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Abstract

A cold dilute atomic gas in an optical resonator can be radiatively cooled by coherent scattering processes
when the driving laser frequency is tuned close to but below the cavity resonance. When the atoms are
sufficiently illuminated, their steady state undergoes a phase transition from a homogeneous distribution to
aspatially organized Bragg grating. We characterize the dynamics of this self-ordering process in the semi-
classical regime when distinct cavity modes with commensurate wavelengths are quasi-resonantly driven by
laser fields via scattering by the atoms. The lasers are simultaneously applied and uniformly illuminate the
atoms; their frequencies are chosen so that the atoms are cooled by the radiative processes, and their
intensities are either suddenly switched or slowly ramped across the self-ordering transition. Numerical
simulations for different ramp protocols predict that the system will exhibit long-lived metastable states,
whose occurrence strongly depends on the initial temperature, ramp speed, and the number of atoms.

1. Introduction

Laser light creates an attractive optical potential for cold atoms when far detuned below an optical transition.
Such potential can be significantly enhanced if the light is confined by an optical resonator [ 1-4]. In addition, if
the laser illuminates the atoms, trapping is induced by a dynamical optical potential emerging from the
interference between the scattered light and the laser, which tends to order the particles at the maxima of the
intensity [4, 5]. The interference contrast and thus the trapping depends on the relative positions of the
scattering atoms. Therefore, this phenomenon can be also understood in terms of an effective long-range force,
which is mediated by the collectively scattered photons [5-9]. This force also has a dissipative component, which
is due to the dissipative nature of the resonator and which cools the atoms when the pump is tuned below the
cavity resonance [3, 10]. Theoretical studies with single-mode resonators have predicted that this dissipation can
establish long-range correlations and support the onset of metastable ordered structures [11, 12].

In a multimode cavity and for several illumination frequencies, competing ordering processes are present
and lead to richer phase dynamics. In a two-mode cavity, like the one depicted in figure 1(a), the transition to
self-organization can be a phase transition of the first or second order depending on the laser intensities and on
their relative strength [13]. The corresponding self-ordered phases can exhibit superradiant scattering either in
one or in both cavity modes, as illustrated in figure 1(b), while the asymptotic distribution of the atoms can be
thermal provided that the lasers’ frequencies are suitably chosen [ 13]. In our example the particles can orderina
lattice at a given length scale A and/or on a lattice with half the period A /2. For these settings we numerically
analyze the semi-classical dynamics following sudden quenches or slow ramps of the laser intensities across the
thresholds separating the homogeneous from one of the self-organized phases. We describe the evolution by
stochastic differential equations, which correspond to the Fokker—Planck equation derived in [14] for a similar
system. We find that even at very long times the atoms’ spatial distribution strongly depends on the initial
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Figure 1. (a) Cold atoms are confined within an optical cavity and move along the cavity axis (x axis). They coherently scatter photons
from transverse lasers with rescaled amplitudes oy and «; into the (correspondingly) resonant cavity modes with spatial mode
functions cos(kx) (red) and cos(2kx) (green) and loss rates x; and &, respectively. (b) Sketch of the atomic density distribution n(x)
along the cavity axis (in units of 1/k) for the four possible stationary self-organized orders. On the right we report the corresponding
values of the quantities ©; and ©,, which signal the Bragg order in modes 1 and 2, respectively. See text and [13] for details.

temperature, ramp speed, and quench protocol, such that the system gets trapped in long-lived metastable
states. In particular, for quenches starting with ensembles at low temperatures, the buildup of long-range order
requires longer times than that for higher initial temperatures does.

Our work is organized as follows: in section 2 we introduce the system and the semi-classical equations
describing the dynamics. The atoms’ stationary properties are then summarized in a phase diagram, which is
derived from [13]. In section 3 we numerically study the real-time dynamics when the parameters are varied
within the phase diagram according to different quench protocols. In section 4 we analyze the dynamics of the
distributions from the spatially homogeneous to the organized ones with different momentum widths. In
section 5 we compare the predictions of the stochastic differential equations we employ with an extended
approach including the dynamical evolution of the field modes introduced in [ 15, 16]. Conclusions are drawn
and future perspectives are discussed in section 6.

2. Semi-classical dynamics

The system we consider consists of a gas of N cold atoms with mass 1, which are trapped inside a high-finesse
optical resonator and coherently scatter laser light into the cavity modes. The atomic motion is confined along the
cavity axis (here the x axis) by a tight external dipole trap [17, 18] and is here described in the semi-classical limit.

The geometry of the setup is illustrated in figure 1. Lasers with (rescaled) intensity o, propagateina
direction orthogonal to the cavity axis and are quasi-resonant with the standing wave cavity modes cos(nkx)
with frequency w, , and wave number nk (n = 1, 2). Thelasers have frequency wp,» and linear polarization,
which is parallel to that of the corresponding cavity mode. Each pair of laser and cavity mode couples to an
atomic dipolar transition at frequency w, ,, where €2,, , and g, are the laser and vacuum Rabi frequency,
respectively. Spontaneous scattering processes are suppressed when the absolute value of the detuning
Ayn = Wy, — Wy, exceeds the coupling strength and the detuning A, = wy, , — w,, between the laser and
cavity mode by orders of magnitude: |A, ,| > €, ., g, |A,l|. The relevant dissipative process is given by cavity
decay, and we denote by &, the loss rate of cavity mode n = 1, 2.

In the so-called bad cavity limit, assuming that the cavity field loss rates are faster than the rate of the
dynamics of the atomic motion, one can eliminate the cavity field variables from the equations of motion of the
atoms by means of coarse graining in time. This gives rise to an effective model, where the atoms experience a
long-range interaction mediated by the cavity photons, while retardation effects and fluctuations of the cavity
field are responsible for friction forces and diffusion. In the semi-classical limit one can derive a Fokker—Planck
equation for the atoms’ position and momentum distribution, assuming that the single-atom momentum
distribution has a width Ap which, at all instants of time, is orders of magnitude greater than the photon recoil
hk: Ap > hk[13,14,20]. The corresponding stochastic differential equations read as

5 This can be realised by assuming w, ; = 2w, = 2w., whichyields k, = 2k; = 2k. Another possible realisation, where w.; &~ w,,, has
been discussed in [13]; it uses two optical single-mode cavities crossing at an angle of 60°. For a similar experimental setup see also [19].
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dxj = &dt, (1a)
m
dp, = (Fad + Freddr + dWD + dW, (1b)
where
Fiaa=— Y 2hnk Qn sin(nkx;) Oy, (2)
n=1,2 ﬁﬁ”
2 N
Fire=— Y. mani sin(nkxj)i > p; sin(nkx)), 3)
n=12 M —Ay, NiZ
and
272
o, = NS Ay )
(AL + K3)?
—4A,
B &)

B (A2 + k2

Here, S, = g,/ »is theamplitude of coherent scattering by a single atom and has the dimension of a
frequency, while dW](l) and dWJ@ in equation (1b) describe Wiener processes, which fulfill (dW™”) = 0and
(W AW ™) = 2D}!6,,dt (n, m = 1, 2and i, j = 1, ..., N). Here,

Di;? = (ﬁnk)Z—hi;”ﬂn (—HA”H ) sin(rnkx;)sin(nkx;). (6)
Finally, the parameter
1 XN
6, = N Zcos(nkxi) 7)

i=1
quantifies the Bragg ordering of the atoms in the cavity mode with wave number nk. In particular, |©,| = 1
when the atoms are localized either at the maxima or at the minima of cos(nkx), which is the configuration
which maximizes the intracavity field intensity. We identify ©, with the order parameter for self-organization in
the corresponding cavity mode [13]. Below, we denote by ‘long-wavelength order’ any configuration with a non-
vanishing value of @, corresponding to a Bragg grating with period A = 27 /k. Similarly, ‘short-wavelength
order’ refers to a configuration with ©, = 0, corresponding to a Bragg grating with A /2. Note that here and in
the rest of the paper we discard the dynamical Stark shift of the cavity frequency assuming that this is much
smaller than the cavity mode linewidth N; gn2 / |A,nl < K, For details refer to [13].

2.1. Stationary states

Analysis of the Fokker—Planck equation on the basis of equation (1) allows one to identify the conditions for the
existence of a stationary state. This state exists provided that A, < 0and 3, = (3, = [ (see equation (5)). In this
case the atoms’ distribution in the steady state reads as [13]

exp(— BH.fr)

fs(xlwpa-“)xNap ): (8)
t 1 N 2(3)
where H. is the effective Hamiltonian derived after eliminating the cavity field variables,
N p?
Ha=5> — — 3 N2te?, )

-1 2m T n

while Z(3) denotes the partition function:

Z(B) = ﬁf_idpl f_idej;Adxl j;Ade e~ (10)

with A\ = 27/k and A = 27h as the single particle unit phase space volume. In the following we assume that the
cavity decay rates are equal,

Kl = Ky =t K, 1D
so that the condition for the existence of the stationary state in equation (8) becomes
Al = Az = AC < 0. (12)

The phase diagram of the system can be determined by using the steady state, equation (8), in the form of a

thermal state. On the basis of this observation we introduce the temperature T of the stationary state, which is
defined as
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B(A? + K2
T=01=——7, 13
5T =0 i (13)
with kg as the Boltzmann constant. The steady-state temperature T has the same functional dependence on A
and « as for a single-mode cavity [7, 14]. We can further define the free energy per particle F using formal
equivalence with the canonical ensemble of equilibrium statistical mechanics [7]:

1
F=——In(Z(0)). 14
NG n(Z(8)) (14)
Following the procedure detailed in [7, 12, 13] we can calculate F as

F = il’lfgbng(el, 92) (15)

with
M@ﬁgzﬂg?@+m%+%%—mm&&» (16)

and

2T
1(91, 92) — f dq 620191 cos(q)+2a,0, cos(Zq). (17)
0

Here w, = hik?/(2m)is the recoil frequency. We determine the value of F in an appropriately defined
thermodynamic limit, which consists in keeping v, constant for N — oo. The global minima of Fare the
resulting stationary phases. The corresponding points (6} min> 02,min) Where Fachieves its minimum are the
stationary values for the order parameters ©; = 6 1, and ©, = 6, in; they are determined by oy and .
When the fields are sufficiently weak, then ©; = ©, = 0, the density is homogeneous and there is no structural
order. We call this phase paramagnetic, borrowing the notation of the generalized Hamiltonian mean-field
model (GHMF) [21-23] to which this model can be mapped. The possible ordered phases in the steady state are
illustrated in figure 1(b) and take one of four sets of values. In particular, the ferromagnetic phase is characterized
by (i) ©; > 0,0, > 0,and (ii) ©; < 0, O, > 0, exhibiting Bragg order in both cavity modes. In contrast, the
nematic phases, (iii) and (iv), are characterized by no order in the long-wavelength mode, ©; = 0, while ©, can
be either negative or positive.

We note that the spatial distributions depicted in figure 1(b) corresponding to phases (i), (ii), (iii), and (iv) are
only possible configurations out of many. For example configuration (i) can also correspond to all atoms sitting
atonesite kx = 0. Order here refers to Bragg gratings corresponding to the long- and short-wavelength modes.
No long-wavelength order is found in the case of ©; = 0, where photons scattered into the long-wavelength
mode destructively interfere. However, ©, cannot give more detailed information about the positions of the
atoms in the long-wavelength mode. The same is true for short-wavelength order and ©,.

The resulting phase diagram in the ; — a; plane, shown in figure 2, reproduces thatin [13]. The phases are
separated by either first- or second-order transitions, which have been determined using Ehrenfest’s criterion
[23]. The shaded areas show stability regions in which the free energy has alocal minimum that corresponds to
the paramagnetic (dark gray region) and nematic (light gray region) phases. Examples of the free-energy
landscape in the ©; — ©, plane are shown in subplots (b) and (c). Subplot (b) corresponds to the parameters of
the red bullet labeled (b) in subplot (a): Here, the free energy exhibits two symmetric global minima which
correspond to the ferromagnetic phase. In subplot (¢), which corresponds to the parameters of the red bullet
labeled (c), there is an additional local minimum corresponding to a nematic phase. In the latter there is only
ordering in the short-wavelength lattice, while ©; = 0. We call this region bistable, which refers to the existence
of asecond, metastable state in which the system can be dynamically trapped.

3. Dynamics of self-organization

We now examine the dynamics of the system when the values of o and o, are varied as a function of time.
Experimentally, this corresponds to varying the pump laser intensities or their detuning with respect to the
cavity mode frequencies. At time t = 0 we assume that the system is prepared in the stationary state of a
paramagnetic phase, described by the distribution in equation (8), by setting av, = ;i < 1in equation (9)

(n = 1, 2). Thevalues o, appearing in the equations of motion (1) are then varied in time, by performing either
(i) asudden quench, i.e. a sudden switching of the values to ;¢ and ay, or (ii) a slow quench, which consists in
varying o, () monotonically and continuously in time towards the final values ;¢ and aur. We choose the final
values ay,¢ in the ferromagnetic phase. The quench protocols we consider are illustrated by the green lines in
figure 2(a): for sudden quenches, the initial and final values are two points connected by a green line. A slow
quench sweeps across the intermediate points along the line. We are interested in determining the dynamics
leading to the steady state.
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Figure 2. (a) Phase diagram of the stationary phases, corresponding to the global minima of equation (16), in plane oy — . Blue
(yellow) lines indicate second (first) order phase transitions. The light gray area (dark gray area) within the ferromagnetic phase
indicates the parameter region where the nematic (paramagnetic) phase is the local minimum of the free energy. The red circles

labeled (b) and (c) indicate the parameters for which the contour plots of free energy in subplots (b) and (c) are shown in the ©;, — ©,
landscape. The free energy in subplot (b) exhibits two global minimaat ©; = £0.92 and ©, = 0.73; in (c) the two global minima of
the ferromagnetic phase areat ©; = +0.97 and ©, = 0.88, and the local minimum in the nematic phaseisat ©; = 0 and

0, = —0.83 (the contour of F is below a convenient threshold). The green dash—dot lines in subplot (a) illustrate the paths of the

quench protocols discussed in section 3. Circle (d) indicates the parameters of the quench discussed in section 3.3.

In what follows we perform numerical simulations of equation (1) using the parameters of a gas of *’Rb
atoms. In particular, we take k = 27/ with A = 780 nm as the wavelength of the D, line. The corresponding
recoil frequencyis w, = 27 x 3.86 kHz. The cavity linewidth is taken tobe x = 27 x 1.5 MHz, so that
K = 388.6w;. A possible realization of the two-mode setup here considered has been discussed in [13, 19].

3.1. Sudden quench into the ferromagnetic phase
We first consider sudden quenches from oy;, ay;in the paramagnetic phase to oy, ¢ in the ferromagnetic

phase, keeping ai;/cu; = aqe /e = 5. Theinitial values are vanishingly small and the atoms are at the
corresponding stationary distribution, which is a thermal distribution at the temperature determined by the
corresponding detuning, equation (13), with homogeneous density. The detuning before and after the quench is
taken to be equal; thus it is expected that the atoms reach a thermal distribution with the same temperature as the
initial state.

Figure 3 shows the distribution B(©) for order parameters O and O, as a function of time for
(qug, apf) = (2.5, 0.5). Itis defined as a time sequence of normalized histograms:

# trajectories with O(t) € [© — Ag/2, © + Ag/2] (18)
# trajectories X Ag ’

F(©) =

where O is calculated on each trajectory of the simulations with the stochastic differential equations and its value
is determined according to the precision Ag of the grid in ©. We observe that at a given time scale of the order of
102/, P(O),) splits into two branches corresponding to two possible orders in the long-wavelength lattice. This
symmetry breaking is well known from the single-mode case [5]. The order parameter of the short-wavelength
mode O,, which is weakly pumped, substantially grows to a positive value long after the symmetry breaking. The
fact that 7(©,) vanishes for negative ©, values comes from the ordering of the atoms close to the anti-nodes of
the dominant long-wavelength mode field cos(kx) (see figure 1).

The distributions P(6,) at the asymptotics are reported in the right panels of figure 3. They are obtained by
averaging P(0,) over times ¢t > 10°/x, where a stable configuration is reached. Formally
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Figure 3. Dynamics following a sudden quench from ay;, a;i < 1to ags = 2.5, ape = 0.5 with the detuning kept constant

A. = —k. Theleft panels display the contour plots of distribution 7(©) (equation (18)) for © = ©,and © = ©, asa function of
time (in units of 1/x). The distribution is extracted from numerical simulations using equation (1) for N = 100 atoms and 1000
trajectories. The grid in © for the left panels has a minimum step Ag = 2/111; the grayscale gives the relative weight. The right panels
display the distributions P(6,) and P(0,) as a function of ©; and ©,, respectively (see equation (19)). Here, the time average is
obtained for N; = 113 instants of time chosen between t; = 10°/k and t; = 3.77 x 10°/k. The vertical dashed lines in the left
panels mark the instant of time #; = 10%/.

N,
P©) =) PuO)/N, (19)

i=1

where N, is the number of instants of times at which the distribution is sampled in the interval [#, t¢], with

i = 10%/k and tf = ty, > . Comparing the widths of the distributions in the right panels of figure 3 one
observes that after sufficiently long times the long-wavelength order parameter fluctuates less than the short-
wavelength order parameter.

Figures 4(a)—(b) display the dynamics of the mean absolute value of the order parameters for different values
of N. Figure 4(c) shows the time evolution of the fluctuations of the order parameters 60, = ,/(©2) — (|6,|)
for N = 100 particles. The order parameters asymptotically tend to the values predicted by the free energy,
indicated by the horizontal dashed lines, for a time scale of the order of 10/ .. Meanwhile the fluctuation §©,
relaxes to a much smaller value than the asymptotic value of 60, reproducing the widths of the distributions in
the right panels in figure 3. The time evolution of (|©|}, in particular, is reminiscent of the one observed for
quenches into the ferromagnetic phase in a single-mode resonator [11]. It can be separated into three stages
which we call (in order of their temporal appearance) (i) violent relaxation, which corresponds to an exponential
increase of the absolute value of the order parameter (|0, |); (ii) transient dynamics, which corresponds to
power-law scaling with time; and (iii) the relaxation phase, where the mean values tend exponentially towards
the asymptotic value. Violent relaxation can be described by a mean-field model [12]; in the transient stage
coherent dynamics prevails, while the relaxation stage is dominated by dissipation [11]. The transient and
relaxation stages are characterized by time scales which increase with N but have different functional
dependence [12]. The time scale 10°/ s can here be identified as the one at which the asymptotic state is reached
for N < 200, while for larger numbers of particles longer time scales shall be considered.

Interestingly, in the transient phase there is ordering only in the long-wavelength mode of the cavity, while
ferromagnetic order is finally established by dissipation on a longer time scale. The metastable phase of the
transient dynamics can therefore be denoted by ‘nematic’: its lifetime increases with N and for N ~ 200 it is of
the order of t ~ 10*/ . However, this metastable nematic state cannot be understood in terms of the landscape
of the free energy, but rather seems to exhibit the features of a quasi-stationary state due to long-range coherent
dynamics analogous to that reported in [22]. This conjecture is also supported by the behavior of the single-
particle kinetic energy and of the kurtosis ' = (p*) /(p?)?, which are shown in figure 5. The latter quantifies the
deviation of the momentum distribution from a Gaussian one, for which it takes a value of K, = 3. For these
quantities we observe that in the metastable nematic phase the kinetic energy grows, while the distribution is
non-thermal. Ordering in the second, short-wavelength lattice is accompanied by cooling into a thermal
distribution.

We now compare the numerical results with the analytic theory for different quenches with the same initial
values of ay;, ap; < 1but with different endpoints ¢, c,r. We take different endpoints from the paramagnetic
to the ferromagnetic phase, under the constraint ays /¢ = 5. The circles in figure 6 correspond to the
numerical results for 100 particles at time #; > 10°/k, where we expect the system to reach the steady state.
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Figure 4. Dynamics of (2) {|©y]), (b) {|©,]), and (c) their fluctuations 60, = +/(©2) — (|6,|)? asafunction of time (in units of 1/x).
The parameters and quench protocol are the same as in figure 3; the curves are however evaluated for different numbers of atoms and
of trajectories. In (a) and (b) the data correspond to N = 25, 50, 100, 200 particles (see legends for color code) and respectively

1000, 500, 250, 125 trajectories. The horizontal dashed lines indicate the values predicted by the global minimum of the free energy in
equation (16). The finite values of the order parameters at t = 0 are due to finite size effects, (|©,(0)|) = 1/ J7N . The curvesin (c)
are calculated for N = 100 and 250 trajectories.

These are in good agreement with the analytical results (dashed lines) based on an evaluation of the
corresponding observables at the global minimum of the free energy. The interval where (|0, ) grows
monotonically from ~1/+/N to the value of the ferromagnetic phase is expected to shrink as N is increased, in
agreement with a second-order phase transition at the thermodynamic limit. Further information on the onset
of this ferromagnetic order can be gained by the probability P, (©, < 0) that ©, is negative at t:

0
P(©, < 0) = f 46,7, (20)

We note that in the paramagnetic phase (homogeneous spatial distribution) we expect B (0, < 0) ~ 0.5.In
contrast, due to the given mode structure we expect that B (0, < 0) ~ 0 for long-wavelength orderingin the
ferromagnetic phase. Indeed, as o increases across the critical value, P, (0, < 0) quickly drops down to zero.

3.2. Sudden quenches into the bistable phase

We now turn to the dynamics following sudden quenches from the paramagnetic to the ferromagnetic phase but
following the right path of figure 2(a), which consists in equal effective pumping ay;/cn; = aqg /s = 1. Inthis
parameter region (the bistable phase) the free energy exhibits a local minimum, which is nematic. As in the

7
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Figure 5. Dynamics of (a) the single-particle kinetic energy ( p? /2m) (in units of fiw,) and (b) kurtosis K = (p*) /(p?)?* for
N = 25, 50, 100, 200 particles (see legends) and respectively 1000, 500, 250, 125 trajectories. The other parameters and quench
protocol are the same as in figure 4. The horizontal dashed line in (a) indicates the asymptotic value predicted by equation (13).
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Figure 6. Asymptotic values of (|O;(t() |), (|©1(t¢)[), and P, (O, < 0), equation (20), as a function of ajs. The quenches start from the
same initial values in the paramagnetic phase (qi, @ < land A. = —£)and end up with different values cu¢, an¢ with aye = San¢
(lying along the left green line in figure 2(a)) and A = —k. The circles correspond to the results of the numerical simulations at

te = 3.77 x 10°/k with N = 100 particles and 250 trajectories. The dashed lines indicate the predictions of the global minima of
equation (16).

previous case, the initial values oy, cy; are vanishingly small and the atoms are at the corresponding stationary
distribution, whose temperature is determined by the detuning A, and whose spatial density is homogeneous.
The quench is performed by switching the laser power while keeping the detuning constant; thus the atoms
should reach a thermal distribution with the same temperature as the initial state.

Figure 7 shows the time evolution of the trajectories’ ©-distribution for ajr = ayr = 2and A, = —k.In
contrast to the previous section, here a finite fraction of trajectories gets trapped in the nematic phase with a
vanishing value of ©; and a finite probability that ©, takes negative values. This is visible in the small extra peaks
in P(O,) and P(O,) (right panels). The trapping occurs at the time scale of the violent relaxation, and it seems
stable over times of the order of 10°/ . We conjecture that it also persists at asymptotic times. In figure 8 the
time evolution of the mean absolute value of the order parameters is shown for different numbers of particles.
While (|O,|) reaches the same stationary value (in reality its value decreases slightly with N), the asymptotic value
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Figure 7. Dynamics following a sudden quench from ay;, c; < 1to oy = ap¢ = 2 with the detuning kept constant A, = —£ (red

circle (¢) in figure 2(a)). The left panels display the contour plot of the distribution P(©) (equation (18))for © = ©;and © = O, asa
function of time (in units of 1/x). The distribution is extracted from the numerical simulations using equation (1) for N = 100 atoms
and 1000 trajectories. The right panels display distributions P(6,) and P(0,) as a function of ©; and ©,, respectively (see

equation (19)). See figure 3 for further details.

of (|©4]) decreases as N grows. This suggests that the probability that the dynamics gets trapped in the local

minimum increases with the number of particles. The asymptotic value of §0, = ,/(0f) — (|©,|)? in subplot
(c) reflects the contribution of these trajectories.

The mean single-particle kinetic energy and kurtosis are shown in figure 9. From their behavior we infer that
the metastable nematic state does not significantly deviate from a thermal distribution with the expected
asymptotic temperature (equation (13)).

Peculiar features of these dynamics become visible when inspecting the probability P, (0, < 0) at the
asymptotics and as a function of «¢ in figure 10. As in figure 6, it vanishes upon leaving the paramagnetic phase,
butincreases again as the ayf, ¢ chosen are deeper into the bistable phase of figure 2(a). Correspondingly,
(|©1]) starts to decrease as ¢ increases, which suggests that from this point on the depth of the local minimum
grows. The value of the order parameter (|O,|) at which B(©, < 0) starts to grow again signifies a threshold,
above which the local minimum is sufficiently deep to stably trap particles.

3.3. Slow ramp into the bistable phase

We now consider linear ramps of v, (t) across the transition region separating the paramagnetic from the
bistable region. The ramp protocols have duration 7and sweep between the values [, a¢], with e < 1.In
particular, o, (t) = € + Oénfi ift € [0, 7], whilefor t > 7, a,,(¢) is constant and equal to o,s. Note thata
sudden quench is the limit 7 — 0 of alinear quench. We choose to vary the values of «,, (¢) along the rightmost
green line in figure 2(a), so that o, (f) = «,(¢) at all instants of time, with «,¢ in the bistable phase. We further
keep A, constant, and vary only the pump intensity. This means that the asymptotic temperatures at each value
of oy, are equal.

Figure 11 shows the dynamics of the mean absolute value of the order parameters for oy = ays = 2 for
linear ramps with different durations 7. The dynamics following the sudden quench (figures 8(a) and (b)) is
shown for comparison (blue curve). We observe that the dynamics of the order parameters exhibits an
exponential increase which occurs almost simultaneously for both (|©,]) and (|©,|). This behavior seems to be
initiated at the instant of time when the parameters «, (t) cross the critical point of the phase diagram.
Moreover, for sufficiently slow ramps (|©,|) approaches the asymptotic value of the free energy’s global
minimum, signaling stationary long-wavelength order.

We further note that for 7 < 103/ the order parameters undergo a three-stage dynamics, as for the sudden
quench (we attribute the fluctuations to the statistics of the trajectories). For slower ramps, the mean value of the
order parameters tends exponentially towards the steady state, which approaches the free energy’s global
minimum in equation (16) for 7 > 10*/k. We believe that this behavior is determined by the ramp duration 7
with respect to the time scale of the transient dynamics, and thus by the time the parameters o, (¢) spend close to
the transition point. This conjecture is supported by the analysis of the time evolution of the single-particle
kinetic energy shown in figure 12, which corresponds to the curves in figure 11. For faster ramps it is similar to
the sudden quench, exhibiting first a violent relaxation followed by a time interval when the dynamics is
predominantly coherent, and then an exponential decay to the steady-state value due to cavity cooling. In
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Figure 8. Dynamics of (a) (|0, ), (b) (|05, and (c) their fluctuations 60, = /(©2) — (|6,|)? asa function of time (in units of 1/x).
The parameters and quench protocol are the same as in figure 7; the curves are evaluated for different numbers of atoms and of
trajectories. In (a) and (b) the data correspond to N = 25, 50, 100, 200 particles (see legends for color code) and respectively

1000, 500, 250, 125 trajectories. The horizontal dashed lines indicate the values predicted by the global minimum of the free energy in
equation (16). The finite values of the order parameters at t = 0 are due to finite size effects, (|©,(0)]) = 1/+/7N. The curves in (c)
are calculated for N = 100 and 250 trajectories.

contrast, upon increasing the ramp duration towards slower ramps this transient regime disappears. In
particular, for the slowest ramp considered here, dissipation leads to quasi-adiabatic dynamics. Figure 13 shows
order parameters (|©;(¢)|) and {|©,(¢)|)at t = 3.77 x 10°%/x, where the curves of figure 11 reach an
asymptotic behavior. Self-organization in the long-wavelength grating depends on the ramp duration 7and is
found for 7 > 10*/k. Note that short-wavelength order quantified by (|©,(¢)|) only slightly depends on the
ramp duration.

On a microscopic scale, it seems that the reason for better long-wavelength ordering after slower ramps is
that more time is spent close to the transition line (¢ = «a, ~ 1), where the local minimum of the free energy is
not deep enough to stably trap the system. In order to test this conjecture, we consider a two-step quench
protocol which splits the sudden quench of section 3.2 into two subsequent quenches. One occursatt = 0 from
a paramagnetic to a ferromagnetic bistable phase, but close to the transition line: oyjn; = iy = 1.1. This
quench shows a vanishing value of B (©, < 0) for sufficiently long times as in figure 10. The second sudden
quench occurs after an elapsed time 7and goes from this intermediate point to ciy = apr = 2. The detuning A,
is kept constant during the evolution.

10
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Figure 9. Dynamics of (a) the single-particle kinetic energy (p?/2m) (in units of 7iw,) and (b) the kurtosis K = (p*) / (p?)?* for

N = 25, 50, 100, 200 particles (see legends) and respectively 1000, 500, 250, 125 trajectories. The other parameters and initial
conditions are the same as in figure 8. The horizontal dashed line in (a) indicates the asymptotic value predicted by equation (13).
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Figure 10. Asymptotic values of (|©,(¢7)|), {|©2(t)|), and B, (©, < 0), equation (20), as a function of cs. The quenches start from
the same initial values in the paramagnetic phase (i, ap; < land A, = —k)and end up with different values oy, ayr with

¢ = ayf (lying along the right green line in figure 2(a)) and A. = — k. The circles correspond to the results of the numerical
simulations at #; = 3.77 x 10°/x with N = 100 particles and 250 trajectories. The dashed lines indicate the predictions of the global
minima of equation (16).

Figure 14 shows the time evolution of the mean absolute values of the order parameters for different time
intervals T between the two quenches. The order parameters undergo an initial violent relaxation at = 0, when
the first sudden quench occurs, and a second one immediately after the second quench (which looks like a jump
inlogarithmic scale). As expected, the longer the time between the two quenches, the closer the asymptotic value
to that of the global minimum. Inspecting the dynamics of the kinetic energy in figure 15 we observe that for
large 7 the atoms are cooled into the stationary state at c,, ~ 1. At this point of the phase diagram the free energy
has two ferromagnetic global minima, while the nematic local minimum is very shallow. The system thus gets
cooled close to the global minima of the free energy at o, = 2, and remains trapped there after the second
quench.

Figure 16 shows the mean absolute values of the order parameters, as extracted from the numerical data at
t = 3.77 x 10°/k, as afunction of the time between the two quenches. These values are compared to the

11
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Figure 11. Mean value of order parameters (a) (|©;|) and (b) (|©,]) as a function of time (in units of 1/x) for N = 100 and A, = —~k,
evaluated numerically with 250 trajectories. The curves are the time evolution during and after linear ramps of duration 7 = 0 (blue),
T =55 x 10%/k (red), 7 = 6.8 x 103/k (yellow), 7 = 8.5 x 10*/k (purple),and 7 = 2 x 10°/k (green). The ramps occur from
the paramagnetic to the bistable phase, specifically from cn; = ay; = € < 1to cyf = ayf = 2. Asbefore, att = 0 the initial state of
the atoms is the steady state, equation (8), for o, = a;and A = —k. The dashed horizontal lines show the steady-state values of the
global minima of the free energy, equation (16).
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Figure 12. Mean value of the single-particle kinetic energy (p?/(2m)) (in units of Ey;, o = fir/4) as a function of time (in units of
1/k) for the same parameters and color codes as in figure 11.

predictions of the global minimum of the free energyat oy = o, = 2 and A, = — . The behavior is quite
similar to that observed when performing a linear ramp of corresponding duration (figure 13). Dynamical
ordering in the long-wavelength mode thus seems to require that the atoms are initially cooled close to the global
minima. This is realized by means of sufficiently long time 7 spent close to the transition point.

4. Cooling into organized structures

We now analyze sudden quenches of the parameter «, starting with different initial single-particle momentum
widths. A possible realization is a quench in the detuning since A controls the steady-state temperature (see
equation (13)). Using these we consider quenches which could lead to either heating or cooling of the system to
the stationary temperature To,
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Figure 13. Values of (|©,(#¢)|) (blue) and (|©,(t¢)|) (red) at ty = 3.77 x 10°/k and asa function of the ramp duration 7 (in units of
1/k) for the same parameters as in figure 11. The dashed horizontal lines show the steady-state value predicted by the free energy,
equation (16).
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Figure 14. Dynamics of (|©,|) and (|©,|) as a function of time (in units of 1/ k) for the two-step quench protocol. Here, the
parameters o, suddenly ramp at t = 0 from the initial values cuj, i < 1t0 ayine = ouine = 1.1; after a time interval 7, thereisa
second quench from Qyint = ine = 1.1t0 ayf = apr = 2. The parametersare A. = —x, N = 100 with 250 trajectories, and

7 = 1/k (blue), 10/x (red), 102/k (yellow), 10°/k (purple), 10*/ (green), 10°/x (light blue) and 10°/x (dark red). The dashed
horizontal lines show the values predicted by the global minimum of the free energy, equation (16),at a; = o, = 2and A = —k.

KTy — ﬁz—" 1)

namely, the minimal temperature achieved by cavity cooling, which is equivalent to setting A, = —k.
Therefore, we also consider initial thermal distributions which are spatially uniform and have a temperature
T < Tp. The initial momentum distributions we consider are Gaussian and their width is Ap? = mky Ty;.
Figure 17 shows the time evolution of the mean absolute values of the order parameters for different values
of T ranging from 0.17Tj up to 57y. The asymptotic value of (|©;|) increases with the initial temperature: The
hotter the system is initially, the smaller the fraction of trajectories which remain trapped in the metastable,
nematic state is. The corresponding time evolution of the mean kinetic energy per particle is displayed in
figure 18 and it shows that for Ti,; = 27T (and even more for Tiy,; = 57p) the system stays relatively hot over time
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Figure 15. Mean kinetic energy per particle (p?/2m) (in units of the asymptotic value Eyi o = fi:/4) as a function of time (in units of
1/k) for the same parameters and color codes as in figure 14.
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Figure 16. The symbols correspond to (|©,(t¢)|) (blue) and {|©,(t¢) |) (red) at t; = 3.77 x 10°/k as a function of the time between
the two quenches, 7 (in units of 1/ ), for the same parameters as in figure 14. The dashed horizontal lines show the steady-state values
predicted by the global minimum of the free energy, equation (16),at &y = a, = 2and A, = —k.

scales of the order of 10*/ . For lower initial temperatures, the system is instead heated by the energy released by
the sudden quench before relaxation cools the atoms.

As shown in figure 17, for initially cold samples a long-wavelength Bragg grating is formed faster than for
hotter samples. In this case we recognize a three-stage dynamics like the one observed for sudden quenches of
the laser intensity, when a transient long-range order is established for times t > 10/x and t < 10*/x. For
t > 103/ dissipation becomes significant and {|©|) increases to a stationary value. This relaxation stage is also
present for samples with initial temperatures higher than Tj; however, in this hotter case it is significantly faster.
Taking a threshold value (|©]) |es = 0.5, we observe that buildup of long-wavelength order canbe up to a
hundred times shorter than for a cold initial state. This is reminiscent of the Mpemba effect in supercooled water
[24-28]. Its origin could be traced to a suppression of long-wavelength order if short-wavelength order is already
established on a much shorter time scale, as shown in figure 17(b).

In figure 17(a) we observe that the final value of (|©,|) does not coincide with its predicted stationary value
even after very long cooling times. This can also be seen in figure 19, which shows the mean absolute value of the
order parametersat t = 3.77 x 10°/x asa function of the initial temperature for N = 100, 200. One would
expect that (|©,]) should have reached a constant value corresponding to the stationary state. Apparently this is
not the case and even for finite N a significant fraction of trajectories converge to and remain in the local
minimum. This behavior gets much less pronounced when the initial temperature lies above a certain threshold
set by the energy released by the quench itself.

5. Comparison of numerical approaches

The discussion in this paper is based on results obtained by numerical integration of stochastic differential
equations (1) and on their comparison with the corresponding analytical model. Both rely on the validity of the
so-called bad cavity limit, where cavity damping is the shortest time scale, and particularly on treating
retardation as a small parameter in the dynamics. This regime allows one to systematically describe quantum
fluctuations of the cavity degrees of freedom by eliminating the cavity variables from the equations of motion of
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Figure 17. Dynamics of (a) (|©,]) and (b) (|©,]) as a function of time (in units of 1 /) after asudden quenchat t = 0 from

aq; = ap; = 0and T to ays = apr = 2and A, = —k (corresponding to the asymptotic temperature Tp) for N = 100 and 250
trajectories. The different curves correspond to Tip; = 57Tp (blue), 27 (red), Ty (vellow), 0.5T; (purple) and 0.17; (green). The dashed
horizontal lines show the steady-state values predicted by the global minimum of the free energy, equation (16).
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Figure 18. Mean kinetic energy per particle { p? /2m) (in units of Ey, o = fik/4) asa function of time (in units of 1 /) for the same
parameters and color codes as in figure 17. The horizontal dashed line corresponds to the asymptotic value (p?/2m) = Exin .

the external degrees of freedom. We now compare these predictions with those of the stochastic differential
equations derived in [15], where the cavity degrees of freedom are treated in the semi-classical limit but included
atall orders of retardation expansion. These stochastic differential equations are here extended to our setup
composed of two cavity modes [16]:

p.
dx]' — —]dt, (22a)
m
dp, = > 2hnkS,E,, sin(nkx;)dt, (22b)
n=1,2
dgn,r - (_Angn,i - Hngn,r)dt + dgn,r’ (ZZC)
dgn,i = (Angn,r - Kfn‘c;n,i - Nsn@n)dt + dfn,i’ (22d)

where &, = Re{&,} and £, ; = Im{&,} are the real and imaginary parts of the positive-frequency component

of the cavity field mode n = 1, 2. The Wiener processes d¢,, ;, d§,  have a vanishing first moment,
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Figure 19. The symbols correspond to the values of (|©;(t¢)|) (blue, yellow) and (|, (¢;) |) (red, purple) at t; = 3.77 x 10%/k asa
function of Tiy; (in units of Ty) for the same parameters as in figure 14 but for N = 200 particles (125 trajectories). See inset for the
color code. The dashed horizontal lines show the steady-state values predicted by the global minimum of the free energy, equation (16).

(d€, ) = 0 = (dE,, ,), while the second moments fulfill (d¢, ;d&,, ) = 6umn/2dt,(dE, dE,, ) = Sumr/2dE,
and (d¢, dE,,;) = 0.

The results of the simulations based on the two approaches for a single-mode cavity show good agreement.
For the two-mode cavity we generally find qualitative agreement. Quantitative discrepancies are found in
general for the momentum distribution: The simulations based on equation (22) predict for certain parameters
samples whose temperatures are 10% hotter than the ones obtained with equation (1). Small differences are also
found for the order parameters after the quenches into the bistable phase.

Figure 20 shows a representative result of the discrepancies found after the quench protocol discussed in
section 3.2. The two simulations predict different stationary values for both the kinetic energy and the order
parameters. We believe that this discrepancy is due to retardation effects, which are neglected in the approach of
equation (1) and become relevant when the atoms are trapped at tight minima.

In order to test our conjecture we use the prediction of the kinetic theory of [29, 30], where the temperature
of the stationary thermal distribution was corrected by the contribution from the atoms’ localization at the
minima of the self-organized lattice,

A§+Ii2+ﬁwé

ksT =i .
4A 1A

(23)

Here, wy is the frequency of oscillation about the lattice minima in the harmonic approximation. It can be
estimated by using equation (22b) and imposing the equality

dpj Y 2h(nk)?S,Epxidt = —mw%xjdt.

n=1,2

This delivers an analytic estimate of the frequency

A? 2
wp = wr%(alel + 40,0,),

B

where we use equation (4). For the parameters of the quench in figure 20, with A, = —rand oy = a; = 2, we
obtain kg T' ~ 1.1kg Ty, where T is the temperature given in equation (21). Indeed, this corrected value of the
final temperature is in good agreement with the discrepancy observed in figure 20(a).

This hypothesis is also consistent with the discrepancy observed in the asymptotic values of the order
parameters. In fact, the stationary temperature and the final values of the order parameters are related: the
stationary values of the order parameters are determined by the parameters oy, o, [13] and thus depend on both
field intensities and detunings (see equation (4)). According to this hypothesis, the asymptotic values of the order
parameters for the simulation using equation (22) should be the ones corresponding to the system’s parameters
with the corrected temperature T; hence we shall minimize the free energy of equation (16) using B8 =1/(ksT),
equation (23), instead of 1/ (kg Tp)). This is equivalent to rescaling the phase diagram in figure 2(a) using the
prescription &, = o, Ty/T < o, and results in a smaller stationary value of the order parameter, which is
consistent with the discrepancies visible in figures 20(b) and (¢).
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Figure 20. Dynamics of (a) single-particle kinetic energy (in units of Eyin o), (b) (|0]), and (c) (|©,|) as a function of time (in units of
1/k) followinga quenchatt = 0from ay; = ap; < 1to oy = = 2for A, = —k and N = 100. The blue (red) lines correspond to
simulations using equation (1) (equation (22)). The black dashed lines denote the values of the order parameters obtained by the free
energy, equation (16). In (a) the blue (red) line corresponds to 250 (500) trajectories. In (b) and (c) the blue and red lines correspond to
1000 (500) trajectories. Note that a quench from «, o, as performed in section 3.2 for fixed A, = — & corresponds for the simulation
of equation (22) to a quench in the pumping strength S,, such that NS? = a,,x2. At tf = 3.77 x 105/ we observe that 16.9%
(15.4%) of the trajectories are in the nematic phase using equation (1) (equation (22)).

6. Conclusions

In this work we have studied the semi-classical dynamics of atoms interacting with two cavity modes after
quenches of the intensity and/or frequency of the pumping lasers. In the quench protocols the laser parameters
were varied across transition lines separating a disordered phase from an ordered self-organized phase. We
could verify numerically that the states reached at the asymptotics of the dynamics correspond to the minima of
the free energy of a corresponding thermodynamic description developed in [ 13]. This picture is further
confirmed by the comparison with numerical simulations based on different initial assumptions. This analysis
shows, in particular, that trapping of the system in the local minima of the free energy crucially depends on the
initial temperature and on the cooling rate.

We observe, in addition, that the system can be trapped in metastable configurations for transient times
which cannot be understood in terms of the effective thermodynamic description. For hundreds of particles the
lifetime of these states is about four orders of magnitude longer than the cavity lifetime, and is expected to
increase with N. They share analogies with metastable configurations found in the GHMF when performing
quenches in the microcanonical ensemble [22]. Since the phase diagrams of the GHMF and the model here
considered can be formally mapped onto each other [13], we conjecture that these metastable configurations

17



10P Publishing

New J. Phys. 20 (2018) 025004 T Keller et al

could be due to the coherent dynamics. This conjecture can be tested by means of a mean-field analysis such as
the one performed in [12] for a single-mode cavity.

Interestingly, when the initial temperature of the atomic ensemble is different from the stationary
temperature of cavity cooling, we observe that the final magnitude of asymptotic order changes. In particular
when the initial temperature is even lower than the predicted cavity cooling temperature, the probability that the
system remains trapped in metastable configurations is further increased. This is similar to the behavior of
supercooled water [24-28].

Here we consider the very special case of two commensurate modes. While this already highlights many
generic properties of the dynamics, future considerations certainly should include the case in which the
wavelengths of the cavity modes are incommensurate [31], so that the ordering mechanisms are much more
intensely competing and a multitude of metastable states can form. A further interesting direction is operation
with much colder temperatures or in the side-band resolved cooling regime [32]. Here it is intriguing to consider
in which form metastable states survive deep in the quantum regime. Besides diffusion they could be depleted via
tunneling and atom—field entanglement plays an important role in this dynamics [33], a process which should
also be relevant in closely related schemes of simulated quantum annealing [34].
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