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Zusammenfassung

Das Testen von Software ist einer der wichtigsten Teile des Entwicklungsprozesses. Ohne Tests
würden Programme häu�g abstürzen oder Sicherheitslücken aufweisen. Da Testen zeitaufwändig
und komplex ist, wurden Techniken entwickelt, um diesen Prozess zu vereinfachen. Zum Beispiel
erstellen Fuzzer weitestgehend zufällige Eingaben und testen, wie ein Programm auf diese reagiert.

Insbesondere Software, die Parser zur Eingabeverarbeitung nutzt, stufen wir als interessant ein,
aber sie ist auch schwer automatisiert mit Allzwecktechniken zu testen – sie können die syntaktisch
korrekten Eingaben zum Testen der Programmlogik nicht generieren. Deshalb präsentieren wir
einen neuen Ansatz speziell zur Analyse von So�ware mit rekursiv absteigenden Parsern.

Eine zentrale Eigenschaft von Parsern sind die iterativen Vergleiche von Eingabeteilen gegen die
Terminale einer entsprechenden kontextfreien Grammatik. Wir zeigen, wie man die Vergleiche
aus einer Programmausführung mit anderen, parserspezi�schen Eigenschaften kombinieren kann,
um syntaktisch valide und diverse Eingaben zu inferieren. In unserer Evaluation kombinieren wir
unsere Techniken mit dem Fuzzer AFL. Unsere generierten Eingaben enthalten im Durchschnitt
77,7 % aller möglichen Lexeme mit mehr als drei Schriftzeichen. Wir erhalten eine durchschnittlich
um 2,9 und im besten Fall bis zu 17 Prozentpunkte höhere Zweigüberdeckung im Vergleich zu einem
Alleinlauf von AFL.
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Abstract

Testing software is one of the most important parts of the development process. Without tests,
programs would often crash or contain security vulnerabilities. Since testing is time-consuming
and complex, techniques were developed to simplify this process. For instance, fuzzers create mostly
random inputs and test how a program reacts to those.

Especially software that uses parser for input processing is classi�ed as interesting by us, but
it is also hard to automatically test it with general purpose techniques—they cannot generate the
syntactically correct inputs to test the program logic. Thus, we present a new approach speci�cally
for analyzing so�ware with recursive descent parsers.

A central feature of parsers are the iterative comparisons of parts of the input against terminals
of a respective context-free grammar. We show, how those comparisons from a program execution
can be combined with other, parser-speci�c features to infer syntactically valid and diverse inputs.
In our evaluation we combine our techniques with the fuzzer AFL. Our generated inputs contain on
average 77.7% of all possible lexemes with more than three characters. We obtain on average a 2.9
and in best case up to 17 percentage points higher branch coverage in comparison to running AFL
alone.
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1 | Introduction

In a perfect world people would have great ideas that can be digitally solved; those ideas
would then be realized into digital products to solve the given problems; these products are
delivered to the customers; and those customers use those tools to increase e�ciency, enable
more precise processes, or just use them for fun in their leisure time. Unfortunately, many
things can go wrong along this path, one of the most prevalent ones are bugs. Whenever code
deviates from the original idea—from the speci�cation—it might end up in unde�ned states,
which in turn is a problem for the end user. Starting with small bugs that just make the GUI
look bad or the pretty printing of an output might not work, up to more serious bugs that let
the whole program crash, possibly even leaving data in an unde�ned state. While in some
cases a bug is just an annoying disturbance in the program execution which does not cause any
harm (a button is harder to click because it is presented slightly shifted on the GUI), in other
cases it might happen that money or valuable goods are lost (the payment process of an online
shop crashes or the load controller of a truck randomly unloads the load bed), and in the worst
case even lives are threatened (an X-ray machine may use a too high dosage or an important
controller in a car or plane crashes, causing the vehicle to get into an unstable state).

Obviously, developers and companies do not deliver code or �nal products untested. In most
cases there is at least some process involved to assure the quality of a product, depending on
the use case with more or less regulations and with more or less depth of the testing process.
Testing needs time and if one person writes a small tool which is used by some people the
motivation to have it tested well is low. When it comes to more critical systems or commercial
importance the quality of the product needs to be assured, be it for customer satisfaction, legal
reasons or just to avoid being sued. While this costs more resources during development, it also
reduces the risk of bugs emerging in production which may cost magnitudes more compared to
those bugs found before the delivery of a product.

There are many more reasons why testing should be done or why things might not be tested.
In all those cases, be it a small one person project realising a special purpose tool or a large
company with a critical system, it needs to be decided how many resources are used to cover
the di�erent scenarios the product needs to handle. And not only this, even if resources are
given to the testing part of development, many decisions have to be made, e.g. which tools to
use, which test inputs to create, and which scenarios and features should be covered.

Manual Tests One option is to perform or write tests by hand, for example at a unit or system
level—or any other level one can come up with. This is time consuming though and one
needs to come up with all the di�erent scenarios that might arise in the real world to
actually cover the functionality of the subject under test properly.

1



2 1 Introduction

Static Tools Another option is to cover all possible scenarios at once using a static code
analysis tool. In theory, a static technique would be able to analyze the code, mark all
code locations or paths that are incorrect and the developer can �x those. In practice
though, those tools are not yet ready to ful�ll this requirement and may never be able to
do so in all generality.

Dynamic Tools If one wants to see how the code performs when actually executed on one
(or more) machines without the need to write tests manually, many tools exist that aid
this process and help with testing the subject under test e�ciently. There are options like
model based testing approaches, which not only take the software as a target, but also
use some input or program model [60, 63] as a baseline for generating tests. Such semi-
automated approaches pro�t from the fact that on the one hand tests can be generated very
targeted to the subject under test (the given model de�nes the quality of the generated
tests), but do not require the developer to focus on each and every feature on its own
in depth. And even if one does not want to write any model and favors a push button
approach, there are often options to do exactly that. For example, the famous “american
fuzzy lop” fuzzer AFL [159] just needs a program to be compiled with some injected
instructions to monitor the program execution (it already comes with a compiler for C
performing this task). Once the subject under test is compiled, AFL just needs to know
how to start the subject and how inputs are given to the program. Then it is able to
explore the input space and in turn covers the di�erent features and parts of the code
automatically.

Special Case: Fuzzing Fuzzing is a special case of dynamic testing, having randomness as one
of the most important factors while exploring the input space. Certainly, every fuzzer is a
dynamic testing tool, but not every dynamic testing tool is a fuzzer—still, there is no clear
line to draw regarding what can be counted as fuzzing and what not. Fuzzing started with
the idea in mind that if a program accepts an input in any form it must correctly handle
every input given to it. This means for valid inputs the subject should actually produce an
output and for all other inputs it should gracefully reject the input—speci�cally without
crashing. Now, one could write many of those inputs by hand, or design an input model
that de�nes how the input should look like. But the original idea is much simpler and
more automated: let a program generate a random input stream and see how the subject
under test reacts to this [11]. And even up until today this is a valid idea to test programs
and �nd bugs [110].

While there are many options to improve software quality (much more than listed above),
fuzzing certainly is a well known and used technique to test software products during develop-
ment, before releases, and even while the code is already in production [1]. Therefore, this
thesis concentrates on how to support fuzzers—more concretely how putting generic
domain knowledge into the fuzzing pipeline can improve the overall performance of
fuzzing. Still, we cannot evaluate all the di�erent software domains out there and see how we
can apply domain knowledge, hence we pick the domain of input parsing programs and
evaluate how, if we already know the subject under test parses inputs with a recursive



1 Introduction 3

descent parser, we can design a tool that infers more speci�c knowledge about the subject. As
we will later see, our approach is not speci�cally or solely designed to improve fuzzing. It is
rather an analysis technique which can be used in a fuzzing pipeline and we will evaluate in
such an environment, but other techniques like grammar learning [54, 65, 81] could also pro�t
from the results our approach produces.

Even though fuzzing is known for decades and a well established method for automatic
program testing it still has its limitations. One of the most prominent ones are so called fuzzing
roadblocks, e.g. code locations which require a very speci�c and possibly complex input. Thus,
modern generic fuzzers are not completely random anymore. For example, AFL monitors the
program execution and extracts information about paths taken for each input executed. Another
typical approach is to give one or more complex inputs as samples to the fuzzer and let it
reassemble those samples in di�erent ways, making it possible to guide the fuzzer to such
otherwise blocked locations and then let it explore the close proximity in the code. Finally, it is
also possible to monitor the code for such locations, or in other words: if the code checks for
“magic values” like concrete numbers or �xed strings it might be interesting to extract those
values and apply them to future generated inputs. It is highly likely that such values are needed
at some point in the input to satisfy respective conditions using such a value.

Let us have a look at the code in Figure 1.1. In the code we see two functions, one for lexing
the input (Line 2) and one for parsing (Line 12). We already talked about “magic values”, and
especially in the domain of parsers such magic values appear very often—every keyword of
the underlying language resembles a magic value. In our example we can see such a magic
value comparison in Line 5—here we try to lex the input by matching a portion of the input
with the string "sin(". And not only this, for parsers it is also important in which order the
magic values appear in the input. Just as with a natural, spoken language one cannot randomly
combine di�erent valid words to a valid sentence (or input when talking about programs). In
our example, the token generated by our lexer (Line 7) is parsed in Line 14. Now, the parser
requires the next tokens to build a valid expression (Line 16). Thus the next token must be the
start of a valid expression, it cannot be an arbitrary valid token. Only if valid words/tokens are
correctly combined an input is syntactically valid.

Thus, we want to answer the following question in this thesis: how can we extract in-
formation from the subject under test to fuzz parsers e�ciently and without subject
speci�c knowledge? While producing some input model and letting the fuzzer generate inputs
based on this is an option, it has its drawbacks—mainly the manual e�ort needed to create and
maintain such a model. Therefore, we decided to �nd a way to give the fuzzer generic domain
knowledge about parsers, which can then be used to infer subject speci�c information that can be
used to guide a fuzzer through the code. We use domain knowledge like the separation of lexer
and parser (as we can see in Line 2 and Line 12) in the code and the requirement of direct input
to magic value comparisons (as we can see in Line 5) to build a lexer. We present an approach
to analyze parsers in such a way that we can extract information out-of-thin-air , which can be
used by subsequent techniques like fuzzing: a push-button analyzer for recursive descent parsers.
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1 //...
2 void next_token_non_whitespace() {
3 //...
4 else if (pos + 4 < input_size &&
5 !strncmp("sin(", input + pos, 4)) {
6 pos += 4;
7 token = SIN;
8 }
9 //...

10 }
11 //...
12 int atom() {
13 printf("ATOM: Parsing %c at pos %d\n", input[pos], pos);
14 if (token == PAREN_L || token == SIN || token == COS) {
15 next_token();
16 if (expr()) {
17 //...
18 }
19 }
20 return integer();
21 }
22 //...

Figure 1.1: A short snippet from an arithmetic parser with lexer, which is fully presented in
Appendix A-II.

1.1 Objectives

We already talked about push button approaches for fuzzing, and in general they already
work well—maybe even surprisingly well considering the simple approach of delivering (mostly)
random inputs to the subject under test. Still, when it comes to subjects with stricter input
formats and resulting fuzzing roadblocks, such dominantly random tools are in a disadvantage
as they need to guess correct input options and need many trials to �nd valid input parts. Since
such push button fuzzers are designed to produce inputs for any kind of software and any
domain they are applied to, they need to be as generic as possible. Hence, even if the subject
under test only accepts a small set of ASCII characters in its inputs (similar to the comparisons
in our example lexer like in Line 5 in Figure 1.1), a generic fuzzer would need to consider any
byte sequence it can possibly produce and �nd out which byte sequences cover new portions of
the code and which sequences improve the overall path to the fuzzing goal.

Analyzing Recursive Descent Parsers Arguably, an interesting problem is typically not an
easy problem. If it was easy, it would have been already solved and made public or worse: solved
and determined as easy enough to not even bother with sharing the solution. Our goal is to �nd
a way to target input parsing programs such that new inputs can be generated more precisely
than using random guessing. Recursive descent parsers are on the one hand su�ciently complex,
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widely spread, and well used to be considered interesting and on the other hand have enough
common features that are typically used and can be leveraged to create a domain speci�c tool
for extracting information about the subject under test, which can be fed into a subsequent
tool like a fuzzer to target the programs in this domain more speci�cally. Also, we want to stay
close to the simplicity of a generic push button tool like AFL, which requires nothing more than
a special compilation pass and information on how to give inputs to the subject under test—it
can be run on any subject without much additional information or e�ort. Thus, we have to
�nd out what the di�erent subjects in the domain of recursive descent parsers have in common
that is on the one hand a problem for generic fuzzers but on the other hand can be described
generically for the whole domain for our approach. Or in other words: what commonalities
do the di�erent subjects of the domain have that we can leverage for more e�cient
analysis of said subjects to generate inputs that are syntactically valid?

Domain Vs. Subject Specific One might think that a domain speci�c fuzzer is nothing
more than a specialized tool for a few subjects, for example one could write a fuzzer for the
domain of C compilers. But, this is not what we have in mind when we talk about a domain
in this thesis—we would rather consider such an approach as some form of subject speci�c,
even though there is more than one implementation of a C compiler [137, 140]. It is arguably a
fruitful idea to also fuzz C compilers very speci�cally with such a fuzzer, because this topic and
the implementation is complex enough. Still, in this case when we speak about a domain, it
would contain all compilers, not only C compilers. For our idea to work, a domain should have
one or more overarching features that are common among all implementations and should, in
best case, be unavoidable.

For example, a subject speci�c fuzzer for our example arithmetic parser code snippet in
Figure 1.1 would speci�cally implement the generation of "sin(" as part of an input (because
this is a valid portion of an input as we can see in the lexing part in Line 5). This is then followed
by an expression, as speci�ed in our example in Line 16. While this is certainly correct for
our example, it would not be correct for subjects that have other input languages. A domain
speci�c tool on the other hand would only make use of common features. In our example a
tool that is designed to work on recursive descent parsers could assume that the subject has at
least a parsing phase (Line 12) and likely also a lexing phase (Line 2), that the code for the two
phases lives in di�erent regions, and that portions of the input are directly compared during
parsing/lexing (Line 5).

We decided for the domain of recursive descent parsers, hence we plan to solve the
following three main objectives for this thesis:

Objective 1: Diverse Syntactically Valid Inputs One of the main problems when targeting
parsers in fuzzing are the values used in comparisons as they are constant characters or
strings. Those are needed in the parser to test if a certain part of the input is actually valid.
Such values are hard to randomly guess, especially for keywords, i.e. longer constant
strings. Keywords are often atomically checked while parsing, hence a fuzzer can only
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advance once the keyword is fully guessed and might not get any feedback about partially
correct results. Secondly, even if keywords are known, a parser typically requires them
to be in a speci�c order. Hence, even if portions of the input are valid, the input will
get rejected if at least one keyword is not at the correct position. Thus, with current
techniques, a lot of resources go into guessing keywords and their ordering. Our approach
to solve this objective is discussed in Chapter 3.

Objective 2: Tokenizer Analysis Beyond the above mentioned comparisons, more complex
input processors do not only rely on direct input validation, but use a two stage veri�cation
process: lexing and parsing. This yields a second indirection during input processing:
�rst the portions of an input are checked for generic validity (“is the input portion a valid
keyword” ), then they are checked for correct ordering. Without a lexer, if a portion of
an input was compared against some constant, chances were high that this constant is a
valid keyword and valid at this position. With the presence of a lexer, this constant is still
likely valid, but we have no information about the ordering anymore (the input character
comparison happens in the lexer, the parser typically never processes input characters).
The validation of keyword correctness and ordering correctness is split, which yields
additional execution paths that end up in parsing errors, increasing the overall search
space while trying to generate inputs that go beyond the parser. Our approach to solve
this objective is discussed in Chapter 4.

Objective 3: Syntactic Correctness And Semantic Variety Once the issues of keyword
and ordering detection are solved we are able to generate inputs that go beyond the
parsing stage. Typically, once an input passes the parser, a program processes the in-
formation this input represents. Thus, it is not only important to generate a few inputs
that pass the input validation, we also need a wide variety of such inputs—syntactically
but also semantically. Semantic variety can be achieved by altering generic syntactic
elements (often numbers, names, or strings allow a wide range of di�erent values) or by
recombining valid syntactic blocks (often consisting of more than one syntactic element).
Current techniques are already good at doing those two things, but they require some
inputs with syntactic variety to alter syntactic elements and recombine syntactic blocks.
Our approach to solve this objective is discussed in Chapter 5.

1.2 Contributions

This section describes the core contributions of this thesis to achieve our goal: understand
which inputs a parsing program wants by using nothing more than source code instrumentation
and sample executions. We make the following contributions speci�c to the domain of input
parsers (in detail to recursive descent parsers) to solve the objectives outlined in Section 1.1:

Contribution 1: Diverse Syntactically Valid Inputs Recursive descent parsers are bound
to compare each and every syntactic element of an input against its known keywords;
using magic values in the parser comparisons. We make use of this requirement by
iteratively adding the magic values observed during subject under test execution (by
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instrumenting the program) to already generated inputs (using heuristics to �nd the
most promising substitutions and additions), �nally generating syntactically valid inputs.
With this technique we want to solve the problem of guessing such keywords, which
greatly reduces the search space and thus makes it possible to generate a wide variety
of syntactically valid inputs speci�cally for the subject under test—all of this without
subject speci�c knowledge.

Contribution 2: Tokenizer Analysis Tokenizers generally follow certain patterns while gen-
erating token values from syntactic elements. We can detect those patterns during
program executions and extend our analysis to also include information �ow from the
tokenizer to the actual parser. This solves two issues at once: knowledge about the
space of keywords and insight into the ordering of keywords. We collect most
keywords known to the subject by observing the comparisons made in the tokenizer. This
gives us the syntactic elements every input is built of—hence the set of keywords. Second,
by tracking information �owing from the input over the tokenizer into the parser, we
avoid guessing the ordering of the valid input portions, but have a direct link between
input characters and parser comparisons—reducing our problem to Objective 1.

Contribution 3: Syntactic Correctness And Semantic Variety The needed analysis of the
subject under test for our contributions slows down the execution speed of the program,
hence we combine it with a lightweight analysis and instrumentation. First, we infer
a set of keywords and input samples, then we run a more lightweight tool using this
information. This solves the last objective mentioned: syntactically correct inputs with
a high semantic diversity. The sample inputs serve as blueprints for recombinations,
the set of valid keywords are the building blocks for di�erent mutations, increasing the
chance of generating syntactically valid inputs even with lightweight but fast approaches.

We developed two tools: pFuzzer, which only contains the ideas of Contribution 1 and
lFuzzer, which contains all contributions. In our evaluation in Chapter 6 we evaluate those
tools, �nding out how they compare to one of the state-of-the-art push-button fuzzers: AFL
[160]. With lFuzzer (which incorporates AFL) the resulting inputs contain on average almost
78% of all possible lexemes with more than three characters, showing that our approach is able
to generate syntactically diverse inputs.1 With those inputs we achieve an average branch
coverage increase of 2.9 percentage points with up to 17 percentage points in the best case
compared to running AFL alone. This shows that the combination of a domain speci�c subject
analysis and state-of-the-art fuzzing is able to improve over the state-of-the-art approach alone.

1.3 Thesis Structure

Chapter 2 gives an overview on grammars, parsers, input generators, and dynamic tainting
(as this technique is later used in our approaches for runtime information retrieval). It draws
the theoretical background our approach is based on.

1We also combined pFuzzer with AFL, showing how Contribution 2 in�uences the results.
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Chapter 3 starts the technical content of the thesis by describing how lexical elements can be
extracted and used to compose valid inputs—it solves Objective 1: the generation of inputs
based on complex comparisons with magic values. We will describe the approach and
explain the limitations and assumptions of this method which lays the foundation for further
extensions as detailed in Chapter 4.

Chapter 4 details how using lexical elements only is not su�cient for generating valid inputs,
especially in the context of complex input validators—it solves Objective 2: the generation
of inputs in the presence of a tokenizer. It includes the description of how it is possible to
trace lexical elements beyond the lexical stage of an input validator into the parser and enable
the techniques from Chapter 3 on more complex subjects. We will also detail the limitations
and assumptions, showing the di�erences to the limitations and assumptions of Chapter 3
introduced by the presented new techniques.

Chapter 5 combines the techniques from Chapter 3 and Chapter 4 with state-of-the-art
greybox fuzzing to improve the overall variety of inputs generated—it solves Objective 3: the
generation of inputs that are syntactically valid and semantically diverse. Furthermore,
we give an outlook on what could be done to improve the integration even more.

Chapter 6 evaluates the di�erent contributions of our approach in comparison with the
state-of-the-art fuzzer AFL as a standalone tool. Here we show how syntactically diverse the
di�erent generated inputs are in comparison to the AFL generated ones and we show that
we can achieve more coverage by applying our analysis technique in combination with AFL
compared to AFL standalone. This chapter also lists the di�erent threats to validity we introduce
with the design choices we made. Here we detail how the implementation design choices might
in�uence the results and how the evaluation design choices might in�uence the outcome and
generalizability of the evaluation.

Chapter 7 summarizes the related work done in the �eld of fuzzing and puts our approach
in context of this work. Based on this we will detail how this dissertation improves the state-of-
the-art, extends on existing techniques, and integrates with the current research to improve
fuzzing in areas that were previously hard to target.

Chapter 8 lists the key takeaways of this thesis and serves as a detailed collection of what we
achieved with our research. It also sums up how this work improved the current state-of-the-art,
the impact it might have, and the future research that can be done in this �eld. We conclude
this work with some �nal words.

1.4 Publications And Claim Of Authorship

This whole thesis builds on and includes the research done for the following publications,
hence they serve as an overarching reference for all chapters. The research papers are listed in
descending chronical order; the author of this thesis is highlighted in bold for each publication:



1.4 Publications And Claim Of Authorship 9

Learning Input Tokens for E�ective Fuzzing [102]
Björn Mathis, Rahul Gopinath, and Andreas Zeller. In proceedings of the 29TH ACM
SIGSOFT International Symposium on Software Testing and Analysis—2020.

Parser-Directed Fuzzing [105]
BjörnMathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, Matthias Höschele,
and Andreas Zeller. In proceedings of the 40TH ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation—2019.

Dynamic Tainting for Automatic Test Case Generation [100]
Björn Mathis. In proceedings of the Doctoral Symposium co-located with the 26TH
ACM SIGSOFT International Symposium on Software Testing and Analysis—2017.

Furthermore, the following papers were published but are not part of this thesis:

Systematic Assessment of Fuzzers using Mutation Analysis [58]
Philipp Görz, Björn Mathis, Keno Hassler, Emre Güler, Thorsten Holz, Andreas Zeller,
and Rahul Gopinath. In proceedings of the 32nd USENIX Security Symposium—2023.

Mining Input Grammars [55]
Rahul Gopinath, Björn Mathis, and Andreas Zeller. Software Engineering 2021—2021.

Mining Input Grammars from Dynamic Control Flow [54]
Rahul Gopinath, Björn Mathis, and Andreas Zeller. In proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering—2020.

If You Can’t Kill a Supermutant, You Have a Problem [53]
Rahul Gopinath, Björn Mathis, and Andreas Zeller. In proceedings of the 2018 IEEE
International Conference on Software Testing, Verification and Validation
Workshops—2018.

Detecting Information Flow by Mutating Input Data [104]
Björn Mathis, Vitalii Avdiienko, Ezekiel Soremekun, Marcel Böhme, Andreas Zeller.
In proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering—2017.

Claim Of Authorship During the research of AutoGram [65], Höschele et al. as well as
the other co-authors of our paper Parser-Directed Fuzzing [105] thought about inferring inputs
instead of using existing inputs for their approach. While �rst experiments were done at that
time with the tainting engine designed for AutoGram, the problem was postponed as other
research got more focus. During my master thesis I built a tainting engine which provides
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similar information to AutoGram like the original tainting algorithm, but instead of analyzing
Java code, it works on C code. At that time the idea to infer inputs from program executions
was renewed, and while writing Dynamic Tainting for Automatic Test Case Generation [100] I
brie�y discussed how to realize the incorporation of dynamic tainting for input generation.

In detail, I contributed the following to the overall approach presented in this thesis2:

• the largest part of the overall approach of iteratively building syntactically valid inputs
from executions with input samples as presented in Chapter 3 (and in our Parser-Directed
Fuzzing paper [105])—especially the heuristics to properly sort the di�erent input char-
acter comparisons to improve the knowledge gain for each run and make the input
generation possible; some smaller details were contributed by others

• the extension to tokenizing code as discussed in Chapter 4 (and in our Learning Input
Tokens for E�ective Fuzzing paper [102])

• the combination with fuzzing techniques as presented in Chapter 5

• most parts of the implementation—some �xes and additions to the code base were done
by others

• the utmost portion of the evaluation as shown in Chapter 6

2While being as concrete as possible about the contributions, after years of research together with co-authors
it is impossible to list every detailed contribution of every author. As with almost every idea, this thesis is a
combination and the result of many fruitful discussions, but while the basic idea of somehow leveraging dynamic
tainting for input generation stems from the time of writing AutoGram, the devil lies in the details. This idea
was also very brie�y mentioned in one paragraph in my master thesis [101]. Also, a basic implementation of our
approach (using comparison-values from the program execution as substitutions to generate new inputs) was
presented in our preprint “Sample-Free Learning of Input Grammars for Comprehensive Software Fuzzing” [56].
The utmost portion of the ideas and results presented in this thesis were done by me.
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Before we detail our work done in the area of parser analysis and fuzzing, we have a look
into the background of this topic. Starting with grammars, we give a short overview on the
di�erent types as de�ned in the Chomsky Hierarchy [29]. Then we talk about context-free
grammars as our main focus lies on parsers based on this type of grammars. Subsequently, we
talk about the di�erent types of parsers and then focus on recursive descent parsers, which are
the most common form of manually written parsers for context-free grammars and thus our
target domain. In Section 2.3, we talk about input generation, also in the context of generating
inputs for parsers. Finally, we give some background on dynamic tainting, which will later be
used in our approach as the fundamental program analysis technique.

2.1 Grammars

Recursively Enumerable

Context Sensitive

Context Free

Regular

Figure 2.1: The Chomsky Hierarchy for language theory [29]. We will focus on context free
grammars in this dissertation.

In Figure 2.1 we see the famous Chomsky Hierarchy, the canonical classi�cation system for
grammars, taught in nearly any class on theoretical computer science. The Chomsky Hierarchy
de�nes di�erent levels of expressiveness for the di�erent layers of the hierarchy, each layer
subsumes the other, shown in Figure 2.1 with the di�erent bubble sizes. One question might be:

11
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“why do we need di�erent levels of grammars, why can’t we just express everything in a recursively
enumerable language”. The answer is again rather practical: with increasing language power
comes an increasing parser complexity, e.g. a context-free grammar can be parsed in O(n3)
[36], in fact even slightly faster [148]. A context sensitive language parser though cannot decide
in general in polynomial time if a word is a member of a context sensitive language [77] and is
as such impractical to use in a real world context. Thus, classifying a given language into the
Chomsky Hierarchy also gives guarantees on how complex a parsing process for the language
will be in worst case.

A language is de�ned as a set of sentences over an alphabet, whereas a “sentence over an
alphabet is any string of �nite length composed of symbols from the alphabet” [64] and an
“alphabet or vocabulary is any �nite set of symbols” [64] (a symbol could be for example an
ASCII character).

De�nition 2.1.1. “If V is an alphabet, then V ∗ denotes the set of all sentences composed of
symbols of V , including the empty sentence. We use V + to denote the set V ∗ − {ε}. Thus, if
V = {0, 1}, then V ∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .} and V + = {0, 1, 00, . . .}′′ [64].

“The concept of a grammar was originally formalized by linguists in their study of natural
languages. Linguists were concerned not only with de�ning precisely what is or is not a valid
sentence of a language, but also with providing structural descriptions of the sentences.” [64].

Before we talk about context-free grammars, the grammars we will focus on in this thesis, let
us give a general overview on the di�erent levels of the Chomsky Hierarchy and what they
express. In this section we will focus on the grammar theory side of those levels. In particular,
we shortly explain what is needed to recognize an input as part of a grammar of the respective
type.

De�nition 2.1.2. “Formally, we denote a grammar G by (VN , VT , P, S). The symbols VN , VT , P ,
and S are, respectively, the variables, terminals, productions, and start symbol. VN , VT , and P are
�nite sets. We assume that VN and VT contain no elements in common; that is, VN ∩ VT = ϕ[. . . ].
We conventionally denote VN ∪ VT by V . The set of productions P consists of expressions of the
form α→ β, where α is a string in V + and β is a string in V ∗. Finally, S is always a symbol in
VN ” [64].1

For each level of the Chomsky Hierarchy there are di�erent restrictions to how the production
rulesP may look like, whereas regular expressions have the strongest restrictions and recursively
enumerable grammars have the least restrictions. In the next paragraphs we bring context-free
grammars in context with the remaining levels of the Chomsky Hierarchy while following the

1Hopcroft and Ullman use ϕ as the symbol for the empty set. In this thesis we will use ∅ outside of citations to
represent the empty set. Also, left hand-side and right hand-side of a production is typically divided by the
symbol “→”; in this thesis though we use the character “=” in the concrete grammars we present (hence outside
of general formal de�nitions), as we follow the notation of the Fuzzingbook [161] (more on this in Section 2.1.1).
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explanations of Hopcroft and Ullman [64]. We omit the formal de�nitions of regular, context-
sensitive, and recursively enumerable languages, because our approach and this thesis only analyzes
parsers for context-free grammars.

Regular Expressions The least expressive level in the Chomsky Hierarchy are regular
expressions. In a regular expression grammar it is only allowed to use one nonterminal symbol
on the left hand-side and the right hand-side must consist of either exactly one terminal symbol
or a terminal symbol followed by a nonterminal symbol [64]. Thus, each production step of the
grammar makes the resulting string exactly one terminal symbol longer.

Context-Free Grammars The next level in expressiveness with respect to the Chomsky
Hierarchy are context-free grammars—the grammars that serve as a foundation for recursive
descent parsers, the target parsers for our analysis.

De�nition 2.1.3. Formally spoken, a context-free grammar is a four tuple consisting of the
following elements [64]:

1. Set of terminal symbols VT

2. Set of nonterminal symbols VN

3. One nonterminal symbol, which is the start symbol S.

4. A set of productions α→ β, with each production being:

a) α ∈ VN .

b) β ∈ V +

In contrast to regular expressions, context-free grammars need not generate one terminal
symbol in each production step, but they are not allowed to replace a nonterminal symbol with
the empty string—informally, they cannot delete any nonterminal symbol once produced.

Context-Sensitive Grammars The left hand-side part in the productions of context-sensitive
grammars is the considerable di�erence to context-free grammars, as it allows a context, e.g.
one could have a left hand-side α1Aα2 and a right hand-side α1βα2 with α1 ∈ V ∗, α2 ∈ V ∗,
β ∈ V +, and A ∈ VN . In this concrete example we would replace A with β, but only if the
characters in front of A match α1 and the characters following A match α2. A must be in the
context of α1 and α2. While in context-free grammars the left hand-side can only contain
one nonterminal symbol, in context-sensitive grammars the context must be considered when
applying a production rule—in context-free grammars we can just replace one terminal symbol
with one of its right hand-sides, in context-sensitive grammars the full left hand-side must
match and will be fully replaced with the right hand-side. Thus, context-free grammars are
even more expressive than context-sensitive grammars. Still, the overall length of the derivation
string grows monotonic, as the right hand-side needs to be at least as large as the left hand-side.
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Recursively Enumerable Grammars The most powerful grammars are recursively enumer-
able grammars as they do not have any limitation on their design. In contrast to context-sensitive
grammars, recursively enumerable grammars can have production rules with a right hand-side
which is shorter than the left hand-side, hence during production of words from a grammar, the
derivation string can shrink—something that cannot happen for all other grammars.

Relaxed Hierarchies While the Chomsky Hierarchy sharply distinguishes its di�erent levels,
researchers invented other forms of grammars in the past decades which are more specialized
to their speci�c use case, and as such allow approximations and limitations that let them accept
a subset of languages of di�erent levels of the Chomsky Hierarchy while allowing fast parser
implementations. A parser expression grammar allows the parsing of some non-context-free
features while being able to parse inputs in linear time [43]. Attribute grammars [80] can
be used to attach a semantic meaning to a context-free grammar, or more precisely, to its
production rules. For example, in his paper Knuth presents a grammar which, once the input
string representing the binary number is parsed, produces the decimal value of this input [80].

In this work we will focus on context-free grammars as those are the most commonly used
grammars in real world parsers (including the above mentioned adaptions and extensions) [37,
59, 137, 140]2. They are expressive enough to represent complex language constructs while
parsers exist that are su�ciently fast to parse them [148]—there are even parsing strategies that
are slightly more restricted than generic parsers for context-free grammars, but still very close
and allow faster parsing, even linear time parsing, and in some cases they even allow parsing
of non-context-free features [43]. Thus, context-free grammars are the perfect target for our
research3: used in real world but su�ciently complex such that trivial methods cannot fully
automatically test systems that are based on them.

2.1.1 Context-Free Grammars

Being expressive enough to describe complex inputs but also restricted enough to parse those
inputs e�ciently, context-free grammars are often used as a foundation to build a parser on,
e.g. for parser generators like Bison [44]. Popular compilers like Clang and GCC use recursive
descent parsers for parsing, built on context-free grammars [37, 137, 140] (even if no concrete
context-free grammar is documented). As such, recursive descent parsers are a perfect target
for specialized fuzzing, they are often used and are the frontend and input validator of many
programs. In Section 2.2 we will take a closer look on those parsers, but �rst we need to lay
some foundations for their underlying grammar format: context-free grammars.

Syntax Before we go into details, we need to introduce some terminology and syntax which
will be used throughout this dissertation. In De�nition 2.1.2 we have already de�ned a grammar

2The developers of Python switched from an LL(1) grammar to a parser expression grammar [59, 121], still, this
example shows that even such complex systems make use of context-free grammars.

3Though, our research concentrates on recursive descent parsers, which indeed parse context-free grammars,
but we want to highlight that we cannot claim to be able to handle all context-free grammar parsers with the
research done in this thesis.



2.1 Grammars 15

in general, and in De�nition 2.1.3 we presented a de�nition for context-free grammars. This
abstract de�nition needs to be put into a usable syntax to describe a grammar in a human
readable as well as machine interpretable form. In this thesis we use the grammar style as
introduced by the Fuzzingbook [161] (using “=” instead of→ for production rules): Figure 2.2
shows a context free grammar which represents the language of arithmetic expressions.

<START> = <EXPR>
<EXPR> = <TERM> + <EXPR> | <TERM> - <EXPR> | <TERM>
<TERM> = <ATOM> * <TERM> | <ATOM> / <TERM> | <ATOM>
<ATOM> = ( <EXPR> ) | sin( <EXPR> ) | cos( <EXPR> ) | <INT>
<INT> = <NUM><INT> | <NUM>
<NUM> = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 2.2: A sample grammar for parsing an arithmetic expression. This grammar is an adaption
of the arithmetic expression grammar from Fuzzingbook [161] presented in the
chapter “Fuzzing with Grammars”.

Let us explain on Figure 2.2 how we map the di�erent parts of the context-free grammar
four tuple to the syntactical elements of the grammar format of the Fuzzingbook [161] we use.
First, we represent nonterminal symbols VN by surrounding a capital lettered string with
< and > (e.g. <START>). All other strings except the pre-de�ned control characters =, |, <, >
represent terminal symbols VT (e.g. + or sin( ). The start symbol S is always the nonterminal
symbol <START>. Now that we have the building blocks of the grammar, we can de�ne the
production rules P : Each line in Figure 2.2 contains one rule which starts with a nonterminal
symbol followed by = and a set of expansions, divided by |. Each expansion again consists of a
combination of terminal symbols and nonterminal symbols. For example, the production rule
for the nonterminal symbol <INT> has two alternative production rules: <NUM><INT> and
<NUM>, separated by |. With this we can describe context-free grammars in a human readable
format and keep them usable by algorithms for generation as well as parsing. While the input
generation is interesting (e.g. when building a grammar based parser [60]), we concentrate on
the parsing part, thus we do not go into detail how inputs can be generated with grammars.

Parsing Many programs use a grammar to build a parser, which 1. validates the input ac-
cording to the format de�ned by the grammar and 2. builds a derivation tree (see below) which
gives structural information about the input that can then be used by the program logic for
further computations (e.g. to compile the code to machine instructions, or in a semantic phase
to validate further restrictions on the input like def-use dependencies). Thus, let us give one
example how input parsing with context-free grammars works on a theoretical level. Parsing
starts with the start symbol <START>. Now, since we have a given input, the parser needs to
decide which option to choose from (if there is more than one). This is done by looking at the
next characters to come and try to greedily match one option to the actual input.

Most importantly, each parsing step is independent from any other parsing step—every rule
application can be done without context, hence the name context-free grammar. The parsing
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<START>
7 ∗ cos(28)

<EXPR>
7 ∗ cos(28)

<TERM>
7 ∗ cos(28)

<ATOM>
7

<INT>
7

<NUM>
7

7

∗
<TERM>
cos(28)

<ATOM>
cos(28)

cos(
<EXPR>

28

<TERM>
28

<ATOM>
28

<INT>
28

<NUM>
2

2

<INT>
8

<NUM>
8

8

)

Figure 2.3: A derivation tree of the input 7∗ cos(28) built based on the grammar from Figure 2.2
applying rules as they would be in a recursive descent parser.
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happens with the help of a stack, which is initially �lled with the start symbol <START>. At each
step, if a nonterminal symbol is at the top of the stack, it is replaced by one of its alternatives,
putting the terminal symbols and nonterminal symbols in reverse order on the stack. For
example, if <TERM> is replaced by its alternative <ATOM> * <TERM>, then <TERM> is �rst
put on the stack, then *, and then <ATOM>. If a terminal symbol is at the top of the stack, it
must match the current position of the input. If so, the terminal symbol is removed from the
top of the stack and the position pointer for the input advances. For the sake of simplicity,
we assume that we always chose the correct alternative in our example below, otherwise we
would need to apply backtracking (choosing another alternative for a nonterminal symbol if the
chosen alternative was not correct). Backtracking is typically avoided in real world parsing by
designing the grammar such that there is always only one correct alternative to apply, thus we
do not discuss this here. If a terminal symbol does not match the current input position and we
do not have any production rule to backtrack, parsing fails. The parsing process is successful
only if the stack is empty and the end of the input is reached.

Figure 2.3 shows how the input 7 ∗ cos(28) is parsed step by step, rule by rule. In step 1
the nonterminal symbol <START> at the top of the stack is replaced4 with the nonterminal
symbol <EXPR>, the input position pointer does not advance. We can decide to use <EXPR> as
there is no other choice for <START>. Now, we replace <EXPR> with one of its alternatives:
<TERM>. The next step is more interesting, because we remove <TERM> and add <TERM>,
*, and <ATOM> to the stack—in reverse order as de�ned in the production rule. We replace
<ATOM> with <INT>, then <INT> with <NUM>, and then <NUM> with 7.

Now we have our �rst terminal symbol at the top of the stack, which matches the current
position of the input (we are still at the start). Thus, we remove the 7 from the stack and advance
the input position. This results in * being the top of the stack, which again matches our input
position; thus we remove the top of the stack again and advance the input position. Now, we
have <TERM> again as top of the stack, which is replaced with <ATOM>. Next, we remove
<ATOM> from the top and add ), <EXPR>, and then cos(. These parsing steps are analogously
applied until the input position is one position behind the last character (hence the complete
input was consumed) and the stack is empty. We successfully parsed the input.

Design Pa�erns Grammars used for writing parsers tend to avoid the following [3]:

Le� Recursion There must not be any derivation from a nonterminal symbol A such that
A →+ Aα for any string α, i.e. A should not have a production alternative starting
with A neither should it be possible to have one or more derivations that end up with A
again without adding at least one terminal symbol. For example, this simple left recursive
production <A> = <A>α | β would be rewritten to two productions: <A> = β<A′>
and <A> = α<A′> | ε (with α and β being any string). They ensure that neither <A>

4We use replace for the actual operation of removing the top of the stack and adding the nonterminal symbols and
terminal symbols from its alternative.
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nor <A′> appear �rst in the production rules, avoiding left recursion. There are algorithms
for rewriting more complex left recursive productions [3].

Le� Factoring Similar to left recursion, it is useful to make decisions on production alterna-
tives immediately, hence productions rules like <A> = αβ1 | αβ2 are discouraged, as
one would need to parse α �rst before the decision can be made if the rule with β1 or
β2 should be taken (with α, β1, and β2 being any string). Hence, this rule is split in two:
<A> = α<A′> and <A′> = β1 | β2. Now, the decision is deferred to <A′> and it can
be immediately decided if β1 or β2 should be chosen.

Those rules make it possible to avoid backtracking and large lookaheads, as the parser can
always immediately decide which production alternative to choose. The grammar in Figure 2.2
does not contain any left recursion but would still need to be left factored (e.g., the <TERM> rule
has three alternatives that start with <ATOM>). For better readability, we keep the grammar as
it is.

From the usage of context-free grammars without left recursion and left factoring in real
world, we gain some guarantees that can be used in our research. In Section 2.2 we will go into
details regarding the parser implementation speci�c patterns that can be used to infer inputs, in
the following we detail the grammar theoretical foundations used in our approach:

1. First and foremost, at each input recognition step there is exactly one production rule that
matches the pattern/the character to consume.

2. The input is recognized left to right, at each step typically one lexeme is consumed (to
decide for the next production rule to choose).

3. The tuple top of the stack and current input lexeme to consume uniquely de�nes the next
steps taken by the recognizer

Those fundamental design patterns of context-free grammars are also re�ected in recursive
descent parsers, hence we can look for such patterns in the parser code and in the execution of
the parser. In Section 2.2 we will see how those patterns are implemented into recursive descent
parsers and Chapter 3 and Chapter 4 will discuss in detail how those design choices are used in
our approach.

2.2 Parser Theory

Parsing can be considered as one of the most fundamental parts of computer science. Most
programs once went through a parsing step, translating the code written and understood by
humans into a machine usable format. In the Dragon Book [3] in Chapter 1.3.1 Aho et al.
describe the history of compiling starting in the 1950’s with simple mnemonics used in assembly
languages to make the assembly code easier to read and use for developers. Those mnemonics
were then extended with parameterized macro instructions to re-use frequently used instruction
sequences (similar to functions today). In the late 1950’s the �rst high level languages like
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Fortran [139], Cobol [69], and Lisp [143] were introduced [3], all of them obviously needed
to be parsed before they can be compiled to bytecode. In the following we describe how such a
parsing process is done, and what fundamental rules are used during parsing—rules that we
can use in our approach.

Context Free Languages Context free language parsers are reasonably e�cient while also
being complex enough to parse a large variety of real world languages [137, 140]. Still, while the
worst case runtime lies inO(n3) (there are algorithms like Valiant presented that are faster than
O(n3) [148]), unambiguous grammars can be parsed in O(n2) and most context-free grammars
even in O(n) [36].

Context-free parsers are typically extended with more advanced features that make the
language they can consume not context free anymore. One of the most prominent examples is
XML. While most of the language can be parsed with a context-free parser (opening and closing
characters for tags, attributes, values, . . . ), some very speci�c parts are in general not context
free. A context-free parser cannot decide if an opening and closing tag match in general, as this
is a context-sensitive feature. Still, one can use a context-free parser to parse the XML input
(initially ignoring if tags are matching)—and then add some simple code, which decides on each
closing tag if it actually matches the opening tag. A context-sensitive parser would be able to
do the same, but they are less e�cient in general [77].

Building Parsers There are di�erent ways to produce a parser from a formal language
de�nition. For all languages from the Chomsky Hierarchy parsers can be written by hand
and are written by hand. In many cases though, di�erent levels of parser generators are used,
depending on the language complexity. Parsers for context-free languages (and those that are
close enough to being context free, see the XML example from above), are often provided directly
as a library [114, 145, 146]. If the language is not as common as JSON or XML, a developer can
also use a parser generator like ANTLR [136], Bison [44] or YACC [134], often in combination
with some pre-de�ned language description. Those generators take a language speci�cation
like the one in Figure 2.2 and produce code that parses the language described in the formal
grammar. The bene�t of those tools is that one needs not to write the code on its own and in
every language it should be used, but rather write the formal description and let the generator
compile a parser based on it. Those generators typically also allow to write grammars that are
more complex than context free but are not fully context sensitive.

Alternative Parsing Methods In recent years developers came up with other methods that
avoid writing a formal grammar but also have the bene�t of not writing the full parsing code
from scratch. One reason might be that the average programmer needs to parse inputs from
time to time but is not very familiar with formal languages.

Combinatorial parsing is a method in which not one parser is written, but many, which are
combined to larger parsers that are then used in subsequent recombinations. Frost et al. �rst
used it to create natural language processors [46]. In their paper they describe a system, which
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answers a small set of natural language queries about our solar system. Hutton builds upon
this technique to design parsers for context free languages. In his paper he translates a typical
context-free grammar in BNF into a combinatorial parser [68]. This combinatorial parsing
technique brings the theoretical world of parsing closer to developers.

Similar to combinatorial parsing is PEG [43], with Pyparsing [119] as an instance of how
a parser for PEG can be built. Here the grammar can be built on Python code level, using
Python syntax, while still being close to a context-free grammar format. With this method it is
easy for developers to write such a parser manually, possibly following a given grammar, but
keeping the language in which the parser is written the same as the language which consumes
the parsed input.

Table driven parsers have a very special way of parsing inputs. Instead of using comparisons
and control �ow, they use “states to keep track of where we are in a parse” [3]. Still, this technique
makes it di�cult to read the code and writing a table driven parser by hand would be hard,
hence such parsers are typically generated from an underlying grammar (if at all, for larger
projects typically other parsing methods are used [37, 137, 140]).

Recursive descent parsers use control �ow and comparisons to decide how each and every
character is handled during parsing. They are the recommended parser type in the literature
(Aho et al. mention top-down parsing as one of the most common parsing techniques for
hand written parsers in Chapter 4 of their Dragon Book [3]) and are therefore also taught to
programmers around the world. Thus, recursive descent parsers are very often found in mature
projects and many parsers are written with this technique by hand [37, 137, 140]. Furthermore,
those parsers are not only very common, but also often lack a formal, machine readable de�nition
of the input language.

In this dissertation we focus on recursive descent parsers that are solely written in code and
thus typically do not have an underlying machine readable speci�cation. The main reason is
that if a machine readable speci�cation exists, it makes more sense to use this speci�cation for
any application like input generation and fuzzing as domain knowledge is always bene�cial.
Still, those parsers typically follow an underlying grammar, even if not explicitly de�ned, and
are written in a top-down fashion. Thus, in the following we explain top-down parsing in more
detail and set the ground for our explanation of parser analysis and fuzzing done in this thesis.

2.2.1 Top-Down Parsing

“Top-down parsing can be viewed as the problem of constructing a parse tree for the input string,
starting from the root and creating the nodes of the parse tree in pre-order [. . . ]. Equivalently,
top-down parsing can be viewed as �nding a leftmost derivation for an input string.” [3]—that is
how Aho et al. introduce the chapter on top-down parsing in their book. This section will mostly
follow their descriptions. Essentially, the derivation rules are applied based on lookaheads of
one or more characters on the input stream, a so called LL(k) parser [3]. Such a parser starts



2.2 Parser Theory 21

with the start symbol of the underlying grammar and applies derivation rules on the leftmost
nonterminal symbol (the �rst nonterminal symbol in the parse tree in pre-order) until either
no more derivations can be applied that match or all derivations are applied. If no matching
derivation is found, top-down parsing can backtrack over previous derivations to the point
where a nonterminal symbol can be expanded with another production rule. This backtracking
and application of alternative production rules is done until no more applications are possible,
then the input is deemed as not parsable.

As we can see, if we would apply top-down parsing naïvely, the parser might have to backtrack
many times and try out in worst case an exponential amount of production rules. To avoid this,
grammars for parsing with a top down parser are typically written in a way that a small amount
of lookahead is already su�cient to decide for the correct derivation rule and backtracking is
not needed anymore, making the parse process much faster. In Section 2.1.1 we have shown left
recursion and left factoring transformations that can be used to achieve this feature for most
context-free grammars. Therefore, grammars are often in the LL(1) format if they are used
for parsing—meaning that a lookahead of one lexeme is su�cient to decide which production
rule to use, there is no alternative and as such, if the parser gets stuck and cannot apply any
production rule at any point, the input cannot be parsed, no backtracking is needed [3].

Recursive Descent Parsing While top-down parsing is a general form of parsing inputs,
the focus of this work lies on one of the most commonly used instance of top-down parsing:
recursive descent parsers. From the Dragon Book [3]: a “recursive-descent parsing program consists
of a set of procedures, one for each nonterminal symbol. Execution begins with the procedure for
the start symbol, which halts and announces success if its procedure body scans the entire input
string”. As such, a recursive descent parser implicitly implements the structure of the underlying
grammar, making it on the one hand easy to write and modularize, such that it can be adapted
with regards to future changes in the original grammar and on the other hand well analyzable.
A recursive descent parser written by the textbook follows some coding rules—rules that we
can identify, analyze, and make use of while querying the subject under test.

Figure 2.4 shows a generic top-down parsing algorithm for a nonterminal symbol—every
nonterminal symbol is typically parsed the same way, including the start symbol. First, in Line 2
a nonterminal symbol is chosen for further parsing. While iterating over all elements of the
production rule Xi in Line 3 there are three options: Xi is either an nonterminal symbol, the
same terminal symbol as the current input symbol, or none of them. In the nonterminal symbol
case (Line 4), the procedure for parsing the nonterminal symbol Xi is called recursively, which
must exist as in top-down parsing each nonterminal symbol has its own parsing procedure.
In the terminal symbol case (Line 6), the algorithm just advances the input symbol. If none
of the other options is correct, the algorithm is in an error state (Line 8). Now, in the case of
backtracking we would not immediately error out in Line 8 but rather choose another production
rule in Line 2 and iterate again over the production elements. Only if there is no production
rule left in A we can actually stop the algorithm with an error (which might result in further
backtracking to and in the caller of the method A()). We can also use an LL(1) grammar and
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lookaheads to determine the correct production rule. This reduces the parsing e�ort by making
backtracking unnecessary (there is just one possibly correct production rule to choose in Line
2) while also making sure that if we reach Line 8 there is actually a parsing error, as there is no
other way to parse the input.

1 void A() {
2 Choose an A-production, A→ X1X2 ... Xk;
3 for (i = 1 to k) {
4 if (Xi is a nonterminal symbol )
5 call procedure Xi();
6 else if (Xi equals the current input symbol a)
7 advance the input to the next symbol;
8 else /*an error has occurred*/;
9 }

10 }

Figure 2.4: A high level top-down parsing algorithm for parsing a nonterminal symbol as de�ned
in the Dragon Book [3].

For building an LL(1) top down parser, Aho et al. [3] describe two functions: FIRST()
and FOLLOW(). Both describe sets of terminal symbols—FIRST() describes the set of
terminal symbols at the beginning of strings that are derived from a given nonterminal symbol,
FOLLOW() the set of terminal symbols that can appear immediately after a given nonterminal
symbol.

In prose, we can describe FIRST() as follows (capital letters are single grammar symbols):

1. FIRST(X) contains X if X is a terminal symbol—and nothing else.

2. FIRST(X) contains the union of FIRST() of all production alternatives—for each
alternative Y1Y2 . . . Yk FIRST() is evaluated by adding FIRST(Y1) and checking
if ε is in FIRST(Y1), and if so, iteratively FIRST(Y2), FIRST(Y3) etc. is added
until one does not contain ε. If all FIRST(Y1) to FIRST(Yk) contain ε, ε is added to
FIRST(X).

3. Finally, if X produces ε, then ε is added to FIRST(X).

FOLLOW() can be described as detailed below (again, capital letters are single grammar
symbols, α and β are strings of grammar symbols):

1. FOLLOW() of the start symbol is the end of input marker.

2. FOLLOW(B) contains FIRST(β) except ε if there is any production rule with a right
hand-side αBβ.
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3. FOLLOW(B) contains FOLLOW(A) if A either has a production rule with a right hand-
side αB or A has a production rule with αBβ with FIRST(β) containing ε.

With FIRST() and FOLLOW() we can de�ne the key properties of an LL(1) grammar
(following the de�nition of the Dragon Book [3]), which are also important for our approaches
that we later explain in this thesis. Say we have a nonterminal symbol A that produces either
the string of grammar symbols α or β:

1. FIRST(α) and FIRST(β) are disjoint sets (hence not both α and β can derive the
same terminal symbol as �rst character and only at most one of them can derive ε)

2. if ε is in FIRST(β), then FIRST(α) and FOLLOW(A) are disjoint (and vice versa).

The combination of both rules ensures that a lookahead of one character is su�cient to
decide which derivation rule will be applied. Since FIRST(α) and FIRST(β) are disjoint,
we can check if the looked ahead lexeme a is in either FIRST(α) or FIRST(β) and apply
the respective rule. If it is in none we can check if it is in FOLLOW(A) and then apply the rule,
which contains ε in its FIRST() function, as we need to use an epsilon production and then
apply whatever comes after the production of A. If the upcoming lexeme is not in one of the
sets, then there is no correct derivation rule and we can stop parsing without backtracking, as
we de�ned the LL(1) grammar exactly for this purpose.

With this parsing technique we get a set of guarantees that can be used to analyze a subject
under test implementing a recursive descent parser:

1. The parser does not backtrack; a lexeme, once consumed, will not be parsed again.

2. All lexemes of the respective FIRST() and FOLLOW() sets need to be checked before
rejecting an input.

3. Each lexeme, depending on the already read characters, introduces a new derivation.

4. The lexemes in FIRST() and FOLLOW() at each state during parsing de�ne the
possible characters for that state, they contain only and all valid characters.

5. Each time a nonterminal symbol will be parsed, the parser calls the respective parsing
function of the nonterminal symbol.

In Chapter 3 and Chapter 4 we will see how those guarantees can be used to e�ciently analyze
such a parser for input inference (e.g. by using heuristics that rely on those guarantees for
guidance). We will also see that those guarantees do not hold in all circumstances, but most,
making the input inference still e�cient.
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Lexer Typically, complex parsers do not work on the input byte stream directly, they rather
have a dedicated module/code location which handles the input strings, converts them to some
internal tokens (e.g. enums) and gives them to the parser which then decides if the token it just
received is actually valid at the current time in parsing. As written in the Dragon Book [3] in
Chapter 3.1.1, lexical analyzers are typically used for three di�erent reasons:

1. Simplicity of design: handling input structures on the character level is inherently di�erent
from the actual parsing step (e.g. handling of whitespaces).

2. Compiler e�ciency: if split up, the compiler can use very e�cient lexing techniques before
actually parsing a token.

3. Compiler portability: the lexer reads the input directly from the system, meaning that it
needs to handle details about the system I/O, which can be abstracted away with the help
of a lexer.

While the presence of a lexer does not change the parsing guarantees mentioned above, it
inherently changes the implementation style. In Chapter 4 we will see how the lexer in�uences
our approach and what we do to still infer inputs from a parser, even in the presence of a lexer.

2.3 Fuzzing And Input Generation

Context We will later combine our parser analysis with a fuzzing approach, hence we in-
troduce the concept of fuzzing here. The whole story began in 1988 with Barton Miller et al.
[109].5 They started a project to test Unix tools with randomly generated strings. From todays
perspective we would call this random blackbox fuzzing: the fuzzer generates inputs without
domain or program knowledge and runs the program with those inputs (possibly through a
fuzz wrapper—some code or tool that makes it possible to run the subject under test with the
generated inputs). Interestingly, even though their approach of generating random strings as
inputs is “somewhat naive” [109] (the wording they are using), they were able to crash between
24% and 33% of the 88 tested unix utilities on each of the seven di�erent versions of Unix [109].

Miller and his team did not only crash those programs, they also checked the crash reasons
and compiled a list of di�erent bugs and how to avoid them. Interestingly, even over 30 years
later, the typical bug sources still exist, e.g. memory bound checking, system call return checks,
and pointer value sanity checks [109, 110]. Languages like Java and Python certainly handle
some of those bug sources automatically (one cannot access arrays out of bounds without raising
an exception in those languages; the execution will not end up in an unde�ned state in such
cases [113, 120]). In C though (so in domains where execution speed and hardware proximity
matters), such guarantees are not given and likely will never be given. Creating an array like
“int a[100];” and then accessing the allocated array out of bounds(“a[999] = 5;”) will
not be prevented by any compile time or runtime measures and results in unde�ned behavior,

5The paper itself is published in the ACM library since 1990, the work on this though already began 1988 [11].
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in best case the program errors out with a Segmentation Fault, in worst case the program keeps
on running non-deterministically [72].

Fuzzing has evolved since then but this basic idea did not change much in the last 30 years:
the English Wikipedia page on fuzzing [152] describes it as a mainly automatic process to
generate random or semi-random inputs to trigger unwanted program behavior: “An e�ective
fuzzer generates semi-valid inputs that are ‘valid enough’ in that they are not directly rejected by
the parser, but do create unexpected behaviors deeper in the program and are ‘invalid enough’ to
expose corner cases that have not been properly dealt with” [152]. On 12. January 2024, the ACM
website lists 760 citations of the initial fuzzer paper by Miller et al. [12], which just re�ects
a part of the overall fuzzing research done in this �eld. A recent study by Miller et al. has
shown that even though fuzzing is widely adopted in many �elds, the most basic random string
fuzzer still �nds bugs in the unix utilities [110]. “100k+ CPU cores, mostly n1-standard-1 vms”
[1]: that is the amount of resources Google uses according to Abhishek Arya at 21. August 2021
for running ClusterFuzz [138] , showing that even in large tech companies fuzzing is very
popular.

While the blackbox approach of fuzzing originally proposed by Miller et al. already �nds a
signi�cant amount of bugs in software, fuzzing was not and is not exhaustively researched. Böhme
et al. compiled a list of di�erent open questions in fuzzing in 2021 [18], including questions
like how to fuzz more types of software, �nd more bug types (part of the oracle problem), and
�nding more di�cult bugs—bugs that are guarded by complex conditions.

Input Generation Techniques The ideas varied a lot throughout the years and the lines
between fuzzing and other input generation techniques became blurry. Some decided to include
more information about the subject under test, e.g. coverage information like in AFL [160],
but also more in depth information provided by static and dynamic analysis [41, 123]. Other
techniques combine di�erent existing fuzzers, leveraging their strengths and weaknesses [28].
A common way of incorporating domain and target speci�c knowledge is by providing a model
of the input format, which is then used for input generation by the fuzzer. This model can
be incorporated in the fuzzer [154] and even extended with known bugs, which are varied
and brought into a new context [63]. Some techniques take the model in a machine readable
form, hence they are more generic—any target which input format can be represented by the
respective model can be fuzzed. For instance, one could use a grammar [60] as input model.
There are techniques that infer such models, often from a set of inputs [49, 54, 65, 132, 133],
combining the idea of simple push-button techniques like blackbox and greybox fuzzing with
more advanced techniques that use underlying models. Other approaches to handle complex
conditions in the subject under test are symbolic execution and concolic execution, either directly
applied [23] or to be combined with fuzzing [135]. Though, those approaches typically su�er
from the path-explosion problem [24, 135].

Simple blackbox input generation is very program agnostic—the fuzzer generates inputs
randomly, possibly without any feedback and the program is run on those inputs. The only
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needed information is how to start the subject under test and how to provide an input to it.
Obviously, once the fuzzer uses instrumentation it is bound to programs that can be instrumented
with the instrumentation framework (at least if the maximal fuzzing performance should be
achieved). This target dependency is not only restricted to simple instrumentation, some fuzzers
are bound to domains, e.g. the approach by Godefroid et al. [49] is designed to use a neural
network to infer an input grammar from the subject under test using given and newly generated
sample inputs, hence it should only be used on such subjects. Approaches like Csmith [154]
are speci�cally designed to test one speci�c kind of subject, e.g. C compilers, hence their target
subjects are very restricted.

Complex Input Formats and Fuzzing In the domain of complex input formats, push-button
techniques tend to struggle with generating valid inputs. The main reason is their insu�cient
capabilities to correctly generate valid tokens in a correct order. Think about this: we have a
parser for arithmetic expressions and want to generate the input sin(2) + cos(8) with a fuzzer
that has no domain knowledge and possibly only coverage feedback from the program. In order
to trigger the sin branch of a parser it would need to blindly generate the letters s, i, and n—only
then the keyword sin is generated and can be detected by the parser. The likelihood for this to
happen using the basic ASCII characters (128 characters) is 1283. The same holds again for
cos6. Hence, in the presence of a parser a fuzzer typically relies on some form of a manually
crafted model or needs a high amount of resources to solve the complex comparisons in a parser
to produce syntactically valid inputs.

Though, the problem is: where does the model knowledge come from? If the subject accepts
very generic inputs (e.g. any JSON or XML input), a generic fuzzer or domain description can be
used. In many cases though, the consumed input of the subject under test is too speci�c and the
domain speci�cation needs to be written by the maintainers of the subject. This may introduce
bias into the description (like missing syntactical features, too restricted or lenient input types,
or missing terminal symbols). Also, one major roadblock for implementing fuzzing as a part
of the CI/CD pipeline is the e�ort to set up a fuzzer. Even though simple greybox techniques
require no more than using a speci�c compiler that performs the fuzzer instrumentation in the
subject under test, practitioners (users from the industry) still see usability as one of the most
important points in todays fuzzing research [18]. Hence, we can assume that practitioners will
tend to not maintain a model speci�cation in parallel to their code base, not even speaking of
writing an initial one. Thus, for testing parsers we would like to have a low in�uence of and
workload for the developers when setting up an input generator.

Miscellaneous There are also other domains that need to be tested like graphical user in-
terfaces [21, 75] or protocols like Protobuf [51] (which can be tested with the libprotobuf-
mutator [52] that mutates protobu�ers that can be used for input generation). In all generality,
every input generator could generate a string and a wrapper “around” the subject under test

6This example assumes the typical way of matching keywords in parsers by using direct string comparisons—in
this case comparing the constants sin and cos against input characters. Such a comparison would not give any
coverage feedback up until the full keyword is generated and the comparison outcome is altered.
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converts it to a valid input like a sequence of clicks or API calls. Still, in those cases it makes
sense to have some “domain speci�c” input generators for the respective domain. But not only
this, input generators can also make use of new techniques: for example, some researchers
work on using large language models to improve input generators [83]. It is out of scope for
this dissertation to list all the work done in input generation throughout the last 30 years.

Input generators can be used in nearly any domain, produce any kind of input, and can
be combined with many di�erent other research areas to improve the overall performance.
The target domain of an input generator and its underlying design (random inputs, symbolic
execution, . . . ) are completely unrelated. In general though they are at least adapted to their
execution environment, hence the inputs they generate are valid in the sense that they are
not rejected because they are di�erent from what the execution environment requires. For
example, a GUI input generator [21, 75] will produce clicks and other valid inputs for GUIs—it
might fail though to log into an application, because then the input generator would need target
knowledge instead of domain knowledge.

Summary We have seen: the basic idea of fuzzing is simple, the most basic input generator
one can think of could be written in one line of Python code (ignoring the needed imports):

while True: print(str(random.randbytes(random.randint(0,1000))))

But once we start to think about di�erent variations, extensions, and improvements to this
basic idea, the possibilities seem to be in�nite. With the approach that we will discuss in this
thesis we try to keep the simplicity of push button input generators, while producing complex,
syntactically valid inputs that cannot be generated with a state-of-the-art push button approach.

2.4 Dynamic Tainting

One of the main information drivers in our tool is dynamic tainting, hence we will explain
its basic concepts. There exist several dynamic tainting tools [16, 31, 151], all of them have their
advantages and disadvantages. The tainting engine Pirate [151] in PANDA [117] for instance is
based on QEMU [122] and as such runs on a virtual machine. It translates the executed QEMU
code to LLVM IR for further analysis during the o�ine taint tracking phase. This tool is able to
analyze binaries by leveraging virtual machines and translating the code to an intermediate
representation; other tools run on other abstraction levels, e.g. directly on the binary [31].

In general, dynamic tainting works as follows: �rst, one needs to de�ne what should be
tainted. Typically, one would taint bytes coming from a certain source, e.g. bytes from a memory
location, a function return value, or bytes from an input source. Those bytes are dynamically
followed through the program execution7, for each instruction of the underlying language. In
this section we restrict ourselves to data-�ows only, i.e. taints are only propagated if there is

7That’s why it is called dynamic tainting; in contrast to static tainting which would calculate possible byte
propagations without running the code.
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a direct information �ow between two values. Or in other words: a taint is not propagated
over indirect information �ows, which can be summarized as information �ows over control
�ow. Taking control �ow taints into account usually results in almost all registers and memory
locations tainted, especially if the initial taints stem from the input (almost every decision
in the program is based on the input as the main purpose of a program is processing input
information). Therefore, typical tainting algorithms concentrate on data-�ows as they are much
more targeted and useful for most use cases.

Example: Direct and Indirect Information Flows

In the following code snippet we have an example of a direct information �ow from variables a
and b to variable c:

// a and b contain taints
int c = a + b;

The value in c stems directly from the sum of a and b—there is a direct data �ow to c. Such
�ows, where information is stored from a tainted value X to a memory or register Y, are the
direct data �ows we are focussing on.

In contrast to that, there could also be indirect information �ows:

// a and b contain taints
int c = 0;
if (a == b) {

c = 1;
}

The value in c after executing all lines is dependent on the tainted values in a and b. Still, the
values from a and b do not �ow via a store instruction into c but only in�uence c via the code
structure. Those indirect information �ows over control �ow instead of data �ow produce a
much noisier taint result.

End Example: Direct and Indirect Information Flows

Since we will later work on the LLVM bitcode level, we explain dynamic tainting on this
level of abstraction. Figure 2.5 shows three LLVM bitcode instructions, an addition in Line 3, a
store instruction in Line 4, storing the result of the addition at the memory location denoted by
the second value, and a load instruction in Line 5, loading the just stored value from memory
back into an LLVM bitcode register. In the following example we illustrate how dynamic taint
propagation works for an addition, a store instruction, and a subsequent load instruction. Even
though the example is short, it already contains di�erent building blocks of the underlying
system we are analyzing: a binary instruction, writing to memory, and loading from memory.
Most of the instructions we are analyzing are similar to one of those three, hence the taint
propagation works analogously for them.
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1 ; Reading two 8 bit integers from the input into %1 and %2
2 ;...
3 %3 = add i8 %1, %2
4 store i8 %3, i8* %4
5 %5 = load i8, i8* %4
6 ;...

Figure 2.5: A sample LLVM bitcode excerpt. The sum of registers %1 and %2 is calculated and
stored to register %3 (Line 3). Then the content of register %3 is stored at memory
location %4 (Line 4) which is again loaded into register %5 in Line 5.

Example: Dynamic Taint Propagation

H E L O

Input Bytes

%3 = %1 + %2

store %3 , %4

. . .

Application Memory

. . .

%5 = load %4

1 1

2
23

3

4

Address Pointer

Using the code from Figure 2.5, let us assume that in Line 3 the registers %1 and %2 contain
bytes from the input, we can be even more speci�c and assume that %1 contains the byte
from index one of the input and %2 the byte from index two. This is re�ected at the top of the
example picture above, input byte one is marked with a blue circle, input byte two with a green
square. The arrows labelled with 1 denote that those two input values �ow into registers %1
and %2.

After the addition in Line 3 the register %3 has the taints of %1 and %2 attached to it, hence
the taints from input byte one and two—the taint �ow is visualized with the arrows marked
with the number 2. Register %3 is accordingly marked with the circle and the square indicating
the taints 1 and 2 are attached to register %3 at that point.



30 2 Background

In Line 4 this information is stored at the memory address referenced by register %4.
Hence the taint engine taints this memory location with the taints of byte 1 and 2 from the
input. Concretely, the taints �ow from %3 into the according memory location as shown with
the arrows number 3.
Finally, in Line 5 the value is again loaded from the memory location addressed by

register %4 and stored in register %5, hence register %5 gets tainted with the taints of byte 1
and 2 from the input, detailed with arrow 4.

To sum up: after all three lines were executed, the information which originally stemmed
from input bytes 1 and 2 now lies in register %5, each arrow number shows one step of the
execution (label 1 is the storing of the input bytes in %3, 2 is the addition, 3 is the execution of
the store instruction and 4 is the load instruction). The picture also shows which registers and
memory locations contain which taints after the execution of the code snippet. A taint can only
be deleted by overwriting the respective memory location or leaving the scope in which the
register is valid, i.e. it can only be deleted if the respective storage location does not contain
any trace of the the tainted value anymore.

End Example: Dynamic Taint Propagation
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In Section 1.1 we outlined the objectives for our thesis and in Section 1.2 we explained
the di�erent contributions to those objectives. This chapter contributes to solving our
�rst objective: generating inputs based on complex comparisons and magic values. In
the following sections we lay the foundations of our approach: how we can generate a set of
syntactically valid and diverse inputs using nothing more than a subject under test which starts its
input consumption with a recursive descent parser. We aim to generate those inputs out-of-thin-air
using dynamic tainting and heuristics adapted to the domain of recursive descent parsers. Our
goal is the generation of an input set that contains only syntactically valid inputs that fully
cover the parser code and thus representing the set of (syntactic) features of the input language.

Scope The class of parsers we are focussing on (recursive descent parsers) are typically
built around terminal symbols and speci�cally encode them as constants that are used while
parsing inputs. As we can see in Figure 3.1, the general structure and terminal symbols of our
original grammar as seen in Figure 3.2 are re�ected in the functions and constants of the code.
We will make use of this structure to infer, directly from the program code and without any
prior knowledge, which inputs are valid and generate them. In contrast to grammar learning
approaches like MIMID [54] or the approaches by Sochor et al. [132, 133] we will not infer an
abstract representation of the input format but rather analyze the code structure dynamically to
apply program speci�c mutation operators on already generated seed inputs. With this method
we can iteratively generate valid inputs that cover the di�erent branches of the program’s parser
and hence the syntactical features the program encodes. In this chapter we mostly ignore the
fact that some recursive descent parsers use a lexer before parsing the input—only the heuristics
for ranking the possible next inputs to �nd the next most promising input try to reduce the
impact of this simpli�cation of parsers. In Chapter 4 we extend our technique to also speci�cally
analyze recursive descent parsers with lexers.

Approach Overview In short, our proposed technique works as follows: we use dynamic
tainting to analyze the subject under test while running on di�erent inputs to �nd valid pre�xes
and invalid su�xes in inputs, replace those invalid su�xes with valid ones, and thus iteratively
generate syntactically valid and diverse inputs. The following abstract algorithm shows a very
brief overview on our approach:

1 def inputInference(subject):
2 inst_sut = instrument(subject)
3 input_queue = [random.nextChar()]
4 while True:
5 inp = queue.pop()

31
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6 trace = inst_sut.run(inp)
7 taints = taintEngine.analyze(trace)
8 new_inputs = extract_inputs(taints, inp)
9 input_queue.sortAndAdd(new_inputs)

1 int term() {
2 skip_whitespace();
3 if (atom()) {
4 skip_whitespace();
5 if (input[pos] == '*' || input[pos] == '/') {
6 pos++;
7 return term();
8 }
9 return 1;

10 }
11 return 0;
12 }
13

14 int expr() {
15 skip_whitespace();
16 if (term()) {
17 skip_whitespace();
18 if (input[pos] == '+' || input[pos] == '-') {
19 pos++;
20 return expr();
21 } else {
22 return 1;
23 }
24 }
25 return 0;
26 }

Figure 3.1: An excerpt from the arithmetic expression parser parsing the term and expr nonter-
minal symbols from the grammar from Figure 3.2. The full parser can be found in
Appendix A-I.

Concretely, we are starting with an input parsing program as input to our approach. We
instrument and compile the subject (such that it outputs an execution trace for later analysis)
and �ll our queue of possible inputs with one input: a random character. Then the overall
generation loop starts, taking one input from the queue, running the instrumented program with
it, which in turn produces an execution trace. We use dynamic tainting to analyze the trace and
report interesting code locations, like comparisons, including their taints to the input generator.
Those comparison taints are used to �nd locations (i.e. input characters) in the original input
that can be substituted, e.g. with the values they were compared to. Recursive descent parsers
typically have the terminal symbols directly encoded as constants in the comparisons in the
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<START> = <EXPR>
<EXPR> = <TERM> + <EXPR> | <TERM> - <EXPR> | <TERM>
<TERM> = <ATOM> * <TERM> | <ATOM> / <TERM> | <ATOM>
<ATOM> = ( <EXPR> ) | sin( <EXPR> ) | cos( <EXPR> ) | <INT>
<INT> = <NUM><INT> | <NUM>
<NUM> = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 3.2: A sample grammar for parsing an arithmetic expression. This grammar is an adaption
of the arithmetic expression grammar from the Fuzzingbook [161] presented in the
chapter “Fuzzing with Grammars”. The original grammar is presented in Appendix A-
III.

code. Because a parser typically consumes an input from left to right and stops when �nding the
�rst invalid lexeme, we substitute the last found substitution location—the location at which the
parser stopped and thus the �rst invalid portion of the input. Using domain-speci�c heuristics,
we add those new input candidates into our input queue and query the next, most promising
input and run the subject under test again.

3.1 Approach

If one thinks about grammars, lexical elements cannot be left out of the equation. Being the
building blocks of each grammar, they are the fundamental parts of each input. In a grammar
a lexical element is represented by a terminal symbol, hence the set of terminal symbols VT
in the grammar also build the set of lexical elements. As explained in Section 2.2, recursive
descent parsers heavily rely on comparisons which directly encode the terminal symbols as
constants in the code. In the following we will show how to generate valid inputs with dynamic
parser analysis.

How Parsers Are Built In Figure 3.1 we can see the direct mapping of nonterminal symbols
as functions and terminal symbols in control �ow and comparisons. The left hand-sides of the
production rules are re�ected in the methods, the expr and term production rules (as presented
in Figure 3.2) are translated to their own functions in the C code. The return value of the
function indicates if the nonterminal symbol was successfully parsed. The right hand-sides are
implemented as function bodies of the methods of the respective nonterminal symbols, com-
paring constants (the terminal symbols) or calling the respective functions of the nonterminal
symbols.

For parsing, we typically need to skip whitespaces before consuming another relevant terminal
symbol, hence the function calls to skip_whitespace() at di�erent positions in the code, e.g. in
Line 2. More interesting though is Line 16 which directly follows the �ow of the grammar,
parsing the nonterminal symbol term as a function call to the function term(). All nonterminal
symbols are parsed by calling their respective functions, letting them consume the terminal
symbols in the derivation tree of the nonterminal symbol greedily and checking the return code.
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On the other hand, terminal symbols are much easier to parse. In their case the parser only
needs to check if the character(s) at the current position match the terminal symbol, e.g. in Line
18 it tries to parse the + and − terminal symbols. If successful, the parser cursor is advanced
equal to the number of characters consumed, in this case one character (Line 19). After reading
a + or −, an expr must follow, hence the parser tries to successfully parse the expr nonterminal
symbol in Line 20 and returns the respective value.

A production rule is a combination of optional lists of terminal symbols and nonterminal
symbols that can be applied. In the expr parsing function we can see the optionality re�ected in
the control �ow. If in Line 18 neither a + or − was consumed, the parser knows that term was
already consumed and returns true immediately (Line 22) as the operator and a following expr
is optional. Similar, if the parsing of a term fails right at the beginning of the expr parsing step,
the parser can immediately stop parsing and return false (Line 25).

As described above, the lexical elements, i.e. the terminal symbols, are used in the code to
consume characters while parsing. Concretely, they are used to guide the parser character
by character, lexeme by lexeme through the parsing steps. Hereby, each lexeme is greedily
consumed while parsing, i.e. on matching a lexeme the upcoming next parsing step is de�ned.

Resulting Guarantees This method of parsing gives us two general concepts which we
can use for generating valid inputs with our technique: a) terminal symbols are re�ected as
constants in the code and each terminal symbol needs to have a corresponding constant in the
respective comparisons and b) terminal symbols are only compared at the position at which
they are valid and the parser checks all valid options before stopping parsing.1 This means, if
we look at comparisons during program execution we will see all valid terminal symbols at
some point (if we cover all features of the grammar) and if we have a valid pre�x but an invalid
su�x, the parser will compare the invalid su�x (at least partially and from left to right) with all
valid options.

Parser Analysis By relying on those guarantees, we can build an algorithm which is able to
create valid inputs iteratively by observing several program executions with carefully selected
inputs. The basic idea is the following2:

1 def input_generation_and_execution():
2 inp = random(printable_characters)
3 frontier = PriorityQueue()
4 comparisons, is_valid = run_and_trace(inp)
5 while True:
6 if is_valid:
7 report(inp)
8 for comp in comparisons:

1We will later see that those two assumptions do not hold in all generality in the real world, but to some extent.
For the moment, let us assume they always hold.

2There are more details to the algorithm which are omitted here for readability.
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9 frontier.add(inp, comp)
10 inp = mutate(frontier.pop())
11 comparisons, is_valid = run_and_trace(inp)
12 if is_valid:
13 continue
14 inp = inp + random(printable_characters)
15 comparisons, is_valid = run_and_trace(inp)

Figure 3.3 also visually represents this generation loop. Our approach starts with nothing but
a random input character, given to the program (Line 2). We could also start with an empty
input, but typically a parser would not perform any calculations on such a value, it would get
rejected or accepted right away and we will not gain any information. The subject under test’s
parser compares our random input with all possible alternatives it knows, it checks all possible
valid starting bytes for a valid input. Our tool can observe these comparisons by looking at the
taint trace produced by our dynamic tainting engine when running the program on the input
(Line 4).

Initial Input SUT Taint EngineTrace

TaintsNew Input Input Inference

Figure 3.3: The input generation loop of our inference algorithm.

We check if the just executed input was syntactically valid and report-worthy (e.g. the
program has exit code zero and the input covers code that was not covered by any other valid input
beforehand), and if so we report the input as valid (Line 7). The comparisons are put into a
priority queue based on a generic heuristic classifying recursive descent parser comparisons and
their inputs (Line 9). The input that caused the comparison on the subject is stored alongside.

Now, the most promising comparison is retrieved from the frontier and a comparison speci�c
mutation is applied on the input stored with the comparison (Line 10). Typically, the input
characters that were used in the comparison are replaced with the constant value they were
compared to; the characters that may appear in the input after the characters used for replace-
ment are discarded. This new input is �rst checked for validity by running the program on the
input (Lines 11 and 12) and if so is used to start the next iteration of the loop (Line 13)—i.e. it
is reported and a new input is taken from the queue.3 If the program did not �nish with exit
code 0 or the input did not cover new code, we apply a random addition to the input as we
assume the input to be at least a valid pre�x and we want to force the parser to compare the

3Technically, if this input without random extension did not let the program exit with exit code 0, the program
would not be traced to increase the overall execution speed. The tracing is only needed for the randomly extended
input in the second step.
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next character (Line 14). This new input is again given to the subject under test and the loop
restarts (Line 15).

Sample Execution Figure 3.4 gives an example for a happy path, showing how our approach
would generate an input on the parser presented in Figure 3.1 (or respectively the full parser as
presented in Appendix A-I). We start with the random input ’@’, give it to the subject under
test and let the instrumented program process the input. The resulting trace contains the
comparisons done on the input character, resulting in the possible substitutions ’(’, ’sin(’, ’cos(’,
and the numbers zero to nine. One value is selected, in this case the opening parenthesis, and
the ’@’ character is replaced with this value. Now it is checked if the new input is valid (it is
not) and a random character is added to the newly generated input, resulting in ’(&’. The next
loop iteration is performed with the generated input, resulting in an even longer valid pre�x:
’(2’, which is extended with an equals character. After another loop iteration, we get our �nal
result: ’(2)’, a valid input for our expression parser.

Summary We start with a random input, run it on the subject under test to gain initial
information about the parser. Then we sort possible mutations inferred by parser comparisons
into a priority queue backed by a heuristic, which is designed to increase code and input feature
coverage with generated inputs. With this method we are able to query the parser iteratively,
gaining more and more information about it and ultimately generate a variety of syntactically
diverse inputs covering the features of the parser.

3.2 Parser Analysis Implementation

In Section 3.1 we outline the foundation of approach, showing the basic idea of how syntacti-
cally valid and diverse inputs can be inferred from a parser. While this general idea is certainly
su�cient to produce inputs based on parser analysis, the technical details (of our implemen-
tation but also of actual parser code) are also important to make the approach applicable in
practice. We will �rst detail how and which information is extracted from the program, then
we explain the technical details to make the approach work on actual program code.

3.2.1 Dynamic Tainting For Parser Analysis

Most of the dynamic tainting engine which is used as an information provider for this approach
was originally developed for my master thesis [101] and further explained in the publication
Dynamic Tainting for Automatic Test Case Generation [100]. Thus, the conceptualization and
implementation of the dynamic tainting engine is not part of the contributions for this thesis.
Still, we explain the concepts here again, as they are central for the approach. Both of our
publications [102, 105] use the dynamic tainting engine, hence in this section we use the latest
version of the implementation as baseline for our explanations (i.e. the implementation used for
Learning Input Tokens for E�ective Fuzzing [102, 103]), but leave out token speci�c extensions
that are discussed in Chapter 4.



3.2 Parser Analysis Implementation 37

Input SUT/Taint Analyzer Taint Trace

@ SUT

(
sin(
cos(
0. . .9

(& SUT

(
sin(
cos(
0. . .9

Taint Analyzer

(2 = SUT

+
−
∗
/
0..9
)

Taint Analyzer

(2)

Taint Analyzer

Run Input Produce Trace

Run Input Produce Trace

Run Input Produce Trace

Read Trace
1. Select (
2. Test Input (
3. Append &

Read Trace
1. Select 2
2. Test Input (2
3. Append =

Read Trace
1. Select )
2. Test Input (2)
3. Input Accepted

Figure 3.4: A sample input generation with our inference algorithm (this shows an idealized run
to avoid details that would make the example more complex). The presented taint
traces (nodes on the right) are �guratively shown as the comparisons on the last
character of each run as those are the ones used by our taint analyzer algorithm. The
actual taint trace would contain all executed instructions which are then analyzed
by our taint analyzer to get the comparisons on all input characters. For better
readability we combined the tainting engine and input inference into one node—the
taint analyzer.
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In Section 3.1 we have already seen that lexical elements are encoded as constants in the code
and used in comparisons. Still, we cannot use all comparisons from the code but need to �lter
out those that are actually involved in parsing. Thus, this section explains how we extract the
respective information from the subject under test and make it usable for our input generation
step.

Overview Figure 3.5 details our implementation of the dynamic tainting engine: we start with
the source code of the program under test, instrument it and extract static information/metadata,
compile the instrumented program to a runnable binary, run it on one or more inputs, store the
execution traces, and �nally analyze the traces together with the extracted static information to
produce information about the taint propagation. The program version without instrumentation
is later used in our input inference loop for executions that do not need any instrumentation.
We decided to use LLVM bitcode [88] as the level of abstraction and write the tainting engine
on our own—this gives us a better control over the system. In the following we detail each
step and justify how the di�erent parts are used for inferring inputs. We will not include every
implementation detail, as this would be out of scope for this thesis, but we explain the main
parts needed for input inference.

Instrumentation

Program_instrumented.bc

Clang

Program_instrumented

Input

MetadataProgram_uninstrumented

Clang

Program.c
or

Program.bc

Execution Trace

Taint Engine

Taint Summary

Figure 3.5: Instrumentation and taint work�ow. Shaded elements indicate tools, unshaded
elements indicate (input) �les and products of the tools.

Static Metadata Besides the dynamic information extracted from the subject under test while
running, we also extract metadata—information about functions and their arguments, about global
variables, union, and struct types. In the following we present metadata elements extracted from
the program mjs and pretti�ed for better readability [26, 103] to show the relevant information
we extract:
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Structure Information
{
"sn": "tok",
"s": 128,
"el": [{"e": "tok"}, {"e": "len"}, {"e": "ptr"}]

}

The key “sn” on the one hand de�nes that this JSON object describes a structure type,
on the other hand its value is the name of the structure type. The “s” value describes the
overall size of the structure in bytes, i.e. the sum of the sizes of all structure elements.4
The “el” key references a list of JSON objects which contain the name of the di�erent
structure elements extracted from debug information. The information from the “el”
�elds are not actively used for the presented version of our approach and are just an
extension to the tainting engine.

Union Information

{"un": "anon.0", "s": 64}

For unions we have a similar setup, but here we only track the name (indicated by the
“un” value) as well as the size (the “s” value). Also, the size for unions is the size of
the largest element, not the sum of sizes.

Function Information
{
"f": "mbuf_remove",
"ar": [
{"a": "mb", "t": "mbuf*"},
{"a": "n", "t": "i64"}
]

}

For function calls we �rst need to know the name of the function (the “f” value). Now,
for function calls during execution the tainting engine needs to create a new tainting
scope and propagate the taints from the caller registers to the callee registers. Therefore,
we store information about the arguments in an array (“ar”). Each element contains
the name of the argument register at the respective position (“a”) as well as the type
“t”5. The register name and position is used to determine which named register in the
new tainting scope will contain the respective taint from the argument of the caller.

Global Variable Information

{"gv": ".str.71", "t": "[3 x i8]", "v": "-l"}
4The structure name and the size information is partially calculated from the type de�nition in the LLVM bitcode,

partially extracted from debug information.
5Similar to structure and union information as described above, the type is not actively used.
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A global variable has a name (“gv”), a type (“t”; in this case an array with three eight
bit elements) and an initial value “v” for global variables which names start with .str.
To the best of our knowledge, those variables contain string constants. This information
can be used in our tainting engine for comparisons, i.e. a call to the C function strcmp()
might reference a global variable. As our approach heavily relies on comparisons against
constant values, it is crucial to know compile time constants. With this information we
can taint the string constant values with a speci�c taint, tracking the information coming
from those values during runtime. In this example, the logged value is -l.

Instrumentation Before we can analyze the program execution, we �rst need to make the
program dynamically analyzable. Therefore, we instrument the program under test using
an LLVM optimization pass [92] working on LLVM bitcode. Since we are implementing a
proof-of-concept implementation, we restrict ourselves to programs written in C, this makes
the implementation of the tainting engine easier. At �rst one might think LLVM bitcode is
completely language agnostic (or at least mainly language agnostic), as this is the basic idea
of the framework. While this is true for running the instrumentation in general, it is hard to
instrument and follow taints through the standard library of the original programming language.

Instrumenting the standard library is very costly in terms of execution time when running
the linked subject under test, hence we decided to write function summaries for the most
important library calls, i.e. calls that handle strings and characters. For example, we special
handle strcmp() by reporting the two compared strings instead of just reporting the pointers;
also we handle calls to conversion and comparison functions like strtod() or isdigit() by reporting
mock-comparisons to the input generation, which can later be used to replace the respective
characters with pre-de�ned values that are valid for the respective function. For the function
strchr() it is checked if the search character is tainted and a comparison is reported if so. We
also handle the vice versa case in which, if the search character is not tainted, we check if the
searched string is tainted—in fact we approximate and check if the �rst character of the string
is tainted and does not stem from a string constant. If so we report a special comparison named
strsearch between the searched (and tainted) string up until the search was successful and the
character that was used for searching, i.e. we simulate which characters the call to strchr()
would actually use for comparison. Implementation details about all wrapped functions and
how they are handled can be found in the replication package of lFuzzer (also including the
implementation of pFuzzer) [103].

This wrapping of standard library functions comes with bene�ts and drawbacks: on the one
hand we are no longer language agnostic, we restrict ourselves to C, on the other hand, we can
decide for each function how our system should behave. For example, instead of reporting the
internals of the function strcmp(), we can just report a string comparison to the input generator.

Used Passes/CLI Options To reduce the instrumentation complexity, we use the following
LLVM passes and command line options:



3.2 Parser Analysis Implementation 41

-g Includes debug information about the LLVM bitcode �le [87] which is analyzed and instru-
mented by us.

-S For the LLVM optimizer, the documentation says: “Write output in LLVM intermediate
language (instead of bitcode)[. . . ]” [91]. For Clang is says: “Run the previous stages as well
as LLVM generation and optimization stages and target-speci�c code generation, producing
an assembly �le[. . . ]” [87]. This makes it easier for us to apply our tools as we produce
and use intermediate compilation results, which we need to be in the LLVM intermediate
language.

-x c “Treat subsequent input �les as having type language[. . . ]” [87], whereas the language is
C in our case, because we only target C code with our prototype implementation.

-O3 “Like -O2, except that it enables optimizations that take longer to perform or that may
generate larger code (in an attempt to make the program run faster)[. . . ]” [87]. The
optimization level O2 is described as follows: “Moderate level of optimization which enables
most optimizations[. . . ]” [87]. This optimization level is used for the �nal compilation
including the instrumented code, hence the program likely executes faster as with a lower
optimization level.

-emit-llvm “Generate output �les in LLVM formats, suitable for link time optimization.
When used with -S this generates LLVM intermediate language assembly �les. . . ” [87].
Makes it possible, and because of the combination with the “-S” option also easier, for
us to apply our tools on the intermediate compilation products (especially the metadata
extraction which analyzes the human readable LLVM intermediate language).

-D_FORTIFY_SOURCE=0 “De�ning this macro causes some lightweight checks to be per-
formed to detect some bu�er over�ow errors when employing various string and memory
manipulation functions [. . . ]. For some functions, argument consistency is checked; [. . . ]”
[85]. Setting it to 0 should deactivate this. The concrete implementation in Clang might
be di�erent from the implementation in GCC [130], but as we deactivate the feature it is
not important how it is concretely implemented.6

-reg2mem Puts registers in memory which removesphi nodes from the LLVM bitcode: “This
�le demotes all registers to memory references[. . . ]” [89]. “At runtime, the ‘phi‘ instruction
logically takes on the value speci�ed by the pair corresponding to the predecessor basic block
that executed just prior to the current block” [88]. Due to technical reasons, the phi node
would need a special handling in the tainting engine. With this pass we avoid adding this
complexity to our prototype implementation.

-instnamer “This is a little utility pass that gives instructions names[. . . ]” [89], which also
means that every assigned register gets a name. This name can then be used in the
tainting engine to uniquely reference the di�erent LLVM bitcode registers.

6We do not have citations for the concrete version of clang/gcc used in the evaluation, but the generic citations for
-D_FORTIFY_SOURCE should be su�cient to explain the command line argument.



42 3 Extracting Lexical Elements

-strip-debug “This option causes opt to strip debug information from the module before
applying other optimizations[. . . ]” [91]. It is used to avoid getting errors if our instrumen-
tation breaks the debug information.

-disable-verify Disables the LLVM bitcode veri�er [90]. We expect the �nal transfor-
mation to be correct, though some intermediate results might not pass the veri�er (e.g.
broken debug information, which is stripped anyways in the end).

-fno-inline Deactivates some code inlining during compilation [45]. Even though the
command line �ag is only documented for GCC, Clang has some e�orts to keep the
command line compatible with GCC in this regard [86]. This makes it easier to follow the
trace later as we want to have the original code structure as de�ned by the developer.7

Tracing One Instruction To track how data �ows from one instruction to another we
need to collect information about the executed instructions. This means, we �rst need to
instrument every instruction in the source code such that, once it is executed, the runtime
information we want to trace is actually logged. A snippet of such an instrumented LLVM
bitcode instruction would look like the following for a return statement (the example is extracted
from an instrumentation from the replication package [103]; pretti�ed and shortened):

1 call void @tracerllvm_instructionHeader(
2 i64 1,
3 i8* getelementptr inbounds ([19 x i8], [19 x i8]* @27, i32 0,

i32 0),↪→

4 i8* getelementptr inbounds ([1 x i8], [1 x i8]* @11, i32 0, i32
0),↪→

5 i8* getelementptr inbounds ([5 x i8], [5 x i8]* @2, i32 0, i32
0)), dbg 943↪→

6 %79 = zext i32 %tmp36 to i64, dbg 943
7 call void @tracerllvm_callOperandInt(
8 i8* getelementptr inbounds ([6 x i8], [6 x i8]* @79, i32 0, i32

0),↪→

9 i64 %79,
10 i8* getelementptr inbounds ([4 x i8], [4 x i8]* @13, i32 0, i32

0)), dbg 943↪→

11 call void @tracerllvm_instructionEnd(), dbg 943
12 ret i32 %tmp36, dbg 943

In the code above, the return statement (Line 12) is the only statement of the original code,
all other statements are added for tracing. The needed information is collected and printed
before the actual instruction is executed. The added functions just log the information to a �le.

At �rst, in the call starting from Line 1, standard information about the instruction is collected
(the same information is collected for most instructions). The �rst argument is the opcode of

7Again, the evaluation might have used a di�erent code version of clang, but this feature is not crucial for the �nal
results. Also all tools in the evaluation, if they use Clang, used the same version of Clang.
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the instruction, in this case 1 (a return instruction). The second argument is the name of the
surrounding function, the third argument is the name of the LLVM bitcode register about to be
assigned, and the fourth argument is the type (as string) of the assigned register8.

In Line 6 we prepare the tracing of the operand of the return instruction by converting its
type and storing the result in a temporary register. LLVM bitcode is typed, hence to avoid
writing helper functions for each type individually, we cast values coming from the original
code to a few pre-de�ned types, in this case to a 64-bit integer value. If we would not do this,
we would have to write several tracerllvm_callOperandInt() functions, one for each
integer type (e.g. for i1, i2, . . . ).

The casted value is then used in Line 7 to collect information about the operand itself
(if there is more than one operand for the instruction we would add conversion and trac-
ing calls for all operands). The �rst argument is the name of the LLVM bitcode register
containing the value of the instruction operand, the second argument is the value of the
operand, and the third argument contains the type of the register. In fact, besides the function
tracerllvm_callOperandInt(), there are also functions for other types like float,
double, string9, or vectors; all working very similar to the integer logging func-
tion, collecting similar information but internally handling the value correctly according to its
type.

The function in Line 11 ends the logging step by merging all collected information into one
JSON object which is then written and �ushed to the tracing �le.10

Safety Measures The linked library takes care to not trace any code inside itself, before the
�rst instruction of the program main is called, and after main returned. Thus, we inject a tracer
function as the �rst instruction in the main() function that opens the �le the trace is written
to and initializes the tracer as well as a function right before the return statement of main()
that closes this �le. Hence, we ensure that tracing information is only written once the �le is
opened and not written anymore once it was closed. Also, it should not happen that the tracer
code calls instrumented code. To avoid such border cases, we put guards into the tracer that
ensure no tracing is done while a tracing function is active (i.e. higher up on the call stack).

Whenever a new logging element is started, i.e. a new instruction is started to be traced, the
previous logging is stopped beforehand by closing the logging element in the trace and �ushing
the information to the �le to keep data integrity. This ensures that the information is correctly

8In this case no register is assigned, the value is just returned by the function. Thus the name of the assigned
register is an empty C string and the type is void.

9C itself does not have string values, but there are functions working on either zero terminated char pointers or
�xed width char arrays which can be interpreted as strings. If we instrument such a function, we interpret the
used pointers as pointers to strings, hence we also dereference the pointer and output the referenced string.

10Besides the mentioned standard logging functions we implemented some special functions that trace other
information. For example, we track basic block entering (e.g. for later coverage collection), but also special �le
information and other additional information to handle library functions like fscanf and fgets better.
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put into our trace, such that we do not lose any information. With those safety measures we try
to get as much tracing information as possible while avoiding unreadable traces and crashes
due to our instrumentation.

Compilation Once the program is successfully instrumented, we get an instrumented bitcode
�le from the LLVM optimizer which applies our instrumentation pass on the original input
bitcode �le. This instrumented �le can be compiled with Clang to an executable, which also
includes libraries that contain the actual implementation of our instrumentation framework
(the LLVM pass only adds function calls to our framework, no actual implementation).

Execution And Tracing The resulting binary can now be used like the original subject
under test, except that it will produce a trace �le. In detail, it produces an exact list of called
instructions together with the concrete values used by each instruction. For some function calls
we also print additional information, e.g. the strings used by the function calls. The trace is
stored in a �le alongside the subject under test and is also at least partially printed if the subject
crashes (a behavior that is not uncommon when giving random inputs to a program)—thus, in
most cases we extract at least some information about the program execution.

We log the following information, depending on which type of information we want to trace.
The presented examples (from runs from the replication package [103]; pretti�ed and shortened)
explain how the tracing is done—they represent the di�erent elements in the trace:

Command Line Input

{"av": [
{"e": [

{"p":"140726853641969","c":"/"},
{"p":"140726853641970","c":"h"}

]}
]}

For a typical command line input of the program we trace the following information:
• av: The array of program arguments
• e: One program argument
• p: The pointer value to one character of one program argument
• c: The character stored at the respective position in memory

If the user wants to trace information coming from the command line, the tainting engine
can mark those pointer locations as tainted. Thus, input from the command line is always
re�ected in the trace, in particular there is one JSON object with the key “av” and an
array of elements. Each element is one command line argument stored in the second
argument of the programs’ main function (in C this argument is typically char** argv).
For each such string we iterate the characters and trace the pointer value (“p”) and the
character given to the subject under test (“c”).
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Standard Instruction

{
"oc": 30,
"fn": "ini_parse_stream",
"ar": "tmp43",
"at": "i8",
"a": [{"o": "tmp42", "v": "140726853639376", "t": "i8*"}]

}

For a typical LLVM bitcode instruction we trace the following information:
• oc: The opcode of the speci�c instruction
• fn: The name of the function surrounding the instruction
• ar: The name of the register in which the result of the instruction is stored (if

existent, otherwise an empty string)
• at: The type of the result register
• a: An array of instruction arguments, the number of elements depends on the

instruction
– o: The name of the register used in this argument (for constants a dummy

name is used here)
– v: The value of the argument register or constant
– t: The type of the argument register or constant

This information is used in the tainting engine to correctly propagate taints from the
arguments to the result registers (or in cases like store instructions to other locations like
the memory). In fact each instruction (as de�ned by the opcode) has speci�c semantics
how taints should be propagated. For example, for a binary instruction like adding two
values, the taints of both operands are propagated to the results; for a store instruction
the taint of the stored register is assigned to the memory location and vice versa the taint
of a memory location is assigned to the target register on loading.
Especially the types and names of the registers are important. The tainting engine maps
the taints to the register names and the types de�ne how many bytes are occupied if a
taint is written to memory11. Values are important in cases like memory writes, where
the location is de�ned by the value of one of the operands of the instruction. Also,
the constant values of comparisons are obviously important, as they may be terminal
symbols that we need for our input inference. The function name is mostly used for
triggering method entry and exit events (which are used to calculate a stack), as well as
marking functions as lexing (which will get important in Section 4.1.1). To avoid writing
tracer functions speci�c for each an every instruction, we log all needed information
for every instruction, reducing the implementation e�ort for the tracer, as it can handle
most instructions equally and does not need speci�c implementations for the di�erent
instructions.

11This information is important as one could write a four byte integer to memory and then read single bytes from
the written location. All four bytes need to be tainted, to make sure that all single byte reads are tainted as well.
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Function Call

{
"i": " %call13 = call i8* @rstrip(i8* %tmp21), !dbg !121",
"fn": "ini_parse_stream",
"ar": "call13",
"at": "i8*",
"a": [{
"o": "tmp21",
"v": "140726853639376",
"t": "i8*"

}, {
"o": "rstrip",
"v": "18446744073709551574",
"t": "i8* (i8*)*"

}],
"opt": []

}

For a typical function call in LLVM bitcode the following information is traced:

• i: The instruction string in LLVM bitcode format

• fn, ar, a, o, v, and t are the same as with a standard instruction.

• opt: Used for additional information for manually wrapped functions, like fgets
and gets (prints the read string, including the source it is read from, and a manually
de�ned opcode, which does not exist in LLVM, speci�c for the function)

A method call is a two step operation in our tainting engine: �rst, the engine initializes
which registers of the caller are used as arguments for the callee—for propagating the
taints once the callee is called—and setting the return register. The next step is a special
instruction injected as �rst instruction into each method. This instruction triggers the
building of the new call stack: initializing the argument registers correctly, setting the
return register which will later be used when a return instruction is encountered, and
setting a new taint scope in the tainting engine. This also means: if a function call to a
library function is done, the second tracing call is not present and no new scope is added.
For some wrapped functions (determined by checking the name of the called function
in the “i” value12), we do not prepare a new stack, but call a speci�c handler in the
tainting engine which takes care of correctly propagating taints and reporting complex
comparisons (e.g. calling strcmp() causes a report of a string comparison).
In general we trace an instruction before it is executed to get the value the instruction
works on, i.e. the “in�owing” values. Some functions though change the memory pointed
to by arguments or return an important value, for those functions we put the trace call
after the function to get the updated information instead.

12The exported string often contains another debug information pointer compared to the actual instrumented
instruction. Though, we do not use this information, thus we can ignore this deviation in the resulting bitcode
�le.
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Taint Tracking Once the program is instrumented and executed, we have to analyze the
resulting trace to actually report our taint results. While the tainting engine implements the
standard features of dynamic tainting as explained in Section 2.4 (de�ning the taint propagation
for each instruction and initial taint creation), we also added features that are targeted to our
use case of generating valid inputs for parsers.

First of all, we need to de�ne which bytes to mark initially as tainted. In our case, we mark
bytes coming from the command line or stdin as tainted, those are the typical input sources.
Including �le I/O would be possible but was not done in the evaluation of our prototype as we
standardized the input source for all subjects to stdin to make the evaluation easier.13 Once
the initial taints are de�ned we need to make sure that they are correctly propagated through
the program execution. Therefore, we de�ne for each relevant LLVM bitcode instruction the
taint propagation semantics and implement them in our taint engine. On top of that, we de�ne
semantics for some commonly used standard library functions. This gives us a taint engine
which can follow data-�ows on a byte level through the program execution.

One important feature of our tainting engine is querying taints at useful code locations. We
need to de�ne at which positions taints should actually be reported—not all instructions in the
code are equally important. As already mentioned in Section 2.2.1, parsers implement their
parsing information in comparisons against constant values (or at least values that do not come
from the input). Hence, we monitor code locations that compare values and report respective
taint information for those code locations in a form that can be used by our input inference
module as presented in Section 3.2.2.

We observe LLVM bitcode comparison instructions (ignoring �oating point comparisons as
characters are typically represented as integer values). The most obvious instruction to observe
is the comparison of two integers with icmp [88]. If at least one of the values is tainted we
assume this to be a character comparison and report a tainted comparison by adding it to the
comparison trace14 which will be used for input inference (Section 3.2.2).

Also, we make use of the knowledge that the subject under test is written in C code and wrap
di�erent comparison functions from the standard library [103]. For example, if we see a call to
strcmp() we can query the underlying memory locations (the compared strings) and see if some
or all bytes of exactly one of the strings is tainted (ignoring taints attached to string constants).
If so, we report a string comparison to the taint trace.
13This is not a limitation of the approach itself or the capabilities of dynamic tainting, both could handle �le I/O as

well—our approach partially implements the handling of �le I/O. It is just easier during evaluation to have the
same input source for all subjects to reduce specialization of the evaluation scripts towards the subjects.

14In general we �lter out non-printable character comparisons, i.e. any character with an ASCII code less than 32
(which is a whitespace) except the line feed character (ASCII value 10) and any character with ASCII code
greater equal 128. Typically such characters are not used in the formats we analyze: human readable inputs.
This also �lters some whitespace characters like a horizontal tab, which we accept as an approximation. Also,
we consider comparisons against the eof character only if the compared input character is the last character of
the input to reduce noise in the output.
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Calling strlen() with a tainted string would taint the resulting integer value with the taints
from the string used and marking them as a strlen() taint. We only do this if the string has a
length greater zero and is not a string constant. We also attach such a string length taint for
speci�c LLVM sub instructions. We interpret both operands as pointers and check if they
point to a tainted byte. For the �rst operand we check the byte in front of the pointed location,
because if the subtraction is a string length calculation the pointer might point to the zero
terminator of the string which might not be tainted. If both locations are tainted bytes, we
assume the approximation to be correct—the second operand points to the �rst character of a
string and the �rst operand points to the �rst character after the string. Hence, we take the
taints of the whole memory location between the two bytes (excluding the memory location
the �rst operand points to, as this might be the zero terminator of the string) and attach them
to the subtraction result.15 If this value is now used in any comparison with a constant between
one and twenty, we report a string length comparison. The string length comparison is an
approximation and we limit the lengths to values that are typically used as input token sizes to
reduce noise in the tainting output. With this special comparison the input inference module
knows which string length a part of the input might need to have and may generate an input
with matching length. Other function wrappers are also implemented tailored to the function
they belong to.

Summary In this section we detailed how we made use of and extend general tainting ideas
to create a tainting engine which is able to track characters through a parser and report valuable
information which can be used in following steps to build syntactically valid inputs. The
following section will explain how the generated taint trace is used to infer inputs from various
program executions.

3.2.2 Input Inference

Inference Loop In this section we explain how we use the tainting trace (Section 3.2.1). We
have already presented the pseudo code for our inference loop in Section 3.1. In general we
start with a random character, let the program run on this character, collect possible mutations
based on the comparisons done, put them in a priority queue and then let the program run again.
We also check for every run if a syntactically valid input was already found16 and also extend
presumably valid pre�xes with random character extensions to gain more information about the
program under test. In this section we will explain two crucial details of the inference
loop: the comparison types used for input mutation and the calculation of the heuristic to rank
the di�erent possible mutations into a priority queue.

Comparison Selection To reduce the number of options for mutations, we select comparisons
using the last compared character—this is typically the �rst faulty character of the input, as a
15Note: for the prototype implementation it might happen that in rare border cases this approximation is wrong

and cause a crash in the tainting engine, which might introduce random mutations.
16We discard inputs that are larger than 199 characters in most cases to avoid overly large inputs that typically

only contain repeating syntactic features—only in some border cases they might be generated and executed, but
typically we do not run the subject under test with inputs that are much larger or build new inputs from them.
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recursive descent parser parses from left to right. In detail, we �rst select the last comparison17

as we assume for a recursive descent parser to consume characters from left to right, hence we
assume the last comparison should also contain the last compared character. For this comparison
we extract the �rst, and thus typical minimal, used input index that was part of the comparison,
this is our index used for selecting all comparisons that include this index—hence the start of
the last compared lexeme. We also include comparisons using the operator strcmp() and
strlen() that could consume more characters than exist in the input.

Pruning With pruning we check if we can discard all mutations for an execution trace to
reduce the number of mutations to only relevant ones. For this, we check two things in the trace:
do we have recurring comparisons on the last few characters and is there any looping comparison
done on input characters.

For the recurring comparisons we check if the operands used in the comparisons on the last
index are the same as the operands used on the indexes minus four to minus two (to have some
reference set). In this case we can assume that the comparison is always the same on the last
few characters and thus we can prune the trace information as there are likely already smaller
inputs in the priority queue which handle the same code and produce similar mutations. We
likely do not gain any new information at this point.

The check for new branches between comparisons is done by checking if there are ten or more
di�erent starting indexes in consecutive real comparisons (no strlen() or end-of-�le comparison)
excluding the maximum index and above without any change in stack or new branch covered18

between those comparisons. A typical example would be, having a loop which takes one input
character after another and compares it against some value, neither calling any other function
nor running di�erent code within the loop—for example, collecting the read characters in a
second string. If this loop iterates too often, the whole input would be pruned as we assume
that earlier generated inputs with less characters likely already triggered the loop often enough
and more characters will only increase the loop count without triggering new code after the
loop �nished.

Out Of Bounds Index If the inputs are not pruned, we check if the found maximum index
is larger than the size of the input. This might indicate an incorrect trace or other incorrect
information from the trace and is used as a general fallback. In this case we add just one
mutation, which appends a random character (from the Python constant string.printable [144])
17When selecting the last comparison, we �lter out comparisons which involve some approximation of our tainting

engine. For example, comparisons of type strlen might not always actually show the wanted length of an input
string, but might be used for something else. Such approximations are �ne during input inference, as the
generation loop would test them by running the subject under test on the resulting input and discard incorrect
approximations quickly. Having the last actually compared character though is of higher importance, as we
need a valid pre�x and only replace the �rst character that caused the parser to report an error. Hence, we
under-approximate and �lter comparisons approximated by the tainting engine.

18New means in this case not covered in this execution beforehand.
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to the original input. This way, we run a similar input again while putting a new character
outside of the checked bounds to analyze how the subject under test reacts to this new input.

Comparison Types All �ltered comparisons are used to create a set of possible mutations
to the input they are stemming from. Hereby we iterate through the list of comparisons, and
based on the type we replace the respective input index with a new value:

Switch For switch-statements we take every option of the switch and use it as a replacement.
For switch statements every case is speci�cally implemented by the developer of the
parser, hence we assume all cases to be important for the overall parsing success.

Strlen For strlen-statements we just generate a string consisting of only ’a’ characters in the
length the strlen() comparison expects. For this to understand one has to understand the
strlen() operator: the tainting engine uses this operator if an integer value is compared
against another integer and a string length taint is involved, meaning that the tainting
engine assumes the comparison to be a comparison which checks if the input portion
has a certain length. By adding a substitution with a string that has this length we try to
ful�ll this requirement, hence we add a random but �xed string with only ’a’ characters.

Conversion Conversion-statements stem from strto standard library functions—in this speci�c
case from strtod and strtoul. For both we replace the characters that were tried to be
converted to strings from a random but �xed list of strings that represent the respective
numeric values, while �xed means we de�ned a list of di�erent options the respective
function would accept. For example, for strtod one value we de�ned is 3.0E2 and
for strtoul -0x1F was de�ned. Hence, we get for each conversion a list of possible
substitutions that can be applied. The list of functions and replacements can be extended.

Other For all other statements we just take one of the compared values from the operands and
use it as replacement.19 For an equality comparison like strcmp() or character equality
(e.g. “c == 'a'”) there is just one option which could be taken, but in some cases we
have comparisons where characters are checked to be in a range (either by comparing
if they are larger or smaller than a certain value; or in some cases a certain value is
�rst checked to be larger and then smaller, or vice versa, indicating a speci�c range the
character should be in)20. In this case any character in the range is �ne.

Random For each run, we also add two “random” mutations, i.e. we add two mock-comparisons
simulating a comparison of the last compared input character against a number and a

19Due to an implementation artifact from older versions of the tainting engine, end-of-�le comparisons get replaced
with either the character “-” or “1”, which introduces some noise in the generated inputs, but this noise might
also be helpful to explore new parts of the subject under test.

20For example, say we have two comparisons in our tainting engine, the �rst comparison is i1 ≥ 65 and the second
one is i1 ≤ 90 (with i1 being the input character at index 1), then only one comparison is given to our inference
engine: i1 ∈ [A . . . Z], i.e. i1 being a character from the list containing all characters between ‘A’ and ‘Z’. Hence,
we combine the two separate character comparisons to one range comparison. We just take the characters
used for comparison as range boundaries, hence if a greater than or less than operator is used we might get an
o�-by-one error, which can be used during input generation to test possibly wrong but close to speci�cation
inputs.
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letter. In some cases it happens that letters or numbers are implicitly accepted if nothing
else matches, i.e. there is no concrete comparison against those values. In other cases,
the comparison might be the opposite: the value is checked to not match another value.
This often happens if variables or numbers are parsed: the code could check if an input
character ‘C’ is greater or equal than the letter ‘A’ and less or equal than the letter ‘Z’
(analogous for numbers and the characters ‘0’ and ‘9’ as well as non-capital characters).
It is equally valid though, to check if the input character ‘C’ is less or equal than ’@’ and
greater equal than ‘[’ (analogous for numbers and the characters ‘/’ and ‘’:’ as well as
non-capital characters) and if not accept the character or number as valid. Hence, we
approximate such comparisons by adding them into the pool of possible substitutions.
Those random inputs will be ranked alongside other comparisons with substitutions of
length 1 and are thus, when looking at the overall input generation loop, mixed into the
stream of comparisons.

Heuristics We �lter the taint trace for the comparisons on the last character and apply the
following heuristics to rank the resulting comparisons for their usefulness. The numbers in
the list also indicate in which order each part of the heuristic is applied. When comparing two
comparisons, the second item of the heuristic value is only used if both comparisons have the
same value for the �rst item. Analogously, the third item is only used if the second item is
equal. The input ID is always a tie-breaker, as it is strictly monotonously increasing. A smaller
heuristic value ranks the comparison higher in the queue. Our heuristic contains the following:

1. Number of inputs that already took the same path

2. A combination of di�erent values:
• Length of the input (if new branches were covered; else 100)
• + average stack size after the comparisons of the last compared character/lexeme

(if new branches were covered; else 0)
• − number of newly covered branches (if new branches were covered; else 0)
• + sum of the length of the same pre�xes in already found valid inputs
• + 1 for every 5 inputs on the path of the generation tree
• − the length of the substitution times 2

3. The size of the di�erence of the stack to the parent

4. The length of the input

5. The input ID

Item 1 Let us explain for each part of the heuristic how it used and why we incorporated the
value into the heuristic. Item 1 of the list, the number of inputs with the same path, is used to
avoid duplicates.
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Typically, whenever we talk about paths, we mean the branches traversed until the occurrence
of the last comparison of a character or lexeme in front of the maximum index (in general the
start of the last lexeme) including the branches traversed until the next comparison. Except for
some border cases, this collects the branches until the last character is started to be parsed—
which approximates the coverage based on the valid part of the input. The last lexeme is often
invalid because we append random characters during input generation to new inputs. For this
path calculation we store the starting basic block of each branch traversal exported by the
tainting engine, i.e. only the �rst time a branch is traversed in a run it is also exported. This is
an under approximation of the actual path, but reduces the resources needed while still being
precise enough for our needs. If we have already generated an input that followed the same path
through the program, it is worth checking this input �rst and evaluating all resulting options of
it. Hence, inputs on new paths are preferred, similar to one of the heuristics used by AFL [160].

Item 2 This value combines di�erent aspects of the performed execution which cannot be
put in a speci�c order, but the combination of all values is important.

Input Length The calculation starts with the length of the input that was used to generate
the trace. In general small inputs are better, as we want a diverse set of inputs containing
diverse grammar features. This value is only considered if new code was covered by the
input, because only in this case we want to prefer shorter inputs. Otherwise, it is more
important to �nd inputs that cover new code, thus the value is set to 100 for inputs that
do not cover new code.

Average Stack Size We then add the average stack size seen after every comparison of the
highest index character up to the next comparison, as we want to penalize larger stacks
(remember that each new nonterminal symbol of the grammar introduces a new function
on the stack during parsing until the nonterminal symbol is fully parsed). In detail: we
�rst collect the highest starting index used in any comparison, collect all stack changes
(function call or return) between a comparison starting with the highest index up until
the next comparison or the end of the trace, and get the sizes of the stacks of those events.
Once we collected all stack sizes in one list, we calculate the average stack size (sum of
stack sizes divided by length of the list).21 If this value is not available, a dummy value of
100 is used. If no new code was covered by the input, this value is ignored.
A larger stack means we are likely deeper down in a recursion. The less complex the
input, the better, hence we want to avoid large recursion depths, which means we favor
inputs with a small recursion depth—if we do already cover new code with the valid
pre�x.

Newly Covered Branches Inputs that cover new branches that were not covered by previ-
ously found valid inputs are worth to explore22—the more branches are covered, the more

21Actually, the original Parser-Directed Fuzzing [105] paper has a slight error when describing this part of the
heuristic, we describe the correct version here.

22The coverage information we use for this heuristic is the same as for the part of the heuristic that calculates the
same paths taken (Item 1).
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interesting the input is. Still, if the input already covers new code, we want it to be short
and we want to �nd a su�x which makes the input syntactically valid. Hence, if new
code is covered, input length, average stack size, and this value are considered—making
the input short and preferring inputs that cover more code and have less open syntactic
features (less parsing functions on the stack). Hence, we include the number of branches
that were not covered beforehand.
If we run out of inputs that cover new code, i.e. if this value is 0, we are on a plateau in
our search space. Input length, average stack size, and this value are not considered and
instead a value of 100 is taken, penalizing this input vastly. In this case we prefer inputs
that are di�erent from other, already generated inputs—hence we use the length of the
same pre�xes, the number of ancestors and the substitution length as described below. For
inputs that do not cover new code it might even be important to increase input length and
stack size. For example, in general parsing an else keyword successfully can only work if
we have already seen an if keyword. Thus, we would need to append the else keyword to
an input like if (1 < 2) {...}, likely resulting in a higher stack and longer input.

Same Prefixes We store the already found valid inputs in a set23 and for every newly gener-
ated input we sum up the length of equivalent pre�xes, which yields a similarity value.
Inputs with a small similarity value are preferred, because they likely yield more syn-
tactic diversity. For example: for a programming language we already generated the
inputs while(3<4)..., while(3<=4)..., and if(3>4).... Now it might hap-
pen that during generation we have the choice to build our next input based on the pre�x
while(3>= or if(3>=. While in theory they are similar, we already have two inputs
with while, hence generating an input starting with if gives more diversity in the �nal
set (which might be interesting for input format learners). Hence, this heuristic would
show that the while(3>= pre�x has a similarity score of 14 (there are two valid inputs
with a same pre�x length of 7), while if(3>= only has a similarity of 5 (there is only
one valid input with a same pre�x length of 5), hence we prefer if(3>= for now.

Number Of Previous Inputs Every input is generated from a parent input and a mutation
based on a comparison—resulting in a generation tree. We want to have a breadth-�rst
search like expansion algorithm (which prefers shorter, grammar-feature rich inputs),
hence we prefer inputs that are close to the expansion root (which does not necessarily
correlate with the input size as the last character could be replaced several times, leading
to the same input size but a larger expansion path). To avoid having a breadth-�rst search
only algorithm we went for some middle ground and allowed an expansion path length
of �ve before penalizing the input, hence only every �fth input on the path will increase
this value.

Substitution Length The length of the substitution is also important as we do not only have
character substitutions but also complete lexeme substitutions (from string comparisons
in the code). While character substitutions are important (as control bytes and �ller

23An input is stored if it causes the subject under test to �nish with exit code zero or a timeout and covers new
branches not yet seen when considering all covered branches of the execution.
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values), the larger lexeme values are the more interesting ones, as they often enable new
features in the code. Thus, we prefer larger lexeme substitutions over single character
substitutions, in detail we prefer longer over shorter substitutions because we subtract
the length of the substitution times two. This feature is speci�cally interesting if we use
our produced inputs as seeds for a mutation based greybox fuzzer like AFL [160], as those
fuzzers struggle with generating such large lexemes if they are consumed as one entity in
the code. Without further knowledge, the fuzzer does not get gradual coverage feedback
while fuzzing but rather has a coverage plateau until the correct lexeme is found.

The combination of di�erent values is needed to adapt the heuristic based on other, already
generated inputs. For example, if we have a really long input that covers many di�erent branches,
it might still be useful to �rst try a set of shorter inputs that cover less branches. Those shorter
inputs might be easier to close (make syntactically valid) than the larger one because they might
have less features opened (e.g. less opened parenthesis that need to be closed). On the other
hand, if we have a slightly larger input which covers much more new code, it might be worth
exploring this pre�x �rst. If we can make it valid fast we will gain much more coverage (thus
likely covering more features) in a shorter time. Hence, no portion of this part of the heuristic
should be preferred over the other.

Item 3 Also, we check how much the generated input di�ers stack-wise from the input it was
produced from. With this value we want to prefer inputs that are the farthest away from the
parent comparison, hence inputs that produce diversity in the program coverage. If both stacks
are di�erent at a certain point, we return the size of the common pre�x, hence comparisons that
deviate earlier in the call stack are preferred, those explore other parts of the program. If the
new stack is larger (and the parent stack is equal to the start of the new stack), we return the size
of the new stack as we want to prefer inputs with a smaller stack. Otherwise (if the parent stack
is larger and the new stack is equal to the start of the parent stack), we return the size di�erence
between the new stack and the parent stack. This case is di�erent from the others, here we
prefer inputs that are closer to the parent comparison. The reason is that in such cases we
might be on the “closing” path of a valid input—we found a character that �nishes a feature and
reduces the stack size. It is possible that somewhere higher in the parent stack other parsing
options could be explored that we could miss if we close too fast, hence we want to perform
those closing calls in small steps, so we prefer stacks that are closer to the parent stack.

Item 4 and Item 5 Finally, if all other parts are equal, we prefer shorter inputs over larger
ones with Item 4—especially since a parser does not backtrack, hence equal pre�xes should not
change the execution for di�erent su�xes. The �nal tie-breaker is Item 5: we prefer older inputs
over newer ones using a strictly monotonously increasing ID. If two inputs have an otherwise
identical heuristic value, we use older inputs �rst to maintain the temporal order. This way we
get a heuristic that uniquely sorts every input into the generation queue.

�eue Recalculation Obviously some parts of the heuristic value are dependent on already
found valid inputs, e.g. we incorporate the number of newly covered branches in relation to the
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branches covered by valid inputs and the same pre�x metric is based on already found valid inputs.
Hence, once a new valid input is found, we need to update the respective part of the heuristic
value for all other inputs in the queue that were not already explored—we re-evaluate the queue.
For each value in the queue we store all important information to calculate its heuristic value,
hence once we update the information gathered from the valid inputs, we can iterate over all
inputs in the queue and re-build it using this new information.

Derivation Tree With our priority queue backed by the heuristic value explained above, we
can select promising inputs fast and run the subject under test to collect information about the
parsing step and generate syntactically valid inputs. In fact, since almost every input except for
the initial one is a mutation of a previous input, the inheritance spans a derivation tree, like
the one in Figure 3.6. The root of the tree is the initial value used for our derivations. From
there, di�erent child nodes are produced (the values in the nodes), based on the comparisons
seen on the last character (the labels on the edges). The nodes show the new input including
the randomly appended character, the inputs are tested �rst without the randomly appended
character for validity. The gray path would be the perfect path through the tree until the valid
input “(2)” is produced. In some cases it might happen that a comparison does not lead to a
larger pre�x; in those cases the children of such a node would have the same size but other
replacements. In fact, it could even happen that the size of a child node is smaller.

3.3 Limitations And Assumptions

Nothing is perfect and the ideas and contributions in this thesis are no exemption from
this. In Section 1.2 we already discussed the contributions of this thesis. To make clear under
which circumstances those apply, each chapter will contain a section about limitations and
assumptions. The limitations introduced in this chapter will partially be relaxed in Chapter 4
and Chapter 5. Those chapters will introduce improvements over the approach introduced
here.

The subject under test’s parser must be a recursive descent parser.
This is the most important limitation. The reason for this is simple: a recursive descent
parser re�ects the underlying structure of the parsed format, which we can use. Especially,
we require the parser to perform character comparisons at some point (or comparisons
on character ranges). Recursive descent parsers typically ful�ll this requirement and
are therefore very well suited as test subjects. Another typical implementation detail of
recursive descent parsers is that during parsing comparisons between input characters
and constants are only done if the constants are (with a very high likelihood) valid at the
very position in the input. We will make use of this to decide which characters to use
during input inference.

The subject under test should parse left-to-right.
Jumps to already consumed lexemes during parsing might misguide our input inference.
Concretely, if a parser jumps back and forth between the input bytes while parsing, our
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Figure 3.6: A sample input derivation tree, based on our arithmetic parser (Appendix A-I), which
shows how the di�erent inputs are related to each other. Each node also contains a
randomly appended character that would be used to build the resulting nodes from
the comparisons on that character. The gray nodes show the path through the tree
which results in the input “(2)”. Even if a valid input was found (like “(2)”), another
random character will be appended to check if further larger syntactically valid
inputs can be produced. For better readability we do not show all comparisons here.

approach would not be able to select the correct characters for replacement. We assume
that a parser accepted a character as valid if it starts comparing the subsequent characters
during parsing, because this parsing style is recommended by the Dragon Book [3] and a
typical pattern in compiler and parser design.
If the parser would not consume the input from left to right, we would need much
more backtracking. For example, suppose the parser accepts function de�nitions, e.g.
int sin(){return 5;}. One could imagine a parser that �rst accepts any function
name (in this case sin), then parses the argument list (here empty) and the body; and then
checks if the function name is in a list of pre-de�ned function names (so in the terminal
symbol set). In such a case our approach would generate the function de�nition including
the body step by step, needing several iterations, only to backtrack to the function name,
replacing it with a value from the pre-de�ned list and then restart from there.

Semantic correctness is ignored.
This means our tool is blind to the semantic validation phase of the subject under test
which typically comes after the recursive descent parser. This comes with a second
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problem: if the subject reports parsing errors non-distinguishable to semantical errors,
our approach would have to also generate semantically correct inputs which is out of
scope (as this would again mean backtracking). Many parsers work in phases: they �rst
check for syntactical correctness and then check the semantics of an input. Now think of
generating a valid C function de�nition, containing lots of syntactical elements—only
after the whole function de�nition was generated syntactically valid, the semantic phase
of the parser might recognize that a variable is not de�ned. This causes our approach to
delete everything after and including the �rst unde�ned variable usage, then building up
another syntactically valid function de�nition with a di�erent su�x after replacing the
invalid variable with a valid one. Hence, the approach would need many more iterations
as it cannot be certain that a syntactically valid pre�x is also semantically valid without
generating a full syntactically valid value.

A lexer in the subject under test will decrease the input generation e�ciency.
A lexer usually accepts a lexeme ignoring its position in the input, converts it to an
internal token, and uses this token in the parsing phase—which might then reject the
value because it expects another lexeme at the position in the input. Technically, this
means that the character comparisons we rely on happen in the lexer, not in the parser
itself. The approach explained in this chapter though assumes that if a character at
a certain position in the input is compared against another character, the compared
constant is syntactically valid for this position. If this is not the case, the pool of possible
replacements (i.e. the search space) for each character in the input increases substantially,
increasing the overall runtime for generating valid inputs.

The input generation heuristics are tailored to recursive descent parsers.
While also being part of the limitations beforehand, we want to make the usage of
heuristics and assumptions tailored to recursive descent parsers an explicit item of this
list. Section 3.2 details how we assume the code to look like and which parser speci�c
execution information we use to generate inputs. In this limitation, we want to clarify
that in theory a developer could implement a parser in any imaginable way, causing our
heuristics to either be of no use—or in worst case make them guide the input generator
in a wrong direction. In Section 2.2.1 we already show how a parser by the textbook
looks like by presenting the concepts of Aho et al. [3]. In Section 3.2 we justify the used
heuristics based on those basic concepts. We believe that most developers actually follow
those theoretic parser designs.

Subjects under test must be written in C and compilable with Clang.
This is mostly a technical shortcoming, and a limitation that is only bound to the current
implementation of our approach, not the overall idea—the framework can be implemented
for most other languages as well. Our general assumption is that the input characters
can be tracked throughout the execution of the subject via dynamic tainting and that we
can query the dynamic tainting engine on comparisons to gain knowledge about which
input characters are compared against which constants. Also, we require distinguishable
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function calls to build a stack. Both are features that most programming languages have,
hence the restriction is not severe on a theoretical level.

3.4 Summary

In this chapter we introduced our basic idea for generating syntactically valid and diverse
inputs for programs with a recursive descent parser. We start with a random input, analyze the
comparisons done on the input characters (using dynamic tainting), and use the comparison
values to create new inputs. We implement a tainting engine which is speci�cally designed
for our needs during parser analysis. The resulting taints, in combination with our recursive
descent parser speci�c heuristics, are used to iteratively build syntactically valid inputs for the
subjects under test. The heuristics also include information about the program executions like
covered code, which makes it possible to focus not only on the syntactic validity of the inputs,
but also on their syntactic diversity.
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In Section 1.1 we outlined the objectives for our thesis and in Section 1.2 we explained the
di�erent contributions to those objectives. This chapter contributes to solving our second
objective: generating inputs from subjects that use a tokenizer. In the following sections
we extend our approach, improving the generation of syntactically valid and diverse inputs for
subjects which use a lexer besides the parser. Our goal is to use the techniques as presented in
Chapter 3 even in the presence of a lexer—this was not possible beforehand because we would
lose the needed dynamic taints in the lexer and they would never end up in the parser.

Scope In Section 2.2.1 we have already mentioned that more complex input processors have
a lexing and a parsing phase. As we can see in Figure 4.1, a lexer introduces new indirections in
the overall information �ow from the input characters to the parser comparisons. Concretely,
the lexer breaks the direct data-�ow that was used in Chapter 3 to produce tainting information
for the input inference phase. Consequently, we would only see lexer comparisons which are,
in contrast to parser comparisons, not restricted to the validity of a lexeme at a given position.
Parser comparisons are typically done in the context of nonterminal symbol parsing, hence
every constant value seen in such a comparison should be a valid replacement for the compared
portion of the input. A lexer on the other hand only checks if the given input portion is a valid
terminal symbol—only the value returned by the lexer is then checked in the parser to validate
correctness at the given position. In this case, our basic approach will only recognize the lexer
comparisons and thus, instead of replacing an invalid character with a valid character, it will
replace invalid characters with any lexemes from the input space—decreasing the likelihood
of having a valid replacement. This leads to a much larger search space as it might happen
that we substitute the same input byte location several times with invalid values until a valid
continuation is found. Thus, this chapter details a technique to also analyze a parser in the
presence of a lexer—introducing lexer analysis and information propagation for input inference.

Approach Overview In short, we extend our initial input generation loop with additional token
information, making it possible to analyze lexer code, look for token generation patterns, and apply
our input generation techniques from Chapter 3 also in the presence of a lexer in the subject under
test. The following abstract algorithm shows a very brief overview on our approach:

1 def inputInference(subject):
2 inst_sut = instrument(subject)
3 input_queue = [random.nextChar()]
4 token_information = TokenInformation()
5 while True:
6 if token_information.hasTokensToLearn():

59
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1 enum lex_token{PLUS, MINUS, MULT, DIV, PAREN_L, PAREN_R,
2 SIN, COS, NUM, WS, UNDEF, END};
3 enum lex_token token = UNDEF;
4

5 void next_token_non_whitespace() {
6 if (input[pos] == '+') {
7 pos++;
8 token = PLUS;
9 //...

10 } else if (input[pos] == '(') {
11 pos++;
12 token = PAREN_L;
13 } else if (pos + 4 < input_size &&
14 !strncmp("sin(", input + pos, 4)) {
15 pos += 4;
16 token = SIN;
17 } else if {
18 //...
19 } else {
20 // lexing error
21 printf("Undef token at %d: %c", pos, input[pos]);
22 token = UNDEF;
23 }
24 }
25

26 void next_token() {
27 skip_whitespace();
28 next_token_non_whitespace();
29 }
30

31 int atom() {
32 if (token == PAREN_L || token == SIN || token == COS ) {
33 next_token();
34 if (expr()) {
35 if (token == PAREN_R) {
36 next_token();
37 //...
38 }

Figure 4.1: An arithmetic expression parser with a lexer, partially showing the parsing routine
for the atom nonterminal symbol from the grammar from Figure 3.2. The full lexer
and parser can be found in Appendix A-II.
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7 inp = token_information.nextTokenToLearn()
8 else:
9 inp = queue.pop()

10 trace = inst_sut.run(inp)
11 taints = taintEngine.analyze(trace)
12 new_inputs = extract_inputs(taints, inp, token_information)
13 input_queue.sortAndAdd(new_inputs)

At the beginning of Chapter 3 we already introduced the overall input generation algorithm. In
this chapter, we extend our algorithm to also support additional token information. Concretely,
we have an overarching container which collects token information throughout the execution
loops (created in Line 4). While generating taints (Line 11) we also create a new class of taints,
called token taints, which are attached to generated tokens during the lexing process.1 Once
values attached with those taints are used in comparisons, the tainting engine reports the
resulting token comparisons (Line 11). Besides the new inputs based on character comparisons
as before, our input generation now also creates inputs using the new token comparisons (Line
12). In the parser tokens are typically just integer values, thus token comparisons are integer
comparisons. Hence, we also need to constantly update information about the lexemes that
generate the respective integer value—which is done during the input generation (Line 12). Also,
to improve the quality of our token information, we learn tokens (Line 6) by giving them one by
one to the subject under test (Line 7)—besides the constant parallel learning on every input.2

4.1 Approach

The idea of Parser-Directed Fuzzing is built on the assumption that we see all comparisons
in the parsing code. Hence, we need to extend our approach in such a way that during input
inference we have the same information, with and without lexer code.3 We need to solve three
problems in order to shift the comparisons from the lexer to the parser if a tokenizer is present
and make them usable:

1. Di�erentiation between lexer and parser code.

2. Attaching taints to lexer tokens.

3. Mapping of lexer tokens to their source input characters.

In the following, we detail for each problem mentioned above why it is relevant and how we
solve it. We describe the concepts and reasoning behind the solutions and explain how this can
be done in general for the domain of recursive descent parsers.

1The token information that is initialized in Line 4 is not used during taint generation.
2For clari�cation: our algorithm is presented as in�nitely running (Line 5). Though, in Section 4.1.4 we will see,

that we actually can have a stopping criterion to make if possible to combine our algorithm with subsequent
tools—Chapter 5 goes into more details about this combination with additional tools.

3In Chapter 3 we mentioned that the main conceptualization and implementation of our dynamic tainting engine
was implemented for my master thesis [101]. The extensions to detect tokenizing code and taint tokens were not
part of the master thesis and are thus a contribution to this thesis.
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4.1.1 Di�erentiating Lexer And Parser Code

As shown in our example code in Figure 4.1, the lexer and parser are two inherently di�erent
portions of the code—using a di�erent code style and di�erent values [3]. Aho et al. describe
the lexer as follows:

“As the �rst phase of a compiler, the main task of the lexical analyzer is to read the input
characters of the source program, group them into lexemes, and produce as output a sequence
of tokens for each lexeme in the source program.” [3]

The parser on the other hand is described as follows:

“In our compiler model, the parser obtains a string of tokens from the lexical analyzer [. . . ]
and veri�es that the string of token names can be generated by the grammar for the source
language.” [3]

As a �rst step, we need to di�erentiate parser and lexer code. Di�ering those phases brings
the bene�t that we can easily �lter comparisons and categorize them: a lexer should never
compare token values and a parser should never access input characters directly. While it is
easy to di�er between input character taints and token taints (we can attach di�erent kinds of
taints to the values, depending on the taint source), we might see some usages of tokens in the
lexer itself, which are not part of the parsing process though:

1 int concreteAlpha(char c) {
2 // some complex code
3 switch(c) {
4 case 'A': return UP_A;
5 case 'B': return UP_B;
6 //...
7 case 'Z': return UP_Z;
8 case 'a': return LO_A;
9 //...

10 case 'z': return LO_Z;
11 }
12 }
13

14 int concreteNumber(char c) {
15 // some complex code
16 switch(c) {
17 case '0': return NUM_ZERO;
18 //...
19 case '9': return NUM_NINE;
20 }
21 }
22

23 int nextTok(char c) {
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24 int tok = UNDEF;
25 if (isdigit(c)) {
26 tok = NUM;
27 }
28 if (isalpha(c)) {
29 tok = ALPHA;
30 }
31 if (tok == UNDEF) {
32 // some complex code
33 } else {
34 // complex code preparing number/alpha tokenization
35 }
36 if (tok == NUM) {
37 tok = concreteNumber(c);
38 }
39 if (tok == ALPHA) {
40 tok = concreteAlpha(c);
41 }
42 return tok;
43 }

As we can see in the arti�cial example above, in Line 26 and Line 29 a token is generated,
in this case to distinguish for alpha and number tokens. Now depending on the token value,
either some unrelated complex code is executed or some code preparing the tokenization of an
alpha or number is executed (Line 31 and following). Depending on the initially read token a
concrete version for tokenizing an alpha or number is called, which in turn contains complex
code dependent on the code in Line 31 and following. In other words: it is �rst checked which
complex code needs to be executed and once this is done, the initially used token is again used
in the lexer to di�erentiate how it is further re�ned. Hence, we have a token comparison in the
lexer which we only expect in the parser. Such a comparison though is not an actual parser
comparison, hence the di�erentiation between parser and lexer is not always clear.

We will mainly use three typical implementation details to di�er both parts and mark the
respective functions of the subject under test accordingly:

1. Lexer code consumes characters (by using comparisons on input characters), while parser
code typically does not use any input characters but works on tokens.

2. Parser and lexer code lie in di�erent functions/parts of the code.

3. Lexer code never calls parser code4.

The lexer is the “glue” module between the parser and the operating system, i.e. it handles
the input reading, system details (like di�erent ways to indicate a new line: “\r\n” and “\n”),

4Aho et al. schematically show in Figure 3.1 in the Dragon Book [3] how the parser requests tokens from the lexical
analyzer and just accepts the returned tokens from the lexer, hence lexer code needs not to call parser code.
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and converts the read characters to some system agnostic and program speci�c tokens. Thus,
lexer code should usually not work on lexer tokens, it should only generate them, but never
use them in comparisons. Also, parser code should never access input characters directly in
comparisons (the parser decides based on the consumed tokens which parsing path to take).
With this information we can approximately divide the code into lexing and parsing code.

A lexer is essentially an input provider for a parser, meaning that the parser is typically in
charge of the organization of the input validation process. Hence, either the lexer tokenizes
the input before the parsing steps start (and the parser then consumes the tokens given by the
tokenizer) or the parser calls the lexer whenever needed to request a new token (as we do it in
our sample code). In this thesis we assume the lexer to be queried by the parser for each lexeme
individually because we assume this to be the most common and intuitive way of lexing inputs.
Especially, because this lexing method is more e�cient as only one or a few lexemes need to be
kept in memory and if a parsing error happens the lexer only needs to work up until the �rst
error. Thus, in a typical parsing setting, the lexer code is always higher in a call stack than the
parser code, making any function called from lexer code also a lexer function.

In addition to the division into lexing and parsing code, an encapsulation of lexing and parsing
in one or more di�erent functions is essentially needed to produce maintainable and readable
code. The Dragon Book [3] also mentions this distinction between lexer and parser as the default
that should be used, hence we make use of this division of code to make the detection of lexing
and parsing code easier.

An under-approximation of the lexer code is favorable in this case as we will later not report
token comparisons for comparisons that happen in lexer code, thus we rather do not mark a
function as lexing and report more token comparisons than vice versa. During input generation
a wrongfully reported lexer comparison just yields additional runs to test the comparison;
a missing token comparison though might hide a complete branch of our search space. If a
token-comparing function is marked as lexing and not considered as parsing it might happen
that a complete nonterminal symbol of the underlying grammar is missing as parser functions
and nonterminal symbols are tightly coupled.

Summary Essentially, any function that uses input characters in comparisons is marked as
lexing, any function that is called from a lexing function is also marked as lexing and any other
function is assumed not to be a lexing function until proven otherwise.

4.1.2 Token Taint Generation

Arguably, the most important part of our approach is the propagation of character taints to
token values (in form of token taints). The approach from Chapter 3 is blind to comparisons
after the lexing part, but if we are able to transfer the taints from the input characters to the
generated token values, they will �nally end up in the parser and are then used in the parser
comparisons we want to analyze.
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One of our core additions to the dynamic tainting backend of Parser-Directed Fuzzing (as
described in Chapter 3) is the recognition of tokenization patterns, hence we need to go into
more detail about how those patterns are crafted and why we believe that they will correctly
recognize tokenizing code while ruling out other code constructs. We want to avoid over-
tainting, i.e. we want to avoid that every control dependent value is tainted, but also detect as
many token generations as possible. In this part we go into detail on the following solutions:

1. Recognition of token generation code

2. Precise attachment of (token speci�c) taints to lexer tokens

3. Reporting token comparisons by the dynamic taint engine

4. Limiting the lifetime of information �ow taints

The following code gives a brief overview on the token taint generation cycle:

1 def handleTokenTaints(execution_trace):
2 container = TokenTaintContainer()
3 for instr in execution_trace:
4 if isCharacterComparison(instr):
5 container.storeTaints(instr.getTaints())
6 container.used = False
7 if isTokenPattern(instr):
8 instr.addTaints(container.getTokenTaints())
9 if isTokenComparison(instr) and hasTokenTaints(instr):

10 reportTokenComparison(instr)
11 container.used = True
12 if container.used and isDeletionInstr(instr):
13 container.clear()

We start our tainting algorithm with an empty container which stores information about
tokens as well as the tokens themselves during execution (Line 2). Then, for every instruction
(Line 3), we perform analysis steps, which handle the decision which taints are stored (Line 4),
attached to tokens (Line 7), reported (Line 9), and when they are deleted (Line 12).

Token Generation And Taint A�achment The token generation itself is split in two parts:
the comparison of input characters (Line 4) and the actual generation of a token (Line 7). Whenever
a comparison using a tainted input character is encountered we remember which characters
are used in the comparison (Line 4). If we already have one or more input character taints
remembered, the new taints are added to this set. Often, we also check if the operands are
equal because only for a found and matching lexeme a token is generated in general. This is an
approximation to limit the noise of generated token taints later on: a token is a representation of
a speci�c character, string or a set thereof, thus we expect in general the lexer to check for this
set membership. And only if a membership is detected, the respective token would be emitted,
hence the restriction to successful comparisons. Were necessary, we also �lter comparisons
which have an operand with a token taint attached, because tokens should not be used in lexing
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code. Finally, once a token is actually produced (typically a constant value is assigned to a
variable or a memory location), we attach a token taint to this value and link the taint to the
input character taints remembered (Line 7).

Token Comparison Reporting For switch statements or 32-bit integer comparisons involv-
ing exactly one tainted value (as comparison operand or switch value; the taint must be a token
taint) in a non-lexing call stack5, we report a token comparison (Line 9). Actually, we also report
which input characters were involved in the comparison for later inference which lexeme the
token tainted constant represents (see Section 4.1.3 for details on how we get this information).

Limiting Token Generation Lifetime One important thing to do besides storing taints
for token generation is also deleting them at certain points during the subject execution (Line
12), otherwise we would accumulate all input taints over time. The removal of those taints
only happens if the taints were used beforehand as we assume all taints from accessed input
characters after the last token usage must belong to the next token—especially because the lexer
is in most cases called between parser comparisons to query the next token. Once a new taint is
added to the token container (Line 4), the taints in the container are �agged as unused. The
taints are �agged as used once a token comparison is done, i.e. once a token taint is reported as
de�ned above. With this usage restriction we make it possible to let the stored taints survive
until an actual comparison happens, making it possible to let di�erent token generation patterns
use the same stored taints. Even though a token is typically generated at one position, with this
we can ensure that we do not miss any token generation sites because of wrongly approximated
pattern matchings. Also, in some cases a token is generated from several comparisons, e.g.
when lexing a variable or a keyword consisting of several single characters. In such cases it
makes sense to add the taints from several characters, which then build the source taints for the
�nal token taint.

Summing Up This section describes the additions to the tainting engine, making it possible
to not only track direct data �ows through the program execution, but also attaching tainting
information to tokens generated while lexing an input. We achieve this by 1. only considering
comparisons that are typical during token generation (i.e. lexer comparisons; Line 4), 2. using
the taints involved in those comparisons and attaching them to values created by generic
token generation patterns (Line 7), 3. reporting comparisons involving those tainted values in
controlled circumstances (Line 9), and 4. de�ning deletion points for temporarily remembered
taints for token taint generation (Line 12). Our decisions are mostly based on foundational
software engineering concepts (like modularization of code) and compiler design patterns as
described in the literature [3] (like the di�erentiation between lexer and parser) to bring our
design choices as close as possible to real world implementations.

The token taint generation in general is an approximation—we might miss some token
generating code, we might taint constants with token taints which are not tokens, and we

5All functions in the call stack must be non-lexing. For switch only the switch value is checked for taints, all other
values are not checked further.
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might attach the wrong or not all taints to token values. Later on, in the mutation engine
(Section 4.2.3), we use di�erent measures to reduce the impact of the incorrect token values we
possibly introduce here.

4.1.3 Mapping Lexer Tokens To Input Values

Now that we detailed how token taints are generated, propagated, and used in the parser, one
�nal information is missing: how can we use the tokens in our comparisons? A token is simply
a value in the code with no further meaning (as we can see in Figure 4.1, the lexer converts
input characters to enumeration values, which in turn are syntactical sugar for integer values).
Hence, we need to extract a mapping from a token value to it’s respective source characters
and vice-versa. Otherwise, once we see comparisons in the parser, we cannot know what
substitutions to apply. If we look at the code in Figure 4.1, Line 32, we see three comparisons
against enumeration values: PAREN_L, SIN, and COS. Without a mapping we would only know
that the token generated from the respective input characters are compared against some integer
values. With the mapping though, we know that PAREN_L is generated when lexing an opening
parenthesis (Line 10 and Line 12), SIN comes from the input “sin(” (Line 14 and Line 16), and
COS from “cos(”. With this information, if we want to use such a comparison for substituting
parts of an input as we did it in Chapter 3,we can directly look up the token value from the
mapping and apply the correct characters at the respective position.

Li�ing Of Token Comparisons Our adaptions to the tainting engine make it possible to
report so called token comparisons, which consist of two integer values, where one is tainted with
one or more input character taints. To make use of those comparisons on an input character
level, we need to lift the integer comparisons back to actual input value comparisons. For
example, suppose we have the input while(..., a token comparison would look like 6 == 7
with the value 6 tainted with the input characters at index 0 to 4. Thus, our tainting engine
already gives an important information: the value 6 used in the comparison belongs to the input
characters while. Hence, we need to substitute while with the lexeme forming the token
with internal value 7. But: which lexeme produces this token?

Let us have a broader look on the problem: if we just consider one comparison, we see
nothing more than two integers and a few taints—we are missing the information what the
untainted integer represents. What we get is that the token with value 6, with a high likelihood,
is generated from the input characters while. We can store this information6 and in subsequent
runs use it to map back the token value 6 to the input characters, i.e. the lexeme, it represents.
And if we do this often enough and with all the tokens the subject under test works with, we
will get a holistic view regarding lexemes and the tokens they generate.

Summary With the presented long term mapping of all token values to the lexemes they
represent we can apply the same methods that we used in Chapter 3. We can lift the token

6In the actual code the learning of the token to lexeme mapping is more complex to reduce the number of incorrectly
learned mapped values. See Section 4.2.3 for more details.
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values of parser comparisons to the original lexeme values, for the tainted and untainted tokens,
making it possible to handle the parser comparisons very similar to parser comparisons without
a lexing phase. Together with the improved tainting from Section 4.1.1 and 4.1.2 we are able to
infer inputs with similar information as in the “parser without lexer” case.

4.1.4 Input Generation Loop

Sections 4.1.1 to 4.1.3 describe the measures taken to make it possible to infer inputs in a
similar way as described in Chapter 3—this time in the presence of a lexer. This also interferes
with the overall generation loop, as we now have to add some additional phases that take care
of learning token information (like the token mapping as discussed in Section 4.1.3). Thus, this
section gives an overview on the extended generation loop:

1 def input_generation_and_execution():
2 inp = random(printable_characters)
3 inp_rand = inp
4 parent_subst = None
5 frontier = PriorityQueue()
6 tokens = Set()
7 tokens_learned = Set()
8 comparisons, is_valid = run_and_trace(inp)
9 subst = learn_tokens_and_substitutions(tokens_learned, tokens,

comparisons)↪→

10 while recently_covered_new_code():
11 if is_valid:
12 report(inp_rand)
13 add_substitutions_for_input(frontier, subst)
14 if not tokens.empty():
15 inp_rand = tokens.pop()
16 tokens_learned.add(inp_rand)
17 parent_subst = None
18 else:
19 parent_subst = frontier.pop()
20 inp = mutate(parent_subst)
21 inp_rand = inp + add_random_extension()
22 if has_rand_extension():
23 comparisons, is_valid = run_and_trace(inp)
24 if had_return_code_zero():
25 frontier.add(parent_subst)
26 subst = learn_tokens_and_substitutions(tokens_learned,

tokens)↪→

27 if covered_new_code():
28 inp_rand = inp
29 continue
30 comparisons, is_valid = run_and_trace(inp_rand)
31 subst = learn_tokens_and_substitutions(tokens_learned,

tokens)↪→

32 # report tool output
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33

34 def learn_tokens_and_substitutions(tokens_learned, tokens,
comparisons):↪→

35 for comp in comparisons:
36 if comp.constant not in tokens_learned:
37 tokens.add(comp.constant)
38 learn_token_mapping(comparisons)
39 return learn_substitutions(comparisons)

Loop Overview The overall generation loop is similar to the generation loop presented in
Section 3.1—though we needed to adapt the representation for our data structures (like the
frontier) in this example to make the work�ow clearer. We still start with a random character,
run the program, analyze the trace, store inputs and possible mutations (called substitutions)
in a priority queue (the frontier) based on their heuristic value, extract the most promising
substitution, mutate it, and restart the inference loop. In the following we detail the needed
adaptions made to improve the input inference in the presence of a lexer in the program.

Token Learning In Section 4.1.3 we discussed the learning of a token to input character
mapping. This mapping is learned with the call to learn_token_mapping() in Line 38. In
order to successfully learn new tokens, it makes sense to analyze the program execution on
those tokens in isolation (there will be less noise in the trace if only one lexeme is given to
the subject under test). Thus, in Line 6 and Line 7 we introduce two new sets: the tokens that
we still need to learn and the tokens we already executed in isolation during the inference loop.
Concretely, whenever we see a constant in a comparison which was not already executed in
isolation, we remember it (Line 37).7 Now, in contrast to the original execution loop, we prefer
to gather information about tokens, i.e. we check if there is any token still open to learn and
if so we let this value run in isolation on the subject under test (Line 14). This way, we get
large portions of the token mapping early in the inference execution, which is important as this
information is needed to analyze parser comparisons appropriately (especially once we actually
use the frontier and infer syntactically valid inputs).

Input Re-Running In Line 24 we check if the just run input without a random extension
caused the subject under test to �nish with exit code zero—meaning that it is likely valid. If so,
we also add the substitution used to generate this input back to the frontier (Line 25), because in
the upcoming lines it may happen that we cut the execution loop short (which may also happen
in some other border cases, we will go into detail about this in Section 4.2). To avoid missing
the comparisons generated by the random-appended input, we put the just used substitution
back in the frontier, hence it can later be run again if no better comparison is found.

New Heuristics We already introduced heuristics in Section 3.2.2 for our basic approach
without speci�c lexer analysis. With our basic approach we missed parser comparisons if a

7In fact, we also have some heuristics to add tokens which are generated using more than one comparison. For
example, if a token for the greater or equal operator could be generated by �rst comparing against the greater
character and then against the equals character (see Section 4.2.2).
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lexer was present, thus the approach had “blind spots” in those situations; but then again had
almost no noise in the comparisons if no lexer was present, as the reported parser comparisons
were determined by direct information �ows which involve close to no approximations. The
parser comparisons though are just an approximation as we cannot guarantee that the token
tainting is always correct in the dynamic tainting engine. Hence, our heuristics are adapted to
handle noise in the comparisons—substitutions (as extracted in Line 39) are added to the frontier
based on those adapted heuristics (Line 13). In Section 4.2.5 we will detail those new heuristics.

Random Appending In Line 22 we see that the loop �ow is dependent on the presence of a
random extension to the input. In some border-cases we do not append a random character or
token, e.g. when running only on a token value (Line 14 and following). Also, in the presence
of a lexer, a random character value is typically not a valid lexeme and would be rejected by
the lexer. The random extension though is done to analyze parser comparisons at the very end
of the input—everything in front of the extension should be syntactically valid. Thus, if the
substitution is based on a parser comparison, we typically append one of the learned lexemes to
the input (Line 21), which is likely accepted by the lexer and ends up as token in the parser.

Subsequent Tools After a certain amount of executions without exporting a valid input
(e.g. more than one thousand; including all executions, traced or not) the input inference phase
is considered to have reached a plateau and is stopped (Line 10). At this point we consider
the inference to not be bene�cial anymore as our technique is not able to cover new branches
in the parser, thus likely not �nding new features. Now it makes sense to collect gained
information and give it to a subsequent tool like a fuzzer (Line 32), which can then make use
of this information for e�cient fuzzing (see Chapter 5). This information can include tokens
found (i.e. the string contents of the token mapping as de�ned in Section 4.1.3) as well as found
valid inputs. Certainly, any information from the execution could be exported to another tool
chain, there might be other interesting data for other tools.

This concludes the token and valid input learning phase and summarizes the resulting output
of the techniques described in Chapter 3 and this chapter. In the following we will detail how the
token extension is implemented, and give more information about the technicalities involved.
As in Section 3.2, the implementation itself must solve practical and technical problems that are
not obvious on a theoretical level.

4.2 Tokenizer Analysis Implementation

In Section 4.1 we explained how, on a high level, we want to attach taints to tokens, which in
turn let us analyze parser comparisons in the presence of a lexer. Still, bringing those theoretical
constructs into a real world application results in additional problems that need to be solved.
In this section we will have a look into the implementation details that make it possible to
apply our token analysis to real world subjects. We will start with the taint generation done
in the dynamic tainting engine, explain how we extract lexemes from the resulting tainting
trace, infer the token to input character mapping, and explain how all this information is used
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to generate possible mutations for the inputs and how we can put them into a prioritizing order.
Finally, we have a look into the extensions needed for the input inference loop to handle tokens
properly in the grand scheme, wrapping up and combining the di�erent portions explained in
the upcoming sections.

4.2.1 Token Taint Generation

The �rst step towards token analysis is the tainting of tokens. When solely relying on data
�ows during dynamic tainting, it is not possible to taint tokens as they are generated indirectly.
Typically a token is generated based on a comparison and an assignment of a constant based on
the outcome of the comparison. Thus, in the following we explain the di�erent stages:

Lexer/Parser Di�erentiation We divide the code in lexing and parsing.

Token Taint Preparation We remember the input token taints in lexer comparisons for later
token taint generation.

Token Taint Generation The remembered input token taints are attached to a newly gener-
ated token taint, which in turn is attached to a generated token.

Token Taint Reporting At some point the tainted tokens are used in comparisons in the
parser, which is then reported by the tainting engine.

Token Store Cleaning We cannot store all remembered tokens throughout the whole execu-
tion, at some point we need to not consider them anymore to avoid over tainting.

Lexer/Parser Di�erentiation As already mentioned, if a certain set of LLVM bitcode in-
structions appears, the respective surrounding function is considered a lexing function. Such
comparisons are a subset of the LLVM bitcode binary instructions8 as well as the SWITCH
instruction, but also function calls to speci�c functions like strcmp(), strchr(), and isdigit(). For
the binary instructions we mark the code as lexing if a taint is stored for later token generation
(see below). For all other comparisons we only check if a non-token taint is attached to an
operand, but no further checks are done, because their semantics are less complex and those
comparisons typically only happen in the lexer if a non-token taint is involved.9 Also we might
under-approximate—e.g. for strchr() we only mark the function as lexing if the search character
is tainted, but not if the searched string is tainted10. The approximation just exists for noise
reduction and needs not to be perfect.

8The LLVM bitcode binary instructions we consider here are: ICMP, FCMP, ADD, FADD, SUB, FSUB, MUL, FMUL,
UDIV, SDIV, FDIV, UREM, SREM, FREM.

9Except for strcmp(), which also checks for operand equality to reduce noise by only considering successful
comparisons which might later cause a token generation. Due to a programming mistake in our prototype,
strcmp() misses the check whether the second operand is tainted if the �rst is not, but since in almost all cases
the �rst operand should at least have a string constant taint, this mistake should not have any impact in reality.

10As already mentioned in Section 3.2.1, we report strsearch comparisons if the �rst character of the string
is tainted with a non-string-constant taint. Those comparisons are used to mark lexing code in the mutation
engine later as they are handled like normal character comparisons.
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Token Taint Preparation For our approach we de�ned comparisons that collect taints for
later token generation. Those comparisons are the start of a token generation pattern (the second
part of the pattern is a possible assignment of a constant value to a variable or memory location
which we will discuss later). We handle the instructions as follows:

Binary Instruction For the LLVM bitcode binary arithmetic and logical instructions we only
consider those instructions that are either an ICMP with i32-typed operands (as those are
likely character comparisons, other types are not used for characters), or contain at least
one i32-typed constant as operand—this is in worst case an under approximation of all
actual character comparisons, but �lters out most unwanted comparisons. We always
store a taint for ICMP instructions if at least one operand is tainted without a token taint11,
as those comparisons are typical for token generation: two characters are compared and
a token can be generated.

Furthermore, for other binary instructions we approximate the taint collection for the
case that one operand is a constant and the other is a tainted value which does not have a
token taint and both values are equal, as there are cases in which an arithmetic expression
is used to calculate if a token should be generated (e.g. instead of a comparison for equality
one might just use a subtraction).12

SWITCH For the LLVM bitcode instruction SWITCH we just store the taint of the value used
in the switch statement as this is a simple comparison. Also switch statements are quite
common to generate tokens—a value is pattern matched to several options (the cases in
the switch statement), and if one matches, a token is assigned to a variable or returned.
Thus, since this instruction is very typical for token generation, we do not have any
requirements for the value used for switching (it only needs to be tainted).

Strcmp() For the function strcmp() we �lter for comparisons that are successful, i.e. both
operands are equal, as we assume that a token would only be generated if the input values
match. Now, if at least one operand is tainted and does not contain a string constant taint,
we store the taints of the respective operand for later usage in the token taint generation
step.13

11The actual implementation of our approach, lFuzzer, contains a bug not considering commutativity of the
operators, we discuss its impact in Section 6.7. In detail, for ICMP instructions the prototype would not collect a
taint if only the second operand is tainted without a token taint and both are not equal—in this case it would
still make sense to collect the taint.

12Again, commutativity is not correctly considered in our prototype, the mentioned case is only implemented if the
�rst operand is a constant and the second is tainted without a token taint (and both are equal).

13The prototype implementation checks if any operand has a string constant taint, which might result in skipped
taint storing for string comparisons. Still, in most cases the characters of the compared string were already
compared individually in the lexer (e.g. when checking for the end of a keyword), hence their taints are already
stored and we do not miss any taints. Also, as already mentioned in the lexer detection paragraph: the taint
check is only done for the �rst argument, not for the second. But, in most cases both arguments should be
tainted (either with string constant taints or input taints), hence generally checking the �rst argument for taints
is su�cient.
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Token Taint Generation The taints stored as detailed above, i.e. the pending token taints,
are queried whenever a token generation pattern is found—such a generation pattern is de�ned
as follows:

Return Instruction For return instructions the token generation pattern is straightforward:
whenever there is a token taint pending for token generation, we check if the returned
value is an i32 constant, and if so we mark the returned value with the pending token
taint.

Store Instruction For a store instruction we have two cases to consider. In the most basic
case an i32 constant value is stored and a token taint is pending for token generation: as
with the return instruction, we mark the stored value with the respective taint. In the
second case, a value with a token taint was stored to a memory location. In this case
we overwrite the stored value’s token taint with the token taint pending from the last
comparison. The reasoning for the overwriting of token taints is that we want to consider
the token comparison closest to the token generation. Again, keep in mind that the token
generation detection is not exact, but rather an approximation. Hence it might be that a
token taint was already attached to the value with taints from other comparisons—the
value is already tainted but now used after another comparison. At this point we have to
decide which token taint to use for the stored value, hence we consider the latest taint.
Apart from that, it could also be that the code actually reuses an already token tainted
value. As we already know that this value is used to store a token, we consider it as well
when being stored at another location and update the token taint to the currently pending
token taint.

Binary Instruction For binary instructions, whenever the instruction is not a compare in-
struction and at least one i32 constant is involved, we attach the token taint to the result
of the instruction. In some cases a token is not generated from one concrete constant
value, but calculated, sometimes based on dynamic values, sometimes based on constants
that were created before the �rst token comparison was done. For example, in a parser
we want to generate a token for each number from zero to nine. Now, after reading the
number and having a lexeme comparison, the token generation is done by adding the
integer value of the number to some constant value representing the base token. The
resulting value would be the token belonging to the number which is used further in the
parser. To track those cases we consider binary operations as described.

Token Taint Reporting Once we propagated the taints from the input comparisons over
the token generation patterns to the respective token values, we also need to track and report
when those token values are used—i.e. we want to report the parser comparisons:

SWITCH For switch instructions we just check if the value used for comparison contains
a token taint. If so, we call our comparison reporting mechanism, reporting a token
comparison for each value of the switch statement. As a switch statement compares a
�xed and clearly de�ned set of values, it is a perfect pattern for token comparisons, hence
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we have a very lax de�nition of when to report token comparisons here, just requiring a
token taint in the compared value.

Binary Instruction For binary instructions we check if the instruction is an ICMP instruction,
comparing two i32 values, i.e. it checks if two integers are compared. We assume that
typically tokens are stored as enums or integer values, hence the restriction to i32 values.
This reduces the noise while reporting token comparisons.

In both cases the reporting mechanism checks for some generic restrictions and ensures that
they are ful�lled before reporting them:

Non Lexing Function Whenever a function on the stack is marked as lexing we do not report
any comparison as a token comparison.14 As we already mentioned, it is common to
separate lexer and parser [3], hence a token comparison should not happen in the lexer
code, but only in parser code.

Token Taint Present At least one of the comparison operands must have a taint that is marked
as token taint. The reasoning here is simple: we only want to report comparisons as
token comparisons if at least one value is involved that stems from a value generated in
a token generation pattern—otherwise we would report many comparisons incorrectly
�agged as token comparisons.

Exactly One Tainted For both operands we check if they are tainted. Tainted in this case
means that a taint exists, is not empty (i.e. the taint references one or more taint sources),
and does not include any string constant taint. We will get to string constant taints later,
for now it is just important to know that those are taints not stemming from an input but
from a global string constant in the program source. Only if exactly one value is tainted
as de�ned above, we report the comparison as a token comparison. The reasoning for this
is again noise �ltering: a token comparison typically consists of a comparison between a
token and a �xed value (a constant or some value calculated program internally). Thus,
in our tainting engine the comparison should involve exactly one token tainted value and
a value without taints.

If all of the above applies, a token comparison is reported, which means that we report the
indices of the input characters involved in the generation process of the token as well as the
integer value of both operands (as a token is nothing more than an integer value in our setting).
The mutation engine later on uses this information to match the integer values back to the

14It might be that a function will be marked as lexing later during the taint analysis. Already seen token comparisons
might then be already reported for such functions. As the token comparisons are an approximation anyway
we live with this approximation for e�ciency reasons in the tainting engine. The parts of the mutation engine
(Section 4.2.3) handle lexing and parsing stages for complete runs and even throughout all runs to further reduce
the impact of this approximation.



4.2 Tokenizer Analysis Implementation 75

actual input characters, i.e. it builds a bi-directional mapping between token values and lexemes
(Section 4.2.3).15

Token Store Cleaning As already mentioned in Section 4.1.2, we need to limit the lifetime
of taints remembered for token taint generation (i.e. the taints we collected from the lexer
comparisons). If not, we would highly over taint, as at some point we would have collected the
taints from all input characters. As already said, the removal of those taints only happens if the
taints were used beforehand, i.e. once a token comparison is done (once a token taint is reported
as de�ned above). The usage information is reset every time a new taint is remembered for later
token taint generation (as explained above). Thus, we de�ne the cleaning points as follows:

Method Entry And Exit Whenever a method is entered or a return instruction is encountered,
we clean the respective stored token. Methods are logical boundaries in the code, hence,
once a token was used, it is very likely that the temporarily stored token from the
comparison should not be used any further. The scenario is as follows: a token was
generated in the lexer, given to the parser by returning from the lexer code. At this point
the cleaning would be triggered but as we already explained above, cleaning only happens
if the taint was used, i.e. a token comparison happened—hence no cleaning is done at
this point. Now the parser performs a token comparison, and then the parsing method is
left or another parsing or lexing method is called. This means the lexer �nished and the
parser either performs additional operations or requests a new token from the lexer. In
any case, the temporary token from the lexer comparisons should have been consumed,
hence we delete the taint, preparing the next lexing phase. The upcoming two cleaning
sites are just fallbacks and are used for faster cleaning of taints to reduce noise. Typically,
the method enter and exit locations should be su�cient for an e�ective token cleaning.

Binary Instruction We clean the taints if at least one of the operands is tainted without a
token taint but the other requirements for preparing a token taint as described above are
not ful�lled.16

Strcmp() For strcmp() we clean the taints if the comparison contains non-equal values of which
at least one is tainted.17 The reasoning for this is analogous to binary operations: for token

15We also have a comparison type called “tokenstore” which was intended to report the storage of a token to a
memory location for other users of our tainting engine. This is typically not used in our mutation engine later,
indeed those comparisons are actively ignored, i.e. in most cases when we talk about comparisons in this chapter
we do not consider them—especially not when generating substitutions for new inputs.

16Remember the implementation error in the prototype ignoring commutativity for such binary instructions. This
causes the cleaning of taints if the �rst operand is tainted (without a token taint) and the instruction is not an
ICMP instruction. Also, we clean the taints if the �rst operand is either not tainted or a token tainted value and
the second operand is tainted, but both operands are not equal. Hence, the approximation might not always be
correct, but as we guard the cleaning with previous token usage and the cleaning at binary operations is just a
fallback, the impact of this imprecision should be close to zero.

17In fact, the actual implementation used for our evaluation contains a small deviation from this description: cleaning
the taints for any strcmp() with di�erent operand values if the �rst value is not tainted—which should be very
rare because of the string constant taints we use. This might cause an over approximation as already mentioned
for the binary instruction part.
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generation there should be a preceding successful comparison and no other comparison
in between, as we assume a new lexer call in those cases.

String Constant Handling A lexer and parser heavily relies on the operation on strings.
Thus, string constants from the code are certainly important to consider while analyzing those
parts of the program. Therefore, we created a special taint type for string constants to track
them and their derivative values throughout the execution, making it possible to analyze them
in more detail. Those string constant taints are attached at the very beginning of the program
execution, giving every string constant character a unique string constant taint. Those taints
are only considered at speci�c positions in the code, in general they are explicitly ignored:

GetElementPointer In contrast to direct string comparisons, another way of looking up
keywords is using hash-tables. Here, several keywords are hashed into an array and
during execution this array is directly accessed.18 Apparently the lexer wants at least one
of the values from the array to proceed, so it makes sense to report a series of strcmp()
operations to the mutation engine. This is especially important because for direct lookups
like it is typically done in hash-tables, we would only see the one cell accessed and thus
only the taints of this one element, hence we miss options of the lexer.
Now, for the base address of the array we can store the taints of the indices used to
calculate the �nal address with the LLVM GetElementPointer instruction—if they are
string constant taints. This gives us the information which string constants are stored in
the array. If a value with a taint, which is not a string constant taint, is used as an index,
we can assume that an input lexeme was used to calculate the index, hence a hash-table
lookup happens. Thus, in this case we report the respective string constant values for
the base address. This does only work if the base address of the GetElementPointer
instruction is the address used for adding the string constants to the array—which is
typically the case when accessing hash-tables.

String Constant Comparison In some cases, instead of comparing input characters with
character constants or searching a character in a string with a library function, program-
mers iterate through a string constant and compare each character of the string with
their search value. We report comparisons done this way as string constant comparisons,
a comparison type that can be used by taint consumers like our mutation engine. Those
comparisons are typically handled like normal comparisons in the mutation engine, but
there are some exceptions when it comes to �ltering those. We will later explain how and
what comparisons are �ltered before and during substitution extraction (Section 4.2.4).

4.2.2 Lexeme Extraction

In Section 4.2.1 we explained how token taints are created and reported by the dynamic
tainting engine. Now before we can make use of those token taints during input inference, we
need to extract information about lexemes from the stream of lexer comparisons. The explicit
18For cases in which strings are stored in an array sequentially and the array is iterated, we do not need a special

handling as those strings will be extracted and used in comparisons.
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knowledge about lexemes is important for the later input inference based on token comparisons.
For example, in Section 4.2.3 we will explain how we combine lexemes with the token values
they generate, which in turn makes it possible to infer input substitutions as explained in
Section 4.2.4. In this section we:

1. clarify how we extract lexemes from standard lexer comparisons

2. detail how we handle consecutive lexer comparisons that read a lexeme character by
character

Standard Lexer Comparisons As already described in the approach, the lexer needs to
check for valid, known tokens. Hence, if we input a lexeme the lexer does not know, we would
already see all the comparisons of our input value against the possible lexemes of the subject
under test—the lexer needs to ensure that none of its options match. If, by chance, we input a
valid lexeme right at the beginning, chances are high that later during our input inference loop
another input will actually contain a value which is not known to the lexer. Thus, at some point
we will observe all lexer options. The possible lexemes we collect are mostly the values not
yet seen from the input character comparisons that we would also use for substitution when
building a new input. For a switch statement we learn all case-values, for strlen() comparisons
mock values of repeating ’a’s up to the used string length of the comparison, and for conversions
(strtod() and strtoul()) we add the conversion options. For comparisons with the operands </≤
and >/≥ the tainting engine would recommend to test anything that is smaller (or greater) than
the compared value. To reduce load on the token learning phase we do only consider the value
closest but valid to the compared value, i.e. the value that is smaller (or larger) or equal to the
compared value. Typically the lexer would, if this was the only comparison, just accept any of
the values from the given range to create a token, hence in most cases trying one is su�cient.
For all other comparisons we just learn all options given by the tainting engine.

Consecutive Lexer Comparisons Also, we look for lexer patterns that consecutively lex a
single lexeme to build a token. To detect those patterns we take all input character comparisons
from one lexer function call and �rst check if there are more than two comparisons and no
two consecutive comparisons are the same instruction in the LLVM bitcode. We also check
that the starting index of the input characters used in the comparisons is strictly monotonic
increasing, i.e. we actually lex a consecutive portion of the input, one character per comparison.
With this, we approximate and handle the consecutive comparisons analogous to direct string
comparisons, though here each character or even lexeme is compared individually instead of
using a library function like strcmp(). For such cases we can still generate a lexeme consisting of
one string instead of several single character “lexemes” which is used to improve the respective
lexeme token mapping later on (i.e. we can give the combined lexemes as complete inputs to
the subject under test instead of using the values from every single comparison). Once such a
pattern is detected, we create the resulting possible lexemes as follows:

1. Start with set A containing the empty string.
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2. Take the next comparison from the previously collected comparisons, iterate the stored
strings from set A and for each append the used comparison values element wise to the
stored string; add the new strings to set B.

3. The new string set B becomes set A.

4. Repeat at 2 until no more comparisons exist.

For example, say we have two comparisons, the �rst with the values ab and cd, the second
with the values e and f. After the �rst iteration, we appended the values of comparison one to
the empty string, resulting in the intermediate set containing ab and cd. Now, we append e and
f from comparison two element-wise to those values, resulting in the new set with the values:
abe, cde, abf, and cdf. This is the resulting set of strings that can be used for later token stack
mapping learning (Section 4.2.3).

4.2.3 Token And Stack Mapping

As we have already seen in the introduction of Section 4.1.3, learning token values can be done
by mapping the resulting token value back to the input characters it stems from. In our example,
the while-keyword caused the lexer to output the value 6, hence we can learn that 6 maps to
while. If we do this for all lexemes we encounter during our input inference loop, we are able
to extract a mostly complete picture of tokens mapped to their originating input characters.
Extracting this mapping is possible because even if a lexeme, and hence the respective token, is
incorrect as input or as �rst lexeme in the input, the lexer will just generate the correct token
for it (as it is not context aware), and the parser checks all possible options. Hence, the token
mapping inference can happen without having the lexemes at a syntactically correct position
and thus can be done before inferring larger inputs consisting of several lexemes. As a side
product of the token mapping inference we also get a mapping from a call stack to comparisons
done at this stack level. This information is relevant for our priority heuristic that we will
explain in Section 4.2.5. Thus, this section will explain:

1. how we learn elements of the token mapping: explicitly and during input inference

2. how we approximate the correct token value for each lexeme

3. the resulting mappings based on the approximations done

4. how we handle the di�erent lexeme learning situations that might reduce the token
learning completeness and soundness

Lexeme Learning From the lexeme learning (Section 4.2.2) we have a list of possible lexemes.
We can start learning their token values explicitly by only giving one possible lexeme to the
subject under test instead of trying to learn them from inputs with several lexemes. Learning
from inputs with only one lexeme makes it easier to map the generated token to the input
characters that generated this token as there should only be one token value.



4.2 Tokenizer Analysis Implementation 79

In general our input generation loop takes an input from the priority queue and runs the
input on the subject under test to gain new insights (as described in Section 4.1.4). If we have
a lexeme from the lexeme extraction not yet tried alone, we would just take this one lexeme
as input. As a lexer not only performs comparisons without context, but also generates token
values without context and gives them to the parser, we can just iterate the collected lexemes,
give them to the subject under test without further context (i.e. we just input the lexeme and
nothing else), and see what token values are resulting from them—in best case there is just one
token generated and all input characters are consumed by the lexer. Even though, by design,
this token learning is done before the main input inference begins, at any time, if any new
lexeme is found, it is tried to be learned in the next iteration of our inference loop.

Furthermore, even though this phase is mostly used for token learning and we do not assume
one lexeme to already represent a valid input, all other features of the mutation engine are still
active because once the single lexeme is executed on the subject the resulting trace is handled as
any other input trace. That means, if a lexeme already causes the parser to �nish its execution
with exit code zero, we consider this one lexeme as a valid input and report it. And even if the
input is not valid, the possible substitutions resulting from the reported taint output are put
into the priority queue and queried as soon as there is no single lexeme to learn anymore. This
causes the side-e�ect that once the initial token learning phase is �nished, we have a set of
possible pre�xes in our priority queue to start our input inference.

Token Value Approximation Now that we know how we collect lexemes for token learning
and that we run the subject on tokens individually to extract and store token information we
go into details on how the actual mapping information is extracted from an execution and how
it is used. The procedure for extracting the information from a run with one lexeme is the
same as for a run with several lexemes that build an input. We perform the following steps in
order of appearance to extract information about generated and used tokens (including �ltering
techniques to reduce noise when performing the token extraction19):

Lexing Functions We already mentioned in Section 4.1.1 that functions that use input charac-
ters in comparisons and all transitively called functions of those are marked as lexing—a
lexer typically does not call a parser but only vice versa. A similar technique is also
used during token mapping learning to �lter out all supposed to be parsing comparisons
that happen in functions marked as lexing. In contrast to the lexing pruning in the
tainting engine stage which is called per subject under test execution, we can combine
the information from several executions for �ltering lexing and parsing in this stage.
Hence, we use a di�erent de�nition for lexing and parsing functions: a function is marked
as lexing if there are more lexing than parsing comparisons. The counting of lexing
and parsing comparisons in a function is done only the �rst time it is encountered for
e�ciency reasons.

19The mentioned �ltering techniques are mostly just used for extracting token information, they are in general not
actively used during the actual inference of substitutions (Section 4.2.4) for �ltering any comparisons—though,
in the greater scheme, they might have some in�uence on the generated substitutions.
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A comparison is a lexing comparison if it is not a token comparison and a parsing
comparison if it is a token comparison. Now, a function is either marked as lexing,
parsing, or did not yet receive a stage de�nition.
First, we collect for any function that has no stage yet the number of lexing and parsing
comparisons. Then, we start with the call-tree root as the initial function and set the
initial stage to unde�ned. We check if the function was already checked and either has
no stage assigned or the parent stage (the stage of the caller) is larger or equal to its stage
(whereas the lexer stage is smaller than the parser stage which is smaller than unde�ned)—if
so we just return; otherwise we do the following. We set the current stage to the parent
stage, then we try to assign a stage to the function. For this, we check if there was at
least one comparison collected for the function.20 If so, we mark it as lexing if there are
more lexing than parsing comparisons or the parent is marked as lexing—otherwise, we
mark it as parsing. Also, we set the current stage to the marked stage. If the function
had no collected comparisons, we set the current stage to the already stored marked
stage if present. Then we repeat this for all callees of the function. The used call-tree is
updated based on the current execution each time a new function with comparisons is
encountered during execution and the lexing-parsing mapping is updated.
All token comparisons happening in a lexing function are pruned immediately and not
used in the following remaining pruning steps. If a function is marked as lexing in a later
run though, the generated, persistent information from this section is not updated—only
newer values and overwritten values will be a�ected by this change in the lexing-parsing
status.

Doubled Comparisons We also do not add those token comparisons which appear twice or
more directly one after another, i.e. only the �rst comparison is added if one or more
equal comparisons are encountered in a row without any other comparison in between.
Two comparisons are equal if they have the same starting input index, have the same
tainted value, the same comparison value, the same call-stack and the same comparison
id (i.e. code location). This is done to �lter out looped comparisons as those are likely
not actual token comparisons as in general there is no reason to compare the same token
against the same value several times at the same code and call-stack position. Chances are
high that the used value was falsely tainted with a token taint and is now used in some
looped comparison. As we will later have a “majority vote” on the found comparisons
to de�ne for each index the most likely correct token, it makes sense to �lter out such
looped comparisons beforehand. Leaving them in, even though they are likely incorrect,
might cause the majority vote to select the token value from the loop instead of another
option that has higher chances to be correct. Hence, we count the looped comparisons as
one comparison.

First Index Correction In some cases the index of the �rst comparison made (after �ltering
all comparisons in lexing functions) may not be the minimal index seen in this execution

20There is one mentionable border case here: if the function solely contains tokenstore events (which are typically
ignored by our algorithm), it would be considered as if comparisons were collected for it, but the number of
lexing and parsing comparisons would be zero.
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which should not happen as the parser consumes tokens from left to right. Thus, to have
a consistent starting index, the index of the �rst comparison is always set to the minimal
index value seen in this execution, typically the starting index of the input (in most cases
it already was this value).

Majority Vote With the majority vote we extract for each index the one token value that
appeared most in comparisons in the current trace. We assume this value to be the correct
token value generated based on the lexeme starting at the respective index in the input.
For this we create a mapping from each starting index of each comparison to the token
values used in the comparisons, giving us for each index the token values used and for
each such token value the number of times it appeared for the given index. Hereby, the
�ltering of sequential equal comparisons as mentioned beforehand reduces the number
of found token value appearances for the respective index and token value of those
comparisons. Also, if the �rst index was corrected in the step beforehand this corrected
comparison will be added as �rst and only comparison for the corrected index here. Now
we can create a mapping from each index to the token that was used the most (if for two
or more token values the number of usages is on par one is taken at random). We delete
all comparisons which do not have the majority token value for the index they use. This
makes sure that we only have those comparisons that are likely the token comparisons
stemming from the token value that was generated from the lexeme starting at that index.
Also we delete all backtracking comparisons, i.e. if there is a token comparison later
in the execution which uses an index smaller than a non-�ltered token comparison
beforehand, it will be deleted. The reasoning for this is simple: the parser works from
left to right on the input, hence the index should monotonically increase during parsing
while consuming the tokens. Now we have a reduced list of comparisons which contains
only those comparisons for which the tainted value equals the majority token value at the
respective index. Also the indices in the list are monotonically increasing.

Subsuming Token Ranges After the majority vote we already have a list of comparisons with
a monotonic increasing start index value and only one value per index. In this part we try
to �nd token ranges and �lter for the largest ones, i.e. we try to extract those comparisons
that belong to a token that will result in the largest part of the input consumed—assuming
greedy lexing/parsing.
The calculation of ranges is started by iterating all comparisons not yet �ltered in order
of appearance during the run. If the index of the next comparison is higher compared to
the current the following information of the current comparison is stored (if not already
present, which should not happen because of the monotonically increasing indexes from
the majority vote �ltering beforehand): (starting index, di�erence to next index, comparison
value, stack, comparison id). We �lter for the last comparison of the index position, all
comparisons with the same index do have the same token value due to the majority vote
and are thus �ltered. Due to the �rst index correction it might happen that at this position
the corrected index comparison is added as a �rst range starting at the corrected index
up to the index of the next comparison.
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We always take the last comparison that remained after the majority vote and add a range
as described above, but take the maximal index plus one found in any “real” comparison
(a comparison that is not a token comparison, strlen(), or eof comparison) as next index
value for the di�erence calculation. We only append this range to the list of ranges
if it does not already exist This is done because the last comparison does not have a
counterpart, i.e. we only have a starting index but there is no comparison “ending” the
token range, hence we take the rest of the input up to the next real comparison as end
index. This gives us an additional token-lexeme mapping to one of the last compared
characters, likely representing the full token used in the token comparison.
The addition of the value 1 for the length calculation is needed as the last compared
character might still be part of the just created lexeme, e.g. if we have an input “abc”, the
parser lexes up until index 2 which is the character c, creates a token and the respective
comparison ends up in this range calculation with starting index 0. In this case the length
needs to be three, which is exactly 2− 0+ 1: maximal index of a lexer comparison minus
starting index of the token comparison plus one.21

Now, we �lter for subsuming ranges. Therefore, we iterate the tuple list in reversed
order and compare for each element the starting and ending index with all other ranges.
If a range is fully subsumed by our iterator object (start and end index must lie in the
range of the iterator object), the respective value is marked for deletion. Once we iterated
all values, the marked values are deleted from the list. In general, due to the previous
�ltering steps it should not happen that any range is pruned in this step (except for the
newly generated ranges, i.e. if the maximal index is extended), still if any of the previous
�ltering steps would be removed this is needed to clean up the token list as it does not
make sense to have a token “within” another token, lexemes cannot subsume each other.

Resulting Mappings This �nal list of ranges is then used to extract information—some
for this speci�c run, some for all runs merged together. In the following we explain which
information is stored and sketch how it is used later, details follow in the upcoming sections:

Stack To Comparison Mapping For each stack-tuple we map the index, token value and
comparison-id seen for it after �ltering. Hence, especially the �ltering for subsuming token
ranges and the majority vote may drastically reduce the number of added information.
In fact, for each index only one tuple is added, i.e. there is only one comparison added
per lexeme. The �rst index correction might cause an additional element to be added for
the resulting mapping—i.e. the �rst comparison seen de�nes its own range starting at

21One might ask if the starting index correction in�uences this token ranges calculation. The answer is: partially. If
there was a starting index correction (the index of the �rst comparison was higher than the minimal index),
and there is more than one comparison after the majority vote, the index corrected token comparison would
be the �rst in the list, all other comparisons come after this one and have a higher index in our range list.
Hence the corrected comparison builds its own range. Also, the added last comparison is only in�uenced by
the corrected comparison if the corrected comparison was the only comparison in the token comparison list.
When entering the majority vote it would now get the length assigned based on the maximal value instead of
using any subsequent token comparison for the calculation, resulting in assigning the range for the minimal and
maximal index to this speci�c token value solely based on calculations rather than actual comparisons.
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the minimal index and thus possibly gets its own element mapped to the stack. Also, if
there was only one comparison, the index correction shifts the index of the comparison
back to the minimal index. This information is run speci�c and gets generated for
each run individually without storing any information over several runs. The
stack-comparison mapping is later used in heuristics to determine the positioning of
newly created input mutants in the priority queue and for �ltering some mutations before
generating new inputs based on token comparisons.

Token Mapping The token mapping is a mapping from token values (which are integer values)
to concrete strings—collected and updated over several runs. In some cases the token
value can be generated by di�erent lexemes, e.g. in cases for which the token is generated
from a dynamic range of inputs like for variable names or digits. In such cases one token
value is mapped to several possible strings, in other cases the token value is very strictly
bound to one or a few speci�c strings, e.g. for keywords.

This mapping is �lled with two di�erent con�dence levels, depending on where the token
value comes from. If (after all �ltering above is done) the lexeme which created the token
is not the full input string, we mark the string with a low con�dence. We assume that due
to imprecisions while attaching taints to the token value it could happen that taints from
other parts of the input are assigned to this string and the lexeme stored for the token
value contains more or less characters than the actual lexeme that would generate the
token. Though, if the full input generated the token value, we assign a high con�dence to
the string, as the mentioned imprecisions are much less likely to happen here. Remember
that we run the subject on single lexemes if we never tested the lexeme on its own
beforehand, hence chances are high that we �nd for most token values one or more high
con�dence strings. Obviously, the index corrections as mentioned above may in�uence
the stored lexemes here—e.g. we might add a lexeme based on the corrected �rst starting
index and/or based on the corrected size of the last added range. As this mapping is an
approximation, it is �ne to also include such approximated tokens to lexeme mappings.

We de�ne which values are actually stored in the mapping by preferring values with
a high con�dence for a given token value. In detail: if for a token value we only have
low con�dence values stored (including no value at all), and we are about to add a low
con�dence value, we �rst check if we �nd a value in the already stored strings that has a
common pre�x with the value we want to add. If we �nd a non-empty common pre�x, we
replace the stored value with the common pre�x, stop, and do not add the low con�dence
value. With this, we can reduce the number of low con�dence values in the mapping to a
common ground—this makes it possible to �lter out noise introduced by lookaheads and
incorrect extensions of actual lexemes with other characters from the input.

If we encounter a high con�dence string for a token value, then all low con�dence values
are removed from the mapping of this token value and the new high con�dence value is
added. Also, only high con�dence values can be added to a token which already maps to
high con�dence values. Summarized: if we found at least one high con�dence string
during execution for a token value, this token value is mapped to only high con�dence
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strings. If we never found any high con�dence strings for a token value it may also be
mapped to low con�dence strings.

Lexeme Learning Situations Above we talked about a perfect world in which the token
learning phase works as we assume. Still, there might be cases in which this is not true. In the
following we talk about problems that may arise while extracting lexemes, but also problems
that make it harder to learn the actual token mappings.

Lexer Does Not Check All Lexemes While typically a lexer is not context aware and as
such would, for any input, check all options it has up until either one option matches
or all options are exhausted and it errors out, this might not always be the case. One
example could be a check for the string length of the input, guarding a keyword lexing
phase for e�ciency reasons. In such a case, instead of performing a strcmp() operation on
all keywords the parser knows, it would �rst check the length of the given lexeme and
then only compare the input characters to the keywords with same length. Such cases are
either caught by just letting the mutator run long enough, eventually generating lexemes
in many di�erent lengths, or with some generic lexer and parser speci�c mutations,
solving common problems that arise (e.g. for strlen() comparisons we generate inputs
with a supposedly correct length, making it possible to overcome such roadblocks).

Lexer Uses Context Similar to the previous point, it might happen that a lexer is not called in
a completely context agnostic fashion, but depending on the current parsing stage. While
such an implementation is atypical, one could imagine a parser with two di�erent lexers
handling di�erent lexemes, e.g. for e�ciency reasons. In such a case we might, during
explicit token learning, only see one of the lexers, because we only input one lexeme
and the parser would be in the initial parsing stage. The mapping for lexemes from the
other lexer could be learned in larger inputs which contain the lexemes in their respective
context. We do not consider such a case in our approach—in most cases there is just one
lexer reading lexemes without further context [3].

The Tainting Engine Wrongly Approximates Tokens As we have already mentioned in
Section 4.1.2, attaching taints to tokens without noise is not possible, hence there will be
noise in the token comparisons. This noise manifests in di�erent token comparisons in
the trace with di�erent token values for the same input characters (or an input character
contained in di�erent taint sets). Concretely, it can happen that for our while example
we not only have a comparison with the token value 6, but also comparisons with 5, 10,
. . . . In the other case we might have a token comparison with taint indices 0 to 3 and a
comparison with taint indices 0 to 4—which we assume to be noise, as lexemes should
not intersect with each other. To mitigate such noise we use the techniques described in
this section as well as Section 4.2.1 and Section 4.2.2 to detect, prevent, and �lter such
wrongful token taint attachments.

No One To One Lexeme Token Mapping In many cases a token value belongs to exactly
one lexeme and vice versa, e.g. in a programming language parser the while lexeme
would always produce the same token (in our example the token with the value 6), and
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this token would only be produced by the respective keyword (in our example while).
It typically holds that a lexeme produces the same token, but even if the same lexeme
produces di�erent token values, there is no need to special handle this for our substitution,
we can still map the token value to a string that can generate the value. Much more
common is the case that several lexemes produce the same token value. In some cases
there is no need to di�erentiate between two keywords, as they represent the same
syntactical meaning and can be handled the same during parsing. More often though
there is just a set of values representing the same token, e.g. a variable name can consist
of many di�erent characters or a number consists of a string of digits. In such cases
the exact value of the lexeme is not interesting, only the fact that a valid variable name
or number was read by the lexer. Thus, our mapping does not only allow one to one
mappings, but each token value is mapped to all the di�erent actual input values that
produce this value.

4.2.4 Substitution Extraction

Once we learned lexemes and their respective token value, we can make use of this information
in the substitution extraction. While the general approach from Chapter 3 is still valid—we
replace portions of the input with constant values from comparisons in which they are used—there
are still some implementation details to discuss. In this section we explain:

1. which comparison �ltering techniques are used

2. how we perform token comparison de-noising

3. how we infer token comparison substitutions

4. why we need to speci�cally handle valid token comparisons and how we add random token
comparisons

5. how we collect the substitutions based on the extracted comparisons.

Comparison Filtering Not all comparisons of an execution are of interest for us, hence we
apply some �ltering techniques to reduce the overall search space during input inference to
those comparisons that are most relevant. Concretely, we �rst �nd the last comparison (in order
of execution) which is not approximated or just exists for additional information22. Then we
extract the �rst index from the index list reported for this comparison (which is typically the
index of the �rst input character involved in the comparison), which is de�ned as the maximum
index for this run. This gives us a su�ciently precise approximation of the �rst index of the last
consumed portion of the input, so we assume it to be the start of the last consumed lexeme. Now
we �lter for all comparisons (including approximated and additional information comparisons)

22For the approximated types the tainting engine has no direct data-�ow but applies some heuristics to produce
the comparison. Comparisons for further analysis are not considered as actual character comparisons most of
the time but are just used in the mutation engine to improve the substitution generation. For reference, those
approximated or additional comparison types are: eof, strlen, strconstcmp (comparisons against string constants
as de�ned in Section 4.2.1), tokenstore, tokencomp (a token comparison), or assert.
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that ful�ll one of the following conditions—the result is a set of comparisons that either directly
use the last input character as operand or could possibly use it:

Standard Comparison This is the most basic case, the comparisons directly use the starting
point of the last compared lexeme. This �ltering also excludes comparisons that do not
explicitly use the last index, including those comparisons that use indices that are higher
than the last index. This �lters for some backtracking events, like if a keyword is lexed
which might involve �rst checking if several single characters are within a character
range and only then comparing the resulting substring for the di�erent keywords. We
would �lter those single checks and reduce noise.

String Length Comparison We include string length comparisons that would involve the
last index, i.e. the expected length of the string starting at the tainted index would have
included the character at the last index. This makes sure that even if the length of a
smaller portion of the input, not involving the last index, was used for string length
calculation, we still consider the comparison as if the last index would have been included.
We add those comparisons because the comparison indicates that we need a substitution
that replaces the remainder of the original input to ful�ll the condition, which we simulate
by adding the respective string length comparison.

String Comparison We add string comparisons for which the �rst reported index of the
comparison plus the length of the used comparison value would include the last index.
This makes sure that even if the comparison started before the last index and only checked
a portion of the input not involving the last index, if the compared string is large enough
to reach to the last index, this comparison is included in the substitution generation later
on.

Token Comparison We explicitly include token comparisons that come after the last com-
pared character since the token comparison is just an approximation and taint values
might be missing (e.g. only the taint of the last used character for the token generation is
included in the token comparison).

Token Comparison Denoising Additionally, we have some token speci�c �lters to reduce
noise (we do not use any other comparison pruning techniques like the ones described in
Section 3.2.2). First, we only consider those token values, which appear the most often for a
speci�c index—we reuse the majority vote as explained in Section 4.2.3. Also, we only consider
comparisons that are not part of lexing code (as de�ned in Section 4.2.3). If a function is
later marked as lexing, we do not delete the substitutions that are already generated based on
comparisons from that function—still, no new comparisons from that function will be considered.
Additionally, we �lter for looped comparisons: this pruning technique checks if a token value
appears several times on the same stack for di�erent starting indices or di�erent comparison
ID’s (after the �ltering as described in Section 4.2.3 of the token information extraction is done,
i.e. only the comparisons from the stack mapping are taken). If so, the respective comparison
is not considered and no substitutions are returned that would be added to the priority queue.
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With this, we can �lter out recurring token comparisons, i.e. we reduce redundancy in the input
and thus make the input inference more e�cient.

Due to our token comparison �ltering the set of comparisons at each stack level only contains
the last comparison done for each index, which contained the most used token value for that
index. This is, for valid tokens, in general the comparison that consumed the token value. Thus,
if this token value appears several times for a given stack, it must appear for di�erent indices.
Hence, with a very high likelihood, the same feature is parsed more than once for the current
input, which means we likely created a redundant feature (the same feature appears twice in a
similar context). And in such a case we want to keep the priority queue small and prune the
resulting mutations, as they were likely already tried in earlier steps and with a shorter input.

For example: say we are parsing an instruction list of a programming language and we already
generated a �rst instruction “a = 1;”. Now we keep adding lexemes to the input, resulting in
a larger input “a = b; -”. The character “-” though creates a token which, at some point, will
be checked by the comparison that already consumed the tokens for the lexemes for “a” and “b”,
resulting in a call to the same parser code that consumes assignments. Now, since “a” and “b”
are valid tokens the comparisons that consumed their tokens are in the set of comparisons at the
respective stack—the token value for variables is used in more than one comparison at that stack.
Hence, we �lter out comparisons which would consume a variable token at the same stack as
there are already enough of that kind and we want to avoid redundant features—instead we can
concentrate on non-�ltered comparisons that cover other features (like adding an if-statement
which would be handled by another function and thus lies in another stack). It might well be
that this pruning technique also �lters out needed comparisons, but we assume those cases to
be rare and thus our approximation to be bene�cial.

Above we talked about “�at” redundancies, i.e. the same comparison (and thus the same
feature) appears on the same stack level, but a redundancy could be nested (e.g. a while
loop in a while loop). While it might be interesting to also �lter out those cases it is much
harder to de�ne redundant elements over di�erent stack levels. If the stack is di�erent, even
if the top of the stack and a comparison appears several times, it might well be that the
respective element is needed to close a valid input (at least without backtracking). Say we
already have “if (b < c) {}; while (b” as pre�x, then “b” appears a second time as
a boolean operator, possibly being parsed in a method that parses boolean expressions. If we
�lter this it could happen that we cannot close the while expression, even though we would
cover the while feature which is not part of the input yet. Hence, it is often needed to use the
same features several times in di�erent contexts—in this case “b” is parsed once in the “if”
context and once in the “while” context, having di�erent functions on the stack. Hence, our
�ltering algorithm restricts itself to the same parsing context, denoted by the same stack, which
reduces the risk to prune needed recurring features.

Token Comparison Substitution Besides the substitutions of lexer comparisons as explained
in Section 3.2.2, we now also apply substitutions for token comparisons. For them, we randomly
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select at most �ve lexeme strings as mapped to the token value (as de�ned at the end of
Section 4.2.3)—an arbitrary but �xed number, less lexemes could speed up the input generation
process by giving less options, more lexemes have the bene�t that more input options are tested
and the chances of missing any input feature is lower. As we already have a mapping of token
values to their respective lexemes that can produce them, we can do the following:

1. Check which input character taints are used in the comparison, i.e. which characters
produced the token used in this comparison—those are the characters which will be
replaced.

2. To determine the characters to use for the substitution, we query the token mapping and
see which lexemes produce this token. If the number is greater equal 5, we select 5 of
those randomly each time we determine the possible substitutions.

3. Then we can construct the possible substitutions as before, though we correct the index
of the replacement position to the maximum index as determined by the comparison
�ltering if the index in the substitution is higher than the maximal index found. The
maximum index marks the starting position of the last lexeme lexed during execution,
hence any comparison with a higher �rst index does not make sense. Thus, we use the
correction as a safety measure to correct the approximated token comparison indices if
they are seemingly wrong.

Special Handling: Valid Token Comparison Substitutions based on token comparisons,
like all other substitutions, are added to the priority queue based on their heuristic value and
then queried for the next run. Before we get to the calculation of this heuristic value, we need
to handle one special case: if we saw a successful token comparison, i.e. a token comparison
for which the non-tainted operand is equal to the majority voted token value, we construct a
di�erent set of possible mutations.

During processing of the comparisons, we collect all right hand-sides, hence all constant
token values seen in any maximum index token comparison. Now if we have a successful
comparison we check if there are token values that we have already learned but were not
seen in any comparison on the right hand-side—those are parser comparisons that might have
been hidden by the successful token comparison. For this, we use the token comparison map
as de�ned in Section 4.2.3. Or in other words: the parser likely found a valid token and thus
stopped parsing the lexeme we are currently looking at and went on to the next lexeme. In
that case we choose a random other token value not yet seen and use one lexeme that builds
this token value as substitution for that index based on the selected token value. Also, as we
use this new substitution for re-running the input to gather more information about possible
substitutions, we do not append a random character when instantiating a new input
with this mutation (in contrast to other substitutions which are typically accompanied with
random additions; see Section 4.1.4). We use the information from the last matching token
comparison for later heuristic calculation, but we create a mock call-stack with one dummy
element to get a lower stack size and therefore a higher rank in the priority queue as we can
later see in Section 4.2.5.
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The question is: why do we need to special handle the case of a found valid token and
construct a mutation set with a token that was not even seen on the right hand-side during
parsing? Would this not end in a parsing error? The answer is: yes, we actually do produce a
likely invalid new input, but this is the very purpose of this feature. The reasoning is based
on a very important di�erence between parsers with a lexer and those without. If a lexer is
involved we have a two stage validation: the subject under test �rst checks if a lexeme is valid
in general, i.e. if a token can be produced, and only if this is the case, the parser veri�es if the
token is valid at the observed position.

For our approach it is important to see all options the subject under test allows for a certain
position in a speci�c input, i.e. if we have the input a = b, what lexemes are allowed after
b? Without a lexer (as in Chapter 3) we can just append another random character, collect the
comparisons done on the character and with a very high chance the character is already invalid
and the parser reveals the options it has at this position (and even if we guessed a character
correctly, there are likely other values in the priority queue which will end up in a similar
situation and we reveal the options then). With a lexer though, if we just append a random
character, with a very high likelihood the character is not a valid lexeme, does not produce a
token and the parser would not even be called.

In the presence of a lexer, the possible continuations of a pre�x are not de�ned by the
character comparisons, but by the token comparisons. Hence by excluding all token values the
parser already checked and picking a random token, which was not yet used during parsing,
we can construct an input, which gives us more information about the possible substitutions.
As we replace the seemingly valid lexeme with a lexeme that produces a token value not seen
beforehand, we see those parser comparisons that are done after the initially valid token. Either
the new token was incorrect, then we can construct our mutation set as normal, or the new
token was correct as well. Then it is either the case that any token is valid at that position,
hence we do not have any other token to test and continue as in the incorrect case, or we
append another token not yet seen in the comparisons and repeat until one of the other two
cases occurs. Without this extension we might miss features in certain subjects under test,
especially in cases for which a random identi�er and a keyword are valid extensions of a pre�x,
as chances are high to append a random character which produces an identi�er, but we might
never produce a string that resembles a valid keyword if the parser �rst checks for the identi�er
token and only then for the keyword tokens.

Special Handling: Random Token Values Our mutator is based on the assumption that
the lexer checks for certain values and if a value matches, the respective token is given to the
parser. The constant values from those comparisons against input values are taken and used as
substitutions during input mutation. As already said in Section 3.2.2, some parser comparisons
(or in this case token generations), might be implicit. A lexeme or token is accepted either
because no other option matches or because the comparison checks the opposite of the wanted
values (is the value outside of a range instead of inside a range). In those cases we would never
see the actual wanted comparisons. Thus we always add two arbitrary but �xed mutations
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(marked as stemming from non-token comparisons), one with a number and one with a letter,
replacing everything from the maximum index on. In Section 4.2.5 we will see how those
substitutions are ranked compared to other substitutions in our priority queue. Similarly, if we
do not see any mutations based on token comparisons, we append the same �xed mutations, but
mark them as stemming from token comparisons instead which in�uences the heuristic value.
The reasoning for this is that especially the lexing of such dynamic values like strings (e.g. for
variable or function names) and numbers can be implemented in many di�erent ways and it
may well be that we simply missed the token generation part for those tokens. The mutator can
use those random mutations to try if there is a “hidden” requirement for a number or a letter.

For this to work it is important to know that typically no input will be tried twice: if we
already generated a certain input, we will not run the subject again on the same input. Hence,
we can just add those additional mutations to �ll common blind spots without risking duplicates
in the search space that will be executed on the subject under test. This is also the reason
why we add arbitrary but �xed numbers and letters. If we would add random values here,
we would actually generate inputs which often cannot be �ltered by our duplicate detection.
Furthermore, with those additionally generated substitutions we add some random noise to the
overall generation loop, making it possible to detect comparisons and code locations that might
have gone missing when only using tainting information and the resulting substitutions.

Substitution Collection Once all of the above is done (and we did not perform the special
handling of valid token comparisons), we collect the respective token comparisons as well as all
other comparisons containing the last input taint index and store them into a set of possible
substitutions. In the next paragraph we detail how we organize those substitutions in such a
way that we prioritize those inputs that are most promising in either revealing new code or
adding su�xes to already valid pre�xes which cover new code, yielding valid inputs that cover
new portions of the subject under test’s code.

4.2.5 Specific Heuristics

In the previous section we explained how we extract substitutions from a taint stream. In this
section we will go into details how we calculate the heuristics for putting the substitutions into
a priority queue, such that we can later retrieve the most promising inputs �rst. Concretely, we
will discuss the following:

1. Valid inputs: the heuristic relies on information based on “valid inputs”, hence we de�ne
which inputs we consider as valid.

2. Coverage: the heuristic uses coverage information, thus we also de�ne how we calculate
coverage.

3. Code path: we also need to explain our path de�nition for code paths through the subject
under test.
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4. Heuristic details: we give a short overview on the heuristic and then explain each part in
more detail.

5. Special substitution handling: at some point in the input inference loop it happens
that non-standard substitutions are added. We explain how their heuristics compare to
standard inputs.

Valid Input Definition Valid inputs and runtime information from them are a central part of
the heuristic, hence we describe what we de�ne as valid and under which conditions we store a
valid input. Also, we clarify when the coverage of an executed input is stored and remembered
as “covered by a valid input”. Internally, during the execution of the input learning, we remember
those inputs as valid inputs that we assume to be syntactically valid. In general, this de�nition
is ful�lled by inputs that make the program �nish with exit code zero or let the program timeout.
In some cases we also check if an assertion was triggered, as we assume assertions to only
happen after the syntactical phase. Checking for an assertion is only done for inputs that are
executed under tracing, which is not always the case (for e�ciency reasons not all inputs are
run on an instrumented version of the program; in Section 4.2.6 we detail when an execution is
instrumented).

In the following we detail the di�erent storing and exporting cases for inputs that ful�ll our
de�nition of syntactically valid:

Valid Input Coverage Addition Any input that causes an exit code zero, a timeout, or triggers
an assertion causes the coverage map (as de�ned below) to be re-calculated if new code is
covered. The reason for using exit code zero is straightforward, as this typically means
that the program exited without any errors, so we assume the input to be valid—the
covered code belongs to a valid path through the parser. A timeout in most cases means the
parser accepted the input but some subsequent program logic did not �nish in time—most
parsers run fast and typically do not diverge. We believe this approximation to be precise
enough to consider such timeout inputs as valid as well—the covered code likely belongs to
a valid path through the parser. The additional inclusion of inputs that trigger an assertion
is due to the fact that such inputs are likely syntactically correct (we expect assertions
to happen in the program logic, not in the parsing stage) but there is some uncertainty
about their correctness—thus again: the covered code likely belongs to a valid path through
the parser. This is especially important as inputs that cover new code get a high heuristic
ranking, thus for cases in which an input not only covers new code but also triggers an
assertion, we might end up building many similar inputs triggering the same assertion
if we do not ignore the coverage to the assertion in future runs. Respectively, we store
such code as already covered and thus possibly lead the generation loop to other features
not yet tested instead of having a possible false focus on the assertion triggering input
portion. Also, having a valid input that covers new code also triggers the update of the
priority queue, as we have to re-calculate the heuristic value for each input in the queue.

Storing Valid Inputs We use an internal storage of inputs that we consider as valid. It is
used at di�erent places for calculations. An input is stored as valid if it either caused the
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program to �nish with exit code zero or timeout. The inclusion of inputs that cause an exit
code zero and timeouts is reasoned analogous to the coverage addition above. Also, if
no new code is covered, the input is treated as valid even if an assertion was triggered
and the program neither stopped with exit code zero nor ran into a timeout. Here, we
can assume the input to be syntactically correct and likely just a semantic check fails,
hence we use this approximation to reduce the chance of generating similar inputs and
run again in the assertion (similar to the argumentation for coverage storing).

Export An exit code zero or timeout causes an export of the input as valid input, for the same
reasons as we store inputs internally as valid, but when exporting we only export inputs as
valid if they cover new code no other valid input beforehand covered (see below for details
about the coverage calculation). This is a �ltering mechanism to reduce the output of our
approach to those inputs that are syntactically interesting as they cover new features,
it is not functionally important with regard to the input learning loop. At this point we
also reset our counter, which counts the number of executions since no new coverage
was found with any valid input. This is especially interesting to decide when to stop our
approach and switch to another approach—more on this in Chapter 5.

Coverage Calculation A central part of the heuristics used to prioritize inputs is code
coverage, hence we explain how we calculate coverage (which is mostly based on branch
coverage). The tainting engine does not only report taints but also coverage events, i.e. whenever
a new basic block is entered a tuple with the old and the new basic block identi�cation number is
reported in the stream of comparisons and other events—but only the �rst time the tuple appears,
there are no duplicates. For coverage calculation we �lter this stream of coverage events for
those branches that happen in parsing functions at the time this calculation is done (including
the current execution). With this information we create two coverage sets.

The �rst coverage set is the all covered set—which is used to calculate the coverage of valid
inputs. For every branch we remember how many valid inputs covered it (for valid inputs as
de�ned above). For the second coverage set we �lter further: we only consider the coverage
events up to the last comparison on the second-last lexeme—approximately resulting in the set
of covered branches in parsing functions until the last comparison of the last successfully
parsed lexeme (excluding some comparison types like strlen(), those are approximated compar-
isons and thus might be incorrect). This set not only excludes non-parsing code, but also error
handling code as it only approximately covers branches covered up until the lexer comparisons
on the last lexeme started, hence only the branches covered by a supposedly correct portion of
the input. This additionally �ltered set is then used to calculate two numbers: newly covered
branches and overall covered branches, whereas the number of newly covered branches
is just the sum of branches covered that were never covered by any valid input beforehand.
The number of overall covered branches is the sum of newly covered branches times two plus,
for each already covered branch, one divided by the number of valid inputs that covered that
branch—giving a number which ranks new branches high and other branches lower the more
often they are hit. The number of newly covered branches is important as inputs that cover new
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branches are likely to also cover more features in the code, especially more parsing features.
Also, the number of overall covered branches gives a broader estimate on the value of the input,
as newly covered branches are ranked high because of their importance and branches that are
covered by many inputs are ranked lower, as those are already hot branches in the code which
seemingly are traversed by many inputs and need less focus.

Whenever a new, valid input is discovered that covers new branches never seen before, the
coverage statistics from above need to be re-calculated. Thus, we store the covered branches
until the last comparison as de�ned above for every input, as this is the baseline for our coverage
calculation.

Path Definition Besides coverage, we also calculate and store an approximation of a path for
every input, which is de�ned as follows: we take the list of parser branches covered until the
last comparison and, in order of appearance, store for each branch tuple the source basic block
id. Hence, if we have a list [(a, b), (b, c), (c, d)], we get a path-tuple (a, b,
c). Now, since every branch-tuple is only reported once by our tainting engine, it may well be
that there are portions of a path missing (e.g. if a method is traversed twice on the same path,
only the �rst traversal is re�ected in the path-tuple), hence this is just an approximation of the
actual path taken. Still, for e�ciency reasons we believe that this approximation is su�cient
enough. Especially since such duplicate branches likely mean that the same parsing feature is
traversed twice—thus, there is likely some redundancy in the input. For our input generation it
is important that a feature is traversed at least once and the order of features is interesting (an
if-statement nested in a while-statement might be di�erent from the opposite case).

Priority Heuristics We already explained heuristics in Chapter 3 for sorting the possible
mutations into a priority queue to select the most promising new inputs �rst and cover new
code and therefore new features in the parser of the subject under test faster. The usage of a
priority queue is only helpful if the respective heuristics for sorting the values are well designed
and match the domain they try to cover. In Chapter 3 we covered subjects that use a parser but
no lexer, hence the heuristics were designed for those subjects. In this chapter we extended our
idea to subjects that may also have a lexer. Additionally, the heuristic handles di�erent modes:
re-evaluation, non-appending and appending mode. In the re-evaluation mode the complete
priority queue is newly evaluated. This needs some special handling when calculating the
heuristic value again for already added values. In the appending mode a random character is
appended after the mutation was applied. In some cases though we want to apply the mutation
without a random addition. For this special case we also calculate the heuristic di�erently.

First, we explain the di�erent calculation steps of our heuristic adaption, then we will go into
detail about the di�erent steps. We adapt our heuristic, as follows (a smaller value ranks the
input higher in the queue):

1. The individual value for the input, de�ned as follows for the following cases:
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a) If the operator is a token comparison, the original input covered more than zero new
branches compared to all valid inputs beforehand, the run was not a re-evaluation,
and after the mutation a random value will be appended this part of the heuristic
value is calculated as follows:23

• Create a mapping from stack sizes of the token comparisons of this run to a
set of tuples (correction, comparison id); �ltering those token comparisons
that have the same �rst input taint index as the current value for which the
heuristic is calculated. The underlying mapping used to create this list is the
stack-comparison map from Section 4.2.3.

• Check if the set at the stack size of the current comparison already contains
a tuple with the current comparison id, if not add the current (correction,
comparison id) tuple to the stack size mapping.

• Create a list sorted by stack sizes, containing tuples (stack size, - (number of
tuples at the stack size)).

• Add one fallback tuple at the end of the list: (max int, - number of newly covered
branches).

• Use the tuple resulting from this list as priority value by interpreting it as a
tuple.

b) If one of the conditions of item (a) does not hold and a random new value will not be
appended:

• Use a one element tuple containing the tuple with the values (-1, 0).
c) If none of the above holds:

• Apart from the re-calculation case this is a one element tuple containing a tuple
with one element: (max int). In the re-calculation case the individual value is
inherited if the stack size is larger than 0 and new branches are still covered
by the parent input, otherwise it is again the one element tuple with the tuple
(max int).

2. The number of inputs that took the same path (including this input). A path is de�ned
as above, hence it is not the actual path taken through the program but an approximation.
If no random appending would be applied, this value is set to 0. Also, the value is set to
0 if the input is smaller than 3 characters or the number of same paths taken is smaller
than 6 but larger or equal to 0 (could be manually set to negative values in some border
cases to rank an input higher). Gets copied in case of re-calculation of the priority queue,
hence this value is only calculated once during creation of the substitution and is then
never changed.

3. A combination of values that produce a heuristic value for the given input:
23Our prototype also requires the stack size to be larger than 0. This serves as a �ltering mechanism as the stack

size should never be zero except we manually change it—which should not happen for token comparisons. We
do not want to rank such mutations high in the priority queue.
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• length of the input minus newly covered branches (if new branches were
covered; else 100)

• + sum of the length of the same pre�xes in already found valid inputs
• + 1 for every 5 inputs on the path of the generation tree (including this input;

starting at zero for inputs without a parent)
• if the comparison is a token comparison:

– if the input covered 0 or less new branches and the correction is not part of
any already found valid input: minus 100 times the length of the correction;
else 0

– always: 1 subtracted from the item above
• if the comparison is not a token comparison:

– minus the length of the correction times 2

4. The length of the input.

5. The input ID.

Heuristics Explanation In the following we detail the parts of the heuristic and explain
why we had to change some parts of the heuristic, leave out some elements, and add some new
elements compared to the heuristics in Section 3.2.2:

Individual Value As the name already suggests, the individual value exists to have a more
detailed control over the current value while putting it into the priority queue.

General Case In the most general case, the value is just the maximum integer and sorts
the value behind all other values that got an individual correction. The values which
got an individual correction are likely more promising and are thus ranked higher
than the values that fall into this category. This is the case for option (c) in the
itemized list above, i.e. if none of the other conditions below hold. More interesting
are the other two cases.

Token Comparison The reasoning for case (a) is the following: �rst of all, we want to
bring token comparisons to the front of the priority queue, hence we check if the
current comparison is a token comparison. But, we only want to consider token
comparisons that ful�ll additional conditions.
The input from which the comparison originates must have covered more than zero
new branches compared to already found valid inputs. With this we only consider
those comparisons which were executed for a pre�x that found new coverage, i.e.
a pre�x which, if completed to a closed input, will cover new code and thus likely
new features of the subject under test.
Second, the run was not a re-evaluation. In the re-evaluation case we copy the value
from the original mutation that is re-added to the queue if the stack size is greater
than zero and the input still �nds new branches. Thus, when re-evaluating the
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queue we do apply the individual value at another position with di�erent conditions
and do not consider it again when adding the value to the queue.
And lastly, there will be an appending of a random value after the mutation was
applied. For a token comparison there is no random appending if we saw a valid
token comparison during execution (for details see Section 4.2.4). In that case we
will go to option (b) which then describes why we need a special handling here.
Once all of those conditions are ful�lled, the individual value is calculated as de-
scribed in item (a). The calculation essentially creates a large tuple which serves as
a sorting order criterion. Each (correction, comparison id) is one unique comparison
location: the comparison id uniquely identi�es the code location of the comparison,
the correction is added to diversify the comparisons as it might happen that the
same comparison is used with di�erent constant operands (e.g. when comparing
against values from a constant array). With this we get a �ne grained view on the
di�erent comparisons done at each stack size, giving us an insight into the recursive
depth the input walked through. Inputs that iterate comparisons at lower stack
sizes or have more comparisons at a certain stack size compared to other inputs are
ranked higher.
Since we append the tuple (max int, - number of newly covered branches), we favor
those inputs that cover comparisons at a higher stack depth if at a lower stack
depth they cover the same number of comparisons (i.e. the input covers more),
e.g. it holds that ((2, 2), (sys.maxsize, 0)) > ((2, 2), (3, 1),
(sys.maxsize, 0))—both inputs covered two comparisons at stack size two
but the input which created the right tuple also covered one comparison at stack
size three what we favor. If the number of comparison tuples is equal we sort by
number of newly covered branches compared to the branches covered by all valid
inputs beforehand.
Overall, we sort the token comparisons of inputs that cover new branches with
respect to the number of comparisons and stack sizes, whereas smaller stack sizes
and more unique comparisons on smaller stack sizes are more favorable. This keeps
the recursion depth low and makes it easier to make pre�xes valid, as there is a
higher likelihood that we do not need to close any opened features. The reasoning
here is that the more unique comparisons happen lower in the stack, the more
parser features are covered lower in the stack, hence the covered features are less
nested within other features that also need to be closed. For example, closing a
simple arithmetic expression like “1+” is easier than closing a nested expression
like “1+(”—in the �rst case we just need to add some value like “2” whereas in
the second case we also need to close the already opened parenthesis, resulting in
adding at least two characters: “2)”.
With this, we have a more �ne grained stack heuristic designed to the needs of token
comparisons, hence we do not use the size of the di�erence of the stack to the parent
or the average stack size anymore, which was still used in Section 3.2.2. Especially
since we are now mixing the comparisons of di�erent stages, lexing and parsing, it
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does not make sense to compare the stack size of a lexer comparison with one of
a parser comparison. Also, for non-token comparisons the stack is not of any use
anymore as they happen in the lexer which is shallow and typically does not use
any recursion.

No Random Appending If random appending of another value after an applied muta-
tion is done, we set the individual value to a tuple containing the tuple (-1, 0).
Hence this value will be ranked very high in the priority queue and is likely selected
next.24 We use this because not appending a random value just happens for rare
events in which the value to evaluate should be one of the next values to be taken
for evaluation. In the token comparison case this happens if we want to try out
another token value not yet seen during parsing at the position where the mutation
was applied (as explained in Section 4.2.4). In detail: we already executed an input
on the subject under test with a token value but the token was valid and the parser
stopped at the comparison that matched. Thus, our mutation decision engine selects
another token that should be applied at this position and we re-run the new input.

Same Path Taken The reasoning is the same as for the non-lexer case as described in Sec-
tion 3.2.2—we want to avoid duplicates. The additional �ltering for the non-appending
mode just exists to deactivate this value for those inputs as they need a special handling
and we want to rank them higher (see above).

Calculated Heuristic Value As in Section 3.2.2 we combine a set of values to one part of
the heuristic. Again, there is no special order between those values, none of them is
more important than the other such that it would be possible to add them to the overall
ordering. Let us explain the parts in detail:
Input Length Similar to Section 3.2.2 we consider the input length minus newly covered

branches, the reasoning is the same as before. In this version of the heuristic though
the average stack sizes are missing (compared to the heuristic in Section 3.2.2),
which comes from the fact that the individual value already includes stack sizes.
The individual value only considers token comparisons, which is �ne though for
our case as the stack sizes in the lexer are not of any importance anymore, now that
we have token taints and see all parser comparisons.

Same Prefixes As in Section 3.2.2 we want to favor inputs that are more diverse text-
wise compared to already found valid inputs (including those inputs that ended up
in assert calls and timeouts, as often those are just semantically wrong inputs and
we want them to be considered here as well).

Number Of Previous Inputs As in Section 3.2.2 we want to favor a breadth �rst search.
As mentioned above, this value is zero for all inputs that do not have a parent input.
This, for instance, includes inputs for lexeme learning runs, i.e. inputs that are
not taken from the priority queue but generated to learn lexemes individually (see

24It might be that there are other values with this individual value added which are then taken �rst, but this will
not happen often. In this case though the other items of the heuristic value play a role for the selection of the
next element.
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Section 4.2.3). Also, obviously, the �rst run uses an input without a parent and in
some cases it might happen that the priority queue is empty when queried, which
would also cause a run without a parent input.

Correction Length As in Section 3.2.2 we want to favor larger substitution values. The
non-token comparison case is the same as before (minus the length of the correction,
times 2) as we are working on the string level here and longer string constants are
more interesting than shorter ones as they likely contain keywords. If the mutation
comes from a token comparison though, we consider two cases: in case one the
input covered no new branches and the correction was not yet seen in any valid input,
we rank the substitution very high by multiplying its length with−100 and subtract
one. In the other case we just subtract one. If the correction is already used in some
valid input it does not make sense to use it again, hence it is not considered in the
token comparison case again. If the input covers new branches, we do not want to
consider the token length here, as we are already on the token level and tokens are
equally important, it is more important to close this pre�x that covers new branches.
If the input does not cover new branches and the correction representing the token
value used for substitution was not yet seen, then we want to rank the input high,
hence we multiply the substitution length with −100. The actual length of the
substitution is not as important as in the plain string case without a lexer, but it is
still interesting to favor keywords, hence we kept the heuristic similar. Still, we want
to rank token comparisons higher, hence we use a larger constant for calculating
the token value correction length part of the heuristic.

Input Length The reasoning is the same as for the non-lexer case described in Section 3.2.2—we
want to favor shorter inputs.

ID The reasoning is the same as for the non-lexer case described in Section 3.2.2—this is a tie
breaker, inputs that were discovered earlier are favored.

Special Inserted Values During the generation of new inputs it happens that besides the
generic generation of possible substitutions we also build custom substitutions which we want
to rank at speci�c positions in the priority queue.

First, the substitutions stemming from runs which found a matching token comparison
(i.e. the parser successfully parsed the lexeme we are currently observing) are ranked the
highest, as the individual value results in the tuple (-1, 0), ranking those elements right at
the beginning of the queue. This makes sense as we want those values to be executed as soon
as possible again, replacing the correct token with an incorrect one to get more information
about possible options. The matching token comparisons are explained in detail in Section 4.2.4
in the special handling of a valid token comparison paragraph.

Second, in many cases we do not only run the input with the substitution, but also append
some random value (see Section 4.1.4 for more information). In case the input without the
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random appendix already caused the program to �nish with exit code zero or causes a timeout,
substitutions are re-added to the queue during the execution loop, changing the same-
path-taken value to −125, ranking them right in front values with the same or worse individual
value. This is done because at some point we want to also run the input with a random extension
as it might reveal a new path, especially since the pre�x is already a valid input.

Finally, there are two kinds of random substitutions: one simulating a non-token com-
parison with stack-size zero and one simulating a token-comparison with a maximum integer
stack-size. Details about the special random substitutions are explained in Section 4.2.4. The
token comparison random values are ranked as if the comparison happened at the maximum
integer stack-size on the last-index character and with random appending activated. Hence, they
are mixed with all similar token comparisons but because of the maximum integer stack-size
their ranking is slightly worse compared to other token comparisons working on the same
index. Still, this only holds if new coverage was achieved in the run compared to valid inputs,
otherwise there is no di�erence to other token comparisons of the run (though they are added
last, hence their ID is the highest). Also, we cannot say anything about the ranking compared
to other values from other executions, as their values are completely di�erent.

Random non-token substitutions are ranked behind most token substitutions that cover new
code—like most other non-token substitutions. They are intermixed with other non-token
substitutions of that run and ranked rather low as their substitution length is one and they are
added last, resulting in a the highest ID-values for a run. They are typically used if there is no
token substitution with coverage or new substitutions never seen in valid inputs. In such cases,
we reached a local plateau and need to try out di�erent inputs, ranking the random substitutions
along the normal substitutions is su�cient in that case.

�eue Recalculation As already mentioned, whenever a valid input is found which also
covers new code, we perform a recalculation of the heuristic value for all inputs in the priority
queue. This means, for every input we do the following:

• The number of newly covered branches (based on the branches stored for each input) is
updated.

• The individual correction is either inherited if still new branches are covered, or it is set to
the maximum integer tuple.

• The calculated heuristic value is updated based on the currently available information.

If it ever happens that a function is de�ned as parsing in a later run the stored branches for the
inputs do not change, hence the branches of this function might be missing. As the de�nition
of parsing and lexing functions is an approximation anyway we accept this imprecision but
25In some border cases it might happen that this value is reset to zero, e.g. if the complete queue gets recalculated

and the input length is less than three. Though, this should typically mean that another interesting input was
found and we need to re-evaluate the ordering of values in the queue anyway.
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consider it as rare and new inputs (e.g. the one that caused a function to be considered as
parsing) will typically cover those new branches and �ll the blind spot. All other heuristic
values do not change and are inherited from the original value.

Summary The heuristics above mostly concentrate on token comparisons, i.e. if the compar-
ison is not a token comparison some parts of the heuristics calculation are deactivated. The
reasoning behind this is that in contrast to the heuristics used in Chapter 3, we now have
knowledge about tokens and can di�erentiate between tokenization and non-tokenization code.
The heuristics in Section 3.2.2 partially try to cope with this missing information by combining
di�erent information from the execution to infer how the parser behaves if the lexer accepted
a character—i.e. the heuristics need to handle the case that the constant character and string
values used in comparisons do not directly hint the actual valid characters at a certain position
if a lexer-parser setup is involved. Now though, we always extract for each input character the
valid characters for its position, hence likely any of the possible characters is correct. Thus,
the heuristics need to solve a di�erent task here: �ltering more uncertainty introduced by the
token-taint approximation and prioritization of token comparisons if a lexing stage is recognized.
Hence, we expect our heuristics to be su�cient for both cases, especially as we expect only
simple parsers to not use a lexer-parser splitting.

4.2.6 Input Generation Loop

Sections 4.2.1 to 4.2.5 describe the implementation details for handling tokens in our input
generation loop. As already mentioned in Section 4.1.4, this also means that we need to
design the overall input inference loop di�erently. Thus, this section gives an overview on the
implementation of the extended generation loop. It remains to be said that the pruning and out
of bounds (maximum index larger than input length) checks are not done anymore when using
tokens (see Section 3.2.2). We have much more uncertainty in the traces we generate and thus
need to reduce the discarding of possible mutations.

Continuation Set Before we start explaining the overall generation loop in detail, we need to
clarify a central part of the input generation: random extensions. Oftentimes we need random
characters that are appended to input pre�xes or even serve as (re-)starting inputs. Those
random characters are initially the set string.printable of the Python language [144]26.
They cover all values that are typically used in human readable input format—the formats we
concentrate on in this thesis. Using another (larger or smaller set) would certainly work as
well as those random characters are just placeholder. If the set is too small though, we might
end up not generating enough invalid extensions, thus possibly missing out on characters that
would be lexed in comparisons after the extension is accepted. Remember, with an invalid su�x
given to the subject under test the lexer would be forced to check all its internal options before
rejecting the su�x. By giving valid su�xes, the lexer would stop once the su�x is matched,

26We omit referencing the concrete version used in our evaluation as this is a technical detail that should not
in�uence the overall input generation (if this set ever changed/changes at all).
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thus we do not see the remaining options that would be tried after the comparison that matched
the su�x—options that are important to know for our input inference.

During execution though this set of continuations changes—for every substitution that is
added to the priority queue in the standard way27 we check if the substitution value is part of
the continuation list and if so we discard it from the list. The reasoning for this discarding is
that we explicitly want to extend pre�xes with invalid new characters to not run into matching
comparisons. This increases the likelihood to see all comparisons done on this newly appended
character. If during execution all characters from the continuation set are discarded we re-�ll the
set again with all string.printable [144] characters to avoid not having any continuation
if needed.

Loop Overview As discussed in Section 4.1.4, we start with a random character, run the
program, analyze the trace, store inputs and possible mutations in a priority queue based on
their heuristic value, extract the most promising input, mutate it, and restart the inference
loop. The new feature compared to the inference loop from Section 3.2.2 is the adaption to
token learning and usage during inference. In the following we detail this new feature, i.e. the
adaptions made to improve the input inference in the presence of a lexer in the subject under
test.

Input Generation During input generation we take an input or a substitution from some
input provider source as de�ned below and generate one input with and possibly one without
random continuation which both are executed in the overall execution loop. The inputs are
checked for uniqueness with respect to the overall execution, i.e if both inputs were already
generated at some point they are discarded and the input sources are queried again.

Token Learning The token learning is preferred over any other input source. As described in
Section 4.2.3, we learn a token and stack mapping by running the subject on individual
lexemes without random extensions. Whenever a new lexeme is detected, the token
learning is used as the preferred input provider.

Empty �eue In rare cases it might happen that the priority queue runs empty, i.e. there is
no other substitution that can be tested—most often this happens if the queue consists
of substitutions that just generate inputs already executed. In this case we continue the
execution by taking a random character. Also, as we generate inputs typically with a
random appendix, we create a second input with two random characters. Both of those
inputs do not have a parent execution, which in�uences the heuristics calculated but also
avoids re-adding any mutation if the execution is shortcutted (see below).

Substitution The substitution case is the core input generation case, the central part besides the
heuristic ranking of possible substitutions. Here we take the most promising substitution
from the queue and replace the part of the input starting from the �rst tainting index used

27There is on exception described in this section that adds an input directly to the queue and not through the
standard heuristic value calculation and addition path.
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in the comparison up to the end of the input with the respective substitution. Also, we
add some random extension to the newly generated input as we believe the just generated
input to at least be a valid pre�x. For parser comparisons we typically add a random
lexeme, as we want the random extension to trigger parser comparisons again and a
random character extension, which is used for other cases where we append a random
value, would likely get rejected in the lexer already. The randomly appended token values
come from the token mapping as explained in Section 4.2.3. If no appending is done
(which may happen for some mutations), the single input is used as if it is randomly
appended and only this input is executed. If the non-appended input was already executed,
we only consider the random appended input in the upcoming execution—if it was not yet
executed. In the following we detail the di�erent input generation options for di�erent
comparison types, explaining how the random continuation is added and if there are any
additional details when substituting the original input with the stored correction:
String Comparison The string continuation is added with a whitespace between the

input and the random continuation as typically keywords are �rst read character
by character and then compared with the strcmp() function and this whitespace
oftentimes splits the random continuation away from the string that was just used
as substitution.

Token Comparison The same is done as for string comparisons, but additionally there
is also a whitespace added between the substitution and the input pre�x and both
whitespaces are only added if there is not already one, because, analogously to the
string comparison case, a whitespace between lexemes is typically allowed and often
required, hence we approximate this to reduce the number of incorrectly generated
inputs. The random continuation is a random lexeme (from the token mapping
as discussed in Section 4.2.3) if the substitution did not end with a whitespace. In
this case it is likely that we found a correct lexeme for substitution and we want to
see what the parser accepts next, hence we need a valid lexeme. If the substitution
did end with a whitespace, we add the substitution again because in this case it is
unlikely that the original substitution is correct: lexemes are typically surrounded
by whitespaces in an input but do not contain one. Thus, we want to �nd out what
happens if we just append the same value again.

String Length Comparison We never add a random continuation as the actual length
of the substitution is important and we just want to see how the parser reacts to
a substring of the input with the correct length. The goal is to reveal possible
guarded comparisons by string length comparisons, hence we just perform this one
replacement.

Other Comparisons The continuation is appended without any whitespaces.

Execution The inputs from the input generation are executed �rst with and then without the
randomly appended character—except for cases in which only one input is executed, this input
is considered as randomly appended and the sole input executed for the loop. This distinction
between appended and non-appended inputs is important for two cases: starting a traced
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execution and abridging the loop if the non-appended input causes the program to exit with
exit code zero or a timeout.

Traced Execution Tracing the program execution is rather expensive—the execution time of
the subject under test increases signi�cantly when traced. This pays o� if the gained
information from the trace guides the execution e�ciently enough to the goal of generat-
ing valid inputs. In the case of inputs without a random appended character though we
already assume the whole input to be at least a valid pre�x for a valid input—we assumed
to have replaced the �rst invalid portion of the input, e.g. the last parsed lexeme, with
a valid one. Thus, the only thing that is to be tested for those inputs is: are they fully
valid? Hence, we run those inputs without tracing to reduce used resources and only if
we abridge the loop (see next paragraph) or have an input with a randomly appended
character we trace the execution. If not abridged, it is su�cient to only trace the randomly
appended input as we were either right with our assumption that the substitution is valid
and the parser checks the random appendix from which we will then extract the next
possible substitutions, or the substitution was wrong, in which case the parser stops at
the incorrect substitution resulting in the same extracted information as if the random
appendix was never added. If the input was valid we trace again to see if there are any
comparisons not yet seen—in those scarce cases it is better to over-approximate and
possibly have too much information than to miss any comparison.

Abridging If the non-appended input is executed and either the subject under test returns exit
code zero or timeouts, we re-run it under tracing and collect the traced information. To
not lose any information from the possibly partially missing run we add the substitution
back to the queue with a better heuristic value compared to its original heuristic value as a
specially inserted input as described in Section 4.2.5. We check if the just traced execution
covers new code, in which case we directly go to the result handling (see next paragraph
for details). If no new coverage is found, the random appended input is executed and the
loop �nishes the iteration as usual.

Result Handling The information from the traced and tainted execution is �nally given to
the substitution extraction which makes use of the techniques described in Sections 4.2.2
to 4.2.5 to generate new substitutions and add them to the queue. At this point we also
check if the last executed input was valid (as de�ned in Section 4.2.5) and if we need to
re-evaluate the queue. If it is invalid (non-zero exit code) and the last instruction is not an
assert instruction and the input is below 2000 characters (to avoid in�nitely large inputs),
the execution is just analyzed and the substitutions are added to the queue. Otherwise,
we may store some information about the just executed input (like covered branches) or
report it as valid (as described in Section 4.2.5). Once the inputs are added a new input
queried from our input sources gets generated, and the loop begins again.

New Heuristics As already mentioned, we include new heuristics as described in Section 4.2.5.
Those heuristics take into account that we have an approximation of token comparisons in the
parser and are designed to lower the noise introduced by this approximation while making use
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of the fact that we have knowledge about parser comparisons even in the presence of a lexer.
Thus, even if a program uses a tokenizer, we can e�ciently infer syntactically valid inputs.

4.3 Limitations And Assumptions

In Chapter 3 we already mentioned some limitations and assumptions for our approach—most
of them are still valid. However, with our extensions as described in this chapter we resolve
some of them while introducing new ones. We do not list all limitations and assumptions again
in this section, but rather detail the di�erent items by mentioning new and solved limitations.
Hence, if a limitation or assumption is not listed here, it is still valid as mentioned in Section 3.3.

Parser comparisons can now be analyzed in presence of a lexer.
Before, in the presence of a lexer, the input generation e�ciency of our technique was
reduced. Our technique could only detect and use comparisons in the lexer in that case,
resulting in an ine�cient input generation inference. Now, we are able to track the tokens
a lexer generates and make the parser comparisons visible and usable again. Thus, this
limitation of Chapter 3 is mainly resolved.

Typical lexer patterns are expected.
If a tool taints every value not only based on direct data dependencies but also based on
control-�ow dependencies, most values will likely be tainted with almost all taints from
the input. Hence, control �ow based taints would produce a large amount of noise. This
can easily be imagined if we think about a subject that iterates over the input characters
until the end-of-�le character is found (e.g. while (input[i] != EOF). . . ), having
the remaining code in the while body. Any instruction in the body would get a control-
�ow taint from the comparison, i.e. every instruction would be tainted with the taints
of the current or already consumed characters. Thus, we need to detect and select very
speci�c lexer patterns in the code and only produce control �ow taints for those lexing
conditions. In Section 4.2.1 we go into detail what we de�ne as a lexing pattern and how
we propagate the resulting taints through the code. Still, any lexing code that does not
follow one of our patterns will be missed, we do not generate any token taints for the
involved tokens, and in turn will not produce any parser comparisons for them. Chapter 5
will partially solve this limitation.

Parsing and lexing code are expected to be well divided.
We assume that the parser and the lexer are not interleaved in the subject under test,
the code of each part lies in independent functions. This requirement is needed to �lter
out noise stemming from misclassi�ed token taints. While this might look like a strong
assumption, a typical programmer would write code like this. Aho et al. also see a lexical
analyzer as an independent part of the parser which reports tokens to the syntactic stage
(Chapter 3 in the Dragon Book [3]). Also, we expect the lexer code to be called token by
token in between parser operations—which we assume to be the standard way of calling
the lexer during parsing.
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4.4 Summary

In this chapter, we extend the ideas of Chapter 3 by improving the handling of tokenizing
code in the subject under test. While the basic approach as presented in Chapter 3 is already able
to create a diverse set of syntactically valid inputs, it needs specialized heuristics to overcome
the missing taints in parser comparisons if a lexer is used in the subject under test. Without the
extension presented in this chapter the tainting engine would stop tainting in the lexer, because
lexer tokens are typically generated via control-�ow, which was not considered by our basic
dynamic tainting approach. Now, we detect typical lexer code and are able to attach taints from
lexer comparisons to the tokens they generate, advancing the taints to the parser comparisons.
Using additional analysis to translate the program speci�c token values to lexemes and vice
versa, we are able to apply our input generation loop similarly to our original ideas as discussed in
Chapter 3—even in the presence of a lexer.
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In Chapter 3 we laid the foundation for input inference, de�ning an approach which is able
to generate syntactically valid inputs out-of-thin-air on subjects with simple parsers excluding
lexers. In Chapter 4 we extended this approach to also analyze lexer code and lift the ideas
from this basic approach to the world of lexing and parsing—enabling analyzing even more
complex input validators. With this technique we are already able to generate a syntactically
feature rich input set from scratch, just by observing the subject under test evaluating carefully
crafted inputs from our approach. One key problem remains though: semantic diversity
in syntactically valid inputs—our objective number three. While our inputs typically
cover most if not all of the syntactic features and detect and extract the atomical elements of
the underlying grammar (the terminal symbols), our tools likely do not perform well in terms
of covering the semantic features. In this chapter we will go into detail on how we can enhance
the input generation process to also cover semantics.

Scope We found that it does not make sense to run input inference alone as it is designed
to generate diverse syntactically valid inputs, which is a time consuming task—resulting in a
low amount of inputs. Hence, while our input generation could be considered as a standalone
approach, we would rather see it as an information gathering module for other approaches,
e.g. fuzzers. Results from di�erent papers support our reasoning: a well chosen seed set is
important for fuzzing (besides the fact that our extracted tokens can be used as building blocks
for mutations). Ma et al. [98] try to reduce the number of seed inputs with a minimum set
solving algorithm. Herrera et al. [62] found out that the seeds used for fuzzing should be neither
empty nor too many, they recommend having a large seed set and minimizing it with a seed
minimization tool. They tested several di�erent tools and were not able to pin down the one
best minimization tool, still using any minimization tool yielded on average better results than
using the full set of seed inputs or an empty input. The reduction of inputs has the advantage of
shorter iteration times—hence the fuzzer can discard inputs that are not worth exploring faster.1

The approach as presented in Chapter 4 only concentrates on syntactic diversity by covering
as much of the parser as possible. Hence, syntactically equivalent inputs are typically ranked
lower during input generation and we do not optimize for semantic diversity. Still, syntactically
equivalent inputs can largely di�er during execution. For example, for an arithmetic expression
evaluator the inputs 12 / 6 and 12 / 0 might be syntactically equivalent, but semantically
very di�erent. The �rst input will evaluate to 2 while the second input will result in a division
by zero error, the program might return an error or even crash. And this semantic phase, the

1It has to be mentioned that they are only testing their claim for AFL, the results might be di�erent for other
fuzzers and fuzzing approaches.
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program logic phase, is implemented for many di�erent subjects. A tool that parses JSON [71]
inputs (and is not a parser library or JSON veri�er) typically converts the input to internal
values, and then runs the program logic on those values. Interpreters like tinyC [78], Lisp [76],
and mjs [26] not only parse the code but also execute it to produce a result. Hence, there is a
need to explore new inputs in the boundaries of syntactic correctness.

Approach Overview Therefore, we augment our input generation with a fuzzing campaign
by providing information from the input generation to the fuzzer in form of a set of seed inputs
and token information like lexemes as a dictionary for later mutation and recombination. The
following abstract algorithm shows a very brief overview on our approach:

1 def inputInference(subject):
2 inst_sut = instrument(subject)
3 input_queue = [random.nextChar()]
4 token_information = TokenInformation()
5 collected_inputs = set()
6 while didMakeProgress():
7 if token_information.hasTokensToLearn():
8 inp = token_information.nextTokenToLearn()
9 else:

10 inp = queue.pop()
11 trace = inst_sut.run(inp)
12 if wasInteresting(trace):
13 collected_inputs.add(inp)
14 taints = taintEngine.analyze(trace)
15 new_inputs = extract_inputs(taints, inp, token_information)
16 input_queue.sortAndAdd(new_inputs)
17 fuzzSUT(subject, collected_inputs, token_information)

In contrast to the techniques presented in Chapter 3 and Chapter 4, we do not run our input
generation in�nitely (we already talked about this in Section 4.1.4), but use an abortion criterion
(Line 6)—we abort after a certain amount of inputs did not cover new branches in the parser
code of the subject. At this point we expect the input generation to not discover inputs with
syntactically new features. Furthermore, we collect interesting inputs (Line 12)—in our case
valid inputs that cover new branches in the subject that no other input covered beforehand. This
set is initially empty (Line 5). Once the input generation loop stops, we start another fuzzing
session (Line 17)—preferably with a fuzzer that can make use of both, our collected inputs as
well as the token information we extracted. Currently, we use AFL [160] which is provided with
our collected inputs as seeds and our token information in form of a dictionary—the collected
lexemes during input generation serve as additional building blocks during fuzzing.

5.1 Approach

The approach itself is straightforward: we take the information gathered throughout the
input inference phase and provide this information to the fuzzer or any other subsequent tool.
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In this section we explain how to apply our valid inputs as seeds and the tokens as dictionary to a
subsequent fuzzer as an example of one use case for the gathered information. Furthermore, we
sketch how the fuzzer can make use of the given information and why we think this improves
the overall fuzzing performance.

Seeds In Section 4.1.4 we already explained that some inputs of our inference loop are
outputted. We assume those inputs to be syntactically valid based on the behavior of the subject
under test when running on those inputs (like exiting with code zero or running into a timeout).
In fact, every input covers branches that were not covered by any earlier generated input.2 Thus,
this information can directly be used as seed information for a fuzzer as long as the subsequent
tool is not more strict in the selection of seed inputs. For example, we will later see that for the
fuzzer used in our evaluation we need to �lter out inputs that cause a timeout.

Dictionary In Section 4.2.3 we describe how token values are mapped to lexemes that occur
in the inputs we generated. Those lexemes can also be used as a dictionary for a fuzzer—i.e.
a set of keywords that can be used as building blocks during mutation [157]. A naïve fuzzer
might solely use characters as mutation values, replacing one character with another during
input mutation. With this dictionary the tool can use complete lexemes as replacements.

Fuzzing Benefits Typically, inputs that are not syntactically valid would be rejected early
in the parsing phase—in the lexer or in the parser. Hence, the fuzzer takes a lot of time to
�rst generate valid lexemes to overcome the lexer. As in general longer lexemes are lexed
atomically, the fuzzer would not get any feedback on partial correctness and thus needs to
guess full lexemes—which might take a long time. With our dictionary this part of the input
generation is already solved, the fuzzer has the building blocks for generating valid inputs.

A second problem is the exploration of the input space. Without valid seeds, the fuzzer
would need to infer how the di�erent lexemes are combined to build valid inputs. Only those
syntactically valid inputs will trigger the semantic phase of a subject under test. With the seeds
we generate, we overcome this issue by hinting the fuzzer towards di�erent, larger syntactic
building blocks. Those building blocks can be mutated and recombined, making it possible to
generate di�erent syntactically valid inputs without the need to �rst generate a set of diverse
inputs.

5.2 Implementation

Export Optimization As described in Chapter 4, our approach already gathers information
during input inference which can be directly used in the subsequent fuzzing campaign. The seeds
are generated as syntactically valid inputs during exploration and the values for the dictionary
are already part of the token-input mapping that is needed to decipher the token comparisons in
the parser.

2It could happen that a later generated input fully subsumes the coverage of an earlier input (e.g. if the earlier
input is a pre�x of the later input).
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The export of dictionary values can be customized to reduce the number of choices for the
subsequent consumer like AFL. For example, when reporting tokens to AFL, for every token
value we iterate the set of learned lexemes (see the token-mapping as de�ned in Section 4.2.3)
and do the following: we add one lexeme after another to the export set, and before adding
any lexeme we �rst check if there is any lexeme in the set with starting characters that are
equal to the about to be added lexeme. If so, and if the lexeme to be added is longer than
three characters, we delete the already added lexeme from the set, add the current lexeme, and
take the next lexeme. For example, if the set already contains ’abcde’, ’abcd’ would cause the
deletion of ’abcde’ and ’abcd’ would be added. In parallel, we check if any lexeme from the
set subsumes the about to be added lexeme—for lexemes from the set with more than three
characters. If so, we stop the iteration and do not add any value. For example, if the set already
contains ’abcd’, ’abcde’ would not be added. If none of the above happens, we just add the
new lexeme. Remaining duplicate lexemes are deleted when merging the resulting sets over all
individual token values. Duplicate lexemes are obviously unnecessary to report to AFL as it just
uses the reported lexemes as a dictionary—a set of values. The threshold of three characters is
arbitrarily de�ned to keep small lexemes that consist of just a few characters—they might be
control characters like parenthesis and we want to avoid �ltering them.

Deleting larger lexemes that are subsumed by smaller lexemes makes sense as the token
learning is not always precise. In some cases incorrect, random su�xes are learned (e.g. because
the lexer accesses one more character after a keyword before the respective token value for
the keyword is generated and given to the parser). In such cases the �ltering algorithm might
�lter out wrongly su�xed keywords and report shorter but likely correct keywords. Typically,
if the token value belongs to a very speci�c keyword and the learning works as intended, we
only have this one keyword in the set of possible lexemes for the token value, which is then
reported without �ltering. Similarly, for variables, numbers and other more dynamic syntactical
structures we might have many di�erent valid lexemes, thus we �lter some of those lexemes to
reduce noise. Thus, the �ltering only happens for cases in which either the keywords are not
learned fully correctly anyway or for token values that represent more dynamic values. In both
cases we want to reduce the number of reported lexemes which means reducing noise.

Furthermore, for AFL we �lter for those valid inputs that do not timeout. If we would have
seed inputs that timeout, AFL would reject the whole seed set as it requires all seed inputs
to let the program �nish in a certain time frame. If no token or no valid input was found, a
whitespace character is printed instead as the only element for the respective set.

Independence Our techniques as described in Chapter 3 and Chapter 4 are run before
and completely independent from any consuming tool, which gives us some bene�ts: 1. the
consuming approach can be replaced easily as it is weakly coupled, 2. di�erent tools can be
run in parallel using the same inferred values from our approaches, and 3. our approaches only
need to be run once on the subject under test to extract and store the wanted values, after that
they only need to be restarted if the parser changes. Consequently, adding another tool to the
tool chain is often just a matter of collecting and aggregating the output of our tool di�erently.
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We decided to use AFL in this version of our tool chain, but any other fuzzing technique
would work as well (as long as it also uses seeds and/or a dictionary; otherwise other data
might have to be outputted by our technique). The small seed set our tool reports will be
augmented by AFL with the common AFL mutation operators that work well to explore the
semantic possibilities within the syntactic features covered by the seeds. AFL [160] changes bits
and bytes (and thus characters) in two di�erent stages—deterministic and non-deterministic
mutations [42, 159]3, explained in the following.

In the deterministic phase AFL bit-�ips all input bytes; adds, subtracts, and replaces bytes with
pre-de�ned constants; and �nally takes a user given dictionary (if present) as well as an inferred
dictionary of magic values and inserts and replaces input locations with the given values4. The
non-deterministic phase has a havoc phase which applies the deterministic mutations randomly,
as well as mutations in which blocks of inputs are overwritten or inserted—all of those are
stacked (i.e. several mutations are applied at once in one input; the number of applied mutations
is randomly chosen between 2 and 128).

In the second non-deterministic stage, splicing (which “by default is activated only after the
fuzzer goes through a full cycle of the entire queue without any new �nding” [42]), AFL takes an
input from the test corpus, recombines it with the current input, and applies the havoc mutation
phase, generating a completely new input from two parent inputs. All of this might result in
either new semantic features (e.g. replacing the divisor from a non-zero value to zero) or in
new syntactic combinations (e.g. removing an else branch of an if statement or adding a while
loop into another while loop). Without this AFL step, we would not uncover such semantic
features and combinations, but without our approach step, AFL would take a lot of time to
uncover the syntactic features and only then it would cover the semantic features. Hence, one
approach cannot perform that well alone, only the combination of both makes it possible to
cover syntactic as well as semantic features.

5.3 Limitations And Assumptions

As this technique builds up upon the techniques presented in Chapter 3 and Chapter 4, it
su�ers from similar limitations. Again, we explain the di�erences to the limitations as discussed
in Section 4.3. If we do not list a limitation or assumption here again, it is still valid as de�ned
before. Hence, we still require a recursive descent parser with an underlying context-free
grammar, which parses mostly from left to right as well as the assumptions introduced by
analyzing the lexer. Also, we still require the parser in the subject under test to be implemented
close to the textbook, otherwise our heuristics might not work as intended and mislead the
input inference.

3For completeness: Fioraldi et al. [42] take a deeper look into the implementation of AFL, explaining the details
of AFL in an easily readable form. The original reference though is the source code of AFL itself [159], which
should always serve as the technical reference.

4The inferred dictionary is constructed “during the bit�ip stage by looking for groups of bits that, when changed,
always produce the same coverage, a sign that they might be part of a magic value” [42].
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Semantic correctness is now partially tested by our tool chain.
Our approach performs well in generating syntactically diverse inputs, but since it is
targeting the parser only (and speci�cally the heuristics only incorporate lexer and
parser code as far as possible) it is not explicitly generating inputs that cover di�erent
features of the code that comes after the parsing step. With the example presented in this
chapter, applying a fuzzer consecutively to our input inference technique, we show how
to partially solve this limitation of our approach, using the knowledge extracted from
the parsing step to boost fuzzers. While this technique produces a diverse set of inputs
that are syntactically similar to the seeds (as the fuzzing techniques we are currently
using struggle to generate syntactic diversity), the inputs are typically semantically more
diverse. There is still a limitation to this: semantic constraints. If the variable parts of
the input are unconstrained or weakly constrained (e.g. a number can only be replaced
by another number or a variable name needs to have letters only), most fuzzers will
hit enough di�erent values to also �nd those that still ful�ll the constraints. For strong
constraints (e.g. a use-def dependency), most (random) fuzzers will break the requirements
and the semantic validation of the input will fail early.

The consecutive tool must work on the subject.
A slight addition to the limitations of our approach used standalone: the subject must be
analyzable by the tool we use after running our approach alone. While our implementation
is still a prototype and we believe that at least mature fuzzers like AFL will not fail in
fuzzing the subject if our technique succeeds, it might still happen. Also, if one wants to
use a more speci�c fuzzer as a consecutive fuzzer, the range of subjects that can be tested
must ful�ll the limitations discussed for our approach as well as for the additional fuzzer.

5.4 Summary

This chapter concludes our approach and combines the di�erent parts presented in Chapters 3
to 5. We combine our method for generating inputs using feedback from a dynamic analysis of
the recursive descent parser in a subject under test with generic fuzzing. Therefore, we �rst
apply our approach to extract a diverse set of syntactically diverse and valid inputs as well as a
dictionary of lexemes which can be used as building blocks for the subsequent fuzzing stage.
Both, the inputs and lexemes are given to the fuzzer as seeds and a dictionary, which serve as a
fuzzing base and can be leveraged during input generation as additional information about the
subject under test.
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In Chapters 3 to 5 we detailed the di�erent stages of our approach, showing how our idea
works and how it is supposed to infer and utilize information from a subject under test, which
uses a recursive descent parser to parse inputs. This chapter evaluates the di�erent parts and
combinations, showing that the analysis of recursive descent parsers during program execution
is not only possible but also yields newly detected portions of the input space in form of tokens
and inputs compared to the state-of-the-art tool AFL.

For this chapter we use the evaluation results from our paper Learning Input Tokens for E�ective
Fuzzing [102] which not only show the e�ectiveness of the combination of all approaches as
discussed in Chapters 3 to 5, but also evaluate the basic approach without lexer detection as
discussed in Chapter 3 (Parser-Directed Fuzzing [105]). This evaluation will illuminate how
the di�erent parts of our approach in�uence our results, i.e. we show that 1. we can build
inputs by tracking input characters as described in Chapter 3 by evaluating the tool pFuzzer,
2. that we can detect tokens as detailed in Chapter 4 by analyzing the results produced by the
token extraction stage of lFuzzer, 3. and that the combination of our input inference with
well established fuzzing techniques (Chapter 5) can boost the overall fuzzing performance. Our
new techniques are compared against AFL [160], with and without a given naïve dictionary
of tokens, evaluating if and how dictionaries in�uence the overall fuzzing process. In this
chapter we detail the setup of the evaluation, the used subjects, discuss the di�erent research
questions, then describe the experiments used to answer those questions and explain the lessons
learned from them. We explain the threats to validity and then summarize the evaluation and
wrap this chapter up. With the asked research questions (Section 6.3) and the resulting
evaluations we answer if we solve each objective as discussed in Section 1.1.

6.1 Setup

Tools Based On Our Approaches Our �rst tool, pFuzzer (a prototype implementation
based on the ideas of Chapter 3 and thus our paper Parser-Directed Fuzzing [105]), is used to
show that we solved our �rst objective as de�ned in Section 1.1: generating syntactically diverse
inputs. pFuzzer does not contain any token speci�c extensions as discussed in Chapter 4 (only
heuristics as discussed in Chapter 3 that try to overcome the missing information if a lexer is
present in the subject under test). This additional analysis power is implemented in our second
tool, lFuzzer (a prototype implementation based on the ideas of Chapter 4 and thus our paper
Learning Input Tokens for E�ective Fuzzing [102]), is used to show that we solved our second
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objective: being able to analyze the tokenizer if present in a subject under test.1 In our evaluation,
we combine AFL with lFuzzer, as discussed in Chapter 5 and our paper Learning Input Tokens
for E�ective Fuzzing [102], showing that we solved our third objective: generating syntactically
correct and semantically diverse inputs.

State-Of-The-Art Tool We compare our approaches against AFL—one of the state-of-the-art
greybox coverage-driven mutational fuzzers. It randomly performs di�erent mutations on
inputs, collects code coverage information while running those mutated inputs on the subject
under test and selects inputs based on this coverage feedback. Hence, AFL works with less code
analysis and thus less inferred information about the subject under test compared to pFuzzer
or lFuzzer, therefore it is applicable to a more general set of subjects and serves as a baseline.
We already discussed AFL and greybox fuzzers in general and in the context of other fuzzing
techniques in Section 2.3.

Evaluation Scope The focus of this evaluation lies on showing that the ideas implemented
in pFuzzer and lFuzzer actually work as expected, i.e. we want to show that we solve our
objectives as de�ned in Section 1.1. On the other hand, we do not want to perform a direct
comparison of fuzzing performance of di�erent fuzzers, especially as the fast fuzzing stage
in lFuzzer can be easily substituted with other techniques than AFL. Also, in Parser-Directed
Fuzzing [105] we have already shown that KLEE [23], a symbolic execution based test input
generator, cannot generate inputs for parsers properly—likely because of the path explosion
problem. Hence, we omit the results for KLEE in this thesis as we did it in our paper Learning
Input Tokens for E�ective Fuzzing [102]. Furthermore, we speci�cally do not compare against
tools that need a seed corpus (like Glade [13] or AutoGram [65]), as lFuzzer itself works
without one—they would only serve as an upper bound for the resulting fuzzing performance.

Technical Details AFL is run with AFL_SKIP_CPUFREQ enabled as our test system does
not allow changing the CPU scaling policy. Also, AFL requires a valid input to start with.
Since we want to �nd out how well each tool can produce syntactically valid inputs without
prior knowledge about the subject, we decided to give it for each subject a �le with one space
character as content. Every subject in our test set accepts a space character as valid input,
still the input is simple enough to not give AFL a huge advantage compared to lFuzzer and
pFuzzer—if any advantage at all. The size of the AFL generated inputs is not capped, pFuzzer
caps the inputs to 200 characters and lFuzzer to 2000 characters.2 For all tools we determine if
an input is valid by checking the return value of the subject under test—exit code zero means
valid, non-zero is invalid. Inputs that timeout after 10 seconds are also considered as valid, as

1We will later see that lFuzzer is not evaluated as a standalone tool. The reason for this is that we see this
underlying approach as a preparational approach which should be used in combination with existing techniques
as AFL. Still, we will evaluate some results of lFuzzer on its own, showing that we are actually able to analyze
the tokenizer.

2We wanted to use the original version of pFuzzer from the paper Parser-Directed Fuzzing [105] which allows
a smaller number of characters in the input. Sill, both tools report valid inputs with less than 100 characters,
hence the di�erence in the maximum number of characters seems to have no in�uence.
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parsers likely do not diverge, but a following semantic phase or other program logic might get
stuck while executing on the already parsed input.

The experiments were run on an Ubuntu 14.04.5 Docker container with an up to 3.3 GHz
Intel Xeon E7-8867 processor for 24 hours. The experiments were run four times to mitigate
the non-determinism of all tools, we report the average results as well as the maximum and
minimum results per run and point in time. For example: say lFuzzer run one covered 5% of
code on tinyC after 10 seconds, lFuzzer run two only 4%, then we would print the results from
run one for showing the maximum coverage. Now after 20 seconds the results are shifted and
run two has 11% and run one only 10%, then we would print at the 20 seconds mark the results
from run two for showing the maximum coverage. Technically, for each point in time (with a
resolution of ten seconds), we plot the minimal, maximal, and average coverage the respective
tool has achieved on that subject at that time. Concretely, this is the last coverage reported
before that point in time, i.e. the point at ten seconds in the graph would use the last reported
coverage before ten seconds, e.g. from 9.8 seconds.

Tool Setups AFL is run with and without a dictionary (a naïve extraction of strings from
the LLVM bitcode �le), pFuzzer is run once for 24 hours standalone and once with the same
threshold as lFuzzer to switch to AFL (using the seeds pFuzzer produced). lFuzzer is only
run in combination with AFL, the threshold for switching to AFL is 1000 iterations without
an input that covered new code. We count every execution of the subject under test as one
iteration, even if it is executed on the same input �rst without and then with tracing activated.
In Section 4.2.5 we de�ned when the execution counter is reset.

For pFuzzer with AFL and lFuzzer we �lter out inputs that cause a timeout on the subject
under test before giving them to AFL, as those would not be accepted as valid inputs for AFL.
They are still included as valid inputs overall, since timeouts typically happen in code after the
parsing stage (e.g. for some subjects like tinyC it is easy to generate inputs that cause in�nite
while loops, causing the interpreter to diverge). If no valid inputs (and for lFuzzer no tokens)
were found during seed generation, one test (and one dictionary �le) containing one whitespace
character each is given to AFL (again, because AFL needs at least one valid test). Apart from
the above mentioned con�gurations we run all tools without speci�c command line options,
including special options for compiling the subjects (except for libraries that need to be added
during compilation and dictionaries given to AFL in the tool variations AFL_Dict and lFuzzer).
This means every tool uses its internal optimizations and con�gurations as generically de�ned
by the developers.

6.2 Subjects

To determine how well our approach performs in the real world, we compare pFuzzer and
lFuzzer against AFL on di�erent subjects parsing a variety of input formats. These subject are
listed in Table 6.1 including the date of access and the lines of code (hinting the complexity of
the test subjects involved). The lines of code were counted with the tool cloc [5]; using the code
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Name Accessed Lines of Code

inih [14] 2018-10-25 293
csvparser [74] 2018-10-25 297

cJSON [34] 2018-10-25 2,483
tinyC [78] 2018-10-25 191

mjs [26] 2018-06-21 10,920
lisp [76] 2019-03-19 2,741

Table 6.1: The subjects used in our evaluation to test the performance of lFuzzer and pFuzzer
in comparison with AFL.

and header �les as root for the counting algorithm. Concretely, we use the �les for counting
which are used for evaluating our subjects, because those also include our wrapper for reading
input from the command line if it was added (see below). These subjects are randomly selected
from GitHub (www.github.com) with the main technical criterion that they consist of
only one C �le (and possibly a header �le)3.

For some subjects we wrote a wrapper that makes it possible to read inputs from stdin (with
size up to 999 characters; if the input is larger, the subject under test exits with code one), giving
all programs the same interface to accept inputs.4 This does not change the subject semantics
much but makes it easier for our evaluation setup, as we do not need to handle special cases.
Additionally, some subjects are manually changed by us to report parsing failures as early as
possible, typically on the �rst erroneous character or token that is encountered while parsing
(details on this are mentioned in the respective subject description below)—this is a limitation
of pFuzzer and lFuzzer as they need early failure reporting and stopping of the parsing step.
Finally, we disabled failure reporting on semantically invalid inputs if the subject supports this.
For example, if the input was successfully parsed and then rejected in the semantic checker
(e.g. because of a missing de�nition of a used variable), the input would still be reported as
(syntactically) valid with return code zero.

Subject Details In the following we present a list of the programs and the formats they
parse with some brief description on the perceived complexity of the parsed language. For each

3The compilation scripts of lFuzzer and pFuzzer are not able to handle multi-�le programs. Both implementations
of our approach are designed as a research prototype, hence some design decisions are based on implementation
e�ciency and complexity rather than completeness. This restriction is not a restriction of the approach but only
restricted by the implementation itself.

4While checking the scripts and results in depth for this thesis we found that the wrapper might cause a bu�er
over�ow by one byte if the input is exactly 999 characters long. Even though this might in theory cause a
problem for the lFuzzer and AFL generated inputs that could reach this size (including the inputs from the AFL
phases of pFuzzer and lFuzzer), we believe that chances are low that this in�uences the overall results. Such
large inputs are not needed for our subjects and are not bene�cial to generate, they would typically contain
redundancies from smaller, already generated inputs and are likely not syntactically valid. Also, all tools run
with the same wrapper, hence, this coding error can be seen as any other bug in the subjects.

www.github.com
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subject we also describe the manual changes done, which are partially needed for pFuzzer and
lFuzzer to function correctly. Details on the changes can be produced from the replication
package in most cases [103]:

inih [14] parses INI �les—the readme of the tool gives a vague description about the features
inih implements, but no explicit feature list. The INI format is simple: it stores a set of
key-value pairs. The key-value pairs are separated by a previously determined character—
typically by an equal sign. The INI standard also allows sections which are started with
an opening bracket and closed with a closing bracket, e.g. [section].

Manual Changes: We added a main method including some information for inih to make
it run and added a method to read input from the command line (up to 999 characters;
for more the program exits with return code one). We also change one con�guration in
the header �le to let the program stop on the �rst error.

csvparser [74] parses CSV �les [70], another rather simple format—though the tool itself does
not list which features of CSV are actually implemented. CSV represents a table, each
row is also a row in the �le, ending with a line break. Each row consists of an unde�ned
number of columns, separated with a predetermined separator character (by default a
comma, hence the name CSV: Comma Separated Values).

Manual Changes: We added the same standard input reader as for inih as well as a main
method which parses the input, requires a header (otherwise almost all inputs would be
valid), and prints all rows with their columns from the just read input.

cJSON [34] parses JSON [71] values. JSON, the Javascript Object Notation is one of the most
commonly used formats for data transfer between programs and in the web. It has the
simple base data elements number, string, bool, and null as well as the more complex
elements object and array. An array is a list of JSON elements, separated with a comma
and put into brackets (e.g. [1,2,3]). An object is a list of key-value pairs, separated
with a comma (e.g. {"A": 1, "B": [1,2,3]}).

Manual Changes: Again, we added the standard input reader as for inih and a main
function which calls the parsing code and checks if it returns a successfully parsed JSON
value.

tinyC [78] parses a small subset of C [73]—though the syntax and semantics are only in-
spired by C. It contains code constructs like variable assignments (a=b+5;), if-statements
(if (a < b) {a=5;} else {a=6;}), and two kinds of while constructs: while-
loops (while (a < 5) {a=a+1;}) as well as do-while-loops (do a=a+1; while
(a < 5);). A large di�erence compared to a real C program is that tinyC programs do
not have variable de�nitions but the set of variables is pre-de�ned. In particular, every
tinyC program has variables a to z pre-initialized with the value 0 at program start. Thus,
every syntactically valid input is also a semantically valid input and the resulting program
can be executed. Also, this subject is not only a parser, it is also an interpreter of the
language, hence syntactically equivalent inputs can lead to di�erent code coverage. It
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may also happen that a fuzzer produces an input that contains an in�nite loop, resulting
in a divergence of the tinyC interpreter.
Manual Changes: We added the missing standard arguments to the main function
(int argc and char* argv[]); they are not further used.

mjs [26] is a parser and interpreter for a subset of JavaScript (which has no speci�cation
on its own but is based on ECMAScript [39, 111]). We will not list all features here as
mjs is very feature rich and this will go beyond the scope of this document. In general,
it supports the basic features of JavaScript like loops, branching statements, a subset
of JavaScript boolean and arithmetic operators, let expressions, and a small built-in API
containing functions that can be called from the mjs code. This means that the parser
contains lots of features that can be explored by the testing tools, but it also results in a
complex interpreter which supports a wide variety of semantical features for syntactically
similar code. We will later see how this in�uences our results.
Manual Changes: Again, we added the standard input reader as for inih and changed
the main function to use the input from this reading method. We also added code to exit
immediately with an error code if a parse error would be reported (instead of keeping
parsing). This change was just done by adding program exiting to the error report function
for parse errors, a typical point where one could add similar code for other subjects as well
to make them easier to analyze for pFuzzer and lFuzzer. Also, we disabled error reports
for errors that occurred during code interpretation, as those are semantic errors. All those
changes were done to the best of our knowledge and understanding of the original code.

Lisp “An embeddable lisp interepreter [sic] written in C. [. . . ] Scheme-like[[108]] (but not con�ned
to) syntax.” [76]. It contains the core language features and data structures like “ if, let,
and, or, etc.” [76]—we will not list all features here. The Lisp syntax is mostly based on
parenthesized expressions, every instruction is parenthesized and nested instructions are
in nested parenthesis. It uses a pre�x notation, hence the operator comes �rst and then
the operands follow. Being one of the oldest languages, it got instantiated in di�erent
dialects, Scheme being one of them [108].
Manual Changes: We took a sample main function from a �le from the repository
(lisp_i.c) and adapted it slightly to report a parse error with exit code one, execution
errors with exit code zero, and return with exit code zero in any other case (the original
code always returns with exit code one which we would interpret as error).

Further Tool Adaptions For the evaluation, we also had to adapt lFuzzer and pFuzzer
towards Lisp: our prototypes might generate inputs for Lisp that start with “(#”, “(’#”, “("#”
(and variations with additional whitespaces) causing the AFL instrumented version of Lisp to
crash [102]. Since AFL requires a valid seed input set (the program must return with exit code
zero), it would not start if those inputs are given as seeds. Hence, we �lter those seeds (for all
subjects) if they are generated by lFuzzer or pFuzzer before giving them to AFL.5

5The seed input generation phase of lFuzzer never generates any Lisp input that starts with “(’#”, “("#”
(ignoring whitespace), hence we only added code to �lter out inputs explicitly starting with “ ( #”.
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Benchmarks One question might remain: why did we not choose any typical benchmarking
set like Fuzzbench [107] or Magma [61] which would also enable us to measure bugs found. First
of all: the two mentioned benchmark sets were not released by the time Learning Input Tokens
for E�ective Fuzzing was created—i.e. when this evaluation was done. But more importantly,
we built a research tool completely from scratch and it should be considered as a prototype
with less compatibility as mature fuzzing projects built by many developers.6 Our main goal
of this work is to show that using comparisons in recursive descent parsers is bene�cial for
generating syntactically valid inputs from scratch. Thus, we put much e�ort in researching how
this can be done and less e�ort into enabling programs written in di�erent languages. Those
benchmark sets typically contain subjects written in C++ and many subjects that do not contain
a recursive descent parser, making it hard to enable lFuzzer and pFuzzer on those benchmarks
(e.g. Magma [61] and Fuzzbench [107] contain such subjects). Hence, we could only analyze
a portion of the benchmark sets. Also, many fuzzers are based on AFL and as such can use
the AFL eco-system [2, 99], making it easier for them to be integrated into the benchmark sets
which are already supported by AFL (e.g. Fuzzbench [107]). Using bug seeding tools like Lava
[35] would enable us to add bugs to the subjects we chose, but then again, our main goal is
not maximizing the number of bugs found but showing that we can generate valid inputs for
recursive descent parsers using dynamic tainting and generic heuristics. Hence, we created
our own set even though it does not have a ground truth of known bugs.7

6.3 Research Questions

In this overarching evaluation we want to quantify how well the di�erent stages of our
approach work—i.e. comparison usage for input synthesis, token extraction for targeting parser
with a lexing step, and the combination of state-of-the art fuzzing with our token extraction and
input inference. The research questions are formulated along the lines of the objectives and
contributions made in this thesis. Still, it is hard to draw a sharp line between the di�erent
objectives (e.g. syntactically diverse inputs already are semantically diverse to some extent).
Hence, we decided to order the research questions not in the order of our objectives, but such
that we add more and more depth to the analysis of the raw results. Thus, we propose the
following research questions answering if we reached our objectives:

RQ1: Tokens Extracted analyzes the capabilities of the lFuzzer token detection to extract
tokens from the subject under test in comparison to a simple search for string constants.
We compare how many actual program tokens can be extracted if we extract all string
constants from the LLVM bitcode in comparison to the tokens extracted with our dynamic
token detection approach. With this we want to evaluate if the token detection of lFuzzer
misses any tokens and also if it misclassi�es values as tokens that are none. This answers
if we (partially) solved our Objective 2: can we extract tokens from the subject
under test?

6The GitHub page of AFL ++ lists 131 contributors at the time of writing [2].
7With the techniques as described in our paper “Systematic Assessment of Fuzzers using Mutation Analysis” [58] it

might be possible to solve such shortcomings in the future and augment a set of subjects with bugs.
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RQ2: Coverage Achieved gives us a detailed look on how well the di�erent tools perform
in covering code. We want to speci�cally have a look at the bene�ts that result from
combining the di�erent techniques. Thus, we compare AFL with and without extracted
strings, pFuzzer with and without a subsequent AFL run (we stop pFuzzer after it failed
to �nd new coverage for more than 1000 generated inputs in a row8), and lFuzzer with
AFL. As we already discussed, lFuzzer should not be considered as a standalone tool
but rather as a preprocessing step, a preparation tool for other fuzzers (in this evaluation
AFL), hence lFuzzer is not evaluated alone. The achieved coverage gives a hint on how
much of the actual program code, and therefore also the semantic part of the program, is
covered. This answers if we solved our Objective 3: can we generate syntactically
valid inputs with semantic diversity?

RQ3: Tokens Used analyzes the capabilities of each tool (and tool combination) to generate
inputs that actually use the tokens that are valid for the speci�c subjects. This analysis
especially shows the syntactical diversity of the generated inputs. It is important to note
that the used tokens only represent the di�erent syntactical features of the underlying
grammar, there might also be interesting feature combinations, resulting in semantic
diversity, which cannot be analyzed with this number. This answers if we solved
our Objective 1 and the remainder of Objective 2: can we generate syntactically
diverse inputs by analyzing the subject under test and is this also possible for
subjects with a tokenization phase?

Result Collection In general, for calculating the results we either used the output of pFuzzer
or the seed input generation phase of lFuzzer (whenever only the generation phase was
evaluated) or the inputs from the AFL queue (“test cases for every distinctive execution path, plus
all the starting �les given by the user” [158]) as well as the inputs from the AFL hangs folder for
the AFL evaluations (including the AFL parts of lFuzzer and pFuzzer with subsequent AFL
runs).9 pFuzzer and the seed generation of lFuzzer output a valid input if it covers branches in
the subject under test that were not covered by any value beforehand. In the di�erent sections
of the research questions we give more details on how exactly we used the information for
generating the evaluation results.

As we already mentioned, for Lisp we had to �lter some valid inputs before giving them to
AFL as test inputs. We still consider those inputs when calculating the coverage for the lFuzzer
and pFuzzer part of the pipeline. Hence, because the �nal coverage is solely based on the
AFL generated inputs, we might put lFuzzer and pFuzzer in a slight disadvantage here—but
therefore we have a fairer comparison to the other AFL runs which might not handle those
inputs properly as well; only for pFuzzer alone we do not use the AFL results as baseline.

8We try to be as precise in counting the number of inputs for pFuzzer as for lFuzzer. Still, it might be that in some
border cases a run might not be counted correctly. The overall impact of this incorrect counting is negligible.

9The crashes folder contains “unique test cases that cause the tested program to receive a fatal signal (e.g., SIGSEGV,
SIGILL, SIGABRT)” [158]—hence the respective inputs are not accepted on the subject under test and we need
not to consider this folder for our evaluations on syntactically valid inputs. For pFuzzer and lFuzzer we also do
not consider any inputs that they consider crashing, hence we have a fair comparison for all tools.
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First, we evaluate the token extraction precision of the token detection phase of lFuzzer in
comparison to the naïve approach of extracting strings from the subject under test—partially
answering if we solved our Objective 2 and can extract tokens from the subject under
test. We compare how many tokens are reported by lFuzzer and how many tokens can be
extracted from the subject under test by searching for strings. Therefore, we read the code and
documentation of the subjects, manually de�ne for each subject a set of tokens as ground truth,
and check how many of those are found by each approach and how many non-token values are
found—strings reported as tokens which would not be recognized as such by the subject under
test.10 For this research question and research question three we use a handwritten lexer which
uses the tokens we manually extracted. We expect the string extraction to be more complete
(�nd most tokens of the underlying subject) as it has full visibility over the source code, but
we also expect it to be less precise, as it might collect I/O strings like error messages. For this
research question we ignore empty strings reported by the tools.

Static String Extraction For AFL For the string extraction the setup is straight forward: we
compile the subject to one LLVM bitcode �le in human readable form and then iterate over all
string constants de�ned in this artifact. We chose LLVM bitcode as this is the common ground
we are also using for our instrumentation and the bitcode contains all known string constants
in individual global registers. LLVM also stores names of the subjects’ C functions from the
subject under test in string constants for mjs and Lisp. This is because the __func__ feature
of C is used to print the name of surrounding function as string [73]. To avoid using all function
names from the source code which would result in a high noise ratio, as those are no tokens, our
string extraction only uses global values that start with @.str, as those contain, as far as we
understood the subjects’ implementation and the generation of LLVM bitcode, the actual tokens
plus some other non-token strings that cannot be easily �ltered out.11 In fact, the names are
used in mjs for logging and printing of assertion locations, in Lisp it is also used for assertion
location printing. For the extracted strings we ignore the zeroinitializer, which marks
the string as empty [88] and we remove the trailing zeros at the end of the string constants, as
they are needed for the subjects internally but not when using them as tokens. Furthermore,
AFL requires the strings to be escaped when being used in a dictionary �le [159], which is done
by us by converting the escaped bitcode hexcode values to AFL hexcode values.
10For this manual extraction of tokens we tried to be as sound and complete as possible (extracting keywords,

operators, internal callable functions, . . . ), still this extraction is a threat to validity as we might miss some tokens
or add a value which is not an actual token. Some subjects (like mjs) also include sub-parser which are used to
parse strings for later interpreter runs (like JSON strings to create a json object). We ignore such sub-parsers
that are not part of the main language.

11For completeness, we need to mention that the string extraction was done on another machine than the actual
execution of the overall evaluation (simply because the string extraction can be done o�ine). This causes, in
some rare cases, the extraction of a di�erent string value for the aforementioned non-token strings that are
compilation dependent, e.g. the strings generated for assert calls which, among others, contain the code which is
used in the call. For example, on one system the value NULL is compiled to the string NULL while on the other
system it is stored as ((void*)0). Those are not actual token values but noise that we would extract, hence
the concrete value of the noise should have little to no in�uence.
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Dynamic String Extraction With lFuzzer The string detection and extraction with
lFuzzer is, in contrast to the aforementioned method, dynamic. Thus, we need to run the
program with a diverse set of inputs that cover the lexical space of the subject under test,
i.e. that covers all possible lexemes and extracts them. The input inference phase of lFuzzer
does exactly this, it tries to build syntactically correct inputs from scratch by observing the
program behavior, speci�cally the comparisons done during parsing. Hence, we get the set of
possible token values that we have seen during the program probing phase as a side product
from lFuzzer, as it needs to extract them anyway. We let lFuzzer run until it tested 1000 inputs
without �nding a new input that yields more coverage than the already found inputs before.
This threshold is selected randomly as a rule of thumb as the search space of lFuzzer gets too
large at such a point during fuzzing and has too many plateaus to be useful anymore. In fact,
chances are very high that at this point most of the syntactical features are already explored
and any remaining features are easier found by using a state-of-the-art fuzzer with less program
analysis but higher execution speed.

For this evaluation we use the tokens reported by our approach as described in Section 5.2. In
the presence of a lexical phase lFuzzer might not have generated inputs that cover all tokens,
but it will, with a very high probability, have seen all valid tokens and put them into a dictionary
for further use in a faster fuzzer with less program knowledge. This is due to the fact that if a
lexer is present it generally checks an input token against all known tokens before rejecting
it—that is the reason for the token learning phase (see Section 4.2.3) and the usage of those
tokens for this part of the evaluation. pFuzzer does not explicitly extract tokens, as such we
cannot evaluate its token extraction capabilities on its own, but in research question three
(Section 6.6) we evaluate how many di�erent tokens are used by each tool in the generated
valid inputs, including the ones from pFuzzer.

Completeness In the �rst part we show how many valid tokens were found by the naïve
string extraction and by lFuzzer. We de�ne a token as valid if it would be parsable by the
subject under test12. In fact, we created some generic lexer for this, containing a set of regular
expressions that match the respective token values. For keywords we check that no invalid
character is in front or behind the given keyword; for numbers, identi�ers and strings we also
map them to one token, such that only the presence of the token is counted, not every instance
on its own.

Figure 6.1 shows how many valid tokens lFuzzer and naïve string extraction �nd in the
di�erent subjects. We can see that the data exchange formats CSV, INI, and JSON only have a
small amount of tokens overall. This is because they are mostly used to pack data and, hence
they only need a small amount of control characters to structure the data. For JSON there are
also a few special values like true, false, and null. The programming languages on the
other hand do not only need control characters, but also �xed keywords to expose pre-de�ned
methods and semantics that are later used in a compilation or interpretation step. Hence, the
amount of tokens is much higher for them.
12As found out by our manual analysis of code and documentation.
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Figure 6.1: Valid tokens found by naïve string extraction as well as lFuzzer including maximal
number of unique tokens that can be found.

For most subjects the number of extracted tokens is comparable between lFuzzer and naïve
string extraction, which is expected, as the string extraction should over-approximate and �nd
most if not all tokens the subject accepts. For cJSON and tinyC though, lFuzzer �nds actually
more tokens than the string extraction—a result that seems surprising at �rst. When looking at
the missing tokens and combining this information with the extraction method, one immediately
detects the reason for this outcome: single character tokens. While lFuzzer successfully detects
them during program execution based on constants used in character comparisons done on
input characters, naïve string extraction misses them because they are not encoded as string
constants. In fact, such characters are compiled to integer constants, as a char is nothing more
than a numeric constant, hence a comparison in C code like “'(' == inp” with inp being a
variable containing an input character, would be compiled to a comparison of inp against the
constant numeric value 40.

On the other hand, for INI, mjs, and especially Lisp lFuzzer �nds less tokens. The reasons
can be manifold, most likely though it is because of the missing lexer for INI and more complex
lexers for Lisp and mjs. While typically tokenization is done with almost no context information
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and close to the textbook in the lexer, some tokens only appear later in the execution—for mjs
and Lisp those tokens are only evaluated in the interpreter phase of the subject. Due to the
dynamic token detection method of lFuzzer, our approach needs to “see” a lexeme during the
learning phase to report it. Hence, if the token generation is not correctly detected, the tokens
are also not correctly learned and thus not reported. Finally, the error bars indicate that the
lFuzzer string detection is stable—over all 4 runs the number of extracted strings is close to
the average. The naïve string extraction is deterministic and as such does not have �uctuating
results by design.

Interestingly, for most subjects the number of extracted tokens is already close to the maxi-
mum number of tokens we found. This means, especially for the token extraction of lFuzzer
that our analysis is indeed able to extract and learn most of the tokens the program uses. As
such, the later phases of the approach should pro�t from from this high number of found tokens
and respectively generate diverse inputs.

lFuzzer can successfully extract about 84.6% of all tokens from the subjects
under test.

Precision Besides the number of correctly found tokens, it is important to also keep the
number of non-tokens low, because those tokens should later be used as a dictionary in fuzzing
or in combination with other approaches. Hence, if a fuzzer uses the extracted tokens, it might
need more trials to �nd the correct values to inject. Therefore, we also checked for each method
how many strings are reported that would not be detected as a token by the subject under test.

In Figure 6.2 we present the number of invalid tokens reported for each subject. With
increasing code size and complexity the number of wrongly extracted strings for naïve string
extraction likely increases as well. This is because more complex parsers and subjects also tend
to have better error handling, resulting in a more diverse set of error messages. Another factor
are format strings that are used all over the code and also end up as string constants. Hence, for
cJSON a low but noticeable amount of invalid strings is extracted, for Lisp and mjs the number
of invalid tokens is also much higher than for lFuzzer.

For CSV, cJSON and tinyC lFuzzer reports a large amount of non-token strings. For CSV
and cJSON the reason is likely a misclassi�cation of random code as tokenization code, because
those subjects do not have a tokenization phase. lFuzzer always tries to detect tokenizer code
with its heuristics, and typically if tokenization code is present the heuristics are strong enough
to �lter out any code that is not tokenizing. If no tokenizer is implemented though, this noise
cannot be �ltered and some of the code is still assumed to be tokenizing, yielding random strings
as tokens.13 For tinyC the lookaheads needed to parse numbers and identi�ers cause our token
detection heuristics to combine too many characters to one token. In detail, our algorithm is
13Subjects without a tokenizer typically have a less complex underlying language, in Section 6.5 and Section 6.6 we

will see how this extracted noise in�uences the fuzzing performance down the pipeline.
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Figure 6.2: Invalid tokens found by naïve string extraction and lFuzzer.

designed to combine all characters accessed between two parsing steps to be combined to one
token. While we try to �lter out such lookaheads as much as possible (see Section 5.2), it may
happen that the additionally accessed character is appended to the token, resulting in noise.

The number of misclassi�ed strings deviates more compared to the valid token results between
di�erent runs for lFuzzer, especially for tinyC. The reason is simple: while for valid tokens
any instance once extracted results in a token hit, we count every non-token string as one
invalid token. Still, lFuzzer is able to keep the number of misclassi�cations low if there is a
tokenization phase present, resulting in a 28 percentage points higher precision compared to
naïve string extraction for those subjects under test.

lFuzzer has a 28 percentage points higher precision compared to naïve string
extraction when looking at subjects with a tokenization phase.

Summary In Table 6.2 we can see that if the string extraction has, per subject, a higher
precision it is much higher, but for higher recall values it is almost on par with lFuzzer. The
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reason for this is likely that if lFuzzer runs into imprecisions during token extraction, chances
are high that many di�erent wrong alternatives for a token value are found. The fact that for
some subjects the precision is very low and for others it is very high supports this claim: if the
token extraction works as expected we get a precise set of tokens. Regarding the recall, we can
see that lFuzzer performs better on cJSON and tinyC, whereas the string extraction performs
better on INI, Lisp, and mjs. Considering, that lFuzzer must detect the tokens during execution
while the other approach statically extracts them, it is surprising that lFuzzer often �nds at
least as many tokens as the naïve string extraction.

Subject Precision Recall

lFuzzer String Extraction lFuzzer String Extraction
CSV 4.35% 66.67% 100.0% 100.0%
INI 100.0% 75.0% 14.29% 42.86%

cJSON 4.67% 27.27% 56.25% 25.0%
Lisp 98.47% 62.61% 84.54% 94.74%

tinyC 17.6% 66.67% 100.0% 26.67%
mjs 95.49% 34.0% 89.73% 91.07%

Table 6.2: Precision and recall on extracted strings regarding their token validity per subject.

In Table 6.3 we see the aggregated precision and recall for the naïve string extraction and
lFuzzer for tokenizing subjects. The results in this table are surprising: while we expected the
precision of lFuzzer to be higher, as it is more focussed on the tokens in the subject under test,
we expected the recall of lFuzzer to be lower than for string extraction as it might miss some
features of the lexer due to its dynamic exploration. Still, both approaches are on par when
it comes to recall, meaning they �nd a similar amount of actual tokens in the subject. With
lFuzzer though, the noise, as indicated by the precision value, is much lower, hence on average
we produce a more focussed token set which can be used as a dictionary for fuzzing. Thus, we
solved one part of our second objective: we are able to analyze the tokenizer of a subject
under test and extract a precise set of lexemes. In research question two (Section 6.5) we see
how this in�uences (in combination with the generated seed inputs) the achieved coverage while
fuzzing and in research question three (Section 6.6) we also quantify how well our dictionary
and seed input generation works when it comes to using the tokens of the language, i.e. we
evaluate how well the syntactic features of the underlying language can be covered.

Tool Precision Recall

String Extraction 42.3% 87.7%
lFuzzer 70.3% 88.5%

Table 6.3: Precision and recall on extracted strings regarding their token validity for subjects
with a tokenization phase (tinyC, mjs, Lisp).
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Setup One of the main strategies for evaluating fuzzers is determining achieved coverage
on real world subjects. While we think that especially in the context of fuzzing systems with
grammar-based inputs coverage may not be the best option to evaluate fuzzer performance,
it is still a valid proxy to determine bug �nding capabilities. At least the number of found
bugs generally correlates with the achieved coverage of a fuzzer, even though the agreement in
ranking and superiority between the fuzzers might be more complex [20]. Thus, we evaluate
the branch coverage over time achieved, answering if we solve Objective 3 and build
not only syntactically valid inputs but also semantically diverse inputs—using code
coverage as a proxy metric for this part of the evaluation.

We evaluate AFL with and without a dictionary, pFuzzer standalone and with a subsequent
AFL phase, and lFuzzer which is by design a combination of the original pFuzzer strategy
including tokenizer optimizations and a subsequent fuzzing phase represented by AFL in this
case. pFuzzer and lFuzzer switch to AFL after 1000 iterations without a new input that covered
code never covered before. We only count coverage for inputs that are valid (the subject under
test has a return code of zero for those inputs or timeouts14), as we want to �nd out how well
the tools produce semantically diverse but syntactically valid inputs.

The inputs themselves are taken from the AFL queue and hangs folders (for the AFL exper-
iments and the AFL phases when evaluating pFuzzer and lFuzzer) and for the seed input
generation phases from the valid inputs reported by pFuzzer/lFuzzer. For the results of our
techniques in combination with AFL, we �rst collect the coverage for the pFuzzer/lFuzzer
phase alone and then iterate the AFL inputs in order of time and count the coverage once the
combined coverage of the AFL inputs is larger than the coverage of the pFuzzer/lFuzzer inputs,
adding the reported runtime of pFuzzer/lFuzzer to the input generation time of the AFL input.
The timestamps for the coverage evaluation are given for AFL inputs by the generation time of
the �le (the �rst generated �le marks the starting time) and for the lFuzzer/pFuzzer inputs
by the tool itself (the time when the input was written to the output �le for valid inputs). We
use gcc -fprofile-arcs -ftest-coverage to compile the subjects for coverage
collection15 and gcovr [141] to extract the generated coverage information for further usage in
our evaluation pipeline. The presented values are rounded to one decimal; rounding half up.
Hence, for x ∈ [0.55, 0.65[, x is rounded to 0.6; for x ∈ [0.45, 0.55[, x is rounded to 0.5.16 Due
to rounding errors it might happen that di�erent machines yield slightly di�erent results which
may cause di�erent rounding results. For this evaluation, all results that are directly compared
were also generated on the same machine.

14For technical reasons we cannot measure the coverage for inputs that timeout. We run them anyway under
instrumentation for completeness.

15For completeness, we mention that the coverage collection compilation for the non-AFL phases of pFuzzer and
lFuzzer additionally used the option -DCOVERAGE which is an artifact in the compilation script which, to the
best of our knowledge, has no further meaning to our compiler.

16Speci�cally, even if a result of 0.549999999 is printed by our evaluation scripts, we use the value 0.5 in this
document.
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CSV And INI In Figure 6.3 we show the coverage over time for CSV and INI subjects for
all tools, the x-axis is logarithmic to balance out the fact that the fuzzers tend to �at-line the
longer they are into the fuzzing run. For CSV and INI we can see that all tools perform well, the
di�erences are small and only visible in the �rst few minutes of the run. This is expected as
both subjects only have a very rudimentary underlying format, as such AFL can easily cover the
syntactic features which are guarded by one-character tokens. lFuzzer, which tries to analyze
the subjects �rst, is in a disadvantage, the simple trial and error of the vanilla version of AFL is
already su�cient and the missing analysis phase makes AFL more e�cient. For CSV a simple
input consisting of one character is already su�cient to achieve some initial coverage as we see
it in the graph for lFuzzer. For INI lFuzzer cannot generate any valid input, likely because it
tries to identify a lexer and is misguided during input generation. Still, since both formats are
comparably easy, AFL can generate su�cient inputs in its fuzzing phase, bringing all tools to
comparable results. pFuzzer on its own is also not able to �nd all features of INI, having less
coverage than all tools that use AFL.

cJSON A more interesting format is JSON, implemented by the cJSON subject, which does
not only contain single character control values but also actual keywords. From the graph in
Figure 6.3 we can see that the coverage over time increases much more diverse, with AFL_Dict
having the most coverage (20.2%, compared to pFuzzer + AFL having 20.1%, lFuzzer having
19.9%, AFL having 18.3%, and pFuzzer having 14.6%). AFL_Dict is aware of the existing
keywords and coverage is a su�ciently strong indicator for JSON subjects to show the progress
towards valid inputs, thus it performs best on cJSON. pFuzzer is able to cover the code of cJSON
very fast, as it is designed to work on token comparisons directly and cJSON does not have a
tokenization phase. But only with the help of AFL it can cover more code beyond the basic
syntactic features of cJSON (like triggering a portion of the code that handles the conversion of
UTF-16 to UTF-8 literals) and result in a high coverage. AFL alone performs similar but worse
than AFL_Dict, likely because AFL_Dict already knows the keywords needed to generate valid
inputs. lFuzzer on the other hand is not able to extract tokens properly due to the missing
tokenization phase, which results in a slow increase of coverage at the beginning but once
AFL is started with the found seeds, the coverage increases much faster compared to AFL, still
resulting in slightly less overall coverage in the end.

Lisp For Lisp we can immediately see in Figure 6.4 how a missing optimization for tokenizing
subjects lowers the fuzzing performance. pFuzzer, not having any code to handle tokenizers
performs worst, likely because it can only guess how to combine the di�erent lexemes it detects
in the lexer. It does not have any information from the parser and needs to fall back to using
heuristics during input inference. AFL needs to guess the di�erent lexemes correctly, likely
spending a large amount of time in the lexer, trying to �nd the next valid token. pFuzzer +
AFL can combine their strengths to some extend: pFuzzer �nds simple but seemingly su�cient
seed inputs that can then be used by AFL to fuzz better. lFuzzer is able to extract most of
the tokens from Lisp, giving AFL a bene�cial dictionary to use during fuzzing. This takes
time, resulting in lFuzzer + AFL to be slower than AFL_Dict in achieving coverage—the �nal
coverage is similar though. For this subject, the lexing and parsing phase is much more involved
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Figure 6.3: Coverage over time for valid inputs for the subjects cJSON, CSV, and INI. The vertical
lines indicate the point in time when lFuzzer (red) and pFuzzer (blue) switched to
AFL—represented as a range with an average point in time as a solid vertical line.

and not as close to the textbook as for the other subjects, resulting in only a small amount of
extracted seed inputs. Especially the parsing step involves additional steps beyond simple token
matching, breaking the link between lexeme and token for our approach. Still, this proves the
advantage of our symbiotic approach: even if one part has a low performance, the other part
might still perform well, making the combination of both approaches much better than each
tool individually. AFL_Dict seemingly pro�ts from the already extracted tokens over time and
is able to constantly increase coverage by combining the di�erent tokens in new ways.

tinyC lFuzzer is designed to work well on parsers that are implemented close to the textbook
as we assume that apart from some details most parsers are designed this way. tinyC, being an
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Figure 6.4: Coverage over time for valid inputs for the subjects Lisp, mjs, and tinyC. The vertical
lines indicate the point in time when lFuzzer (red) and pFuzzer (blue) switched to
AFL—represented as a range with an average point in time as a solid vertical line.

educational sample implementation, follows this coding style very strictly, which lets lFuzzer
analyze it in depth, resulting in a proper dictionary and a well selected set of seed inputs which
already covers most features of tinyC. In Figure 6.4 we see that the missing parts are easily
�lled by the subsequent run of AFL, resulting in 17 percentage points more coverage than
AFL_Dict, which performs third best. pFuzzer is able to use its heuristics to overcome some of
the missing information induced by the tokenization phase (again, the order of lexemes needs
to be guessed and approximated with the heuristics and coverage, similar to AFL_Dict). In
combination with a subsequent AFL run that builds up upon the extracted seeds, the pFuzzer +
AFL combination performs better than AFL_Dict. Interestingly, AFL and AFL_Dict perform
similarly well. The reason for this might be that the known keywords are of no use for AFL_Dict
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as also the combination and order of those keywords needs to be correct, a task that is hard to
solve by using path coverage alone. Finally, pFuzzer alone has a high deviation in the results:
the minimal coverage achieved is way below AFL while the maximal coverage achieved is on
par with AFL_Dict. The reason for this is the reliance on the heuristics instead of informed
decisions as in subjects without a tokenization phase. Depending on the order of generated
inputs, the search space forms di�erently, resulting in early plateaus for some runs which are
not escaped anymore.

mjs For our last subject, Figure 6.4 shows how the combination of token extraction and seed
input generation with subsequent fuzzing can improve the overall fuzzing performance beyond
what is possible for each approach individually. pFuzzer again struggles with the tokenization
phase, resulting in the lowest overall coverage. AFL alone cannot build all needed keywords,
hence it can only cover some portion of the subject under test, but would need much more time
to also guess the missing keywords to cover more code (from Section 6.6 we can see that AFL
does only cover a little portion of larger tokens in its generated valid inputs for mjs). Likely,
because AFL_Dict has knowledge about the keywords in the subject (plus some noise), but has
no seed inputs, it performs better than AFL alone, but still misses some coverage the two best
performing tools achieve. pFuzzer + AFL perform second best, pFuzzer extracts a set of seed
inputs which only covers a small portion of the actual program features but already gives a
great starting point for further mutations and recombinations, leading to a high code coverage.
Finally, lFuzzer is able to do both: extract a diverse set of tokens and generate a diverse set of
seed inputs, resulting in the most coverage during the overall fuzzing sessions—revealing the
power of the combination of token extraction, seed generation, and fast fuzzing.

On all subjects, lFuzzer achieves on average 2.9 percentage points (55.4% vs.
58.3%) and up to 17 percentage points (on average for tinyC) more coverage

than our baseline AFL_Dict.

Summary The results for CSV and INI show that for subjects with simple formats a fast
approach like AFL implements it is already su�cient. For more complex formats like JSON
domain knowledge is helpful to achieve coverage faster, but naïve approaches can still achieve a
similar coverage. When it comes to subjects that are syntactically simple but semantically rich,
like Lisp, it is especially important to know the building blocks of the language: the lexemes.
For subjects that are syntactically rich but have a low amount of keywords on the other hand
it is much more important to use domain knowledge for generating the complex syntactic
features, lexeme knowledge is not su�ciently helpful (as we can see when looking at the tinyC
results). Finally, for subjects that combine a rich set of keywords, syntactic features as well as
semantic features, the combination of token extraction, seed generation and fast fuzzing is the
most promising in terms of coverage achievement. Thus, we also solved our third objective: in
combination with a state-of-the-art fuzzer we can generate syntactically valid inputs
that are also semantically diverse—which is shown by the high coverage on real world
subjects.
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6.6 RQ3: Tokens Used

With our coverage analysis we have shown how much code the di�erent fuzzers can reach.
While this is a proxy for bug �nding capabilities, it leaves out an important aspect in the domain
of subjects with complex input formats: language coverage. In this research question we want to
�nd out how well the di�erent tools use the lexemes of the underlying language of the subject
under test—answering not only if we solve Objective 1 (generating syntactically diverse
inputs), but also portions of Objective 2 (analyzing the tokenizer for on par input
generation compared to subjects under test without a lexer). Only if a lexeme is used in
an input, the belonging language feature can be covered and tested, thus the more di�erent
lexemes are used in the valid inputs, the more diverse is the feature set that can be tested. Token
coverage and code coverage may correlate to some extend—for every token there is code to
handle the token—but it may well be possible to cover a lot of code with just a few language
features. Some syntactic features can have complex underlying semantics, hence they could
activate a large portion of the code. Thus, to ensure that the fuzzer is able to pass one of the
�rst roadblocks, the syntactic parsing stage, we also need to check the language coverage.

Setup In theory it would be best to parse the generated valid inputs with their respective
grammars. Unfortunately, most of our subjects do not come with a formal grammar. If programs
would typically come with a machine-readable grammar we would not conduct this research
but just rely on input models. Thus, we built a generic lexer which greedily tries to match token
after token in the inputs.17 This lexer gives an approximation of the actual lexemes used.

We use the same regular expressions as in research question one (Section 6.4) to lex the inputs.
Each lexeme is only counted once per subject and as before: strings, identi�ers, and any other
value that maps to one token is also only counted as one. Strings are de�ned as having length
two, identi�ers and numbers have a de�ned length of one18. We only count lexemes of length
greater three (and all that have variable length like strings and identi�ers), as lexemes of smaller
sizes are easy to guess for any fuzzing approach. While it is certainly important to also have
knowledge about smaller tokens, many of them serve as control characters and do not actively
enable semantic features of the language (e.g. a parenthesis controls how di�erent arithmetic
or boolean information belongs together, but a keyword like while might actually activate a
feature in an interpreter to run code in a loop). Thus, they are typically important to form valid
inputs (which we already have at this point), but less important to trigger semantic features.

CSV And INI Figure 6.5 shows the number of lexemes with length greater three used in the
valid inputs each tool generated for each subject. For CSV and INI there are no lexemes larger
than 3 characters, hence the results for those are empty.
17For inputs generated by AFL we chose latin-1 as encoding when reading �les, because with utf-8 we

experienced decoding issues in our Python evaluation scripts. This approximation should be su�cient, because
the characters used in valid tokens for our subjects should be correctly decodable with this method. The �les
containing the inputs generated by the seed generation phase of lFuzzer and pFuzzer are encoded in utf-8,
hence we stick with utf-8 for them.

18For valid CSV inputs we typically count values that are not a comma as identi�er (even quoted CSV values).



6.6 RQ3: Tokens Used 133

cJSON AFL_Dict, pFuzzer, and the combination of pFuzzer and AFL perform equally well
on cJSON in terms of lexemes used and use all possible lexemes. The reason for this is that
using those larger lexemes is easy if they are known to the fuzzer, they need not be embedded in
complex syntactic structures. AFL_Dict gets the keywords from the string extraction, pFuzzer
recognizes them while analyzing the subject under test. AFL though is not able to generate
such large keywords out-of-thin-air , as they have at least four characters which would need to
be guessed correctly at once (they are often checked via strcmp(); hence AFL cannot detect a
gradual improvement in coverage). Furthermore, since lFuzzer expects a tokenization phase,
often it does not recognize the lexemes as tokens and the subsequent AFL phase cannot generate
them as discussed above.
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Figure 6.5: Amount of valid tokens with length greater three in the inputs generated by each
tool including maximal achievable number of found tokens with length greater three.

Lisp Here, the picture changes slightly: while AFL is still not able to generate larger keywords,
AFL_Dict and lFuzzer use a similar amount of lexemes in valid inputs, close to the maximal
amount of tokens that could be used. The reason for this is that lFuzzer, as discussed before,
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cannot generate a useful seed set for AFL to use, but it is able to extract the tokens from Lisp,
hence once the AFL phase starts it has similar information as AFL_Dict. Since the syntactic
properties of Lisp are less complex, AFL performs well in using most lexemes in valid inputs.
For pFuzzer, also in combination with AFL, the picture changes: pFuzzer cannot generate a
diverse set of inputs, it misses many keywords. Hence, for Lisp for the subsequent fuzzing
session with AFL there are neither useful seed inputs nor keywords, thus it performs similar to
AFL alone (which is also re�ected in the coverage as we can see in Figure 6.4).

tinyC AFL and AFL_Dict are not able to generate any input with larger keywords for tinyC,
likely because those larger keywords can only be used in complex syntactic structures (e.g. a
while loop also needs a condition and a body). pFuzzer on the other hand is able to use its
heuristics to generate such complex inputs at least in some runs even though it is mostly “blind”
beyond the tokenization phase as most heuristics and the dynamic tainting do only work up
until the tokenizer. pFuzzer in combination with AFL performs on average better than pFuzzer
alone, mostly because of the non-determinism of pFuzzer, which results in more runs having a
lexeme with more than three characters. lFuzzer can show it’s full potential here: most of the
time it is able to generate a diverse set of valid inputs using all tokens with more than three
characters of the tinyC language.

mjs All tools are able to use at least some lexemes of mjs, but the distribution is similar to the
ones in the other subjects. AFL alone uses the least number of keywords, primarily because
it typically has to generate them without gradual improvement, hence it is blind for a lexeme
until it found one and possibly placed it at the correct position. pFuzzer alone uses more tokens
than pFuzzer with AFL, the reason might be that pFuzzer alone runs for 24 hours and thus has
a better chance to use more lexemes it already saw in the lexer because it can use them together
with its heuristics also later in the run while AFL is not able to generate those keywords if
they are not already known. AFL_Dict has information about the existing lexemes and is able
to put them into valid inputs successfully, as in many cases the syntactical complexity is low
and AFL can make gradual progress while generating valid inputs. lFuzzer extracts a large
portion of the existing keywords and generates a set of seed inputs that already provide some
basic structure. In the subsequent fuzzing phase, AFL can use the given dictionary and seeds to
replace some already used keywords with others, recombine existing inputs, and in some cases
also generate new syntactic features. Hence, the combination of our initial program analysis
with fuzzing produces the best results, better than AFL_Dict on average.

lFuzzer and AFL_Dict are both able to use a large number of tokens
(weighted average of 77.7% and 77.5% of all tokens with more than three

characters) in valid inputs.

Summary When it comes to tokens used in valid inputs, it is crucial to know which tokens
can possibly be used in the subject. While often those tokens are not part of complex structures,
and as such simple valid inputs with a diverse set of tokens can be generated well enough by
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fast trial and error approaches, in some cases domain knowledge is of use. For Lisp and mjs
the number of used tokens is very similar for AFL_Dict and lFuzzer, mainly because most
tokens can be embedded in simple syntactic structures. When it comes to complex structures
and just a few tokens, as in tinyC, we can see that AFL_Dict actually struggles with generating
those values, even though the lexemes are known to it. We conclude: if syntax as well as
token knowledge is needed, only lFuzzer can provide the needed information for successful
fuzzing. Thus, we solve Objective 1 and Objective 2: we can generate a diverse set of
syntactically valid inputs—no matter if the subject under test parses without or with a
lexer.

6.7 Threats To Validity

In this section we list the combined threats to validity coming from the concepts introduced
in Chapters 3 to 5 as well as the evaluation conducted in this chapter.

Restriction to left to right recursive descent parsing.
First and foremost, we are bound to a relatively strict left to right parsing technique,
not allowing larger backtracking features as they might slow down the input generation
process too much. This obviously opens the question if this holds for recursive descent
parsers, the parsing technique we are targeting. Let us go one step back here and look
at the grammars those recursive descent parsers represent: context-free grammars. One
feature when parsing context-free grammars is: they do not need context, each and every
part of the grammar is independent from every other part. In terms of parsing this means
every input character can be parsed out of context of any previous or upcoming parsing
steps—only the current parsing step is important.
Hence, in theory no recursive descent parser needs to backtrack: once a character was con-
sumed (compared last), there is no need to ever access it again, it could have already been
determined as valid or invalid.19 While this is true in theory, real world implementations
of recursive descent parsers do not necessarily follow this theory: sometimes it is easier
to just read later characters �rst and then go back to verify the su�x, sometimes they
actually do not represent a context-free grammar fully but are slightly context sensitive,
creating a need for backtracking.
We did not see this behavior much in our test subjects and if it happened the impact
apparently was small. Thus, we believe that this restriction can be ignored for now,
especially as other problems cause larger fuzzing roadblocks, but acknowledge that our
approach and also our evaluation certainly do not generalize to the implementation style
of all real world parsers.

Generality of input inference and code analysis heuristics.
Another question is how much impact do the heuristics of pFuzzer and lFuzzer have on
the results and how generalizable are they? This question can be answered as follows: we

19In Section 2.1.1 we detail some restrictions to the underlying context-free grammar that are needed to avoid
backtracking while parsing.
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present a prototype implementation and a very new idea that was never tested before in
the �eld of parsers. Hence, we are sure that there will be better techniques in the future
and better heuristics to generate syntactically valid inputs from scratch—for now we just
wanted to give a proof-of-concept. For each value and each part of the heuristic we gave
a general explanation based on typical recursive descent parser implementation styles to
clarify and substantiate the reasoning behind the decision of choosing it. We believe (and
have shown in our evaluation) that the heuristics we chose are a good starting point to
generate valid inputs from scratch for non-trivial input languages and parsers.
Apart from the heuristics used to generate valid inputs lexeme by lexeme, our pattern
matching algorithm to detect tokenizer code adds further heuristic based decision making.
We cannot claim that we will cover all di�erent tokenizer implementations one can
imagine, but we try to incorporate the most common ones: a lexer needs to read input
characters, it needs to compare the characters against the token alternatives it has, and it
needs to provide some information about the token to the parser. Thus, we believe that
the patterns we designed already follow the typical design concepts. Furthermore, the
Dragon Book [3] gives some design patterns which are partially covered by our patterns,
hence we believe that our detection algorithm covers the main portion of lexers.

Close to the textbook coding style is bene�cial for input and lexeme inference.
Furthermore, we rely on good coding style patterns, and even though they are very basic
concepts, not all programs might follow them. For parsers without a lexer we mostly
depend on comparisons in the parser which are inevitable when writing a recursive
descent parser and thus in general exist as expected. When analyzing a parser with a
lexer we need a clean code that well divides parsing and lexing to reduce noise in the
detected token comparisons. This clear division and close to the textbook implementation
of lexers and parsers is not always present in subjects. Hence, we cannot generalize our
ideas to all subjects but believe that any programmer trained with the basic concepts of
software design who applies modularization to the program parts writes su�ciently clean
code that is analyzable with our approach. Additionally, the Dragon Book [3] recommends
the clear division of lexer and parser.

Restriction to subjects written in C.
We limit the selection of subjects to programs that are written in C. While this is a
restriction only introduced by the proof-of-concept implementation of our tool and not
a general restriction of the approach, it needs to be quanti�ed how much impact this
decision has. We are requiring an instrumentation which makes it possible to taint track
input characters through the program execution and report comparisons on characters
as well as on strings. While there might be programming languages in which this is not
possible, dynamic taint tracking is feasible in most cases. AutoGram [65] uses a taint
tracker for Java and the tainting engine Pirate [151] is based on QEMU [122] and as
such runs on a virtual machine.
Once such a taint tracking engine is implemented, querying taints on comparisons as
well as querying standard library function calls is possible. In theory, one could also
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implement the whole pFuzzer or lFuzzer pipeline for binaries as well, especially the byte
level comparisons of characters should be detectable. Calls to standard library functions
though might not be easy to detect on binary level, creating a �ner grained comparison
trace (as we would need to taint track the standard library as well) and thus increase
runtime. Hence, we are convinced that our approach is generic enough to be applicable
to subjects written in other languages than C and also in a limited way to languages at a
“lower level” than LLVM bitcode.

Manual test subject selection.
We selected the test subjects ourselves based on the criteria detailed in Section 6.2 and
decided against using already prepared fuzzing benchmarks for the reasons listed there.
Even though we tried to pick a diverse set of subjects implementing di�erent features
of context-free grammars and di�erent complexity levels, we cannot ensure that our
approach generalizes to all programs that parse an input with a recursive descent parser.
While we tried to use heuristics and methods that we expect to generalize to all recursive
descent parsers, we cannot guarantee that no over�tting happened. Still, as explained
above, we justify the di�erent parts of our tools and thus expect them to be valid for a
broad set of programs.
Furthermore, we acknowledge that this is just a prototype implementation and the �rst
idea of its kind to infer syntactically valid inputs out-of-thin-air . Established fuzzers like
AFL still struggle generating such inputs without prior knowledge (e.g from dictionaries
or sample inputs that cover the di�erent features). Hence, we are still far away from
generating a full C or Java program with fuzzing out-of-thin-air , but research not only
exists to answer questions, it should also open new questions and show alternatives to
the known paths. Thus, we believe that our work sets a foundation for future research in
the direction of fuzzing programs with complex input formats.
The results from our evaluation already indicate that our approach is promising and able
to generate inputs for parsers that were hardly fuzzable for the state-of-the-art. To sum it
up: we cannot claim full generality with our test subjects, but we show that it is possible
to use comparisons from program executions, analyze tokenizer code, and propagate
taints to token comparisons in the parser to build syntactically valid and diverse inputs
from scratch for recursive descent parsers parsing languages as complex as subsets of
JavaScript.

Usage of a self-written lexer for token extraction and analysis in the evaluation.
The subjects we chose for evaluation did not always come with a formal speci�cation
like a grammar or a formal lexer, hence we wrote our own lexing algorithm and added
lexemes from the code and documentation of the subjects. The lexer we used generically
applies pre-de�ned regular expressions to the inputs to greedily lex and match the di�erent
lexemes (skipping whitespaces). If it cannot match a character it tries to skip the respective
value and continues with the remaining input. Neither is the lexer perfect nor can we
guarantee that we found all lexemes—not as input to the lexer in form of tokens de�ned
by us and also not in the inputs we analyzed with the lexer. Still, we tried our best to
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include all values, and used the same lexer and lexemes for evaluating all tools. Hence,
we believe that even if there are slight errors in the lexer, the evaluation is still fair, as
the evaluation of all tools should su�er the same problems. Also, we made the original
publication data and metrics public (as far as possible) [103].

Early errors for parsing failures required.
Another threat is the restriction to early errors and early exits on parsing failures. If the
program keeps on parsing after the �rst character was determined as invalid, we cannot
distinguish properly between valid su�xes and the �rst invalid character or lexeme.
Parsers typically stop parsing on the �rst error or are con�gurable as such and even for
the remaining parsers this can often be solved by adding a program exit to the error
reporting function.

Overlapping error codes might misguide the input generation.
Also, we are prone to misguiding error handling by the subject under test, i.e. if the
program reports parsing errors the same way as other errors, our input generation pipeline
will fail to distinguish parsing errors from other errors (like semantic mistakes). Hence,
the generation of syntactically valid inputs will take signi�cantly more time. While we
cannot do much about this (if a program does not distinguish errors, we will run into this
problem), we believe that this can be handled with a proper fuzzing wrapper or slight
program changes (like we did in our evaluation).
Typically, many programs have a clear distinction between the parsing and the semantic
phase, hence it should be possible to su�ciently distinguish between parsing and semantic
errors. Instead of relying on the return value of a program, one could check the actual
program output to distinguish parsing errors from other errors [57]. Also, instead of
running the full program for input inference, one could just run the parser alone, stopping
the program after parsing—then every error is a parsing error. It is also possible to only
allow non-zero exit codes in the parsing step. Hence, we acknowledge this threat but
believe that this roadblock can be solved with one of the techniques above if someone
wants to apply our approach on their subjects.

Limitation to AFL as subsequent fuzzer in the evaluation.
We acknowledge that only using AFL, even though it is one of the industry standard
fuzzers and the baseline for many more fuzzers [2, 99], means that we cannot generalize
our results without restrictions. Still, we believe that our intention to evaluate the
capabilities of our approaches to generate diverse seeds and tokens is ful�lled. Research
on seed selection found that the right set of seeds is crucial for a proper fuzzing campaign
and often in�uences the outcome [62, 79]. The evaluation with AFL shows the in�uence
of our generated seeds and dictionaries on its fuzzing performance.
Nonetheless, it is obvious that any fuzzer that does not use seeds or dictionaries will
not pro�t at all from the results produced by our approach. Hence, we can only claim a
performance improvement for those techniques, but not for approaches that, for example,
rely on a model of the subject under test, like a grammar. For such techniques we would
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need to use additional steps, e.g. combining our technique with MIMID [54] or AutoGram
[65] and see if the grammar inference performed by those approaches works well with
the inputs generated by lFuzzer.20

Limitations of a prototype implementation.
For some cases we had to choose implementation complexity over completeness in our
prototypes pFuzzer and lFuzzer. One prominent example is the wrapping of standard
library functions. Be it in the tainting engine to have a summary for taints �owing in
and out of a function or taint replacements for speci�c functions like strtod. In both
cases its a one time generic e�ort and in a commercial tool or larger project one would
implement wrappers for all di�erent standard library functions. In our prototype we just
implemented those functions that appeared in the subjects under test as a proof-of-concept,
the replacements were randomly (but manually) selected and the taint summaries were
generically de�ned. It may be that our choices were in�uenced while implementing those
summaries, but we believe the chosen replacements are generically valid and diverse
enough (except speci�c values are required) and the taint summaries are de�ned by
the implementation of the library function and as such leave no room for subjective
interpretation. Hence, we believe that this tradeo� between implementation e�ort and
completeness did not in�uence the results and only needs to be accounted for when
comparing the implementation complexity of pFuzzer and lFuzzer to others.

Deviations in the prototype.
Even though we tried our best to implement the tools pFuzzer and lFuzzer as well as
the evaluation scripts as correct as possible, it would be utopian to believe that there
are no implementation deviations from our approach. Our prototype already contains
thousands of lines of code, mostly written by one person. Hence, there might be known
bugs arising after evaluation and publication (see Section 4.2.1) and unknown bugs. For
this dissertation we went through the code again to ensure that the details noted in
this thesis are in line with the original publications—especially the code itself. If we
encountered mistakes that we deemed to be impactful enough, we tried our best to note
them down and quantify their in�uence in this thesis.
Though, since we believe that the bugs (known and unknown) in pFuzzer and lFuzzer
only give a disadvantage to the respective tools and there will always remain hidden
coding errors, we refrained from evaluating everything again. For example, the missing
commutativity we found in Section 4.2.1 when generating token taints likely leads to less
or incomplete generated token comparisons, hence the search tree when generating valid
inputs might be incomplete. We checked the code in depth and believe that the evaluation
is not impacted signi�cantly, hence it is still showing what was planned to be proven: our
approach works well enough on real world subjects and is able to generate a diverse set of
valid inputs which can be used for fuzzing.

20We believe that the combination with grammar inference approaches is bene�cial, as those need inputs that cover
many di�erent syntactic features, which are the inputs we generate—but this hypothesis is not proven yet.
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6.8 Evaluation Summary

All results and evaluation scripts as well as a replication package of the original publication are
available at: https://dl.acm.org/do/10.1145/3406885/abs/. For this thesis
we used the same data as in the replication package, but improved the visualization of the
graphs.21 As we can see from the results, a certain amount of domain knowledge is crucial
when fuzzing systems with grammar based formats, even if it is just a dictionary. AFL without
any form of a dictionary cannot generate a large set of syntactically diverse inputs, it gets
blocked by guessing the correct keywords which takes a lot of time, especially the longer the
keywords get. The results for pFuzzer show that a program analysis via dynamic tainting is
already helpful for subjects with a simple parser that do not have a tokenization phase. Using
pFuzzer in combination with AFL can already boost this approach, but still lacks the information
about keywords and the seed inputs pFuzzer can extract are also not su�cient for in depth
fuzzing. Running AFL in combination with a dictionary of extracted strings already yields good
results as long as syntactic complexity is not needed, but as we can see on the tinyC subject,
generating syntactically complex inputs is still hard. Only lFuzzer can combine both dictionary
and syntactically complex seed generation, which in turn makes it possible for subsequent
approaches, like a greybox fuzzer as AFL, to generate a wide variety of inputs that do not only
cover a large portion of code, but also a large amount of language features of the underlying
format—solving all our objectives as de�ned in Section 1.1.

In general it holds: the more restricted the input language, the greater are the
bene�ts of automatic dictionary extraction and seed input generation as done

by lFuzzer.

21We also corrected some mistakes in the evaluation scripts, e.g. bugs and missing tokens in the calculation of
found tokens.

https://dl.acm.org/do/10.1145/3406885/abs/
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In Chapter 2 we explained the foundations our work builds upon and relies on. In this chapter
we want to bring our work in context of existing approaches, explaining the state-of-the-art
and how our technique compares—and even more important di�erentiates—from other ideas.
We will �rst bring our approach in the context of input generation for input parsing programs
work in general, then we go into detail on di�erent input generation and fuzzing techniques
that can be used in the context of parsers and are closely related to our work.

7.1 Input Generation And Input Formats

This section gives an overview on the di�erent research directions of input generation in
the context of testing programs with a parsing stage. We will often follow the generation
techniques as described in the Fuzzingbook, as it already gives a broad overview on the typical
input generation techniques [161]. We will not cover all tools or types that exist as the �eld is
too large for the scope of this thesis; still we try to cover the most relevant techniques. To have
a running example, imagine we have a simple compiler for some C-like language and we wait
for the input generator to produce a while loop (while () {;}).

7.1.1 Code Analysis Depth

Let us have a look at the typical levels of code analysis during input generation: blackbox,
greybox, and whitebox. Typically, all input generators fall in one of those categories, as they
de�ne how much information the technique uses. The lines between the di�erent types are not
sharp—some might consider a technique to be one type, others would categorize it di�erently.

Blackbox Blackbox generators mostly work very similar to the work of Miller et al. [109]:
they randomly generate inputs, give them to the subject under test, and check for crashes—
they might use some form of speci�cation for deriving tests though [161]. Typically, no other
feedback is involved; in fact a blackbox input generator does not use any information about the
program code at all. Tools like Radamsa [4] are more involved as they use sample inputs and
mutate them instead of running completely randomly from scratch. They also apply mutations
not fully at random, but pick certain possible lexical elements (like numbers) and apply targeted
mutations on them. Approaches like Glade [13] and the blackbox adaption of pFuzzer from
Gopinath et al. [57] make use of the program feedback and possibly seeds to infer the underlying
input structure with a large amount of samples.1

1Glade actually infers the underlying grammar to some extent while Gopinath et al. primarily try to e�ciently
generate syntactically diverse inputs, but do not learn the underlying grammar.
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Basic blackbox input generators have the main disadvantage that they have virtually no
feedback from the subject under test, hence in the context of complex input formats they
randomly generate inputs and only by chance create a valid input, in all other cases they just
see a rejection response (e.g. a non-zero exit code). Hence, in the case of a while loop the
generator would �rst need to generate the while keyword. If our search space is the space of
ASCII characters, the generator has, for each character of while, 128 possible options; only
one is correct. Hence the chance to generate a correct while keyword is 128−5—and this is
just the keyword, the rest of the statement is still missing. Thus, naïve random blackbox input
generation will not generate valid inputs e�ciently. Adding seeds like in Radamsa [4] would
result in more valid inputs, but we will likely not see new features (i.e. new lexemes). In best
case the approach just shu�es tokens present in the seeds. A program model will obviously
solve most of the issues (like in the work of Havrikov et al. [60]), but we will come to this later.

Greybox Greybox input generation goes one step beyond blackbox input generation and
uses weak signals from the underlying code. Some of the best known greybox input generators
are AFL [160] and libFuzzer [93], relying on coverage that is tracked for each input given to
the subject under test. A larger portion of greybox input generators actually uses AFL as their
baseline and build on this codebase [99]. In industry, tools like ClusterFuzz [138] (which is
built and used by Google) make use of AFL [160] and libFuzzer [93]. The interesting thing
about greybox input generators is that they are mostly language agnostic and independent from
the subject under test. In contrast to blackbox input generators they need at least some sort of
instrumentation on the code, but such instrumentation should be lightweight and in best case
easily applicable to other domains (like other programming languages).

Greybox input generators have more information about the subject under test—especially
they know which parts of the code were covered during execution. This information can also be
used to infer valid inputs from program executions. In our evaluation based on our publications
[102, 105] we have already shown that a basic greybox input generator like AFL [160] is in fact
able to produce some valid inputs, but due to its generality those inputs are rather simple and
are missing some input tokens (an input dictionary or a well selected seed set will help improve
input diversity). More specialized greybox input generators like Grimoire make a more targeted
use of their instrumentation feedback and try to infer a partial input structure to create more
domain speci�c and higher level mutations [17]. Such techniques that are more focussed on a
speci�c domain, in this case parsers, might be able to overcome the limitations of greybox input
generation in the area of complex input validators in exchange for generalizability. Approaches
like SmartFuzz [118] and Superion [150], which use some form of input model, can combine
the information from the model with the instrumentation feedback, thus they do not need to
infer the underlying model of the subject but can rely on the given model. Hence, they do not
su�er from insu�cient inference methods and instrumentation feedback.

Whitebox The last type of input generators (when speaking about “code analysis depth” ) are
whitebox generators. Here the input generator assumes full knowledge about the source code (or
possibly some intermediate representation like LLVM bitcode) which is used for deciding which
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inputs to generate—either statically like KLEE [23], statically mixed with dynamic information
like Driller [135], or completely dynamically. Our tools pFuzzer [105] and lFuzzer [102] also
fall in this category as they are using source code information dynamically during runtime to
decide which inputs to generate next and which mutations to apply. Other tools like Weizz
[41] or SLF [156] also use dynamic runtime information—in this case comparisons.

In whitebox input generation the input generator makes use of any information it can retrieve
from the subject under test’s code—making it the most promising approach for generating
syntactically complex and valid inputs. Our approaches pFuzzer and lFuzzer [102, 105], as
discussed in this thesis, are whitebox techniques and show that it is indeed possible to infer
syntactically valid inputs. The approach by Sochor et al. [132] and MIMID [54] also show that
not only inputs can be inferred with whitebox analysis, but also context-free grammars.

Taint-based approaches check the information �ow during fuzzing to improve the inference
of new inputs. Liang et al. [84] use dynamic tainting to extract interesting parts of the input that
end up in “unsafe functions” [84] that “are often used without strictness that may lead to memory
leakage” [84]2. Ganesh et al. [47] use dynamic tainting in combination with pre-de�ned and
user-de�ned attack points (speci�c library and system calls) to select input bytes that a�ect
values at the de�ned attack points. Only the selected bytes are mutated—“according to the
types of these attack point values” [47]. Aschermann et al. speci�cally avoid any tainting or
symbolic execution with their tool Redqeen [9]. Among others, they use an “input-to-state
correspondence” [9] because “in many cases, parts of the input directly correspond to the memory
or registers at run time” [9]. With this, they can approximate data �ows without taint-tracking
while still being “able to control these values by changing the corresponding input bytes” [9].

7.1.2 Input Mutation Techniques

Apart from the depth of code analysis, it is also important how the input generator alters
already generated inputs, i.e. which input mutations are used. In the following we discuss the
di�erent mutation techniques and explain how they would generate syntactically valid inputs.

Random Mutations First and foremost, an input generator generates inputs with a certain
level of randomness, some portion of the input generation process is randomly decided. In
the most basic case inputs are generated completely at random [109], sometimes by using
sample inputs and very generic higher order mutations (like altering numbers to other numbers
instead of randomly changing bytes in inputs) [4]. AFL goes one step further and not only
incorporates a set of higher-order mutations, it also selects seeds to mutate based on their
previous performance of discovering new code [160].

The reasoning why random mutations are typically insu�cient to generate syntactically valid
inputs is analogous to blackbox input generators: the chance to produce a while keyword from

2Liang et al. run their analysis on the binary level and categorize their approach as black box. Based on their usage
of dynamic tainting, we rather categorize it into whitebox fuzzing.
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the basic ASCII characters (128 di�erent characters) is 128−5. A promising way to increase the
number of valid inputs during input generation is using seeds and trying to apply syntactically
non-destructive semi-random mutations (like replacing one number with another—this likely
keeps the input valid; done for example in Radamsa [4]).

Static Information For Mutations Some tools use static information extraction and code
transformations to improve input generation performance: they try to either extract valuable
information for an input generator [131] or instrument the code to reduce the number of input
generation roadblocks [82]. Valuable information could be a well extracted dictionary like
Shastry et al. extract it statically from a subject under test [131]. Ebrahim et al. use CodeQL [48]
to extract “valuable information,[. . . ] i.e., commonly occurring keywords, strings and constants”
from the subject that are then further �ltered to reduce noise (e.g. introduced by error and
warning messages) with user customizable �ltering methods. The results can then be given to a
fuzzer as a dictionary [38]. In Difuze the authors use a “static analysis to compose correctly-
structured input in the userspace to explore kernel drivers” [32]. With this information they can
“automatically generate valid inputs and trigger the execution of the kernel drivers” [32]. In this
thesis (and our paper on Learning Input Tokens for E�ective Fuzzing [102]) we have shown that
even a simple extraction technique like string extraction is useful for dictionary creation and
input generation. While static lexeme extraction might be useful to improve our techniques, we
get those lexemes anyway while extracting seed inputs as our approach needs to approximate
tokens and their usage during program execution. In Section 4.1 we detailed how we extract
such information dynamically.

One of the most prevalent input generation roadblocks for greybox input generators are
magic values in comparisons, as those need to be guessed, especially if they are atomically
compared. For example, if a part of the code is guarded by a strcmp() call and the compared
token is the keyword while, a greybox input generator needs to blindly guess this word using
the 128 ASCII characters, having a chance of 128−5 of guessing correctly. Tools like the LAF
LLVM Passes reduce this e�ort by making such comparisons more greybox input generation
friendly, i.e. comparisons against constants are split into sequential character comparisons. The
example from the LAF LLVM Passes webpage shows the idea [82]: the code

if(!strcmp(directive, "crash")) {
programbug()

}

would be converted to
if(directive[0] == 'c') {

if(directive[1] == 'r') {
if(directive[2] == 'a') {

if(directive[3] == 's') {
if(directive[4] == 'h') {

if(directive[5] == 0) {
programbug()

//...
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presenting the greybox input generator for each correctly guessed character a newly found
branch, reducing the search plateau. Hence, the input generator does not need to guess the
while keyword correctly in one pass (in worst case 1285 guesses based on the 128 basic
ASCII characters), but rather gets feedback for every correct character, resulting in 128 ∗ 5
guesses at most (if always the last guessed character is the correct one and the input generator
uses the valid pre�x for further input generation).

While this is a valid technique to improve input generation performance, a dynamic obser-
vation of such comparisons is more promising if the code does not use constants directly in
a comparison, e.g. if the code iterates over an array of string constants to check if any of the
stored values matches. In this case, a dynamic approach like ours would still be able to detect
and extract the used string constants in the comparisons as they are present during runtime.

Search Based Mutations A search based approach uses a �tness function (either given by
the user or a more generic one like the distance in number of branches to a location in the code)
to reach a goal [106]. The approach optimizes towards this function, e.g. by using a hill climber
algorithm: start with a random input, evaluate it’s neighbors based on the �tness function, choose
the neighbor with the best �tness value and repeat with another neighborhood evaluation. A lot of
work was done in the past to improve search based approaches [106]. Angora [27] uses such a
technique to solve input generation roadblocks for standard greybox input generation, applying
a gradient descent algorithm on hard to solve comparisons in the code.3

A search based input generator works very targeted towards a goal, using a �tness function
which guides the way towards speci�c code locations or other properties [106]. Hence, if
a �tness function is available which e�ciently guides the input generator through a parser,
such a search based technique would work well. Still, it is not only important to generate one
syntactically valid input, but many syntactically diverse ones that cover di�erent paths through
the target—often one input cannot cover all syntactical features of the input grammar.

Technically, this search based approach is similar to what we are doing in the approaches
in this thesis—we search in the direct neighborhood of generated inputs by applying parser
speci�c mutations and evaluate them on a recursive descent parser speci�c �tness function.
Valid input pre�xes that cover parser features never covered by any input beforehand get a
favorable heuristic value; if no such pre�x exists our approach tries to generate one. Once we
found a valid input the set of already covered parser features changes (and thus the data used
in the �tness function), hence we re-evaluate already known input candidates as we now have
a smaller set of parser features that we still want to cover.

Model Based Mutations Input generators may not only use program feedback but also
external input about the subject under test given in form of a human readable model. One

3It needs to be said that there are some doubts on the results presented in the Angora paper as discussed in a
blogpost by Zeller et al. [7].
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option is to provide input structure information, making it possible to either generate inputs
from a grammar [60] or parse them [118] to apply mutations not only on single bytes or random
substrings, but to keep the borders between the building blocks of the inputs intact (the terminal
symbols for context-free grammar parsing subjects, i.e. the lexemes) and only perform targeted
mutations on those building blocks. The main improvement over simple random mutations is,
if the program input is structured, the basic structure of the inputs is known, depending on the
quality of the model it is even possible to distinguish valid and invalid inputs. Hence, the input
generator can decide if an input should be able to pass the input validation or if it should be
slightly wrong, making the search space smaller and more targeted to di�erent input features.

As already explained above, model based mutations can be used to generate syntactically
valid inputs. The model de�nes the structure of the inputs, the input generator then needs to
create inputs based on this structural description [60]. As such, when it comes to complex input
formats, model based techniques are certainly in a high advantage, as long as a model is present
and the model is complete and sound. In many cases though, the model might either not exist,
not fully exist4, is incomplete (speci�c features are missing), or contains more features than
the subject. All of this is not uncommon, as the program model needs not only to be written
but also kept in sync with the program itself and be in a machine readable form. Especially
if a handwritten parser for a program speci�c new format is designed and implemented, it is
likely that this format is constantly adapted throughout the development cycle and lifecycle of
the subject under test—making it hard to keep the formal grammar updated. Thus, inferring
inputs or a grammar from the subject under test is worthwhile as the input generator can then
speci�cally target the actual code instead of the (possibly incorrect or outdated) model.

Concolic And Symbolic Mutations Concolic and symbolic testing can be directly related
to whitebox input generation—the testing tool has full knowledge about the subject under test
and uses this information in combination with an SMT solver to build inputs that cover the
de�ned paths. One of the best known symbolic execution engines is KLEE [23]. Essentially,
in symbolic execution a path is chosen through the program, then an SMT solver is used to
solve the conditions collected along the path which results in an input that would exercise the
respective path through the subject under test—an input that renders each condition to be true
or false, depending on the direction the path should take. As such, symbolic execution is not
dependent on any sample inputs and makes it possible to create inputs very targeted—making
them traverse the selected paths (if the solver �nds a solution). Concolic execution is the hybrid
of concrete execution and symbolic execution, one example would be the tool Cute [129]. Here,
the subject under test is run with a test input and the comparisons on the path are collected
including their symbolic values. Now the tool selects the last comparison along the path and
decides to negate it, knowing from the collected symbolic values which parts of the input need
to be kept to not alter the path up until the negated comparison. CSEFuzz [153] uses symbolic
execution together with test-case selection based on coverage criteria to generate a set of seed
inputs, which can then be used in a subsequent fuzzing campaign.

4For example, the subject under test accepts JSON inputs but also requires speci�c key-value pairs—a JSON grammar
is easy to �nd online, the speci�c values though may not be found easily.
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Both symbolic as well as concolic execution are typically used very generically and especially
symbolic execution su�ers from the path explosion problem [24]. As such, even though theo-
retically those approaches would be able to cover all possibilities of a parser, they will likely
end up traversing many error paths and generating inputs for those (especially when focussing
on breadth-�rst search, as the parser error paths end early in the execution). With depth-�rst
search they might end up generating syntactically similar but semantically diverse inputs when
creating inputs for the program logic which comes after the parser.

Domain/Target Specific Input Generation In some cases input generators are not as
generic as the above mentioned methods but very targeted to either a certain domain (e.g.
programs that consume inputs that are backed by a grammar [49]) or to very speci�c targets
(e.g. compilers for a certain language like C [154]). For domains and targets that are complex to
test (e.g. because they have a very restricted input format or a very unique environment like
embedded systems software) it is very bene�cial to build an input generator that is targeted
towards such restrictions and uses speci�c knowledge for more e�cient input generation.
Even though more knowledge given to the input generator will almost always improve input
generation, for those restricted domains it is the only chance to have su�ciently e�cient input
generators that can properly test the subjects.

Obviously, domain and target speci�c input generators are the gold standard when it comes
to input generation systems with complex inputs. The more speci�c an input generator is, the
more targeted are the generated inputs (plus the input generator can be fast in generating new
inputs because it is optimized for the given domain or target). Hence, tools like Csmith [154]
can actively produce inputs that are either valid or invalid—also the input generator can produce
values that include border-cases of the speci�cation. For example, Holler et al. [63] used mined
bug reports for JavaScript engines and included those code snippets in their newly produced
inputs. As with model based testing, only features that are implemented can be tested and if
the input generator implements more features than the subject under test, it might generate
inputs that are rejected.

7.2 Symbolic And Concolic Execution

For input generation, typically most of the resources available for testing are put into program
execution and observation: the input generator generates an input, gives it to the program and
observes the execution and its output. The faster this is done, the more often a program can be
executed, and the more diverse those execution paths are, the better are the input generation
results in general. Symbolic execution and concolic execution have a di�erent approach: here
most of the resources are put into solving path constraints and generating inputs that follow
those very paths. Both approaches are similar to our ideas, hence we want to go into more
detail about them and bring them in direct context to our techniques.

One of the most popular tools for symbolic execution is KLEE [23], a testing tool that builds
a symbolic representation of the subject under test, selects paths through the program, and
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generates inputs (with the help of an SMT solver) that follow those paths. KLEE does not
randomly select those paths, but, according to the original paper, “KLEE has two goals: (1)
hit every line of executable code in the program and (2) detect at each dangerous operation (e.g.,
dereference, assertion) if any input value exists that could cause an error” [23]. Thus, KLEE is
designed to speci�cally concentrate on code regions that could be buggy. In order to be e�cient,
KLEE also uses several optimizations like replacing implied value replacement (x+ 1 = 10 gets
replaced to x = 9) and constraint independence—those constraints can be put in di�erent sets.
The authors of KLEE itself as well the community added many features throughout the years—a
list of publications is available at the KLEE main website5 [142].

Even though there are many additions and publications in the �eld of symbolic execution,
making it an interesting candidate for testing input validators, one of the main roadblocks is
still the path explosion problem. Cadar et al. mention this problem in their overview article:
“Path explosion represents one of the biggest challenges facing symbolic execution” [24]. Also,
there is some work done to reduce the path explosion problem [66, 67]. Input validators like
parsers are no exemption from this problem. Many context-free grammars contain recursive
elements in the underlying grammar, leading to an in�nite amount of possible paths, many of
them resulting in errors and program exits if the input cannot be parsed completely—only valid
inputs can go beyond the parser. Hence, if the symbolic execution engine does not di�erentiate
between parser and program logic, many generated inputs will end up in some error path of
the parser, a result that we have also seen in our experiments in the Parser-Directed Fuzzing
paper [105]. Our technique, which uses domain knowledge about parsers, speci�cally recursive
descent parsers, focusses on the fast generation of inputs that solve the parser constraints and
go beyond the parsing code.

Concolic execution, similar to symbolic execution, takes a path through the program and
solves the path constraints to generate an input that will follow this exact path. In contrast
to symbolic execution though, this path is taken based on an actual execution of the subject
under test, hence concolic execution tools like Driller [135] typically start with one or more
concrete inputs, and then select one or more conditions on the path the inputs trigger that
would, if switched, cover new branches. Then, concolic execution approaches try to generate an
input that will follow the switched branch for each selected condition (similar to what we try to
achieve by replacing incorrect substrings of the input with values they were compared to, trying
to make them valid). Concolic execution is well researched and applied in di�erent contexts
(e.g. Cute [129] working on C code including the handling of pointers in the subject under
test during test generation and jCute [127, 128] working on Java code and in the domain of
concurrent programs). Still, depending on its input generation style, concolic execution might
also su�er from the path explosion problem, if it selects and solves paths similar to symbolic
execution (i.e. puts more weight into the symbolic execution part of the overall approach),
resulting in many dead ends and only a few valid inputs. And even if depth-�rst search is
used, symbolic execution and concolic execution might concentrate on very speci�c syntactical

5We will not go into detail here because this is out-of-scope for this thesis as this dissertation is not focussed on
symbolic execution but on testing systems with complex input formats in general.



7.2 Symbolic And Concolic Execution 149

features and create semantically diverse inputs for those features. For example, they might �nd
a path through the parser into the program logic and then would possibly generate inputs that
change the end of the path, which likely lies in the program logic—thus altering the semantic,
but not the syntactic features of an input.

Context Concolic execution is very similar to the approaches presented in our publications
[102, 105] and this thesis: the subject is run under instrumentation, runtime information is
collected, and then a solver decides which path to take next based on previously taken paths.
The main di�erence is the domain knowledge included in our approach, especially the usage
of comparisons on input bytes as separated events to solve—besides other domain speci�c
optimizations that reduce the path explosion problem. Concolic execution solves a path, which
guarantees the next input to take the path at least to the solved point, with our technique this is
not guaranteed—it might happen that replacing input characters based on a comparison causes a
di�erent path to be taken. Thus, our approach spends more time with testing the subject (as it is
used as an oracle) instead of calculating the next input. For example, let us assume we �rst saw
the comparison “input[2] > 'B'” on our execution path and then “input[2] < 'H'”.
As our approach does not use context, if it solves the second comparison, it might select 'A'
as a substitution for input[2], which would alter the result of the �rst comparison 6—with
concolic execution this would not happen as it solves the whole path.

In general, our approach is more e�cient than concolic execution for the domain of recursive
descent parsers, because we make use of domain knowledge to reduce the e�ort put into solving
path constraints. Comparisons as mentioned above do not happen often in parsing, except
for range checks, but those are mostly handled by our heuristics. A parser typically checks
for di�erent valid options at the respective positions. Hence, in general we have a sequence
of equality comparisons—solving any of them would only alter the respective path at this
comparison. For example, we might collect the comparison sequence “input[2] == 'A'”,
“input[2] == 'B'”, and “input[2] == 'C'” with the input "DEF". Obviously, all three
comparisons failed, which is expected as the parser tried to match 'F'with the di�erent options
at this parsing stage, which are the characters 'A', 'B', and 'C'. Now replacing 'F' with
any of those options will lead to the behavior we want: all options except the one we altered are
still invalid. That said, one might also be able to specialize a symbolic or concolic execution
tool for input parsing programs to generate syntactically valid and diverse inputs (e.g. once a
feature/token of the parser is present in an input, the concolic/symbolic engine should favor
unseen features/tokens), but we are not aware of any tool that does this.

Summary While our approaches are close to concolic execution, we found a middle ground
between precision and speed, resulting in a more e�cient input generation technique for the
domain of systems with complex input formats.

6In fact, we implemented heuristics in pFuzzer and lFuzzer for code constructs that check for character ranges
like input[2] > 'B' && input[2] < 'H'. We assume that directly consecutive comparisons on
the same input character using the operators less or greater belong to one single range comparison, giving the
solver engine only the option to choose a character in the respective range (in this case between 'C' and 'G').
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7.3 Model-Based Input Generation

Besides whitebox input generation (especially symbolic and concolic approaches), model-
based input generation is one other domain that is highly related to our techniques. While
we are not working with a program model itself, it is very common to have or infer some
sort of input model when generating inputs for systems with complex input formats. The
reason for this is simple: generating inputs for such systems without any knowledge, i.e. mostly
blindly, often ends in insu�cient input generation results as we have seen in our evaluation. In
order to overcome this issue, the input generation community came up with approaches that
incorporate domain knowledge in di�erent ways. In the following we go into detail how this
can be achieved.

Context Model based input generation is, when it comes to input generation e�ciency, code
coverage, and bugs found, in general superior to our approach. If the model does not miss
crucial features from the input domain of the subject, it can be considered as an upper bound
for our techniques. That said, there are still drawbacks while using those techniques. First of all,
those tools su�er from human bias, they will only test the features a developer decided to test
(those domain features that are given to the tool).7 Second, the input domain speci�cation must
be implemented, hence there is a huge e�ort to specify what the input generator should do.
Typically, one major roadblock for implementing input generation as a part of the CI/CD pipeline
is the e�ort to set up an input generator. Even though simple greybox techniques require no
more than using a speci�c compiler that performs the input generation instrumentation in the
subject under test, practitioners (users from the industry) still see usability as one of the most
important areas to improve in todays input generation research [18]. Hence, we can assume
that practitioners will tend to not maintain a domain speci�cation in parallel to their code base,
not even speaking of writing an initial one. Especially in the case of non-generic formats, this
will make the application of subject speci�c input generation unlikely in many cases. With
our technique, this specialized information is not needed: as long as the program contains any
recursive descent parser (which is one of the most popular parsing techniques), we can run our
domain speci�c technique and test the subject under test.

7.3.1 Generator-Based Approaches

As one might expect: giving input generators domain knowledge highly increases their
e�ciency, the better the knowledge and the more advanced the usage of this knowledge is,
the more precise an input generator can create inputs. Hence, it is e�cient in solving the
speci�c task it was designed for. For instance, an input generator like Ijon [10] lets the user
decide which features of the subjects are interesting to explore, i.e. the user can add di�erent
annotations to the code to guide the tool, giving it additional information about the speci�c
target program. One could also think about giving domain knowledge to such a input generator.
Such knowledge could then be statically or dynamically applied to concrete subjects without
the need to manually annotate each subject individually.

7Some tools provide so called “out of speci�cation” mutations, but those will only search in the near surroundings
of the model, they will likely not detect new features, e.g. features that require completely new lexemes.



7.3 Model-Based Input Generation 151

For program models, the input generator decides based on the given model how and which
inputs to generate, with a generator approach the user writes code to de�ne how inputs should be
generated. There are di�erent forms of input generators some like Csmith [154] and jsfunfuzz
[124] are focussed on a speci�c target (in this case the languages C and JavaScript). Generator
approaches have the advantage that the respective generator code can be freely implemented,
hence with such an approach it is possible to build any input. For a tool like Csmith, which is
very targeted to one speci�c language, this means that not only the syntactical and semantical
features of the underlying input format can be added, but also interesting peculiarities and
common error sources. For instance, Yang et al. designed Csmith to output programs that are
free from unde�ned behavior [155], a feature that requires a high context awareness, e.g. to
avoid accessing uninitialized memory even in complex generated programs. Nonetheless, this
technique, while possibly being highly e�ective on its respective targets, has the drawback of
needing large manual e�ort and maintenance. A specialized tool like Csmith has more than
25,000 lines of C, C++, and C/C++ Header code8 [33]. Furthermore, even if the �rst version of
the generator is �nished, it will likely need debugging and ongoing maintenance for targets
that are still under development.

Context In contrast to that, our techniques work directly on the code and analyze it with
generic domain knowledge instead of manually written or user de�ned information, generating
inputs for the input format that is encoded in the recursive descent parser of the subject under
test using automated inference techniques. As such, our approaches are neither dependent on
any manual work, nor are they prone to failures done during the implementation of the input
speci�cation or the generator. On the other hand, our techniques can only be applied to subjects
with a recursive descent parser, while generator techniques have virtually no restriction to any
input format, as long as the input generation can be encoded in program code, they can generate
inputs. Hence, our approaches build a middle ground between simple greybox testing which
struggles with generating inputs that are highly structured and generator based approaches
which are very targeted to the subject under test or at least the input format.

Summary If a generator is available, this should be the �rst choice to test a program. If the
target is still under heavy development and input format changes happen frequently, it might
be bene�cial to use our approaches �rst (or any approach with small to none manual e�ort for
application) and only once the format is mostly set a generator should be implemented. Also,
our approaches could be used in addition to generators, they might �nd inputs that are di�ering
between the underlying format of the generator and the subject under test itself.

7.3.2 Input Model Based Approaches

A grammar can be seen as a model describing the input space. In contrast to a generator
approach though, a grammar is typically written in a description format that is speci�cally
designed to describe an input language. Grammars often already exist for a variety of input

8Counted with github.com/AlDanial/cloc version 1.90 using the command cloc ./src from the Csmith
root folder, using the code column of the output.

github.com/AlDanial/cloc
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formats (the website Grammar Zoo [147] lists more than 1000 grammars at the time of writing—
covering a wide variety of input formats) and can be used for di�erent applications, e.g. to
generate parsers instead of writing them by hand. Tools like ANTLR [136] and Bison [44] take
a grammar in their respective description format as an input and generate parser code in the
speci�ed output language (e.g. C or Java code).

Besides generating input parsers, another application for grammars is input generation. With
a grammar a test input generator can build inputs very targeted, similar to other model-based
approaches, but developers often can reuse an existing grammar or adapt an existing one to their
needs, making the tradeo� between input generation performance and manual work attractive.
Especially, since a grammar can be used for more than just testing. Burkhardt [22] explored
the generation of test programs from a model to test software systems very early—in 1967. For
his work “an example language was constructed in a subset of a FORTRAN-like language; and
therefore the output format is consistent with the requirements of FORTRAN” [22]. Based on the
given example language, he automatically generated a set of programs.

There are many di�erent approaches researched to improve the quality of grammar based
input generation. Holler et al. used a JavaScript grammar to not only generate random
programs to test JavaScript parsers, but they also crawled bug reports of JavaScript engines,
extracted the respective bug inducing inputs, and embedded them in newly generated contexts
[63]. This technique revealed numerous bugs, many of them caused by insu�cient �xes of the
respective engines and shown again by searching the direct neighborhood of the �xed code
location. Havrikov et al. improved the grammar coverage, i.e. they presented an approach
which systematically covers tuples of terminal symbols and nonterminal symbols of a grammar
to guarantee that every (so called) k-tuple is covered [60]. Their reasoning is that every input
feature (every nonterminal symbol) belongs to a code feature (a function or code location that
handles the respective nonterminal symbol during parsing but also in the program logic), hence
by covering k-tuples, they test combinations of code features. Pham et al. extend the greybox
fuzzer AFL to incorporate information from a grammar for better fuzzing results [118]. Wang et
al. present Skyfire [149], an approach to learn a probabilistic context-sensitive grammar from a
set of inputs and a context-free grammar which can be used to parse those inputs. This grammar
is then used to augment the set of initial inputs to cover more code—the initial and generated
inputs are reduced to have less redundancy and used as seed inputs for further fuzzing. And
even though the basic version of AFL does not supports full-�edged grammars, dictionaries are
already a part of the tool. With them, AFL has larger building blocks with which the inputs can
be generated and altered [158].

Since writing a grammar is not always necessary, but if so, a cumbersome and possibly also
error prone task, approaches for learning and inferring an input format from samples have been
proposed. Glade [13] starts with a very speci�c grammar containing the seed inputs given
to the tool, from there on it tries to generalize the grammar �rst on the regular expression
level (adding repetitions and alternations), then on the context-free grammar level (by adding
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recursive productions).9 All of this is done by generating targeted alternatives to probe the
subject under test and use a given oracle to decide if an input was parsable. In Learn&Fuzz
[49], Goidefroid et al. use a neural network in combination with a large seed corpus of �les
having the same underlying grammar to infer the input model (technically, not a grammar
but a neural network containing the grammar is extracted—we still count it under grammar
extraction). Angluin proposes the learning algorithm L* to learn “regular sets from queries and
counterexamples” [8]. Gopinath et al. use a whitebox technique for grammar inference [54], an
advancement of the technique presented by Höschele et al. [65] that has a stronger focus on
the dynamic control �ow of the parser code instead of the dynamic data �ow. Schröder et al.
envision a technique to infer grammars from static program analysis [126], Schröder also went
into more details about portions of this planned research track [125]—though, to the best of our
knowledge, there are still many open questions they plan to solve in the future to make their
technique complete.

Another type of input models are schema �les. Especially the web domain often uses schema
�les like Protobuf [51] and JSON schema [112] to describe an API—the format of the data is
already known but the containing data is described with such a schema �le. Those schemas
are machine readable, and in some cases like for Protobuf they can also be used to generate
respective parsers like described in the Google tutorials for protocol bu�ers [50]. Hence, it
makes sense to use them also for input generation, like the JSON Schema Faker [6]10 or the
libprotobuf-mutator which “is a library to randomly mutate protobu�ers” [52] and “could be
used together with guided fuzzing engines, such as libFuzzer” [52].

Context As we have seen, the �eld of model based input generation is large, many researchers
worked on building better and faster input generators that are backed by an input model in
one form or another. Going over all the di�erent approaches covered in the recent years would
be out of scope for this thesis, hence we gave a broad overview and will now explain how our
techniques could help model based input generation—concretely in the domain of grammar based
input generators.

All of the existing approaches either assume an input format speci�cation or a su�cient set
of sample inputs from which the respective format can be learned. While, as with generators,
having an input speci�cation is great for e�cient input generation, it may not always be
available, needs some amount of maintenance to be up-to-date with the actual implementation,
and might miss features or have more features than the actual code contains. Similar problems
hold for sample inputs: the techniques can only learn features that exist in the sample inputs,
anything else will not be re�ected in the extracted format speci�cation. Hence, the sample
inputs should cover as many grammar features as possible, possibly even in di�erent variations

9In fact, Bendrissou et al. found that the “e�ectiveness score (F1)” [15] as claimed in the original paper [13] cannot
be replicated with a reimplementation based on the description of the original paper [15].

10The JSON Schema Faker is actually a tool for just generating fake JSON inputs that are valid with respect to
JSON schema �les, but used as a backend for generating several di�erent JSON �les, it would function as an
input generator as well.
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and depending on the learning technique (e.g. if new inputs are generated to augment the initial
set) the subject under test must also signal if an input is valid or not. Thus, we developed our
techniques pFuzzer [105] and lFuzzer [102] as presented in this thesis—both do not need any
input formats or sample inputs but infer inputs directly from the subject under test’s code and
observed runtime behavior.

Still, having an input speci�cation is in most cases much more e�cient than using pFuzzer
or lFuzzer, the input generation can be very targeted instead of having to use several trial and
error runs to observe the subject under test. Nonetheless, with the techniques presented here
as well as our techniques we are able to build a tool pipeline that (at least for some subjects),
may combine the best of all worlds. We could �rst start with pFuzzer or lFuzzer to extract a
set of sample inputs (and with lFuzzer also a dictionary of tokens). This step does not need
any manual e�ort or input samples, we will get inputs that, in best case, cover all features of
the underlying input format and nothing more. A tool like Grimoire [17] can take the sample
inputs as starting set, start fuzzing with them as those inputs already cover the parser and try
to infer a partial input structure based on its instrumentation to create more domain speci�c
and higher level mutations. Also, with a learning technique like MIMID [54], Glade [13], or
Learn&Fuzz [49] we can extract the underlying input format using the seeds (and tokens)
from pFuzzer or lFuzzer, hence we do not need to manually make sure that the seed set is
1. feature complete in general and 2. maintained to be valid and complete with the current
program version. Now that we have an input model we can choose an input generator that
accepts the generated model [60, 118] and use it for fast and e�cient input generation—again
without manually maintaining the format.11

Summary Input model based input generation is a great technique for generating inputs with
complex formats, but it involves manual e�ort and might miss features that are forgotten to be
incorporated into the input model or the sample seeds. With our techniques we make it possible
to build a set of syntactically feature rich sample seeds that can be used for model learning
and those models in turn can be used for input generation, enabling input model based input
generation of subjects out-of-thin-air—without the need to involve any developer knowledge.
While such a tool chain does not yet deliver the same quality of input models as a developer
would do in all cases, our approach likely works best as a complement to model based input
generators or during development of projects while the subject under test is still a moving
target and the input model and seeds might often be out of sync with the code base.

7.3.3 Property-Based Approaches

Similar to generator- and input-model-based approaches, property-based testing relies on
properties about the program that describe how a program should behave [40]. Those properties
can then be used, in combination with other techniques and program inputs, to extract informa-
tion about the subject under test—like code that is related to the properties or executions that
11All of this assumes a perfect world in which all tools are sound and complete, which is obviously not true. Still,

even an incomplete pipeline would likely be able to infer a grammar which can be used in input generation.
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are outside of the intended program behavior (with regard to the given properties). The bene�t
of such properties is that they avoid specifying the whole program behavior, but they only focus
on the speci�c parts of the program that are about to be tested. This makes it possible to use
the properties, besides others, as oracles for the program speci�cations they are re�ecting.

Padhye et al. make use of property-based testing in JQF to combine it with coverage-guided
fuzzing [115]. In JQF the developer writes property-based tests for the subject under test which
are used, in combination with some input generator, to create tests targeted towards the given
properties—also using them as an oracle to verify the correct handling of the input during
program execution. Löscher et al. improve property-based testing by extending the properties
to be targets for a search based testing strategy [96]. With the help of the search strategy they
feed the input generator, trying to build inputs that falsify one or more of the given properties.
Typically, this approach needs additional manual guidance: “(1) the strategy that is used to
explore the input space, (2) the component that supports writing targeted generators, and (3) UVs
that we want to maximize or minimize” [96] (“UVs” are the “utility values [. . . ] that specify how
close input [sic] came to falsifying a property” [96]). In a follow-up paper Löscher et al. reduce
this issue by trying to automate the generation of a neighborhood function which serves as the
targeted input generator. Thus, “a user e�ectively now only needs to extract the utility values and
specify whether to maximize or minimize them” [97] (besides the setup that needs to be done for
random property-based testing techniques).

Context Property-based testing can also be used to generate syntactically (and even semanti-
cally) valid inputs. For instance, Zest is such a tool for testing the “semantic analysis stage of
test programs” [116] using a technique to convert untyped parameter sequences to syntactically
valid inputs. Such parameter sequences can be bit sequences generated with the help of a
coverage guided, “feedback-directed parameter search” [116] approach which is integrated in
Zest. New inputs are generated with mutations on the bit sequences and the input conversion
phase in Zest converts those to syntactically valid inputs. The goal is to create semantically
diverse inputs with the help of those mutations that are already guaranteed to be syntactically
valid inputs due to the bit sequence converter. In other words: instead of letting the input
mutation phase work on producing syntactically valid inputs, the complete parsing stage is
handled by the generator and the input mutation can concentrate on the semantic phase of the
subject under test.

Padhye et al. performed an evaluation on input parsing subjects with Zest [116] and showed
that they can successfully cover code in the semantic analysis classes of their test subjects—
outperforming tools like AFL and indirectly also showing that they can produce syntactically
valid inputs (typically only syntactically valid inputs end up in the semantic phase of a program).
Thus, we can derive that property-based testing is also applicable for testing input parsing
programs. Also, search based approaches like the one by Löscher et al. [96, 97] might be able to
help guiding the input generation towards syntactically valid inputs (depending on the quality
of the given search strategy and the given properties). Still, those approaches, in contrast to
our techniques, require guidance and adaption for each subject. With manual work one can
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de�ne how a syntactically valid input looks like and describe properties over such an input,
which in turn can then be used to determine if a subject under test consumes the input properly.
Our techniques might serve, possibly with some adaptions, as another input generator for
input parsing subjects, which can then be combined with property-based testing to verify the
execution of the subjects on the generated inputs in more detail.

Summary While property-based testing is certainly a great technique to analyze a program
as a whole, it still involves manual work which again might result in missed or outdated features
of the subject under test. The properties for the subject under test need to be written and
maintained, which makes it possible to target those properties in depth, but then again does not
target the program in breadth. The combination of our techniques and property-based testing
though might be fruitful. One can test the program in breadth with our techniques, but certain
parts that are more important and need more in depth testing and oracles, can be tested with
property-based methods—e.g. security relevant properties [40].
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This chapter concludes the dissertation. Thus, here we summarize the solved challenges, key
takeaways, aggregate how our research improved over the state-of-the-art, and have a look into
the future of Fuzzing Systems with Complex Input Formats.

8.1 Solved Challenges

In this section we want to give a very condensed overview on the achievements that we
reached with our work, we summarize where we are in terms of Fuzzing Systems with Complex
Input Formats with and without tokenizer code. Hence, nothing new will come here, this is only
a condensed version of the main contributions without too much details.

Objective 1: Complex Comparisons With Magic Values First and foremost, we need to
mention our fundamental idea and approach for Parser-Directed Fuzzing: using input character
comparisons done during parsing with a recursive descent parser for input inference as presented
in Chapter 3. Our idea is based on the observation that any recursive descent parser at some
point needs to compare the input characters it currently parses with the valid options it has at
that position (be it directly or after lexing). With this information we can create valid inputs
e�ciently step-by-step, replacing randomly guessed characters that are appended on already
generated valid pre�xes with the constant values they were compared to during the execution
of the subject under test.

Additionally, beyond the usage of comparisons, we also leverage other domain knowledge
regarding recursive descent parsers. For instance, we make use of stack depth to avoid nesting of
features (represented as called parsing functions on the stack) and thus unnecessary complexity
in inputs during generation, a metric which directly correlates with the typical implementation
of a recursive descent parser. We also take into account the new coverage achieved by each
input (compared to the code covered by valid inputs beforehand), but only the coverage in the
parser, i.e. we detect (and under-approximate) which code still belongs to the parser and then
only use this coverage for our search heuristics. This can only be done because we know that
the subject contains a parsing step and we know the typical implementation style of a recursive
descent parser.

Objective 2: Tokenzation While the �rst research contribution makes it possible to in-
fer inputs from parsers in general, it requires knowledge about parser comparisons. Those
comparisons not only give information about the valid tokens of the underlying language,
but also about the validity of a token at the respective position in the input (i.e. the time in
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parsing). In the presence of a lexer, this is not an easy task anymore: in this case the lexer
contains the character comparisons, the parser only the token comparisons. We extended our
dynamic tainting technique in Chapter 4 to also handle input-character to token conversions
and propagate taints from the input characters to the lexer tokens (which �nally end up in the
parser and reveal the parser comparisons we are looking for).

Objective 3: Syntactic Correctness And Semantic Diversity Finally, during the design of
our approach we found out that building syntactically valid inputs is a necessary requirement
to generate inputs that reach code beyond the parsing step, but not su�cient for reaching all
lines of code. Thus, we combined our technique with a fuzzing technique in Chapter 5: greybox
fuzzing. The idea is that our technique produces a syntactically diverse set of seed inputs and a
dictionary to give consecutive tools (like fuzzers) starting information. In our evaluation we
show how this information can be used in combination with AFL, a state-of-the-art greybox
fuzzer, e�ectively. While such fuzzers struggle with generating syntactically valid inputs from
scratch, they are very good in altering existing inputs in a fast pace, leading to a high variety
of existing values close to their originals. Thus, altering the inputs generated by lFuzzer in
combination with the extracted lexical elements, yields a powerful combination of tools that
is able to produce inputs that cover code of subjects under test with complex input formats
e�ciently and e�ectively.

8.2 Key Takeaways

We collect the key takeaways from Chapters 3 to 6 to summarize the whole approach before
talking about possible future work and the conclusion of this thesis.

Dynamic tainting is a promising way to collect information about a parser for input
inference.

There are “limits on the e�ciency of automated systematic testing beyond which random
testing is certainly ‘superior”’ [19]. Those limits are dependent on the “number of error-
based partitions and the fractional size of the ‘smallest’ error-revealing partition” [19]. Still,
our results indicate that input parsing programs can bene�t from our systematic testing
techniques which may spend more time in the input creation phase—it seems that overall
our approach is still in the mentioned limits to be more e�cient than random testing. We
are able to generate inputs that are targeted towards the parser in the subject under test
and cover a large variety of input features.

Comparison traces can be used to generate syntactically valid inputs out-of-thin-air.
While most parsers rely on general metrics like coverage, which is great for fuzzing
general programs, we can make use of very speci�c information tailored to recursive
descent parsers. This makes it possible to create a technique that is very e�cient for this
speci�c set of programs, which cannot be fuzzed e�ciently with general purpose tools.
We believe that in future the question is not: “How well does my fuzzer perform on the
most general set of programs?”, but: “how well does my fuzzer perform in this domain?”, i.e.
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is the approach both specialized and broad enough to perform well on subjects from a
speci�c domain. Böhme et al. also recognize in their overview paper that fuzzing needs to
be broadened to new types of software (like parsers or protocol based systems), and that
benchmark sets need to acknowledge the existence of specialized fuzzers [18], hence we
believe that domain speci�c fuzzing is in the minds of the broader fuzzing community. We
presented an approach for the �eld of parsing, a �eld that could only be fuzzed e�ciently
with many sample inputs and knowledge beforehand (either through learning an input
format with a large set of samples [13, 65] or by using a manually de�ned grammar [60]).

Dynamic taints can be extended to token generation.
Producing taints from un�ltered control �ow is not feasible if one wants to have a
meaningful set of taints—most runtime values would be tainted by the majority of input
byte taints, because most of the code and thus most of the internally produced data is
control dependent on the input. Hence, we present a technique that �lters for token
generation patterns and produces taints which are attached to the respective token values.
With this technique we have less noise compared to tainting all bytes based on control
�ow. This noise can be further �ltered with di�erent heuristics to reduce the overhead
and make the taints precise enough for observing parser comparisons on the token level.

Lexer code can be detected, separated from the parser, and parser code can be analyzed.
With the token taints produced by our tokenizer adapted tainting technique and the
detection and separation of parser and lexer code, our approach is able to produce a
stream of token comparisons. Including our token mapping, both presented in Chapter 4,
this comparison stream can be analyzed with an adaption of the parser analysis backend
from Chapter 3 to generate syntactically valid inputs out-of-thin-air .

Seed and dictionary extraction is bene�cial for e�cient fuzzing.
While AFL as well as lFuzzer already perform well as standalone tools, they have their
weaknesses: AFL struggles with generating syntactically correct inputs but produces
many di�erent inputs which in turn often cover the semantic features of the subject while
lFuzzer performs vice-versa. Thus, it is obvious to combine both approaches—lFuzzer
extracts syntactically feature rich seeds and a dictionary, AFL then covers the semantic
features of those seeds by recombining the extracted information. With this method we
leverage the individual strenghts of each technique while mitigating the weaknesses.
Furthermore, this approach is highly modular: we can use any other fuzzer, as long as it
accepts seeds and in the best case a dictionary.

The semantic part of a subject under test (and especially the program logic) can be
tested out-of-thin-air on subjects with complex input formats.

Not only does the parser analysis and AFL perform better in combination in terms of
input generation, they also achieve something that was not possible before: covering
a diverse set of semantic features. lFuzzer covers the parser broadly and AFL speci�c
(syntactically simple) features deeply. Their combination enables the tool chain to �rst
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broadly cover the parser and then let the subsequent fuzzing campaign go into depth and
beyond the parser code—and all of this from scratch without the need to handcraft a seed
and dictionary set. This essentially concludes our journey for now: we started with a
technique that can analyze parsers that work directly on the input characters [105], went
over an approach that can analyze more complex input validators that have a lexing and
parsing phase, and ended up with a full �edged tool chain that can also test the semantics
of a subject under test [102]. While all of this is now possible, we just scratched the
surface with our prototype technique, there is more to explore in future.

This is just the beginning . . .
Analyzing and testing systems with complex input formats is hard and even though our
technique made it easier, the �eld is still open and waits for exploration. We believe that
the future of fuzzing lies in specialized fuzzers that make use of domain knowledge (either
manually provided for speci�c targets or generic domain knowledge). With this approach
we set the foundation for Parser-Directed Fuzzing without the need for manually crafted
input models—the future of parser fuzzing has just begun.

8.3 Future Work

In the previous sections we have shown the di�erent achievements produced by our research
in detail. This section though, has a look into the future of Fuzzing Systems with Complex Input
Formats. We want to share our experiences in this area and give an outlook on what might be
possible, what might be worthwhile to explore, and what we imagine should the the ultimate
goal of Fuzzing Systems with Complex Input Formats and domain centered testing in general.
Our journey is at a crossroad, there are di�erent paths to explore, di�erent areas to have a look
into and we try to list them here. But not only that, we also made decisions in the past which
may or may not have been the best, so we also take a look back and see if there are paths that
might be interesting to explore deeper.

While our techniques for parser analysis already laid a great foundation and are capable to
cover a broad set of grammars and their respective features, there are still many open tasks for
future research. We see our approach as a prototype and one of the �rst of its kind to introduce
e�cient parser analysis and fuzzing out-of-thin-air . As such, we believe that all parts of this
technique can be improved. In the following we go into detail about possible research directions.

Analyzing The Semantics One key problem of our technique, is the insu�cient testing of
the semantical level of the subject under test. While greybox fuzzers like AFL indeed are able to
re-arrange and replace input characters to achieve a wider diversity of input features, also and
especially on the semantical level, this still just scratches the surface. Tools like Zest [116] try
to cover this semantical level, but typically they either have blind spots (like our technique) or
need manual help (like Zest). Thus, we believe that our techniques need to be re�ned in order
to test beyond the parsing phase in the subject under test. In the following we also give some
ideas for extensions of our technique which could also help in that matter.
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Context-Sensitive Grammars A sub-problem of the general testing of the semantic level
are context-sensitive grammars. If one thinks about a programming language, the problem gets
apparent very quickly with one of the most basic features: use-def dependencies. Variables and
functions need to be de�ned before using them (be it syntactically earlier in the code or just
semantically somewhere in the scope when calling them). Such concrete semantic dependencies
might be solvable to some extent: one could think of using some speci�c algorithm that infers
how variables or functions are de�ned and then use this technique as a kind of pattern matcher
if a variable use is semantically checked. The program internal def-use checker would try to �nd
the variable name in its scope, i.e. it might iterate over the de�ned variables and compare the
known names with the one it has until it is either found or there are no more values in the scope.
Such a pattern in the execution could be matched and then used to create an additional variable
or function de�nition to satisfy the missing de�nition for a variable or function usage. Still, we
lack proper techniques that are actually able to generally solve such semantic dependencies like
the one in the example above for context-sensitive grammars.

Grammar Learning Another problem our approach has in its current form is the lack of
structural knowledge. In fact, for each input that is tried to be inferred we start more or less
from scratch, using collected information about already covered inputs and code and feed this
information to heuristics, but no knowledge about the underlying structure of the grammar is
extracted. Approaches like AutoGram [65], MIMID [54], and Glade [13] already try to use a set
of sample inputs to infer such structural information. To the best of our knowledge though, no
one combined input inference with grammar learning in depth—a combination of both would
likely be bene�cial though. Hence, while grammar learning techniques already exist, there is
room to improve them further. With the combination of both techniques it would be possible to
omit writing test inputs or grammars manually—reducing manual e�ort and human bias.

E�iciency A second problem arising from missing structural knowledge is the ine�ciency of
our approach. We learn and infer inputs as we cover the code, needing many iterations while
dynamically tainting the program execution. This costs time which could be avoided by not
only inferring inputs on the go but also learning structural information about the parser, which
could then be leveraged to make even better decisions during input inference. One example
could be, instead of inferring the contents between two parenthesis in an arithmetic expression
by probing the subject, one could just leverage information from previous runs. For example,
if we need to �nd a substitution for X in “2 + ( X” we would currently probe the subject
until we found a correct substitution and then append a closing parenthesis. But, if we already
produced another input that is a valid expression it might be bene�cial to test if X can just
be replaced with a known expression. For example, if we already generated “1 + 2”, we can
produce “2 + ( 1 + 2” and see if the input is accepted up until the number 2—reducing the
number of needed runs. There might be many improvements of our prototype, which will make
the input inference faster and give more room for semantic level fuzzing or other techniques.

Other Inference Techniques Speaking of e�ciency, it is de�nitely possible (maybe even
likely) that our approach is just a basic approach to infer inputs for parsers. Indeed, we decided
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for a su�cient approach with low complexity for input inference: using comparisons to build
valid inputs from and for the parser of the subject under test. This leverages one fundamental
property any recursive descent parser has: it needs to compare input characters in order to
decide for each character if it is valid at the respective position. Still, one can imagine other
ways to make use of this property instead of analyzing a stream of comparisons extracted with
dynamic tainting. Many parsers for instance already use some kind of error feedback, indicating
if and where an input is invalid. Completely without instrumentation, just by using the error
feedback, it is possible to �nd the “maximal valid pre�x of the input that if combined with some
valid su�x will be accepted by the program” [57] (even if this is done randomly, the speedup
by not using dynamic tainting might already be su�cient to make this technique faster). One
could even infer a grammar from a set of inputs only, without any other information (except
the general class of grammars like context-free grammars) [30].

Analyzing A C++ Compiler Technically, this paragraph is not about analyzing a C++ com-
piler, this language is just a placeholder for all the target languages that are hard to analyze and
fuzz fully automatically, if not impossible (for now). We chose C++, because we think it has one
of the most complex features and is a very feature rich language, including many syntactical
as well as semantical options to build inputs while on the other hand being well known and
used a lot in real world. Now, we imagine a future in which it is possible to create inputs for
C++ (and all the other complex languages) out-of-thin-air , without human knowledge involved,
just by analyzing the fuzzer—be it statically, dynamically, or both. While we are still very far
away from reaching this goal, we think it makes sense to give some perspective for the future,
showing what we imagine our technique to be a foundation for. The ideas mentioned above
are some of the larger milestones towards this goal—being able to analyze and fuzz programs
with underlying languages as complex as C++ is certainly a tremendous milestone for Fuzzing
Systems with Complex Input Formats.

8.4 Prototype Implementation

A non-negligible part of this work is about breaking other software, i.e. �nding bugs in
systems making them more secure, more reliable, and certainly closer to what they are supposed
to be—the typical developer does not add a bug into her or his program on purpose. And testing
approaches like fuzzing �nd thousands of bugs in systems that were deemed to be secure and
even then those systems might still have vulnerabilities and produce crashes—even in software
that is well written by many people and secured over years.

This brings us to three (maybe obvious) points that we still want to mention here: no piece of
software is completely bug-free (if we do not know of any bug we likely just did not �nd it yet), it
does not matter how hard one tries to document a piece of software correctly there will always
be a deviation between the documentation and the actual code, and �nally: no matter how great
the idea behind an approach is, there might always be a better one (if this was the best approach
to analyzing and fuzzing parsers, we would be done now, but this is utopical). This dissertation
and the papers supporting this work were written with the highest standards to make sure that
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everything is well documented, the code works as explained, we did not miss to mention any
steps we took, and to come up with ideas that work as good as possible. Still, as with any other
piece of software, as with any other work out there, especially for such long-running and large
projects, it might be that we missed to mention something in this document.

While we cannot print all the code, the evaluation scripts, and the results in this thesis, at least
we provided a replication package [103] along with the paper about Learning Input Tokens for
E�ective Fuzzing [102] which contains most of the information used in this thesis on a technical
level. Of course, this does not guarantee that anything along the path between running the
experiments, uploading the evaluation code and results, and improving the presentation style of
those results for this thesis1 did not go missing or went wrong, but it gives a second reference
for the work done, i.e. the technical outcome of all the research throughout the years. We tried
to make sure that the description as given in this thesis is a correct representation of what was
implemented (possibly also correcting mistakes from the published papers), still, due to the size
of the project there might be slight mistakes.

8.5 Final Words

Writing a dissertation is a long journey, a journey that begins with interesting and important
open research questions, adds several new insights to the research corpus and ends with
a summary of what was done—this thesis. During this journey, one does not simply focus
on the path straight ahead—research is always about looking right and left, smoothing out
roadblocks and improving over the state-of-the-art wherever possible. And most importantly:
great research does not only answer questions, it asks new ones that are important to
solve in the future. This section gives an informal �nal overview on this journey: speaking
about the path taken, what we can take away when looking back at the years of research done,
and what the future might look like.

We started with an overview on the background of our work, the foundations of our approach,
in Chapter 2. This is the reason why we decided that there is a need of better analysis and
fuzzing tools for systems with complex input formats, i.e. systems that parse inputs. From
there we digged into the commonalities of di�erent parsers and came up with our approach of
using the intersection between the theoretical background of parsers (the grammars) and the
actual code—comparisons as the instances of terminals, the building blocks of each input. But
this is not enough: parsing code is more complex and well engineered code uses techniques that
avoid direct parsing to abstract away details—the lexing code. Therefore, in a follow up we also
analyzed the lexer and enhanced our initial idea to make use of the lexer and the parser together.
Finally, we also encountered the problem of not testing the semantic level of the underlying

1The new presentation style and possible �xes are obviously not re�ected in the uploaded code, hence the replication
package does not fully represent the data and scripts used in this thesis. Mostly, we just altered the look of
the graphs and the results are (mainly) based on the data that was uploaded. Also, we �xed some bugs in the
evaluation scripts that generate the data, including bugs in the lexer we used to calculate the metrics of found
tokens.
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languages, which we approached by building a symbioses between our very targeted syntactical
analyzer, and the broader but faster fuzzer AFL, covering portions of the semantic layer as well.

What did we learn on this long journey from our �rst idea of Fuzzing Systems with Complex
Input Formats towards this document, summarizing the outcomes of this idea? First and foremost:
it was possible to improve over the state-of-the-art and using domain speci�c testing tools is
certainly a research path we would like to see more in the future. While general fuzzers are
great for starting fuzzing, at some point they are not targeted enough to the speci�c problem
and are too ine�cient for proper testing of the subjects. Domain speci�c fuzzers though are
able to keep most of the convenience of general fuzzers (especially the very low initial hurdle
to start the fuzzer on the subject under test) while being able to test the subject faster and in
more depth.

While it is great to see that our approaches work well, the journey is not over. We said in the
beginning of this section that there must be new questions to answer, and we already show
ideas for future research in Section 8.3, but to summarize: the current state of fuzzing is far from
perfect—the domain is large, the subjects under test are a moving target (there are always new
concepts that need a new way of testing), and the code depth the fuzzer reaches as well as
the oracles it can automatically quantify are still weak. We contributed to the area of fuzzing
systems with complex input formats, and now we look forward to a future in which fuzzing in
general as well as in this speci�c domain will be improved.

And who knows, at some point we might be able to write code, give it to a machine and in
minutes, seconds, or even immediately we get feedback about bugs in the code. This machinery
might be fuzzing, but it might also be anything else, we will see what the current and future
generations of researchers produce. But this day is not today. While the path towards more
reliable and secure software is still foggy, we follow it step-by-step, building better and more
e�cient techniques that improve the world of software testing.

ONE THING IS CERTAIN:

AS LONG AS SOFTWARE HAS BUGS, TESTING RESEARCH WILL NOT
STOP.
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AFL—American Fuzzy Lop
“American fuzzy lop is a security-oriented fuzzer that employs a novel type of compile-time
instrumentation and genetic algorithms to automatically discover clean, interesting test cases
that trigger new internal states in the targeted binary.” [160]

ASCII
“This coded character set is to be used for the general interchange of information among
information processing systems, communication systems, and associated equipment.” [25]

BNF—Backus-Naur-Form
A notation used to specify the syntax of a context-free language. [3]

CI/CD—Continous Integration/Continous Delivery
Modern software is often build, tested, and delivered mostly automatically, which is described
by this term.

Fuzzer
In the broadest sense a test generator mostly driven by random decisions.

GUI—Graphical User Interface
The visual interface between the user and the machine.

I/O—Input/Output
A typical abbreviation for the input and output of a system.

LLVM
“The LLVM Project is a collection of modular and reusable compiler and tool chain technologies.”
[95]

LLVM Bitcode
“What is commonly known as the LLVM bitcode �le format (also, sometimes anachronistically
known as bytecode) is actually two things: a bitstream container format and an encoding of
LLVM IR into the container format.” [94]
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LLVM IR
“LLVM IR is encoded into a bitstream by de�ning blocks and records. It uses blocks for things
like constant pools, functions, symbol tables, etc. It uses records for things like instructions,
global variable descriptors, type descriptions, etc.” [94]

LLVM Optimization Pass
“The opt command is the modular LLVM optimizer and analyzer. It takes LLVM source �les as
input, runs the speci�ed optimizations or analyses on it, and then outputs the optimized �le or
the analysis results.” [91]

Oracle
“A test oracle is a (set of) assertion(s) that should pass when the behavior of the module under
test is correct, and fail otherwise.” [83]



Bibliography

[1] Abhishek Arya (@infernosec). Tweet: “100k+ CPU cores, mostly n1-standard-
1 vms”. https : / / twitter . com / infernosec / status /
1429091401069862915, 4:41 PM, 2021-08-21. Accessed: 2021-09-06. Aug. 2021.

[2] a�++ Contributors. The fuzzer a�++ is a� with community patches, qemu 5.1 up-
grade, collision-free coverage, enhanced laf-intel & redqueen, AFLfast++ power sched-
ules, MOpt mutators, unicorn_mode, and a lot more! https://github.com/
AFLplusplus/AFLplusplus. Accessed: 2022-03-26. 2022.

[3] Alfred V. Aho et al. Compilers: Principles, Techniques, and Tools (2nd Edition). USA:
Addison-Wesley Longman Publishing Co., Inc., 2006. isbn: 0321486811.

[4] Aki Helin and the Radamsa Developers. Radamsa. https://gitlab.com/
akihe/radamsa. Accessed: 2021-09-09. 2021.

[5] AlDaniel. cloc counts blank lines, comment lines, and physical lines of source code in
many programming languages. https://github.com/AlDanial/cloc/.
Accessed: 2023-11-05; loaded through homebrew: https://formulae.brew.
sh/formula/cloc. 2023.

[6] Alvaro Cabrera and Contributors. JSON Schema Faker. https://github.com/
json-schema-faker/json-schema-faker. Accessed: 2021-09-14. 2021.

[7] Andreas Zeller and Sascha Just; with Kai Greshake. When Results Are All That Matters:
The Case of the Angora Fuzzer. https://andreas-zeller.info/2019/10/
10/when-results-are-all-that-matters-case.html. Accessed:
2024-02-11. 2019.

[8] Dana Angluin. “Learning regular sets from queries and counterexamples”. In: Infor-
mation and Computation 75.2 (1987), pp. 87–106. issn: 0890-5401. doi: https://
doi.org/10.1016/0890-5401(87)90052-6. url: https://www.
sciencedirect.com/science/article/pii/0890540187900526.

[9] Cornelius Aschermann et al. “REDQUEEN: Fuzzing with Input-to-State Correspondence”.
In: 26th Annual Network and Distributed System Security Symposium, NDSS 2019, San
Diego, California, USA, February 24-27, 2019. 2019. url: https://www.ndss-
symposium.org/ndss-paper/redqueen-fuzzing-with-input-
to-state-correspondence/.

[10] Cornelius Aschermann et al. “Ijon: Exploring Deep State Spaces via Fuzzing”. In: 2020
IEEE Symposium on Security and Privacy (SP). 2020, pp. 1597–1612. doi: 10.1109/
SP40000.2020.00117.

167

https://twitter.com/infernosec/status/1429091401069862915
https://twitter.com/infernosec/status/1429091401069862915
https://github.com/AFLplusplus/AFLplusplus
https://github.com/AFLplusplus/AFLplusplus
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://github.com/AlDanial/cloc/
https://formulae.brew.sh/formula/cloc
https://formulae.brew.sh/formula/cloc
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://andreas-zeller.info/2019/10/10/when-results-are-all-that-matters-case.html
https://andreas-zeller.info/2019/10/10/when-results-are-all-that-matters-case.html
https://doi.org/https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/https://doi.org/10.1016/0890-5401(87)90052-6
https://www.sciencedirect.com/science/article/pii/0890540187900526
https://www.sciencedirect.com/science/article/pii/0890540187900526
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://doi.org/10.1109/SP40000.2020.00117
https://doi.org/10.1109/SP40000.2020.00117


168 Bibliography

[11] Barton P. Miller.Computer Sciences Departement University ofWisconsin-Madison - Project
List. http://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-
f1988.pdf. Accessed: 2021-09-07. 1988.

[12] Barton P. Miller, Louis Fredriksen, and Bryan So. An Empirical Study of the Reliability of
UNIX Utilities – ACM Website. https://dl.acm.org/doi/abs/10.1145/
96267.96279. Accessed: 2024-01-12. 2024.

[13] Osbert Bastani et al. “Synthesizing Program Input Grammars”. In: Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Implementation.
PLDI 2017. Barcelona, Spain: Association for Computing Machinery, 2017, pp. 95–
110. isbn: 9781450349888. doi: 10.1145/3062341.3062349. url: https:
//doi.org/10.1145/3062341.3062349.

[14] Ben Hoyt and Contributors. inih - Simple .INI �le parser in C, good for embedded systems.
https://github.com/benhoyt/inih. Accessed: 2018-10-25. 2018.

[15] Bachir Bendrissou, Rahul Gopinath, and Andreas Zeller. ““Synthesizing Input Gram-
mars”: A Replication Study”. In: Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. PLDI 2022. San Diego,
CA, USA: Association for Computing Machinery, 2022, pp. 260–268. isbn: 9781450392655.
doi: 10.1145/3519939.3523716. url: https://doi.org/10.1145/
3519939.3523716.

[16] Trail of Bits et al. PolyTracker – An LLVM-based instrumentation tool for univer-
sal taint tracking, data�ow analysis, and tracing. https : / / github . com /
trailofbits/polytracker. Accessed: 2024-02-10. 2019.

[17] Tim Blazytko et al. “GRIMOIRE: Synthesizing Structure while Fuzzing”. In: 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX Association, Aug.
2019, pp. 1985–2002. isbn: 978-1-939133-06-9. url: https://www.usenix.org/
conference/usenixsecurity19/presentation/blazytko.

[18] Marcel Boehme, Cristian Cadar, and Abhik ROYCHOUDHURY. “Fuzzing: Challenges
and Re�ections”. In: IEEE Software 38.3 (2021), pp. 79–86. doi: 10.1109/MS.2020.
3016773.

[19] Marcel Böhme and Soumya Paul. “On the e�ciency of automated testing”. In: Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. FSE 2014. Hong Kong, China: Association for Computing Machinery,
2014, pp. 632–642. isbn: 9781450330565. doi: 10.1145/2635868.2635923. url:
https://doi.org/10.1145/2635868.2635923.

[20] Marcel Böhme, László Szekeres, and Jonathan Metzman. “On the reliability of coverage-
based fuzzer benchmarking”. In: Proceedings of the 44th International Conference on
Software Engineering. ICSE ’22. Pittsburgh, Pennsylvania: Association for Computing
Machinery, 2022, pp. 1621–1633. isbn: 9781450392211. doi: 10.1145/3510003.
3510230. url: https://doi.org/10.1145/3510003.3510230.

http://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-f1988.pdf
http://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-f1988.pdf
https://dl.acm.org/doi/abs/10.1145/96267.96279
https://dl.acm.org/doi/abs/10.1145/96267.96279
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/3062341.3062349
https://github.com/benhoyt/inih
https://doi.org/10.1145/3519939.3523716
https://doi.org/10.1145/3519939.3523716
https://doi.org/10.1145/3519939.3523716
https://github.com/trailofbits/polytracker
https://github.com/trailofbits/polytracker
https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1145/2635868.2635923
https://doi.org/10.1145/2635868.2635923
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1145/3510003.3510230


Bibliography 169

[21] Nataniel P. Borges Jr., Jenny Hotzkow, and Andreas Zeller. “DroidMate-2: a platform for
Android test generation”. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ASE ’18. Montpellier, France: Association for Com-
puting Machinery, 2018, pp. 916–919. isbn: 9781450359375. doi: 10.1145/3238147.
3240479. url: https://doi.org/10.1145/3238147.3240479.

[22] W. H. Burkhardt. “Generating test programs from syntax”. In: Computing 2 (Mar. 1967),
pp. 53–73. doi: 10.1007/BF02235512. url: https://doi.org/10.1007/
BF02235512.

[23] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. “KLEE: Unassisted and Auto-
matic Generation of High-Coverage Tests for Complex Systems Programs.” In: USENIX
conference on Operating systems design and implementation. Vol. 8. 2008, pp. 209–224.

[24] Cristian Cadar and Koushik Sen. “Symbolic Execution for Software Testing: Three
Decades Later”. In: Commun. ACM 56.2 (Feb. 2013), pp. 82–90. issn: 0001-0782. doi:
10.1145/2408776.2408795. url: https://doi.org/10.1145/
2408776.2408795.

[25] V.G. Cerf. ASCII format for network interchange. RFC 20. Oct. 1969. doi: 10.17487/
RFC0020. url: https://www.rfc-editor.org/rfc/rfc20.txt.

[26] Cesanta Software. Embedded JavaScript engine for C/C++ https://mongoose-
os.com. https://github.com/cesanta/mjs. Accessed: 2018-06-21. 2018.

[27] Peng Chen and Hao Chen. “Angora: E�cient Fuzzing by Principled Search”. In: 2018
IEEE Symposium on Security and Privacy (SP). 2018, pp. 711–725. doi: 10.1109/SP.
2018.00046.

[28] Yuanliang Chen et al. “EnFuzz: Ensemble Fuzzing with Seed Synchronization among
Diverse Fuzzers”. In: 28th USENIX Security Symposium (USENIX Security 19). Santa
Clara, CA: USENIX Association, Aug. 2019, pp. 1967–1983. isbn: 978-1-939133-06-9.
url: https://www.usenix.org/conference/usenixsecurity19/
presentation/chen-yuanliang.

[29] Noam Chomsky. “Three models for the description of language”. In: IRE Transactions on
Information Theory 2.3 (Sept. 1956), pp. 113–124. issn: 2168-2712. doi: 10.1109/TIT.
1956.1056813. url: https://www.its.caltech.edu/~matilde/
Chomsky3Models.pdf.

[30] Alexander Clark. “Learning deterministic context free grammars: The Omphalos com-
petition”. In: Machine Learning vol. 66. Springer, 2007, pp. 93–110. doi: 10.1007/
s10994-006-9592-9.

[31] James Clause, Wanchun Li, and Alessandro Orso. “Dytan: a generic dynamic taint
analysis framework”. In: Proceedings of the 2007 International Symposium on Software
Testing and Analysis. ISSTA ’07. London, United Kingdom: Association for Computing
Machinery, 2007, pp. 196–206. isbn: 9781595937346. doi: 10.1145/1273463.
1273490. url: https://doi.org/10.1145/1273463.1273490.

https://doi.org/10.1145/3238147.3240479
https://doi.org/10.1145/3238147.3240479
https://doi.org/10.1145/3238147.3240479
https://doi.org/10.1007/BF02235512
https://doi.org/10.1007/BF02235512
https://doi.org/10.1007/BF02235512
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.17487/RFC0020
https://doi.org/10.17487/RFC0020
https://www.rfc-editor.org/rfc/rfc20.txt
https://mongoose-os.com
https://mongoose-os.com
https://github.com/cesanta/mjs
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://www.its.caltech.edu/~matilde/Chomsky3Models.pdf
https://www.its.caltech.edu/~matilde/Chomsky3Models.pdf
https://doi.org/10.1007/s10994-006-9592-9
https://doi.org/10.1007/s10994-006-9592-9
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1273463.1273490


170 Bibliography

[32] Jake Corina et al. “DIFUZE: Interface Aware Fuzzing for Kernel Drivers”. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security. CCS
’17. Dallas, Texas, USA: Association for Computing Machinery, 2017, pp. 2123–2138.
isbn: 9781450349468. doi: 10.1145/3133956.3134069. url: https://doi.
org/10.1145/3133956.3134069.

[33] Csmith Contributors. Csmith, a random generator of C programs. https://github.
com/csmith-project/csmith. Accessed: 2022-04-16, Branch: Master, Commit:
deddca60d146c692e0ec5e4e345c466bbb3594b1. 2022.

[34] Dave Gamble and Contributors. cJSON - Ultralightweight JSON parser in ANSI C.https:
//github.com/DaveGamble/cJSON. Accessed: 2018-10-25. 2018.

[35] Brendan Dolan-Gavitt et al. “LAVA: Large-Scale Automated Vulnerability Addition”. In:
2016 IEEE Symposium on Security and Privacy (SP). 2016, pp. 110–121. doi: 10.1109/
SP.2016.15.

[36] Jay Earley. “An E�cient Context-Free Parsing Algorithm”. In: Commun. ACM 13.2
(Feb. 1970), pp. 94–102. issn: 0001-0782. doi: 10.1145/362007.362035. url:
https://doi.org/10.1145/362007.362035.

[37] Eaton, Phil. Parser generators vs. handwritten parsers: surveying major language implemen-
tations in 2021.https://notes.eatonphil.com/parser-generators-
vs-handwritten-parsers-survey-2021.html. Accessed: 2021-09-22.
2021.

[38] Arash Ale Ebrahim et al. “FuzzingDriver: the Missing Dictionary to Increase Code Cover-
age in Fuzzers”. In: 2022 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). 2022, pp. 268–272. doi: 10.1109/SANER53432.2022.
00042.

[39] ECMAScript Community. ECMA-262, 12th edition, June 2021 ECMAScript® 2021 Language
Speci�cation.https://262.ecma-international.org/12.0/. Accessed:
2022-03-26. 2022.

[40] George Fink et al. “Towards a property-based testing environment with applications to
security-critical software”. In: Proceedings of the 4th Irvine Software Symposium. Vol. 39.
1994, p. 48.

[41] Andrea Fioraldi, Daniele Cono D’Elia, and Emilio Coppa. “WEIZZ: automatic grey-
box fuzzing for structured binary formats”. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA 2020. Virtual Event,
USA: Association for Computing Machinery, 2020, pp. 1–13. isbn: 9781450380089. doi:
10.1145/3395363.3397372. url: https://doi.org/10.1145/
3395363.3397372.

[42] Andrea Fioraldi et al. “Dissecting American Fuzzy Lop: A FuzzBench Evaluation”. In:
ACM Trans. Softw. Eng. Methodol. 32.2 (Mar. 2023). issn: 1049-331X. doi: 10.1145/
3580596. url: https://doi.org/10.1145/3580596.

https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1145/3133956.3134069
https://github.com/csmith-project/csmith
https://github.com/csmith-project/csmith
https://github.com/DaveGamble/cJSON
https://github.com/DaveGamble/cJSON
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://notes.eatonphil.com/parser-generators-vs-handwritten-parsers-survey-2021.html
https://notes.eatonphil.com/parser-generators-vs-handwritten-parsers-survey-2021.html
https://doi.org/10.1109/SANER53432.2022.00042
https://doi.org/10.1109/SANER53432.2022.00042
https://262.ecma-international.org/12.0/
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/3580596
https://doi.org/10.1145/3580596
https://doi.org/10.1145/3580596


Bibliography 171

[43] Bryan Ford. “Parsing Expression Grammars: A Recognition-Based Syntactic Founda-
tion”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’04. Venice, Italy: Association for Computing Machin-
ery, 2004, pp. 111–122. isbn: 158113729X. doi: 10.1145/964001.964011. url:
https://doi.org/10.1145/964001.964011.

[44] Free Software Foundation, Inc. GNU Bison. https : / / www . gnu . org /
software/bison/. Accessed: 2021-09-14. 2021.

[45] Free Software Foundation, Inc. Options That Control Optimization. https://gcc.
gnu.org/onlinedocs/gcc/Optimize-Options.html#index-fno-
inline. Accessed 28-August-2023. 2023.

[46] R. Frost and J. Launchbury. “Constructing Natural Language Interpreters in a Lazy
Functional Language”. In: The Computer Journal 32.2 (Jan. 1989), pp. 108–121. issn:
0010-4620. doi: 10.1093/comjnl/32.2.108. eprint: https://academic.
oup.com/comjnl/article-pdf/32/2/108/1445656/320108.pdf.
url: https://doi.org/10.1093/comjnl/32.2.108.

[47] Vijay Ganesh, Tim Leek, and Martin Rinard. “Taint-based directed whitebox fuzzing”.
In: 2009 IEEE 31st International Conference on Software Engineering. 2009, pp. 474–484.
doi: 10.1109/ICSE.2009.5070546.

[48] GitHub, Inc. CodeQL. https://codeql.github.com. Accessed: 2024-02-15.
2021.

[49] Patrice Godefroid, Hila Peleg, and Rishabh Singh. “Learn&Fuzz: Machine Learning
for Input Fuzzing”. In: Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. ASE 2017. Urbana-Champaign, IL, USA: IEEE Press,
2017, pp. 50–59. isbn: 9781538626849.

[50] Google LLC. Protocol Bu�ers - Tutorials. https://developers.google.com/
protocol-buffers/docs/tutorials. Accessed: 2021-09-14. 2021.

[51] Google LLC. Protocol Bu�ers Documentation. https://protobuf.dev. Accessed
15-July-2023. 2023.

[52] Google LLC and Contributors. libprotobuf-mutator. https://github.com/
google/libprotobuf-mutator. Accessed: 2021-09-14. 2021.

[53] Rahul Gopinath, Björn Mathis, and Andreas Zeller. “If You Can’t Kill a Supermutant, You
Have a Problem”. In: 2018 IEEE International Conference on Software Testing, Veri�cation
and Validation Workshops (ICSTW). Apr. 2018, pp. 18–24. doi: 10.1109/ICSTW.
2018.00023.

[54] Rahul Gopinath, Björn Mathis, and Andreas Zeller. “Mining Input Grammars from
Dynamic Control Flow”. In: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering. ESEC/FSE 2020. Virtual Event, USA: Association for Computing Machinery,
2020, pp. 172–183. isbn: 9781450370431. doi: 10.1145/3368089.3409679. url:
https://doi.org/10.1145/3368089.3409679.

https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/964001.964011
https://www.gnu.org/software/bison/
https://www.gnu.org/software/bison/
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-fno-inline
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-fno-inline
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-fno-inline
https://doi.org/10.1093/comjnl/32.2.108
https://academic.oup.com/comjnl/article-pdf/32/2/108/1445656/320108.pdf
https://academic.oup.com/comjnl/article-pdf/32/2/108/1445656/320108.pdf
https://doi.org/10.1093/comjnl/32.2.108
https://doi.org/10.1109/ICSE.2009.5070546
https://codeql.github.com
https://developers.google.com/protocol-buffers/docs/tutorials
https://developers.google.com/protocol-buffers/docs/tutorials
https://protobuf.dev
https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator
https://doi.org/10.1109/ICSTW.2018.00023
https://doi.org/10.1109/ICSTW.2018.00023
https://doi.org/10.1145/3368089.3409679
https://doi.org/10.1145/3368089.3409679


172 Bibliography

[55] Rahul Gopinath, Björn Mathis, and Andreas Zeller. “Mining Input Grammars”. In: Soft-
ware Engineering 2021 (2021).

[56] Rahul Gopinath et al. “Sample-Free Learning of Input Grammars for Comprehensive
Software Fuzzing”. In: CoRR abs/1810.08289 (2018). arXiv: 1810.08289. url: http:
//arxiv.org/abs/1810.08289.

[57] Rahul Gopinath et al. Fuzzing with Fast Failure Feedback. 2020. doi: 10.48550/
ARXIV.2012.13516. url: https://arxiv.org/abs/2012.13516v1.

[58] Philipp Görz et al. “Systematic Assessment of Fuzzers using Mutation Analysis”. In: 32nd
USENIX Security Symposium (USENIX Security 23). Anaheim, CA: USENIX Association,
Aug. 2023, pp. 4535–4552. isbn: 978-1-939133-37-3. url: https://www.usenix.
org/conference/usenixsecurity23/presentation/gorz.

[59] Guido van Rossum, Pablo Galindo, and Lysandros Nikolaou. PEP 617 – New PEG parser for
CPython. https://www.python.org/dev/peps/pep-0617/. Accessed:
2024-01-24. 2020.

[60] Nikolas Havrikov and Andreas Zeller. “Systematically Covering Input Structure”. In: ASE
2019. Nov. 2019. url: https://publications.cispa.saarland/2971/.

[61] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. “Magma: A Ground-Truth Fuzzing
Benchmark”. In: Proc. ACM Meas. Anal. Comput. Syst. 4.3 (Nov. 2020). doi: 10.1145/
3428334. url: https://doi.org/10.1145/3428334.

[62] Adrian Herrera et al. “Seed Selection for Successful Fuzzing”. In: Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and Analysis. ISSTA
2021. Virtual, Denmark: Association for Computing Machinery, 2021, pp. 230–243. isbn:
9781450384599. doi: 10.1145/3460319.3464795. url: https://doi.
org/10.1145/3460319.3464795.

[63] Christian Holler, Kim Herzig, and Andreas Zeller. “Fuzzing with Code Fragments”. In:
21st USENIX Security Symposium (USENIX Security 12). Bellevue, WA: USENIX Associa-
tion, Aug. 2012, pp. 445–458. isbn: 978-931971-95-9. url: https://www.usenix.
org / conference / usenixsecurity12 / technical - sessions /
presentation/holler.

[64] John E. Hopcroft and Je�rey D. Ullman. Formal Languages and Their Relation to Automata.
USA: Addison-Wesley Longman Publishing Co., Inc., 1969.

[65] Matthias Höschele and Andreas Zeller. “Mining Input Grammars from Dynamic Taints”.
In: IEEE/ACM Automated Software Engineering. ASE 2016. Singapore, Singapore: ACM,
2016, pp. 720–725. isbn: 978-1-4503-3845-5. doi: 10.1145/2970276.2970321.
url: http://doi.acm.org/10.1145/2970276.2970321.

[66] Chaojian Hu et al. “File Parsing Vulnerability Detection with Symbolic Execution”. In:
2012 Sixth International Symposium on Theoretical Aspects of Software Engineering. 2012,
pp. 135–142. doi: 10.1109/TASE.2012.13.

https://arxiv.org/abs/1810.08289
http://arxiv.org/abs/1810.08289
http://arxiv.org/abs/1810.08289
https://doi.org/10.48550/ARXIV.2012.13516
https://doi.org/10.48550/ARXIV.2012.13516
https://arxiv.org/abs/2012.13516v1
https://www.usenix.org/conference/usenixsecurity23/presentation/gorz
https://www.usenix.org/conference/usenixsecurity23/presentation/gorz
https://www.python.org/dev/peps/pep-0617/
https://publications.cispa.saarland/2971/
https://doi.org/10.1145/3428334
https://doi.org/10.1145/3428334
https://doi.org/10.1145/3428334
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1145/3460319.3464795
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://doi.org/10.1145/2970276.2970321
http://doi.acm.org/10.1145/2970276.2970321
https://doi.org/10.1109/TASE.2012.13


Bibliography 173

[67] Hui Huang et al. “Protocol Knowledge Combined Directed Symbolic Execution for Binary
Programs”. In: 2013 Third International Conference on Instrumentation, Measurement,
Computer, Communication and Control. 2013, pp. 120–124. doi: 10.1109/IMCCC.
2013.32.

[68] Graham Hutton. “Higher-order functions for parsing”. In: Journal of Functional Program-
ming 2.3 (1992), pp. 323–343. doi: 10.1017/S0956796800000411.

[69] IBM. Get started with COBOL. https://developer.ibm.com/languages/
cobol/. Accessed: 2021-09-18. 2021.

[70] IETF Trust and the persons identi�ed as the document authors. URI Fragment Identi�ers
for the text/csv Media Type. https://datatracker.ietf.org/doc/html/
rfc7111. Accessed: 2022-03-26. 2014.

[71] IETF Trust and the persons identi�ed as the document authors. The JavaScript Object
Notation (JSON) Data Interchange Format. https://www.rfc-editor.org/
rfc/rfc8259.html. Accessed: 2022-03-26. 2017.

[72] ISO/IEC. Programming languages — C; ISO/IEC9899:2017 [Working Document]. https:
//web.archive.org/web/20181230041359if_/http://www.
open - std . org / jtc1 / sc22 / wg14 / www / abq / c17 _ updated _
proposed_fdis.pdf. Accessed: 2021-09-07, 6.5.3.2 Address and indirection oper-
ators, Page 64. 2021.

[73] ISO/IEC. Programming languages — C; ISO/IEC9899:2017 [Working Document]. https:
//web.archive.org/web/20181230041359if_/http://www.
open - std . org / jtc1 / sc22 / wg14 / www / abq / c17 _ updated _
proposed_fdis.pdf. Accessed: 2021-09-07. 2021.

[74] James Ramm and Contributors. csv_parser - C library for parsing CSV �les. https:
/ / github . com / JamesRamm / csv _ parser. Accessed: 2018-10-25, the
original repository does not exist anymore as of 2022-03-26, but the used ver-
sion can still be accessed in the lFuzzer artifact publication at https://dl.
acm . org / do / 10 . 1145 / 3406885 / full/, e.g. in the folder ./lfuzzer-
data/1/chains/samples/csv/csv_parser/. 2018.

[75] Konrad Jamrozik and Andreas Zeller. “DroidMate: a robust and extensible test generator
for Android”. In: Proceedings of the International Conference on Mobile Software Engineer-
ing and Systems. MOBILESoft ’16. Austin, Texas: Association for Computing Machinery,
2016, pp. 293–294. isbn: 9781450341783. doi: 10.1145/2897073.2897716. url:
https://doi.org/10.1145/2897073.2897716.

[76] Justin Meiners. Embeddable lisp interpreter written in C. https://github.com/
justinmeiners/lisp-interpreter. Accessed: 2019-03-19. 2019.

https://doi.org/10.1109/IMCCC.2013.32
https://doi.org/10.1109/IMCCC.2013.32
https://doi.org/10.1017/S0956796800000411
https://developer.ibm.com/languages/cobol/
https://developer.ibm.com/languages/cobol/
https://datatracker.ietf.org/doc/html/rfc7111
https://datatracker.ietf.org/doc/html/rfc7111
https://www.rfc-editor.org/rfc/rfc8259.html
https://www.rfc-editor.org/rfc/rfc8259.html
https://web.archive.org/web/20181230041359if_/http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
https://web.archive.org/web/20181230041359if_/http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
https://web.archive.org/web/20181230041359if_/http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
https://web.archive.org/web/20181230041359if_/http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
https://web.archive.org/web/20181230041359if_/http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
https://web.archive.org/web/20181230041359if_/http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
https://web.archive.org/web/20181230041359if_/http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
https://web.archive.org/web/20181230041359if_/http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
https://github.com/JamesRamm/csv_parser
https://github.com/JamesRamm/csv_parser
https://dl.acm.org/do/10.1145/3406885/full/
https://dl.acm.org/do/10.1145/3406885/full/
https://doi.org/10.1145/2897073.2897716
https://doi.org/10.1145/2897073.2897716
https://github.com/justinmeiners/lisp-interpreter
https://github.com/justinmeiners/lisp-interpreter


174 Bibliography

[77] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity of
Computer Computations: Proceedings of a symposium on the Complexity of Computer
Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, and sponsored by the O�ce of Naval Research, Mathematics
Program, IBM World Trade Corporation, and the IBM Research Mathematical Sciences
Department. Ed. by Raymond E. Miller, James W. Thatcher, and Jean D. Bohlinger. New
York, NY: Plenum Press, New York, 1972, pp. 85–103. isbn: 0-306-30707-3.

[78] Kartik Talwar. Tiny-C Compiler. https : / / gist . github . com /
KartikTalwar/3095780. Accessed: 2018-10-25. 2018.

[79] George Klees et al. “Evaluating Fuzz Testing”. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’18. Toronto, Canada: As-
sociation for Computing Machinery, 2018, pp. 2123–2138. isbn: 9781450356930. doi:
10.1145/3243734.3243804. url: https://doi.org/10.1145/
3243734.3243804.

[80] Donald E Knuth. “Semantics of context-free languages”. In: Mathematical systems theory
2.2 (1968), pp. 127–145. doi: 10.1007/BF01692511. url: https://doi.org/
10.1007/BF01692511.

[81] Neil Kulkarni, Caroline Lemieux, and Koushik Sen. “Learning Highly Recursive Input
Grammars”. In: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). Nov. 2021, pp. 456–467. doi: 10.1109/ASE51524.2021.
9678879.

[82] laf-intel and the LAF LLVM Passes Developers. LAF LLVM Passes. Code: https:
/ / gitlab . com / laf - intel / laf - llvm - pass / tree / master,
Referenced Blogpost: https : / / lafintel . wordpress . com / 2016 /
08/15/circumventing-fuzzing-roadblocks-with-compiler-
transformations/. Accessed: 2022-04-16. 2021.

[83] Caroline Lemieux et al. “CodaMosa: Escaping Coverage Plateaus in Test Generation with
Pre-Trained Large Language Models”. In: Proceedings of the 45th International Conference
on Software Engineering. ICSE ’23. Melbourne, Victoria, Australia: IEEE Press, 2023,
pp. 919–931. isbn: 9781665457019. doi: 10.1109/ICSE48619.2023.00085.
url: https://doi.org/10.1109/ICSE48619.2023.00085.

[84] Guangcheng Liang et al. “E�ective Fuzzing Based on Dynamic Taint Analysis”. In: 2013
Ninth International Conference on Computational Intelligence and Security. 2013, pp. 615–
619. doi: 10.1109/CIS.2013.135.

[85] Linux Manual Page Contributors. feature_test_macros(7) — Linux manual page. https:
//man7.org/linux/man-pages/man7/feature_test_macros.7.
html. Accessed 28-August-2023. 2023.

[86] LLVM Contributors and Chad Rosier. [frontend] Fix how the frontend handles -
fno-inline. https : / / github . com / llvm / llvm - project /
commit / 9c76d24f9c562045aea28198ab0dcd0e81f37380. Accessed
04-September-2023. 2012.

https://gist.github.com/KartikTalwar/3095780
https://gist.github.com/KartikTalwar/3095780
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1007/BF01692511
https://doi.org/10.1007/BF01692511
https://doi.org/10.1007/BF01692511
https://doi.org/10.1109/ASE51524.2021.9678879
https://doi.org/10.1109/ASE51524.2021.9678879
https://gitlab.com/laf-intel/laf-llvm-pass/tree/master
https://gitlab.com/laf-intel/laf-llvm-pass/tree/master
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/CIS.2013.135
https://man7.org/linux/man-pages/man7/feature_test_macros.7.html
https://man7.org/linux/man-pages/man7/feature_test_macros.7.html
https://man7.org/linux/man-pages/man7/feature_test_macros.7.html
https://github.com/llvm/llvm-project/commit/9c76d24f9c562045aea28198ab0dcd0e81f37380
https://github.com/llvm/llvm-project/commit/9c76d24f9c562045aea28198ab0dcd0e81f37380


Bibliography 175

[87] LLVM Project. Clang 4 documentation - clang - the Clang C, C++, and Objective-C
compiler. https://releases.llvm.org/4.0.1/tools/clang/
CommandGuide/clang.html. Accessed: 2023-08-30. 2017.

[88] LLVM Project. LLVM Language Reference Manual. https://releases.llvm.
org/4.0.1/docs/LangRef.html. Accessed: 2024-01-29. 2017.

[89] LLVM Project. LLVM’s Analysis and Transform Passes – -reg2mem: Demote all values to
stack slots. https://releases.llvm.org/4.0.1/docs/Passes.html.
Accessed: 2022-05-01. 2017.

[90] LLVM Project. Low Level Virtual Machine (LLVM) - llvm/tools/opt/opt.cpp.
https : / / github . com / llvm / llvm - project / blob /
449c3ef93afc7a668eb35e67a83717453e28b25a / llvm / tools /
opt / opt . cpp # L106C4 - L106C4. Accessed: 2023-07-08; because this cli
argument is hidden, we reference the cli parser here. 2017.

[91] LLVM Project. opt - LLVM optimizer. https://releases.llvm.org/4.0.1/
docs/CommandGuide/opt.html. Accessed: 2024-02-17. 2017.

[92] LLVM Project. The ModulePass class. https://releases.llvm.org/4.0.1/
docs/WritingAnLLVMPass.html#the-modulepass-class. Accessed:
2022-03-05. 2017.

[93] LLVM Project. libFuzzer – a library for coverage-guided fuzz testing. https://llvm.
org/docs/LibFuzzer.html. Accessed: 2021-07-16. 2021.

[94] LLVM Project. LLVM Bitcode File Format. https : / / llvm . org / docs /
BitCodeFormat.html. Accessed: 2024-02-17. 2024.

[95] llvm-admin team. The LLVM Compiler Infrastructure. https://llvm.org. Ac-
cessed: 2024-02-17. 2024.

[96] Andreas Löscher and Konstantinos Sagonas. “Targeted Property-Based Testing”. In:
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ISSTA 2017. Santa Barbara, CA, USA: Association for Computing Machinery,
2017, pp. 46–56. isbn: 9781450350761. doi: 10.1145/3092703.3092711. url:
https://doi.org/10.1145/3092703.3092711.

[97] Andreas Löscher and Konstantinos Sagonas. “Automating Targeted Property-Based
Testing”. In: 2018 IEEE 11th International Conference on Software Testing, Veri�cation and
Validation (ICST). 2018, pp. 70–80. doi: 10.1109/ICST.2018.00017.

[98] Jinxin Ma, Tao Zhang, and Puhan Zhang. “Enhancing fuzzing with a minimum set
solver”. In: 2015 Seventh International Conference on Advanced Computational Intelligence
(ICACI). 2015, pp. 23–26. doi: 10.1109/ICACI.2015.7184730.

[99] Valentin Jean Marie Manès et al. “The Art, Science, and Engineering of Fuzzing: A
Survey”. In: IEEE Transactions on Software Engineering (2019), pp. 1–1. doi: 10.1109/
TSE.2019.2946563.

https://releases.llvm.org/4.0.1/tools/clang/CommandGuide/clang.html
https://releases.llvm.org/4.0.1/tools/clang/CommandGuide/clang.html
https://releases.llvm.org/4.0.1/docs/LangRef.html
https://releases.llvm.org/4.0.1/docs/LangRef.html
https://releases.llvm.org/4.0.1/docs/Passes.html
https://github.com/llvm/llvm-project/blob/449c3ef93afc7a668eb35e67a83717453e28b25a/llvm/tools/opt/opt.cpp#L106C4-L106C4
https://github.com/llvm/llvm-project/blob/449c3ef93afc7a668eb35e67a83717453e28b25a/llvm/tools/opt/opt.cpp#L106C4-L106C4
https://github.com/llvm/llvm-project/blob/449c3ef93afc7a668eb35e67a83717453e28b25a/llvm/tools/opt/opt.cpp#L106C4-L106C4
https://releases.llvm.org/4.0.1/docs/CommandGuide/opt.html
https://releases.llvm.org/4.0.1/docs/CommandGuide/opt.html
https://releases.llvm.org/4.0.1/docs/WritingAnLLVMPass.html#the-modulepass-class
https://releases.llvm.org/4.0.1/docs/WritingAnLLVMPass.html#the-modulepass-class
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/BitCodeFormat.html
https://llvm.org/docs/BitCodeFormat.html
https://llvm.org
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1109/ICST.2018.00017
https://doi.org/10.1109/ICACI.2015.7184730
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563


176 Bibliography

[100] Björn Mathis. “Dynamic Tainting for Automatic Test Case Generation”. In: Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. ISSTA
2017. Santa Barbara, CA, USA: Association for Computing Machinery, 2017, pp. 436–
439. isbn: 9781450350761. doi: 10.1145/3092703.3098233. url: https:
//doi.org/10.1145/3092703.3098233.

[101] Björn Mathis. Dynamic tainting on LLVM bitcode. eng. Saarbrücken, 2017. url: http:
//primo-fe.mpi-klsb.mpg.de:1701/permalink/f/1nnuu09/
cim01_aleph000124311.

[102] Björn Mathis, Rahul Gopinath, and Andreas Zeller. “Learning Input Tokens for E�ective
Fuzzing”. In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ISSTA 2020. Virtual Event, USA: Association for Computing Ma-
chinery, 2020, pp. 27–37. isbn: 9781450380089. doi: 10.1145/3395363.3397348.
url: https://doi.org/10.1145/3395363.3397348.

[103] Björn Mathis, Rahul Gopinath, and Andreas Zeller. Replication Package for LFuzzer -
Learning Input Tokens for E�ective Fuzzing. url: https://doi.org/10.1145/
3406885.

[104] Björn Mathis et al. “Detecting information �ow by mutating input data”. In: 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE). 2017,
pp. 263–273. doi: 10.1109/ASE.2017.8115639.

[105] Björn Mathis et al. “Parser-directed Fuzzing”. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI 2019. Phoenix,
AZ, USA: ACM, June 2019, pp. 548–560. isbn: 978-1-4503-6712-7. doi: 10.1145/
3314221.3314651. url: http://doi.acm.org/10.1145/3314221.
3314651.

[106] Phil McMinn. “Search-based software test data generation: a survey”. In: Software Testing,
Veri�cation and Reliability 14.2 (2004), pp. 105–156. doi: https://doi.org/10.
1002/stvr.294. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/stvr.294. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/stvr.294.

[107] Jonathan Metzman et al. “FuzzBench: An Open Fuzzer Benchmarking Platform and
Service”. In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2021.
Athens, Greece: Association for Computing Machinery, 2021, pp. 1393–1403. isbn:
9781450385626. doi: 10.1145/3468264.3473932. url: https://doi.
org/10.1145/3468264.3473932.

[108] Michael Sperber and R. Kent Dybvig and Matthew Flatt and Anton van Straaten (Ed-
itors); Richard Kelsey, William Clinger, Jonathan Rees (Editors, Revised5 Report on
the Algorithmic Language Scheme); Robert Bruce Findler, Jacob Matthews (Authors,
formal semantics). Revised6 Report on the Algorithmic Language Scheme. http://
www.r6rs.org/final/r6rs.pdf. Accessed: 2022-03-26. 2022.

https://doi.org/10.1145/3092703.3098233
https://doi.org/10.1145/3092703.3098233
https://doi.org/10.1145/3092703.3098233
http://primo-fe.mpi-klsb.mpg.de:1701/permalink/f/1nnuu09/cim01_aleph000124311
http://primo-fe.mpi-klsb.mpg.de:1701/permalink/f/1nnuu09/cim01_aleph000124311
http://primo-fe.mpi-klsb.mpg.de:1701/permalink/f/1nnuu09/cim01_aleph000124311
https://doi.org/10.1145/3395363.3397348
https://doi.org/10.1145/3395363.3397348
https://doi.org/10.1145/3406885
https://doi.org/10.1145/3406885
https://doi.org/10.1109/ASE.2017.8115639
https://doi.org/10.1145/3314221.3314651
https://doi.org/10.1145/3314221.3314651
http://doi.acm.org/10.1145/3314221.3314651
http://doi.acm.org/10.1145/3314221.3314651
https://doi.org/https://doi.org/10.1002/stvr.294
https://doi.org/https://doi.org/10.1002/stvr.294
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.294
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.294
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.294
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.294
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/3468264.3473932
http://www.r6rs.org/final/r6rs.pdf
http://www.r6rs.org/final/r6rs.pdf


Bibliography 177

[109] Barton P. Miller, Lars Fredriksen, and Bryan So. “An empirical study of the reliability of
UNIX utilities”. In: Commun. ACM 33.12 (Dec. 1990), pp. 32–44. issn: 0001-0782. doi:
10.1145/96267.96279. url: https://doi.org/10.1145/96267.
96279.

[110] Barton P. Miller, Mengxiao Zhang, and Elisa R. Heymann. “The Relevance of Classic
Fuzz Testing: Have We Solved This One?” In: IEEE Transactions on Software Engineering
48.6 (2022), pp. 2028–2039. doi: 10.1109/TSE.2020.3047766.

[111] Mozilla Foundation. JavaScript language resources. https : / / developer .
mozilla . org / en - US / docs / Web / JavaScript / Language _
Resources. Accessed: 2022-03-26. 2022.

[112] OpenJS Foundation and JSON Schema Contributors. JSON Schema. https://json-
schema.org. Accessed 15-July-2023. 2023.

[113] Oracle. Chapter 10. Arrays. https://docs.oracle.com/javase/specs/
jls/se16/html/jls-10.html#jls-10.4. Accessed: 2021-09-07. 2021.

[114] Oracle. Module java.xml. https://docs.oracle.com/en/java/javase/
17/docs/api/java.xml/module-summary.html. Accessed: 2021-09-24.
2021.

[115] Rohan Padhye, Caroline Lemieux, and Koushik Sen. “JQF: Coverage-Guided Property-
Based Testing in Java”. In: Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis. ISSTA 2019. Beijing, China: Association for Computing
Machinery, 2019, pp. 398–401. isbn: 9781450362245. doi: 10.1145/3293882.
3339002. url: https://doi.org/10.1145/3293882.3339002.

[116] Rohan Padhye et al. “Semantic Fuzzing with Zest”. In: Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 329–340. isbn: 9781450362245. url:
https://doi.org/10.1145/3293882.3330576.

[117] panda.re Authors and Contributors. PANDA is an open-source Platform for Architecture-
Neutral Dynamic Analysis. https://panda.re. Accessed: 2022-03-05. 2022.

[118] Van-Thuan Pham et al. “Smart Greybox Fuzzing”. In: IEEE Transactions on Software
Engineering 47.9 (2021), pp. 1980–1997. doi: 10.1109/TSE.2019.2941681.

[119] pyparsing and Contributors. PyParsing – A Python Parsing Module. https : / /
github.com/pyparsing/pyparsing. Accessed: 2022-01-09. 2022.

[120] Python Software Foundation. Built-in Exceptions. https://docs.python.org/
3/library/exceptions.html#IndexError. Accessed: 2022-04-12. 2022.

[121] Python Software Foundation. 10. Full Grammar speci�cation. https://docs.
python . org / 3 / reference / grammar . html # full - grammar -
specification. Accessed: 2024-01-24. 2024.

[122] qemu Authors and Contributors. QEMU - A generic and open source machine emulator
and virtualizer. https://www.qemu.org. Accessed: 2022-03-05. 2022.

https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1109/TSE.2020.3047766
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
https://json-schema.org
https://json-schema.org
https://docs.oracle.com/javase/specs/jls/se16/html/jls-10.html#jls-10.4
https://docs.oracle.com/javase/specs/jls/se16/html/jls-10.html#jls-10.4
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/module-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/module-summary.html
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3330576
https://panda.re
https://doi.org/10.1109/TSE.2019.2941681
https://github.com/pyparsing/pyparsing
https://github.com/pyparsing/pyparsing
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/reference/grammar.html#full-grammar-specification
https://docs.python.org/3/reference/grammar.html#full-grammar-specification
https://docs.python.org/3/reference/grammar.html#full-grammar-specification
https://www.qemu.org


178 Bibliography

[123] Sanjay Rawat et al. “VUzzer: Application-aware Evolutionary Fuzzing.” English. In:
Network and Distributed System Security Symposium (NDSS), 2017. Vol. 17. Internet
Society, Feb. 2017, pp. 1–14. doi: 10.14722/ndss.2017.23404.

[124] Jesse Ruderman. Introducing jsfunfuzz.http://www.squarefree.com/2007/
08/02/introducing-jsfunfuzz. Accessed: 2024-02-12. 2007.

[125] Michael Schröder. “Grammar Inference for Ad Hoc Parsers”. In: Companion Proceedings
of the 2022 ACM SIGPLAN International Conference on Systems, Programming, Languages,
and Applications: Software for Humanity. SPLASH Companion 2022. Auckland, New
Zealand: Association for Computing Machinery, 2022, pp. 38–42. isbn: 9781450399012.
doi: 10.1145/3563768.3565550. url: https://doi.org/10.1145/
3563768.3565550.

[126] Michael Schröder and Jürgen Cito. “Grammars for free: toward grammar inference for Ad
Hoc parsers”. In: Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering: New Ideas and Emerging Results. ICSE-NIER ’22. Pittsburgh, Pennsylvania:
Association for Computing Machinery, 2022, pp. 41–45. isbn: 9781450392242. doi: 10.
1145/3510455.3512787. url:https://doi.org/10.1145/3510455.
3512787.

[127] Koushik Sen and Gul Agha. “CUTE and jCUTE: Concolic Unit Testing and Explicit
Path Model-Checking Tools”. In: Computer Aided Veri�cation. Ed. by Thomas Ball and
Robert B. Jones. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 419–423. isbn:
978-3-540-37411-4.

[128] Koushik Sen and Gul Agha. “A Race-Detection and Flipping Algorithm for Automated
Testing of Multi-threaded Programs”. In: Hardware and Software, Veri�cation and Testing.
Ed. by Eyal Bin, Avi Ziv, and Shmuel Ur. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 166–182. isbn: 978-3-540-70889-6.

[129] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Testing Engine
for C”. In: ACM SIGSOFT Software Engineering Notes 30.5 (Sept. 2005), pp. 263–272.
issn: 0163-5948. doi: 10.1145/1095430.1081750. url: http://www1.cs.
columbia.edu/~junfeng/08fa-e6998/sched/readings/cute.
pdf.

[130] Serge Guelton. Toward _FORTIFY_SOURCE parity between Clang and GCC. https://
developers.redhat.com/blog/2020/02/11/toward-_fortify_
source-parity-between-clang-and-gcc. Accessed 28-August-2023.
2020.

[131] Bhargava Shastry et al. “Static Program Analysis as a Fuzzing Aid”. In: Research in
Attacks, Intrusions, and Defenses. Ed. by Marc Dacier et al. Cham: Springer International
Publishing, 2017, pp. 26–47. isbn: 978-3-319-66332-6.

[132] Hannes Sochor, Flavio Ferrarotti, and Daniela Kaufmann. “Fuzzing-Based Grammar
Inference”. In: Model and Data Engineering. Ed. by Philippe Fournier-Viger, Ahmed
Hassan, and Ladjel Bellatreche. Cham: Springer Nature Switzerland, 2023, pp. 72–86.
isbn: 978-3-031-21595-7.

https://doi.org/10.14722/ndss.2017.23404
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz
https://doi.org/10.1145/3563768.3565550
https://doi.org/10.1145/3563768.3565550
https://doi.org/10.1145/3563768.3565550
https://doi.org/10.1145/3510455.3512787
https://doi.org/10.1145/3510455.3512787
https://doi.org/10.1145/3510455.3512787
https://doi.org/10.1145/3510455.3512787
https://doi.org/10.1145/1095430.1081750
http://www1.cs.columbia.edu/~junfeng/08fa-e6998/sched/readings/cute.pdf
http://www1.cs.columbia.edu/~junfeng/08fa-e6998/sched/readings/cute.pdf
http://www1.cs.columbia.edu/~junfeng/08fa-e6998/sched/readings/cute.pdf
https://developers.redhat.com/blog/2020/02/11/toward-_fortify_source-parity-between-clang-and-gcc
https://developers.redhat.com/blog/2020/02/11/toward-_fortify_source-parity-between-clang-and-gcc
https://developers.redhat.com/blog/2020/02/11/toward-_fortify_source-parity-between-clang-and-gcc


Bibliography 179

[133] Hannes Sochor, Flavio Ferrarotti, and Daniela Kaufmann. “Fuzzing-based grammar
learning from a minimal set of seed inputs”. In: Journal of Computer Languages 78
(2024), p. 101252. issn: 2590-1184. doi: https://doi.org/10.1016/j.cola.
2023.101252. url: https://www.sciencedirect.com/science/
article/pii/S259011842300062X.

[134] Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler. http://dinosaur.
compilertools.net/yacc/index.html. Accessed: 2021-09-24. 2021.

[135] Nick Stephens et al. “Driller: Augmenting Fuzzing Through Selective Symbolic Exe-
cution.” In: Network and Distributed System Security Symposium. Vol. 16. 2016, pp. 1–
16.

[136] Terence Parr and The Antlr Contributors. ANTLR. https://www.antlr.org/
index.html. Accessed: 2021-09-14. 2021.

[137] The Clang Contributors. Clang – Parser.cpp. https://github.com/llvm/
llvm - project / blob / llvmorg - 12 . 0 . 1 / clang / lib / Parse /
Parser.cpp. Accessed: 2021-09-22. 2021.

[138] The ClusterFuzz Authors. ClusterFuzz GitHub Repository. https://github.com/
google/clusterfuzz. Accessed: 2021-09-07. 2021.

[139] The Fortran Developers. Fortran – High-performance parallel programming language.
https://fortran-lang.org. Accessed: 2021-09-18. 2021.

[140] The GCC Contributors. GCC – c-parser.c. https : / / github . com / gcc -
mirror/gcc/blob/master/gcc/c/c-parser.c. Accessed: 2021-09-
22. 2021.

[141] The gcovr Authors. gcovr. https://gcovr.com/en/4.1/index.html.
Accessed: 2023-07-12. 2018.

[142] The KLEE Team. Publications and Systems Using KLEE. https://klee.github.
io/publications/. Accessed: 2021-09-12. 2021.

[143] The Lisp Authors. Common Lisp. https://lisp-lang.org. Accessed: 2021-09-
18. 2021.

[144] The Python Authors. string — Common string operations. https://docs.python.
org/3/library/string.html#string.printable. Accessed: 2023-03-
12. 2023.

[145] The Python Contributors. json — JSON encoder and decoder. https : / / docs .
python.org/3/library/json.html. Accessed: 2021-09-24. 2021.

[146] The Python Contributors. xml.etree.ElementTree — The ElementTree XML API. https:
//docs.python.org/3/library/xml.etree.elementtree.html.
Accessed: 2021-09-24. 2021.

[147] Vadim Zaytsev. Grammar Zoo. https://slebok.github.io/zoo/. Accessed:
2024-03-26. 2021.

https://doi.org/https://doi.org/10.1016/j.cola.2023.101252
https://doi.org/https://doi.org/10.1016/j.cola.2023.101252
https://www.sciencedirect.com/science/article/pii/S259011842300062X
https://www.sciencedirect.com/science/article/pii/S259011842300062X
http://dinosaur.compilertools.net/yacc/index.html
http://dinosaur.compilertools.net/yacc/index.html
https://www.antlr.org/index.html
https://www.antlr.org/index.html
https://github.com/llvm/llvm-project/blob/llvmorg-12.0.1/clang/lib/Parse/Parser.cpp
https://github.com/llvm/llvm-project/blob/llvmorg-12.0.1/clang/lib/Parse/Parser.cpp
https://github.com/llvm/llvm-project/blob/llvmorg-12.0.1/clang/lib/Parse/Parser.cpp
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://fortran-lang.org
https://github.com/gcc-mirror/gcc/blob/master/gcc/c/c-parser.c
https://github.com/gcc-mirror/gcc/blob/master/gcc/c/c-parser.c
https://gcovr.com/en/4.1/index.html
https://klee.github.io/publications/
https://klee.github.io/publications/
https://lisp-lang.org
https://docs.python.org/3/library/string.html#string.printable
https://docs.python.org/3/library/string.html#string.printable
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://slebok.github.io/zoo/


180 Bibliography

[148] Leslie G. Valiant. “General context-free recognition in less than cubic time”. In: Jour-
nal of Computer and System Sciences 10.2 (1975), pp. 308–315. issn: 0022-0000. doi:
https : / / doi . org / 10 . 1016 / S0022 - 0000(75 ) 80046 - 8. url:
https : / / www . sciencedirect . com / science / article / pii /
S0022000075800468.

[149] Junjie Wang et al. “Sky�re: Data-Driven Seed Generation for Fuzzing”. In: 2017 IEEE
Symposium on Security and Privacy (SP). May 2017, pp. 579–594. doi: 10.1109/SP.
2017.23.

[150] Junjie Wang et al. “Superion: Grammar-Aware Greybox Fuzzing”. In: 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). May 2019, pp. 724–735. doi:
10.1109/ICSE.2019.00081.

[151] Ryan Whelan, Tim Leek, and David Kaeli. “Architecture-Independent Dynamic Infor-
mation Flow Tracking”. In: Compiler Construction. Ed. by Ranjit Jhala and Koen De
Bosschere. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 144–163. isbn:
978-3-642-37051-9.

[152] Wikipedia Contributors. Fuzzing — Wikipedia, The Free Encyclopedia. https://
en . wikipedia . org / w / index . php ? title = Fuzzing & oldid =
1158518468. Accessed 06-July-2023, 21:28. 2023.

[153] Zhangwei Xie et al. “CSEFuzz: Fuzz Testing Based on Symbolic Execution”. In: IEEE
Access 8 (2020), pp. 187564–187574. issn: 2169-3536. doi: 10.1109/ACCESS.2020.
3030798.

[154] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Csmith Website. https://
embed.cs.utah.edu/csmith/. Accessed: 2021-09-08. 2021.

[155] Xuejun Yang et al. “Finding and Understanding Bugs in C Compilers”. In: SIGPLAN Not.
46.6 (June 2011), pp. 283–294. issn: 0362-1340. doi: 10.1145/1993316.1993532.
url: https://doi.org/10.1145/1993316.1993532.

[156] Wei You et al. “SLF: Fuzzing without Valid Seed Inputs”. In: 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering (ICSE). May 2019, pp. 712–723. doi:
10.1109/ICSE.2019.00080.

[157] Michał Zalewski. a�-fuzz: making up grammar with a dictionary in hand. https:
//lcamtuf.blogspot.com/2015/01/afl- fuzz- making- up-
grammar-with.html. Accessed: 2023-10-11. 2015.

[158] Michał Zalewski and Contributors. American Fuzzy Lop. https://lcamtuf.
coredump.cx/afl/README.txt. Last Accessed: 2023-11-19. 2013.

[159] Michał Zalewski and Contributors. American Fuzzy Lop - Source Code. https://
lcamtuf.coredump.cx/afl/releases/afl-2.52b.tgz. Accessed:
2024-02-01. 2017.

[160] Michał Zalewski and Contributors. American Fuzzy Lop. http : / / lcamtuf .
coredump.cx/afl/. Accessed: 2018-01-28. 2018.

https://doi.org/https://doi.org/10.1016/S0022-0000(75)80046-8
https://www.sciencedirect.com/science/article/pii/S0022000075800468
https://www.sciencedirect.com/science/article/pii/S0022000075800468
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1109/ICSE.2019.00081
https://en.wikipedia.org/w/index.php?title=Fuzzing&oldid=1158518468
https://en.wikipedia.org/w/index.php?title=Fuzzing&oldid=1158518468
https://en.wikipedia.org/w/index.php?title=Fuzzing&oldid=1158518468
https://doi.org/10.1109/ACCESS.2020.3030798
https://doi.org/10.1109/ACCESS.2020.3030798
https://embed.cs.utah.edu/csmith/
https://embed.cs.utah.edu/csmith/
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1109/ICSE.2019.00080
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.coredump.cx/afl/README.txt
https://lcamtuf.coredump.cx/afl/README.txt
https://lcamtuf.coredump.cx/afl/releases/afl-2.52b.tgz
https://lcamtuf.coredump.cx/afl/releases/afl-2.52b.tgz
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/


Bibliography 181

[161] Andreas Zeller et al. The Fuzzing Book. Accessed: 2021-07-16 14:52:00. CISPA Helmholtz
Center for Information Security, 2021. url: https://www.fuzzingbook.org/.

https://www.fuzzingbook.org/


182



Appendix

In the following, we show the full expression parser as used in our examples. This version of
the expression parser does not contain a tokenization phase.

1 #include <string.h>
2 #include <stdio.h>
3 #include <unistd.h>
4

5 char input[100];
6 int input_size;
7 int pos;
8

9 int strt();
10 int expr();
11 int term();
12 int atom();
13 int integer();
14 int num();
15

16 int skip_whitespace() {
17 while(input[pos] == ' ') {
18 pos++;
19 }
20 return pos;
21 }
22

23 int num(){
24 printf("NUM: Parsing %c at pos %d\n", input[pos], pos);
25 if (input[pos] >= '0' && input[pos] <= '9') {
26 pos++;
27 return 1;
28 } else {
29 return 0;
30 }
31 }
32

33 int non_whitespace_integer() {
34 printf("INT_NON_WHITESPACE: Parsing %c at pos %d\n",
35 input[pos], pos);
36 if (num()) {
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37 non_whitespace_integer();
38 return 1;
39 } else {
40 return 0;
41 }
42 }
43

44 int integer() {
45 printf("INT: Parsing %c at pos %d\n", input[pos], pos);
46 skip_whitespace();
47 if (num()) {
48 non_whitespace_integer();
49 return 1;
50 } else {
51 return 0;
52 }
53 }
54

55 int atom() {
56 printf("ATOM: Parsing %c at pos %d\n", input[pos], pos);
57 skip_whitespace();
58 if (input[pos] == '(' ||
59 (pos + 4 < input_size && !strncmp("sin(", input + pos,

4)) ||↪→

60 (pos + 4 < input_size && !strncmp("cos(", input + pos,
4))↪→

61 ) {
62 if (input[pos] == '(') {
63 pos++;
64 } else {
65 pos += 4;
66 }
67 if (expr()) {
68 skip_whitespace();
69 printf("ATOM2: Parsing %c at pos %d\n", input[pos],

pos);↪→

70 if (input[pos] == ')') {
71 pos++;
72 return 1;
73 } else {
74 printf(") not closed!\n");
75 return 0;
76 }
77 } else {
78 return 0;
79 }
80 }
81 return integer();
82 }



Appendix 185

83

84 int term() {
85 printf("TERM: Parsing %c at pos %d\n", input[pos], pos);
86 skip_whitespace();
87 if (atom()) {
88 printf("TERM2: Parsing %c at pos %d\n", input[pos], pos);
89 skip_whitespace();
90 if (input[pos] == '*' || input[pos] == '/') {
91 pos++;
92 return term();
93 }
94 printf("TERM3: Parsing %c at pos %d\n", input[pos], pos);
95 return 1;
96 }
97 return 0;
98 }
99

100 int expr() {
101 printf("EXPR: Parsing %c at pos %d\n", input[pos], pos);
102 skip_whitespace();
103 if (term()) {
104 skip_whitespace();
105 if (input[pos] == '+' || input[pos] == '-') {
106 pos++;
107 return expr();
108 } else {
109 return 1;
110 }
111 }
112 return 0;
113 }
114

115 int strt() {
116 if (expr()) {
117 skip_whitespace();
118 if (input[pos] == '\0') {
119 return 1;
120 }
121 }
122 return 0;
123 }
124

125 int main(int argc, char** argv) {
126 int in = read(0, input, 99);
127 input[in] = '\0';
128 pos = 0;
129 input_size = strlen(input);
130 int result = strt();
131 printf("Got: %s\n", input);
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132 printf("Parsed: ");
133 for (int i = 0; i < pos; i++) {
134 printf("%c", input[i]);
135 }
136 printf("\n");
137 if (result) {
138 printf("Valid!\n");
139 } else {
140 printf("Invalid!\n");
141 }
142 return !result;
143 }

Appendix A-I: A sample parser for our initial grammar in Figure 2.2.

Next, we show how the expression parser could be implemented if a tokenization phase is
included:

1 #include <string.h>
2 #include <stdio.h>
3 #include <unistd.h>
4

5 char input[100];
6 int input_size;
7 int pos;
8

9 enum lex_token{PLUS, MINUS, MULT, DIV, PAREN_L, PAREN_R,
10 SIN, COS, NUM, WS, UNDEF, END};
11

12 int strt();
13 int expr();
14 int term();
15 int atom();
16 int integer();
17 int num();
18

19 enum lex_token token = UNDEF;
20

21 int skip_whitespace() {
22 while(input[pos] == ' ') {
23 pos++;
24 }
25 return pos;
26 }
27

28 void next_token_non_whitespace() {
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29 if (input[pos] == '+') {
30 pos++;
31 token = PLUS;
32 } else if (input[pos] == '-') {
33 pos++;
34 token = MINUS;
35 } else if (input[pos] == '*') {
36 pos++;
37 token = MULT;
38 } else if (input[pos] == '/') {
39 pos++;
40 token = DIV;
41 } else if (input[pos] == '(') {
42 pos++;
43 token = PAREN_L;
44 } else if (input[pos] == ')') {
45 pos++;
46 token = PAREN_R;
47 } else if (input[pos] >= '0' && input[pos] <= '9') {
48 pos++;
49 token = NUM;
50 } else if (pos + 4 < input_size &&
51 !strncmp("sin(", input + pos, 4)) {
52 pos += 4;
53 token = SIN;
54 } else if (pos + 4 < input_size &&
55 !strncmp("cos(", input + pos, 4)) {
56 pos += 4;
57 token = COS;
58 } else if (input[pos] == '\0') {
59 token = END;
60 } else if (input[pos] == ' ') {
61 pos++;
62 token = WS;
63 } else {
64 // lexing error
65 printf("Undef token at %d: %c", pos, input[pos]);
66 token = UNDEF;
67 }
68 }
69

70 void next_token() {
71 skip_whitespace();
72 next_token_non_whitespace();
73 }
74

75 int num(){
76 printf("NUM: Parsing %c at pos %d\n", input[pos], pos);
77 printf("TOKEN: %d\n", token);
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78 if (token == NUM) {
79 next_token_non_whitespace();
80 return 1;
81 } else {
82 return 0;
83 }
84 }
85

86 int non_whitespace_integer() {
87 printf("INT_NON_WHITESPACE: Parsing %c at pos %d\n",
88 input[pos], pos);
89 if (num()) {
90 non_whitespace_integer();
91 return 1;
92 } else if (token != UNDEF) {
93 if (token == WS) {
94 next_token();
95 }
96 return 1;
97 } else {
98 return 0;
99 }

100 }
101

102 int integer() {
103 printf("INT: Parsing %c at pos %d\n", input[pos], pos);
104 if (num()) {
105 non_whitespace_integer();
106 return 1;
107 } else {
108 return 0;
109 }
110 }
111

112 int atom() {
113 printf("ATOM: Parsing %c at pos %d\n", input[pos], pos);
114 if (token == PAREN_L || token == SIN || token == COS) {
115 next_token();
116 if (expr()) {
117 printf("ATOM2: Parsing %c at pos %d\n", input[pos],

pos);↪→

118 if (token == PAREN_R) {
119 next_token();
120 return 1;
121 } else {
122 printf(") not closed!\n");
123 return 0;
124 }
125 } else {
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126 return 0;
127 }
128 }
129 return integer();
130 }
131

132 int term() {
133 printf("TERM: Parsing %c at pos %d\n", input[pos], pos);
134 if (atom()) {
135 printf("TERM2: Parsing %c at pos %d\n", input[pos], pos);
136 if (token == MULT || token == DIV) {
137 next_token();
138 return term();
139 }
140 printf("TERM3: Parsing %c at pos %d\n", input[pos], pos);
141 return 1;
142 }
143 return 0;
144 }
145

146 int expr() {
147 printf("EXPR: Parsing %c at pos %d\n", input[pos], pos);
148 if (term()) {
149 if (token == PLUS || token == MINUS) {
150 next_token();
151 return expr();
152 } else {
153 return 1;
154 }
155 }
156 return 0;
157 }
158

159 int strt() {
160 next_token();
161 if (expr()) {
162 if (token == END) {
163 return 1;
164 }
165 }
166 return 0;
167 }
168

169 int main(int argc, char** argv) {
170 int in = read(0, input, 99);
171 input[in] = '\0';
172 pos = 0;
173 input_size = strlen(input);
174 int result = strt();
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175 printf("Got: %s\n", input);
176 printf("Parsed: ");
177 for (int i = 0; i < pos; i++) {
178 printf("%c", input[i]);
179 }
180 printf("\n");
181 if (result) {
182 printf("Valid!\n");
183 } else {
184 printf("Invalid!\n");
185 }
186 return !result;
187 }

Appendix A-II: A sample parser with lexer for our initial grammar in Figure 2.2.

Finally, for reference, we include the original arithmetic expression grammar from the
Fuzzingbook [161] which we adapted for our needs in the main part of this thesis:

<start> ::= <expr>
<expr> ::= <term> + <expr> | <term> - <expr> | <term>
<term> ::= <term> * <factor> | <term> / <factor> | <factor>
<factor> ::= +<factor> | -<factor> | (<expr>) | <integer>

| <integer>.<integer>
<integer> ::= <digit><integer> | <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Appendix A-III: A sample grammar for parsing an arithmetic expression. This grammar is the
original arithmetic expression grammar from the Fuzzingbook [161] presented
in the chapter “Fuzzing with Grammars”.
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