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English Abstract

Hydrophobins are a family of small globular proteins expressed by filamentous fungi.
Remarkable water-repellent properties enable them to cover interfaces and mod-
ulate surface wettability. Despite their potential applications across various fields,
from the food industry to medical targets, the mechanisms underlying their linear
adsorption, crystal formation, and film stabilization are not fully understood. This
thesis investigates those critical aspects of thin films at liquid-air interfaces formed
by hydrophobins in two parts. First, the adsorption kinetics of class II hydrophobins
HFBI andHFBII, alongwith engineered variants, are analyzed through a combined ap-
proachof theoreticalmodelling and experiments. Experimental results reveal intrigu-
ing linear kinetics for wild-type proteins until saturation, contrasting with Langmuir
kinetics for bulky variants and concentration-dependent kinetics for charge-mutated
proteins. A stochastic model incorporating a subsurface layer and spin properties of
proteins elucidates the underlying mechanism, highlighting a two-stage adsorption
process and the role of diffusivemotion and final adsorption rate in kinetics. The sec-
ond part studies themechanical response to external stress using a continuum space
model incorporating thermal fluctuations and angle-dependent potentials. Simula-
tion results reveal the crucial role of angle-dependent potentials in maintaining or-
der and stabilizing films, contrasting with systems interacting only isotropically. No-
tably, the reordering process before rupture underscores the dominance of angle-
dependent potentials in stabilizing structures. Moreover, the study emphasizes the
challenge of achieving ordered parameters in off-lattice models due to persistent
local defects. Through these investigations, this thesis contributes to a deeper un-
derstanding of hydrophobin behaviour and sheds light on potential applications in
biodevice.
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Zusammenfassung

Hydrophobine sind eine Familie kleiner globulärer Proteine, die von filamentösen
Pilzen exprimiert werden. Dank ihrer bemerkenswerten wasserabweisenden Eigen-
schaften können sie Grenzflächen bedecken unddieOberflächenbenetzbarkeitmod-
ulieren. Trotz ihrer potenziellen Anwendungen in verschiedenen Bereichen, von der
Lebensmittelindustrie bis hin zu medizinischen Zielen, sind die Mechanismen, die
ihrer linearenAdsorption, Kristallbildungund Filmstabilisierung zugrunde liegen, nicht
vollständig verstanden.
In dieser Arbeit werdendiese kritischenAspekte vondünnen Filmenan Flüssigkeits-

Luft-Grenzflächen, die von Hydrophobinen gebildet werden, in zwei Teilen unter-
sucht. Zunächst wird die Adsorptionskinetik von Hydrophobinen der Klasse II, HFBI
und HFBII, sowie von konstruierten Varianten durch einen kombinierten Ansatz aus
theoretischerModellierungundExperimenten analysiert. Die experimentellen Ergeb-
nisse zeigen eine faszinierende lineare Kinetik für Wildtyp-Proteine bis zur Sättigung,
imGegensatz zur Langmuir-Kinetik für voluminöse Variantenund zur konzentrations-
abhängigen Kinetik für ladungsmutierte Proteine.
Ein stochastisches Modell, das eine unter der Oberfläche liegende Schicht und die

Spineigenschaften der Proteine einbezieht, klärt den zugrundeliegenden Mechanis-
mus auf, wobei ein zweistufiger Adsorptionsprozess und die Rolle der Diffusionsbe-
wegung und der endgültigen Adsorptionsrate in der Kinetik hervorgehoben werden.
Im zweiten Teil wird diemechanische Reaktion auf äußere Belastungmit Hilfe eines

Kontinuumsraummodells untersucht, das thermische Fluktuationen und winkelab-
hängige Potenziale einbezieht. Die Simulationsergebnisse zeigen die entscheidende
Rolle der winkelabhängigen Potenziale bei der Aufrechterhaltung der Ordnung und
der Stabilisierung der Filme, im Gegensatz zu Systemen, die nur isotrop wechsel-
wirken. Insbesondere der Prozess der Neuordnung vor dem Bruch unterstreicht die
Dominanz der winkelabhängigen Potenziale bei der Stabilisierung der Strukturen.
Darüber hinaus unterstreicht die Studie die Herausforderung, geordnete Param-

eter in Modellen außerhalb des Gitters zu erreichen, die auf anhaltende lokale De-
fekte zurückzuführen sind. Durch diese Untersuchungen trägt diese Arbeit zu einem
tieferen Verständnis des Verhaltens von Hydrophobinen bei und wirft ein Licht auf
potenzielle Anwendungen in Biodevices.
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Chapter 1

Introduction

Hydrophobins are a family of small globular proteins expressed by filamentous fungi.
They have a relatively sizeable water-repellant surface area, which makes them able
to cover interfaces and change the wettability of surfaces [22, 41]. Fungi employ their
strong tendency to cover surfaces in biological processes, such as coating the surface
and air cavities in fruiting bodies, which help the fungi survive and adapt to the envi-
ronment [8, 48, 62]. Due to their elevated surface activity and non-toxic native origin,
Class II hydrophobins HFBI and HFBII find various applications, from the food indus-
try to medical targets [19, 25].
The inspiration for this project comes from the experiments performed in the Ja-

cobs group at Saarland University, where the adsorption behaviour of class II hy-
drophobins HFBI and HFBII were investigated.
Class II hydrophobins HFBI and HFBII are compact proteins of 7.5 kDa with a hy-
drophobic patch of about 12 percent of the surface area [21, 41, 57]. The adsorption
from the bulk solution leads to a membrane comparable to a monolayer [20, 53, 65].
The interfacial film consists of observable two-dimensional structures, not fusing
even in close affinity [20, 41]. Remarkably, the adsorption follows unusual linear ki-
netics rather than the expected Langmuir kinetics of proteins [20].

While there is massive interest in considering applications and mechanical prop-
erties of films formed by those hydrophobins and their mutants, the mechanism be-
hind the linear adsorption, the reason for, and the contributing interactions that lead
to crystal formation and stabilized films are not fully understood and not studied yet.
This knowledge can result in controlling film formation and opening new windows
for their applications in biodevices.
This thesis focuses on the formation and mechanical properties of monolayers re-

sulting from the self-aggregation of class II hydrophobins HFBI and HFBII.
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Chapter 1. Introduction

To investigate adsorption kinetics, this thesis introduces a stochasticmodelwherein
proteins are viewed as particles possessing an internal degree of freedom, adsorbing
to a two-dimensional lattice. The model suggests a "two-stage adsorption process",
a concept that refers to the initial adsorption to the subsurface followed by a final
adsorption to the interface, highlighting the significance of diffusive motion and a
high final adsorption rate relative to other rates, resulting in linear adsorption kinet-
ics. The Monte Carlo scheme and Metropolis-Hastings algorithm are employed for
studying the adsorption kinetics, providing a comprehensive understanding of the
process.
The second part of the project focuses on contributing interactions that stabilize

the crystal structure in hydrophobins. Here, a continuummodel approach is utilized.
This approach is capable of analyzing thermal fluctuations in the film. The results
conclude that anisotropic angular interaction is essential in stabilizing hydrophobin
layers, accounting for their high elasticity.
The thesis is organized as follows: Chapter two will encompass background infor-

mation from Physics and Biology. This chapter will explore essential terminology,
fundamental models, and general background information crucial for comprehend-
ing the studied systems. Chapters three and four will focus on the fundamentals
of phase transition and, specifically, the current understanding of two-dimensional
phase transition. These chapters will set my work, presented in chapters five and six
within the broader landscape of recent scientific research. The concluding chapter
will summarize the accomplishments, conclude the proposedwork, and offer insights
into potential future research programs that integrate both investigative threads.

2



Chapter 2

Fundamental Concepts: Bridging
Biology and Theory

This chapter provides essential terminology and background information, from biol-
ogy to theory, that are all essential to capture the content of this thesis. It describes
proteins and their structural compositions involving amino acids and proceeds to
elaborate on the characteristics of hydrophobins, concluding with a brief overview
of stochastic processes. The first section reviews the fundamental terminology of
proteins. Initially, amino acids are introduced as organic constituents of proteins.
Subsequently, the discussion extends to the four distinct levels of protein structure.
The general structure of this part of the chapter is based on references [7, 30, 46].
Then, a comprehensive review of hydrophobins is presented, highlighting them as a
group of small globular proteins with unique properties. Finally, the focus shifts to
a more detailed exploration of hydrophobins of class II, the subject of study in this
thesis.
The second section focuses on the theoretical concepts applied in this study. It

briefly introduces theDLVO theory, a framework for describing the interactions among
colloidal particles in a solution. The section then considers stochastic processes and
explores selectedmodels essential for a comprehensive understanding of this study.
The approach in this section follows references [12, 31, 60].

3



Chapter 2. Fundamental Concepts: Bridging Biology and Theory

2.1 Biological background

Proteins are one of the primary building blocks of biological systems. Proteins are
macromolecules consisting of, on average, several hundred amino acids. They carry
out diverse functions, all essential for a living object, from the simple formation of
the system’s structure to highly complex operations such as transporting objects,
promoting intracellular chemical reactions, or DNA replication. The number and ar-
rangement of the amino acids uniquely determine their physical and biochemical
properties.

2.1.1 Amino acids

Figure 2.1: The general structure of amino acids: Amino acids consist of a central carbon
called the α-carbon, attached to an amino group, a carboxyl group, and a side
chain group denoted by R symmetrically. The R group determines the chemical
nature of the amino acids, e.g., acidic, basic, polar, and non-polar.

Amino acids are organic molecules containing a central carbon called alpha carbon
attached to an amino group and a carboxyl-acid group, as shown in figure 2.1.
Amino acids are differentiated by a group of atoms bonded to the side of the al-

pha carbon called the residual side-chain group or, equivalently, the R group. The
side chain group determines the chemical nature of the amino acid, e.g., polar, non-
polar, and charged. Althoughmore than 400 amino acids are known, only 20 of them
commonly form proteins. Rather than the complete name, it is common to use three
or one-letter abbreviations of the amino acids. Those proteinogenic amino acids,
their chemical properties, and both three and one-letter abbreviations are shown in
figure 2.2.

4



2.1. Biological background

Figure 2.2: Left: Molecular structure of the common proteinogenic amino acids in detail,
sorted by size and hydrophobicity. The figure is adapted from [18], originally
based on [54]. Right: The complete name, three-letter, and one-letter abbrevi-
ations of twenty amino acids side chain groups are sorted based on the amino
acids chemical nature adapted from [7]

Aliphatic amino acids, highlighted in yellow in the panel, are those of nonpolar
and hydrophobic R groups. The hydrophobicity increases with the number of car-
bon atoms in the hydrocarbon chain. The aliphatic amino acids from more minor to
higher hydrophobicity are glycine, alanine, valine, leucine, and isoleucine. Aliphatic
amino acids are commonly buried inside the protein molecule; however, among
them, glycine and alanine are ambivalent, meaning that they can be found outside
of protein molecules, as in the case of hydrophobins.
The characteristic feature of hydrophobins comes from a relatively sizeable con-

nected surface area formed by these hydrophobic, aliphatic residues called the hy-
drophobic patch on the surface [39]. As the rest of the outer region is hydrophilic,
they haveboth hydrophobic andhydrophilic heads,making themstrongly amphiphilic
molecules. This amphiphilic nature imparts particular properties to hydrophobins, as

5



Chapter 2. Fundamental Concepts: Bridging Biology and Theory

discussed shortly in Section 2.1.4.

Figure 2.3: (a)A covalent peptide bond joins two amino acids to construct proteins. A peptide
bond is formedwhen the carbon atomof the carboxyl group shares electronswith
the nitrogen atom of the amino group of the second amino acid. The formation
of a peptide bond is accompanied by the release of a water molecule. The pink
rectangle pronounces the atoms participating in the peptide bond formation. (b)
Two amino acids joined by a peptide bond are shown. A polypeptide chain always
starts from the left by the amino terminus, known as the N-terminus, and ends
by the carboxyl terminus, called the C-terminus. Blue and green rectangles mark
the N and C-terminus, respectively. (c) A polypeptide backbone of six amino acids
is shown.

A protein comprises a specific sequence of amino acids linked to a repeating struc-
ture called a polypeptide backbone. A peptide bond is a covalent bond that connects
two amino acids by sharing electrons of nitrogen of the amino group to the carbon
of the carboxyl group of the second one, as illustrated in figure 2.3. A particular
backbone chain shows a specific directionality; since peptide bonds link the chain of
amino acids, each has two ends, one of the amino groups called the N-terminus and
the second of the carboxyl group called the C-terminus. Other interactions, e.g., hy-
drogen bonds and disulfide bridges, play a role in constructing the three-dimensional
structure of a protein.

6



2.1. Biological background

2.1.2 Protein structure

Figure 2.4: α-helix and β-sheet structure: The α-helix and β-sheet structures are common
motifs defined by the specific hydrogen bonds between the amino hydrogen and
carboxyl oxygen atoms in the polypeptide backbone. In this figure, carbon atoms
are depicted in black, hydrogen in white, nitrogen in blue, and oxygen in red.
The figure is created by Rao, A., Ryan, K., Fletcher, S., and Tag, A., Department
of Biology, Texas A & M University and reprinted from [7] under the Creative
Commons Attribution License.

The structural composition of proteins is comprehensively discussed through four
distinct structures: primary, secondary, tertiary, and quaternary. The primary struc-
ture pertains to the actual sequence of amino acids connected by peptide bonds.
Atomic interactions between amino acids induce a local folding of the polypeptide
chain, resulting in a compact arrangement of themain chain known as the secondary
structure.
Two prevalent substructures, depicted in Figure 2.4, are the α-helix and β-sheet.

The stability of both substructures is achieved through hydrogen bond formation. In

7



Chapter 2. Fundamental Concepts: Bridging Biology and Theory

the α-helix structure, hydrogen bonds link one amino acid to the other four down
the chain, creating a bonding pattern that imparts a helical structure to the chain,
with each turn typically involving 3.6 amino acids. On the other hand, the β-sheet
structure involves two or more segments of the chain lining up next to each other,
forming a sheet-like structure stabilized by hydrogen bonds.
The three-dimensional structure of the polypeptide chain, resulting from interac-

tions between the R groups of amino acids, is termed the tertiary structure of the
protein. This unique and stable conformation arises from the sequence alignment
and is determined by energy considerations. Under favorable conditions, the un-
folded chain consistently folds into this distinctive 3D structure.
The folded structure of a protein plays a pivotal role in the aggregation of multi-

ple proteins into multimers, forming the quaternary structure. The 3D configuration
of proteins influences factors such as cooperativity, surface activity, and the ability
to form biofilms. Specific proteins, such as insulin, consist of multiple polypeptide
chains known as subunits. These subunits are bound together by various interac-
tions, including hydrogen bonds or weak forces like London dispersion forces, which
contribute to constructing the protein’s quaternary structure.

2.1.3 Protein functions in biological systems

The essential role proteins play in almost all functions of a living organism cannot
be stressed enough. Transport proteins carry substances into cells, out of cells, or
within cells. Motor proteins are essential to cellular transport, while enzymes catalyze
metabolic reactions. Proteins also contribute to diverse regulatory processes, influ-
encing gene expression, intercellular communication, and signaling mechanisms.
The presence of proteins on surfaces can lead to the formation of biofilms, charac-

terized as populations or communities of organisms enclosed in a matrix and adher-
ing to interfaces or each other. In multicellular organisms such as humans, animals,
and plants, variousmicroorganisms exist in biofilms or biofilm-like structures, playing
essential roles in development, physiology, and immunity. However, some biofilms
can have adverse effects on host health.
In summary, proteins are the fundamental building blocks of all organic systems,

making them central to various natural sciences. Moreover, there is a growing in-
terest in their applications in biotechnology, food processing, and medicine. Two
hydrophobin proteins, HFBI and HFBII, produced by Trichoderma reesei, are particu-
larly intriguing due to their potential industrial applications and suitability for creating

8



2.1. Biological background

novel vesicles with functions such as drug delivery. The rest of this chapter provides
a concise overview of hydrophobins, explicitly focusing on proteins in this thesis.

2.1.4 Hydrophobins: Proteins with the particular pattern in the
primary structure

Figure 2.5: The generation of a fibrous material or fibrous layer is a distinctive characteristic
of T. reesei. The surface structure of a T. reesei mutant grown on (a) glucose,
and (b-d) Avicel for one (a) and three days (b-d). (a) Initially, the tip of the fibrous
material was emerging from the cell wall surface (arrowhead); subsequently, it
enlarged to form fibrous material (arrow). (b) The fibrous material became en-
tangled to form layers of threads. The interface between the cell wall and the
reticulate fibrous layer is shown by the arrow. (c) The layers do not adhere tightly
to the cell wall. (d) Avicel is entangled within fibrous material (arrowhead) or be-
comes trapped in the fibrous layers. The abbreviations A and CW are used for
Avicel and cell wall, respectively. The figure is reprinted from [48] with permis-
sion from Journal of Electron microscopy, Copyright (2012).

This thesis concerns a family of small globular proteins called hydrophobins pro-
duced by filamentous fungi. Hydrophobins have several biological roles in fungal

9



Chapter 2. Fundamental Concepts: Bridging Biology and Theory

growth in surviving and adapting them to the environment. The proteins regarded
in this thesis are HFBI and HFBII, originating from Trichoderma reesei.
The filamentous fungus T. reesei is a fast-growing Ascomycete found widely in soil

environments. T. reesei secretes high amounts of cellulolytic enzymes [52]. These
microbial cellulases find significant industrial applications in converting cellulose into
glucose [32], making this fungus the focus of intensive study. Figure 2.5 illustrates the
transformation of the fibrous material into a fibrous layer on the hyphal surface of a
hyper-secreting T. reesei [48].
Hydrophobins exhibit distinct hydrophilic and hydrophobic parts on their surfaces,

making them prone to migrating to hydrophobic-hydrophilic interfaces, such as air-
water or solid-water. By forming stable layers, they effectively alter the surface ten-
sion or wettability of these interfaces [1, 53, 65].
Hydrophobins are divided into classes I and II based on the sequence of amino

acids in their primary structure [62], resulting in variations in solubility and aggre-
gate patterns. Class I hydrophobins are characterized by the formation of rodlets,
a distinctive feature absent in class II hydrophobins—the type to which the proteins
discussed in this thesis belong. Adsorbed class II hydrophobins at air-water inter-
faces can form stable crystalline monolayers exhibiting high elasticity under specific
experimental conditions. Moreover, these biofilms have the potential to create stable
protein bilayers.
Hydrophobin bilayers have been successfully generated at various interfaceswithin

microfluidic devices [23]. Microfluidic measurements indicate a bilayer adhesion en-
ergy on the order of several kBT . While mutations do not impact the hydrophobic
component, variations in the hydrophilic adhesion energy reveal that fewer charges
result in higher adhesion energy, signifying repulsive Coulomb interactions between
proteins [19]. Notably, hydrophobin adhesion energies tend to exceed those of other
highly surface-active molecules, such as lipids [19].
The remarkable stability of hydrophobin bilayers positions them as ideal candi-

dates for creating novel vesicles, particularly valuable in applications like drug de-
livery. In contrast to lipid vesicles, hydrophobin vesicles can be formed with either
a hydrophobic or hydrophilic shell [19], rendering them versatile for use in diverse
environments.
Moreover, hydrophobins HFBI and HFBII have demonstrated highly linear adsorp-

tion kinetics, as observed in [20]. This behavior is inconsistent with the typical Lang-
muir kinetics 1, suggesting the involvement of nontrivial mechanisms in the adsorp-
1Langmuir isotherm suggests an exponential adsorption rate, as will discuss in 2.2.6.

10



2.1. Biological background

tion process. In-depth investigations into genetically modified variants of HFBI have
revealed surprising results, with the adsorption kinetics for mutants aligning with the
expected Langmuir type [20]. Therefore, a thorough examination of the structure
and properties of these proteins becomes a crucial step in unraveling the precise
mechanism behind the remarkable features of hydrophobins.

2.1.5 particular pattern in the primary structure

Hydrophobins are diverse in amino acid sequence. However, all hydrophobins share
a distinguishing feature in their primary structure, i.e., the existence of eight cys-
teine residues that appeared in a conserved spacing pattern [62]. As shown in fig-
ure 2.6, the Cys-residues are regulated in two different arrangments, classifying hy-
drophobins into two subgroups, class I and II [62]. The disulfide bonds formed be-
tween Cys-residues result in stabilization and the spherical shape of hydrophobins
[41].

Hydrophobin

Amino Acid sequence

Cys

Cys

Cys

Cys

Cys

Cys

Cys

Cys

Cys

Cys

Cys

Cys

Cys

Cys
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Cys

Cys

Cys

Cys

Cys

Cys

Cys

Cys

Cys

Class I

Class II

26-85

17-67

5-8

9-10

17-39

11

8-23

16

5-6

6-9

6-18

10

2-13

3-7

Figure 2.6: The sequence of amino acids in hydrophobins presents a characteristic feature.
Eight Cys-residues exist in a particular design, classifying hydrophobins into two
subgroups, class I and II. This arrangement reveals a more conversed way in
class II proteins: the number of residues between Cys-residues 3 and 4 and Cys-
residues 4 and 5 is entirely conserved, as shown in green in the panel. The num-
bers represent the variation of the number of amino acids in hydrophobins.

Class II hydrophobins, the focus of this thesis, exhibit a conserved sequence vari-
ation. Specifically, the lengths of polypeptide segments between Cys-residues 3 and
4 and between Cys-residues 4 and 5 in class II hydrophobins, highlighted in green
in Figure 2.6, are entirely conserved. In contrast, class I hydrophobins display more
diversity in these segment lengths.

This observedpatternmaybe linked to the various assemblies formedbyhydrophobins,
as illustrated in Figure 2.7. Experimental observations indicate that some class II hy-
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drophobins, such as HFBI andHFBII, can form crystallinemonolayer films at air-water
interfaces [41, 57]. These soluble structures differ from the insoluble rodlet struc-
tures detected in class I hydrophobins [9].

While proteins of class II undergo no conformational changes at the interface, class
I hydrophobins do. The rodlet structure represents the final stage of assembled ag-
gregates, indicating that both class I and II hydrophobins form similar interfacemem-
branes. However, themembranes formed by class I hydrophobins become insoluble
rodlet structures due to further conformational changes at the interface [15, 39].

Figure 2.7: Atomic force microscopy images of hydrophobin film assembled at the air-water
interface. (a) An AFM image of S. commune SC3 protein of class I hydrophobins
shows rodlet structure. The sample was prepared by drying down a protein so-
lution on a mica substrate. (b) An AFM image of T. reesei HFBI protein of class
II presenting long-range ordered structure. The self-assembled film at the air-
water interface was deposited on a mica substrate using the Langmuir-Blodgett
technique. The figure is reprinted from [41] with permission from FEMSMicrobi-
ology Reviews, copyright (2005).

The following section describes the hydrophobins regarded in this thesis and some
of their characteristic features.
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2.1.6 Studied hydrophobins

The hydrophobins interested in this thesis comprise HFBI, HFBII, and severalmutated
variants of HFBI. HFBI and HFBII, wild-type proteins produced by T. reesei, exhibit
a similar overall structure. The subsequent section offers a brief overview of the
general aspects of their structure, focusing on features pertinent to the objectives of
this thesis.

HFBII

Figure 2.8: HFBII (a) The sequence of HFBII, with yellow color indicating the Cys residues and
red for the hydrophobic patch residues. The residues highlighted in purple, cyan,
and pink present the β-sheets number four and three, α-helix, and β-sheets num-
ber two and one, respectively. (b) Topology and structure of HFBII. The HFBII pro-
tein comprises four β-sheets and an α-helix. The β-sheets are shown in purple
and pink arrows, and the blue rectangle indicates the α-helix structure. The N-
and C-terminus are shown. (c) The three-dimensional structure of the HFBII. (d)
The space-filling model of the HFBII structure, the disulfide bridges, and the hy-
drophobic patch are highlighted in yellow and red, respectively. (e) The structure
of HFBII in which the positively charged residues are highlighted in blue (Lys) and
cyan (His). The figures (b-c) are reprinted from [22] under the CC BY Licence,
Elsevier. The figures (a and d) are reprinted from [21] with permission from Bi-
ological Crystalography, and the figure (e) is adapted from [14] under the CC
BY-NC-ND License.
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HFBII is a single-domain protein of 71 amino acids in the primary structure [21, 22].
The structure of theHFBII protein consists of four antiparallel β-sheets and anα-helix,
as shown in the figure 2.8. The eight Cys-residues form four disulfide bridges sym-
metrically located in the same plane. These disulfide bridges make a network span-
ning the entire molecule and stabilize the protein’s compact structure. The aliphatic
side-chain groups, all located in the β- sheets except one positioned in the N-terminal
loop, construct a relatively flat hydrophobic patch of the protein [22]. The 3D struc-
ture of the protein has a dimension of 24×27×30 Å [22]. The total hydrophobic area
of the protein is about 4 nm2, about 12 percentage of the total protein’s area [14].
The remaining part of the surface is more hydrophilic. The protein has a molecular
mass of 7.2 kDa.

The HFBII includes five positive and four negative amino acids, Fig. 2.8-e. The neg-
atively charged side chains are next to the hydrophobic patch. Below it is a half-ring
composed of three positively charged amino acids, and the last two positive charges
are on the hydrophilic side of the surface [14].

The HFBII is a rigid globular proteinmolecule in which the essential conformational
changes at the air-water interfaces are not expected [39]. The thickness of a mono-
layer protein examined by AFM images is comparable to the size of the 3D structure
determined by the X-ray structural analysis of crystal [53].

HFBI

The HFBI protein shares a similar structure to HFBII, consisting of four β-sheets, an
α-helix, and the same disulfide bridges [22]. It differs from HFBII in the number of
charged residues [22, 38].

The structure of HFBI has six charged residues exposed on its surface, as shown
in figure 2.9. Four amino acids, Asp40, Asp43, Arg45, and Lys50, are positioned at
the hydrophilic side of the protein opposite the hydrophobic patch. The remaining
two charged residues, Lys32 and Asp30, are located in proximity to the hydrophobic
patch. HFBI has a size of 70 amino acids and a cross-section of about 2 nm in diameter
[22]. Both wild-type proteins show crystalline film structure, as discussed in 2.1.8.
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Figure 2.9: (a) Three-dimensional structure of T. reesei hydrophobin HFBI: The hydropho-
bic patch colored green comprises nearly all hydrophobic aliphatic side chains
of protein. The remaining surface is hydrophilic—the protein self-assembles to
the hydrophobic-hydrophilic interfaces due to its amphiphilic nature. The struc-
ture of HFBI consists of six charged amino acids exposed on the surface, labeled
red and blue for negatively and positively charged amino acids, respectively. The
figure is reprinted from [38] with permission from American Chemical Society,
Biomacromolecules, Copyright (2015).

The crystal structure observations indicate lateral interactions between proteins at
the interface. Those interactions are supposed to play a role in high buckling strength
and exceptionally high shear moduli of hydrophobin membrane [65]. The mecha-
nism and type of these interactions are unclear; hence, selected mutations probing
the lateral interactions can shed light on it.
The role of lateral interactions can be investigated in two ways: (i) replacing the

two charged amino acids proximal to the hydrophobic patch of HFBI with neutral
amino acids, or (ii) glycosylation or adding cellulose domains to the HFBI. The larger
size in the latter prevents proteins from getting close together, and gaining weight
suppresses the protein’s diffusive motion at the interface. In the following, I describe
the structure of a few variants suitable for studying the role of lateral interactions.

HFBI-D30N-K32Q

HFBI-D30N-K32Q is a mutant of HFBI in which two charged amino acids, Asp30 and
Lys32, close to the hydrophobic patch, are replaced by electrically neutral residues,
Asn and Gln, respectively. This mutation does not affect the intermolecular inter-
actions of hydrophobin, indicating that both proteins, HFBI-D30N-K32Q and HFBI,
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maintain a similar conformation and orientation at the air-water interface [43], as
confirmed by AFM examination of films from both proteins [38].
The AFM images of Langmuir-Blodgett films of HFBI-D30N-K32Q revealed a stable

raft-like structure with confirmed crystallinity [38]. However, altering these residues
influences the intramolecular interactions, as evidenced bymeasurements of the loss
modulus. The loss modulus of HFBI-D30N-K32Q increased rapidly compared to HFBI
[38].

FpHYD5

Figure 2.10: FpHYD5 is a glycosylated hydrophobin stemming from F. poae. The glycosylated
site is in a surface-exposed opposite on the hydrophilic part of the surface. (a)
The homology structure of HFBII with the hydrophobic patch colored green. (b)
The homology structure of FpHYD5 compared to the HFBII. The glycosylated site
is colored red. The figure is reprinted from [51] with permission from Journal
of Basic Microbiology, copyright (2012).

FpHYD5 is a glycosylated hydrophobin stemming from Fusarium poae [51]. The gly-
cosylation site is positioned on the hydrophilic side of the protein opposite the hy-
drophobic patch, as shown in figure 2.10. Its total molecular weight is 9.2 kDa, from
which the isolated protein contributes 7.5 kDa, comparable to the HFBI molecular
weight, and the leaving mass of 1.7 kDa contributes from the glycan structure at-
tached to protein [51].
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HFBI-dCBD

Figure 2.11: HFBI-dCBD (a) The amino acid sequence of HFBI-dCBD; The first blue script
presents HFBI, followed by the cellulose-binding sequences of Cel6A-CBD in red
and Cel7A-CBD in green. Two domains are separated by flexible linkers, with the
sequence shown in black. (b) The three-dimensional structure of HFBI. The hy-
drophobic patch is shown in blue. (c) The structure of Cel6A-CBD. The aromatic
side chains that bind the cellulose are marked in green. Both CBDs have a simi-
lar structure. (d) A cartoon representation of the HFBI-dCBD protein. The main
protein, HFBI, is shown in blue, while the two cellulose domains and linkers are
depicted in red, green, and black lines, respectively. (e) Schematic illustration of
how the fusion protein can lead to an assembly at a hydrophobic-water inter-
face. The figure is reprinted from [61] with permission from The Royal Society
of Chemistry, copyright (2011).
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HFBI-dCBD is a hydrophobin fusion protein that incorporates two cellulose-binding
domains (CBD), Cel6A-CBD and Cel7A-CBD, linked to the C-terminus of the HFBI pro-
tein. Schematically depicted in Figure 2.11, these cellulose-binding sequences are
combined to form a construct known as double cellulose-binding domains (dCBD).
The CBDs and the linker collectively have a mass of 11 kDa, contributing to a total
molecular weight of 18.5 kDa for HFBI-dCBD [40]. The flexibility of the entire fused
protein architecture is ensured by the sufficiently long length of the linker [61].
Table 2.1.6 summarizes protein data and some of their properties. In the following

sections, I will delve into the essential features of these proteins, providing insights
for understanding and modeling the adsorption kinetics.

protein weight [kDa]
electric
charge [e]

remarks

HFBI 7.5 0.6 wild type
HFBII 7.2 1.8 wild type

FpHYD5 9.2 -1.6
glycosylated hydrophobin
stemming from Fusarium
graminearum

HFBI-dCBM 18.5 0.6
two cellulose binding do-
mains connected via linker to
HFBI

HFBI-D30N-K32Q 7.5 0.4
two charged amino acids
were substituted with non-
charged residues

Table 2.1:Weight, electric charge and type of the used proteins
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2.1.7 Solution oligomerization

At low concentrations, hydrophobins dissolve into monomers that self-aggregate at
the hydrophobic-hydrophilic interface, effectively shielding their hydrophobic patch.
However, monomers aggregate in solution as concentrations increase, forming vari-
ous oligomers. This oligomerization process serves as a mechanism to cover the hy-
drophobic patch of hydrophobins. Factors such as the size of the hydrophobic patch
relative to the hydrophilic part, concentration, and even mutations can influence the
shape and size of the resulting oligomers.

The critical micellar concentration (CMC) is the specific concentration at which ag-
gregates begin to form. The CMC depends on experimental conditions, including
temperature, pressure, and the concentration of other surface-active materials in
the solution. Beyond the CMC concentration, HFBI and HFBII proteins form dimers
and likely tetramers at higher concentrations [56, 58, 67], as illustrated in Figure 2.12.

Figure 2.12: A possible model for forming different oligomers in solution: at concentrations
less than CMC, proteins dissolve into monomers, which self-assemble to the in-
terface to shield the hydrophobic patch. At higher concentrations, dimers and
tetramers are likely. The figure is reprinted from Hähl et al. [20], with the per-
mission of American Chemical Society

The charged residue mutations affect oligomerization ability at a certain concen-
tration, even though the explicit behavior of changes is unclear. However, oligomer-
ization and adhesion to surfaces are correlated [37]. For instance, the mutant HFBI-
D30N-K32Q shows higher stability of multimers and less binding capacity to surfaces
than the WT protein HFBI.
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2.1.8 Structure, crystal formation, film formation

Figure 2.13: AFM examination of the HFBI films: a) The examined film is formed using
the pendant drop and transferred to oriented pyrolytic graphite, as described in
[57]. b-c) Both examined films were formed by spreading protein on a subphase
using a Langmuir through, as explained in [57]; the film in (b) is transferred to
oriented pyrolytic graphite, while in (c), Langmuir Blodgett method is used to
place the film on a piece of mica. d) The low-resolution surface structure of the
HFBI monomer was produced using the UCSF Chimera package. e) AFM images
of the HFBII layer at surface pressure of Π = 25mNm ; The sample has been pre-
pared based on the protocol discussed in [53]. The surface is highly inhomoge-
neous. The bright spots represent thicker layers of three to five-layer proteins.
The darker spots show the voids. f) Thickness of the HFBII layer vs. the distance
along the section of the dashed line in the figure (e). The zero on the vertical
axis is chosen arbitrarily. The height difference between each of the two points
is independent of the position of the zero. The figures (a-d) are reprinted from
[57] with permission from American Chemical Society, (copyright 2007). The
figures (e-f) are reprinted from [53] with permission of the American Chemi-
cal Society, copyright (2013).

Hydrophobins adsorb at hydrophobic-hydrophilic interfaces and form films. The ca-
pability to adhere to different surfaces is an essential function of hydrophobins. How-
ever, the developedmembranes show diverse characteristic dependence on the sub-
divisions of hydrophobins. The class I hydrophobins adhere to the surface very firmly
and form insoluble film, while the class II members includemore dissociable films. In
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the formation of a film, the saturated time is defined when the highest value of ad-
sorbed mass, saturated adsorbed amount, is achieved at the interface. The adsorp-
tion process is irreversible for hydrophobins [1, 53]; hence, the adsorption process
stops at saturation, and the saturated amount stays constant later. The saturated
adsorbed amount is independent of the adsorption process, and its surface density
is comparable to the formation of a monolayer [1, 20, 53].
Different techniques, such as adsorption from a bulk solution or adsorption by

spreading protein solution on the interface form a film. Those films consist of voids
and domains of proteins [53, 57]. The class II hydrophobins interested in this thesis
form mesoscopic interfacial layers despite the formation technique [53, 57, 65].
The adsorption from the bulk solution leads to a monolayer film, as shown in fig-

ure 2.13 a [20, 57]. The films result in the spreading of protein, dependence on the
experimental conditions such as protein solution and compression, are inhomoge-
neous layers of voids, monolayers, multilayers of an odd number, and even spots of
aggregation of proteins as shown in figure 2.13-e [57]. The bright spots in Fig. 2.13-e
are likely the protein aggregates deposited in the spreading drop solution of protein.

Figure 2.14: The left panel showsHFBI film sampled based on Langmuir Blodgett’s technique.
The right panel presents the HFBI-CysC-biotin film prepared using the Langmuir
Schaefer method. The hexagonal structure is visible in both films. The middle
panel suggests a possible arrangement that matches both films. The figure is
reprinted from [57] with permission from American Chemical Society, copy-
right (2007).

The interfacial film of HFBI shows a repeating pattern close to the hexagonal lat-
tice [57, 65]. Figure 2.14 illustrates a model suggesting two arrangements of protein
leading to a hexagonal structure: (i) a large ring consisting of six proteins or (ii) an ar-
rangement of units of three proteins, trimers, in each intersection of hexagons [57].
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As previously noted, observations of the crystalline structure indicate lateral inter-
actions between proteins at the interface. The role of these lateral interactions is
examined by proposing various interaction mechanisms in chapters 5 and 6 of this
thesis.

2.1.9 summary

This section has highlighted several remarkable features of hydrophobins, captur-
ing substantial interest in various industrial applications. However, to harness the
properties of hydrophobinsmost effectively, a comprehensive understanding of their
functionality and the ability to control their interactions are crucial. These questions
are explored in two chapters of this thesis.
In Chapter 5, I present experimental results and address open questions concern-

ing adsorption kinetics. Subsequently, I introduce amodel that describes themecha-
nisms underlying the adsorption process. Finally, in Chapter 6, I explore the interac-
tions that contribute to the high elasticity observed in hydrophobin biofilms. Before
delving into these chapters, briefly review the theoretical foundations that will be
utilized.
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2.2 Theoretical Background

This thesis aims to elucidate the intricate dynamics governing hydrophobin adsorp-
tion behaviour at air-water interfaces. Hydrophobins tend to self-assemble at air-
water interfaces and form multimer complexes or monolayers based on the experi-
mental conditions. Notably, their self-assembly shields hydrophobic regions, facilitat-
ing their interaction with the environment. As I will mention in chapter 5, experimen-
tal observations have revealed a distinctive feature: the linear kinetics characteriz-
ing hydrophobins’ adsorption process until saturation, making them distinguishable
from other proteins, which usually follow Langmuir adsorption kinetics. This thesis
focuses on developing a simplified model system that explains the underlying mech-
anisms governing this behaviour. Thismodel, constructedwith a focus on fundamen-
tal processes, allows exploring their contributions to the observed linear kinetics. The
model initially adopts a lattice gas framework in two dimensions, omitting intricate
protein-protein and protein-surface interactions for computational tractability. The
experimental results hint at the importance of long-range electrostatic interactions;
hence, the model further incorporates the DLVO theory to describe particle interac-
tions within a bilayer system. The Monte Carlo approach based on the Metropolis
algorithm offers a practical way in which a few deterministic variables describe the
system, and noise includes the randomness in the system. The following provides a
review of concepts setting the theoretical basis of this thesis.

2.2.1 DLVO theory

Derjaguin, Landau, Verwey, and Overbeek developed a theory to explain the stability
of colloidal systems. According to the theory, two forces impact the stability of col-
loidal systems: (i) the repulsion of electrostatic double-layer interactions and (ii) the
van der Waals attraction.
The electrostatic double-layer interaction is calculated as pair interactions in an in-

finite electrolyte solution using the Poisson equation combined with the charge den-
sity distribution characterized in the Boltzmann distribution. The resulting equation
is known as the Poisson-Boltzmann equation. The Poisson-Boltzmann equation, for
a solution composed of N ions of the valency of zi, can be formulated as

∇2ψ = −e
ϵ

N∑
i=1

zinie
− zieψ

kBT ,

23



Chapter 2. Fundamental Concepts: Bridging Biology and Theory

where ψ is the electrostatic potential, e is the elementary charge, ni denotes the con-
centration of ions, and ϵ is the absolute permittivity of the solution. The Poisson-
Boltzmann equation is a non-linear equation without any analytical solution. How-
ever, in the limit of zieψ

kBT
≪ 1, i.e., Debye-Hückel approximation, it converts to the

Helmholtz equation

∇2ψ = κ2ψ,

where κ−1 =
√

2e2I
ϵkBT

is the Debye screening length and I = 1
2

∑N
i=1 z

2
i ni is the ionic

strength of the solution. This equation can be solved analytically for various geome-
tries and boundary conditions. A practical example is the geometry of two infinite
parallel flat-charged plates immersed in an electrolyte solution. Derjaguin used this
geometry to calculate the interaction between the two spheres as a sum of corre-
sponding interactions between infinitesimal surface elements having planar geome-
try.
The interaction energy of two atoms is described by London interaction in the mi-

croscopic scale, in which the energy decays according to r−6, where r denotes the
radial distance between two atoms. The microscopic approach and the energy ad-
ditivity principle result in an analytic formalism of interaction between complicated
geometries of the interacting bodies, known as the van der Waals interaction on the
macroscopic scale. Hence, the van der Waals interaction of two macroscopic bodies
derived by Hamaker reads

UvdW ∝
∫
v1

∫
v2

ρ(r1)ρ(r2) dv1 dv2
|r1 − r2|6

.

For instance, computing the integral for the two parallel semi-infinite plates at a dis-
tance r results in A

r2
, where A is known as the Hamaker constant. The Hamaker con-

stant depends on the London constant and the charge of interacting bodies.

The DLVO theory combines the van der Waals interaction energy and the double-
layer interaction energy to describe the interaction between two particles in a liquid.
In most cases, the Hamaker constant is positive; hence, it has an attraction contri-
bution with a negative sign in the total energy. On the other hand, the double-layer
interaction can be either positive or negative depending on the charge of particles,
surface potential, and the distance between them. Additionally, the range of the in-
teraction can be affected remarkably by changing the ionic strength of the solution.

24



2.2. Theoretical Background

Thus, the superposition can result in a complicated energy profile determining if the
colloidal system coagulates.
A typical energy profile for a systemof charged particles is shown in figure 2.15. The

energy minimum corresponds to the adsorption of the colloidal particles. The char-
acteristic feature is the appearance of a maximum energy barrier after the primary
minimum. The energy barrier is followed by a minimum called the secondary mini-
mum for a system of low solution concentration and large particles. The secondary
minimum is more shallow than the primary minimum; however, it is expected that
particles will accumulate around its position, which can impact the adsorption.

Figure 2.15: Gibbs free energy of pure van derWaals attraction, double layer repulsion, Steric
repulsion, and DLVO.

2.2.2 Stochastic Processes

A stochastic variable, or equivalently a random number, is an object X defined by (i)
a set of possible values xi, and (ii) a probability distribution over this set, i.e., pi. As
the stochastic variable is defined, any other one can be derived from it, e.g., using
a mathematical function such as YX(t) = f(X, t). YX(t) is generally a random vari-
able; however, it is called a stochastic process if the variable t stands for time. The
probability density that the random variable takes value xi at time ti is pi(xi, ti). A
set of joint probabilities, defined as pk(x1, t1;x2, t2; . . . ;xk, tk), describes the system
completely. Under certain conditional probability, called the transition probability
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p1|1(x1, t1|x2, t2), the stochastic variable evolves from (x1, t1) to (x2, t2). Thus, a com-
plete description of the system is obtained in terms of the joint conditional probabil-
ities and the joint probability density using the following equation

pk+l(x1, t1; . . . ;xk+l, tk+l) =

pk(x1, t1; . . . ;xk, tk)pk|l(xk+1, tk+1; . . . ;xk+l, tk+l|x1, t1; . . . ;xk, tk), (1.1)

where the joint probability density in the left-hand side, i.e., pk+l(x1, t1; . . . ;xk+l, tk+l),
determines the probability that the stochastic variable takes values (xk+1, . . . , xk+l)

at (tk+1, . . . , tk+1) given that it had values (x1, x2, . . . , xk) at (t1, t2, . . . , tk). The above
equation is valid independently of the ordering of the time (t1, t2, . . . , tk+l). In the
case of the right sequence of time, i.e., t1 ≤ t2 ≤ · · · ≤ tk+l, one obtains the time evo-
lution of the system, meaning that having enough knowledge of the past is sufficient
to predict the future of the process. In the most important class of the processes,
i.e., Markov processes, the future outcome depends only on the current state. This
property simplifies the above equation considerably. Markov processes are used to
model systems involving stochastic decisions over time.

2.2.3 Markov Processes

A Markov process is a stochastic process defined by the Markov property, which
states the transition probability of a given stochastic process is determined by the
last current state; hence, the knowledge of the previous random variables does not
affect the transition probability. For any set of successive times, i.e., t1 ≤ t2 ≤ · · · ≤ tk,
the Markov property is written as

p1|k(xk, tk|xk−1, tk−1; . . . ;x1, t1) = p1|1(xk, tk|xk−1, tk−1) t1 ≤ t2 ≤ · · · ≤ tk.

Thus, the entire hierarchy of the Markov process can be obtained from the initial
condition, p1(x1, t1), and the transition probability, p1|1(xi+1, ti+1|xi, ti), by following a
straightforward algorithm, e.g., as follows

p3(x3, t3;x2, t2;x1, t1) = p1(x1, t1)p1|1(x2, t2|x1, t1)p1|1(x3, t3|x2, t2) (1.2),
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whichmakesMarkov processesmanageable and applicable but not history-dependent.
Equation (1.2) leads to the Chapman-Kolmogorov equation, i.e.,

p3(x3, t3|x1, t1) = p1(x1, t1)

∫
dx2 p1|1(x2, t2|x1, t1)p1|1(x3, t3|x2, t2),

where the times satisfy the order. i.e., t1 ≤ t2 ≤ t3.

Here, it is useful to introduce the transition rate, which is the probability transition
per unit time

ωt(x2|x1) = lim
∆t→0

P1|1(x2, t+∆t|x1, t).

A special case of Markov processes is homogeneous processes in which the transi-
tion probabilities are time-independent. A particular case of homogeneous Markov
processes is stationary, which describes equilibrium fluctuations. A stochastic pro-
cess reaches stationarity if it has the same statics at all times. For a stationaryMarkov
process, the probability transition, p1|1(x2, t2|x1, t1), does not depend on the times but
only on the time interval, i.e., ∆t = t2 − t1. Hereon, for convenience, I consider the
stationary Markovian processes, and I use a new notation for the probability transi-
tion;

Pτ (x2|x1) := p1|1(x2, t2|x1, t1),

where τ denotes the time interval, i.e., τ = t2 − t1. From the transition rate and the
Chapman-Kolmogorov equations, the differential form of the Chapman-Kolmogorov
equation can be derived called the master equation. In the limit of τ ′ → 0, where
τ ′ = t3 − t2, the master equation reads

∂Pτ (x3|x1)
∂t

=

∫
{ωτ (x3|x2)Pτ (x2|x1)− ωτ (x2|x3)Pτ (x3|x1)}dx2.

The master equation is interpreted as a conditional differential equation that con-
nects conditional probabilities; suppose the conditional probability of being in state
x3 at time t3, if the system has been in state x1 at time t1. The master equation con-
siders all conditional probabilities of transitioning from any arbitrary state x2 into x3
and leaving from x3 to any random state x2.
From themaster equation, the evolution of the single time probability, i.e., pi(xi, ti),

can be derived. In the special case of stationary Markov process in which ∂p(x,t))
∂t

= 0,
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it becomes

ω(x′|x)p(x) = ω(x|x′)p(x′),

which is known as the detailed balance equation. Here, P (x) is the probability den-
sity. The detailed balance condition states there is no probability flux between the
two states in equilibrium. The sumof all transitions into any state xmust be balanced
by the sum of all transitions from x′.

Theoretically, the solutions of the master equation determine the time evolution
of a stochastic process entirely. However, the master equation is rarely analytically
solvable. Numerical methods, approximations, and sampling are techniques used
to describe a stochastic process. In sampling techniques, drawing random numbers
from a given distribution generates a realization of the desired probability density.
The following section serves the sampling methods used in this thesis. To this end,
I introduce an exact method to produce a Markov chain in continuous time, i.e., the
stochastic simulation algorithm, which works based on inverse transform sampling.
Then, the Metropolis-Hastings algorithm is introduced, which constructs a sequence
of Markov processes from a given distribution known up to a normalization factor.

2.2.4 Inverse transform sampling and tower sampling

Let x be a probability random variable with a known cumulative distribution function
F (x), and let U be a random variable uniformly distributed in [0, 1). We are interested
in random variables x distributed according to F (x). The inverse transform sampling
states that the random variableF−1(Y ) has distribution functionF (x), whereF−1(Y )

is the inverse of F defined as [10]

F−1(Y ) := {x ∈ R| F (x) = Y, 0 ≤ Y < 1}.

The statement covers discrete and continuous distribution functions. In the case of a
continuous distribution, themethod is reduced to finding the inverse function, which
sometimes needs to be solved numerically. As an example, consider the sampling of
an exponentially distributed random variable, p(x),

p(x) ∝ e−ωx, x ≥ 0.
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The cumulative probability function, F (x) is

F (x) = ω

x∫
0

e−ωx
′
dx′ = 1− e−ωx.

F (x) is a continuous analytical function. Hence, the inverse function of F (x),

F−1(Y ) = − 1

ω
log(1− Y ),

would sample from the desired distribution. Since (1− Y ) and Y are both uniformly
distributed in [0, 1), it is convenient to use a simplified form of F−1(Y ), i.e.,

F−1(Y ) = − 1

ω
log Y. (2.1)

In a discrete distribution function, the algorithm is also called tower sampling al-
gorithm, which allows generating desired random variables [31].

Consider N random variables each has the probability of pi, where i = 1, 2, . . . , N .
Then, the cumulative distribution function of F (x) is defined as

F (x) =
N∑
i=1

pi

The problem is sampling integer values m such that the random variable F−1(P )

fulfills

m−1∑
i=1

pi ≤ F−1(P ) <
m∑
i=1

pi.

Based on the implementation of the algorithm, tower sampling is only practical when
the probabilities can be listed.

2.2.5 Stochastic simulation algorithm

The stochastic simulation algorithm generates a trajectory of states according to the
correct probability distribution; hence, the probability of the generated samples is
precisely the probability that would come out of the solution of the Master equation.
Sampling is based on the fact that the density probability of entering the state X at
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time t given that the state is X0 at the current time of t0 is an exponential function
[17], i.e.,

P (X, t|X0, t0) = ω(X|X0) exp (−ω(X|X0) (t− t0)) .

Three methods use the probability mentioned above to generate a single trajectory:
(i) the Directmethod, (ii) the First reactionmethod, and (iii) The next reactionmethod.
These methods are described briefly in the following.

Direct method

In the direct method, all transition rates are updated, and a reaction is chosen based
on the statistical weight of the reaction, i.e., ωi∑

i ωi
. In the next step, the waiting time

for the reaction is calculated according to eq. 2.1 [17].

First reaction method

The first reaction method calculates the waiting time for each reaction. Then, the
reaction of the minimum waiting time is chosen [17].

The next reaction method

The next reaction method is an alternative to the first reaction method with the dif-
ference that the calculated times are stored and allowed to be reused. The algorithm
samples a new waiting time for a reaction only if the transition rate changes. The
next reaction method allows reusing generated random numbers, which is generally
risky but, in the case of an exponential variable, is legitimate [16].

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm can generate a discrete Markov chain of states
from a complex probability distribution p(x) with an unknown normalization con-
stant. An example of suchdistribution is theBoltzmanndistribution, exp(−βH(x))

K
, where

H(x)denotes the energy of the statex and thenormalization constant,K , is
∑

x e
−βH(x).

The resulting chain fulfills the detailed balance conditions. In the limit of sufficiently
long enough steps of sampling, it approaches the stationary state, which samples
from the desired distribution p(x). The Metropolis-Hastings algorithm consists of
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two steps: (i) given the current state of x′, a new state x is proposed using an arbi-
trary transition probability function of f(x|x′), and (ii) the proposed state is accepted
by the probability ofmin(1, p(x)f(x|x

′)
p(x′)f(x′|x)).

Since the acceptance probability uses the relative probabilities of p(x), the normal-
ization constant cancels out. For a symmetric transition probability, i.e., f(x|x′) =

f(x′|x), such as the Boltzmann distribution, the acceptance probability is simplified
tomin(1, e−β(H(x)−H(x′))).

2.2.6 Langmuir Isotherm model

Langmuir adsorption model describes the adsorption of a gas at a solid surface in
equilibrium. The substrate consists of identical distinct sites, each of which can be
occupied by a single adsorbent. The model considers non-interacting gas molecules
on the gas phase or the surface. Langmuir classified six different mechanisms of
adsorption [33], from which I present the most straightforward case in one dimen-
sion. All the possible processes between the gas and the surface are (i) incident at
the surface, (ii) reflection from the surface, (iii) adsorption, and (iv) desorption. By
considering three fundamental assumptions, a simple relation between equilibrium
site occupancy, θ, and the pressure of the gas phase can be derived: (i) The rate of
incident particles is proportional to the gas pressure, P . The adsorption rate, rads,
depends on, up to a constant,Kads, the incident rate and the probability of incidence
at a free site, i.e.,

rads ∝ P (1− θ) ⇒ rads = PKads (1− θ) .

(ii) The desorption rate, rdes, is proportional to the density of the occupied sites

rdes ∝ θ ⇒ rdes = Kdesθ.

(iii) in equilibrium, the adsorption rate is equivalent to the desorption rate, hence

rads = rdes ⇒ θ =
KeqP

1 +KeqP
,

whereKeq is called the Langmuir constant, independent of pressure, and has a tem-
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perature dependency. The Langmuir constant is determined experimentally.

The adsorption kinetics is given by

dθ

dt
= rads − rdes,

where, rads and rdes are the adsorption/desorption rates, respectively. The desorption
rate can be proportional to the occupied sites, rdes = Kdesθ, or a constant, rdes =

Kdes, depending on the particular method of desorption. For a system of a constant
desorption rate,

dθ

dt
= PKads (1− θ)−Kdes

dθ

dt
= − (PKads)

(
θ +

[
Kdes − PKads

PKads

])
,

which results in

θ(t) = θm

(
1− e−

t
τ

)
,

where θm = PKads−Kdes
PKads

and τ = (PKads)
−1. Hence, the Langmuir adsorption model

results in an exponential adsorption rate; see figure 2.16.

The self-aggregation of proteins is anticipated to adhere to the Langmuir isotherm.
Surprisingly, hydrophobins investigated in this thesis exhibit linear adsorption kinet-
ics. Remarkably, the introduction of mutations converts the kinetics to the Langmuir
type. This thesis delves into the underlying mechanism by introducing a stochastic
model, as discussed in Chapter 5.
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Figure 2.16: Langmuir adsorption kinetics.

2.2.7 Potts Model

The Potts model is a generalization of the Ising model, which describes a system of
interacting spins on a lattice [11]. In this context, each lattice site possesses a spin
property pointing to one of q equally spaced directions specified by the angles,

θi,n =
2πn

q
,

where i identifies a site on the lattice and n is an integer number, n = 0, 1, . . . , q.
While, in most systems, only nearest-neighbor interactions are considered, one can
also conceive of a multi-site interacting system as interacting with an external field.
For a Potts model on a lattice with N sites, the Hamiltonian, H , is generally given by
[64]

−βH =
∑
⟨i⟩

LδKr(σi, σ0) +K
∑
⟨i,j⟩

δKr(σi, σj) +M
∑
⟨i,j,k⟩

δKr(σi, σj, σk) + . . . ,

where β = 1
kBT

, L denotes the external field, σi specifies the spin state at the ith site,
and

δKr(σi, . . . , σk) =

1 σi = · · · = σk

0 otherwise,
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and ⟨. . . ⟩ specifies the range of interacting spins with ⟨i, j⟩ used for nearest neigh-
bours.

The one-state Potts model addresses the percolation problem in two-dimensional
systems, while the two-state Potts model corresponds to the Ising system. The limit
of q → ∞ reduces to the XY model, which characterizes a two-dimensional system
with continuous phase transitions, as detailed in Chapter 3.
In this thesis, the Pottsmodel is employed to simulate the formation of two-dimensional

crystals in the film formation process of hydrophobins.
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Chapter 3

Fundamentals of Phase Transitions

This chapter is an overviewof phase transition. In the first section, twomodel systems
are introduced. The second section presents the terminology of phase transition
based on thermodynamics. The chapter continues with the fundamentals related to
the phase transition from the statistical point of view. The following chapter is based
on the presentations of Reichl [50], Huang [24], and Chaikin and Lubensky [6].

3.1 Model systems

In this section, I discuss the significance of two lattice models: the Ising and XY mod-
els. Thesemodels, with each lattice site carrying a classical quantity called spin, play a
crucial role in our understanding of phase transitions. Within the realmof phase tran-
sition, both the Ising and XYmodels exhibit intriguing and non-trivial behavior. In the
Ising model, for instance, we observe the spontaneous growth of the mean magneti-
zation without an external field, a phenomenon that represents the transition. Simi-
larly, in the XY model, the transition is driven by the unbinding of topological defects,
a complex and fascinating process. I introduce thesemodels briefly. Throughout this
chapter, I will often refer to the Ising model as a primary example. Its concepts and
principles serve as a solid foundation for understanding several other models and
concepts in the field of phase transitions. The idea behind the XY transition, i.e., un-
binding topological defects, is fundamental to understanding two-dimensional melt-
ing.

3.1.1 Ising model

The simplest latticemodel applied extensively to different ordering phenomena is the
Ising model. The Ising model is a particular case of the more general Potts model, in

35



Chapter 3. Fundamentals of Phase Transitions

which each lattice site can only take two distinct values, see 2.2.7. The Ising Hamilto-
nian is given by

H = −
∑
(i,j)

Ji,jSiSj − h
∑
i

Si,

and Si = ±1 is the spin value on the lattice site i. In the first sum, (i, j) denotes the
nearest-neighbor pairs. Hence, the Ising model considers only nearest-neighbor in-
teractions. Ji,j is the interaction energy between nearest neighbor. For simplicity,
the same interaction between all pair sites is considered, i.e., Ji,j = J ∀(i, j). The
second term represents the interaction of the sites with an external field with the
strength h.

Themeanmagnetization, ⟨M⟩ =
∑

i Si, quantifies ordering in a spin system, where
the sum is taken over all sites.

The one-dimensional Ising systemdoes not showany phase transition, but the two-
dimensional system does. The two-dimensional Ising system exhibits the first-order
transition in the presence of an external magnetic field. It undergoes a continuous
phase transition at the Curie temperature TC and below that in the absence of an
external magnetic field.

3.1.2 XY model

The second spin system, which is used as an example in this chapter and will be
discussed in detail in the next chapter, is the XY model. The two-dimensional XY
model is a classical system of unit vectors Si on each lattice site. Alternatively, these
vectors are called spin. In contrast to the Ising system, spins can take any continuous
value in the XY model. They are confined to rotate in the plane of the lattice. The
Hamiltonian of the system, in the absence of an external magnetic field, is

H = −
∑
(i,j)

Ji,jSi · Sj =
∑
(i,j)

Ji,j cos(ϕi − ϕj),

where Ji,j > 0 is the interaction energy between spins. Without losing generality, the
same interaction energy between spins is considered, i.e., Ji,j = J ∀(i, j). The angle
ϕi is the angle that ith spin makes with arbitrarily fixed axes. The summation over
(i, j) ensures the nearest neighbor interactions. Thus, the Hamiltonian is invariant
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under the rotation of all spins, i.e., it possesses complete rotational symmetric.
For simplicity, the lattice is considered a simple square lattice with the lattice constant
a. The configuration in which all spins are aligned parallel is the ground state of the
system.

The XY model does not show the phase transition associated with growing mean
magnetization. In contrast, it undergoes a type of phase transition called the topo-
logical phase transition. Topological phase transition is the main subject of chapter
4.

3.2 Thermodynamic perspective

Thermodynamics studies many interacting particles in thermal equilibrium. The in-
vestigated systems are isolated, closed, or open, depending on the interaction with
the surroundings1. In the thermal equilibrium state, all macroscopic properties are
time-independent and defined by a few parameters called state variables.

State variables can be extensive or intensive. An extensive variable’s value depends
on the system’s size, while an intensive variable is size-independent. The volume, V,
and the number of particles, N, are examples of extensive variables, while tempera-
ture, T, and pressure, P, are intensive variables.

A collection of state variables with particularmacroscopic properties, such as color,
density, etc., defines a phase. For instance, consider the behavior of water as you
change the temperature. Water can exist in three phases: solid, liquid, and gas. At
low temperatures, it is solid andmay forma crystal structure. Molecules are arranged
highly packed in a regular pattern. From the microscopic point of view, molecules
fluctuate around particular lattice sites. Increasing the temperature may make the
transition to the liquid or gas phases possible. In the liquid phase, molecules are still
highly packed but without any pattern. The molecules can move freely. In the gas
phase, molecules move freely. Hence, the density is less than that of both liquid and
solid states; thus, the gas phase has the most compressibility.

1An isolated systemhas no interactionwith surroundings. A closed system is in contactwith a thermal
bath, and an open system is in mechanical equilibrium with its surroundings. So, the reservoir and
the system can exchange energy and particles
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Since only a few state variables are independent, an equation of state determines
the state. For example, the ideal gas law, PV

T
= const., describes the state of a gas con-

sisting of non-interacting localized particles. The constant in the equation depends
on the number of particles.

The equation of state can be determined experimentally. In an experiment on a
thermodynamic system, one changes a parameter and examines how another pa-
rameter responds to this change. The quantity, which measures how the system
responds to the change, defines the response function. A response function is, in
general, a function of state variables. Heat capacity and compressibility are two com-
mon examples of response functions.

Heat is the adsorbed energy that raises the temperature of a systemwhile no work
is done. The heat capacity, in general, defines the amount of heat needed to raise
the system’s temperature by a given amount. Usually, it is measured by fixing all
independent variables except temperature. So, CX =

(
∆Q
∆T

)
X
, where X denotes the

particular fixed variable. The value ofCX depends on several variables. It depends on
the nature of the substance, the amount of material, and the way of absorbing heat.
Thus, it is an extensive variable. The heat capacity measured for a specific amount of
matter is called specific heat and is an intensive variable.

The compressibility, κX , is a mechanical response function that, for instance, in a
PV T system, defines how the volume changes as the pressure varies. For a fixed
number of particles at a fixed temperature, it is called isothermal compressibility.

It is an experimental fact that both response functions introduced are positive
quantities. However, I will show that being positive originates from the statistical
behavior of the matter.

The internal energy of a system, U , is generally a function of state variables. If
external forces work on the system, a thermal bath exchanges heat with the system,
or a reservoir exchanges particles with it, the internal energy of the system changes.
Then, the amount of the change in the internal energy becomes

∆U = ∆Q+∆W + µ∆N,

where ∆Q denotes the heat, ∆W the work done on the system, and ∆N the num-
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ber of exchanged particles. µ is called the chemical potential and defines the energy
added to the system by adding a particle.

In general, a pair of an extensive variable X and an intensive variable Y are con-
jugate variables2 if a small increment in X at fixed Y results in small change in the
internal energy, dU = ±Y dX . Then, in general, ∆U = ∆Q± Y∆X .

Other thermodynamic functions related to internal energy are called potentials.
A thermodynamic potential, e.g., Gibbs free energy, G, contains all thermodynamic
information of the system. Thermodynamic potentials are Legendre transforms of
internal energy. Thus, a change in them is independent of the path of change. The
Helmholtz free energy, enthalpy, and grand potential function are other examples.
The equilibrium state minimizes thermodynamic potentials. All thermodynamic in-
formation can be deduced from potentials, e.g., P = −

(
∂G
∂V

)
T
. One can find other

equations in thermodynamic course books.

The Gibbs potential plays an essential role in the Ehrenfest classification of the
phase transitions. The Gibbs free energy corresponds to the work performed by a
system consisting of a fixed number of particles at pressureP in thermal equilibrium.
The Gibbs potential,G(P, T,N)3, is a function of pressure, temperature, and number
of particles as

G = U − TS + PV =
∑
j

µjNj .

Here, S is called the entropy of the system. Entropymeasures the randomness at the
molecular level of the system. µj andNj are the chemical potentials and the number
of particles for species j, respectively.

The Helmholtz free energy measures the work obtained from a closed system at a
fixed volume and temperature. It is defined as

F = U − TS.

Enthalpy defines the potential of a closed thermally isolated system in mechanical

2Some of the conjugate pairs are (P, V ), (T, S) and, (µ,N).
3in a PV T system
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contact with the surroundings. The entropy is constant for such systems and is given
as

H = U + PV .

Finally, the grand potential is a practical function of an open system in a reservoir’s
thermal andmechanical equilibrium. It is a function of temperature, volume, and the
chemical function defined as

A(T, V, µ) = U − TS − µN = F − µN .

A thermodynamic system can exist in several phases, each exhibiting different
macroscopic behavior. Varying variable states, such as external magnetic fields or
temperature, may cause a transition between phases. The transition occurs at a par-
ticular temperature depending on the other state variables. The transition tempera-
ture usually is called the critical temperature, Tc.

Each realizedparticular statemustminimize the corresponding potential for a given
set of independent variables. It might happen that for a specific set of values, two or
more phases satisfy the condition of minimizing the free energy, which causes the
appearance of consistency. The Coexisting phases might exchange particles. Since
the coexistence phases are thermally andmechanically in equilibrium, the Gibbs free
energy must change continuously among these phases. However, there is no restric-
tion on the Gibbs derivatives. How these derivatives behave at the transition point is
the basis of the Ehrenfest classification of phase transitions.

In the Ehrenfest classification, the phase transition is classified based on the con-
tinuity derivatives of the Gibbs free energy as a function of other thermodynamic
variables.

In a first-order transition, onediscontinuity exists in theGibbs potential’s first deriva-
tive. Thus, for instance, the entropy S = −

(
∂G
∂T

)
|P,Nj changes abruptly at the transi-
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tion point as

∆S = SII − SI = −
(
∂G

∂T

)II
P,Nj

+

(
∂G

∂T

)I
P,Nj

̸= 0.

Here, superscripts II and I denote phases on both sides of the transition. The
discontinuity in the entropy leads to an infinite peak in the heat capacity4. A first-
order transition always involves latent heat, which is defined by the changes in the
enthalpy, ∆H = T∆S 5.

Similarly, a second-order transition is associatedwith a second-order discontinuity.
Entropy varies continuously. Since the first derivative changes continuously, the heat
capacity shows a finite peak. The behavior of the Gibbs potential and its derivatives
during first-order and second-order transitions are shown schematically in figure 3.1.

Figure 3.1: Phase transition based on the mathematical behavior of Gibbs free energy. The
Gibbs potential is a continuous function of state variables, for instance, T , but its
derivatives may display discontinuity. If the first derivative shows discontinuity,
the transition is called the first-order transition. A second-order transition is as-
sociated with a discontinuity in the second-order derivative.

4For instance, CV =
(
dU
dT

)
V
= T

(
dS
dT

)
V
is not defined at the transition point.

5For a first-order transition, entropy does not change continuously, then enthalpy,H = G−TS, has
not the same values during the transition.
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3.3 Statistical mechanics perspective

Thermodynamics studies a system from an empirical viewpoint, while microscopic
interactions of particles are not considered. However, statistical mechanics establish
the connection. In statistical mechanics, the macroscopic state of the system is de-
duced from the dynamics of its constituent particles.

From the microscopic point, the coordinates and their conjugate momenta of indi-
vidual particles, (qi, pi), uniquely determine the state of the system.

A 6N -dimensional space formed by (qi, pi) is called the phase space. Each point in
the phase space represents the state of the entire N-particle system. The Hamilto-
nian, H , and the initial state at t0, (qi0 , pi0), determine the system for entire time t.
Hence, each point represents an instantaneous state, and a system moves through
these points. However, a macroscopic observable is not an instantaneous value but
an average measured in a time scale bigger than the collision times. A large number
of these instantaneousmicrostates correspond to amacroscopic condition observed
in thermodynamics, and one can not distinguish these microscopic points from the
macroscopic point of view. In principle, one can follow the dynamic of the system
for a given initial condition. However, for a system consisting of many interacting
particles, instead of following the instantaneous states, a statistical description is es-
sential.

Instead of considering the time evolution of a microscopic state, one can imagine
the collection of time-independent microstates, all representing the same macro-
scopic state. The collection is called an ensemble, and the macroscopic condition
defines the type of the ensemble. The distribution of points in the phase space rep-
resents the ensemble geometrically. Since the number of these systems is finite, the
density of points in the phase space, ρ, is time-independent, dρ

dt
= 0.

In the phase space scheme, the system in equilibriummoves through themicrostates.
The time spent in amacroscopic state is proportional to the number of these states or
the occupied volume in the phase space. In the ensemble scheme, all members can
be attained equipossibly over time. This hypothesis is called ergodicity. Then, for an
ergodic system, it is sufficient to look at the trajectory of an ensemble instead of look-
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ing at the entire system over time6. Then, the mean value of a physical observable
over time equals the average value obtained over the time-independent-ensemble
collection

lim
T→∞

 1

T

T∫
0

O(t)dt

 = lim
M→∞

(
1

M

M∑
i=1

piOi

)
,

where O(t) is, in general, a time-dependent observable. M refers to the number of
ensembles. Pi and Oi represent the probability of finding the system in state i and
the mean value of observable in this state, respectively.

The volumeoccupied by an ensemble in the phase space is called the partition func-
tion. The partition function includes inter-particle interactions. On the other hand,
as I state in the following, it connects to Helmholtz’s free energy and entropy. Then,
in principle, all thermodynamic information is obtained by having the partition func-
tion. Therefore, the partition function of a system plays an essential role in statistical
mechanics.

Three kinds of ensembles correspond to different thermodynamical systems: (i)
A microcanonical ensemble represents an isolated system with the energy between
[E,E +∆E]. The entropy for such an ensemble referring to a system of N particles
in volume V is defined by

S(E, V ) = kB log Γ(E),

where Γ(E) defines the partition function, and kB is the Boltzmann constant. Solving
this equation for E gives the internal energy of the system, U(S, V ) ≡ E(S, V ). Having
the internal energy is sufficient to deduce all thermodynamic information.

(ii) A canonical ensemble corresponds to a closed system in equilibriumwith a ther-
mal bath. While the temperature is constant, the energy fluctuates. The probability of
finding a microstate i with the given energy Ei is proportional to the Boltzmann fac-
tor, e−

Ei
kBT . Then, without losing generality, for non-degenerate discrete microstates,

6not all physical systems are ergodic
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the partition function of a canonical ensemble is

ZCan(N, V, T ) =
∑
i

e
− Ei
kBT ,

where the sum is taken over all members of the ensemble. Thus, the probability of
having a state i with the energy Ei is

pi = Z−1
Cane

− Ei
kBT .

The canonical partition function is related to the Helmholtz free energy via

F (N, V, T ) = −kBT logZCan(N, V, T ).

Other thermodynamic information can be also obtained from the Helmholtz free
energy. Additionally to the thermodynamic, the fluctuations of an observable can be
obtained from the partition function. For instance, consider the global fluctuations
in the energy,

< (∆E)2 > =< E2 > − < E >2 .

Each term is related to the derivative of the partition function as

< E >= U =
∑
i

Eipi = −∂ lnZN
∂β

,

< E2 > =
∑
i

(Ei)
2 pi =

∂2ZN

(∂β)2
.

Then,

< (∆E)2 > =
∂2 lnZN

(∂β)2
= −∂U

∂β
= kBT

2CV ,

where β = 1
kBT

. Thus, the heat capacity, CV , as an experimentally observable is pos-
itive since it is related to the energy fluctuations in the system.

In general, for a conjugate pair (X, Y ), where Y is an intensive fixed variable and X
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is a fluctuating extensive variable,

< X > = ±∂ lnZCan
∂(βY )

,

< (∆X)2 > =< (X− < X >)2 >=
∂ < X >

∂(βY )
=
∂2 lnZCan
∂(βY )2

.

(iii) In addition tomicrocanonical and canonical ensembles, there is another ensem-
ble known as the grand canonical ensemble. The grand canonical ensemble refers to
an open system in equilibriumwith a reservoir. Due to this equilibration, both energy
and the number of particles are allowed to vary. The probability of a given state with
Ni particles at the energy Ei is

pi = (ZGr(z, V, T ))
−1

N∑
Ni=0

e−β(Ei−µNi),

where z = eµ is fugacity, and the grand canonical partition function is defined as

ZGr(z, V, T ) ≡
N∑
N=0

zNZN
Can(N, V, T ).

Then, the grand potential function is defined as

A(T, V, z) = −kBT lnZGr(z, V, T ).

I showed that distinct ensembles correspond to differentmacroscopic systems. How-
ever, one can show that in the thermodynamical limit, all diverse ensembles give
equivalent results.

In statistical mechanics, the thermodynamic limit refers to a large number of parti-
cles at a large volumeproportional to the number of particles. In contrast, the particle
density, n = lim(N,V )→∞

N
V
, is held fixed. At the thermodynamic limit, thermal fluctua-

tions of quantities are negligible. For instance, I showed that the thermal fluctuations
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in the internal energy are related to the heat capacity, then,< ∆E >∝
√
N . Hence,

lim
(N,V )→∞

< ∆E >

E
≈ lim

√
N

N
= lim

N→∞

1√
N

≈ 0.

Therefore, in the thermodynamic limit, fluctuations in the total energy are negligible.
Thus, for instance, in a gas system, the internal energy can be obtained by other ther-
modynamic variables such as temperature and pressure. So, any statistical system
must be considered in the thermodynamic limit to serve as a macroscopic condition.

3.3.1 phase transition from statistical perspective

As mentioned before, phase transitions are associated with singularities in thermo-
dynamic functions. From a statistical mechanics viewpoint, the partition function
is sufficient to deduce all thermodynamic potentials. The partition function and its
derivatives are analytical functions as long as the system is finite. However, in the
thermodynamic limit, limN,V→∞

N
V

→ n, singularities might appear in its derivatives.
Yang and Lee studied the phase transition in the scheme of statistical mechanics.
They indicated that for a hard-core monatomic gas with finite-range radial interac-
tions, the equation of states follows [66][34]

P

kBT
= lim

N,V→∞

1

V
lnZGr(z, V, T ),

1

V
= lim

N,V→∞

1

V
z
∂

∂z
lnZGr(z, V, T ).

It has been proved that the first equation is always an analytical monotonically in-
creasing function. Also, the second equation is always a non-decreasing function. A
phase transition occurs depending on the behavior of derivatives of P (z) around the
roots of the partition function.

The grand partition function does not have any real positive root for a finite sys-
tem. However, some of thesemay approach the real axis in the thermodynamic limit.
One can imagine a distribution of the roots in a complex space. A single phase corre-
sponds to a region where no root coincides with the real axis. As a root approaches
the real axis at point z0, it splits the space into two subspaces, each representing a
single phase. As mentioned above, P (z) is always an analytical function, and 1

V
is a
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3.3. Statistical mechanics perspective

non-decreasing function. If ∂P (z)
∂z

varies discontinuously at z0, 1
V
must have an upward

jump to match on both sides of the root, which is the hallmark of a first-order transi-
tion. On the other hand, a continuous phase transition corresponds to a discontinuity
in the higher-order derivatives of P (z).

3.3.2 Symmetry and statistical observables

Phase transitions are often associated with symmetry breaking. For example, the av-
erage density in a crystal phase shows translational symmetry concerning the lattice
unit vectors, so a solid in the crystal phase has discrete translational symmetry. It is
also orientationally discrete symmetric. In a liquid, the average density is indepen-
dent of the position. So, a liquid phase has a complete orientational and translational
symmetry, i.e., melting transition breaks the discrete to complete symmetry in the liq-
uid phase. As another example, applying amagnetic field in a spin system breaks the
rotational symmetry. In the paramagnetic phase7, the system is rotationally symmet-
ric. The magnetic field induces spontaneous magnetization, defining a unique space
direction. Here, complete rotational symmetry changes to discrete symmetry.

After this qualitative description of symmetry breaking, I explain it specifically by an
instructive example regarding the spin system8. In general, the Hamiltonian deter-
mines the dynamical properties of any thermodynamic system. A group of operators
under which the Hamiltonian remains invariant defines a symmetry group of the sys-
tem. For instance, the Ising Hamiltonian is invariant under continuous rotations. This
symmetry is broken during a transition.

Lowering temperature transforms the system to the ground state. However, some-
times, the ground state of the system is not unique. A physical system can be in one
of these ground states, which has no symmetry similar to the Hamiltonian. Then, the
transition spontaneously breaks the symmetry. In the Ising model, a configuration in
which all spins are aligned in one direction defines the ground state. However, the
energy of this system is invariant if all spins orient in the opposite direction. There-
fore, although the ground state obeys the Hamiltonian, the symmetry of the ground
state is different. Most of the time, one phase is less ordered than the other. For
instance, at the high temperature of an Ising system, the paramagnetic phase in the
7In a spin system, a random distribution describes the alignment of spins.
8Ising system is an excellent example to clarify the concept of symmetry breaking. I will explain this
model in detail in the next section.
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Chapter 3. Fundamentals of Phase Transitions

absence of an external field is less ordered. The symmetry group of this phase is
similar to the Hamiltonian. So, the paramagnetic phase of the Ising system has a
complete orientational symmetry.

There are a set of thermodynamic functions, called order parameters, which are
affected by these operators. These functions take zero at the high symmetric phase
and nonvanishing values at the other. In general, an order parameter is the global
average of an operator, < O >, where O is a function of dynamical variables and re-
flects the symmetry of the Hamiltonian. Hence, it takes zero in the disordered phase
and a non-zero value in the ordered phase. Two or more phases may coexist on a
coexistence line in a phase transition. The order parameter provides a proper mea-
surement to distinguish them. For instance, the mean magnetization, m = <M>

N
,

is the order parameter of the Ising system. At the high-temperature randomly dis-
tributed paramagnetic phase, it vanishes. Still, it takes a finite value as an external
magnetic field is applied9. This new phase, i.e., the ferromagnetic phase, is orien-
tationally symmetric about the unique axis defined by the external field. Here, the
higher-ordered phase has less symmetry. The ferromagnetic phase breaks the com-
plete orientational symmetry of the Hamiltonian.

The correlation function relates to the order parameter and contains spectacular
information about phase transition. To clarify, consider the alignment of spins in the
Ising systemwithout an external magnetic field. For a particular spin at time t, S(x, t),
there is a tendency for its neighbors to be aligned parallel to it. This tendency prop-
agates over the entire system. The probability of finding another spin, S(x + r, t),
aligned parallel to S(x, t) decreases as r increases. The two-point-spin correlation
function measures this probability. This qualitative description suggests a correla-
tion length, ξ, such that for r ≪ ξ, the spin-spin correlation function is near one, and
for r ≫ ξ, it vanishes.

In general, for an order parameter M, one can define the density of the order pa-
rameter,m(r), such that

M =<

∫
d3rm(r) >,

9Depending on the strength of the applied field, some spins tend to align in the direction of the
external field. Then, the distribution of spins is not random anymore. This phase is called the
ferromagnetic phase.
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3.3. Statistical mechanics perspective

where the< ... > denotes the ensemble average. The correlation function measures
how the density of the order parameter is spatially correlated, and it is defined as

Cm,m(r, r
′) =< m(r)m(r′) > − < m(r) >< m(r′) > .

In the next chapter, I will show that the mathematical behavior of the correlation
function characterizes different phases in a two-dimensional melting transition.
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Two-dimensional melting

In the previous chapter, I discussed that a phase transition is usually associated with
symmetry breaking. Different factors like thermal fluctuations, specific boundary
conditions, or external fields canbreak a continuous symmetry. This symmetry break-
ing leads to the appearance of some discontinuities in the system. These discon-
tinuities, called topological defects, result in a famous phase transition generalized
by topological defects. Topological defects have different names depending on the
broken symmetry and the studied system. However, they are characterized by two
factors: a core and a far-field property. The core region, e.g., a point, is where the
order is destroyed. Far from the core region, an elastic property changes slowly. A
topological defect can be stable. Stable topological defects play an essential role in
phase transitions.

In the previous chapter, order parameters and correlation functions are introduced.
As I presented, in a two-dimensional spin system, the two-point correlation func-
tion in the ordered phase is constant within the limit of far separations. In con-
trast, it decays exponentially in the disordered phase. So, the former state has a
long-range order, and the latter shows a short-range order. The correlation function
may also behave as a power-law function with a temperature-dependent exponent,
Cm,m(r, r

′) ∼ |r − r′|η(T ). In this case, the system has a quasi-long-range order. The
transition from quasi-long-range order to the disordered phase is driven by topolog-
ical defects. These transitions are known as topological phase transitions.

This chapter presents the topological phase transition in two-dimensional systems.
I address this problem by introducing topological defects in two-dimensional sys-
tems, XY models, and two-dimensional crystals.
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Before going to the main subject of this chapter, i.e., topological phase transitions,
it is worth studying an analogous statistical model system, a two-dimensional lattice
of charged particles. The method of deriving a phase transition in this model is gen-
eralized to the XY systems to understand how topological defects derive the phase
transition.

4.1 A model system

As a model system, consider a two-dimensional square lattice occupied by a dilute
gas of charged particles, as introduced by Kosterlitz and Thouless [29]. Each particle
has a charge of ±q, so the system is electrically neutral overall. Particles interact via
a logarithmic potential 1 with a low-cutoff radius r0 to avoid artificial divergences at
small-scale separations. The cutoff radius, r0, is of the order of the lattice constant.
The Hamiltonian is

H(r1, r2, . . . , rn) =


1
2

∑
i ̸=j

(
−2qiqj ln

(
| ri−rj

r0
|
)
+ 2µ

)
r > r0

0 r < r0,

where qi and ri denote the charge and the position of the ith particle, respectively, and
µ is the chemical potential to create a pair of equally opposite-charge at a distance r0.

Although authors considered only a high value of chemical potential to construct a
tractable theory, they emphasized that the argument is qualitatively applicable to a
system with any value of µ. The result is generally unchanged if the low-cutoff radius
increases to r′0 such that e−2βµ(r′0) ≪ 1. A configuration of bounded particles as dipole
pairs well separated fromothersminimizes the Hamiltonian such that the interaction
between different dipoles is negligible. For the outlined system, the calculation of
the mean square distance, < r2 >, suggests a transition from a dielectric phase with
bounded charges to a plasma phase with free charges, where the average, < · · · >,
is taken with the Boltzmann factor, exp (−βH). Since the significant contributions to
the Hamiltonian come from the long-range part of interactions, the continuum limit
is applicable. Thus, the mean square distance reads

1The solution of Poisson equation for a Coulomb gas at a square lattice reveals the logarithmic inter-
action, as I present in section 4.2.4.
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Chapter 4. Two-dimensional melting

< r2 >=

∫∞
r0
r3dr exp (−2βq2 ln (r/r0))∫∞

r0
rdr exp (−2βq2 ln (r/r0))

= r20
βq2 − 1

βq2 − 2
,

where β = 1
kBT

. From this, one can observe that the mean square distance diverges
in the limit βq2 → 2. Thus, the polarizability of the system, defined as p(r) = 1

2
βq2r2,

diverges, too.

Introducing a dielectric constant may describe the effective interaction between
pairs. Iterative calculations in the framework of mean-field theory confirm the tran-
sition. Those calculations improve the value of the critical temperature by a correc-
tion. The proof is beyond the scope of this thesis. However, it reveals themechanism
underlying this transition. Above the critical temperature, the largest bounded pairs
dissociate, the polarizability diverges, and the dielectric constant becomes infinite.
The density of dissociated pairs tends to zero as the temperature approaches TC
from above, and hence, the system becomes dielectric. Thus, unbinding-pair charges
drive a phase transition from a dielectric to a plasma phase at a critical temperature.

The following shows that the XY system is statistically similar to the two-dimensional
Coulomb gas. Hence, the results of this model system are also applicable to the XY
systems.
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4.2. The KT-transition in two-dimensional XY system

4.2 The KT-transition in two-dimensional XY system

4.2.1 The XY model

As mentioned in 3.1.2, the two-dimensional XY model is a classical lattice model of
an interacting spin system. Here, for simplicity, the lattice is considered as a simple
square lattice with the lattice constant a. Spins interact only with nearest neighbors;
hence, the Hamiltonian is

H = −
∑
i,j

JSi · Sj = −
∑
i,j

J cos(θi − θj),

where θi is the angle of the ith spin relative to an arbitrary direction, and j runs only
over the nearest neighbors of spin i. A uniform alignment of spins defines the con-
figuration that minimizes the Hamiltonian. Two ground states of the XY Hamiltonian
are shown in figure 4.1. The configuration of the lattice can be, alternatively, given by
a set of angles θ(r⃗), where r⃗ denotes the site defined by r⃗ =

∑
i nia⃗i, for an integer ni

and lattice vectors a⃗i. Thus, the Hamiltonian is

H = −J
∑
r⃗,r⃗′

cos(θr − θr′),

such that |r⃗ − r⃗′| = a.

Figure 4.1: A two-dimensional XY system is a classical lattice model of an interacting spin
system. Spin is a classical vector in the plane of the lattice. The ground state of the
XY model is the configuration in which all spins point out the same direction. Two
configurations represent examples of the ground state for the XY Hamiltonian.
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As I present in the following, the spin-spin correlation function shows a quasi-long-
range order as the temperature reaches a critical value from above. Hence, a transi-
tion from a disordered phase to a quasi-long-range order is expected in this system.

4.2.2 Spin-spin correlation function

Since, in general, having the partition function is sufficient to obtain the value of an
observable, I first express the energy and then the partition function of the XY sys-
tem in two temperature limits. After that, I will discuss the behavior of the spin-spin
correlation function within these limits.

At low temperatures, only a slowly varying configuration of spins contributes signif-
icantly to the partition function, the configuration in which the angles defining neigh-
boring spin directions are nearly equal. Thus, the expansion of Hamiltonian about its
local minimum to the quadratic terms gives [3]

H − E0 ≈ −J
∑
r,r′

(
−1

2
(θr − θr′)

2

)
= −J

∑
r,r′

θr △r,r′ θr′ ,

where △r,r′ is a matrix operator representing the first difference operator and is an
analogue to the Laplacian operation. It is defined as

△r,r′ =


−2 r = r′

1 |r − r′| = a

0 otherwise.

The long-range effects dominate critical properties of the system [28], which are ex-
pressed sufficiently accurately in the continuum limit. Hence, the set of angels, {θr},
translates to a continuous function, θ(r). The Hamiltonian, H − E0 ≈ J

2

∫
d2r|∇θ|2,

can be solved analytically [3], with the resulting distribution being Gaussian. For a
Gaussian distributed variable, in two dimension, < (θ(r)− θ(r′))2 > increases loga-
rithmically with distance [3]. Therefore, using the Gaussian integral properties gives

< Si · Sj >= Re

(
e−

<(θi−θj)
2
>

2

)
≈ e

− ln

(
|ri−rj |
r0

)
/4πK(T )

=

(
|ri − rj|
r0

)− 1
4πK(T )

,
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4.2. The KT-transition in two-dimensional XY system

where K(T ) = βJ , and r0
a
= e−γ

2
√
2
. Therefore, at low temperatures, the spin-spin cor-

relation decays algebraically, so the system does show quasi-long-range order.

At high temperatures, the partition function of the system can be expanded in
terms of −βH ,

Z =

2π∫
0

Πi
dθi
2π
e−βH =

2π∫
0

Πi
dθi
2π

∑
p

(
K(T )

∑
i,j cos(θi − θj)

)p
p!



whereK(T ) = βJ and, −βH = β
∑

i,j J cos(θi − θj) = K(T )
∑

i,j cos(θi − θj) .

Regarding the high-temperature limit, the spin-spin correlation function is

< S0 · Sx >=< cos (θ0 − θx) >

= Re

 1

Z

2π∫
0

Πi
dθi
2π
ei(θ0−θx)

∑
p

(
K(T )

∑
i,j cos(θi − θj)

)p
p!

 .

The exponent (θ0 − θx), in general, can be considered as a path connecting sites r0
and rn via neighboring sites. By this consideration, the exponent can be rewritten as

(θ0 − θx) = (θ0 − θ1) + (θ1 − θ2) + · · ·+ (θn−1 − θn) ,

where each term represents the revolution of spin along the bond connecting two
neighboring sites, as shown in figure 4.2. Thus,

< S0 · Sx >=

= Re

 1

Z

2π∫
0

Πi
dθi
2π
ei((θ0−θ1)+(θ1−θ2)+···+(θx−1−θx))

×

(
1 +K(T )

∑
i,j

ei(θi−θj) +
(K(T ))2

2

∑
i,j

∑
i′,j′

ei((θi−θj)+(θi′−θj′ )) + . . .

)
.

Since
∫
dθ = 2π, and

∫
dθ cos θ = 0, therefore, the non-zero terms are the terms

where the exponent adds to zero. Hence, the first none-zero term is a term of the
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Figure 4.2: The red lines show the path connecting sites r0 and rn via neighboring sites. The
sum of spin revolution along the bond-connecting path, i.e., θ0 − θx, appears in
the spin-spin correlation function. The blue line represents the distance between
the two sites. At large distances, the length of the blue line, r, is in the order of n.

order n, (K(T ))n. Therefore,

< S0 · Sx >∼ (K(T ))n .

The simple sketch in figure 4.2 shows that, at large distances, where the physical
behavior of the system is nearly homogenous, |r| ∼ n. Thus,

< S0 · Sx >∼ (K(T ))|r| = e(r lnK(T )).

At the limit of high temperatures, lnK(T ) is negative. So, we conclude that the
spin-spin correlation function, e−

r
ξ , decays exponentially.

The meanmagnetization,m = <S>
N

, is the order parameter of the system, where N
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4.2. The KT-transition in two-dimensional XY system

is the number of sites. The mean magnetization takes zero value at all temperatures
[44]. This statement is evident by direct calculation; see, for instance, Appendix A.
Thus, the model does not show a usual phase transition, i.e., a disordered phase to
an ordered phase with a finite magnitude of the mean magnetization. However, the
system undergoes another type of transition, a continuous phase transition, in which
the correlation function changes fromexponential decay to an algebraic relation [28].
This transition, i.e., the transition from the disordered phase at high temperatures to
a quasi-long-range ordered at a critical temperature, is called the Kosterlitz-Thouless
transition. Vortices, the topological defects in the XY system, drive this phase tran-
sition, as I explain in the following. To this end, I will introduce the vortex as the
topological defect in the XY system. Then, I represent the energy associated with a
single vortex and the interaction exchange energy of vortices. The analogy of the
interaction energy of vortices and a model system of interacting charged particles
introduced in 4.1 completes the study and addresses the KT transition. To present
this section, I follow [6, 28, 29].

4.2.3 Topological defect in the XY system: Vortex

Vortices are topological defects in a system, such as the XY model. The angular vari-
able θ(x) defines the spin in this system, where x = (r, ϕ) denotes the polar coor-
dinate of sites. The order parameter of the system is the mean magnetization, or
simply, < S(x) >=< S

(
cos θ(x)̂i+ sin θ(x)ĵ

)
>. One can find a subspace ds where

the order parameter shows a singularity. To clarify, consider a spin configuration
defined by function θ(x) = ϕ+ π

2
, as shown in figure 4.3-a. This configuration is asso-

ciated with a singularity of dimension zero at the origin: At the origin, the direction of
the spin or the derivative of θ, ∇θ = 1

r
êϕ, is infinite. Hence, there exists a singularity

at the origin. The singularity is called the core of the defect. Since vortices in 2D are
point defects, ds = 0.

A vortex is characterized by its strength. I would give the mathematical definition
of the strength of a vortex. It is defined by the total angle changes θ along an arbitrary
path enclosing the singularity. For instance, in figure 4.3, two vortices of strength ±1

are sketched. The strength does not uniquely define the field. Different functions can
address different spin configurations of the same strength, e.g., θ(x) = ϕ+ θ0 for any
arbitrary constant θ0 represents a vortex of strength +1. The strength of a vortex is
related to a discrete charged particle and, hence, is called a topological charge. The
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word vorticity is alternatively used instead of strength.

Figure 4.3: Two spin vortices on a simple square lattice are shown. Panel (a) presents a vor-
tex with positive vorticity and, panel (b) shows a vortex with negative vorticity.
Vortices are topological defects that drive transition in some two-dimensional sys-
tems, e.g., the XY model.

4.2.4 Energy of vortices

At low temperatures, the expansion of Hamiltonian about its local minimum to the
quadratic terms, which leads to the approximation called the spin-wave approxima-
tion [4], gives

H − E0 ≈
J

2

∑
i,j

(θi − θj)
2 =

J

2

∑
r

(△θ(r))2 ,

where△ is the first deference operator, the sum is taken over all neighboring sites.
In the continuum limit, the energy associated with the formation of a single vortex is

∑
r

(△θ(r))2 →
∫

|∇θ(x)|2d2r ⇒ Ev ≈
J

2

L∫
a

(
1

r

)2

(2πrdr) = Jπ ln

(
L

a

)
.

Here, L is the linear size of the system. Due to the logarithmic behavior of the en-
ergy concerning the size of the system at low temperatures, in the thermodynamic
limit, a single vortex is not favorable.

58



4.2. The KT-transition in two-dimensional XY system

A classic argument predicts that vortices can exist abundantly at a critical temper-
ature, as I will present in the following. In a square lattice of size L, there exist (L

a
)2

sites. Then, the entropic contribution of such a vortex yields

S = kB ln

(
L

a

)2

,

where kB is the Boltzmann constant. Both together lead to the free energy

Fv = U − TS = Jπ ln

(
L

a

)
− 2kBT ln

(
L

a

)
= (Jπ − 2kBT ) ln

(
L

a

)
.

At low temperatures, the entropic termdoes not play a role. Hence, the free energy
takes positive values, and the minimum of U in the above calculation minimizes the
free energy. At high temperatures, the entropic term is dominant, and the sign of the
free energy changes at a critical temperature, TC = Jπ

2kB
. At temperatures T > TC ,

the free energy gets negative values, meaning that free vortices are favorable and
abundant. However, as I present later, the logarithmic divergence with the size dis-
appears for even number vortices with total zero vorticity. Hence, they can be formed
thermally and exist as bounded vortices at low temperatures. Thus, the KT transition
is topologically a transition from a forbidden-single-vortices phase to a phase where
vortices are free.

Consider the vortex shown in figure 4.4. A function θ(x) describing this configura-
tion is not single-valued. For each round on a closed path, enclosing the core, θ(x)
changes by 2π, or simply, ∮

dθ(x) = 2π.

The shortest closed path is a circle of radius
√
2a whose center lies on a dual lat-

tice, a lattice whose sites x∗ located at the center of the original lattice, as shown in
figure 4.4. This visualizationmaps the distribution of vortices to an electrostatic prob-
lem. Hence, a configuration of vortices now is, in analogy, a distribution of discrete
charged particles located at the dual lattice sites, such that ρ(x∗) =

∑
i qiδ(x

∗−x∗i ) de-
scribes the charge distribution. Thus, θ(x) is a potential produced by that distribution
in 2D. Hence, θ(x) obeys Poisson’s equation
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Figure 4.4: The sketch shows a positive vortex of strength +1 on a square lattice. The vortex
system is mapped to a discrete charged system by considering a dual lattice. The
green dots located at the center of the studied lattice present the sites of the dual
lattice. The dual lattice is square, too.

∇2θ(x∗) = 2πρ(x∗).

The solution of this equation reads

θ(x) = 2π

∫
d2x′ρ(x′)g(x− x′) +O

(
ln

(
R

x0

)∫
d2xρ(x)

)
,

where g(x) = 1
2π

ln
(
x
r0

)
is the Green’s function of a two-dimensional square lattice

defined so that g(0) = 0 [26]. In the second term, since ln
(
R
r0

)
diverges with the size

of the system; therefore, a physical solution requires that
∫
d2xρ(x) = 0, meaning

that the analogous system, similar to the model system in 4.1, is electrically neutral.
Thus

θ(x∗) = 2π
∑
i

qig(x
∗ − x∗i ) =

∑
i

qi ln

(
x∗ − x∗i
r0

)
.
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Now, Let’s go back to the original Hamiltonian expanded about its local minimum,

H − E0 =
J

2

∑
x

(△θ(x))2 .

Consider both spin-wave excitation, i.e., deviation from local minimum, and vortex
configuration. Let θ(x) = θ̄(x) +ψ(x), where θ̄(x) defines the direction of a spin in its
local minimum, and ψ(x) the deviation of this configuration such that

∮
dψ(x) = 0.

Hence, the Hamiltonian reads

H − E0 =
J

2

∑
x

(
△θ̄(x) +△ψ(x)

)2
=
J

2

∑
x

(
△θ̄(x)

)2
+
J

2

∑
x

(△ψ(x))2 + J
∑
x

(
△θ̄(x) · △ψ(x)

)
,

where, by using
∮
dψ(x) = 0, the cross term vanishes. Using the charged system

analogy in the continuum limit gives:

H − E0 =
J

2

∫
d2r (ψ(r))2 − πJ

2n∑
i ̸=j

qiqj ln

(
ri − rj
a

)
+ µ

∑
i

q2i ,

where the details of this calculation are provided in Appendix B. Since the spin-wave
excitation does not interact with the vortices, the problem is equivalent to the two-
dimensional Coulomb gas introduced in section 4.1 with the interaction energy of

Ev =


−πJ

∑
i ̸=j

qiqj ln | ri−rja
|+ µ

∑
i

q2i |ri − rj| > a

0, otherwise.

Hence, the KT transition is a transition from bounded vortices to a state in which they
are free.
In summary, the KT transition observed in the XY systems is a continuous transition

driven by topological defects. While the mean magnetization is zero at any temper-
ature, the order of the system characterized by the spin-spin correlation function
switches from quasi-long-range at low temperatures to disorder at high tempera-
tures.
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4.3 Two-stage melting transition: KTHNY theory

A two-dimensional solid has much in common with the XY model. According to the
Mermin-Wagner theorem, long-range order is impossible in a 2D crystal. Neverthe-
less, it does show long-range topological order associated with the response to shear
stress [29]. Kosterlitz and Thouless proposed the KT transition for a 2D melting tran-
sition. The continuum elasticity theory describes the response of the solid to shear
stress. A solid is rigid, meaning it resists shear stress. Thermal fluctuations at low
temperatures lead to the formation of pairs of bounded dislocations, which are topo-
logical defects in a crystal and reduce rigidity. At a higher temperature, TM , isolated
dislocations are possible. Free dislocations cause the system to be unstable against
shear stress. Thus, the system loses the long-range topological order. However, the
two-dimensional transition is more complex. The state of thematter just above TM is
not isotropic [47]. It is still orientationally quasi-long-range order, evident by the ori-
entational order parameter measurement. Hence, another step is essential to com-
plete the melting transition. Furthermore, the substrate on which a 2D solid is ad-
sorbed can influence the melting transition.

The following section presents the two-step melting transition according to a the-
ory that Nelson, Halperin, and Young elaborated regarding the KT transition, known
as the KTHNY theory. A two-dimensional crystal is both positionally and orientation-
ally ordered. To present the KTHNY theory, I first introduce order parameters con-
cerning underlying orders in the system. Then, I will introduce the topological defects
in a 2D solid. Finally, I summarize the basics of the KTHNY theory according to [47]
on a smooth substrate.

4.3.1 Fundamentals of solid states

A perfect crystal is a solid consisting of identical copies of a unit arranged in a highly
ordered microscopic structure. The repeated pattern is simply a distribution of mass
and charge, and it may be composed of, e.g., a single or a group of atoms, ions, or
molecules. Since this periodic configuration affects the fundamental physical fea-
tures of the matter, I survey a few of the most important geometrical properties of
the lattice configuration, particularly in two dimensions2.

2In this section, I follow the solid-state textbook of Ashcraft [2].

62



4.3. Two-stage melting transition: KTHNY theory

Figure 4.5: The triangular lattice provides an example of a two-dimensional Bravais lattice.
The black dots indicate lattice sites. The set of vectors a⃗i is an exemplary basis
set of this lattice. The yellow hexagons represent the unit cells. A translational
vector, T⃗ , connects two equivalent points in different unit cells.

The periodic array specifying a crystal is called the Bravais lattice. A Bravais lat-
tice is an array of points defined by a vector R⃗ =

∑
i=1,2 nia⃗i, where ni are integer

numbers and a⃗i are a set of basis vectors concerning lattice arrangement. The set of
basis vectors is not unique. Figure 4.5 shows the Bravais lattice and a set of the basis
of a two-dimensional triangular lattice. A primitive unit cell is the smallest area that
builds the entire lattice without any overlap or leaving a void. A translational vector,
T⃗ , connects two equivalent points in different unit cells. Since each point in a Bravais
lattice follows the periodic structure, the vector T⃗ is a summation of the basis set,
T⃗ =

∑
j=1,2 nj a⃗j , where nj are integer numbers. The existence of the translational

vector in the Bravais lattice results from broken translational symmetry in crystals.

For a given three-dimensional Bravais lattice, a set of parallel planes constructs a
family set such that each of them builds a two-dimensional Bravais lattice. Each orig-
inal lattice site belongs to one of these planes. A unique way to classify a different
set of families comes from introducing a second Bravais lattice correspondence to a
given lattice in the momentum space called a reciprocal lattice.

While the Bravais lattice represents the periodic arrangement in the physical space,
the Fourier transform of a Bravais lattice, called the reciprocal lattice, refers to the
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periodicity in the momentum space. It plays a fundamental role in studies related to
a periodic structure. A particular reciprocal lattice refers to a specific Bravais lattice.
For a given Bravais lattice defined by a set of vectors R⃗, there exists a set of wave
vectors K⃗ whose plane wave eiK⃗·r⃗ has the same periodicity as the Bravais lattice.
Such a set of K⃗ defines the reciprocal lattice and satisfies

eiK⃗·r = eiK⃗·(r⃗+R⃗),

for any r⃗ in the real space. Hence, eiK⃗·R⃗ = 1. The reciprocal lattice is itself a Bravais
lattice. For the proof see, for instance, [2]. Hence, for a given Bravais lattice defined
by the set of basis vectors a⃗i, the reciprocal lattice is defined by the set of wave vectors
K⃗ such that K⃗ is a sum of a basis set, b⃗k, i.e., K⃗ =

∑
kmkb⃗k, where,

b⃗k =
π

|v|
ϵijk (a⃗i × a⃗j) .

Here, ϵijk is the Levi-Civita symbol, and |v| = a⃗1·(a⃗2 × a⃗3) is the volumeof the primitive
cell. The following theorem represents the relation between a set of family planes in
the physical space and reciprocal lattice:
For any set of family planes separated by distance d, there exist reciprocal lattice
vectors perpendicular to them with the shortest length of 2π

d
. Conversely, for any

reciprocal lattice vector K⃗ , there is a set of family planes separated by distance 2π
d
,

where d is the length of the shortest reciprocal vector.

In the field of condensed matter, scattering experiments provide crucial informa-
tion. The conditions, called the Laue conditions, connect the scattering experiments
and the microscopic structure. The Laue conditions state that the scattering of a lat-
tice causes constructive interference if the change in the wave vector is equivalent to
one of the reciprocal lattice vectors. In the following, I survey the fundamentals of
scattering experiments and how such experiments describe the microscopic struc-
ture of matter.
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4.3.2 Order parameters in a two-dimensional crystal

Scattering problem and the structure factor

Let’s consider a discrete configuration of individual sites in two dimensions, as shown
in figure 4.6. Each site is represented by the vector of position, x⃗n, where n is the num-
ber of sites. We are interested in the elastic scattering of the entire system, in which
the initial and final energy of the scattered particle is identical. Each site describes
a scattering center of a weak potential U(x⃗n) for scattering particles. The scattering
particles are indicated by an arrow in figure 4.6. First, I will address the issue for one
site and then generalize it to the entire system. For simplicity, I do not use the index
n, meaning that the phrase U(x⃗) represents the scattering potential either of a site
or the whole system. Generalizing to the entire system is simply possible by substi-
tuting U(x⃗) by the total potential U(x⃗), where U(x⃗) =

∑
n U(x⃗n).

Figure 4.6: Scattering problem in two dimensions; A discrete configuration of individual sites
in twodimensions is shown. Each site, shownas a black dot, describes a scattering
center of weak potential. One scattering center is shown with a general shape
schematically. Typical scattering geometry is shown by the incident, final, and
scattering wave vectors k⃗, k⃗′, and q⃗ = k⃗′ − k⃗. Scattering from two parallel planes
separated by a distance d is depicted.

Both incident and scattered particles are described by plane wave states, |⃗k⟩ and
|k⃗′⟩, each of them has the momenta ℏk and ℏk′, respectively. For a sufficiently weak
potential, Fermi’s golden rule gives the transition rates between the initial and final
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state in the framework of perturbation theory. According to Fermi’s golden rule, the
transition rate between states |⃗k⟩ and |k⃗′⟩ is proportional to the square of the matrix
elements of the perturbation field. In a d-dimensional space, the matrix elements
are:

Mk⃗,k⃗′ = ⟨k⃗|U |k⃗′⟩ =
∫
ddxe−ik⃗·x⃗U(x⃗)eik⃗

′·x⃗,

whereU(x⃗) is the perturbation potential in the coordinate representation of the scat-
tering particle, ⟨x⃗|⃗k⟩ = eik⃗·x⃗ presents the state of the scattered particle, and k⃗ is a vec-
tor. For elastic scattering, in which the initial and final energy of the scattered particle
is identical, the transition rate, Γk⃗→k⃗′ , is:

Γk⃗→k⃗′ =
2π

ℏ
|Mk⃗,k⃗′ |

2.

The generalization of the problem to the scattering of a potential consisting of indi-
vidual atoms yields:

⟨k⃗|U(x⃗)|k⃗′⟩ =
∑
n

∫
ddxe−ik⃗·x⃗Un(x⃗− x⃗n)e

ik⃗′·x⃗,

where U(x⃗) =
∑

n Un(x⃗− x⃗n) is the perturbation potential arising from individual N
sites each of them placed at x⃗n.

It is convenient to represent the matrix elements corresponding to the scattering
direction from each atom. Hence, by defining R⃗n = x⃗− x⃗n and q⃗ = k⃗ − k⃗′, the matrix
elements are:

⟨k⃗|U(x⃗)|k⃗′⟩ =
∑
n

∫
ddRne

−ik⃗·(x⃗n+R⃗n)Un(R⃗n)e
ik⃗′·(x⃗n+R⃗n)

=
∑
n

∫
ddRne

−iq⃗·R⃗nUn(R⃗n)e
−iq⃗·x⃗n

=
∑
n

Un(q⃗)e
−iq⃗·x⃗n .

Where Un(q⃗) is Fourier transform of the atomic potential. Therefore, the transition
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4.3. Two-stage melting transition: KTHNY theory

rate is proportional to

|Mk⃗,kk⃗′|
2 =

∑
n,n′

Un(q⃗)U
∗
n′(q⃗)e−iq⃗·x⃗neiq⃗·x⃗n′ .

For a statistical system composed of identical atoms, we get Un(q⃗) = Un′(q⃗). By the
assumption that the system is ergodic, the transition rate for such a system is equiv-
alent to the ensemble average over all possible configurations. Hence, it becomes

Γk⃗→k⃗′ =
2π

ℏ
|Un(q⃗)|2⟨

∑
n,n′

e−iq⃗·(x⃗n−x⃗n′ )⟩

=
2π

ℏ
|Un(q⃗)|2I(q⃗),

where the ⟨. . . ⟩ states for the ensemble average. In the last step, the summation part
of this equation is replaced by the term I(q⃗), which depends only on the position
of individual perturbating centers. This parameter is called the structure function,
I(q⃗). For a randomly distributed system, the only non-vanishing terms are those with
n = n′. The structure function is an extensive variable of the system, i.e., it increases
by the size of the system. The intensive variable derived from the structure function
is called the structure factor, S(q⃗), and it is simply the structure function divided by
either N or the volume of the system, V ,

S(q⃗) ≡ 1

N
⟨
∑
n,n′

e−iq⃗·(x⃗n−x⃗n′ )⟩.

Hence, the structure factor, measured experimentally, contains important details of
the relative position of individual parts of the system. Specifically, it is the Fourier
transform of the density-density correlation function, as I will discuss below.
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density-density correlation function

The number density operator, n(x⃗), defines the number of particles per unit volume
at position x⃗. For instance, the number density operator corresponding to the con-
figuration of figure 4.6 is

n(x⃗) ≡
∑
n

δ(x⃗− x⃗n),

where δ(x⃗) denotes the Dirac delta function. The ensemble average of the number
density operator defines the average density of the system, ⟨n(x⃗)⟩. In a homoge-
neous system of complete symmetry, the average density does not depend on x⃗,
meaning that the system is not correlated. While dependency on x⃗, either the amount
or direction, is the signature of the symmetry breaking and expresses a correlation
between particles.

Thedensity-density correlation function,Cnn(x⃗1, x⃗2), measures this correlation, and
it is defined as the average ensemble of the density operator

Cnn(x⃗1, x⃗2) = ⟨n(x⃗1)n(x⃗2)⟩ = ⟨
∑
n1,n2

δ(x⃗− x⃗1)δ(x⃗− x⃗2)⟩.

The density-density correlation function is related to the previously introduced
structure function, I(q), via Fourier transformation

n(q⃗) =

∫
ddx n(x⃗)e−iq⃗·x⃗ =

∑
n

∫
ddx δ(x⃗− x⃗n)e

−iq⃗·x⃗

=
∑
n

e−iq⃗·x⃗n .

Therefore, according to the definition of I(q⃗), the structure function is simply the
Fourier transform of the density-density correlation function,

I(q⃗) = ⟨
∑
n,n′

e−iq⃗·(x⃗n−x⃗n′ )⟩ = ⟨
∑
n

e−iq⃗·x⃗n
∑
n′

eiq⃗·x⃗n′ ⟩

= ⟨n(q⃗)n(−q⃗)⟩.

68



4.3. Two-stage melting transition: KTHNY theory

Order parameters: Translational order parameter, Bond-orientational order
parameter

Figure 4.7: (a) Panel (a) shows how the pair correlation function, g(r), is determined. g(r)
measures the probability of finding particles at a distance r of a given particle as
a reference. In panel (a), a permitted configuration of particles is shown inwhich a
small circle depicts each particle; the pink particle presents the reference. A shell
of dr at a distance of r of the reference particle is assumed. Each particle, shown in
blue, whose center is located in the shell, is counted. g(r) is determinedbybinning
the pair radial distances into a histogram and normalizing them concerning an
uncorrelated system distribution. (b) The bond-orientational order parameter is
defined as ψnj =

∑nl
k

1
nl
ei(nθjk), where θ is the angle between the physical bond

and a fixed reference axis and n represents the expected symmetry in the lattice
and equals to six for a triangular lattice interested here. In this context, a line
connecting the center of two particles defines a physical bond. Panel (b) shows
the reference axis and the angle between it and a bond.

An ideal crystal is a system in which translational symmetry holds discretely. A peri-
odic function, f(x⃗) = f(x⃗+ T⃗ ), presents the crystal in the real physical space, where
x⃗ is a point and T⃗ is a translational vector. Based on the symmetry of the condensed
matter, the translational order parameter is defined as

ψTj = exp
(
iK⃗ · r⃗j

)
proposes information regarding the structure of the system, where r⃗j = (xj, yj)

states the position, and K⃗ states the primary vector of the reciprocal lattice. Thermal
fluctuations deform the perfect lattice such that the position of individual atoms sat-
isfies r⃗j = R⃗ + u⃗(R⃗), where u⃗(R⃗) defines the displacement from the perfect site R⃗.
The global translational order parameter is defined as the average of all local trans-
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lational order parameters, i.e.,

ψT = | 1
N

N∑
j=1

ψTj|,

provides information regarding positional order in a statistical system. Here, N is the
number of sites.

The density-density correlation function, ⟨ρ(r⃗)ρ(⃗0)⟩, provides additional informa-
tion, which is related to the structure factor via Fourier transform, and can be probed
directly by diffraction experiments via

S(q) ≡ ⟨ρ(q⃗)ρ(−q⃗)⟩ ≈
∑
R

eiq⃗·R⃗⟨eiq⃗·(u(R⃗)−u(⃗0))⟩

The other function related to the density-density correlation function is the pair
distribution function, g(x⃗1, x⃗2), which determines the probability of finding a particle
at x⃗2 if a given particle placed at x⃗1, and is defined as

⟨n(x⃗1)⟩g(x⃗1, x⃗2)⟨n(x⃗2)⟩ ≡ ⟨
∑
n ̸=n′

δ (x⃗1 − x⃗n) δ (x⃗2 − x⃗n′)⟩.

A direct method of determining g(x⃗) in a permitted configuration is to choose a
particle as the origin of the configuration. Then, consider a small volume at the sepa-
ration x⃗ of the origin. g(x⃗) is equal to the number of particles in the volume; see figure
4.7-a. In a homogeneous system, where the density is independent of direction, the
pair distribution function depends only on the radial distance, i.e., g(x⃗) = g(r), where
r denotes the radial separation of the origin, r = |x⃗|.

A solid in a crystal phase is, in addition, orientationally long-range ordered, which
means that the orientation of bonds connecting nearest neighbors sites is not only
correlated but also maintains a consistent pattern over large distances. To illustrate,
consider two individual cells with a shared side in Voronoi tesselation, which are con-
sidered neighboring sites. This concept will be further explained in section 4.3.3. A
measure related to this correlation is the bond-orientational order parameter, which
is defined based on the expected symmetry in the studied system. In the case of a
triangular lattice, which is the focus of this thesis, each site is orientationally sixfold
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symmetric. Thus, the bond-orientational order is defined as [47]

ψ6j =

nl∑
k=1

1

nl
e6iθjk ,

where the sum runs over nearest neighbors of site j, θjk represents the orientation
of the bond connecting two neighboring sites j, k relative to a fixed axis, and nl is the
number of nearest neighbors; see figure 4.7. The global bond-orientational order
parameter, |ψ6| = | 1

N

∑N
j=1 ψ6j|, quantifies the sixfold orientational symmetry in the

system. The sum is taken over the number of particles,N . A system in a crystal phase
exhibits a long-range orientational order, which means |ψ6| ≈ 1. For a liquid phase,
on the other hand, bonds are oriented randomly, i.e., there is no preferred direction
for bonds, which leads to |ψ6| ≈ 0.

The bond-orientational correlation function measures the spatial orientational or-
dering. In a triangular lattice, it is defined by:

g6(|r⃗ − r⃗′|) = ⟨ψ6(r⃗)ψ
∗
6(r⃗

′)⟩,

where ψ6(r⃗) =
1
N

∑N
j=1 ψ6jδ(r⃗ − r⃗j) is the local orientational order parameter of the

particle at the position r⃗. This function is a crucial parameter in characterizing differ-
ent phases in two-dimensional melting. According to the KTHNY scenario formelting,
which I will discuss in detail in section 4.3.4, g6(r) approaches a constant in the crystal
phase and decays algebraically and exponentially in the hexatic and liquid phases.
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4.3.3 Topological defects in two-dimensional crystal

Figure 4.8: Thefigure shows an elementary dislocated solid and the relatedBurgers vector on
a square lattice. A dislocated solid is formed if, for instance, a half-line is inserted
in the perfect lattice. A Burgers vector characterizes the strength and direction
of the dislocation. To find the Burgers vector, one needs to draw a closed-circuit
surrounding the defected core called the Burgers circuit. The circuit begins at an
arbitrary point, and it passes along the nearest neighbors in the counterclockwise
direction until it reaches the starting point. The same procedure would take in the
dislocated solid: The circuit would begin at the same position and move similarly
through the nearest neighbors. The Burgers vector is the amount by which the
path enclosing the defect would be closed compared to the perfect lattice. (a)
A configuration of individual atoms of an ideal crystal on a simple square lattice
and the Burgers circuit is shown. The point labeled in red represents the core
of dislocation. The dashed line shows the position of the inserted half-line. The
green path illustrates the Burgers circuit. It is composed of three steps to the left,
down, right, and finally, up to the starting point. (b) The dislocated crystal and the
corresponding Burgers vector are sketched. By the same procedure, the Burgers
circuit fails to close by the vector b⃗.

An ideal two-dimensional crystal shows both translational and orientational order.
A site in the lattice that does not possess these orders defines a defect. Thus, two
kinds of topological defects are possible: dislocations and disclinations. Dislocations
are defects in a systemwhere the translational order has been lost. They are the first
topological defects occurring in a crystal. Thermal fluctuations in an ideal crystal lead
to dislocation formation, as I present shortly later for a triangular lattice. The nature
of dislocation defects, e.g., on a square lattice, can be imagined by inserting an extra
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row of atoms into the perfect lattice such as sketched schematically in figured 4.8-b.

Burgers vectors characterize dislocation defects. A Burgers vector describes the
strength and the orientation of the dislocation. A practical way to determine the
Burgers vector is to draw a loop counterclockwise around the defect points before
and after defect formation, as shown in figure 4.8. In the defected lattice, the Burgers
vector is the vector required to close the loop. In the case of inserting one half-line,
the Burgers vector is equal to one of the lattice vectors in magnitude and is perpen-
dicular to the imaginary inserted half-line. The simple square lattice shown in figure
4.8 provides a convenient example. Forthcoming, we consider the triangular lattice,
which better explains what is coming in this thesis.

Figure 4.9: (a) The Voronoi tesselation for nine randomly distributed points. Each color
presents the closest area to the enclosed point. (b) The Voronoi construction for
a defected triangular lattice. A disclination defect is a cell with the wrong number
of neighbors. The purple/green cells have five/or seven neighbors. These cells,
individually, are called disclination defects. A single dislocation consists of a pair
of bounded disclinations with a total zero disclinicity. This figure shows a pair of
bounded dislocations.

I first introduce the Voronoi tesselation to visualize the other defects, i.e., disclina-
tions. A Voronoi cell defines a region around a given site consisting of all points closer
to this site than any other. Hence, the Voronoi tessellation constructs a mosaic of a
given distribution of sites. In such a way, two sites are neighbors if their cells share
at least one side of their Voronoi cell. Figure 4.9-a presents a Voronoi diagram for
a randomly distributed configuration. In a perfect triangular lattice, each site is sup-
posed to have six neighbors. So, a site with, e.g., five or seven neighbors is a defect
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called a disclination. Figure 4.9-b shows the Voronoi construction and disclinations
in a triangular lattice.

While a Burgers vector characterizes dislocations, a scalar number called disclin-
icity, s(r⃗), characterizes disclinations. This scalar is a positive or negative angle, i.e.,
two sides of the defect core in the ideal crystal must be twisted relative to each other
to form disclinations. In a triangular lattice, these angles are s(r⃗) = ±π

3
, where the

positive value serves the five-fold cell. Figure 4.9-b also represents an essential con-
cept for creating crystal defects: A single dislocation consists of a pair of disclinations.
The appearance of dislocations formed as pair-bounded defects is a consequence of
thermal fluctuations at low temperatures.

Figure 4.10: (a) Thermal fluctuations form defects. In the perfect crystal, sites A and A’ are
not neighbors, while B and B’ are. A thermal movement displaces two particles
in one of the lines in the opposite direction of the two particles in the parallel
line in such a way that in each line, one particle loses, and the other one gains a
neighbor. The purple particle has five, and the green has seven neighbors. This
procedure results in a pair of dislocations consisting of a pair-bounded discli-
nation. (b) A bounded dislocation and the Burgers vector describing each dis-
location are shown. The black/white particles are five/or seven-fold sites. The
vector R gives the orientation of one dislocation with respect to the other. (c)
Burgers circuit and the Burgers vector in a triangular lattice. (a) is reproduced
with permission through personal correspondence with the authors. (b) and (c)
reprinted from [13], Copyright (2010), with permission from John Wiley & Sons,
permission license Nr. 5117600835308.
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Figure 4.10 shows a schematically thermal pathway of defect formation and Burg-
ers vector in a triangular lattice. Four sites in a perfect triangular lattice are labeled.
Sites B and B’ are neighborswhile A and A’ are not. Thermal fluctuations form a defect
by displacing these sites, as shown in the figure. For a certain amount of displace-
ment, sites A and A’ become nearest neighbors instead of B and B’. Hence, a pair of
bounded dislocations occur. A higher temperature may form this pair at further sep-
aration, i.e., appearing single dislocations, and the crystal loses its translational order.

To summarize this section, a perfect crystal is both a translationally and orien-
tationally ordered system. Thermal fluctuations lead to appearing defected cores.
The melting transition begins by losing the translational order. At the first stage,
bounded-dislocations of (5, 7, 5, 7)-fold sites appear in the ideal crystal. At high enough
temperatures, the bounded dislocations appear at further distances and form single
dislocations. By occurring single dislocations, the solid loses its global translational
order. A single dislocation consists of a pair of bounded disclinations or a pair of
(5, 7)-fold sites. Increasing temperature will dissociate it into two isolated disclina-
tions. This process destroys the orientational order of the system and completes the
melting transition from solid to isotropic liquid.

4.3.4 KTHNY picture of melting

According to the Mermin-Wagner theorem, a 2D solid does not show long-range
translational order, evidenced by an algebraic decay in the density-density correla-
tion function. However, it has orientationally long-range order, meaning the bond-
orientational correlation function approaches a constant for large r. Thus, a two-
dimensional solid has a quasi-long range translational and long-range orientational
order [47].

I have discussed that dislocations and disclinations are topological defects regard-
ing a two-dimensional crystal. At low temperatures, thermal fluctuations form dislo-
cations. An argument regarding elastic theory, which is out of the scope of this thesis,
reveals that the energy cost of the formation of a single dislocation diverges logarith-
mically with the size of the system [6]. So analogous to the XY system presented in
section 4.2, isolated dislocations are not favored. A pair of dislocations of two op-
posite Burgers vectors separated by a lattice constant has finite energy. Hence, it is
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favored. The Hamiltonian of a system of interacting dislocations is [47]:

HDL = − 1

8π

∑
r⃗ ̸=r⃗′

K1⃗b(r⃗) · b⃗(r⃗′) ln

(
|r⃗ − r⃗′|
a

)
−K2

b⃗(r⃗) ·
(
r⃗ − r⃗′

)
b⃗(r⃗′) ·

(
r⃗ − r⃗′

)
|r⃗ − r⃗′|2


+ EDL

∑
r⃗

|⃗b(r⃗)|2.

Here, the summation runs over r⃗, the position of individual atoms, b⃗(r⃗) is the Burgers
vector at the site of r⃗, and couplings K1 and K2 are related to the elastic constant.
EDL is the core energy related to the dislocation, and a is the radius of the defect.
The Hamiltonian has a logarithmic form analogous to the XYmodel. The second term
comes from the vector nature of the Burgers vector and depends on the orientation
of the Burgers vector relative to the displacement vector between them, i.e., (r⃗− r⃗′).
Hence, compared to the XY system, the Hamiltonian of dislocations is more complex.

While dislocations are characterized by vectors, a scalar number, s(r⃗), describes
disclination defect. Hence, the Hamiltonian of a bound disclination is mathematically
equivalent to the vortices interaction

HDC = −πKA

36

∑
r⃗ ̸=r⃗′

s(r⃗)s(r⃗′) ln

(
|r⃗ − r⃗′|
a

)
+ EDC

∑
r⃗

s2(r⃗),

where KA is the Frank constant. Since dislocation defects are energetically equiv-
alent to vortices, analogous to the presented XY system, it concludes that the total
disclinicity in a melting crystal has to be zero.

The elastic theory considerations indicate that two dislocations at a separation dis-
tance r attract each other to lower the strain energy of the system. At sufficiently
high thermal energy, the pair may reach higher states of energy and appear at fur-
ther distances r, meaning there is a probability to see isolated dislocations at high
enough temperatures.

A two-dimensional crystal is known by quasi-long-range translational order and
long-range orientational order [47]. The global bond-orientational order, |ψ6|, is unit
value, and the bond-orientational correlation function, g6(r), approaches a constant
at large separations, as shown in figure 4.11. Applying the KT-transition to a 2D crys-
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tal, i.e., unbinding dislocation at temperatureTm, destroys the quasi-long range trans-
lational order. The new phase differs from an isotropic liquid by possessing a quasi-
long range translational order. The global bond orientational order varies abruptly
to fewer values. In a triangular lattice, this phase is known as the hexatic phase. The
long-range translational order changes to the quasi-long-range order characterized
by a power-law bond-correlation function of the hexatic phase,

g6(r) ∼ r−η(T ),

where 1
4
≤ η(Tm) ≤ 1

3
; see figure 4.11. A low density of isolated dislocations screens

the logarithmic interaction between bounded disclinations. Hence, applying a sub-
sequent KT transition to the hexatic phase would complete the melting transition.
At higher temperatures, the unbinding defects process continues, and a single dis-
location can dissociate into two isolated five- and seven-fold particles. These newly
produced defects, i.e., disclinations, complete the melting process. At temperature
Ti, free disclinations appear in the system to destroy the orientational order. Hence,
the system switches to an isotropic liquid known for exponentially decaying in trans-
lational and orientational order. Figure 4.11 illustrates themelting process regarding
the KTHNY-scenario, where changing the order parameters characterizes different
phases.
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Figure 4.11: Left: global translational order parameter,ψT , and global orientational order pa-
rameter, |ψ6|. A sharp decrease of ψT is a signature of transition to the hexatic
or liquid phase. For a solid in a perfect triangular lattice, |ψ6| = 1, i.e., the sixfold
orientational symmetry is maintained. Randomly distributed bonds orientation
in a liquid leads to |ψ6| ≈ 0. Right: the orientational correlation function g6(r) at
different input temperatures. According to the KTHNY theory, g6(r) is the deter-
minative parameter to distinguish different phases. It approaches a constant in
the crystal phase, decays algebraically with a critical exponent η = 1

4 in the hex-
atic phase and exponentially in the liquid phase. The red line indicates a linewith
a slope of 3. Hence, the studied system at the underlying temperature reached
its hexatic phase. Reprinted from [49], Melting in two-dimensional Yukawa sys-
tems: A Brownian dynamics simulation, Copyright (2010), with permission from
the American Institute of Physics, License Nr. 5254260817875.

TheKTHNY scenario suggests two subsequent KT transitions froma two-dimensional
crystal to an isotropic liquid. The first transition converts the crystal to an ordered
liquid called the hexatic phase. The touchstone of the hexatic phase is the algebraic
decaying of the orientational correlation function. The second transition completes
the melting process and provides the isotropic liquid. Topological defects produced
by thermal fluctuations in the matter drive these transitions. Hence, both transitions
are continuous second-order transitions. Table 1 summarizes the KTHNY scenario of
melting.

However, the KTHNY picture of melting, i.e., two subsequent second-order transi-
tions, is one of many possible mechanisms. Another picture, for instance, would be
the premature dissociating disclinations before isolated dislocations appear, which
result in a first-order transition. An exemplary phase diagram concerning the possi-
bility of either a first-order or KTHNY scenario is shown in figure 4.12.
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4.3. Two-stage melting transition: KTHNY theory

Phase of Matter Solid Hexatic Liquid
Temperature T < Tm Tm < T < Ti T > Ti
Dislocations Bound in pairs Free Free
Disclinations Bound in Quarters Bound in pairs Free
Positional Correla-
tions

Quasi-Long-Range Short Range Short Range

Bond-Orientational
Order

Long range Quasi-Long-Range Short Range

Elastic Constant Finite, nonezero Zero Zero
Frank Constant Infinite Finite, nonezero Zero

Table 4.1: two-dimensional melting according to the KTHNY-scenario

Figure 4.12: The KTHNY scenario proposes a two-stage melting transition involving an inter-
mediated ordered liquid. The first step transforms the solid to a liquid crystal
phase characterized by a quasi-long-rang orientational order. The liquid crystal
region in the diagram illustrates this phase. The second transition is required to
result in an isotropic liquid. Tm and Ti denote the temperatures in which these
transitions occur. The hatched lines exhibit the possibility of a first-order tran-
sition. Reprinted from [47], Copyright (1979), with permission from American
Physical Society.

Several factors, such as the interactions between individual particles, their shape,
and the substrate potential, may affect the melting process in atomic systems. Thus,
numerical simulations have become an extensive field to investigate and clarify the
ambiguities of the melting transition. The last section of this chapter serves the nu-
merical simulations studied two-dimensional systems of hard disks.
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4.4 Computational studies

4.4.1 Melting transition in a hard-disk system

Figure 4.13: The pressure of a hard-disk system driven by the equation of state is plotted vs.
density, upper scale, and the volume per disk, lower scale, measured in a NVT
ensemble. The equation of state is associated with a loop that comes from the
interface free energy effects. The loop tends to be flattened in the larger system,
indicating the finite-size effects. The horizontal lines are Maxwell’s construction.
The hatched area presents the free energy per disk for the larger system size.
This area scales as 1√

N
, which provides evidence of a first-order liquid-hexatic

transition. Snapshots show two single phases and the coexisting liquid-hexatic
phases in between. The color code presents the local orientation, explained in
detail in the caption of fig. 4.14. Reprinted from [5], Copyright (2011), with per-
mission from American Physical Society.
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A system of hard disks in two dimensions is one of the simplest models of a classical
fluid. Besides the simplicity of this system, the nature of the phase transition in this
system was unknown for decades. In two dimensions, particles are idealized disks
of radius R initialized by their positions and velocities in free space or box. Particles
behave freely far from others but obey simple reflection rules during contact with
walls or other particles. The following potential introduces such a system

V (r) =

0, r ≥ 2R

∞ r < 2R.

Here, r states the radii distance between two disks.

The hard disk system near the melting transition is sensitive to the finite size ef-
fects. This sensitivity was the origin of the controversy surrounding this problem.

Bernard et al., see [5], addressed the ambiguity of melting transition using the
event chainMonte Carlo algorithm. They studied larger-size systems containing up to
N = 10242 hard disks in the NV ensemble 3. The visual evidence of coexisting phases
obtained by bond orientational order investigation, see fig.4.13. After analyzing the
free energy per disk, they concluded that the transition involving the isotropic phase
is first-order. The local density averaged over 50R exhibits an obvious connection be-
tween correlated and high-density regions. This connection provides visual evidence
of the liquid-hexatic coexistence, see Fig. 4.14 and table 4.2.

ρ < 0.700 0.700 ≤ ρ ≤ 0.716 0.716 ≤ ρ ≤ 0.720 ρ > 0.700
Liquid Coexistence phase Hexatic Solid

Table 4.2: Two-dimensional melting transitions in a hard-disk system.

3For a model with short-range interactions in the thermodynamic limit, the results do not depend on
the choice of ensemble.
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Figure 4.14: Snapshots of color-coded local orientation and the coarse-grained density. Up-
per snapshots: the complex vector ΨK = 1

nl
exp(6iθkl) ≡ (ReΨK , ImΨK) de-

fines the local bond-orientational order parameter for the disk k, where l stands
for the nearest neighbors of k. One can introduce a unit vector êk based on this
value. The global orientation of the system is another complex vector defined
as Ψ = 1

N

∑
kΨK . The projection of the local orientation on the sample ori-

entation is applied to the Voronoi construction. The magnitude one, labeled in
blue, states that the local and global orientations are aligned. Then, the blue
regions present correlated areas. Lower panels show the coarse-grained den-
sity. The local density averaged over 50R provides visual evidence of coexist-
ing hexatic-liquid phases. An obvious connection exists between correlated and
high-density regions in the upper and lower panels. Reprinted from [5], Supple-
mentary Information, Copyright (2011), with permission from American Physical
Society.

However, the two-dimensional pair correlation study revealed no doubt that a sin-
gle phase corresponding to the hexatic exists. The KTHNY theory predicts a power-
law function for the orientational order parameter with the exponent −1

4
in the hex-

atic phase. Bernard et al. obtained a negative value for the exponent. However, the
exponent was close to zero and far from the expected value by the KTHNY scenario.
They concluded that the first-order liquid-hexatic transition might affect the hexatic
phase.

In conclusion, because of the appearance of the hexatic phase, the two-dimensional
melting can not be classified as a pure first-order transition. Therefore, these obser-
vations deviate from the predictions of the KTHNY theory. Bernard et al. concluded
that in a hard-disk system, the hexatic phase acts as a mediator for the melting tran-
sition. Notably, the liquid-hexatic transition is first-order, while the hexatic-to-solid
transition is continuous, presenting a unique behavior.
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4.4.2 Melting transition in a soft-disk system

Figure 4.15: (a) Equation of state for a family of repulsive potentials U(r) = ϵ
(
R
r

)n. The
Mayer-Wood loop, which occurs for n > 12, is evidence of a first-order transi-
tion. The coexisting interval varies non-monotonically. ϕ = σ2N

V is density, and
ϕliq denotes the liquid density at coexistence. At n ⪯ 6, the first-order scenario
changes to a continuous transition. (b) Radial distribution function along the x-
axis. Depending on the interaction strength and Debye-Hückel screening length,
a Yukawa potential may exhibit a first-order or continuous liquid-hexatic transi-
tion. (c-d) Interaction potential of the soft disks and the Yukawa particles around
r = σ. Reprinted from [27], Copyright (2015), with permission from the Ameri-
can Physical Society.

A study of hard disks interacting via soft-repulsive potential U(r) = ϵ
(
R
r

)n, estab-
lished the two-step transition including the hexatic phase [27]. Columb forces and
dipole interactions with n = 3 are a few examples of such interactions. However, de-
pending on parameter n, continuous and first-order liquid-hexatic transitions were
observed.
A systemwith a larger n recovered thehard-disk scenariowith the first-order hexatic-

liquid transition. The hexatic-liquid coexistence width varies non-monotonically. The
coexisting interval vanishes at n = 6. The systems with n ⪯ 6 showed the two-step
continuous transition, see Fig.4.15-a.

Having both continuous and first-order liquid-hexatic transition led the authors to
a conclusive hypothesis: each particle explores a small part of interactions, i.e., any
interacting system inwhich the interactionsmatch the soft-disk potential in the range
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of inter-particle distances, follows the soft-disk scenario, which was confirmed by us-
ing a Yukawa interaction U(r) = u

(
2R
r

)
exp[κ(1−

r
2R)], see figure 4.15-(b-d). This study

suggests that tuning Debye-Hückel screening length will result in both first-order and
liquid-hexatic scenarios.
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Adsorption kinetics

Class II hydrophobins are amphiphilic proteins produced by filamentous fungi. The
adsorption kinetics measured for the wild-type proteins HFBI and HFBII are aston-
ishingly robust. Several experiments have been performed but still show strongly
consistent features; the adsorption kinetics for self-assembly at the air-water inter-
face follows linear kinetics up to saturation. This feature distinguishes these proteins
from, e.g., Lysozyme, in which the adsorption kinetics follow the conventional Lang-
muir adsorption model. This chapter will investigate the origin of this behaviour by
increasing knowledge of the dynamic behaviour of these proteins at air-water inter-
faces.
To this end, I present the experiments the Jacobs group has performed at Saarland
University. Those experiments were carried out on wild-type proteins HFBI and HF-
BII and a few selected mutants of HFBI. These observations will set the subsequently
developed model into context.
In the second section, I introduce the stochastic model, which studies the dynamic
behaviour of class II hydrophobins.
The last section states the simulation results and discussion.
This chapter is based on the article Dynamic assembly of class II hydrophobins

from T. reesei at the air-water interface published in American Chemical Society,
Langmuir, 2019, 35, 9202-9212 by Hendik Hähl et al. [20].
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5.1 Experimental section

ThehydrophobinsHFBI, HFBII, HFBI-dCBM,HFBI-D30N-K32Q, and FpHYD5, introduced
in section 2.1.6, were the subjects of our investigation. We used non-destructive ellip-
sometry measurements to quantify the protein adsorption kinetics at the air-water
interface [20]. This method, which is based on the refractive index variation and pro-
vides the adsorbent’s dry mass, was instrumental in our research. The following sub-
section presents the experimental results and discussion of these measurements.
The adsorption experiments, coupled with atomic Force Microscopy (AFM) inspec-
tion, offered unique insights into the structure of the film. This method allowed us
to probe both the hydrophilic and hydrophobic sides of the film, a distinction that
is crucial for our conclusions. Therefore, I will elaborate on the procedure of these
measurements at the outset of section 5.1.2.

5.1.1 Adsorption kinetics

Hydrophobins are self-assembled at air-water interfaces due to their amphiphilic
structure. The adsorption kinetics for wild-type proteins HFBI and HFBII for protein
concentrations of 0.1, 0.2, 0.5, 1, and 2 µM are depicted in figure 5.1. As shown in
the figure, the adsorbed protein increases linearly until saturation. The exception is
concentration 0.1 µM , where the saturation was not achieved in the experimental
time windows.

As shown in figure 5.1, all measurements show deviations from the exponential
Langmuir kinetics; the adsorption rate, defined as the average mass of protein ad-
sorbed at the interface in the unit of time, is constant up to saturation. In particular,
for the wild-type proteins HFBI and HFBII, the adsorption rate is independent of the
already adsorbed amount. The linear adsorption kinetics contrasts with the usually
observed Langmuir kinetics in which the adsorption rate decreases as the adsorbed
mass increases, see section 2.2.6.
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Figure 5.1:Wild-type hydrophobins adsorption kinetics; The adsorbed amount of (a) HFBI,
and (b) HFBII as a function of time. The dynamics of the protein assembly were
measured at concentrations of 0.1 (orange), 0.2 (gray), 0.5 (red), 1.0 (blue), 2.0
(green), and 5.0 (black) µM . The adsorbed protein increases linearly in time until
saturation. The saturation is not achieved for the concentration of 0.1 µM in the
experimental time windows. The figure is reprinted from Hähl et al. [20], with
the permission of American Chemical Society.

While the adsorption rate depends on the concentration, i.e., a higher concentra-
tion results in quicker film formation and a higher adsorption rate, the saturation
value does not; it reaches a constant value independent of the protein’s concentra-
tion; the final recorded mass at the interface is 3.4 and 3.0 mg m−2 for HFBI and
HFBII, respectively. As I will discuss later, those values correspond to the formation
of a monolayer at the interface.

Figure 5.2 sketch the adsorption kinetics of HFBI as a reference and three muta-
tions of it, HFBI-D30N-K32Q, HFBI-dCBM, and FpHYD5, for different concentrations.
For the mutant HFBI-D30N-K32Q, for large concentrations, the kinetics is similar to
HFBI, i.e., the kinetics is linear. However, the adsorption rate is larger compared to
HFBI. For a lower concentration of 0.2 µM , The adsorption rate changes gradually
from a constant none-zero to zero. Remarkably, HFBI-D30N-K32-Q reaches satura-
tion even for the lowest concentration of 0.1 µM in the time window of the experi-
ment. The adsorption rate of the lowest concentration shows time dependency.

For the mutant HFBI-D30N-K32Q, for large concentrations, the kinetics is similar
to HFBI, i.e., the kinetics is linear. However, the adsorption rate is more significant
compared to HFBI. Here, two exceptionsmeet; the adsorption rate changes gradually
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from a constant none-zero to zero for a lower concentration of 0.2 µM . Remarkably,
HFBI-D30N-K32-Q reaches saturation even for the lowest concentration of 0.1 µM
in the time window of the experiment; moreover, the adsorption rate of the lowest
concentration shows time dependency.

Figure 5.2: Adsorption kinetics; The adsorbed amount of (b) HFBI-D30N-K32Q, (c) HFBI-
dCBM, (d) FpHYD5 as a function of time. The adsorption kinetics of HFBI are
shown as a reference in (a). The dynamics of the protein assembly were mea-
sured at concentrations of 0.1 (orange), 0.2 (gray), 0.5 (red), 1.0 (blue), 2.0 (green),
and 5.0 (black) µM . The inset of (c) shows that the data fit the first-order kinetics
model of the experiments in the 0.1-0.5 µM . The figure and caption are reprinted
from Hähl et al. [20], with the permission of American Chemical Society.

The adsorption kinetics for mutant HFBI-dCBM, shown in panel-c, completely dif-
fer fromwild-type hydrophobins. The kinetics does not exhibit a constant adsorption
rate. In contrast, the adsorption rates in all probed concentrations are perfectly de-
scribed by a Langmuir adsorption kinetics in which the adsorption rate decays expo-
nentially, as shown in the inset of this panel. Moreover, HFBI-dCBM displays a higher
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saturation value at a concentration of 5 µM .
The adsorption kinetics of FpHYD5, shown in panel-d, is laid between purely linear

wild types and the pure exponential of HFBI-dCBM. The adsorption kinetics of the
lowest concentration follows the Langmuir kinetics. In contrast, the adsorption rate
for higher concentrations is constant, differing from wild-type profiles by gradually
decreasing to zero rates upon reaching the saturation value.
The film formed at the interface is likely monolayer; the formation of a multilayer is
not suspected according to the following calculations performed for HFBII.
The mean saturated adsorbed mass of HFBII is 3.0mg m−2. The molecular weight of
HFBII is 7.2 k Da. Hence, the adsorbed mass in the unit of mole is

Adsorbed mass = 3.0× 10−3 [gr m−2]

(6.02× 1023) (7.2× 103) (1.66× 10−24 [gr])
= 0.41× 10−6

[
mol m−2

]
.

Which gives the mean area per protein of 1
(0.41×10−6)(6.02×1023)

= 4.0 [nm−2]. This
experimentally calculated value is comparable to the measured amount of 3.2 nm−2

[22]. Therefore, the formed film is likely a monolayer.
Similarly, the mean area per protein for other examined proteins is calculated and

presented in table 5.1. While almost all mutants occupy a similar area per protein,
the mean area of bulky mutant HFBI-dCBM is significantly larger, which is suspected
to be due to the role of the attached domains.

protein Γ [µM m−2] area per protein [nm−2]

HFBI 0.45± 0.01 3.7± 0.1

HFBII 0.41± 0.02 4.0± 0.1

FpHYD5 0.40± 0.03 4.2± 0.3

HFBI-dCBM 0.27± 0.02 6.1± 0.5

HFBI-D30N-K32Q 0.44± 0.02 3.8± 0.1

Table 5.1: Saturation value of the adsorbed amount of used protein. The table is adapted
from Hähl et al. [20], with the permission of American Chemical Society.

The only difference between HFBI and its variant HFBI-D30N-K32Q are the charged
amino acids exchanged by the neutral ones, which suggests that Coulomb interac-
tions play a crucial role in self-aggregation. The role of electrostatic interactions is
investigated by varying the ionic strength of the buffer. The ionic strength is adjusted
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by adding Sodium Chloride to the solution. As shown in figure 5.3 for HFBII, the ionic
strength variation does not change the saturation value; however, it does modify
the adsorption rate; the higher ionic strength results in a faster-saturated interface.
In addition, the adsorption rate deviates from a constant to a decaying amount.

Figure 5.3: HFBII (concentration= 0.2 µM ) adsorption kinetics at the ionic strength of 6 (gray
triangles), 100 (red triangles), 500 (blue dots), and 100 mM (black squares). In-
creasing ionic strength converts the kinetics from unusual linear to the conven-
tional Langmuir adsorption kinetics. The figure is reprinted from Hähl et al. [20],
with the permission of American Chemical Society.

To summarize, the distinct feature of wild-type assembly is the linear adsorption
kinetics until saturation is reached. In the case of wild-type hydrophobins, the
maximum adsorbed amount is independent of the bulk protein concentration as
is observed in other studies, e.g., [59, 69]. Hydrophobins gain energy upon the
adsorption to the interface; moreover, these proteins do not change their confor-
mation. These facts explain the irreversible adsorption with maximum saturation.
However, the adsorption of proteins typically follows Langmuir kinetics, in which
the adsorption rate decays with the contraction of the available vacancies at the
interface. Without more knowledge of the underlying mechanism, a cooperative
adsorption process may explain the constant adsorption rate in which an already
adsorbed protein guides the coming one to a free space. I introduce a model that
describes the mechanism to gain a deep knowledge of the mechanism underlying
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the adsorption process. The model shows that a high diffusive motion next to the
interface and a relatively high enough adsorption to the interface are responsible
for the observed linear adsorption.

5.1.2 Structure of the interface film

Figure 5.4: AFM height images of HFBI films from the air-water interface. The films
were transferred to a hydrophobic solid substrate. Protein concentration was
0.2 µM , ionic strength was (a) 6 mM and (b) 100 mM . The time after protein
injection is given below the images. Images in (b) have the same lateral scale.
Increasing the ionic strength speeds up the adsorption rate; hence, identical cov-
erage was chosen to compare the two experiments of different ionic strengths
rather than identical time points. At the same coverage of adsorbent, increasing
the ionic strength led to less numerous clusters but in a larger size. The figure
is reprinted from Hähl et al. [20], with the permission of American Chemical
Society.

The structure was probed during an adsorption course to comprehensively study
the formed film, meaning that the film’s hydrophilic and hydrophobic faces were
examined using Atomic force microscopy (AFM). To this end, samples are prepared
and transferred to a solid substrate based on the Langmuir- Schaefer (LS) method,
in which the substrate moves vertically toward the interface and subsequently lifts
off.
As a substrate, a piece of a silicon (Si) wafer was used to image the hydrophilic face
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of the film. The substrate was hydrophobized with a self-assembled monolayer of
octadecyl trichlorosilane in advanced [35]. The substrate contacts the film from
above immediately after being removed; then, it is raised until it fully detaches from
the interface. In the last step, the sides of the silicon wafer were approached with an
absorbent paper to drain off the residual water on the film.

The hydrophobic face of the film is examined using a hydrophobized mica as a
substrate. This method is more invasive than the usual Langmuir-Schaefer method
described above; the film is introduced into the solution to bring the hydrophilic side
in contact with the substrate.

The criterion for comparing samples is the adsorbed amount at the interface rather
than the same time points. For HFBI without Sodium Chloride at a concentration
of 0.2 µM , the transfer and imaging were performed every 30 minutes (see figure
5.4-a). Since the absorbed amount depends on the ionic strength and at a higher
ionic strength, the adsorption rate increases, the measurement time point was
adjusted to represent the same amount of adsorbed material, as shown in figure
5.4-b.

The most particular feature observed is the formation of two-dimensional grain
boundaries; for all ionic concentrations, two-dimensional grain boundaries are
visible. The individual domains, which, from here on, I call clusters, grow until they
get in touch. Cluster domains do not fuse even if they touch others. This remarkable
feature suggests that the proteins possess a preferred orientation in each domain,
which differs from domain to domain.

In the previous section, I presented the idea that the ionic strength speeds up the
adsorption. As it is evident in figure 5.4, it also controls the formation of clusters;
at an identical surface coverage, a higher ionic strength results in less numerous
domains but significantly larger ones.

The observed solid material in the center of clusters in figure 5.4-b is most likely
a crystal of Sodium Chloride, meaning that samples are transferred to a highly
hydrophobized substrate. It is plausible that samples trap a droplet of the solution
during the transformation. Since even the hydrophobic face of the film has less
hydrophobicity than the surrounding environment, the drop of buffer stays on the
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protein layer. This drop contains NaCl. Since the samples are not washed up before
imaging, afterwater evaporation, crystals ofNaCl remain in themiddle of the clusters.

It was questionable whether cluster formation is spontaneous through film forma-
tion or if water evaporation induces cluster formation. To address this, the formed
filmwas imagined after 22 hours; the two-dimensional clusters withwell-defined bor-
ders were found. This evidence ensures that the cluster formation is a spontaneous
process, as shown in figure 5.5-a.
The examination of the hydrophobic face, where the protein domains are also ob-
served, is a complex and invasive process. As illustrated in the inset of figure 5.5-b,
the substrate is carefully introduced into the solution to bring the hydrophilic side in
contact. This is followed by a vertical lift of the substrate, resulting in the formation of
a film. The intricate nature of this procedure leads to a heavily distributed interface.

Figure 5.5: AFM images (size: 10 µm × ten µm) of Langmuir-Schaefer films of HFBI more
than 22h after protein injection into the solution (c = 0.2 µM ). (a) The film
was prepared as the films shown in figure 5.4. A completely saturated film is ob-
served, still showing boundaries between individual clusters. (b) This film was
prepared on a freshly cleaved mica sheet, which was first introduced in the solu-
tion and then lifted to bring the hydrophilic parts of the hydrophobins in contact
with the mica (see inset sketch). Due to this procedure, the interface is heavily
disturbed, and clusters are separated. Compared to the images in figure 5.4, the
hydrophobic and hydrophilic regions are inverted: Here, the cluster surfaces are
hydrophobic, whereas the substrate around the clusters is hydrophilic. The fig-
ure is reprinted fromHähl et al. [20], with the permission of American Chemical
Society.

In contrast to the cluster formation of WTs, the AFM examination of variant HFBI-
dCBM shows, rather than protein domains, a homogeneous film (see figure 5.6). The
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mutant HFBI-dCBM has 18.5 k Da molecular weight compared to the WT protein; it
has 11.5 k Da molecular weight and increased size, which reduces its translational
and rotational diffusion at the interface. A comparable high molecular weight, in
addition to the large size, influences itsmobility at the interface. Hence, it is likely that
neighbouring proteins are not able to rotate and match their directionality, resulting
in a homogeneous film.

Figure 5.6: AFM images (size: 10 µm × 10 µm) of Langmuir-Schaefer films of HFBI-dCBM
(a) ca. 15 min. and b) 10 h after the start of the adsorption measurements. The
films were prepared as the HFBI films presented in figure 5.4. In contrast to the
HFBI films, no cluster growth can be observed. In (b), agglomerations of proteins
are likely formed during the drying process. The figure is reprinted from Hähl et
al. [20], with the permission of American Chemical Society.

5.1.3 Summary

Protein adsorption to the air-water interface usually follows the Langmuir adsorp-
tion kinetics, where the effective adsorption rate depends on the vacancies in the
film. In contrast, the hydrophobins HFBI and HFBII show, up to saturation, a con-
stant adsorption rate. As revealed by AFM measurements, the adsorption process is
accompanied by the formation of stable grain boundaries.
The origin of the observed structure and unusual linear dynamics has been investi-
gated by changing the ionic strength of the solution, as well as by considering modi-
fied proteins.
The mutation affects the kinetics and cluster formation. The bulky mutant HFBI-
dCBM adsorption kinetics is well-fitted by the Langmuir adsorption kinetics. More-
over, the grain boundaries have not been observed for both weighted mutants HFBI-
dCBM and FpHYD5.
Experimental observations ensure that the electrostatic interactions play a role in
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both observed phenomena; screening electrostatic interactions by increasing ionic
strength or mutation changes the linear kinetics to the conventional Langmuir ad-
sorption kinetics. The increment in the ionic strength also speeds up the effective
adsorption rate and controls the size and number of grain boundaries.
Withoutmore profound knowledge, cooperative behaviour controls the assembly. In
the following section, I aim to light up the ambiguities in this issue through a theoret-
ical study with the help of introducing a stochastic model.
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5.2 Model

Class II hydrophobins are small globular-solvable proteins that, in a solution, may
form a multimer complex or be found as monomers depending on the concentra-
tion. Hydrophobins are surface-active proteins that self-assemble in the air-water
interfaces to shield their hydrophobic parts, as shown in figure 2.12. Conformational
changes are not expected to occur during the adsorption or at interfaces.
Hydrophobins can form a complete crystalline monolayer at the air-water inter-
face. Experimental observations confirmed long-ranged grain boundaries that are
growing over time without fusing. The grain boundaries show a crystal structure
comparable to a two-dimensional honeycomb lattice.
Next to the features mentioned above, the adsorption kinetics of class II hy-
drophobins HFBI and HFBII show a remarkable feature: the adsorption kinetics
follow a linear kinetics up to saturation. This aspect has distinguished these proteins
from, e.g., lysozyme, in which the adsorption rate shows dependency on vacancies.

The main goal is to develop a simplified model system to expose the underlying
mechanisms of the unusual hydrophobin’s adsorption kinetics. The model is re-
stricted to the most elementary processes where tuning their relevance allows for
in-depth knowledge of their contributions to the observed linear kinetics.

I model the adsorption as a lattice gas model in two dimensions, not including
details of protein-protein and protein-surface interactions. Those calculations, even
if possible, are usually time-consuming and are only feasible for part of the systems.
Specifically, the model is constructed to limit the number of free parameters.
However, to model the mechanical response of the system under external stress, as
discussed in chapter 6, I will introduce an off-lattice approach.

Experimental results with mutants and variable ionic strength suggest the relevance
of long-range electrostatic interactions. In addition to the van der Walls interactions
between proteins in a layer, the possibility of an energy barrier and a second
minimum in the surface potential energy leads to modelling the reality as a bilayer
system in which the DLVO theory describes the interactions between particles.

The adsorption kinetics is modeled by Monte Carlo dynamics based on the Metropo-
lis algorithms. Monte Carlo methods allow us to characterize the relative time scales
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of stochastical processes. The connection to the real-time scales can be taken, e.g.,
from the initial slope of the adsorption kinetics. The stochastic approach’s inherent
noise avoids introducing any artificial deterministic parameters. The whole dynamics
are governed by the choice of rates for elementary processes and their acceptance
probabilities, which are given by the defined particle-particle interactions. The
selection of these processes is implemented through tower sampling.
The following subsections describe the model and used methods in detail.

5.2.1 Model: Experimental setup

Figure 5.7: Basic model structure. Top: air-water interface. The protein solution is not con-
sidered explicitly; instead, I introduce a subsurface layer below the interface and
the solution as bulk. Honeycomb lattices represent both subsurface and interface
layers. The pre-adsorption to the subsurface is reversible, while the final adsorp-
tion to the interface is not. The protein concentration in the solution dictates the
adsorption rates to the subsurface layer and interface. The figure is adapted from
Hähl et al. [20], with minor changes, with the permission of American Chemical
Society.

The experimental setup consisting of a protein solution and the air-water interface is
modeled as a systemof three parts: the interface, subsurface, and solution, as shown
in Fig. 5.7. The upper layer models the liquid-air interface. The subsurface layer is
just close to the interface. A honeycomb lattice is used for both the interface and
subsurface in line with the observed crystal structure for wild-type hydrophobins.
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The solution in figure 5.7 represents the bulk. Since multimerization is not expected
for the given experimental conditions, the bulk solution is assumed to consist of uni-
formly distributed monomers of hydrophobins. An effective particle flux from the
bulk solution to the interface allows adsorption.
The Langmuir adsorption kinetics describes particles as ideal gas molecules adsorb-
ing to a lattice layer, see 2.2.6. Particles encounter lattice sites randomly. Experienc-
ing an already occupied site is punished by rejection. Similar to the Langmuir adsorp-
tion kinetics, particle-particle exclusion is included. However, the model introduced
here differs in several aspects from the Langmuir adsorption kinetics: Introducing
the subsurface is the first extension of the Langmuir adsorption kinetics.
Moreover, adsorption takes place in two steps. First, a particle enters randomly
to the subsurface. The pre-adsorbed particle returns to the bulk or reaches the
interface via final adsorption. According to the experimental observations, the final
adsorption is an irreversible process. Further extensions of the Langmuir adsorption
kinetics are the diffusive motion and the interactions between particles in each layer,
which I introduce in the following.

5.2.2 Model: hydrophobins and interactions

The sizeable hydrophobic patch of individual hydrophobins defines a preferred axis
oriented perpendicular to the interface after adsorption such that the hydrophobic
patch faces towards the liquid. Furthermore, anisotropy in the interface is caused
by the location of charged amino acids inside the protein. Hence, the interactions
between the adsorbed proteins at the interface should depend on their relatively
in-plane orientations. Moreover, structural imaging of fixated films and molecular
dynamic docking simulations of several monomers suggest the formation of multi-
mers such as trimers and hexamers at the interface for HFBII [42]. This local in-plane
ordering is supposed to be the dominant reason for the stable clusters observed in
wild-type hydrophobins.

Those characteristics of the experimental system led us to model proteins as
particles with an internal degree of freedom, whose property represents the relative
in-plane orientation of proteins. To care for this anisotropy in the simulations,
I employ a spinlike multistate model comparable to Pott’s model, presented in
2.2.7. Therefore, each protein is defined by a discretized orientation called "spin"
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as an internal degree. The spin state is restricted to six different discrete numbers
according to the coordination number of the honeycomb lattice. The internal degree
defines an anisotropic interaction between proteins. In an ideal configuration,
proteins in a cluster share the same spin orientation.

Further internal states, such as conformational changes, are negligible due to the
high number of disulfide bridges and hydrogen bonds in class II hydrophobins.
Here, two parts of the particle-particle interactions are contributed: isotropic and
anisotropic interactions. The layers’ proteins interact by van der Waals, Coulomb in-
teractions, and steric repulsion. This part is described by the DLVO energy, discussed
in 2.2.1, with a cut-off radius.
In addition to the isotropic part, the model incorporates the protein orientation
by including an energetic benefit to the configurations in which neighbouring
hydrophobins i and j share an identical spin. The anisotropic contribution stats

Uij(spin) =

−J0, if Si = Sj

0, otherwise,

where Si is the orientation of proteins, and J0 is a coupling constant that we adjust
to a physically reasonable value consistent with the experimental observations.

5.2.3 Model: bilayer model and molecular processes

Since there is little to nothing known about the surface potential of the air-water
interface regarding hydrophobins or their protein-protein interactions, I chose a
rate-based statistical model with the simplicity of underlying processes as a critical
concern.
In Langmuir model kinetics, the initial adsorption rate is restricted only by diffusive
motion. The accessibility of free sites also limits the adsorption rate at later stages.
A dynamic effect can exert an influence on this fact.
As a dynamic effect, the effective concentration of proteins next to the interface does
not necessarily equal the protein concentration in bulk. Typical surface potential
allows a secondary minimum next to the interface with a resulting energy barrier
that has to be crossed to adsorb to the interface. The secondary minimum could
lead to the buildup of a particle reservoir that provides a steady particle flux to the
interface. The continuous flux supplies the adsorption at a constant speed. Hence,
the availability of free sites in the interface does not restrict the adsorption rate, and
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the inverse of the flux rate determines the adsorption rate. This dynamic effect is
the main reason for considering a bilayer model. Hence, the adsorption is a two-step
process. Each of them takes place at a defined transition rate. These transition
rates have the unit of the inverse of time and determine the effective acceptance
probability of each event.
A protein undergoes at least two processes to adsorb to the interface. First, it
appears at a random site in the subsurface. This process is called the pre-adsorption
process and happens by the pre-adsorption transition rate of µA. The protein
concentration in bulk determines the pre-adsorption transition rate. However, the
relativity between pre-adsorption probability and protein concentration is non-
linear. The adsorption process is completed if the pre-adsorbed protein disappears
in the subsurface and appears at the same position at the interface. The latter
process, called final adsorption, takes place with the final adsorption transition rate
of λA. It is experimentally evident that the final adsorption is irreversible; however,
the pre-adsorption process is not. A protein in the subsurface has a chance to return
to the bulk. This event defines the desorption process, which is possible by the
desorption transition rate of µd.
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Figure 5.8: Illustration of intra-layer particle dynamics. (Hopping) The hopping process de-
scribes diffusive motion in the subsurface and interface layers. A particle is cho-
sen randomly and jumps to one of its nearest neighbouring sites. The exclusion is
included in the hopping process; hopping to an occupied site is forbidden. The left
figure shows the configuration before the process. The green triangles show the
allowed position to jump. Jumping to the site shown by the red triangle is not al-
lowed due to exclusion. The right-hand side figure shows a possible configuration
resulting from the acceptance of the hopping process. (Rotation) Each protein
has a specific orientation as an internal degree of freedom. Different colors show
different orientations. A configuration in which all particles point in an identical
direction is energetically favored. Through the rotation process, a particle with
a different orientation has the probability of orienting and matching its direction
with neighbouring particles. The left-hand side figure shows a configuration in
which the orientation of particles is not similar. The right-hand side figure shows
the configuration after the rotation process. The figure is reprinted from Hähl et
al. [20], with the permission of American Chemical Society.

Diffusive motion in both layers dynamically influences the adsorption. The diffusive
motion is hopping to one of the nearest neighbouring sites by a specified probability
of µM and λM for diffusion in the subsurface and interface, respectively. The diffusive
motion in the subsurface extends the searching time for a pre-adsorbed particle to
complete adsorption. Suppose the final adsorption is rejected due to overlapping
in the interface; in that case, the diffusive motion enables the pre-adsorbed particle
to hop to a neighbouring site and try to complete the adsorption. As I will state in
the following subsection, the hopping and final adsorption are the critical processes
determining the kinetics. Moreover, I will show that the interface’s diffusive motion
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is essential to having regular roundish clusters, too.
Finally, a rotation process is possible in the interface. Two neighbouring proteins
of identical spin are energetically favoured. Hence, a probability of rotation for
proteins is considered to match the orientation of neighbouring proteins. The
rotation process occurs only in the interface layer with the probability of λR.

Figure 5.8 illustrates the diffusive motion and rotation. A brief description of simula-
tion parameters is summarized in table 5.2.

subsurface interface description

µA λA
a site is chosen randomly and a particle is ad-
sorbed

µd -
one particle in the subsurface layer is chosen
randomly and desorbed to the solution

µM λM
one particle is chosen randomly, it moves ran-
domly to one of its nearest empty neighbors

- λR one particle is chosen randomly and rotated

Table 5.2: Simulation parameters

5.3 Results and discussion

5.3.1 Results: determining the reference parameters set

The easiest way to understand how this model results in linear kinetics is to use the
diffusive-sorting process in adsorption; the density of particles and, therefore, the
number of free sites at the interface are time-dependent. If the diffusive motion in
the subsurface and the transition to the interface take place fast enough compared to
the subsurface supply, the accessibility of vacancies at the interface will not control
the adsorption rate; thus, the effective adsorption rate remains constant, and the
supply rate to the subsurface determines it.
A high trail transition rate from subsurface to interface ensures that a free site in
the interface is readily occupied once found by a diffusive particle in the subsurface.
Thus, the only requirement for linear kinetics is to have diffusive particles in the sub-
surface, which sweeps a large enough area between two subsequent transitions to
the interface. As soon as the diffusive area covers at least one free site in the inter-
face, the diffusive particle will occupy the free site, and the adsorption rate will be
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dominated by the supply rate of particles to the subsurface. To achieve this, a low
particle density in the subsurface is necessary.
It only remains to find the relevant ratio between the transition rates of different
microscopic processes to reproducing the linear kinetics observed experimentally.

Figure 5.9: Adsorption kinetics under the high-density subsurface layer condition: Model
rates are identical with the exceptions of a relatively high amount of µA to en-
sure a high density in the subsurface and a variable value of λA to investigate
the kinetics. The grey plot shows the subsurface density. A high adsorption rate
provides a high density in the subsurface. The adsorption kinetics for λA from
more minor are shown in purple, yellow, blue, and red, respectively. Each graph
fits well with an exponential function of g(t) = 1 − exp(−αt); hence, the kinetics
follows the Langmuir adsorption model. The dots in the smaller plot are derived
exponents, α. The exponent is the initial adsorption rate. The high density in the
subsurface layer restricts the effective diffusivemotion, which dynamically affects
the effective adsorption rate, leading to the conventional Langmuir adsorption ki-
netics.

As shown in figure 5.9, a fully occupied subsurface generates Langmuir adsorption
kinetics. In the simulations, microscopic transition rates were chosen identically, ex-
cept for the pre-adsorption transition rate to the subsurface and the final adsorption
transition rate. The high pre-adsorption transition rate provides a high density of
particles in the subsurface, as shown by the grey plot in figure 5.9. The high density
in the subsurface can be interpreted as a reservoir of particles which are "waiting"
for adsorption. Hence, the accessibility of free sites in the interface controls the
adsorption, and the kinetics follows the Langmuir kinetics. Each diagram is very well
fitted by an exponential function of ρ(t) = ρ0(1− exp(−αt)), as expected in Langmuir
kinetics, where the exponent states the initial adsorption rate. The Langmuir kinetics
is presented even if the final adsorption rate is increased. Therefore, we identify the
pre-adsorption as a critical process.
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Figure 5.10: Adsorption kinetics under the low-density subsurface layer condition: Model
rates are identical except for a smaller value of µA to ensure a relatively empty
subsurface layer. The value of λA is a variable to study the kinetics. Each graph is
fitted by a linear and exponential function, shown by dashed light blue and red,
respectively. A higher final adsorption rate makes more deviation from Lang-
muir kinetics.

The simulation results for a low supply to the subsurface are shown in figures 5.10
and 5.11. A low pre-adsorption transition rate leads to an almost empty subsurface.
Each diagram has been fitted with linear and exponential functions to guide the
eyes in clarifying kinetics. The light blue and red dashed lines are fitted with the
function of f(t) = at and g(t) = 1 − exp(−bt), respectively. Microscopic transition
rates are identical to those resulting in figure 5.9, except for a low pre-adsorption
transition rate and varying final adsorption transition rate. The simulations suggest
that the transition from Langmuir to linear kinetics by increasing the final adsorption
transition rate.
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Figure 5.11: Adsorption kinetics under the less-density subsurface layer condition: Model
transition rates are identical except for a minor amount of µA to ensure a rela-
tively empty subsurface layer. The value of λA is a variable to study the kinetics.
Each graph is fitted by linear and exponential functions, shown by dashed light
blue and red. A higher final adsorption transition rate changes the shape of the
diagrams to a concave plot.

A higher final adsorption rate, shown in figure 5.11, results in a concave shape in
the adsorbed profile, i.e., the density of particles at the interface is not enough to
support linear kinetics. In other words, there are not enough particles in the subsur-
face to adsorb; a pre-adsorbed particle leaves the subsurface before completing the
adsorption. I have shown that a high density of particles in the subsurface leads to
Langmuir kinetics; hence, to maintain the subsurface empty and give the particles
a chance to stay longer in the subsurface, a solution is to decrease the desorption
transition rate of the subsurface.
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Figure 5.12: Adsorption kinetics: (a) Adsorption kinetics using the standard set of transition
rates given in table 5.3. Effectively low pre-adsorption transition rate and low
desorption transition rate to bulk, in addition to relatively high diffusive mo-
tion and high final adsorption processes, support a constant effective adsorp-
tion rate. (b) Reducing the final adsorption transition rate converts the kinetics
from linear to the Langmuir. (c) Increasing the probability of desorption resem-
bles the Langmuir adsorption kinetics. (d) Decreasing the diffusivity of particles
in the subsurface layer affects the kinetics. A less diffusive particle in the sub-
surface covers a smaller area in the interface; hence, the free sites can not be
found efficiently, and the adsorption kinetics convert to Langmuir kinetics. The
figures (b)-(d) are reprinted from Hähl et al. [20], with the permission of Amer-
ican Chemical Society.

The resulting simulation using the transition rates called hereon standard transi-
tion rates is shown in figure 5.12-a: Simple Langmuir kinetics fails to explain the
experimental observations as the effective adsorption rate slows down due to
the limited number of empty sites. Our approach to address this issue involved
proposing a two-step adsorption process: (i) pre-adsorption to the subsurface
and (ii) final adsorption to the interface. The low pre-adsorption transition rate
facilitates the final adsorption process. The final adsorption and diffusive processes
happen much faster compared to the pre-adsorption transition rate, allowing the
pre-adsorbed particle sufficient time to find a vacant site, resulting in an effectively
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constant adsorption rate. The standard transition rates in table 5.3 reproduce the
experimental data of concentration 5µM with physically reasonable parameters.
The results for variation of the model transition rates in figures 5.12-b-d reveal the
origin of the unusual adsorption kinetics. As illustrated in 5.12-b, reducing the final
adsorption transition rate resembles the Langmuir adsorption kinetics. This choice
of parameters reduces the effective vacancies search at higher densities at the
interface.

Increasing the desorption transition rate recovers Langmuir kinetics, as shown in
figure 5.12-c: the pre-adsorbed particle stays shorter in the subsurface, leading to a
reduction of its searching area.
The diffusivity reduction in the subsurface leads to Langmuir adsorption kinetics, as
shown in figure 5.12-d. Less diffusive particles cover smaller interface areas; hence,
the effective search for unoccupied sites decreases significantly.

Figure 5.13: Adsorption kinetics for various concentrations. The solid lines and the dots rep-
resent the simulation and experimental results of different concentrations of
HFBI, respectively. Each colour corresponds to a specific concentration, as de-
scribed in the legend. The simulation results are in excellent agreement with
the experimental data. The figure is reprinted from Hähl et al. [20], with the
permission of American Chemical Society.

In experiments, the density of proteins in bulk, meaning the protein concentration,
uniquely determines the initial adsorption rate. In this model, the pre-adsorption
transition rate corresponds to the bulk concentration. Thus, only varying this single
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parameter is enough to produce all experimental data quantitatively. The results are
shown in figure 5.13.

molecular process transition rate symbol standard value [min−1]

pre-adsorption µA 1280
desorption µd 43
particle diffusion µM 6450
final adsorption λA 6450
particle diffusion λM 6450
particle rotation λR 6450
Table 5.3: simulation rates-Reference parameters- The table is reprinted from [20].

5.3.2 Results: effects of short-Range interactions in cluster
formation

One robust feature observed in AFM images of wild-type hydrophobins is the forma-
tion of grain boundaries, see 5.1.2. These grain boundaries are visible on both the
hydrophilic and hydrophobic sides of the film. Notably, the ionic strength is crucial
in controlling this characteristic feature.
As the ionic strength increases in experimental conditions, fewer but more substan-
tial grain boundaries becomeapparent. This differs fromexperiments involvingHFBI-
dCBM and FpHYD5, where grain boundaries are not seen; see 5.1.2.
A common observation in AFM images is not fusing clusters. The boundaries be-
tween grains become well-defined once full coverage is achieved. This preference
for not fusing is attributed to the unlikelihood of neighbouring domains sharing the
same protein orientation. To model this feature, I assign a spin property to proteins,
as mentioned in 5.2. It is energetically favoured if two adjacent proteins share an
identical spin. The parameter of J0, the coupling constant, adjusts the strength of
the spin interaction in this model. A high value of J0 indicates a high attraction, while
a zero value switches the model to the isotropic system. The spin-interaction effects
are illustrated in figure 5.14.
The isotropic limit is shown in figure 5.14-a; in contrast to experimental observations,
individual clusters easily fuse, forming a single domain; hence, no large individual
clusters are visible. In the solid spin-interaction limit shown in figure 5.14-b, the
clusters formed at the interface resemble domains typically observed in diffusion-
limited aggregation [63]. Strong attraction in this scenario inhibits diffusive motion
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at the interface, resulting in dendritic structures that differ from the well-defined
roundish grain boundaries. Figure 5.14-c illustrates the configuration of the tuned
interactions. Here, similar to experimental observations, individual stable clusters
are formed and grow until their borders touch.

Figure 5.14: Snapshots of the surface layer for different model transition rates. (a) System
without spin interactions. (b) Limit of strong spin interactions. (c) Standard
model transition rates. The simulation time is increased from left to right. The
figure and the caption are adapted from Hähl et al. [20], with the permission of
American Chemical Society.

The choice of parameters leads to three distinct regimes: (i) a zero coupling constant
results in a single domain; (ii) a non-zero coupling constant leads to different domains
that grow until they touch and remain stable; and (iii) medium interaction strength
results in roundish clusters, akin to the experimentally observed structures.
This model suggests that the roundish clusters observed experimentally result from
lateral short-ranged interactions, which indicate a preferred orientation. A prerequi-
site for cluster formation is close contact between the hydrophobins. In the case of
bulky hydrophobins such as HFBI-dCBM, the attached domains prevent close affinity,
resulting in a homogeneous film with no cluster formation.
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5.4 Summary and Conclusion

This chapter delves into the fascinating world of class II hydrophobins, specifically
HFBI and HFBII, and their unique adsorption kinetics at the air-water interface. The
experimental observations reveal intriguing behaviour: these hydrophobins self-
assemble irreversibly at the interface, with linear kinetics and a constant effective
adsorption rate up to saturation, abruptly changing to zero. In contrast, the mutant
HFBI-dCBM adheres to Langmuir adsorption kinetics, an exponentially increasing
profile in such cases.
The key surprise here is the role of repulsive electrostatic interactions in controlling
the kinetics supported by the restoration of Langmuir adsorption kinetics at higher
ionic strengths. This chapter also explores how ionic strength affects the initial
adsorption rate.
Atomic force microscopy imaging illustrates that wild-type protein film formation
results in grain boundary formation at the interface, a feature not seen with bulky
mutants. This observation suggests that close contact is a prerequisite for protein
domain formation. Electrostatic interactions profoundly affect cluster formation,
leading to fewer, larger grain boundaries at higher ionic strengths, even with the
same mass adsorbed.
A Monte Carlo scheme was employed to develop a stochastic lattice gas model and
explore the experimental observations. This model suggests a two-stage adsorption
process: reversible pre-adsorption near the interface followed by irreversible final
adsorption. The pre-adsorption phase keeps proteins close to the interface, allowing
them to dynamically search for vacancies in the interface, rendering the adsorption
coverage independent and aligning with experimental results.
Additionally, the stable visual clusters in experiments imply a strong short-ranged
interaction preventing domain fusion. A spin interaction model is introduced to cap-
ture this interaction, as neighbouring proteins of the same spin construct clusters.
Diffusive motion and rotational processes enable proteins to locate their domains
at the interface.
Importantly, this model may have broader applications, particularly in describing
the adsorption of other surface-active proteins where short-ranged and electrostatic
interactions play a significant role, especially when denaturation at the interface is
negligible.
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Mechanical Response

Interfacial films formed from hydrophobins are known for their robust elastic
response. Shear elastic moduli measured for films formed by pure or a mixture
combination of hydrophobins are higher than other investigated proteins, e.g.,
lysozyme. The solidification of the film at the interface causes elastic behavior.
Moreover, the film formed by the class II hydrophobins interested in this thesis
shows a repeating pattern close to the hexagonal structure, indicating lateral inter-
actions between proteins at the interface, see section 2.1.8.

Here, I aim to answer the question of whether the mechanical stability of the
structure is related to the postulated angular interaction. To this end, I develop
a stochastic model in the continuum space to obtain a structural insight into the
mechanical properties of those films. I quantify the mechanical response of the film
under the quasi-static tension process by measuring the two-dimensional order
parameters of the system.

This chapter contains the model and results. The first section presents the
fundamentals of the model, including the modeling procedure and introducing
measurements. The second section presents the simulation results of modeling
thermal fluctuations as the first step of the transition to the continuum space. The
results of modeling quasi-static stretching and the response of different model
systems are presented in sections three to five. In the last section, I examine if this
approach can detect a transition from a disordered to an ordered phase.
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6.1 Methods and measurements

6.1.1 Thermal fluctuations

Figure 6.1: Thermal fluctuations. A particle shown in blue is chosen randomly. The black
dashed lines represent the physical bonds connecting the referenced particle to
its nearest neighbors. A new position inside a circle centered around the cur-
rent site, shown in light pink, is proposed. The red ball in the figure shows the
suggested position. The bonds connecting the suggested position to the nearest
neighbors are depicted by red dashed lines. The proposed position is accepted
according to the Metropolis probability, i.e.,min

(
1, exp

(
− ∆E
kBT

))
.

Lattice models efficiently study adsorption processes in which the observation and
the adsorption time scales are in the same order as the lattice formation. The time
scale of the adsorption processes is in a few minutes, as observed experimentally;
see section 5.1.1. However, the mechanical response of the system happens in more
minor time scales, i.e., in the scale of nanoseconds; hence, a study in the framework
of lattice models is not practical and continuous models are essential to study the
mechanical response of the system. We elaborate our lattice model to the contin-
uum space by implementing thermal fluctuations. To this end, the model system is
initialized as a perfect honeycomb lattice. Afterwards, the Monte Carlo scheme, as I
present in the following, is used to apply thermal fluctuations. As shown schemati-
cally in figure 6.1, a particle labeled by blue is chosen randomly. A new position inside
the circle centered on the current position is proposed. The new position consists of
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two independent, normally distributed random numbers. The proposed position is
accepted according to the Metropolis probability, i.e., min

(
1, exp

(
− ∆E
kBT

))
, where

∆E is the energy variation due to movement, T is temperature, and kB is the Boltz-
mann constant. Choosing a high number of Monte Carlo sweeps ensures that all
particles fluctuate at least once. Hence, the entire system reaches a new equilibrium
state in contact with a thermal bath of temperature T. The number of Monte Carlo
sweeps is a size-dependent factor in the simulation. Since I use a different number
of particles in various studies, I will present the exact number of particles and the
number of used sweeps at the beginning of each relevant section.

6.1.2 Hamiltonian and quasi-static stretching

θij

j

i

Figure 6.2: Angle-dependent potential. The angle-dependent potential considers the orienta-
tional ordering in the system. A configuration in which two adjacent bonds make
a particular angel are energetically favored. The reference particle is shown in
blue. The solid black lines connect the reference particle to its nearest neighbors,
depicted by red balls. The angle between two adjacent bonds, θij , is shown with
an arc.

As I presented in 2.1.8, the films formed by hydrophobins, particularly HFBI, are
known for exceptionally high shear moduli. Previous studies suggested the lateral
interaction between proteins at the interface can be responsible for this feature [65].
The charged amino acids inside the protein can cause those interactions. Hence, the
arrangement of amino acids generates an anisotropy in the orientation of proteins
at the interface. This anisotropy leads to the formation of crystal structure. In our
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lattice model presented in 5.2, the interactions of the system were considered in
both long- and short-ranged interactions. The long-ranged interactions provided the
isotropic part of the Hamiltonian and were considered in the framework of DLVO
theory, in which the radial distance between proteins determines the interaction.
On the other hand, the short-ranged interaction affects only the nearest neighbor
proteins. This interaction provides the anisotropic orientation and is modeled by
introducing the "spin" property for proteins. I showed that the spin property is
responsible for cluster formation at the interface; see 5.3.2.

In this chapter, the stability of the structure under thermal fluctuations and external
stresses is investigated. Hence, an off-latticemodel is essential. The isotropic interac-
tions are independent of the nature of the model; thus, the isotropic interactions in
this off-latticemodel are implemented exactly similarly to the latticemodel. However,
the off-lattice model has to include the honeycomb structure observed experimen-
tally. To this end, a short-ranged angular interaction potential is introduced, where
it can retain the domains of the honeycomb structure and cause anisotropy in the
orientation. Figure 6.2 shows schematically how the angular interaction works; each
particle has a certain number of nearest neighbors. A link between a given particle
and each neighbouring particle is assumed. These links are physical bonds. Hereon,
for simplicity, I will call them "bonds." Two adjacent bonds have energetic benefits in
a specific range of angles. The angle-dependent potential is defined by

U(θ) =

−J0 if 115◦ < θ < 125◦

0 otherwise,

where θ is the angle formed between two adjacent bonds, depicted schematically in
figure 6.2, and J0 is a coupling constant that takes the values zero to 16.0 Umin, and
Umin is the minimum value of the isotropic potential in the optimum configuration of
twoparticles, i.e.,Umin = U(rmin), introduced in section 5.2.2. Hence, theHamiltonian
is given by

U(r) =
1

2

N∑
k=1

rik<rcutoff∑
i ̸=k

U(rik) +
∑
{i,j}

Uk(θij)

 ,

where the first sum is taken over all particles in the system, the second sum is
taken over neighbors in a defined cutoff radius, and the third sum is taken over
the nearest neighbors of the given particle at arbitrary distances in a cutoff radius
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of angular interaction. Periodic boundary conditions have been considered in all
energy calculations.

Furthermore, to understand the importance of the angular interaction in the stabil-
ity of the hydrophobin membranes, I study the mechanical response of the film to
the external stresses; the film is exposed to quasi-static stretching. The initial state
of the system is the equilibrated state after implementing thermal fluctuations. The
following procedure is used to implement quasi-static stretching. The procedure in-
volves stretching the system, followed by a relaxation process. The stretching pro-
cess involves rescaling the position of particles, xi, and the length of the film, l, by the
scaling factor α, i.e.,

xi → (1 + α)xi,

li → (1 + α)li,

where the value of α is set to 0.005 l0 and l0 is the length of the film before rescaling
and xi is a vector component. A relaxation process follows each stretching step to
achieve equilibrium: According to the Monte Carlo procedure introduced in section
6.1.1, the particles fluctuate thermally around their current positions. In this part,
I study a system of 384 particles. Each simulation includes 70 cycles of stretching-
relaxation, where each relaxation part consists of 1.8 × 106 Monte Carlo sweeps. By
the end of each simulation, the surface area and the surface density fraction reach
the values 2.02 A0 and 0.49 ρ0, respectively, where A0 and ρ0 denote the initial area
and surface number density fraction, for N proteins at the interface of the initial
length of l0, i.e., A0 = l20, and ρ0 = N

A0
.

6.1.3 Analysis and measurements

The response of the system is quantified by the order parameter of the system as
well as by examining the film structure. As mentioned in 4.3.1, a solid in a crystal
phase is orientationally long-range ordered. The global bond-orientational order
parameter, |ψ6|, quantifies the orientational correlation of the bonds connecting
nearest neighbors, see 4.3.2.

Additionally, I measure the radial distribution function (RDF), g(r), of the system. As
mentioned in 4.3.1, g(r) is related to the structure factor of the system and deter-
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mines how the density varies as a function of distance from a reference particle. Sup-
pose a two-dimensional systemofN particles of a total areaA. The radial distribution
function is obtained by choosing an arbitrary particle as the origin and counting the
number of particles whose centers lie in the shell of ∆r of a circle of radius r of the
origin, as shown in figure 6.3. In a simple algorithm to determine g(r), the distance
between all particle pairs is calculated and is binned into a histogram of bins of width
∆r. The average density number of particles, ρ0 = N

A
, normalizes the histogram.

Hence, g(r) is given by

g(r) =
(Number of bonds of length(r, r +∆r))

2 (2πr ∆r) ρ0
,

where the first factor of two in the denominator comes from double counting the
distance between two particles, and 2πr ∆r is the area of the shell highlighted in pink
in figure 6.3. The width of the bins,∆r, is considered as 0.03 a0 where a0 denotes the
constant of the ideal honeycomb lattice.

Figure 6.3: Radial distribution function (RDF) is obtained by choosing a particle as the origin
and counting the number of particles whose centers are positioned in distance
(r, r +∆r) of the origin. The figure is inspired by [6].

Additionally, the Voronoi tessellation, introduced in 4.3.3, is used to visualize defects
in the structure. The Voronoi tessellation determines the number of nearest neigh-
bors. Instead of showing the Voronoi cell, I illustrate each particle as the center of
the cell marked in a specific color representing the number of nearest neighbors.
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I use the phrase "the nearest neighbor visualization" or, as the abbreviation, n.n.v
hereon for it. From the visual inspection, appearing particles in similar colors may
represent an ordered structure.

In contrast, the coexistence of different colors is evidence of a disordered phase. This
visualization leads eyes to see the order in the system; however, it is inadequate; ad-
ditionally, measuring the bond orientational order parameter, |ψ6|, determines the
exact ordering of the system. Two exemplary n.n.v are shown in figure 6.4. The struc-
ture shown on the left panel is an ordered system with an observable honeycomb
structure; each particle has three nearest neighbors colored in cyan. The right panel
depicts a disordered system. Each color represents a particle with a certain num-
ber of neighbors. Red, dandelion, green, cyan, blue, purple, and orange represent
particles with 0 to 6 neighbors for r < rcutoff, respectively.

Figure 6.4: Comparison of n.n.v in ordered and disordered structures; instead of showing the
area of the Voronoi construction, for better visualization in the presence of the
high number of particles, each particle has been marked in a particular color rep-
resenting the number of neighbors. The left panel shows the n.n.v of an ordered
phase where each particle has three nearest neighbors colored in cyan, and the
right panel represents a disordered phase. Each color represents a particle with
a certain number of neighbors. Red, dandelion, green, cyan, blue, purple, and
orange represents particles with 0 to 6 neighbors for r < rcutoff, respectively.
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6.2 Results: stability of structure

6.2.1 Thermal fluctuations

Figure 6.5: (a) The global bond orientational order parameter, |ψ6|, dependent angular inter-
action coupling constant, J0. The blue dots present the regime in which the sys-
tem shows long-range order. The purple dots represents the disordered phase.
For the amplitudes shown in orange, the system could not reach its equilibrium
in the time window of the simulation. (b) The energy evolution of the system dur-
ing the Monte Carlo simulation of amplitudes pointed by arrows. The energy is
normalized to the energy of a lattice of the same number of particles. Identical
colors, as in the panel (a), are used to present the energy evolution of the system.

In this part, the stability of the structure under a slow relaxation process is probed.
The studied model is a system of 1536 particles positioned on ideal sites of a
honeycomb lattice. The system is subjected to Monte Carlo motion. Hence, particles
move freely from their current positions on a continuum space. According to the
size of the system, 8× 106 Monte Carlo sweeps are chosen. Here, the rule of angular
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interaction in the stability of the structure is investigated by measuring the global
orientational order parameter, |ψ6|, as well as by the radial distribution function, g(r).

As mentioned in section 4.3, an ideal crystal is orientationally ordered, and the
bonds connecting nearest neighbors are correlated at long distances. The bond
orientation order parameter, |ψ6|, quantifies this correlation. |ψ6|, measured for
varying coupling constant, is shown in figure 6.5. The coupling interaction constant
is characterized by J0. The simulation results show three different regimes for the
thin film depending on the choice of coupling constant: (i) The disordered phase
in which the ordered phase is unstable within the slow relaxation process; the
bond orientational order parameter is close to zero. This phase is achieved for
coupling constant of zero and one, which are shown by purple dots in the figure; (ii)
The ordered phase, shown by blue dots in the figure. For a high enough coupling
constant, thermal fluctuations do not destroy the order of the system; and (iii) The
transient regime, shown by orange dots. In this phase, the coupling constant is not
high enough to maintain the structural order of the system. However, the simulation
time window was short, and the disordered phase could not be achieved.

The panel (b) of figure 6.5 shows the energy evolution of the system during the
Monte Carlo process. The energy is normalized to a lattice system of the same
number of particles. Both disordered and crystal phases reach the stationary state,
while the energy plot of the non-equilibrium phase does not within the accessible
simulation time. Here, it is worth emphasizing that we are interested in the stability
of the phase rather than the possibility of the phase transition.
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Figure 6.6: Evolution of the n.n.v after (a) 2×106, (b) 4×106, (c) 6×106, and (d) 8×106 sweeps
for the coupling angular interaction constant J0 = 3.5Umin. The disordered nuclei
appear in the system and grow over time. Each color represents a particle with
a certain number of neighbors. Red, dandelion, green, cyan, blue, purple, and
orange represents particles with 0 to 6 neighbors, respectively.

The nearest neighbor visualization reveals more details of the film structure. To
better understand the structural evolution in the non-equilibrium phase, I present
the nearest neighbor visualization during a simulation with coupling constant
J0 = 3.5Umin in figure 6.6. The simulation results show the formation of disordered
nuclei and their growth over time in the non-equilibrium phase. Hence, the simula-
tion suggests that the system will reach a disordered phase after sufficient Monte
Carlo sweeps.
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Figure 6.7: Radial distribution function, g(r), and the nearest neighbor visualization of differ-
ent phases. The first row is the ordered phase. The radial distribution function
is shown in blue. The positions of peaks in g(r) follow the positions of the neigh-
bors in a honeycomb structure shown by gray bars in the diagram. The perfect
crystal structure can be observed. The other extreme, plotted in the third row
with the purple radial distribution function, presents a disordered phase in which
g(r) exhibits a prominent peak for the first nearest neighbors and a secondary
peak. The second row corresponds to a transient regime. The radial distribution
function shows peaks that follow the honeycomb structure but with significant
variance, indicating losing the order. Several disordered cores appear in the near-
est neighbor visualization, confirming that the condition of the system can not be
maintained. Identical colors, as in the figure 6.5, are used to present the radial
distribution function of the system. In the nearest neighbor visualization, each
color represents a particle with a certain number of neighbors. Red, dandelion,
green, cyan, blue, purple, and orange represents particles with 0 to 6 neighbors,
respectively.

The radial distribution function, g(r), and the nearest neighbor visualization of the
film for particular coupling constants specified by arrows in figure 6.5 are shown
in figure 6.7. Identical colors, as in the figure 6.5, are used to present the radial
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distribution function of the system. The disordered phase is shown in the third
row; in addition to the radial distribution function with a significant primary peak
followed by a shorter secondary peak, the nearest neighbor visualization confirms
the disordered phase.

Conversely, in the first row, the nearest neighbor visualization of the phase plotted
in blue shows perfect order. Each particle has three neighbors, the honeycomb
structure can be observed, and the position of the honeycomb structure peaks
matches the peaks of g(r) of the system.

In the middle, the orange diagram of the non-equilibrium phase shows features
between two extreme phases: The formation of disordered nuclei differentiates this
phase from the crystal. The radial distribution function peaks match a honeycomb
structure; however, these peaks, compared to an ideal arrangement, have a more
significant variance, which indicates losing the order in this system.
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6.3 Modeling the mechanical response to the external

stress

Themembranes formed by hydrophobins are known for significantly high shear elas-
ticity and buckling strength. To understand the origin of these features, we study
the mechanical response of the film composed of 384 particles under quasi-static
stretching, see Sec. 6.1.2. The rigidity of the system depends on the two inter-particle
interactions: the Lenard-Jones interaction, which is isotropic, and the anisotropic-
proposed angular interaction. The Lenard-Jones potential goes through a minimum,
Umin, at the radial distance of rUmin = 1.012a, where a is the lattice constant of an
ideal crystal. We chose a cutoff radius of rcutoff = 1.3 rUmin of angular interaction.
We quantify the response by the bond orientational order parameter,|ψ6|, measured
for varying coupling angular interaction constant, J0, for a system under stretching
tension. Depending on the choice of the coupling constant, we identify three param-
eter regimes: (i) The ordered phase. This phase is achieved for the coupling constant
higher than 12 Umin. As I will discuss in section 6.3.1, the angular interaction is the
most crucial factor in stabilizing the crystal structure; tension results in a rupture in
this phase. The fracture is evident by appearing a sharp increment in the energy pro-
file; (ii) The disordered phase is achieved for a coupling constant of less than four.
|ψ6| is very low, and the system is disordered. The energy of the system increases
smoothly by stretching the film; (iii) The intermediate phase in which the system loses
order. A more detailed discussion of these phases is presented in the following.
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6.3.1 Ordered phase

Figure 6.8: Ordered phase. Energy and the bond-orientational order parameter, |ψ6|, are
shown in terms of expansions for the ordered phase. The energy is normalized
to the number of particles in the system. There exists a sharp jump in the en-
ergy profile, indicating the rupture in the system. The order parameter of the
system, |ψ6|, shows a remarkable feature; it has a local minimum followed by a
local maximum, after which the order parameter decreases monotonically. The
local maximum is a significant feature of this phase, indicating that the angular
interaction is dominant before rupture. Dots and squares show the energy and
|ψ6|, respectively. Simulated data and error bars represent the mean and stan-
dard error of the mean, SEM, taken over 20 simulations. Individual values of the
coupling constant of angular interaction, J0, are reported in the legend.

The ordered regime observed in our simulations is characterized by two dominant
features: (i) There exists a sharp jump in the energy profile in terms of expansions,
and (ii) the bond orientational order parameter shows a local minimum followed
by a local maximum. The sharp jump presents a rupture in the system. Our results
detect the ordered regime for the coupling constant of the angular interaction, J0,
higher than 12 Umin. Figure 6.8 shows the simulation results in the mentioned range
of coupling constant. The local maximum happens in the distance between two par-
ticles close to the critical distance of the angular interaction. Hence, according to the
simulation results, the strong-short range interaction, i.e., the angular interaction,
drives the rupture. In the following, I present a detailed discussion of the results
obtained in this regime for the coupling constant of 16 Umin.
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Figure 6.9: The nearest neighbor visualization of a stretching system. The initial state is the
honeycomb-ordered system in thermal equilibrium with a bath. The coupling
constant of the angular interaction, J0, is 16 Umin. Each expansion follows a re-
laxation process. The crystal structure of the system is observable. The rupture
happens during courses of 42 to 50, shown in figure 6.10. After the rupture pro-
cess, each cluster shows a honeycomb structure; see panels of expansions 58
and 70. Each color represents a particle with a certain number of neighbors. Red,
dandelion, green, cyan, blue, purple, and orange represents particles with 0 to 6
neighbors, respectively.

The evolution of the nearest neighbor visualization of a film of a coupling angular
interaction constant of 16 Umin during the stretching process is shown in figure 6.9.
The honeycomb structure is observable; the cyan color for all particles indicates that
before expansion 40, each particle is tightly linked to three neighboring sites. The
coupling constant, J0 = 16 Umin, is high enough tomaintain the crystal structure. Fur-
ther stress from expansion leads to a rupture in the interface. Occurring particles in
color different from cyan means some particles are losing ideal three-fold neighbor-
ing; hence, fracture in the film is visually evident. The defective sites spread through
the system, and more stress leads to widening gaps and causes an observable rup-
ture, as is evident in the panel of expansion 58. After the fracture, separated clusters
are distinguishable; each cluster shows a well-defined honeycomb structure. The
position of initial defects and propagation through the surface layer is a stochastic
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process leading to different patterns in individual realizations. A step-by-step rupture
process is shown in figure 6.10.

Figure 6.10: Stepwise rupture process. Although it is not visible, the rupture process starts at
the 42nd expansion. The stretching stress results in defects in the system, which
are observable by changes in the color of particles representing the number of
nearest neighbors. More tension causes the defective sites to spread through-
out the systemuntil the isolated clusters appear. Each color represents a particle
with a certain number of neighbors. Red, dandelion, green, cyan, blue, purple,
and orange represents particles with 0 to 6 neighbors, respectively.

The radial distribution function, g(r), shown in figure 6.11, confirms the ordered
structure observed in the nearest neighbor visualization. The first panel shows g(r)
before starting the expansion process. The following panels show the evolution of
the radial distribution function in terms of expansions. The stretching process shifts
the position of each peak to the right (see Fig.6.11), meaning that on average, each
bond length elongates consistent with the current accessible area. However, the g(r)
of the system almost matches the undisturbed honeycomb lattice. In each panel,
g(r) of a perfect honeycomb lattice corresponding to the current accessible area is
shown as a reference by the gray vertical lines. The stretching process does not dis-
turb the mean position of the peaks in a specific accessible area; however, it leads to
the peaks of smaller heights but with more significant variance (see figure 6.11).
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Figure 6.11: Radial distribution function, g(r), before rupture process for the coupling con-
stant of the angular interaction, J0 = 16 Umin. The first panel, i.e., Exp.0, shows
g(r) for a honeycomb structure in thermal equilibrium with bath. Next panels
present the evolution of g(r) in terms of the expansions. The position of peaks
of a perfect honeycomb lattice are shown as the reference by the solid gray bars.
The position of peaks follows the ideal honeycomb structure. The stretching pro-
cess elongates bonds that are matched to the current accessible area. The first
peak corresponds to the nearest neighbor shell, the second peak to the second
one, etc. Presented data of g(r) is the mean value taken over 20 simulations.
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The evolution of energy and bond orientational order parameter, |ψ6|, of the film
during the stretching process, taken over 20 simulations, are shown in figure 6.12.
The purple dots and error bars represent the mean and the standard error of the
mean energy of the system at the end of each expansion-relaxation process. Before
40 and after 48 expansions, the energy increases consistently with the energy
change of increasing the radial distance between the particles. The sharp increment
in the energy profile, started at the 42nd expansion, is the dominant sign of fracture.
Figure 6.13 illustrates the energy evolution in terms of the Monte Carlo sweeps
during each expansion process of 40-50, assuring that despite causing a rupture,
the system reaches a steady state (Fig. 6.12).

Figure 6.12: The bond orientational order parameter, |ψ6|, and the energy of a film in thermal
equilibriumwith a bath are shown in blue squares and purple dots, respectively.
The coupling constant of the angular interaction, J0, is 16 Umin. The system
undergoes several expansions, each of which follows a relaxation process. By
the end of each expansion-relaxation process, the system reaches its stationary
state, as shown for expansion 42-50 in figure 6.13. The sharp increment in the
energy diagram starting at the 42nd expansion is the signature of the rupture
process. The energy increment before and after the rupture follows the stretch-
ing. |ψ6| shows a peculiar feature; the initial reduction of the order parameter
follows by an increment before the fracture. The existence of a local maximum
just before the rupture indicates the critical role of the angular interaction in
stabilizing the crystal structure in this range. Dots and error bars represent the
mean and standard error of the mean, SEM, taken over 20 simulations.
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Figure 6.13: Energy evolution in terms of the MC sweeps.

The blue dots, purple squares, and corresponding error bars represent the mean
and standard error of the mean bond-orientational order parameter, |ψ6|, and the
energy of the system in terms of expansion, respectively. |ψ6| does not show a
monotonic behavior. It first decreases, passes through a local minimum, increases
symmetrically, reaches a maximum just before rupture, and decreases monotoni-
cally. A close examination of both energy and |ψ6| indicates the critical role of angular
interaction just before the fracture; despite the expansion, the energy remains con-
stant during expansions 39-42. At the same time, |ψ6| increases to a maximum
just before the rupture, see Fig. 6.12, indicating that the angular interaction is the
dominant interaction in this range and is responsible for maintaining the ordered
structure of the system.
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6.3.2 Disordered phase

Figure 6.14: (a) Bond-orientational order parameter, |ψ6|, of system with coupling constant,
J0, less than four. A low value of |ψ6| implies that the system is disordered. (b)
Evolution of energy due to stretching. In all cases, energy increases smoothly,
corresponding to enlarging the system. The individual value of J0 is reported
in the legend. Identical colors, as the panel (a), are used to present the energy
evolution of the system.

The simulation results indicate a disordered phase for a coupling constant of less
than 4 Umin. The bond-orientational order parameter measured for these coupling
constants is low, as shown in figure 6.14-a. The evolution of energy due to stretching,
shown in figure 6.14-b, behaves similarly for all J0 in this range; it increases smoothly
as the area of the film is stretched. However, in an identical expansion, the energy re-
quired to break the angular bond of a system of a higher coupling constant is higher;
hence, the system gainsmore energy for larger values of J0. A system of zero angular
coupling constant interaction well-located in this regime is discussed in the following.
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Figure 6.15: Radial distribution function, g(r), of a system before expansion. The angular
coupling constant, J0, is set to zero. Appearing a primary peak followed by a
shorter secondary is the feature of a liquid phase. The position of peaks of an
ideal honeycomb lattice is shown as a reference by the solid gray bars.

Figure 6.16: Radial distribution function, g(r), of a system in different expansions process.
The coupling constant, J0, is set to zero. Appearing a primary peak followed by a
shorter secondary is the feature of a liquid phase. The second peak is flattened
at higher expansions, and the system behaves as a disordered gas phase. The
plots are shifted vertically by two for better visualization. The individual number
of expansions is reported in identical colors to the plot.

The radial distribution function, g(r), of zero coupling constants before expansion is
displayed in figure 6.15. The valley between the first and second peaks is not deep.
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After the second peak, g(r) goes uniformly to one, which is the significant feature of
a disordered liquid phase. At higher expansions shown in figure 6.16, the height of
the first peak decreases and shifts to larger r. The second peak is not pronounced
anymore. Here, the plots are shifted vertically by two for better visualization.

The evolution of local packing investigated by the nearest neighbor visualization is
shown in figure 6.17. The disordered phase after the second expansion is apparent.
At higher expansions, the accessible area per particle increases; hence, the number
of free particles, shown in red, increases dramatically.

Figure 6.17: The nearest neighbor visualization of a stretching system. The initial state was
the fluctuating honeycomb-ordered system. The coupling constant of the angu-
lar interaction, J0, is set to zero. Each expansion follows a relaxation process.
The system is disordered. At higher expansions, the accessible area per particle
increases; hence the number of free particles, shown in red, increases dramati-
cally. Each color represents a particle with a certain number of neighbors. Red,
dandelion, green, cyan, blue, purple, and orange represents particles with 0 to
6 neighbors, respectively.
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6.3.3 Intermediate phase

Figure 6.18: Intermediate phase. Panels (a) and (b) show the evolution of the bond-
orientational order parameter, |ψ6|, and the energy of a system with coupling
constant, J0, of 4 − 8 Umin in terms of expansions, respectively. The initially
high value of |ψ6| differentiates this phase from the disordered phase. However,
|ψ6| decreasingmonotonically due to expansions, reordering is not observed for
this phase. The increment of the energy is not sharp compared to the ordered
phase. Dots and error bars represent themean and standard error of themean,
(SEM), taken over 20 simulations. The individual values of J0 are reported in the
legends. Identical colors, as in the panel (a), are used to present the energy evo-
lution of the system. Panels (c)-(f) show the evolution of the nearest neighbor
visualization of the system after (c) 2, (d) 30, (e) 50, and (f) 70 expansions. In
panels (c)-(f), each color represents a particle with a certain number of neigh-
bors. Red, dandelion, green, cyan, blue, purple, and orange represents particles
with 0 to 6 neighbors, respectively.

The measured bond-orientational order parameter, |ψ6|, of the intermediate phase
illustrated in figure 6.18-a, distinguishes this phase from disordered and ordered
phases; A high value of |ψ6| at the early stages differentiates this phase from the
disordered phase. However, |ψ6| decreases monotonically, implying that the angular
interaction is insufficient tomaintain the crystal structure. Furthermore, the reorder-
ing of the system, as visualized by a local maximum followed by a monotonically
decreasing of |ψ6| in the ordered phase, can not be seen in this phase. The evolution
of energy with expansions is shown in panel 6.18-b. The increment in the energy is
not sharp compared to the ordered phase, implying that a rupture in the system is
not expected. The nearest neighbor visualization of a system with coupling angular
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interaction constant, J0 = 5 Umin, shown in 6.18-(c-f), indicates an ordered phase
at the beginning. However, the system becomes disordered after 30 expansions in
panel d.

In conclusion, the ordered regime in our results is determined by two distinct fea-
tures: A characteristic behavior of the order parameter, |ψ6|, accompanied by a sharp
jump in the energy quantified in terms of expansions. On the opposite extreme,
the disordered regime is characterized by the energy that varies smoothly with the
stretching process. The sharp variation in the energy, a representative sign of rup-
ture, is not seen. Moreover, a very low bond orientational order parameter value
with the characteristic plot of g(r) quantifies this phase as a disordered-liquid phase.
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6.4 Hexagonal structure

Figure 6.19: Radial distribution function (RDF), g(r), and the nearest neighbor visualization
of a hexagonal structure. (a) g(r) of a hexagonal system in equilibrium with a
thermal bath is shown in blue solid lines. The gray peaks show g(r) of an ideal
hexagonal lattice. The position and the height of peaks in both structures are
consistent. The plot represents the mean value taken over 20 simulations. (b)
The nearest neighbor visualization shows a hexagonal lattice in equilibriumwith
the thermal bath. In panel (b), each color represents a particle with a certain
number of neighbors. Red, dandelion, green, cyan, blue, purple, and orange
represents particles with 0 to 6 neighbors, respectively. All particles are orange,
meaning that six neighbors surround each particle.

The honeycomb lattice observed experimentally for the membrane of class II
hydrophobins is a particular case of the hexagonal lattice with a two-atom basis.
In this section, to complete our study, I present the development of our model for
a hexagonal arrangement. Thus, the initial state differs from the honeycomb by
having a hexagonal structure in thermal equilibrium with a bath. Furthermore, the
interactions between particles are considered isotropic in the framework of DLVO
theory. We do not assume any angular interactions between particles. Hence, com-
paring the results obtained for a honeycomb structure and the general hexagonal
lattice will light up the role of the postulated angular interaction in the stability of
the film.

The initial state of the system is characterized by the radial distribution function, g(r),
and the nearest neighbor visualization as shown in figure 6.19, panels (a) and (b),
respectively. The solid blue curve in panel (a) illustrates g(r) for a system of isotropic-
interaction particles in a hexagonal structure, followed by the position of the peaks of
a perfect hexagonal lattice shown in solid gray-vertical lines in this panel. g(r) of our
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hexagonal structure compared to the ideal lattice shows a shorter height of peaks
with variance due to thermal fluctuations.

Figure 6.20: The hexagonal structure under the stretching. (a) The bond-orientational order
parameter, |ψ6|, shown in blue decreases due to stretching the system. The pur-
ple dots present the energy of the system. The change in energy is matched by
the disordered regime observed for a honeycomb structure, see 6.3.2. Dots and
error bars represent the mean and standard error of the mean, SEM, taken over
20 simulations. (b) The radial distribution function, g(r), of a hexagonal struc-
ture at different stages of stretching. The individual density reported at identi-
cal colors represents the number density after 0, 10, 22, 36, and 56 expansion-
relaxation processes. The plots are shifted vertically for better clarification. (c-f)
The nearest neighbor visualization of the system. Panel (c) shows the initial equi-
librium state of the system of density one. Six neighbors well surround each par-
ticle. (d-f) By the stretching process, the density of the system decreases. The
following panels (d-f) correspond to the stretched systems of fewer densities,
i.e., the number density in each panel, ρ, is 0.905,0.803, and 0.699, respectively.
In panels (c)-(f), each color represents a particle with a certain number of neigh-
bors. Red, dandelion, green, cyan, blue, purple, and orange represents particles
with 0 to 6 neighbors, respectively.

The bond-orientational order parameter,|ψ6|, is high at the initial state, shown by
blue dots in figure 6.20-a, presenting the closed-packed ordered system. However,
the order is not stable in this system; The stress caused by stretching decreases |ψ6|
monotonically. The local minimum representative signature of reordering in the sys-
tem, see 6.3.1, is not observed. The evolution of the energy after the expansion-
relaxation process shown in purple dots in the plot is comparable with the results
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obtained in the disordered regime of the initial honeycomb structure: A global mini-
mum followed by a monotonical energy increase due to enlarging bonds connecting
particles observed. The evolution of g(r), shown in panel (b), illustrates converting the
system from ordered to disordered. The initial state is ordered, as evidenced by the
well-defined peaks; however, these peaks are no longer pronounced after stretching
the system. The individual number density of the system is written in identical colors
on the plot. The number of expansions matched with a specific density shown in the
figure is presented in the caption. The plots are shifted vertically for better visualiza-
tion. The transition from ordered to disordered is observed in the nearest neighbor
visualization shown in panels (c) to (f).
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6.5 Defect structure

The mechanical properties of the film can be affected significantly due to defects
in such systems. Defects are an indispensable part of systems in equilibrium. In
general, in a 2Dmaterial, two types of defects exist: (i) point defects, such as voids and
topological defects introduced in 4.3.3, and (ii) line defects, such as grain boundaries.
Here, as a point defect, we investigate the influence of the voids in the film on the
maximum coupling constant of angle-dependent potential, i.e., J0 = 16 Umin.

Figure 6.21: Nearest neighbor visualization of a defect film. The positionwith a lower density,
i.e., defect in the system, is sensitive to tension. The defects are the core of
starting fractures in the film. This figure shows the evolution of films of different
initial number densities, ρ0. Initial number density: (a) ρ0 = 0.716, (b) ρ0 = 0.872,
(c) ρ0 = 0.976. Each column represents a certain stage of expansion reported at
the bottom.

Due to voids in the film, the initial number density, defined as ρ0 = N
N0
, is not one,

whereN andN0 denote the number of particles on film, and the number of available
sites on an ideal honeycomb lattice of the same length, respectively. An identical
protocol of expansion-relaxation process is used, i.e., the initial state of the system
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is a film of the honeycomb structure in thermal equilibrium with the bath. The only
difference is that the film is incomplete and consists of randomly distributed voids.
The nearest neighbor visualization, shown in figure 6.21, reveals a rupture in the
system. The position of voids was determined stochastically; however, the sim-
ulation results show that the defect point is the core of starting fracture in the system.

The evolution of energy due to stretching, shown in figure 6.22, with a sharp energy
variation, confirms the fracture in the systemunder tension by appearing a dominant
jump in the energy panel. The results show that a more homogenous film with fewer
defects resistsmore stress, as evident by a higher jump in the energy panel for higher
initial densities.

Figure 6.22: Energy profile in terms of expansion of a defect film. The sharp variation in the
energy profile after expansion of 40 indicates a rupture in the system. The en-
ergy required to cause a rupture in the system increases for higher initial num-
ber densities, ρ0. Dots and error bars represent the mean and standard error of
the mean, SEM, taken over 20 simulations. The individual number densities are
reported in the legend.
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6.6 Disorder to order transition

Figure 6.23: Disordered to ordered transition. The initial state is a disordered phase of par-
ticles interacting via isotropic interactions. The system is in thermal equilibrium
with a heat bath. To study whether the transition can be obtained, we abruptly
switched the coupling constant of angular interaction, J0, from zero to the max-
imum studied value, i.e., 16.0 Umin. Panels (a)-(d) show the evolution of the sys-
tem examined by the nearest neighbor visualization after (a) 2×106, (b) 20×106,
(c) 80 × 106,(d) 96 × 106 sweeps. Each color represents a particle with a certain
number of neighbors. Red, dandelion, green, cyan, blue, purple, and orange
represents particles with 0 to 6 neighbors, respectively.

In this section, I aim for the ordered phase to be obtained starting from a disordered
phase. The initial model state is a system of particles interacting in the framework of
DLVO. At the initial state, I ignore the angular interaction between particles, meaning
that the coupling constant of angular interaction, J0, is set to zero, and the disordered
phase is in thermal equilibrium with a heat bath. In section 6.3, I concluded that the
angular interaction stabilizes the crystal structure; thus, I investigate if the angular
interaction might be sufficient to order the system. Hence, the coupling constant
parameter is set abruptly to the maximum studied value, i.e., J0 = 16.0 Umin. After-
wards, the system is let to find the optimum energy structure through Monte Carlo
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sweeps. The nearest neighbor visualization, shown in 6.23, indicates the presence
of separated clusters with a honeycomb structure. The area of the separated cluster
increased by increasing the simulation time, i.e., the number of Monte Carlo sweeps
and isolated clusters percolated in panel d. Despite the crystalline structure in the
layer, the measured bond-orientational order parameter, |ψ6|, states the resulting
structure is not an ordered phase, as shown in figure 6.24. Unfortunately, compa-
rable experimental data for hydrophobins have not been reported at the current
time. However, this problem has been observed experimentally in the free-standing
monolayer of graphene, which has an identical honeycomb structure [36, 45, 55, 68].
Several crystallographic defects are seen in the configurations shown in figure
6.23. In the case of graphene, reported studies revealed that the activation energy
compared to the formation energy of these defects is significantly high [36, 55];
hence, restoring a perfect honeycomb structure is challenging with a relatively high
restoration barrier energy. These are stable topological defects in the system, which,
in the case of graphene, their formation is the termination step for graphene growth.

Figure 6.24: Evolution of bond orientational order parameter, |ψ6|, in terms of the Monte
Carlo sweeps. The system starts from a disordered phase without considering
angular interaction. Afterward, the potential angular interaction is considered
and set to the maximum studied value of J0 = 16 Umin. |ψ6| is measured at dif-
ferent stages of simulation. Dots and error bars represent the mean and stan-
dard error of the mean, SEM, taken over 20 simulations.
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Theoretically, choosing a different approach may lead to the perfect ordered phase.
In these systems, two stable states are separated by an energy barrier, as reported
for graphene. Both have low free energy but high and low values in an order
parameter, e.g., bond-orientational order parameter, |ψ6|, in this case. Because of
the energy landscape, the standard Boltzmann-weighted sampling cannot produce a
Markov chain in which the ergodicity is fulfilled. A solution would be using umbrella
sampling, an efficient technique to overcome poor sampling caused by the potential
barrier. In this method, the potential energy is replaced by a chosen biasing poten-
tial, e.g., a function of the order parameter of the system that flattened the present
energy barrier. Generating this potential and using the umbrella sampling method
is beyond the scope of this thesis. However, the results of the present study can be
used as a starting point for future works.
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6.7 Summary and conclusions

The hydrophobins represent a class of proteins self-aggregated at air-water inter-
faces. The interfacial formed film possesses an extraordinarily high shear elasticity
andmechanical strength, a testament to the remarkable properties of these proteins.
The developed film of HFBI and HFBII proteins shows a honeycomb structure, a par-
ticular form of a two-dimensional hexagonal structure known for its high buckling
strength. This observation leads to two questions: first, which kind of interactions re-
sult in the observed honeycomb structure, and second, if the honeycomb structure
dictates the elastic behavior of the films. To answer these questions, I introduced a
novel approach, a stochastic model in continuum space. This unique model allows
for a deeper understanding of the behavior of the system.
In this model, hydrophobins are considered soft particles interacting in the frame-
work of DLVO theory. Furthermore, I emphasized the crucial role of the honeycomb
structure, which is guaranteed by a lateral interaction between proteins. This lateral
interaction, a short-ranged angular interaction, is considered beneficial to a config-
uration in which the adjacent bonds make a certain angle, i.e., 120 degrees. This
finding underscores the importance of the lateral interaction in stabilizing the hon-
eycomb structure. Furthermore, a quasi-static stretching process is designed to in-
vestigate the mechanical response of the system. The bond orientational order pa-
rameter quantifies the response of the system. Moreover, the structure of the system
is visualized.
The measured order parameter, shown in figure 6.25, suggests that a high enough
lateral interaction between proteins is essential to stabilize the ordered honeycomb
structure. This finding further emphasizes the importance of the honeycomb struc-
ture in the system’s behavior. The feature of the ordered phase, shown in green,
is reordering the system detected by a local maximum in the order parameter. In
the hexagonal structure, where the angular interaction is switched off, the order
parameter decreases monotonically as shown in orange. Visualizing the structure
confirms the above. Due to the short-ranged angular interaction, the stable domains
in the film were observed. The short-ranged interaction also drives a rupture in
the film at high enough tension. This demonstrates the significant impact of the
honeycomb structure on the mechanical response of the films.

Moreover, the effect of the point defects, i.e., voids, on the mechanical properties
of the films is studied. The results revealed the significant behavior of an ordered
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phase at an identical strength of angular interaction; however, the voids are the
weak points of the film, which rupture starts from it.

Figure 6.25: Representative behavior of different systems. Bond-orientational order param-
eter, |ψ6|, of initially honeycomb and hexagonal structures are shown. For the
honeycomb structure, depending on the value of the constant parameter, J0,
three phases are observed: (i) the ordered phase, shown in green. The repre-
sentative sign of this phase is reordering the structure just before rupture, as
shown in the zoom-in diagram. (ii) The disordered phase with a low value of
|ψ6| is presented in blue. (iii) The intermediate phase is shown in purple. This
phase is differentiated from the disordered phase by the initially high value of
|ψ6|. The monotonic decrease of the order parameter distinguishes this phase
from the ordered phase. The hexagonal structure, shown in orange, is studied
as a reference structure without including angular interactions. Dots and error
bars represent the mean and standard error of the mean, SEM, taken over 20
simulations.

Finally, I aimed to investigate if a disordered phase would transform into an ordered
phase by considering the angular interaction. The initial state of the system was an
entirely disordered phase. The strength of the angular interaction abruptly switched
to the highest value, and the system searched for the optimal configuration via
Monte Carlo movement. The simulation results show the formation of domains.
However, as observed experimentally, the domains cannot fuse to make a mono
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structure, and the ordered phase could not be achieved. Even though the failure
of the procedure due to stable topological defects appeared in the film, the result
could be important for modeling the transition by a different simulating approach.

Our result would also be significant in investigating phase transition in two-
dimensional systems. Two-dimensional melting can be a first or second-order transi-
tion depending on the interactions of the system. Studying two-dimensional melting
is out of the scope of this thesis. Although we did not study two-dimensional phase
transition in our study due to the small size of the system, the effect of the anisotropic
interaction, such as the angular interaction we introduced here, has yet to be stud-
ied in the field. Hence, our results and modeling can be a starting point for future
investigations.
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In this thesis, I studied two aspects of films at the liquid-air interfaces by hy-
drophobins, i.e., the adsorption kinetics and the mechanical response of the thin
film to external stress. The characterization of the adsorption kinetics has been per-
formedusing a combined approach of theoreticalmodelling and experiments. Imod-
elled the adsorption kinetics and performed simulations to understand the under-
lying mechanism observed in experimental results obtained in the Jacobs group at
Saarland University. In particular, the experiments and simulations studied selected
proteins of class II hydrophobins and a few engineered variants of those proteins.
Hydrophobins, characterized by their amphiphilic structure, self-aggregate at air-
water interfaces. The time-dependent behaviour of the adsorbed amount, as mea-
sured using ellipsometry, revealed intriguing kinetics. Adsorption followed a linear
pattern for the wild-type proteins until saturation, which abruptly ceased. Mutant
hydrophobins exhibited different kinetics, with the bulky hydrophobins conforming
to the Langmuir adsorption model and the charge-mutated protein exhibiting kinet-
ics dependent on solution concentration.
A stochasticmodel was introduced to unravel the adsorptionmechanism. Thismodel
considered the experimental setup to consist of three main components: the solu-
tion, containing a homogenous distribution of proteins, and two lattice layers, one
at the air-water interface and the other in the subsurface. The subsurface layer was
essential due to a secondary minimum close to the interface in colloidal systems,
which leads to an energy barrier. The energy barrier must be overcome for adsorp-
tion. Proteinswere treated as particleswith an internal degree of freedom referred to
as "spin," simulating the anisotropy of the protein patches caused by charged amino
acids within the protein structure. The spin property influenced the pattern of the
two-dimensional aggregation of proteins, i.e., favouring clusters with similar spin. Fi-
nally, the adsorption process was modelled as a rate-based statistical model, with
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varying rates explaining the observed adsorption kinetics.
The simulation results showed that the adsorption process is a two-stage process:
(i) a pre-reversible-adsorption to the subsurface and (ii) the final adsorption, which
is irreversible. A high diffusive motion in the subsurface and a high enough final
adsorption rate are two essential factors that result in the linear kinetics observed
for wild-type proteins. In the bulky proteins, the diffusive motion is limited; hence,
available free sites can not be found efficiently, and the adsorption kinetics becomes
Langmuir type with a coverage-dependent behaviour.
Themodel also elucidated the origin of stable two-dimensional roundish clusters ob-
served in films formed by wild-type proteins. The spin property influenced cluster
formation such that the shape transitioned from dendritic to roundish, depending
on the strength of the spin interaction. Hence, the larger proteins hindered close
affinity, and short-range spin interactions facilitated cluster diffusion and formation
into a single cluster.
In the second part of this study, I delved into the mechanical response of the film un-
der quasi-static stretching. Unlike the adsorption process, which operates on longer
time scales, the mechanical response requires consideration of shorter time scales.
Consequently, the lattice model was replaced by a continuum space model incor-
porating thermal fluctuations. An angle-dependent potential was also introduced to
account for the anisotropy arising from the position of amino acidswithin the protein.
This angular interaction played a crucial role inmaintaining the honeycomb structure
in the system.
Simulation results demonstrated that the angle-dependent potential stabilized and
maintained order in the system. Here, quasi-static stretching of the system was fol-
lowed by a relaxation process, revealing the role of the angle-dependent potential.
The system underwent a rupture for a sufficiently high angular interaction constant.
However, the evolution of the order parameter showed a remarkable feature: during
the stretching process, the order parameter first decreased and then increased just
before rupture, and after that, it decreased monotonically. This reordering process
before rupture occurred without any change in the energy profile, emphasizing the
dominance of the angle-dependent potential in stabilizing the structure.
Comparatively, the ordered structure could not bemaintained in systems of particles
initially arranged in a hexagonal structure and interacting isotropically, i.e., only DLVO
interactions. The results indicated that purely isotropic interactions couldn’t create
a stable crystal structure. Hence, the angle-dependent potential introduced in this
thesis was identified as the primary contributor to explaining the crystal structure in
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the studied hydrophobins.
Furthermore, my Simulation also showed that the growth of an ordered parameter
is challenging to achieve for an off-lattice model. Here, local defects are persistent
and perturb the development of large-scale ordered parameters.
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Appendix A

KT-transition

To calculate the mean magnetization, here, I follow [6].

< Sx >

S0

=< cosϑ(x⃗) >= Re < eiϑ >= Re e
(ϑ(x⃗))2

2 ≡ e−W ,

where S0 is the magnitude of spin, and ϑ(x⃗) denotes the fluctuations of spin about
its local minimum at position x⃗. e−2W is called the Debye-Waller factor. The Debye-
Waller factor determines how thermal fluctuations influenced the measurements
from its maximum value at zero temperature [6].

W =
(ϑ(x⃗))2

2
=
T

2

∫
ddq

(2π)d
1

ρsq2

= Kd
TΛd−2

2ρs
,

where Λ is the wave number cutoff, and ρs is simply the rigidity in the continuum
limit. We see that in two dimensions, d → 2, the Debye-Waller factor tends to ∞.
Thus, < Sx > is zero and, a two-dimensional XY-system does not show a long-range
order phase.
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KT-transition

H − E0 =
J

2

∫
d2r (∇θ(r) · ∇θ(r))

∫
d2r (∇θ(r) · ∇θ(r)) = −

∫
d2rθ(r)∇2θ(r)

= −
∫
d2r

(
2π

∫
d2r′ρ(r′)g(r − r′)

)
(2πρ(r)) = −4π2A.

Substituting ρ(r) =
∑

i qiδ(r − ri) gives,

A =

∫
d2r
∑
i

∑
j

qiqj

(∫
d2r′g(r − r′)δ(r′ − r′j)

)
δ(r − ri)

=

∫
d2r
∑
i

∑
j

qiqjδ(r − ri)g(r − r′j)

=
∑
i

∑
j

qiqjg(ri − rj) =
∑
i ̸=j

qiqjg(ri − rj) +
∑
i

q2i g(0),

where I used rj instead of r′j , and since g(0) = 0, the last term vanishes. In the limit
of |r| ≫ a, g(r) = 1

2π
ln
(
r
r0

)
. Thus,

H − E0 = −Jπ
∑
i ̸=j

qiqj ln

(
|ri − rj|
r0

)
= −Jπ

∑
i ̸=j

qiqj ln

(
|ri − rj|

a

)
− Jπ

∑
i ̸=j

qiqj ln

(
a

r0

)
.
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Appendix B. KT-transition

∑
i ̸=j

qiqj =

(∑
i

qi

)(∑
j

qj

)
−
∑
i

q2i = −
∑
i

q2i ,

where in the last step, the electrically neutral condition,
∑

i qi = 0, was used. Intro-
ducing a chemical potential µ = Jπ ln a

r0
will complete the calculation.

H − E0 = −Jπ
∑
i ̸=j

qiqj ln

(
|ri − rj|

a

)
+ µ

∑
i

q2i
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