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1 Introduction

The aim of this paper is to propose a strategy to programme the Minimal Model
Program (MMP) inmodern computer algebra systems such asOSCAR (OSCAR2023).

The MMP is a programme in higher dimensional birational geometry aiming to
classify varieties and pairs with mild singularities up to birational equivalence: the
goal is to find in each such birational class at least one representative which is minimal
in a very precise sense. When completed, the programme will show that – up to
birational equivalence – all varieties with mild singularities are built out of three basic
building blocks: varieties whose canonical class is either ample, numerically trivial
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or anti-ample. In other words, the theory predicts that one should be able to slice
any such variety up into pieces whose curvature has almost everywhere the constant
sign. Stated this way, the MMP bears resemblance to Thurston’s Geometrisation in
geometric topology.

The MMP has seen decisive progress ever since it was introduced by Mori in the
1980s. In particular, it is now complete for threefolds, and for varieties of log general
type in every dimension. A comprehensive survey of the state of the art (as far as
relevant for the present paper) can be found in Lazić (2013).

In this paper I address the problem of possible implementations of the Minimal
Model Program on a computer. This is an important issue: we have very few concrete
examples in higher dimensional geometry, see for instance the introduction to Lazić
and Schreyer (2022), and calculating minimal models of concrete projective varieties
is obviously a pressing issue, both from the point of view of applications within the
MMP itself as well as applications in wider algebraic geometry.

There has been very limited progress on the problem of computer algebra imple-
mentations of theMMP. Ideally, at some point in the future one would feed a computer
algebra system with a projective variety (given, for instance, by global equations; or
by local equations in charts, requiring massive parallelisation (Böhm et al. 2021)),
tell it to calculate its minimal models, which then the system would spit out after a
certain time. In order to achieve the implementation in this generality in a foresee-
able future, a computer algebra system will need human input, simplifications and
theoretical improvements at several steps along the way.

My goal in this paper is to propose a possible strategy for such an implementa-
tion based on the approach from Cascini and Lazić (2012); Corti and Lazić (2013);
Kaloghiros et al. (2016); surveys of these ideas can be found in Cascini and Lazić
(2012); Lazić (2013). The expectation is that the algorithm proposed here is realisable
in modern or future computer algebra systems such as OSCAR. The input of the algo-
rithm is the set of multidegrees of a set of generators of a certain finitely generated
multigraded ring on a klt pair (X ,�) of log general type, see Sect. 3; the output is
a minimal model of (X ,�) or, moreover, a sequence of maps in a (KX + �)-MMP
which terminates with a minimal model of (X ,�).

I will concentrate in this paper only on pairs of log general type over C, since this
is the class of objects where the MMP is not a conjecture, but a theorem.

2 Countable vs. uncountable problems

Many problems in algebraic geometry are what I prefer to call uncountable problems:
problems whose decidability seems to depend on uncountably many parameters. A
part of important theoretical progress on some of them is to translate them into count-
able problems, i.e. problems whose decidability depends on at most countably many
parameters. Then, at least in theory, a computer has a chance to verify a task in a finite
time.

First I give two examples to illustrate the issue.

123



Beitr Algebra Geom (2024) 65:867–880 869

Example 1: Uniruledness

A complex variety X is uniruled if it can be covered by (singular) rational curves; a
good source on uniruledness is Debarre (2001), whereas a more comprehensive but
more technical presentation is in Kollár (1996). Since this is a birational property, we
may assume that X is smooth. Deciding whether X is uniruled seems a priori to be
extremely difficult: one has to test whether through each point on X there is a rational
curve. One can relax this to testing whether through each general point there is a
rational curve, but practically this is not an improvement.

One of the main results of Boucksom et al. (2013) is the proof that a smooth variety
X is uniruled if and only if the canonical class KX is not pseudoeffective, i.e. if the
numerical class of KX is not a limit of the numerical classes of effective divisors.
Assuming the full Minimal Model Program (including the Abundance conjecture)
this is then equivalent to KX not being effective itself. In other words, we expect:

X uniruled ⇐⇒ H0(X ,mKX ) = 0 for all m > 0.

Note that this equivalence holds unconditionally in dimension 3. Therefore, testing
uniruledness is a countable problem and could in principle be implemented on a
computer.

In practice this means that it suffices to find one positive integer m such that
H0(X ,mKX ) �= 0 in order to show that X is not uniruled.

Example 2: Rational connectedness

A complex variety X is rationally connected if through every two points on X there is
a (singular) rational curve; again, good sources on rational connectedness are Debarre
(2001);Kollár (1996).Wemay again assume that X is smooth.Apriori, testingwhether
X is rationally connected seems to be an even more difficult problem than testing
uniruledness.

However, a conjecture attributed to Mumford suggests that testing rational con-
nectedness is in fact a countable problem and could in principle be implemented on a
computer. Indeed, one should have:

X rationally connected ⇐⇒ H0
(
X , (�1

X )⊗m
) = 0 for all m > 0.

This equivalence holds unconditionally in dimension 3 by Kollár et al. (1992) and
in almost all cases in dimension 4 by Lazić and Peternell (2017).

In practice this means that it suffices to find one positive integer m such that
H0

(
X , (�1

X )⊗m
) �= 0 in order to show that X is not rationally connected.

TheMMP

TheMinimal Model Program has for a long time looked like an uncountable problem.
The classical strategy for varieties X with mild singularities goes like this:

(i) first, by the Cone theorem (Kollár andMori 1998, Theorem 3.7) there are at most
countably many KX -negative extremal rays in Mori’s cone of curves NE(X),
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which one can use to construct a contraction morphism to another variety Y . In
the classical case of surfaces, one wants to find a (−1)-curve and construct the
corresponding morphism by Castelnuovo’s contraction criterion. Finding such a
curve seems to me to be an a priori uncountable problem and I do not see how
it can be implemented on a computer.

(ii) Once one constructs such a morphism as in (i), if it is not birational, one stops.
If it is birational, then one must decide whether it is a divisorial contraction (i.e.
the good case) or a small contraction (i.e. the bad case). Equivalently, one must
be able to test whether the canonical class on the target is Q-Cartier or not, see
(Kollár and Mori 1998, 2.6). If one is in the bad case, then one must additionally
construct a flip (Kollár and Mori 1998, Definition 2.8). The construction of the
flip is potentially implementable on a computer.

(iii) One repeats (i) and (ii) until either one stops as in (ii), or the canonical class
becomes nef. Testing whether a divisor (or a line bundle) on a variety is nef (i.e.
whether it intersects every curve non-positively) seems to me to be an uncount-
able problem, similarly as in (i). Additionally, at no stage of the algorithm does
one have control over howmany repetitions one has to execute until the algorithm
stops.

TheMMPwith scaling

One of the obvious issues in (i) above is that from the Cone theorem one does not know
how to generate a suitable extremal ray and hence a contraction morphism. Instead,
one can employ Shokurov’s MMP with scaling of some ample divisor (Birkar et al.
2010, Remark 3.10.10): one fixes an ample (or just big) divisor H on X such that
KX + H is nef, and determines the number

λ := inf{t ∈ R | KX + t H is nef }.

Then one can show that λ is in fact a rational number, that there exists a KX -negative
extremal ray R ⊆ NE(X) such that (KX +λH) · R = 0, and that the divisor KX +λH
is semiample and defines a morphism which contracts precisely the curves whose
classes belong to R. Then one continues with the steps (ii) and (iii) as above. This
MMP with scaling of H is much less arbitrary than a general MMP and it seems to
be a step closer to being a countable problem: the main point is finding such λ, and
for this one has to be able to calculate finitely many intersection products, and then
repeat the procedure. However, the issue of testing whether a divisor is nef remains:
to me this looks like an uncountable problem.

Another point of view

A new outlook on the MMP was proposed in Cascini and Lazić (2012); Corti and
Lazić (2013): that once one knows that a certain graded ring is finitely generated, then
the MMP becomes a problem closely related to the convex geometry of certain cones
of divisors naturally associated to that graded ring. The goal of the remainder of the
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present paper is to show how this strategy can be adapted to an algorithm that can be
implemented in a computer algebra system.

3 Step 1: Graded rings and theMain Problem

In this paper, I consider the Minimal Model Program for projective Q-factorial klt
pairs (X ,�) defined over C of log general type, i.e. such that KX + � is big. The
canonical source on the foundational material in the MMP is Kollár and Mori (1998).
However, everything works in the category of varieties where analogous birational
procedures can be executed as in (Kaloghiros et al. 2016, Section 5).

To start with, let X be a projective Q-factorial variety and let D be a Q-divisor on
X . We define the global sections of D by

H0(X , D) = { f ∈ k(X) | div f + D ≥ 0}.

Then for Q-divisors D and D′ on X there is a well-defined multiplication map

H0(X , D) ⊗ H0(X , D′) → H0(X , D + D′),

so that, if we are given a bunch of Q-divisors D1, . . . , Dr on X , we can define the
corresponding divisorial ring as

R = R(X; D1, . . . , Dr ) =
⊕

(n1,...,nr )∈Nr

H0(X , n1D1 + · · · + nr Dr ),

and the corresponding cone

C =
r∑

i=1

R+Di ⊆ DivR(X).

If R is finitely generated, then we can define the support of R, denoted by SuppR:
this is the convex hull of all integral divisors D ∈ C such that H0(X , D) �= 0. It
is easily seen that SuppR is a rational polyhedral cone: indeed, pick finitely many
generators fi of R, and let Ei ∈ C be the divisors such that fi ∈ H0(X , Ei ). Then
SuppR = ∑

R+Ei .
The following result gives the most important example of a finitely generated divi-

sorial ring.

Theorem 3.1 Let X be a normal projective variety and let�i beQ-divisors on X such
that each �i is big and each pair (X ,�i ) is klt for i = 1, . . . , r . Then the ring

R(X; KX + �1, . . . , KX + �r )

is finitely generated.
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This was first proved in (Birkar et al. 2010, Corollary 1.1.9) by the full machinery of
the MMP, and then without the MMP in (Lazić 2009, Theorem 1.2) and (Cascini and
Lazić 2012, Theorem A); see also (Corti and Lazić 2013, Theorem 2) for the above
formulation. In particular, this result implies the finite generation of the canonical
ring R(X , KX ) on a smooth projective variety X , which was implicitly conjectured
in Zariski’s famous paper (Zariski 1962).

It is one of the main open problems in higher dimensional birational geometry to
prove an analogue of Theorem 3.1 when the divisors KX + �i are not big – note
that this is indeed a theorem in dimensions at most 3. The case of threefolds of not
necessarily general type is probably the most important case for the implementation
of the MMP on a computer, beyond the case of pairs of log general type.

The first step in the potential algorithm of the implementation of the MMP is the
following:

Main Problem Let (X ,�) be a projective Q-factorial klt pair of log general type,
and let A1, . . . , Ar be ample divisors on X. Find the multidegrees of some set of
generators of the ring

R
(
X;m0(KX + �),m1(KX + � + A′

1), . . . ,mr (KX + � + A′
r )

)

for some positive integers mi , and some effective divisors A′
i ≡ Ai .

As we will see later, it is important for the MMP algorithm in this paper that
the ample divisors A1, . . . , Ar are chosen in such a way that their numerical classes
generate the Néron-Severi space N 1(X)R.

TheMain Problem is clearly a countable problem: indeed, one might be able to find
a brute-force algorithm to calculate the graded pieces and test the generation relations
in the ring – since each graded piece is a finite dimensional vector space, one has at
most countably many generators and relations. However, such a brute-force algorithm
will not in general end in a finite time without an algebro-geometric input about the
specific examples that one wants to calculate on a computer.

However:

TheMain Problem on surfaces

Finding an explicit bound of the degree of generation as in theMain Problem – at least
in explicit examples – is one of the technical prerequisites for this algorithm to work.

There is evidence that the degree of generation of the divisorial ring as in the Main
Problem is bounded uniformly, depending only on the dimension and the number of
prime divisors in the supports of the divisors KX +� and Ai . A version of this holds on
surfaces by (Cascini and Zhang 2014, Proposition 4.1) and (Cascini and Lazić 2014,
Theorem 3.1) and is conjectured to hold in any dimension.

More precisely, we have (Cascini and Lazić 2014, Theorem 3.1):

Theorem 3.2 Let X be a smooth surface and let S1, . . . , Sp be distinct prime divisors
such that

∑p
i=1 Si is a simple normal crossings divisor. Let B0, B1, . . . , Br be Q-

divisors on X such that:

123



Beitr Algebra Geom (2024) 65:867–880 873

(i) Supp Bj = ∑p
i=1 Si for all j , and

(ii) �Bj
 = 0 for every j ,

and let k be a positive integer such that all kB j are Cartier. Then there exists a positive
integer m depending only on p and k such that the ring

R
(
X;m(KX + B0),m(KX + B1), . . . ,m(KX + Br )

)

is generated in degree 4.

I want to stress here that the constant m can be calculated explicitly, by tracing
back through the results of Cascini and Zhang (2014); Cascini and Lazić (2014)
and calculating all the constants there precisely. The constant is large, but after one
calculates it precisely, all the remaining steps in the algorithm presented in Sects. 4
and 5 (apart from calculating the images of birational morphisms and finding suitable
ample divisors) are then a mixture of convex geometry and linear algebra, which
should be doable in modern computer algebra systems.

It is not completely obvious how to pass from Theorem 3.2 to the Main Problem,
so I explain this now. Let (X ,�) be a projective Q-factorial klt surface pair of log
general type; passing to a log resolution, we may assume that X is smooth. Pick some
ample divisors A′

1, . . . , A
′
r on X and pick an element A′

0 of some non-empty linear
system |s(KX + �)| for s > 0, which is possible since the divisor KX + � is big.
Since the cone of big divisors in N 1(X)R is open, we can find distinct prime divisors
S1, . . . , Sp on X such that the numerical classes of all the divisors A′

0, . . . , A
′
r are

contained in the interior of the cone spanned by the numerical classes of S1, . . . , Sp
in DivR(X). By replacing A′

i by a divisor in the numerical class of A′
i for each i ,

we may assume that Supp A′
i = ∑p

j=1 S j for all i . Then take a large positive integer

q such that � 1
q A

′
i
 = 0 for all i . Set Ai := 1

q A
′
i for each i , and note that we have

KX + � + A0 ∼ ( sq + 1)(KX + �).

If the divisor � + ∑p
i=1 Si has simple normal crossings support, then we can use

Theorem 3.2 to solve the Main Problem: namely, there exists a computable constant
m such that the ring

R
(
X;m(KX + � + A0),m(KX + � + A1), . . . ,m(KX + � + Ar )

)

is generated in degree 4. Otherwise one has to pass to a log resolution of the pair
(X ,� + ∑p

i=1 Si ) and work there.

Remark 3.3 As pointed out to me by Frank-Olaf Schreyer, when X is a smooth surface
of general type, a more efficient way to construct the minimal model of X might be to
apply (Bombieri 1973, Main Theorem) to first construct the canonical model of X as
the image of the pluricanonical map associated to the linear system |5KX |, and then
construct the minimal model of X as the minimal resolution of the canonical model
of X .
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TheMain Problem in higher dimensions

Inspired by (Cascini and Zhang 2014, Proposition 2.11) and (Cascini and Lazić 2014,
Proposition 2.18), I expect an analogue of Theorem 3.2 to hold also on varieties X in
arbitrary dimension, by replacing 4 by dim X + 2; the methods involved in the proof
of (Cascini and Zhang 2014, Theorem 1.1) are probably crucial for the solution of the
Main Problem on threefolds.

4 Step 2: Cone decompositions

The goal of the remainder of the paper is to demonstrate how once one solves the
Main Problem, then one can in principle be able to implement theMMP in a computer
algebra system.

In order to present the second step, I will discuss briefly asymptotic geometric val-
uations. This technical digression is not strictly necessary to understand the remainder
of the algorithm, but it helps to understand the underlying philosophy. The details are
in Corti and Lazić (2013) and in the survey Lazić (2013).

The finite generation of a divisorial ring R has important consequences on the
convex geometry of the cone SuppR. We will relate the ring R to the behaviour
of linear systems |D| for integral divisors D ∈ SuppR via asymptotic geometric
valuations.

Let X be a smooth projective variety. A geometric valuation� on X is any valuation
on k(X)which is given by the order of vanishing at the generic point of a prime divisor
on some birational model Y → X , and we denote the value of this valuation on a Q-
divisor D on X by mult� D. If D is moreover effective, then the asymptotic order of
vanishing of D along � is

o�(D) = inf{mult� D′ | D ∼Q D′ ≥ 0}.

Equivalently, if mult� |kD| is the valuation at � of a general element of the linear
system |kD|, then

o�(D) = inf
1

k
mult� |kD|

over all k sufficiently divisible.
The following result is (Corti andLazić 2013, Theorem3): it is essentially contained

in the proof of (Ein et al. 2006, Theorem 4.1), and is in fact a mixture of commutative
algebra and convex geometry. It provides the relation between the finite generation
and the behaviour of linear systems, and yields an important decomposition of the
cone SuppR into finitely many special rational polyhedral cones.

Theorem 4.1 Let X be a smooth projective variety and let D0, . . . , Dr be Q-divisors
on X. Assume that the ringR = R(X; D0, . . . , Dr ) is finitely generated. Then SuppR
is a rational polyhedral cone and:
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(i) there is a finite rational polyhedral subdivision SuppR = ⋃ Ci into cones of
maximal dimension, such that o� is linear on Ci for every geometric valuation
� over X,

(ii) there exists a positive integer k such that o�(kD) = mult� |kD| for every integral
divisor D ∈ SuppR.

As we will see in Sect. 5, as soon one has the cone decomposition from Theorem
4.1, one can calculate easily the outputs of the Minimal Model Program for a given
projective klt pair of lof general type.

So the main problem at this step of the algorithm is to construct such a decompo-
sition. I sketch briefly the construction from Ein et al. (2006, 2023).

With notation from Theorem 4.1, for each m = (m0, . . . ,mr ) ∈ N
r+1 we denote

by bm the ideal defining the base locus of the linear system |m0D0 + . . . + mr Dr |.
We obtain the N

r+1-graded sequence of ideals b• := {bm}m∈Nr+1 of ideal sheaves on
X ; that is, b0 = OX and

bm · bm′ ⊆ bm+m′

for all m,m′ ∈ N
r+1. Then we have the associated Rees algebra

R(b•) :=
⊕

m∈Nr+1

bm,

which is finitely generated since the ring R is finitely generated.
Then the arguments from Ein et al. (2006, 2023) show that Theorem 4.1 follows

from the following crucial proposition.

Proposition 4.2 With notation as above, let C ⊆ R
r+1 be the convex cone spanned by

N
r+1 ⊆ R

r+1. Then there exist a smooth fan�with support C and a positive integer d
such that for every cone σ ∈ �, if we denote by e1, . . . , es the generators of σ ∩N

r+1,
then

bd
∑

i pi ei
=

∏

i

b
pi
dei

,

for every (p1, . . . , ps) ∈ N
s . Here b denotes the integral closure of an ideal b.

Thus, the algorithm takes as an input the degrees of the generators of the ring R
and finds a rational polyhedral subdivision of SuppR as an output.

The crucial point is this: the proof from Ein et al. (2023) of Proposition 4.2 is
convex geometric, thus finding a rational polyhedral subdivision of SuppR is imple-
mentable in suitable convex geometry software such as Polymake (Polymake 2023).
For applications to the MMP in Sect. 5 we actually need only Theorem 4.1(i), and for
this we do not need the full statement of Proposition 4.2: following the proof in (Ein
et al. 2023, Proposition 1.1), one first shows that each function o� can be written as
the pointwise infimum of a family of linear functions – these linear functions depend
only on the multidegrees of some set of generators ofR, and this is precisely the place
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where the Main Problem is relevant. Once this is shown, one can find a subdivision as
in Theorem 4.1(i) by an explicit linear algebra argument, see (Ein et al. 2023, Lemma
2.1 and Remark 2.3).

For the sake of completeness, I mention here that Theorem 4.1(ii) is also algorithmi-
cally implementable. Additional to Theorem 4.1(i), there is only one crucial algebraic
input, which corresponds to the case when r = 0:

Lemma 4.3 If R0 is a Noetherian ring and if R = ⊕
m∈N Rm is a finitely generated

R0-algebra, then there exists a positive integer d such that Rdm = Rm
d for every

m ∈ N \ {0}.

The proof of this lemma in (Bourbaki 1998, Chapter III, Sect. 1) is constructive: if
one knows the degrees of some generators of R, then one can calculate d explicitly.

Therefore, one should be able to implement Theorem 4.1 in a computer algebra
system (in the sense mentioned earlier: take as input the degrees of the generators of
the ring R and get as output a rational polyhedral subdivision of SuppR), although
improvements and simplifications to the algorithm from Ein et al. (2023) have to be
made, since the calculations can get expensive quickly as the number of generators of
R or their multidegrees grow.

Once Theorem 4.1 is implemented, we apply it for a projective Q-factorial klt
pair (X ,�) of log general type. We let A1, . . . , Ar be ample divisors on X , and set
D0 := KX +� and Di := KX +�+Ai for i = 1, . . . , r . Then, as explained above, as
soon as we have a solution to the Main Problem for the ring R = R(X; D0, . . . , Dr )

(for instance, either by finding generators of R explicitly in explicit examples, or by
knowing a general upper bound for theirmultidegrees by general theoretical arguments
as in Cascini and Zhang (2014); Cascini and Lazić (2014)), we can calculate the cone
subdivision as in Theorem 4.1(i) in a computer algebra system. As mentioned in
Sect. 3, the biggest progress on this problem is currently on surfaces, where one can
calculate a bound explicitly by Theorem 3.2.

5 Step 3: Minimal models

In the final step, we will see that the cone decomposition from the previous section
applied to a particular choice of a divisorial ring on a klt pair (X ,�) of log general
type immediately provides the steps in a Minimal Model Program of (X ,�), as well
as a minimal model of (X ,�).

So let (X ,�) be a projective Q-factorial klt pair of log general type and let
A1, . . . , Ar be ample divisors on X whose classes generate N 1(X)R. Thus, we may
assume that r is the Picard rank of X . Moreover, by the Cone theorem, possibly by
replacing Ai by (2 dim X + 1)Ai , we may assume from the start that each divisor
Di := KX + � + Ai is ample for i = 1, . . . , r : this will make finding a divisor H
below easier, but is not essential.

Then by Theorem 3.1 the ringR = R(X; KX + �, D1, . . . , Dr ) is finitely gener-
ated. Therefore, by Theorem 4.1 the cone C := SuppR has a finite rational polyhedral
subdivision
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C =
p⋃

i=1

Ci

into cones of maximal dimension, such that the asymptotic valuation function o� is
linear on each Ci for every geometric valuation � over X . By subdividing C further,
we may assume that each cone Ci is contained in one of the two half-spaces of the
vector space R(KX + �) + ∑

RDi bounded by each hyperplane which contains a
face of some C j , where 1 ≤ i, j ≤ p. Note that the cone C is equal to the cone
R+(KX + �) + ∑

R+Di , since KX + � is big.
Pick an ample divisor H on X such that, denoting

I := {
t(KX + �) + (1 − t)H | 0 ≤ t ≤ 1

}
,

then we have the following property: if I intersects some cone Ci , then it intersects its
interior – it is clear that one can easily achieve this. By relabelling, we may assume
that I intersects precisely the cones C1, . . . , Ck for some k ≤ p, so that

KX + � ∈ Ck, H ∈ C1 and Ci ∩ Ci+1 ∩ I �= ∅ for all i = 1, . . . , k − 1.

Then we have:

Theorem 5.1 With notation as above, let D be any divisor in the interior of Ck . Then
the variety Proj R(X , D) is a minimal model of X.

This follows from the proof of (Corti and Lazić 2013,Theorem 6) and from the
proof of a more general statement (Kaloghiros et al. 2016, Theorem 5.4). I briefly
sketch the main steps of the proof, which will in particular explain how to run the
MMP with scaling of H in this context. This is important when one is interested in all
the steps of the MMP instead of just in its main result.

The proof is by induction on k. Denote by π : DivR(X) → N 1(X)R the natural
projection. Then one can show that the cone C ∩ π−1

(
Nef(X)

)
is the union of some

of the cones Ci , where 1 ≤ i ≤ p. In particular, we may assume that there exists
1 ≤ k0 ≤ k such that

Ci ⊆ π−1(Nef(X)
)

for i = 1, . . . , k0

and

Ci � π−1(Nef(X)
)

for i = k0 + 1, . . . , k.

Pick any divisor G in the interior of Ck0+1 and set X ′ := Proj R(X ,G). Then the
proof of (Kaloghiros et al. 2016, Theorem 5.2) shows that the induced birational map
f : X ��� X ′ is precisely the first step in the (KX + �)-MMP with scaling of H .
Define rational polyhedral cones C′

i := f∗Ci ⊆ DivR(X ′) and denote by
π ′ : DivR(X ′) → N 1(X ′)R the natural projection. Then one can again show that
there exists k0 + 1 ≤ k1 ≤ k such that
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C′
i ⊆ (π ′)−1(Nef(X ′)

)
for i = k0 + 1, . . . , k1

and

C′
i � (π ′)−1(Nef(X ′)

)
for i = k1 + 1, . . . , k.

Pick any divisor G ′ in the interior of Ck1+1 and set X ′′ := Proj R(X ,G ′). Then the
induced birational map f ′ : X ′ ��� X ′′ is precisely the second step in the (KX + �)-
MMP with scaling of H . By continuing this procedure we realise the whole MMP
with scaling.

The procedure just described calculates the maps f , f ′, . . . in the MMP above, but
there is some work involved in finding the indices k j . Moreover, one calculates each
subsequent map on a different variety: for instance, f ′ was determined by data on X ′
and not on X itself. One can, however, proceed also as follows: For each i = 1, . . . , k
one can pick a divisor Gi in the interior of Ci and set Xi := Proj R(X ,Gi ). Then one
obtains birational maps

X = X1 ��� X2 ��� . . . ��� Xk,

where Xk is a minimal model of X . Some of these birational maps will actually be
isomorphisms, hence there will be some redundancy in the process. However, the clear
advantage is that one has to calculate the varieties Xi on the variety X itself, which
saves computer power.

6 Conclusion

An algorithm for an implementation of the Minimal Model Program in a computer
algebra system was proposed in Sects. 3, 4 and 5, for pairs (X ,�) of log general type.

The algorithm proceeds in three steps. In Step 1 one considers a carefully chosen
multigraded ring R on X . The Main Problem in the algorithm is to bound the multi-
degrees of its generators. This problem has a solution on surfaces, therefore the MMP
on surfaces should be implementable on a computer in the near future. Bounding the
multidegrees of generators of such graded rings R in higher dimensions is a topic of
future theoretical research.

Once the Main Problem is implemented, the remainder of the algorithm becomes
a mixture of linear algebra and convex geometry. In Step 2 one uses as an input the
information on the multidegrees of generators of R as in the Main Problem to find
a suitable decomposition of the support of R into finitely many rational polyhedral
cones with special properties. In Step 3, from this decomposition one can immediately
obtain a minimal model of (X ,�) and the steps in a (KX +�)-MMPwith scaling of a
certain ample divisor. All three steps can be implemented independently of each other.
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