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Abstract
Acolddilute atomic gas in anoptical resonator canbe radiatively cooledby coherent scatteringprocesses
when thedriving laser frequency is tuned close tobutbelow the cavity resonance.When the atomsare
sufficiently illuminated, their steady state undergoes aphase transition fromahomogeneousdistribution to
a spatially organizedBragggrating.Wecharacterize thedynamics of this self-orderingprocess in the semi-
classical regimewhendistinct cavitymodeswith commensuratewavelengths arequasi-resonantlydrivenby
laserfields via scatteringby the atoms.The lasers are simultaneously applied anduniformly illuminate the
atoms; their frequencies are chosen so that the atomsare cooledby the radiative processes, and their
intensities are either suddenly switchedor slowly rampedacross the self-ordering transition.Numerical
simulations fordifferent rampprotocols predict that the systemwill exhibit long-livedmetastable states,
whoseoccurrence stronglydependson the initial temperature, rampspeed, and thenumberof atoms.

1. Introduction

Laser light creates an attractive optical potential for cold atomswhen far detuned below an optical transition.
Such potential can be significantly enhanced if the light is confined by an optical resonator [1–4]. In addition, if
the laser illuminates the atoms, trapping is induced by a dynamical optical potential emerging from the
interference between the scattered light and the laser, which tends to order the particles at themaxima of the
intensity [4, 5]. The interference contrast and thus the trapping depends on the relative positions of the
scattering atoms. Therefore, this phenomenon can be also understood in terms of an effective long-range force,
which ismediated by the collectively scattered photons [5–9]. This force also has a dissipative component, which
is due to the dissipative nature of the resonator andwhich cools the atomswhen the pump is tuned below the
cavity resonance [3, 10]. Theoretical studies with single-mode resonators have predicted that this dissipation can
establish long-range correlations and support the onset ofmetastable ordered structures [11, 12].

In amultimode cavity and for several illumination frequencies, competing ordering processes are present
and lead to richer phase dynamics. In a two-mode cavity, like the one depicted infigure 1(a), the transition to
self-organization can be a phase transition of the first or second order depending on the laser intensities and on
their relative strength [13]. The corresponding self-ordered phases can exhibit superradiant scattering either in
one or in both cavitymodes, as illustrated infigure 1(b), while the asymptotic distribution of the atoms can be
thermal provided that the lasers’ frequencies are suitably chosen [13]. In our example the particles can order in a
lattice at a given length scaleλ and/or on a lattice with half the period l 2. For these settings we numerically
analyze the semi-classical dynamics following sudden quenches or slow ramps of the laser intensities across the
thresholds separating the homogeneous fromone of the self-organized phases.We describe the evolution by
stochastic differential equations, which correspond to the Fokker–Planck equation derived in [14] for a similar
system.Wefind that even at very long times the atoms’ spatial distribution strongly depends on the initial
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temperature, ramp speed, and quench protocol, such that the system gets trapped in long-livedmetastable
states. In particular, for quenches startingwith ensembles at low temperatures, the buildup of long-range order
requires longer times than that for higher initial temperatures does.

Ourwork is organized as follows: in section 2we introduce the system and the semi-classical equations
describing the dynamics. The atoms’ stationary properties are then summarized in a phase diagram,which is
derived from [13]. In section 3we numerically study the real-time dynamics when the parameters are varied
within the phase diagram according to different quench protocols. In section 4we analyze the dynamics of the
distributions from the spatially homogeneous to the organized oneswith differentmomentumwidths. In
section 5we compare the predictions of the stochastic differential equationswe employwith an extended
approach including the dynamical evolution of the fieldmodes introduced in [15, 16]. Conclusions are drawn
and future perspectives are discussed in section 6.

2. Semi-classical dynamics

The systemwe consider consists of a gas ofN cold atomswithmassm, which are trapped inside a high-finesse
optical resonator and coherently scatter laser light into the cavitymodes. The atomicmotion is confined along the
cavity axis (here the x axis)by a tight external dipole trap [17, 18] and is here described in the semi-classical limit.

The geometry of the setup is illustrated infigure 1. Lasers with (rescaled) intensity an propagate in a
direction orthogonal to the cavity axis and are quasi-resonant with the standingwave cavitymodes ( )nkxcos
with frequency w nc, andwave number nk ( =n 1, 2)5. The lasers have frequency w np, and linear polarization,
which is parallel to that of the corresponding cavitymode. Each pair of laser and cavitymode couples to an
atomic dipolar transition at frequency w na, , where W np, and gn are the laser and vacuumRabi frequency,
respectively. Spontaneous scattering processes are suppressedwhen the absolute value of the detuning

w wD = -n n na, p, a, exceeds the coupling strength and the detuning w wD = -n n np, c, between the laser and
cavitymode by orders ofmagnitude: D W D∣ ∣ ∣ ∣g, ,n n n na, p, . The relevant dissipative process is given by cavity
decay, andwe denote by kn the loss rate of cavitymode =n 1, 2.

In the so-called bad cavity limit, assuming that the cavity field loss rates are faster than the rate of the
dynamics of the atomicmotion, one can eliminate the cavity field variables from the equations ofmotion of the
atoms bymeans of coarse graining in time. This gives rise to an effectivemodel, where the atoms experience a
long-range interactionmediated by the cavity photons, while retardation effects and fluctuations of the cavity
field are responsible for friction forces and diffusion. In the semi-classical limit one can derive a Fokker–Planck
equation for the atoms’ position andmomentumdistribution, assuming that the single-atommomentum
distribution has awidthDp which, at all instants of time, is orders ofmagnitude greater than the photon recoil
k: D p k [13, 14, 20]. The corresponding stochastic differential equations read as

Figure 1. (a)Cold atoms are confinedwithin an optical cavity andmove along the cavity axis (x axis). They coherently scatter photons
from transverse lasers with rescaled amplitudes a1 and a2 into the (correspondingly) resonant cavitymodes with spatialmode
functions ( )kxcos (red) and ( )kxcos 2 (green) and loss rates k1 and k2, respectively. (b) Sketch of the atomic density distribution ( )n x
along the cavity axis (in units of k1 ) for the four possible stationary self-organized orders. On the right we report the corresponding
values of the quantitiesQ1 andQ2, which signal the Bragg order inmodes 1 and 2, respectively. See text and [13] for details.

5
This can be realised by assuming w w w= º2 2c,2 c,1 c, which yields = ºk k k2 22 1 . Another possible realisation, where w w»c,1 c,2, has

been discussed in [13]; it uses two optical single-mode cavities crossing at an angle of 60°. For a similar experimental setup see also [19].
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quantifies the Bragg ordering of the atoms in the cavitymodewithwave number nk. In particular, Q =∣ ∣ 1n

when the atoms are localized either at themaxima or at theminima of ( )nkxcos , which is the configuration
whichmaximizes the intracavity field intensity.We identifyQn with the order parameter for self-organization in
the corresponding cavitymode [13]. Below,we denote by ‘long-wavelength order’ any configurationwith a non-
vanishing value ofQ1, corresponding to a Bragg gratingwith period l p= k2 . Similarly, ‘short-wavelength
order’ refers to a configurationwithQ ¹ 02 , corresponding to a Bragg gratingwith l 2. Note that here and in
the rest of the paper we discard the dynamical Stark shift of the cavity frequency assuming that this ismuch
smaller than the cavitymode linewidth kD ∣ ∣Ng

n n n
2

a, . For details refer to [13].

2.1. Stationary states
Analysis of the Fokker–Planck equation on the basis of equation (1) allows one to identify the conditions for the
existence of a stationary state. This state exists provided thatD < 0n and b b b= º1 2 (see equation (5)). In this
case the atoms’ distribution in the steady state reads as [13]
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while  b( ) denotes the partition function:
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with l p= k2 and pD = 2 as the single particle unit phase space volume. In the followingwe assume that the
cavity decay rates are equal,

k k k= ≕ ( ), 111 2

so that the condition for the existence of the stationary state in equation (8) becomes

D = D D <≕ ( )0. 121 2 c

The phase diagramof the system can be determined by using the steady state, equation (8), in the formof a
thermal state. On the basis of this observationwe introduce the temperatureT of the stationary state, which is
defined as
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with kB as the Boltzmann constant. The steady-state temperatureThas the same functional dependence onDc

andκ as for a single-mode cavity [7, 14].We can further define the free energy per particle  using formal
equivalencewith the canonical ensemble of equilibrium statisticalmechanics [7]:

 
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Following the procedure detailed in [7, 12, 13]we can calculate  as
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Here w = ( )/k m2r
2 is the recoil frequency.We determine the value of  in an appropriately defined

thermodynamic limit, which consists in keeping an constant for  ¥N . The globalminima of F are the
resulting stationary phases. The corresponding points q q( ),1,min 2,min where F achieves itsminimumare the
stationary values for the order parameters qQ =1 1,min and qQ =2 2,min; they are determined by a1 and a2.
When thefields are sufficiently weak, thenQ = Q = 01 2 , the density is homogeneous and there is no structural
order.We call this phase paramagnetic, borrowing the notation of the generalizedHamiltonianmean-field
model (GHMF) [21–23] towhich thismodel can bemapped. The possible ordered phases in the steady state are
illustrated infigure 1(b) and take one of four sets of values. In particular, the ferromagnetic phase is characterized
by (i)Q > 01 ,Q > 02 , and (ii)Q < 01 ,Q > 02 , exhibiting Bragg order in both cavitymodes. In contrast, the
nematic phases, (iii) and (iv), are characterized by no order in the long-wavelengthmode,Q = 01 , whileQ2 can
be either negative or positive.

We note that the spatial distributions depicted infigure 1(b) corresponding to phases (i), (ii), (iii), and (iv) are
only possible configurations out ofmany. For example configuration (i) can also correspond to all atoms sitting
at one site =kx 0. Order here refers to Bragg gratings corresponding to the long- and short-wavelengthmodes.
No long-wavelength order is found in the case ofQ = 01 , where photons scattered into the long-wavelength
mode destructively interfere. However,Q1 cannot givemore detailed information about the positions of the
atoms in the long-wavelengthmode. The same is true for short-wavelength order andQ2.

The resulting phase diagram in the a a-1 2 plane, shown infigure 2, reproduces that in [13]. The phases are
separated by eitherfirst- or second-order transitions, which have been determined using Ehrenfestʼs criterion
[23]. The shaded areas show stability regions inwhich the free energy has a localminimum that corresponds to
the paramagnetic (dark gray region) and nematic (light gray region) phases. Examples of the free-energy
landscape in theQ - Q1 2 plane are shown in subplots (b) and (c). Subplot (b) corresponds to the parameters of
the red bullet labeled (b) in subplot (a): Here, the free energy exhibits two symmetric globalminimawhich
correspond to the ferromagnetic phase. In subplot (c), which corresponds to the parameters of the red bullet
labeled (c), there is an additional localminimumcorresponding to a nematic phase. In the latter there is only
ordering in the short-wavelength lattice, whileQ = 01 .We call this region bistable, which refers to the existence
of a second,metastable state inwhich the system can be dynamically trapped.

3.Dynamics of self-organization

Wenow examine the dynamics of the systemwhen the values of a1 and a2 are varied as a function of time.
Experimentally, this corresponds to varying the pump laser intensities or their detuningwith respect to the
cavitymode frequencies. At time t=0we assume that the system is prepared in the stationary state of a
paramagnetic phase, described by the distribution in equation (8), by setting a a=  1n ni in equation (9)
( =n 1, 2). The values an appearing in the equations ofmotion (1) are then varied in time, by performing either
(i) a sudden quench, i.e. a sudden switching of the values to a1f and a2f , or (ii) a slow quench, which consists in
varying a ( )tn monotonically and continuously in time towards the final values a1f and a2f .We choose thefinal
values anf in the ferromagnetic phase. The quench protocols we consider are illustrated by the green lines in
figure 2(a): for sudden quenches, the initial andfinal values are two points connected by a green line. A slow
quench sweeps across the intermediate points along the line.We are interested in determining the dynamics
leading to the steady state.

4
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Inwhat followswe performnumerical simulations of equation (1) using the parameters of a gas of 85Rb
atoms. In particular, we take p l=k 2 with l = 780 nm as thewavelength of theD2 line. The corresponding
recoil frequency is w p= ´2 3.86 kHzr . The cavity linewidth is taken to be k p= ´2 1.5 MHz, so that
k w» 388.6 r. A possible realization of the two-mode setup here considered has been discussed in [13, 19].

3.1. Sudden quench into the ferromagnetic phase
Wefirst consider sudden quenches from a a,1i 2i in the paramagnetic phase to a a,1f 2f in the ferromagnetic
phase, keeping a a a a= = 51i 2i 1f 2f . The initial values are vanishingly small and the atoms are at the
corresponding stationary distribution, which is a thermal distribution at the temperature determined by the
corresponding detuning, equation (13), with homogeneous density. The detuning before and after the quench is
taken to be equal; thus it is expected that the atoms reach a thermal distributionwith the same temperature as the
initial state.

Figure 3 shows the distribution  Q( )t for order parametersQ1 andQ2 as a function of time for
a a =( ) ( ), 2.5, 0.51f 2f . It is defined as a time sequence of normalized histograms:

 Q =
# Q Î Q - D Q + D

# ´ D
Q Q

Q
( ) ( ) [ ] ( )ttrajectories with 2, 2

trajectories
, 18t

whereΘ is calculated on each trajectory of the simulationswith the stochastic differential equations and its value
is determined according to the precisionDQ of the grid inΘ.We observe that at a given time scale of the order of

k102 ,  Q( )t 1 splits into two branches corresponding to twopossible orders in the long-wavelength lattice. This
symmetry breaking is well known from the single-mode case [5]. The order parameter of the short-wavelength
modeQ2, which is weakly pumped, substantially grows to a positive value long after the symmetry breaking. The
fact that  Q( )t 2 vanishes for negativeQ2 values comes from the ordering of the atoms close to the anti-nodes of
the dominant long-wavelengthmodefield ( )kxcos (see figure 1).

The distributions  Q( )n at the asymptotics are reported in the right panels offigure 3. They are obtained by
averaging  Q( )t n over times  kt 106 , where a stable configuration is reached. Formally

Figure 2. (a)Phase diagramof the stationary phases, corresponding to the globalminima of equation (16), in plane a a-1 2. Blue
(yellow) lines indicate second (first) order phase transitions. The light gray area (dark gray area)within the ferromagnetic phase
indicates the parameter regionwhere the nematic (paramagnetic) phase is the localminimumof the free energy. The red circles
labeled (b) and (c) indicate the parameters forwhich the contour plots of free energy in subplots (b) and (c) are shown in theQ - Q1 2

landscape. The free energy in subplot (b) exhibits two globalminima atQ = 0.921 andQ = 0.73;2 in (c) the two globalminima of
the ferromagnetic phase are atQ = 0.971 andQ = 0.882 , and the localminimum in the nematic phase is atQ = 01 and
Q = -0.832 (the contour of  is below a convenient threshold). The green dash–dot lines in subplot (a) illustrate the paths of the
quench protocols discussed in section 3. Circle (d) indicates the parameters of the quench discussed in section 3.3.
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 åQ = Q
=

( ) ( ) ( )N , 19
i

N

t t
1

t

i

whereNt is the number of instants of times at which the distribution is sampled in the interval [ ]t t,1 f , with
k=t 101

6 and = >t t tNf 1t
. Comparing thewidths of the distributions in the right panels offigure 3 one

observes that after sufficiently long times the long-wavelength order parameter fluctuates less than the short-
wavelength order parameter.

Figures 4(a)–(b) display the dynamics of themean absolute value of the order parameters for different values

ofN. Figure 4(c) shows the time evolution of the fluctuations of the order parameters dQ = áQ ñ - á Q ñ∣ ∣n n n
2 2

forN=100 particles. The order parameters asymptotically tend to the values predicted by the free energy,
indicated by the horizontal dashed lines, for a time scale of the order of k106 .Meanwhile thefluctuation dQ1

relaxes to amuch smaller value than the asymptotic value of dQ2 reproducing thewidths of the distributions in
the right panels infigure 3. The time evolution of á Q ñ∣ ∣1 , in particular, is reminiscent of the one observed for
quenches into the ferromagnetic phase in a single-mode resonator [11]. It can be separated into three stages
whichwe call (in order of their temporal appearance) (i) violent relaxation, which corresponds to an exponential
increase of the absolute value of the order parameter á Q ñ∣ ∣ ;1 (ii) transient dynamics, which corresponds to
power-law scaling with time; and (iii) the relaxation phase, where themean values tend exponentially towards
the asymptotic value. Violent relaxation can be described by amean-fieldmodel [12]; in the transient stage
coherent dynamics prevails, while the relaxation stage is dominated by dissipation [11]. The transient and
relaxation stages are characterized by time scales which increase withN but have different functional
dependence [12]. The time scale k106 can here be identified as the one at which the asymptotic state is reached
for N 200, while for larger numbers of particles longer time scales shall be considered.

Interestingly, in the transient phase there is ordering only in the long-wavelengthmode of the cavity, while
ferromagnetic order isfinally established by dissipation on a longer time scale. Themetastable phase of the
transient dynamics can therefore be denoted by ‘nematic’: its lifetime increases withN and for ~N 200 it is of
the order of k~t 104 . However, thismetastable nematic state cannot be understood in terms of the landscape
of the free energy, but rather seems to exhibit the features of a quasi-stationary state due to long-range coherent
dynamics analogous to that reported in [22]. This conjecture is also supported by the behavior of the single-
particle kinetic energy and of the kurtosis  = á ñ á ñp p4 2 2, which are shown infigure 5. The latter quantifies the
deviation of themomentumdistribution fromaGaussian one, for which it takes a value of = 3Gauss . For these
quantities we observe that in themetastable nematic phase the kinetic energy grows, while the distribution is
non-thermal. Ordering in the second, short-wavelength lattice is accompanied by cooling into a thermal
distribution.

Wenow compare the numerical results with the analytic theory for different quenches with the same initial
values of a a , 11i 2i but with different endpoints a a,1f 2f .We take different endpoints from the paramagnetic
to the ferromagnetic phase, under the constraint a a = 51f 2f . The circles infigure 6 correspond to the
numerical results for 100 particles at time k>t 10f

6 , wherewe expect the system to reach the steady state.

Figure 3.Dynamics following a sudden quench from a a , 11i 2i to a = 2.51f , a = 0.52f with the detuning kept constant
kD = -c . The left panels display the contour plots of distribution  Q( )t (equation (18)) forQ = Q1 andQ = Q2 as a function of

time (in units of k1 ). The distribution is extracted fromnumerical simulations using equation (1) forN=100 atoms and 1000
trajectories. The grid inΘ for the left panels has aminimum step D =Q 2 111; the grayscale gives the relative weight. The right panels
display the distributions  Q( )1 and  Q( )2 as a function ofQ1 andQ2, respectively (see equation (19)). Here, the time average is
obtained for =N 113t instants of time chosen between k=t 101

6 and k= ´t 3.77 10f
6 . The vertical dashed lines in the left

panelsmark the instant of time k=t 101
6 .
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These are in good agreement with the analytical results (dashed lines) based on an evaluation of the
corresponding observables at the globalminimumof the free energy. The interval where á Q ñ∣ ∣n grows
monotonically from~ N1 to the value of the ferromagnetic phase is expected to shrink asN is increased, in
agreementwith a second-order phase transition at the thermodynamic limit. Further information on the onset
of this ferromagnetic order can be gained by the probability Q <( )P 0t 2 thatQ2 is negative at t:

òQ < = Q Q
-

( ) ( ) ( )P 0 d . 20t t2
1

0

2 2

Wenote that in the paramagnetic phase (homogeneous spatial distribution)we expect Q < ( )P 0 0.5t 2 . In
contrast, due to the givenmode structure we expect that Q < ( )P 0 0t 2 for long-wavelength ordering in the
ferromagnetic phase. Indeed, as a1f increases across the critical value, Q <( )P 0t 2 quickly drops down to zero.

3.2. Sudden quenches into the bistable phase
Wenow turn to the dynamics following sudden quenches from the paramagnetic to the ferromagnetic phase but
following the right path offigure 2(a), which consists in equal effective pumping a a a a= = 11i 2i 1f 2f . In this
parameter region (the bistable phase) the free energy exhibits a localminimum,which is nematic. As in the

Figure 4.Dynamics of (a) á Q ñ∣ ∣1 , (b) á Q ñ∣ ∣2 , and (c) theirfluctuations dQ = áQ ñ - á Q ñ∣ ∣n n n
2 2 as a function of time (in units of k1 ).

The parameters and quench protocol are the same as in figure 3; the curves are however evaluated for different numbers of atoms and
of trajectories. In (a) and (b) the data correspond to =N 25, 50, 100, 200 particles (see legends for color code) and respectively
1000, 500, 250, 125 trajectories. The horizontal dashed lines indicate the values predicted by the globalminimumof the free energy in
equation (16). Thefinite values of the order parameters at t=0 are due to finite size effects, pá Q ñ =∣ ( )∣ N0 1n . The curves in (c)
are calculated forN=100 and 250 trajectories.
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previous case, the initial values a a,1i 2i are vanishingly small and the atoms are at the corresponding stationary
distribution, whose temperature is determined by the detuningDc andwhose spatial density is homogeneous.
The quench is performed by switching the laser powerwhile keeping the detuning constant; thus the atoms
should reach a thermal distributionwith the same temperature as the initial state.

Figure 7 shows the time evolution of the trajectories’Θ-distribution for a a= = 21f 2f and kD = -c . In
contrast to the previous section, here a finite fraction of trajectories gets trapped in the nematic phase with a
vanishing value ofQ1 and afinite probability thatQ2 takes negative values. This is visible in the small extra peaks
in  Q( )1 and  Q( )2 (right panels). The trapping occurs at the time scale of the violent relaxation, and it seems
stable over times of the order of k106 .We conjecture that it also persists at asymptotic times. Infigure 8 the
time evolution of themean absolute value of the order parameters is shown for different numbers of particles.
While á Q ñ∣ ∣2 reaches the same stationary value (in reality its value decreases slightly withN), the asymptotic value

Figure 5.Dynamics of (a) the single-particle kinetic energy á ñp m22 (in units of wr) and (b) kurtosis  = á ñ á ñp p4 2 2 for
=N 25, 50, 100, 200 particles (see legends) and respectively 1000, 500, 250, 125 trajectories. The other parameters and quench

protocol are the same as in figure 4. The horizontal dashed line in (a) indicates the asymptotic value predicted by equation (13).

Figure 6.Asymptotic values of á Q ñ∣ ( )∣t1 f , á Q ñ∣ ( )∣t2 f , and Q <( )P 0t 2f , equation (20), as a function of a1f . The quenches start from the
same initial values in the paramagnetic phase (a a , 11i 2i and kD = -c ) and end upwith different values a a,1f 2f with a a= 51f 2f

(lying along the left green line infigure 2(a)) and kD = -c . The circles correspond to the results of the numerical simulations at
k= ´t 3.77 10f

6 withN=100 particles and 250 trajectories. The dashed lines indicate the predictions of the globalminima of
equation (16).
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of á Q ñ∣ ∣1 decreases asN grows. This suggests that the probability that the dynamics gets trapped in the local

minimum increases with the number of particles. The asymptotic value of dQ = áQ ñ - á Q ñ∣ ∣1 1
2

1
2 in subplot

(c) reflects the contribution of these trajectories.
Themean single-particle kinetic energy and kurtosis are shown infigure 9. From their behaviorwe infer that

themetastable nematic state does not significantly deviate from a thermal distributionwith the expected
asymptotic temperature (equation (13)).

Peculiar features of these dynamics become visible when inspecting the probability Q <( )P 0t 2 at the
asymptotics and as a function of a1f infigure 10. As infigure 6, it vanishes upon leaving the paramagnetic phase,
but increases again as the a a,1f 2f chosen are deeper into the bistable phase offigure 2(a). Correspondingly,
á Q ñ∣ ∣1 starts to decrease as a1f increases, which suggests that from this point on the depth of the localminimum
grows. The value of the order parameter á Q ñ∣ ∣2 at which Q <( )P 0t 2 starts to grow again signifies a threshold,
abovewhich the localminimum is sufficiently deep to stably trap particles.

3.3. Slow ramp into the bistable phase
Wenow consider linear ramps of a ( )tn across the transition region separating the paramagnetic from the
bistable region. The ramp protocols have duration τ and sweep between the values e a[ ], nf , with e  1. In
particular, a e a= +

t
( )tn n

t
f if tÎ [ ]t 0, , while for t>t , a ( )tn is constant and equal to anf . Note that a

sudden quench is the limit t  0 of a linear quench.We choose to vary the values of a ( )tn along the rightmost
green line in figure 2(a), so that a a=( ) ( )t t1 2 at all instants of time, with anf in the bistable phase.We further
keepDc constant, and vary only the pump intensity. Thismeans that the asymptotic temperatures at each value
of an are equal.

Figure 11 shows the dynamics of themean absolute value of the order parameters for a a= = 21f 2f for
linear rampswith different durations τ. The dynamics following the sudden quench (figures 8(a) and (b)) is
shown for comparison (blue curve).We observe that the dynamics of the order parameters exhibits an
exponential increase which occurs almost simultaneously for both á Q ñ∣ ∣1 and á Q ñ∣ ∣2 . This behavior seems to be
initiated at the instant of timewhen the parameters a ( )tn cross the critical point of the phase diagram.
Moreover, for sufficiently slow ramps á Q ñ∣ ∣1 approaches the asymptotic value of the free energyʼs global
minimum, signaling stationary long-wavelength order.

We further note that for t k103 the order parameters undergo a three-stage dynamics, as for the sudden
quench (we attribute the fluctuations to the statistics of the trajectories). For slower ramps, themean value of the
order parameters tends exponentially towards the steady state, which approaches the free energyʼs global
minimum in equation (16) for t k> 104 .We believe that this behavior is determined by the rampduration τ
with respect to the time scale of the transient dynamics, and thus by the time the parameters a ( )tn spend close to
the transition point. This conjecture is supported by the analysis of the time evolution of the single-particle
kinetic energy shown infigure 12, which corresponds to the curves infigure 11. For faster ramps it is similar to
the sudden quench, exhibiting first a violent relaxation followed by a time interval when the dynamics is
predominantly coherent, and then an exponential decay to the steady-state value due to cavity cooling. In

Figure 7.Dynamics following a sudden quench from a a , 11i 2i to a a= = 21f 2f with the detuning kept constant kD = -c (red
circle (c) infigure 2(a)). The left panels display the contour plot of the distribution  Q( )t (equation (18)) forQ = Q1 andQ = Q2 as a
function of time (in units of k1 ). The distribution is extracted from the numerical simulations using equation (1) forN=100 atoms
and 1000 trajectories. The right panels display distributions  Q( )1 and  Q( )2 as a function ofQ1 andQ2, respectively (see
equation (19)). See figure 3 for further details.
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contrast, upon increasing the rampduration towards slower ramps this transient regime disappears. In
particular, for the slowest ramp considered here, dissipation leads to quasi-adiabatic dynamics. Figure 13 shows
order parameters á Q ñ∣ ( )∣t1 and á Q ñ∣ ( )∣t2 at k= ´t 3.77 106 , where the curves offigure 11 reach an
asymptotic behavior. Self-organization in the long-wavelength grating depends on the ramp duration τ and is
found for t k> 104 . Note that short-wavelength order quantified by á Q ñ∣ ( )∣t2 only slightly depends on the
rampduration.

On amicroscopic scale, it seems that the reason for better long-wavelength ordering after slower ramps is
thatmore time is spent close to the transition line (a a= ~ 11 2 ), where the localminimumof the free energy is
not deep enough to stably trap the system. In order to test this conjecture, we consider a two-step quench
protocol which splits the sudden quench of section 3.2 into two subsequent quenches. One occurs at t=0 from
a paramagnetic to a ferromagnetic bistable phase, but close to the transition line: a a= = 1.11int 2int . This
quench shows a vanishing value of Q <( )P 0t 2 for sufficiently long times as infigure 10. The second sudden
quench occurs after an elapsed time τ and goes from this intermediate point to a a= = 21f 2f . The detuningDc

is kept constant during the evolution.

Figure 8.Dynamics of (a) á Q ñ∣ ∣1 , (b) á Q ñ∣ ∣2 , and (c) theirfluctuations dQ = áQ ñ - á Q ñ∣ ∣n n n
2 2 as a function of time (in units of k1 ).

The parameters and quench protocol are the same as in figure 7; the curves are evaluated for different numbers of atoms and of
trajectories. In (a) and (b) the data correspond to =N 25, 50, 100, 200 particles (see legends for color code) and respectively
1000, 500, 250, 125 trajectories. The horizontal dashed lines indicate the values predicted by the globalminimumof the free energy in
equation (16). Thefinite values of the order parameters at t=0 are due to finite size effects, pá Q ñ =∣ ( )∣ N0 1n . The curves in (c)
are calculated forN=100 and 250 trajectories.
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Figure 14 shows the time evolution of themean absolute values of the order parameters for different time
intervals τ between the two quenches. The order parameters undergo an initial violent relaxation at t=0, when
thefirst sudden quench occurs, and a second one immediately after the second quench (which looks like a jump
in logarithmic scale). As expected, the longer the time between the two quenches, the closer the asymptotic value
to that of the globalminimum. Inspecting the dynamics of the kinetic energy infigure 15we observe that for
large τ the atoms are cooled into the stationary state at a ~ 1n . At this point of the phase diagram the free energy
has two ferromagnetic globalminima, while the nematic localminimum is very shallow. The system thus gets
cooled close to the globalminima of the free energy at a = 2n , and remains trapped there after the second
quench.

Figure 16 shows themean absolute values of the order parameters, as extracted from the numerical data at
k= ´t 3.77 106 , as a function of the time between the two quenches. These values are compared to the

Figure 9.Dynamics of (a) the single-particle kinetic energy á ñp m22 (in units of wr) and (b) the kurtosis  = á ñ á ñp p4 2 2 for
=N 25, 50, 100, 200 particles (see legends) and respectively 1000, 500, 250, 125 trajectories. The other parameters and initial

conditions are the same as infigure 8. The horizontal dashed line in (a) indicates the asymptotic value predicted by equation (13).

Figure 10.Asymptotic values of á Q ñ∣ ( )∣t1 f , á Q ñ∣ ( )∣t2 f , and Q <( )P 0t 2f , equation (20), as a function of a1f . The quenches start from
the same initial values in the paramagnetic phase (a a , 11i 2i and kD = -c ) and end upwith different values a a,1f 2f with
a a=1f 2f (lying along the right green line infigure 2(a)) and kD = -c . The circles correspond to the results of the numerical
simulations at k= ´t 3.77 10f

6 withN=100 particles and 250 trajectories. The dashed lines indicate the predictions of the global
minima of equation (16).
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predictions of the globalminimumof the free energy at a a= = 21 2 and kD = -c . The behavior is quite
similar to that observedwhen performing a linear rampof corresponding duration (figure 13). Dynamical
ordering in the long-wavelengthmode thus seems to require that the atoms are initially cooled close to the global
minima. This is realized bymeans of sufficiently long time τ spent close to the transition point.

4. Cooling into organized structures

Wenow analyze sudden quenches of the parameter an startingwith different initial single-particlemomentum
widths. A possible realization is a quench in the detuning sinceDc controls the steady-state temperature (see
equation (13)). Using thesewe consider quencheswhich could lead to either heating or cooling of the system to
the stationary temperatureT0,

Figure 11.Mean value of order parameters (a) á Q ñ∣ ∣1 and (b) á Q ñ∣ ∣2 as a function of time (in units of k1 ) forN=100 and kD = -c ,
evaluated numerically with 250 trajectories. The curves are the time evolution during and after linear ramps of duration t = 0 (blue),
t k= ´5.5 102 (red), t k= ´6.8 103 (yellow), t k= ´8.5 104 (purple), and t k= ´2 106 (green). The ramps occur from
the paramagnetic to the bistable phase, specifically from a a e= =  11i 2i to a a= = 21f 2f . As before, at t=0 the initial state of
the atoms is the steady state, equation (8), for a a=n ni and kD = -c . The dashed horizontal lines show the steady-state values of the
globalminima of the free energy, equation (16).

Figure 12.Mean value of the single-particle kinetic energy á ñ( )p m22 (in units of k=E 4kin,0 ) as a function of time (in units of
k1 ) for the same parameters and color codes as infigure 11.
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k
= ( )k T

2
, 21B 0

namely, theminimal temperature achieved by cavity cooling, which is equivalent to setting kD = -c .
Therefore, we also consider initial thermal distributionswhich are spatially uniform and have a temperature

<T Tini 0. The initialmomentumdistributions we consider areGaussian and their width isD =p mk T2
B ini.

Figure 17 shows the time evolution of themean absolute values of the order parameters for different values
ofTini ranging from T0.1 0 up to T5 0. The asymptotic value of á Q ñ∣ ∣1 increases with the initial temperature: The
hotter the system is initially, the smaller the fraction of trajectories which remain trapped in themetastable,
nematic state is. The corresponding time evolution of themean kinetic energy per particle is displayed in
figure 18 and it shows that for =T T2ini 0 (and evenmore for =T T5ini 0) the system stays relatively hot over time

Figure 13.Values of á Q ñ∣ ( )∣t1 f (blue) and á Q ñ∣ ( )∣t2 f (red) at k= ´t 3.77 10f
6 and as a function of the ramp duration τ (in units of

k1 ) for the same parameters as infigure 11. The dashed horizontal lines show the steady-state value predicted by the free energy,
equation (16).

Figure 14.Dynamics of á Q ñ∣ ∣1 and á Q ñ∣ ∣2 as a function of time (in units of k1 ) for the two-step quench protocol. Here, the
parameters an suddenly ramp at t=0 from the initial values a a , 11i 2i to a a= = 1.1;1int 2int after a time interval τ, there is a
second quench from a a= = 1.11int 2int to a a= = 21f 2f . The parameters are kD = -c ,N=100with 250 trajectories, and
t k= 1 (blue), k10 (red), k102 (yellow), k103 (purple), k104 (green), k105 (light blue) and k106 (dark red). The dashed
horizontal lines show the values predicted by the globalminimumof the free energy, equation (16), at a a= = 21 2 and kD = -c .
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scales of the order of k104 . For lower initial temperatures, the system is instead heated by the energy released by
the sudden quench before relaxation cools the atoms.

As shown infigure 17, for initially cold samples a long-wavelength Bragg grating is formed faster than for
hotter samples. In this case we recognize a three-stage dynamics like the one observed for sudden quenches of
the laser intensity, when a transient long-range order is established for times k>t 10 and k<t 103 . For

k>t 103 dissipation becomes significant and á Q ñ∣ ∣1 increases to a stationary value. This relaxation stage is also
present for sampleswith initial temperatures higher thanT0; however, in this hotter case it is significantly faster.
Taking a threshold value á Q ñ =∣ ∣ ∣ 0.51 thres , we observe that buildup of long-wavelength order can be up to a
hundred times shorter than for a cold initial state. This is reminiscent of theMpemba effect in supercooledwater
[24–28]. Its origin could be traced to a suppression of long-wavelength order if short-wavelength order is already
established on amuch shorter time scale, as shown in figure 17(b).

Infigure 17(a)we observe that thefinal value of á Q ñ∣ ∣1 does not coincidewith its predicted stationary value
even after very long cooling times. This can also be seen infigure 19, which shows themean absolute value of the
order parameters at k= ´t 3.77 106 as a function of the initial temperature for =N 100, 200. Onewould
expect that á Q ñ∣ ∣1 should have reached a constant value corresponding to the stationary state. Apparently this is
not the case and even forfiniteN a significant fraction of trajectories converge to and remain in the local
minimum. This behavior getsmuch less pronouncedwhen the initial temperature lies above a certain threshold
set by the energy released by the quench itself.

5. Comparison of numerical approaches

The discussion in this paper is based on results obtained by numerical integration of stochastic differential
equations (1) and on their comparisonwith the corresponding analyticalmodel. Both rely on the validity of the
so-called bad cavity limit, where cavity damping is the shortest time scale, and particularly on treating
retardation as a small parameter in the dynamics. This regime allows one to systematically describe quantum
fluctuations of the cavity degrees of freedomby eliminating the cavity variables from the equations ofmotion of

Figure 15.Mean kinetic energy per particle á ñp m22 (in units of the asymptotic value k=E 4kin,0 ) as a function of time (in units of
k1 ) for the same parameters and color codes as infigure 14.

Figure 16.The symbols correspond to á Q ñ∣ ( )∣t1 f (blue) and á Q ñ∣ ( )∣t2 f (red) at k= ´t 3.77 10f
6 as a function of the time between

the two quenches, τ (in units of k1 ), for the same parameters as infigure 14. The dashed horizontal lines show the steady-state values
predicted by the globalminimumof the free energy, equation (16), at a a= = 21 2 and kD = -c .
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the external degrees of freedom.Wenow compare these predictionswith those of the stochastic differential
equations derived in [15], where the cavity degrees of freedom are treated in the semi-classical limit but included
at all orders of retardation expansion. These stochastic differential equations are here extended to our setup
composed of two cavitymodes [16]:

= ( )x
p

m
t ad d , 22j

j

 å=
=

( ) ( )p nkS nkx t bd 2 sin d , 22j
n

n n j
1,2

,r

  k x= -D - +( ) ( )t cd d d , 22n n n n n n,r ,i ,r ,r

  k x= D - - Q +( ) ( )NS t dd d d , 22n n n n n n n n,i ,r ,i ,i

where  = { }Ren n,r and  = { }Imn n,i are the real and imaginary parts of the positive-frequency component
of the cavityfieldmode =n 1, 2. TheWiener processes x xd , dn n,i ,r have a vanishing firstmoment,

Figure 17.Dynamics of (a) á Q ñ∣ ∣1 and (b) á Q ñ∣ ∣2 as a function of time (in units of k1 ) after a sudden quench at t=0 from
a a= = 01i 2i and Tini to a a= = 21f 2f and kD = -c (corresponding to the asymptotic temperatureT0) forN=100 and 250
trajectories. The different curves correspond to =T T5ini 0 (blue), T2 0 (red),T0 (yellow), T0.5 0 (purple) and T0.1 0 (green). The dashed
horizontal lines show the steady-state values predicted by the globalminimumof the free energy, equation (16).

Figure 18.Mean kinetic energy per particle á ñp m22 (in units of k=E 4kin,0 ) as a function of time (in units of k1 ) for the same
parameters and color codes as in figure 17. The horizontal dashed line corresponds to the asymptotic value á ñ =p m E22

kin,0.
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x xá ñ = = á ñd 0 dn n,i ,r , while the secondmoments fulfill x x d ká ñ = td d 2dn m nm,i ,i , x x d ká ñ = td d 2dn m nm,r ,r ,
and x xá ñ =d d 0n m,r ,i .

The results of the simulations based on the two approaches for a single-mode cavity show good agreement.
For the two-mode cavity we generally find qualitative agreement. Quantitative discrepancies are found in
general for themomentumdistribution: The simulations based on equation (22) predict for certain parameters
samples whose temperatures are 10%hotter than the ones obtainedwith equation (1). Small differences are also
found for the order parameters after the quenches into the bistable phase.

Figure 20 shows a representative result of the discrepancies found after the quench protocol discussed in
section 3.2. The two simulations predict different stationary values for both the kinetic energy and the order
parameters.We believe that this discrepancy is due to retardation effects, which are neglected in the approach of
equation (1) and become relevant when the atoms are trapped at tightminima.

In order to test our conjecturewe use the prediction of the kinetic theory of [29, 30], where the temperature
of the stationary thermal distributionwas corrected by the contribution from the atoms’ localization at the
minima of the self-organized lattice,

 
k w

=
D +

D
+

D
˜

∣ ∣ ∣ ∣
( )k T

4
. 23B

c
2 2

c

0
2

c

Here, w0 is the frequency of oscillation about the latticeminima in the harmonic approximation. It can be
estimated by using equation (22b) and imposing the equality

 å w» º -
=

( )p nk S x t m x td 2 d d .j
n

n n j j
1,2

2
,r 0

2

This delivers an analytic estimate of the frequency

w w
k

a a=
D +
-D

Q + Q( )4 ,0
2

r
c
2 2

c
1 1 2 2

wherewe use equation (4). For the parameters of the quench infigure 20, with kD = -c and a a= = 21 2 , we
obtain »˜k T k T1.1B B 0, whereT0 is the temperature given in equation (21). Indeed, this corrected value of the
final temperature is in good agreementwith the discrepancy observed infigure 20(a).

This hypothesis is also consistent with the discrepancy observed in the asymptotic values of the order
parameters. In fact, the stationary temperature and the final values of the order parameters are related: the
stationary values of the order parameters are determined by the parameters a a,1 2 [13] and thus depend on both
field intensities and detunings (see equation (4)). According to this hypothesis, the asymptotic values of the order
parameters for the simulation using equation (22) should be the ones corresponding to the systemʼs parameters
with the corrected temperature T̃ ; hence we shallminimize the free energy of equation (16) using b =˜ ( ˜ )k T1 B ,
equation (23), instead of ( )k T1 B 0 . This is equivalent to rescaling the phase diagram infigure 2(a) using the
prescription a a a= <˜ ˜T Tn n n0 , and results in a smaller stationary value of the order parameter, which is
consistent with the discrepancies visible infigures 20(b) and (c).

Figure 19.The symbols correspond to the values of á Q ñ∣ ( )∣t1 f (blue, yellow) and á Q ñ∣ ( )∣t2 f (red, purple) at k= ´t 3.77 10f
6 as a

function of Tini (in units ofT0) for the same parameters as infigure 14 but forN=200 particles (125 trajectories). See inset for the
color code. The dashed horizontal lines show the steady-state values predicted by the globalminimumof the free energy, equation (16).
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6. Conclusions

In this workwe have studied the semi-classical dynamics of atoms interactingwith two cavitymodes after
quenches of the intensity and/or frequency of the pumping lasers. In the quench protocols the laser parameters
were varied across transition lines separating a disordered phase from an ordered self-organized phase.We
could verify numerically that the states reached at the asymptotics of the dynamics correspond to theminima of
the free energy of a corresponding thermodynamic description developed in [13]. This picture is further
confirmed by the comparisonwith numerical simulations based on different initial assumptions. This analysis
shows, in particular, that trapping of the system in the localminima of the free energy crucially depends on the
initial temperature and on the cooling rate.

We observe, in addition, that the system can be trapped inmetastable configurations for transient times
which cannot be understood in terms of the effective thermodynamic description. For hundreds of particles the
lifetime of these states is about four orders ofmagnitude longer than the cavity lifetime, and is expected to
increase withN. They share analogies withmetastable configurations found in theGHMFwhen performing
quenches in themicrocanonical ensemble [22]. Since the phase diagrams of theGHMFand themodel here
considered can be formallymapped onto each other [13], we conjecture that thesemetastable configurations

Figure 20.Dynamics of (a) single-particle kinetic energy (in units of Ekin,0), (b) á Q ñ∣ ∣1 , and (c) á Q ñ∣ ∣2 as a function of time (in units of
k1 ) following a quench at t=0 from a a=  11i 2i to a a= = 21 2 for kD = -c andN=100. The blue (red) lines correspond to

simulations using equation (1)(equation (22)). The black dashed lines denote the values of the order parameters obtained by the free
energy, equation (16). In (a) the blue (red) line corresponds to 250 (500) trajectories. In (b) and (c) the blue and red lines correspond to
1000 (500) trajectories. Note that a quench from a a,1 2 as performed in section 3.2 forfixed kD = -c corresponds for the simulation
of equation (22) to a quench in the pumping strength Sn such that a k=NSn n

2 2. At k= ´t 3.77 10f
6 we observe that 16.9%

(15.4%) of the trajectories are in the nematic phase using equation (1)(equation (22)).
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could be due to the coherent dynamics. This conjecture can be tested bymeans of amean-field analysis such as
the one performed in [12] for a single-mode cavity.

Interestingly, when the initial temperature of the atomic ensemble is different from the stationary
temperature of cavity cooling, we observe that thefinalmagnitude of asymptotic order changes. In particular
when the initial temperature is even lower than the predicted cavity cooling temperature, the probability that the
system remains trapped inmetastable configurations is further increased. This is similar to the behavior of
supercooledwater [24–28].

Here we consider the very special case of two commensuratemodes.While this already highlightsmany
generic properties of the dynamics, future considerations certainly should include the case inwhich the
wavelengths of the cavitymodes are incommensurate [31], so that the orderingmechanisms aremuchmore
intensely competing and amultitude ofmetastable states can form. A further interesting direction is operation
withmuch colder temperatures or in the side-band resolved cooling regime [32]. Here it is intriguing to consider
inwhich formmetastable states survive deep in the quantum regime. Besides diffusion they could be depleted via
tunneling and atom–field entanglement plays an important role in this dynamics [33], a process which should
also be relevant in closely related schemes of simulated quantum annealing [34].
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