query sequence size is a minimum of 35 characters. We used



4.5 benchmarking datasets and parameters 133

the same Bloom filter parameters with one change, m = 600, 000, for
sequence-level indexing of the UniProtKB bacterial dataset. With these
parameters, the false positive rate was 0.0156, and the per query false
positive rate is 10−6 if the query sequence size is of a minimum of 34
characters.

4.5.2 TARA OCEANS DATASET

MetaProFi was mainly developed to fill the technology gap of amino acid
sequence indexing, but nucleotide sequence indexing support was also
added for benchmarking purposes. With this feature, we downloaded
4 TiB of compressed Tara Oceans dataset (study accession: PRJEB1787)
from the ENA archive consisting of 249 samples containing 495 FASTQ
files. For MetaProFi indexing of the Tara Oceans dataset, we used the
following Bloom filter parameters: m = 40, 000, 000, 000; h = 1; k = 31. With
these parameters, the false positive rate was 0.3782, and the false positive
rate per query is 10−6 if the query sequence size is of a minimum of
50 characters. Since we wanted to benchmark MetaProFi’s performance
with other tools that do not allow changing the number of hash functions,
we set MetaProFi to use only one.

We compared MetaProFi’s performance with kmtricks (v1.1.1), and
kmtricks was run using the same Bloom filter parameters as above and
without filtering k-mers that appear only once. Further, kmtricks were
run in the "hash:bft:bin" mode, which only performs the BF matrix con-
struction instead of the k-mer counting. For a fair comparison, we chose
other parameters (number of cores, k-mer length) to match those of
MetaProFi. For kmtricks in combination with HowDe-SBT, we used only
1% of bits to be considered from all Bloom filters during clustering and in-
dexing since the value recommended by the HowDe-SBT tutorial (https:
//github.com/medvedevgroup/HowDe-SBT/tree/master/tutorial) lead
to prohibitively long runtimes.

We randomly selected 1000 reads from the 495 FASTQ files of the
Tara Oceans dataset to evaluate query performance and used them for
querying.

https://github.com/medvedevgroup/HowDe-SBT/tree/master/tutorial
https://github.com/medvedevgroup/HowDe-SBT/tree/master/tutorial
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4.5.3 HUMAN RNA-SEQ DATASET

For benchmarking, we also used a human RNA-seq dataset consist-
ing of 2585 samples (2.7 TiB) that were also used in [297]. We down-
loaded this dataset from the SRA using the parallel-fastq-dump (https:
//github.com/rvalieris/parallel-fastq-dump) tool; accession num-
bers were obtained from [297].

We divided this experiment into two sets. First, a subset of 650 samples
(referred to as RNA-seq-mini hereafter) was randomly selected for build-
ing a small index to compare the performance of several tools: HowDe-
SBT (v2.00.0220191014), kmtricks (v1.1.1), COBS (v0.1.2), Squeakr (v1.0)
in combination with Mantis (v0.2.0), and MetaProFi. Second, all 2585
samples (referred to as RNA-seq hereafter) were indexed using both
COBS (v0.1.2) and MetaProFi.

We chose the Bloom filter parameters for the RNA-seq-mini dataset:
m = 2, 000, 000, 000; h = 1; k = 21. With these parameters, the false posi-
tive rate was 0.09, and the false positive rate per query was 10−5 with
a minimum query size of 31 characters. To level the comparison and
consistency between all tools, we first constructed compacted De Bruijn
Graphs for all 650 samples using BCALM2 (v2.2.3) [311] while removing
all k-mers that appear only once and then used this as input to all the
tools for the benchmark. We built Squeakr input files for Mantis and re-
moved all k-mers that appear only once. It must be noted that MetaProFi
does not require these preprocessing steps. While executing all tools,
we ensured that none of them repeated the removal of k-mers that ap-
peared only once step. Also, we ran kmtricks in the "hash:bft:bin" mode,
which will only perform the BF matrix construction instead of the k-mer
counting. For a fair comparison, we chose other parameters (number
of cores, k-mer length) to match those of MetaProFi. For HowDe-SBT
and kmtricks in combination with HowDe-SBT, we used only 1% of
bits to be considered from all Bloom filters during clustering and index-
ing since the value recommended by the HowDe-SBT tutorial (https:
//github.com/medvedevgroup/HowDe-SBT/tree/master/tutorial) lead
to prohibitively long runtimes.

For the RNA-seq dataset, we obtained the Bloom filter parameters from
[312]. Bloom filter parameters were the following: m = 2, 000, 000, 000; h

https://github.com/rvalieris/parallel-fastq-dump
https://github.com/rvalieris/parallel-fastq-dump
https://github.com/medvedevgroup/HowDe-SBT/tree/master/tutorial
https://github.com/medvedevgroup/HowDe-SBT/tree/master/tutorial
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= 1; k = 21. This dataset was used as it is without applying any k-mer
filtering.

We downloaded a FASTA file comprising 70, 866 transcripts to evaluate
query performance, following [312]. We then extracted the first 1000
transcripts using pyfastx to query all tools’ RNA-seq and RNA-seq-mini
indexes. RAM utilization was monitored through the Linux command-
line utility atop (via the command atop -mp).

4.6 COMPARATIVE BENCHMARKS OF METAPROFI AND
OTHER TOOLS

MetaProFi allows the indexing of large numbers of samples/datasets.
MetaProFi (Figures 4.10 and 4.11) combines the power of a probabilistic
data structure with data chunking and compression to store large Bloom
filters and to create indexes for fast querying. The key methodological
novelty of MetaProFi is its ability to index amino acid sequences and
enable the querying of amino acid sequence index using nucleotide
sequences. This allows disregarding synonymous mutations and fo-
cusing directly on sequence variants that impact the protein sequence
and, hence, may impact the corresponding protein functions. Moreover,
more efficient exact sequence searches are also possible for non-exactly
matching strains that contain only silent mutations. Additionally, since
protein sequence homology is detectable across longer evolutionary
distances, homologous sequences can be detected on the level where
nucleotide-level similarity fails.

To evaluate MetaProFi’s performance, we used UniProtKB, Tara Oceans,
human RNA-seq, and RNA-seq-mini datasets (Chapter 4.5) for the in-
dex construction. For UniProtKB, two indexes were created: one at the
organism level and the other at the sequence level. Since no other tool is
available to perform amino acid k-mer indexing, we added support for
nucleotide indexing to MetaProFi to enable comparison against other
tools, and we indexed the Tara Oceans and the RNA-seq datasets for
benchmarking purposes.
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4.6.1 UNIPROTKB DATASET INDEXING

For UniProtKB organism-level indexing, the dataset was constructed
by extracting individual bacterial sequences using their accession IDs
with criteria on the minimum length of the sequence (k = 11) and then
grouping them by their organism’s name (OS field value in the FASTA
header) to obtain 100, 384 uncompressed individual fasta files containing
a total of 46, 511, 863, 142 k-mers. MetaProFi-1 constructs the BF matrix
in 38.05 min and the index in 971 min using under 60 GiB of RAM and
135 GiB of disk space (Table 4.1). Storage size is directly proportional
to the size of the Bloom filter and the number of samples in the dataset:
if MetaProF-1 had used a regular Bloom filter, it would require 6.85
TiB (size of the Bloom filter times number of fasta files/samples, i.e.,
600000000 ∗ 100384 = 60230400000000 bits, which is equal to 6.85 TiB)
disk space for storing the uncompressed BF matrix. With MetaProFi’s
optimizations and techniques, we provide a 50-fold compression. We
can construct Bloom filter matrices for a large number of datasets or
use very large Bloom filters that have a low false-positive rate while still
storing them efficiently.

Time RAM CPU Disk
(min) (GiB) cores (GiB)

Organism-level

Bloom filter matrix 38.05 < 60 64 139

MetaProFi-1 index 971 < 60 64 135

Sequence-level

Bloom filter matrix 65.38 < 60 64 232

MetaProFi-1 index 1357 < 60 64 210

Table 4.1: MetaProFi-1 indexing results for UniProtKB bacterial dataset.

To demonstrate MetaProFi-1’s scalability, we used all the bacterial
sequences that were extracted from the UniProtKB dataset, 334, 984 se-
quences from Swiss-Prot, and 151, 450, 171 sequences from TrEMBL. We
monitored the construction of the FAQIndex (Chapter 4.4.4) for the
compressed UniProtKB bacterial input dataset of size 32 GiB during the
BF matrix build step. MetaProFi’s FAQIndexing tool took 17 minutes
to construct the FAQIndex and used 11 GiB of storage and a maximum
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of 1 GiB of RAM. Using LMDB as the underlying database reduces the
RAM consumption as we do not retain data in memory and write the
data for every sequence to the disk as soon as they are populated. Using
the FAQIndex of the UniProtKB bacterial input dataset (151, 785, 155 se-
quences), we created a sequence-level MetaProFi-1 index. The BF matrix
and index construction time are comparable with the organism-level
case. The disk requirements are twice as large, and RAM consumption is
comparable (Table 4.1). These results show that MetaProFi-1 is scalable
to hundreds of millions of samples.

4.6.2 RNA-SEQ-MINI DATASET INDEXING

We created a subset of 650 samples out of 2585 samples of the RNA-seq
dataset to benchmark MetaProFi’s performance with other tools such
as HowDe-SBT, kmtricks in combination with HowDe-SBT, COBS, and
Squeakr in combination with Mantis. We first built the compacted De
Bruijn Graphs for all 650 samples (while removing k-mers that were
present only once) and then used them as the input (Chapter 4.5.3).
From the results (Table 4.2), we can see that COBS has the best total
runtime, followed by MetaProFi, whereas the total disk consumption of
MetaProFi is the smallest.

Disk Disk Disk Time Time Total
Tool RAM CPU BF index total BF index time

(GiB) cores (GiB) (GiB) (GiB) (min) (min) (min)

HowDe-SBT 2.4 64 152 4.4 168.4 51.94 93.1 145.1
Kmtricks + 286.39 + 64 156 4.4 308 + 54.49 383.9 438.39
HowDe-SBT 4 12

MetaProFi-1 12 64 8.2 9.4 17.6 4.37 20.42 24.79
MetaProFi-2 12 64 5.94 5.36 11.3 4.05 14.84 18.89
COBS 12 64 − 51 54 − 8.59 8.59
Squeakr + 7.3 + 64 28 14 42 145.22 33.27 178.49
MANTIS 49

Table 4.2: RNA-seq-mini dataset indexing benchmark comparisons, BF: Bloom filter,
Disk total: total storage used for BF, index, and intermediate files, Time total: total time
for constructing BF and index, − = N/A

We also benchmarked the query performance of all these tools, for
which we downloaded a FASTA file from RefSeq [320] comprising 70, 866
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human transcripts from RefSeq, as reported in [312]. We extracted the
first 1000 transcripts and used them for querying. The results show
that HowDe-SBT is faster when performing exact querying (T = 100%),
whereas MetaProFi-1 is equally fast in both exact and approximate (T =
75%) searches and requires a very low amount of memory (Table 4.3).

Tool RAM CPU Time (s) Time (s)
(GiB) cores (T = 100%) (T = 75%)

HowDe-SBT 0.61 − 22 558

kmtricks + 0.64 20 2952 2957

HowDe-SBT
MetaProFi-1 1.9 20 29 33

MetaProFi-2 1.8 20 42 43

COBS 25.1 20 234 228

Squeakr + 14 − 37 −

MANTIS

Table 4.3: RNA-seq-mini query performance benchmark of 1000 transcripts.

4.6.3 RNA-SEQ DATASET INDEXING

We built a complete index with all the samples (2585 samples; k =
21; 6, 432, 932, 578, 661 k-mers) from the human RNA-seq experiments
obtained from the SRA using MetaProFi and COBS. MetaProFi takes a
bit longer than COBS but requires much less storage (Table 4.4). We did
not attempt to build the index with other tools as they were found to be
prohibitively slow for the small RNA-seq-mini dataset.

Disk Disk Disk Time Time Total
Tool RAM CPU BF index Total BF index Time

(GiB) cores (GiB) (GiB) (GiB) (min) (min) (min)

MetaProFi-1 59 64 295 333 628 1108 127 1235

MetaProFi-2 59 64 272 296 568 1301 49 1350

COBS 69.4 64 N/A 935 996 N/A 1000 1000

Table 4.4: RNA-seq dataset indexing benchmark comparisons.

We then used this index to query 1000 transcripts (Table 4.5).
MetaProFi was 6-7 times faster than COBS and required much less
memory.
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Tool RAM CPU Time (s) Time (s)
(GiB) cores (T = 100%) (T = 75%)

MetaProFi-1 3.4 64 43 48

MetaProFi-2 4.2 64 54 61

COBS 92.5 64 290 290

Table 4.5: RNA-seq query performance benchmark of 1000 transcripts.

4.6.4 TARA OCEANS DATASET INDEXING

To compare MetaProFi with the state-of-the-art tools, we used kmtricks,
a k-mer counting tool that allows building Bloom filters that can be
utilized for constructing a k-mer index using a variant of HowDe-SBT
implemented in its package. We applied both tools to the Tara Oceans
dataset, which contains 3, 431, 551, 187, 218 k-mers (k = 31).

During Bloom filter construction, kmtricks was 2-3 times faster than
MetaProFi while consuming 2-3 times more storage than MetaProFi
(Table 4.6). After 120 hrs, the kmtricks + HowDe-SBT index construction
(1% of bits were considered from each filter) was terminated. We report
only the numbers we observed until the termination without extrapola-
tion (we assume that the computation might have taken several more
days as only less than half of the Bloom filters were indexed at the time
of termination). On the other hand, we can see that MetaProFi requires
very little time to build an index. This shows that MetaProFi can index
datasets containing trillions of k-mers in a reasonable amount of time
yet only requiring low amounts of memory and storage.

Disk Disk Disk Time Time Total
Tool RAM CPU BF index Total BF index Time

(GiB) cores (GiB) (GiB) (GiB) (min) (min) (min)

MetaProFi-1 68 64 643 750 1393 2642 279 2921

MetaProFi-2 60 64 622 626 1248 2709 101 2810

kmtricks + 47 64 1228.8 > 390∗ 2344 + 865 > 7217∗ > 8082∗

HowDe-SBT 390∗

Table 4.6: Tara Oceans dataset indexing benchmark comparisons of MetaProFi and
kmtricks; BF: Bloom filter, Disk total is the total storage used for BF, index, and
intermediate files, Time total: total time used to construct BF and index, *: terminated
after 120 hrs, data reported as it is at the time of termination.
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To demonstrate MetaProFi’s query performance, we randomly selected
1000 reads from the 495 FASTQ files of the Tara Oceans dataset used
for constructing the index. These 1000 reads were queried against the
Tara Oceans MetaProFi-1 and MetaProFi-2 index using exact search
(T = 100%) and approximate search (T = 75%). The query run times
were 164 seconds and 176 seconds for the exact search (T = 100%) and
166 seconds and 179 seconds for the approximate search (T = 75%).
We observed a peak memory usage of 14.3 GiB for MetaProFi-1 and
7.1 GiB for MetaProFi-2. We could not compare the query results with
the kmtricks + HowDe-SBT setup, as the index construction had to be
terminated after 120 hrs.

Our benchmarking results show that MetaProFi reduces disk usage
even for very large Bloom filters compared to state-of-the-art tools,
constructs an index in little time, and performs better during querying.

4.7 DISCUSSION

MetaProFi, for the first time, presents a possibility to index protein
sequences directly, which makes calling variants in coding sequences
a much easier task. In addition, it features a mode of usage centered
around nucleotide sequences, which makes it possible to compare it to
other tools in the field. In these comparisons, both versions of MetaProFi
demonstrated state-of-the-art performance with the best runtime/mem-
ory/storage ratio. MetaProFi was able to build k-mer indexes rapidly
for multiple datasets of different sizes, demonstrating it can scale in any
direction.

Nevertheless, the most crucial feature of MetaProFi, which makes it
stand out among other tools, is that it can build indexes for amino acid
sequences and enables querying of an amino acid index using nucleotide
sequences. This approach was intended to store and query sequence
data from metagenome samples, primarily bacterial metagenomes, as
efficiently as possible. Storing protein data makes the search more flexi-
ble and offers many advantages, while the only disadvantage is that the
information in non-coding regions is lost. In this scenario, we consider
this a little loss since bacterial genomes contain comparatively little
non-coding sequence, and many essential markers are detected at the
protein level, e.g., markers of antibiotic resistance. Potential advantages
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include, for example, the possibility of conducting swift and efficient
searches with the k-mer presence threshold T = 100% for closely related
but not identical DNA sequences that contain no missense mutations at
the protein level. On the other hand, remote homologs can be detected
in cases when the sequence similarity on the DNA level drops but is
still detectable at the protein level. While other state-of-the-art tools do
not typically offer the functionality to store amino acid-based indexes,
the code change to allow it would not be a large one per se, although
it would require numerous adjustments. However, the option to query
an amino acid-based index with a nucleotide query is non-trivial and
unique to MetaProFi.

Finally, in this work, we have developed a first-of-its-kind amino acid
k-mer indexing tool with added support for indexing nucleotide se-
quences that efficiently builds indexes from tens of samples to hundreds
of millions of samples with reduced memory, storage, and runtime com-
pared to its predecessors. MetaProFi also addresses scaling problems in
different contexts. Various optimizations such as shared memory utiliza-
tion, memory-mapped files, new compression techniques, algorithms,
and indexing methods were explored and implemented in MetaProFi.
Through our proof-of-concept index construction for multiple datasets,
we demonstrated that we could grow our index horizontally (samples) or
vertically (Bloom filter size). Yet, it requires very little storage and mem-
ory without compromising index building and querying performance.
MetaProFi can be further developed to support distributed computing in-
frastructure in addition to the current single system-specific deployment
setup.





5
P E R S P E C T I V E

5.1 CONCLUSIONS

Drug resistance is a major problem, significantly affecting the efficacy
of current therapies and often leading to relapse and treatment failure.
The emergence of the acquired secondary drug resistance mutations,
are a critical contributing factor in this challenge. Mutations can affect
protein conformation and drug-binding sites, leading to therapy failure
and relapse in diseases like cancer or infectious diseases. These muta-
tions reduce drug efficacy by affecting essential protein functions such
as ligand binding, conformational stability, and allosteric regulation,
ultimately contributing to resistance against first- and second-line drugs.
Understanding the molecular basis of drug resistance requires a multi-
dimensional approach. The work performed in this thesis addresses the
problem by employing two complementary strategies.
First, MD simulations study how specific mutations impact protein dy-
namics, structure, and conformational changes crucial for activation and
ligand binding at the atomistic level. These simulations provide insights
into how mutations contribute to drug resistance. Second, MetaProFi,
a novel tool utilizing an ultra-fast chunked Bloom filter, efficiently ad-
dresses the significant computational challenges of analyzing vast se-
quencing datasets. MetaProFi facilitates the accurate identification of
functionally relevant genetic variants by enabling comprehensive in-
dexing and querying of both protein and nucleotide sequences. These
approaches allow for a thorough analysis of drug resistance mechanisms,
from identifying genetic variants to studying their impact on protein
structure and function, eventually supporting the development of more
effective therapeutics.
In Chapter 3, we employed a unified MD simulations methodology
to study and understand the impact of mutations on drug resistance
mechanisms. In the first case study, we focused on the KIT receptor
tyrosine kinase, studying the impact of phosphorylation of Y823 on the
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KIT protein 3D structure. Our simulations showed that phosphorylation
at Y823 stabilizes the active conformation of KIT. This stabilization is
acquired through the formation of H-bonds and enhanced interactions
within the protein’s activation loop, thereby shifting the dynamic equi-
librium towards the active state, which is less responsive to inhibition
by drugs targeting the inactive state of the protein. In comparison, the
Y823D mutation, which introduces a negative charge at the same posi-
tion, mimics the effects of phosphorylation by destabilizing the inactive
conformation and promoting the active state. Our comparative analysis
reveals that both the Y823D mutation and phosphorylation at Y823 pro-
mote the active conformation of KIT but through different mechanisms.
Given the similarity of this mechanism to the mechanistic effects of
phosphorylation and mutations at position Y393 in Abl kinase [224],
where both destabilize the inactive conformation, our results suggest
a potential analogous resistance mechanism in homologous kinases. In
the second case study, we applied the same methodology to the NS3-
Q80K variant in the NS3-4A protease of the hepatitis C virus. The Q80K
mutation is associated with resistance to direct-acting antiviral agents
and is prevalent in certain viral strains. Our simulations showed that the
Q80K mutation destabilizes the protease structure, particularly in the
N-terminal subdomain, reducing protein stability. This destabilization
effect is compensated by epistatic amino acid substitutions at residues
91 and 174, which enhances the stability of the protein.
In Chapter 4, we present MetaProFi, a novel tool developed to address
the computational challenges associated with analyzing vast sequencing
datasets. Unlike traditional tools like BLAST, which struggle with scaling
issues, MetaProFi offers a significant advancement in addressing these
challenges. It introduces a novel approach by combining Bloom filters
with advanced optimizations, including shared memory systems, effi-
cient data chunking, and compression algorithms. MetaProFi uniquely
allows for indexing nucleotide and amino acid sequences, enabling
nucleotide queries against amino acid indexes. This feature is crucial
for in-depth sequence analysis and identifying mutations. Better con-
servation of protein sequences across evolutionary distances makes
MetaProFi particularly robust in detecting non-identical but closely re-
lated sequences and homologs. For example, MetaProFi can index com-
prehensive databases like UniProtKB, allowing direct querying of this
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protein index using nucleotide reads or sequences from metagenomic
or microbiome experiments. This alignment-free approach accelerates
the identification of functionally relevant genetic variants. MetaProFi’s
capability to query non-perfectly identical sequences further adds to its
flexibility and state-of-the-art performance, handling large-scale datasets
with improved efficiency while maintaining an excellent balance between
the usage of compute resources. This makes MetaProFi an important
tool not only for handling large-scale datasets efficiently but also for
identifying and characterizing mutations, thereby addressing complex
biological questions.

5.2 OUTLOOK

MetaProFi can be extended to include the k-mer counts during index-
ing, which is widely used in genomic sequence analysis to identify
patterns and detect genomic similarities and differences across datasets.
It would also facilitate functional annotation and sequencing error cor-
rection. This feature would enhance MetaProFi’s capabilities for com-
parative genomics and metagenomic analysis. Further, the FAQIndex
from MetaProFi can be extracted as a standalone package to offer faster
indexing for FASTA/FASTQ files with minimal storage requirements. It
supports concurrent access, thereby optimizing data retrieval and pro-
cessing speed. This feature would greatly benefit applications needing
rapid sequence data access and processing, especially in resource-limited
environments.

5.2.1 METAPROFI-STRUCTMAN INTEGRATION

StructMAn [314] is a tool developed for the structural annotation of non-
synonymous single nucleotide variants (nsSNVs), which are mutations
that alter amino acids in proteins that often lead to diseases. StructMAn
provides insights into the functional impact of these genetic variants by
incorporating the 3D structural context of proteins. The tool analyzes the
spatial location of the amino acid residues affected by nsSNVs within
the protein’s 3D structure and takes into account its surrounding struc-
tural environment, including interactions with other proteins, nucleic
acids, and small molecules. It leverages all experimentally available 3D
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structures of query proteins from the PDB and their homologous pro-
teins. Additionally, StructMAn can also utilize the models produced by
AlphaFold. It calculates an interaction score that evaluates the potential
impact of a mutation on protein structure and its interacting partners
and is based on sequence identity, alignment length, and proximity to its
interacting molecules. Further, StructMAn can also perform Gene Ontol-
ogy (GO) term and pathway enrichment analyses on proteins containing
mutations, providing insights into the biological processes, functions,
and cellular components associated with these changes. This is useful
in clinical genetics for differentiating benign and pathogenic mutations
and identifying mutations linked to drug resistance.
MetaProFi, with its ability to efficiently index large-scale datasets along
with its fast search features, offers significant advantages when inte-
grated with StructMAn. By leveraging MetaProFi’s capability to query
NGS reads, contigs, or assembled genomes against an amino acid index,
we can identify and analyze genetic variants from extensive metage-
nomics and microbiome datasets, for example. When nucleotide se-
quences are used as queries, MetaProFi identifies and extracts the open
reading frames (ORFs), translates the ORFs to coding sequences, and
then queries the amino acid index and extracts variants according to
the Human Genome Variation Society (HGVS) nomenclature [321, 322],
which provides a standardized format for describing DNA, RNA, and
protein sequence variants.
The integration with StructMAn can be facilitated through the API al-
ready developed during the work presented in this thesis specifically for
this purpose, allowing for seamless structural annotation and functional
impact analysis of the identified variants. To further this project, steps
have been taken by containerizing StructMAn within the d-StructMAn
[323] project. This creates a scalable and efficient environment that can
easily extend to include MetaProFi in the same container. Container-
ization ensures consistency across different computing environments,
simplifies deployment, and enhances reproducibility. Through this inte-
gration, MetaProFi provides a powerful tool for indexing and querying
genetic data and extends its functionality by leveraging StructMAn’s
capabilities to offer comprehensive insights into the structural and func-
tional implications of genetic variants. This combined approach is valu-
able for distinguishing between benign and pathogenic mutations and
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identifying mutations associated with drug resistance, thereby support-
ing advanced clinical genetics and personalized medicine research.

5.2.2 METAPROFI-BEACON INTEGRATION

As an extension, MetaProFi can be integrated with the Global Alliance
for Genomics and Health (GA4GH) [324] Beacon project [325]. GA4GH
is an international collaborative effort focused on creating standards
for the responsible and secure sharing of genomic and clinical data
that is essential for advancing personalized medicine. One of the key
initiatives of GA4GH is the Beacon project, a federated system developed
to enhance the findability, accessibility, and sharing of genomic data
across different institutions while maintaining privacy. Through the
Beacon project, we can query the federated and distributed genomic
databases to determine the presence of specific genetic variants without
centralizing the data. This approach ensures that the data remains with
the original stewards, thereby promoting data security and privacy.
Beacon’s latest version [326] introduces advanced features, including
metadata-rich queries and cohort analysis, which allows data to be
filtered by various criteria, such as age, gender, and clinical annotations.
Integrating MetaProFi with the Beacon project can significantly enhance
personalized medicine’s data discovery and analysis capabilities. We can
develop an API allowing MetaProFi to seamlessly query Beacons for
detailed information, including comprehensive clinical annotations and
phenotypic data. MetaProFi can offer in-depth insights into the clinical
and genetic implications of the variants identified by leveraging the
features offered by the Beacon project.

5.2.3 METAPROFI AS A WEB SERVICE

All these tools and integrations can be developed into a web service and
made publicly accessible. This service can offer prebuilt indexes of a
large number of datasets, enabling users to query these indices efficiently
through the web server. By using as a web-based platform, users can
utilize MetaProFi’s fast indexing and efficient sequence search capa-
bilities, making exploring and analyzing large-scale genomic datasets
easier. Integrating MetaProFi with StructMAn and the GA4GH Beacon
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project allows for a comprehensive approach to genetic data analysis,
encompassing variant identification, structural annotation, and clinical
interpretation. This platform would support understanding the genetic
basis of drug resistance, classifying variants as benign or pathogenic, and
examining their structural and functional impacts. These functionalities
can be further expanded by integrating them with the MD simulations
methodology employed as a part of this thesis to study the effect of the
identified variants on protein dynamics, structure, and conformational
changes crucial for activation and ligand binding at the atomistic level.
This platform would offer a complete pipeline, covering everything from
sequence analysis and variant identification to structural annotation
and classification of variants. It will also facilitate the extraction of clin-
ical outcomes and the study of protein structural and conformational
changes. Such a tool will be invaluable for providing detailed insights
into the molecular mechanisms underlying genetic mutations, enhancing
our understanding of their implications for personalized medicine and
targeted therapies.

5.2.4 METAPROFI AS A GALAXY TOOL

MetaProFi can be integrated into the Galaxy platform [327] to offer sig-
nificant benefits for analyzing large-scale sequence datasets. Galaxy is an
open-source platform that enables scalable and reproducible data analy-
sis across domains. Galaxy provides a robust, user-friendly interface for
developing workflows and supports integration with numerous tools
and datasets. Integrating MetaProFi involves creating a Bioconda [328]
recipe and an XML wrapper for its command-line options, which can
be submitted to Galaxy ToolShed [329]. This integration allows Galaxy
servers worldwide to install MetaProFi, which could be an efficient alter-
native to resource-intensive tools like BLAST. Since public Galaxy servers
provide free, shared computing resources, incorporating MetaProFi can
significantly save computational resources and improve efficiency for
hundreds of thousands of users. MetaProFi’s unique indexing and query-
ing capabilities, combined with Galaxy’s workflow management and
visualization features, would be a powerful tool for analyzing large-
scale genomic datasets and performing various downstream analyses.
This integration would greatly benefit researchers working with metage-
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nomic and microbiome datasets and enable them to efficiently identify
genetic variants and study their structural and functional implications
(in combination with StructMAn).
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