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A B S T R A C T

Crosslinked polymers are typically viscoelastic in nature and show non-linear behaviour due to large
deformation. The mechanical behaviour of these polymers is influenced by moisture diffusion because of
the hygroscopic properties of the material. The crosslinked polymers are formed by the shorter and longer
chain length distribution. The shorter chains tend to break/debond from the network with an increase in the
deformation thus leading to the softening of the material. In this paper, the crosslinked polymer mechanical
behaviour is modelled with a micro-mechanical polymer network model that considers the softening of the
elastomer. The network evolution concept used in the micro-mechanical model formulation considers the
shorter and longer chain length distribution allowing the softening of material. The moisture diffusion in the
material is anomalous behaviour, therefore, the Langmuir-type diffusion model is used to model the moisture
diffusion in the crosslinked polymer. The influence of moisture on the mechanical behaviour is modelled by
coupling the micro-mechanical network model with the diffusion model. The coupled diffusion and deformation
model uses the moisture-dependent mechanical parameter to compute the local parameter for the evaluation of
the mechanical behaviour with inhomogeneous moisture distribution. In this paper, crosslinked polyurethane
adhesives are used in the numerical investigation of ageing under the influence of moisture with the coupled
material model. The experimental investigation for tensile and diffusion behaviours is investigated for different
humid conditions at an isothermal condition of 60◦C.
1. Introduction

Due to the relatively favourable stress state in glue joints, the glue-
ing technology is predestined for joining thin-walled lightweight struc-
tures in vehicle and plant construction. However, the safety-relevant
structural bonding of primary structures is generally avoided, as it is
not yet possible to calculate the service life of the glue joints under
the influence of water or other environmental media. This means that
resource-saving lightweight construction potentials are being given
away to a large extent. With the increasing use of fibre compos-
ite plastics in automotive manufacturing, higher-strength, hyperelastic
polyurethane (PU) adhesives with a glass transition temperature of ap-
prox. −20◦C and a wide glass transition area (up to 60 K) are available,
which are very well suited for structural connections of this type. In
a similar way, PU adhesives with glass transition are used in the area
around 30◦C. Understanding the long-term durability of adhesive bonds
is a significant research focus because of their viscoelastic behaviour
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and their sensitivity to the surrounding atmospheric conditions. There-
fore, it is necessary to study the effects of environmental conditions on
the mechanical behaviour of the adhesive. Recently efforts have been
made to study mechanical behaviour under the influence of tempera-
ture, and moisture diffusion [1]. In the research, the micromechanical
behaviour is not considered in the numerical simulation.

Material models to evaluate viscoelastic behaviour are classified
into phenomenological and micromechanical-based network models.
The phenomenological model is used to describe the macro mechanical
behaviour of the material. These models are formulated from the
empirical relation derived from the experimental data and observation
but are not supported by theory. The parameters of phenomenological
models are identified by fitting the experimental data and have no
relevance to the molecular structure of the material. Mooney–Rivlin [2,
3], Yeoh [4], and Ogden [5] models are some of the popular phe-
nomenological models based on an invariant or principal stretch of the
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macroscopic continuum theories. On the contrary, the micromechanical
network models are formulated based on the statistical chain mechanics
with a motivation to describe the complex micromechanical behaviour.
3-chain model [6,7], the eight-chain model of Arruda and Boyce [8] are
he popular material models implemented in commercial finite element
rograms. A non-affine network model that includes the orientation of
hains in the sphere was presented by Miehe et al. [9]. These models

idealise the chain distribution of equal lengths and do not consider the
softening behaviour of the material.

The microstructure of a crosslinked polymer network is formed of
shorter and longer chain distribution, and the shorter chains break/
debond at a smaller stretch leading to stress softening [10]. Exper-
iments performed on the crosslinked polymers show stress softening
s because of breaking/debonding of the chains of the polymer net-
ork [11]. Numerical modelling of the stress-softening behaviour of

rosslinked polymer materials has been active research for a long time.
here classical Gaussian or non-Gaussian chain statistics are applied

o model the elastic and inelastic behaviour of the polymers. The
aussian chain statistics uses the end-to-end distance of a single chain

ormed of a fixed number of chain segments by considering the exact
istribution of chain [12]. In comparison, non-Gaussian chain statis-

tics considers a freely joined chain expressed with inverse Langevin
function [13]. Govindjee et al. [14], Smeulders et al. [15] proposed
a model based on the Arruda-Boyce network model that accounts
for the molecular weight distribution to consider the chain length
distribution in the polymer network. Marckmann et al. [16] proposed
a softening network model by altering the Arruda-Boyce eight-chain
network model and considering a mean number of chain segments in
a polymer network. Göktepe et al. [17] developed a micromechanical
model considering a non-affine approach to include Mullins-type dam-
ge due to breakage/debonding of chains in a network. This non-affine
icromechanical model is based on the numerical integration scheme
roposed by Bazant et al. [18]. In the aforementioned micromechanical

softening models, the softening due to damage of the polymer chains
is considered with a phenomenological damage function based on
he history variables. Dargazany et al. [19] extended the Govindjee
t al. [14] model using a numerical integration scheme [18] to include

anisotropic behaviour in carbon-filled rubber and softening due to
damage in chains is governed by the network evolution. Recently Itskov
et al. [20] proposed a full network rubber elasticity and softening

odel based on the numerical integration over a unit sphere discussed
arlier [18]. This model does not consider the filler particles, and the

softening behaviour is motivated by the network evolution with an
assumption that the distribution of chain segments increases with the
maximum stretch.

The present work investigates the finite-strain viscoelastic behaviour
f the crosslinked polyurethane adhesive with a softening-based mi-
romechanical model. The micromechanical model is used here to

consider the softening of the material with an increase in the stretch.
This model considers shorter and longer chain length distribution in
a random network of polymer chains. The damage in the chains with
an increase in the stretch is modelled based on the network evolution
theory. The model discussed here is isotropic and does not include
deformation-induced anisotropy. As discussed earlier, the crosslinked
polyurethane adhesives are hygroscopic and absorb moisture from the
atmosphere causing the material properties to decay, thus leading to
early ageing. The ageing in adhesives due to moisture transport is
reversible, therefore the chemical ageing of material is not treated
in the numerical modelling. Experimental investigation [21] of mois-
ture transport in the crosslinked polyurethane adhesive is anomalous,
leading to diffusion of moisture characterised into mobile and immo-
bile moisture concentrations. The anomalous diffusion of moisture is
modelled with Langmuir-type diffusion [22]. Numerical investigation
of moisture diffusion with the Langmuir-type diffusion model has
already been investigated in epoxy-based adhesive [23,24], and these
2 
investigations efficiently explain the presence of mobile and immobile
moisture concentration in the material domain.

It is necessary to couple the mechanical behaviour with the diffusion
behaviour to model the ageing behaviour under the moisture influ-
ence. Roy et al. [25] investigated the influence of moisture or solvent
diffusion on the non-linear viscoelastic behaviour, where the non-
inear Fickian behaviour is taken into consideration, and temperature-
ependent diffusion coefficient is used. The influence of diffusion be-
aviour is investigated on incompressible polymer gels to understand
he local rearrangement of molecules due to swelling of gels under large
eformations by Hong et al. [26]. Many more coupled material mod-

els [27–29] have been developed to investigate the effects of diffusion
on the deformation in the polymer gels within the framework of the
finite-strain theory. Recently, Goldschmidt et al. [30] have numerically
investigated the mechanical behaviour of crosslinked polyurethane
under the influence of the humid atmosphere. In which the finite-
strain viscoelastic model is coupled with the Fick diffusion using an
exponential decay function. Sharma et al. [31] numerically investi-
ated the moisture transport behaviour in polyamide by considering

moisture-dependent material properties, and moisture diffusion is mod-
elled using Fick’s law. None of the aforementioned theories considers

icromechanical and anomalous moisture diffusion behaviour. In the
resent paper, the proposed micromechanical viscoelastic model is cou-
led with the Langmuir-type diffusion model and moisture-dependent

material parameters of the mechanical model are considered to model
ageing behaviour analogous to Sharma et al. [31].

2. Micromechanically motivated polymer free energy

The basic idea of modelling a crosslinked polymer network material
involves considering the distribution of shorter and longer chains in
a random network. The shorter chains tend to break or debond from
the network, leading to the material’s softening. This idea is accounted
for in the micromechanical material model formulation by multiplying
isotropic free energy Ψ of the material with a cumulative distribution
function 𝐺(𝜆𝑚)

𝑊 (I1, 𝜆𝑐 ) = Ψ∫

∞

1
𝑔(𝜆𝑚)d𝜆𝑚 = Ψ𝐺(𝜆𝑚). (1)

The cumulative distribution function considers the break/debonding
of the shorter chains following the evolution network theory. In this
heory, the shorter chains become inactive as deformation increases,
nd this process is considered irreversible, contributing to the material’s
oftening. The cumulative distribution function is derived from the
robability distribution function defined for a random network. The
robability distribution function is defined as a function of the current
hain stretch of an ideal chain to evaluate the statistical information
oncerning the stretch in a random network.

2.1. Polymer chain terminology

An individual chain is formed from 𝑁 segments of chain links of a
niform length 𝑙mm. The end-to-end distance 𝑟0 between endpoints of

an ideal chain is arbitrarily calculated as [6,13,32]

𝑟0 =
√

𝑁 𝑙 , (2)

and the maximum length of chain 𝑟𝑚 is calculated as

𝑟𝑚 = 𝑁 𝑙 . (3)

The current chain stretch under strained conditions is calculated as

𝑟𝑐 =
1
√

3

√

𝑁 𝑙√I1, (4)

where I1 is the first invariant of left Cauchy–Green deformation ten-
sor. Current chain stretch 𝜆𝑐 , and maximum chain stretch 𝜆max are
calculated as
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𝜆𝑐 =
𝑟𝑐
𝑟0

=

√

I1
√

3
, and 𝜆max =

𝑟𝑚
𝑟0

=
√

𝑁 . (5)

The current chain stretch is defined in the interval between initial chain
stretch 𝜆0 of a rigid chain and maximum 𝜆max chain stretch

𝜆0 = 1 ≤ 𝜆𝑐 =

√

I1
√

3
≤ 𝜆max. (6)

2.2. Probability distribution function

The maximum chain stretch distribution is defined as analogous to
he Wesslau mass distribution function [33] by replacing the mass vari-

able with the actual chain stretch. The Probability distribution function
𝑔(𝜆𝑚) is evaluated from the maximum chain stretch distribution w(𝜆𝑚)
as

𝑔(𝜆𝑚) =
𝑁𝜆𝑚

(𝜆𝑚 − 1)w(𝜆𝑚)

=
𝑁𝜆𝑚
𝛽
√

𝜋
1

(𝜆𝑚 − 1)2 exp
(

−1
𝛽2

(

ln
(

(𝜆𝑚 − 1)
0𝜆𝑚

))2
)

.
(7)

For simplicity, 𝑔(𝜆𝑚) is rearranged as follows

𝑔(𝜆𝑚) = 𝑎0
1

(𝜆𝑚 − 1)2 exp
(

−𝑎1
(

ln
(

𝑎2(𝜆𝑚 − 1)))2
)

(8)

with parameters

𝑎0 =
𝑁𝜆𝑚
(𝛽
√

𝜋)
; 𝑎1 =

1
𝛽2

and 𝑎2 =
1

0𝜆𝑚
. (9)

The constants 𝛽, 0𝜆𝑚 and 𝑁𝜆𝑚 are calculated with the help of the ma-
terial parameters polydispersity index 𝑄 and average chain elongation
𝑀𝜆𝑚

𝛽 =
√

2ln(𝑄); 𝑁𝜆𝑚 =
𝑀𝜆𝑚
𝑄

; 0𝜆𝑚 =
√

𝑀𝜆𝑚 𝑁𝜆𝑚. (10)

In an unstrained material, every chain actively participates in the free
nergy of the material. Therefore, the function 𝑔(𝜆𝑚) is integrated be-

tween the interval [1, ∞] to compute cumulative distribution function

𝐺
(

𝜆𝑚
)

= ∫

∞

1
𝑔
(

𝜆𝑚
)

= 1, (11)

where ∞ is the maximum chain stretch 𝜆𝑚. Softening due to the
breaking/debonding of chains in a random network starts with the
shorter chains and eventually involves breaking the long chains with
a gradual increase in the applied load. Here, a random network is
considered to experience a current stretch of 𝜆𝑐 leading to the breaking
of shorter chains represented as inactive chains. The other chains that
contribute to the mechanical free energy are active. The cumulative
distribution function of the active chains under a current stretch 𝜆𝑐
follows the integration of 𝑔

(

𝜆𝑚
)

at an interval
[

𝜆𝑐 ∞
]

𝐺
(

𝜆𝑚
)

= ∫

∞

𝜆𝑐
𝑔
(

𝜆𝑚
)

, (12)

where the maximum chain elongation (∞) of a material is a priori
unknown quantity, therefore the cumulative density function of the
active chains given in Eq. (12) is reformulated by subtracting the
cumulative distribution function of the inactive chains from the cumu-
lative distribution function of the unstrained material. As a result, the
cumulative distribution function of the active chains follows

𝐺
(

𝜆𝑚
)

= ∫

∞

1
𝑔(𝜆𝑚)d𝜆𝑚 − ∫

𝜆𝑐

1
𝑔(𝜆𝑚)d𝜆𝑚

= 1 − ∫

𝜆𝑐

1
𝑔(𝜆𝑚)d𝜆𝑚.

(13)

The indefinite integral of the probability density function is evaluated
to obtain the cumulative distribution function. After some mathemat-
ical evaluation, the cumulative distribution function dependent on 𝜆
𝑚

3 
is derived as the function of an error function to avoid non-elementary
integrals.

𝐺(𝜆𝑚) =
𝑎0𝑎2exp

(

1
4𝑎1

)

√

𝜋

2
√

𝑎1
er f

(

1 + 2𝑎1 ln
(

𝑎2(𝜆𝑚 − 1))

2
√

𝜋

)

+ 𝐶 . (14)

The integration constant 𝐶 is determined with an assumption 𝐺(𝜆𝑚 =
1) = 0 and the error function value as −1 to avoid singularity because
of the logarithmic term. As a result, the integration constant is derived
s

𝐶 =
𝑎0𝑎2 exp

(

1
4𝑎1

)

√

𝜋

2
√

𝑎1
, (15)

by inserting Eq. (15) in (14) leads to the cumulative density distribution
function as:

𝐺(𝜆𝑚) =
𝑎0𝑎2 exp

(

1
4𝑎1

)

√

𝜋

2
√

𝑎1

(

1 + er f
(

1 + 2𝑎1 ln
(

𝑎2(𝜆𝑚 − 1))

2
√

𝜋

))

. (16)

After inserting Eq. (13) in (1), the micromechanical free energy density
function is derived for a current stretch 𝜆𝑐 in a random network as

𝑊 (I1, 𝜆𝑐 ) = Ψ(I1)
(

∫

∞

1
𝑔(𝜆𝑚)d𝜆𝑚 − ∫

𝜆𝑐 (I1)

1
𝑔(𝜆𝑚)d𝜆𝑚

)

= Ψ(I1)
(

1 − ∫

𝜆𝑐 (I1)

1
𝑔(𝜆𝑚)d𝜆𝑚

)

,

(17)

where Neo-Hooke model is considered as a free energy Ψ(I1) in soft-
ening micromechanical model for simplicity. However, the crosslinked
polyurethane adhesive shows a nearly incompressible viscoelastic be-
haviour. Therefore, the energy function (17) is uniquely decoupled into
volume and shape-changing parts based on the continuum mechanical
escription [34,35], to further extend the defined material model for

analysing finite-strain viscoelastic behaviour. The detailed description
of the mechanical energy and the constitutive equation are explained
n Appendices A and B

3. Coupled material model

The micromechanical network model is extended to viscoelastic be-
haviour using a rheological description consisting of Maxwell elements
connected in parallel to the spring element (see Fig. 1). The deforma-
tion in the body is calculated based on the continuum mechanics of
finite-strain theory [36].

Fig. 1. Rheological model of the viscoelasticity with 𝑛 Maxwell elements.

3.1. Kinetics of finite-strain theory

The deformation gradient tensor 𝐅 needs to be decomposed into
elastic 𝐅𝑗

𝑒 and inelastic 𝐅𝑗
𝑖 deformation gradient tensor of 𝑗 = 1,… , 𝑛

axwell element [37] to model the viscoelastic material model. The
eformation tensor is decomposed with multiplicative decomposition

𝑗
𝐅 = 𝐅𝑗
𝑒 ⋅ 𝐅𝑖 . (18)
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The free energy is decomposed into shape and volume-changing parts
o model a nearly incompressible viscoelastic behaviour. This additive
ecomposition of free energy leads to multiplicative decomposition of
he deformation gradient tensor 𝐅 into shape and volume-changing
arts and is given as

𝐅 = 𝐅vol ⋅ 𝐅iso, (19)

where 𝐅vol as volumetric part and 𝐅iso as the isochoric part of the
deformation gradient tensor. The volumetric 𝐅vol and isochoric 𝐅iso
arts of the deformation tensor is calculated as [38]

𝐅iso = 𝐽−1∕3𝐅, 𝐅vol = 𝐽 1∕3𝐈 (20)

with the Jacobian 𝐽 = det 𝐅 and second-order identity tensor 𝐈. The
ight Cauchy–Green deformation tensor 𝐂 = 𝐅𝑇 ⋅ 𝐅 is reformulated to
sochoric right Cauchy–Green deformation tensor �̄� as �̄� = 𝐽−2∕3𝐂 from

the isochoric deformation gradient tensor given in Eq. (20) [35]. The
irst I1 and third I3 invariants of the Cauchy–Green deformation tensor
re calculated as

I1 = t r (𝐂) = t r (𝐁) ; I3 = det (𝐂) = det (𝐁) = 𝐽 2, (21)

where 𝐁 = 𝐅 ⋅ 𝐅𝑇 is the left Cauchy–Green deformation tensor. The
counterparts of the invariants are calculated as

Ī1 = 𝐽−2∕3I1 and Ī3 = 1 (22)

By combining Eqs. (18), (19) and (20), the kinetics of the elastic part
f the Maxwell element is formulated as
̄ 𝑗
𝑒 = (𝐅𝑗

𝑒)
(iso) ⋅ ((𝐅𝑗

𝑒)
(iso))𝑇 = 𝐅iso ⋅ (�̄�

𝑗
𝑖 )
−1 ⋅ 𝐅𝑇

iso . (23)

3.2. Thermodynamic consistency

The mechanical behaviour of polyurethane adhesive is dependent
n the material’s moisture transport. Therefore, the free energy is

additively decomposed into the mechanical and diffusion parts, 𝑊mech
nd 𝑊𝑚

𝑊 = 𝑊mech

(

𝐽 , I�̄�1 , I
�̄�𝑗
𝑒

1 , 𝜆𝑚, 𝑚
)

+𝑊𝑚(𝑚, 𝑚𝑏). (24)

Polyurethane adhesive is considered a nearly incompressible material
because of the volumetric strains, therefore an uncoupled response is
considered to define the free energy function [39,40]. The uncoupled

echanical response is based on the additive decomposition of the
ree energy into the volumetric and isochoric parts. The isochoric part
onsiders the equilibrium part and the rate-dependent non-equilibrium
art. The moisture-dependent function is expressed as

𝑊mech = 𝑊vol
(

𝐽 , 𝜆𝑚, 𝑚
)

+𝑊eq

(

Ī�̄�1 , 𝜆𝑚, 𝑚
)

+
𝑛
∑

𝑗=1
𝑊 𝑗

neq

(

I�̄�
𝑗
𝑒

1 , 𝜆𝑚, 𝑚
)

, (25)

where 𝑊vol is the volumetric free energy and 𝑊eq and 𝑊 𝑗
neq are the

equilibrium and the non-equilibrium parts of the isochoric part. The
non-equilibrium part is comprised of 𝑗 = 1, 2,… , 𝑛 Maxwell elements.
After substituting Eq. (25) leads to the coupled free energy

𝑊 = 𝑊vol(𝐽 , 𝜆𝑚, 𝑚) + 𝑊eq

(

I�̄�1 , 𝜆𝑚, 𝑚
)

+
𝑛
∑

𝑗=1
𝑊 𝑗

neq

(

I�̄�
𝑗
𝑒

1 , 𝜆𝑚, 𝑚
)

+ 𝑊𝑚(𝑚, 𝑚𝑏).
(26)

An important requirement for the material model is to satisfy the
Clausius–Planck inequality. The Clausius–Planck inequality for the cou-
pled diffusion and mechanical behaviours at the isothermal condition
follows

𝜌�̇� − 𝐓∶𝐃 + div (𝑅𝑚𝐪
)

≥ 0, (27)

where 𝑅𝑚 is the chemical potential and 𝐪 is the moisture flux. The
rocess variables for the defined coupled material model are

{ 𝑗 }
 = 𝐁,𝐁𝑒, 𝑚, g r ad𝑚 , (28)

4 
and the constitutive quantities are

 = {𝑊 ,𝐓,𝐪} . (29)

The material time derivative of the free energy function is derived with
the process variable to evaluate dissipation as

�̇� =
𝜕 𝑊vol(𝐽 , 𝜆𝑚, 𝑚)

𝜕�̄�
∶ �̇� +

𝜕 𝑊eq

(

I�̄�1 , 𝜆𝑚, 𝑚
)

𝜕�̄�
∶ �̇�+

𝑛
∑

𝑗=1

𝜕 𝑊 𝑗
neq

(

I�̄�
𝑗
𝑒

1 , 𝜆𝑚, 𝑚
)

𝜕�̄�𝑗
𝑒

∶ �̇�𝑗
𝑒 +

𝜕 𝑊𝑚
(

𝑚, 𝑚𝑏
)

𝜕 𝑚 ∶ �̇�.

(30)

The time derivatives of the deformation tensors are formulated with
the deformation velocity 𝐃 as

̇ = 2𝐃 ⋅ 𝐁 and �̇�𝑗
𝑒 = 2𝐃 ⋅ 𝐁𝑗

𝑒 − 2𝐅𝑗
𝑒 ⋅ Γ̂

𝑗
𝑖 ⋅

(

𝐅𝑗
𝑒
)𝑇 , (31)

where the inelastic deformation rate of the intermediate configuration
Γ̂𝑗
𝑖 is an outcome of the product rule applied over �̇�𝑗

𝑒. The Clausius–
Planck inequality is derived with the material time derivative of the
ree energy (30) and the time derivatives of the deformation tensor as
(

−2𝜌𝐁 ⋅
𝜕 𝑊vol
𝜕𝐁

− 2𝜌𝐁 ⋅
𝜕 𝑊eq

𝜕𝐁
−

𝑛
∑

𝑗=1
2𝜌�̄�𝑗

𝑒 ⋅
𝜕 𝑊neq

𝜕�̄�𝑗
𝑒

+ 𝐓
)

∶𝐃

+
𝑛
∑

𝑗=1
2𝜌

𝜕 𝑊neq

𝜕�̄�𝑗
𝑒

∶
(

𝐅𝑗
𝑒 ⋅ Γ̂

𝑗
𝑖 ⋅

(

𝐅𝑗
𝑒
)𝑇

)

+
(

−𝜌
𝜕 𝑊𝑚(𝑚, 𝑚𝑏)

𝜕 𝑚 + 𝑅𝑚

)

⋅ �̇�

− g r ad𝑅𝑚 ⋅ 𝐪 ≥ 0.

(32)

The inequality (32) depends linearly on the independent variables 𝐃,
̇ . Thus leading to the stress and the diffusion potential from Coleman

and Noll [41] argumentation

𝐓 = 2𝜌𝐁 ⋅
𝜕 𝑊vol
𝜕𝐁

+ 2𝜌𝐁 ⋅
𝜕 𝑊eq

𝜕𝐁
+

𝑛
∑

𝑗=1
2𝜌�̄�𝑗

𝑒 ⋅
𝜕 𝑊 𝑗

neq

𝜕�̄�𝑗
𝑒

,

𝑅𝑚 =𝜌
𝜕 𝑊𝑚(𝑚, 𝑚𝑏)

𝜕 𝑚 .

(33)

The first term of the stress tensor represents the volumetric stress
analogues to the hydrostatic stress [40], and the other two terms
correspond to the equilibrium and non-equilibrium parts. Applying the
chain rule to the volumetric stress component with the relationship
𝜕 𝐽∕𝜕𝐁 = 𝐽𝐁−1 and assuming 𝑊(∙) = 𝜌𝑊(∙) [39] leads to the stress tensor

𝐓 = 𝐽 𝑊 ′
vol𝐈 + 2𝐁 ⋅

𝜕 𝑊eq

𝜕𝐁
+

𝑛
∑

𝑗=1
2�̄�𝑗

𝑒 ⋅
𝜕 𝑊 𝑗

neq

𝜕�̄�𝑗
𝑒

, (34)

where 𝑊 ′
vol = 𝜕 𝑊vol∕𝜕 𝐽 . The dissipation inequality is simplified to

𝑛
∑

𝑗=1
2𝜌

𝜕 𝑊 𝑗
neq

(

I𝐁
𝑗
𝑒

1 , 𝑚
)

𝜕�̄�𝑗
𝑒

∶
(

𝐅𝑗
𝑒 ⋅ Γ̂

𝑗
𝑖 ⋅

(

𝐅𝑗
𝑒
)𝑇

)

− g r ad𝑅𝑚 ⋅ 𝐪 ≥ 0. (35)

Using the kinematic relations and applying tensor relations, the first
term of the dissipation inequality of Eq. (35) results in the evolution
equation of the right Cauchy–Green deformation [36,42,43]

̇̄𝐂𝑗
𝑖 = 4

𝑟𝑗

[

�̄� − 1
3
t r
(

�̄� ⋅
(

�̄�𝑗
𝑖

)−1
)

�̄�𝑗
𝑖

]

(36)

where 𝑟𝑗 is the relaxation time associated with 𝑗th Maxwell element.
The relaxation times are the material constants introduced as

𝑟𝑗 =
𝜇10𝑛
𝜂𝑛

. (37)

The second term is characterised by the diffusive flux to ensure the
positivity of the simplified dissipation inequality

𝐪 = −𝐷 (

g r ad𝑅𝑚
)

, (38)

where 𝐷 is the diffusion coefficient. Free energy of the moisture diffu-
sion 𝑊𝑚(𝑚, 𝑚𝑏) is defined for the anomalous moisture diffusion as

1 ( )2
𝑊𝑚(𝑚, 𝑚𝑏) = 2
𝑚 − 𝑚𝑏 , (39)
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where 𝑚 and 𝑚𝑏 are the total and immobile moisture concentrations.
The chemical potential equation derived in Eq. (33), diffusive flux (38),
the diffusion free energy Eq. (39) and the balance of mass [44] leads
to the anomalous diffusion equation
d𝑚
d𝑡

= 𝐷 div
(

g r ad (𝑚 − 𝑚𝑏)
)

, (40)

and the immobile moisture concentration 𝑚𝑏 is calculated with an
volution equation [22]

�̇�𝑏 = 𝛼 𝑚𝑓 − 𝛽 𝑚𝑏. (41)

The symbol 𝛼 is a material parameter that amounts to the rate at
hich the mobile moisture becomes immobile, and 𝛽 represents the rate
t which the immobile moisture becomes mobile. The Langmuir-type
iffusion is discussed in detail in Appendix C

4. Governing partial differential equations

The governing equations of the coupled material model expressed
in the deformed consist of the balance of momentum to express me-
chanical behaviour and the Langmuir-type diffusion model to express
moisture diffusion

div𝐓
(

𝐽 , �̄�, �̄�𝑗
𝑒, 𝑚

)

= 𝟎 ∀ 𝐱 ∈ Ω, and

�̇� = 𝐷 𝛥𝑚𝑓 = 𝐷 div
(

g r ad (𝑚 − 𝑚𝑏
))

∀ 𝐱 ∈ Ω, (42)

where the moisture-dependent Cauchy stress tensor 𝐓 is expressed as

𝐓 = 𝐓vol(𝐽 , 𝜆𝑚, 𝑚) + 𝐓eq(�̄�, 𝜆𝑚, 𝑚) +
𝑛
∑

𝑗=1
𝐓𝑗
neq(𝐁𝑗

𝑒, 𝜆𝑚, 𝑚). (43)

The Cauchy stress is calculated using stiffness parameters that de-
pend on the local moisture concentration, to evaluate the ageing be-
haviour. The moisture-dependent stiffness parameters are calculated
by interpolating the dry and saturated states of the material [31]. The
nterpolation is given by

𝜇(𝑚) = 𝑓 (𝑚)𝜇dr y + (1 − 𝑓 (𝑚))𝜇sat , (44)

where 𝜇(𝑚) is the local stiffness parameters calculated at the integration
points. 𝜇dr y and 𝜇sat are the stiffness parameters of dry and saturated
material samples. 𝑓 (𝑚) is an interpolation function to couple mechani-
cal and diffusion equations. The coupling function is defined using an
xponential decay

𝑓 (𝑚) = exp(−𝛬𝑚), (45)

where 𝛬 is a parameter of the decay function. The coupling function
has to satisfy the condition 0 ≤ 𝑓 (𝑚) ≤ 1, where 𝑓 (𝑚) = 1 defines a dry
state and 𝑓 (𝑚) ≈ 0 defines a saturated state.

4.1. Boundary and initial conditions

The initial and boundary conditions are needed for the defined
governing equations of the coupled system of equations. The initial con-
ditions are defined over the material domain to solve the Langmuir-type
diffusion model. Total moisture and immobile moisture distribution in
the material at time 𝑡0 = 0 is applied as the initial boundary condition

𝑚 (𝐱, 𝑡 = 0) = 0, 𝑚𝑏 (𝐱, 𝑡 = 0) = 0. (46)

Let Dirichlet and Neumann boundaries for the moisture diffusion are
𝜕Ω𝐷 and 𝜕Ω𝑁 and the mechanical problem are 𝜕Ω𝐷

𝐮 and 𝜕Ω𝑁
𝐮 and has

to satisfy
𝜕Ω𝑁 ∪ 𝜕Ω𝐷 = 𝜕Ω, 𝜕Ω𝑁 ∩ 𝜕Ω𝐷 = ∅
Ω𝐷
𝐮 ∪ 𝜕Ω𝑁

𝐮 = 𝜕Ω, 𝜕Ω𝐷
𝐮 ∩ 𝜕Ω𝑁

𝐮 = ∅ (47)

The diffusion and deformation boundary conditions are defined over
the specified Dirichlet and Neumann boundaries as follows
𝐮 (𝐱, 𝑡) = 𝐮𝐷 (𝐱, 𝑡) on 𝜕Ω𝐷

𝐮 and 𝐓 ⋅ 𝐧 = 𝐭 on 𝜕Ω𝑁
𝐭 ,

eq 𝐷 𝑁 (48)

𝑚 (𝑚(𝐱, 𝑡)) = 𝑚 ∀ 𝐱 ∈ 𝜕Ω𝑚 and 𝐪 (𝐱, 𝑡) = 𝐷 g r ad𝑚𝑓 ⋅ 𝐧 ∀ 𝐱 ∈ 𝜕Ω𝐪 .

5 
where 𝐭 is the traction on the surface 𝜕Ω𝑁
𝐭 with the normal vector 𝐧,

𝑚eq is the relative humidity in the surrounding atmosphere and 𝑛 is
he outward normal vector on the boundary. The coupled problem is

implemented and solved in deal.II finite element library [45–47]. The
displacement and diffusion fields of the coupled problem are solved
individually as a coupled staggered field to obtain a stable implicit
formulation.

5. Numerical implementation and investigation

The weak forms of the governing equations are derived to solve
the partial differential equations defined in Section 4 using the finite
lement method. To this end, the arbitrary test functions 𝛿𝐮 are 𝛿 𝑚
re multiplied by the governing equations and are integrated over the
aterial volume

∫Ω
𝛿𝐮 ⋅ div𝐓

(

�̄�, �̄�𝑗
𝑒, 𝐽 , 𝑚

)

dV = 𝟎,

∫Ω
𝛿 𝑚 �̇�dV − ∫Ω

𝛿 𝑚 𝐷 div
(

g r ad (𝑚 − 𝑚𝑏
))

dV = 0.
(49)

Finally, integration by parts leads to
𝐫𝐮(𝐮) = ∫Ω

𝐓
(

�̄�, �̄�𝑗
𝑒, 𝐽 , 𝑚

)

∶ g r ad𝑠 𝛿𝐮 dV − ∫𝜕Ω
𝐓 ⋅ 𝛿𝐮 dA = 𝟎,

r𝑚(𝑚) = ∫Ω
𝛿 𝑚 �̇� dV + ∫Ω

[

g r ad𝛿 𝑚 ⋅𝐷 g r ad (𝑚 − 𝑚𝑏
)]

dV = 0.
(50)

Diffusion is a long-term process for a material to reach equilibrium.
herefore, the diffusion equation needs to consider larger time steps to
olve the problem with less computational effort. The Crank–Nicolson
ethod [48], which uses a second-order time derivative, is employed

to solve the diffusion problem, as both explicit and implicit time
derivatives have temporal truncation errors for larger time steps [49].
The time discretisation with the Crank–Nicolson method leads to the
residual r𝑚(𝑚)

r𝑚(𝑚) = ∫Ω
𝛿 𝑚 𝑚𝑡+1 − 𝑚𝑡

𝛥𝑡
dV + ∫Ω

[

g r ad𝛿 𝑚 ⋅𝐷 1
2
g r ad (𝑚𝑡+1 − 𝑚𝑡+1

𝑏
)

]

dV

− ∫Ω

[

g r ad𝛿 𝑚 ⋅𝐷 1
2
g r ad (𝑚𝑡 − 𝑚𝑡

𝑏
)

]

dV = 0,

(51)

where (∙)𝑡+1 and (∙)𝑡 are the values of the field variables calculated at
current time 𝑡+ 1 s and previous time 𝑡 s steps. The evolution Eq. (41)
is solved to evaluate the immobile moisture concentration as
𝑚𝑡+1
𝑏 − 𝑚𝑡

𝑏
𝛥𝑡

= 1
2
[

𝛼
(

𝑚𝑡+1 − 𝑚𝑡)] − 1
2
[

(𝛼 + 𝛽)
(

𝑚𝑡+1
𝑏 − 𝑚𝑡

𝑏
)]

. (52)

The differential equation is treated to consider the geometrical non-
linearity because of the large deformations. The linearised approxi-
mation of the non-linear governing equations is solved with Newton’s
method using

𝐑 (Ξ + 𝛥Ξ) ≈ 𝐑(Ξ) + D𝛥Ξ𝐑 (Ξ) ⋅ dΞ = 0, (53)

where D𝛥Ξ (∙) represents the directional derivative, also known as the
patial tangent tensor, that describes the change in the residuals 𝐑(Ξ)
n the direction of the unknown vector Ξ. The component of the
irectional derivative 𝐊𝑚𝑚 known as the diffusive matrix is

𝐊𝑚𝑚 = ∫Ω
g r ad 𝛿 𝑚 g r ad 𝛿 𝑚 dV, (54)

and the direction derivative component 𝐊𝐮𝐮 in the direction 𝛥𝐮 is

𝐊𝐮𝐮 = D𝛥𝐮𝐫(𝐮) = ∫Ω
D𝛥𝐮

(

𝐓
(

�̄�, �̄�𝑗
𝑒, 𝐽 , 𝑚

))

∶ g r ad𝑠 𝛿𝐮 dV

+ ∫ 𝐓
(

�̄�, �̄�𝑗
𝑒, 𝐽 , 𝑚

)

∶
[

Gr ad 𝛿𝐮 ⋅ D𝛥𝐮𝐅−1] dV,
(55)
Ω
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the directional derivative 𝐊𝐮𝐮 is simplified to
𝐊𝐮𝐮 = D𝛥𝐮𝐫(𝐮) = ∫Ω

g r ad𝑠 𝛥𝐮 ∶
4
𝜿
(

�̄�, �̄�𝑗
𝑒, 𝐽 , 𝑚

)

∶ g r ad𝑠 𝛿𝐮 dV

+ ∫Ω
g r ad 𝛿𝐮 ∶

[

g r ad𝛥𝐮 ⋅ 𝐓
(

�̄�, �̄�𝑗
𝑒, 𝐽 , 𝑚

)]

dV.
(56)

Here, the tangent
4
𝜿 is calculated as the sum of the volumetric

4
𝜿vol and

isochoric components composing of the equilibrium
4
𝜿eq

(

�̄�, 𝑚) and 𝑗 =

1, 2,… , 𝑛 non-equilibrium
4
𝜿neq

(

�̄�𝑗
𝑒, 𝑚

)

parts of the viscoelastic model.
The Eq. (B.4) in the Appendix defines the tangent matrices. �̄�𝑗

𝑒 of the
𝑗th non-equilibrium part is calculated from the evolution equation of
the inelastic right Cauchy–Green deformation tensor �̄�𝑗

𝑖 . This evolution
equation is solved with the implicit Euler method in time combined
with the local Newton method in space at every integration point.

The parameters of the mechanical and diffusion models are identi-
fied by fitting simulation curves to the experimental curves. A gradient-
free method proposed by Nelder & Mead [50] is used for parameter
identification. At first, the Langmuir-type diffusion parameters are
identified from the gravimetric tests conducted with 98% r.H. in the
atmosphere at an isothermal condition of 60 ◦C. Then, the viscoelastic
behaviour is studied with the uniaxial tensile tests performed on the
dry and aged samples at an isothermal condition. The corresponding
material parameters of the micromechanical model are identified for
dry and aged samples. The micromechanical model parameters of
dry and aged samples are evaluated to define the decay function to
interpolate the material parameters to analyse the ageing behaviour.

5.1. Diffusion

A thin sample of 0.833 mm thick sample is used to investigate the
moisture diffusion in the polyurethane adhesive. The top and bottom
faces along the thickness are exposed to moisture, while the other faces
are isolated from the surroundings, ensuring that the moisture diffusion
is one-dimensional. The Langmuir-type diffusion model parameters
are identified with the curve fitting process. The optimum material
parameters are listed in Table 1.
Table 1
Langmuir-type diffusion parameters obtained from curve fitting method.

Diffusion parameters at 60 ◦C

Diffusion coefficient 𝐷 7.925E − 05 mm2 s−1

Rate at which immobile moisture becomes mobile
again 𝛼

2.727E − 05 s−1

Rate at which mobile moisture becomes immobile 𝛽 2.247E − 03 s−1

The experimental and simulation results are plotted together to
check for the deviation between the results (see Fig. 2).

Fig. 2. Comparison between experimental (Exp) and simulation data of moisture
absorption at 60 ◦C with 98% relative humidity in air.
6 
The total moisture concentration calculated with the material prop-
erties given in Table 1 shows good agreement with the experimental
results.

5.2. Material parameters of micromechanical model

The viscoelastic behaviour of the crosslinked adhesive under the
influence of moisture is investigated by performing a uniaxial tensile
test. The test sample is optimised to have a minimum cross-section
at the centre Fig. 3. The motivation to use a tailored sample is to
measure local strains at 2 mm span from the centre of the specimen.
These tailored samples are not subjected to any pre-stressed or strains
in the manufacturing process.

Fig. 3. Tailored tensile test samples with a necked cross-section at the centre of the
sample: all dimensions are in millimetres.

The samples are aged at different humid (0% r.H., 29% r.H., 67%
r.H., 100% r.H.) conditions at an isothermal condition of 60 ◦C to in-
vestigate the moisture influence on the tensile strength. Seven Maxwell
elements are used to model the viscoelastic behaviour.

The finite element model is applied with the tensile boundary con-
ditions with the micromechanical material parameters listed in Table 2
for different atmospheric conditions.

The finite element analysis performed with the optimal parameters
is compared with the test results. Fig. 4 shows the comparison of stress–
stretch data between simulation and test results with the standard
deviation. The tension test data plotted in the comparison corresponds
to the mean values calculated from the test series consisting of five
samples for aged samples at individual humid climatic conditions. The
standard deviation in the form of the error bar indicates that the
problem is well-posed.

It is apparent from the uniaxial tensile test that the tensile strength
decreases with an increase in moisture concentration due to the de-
crease in the material stiffness. The stiffness parameters decrease expo-
nentially with an increase in the local moisture concentration. Decay
in the stiffness parameters is estimated by interpolating parameters as
the function of moisture concentration [31]. The moisture-dependent
stiffness parameters are calculated at integration points with Eq. (44).
Dry 𝜇dr y and saturated 𝜇sat at 100% r.H. stiffness parameters listed in
Table 2 are used in the interpolation. The coupling parameter 𝛬 of the
integration function 𝑓 (𝑚) given in Eq. (45) is identified as 𝛬 = 2.16. The
decay of the exponentiak function for the moisture uptake is shown in
Fig. 5, represnting the dry and saturated states.

6. Investigation of coupled problem

Multi-physically coupled diffusion and deformation model is quanti-
fied by investigating the tailored sample with inhomogeneous moisture
distribution. The sample is investigated for different ageing times ex-
posed to 100% r.H. atmospheric conditions. The aged samples for
different times are applied with the tensile boundary conditions in-
consistent with the uni-axial tensile tests. The stress–stretch data is
measured locally at a span of 2 mm from the centre of the sample. For
finite element analysis, the moisture is diffused from two end faces of
the sample for time 𝑡 = 4000 s, 10000 s, 15000 s and 60000 s to prepare
aged samples with inhomogeneous moisture distribution. The aged
samples are applied with the tensile test boundary condition. Fig. 6
shows the schematic representation of the applied boundary conditions.
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Table 2
Material parameters of micromechanical polymer network model at different ambient condition.
Material parameters of micromechanical model

Relaxation times [s] 0% r.H. 29% r.H. 67% r.H. 100% r.H.

Equilibrium 𝑐10 [MPa] 9.183 7.744 6.455 6.052

Non-equilibrium

𝑐101 [MPa] 0.5 5.223 4.654 4.225 4.044
𝑐102 [MPa] 10 4.152 3.654 3.225 3.044
𝑐103 [MPa] 100 3.140 2.654 2.225 2.144
𝑐104 [MPa] 500 2.328 1.543 1.035 1.012
𝑐105 [MPa] 1000 1.582 1.317 0.618 0.404
𝑐106 [MPa] 2500 1.131 1.068 0.326 0.246
𝑐107 [MPa] 5000 0.961 0.778 0.686 0.107

Wesslau parameters Average chain
stretch 𝑀𝜆𝑚

1.194 1.287 1.658 1.931

Polydispersity
index 𝑄

1.001 1.039 1.272 1.367
Fig. 4. Curve fitting of simulation data with experimental data under tensile test at different ambient moisture conditions at 60 ◦C.
The coupled problem is solved by first addressing the diffusion
roblem and then superimposing the moisture distribution on the me-

chanical model to evaluate local mechanical parameters. Consequently,
the 2 mm cross-section model is spatially discretized and the diffusion

aterial parameters listed in Table 1 are applied to prepare aged
samples for different time intervals. Fig. 7 shows a comparison of
moisture distribution along the centre of the sample at different times.
Results indicate that the concentration of moisture molecules diffused
in the sample increases with time and finally reaches an equilibrium
state.

The stiffness parameters at the integration points are calculated
with dry and saturated parameters listed in Table 2 using Eq. (44).
The experimental stretch–stress curves of dry and at 100% r.H. sat-
rated samples are plotted against the simulation results to validate
he coupled material model. It is evident from Fig. 8 that the loss in

the stiffness parameters with increasing moisture concentration results
 i

7 
in lower tensile strength. The sample reaches the equilibrium at time
𝑡 = 60, 000 s, and the simulation results coincide with the test results of
the sample aged at 100% r.H. The simulation results of the sample with
inhomogeneous moisture distribution fall between the dry and 100%
r.H. aged samples validating the proposed coupled material model.

7. Summary and future work

Many recent works have been carried out to develop a coupled
material model to investigate the ageing behaviour of crosslinked poly-
mers. In this paper, crosslinked polyurethane adhesives are used to ex-
amine the influence of moisture on mechanical behaviour. These com-
bined material models, which integrate the phenomenological model
with Fick’s diffusion model, are not suitable for studying the age-
ng behaviour of crosslinked polyurethane adhesives. Therefore, a
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Fig. 5. Exponential decay function to interpolate the material parameters.

Fig. 6. Left and right faces of 2 mm wide cross-section of the tailored tensile sample is
subject to moisture diffusion for time 𝑡 s with no-flux boundaries and then the sample
is uniaxially loaded with a strain rate of 0.0005 s−1.

Fig. 7. Distribution of moisture over the cross-section of the adhesive sample deter-
mined by simulation at different times.

micro-mechanical model is developed and discussed in detail to inves-
tigate the rate-dependent mechanical behaviour. The micro-mechanical
model relies on the statistical analysis of polymer network chains
considering shorter and longer chain length distributions. Wesslau
distribution function is used to define the distribution of chains as a
8 
Fig. 8. Comparison of the stress–stretch curves of the samples with inhomogeneous
moisture distribution with dry and saturated samples at 100% relative humidity in
climate.

function of maximum chain elongation. The distribution function eval-
uates the softening behaviour of material due to the damage/debonding
of shorter chains with an increase in chain elongation. The micro-
mechanical model is extended to rate-dependent mechanical behaviour
by combining spring and Maxwell elements in parallel. In the current
work, seven Maxwell elements are used to model the viscoelastic
behaviour.

The crosslinked polyurethane adhesives exhibit hygroscopic be-
haviour leading to absorption of moisture from the surrounding at-
mosphere. Infrared investigations performed on basic polyurethane
adhesive to study moisture absorption show anomalous diffusion be-
haviour. Langmuir-type diffusion model is used to model the anomalous
diffusion behaviour classifying the diffused moisture into mobile and
immobile moisture concentrations. The micro-mechanical viscoelastic
material model is coupled with the Langmuir-type diffusion model
to investigate the ageing of material with inhomogeneous moisture
distribution. The mechanical and diffusion models are coupled by
using moisture-dependent stiffness parameters by assuming constant
relaxation times irrespective of the moisture condition.

To investigate the ageing behaviour of crosslinked polyurethane ad-
hesives under various humid conditions at a constant temperature, sam-
ples were prepared. Both dry and aged samples were tested for moisture
diffusion behaviour and tensile strength. The resulting data were used
to determine the necessary parameters for the coupled material model.
These parameters were then employed to define the coupling function,
which calculates moisture-dependent stiffness parameters at integration
points to couple diffusion and viscoelastic models. The coupled material
model was validated by comparing the stress–stretch data from the
numerical results of samples with inhomogeneous moisture distribu-
tion to the tensile test results of saturated samples. The comparison
yielded satisfactory results, indicating the model’s potential for further
improvement

In modelling crosslinked polymers, both Gaussian and inverse
Langevin statistics are crucial for investigating material behaviour. The
inverse Langevin chain statistics account for the large deformations
of the chains. Consequently, the free energy function of the micro-
mechanical model needs to incorporate the inverse Langevin chain
statistics. In this study, we assume that swelling deformation due to
moisture diffusion is negligible, as the time required for the sample
to reach saturation is short. However, even a minor swell stretch sig-
nificantly impacts the resulting stresses, thereby affecting the stiffness
parameters of the material model. The plan is to extend the micro-
mechanical model to a polymer chain model based on inverse Langevin
chain statistics. So far, the coupled material model is formulated to
capture one-sided coupling effects, this means that the influence of
diffusion on the mechanical behaviour is captured but not the other
side. Furthermore, the test to investigate the swell stretch needs to
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be performed to extend the coupled model to consider the swelling
ehaviour in the formulation.
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Appendix A. Decomposition of micromechanical energy

The softening-based micromechanical model is an extension of the
model to model viscoelastic behaviour is discussed in Sections 2 and
3. The decomposition of the viscoelastic free energy into shape and
olume-changing parts is discussed in detail to evaluate the constitutive
quations.

A.1. Isochoric part of free energy

The invariants of the deformation tensor are necessary for mod-
elling the micromechanical model. As aforementioned, invariants of
he isochoric and volumetric parts discussed before being substituted
n Eq. (17) to formulate the isochoric part of free energy

𝑊iso(Ī1, 𝜆𝑚) = Ψiso(Ī1)
(

∫

∞

1
𝑔iso(𝜆𝑚)d𝜆𝑚 − ∫

𝜆𝑐

1
𝑔iso(𝜆𝑚)d𝜆𝑚

)

, (A.1)

where the isotropic free energy of material Ψiso is defined with Neo-
Hookean model for simplicity [3]. As a result, the isochoric part of the
micromechanical free energy is

𝑊iso(Ī1, 𝜆𝑚) = 𝑐10
(

Ī1 − 3)
(

1 − ∫

𝜆𝑐

1
𝑔iso(𝜆𝑚)d𝜆𝑚

)

= Ψiso(Ī1)
(

1 − 𝐺iso
(

𝜆𝑐 (Ī1)
))

.
(A.2)

Due to the implicit dependence of 𝐺iso
(

𝜆𝑐 (Ī1)
)

on 𝜆𝑐 (Ī1), the necessary
derivatives are computed using the chain rule to derive stress and
tangent tensors. With the derivative operators 𝜕(⋯)

𝜕 𝜆𝑐 = ̇(⋯) and 𝜕(⋯)
𝜕I1

=
⋯)′, the first and second order derivatives are

𝐺′
iso

(

𝜆𝑐 (Ī1)
)

=
𝜕 𝐺iso
𝜕 𝜆𝑐

𝜕 𝜆𝑐
𝜕Ī1

= �̇�iso𝜆
′
𝑐 ,

′′
iso

(

𝜆𝑐 (Ī1)
)

= 𝜕
𝜕Ī1

(

�̇�iso𝜆
′
𝑐
)

=
𝜕�̇�iso
𝜕 𝜆𝑐

𝜕 𝜆𝑐
𝜕Ī1

𝜆′𝑐 + �̇�iso
𝜕 𝜆′𝑐
𝜕Ī1

= �̈� 𝜆′2 + �̇� 𝜆′′.

(A.3)
iso 𝑐 iso 𝑐

9 
The derivative of isochoric cumulative density distribution 𝐺iso with
respect to actual chain stretch 𝜆𝑐 follows:

�̇�iso
(

𝜆𝑐 (Ī1)
)

=
𝑎0 𝑎2

(

𝜆𝑐 − 1) exp

(

1
4 𝑎1

−

(

1 + 2 𝑎1 ln
(

𝑎2(𝜆𝑐 − 1)))2
4 𝑎1

)

, (A.4)

and the second order derivative of isochoric cumulative density distri-
bution 𝐺iso with respect to actual chain stretch 𝜆𝑐 is calculated as

�̈�iso
(

𝜆𝑐 (Ī1)
)

=
𝑎0 𝑎2

(

𝜆𝑐 − 1)2
exp

(

1
4 𝑎1

−

(

1 + 2 𝑎1 ln
(

𝑎2(𝜆𝑐 − 1)))2
4 𝑎1

)

(

2 + 2 𝑎1 ln
(

𝑎2(𝜆𝑐 − 1))) .
(A.5)

The first and second order derivative of current chain stretch 𝜆𝑐
(

Ī1
)

concerning the first invariant of the isochoric Cauchy–Green deforma-
tion tensor Ī1 are

𝜆′𝑐
(

Ī1
)

= 1
6

(

Ī1
3

)−1∕2

= 1
6
𝜆−1∕2𝑐

𝜆′′𝑐
(

Ī1
)

= − 1
36

(

Ī1
3

)−3∕2

= 1
36

𝜆−3∕2𝑐

(A.6)

The computation of the parameters 𝑎0, 𝑎1 and 𝑎2 are given in Eq. (9).
y combining Eq. (A.4), (A.5) and (A.6), the first and second order

derivatives of free energy 𝑊iso are evaluated to derive the stress and
tangent tensors. The respective derivatives of the free energy function
are
𝑊 ′

iso = 𝐺isoΨ′
iso + 𝐺′

isoΨiso = 𝐺isoΨ′
iso + �̇�iso𝜆

′
𝑐Ψiso,

𝑊 ′′
iso = 𝐺isoΨ′′

iso + 2𝐺′
isoΨ

′
iso + 𝐺′′

isoΨiso

= 𝐺isoΨ′′
iso + 2�̇�iso𝜆

′
𝑐Ψiso +

(

�̈�iso𝜆
′2
𝑐 + �̇�iso𝜆

′′
𝑐
)

Ψiso.

(A.7)

A.2. Volumetric part of free energy

Due to the nearly incompressible behaviour of the material, the
olumetric part of free energy density is dependent on the volume ratio.
ith these considerations, the free energy function is based on the

acobian 𝐽 and the actual chain stretch

𝑊vol(𝐽 , 𝜆𝑚) = Ψvol(𝐽 )
(

∫

∞

1
𝑔vol(𝜆𝑚)d𝜆𝑚 − ∫

𝜆𝑐

1
𝑔vol(𝜆𝑚)d𝜆𝑚

)

, (A.8)

where the volumetric part of free energy is a simple quadratic function
f Jacobian 𝐽 [51]

Ψvol(𝐽 ) = 1
𝐸
(𝐽 − 1)2, wit h 𝐽 =

√

Ī3, (A.9)

where 𝐸 is the compression modulus. By substituting Eq. (A.9) in (A.8)
leads to the volumetric part of the micromechanical free energy

𝑊vol(𝐽 , 𝜆𝑚) = 1
𝐸
(𝐽 − 1)2

(

1 − ∫

𝜆𝑐

1
𝑔vol(𝜆𝑚)d𝜆𝑚

)

= 1
𝐸
(𝐽 − 1)2(1 − 𝐺vol

(

𝜆𝑐 (𝐽 )
)

).
(A.10)

First-order derivative of volumetric cumulative density distribution
function 𝐺′

vol
(

𝜆𝑐 (𝐽 )
)

is derived because of the implicit dependence on
the Jacobian 𝐽

𝐺′
vol

(

𝜆𝑐 (𝐽 )
)

=
𝜕 𝐺vol
𝜕 𝜆𝑐

𝜕 𝜆𝑐
𝜕 𝐽 = �̇�vol𝜆

′
𝑐 wher e 𝜆𝑐 (𝐽 ) = 𝐽 1∕3. (A.11)

The second order derivative of the volumetric form of cumulative
density distribution function 𝐺′′

vol
(

𝜆𝑐 (𝐽 )
)

can be derived by applying
he chain rule

𝐺′′
vol

(

𝜆𝑐 (𝐽 )
)

= 𝜕
𝜕 𝐽

(

�̇�vol𝜆
′
𝑐
)

=
𝜕�̇�vol
𝜕 𝜆𝑐

𝜕 𝜆𝑐
𝜕 𝐽 𝜆′𝑐 + �̇�vol

𝜕 𝜆′𝑐
𝜕 𝐽

= �̈� 𝜆′2 + �̇� 𝜆′′.
(A.12)
vol 𝑐 vol 𝑐
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�̇�vol
(

𝜆𝑐 (𝐽 )
)

given in Eq. (A.11) is computed as the partial derivative of
vol

(

𝜆𝑐 (𝐽 )
)

with current chain stretch 𝜆𝑐 (𝐽 )

�̇�vol
(

𝜆𝑐 (𝐽 )
)

=
𝑎0𝑎2

(

𝜆𝑐 − 1) exp

(

1
4 𝑎1

−

(

1 + 2𝑎1 ln
(

𝑎2(𝜆𝑐 − 1)))2
4 𝑎1

)

, (A.13)

and �̈�vol
(

𝜆𝑐 (𝐽 )
)

required in derivation of Eq. (A.12) is

�̈�vol
(

𝜆𝑐 (𝐽 )
)

=
𝑎0𝑎2

(

𝜆𝑐 − 1)2
exp

(

1
4 𝑎1

−

(

1 + 2𝑎1 ln
(

𝑎2(𝜆𝑐 − 1)))2
4 𝑎1

)

(

2 + 2𝑎1 ln
(

𝑎2(𝜆𝑐 − 1))) .
(A.14)

First and second order derivatives of the current chain stretch 𝜆𝑐 (𝐽 )
eeded to derive Eq. (A.11) and (A.12) are

𝜆′𝑐 (𝐽 ) =
1
3
𝐽−1∕3 = 1

3
𝜆−1vol,

′′
𝑐 (𝐽 ) = −1

9
𝐽−4∕3 = −1

9
𝜆−4vol.

(A.15)

To evaluate of stress and tangent tensors of the desired material model,
one must derive first and second-order derivatives of the free energy
function. The first- and second-order derivatives of the volumetric part
of micromechanical free energy density 𝑊vol are
𝑊 ′

vol = 𝐺volΨ′
vol + 𝐺′

volΨvol = 𝐺volΨ′
vol + �̇�vol𝜆

′
𝑐Ψvol

𝑊 ′′
vol = 𝐺volΨ′′

vol + 2𝐺′
volΨ

′
vol + 𝐺′′

volΨvol

= 𝐺volΨ′′
vol + 2�̇�vol𝜆

′
𝑐Ψvol +

(

�̈�vol𝜆
′2
𝑐 + �̇�vol𝜆

′′
𝑐
)

Ψvol.

(A.16)

Appendix B. Stress and elasticity tensors

The stress tensor in the updated Lagrangian formulation is obtained
by applying a push-forward operation over the second Piola–Kirchhoff
stress tensor. The stress tensor involved in the updated Lagrangian
formulation is the Kirchhoff stress tensor 𝝉 or the Cauchy stress tensor
𝐓. In here, the Cauchy stress tensor 𝐓 is calculated from the Kirchhoff
stress tensor 𝝉, where the Kirchhoff stresses 𝝉 are

𝝉eq
(

�̄�, 𝜆𝑚
)

= 2𝐁 ⋅
𝜕 𝑊eq

(

Ī�̄�1 , 𝜆𝑚
)

𝜕𝐁
= 2𝐽−2∕3 (𝑊eq

)′
(

�̄� − 1
3
Ī�̄�1 𝐈

)

;

𝝉vol
(

𝐽 , 𝜆𝑚
)

= 2𝐁 ⋅
𝜕 𝑊vol

(

𝐽 , 𝜆𝑚
)

𝜕𝐁
= 𝐽 𝑊vol𝐈;

𝑗
neq

(

�̄�𝑗
𝑒, 𝜆𝑚

)

= 2�̄�𝑗
𝑒 ⋅

𝜕 𝑊 𝑗
neq

(

Ī�̄�
𝑗
𝑒

1 , 𝜆𝑚
)

𝜕�̄�𝑗
𝑒

= 2𝐽−2∕3
(

𝑊 𝑗
neq

)′
(

�̄�𝑗
𝑒 −

1
3
Ī�̄�

𝑗
𝑒

1 𝐈
)

.

(B.1)

and the Cauchy stresses are calculated

𝐓 = 𝐽−1𝝉 . (B.2)

In non-linear finite element simulation the solution is often solved
incrementally using Newton’s method and computation of the tan-
gent is crucial for the solution. The tangent tensor of the softening
micromechanical free energy is

4
𝜿 = 4𝐁 ⋅

𝜕2 𝑊
(

Ī�̄�1 , Ī
�̄�𝑗
𝑒

1 , 𝐽 , 𝑚
)

𝜕𝐁 𝜕𝐁
⋅ 𝐁 =

4
𝜿eq +

4
𝜿vol +

4
𝜿neq,

4
𝜿eq = 4𝐁⋅

𝜕2𝑊eq

(

Ī�̄�1 , 𝑚
)

𝜕𝐁 𝜕𝐁
⋅ 𝐁;

4
𝜿vol = 4𝐁 ⋅

𝜕2𝑊vol (𝐽 , 𝑚)
𝜕𝐁 𝜕𝐁

⋅ 𝐁,

4
𝜿neq = 4�̄�𝑗

𝑒⋅

𝜕2𝑊 𝑗
neq

(

Ī�̄�
𝑗
𝑒

1 , 𝑚
)

𝜕�̄�𝑗
𝑒 𝜕�̄�

𝑗
𝑒

⋅ �̄�𝑗
𝑒.

(B.3)

The individual components of the spatial elasticity tensor take the form
10 
4
𝜿eq = 4

(

𝑊eq

(

Ī�̄�1 , 𝑚
))′

(

𝐈⊗ �̄�
)𝑠24 + 4

(

𝑊eq

(

Ī�̄�1 , 𝑚
))′′

(

�̄�⊗ �̄�
)

−

4
3

(

Ī�̄�1
(

𝑊eq

(

Ī�̄�1 , 𝑚
))′′

+
(

𝑊eq

(

Ī�̄�1 , 𝑚
))′

)

(

�̄�⊗ 𝐈 + 𝐈⊗ �̄�
)

+

4
9

(

(

Ī�̄�1
)2 (

𝑊eq

(

Ī�̄�1 , 𝑚
))′′

+ Ī�̄�1
(

𝑊eq

(

Ī�̄�1 , 𝑚
))′

)

(𝐈⊗ 𝐈)

4
𝜿vol =

(

𝐽 2 (𝑊vol (𝐽 , 𝑚)
)′′ + 𝐽

(

𝑊vol (𝐽 , 𝑚)
)′
)

𝐈⊗ 𝐈

4
neq = 4𝑊 ′

neq

(

Ī�̄�
𝑗
𝑒

1 , 𝑚
)

(

𝐈⊗ �̄�
)𝑠24 + 4𝑊 ′′

neq

(

Ī�̄�
𝑗
𝑒

1 , 𝑚
)

(

�̄�⊗ �̄�
)

−

4
3

(

Ī�̄�
𝑗
𝑒

1 𝑊 ′′
neq

(

Ī�̄�
𝑗
𝑒

1 , 𝑚
)

+𝑊 ′
neq

(

Ī�̄�
𝑗
𝑒

1 , 𝑚
))

(

�̄�⊗ 𝐈 + 𝐈⊗ �̄�
)

+

4
9

(

(

Ī�̄�
𝑗
𝑒

1

)2
𝑊 ′′

neq

(

Ī�̄�
𝑗
𝑒

1 , 𝑚
)

+ Ī�̄�
𝑗
𝑒

1 𝑊 ′
neq

(

Ī�̄�
𝑗
𝑒

1 , 𝑚
)

)

(𝐈⊗ 𝐈) .

(B.4)

In the definition of the isochoric component of the equilibrium 𝑊eq
and non-equilibrium 𝑊 𝑗

neq of 𝑗th Maxwell element free energy func-
tions are motivated by the Neo-Hook energy function for its simplicity
which is required to implement the viscoelastic material model based
on micromechanical material model. Based on the fundamental idea
iscussed in the development of the viscoelastic material model, the
icromechanical free energy functions take the form

Ψeq

(

Ī�̄�1
)

= 𝑐10
(

Ī�̄�1 − 3
)

r esult s in𝑊eq = Ψeq

(

Ī�̄�1
)

𝐺
(

𝜆𝑐
(

Ī�̄�1
))

,

𝑗
neq

(

Ī�̄�
𝑗
𝑒

1

)

= 𝑐10𝑗

(

Ī�̄�
𝑗
𝑒

1 − 3
)

r esult s in𝑊 𝑗
neq = Ψeq

(

Ī�̄�
𝑗
𝑒

1

)

𝐺
(

𝜆𝑐

(

Ī�̄�
𝑗
𝑒

1

))

,

(B.5)

and the free energy for the volumetric component of the equilibrium
part is introduced with a quadratic function of Jacobian as follows

𝛹vol (𝐽 ) =
1
𝐸

(𝐽 − 1)2 r esult s in𝑊vol = 𝛹vol (𝐽 )𝐺
(

𝜆𝑐 (𝐽 )
)

, (B.6)

where 𝐷 corresponds to the shear modulus. When 𝐽 = 1 the material
corresponds to the incompressible material. The first and second-order
erivatives of the volumetric free energy are given in Eq. (A.16)

Appendix C. Modelling transport of moisture

The diffusion of moisture in the crosslinked polyurethane adhesive
is modelled here with the Langmuir-type diffusion model [22], so that
he dispersion of moisture concentration into mobile and immobile
oisture concentrations are taken into consideration. The Langmuir-

ype diffusion model is formulated as follows:

̇ = 𝐷 𝛥𝑚𝑓 = 𝐷 div
(

g r ad (𝑚 − 𝑚𝑏
))

, (C.1)

where 𝐷 is diffusion coefficient, 𝑚𝑓 is the mobile moisture concentra-
tion, 𝑚𝑏 is immobile moisture concentration and 𝑚 = 𝑚𝑓 + 𝑚𝑏 is total

oisture concentration. The moisture distribution along the material is
haracterised by 𝑚 = 0 for the dry state and 𝑚 = 𝑚eq for the equilibrium
tate. The diffusion Eq. (C.1) is supplemented by an evolution equation

to compute immobile moisture concentration 𝑚𝑏

�̇�𝑏 = 𝛼 𝑚𝑓 − 𝛽 𝑚𝑏. (C.2)

The simple idea behind the evolution equation is that moisture is bound
faster when there is a large amount of mobile moisture. In contrast,
when the bound moisture concentration is large, a significant amount
of mobile moisture is released to become mobile. The two constants 𝛼
and 𝛽 describe the time constants of these two effects. An equilibrium
moisture distribution occurs when the time derivative of the immobile
moisture concentration of the evolution equation becomes zero. As a
result, the evolution equation leads to
𝛼 𝑚eq

𝑓 = 𝛽 𝑚eq
𝑏 . (C.3)
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The mobile and immobile concentration at the equilibrium condition
is evaluated by substituting total moisture concentration in Eq. (C.3).
The resulting mobile and immobile moisture concentrations are

𝑚eq
𝑓 = 𝑚eq

1 + 𝛼∕𝛽
, 𝑚eq

𝑏 =
𝑚eq𝛼∕𝛽
1 + 𝛼∕𝛽

. (C.4)

Both boundary and initial conditions are needed to solve the Langmuir
model. The initial conditions are defined for the entire material volume
Ω at the time 𝑡0 = 0 given

𝑚 (𝐱, 𝑡 = 0) = 𝑚 (𝐱) , 𝑚𝑏 (𝐱, 𝑡 = 0) = 𝑚𝑏0 (𝐱) , (C.5)

where the spatial functions of the total moisture concentration 𝑚 (𝐱)
and the bound moisture concentration 𝑚𝑏0 (𝐱) are used to define the
initial condition of moisture distribution. The boundary conditions are
discretised into Dirichlet and Neumann conditions. On the Dirichlet
boundaries, 𝜕Ω𝐷

𝑚 is defined with the concentration values as the Dirich-
let boundary condition. In contrast, the Neumann boundary 𝜕Ω𝑁

𝐪 is
applied with the moisture flux. The boundary surfaces need to satisfy
the condition

𝜕Ω𝐷
𝑚 ∪ 𝜕Ω𝑁

𝐪 = 𝜕Ω, 𝜕Ω𝐷
𝑚 ∩ 𝜕Ω𝑁

𝐪 = ∅ (C.6)

over the entire material volume Ω. The Dirichlet boundaries are applied
ith the moisture concentration as follows

𝑚 (𝑚(𝐱, 𝑡)) = 𝑚eq ∀ 𝐱 ∈ 𝜕Ω𝐷
𝑚 (C.7)

and the moisture flux is applied on the Neumann boundaries, and the
Neumann boundary condition is given as:

𝐪 ⋅ 𝐧 = 𝐷g r ad𝑚𝑓 ⋅ 𝐧 = 𝐪 (𝐱, 𝑡) ∀ 𝐱 ∈ 𝜕Ω𝑁
𝐪 . (C.8)

As a result, the moisture flux takes the form

𝐪 = 𝐷
𝜕 𝑚𝑓

𝜕𝐱
= 𝐷g r ad𝑚𝑓 (C.9)

where 𝐧 is the normal outward vector on the boundary.

Data availability

Data will be made available on request.
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