
Universität des Saarlandes

Optimization and Processing

of Relational Database Queries

A dissertation submitted towards the degree
Doctor of Engineering (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science
of Saarland University

by

Immanuel Ha�ner

Saarbrücken, 2024

Tag der Promotion / Date of the graduation

December 18, 2024

Dekan / Dean

Prof. Dr. Roland Speicher

Prüfungsausschuss / Examination Board

Vorsitzender / Chairperson

Prof. Dr. Jörg Ho�mann

Gutachter / Reviewers

Prof. Dr. Jens Dittrich
Prof. Dr. Sebastian Hack
Prof. Dr. Guido Moerkotte

Akademischer Beisitzer / Academic assessor

Dr. Daniel Höller

Abstract

The purpose of this Ph.D. thesis is to advance the state of the art of query processing in relational
database systems.

As �rst contribution, I present a reduction of the classical, NP-hard join order optimization
problem to a shortest path problem. Consequently, I develop a heuristic search algorithm for
solving this reduced problem. I provide a strong theoretical foundation for the reduction and
the search. A thorough evaluation shows improvements in optimization time of orders of
magnitude.

My second contribution is a simpli�ed design for query execution by just-in-time compilation
to machine code. Architecturally simple solutions such as query compilation with LLVM
su�er from unacceptably high compilation times. Modern just-in-time query compilers with
signi�cantly reduced compilation times, on the other side, are extravagantly hand-crafted.
Rather than reinventing compiler technology in a DBMS, I propose to embed an o�-the-shelf
just-in-time compiling engine that is designed, built, and tested by compiler experts. I am able to
achieve the lowest compilation times and competitive execution performance in all experiments.

As my third contribution, I design a relational DBMS as a software system that is composed
of individual components, each implementing an isolated logical task. For example, join ordering
is one such component of a composable DBMS. I describe the design principles that guide my
and my colleagues’ e�orts towards implementing such a DBMS. Most importantly, my thesis is
accompanied by the release of our open-source research DBMS mutable, that implements this
design of composition.

3

Zusammenfassung

Ziel dieser Dissertation ist es, den Stand der Technik bei der Verarbeitung von Anfragen in
relationalen Datenbanksystemen zu verbessern.

Als ersten Beitrag präsentiere ich eine Reduktion des klassischen, NP-schweren Optimie-
rungsproblems der Join-Reihenfolge auf ein Kürzester-Pfad-Problem. Folglich entwickle ich
einen heuristischen Suchalgorithmus zur Lösung dieses reduzierten Problems. Ich biete eine
starke theoretische Grundlage für die Reduktion und die Suche. Eine gründliche Auswertung
zeigt eine Verbesserung der Optimierungszeit um Größenordnungen.

Mein zweiter Beitrag ist ein vereinfachtes Design für die Ausführung von Anfragen durch
just-in-time Kompilierung in Maschinencode. Architektonisch einfache Lösungen wie die An-
fragekompilierung mit LLVM leiden unter inakzeptabel hohen Kompilierungszeiten. Moderne
just-in-time Anfrage-Compiler mit deutlich reduzierten Kompilierzeiten sind dagegen aufwen-
dig selbst entwickelt. Anstatt die Compilertechnologie in einem DBMS neu zu er�nden, schlage
ich vor, eine gebrauchsfertige just-in-time Compiler-Engine einzubinden, die von Compiler-
Experten entworfen, gebaut und getestet wurde. Ich bin in der Lage, in allen Experimenten die
niedrigsten Kompilierzeiten und eine konkurrenzfähige Ausführungsleistung zu erzielen.

In meinem dritten Beitrag entwerfe ich ein relationales DBMS als ein Softwaresystem,
das aus einzelnen Komponenten zusammengesetzt ist, von denen jede eine isolierte logische
Aufgabe implementiert. Zum Beispiel ist die Join-Anordnung eine solche Komponente eines
zusammensetzbaren DBMS. Ich beschreibe die Designprinzipien, die mich und meine Kollegen
bei der Implementierung eines solchen DBMS leiten. Am wichtigsten ist, dass meine Arbeit
von der Verö�entlichung unseres Open-Source-Forschungs-DBMS mutable begleitet wird, das
dieses Design der Zusammensetzung implementiert.

4

Acknowledgement

I thank my Ph.D. advisor Prof. Dr. Jens Dittrich for introducing me to the fascinating topic of
database systems during his core lecture, for o�ering me a researcher position at his chair, for
supervising my research for many years, for providing me with insightful feedback through
which I was able to improve the quality of my work, for reviewing all my scienti�c work, and
�nally for reviewing my Ph.D. thesis.

I thank Prof. Dr. Sebastian Hack for supervising and reviewing both my Bachelor’s and
my Master’s thesis, for introducing me to scienti�c work, for teaching me thoroughly about
compilers (which was of signi�cant value for my thesis), and for being a reliable source of
information and guidance. I also thank him for being second reviewer of my Ph.D. thesis.

I thank Prof. Dr. Guido Moerkotte for his research and publications, which were always
a valuable source of information during my thesis, for his extensive book “Building Query
Compilers”1, which came in handy several times for fact checking and validation, and for being
third and external reviewer of my Ph.D. thesis.

In addition to thanking my reviewers, I would like to thank all the other wonderful people
who supported me in my pursuit of a Ph.D. degree. While I cannot mention all of them here, I
want to explicitly thank a few that provided exceptional support.

Special thanks are due to my family, that always believed in me and motivated me in
pursuing a Ph.D. degree. I especially thank my grandmother Christel for �nding calming and
conciliatory words whenever a heated debate about politics was about to divide the family.
Your world-class cooking was also a great relief from Mensa cuisine and provided for excellent
recreation.

With great joy, I can say that my coworkers during my time as a Ph.D. student also became
dear friends. I want to thank them for being such kind and supportive colleagues. You have
made work and research a fantastic experience.

I thank my friends for bearing with me through this time, even though I was frequently

1At the time of writing this thesis, this document is still a draft.

5

indisposed and couldn’t participate in activities as often as I would have liked.
Last but not least, I thank Prof. Dr. Roland Leißa, who was the primary supervisor of my

Bachelor’s and Master’s theses. From him, I learned to love (and hate) . He introduced me
to C++ and taught me good style in programming and software design by having me work on
LLVM and Clang, and pedantically reviewing my work. The hours we spent together thinking
about and writing code contributed signi�cantly to the skills I have today.

Contents

Abstract 3

Acknowledgement 5

1 Introduction 11

1.1 A Brief History of Database Management Systems 11
1.2 The Relational Model in a Nutshell . 13
1.3 Towards Query Optimization . 16

1.3.1 Rule-Based Transformative Query Optimization 17
1.3.2 Combinatorial Query Optimization . 18
1.3.3 Query Optimization by Dynamic Programming 20

1.4 From Query Plan to Query Execution . 22
1.5 A New DBMS for Research and Fast Prototyping 25

2 Query Optimization 27

2.1 Introduction . 27
2.2 Join Order Optimization as a Shortest Path Problem 29

2.2.1 The Shortest Path Problem . 29
2.2.2 Reducing JOOP to Shortest Path . 29
2.2.3 The Dualism of Bottom-Up and Top-Down Join Order Optimization . 32
2.2.4 Complexity of SPJOOP . 32

2.3 JOOP as a Heuristic Search Problem . 33
2.3.1 Properties of Heuristic Functions . 33
2.3.2 Properties of Heuristic Search . 34
2.3.3 Searching an Exponentially Large Space 36
2.3.4 Completeness, Soundness, Optimality 37
2.3.5 Performance Criteria . 38

7

2.4 Algorithmic Challenges . 40
2.4.1 Vertex Representation . 40
2.4.2 Vertex Expansion . 41
2.4.3 Open List and Duplicate Detection . 43
2.4.4 Duplicate Prevention . 45

2.5 Heuristic Functions for JOOP . 49
2.5.1 From DBMS Cost Model to Edge Weights 49
2.5.2 Four Simple Heuristics . 50
2.5.3 Informative Value of Heuristic Functions 52

2.6 Related Work . 53
2.6.1 Classical Join Ordering . 53
2.6.2 Greedy Join Ordering . 54
2.6.3 Heuristic Search . 55

2.7 Evaluation . 55
2.7.1 Setup . 55
2.7.2 Comparison to State of the Art . 57
2.7.3 QGraEL: A New Benchmark for JOOP 59
2.7.4 Detailed Evaluation of Heuristic Search 61

2.8 Conclusion . 62

3 Query Compilation 65

3.1 Introduction . 65
3.2 A New Architecture for Compiling Query Engines 67

3.2.1 Other Architectures . 67
3.2.2 Our Architecture . 70

3.3 WebAssembly . 71
3.3.1 Embedding WebAssembly . 71

3.4 Compiling SQL to WebAssembly . 72
3.4.1 Pipeline Model . 72
3.4.2 Compiling Simple Operators . 74
3.4.3 Compiling Complex Operators . 75

3.5 Ad-hoc Library Code Generation . 77
3.5.1 Conceptual Comparison . 77
3.5.2 Our Approach: JIT Code Generation 80
3.5.3 Code Generation by Example . 80

3.6 Executing WebAssembly in a Database System 85

3.6.1 Accessing Data by Rewiring . 85
3.6.2 Result Set Retrieval . 87

3.7 Related Work . 87
3.7.1 JIT Frameworks & Engines . 87
3.7.2 Query Execution . 87

3.8 Evaluation . 89
3.8.1 Experimental Setup . 89
3.8.2 Performance of Query Building Blocks 90
3.8.3 TPC-H . 94

3.9 Conclusion . 95

4 mutable - A Modern Database System for Research & Fast Prototyping 97

4.1 Introduction . 97
4.1.1 Outline . 99

4.2 Database System Design . 99
4.2.1 Design Goals . 99
4.2.2 Related Work . 100
4.2.3 Our Approach: The mutable System 101
4.2.4 mutable: The Imperative Shell . 103

4.3 Components . 104
4.4 Code Generation . 107
4.5 Physical Optimization . 109
4.6 Physical Data Layout Independence . 111
4.7 Automated Evaluation . 113

5 Conclusion 121

Glossary 137

9

10

Chapter 1

Introduction

In today’s software landscape, database management systems (DBMSs) are an indispensable
component of the software stack. They are found in virtually every application or device.
SQLite, for example, is delivered by default on Android, iOS, and Windows from Windows 10
onwards – and this list is not exhaustive. All major browsers ship with built-in DBMSs and
most Android/iOS apps manage their data within a DBMS. Large businesses manage millions to
billions of records of data – e.g. user information, goods in stock, or sensor measurements –
with the help of large-scale and sometimes distributed DBMSs.

To understand why DBMSs take such a crucial role in software systems and what di�cult
tasks they solve for their users, I will brie�y survey the history of DBMSs and highlight the
motivations that led to their development and success. I will then present some of the most
di�cult tasks DBMSs have to solve. Along this brief survey, I will outline the contributions of
my thesis, that advance the current state of the art (SotA) of DBMSs.

1.1 A Brief History of Database Management Systems

Simultaneously to the mass fabrication of integrated circuits in the 60s and 70s and the advent
of silicon computer chips in the 70s, the term ‘database’ began to appear in literature. This
temporal correlation can be observed in Figure 1.1, depicting the frequency of occurrences in
literature over the past decades. We can see that the term ‘database’ was steadily used more
often in the 70s and gained a lot of momentum during the 80s and 90s. The �rst use of the term in
a technical sense can be dated back to 1962, according to the Oxford English Dictionary [OED].
To understand that this correlation is in fact causal, let us look up the de�nition of ‘database’
in the Oxford English Dictionary: a database is “a structured set of data held in a computer,
especially one that is accessible in various ways” [OED]. This de�nition is arguably so generic,

11

Date [Year]

Re
la
tiv

e
pr
op

or
tio

n
of

th
e
sa
m
pl
e
co
rp
us
.

Figure 1.1: The Google Ngram of the word ‘database’ (case-insensitive).

that there is hardly any purposeful software that does not operate on a database of some form.
As a natural consequence, the dawn of the computer age, which created an entire industry of
software development, was thus also the dawn of databases.

With virtually every software using databases in one form or another, operating databases
became a very frequently recurring task. This fact necessitated the development of reusable and
generalized software to work with databases. DBMSs were born! With the �rst general-purpose
DBMSs becoming popular and even being used commercially, an interest in a standard for such
systems started to emerge. The Database Task Group (DBTG) was founded in 1967 to devise
such a standard. In 1971, they delivered their standard, that then led to the development of
navigational DBMSs and became known as the CODASYL model – that is because DBTG was
founded within CODASYL. Navigational DBMSs expose their internal organization of data to
the user and provide means to “navigate” through the database, e.g. from one record to another
or from a key attribute to the respective record. A drawback of the navigational approach is that
it leaks – to some extent – the internal representation of the data. More so, the logical process
of querying a database must be intermixed with navigational commands to retrieve all required
records. In 1970, E. F. Codd raised concerns about the CODASYL model and advocated for a
strict separation between the DBMS user and the DBMS’ internal organization of data. To this
end – and in stark contrast to the navigational model – Codd presented the relational model
in his seminal work “A Relational Model of Data for Large Shared Data Banks”, which should
become the foundation of relational database management and spark a vast area of research for
generations to come [Cod70].

12

Students

matriculation name major

1234567 Charles W. Bachman Mech. Eng.

1234568 Edgar F. Codd Math

1234571 Jim Gray Math & Stats

1234572 Michael Stonebraker Mech. Eng.

Subjects

tag full name

Mech. Eng. Mechanical Engineering

Math Mathematics

Math & Stats Mathematics & Statistics

Table 1.1: Two tables of ‘Student’ and ‘Subject’ entities. The underlined attributes ‘matriculation’
and ‘tag’ are the primary keys of the respective tables.

1.2 The Relational Model in a Nutshell

In the relational model, data is organized in relations of entities, with one relation per type of
entity. Each relation contains a �xed number of attributes storing the attributes of the entities.
Each tuple of a relation must be uniquely identi�ed (within this relation) by its primary key,
which is a composition of one or more attributes of the entity. Such primary keys are a means to
user-oriented identi�ers of records. In contrast to the navigational model, where primary keys
are system-de�ned arti�cial values and relationships between records are expressed through
physical properties such as disk addresses, relationships in the relational model are expressed
through primary keys composed of attributes of entities: For two related relations, one relation
will be extended by arti�cial attribute(s) storing primary keys of the related relation, thereby
expressing the relationship between the entities of these relations. Such an attribute referencing
a primary key is called a foreign key. Queries to the database can then join two relations based
on this relationship expressed through the foreign key. Consider, for example, the two relations
in Table 1.1. We can see that the attribute ‘tag’, that is the primary key of relation ‘Subjects’, is
referenced by foreign key attribute ‘major’ of relation ‘Students’. Consider further the following
natural language query.

“Which students major in ‘Mechanical Engineering’?” (&1)

Query &1 can be answered by joining the relations and selecting only those tuples where the
‘full name’ is ‘Mechanical Engineering’, yielding ‘Charles W. Bachman’ and ‘Michael Stone-
braker’.

An important aspect of the relational model is that it is based on a strong mathematical
foundation. Relations and operations thereon build on set theory and are formalized in relational
calculus and relational algebra. There are two variants of relational calculus:

1. The tuple relational calculus was created by Codd to provide a declarative query language

13

for the relational model [Cod70; Cod72].

2. The domain relational calculus, that is more akin to �rst-order logic, was later proposed by
Lacroix and Pirotte. Together with Codd they showed that it has expressive power equiv-
alent to the domain-independent tuple relational calculus and relational algebra [LP77].

For example, we can express &1 in relational calculus asB
��������

B ∈ Students ∧ D ∈ Subjects ∧
B[Students.major] = D[Subjects.tag] ∧

D[Subjects.full name] = ‘Mechanical Engineering’


The representation of queries in relational calculus is almost a normal form. All queries

have the shape {〈-1, . . . , -=〉 | ? (〈-1, . . . , -=〉)}, where -8 are attributes or constants and ? is
a boolean formula. If we required ? to have normal form, e.g. conjunctive normal form (CNF),
then we would have a normal form for queries.

To express &1 in relational algebra, we have multiple choices, as the following expressions
(A)-(D) demonstrate.1

ffull name = ‘Mechanical Engineering’
(
fmajor = tag (Students × Subjects)

)
(A)

ffull name = ‘Mechanical Engineering’∧major = tag (Students × Subjects) (B)

ffull name = ‘Mechanical Engineering’
(
Students Zmajor = tag Subjects

)
(C)

Students Zmajor = tag
(
ffull name = ‘Mechanical Engineering’ (Subjects)

)
(D)

We can clearly see that relational algebra queries can be formulated quite di�erently despite
being semantically equivalent. The key distinguishing factor between relational calculus and
relational algebra is that relational algebra expresses the operators to use and a (partial) order
of evaluation by which to compute the query result. The order of evaluation is induced by
the precedence of the relational operators. In laymen’s terms, a query formulated in relational
calculus expresses what to compute whereas a query formulated in relational algebra expresses
how to compute the query result.

We know that the relational algebra expressions (A)-(D) are semantically equivalent, i.e.
always computing the same result, yet computing this result in di�erent ways. This begs the
question: When and how does the order of computation matter? To exemplify the impact
of di�erent algebraic expressions for the same query, I depict in Figure 1.2 the expressions
(A)-(D) as trees representing the induced order of evaluation. I annotate these trees with the

1To keep the expressions short and easier to read, we completely omit projections.

14

ffull name = ‘Mechanical Engineering’

fmajor = tag

×

Students

4

Subjects

3

12

4

Query plan (A) with Σ = 23.

ffull name = ‘Mechanical Engineering’∧major = tag

×

Students

4

Subjects

3

12

Query plan (B) with Σ = 19.

ffull name = ‘Mechanical Engineering’

Zmajor = tag

Students

4

Subjects

3

4

Query plan (C) with Σ = 11.

Zmajor = tag

Students

4

ffull name = ‘Mechanical Engineering’

Subjects

3

1

Query plan (D) with Σ = 8.

Figure 1.2: Query plans (A)-(D), represented as trees and annotated with the sizes of intermediate
results.

sizes of the intermediate results in blue. We can observe that the di�erent expressions yield
di�erent amounts of intermediate tuples. If we consider that these expressions are actually
used to steer the computations of the query results, then we can argue that the amount of
intermediate tuples produced is directly or indirectly proportional to the amount of work
required to compute the query result. From now on, we refer to expressions steering the
computation of a query result as query plans (or simply plans). To make the prior argument
more concrete, we conduct a detailed comparison of plans (A) and (C) – that is the plans induced
by expressions (A) and (C). Consider �rst in (A) the Cartesian product Students × Subjects
yielding 12 intermediate tuples that are the input to the selection fmajor = tag. Computing the
Cartesian product takes time O(|Students| · |Subjects|). The result of the Cartesian product,
i.e. 12 tuples, is then processed further by the selection. Let us compare this to the join
Students Zmajor = tag Subjects in expression (C). For joins on equality predicates we know e�cient
algorithms that perform in time

O(|Students| + |Subjects| + |Students Zmajor = tag Subjects|)

Further, we know that |Students Zmajor = tag Subjects| = |Students| because attribute major is a

15

foreign key to primary key tag. We derive

O
(
|Students| + |Subjects| + |Students Zmajor = tag Subjects|

)
= O (|Students| + |Subjects|)

Consequently, the join asymptotically reduces the amount of work done in (C) compared to (A).
Very importantly, this asymptotic improvement is re�ected in the number of intermediate
tuples produced. The amount of intermediate tuples of a query plan is hence a strong indicator
of the amount of work necessary to compute the query result by this plan. For the example
in Figure 1.2 we can argue that plan (D) is likely the most e�cient of the four plans, with
nearly just 1

3 the amount of the intermediate tuples of (A). While this relative improvement may
appear small, keep in mind that the example uses relations of 4 and 3 tuples, respectively. With
larger tables, the relative improvement of (C) and (D) over (A) would grow; (C) and (D) produce
asymptotically fewer intermediate tuples.

1.3 Towards Query Optimization

My example in Figure 1.2 demonstrates that di�erent yet semantically equivalent expressions
in relational algebra yield di�erent intermediate results and intermediate result sizes can be
related to the work required to answer a query. Consequently, when relational algebra is used
to steer the computation of a query result, then the choice of the query plan signi�cantly a�ects
the performance of query answering. This leads us to the question: Is there a “best” or “optimal”
query plan to compute the result of a query, and can it be computed (e�ciently)? Before we can
answer this question, we must �rst de�ne optimality. The de�nition commonly accepted by
researchers is that optimality is relative to some cost model and the optimal plan is the one (or
one of many) that minimizes the cost under said cost model. With this de�nition of optimality,
our quest for an optimal plan for a query becomes a classical optimization problem: Given some
query & and a cost model � , choose from the set of all relational algebra expressions that are
semantically equivalent to & , say '& , the expression minimizing � . Formally,

arg min

A ∈'&
� (A)

The process of �nding such a plan A is commonly called query optimization. At this point, I
would like to emphasize that Codd already recognized in 1972 the optimization potential for
queries [Cod72]. He states that a query expressed in relational calculus is an ideal starting
point for optimization. In contrast to that, he further argues that when queries are expressed in

16

relational algebra, the “properties of desired data tend to get hidden in the particular operation
sequence” and the semantics of the query are thereby obfuscated [Cod72]. Consequently, when
tasked with optimizing a query expressed in relational algebra, one can content oneself with
locally optimizing the expression – e.g. through algebraic rewrites – and potentially missing the
globally best plan. Alternatively, to guarantee �nding the best plan eventually, one must enable
transformations that deteriorate the cost of the plan in order to escape local optima. However,
allowing for such transformations introduces di�cult problems into the optimization process,
as the following approach exempli�es.

1.3.1 Rule-Based Transformative Query Optimization

In the work of Graefe and DeWitt [GD87], the authors build a transformative query optimizer
with rewrite rules on relational algebra. All transformations are directed and assigned an
improvement factor. A factor < 1 means a cost reduction is achieved through transformation. A
factor of 1 means no change in cost; this is used to have the optimizer exploit commutativity
of joins. A factor > 1 means a cost increase, i.e. the plan becomes more costly. At a �rst
glance, one might argue that transformations with factors > 1 should generally be avoided.
However, this would get the optimizer stuck in local optima, make the search result depend
heavily on the initial plan where search starts, and it can have the optimizer miss the global
optimum. Therefore, the authors include transformations that deteriorate the plan cost in order
to escape local optima. However, this leads to another problem: transformations could now be
applied cyclically, repeatedly reproducing the same plans over and over. To remedy this problem,
memoization is added to track plans that have already been generated. This then leads to the
next problem: the memory demand for memoization is too high, causing early optimization
aborts that yield suboptimal plans. To work around this limitation, the authors restrict the
optimizer to apply only transformations with a factor less than a certain threshold, e.g. < 1.05.
This threshold causes the optimizer to produce signi�cantly fewer plans and converge faster
towards an optimum. However, the optimization is not guaranteed to �nd the global optimum
anymore, which the authors also validate empirically.

We conclude that optimal transformative query optimization is practically infeasible because
of the memory requirements for memoization. It also has the undesired property that the
optimization process depends heavily on the initial plan where the search begins. On the one
side, a plan that is “far” from an optimal plan leads to long optimization times. On the other
side, if optimization is not optimal, the choice of the initial plan a�ects what �nal plan is used
to answer the query; and this has unexpected and undesired e�ects on query runtime. To
circumvent these innate problems of transformative query optimization, alternative approaches

17

Students

Subjects

full name =
‘Mechanical Engineering’

Students.major = Subjects.tag

Figure 1.3: Query graph for query &1.

have been studied. The most prominent, most successful, and widely in use alternative being
query optimization based on combinatorics.

1.3.2 Combinatorial Query Optimization

Instead of starting from an initial plan, as in transformative query optimization, we can start
with a query formulated in relational calculus. Recall, that relational calculus is almost a normal
form and that there is no order among operations. Hence, starting from the formulation in
relational calculus makes optimization independent of any initial plan or formulation of the
query by a user.

In combinatorial query optimization, the relational calculus query is represented as a graph
with relations as vertices and join predicates as edges connecting the joined relations. The
relations are additionally annotated with selection predicates applying to the relation. We call
this representation of a query the query graph. Figure 1.3 shows the query graph for our very
simple query &1. The query graph maintains the important property of relational calculus
of not de�ning an order among the join operations. This can better be seen in the example
in Figure 1.4, showing a more complex query graph � with four relations connected by four
join predicates and no order among the joins.

Recall, that query plans, i.e. relational algebra expressions, de�ne a partial order among the
joins. With the query graph at hand, we can reinterpret a query plan as a complete recursive

cut of the query graph, that is a recursive application of graph cuts such that eventually each
relation forms its own partition. To demonstrate this, consider the following plan % for the
query graph � in Figure 1.4.

(� Z?1 �) Z?2∧?4 (� Z?3 �) (%)

The top-level join Z?2∧?4 of % cuts� into the two subgraphs induced by the subsets of relations

18

A

B

D

C

?1

?2

?3
?4

Figure 1.4: A more complex query graph �
with four relations �, �,�, � and four join
predicates ?1, ?2, ?3, ?4.

A

B

D

C

?2 ∧ ?4

?1
?3

Figure 1.5: Partition of graph� by recursive
graph cutting according to plan % .

{�, �} and {�, �}, formally� [{�,�}] and� [{�,� }] , respectively. These two subgraphs are further
cut recursively. Join Z?1 cuts � [{�,�}] into � [{�}] and � [{�}] . Likewise, join Z?3 cuts � [{�,� }] .
Figure 1.5 shows the partition of graph � of Figure 1.4 via recursive cuts by plan % .

We now have established an understanding of a query plan, ormore precisely the joins within
the plan, as a graph partition via recursive graph cuts. If we can systematically and e�ciently
enumerate all such recursive cuts of a given query graph, we will be able to enumerate all
di�erent join orders. From these join orders we can then construct query plans, hence allowing
us to systematically and exhaustively explore the space of alternative plans.

So far, we neglected selections and Cartesian products. Selections, i.e. predicates on a single
relation, are generally applied as early as possible in a plan, i.e. directly to the relation and
before any join. Selections on multiple relations are always treated as join predicates and hence
lead to join operations in the plan. Cartesian products are often ignored by combinatorial query
optimization. Practice has shown that plans with Cartesian products are almost always subopti-
mal and considering them signi�cantly expands the search space for alternative plans [Sel+79;
MN06]. However, there are particular cases where Cartesian products are desirable to con-
sider [CM95; NR18]. Including Cartesian products into combinatorial query optimization is
very easy: to consider a Cartesian product of two relations with no join connecting them, we
connect these relations by an edge with predicate True. To generally allow for Cartesian products
in combinatorial query optimization, the query graph can be augmented by edges with True

predicates until it is a complete graph.
It is also important to note, that it is su�cient to consider only cuts, i.e. partitions into

exactly two subsets, out of all possible graph partitions. That is, because joins and Cartesian
products are binary operations, combining two input relations to one result relation. Should we

19

want to consider =-ary operations, e.g. =-way joins or =-way Cartesian products, then we must
also consider the respective graph partitions.

We have now reformulated the search for the optimal query plan to a combinatorial partition
problem of the query graph. As we build the query graph from the relational calculus formu-
lation of the query, this approach is independent of any initial plan. This is an improvement
over transformative query optimization as done by Graefe and DeWitt [GD87] and presented
in Section 1.3.1. However, there is another very signi�cant improvement. Graefe and DeWitt
face the problem of exhausting the available memory with their transformative query optimizer
when allowing for optimality-degrading transformations (factor > 1) [GD87]. This is because
they must memoize every plan ever seen in order to prevent cyclically regenerating the same
plans inde�nitely. The amount of distinct plans for a query is at least the amount of di�erent
join orders. For = relations, the amount of di�erent join orders is =! when only linear plans are
considered, with linear plans being trees where each inner node is parent to at least one leave.
If bushy plans are considered as well, then the amount of join orders becomes =! ·�=−1 in the
worst case, where �8 is the 8-th Catalan number:

�= := 1
= + 1

(
2=
=

)
(Catalan numbers)

Either way, the amount of di�erent join orders for = relations is superexponential in =. Hence,
optimal transformative query optimization (i.e. with any factor allowed) will require memory
for memoization superexponential in the number of relations, which is practically infeasible.
Contrary to that, enumerating all join orders by enumerating all recursive graph cuts of the
query graph can be done with dynamic programming and requiring just exponentially much
memory, i.e. O(2=) for = relations.

1.3.3 Query Optimization by Dynamic Programming

Enumerating all recursive graph cuts can be done e�ciently and without producing duplicates.
Even better, it can be done in an order that permits dynamic programming. Two properties
must be satis�ed for dynamic programming to be applicable:

(1) Optimal substructure: A problem can be solved optimally by dividing it into smaller
subproblems and solving these subproblems optimally.

(2) Overlapping subproblems: A problem can be broken down into subproblems which are
reused several times.

These two properties are satis�ed in our recursive graph cutting problem and I will elaborate
this along Figure 1.6.

20

⊕ ⊕
⊕⊕

{�, �,�}

{�, �} {�,�}

{�} {�} {�}

Figure 1.6: Recursive decomposition of subproblem {�, �,�} into smaller subproblems as done
by dynamic programming. Operator

⊕
shows where dynamic programming combines the

optimal solutions of subproblems to compute a solution of a larger problem.

With regard to (1), we can make the following observation. For computing the optimal
plan for {�, �,�}, we can enumerate all cuts of� [{�,�,� }] , here ({�, �} , {�}) and ({�} , {�,�}).
These two partitions yield four subsets {�}, {�}, {�, �}, and {�,�}. We can compute the optimal
plan for each subset recursively. From the solutions to these subproblems, we can construct
two candidate plans for {�, �,�}: we can join the best plan for {�, �} with the best plan for
{�} and we can join the best plan for {�} with the best plan for {�,�}. The better of those two
plans is the best plan for {�, �,�}.

With regard to (2), we can observe that, for example, subproblem {�} occurs twice as a
subproblem: once for {�, �,�} and once for {�, �}. Consequently, the optimal solution for {�}
– albeit being trivial in this example – is reused multiple times.

The graph partitions can be enumerated by dynamic programming in various orders, de-
pending on the particular algorithm. For example, the algorithm by Selinger et al. [Sel+79]
�rst enumerates all partitions of induced subgraphs with two relations, then all partitions of
induced subgraphs with three relations, and so on until eventually all partitions for the entire
query graph are enumerated. We generally distinguish two classes of dynamic programming
algorithms for enumerating all graph partitions, namely bottom-up and top-down algorithms.
Algorithms in the bottom-up class enumerate and optimally solve subproblems in an ascending
order, starting with individual relations and then advancing to ever more complex subproblems.
Algorithms in the top-down class start with the entire query graph and then recursively cut it
until all relations form individual partitions. When all alternative cuts of a subproblem have
been explored and solved optimally, an optimal solution for that subproblem is found.

One important aspect distinguishing the two classes is that bottom-up algorithms produce
complete recursive graph cuts relatively late in their execution. That is, because many small

21

subproblems are solved optimally before the �rst partition of the entire query graph is ever
produced. In contrast to that, top-down algorithms �nd complete recursive graph cuts occa-
sionally during the entire execution. That is, because top-down algorithms enumerate all cuts
of the entire graph in the outermost level of recursion and every such cut leads to one complete
recursive graph cut. Therefore, and quite naturally, top-down algorithms are susceptible to
pruning. The idea is that partial recursive graph cuts, that are more costly than the best complete
graph cut found yet, need not be recursively cut any further as they cannot yield any better
plan.

For historical reasons, the bottom-up algorithms are commonly referred to as dynamic
programming algorithms, abbreviated DP, whereas the top-down algorithms are really called
just that and abbreviated TD. The reason is that the �rst algorithms performing combinatorial
query optimization all fall into the bottom-up class [Sel+79; VM96; MN06]. Already back in 1979,
when Selinger et al. [Sel+79] presented the �rst algorithm for combinatorial query optimization,
their algorithm was performing bottom-up dynamic programming.

Even though the �rst solutions to query optimization already appeared in the late 1970s, this
problem has kept researchers busy to that very day. Besides transformative and combinatorial
query optimization, other approaches have been developed over the past decades. These
alternatives build on genetic algorithms [BFI91; Vel08; FWY08], greedy algorithms [Feg98;
WP00; Neu09; NR18], adaptive re-optimization [KD98; Ng+99; WNS16; Per+19], or machine
learning [Mar+19; Mar+21; Neg+21]. For the special case of provably optimal join ordering,
however, no other feasible solution than combinatorial join ordering via dynamic programming
has been found yet.

In Chapter 2, I present a reduction of join order optimization to a shortest path problem
and, consequently, how to solve it e�ciently with heuristic search. Particular con�gurations
of this heuristic search yield provably optimal join orders while e�ciently pruning the search
space, thereby �nding optimal solutions several orders of magnitude faster than current SOTA.

1.4 From Query Plan to Query Execution

In Section 1.3, I introduced the abstract concept of a cost function for query plans, and conse-
quently I motivated query optimization for �nding a query plan that minimizes such a cost
function. The cost function is usually designed to correlate to execution time, but other opti-
mization goals such as maximum memory consumption or time-to-�rst-tuple are also possible.
With query optimization, we are able to compute for a given query an optimal plan, i.e. a plan
that minimizes the cost function. My contribution in Chapter 2 enables us to compute such
an optimal plan more e�ciently for a broad spectrum of queries. But what are we going to do

22

Query
statement

Query
plan

Query
result

Query optimization Query execution

Query Processing

Figure 1.7: The phases of query processing, from query statement to query result.

with the optimal query plan? How can we actually execute this query plan? And, staying in the
mindset of striving for optimal e�ciency, how can we make the execution e�cient?

This is the task of query execution. In literature, one often �nds the term “query compilation”
in this context. Generally, compilation describes the process of translating a program in a source
language to an equivalent program in a target language. In most cases, when one speaks
of compilation, translation of a program in a high-level language to an executable machine-
code program is meant. Compilation often includes performing e�ciency-increasing program
transformations, also called optimizations. In the context of database queries, query compilation
refers to the process of translating a query statement to a query plan. This process can involve an
optimization phase, as explained in Section 1.3, to increase the e�ciency of the resulting query
plan. The term “query compilation” can, however, be ambiguous and lead to misunderstandings.
When the query plan is being compiled further in order to execute it, e.g. to machine code, then
the overall processing of a query involves another compilation step. In this case, does “query
compilation” still only describe translating from query statement to query plan or does it now
involve the subsequent compilation of the query plan? To avoid any potential ambiguities, I
will use the nomenclature given in Figure 1.7.

The various methods to query execution can be dissected into just two classes, namely
interpreting and compiling methods. Interpreting methods employ an interpreter that di-
rectly executes the operations of a given query plan to compute the query result. Com-
piling methods compile a given query plan into an executable program (e.g., machine
code) and execute that program in order to compute the query result. These two meth-
ods are not mutually exclusive. However, combinations of interpretation and compila-
tion in the context of query execution have been explored only very recently, e.g. by
Kohn, Leis, and Neumann [KLN18] and Kersten, Leis, and Neumann [KLN21] and by myself
together with my Ph.D. advisor Jens Dittrich [HD23a].

Both interpretation and compilation have their individual bene�ts and drawbacks. The
very �rst relational DBMS, System R, already employed compilation of SQL queries to machine
code [Sel+79]. This approach was later abandoned in favor of interpreting query plans, as
compiling query plans directly to machine code requires a lot of development and maintenance

23

e�ort and requires additional work when targeting new architectures [TER18]. Interpreting
query plans only requires a single implementation of an interpreter in a high-level language,
that can then be compiled once per target architecture. That is why interpreting query plans
was the dominant procedure for executing query plans for a long time. This paradigm shifted
towards compiling query plans when main memory DBMSs appeared. With all or most of the
frequently accessed (hot) data held in main memory, data accesses suddenly became much
faster than in prior disk-based systems. The interpretational overheads, that were dwarfed by
costs for disk I/O, suddenly take a signi�cant share in query execution times [Pad+01; BZN05a;
Rao+06]. This development led to a comprehensive body of work aiming to improve CPU core
and cache utilization [Ail+99; Pad+01; BMK09]. A part of these works pursued compiling entire
queries into a sequence of tight loops in some low-level executable language, e.g. machine code
or Java bytecode. There are two major bene�ts to compiling queries: First, interpretational
overheads, e.g. dynamic dispatches based on operand types, can be eliminated at compilation
time. Second, operator boundaries are eliminated, thereby fusing sequences of operators into
single tight loops and enabling passing data in registers rather than sending data between
operators through memory.

While the bene�ts of compiling queries to machine code might sound very convincing at
�rst glance, there is an undeniable downside to this approach: Queries must be compiled before
they can be executed, thereby delaying query execution. Query compilation can therefore
potentially deteriorate performance, e.g. by increasing the time-to-�rst-tuple or – even worse
– by increasing query processing time, if the compilation delay outweighs the performance
improvement achieved over interpreted execution. While initial works on query compilation
focused on maximizing the performance of the compiled query [KVC10; Dia+13; LZF13; FIL14;
Klo+14], follow-up works acknowledged the downside of compilation delays and investigated
techniques to circumvent long compilation times [Neu11; KLN18; KLN21].

A critical observation about this recent line of research is that it is very similar to just-

in-time (JIT) compilation, which is a very well-studied problem in the compiler community.
In Chapter 3, I study how we can leverage the compiler community’s results from decades of
research on JIT compilation to build a compiling query execution engine with relatively low
e�ort that is competitive with the most recent achievements in query compilation. In particular,
my approach achieves low compilation times, high query execution performance, and adaptive
(re-)optimization during query execution. While all these desirable properties have already been
achieved in recent DBMSs, the bene�t of my approach is that we can achieve these properties
with ease by cleverly building on top of existing JIT compilation infrastructure.

24

1.5 A New DBMS for Research and Fast Prototyping

To evaluate my contributions, that I hinted at in the prior sections, I had to implement my
approaches in some DBMS. Chronologically, my �rst project – that resulted in the paper that
forms Chapter 3 – was on JIT compiling SQL queries to machine code as described in Section 1.4.
When I was about to start this project, I searched for an open-source DBMS that would �t my
purpose and enable me to implement my approach into that system. Surprisingly, there was
only a single open-source DBMS that supported query compilation and code generation, namely
NoisePage [22b]. After looking at NoisePage more closely, I realized that its design was very
rigid; modifying it to my needs would be a very tedious task let alone the lack of documentation.
This was the point where I decided to build a new DBMS – or at least those parts of a DBMS that
I would need to realize my approach. E�ectively, this meant building an SQL-to-machine-code
compiler plus a storage layer. In retrospective, not using NoisePage turned out to be the right
decision, as the project was discontinued in July 2021.

A few months into building this new DBMS, I was facing the problem of adding a storage
layer to the just built SQL parser, semantic analysis, and compiler. By looking at open-source
projects for inspiration, I realized that all DBMSs I found had a �xed storage layout that was
baked into the system, e.g. a hard-coded row or PAX layout. After some discussion with my
advisor about how to proceed, we came to the conclusion that we wanted to do things di�erently.
We wanted to build a generic solution that can be adapted to di�erent – hopefully any – layout
with ease while still providing performance that is competitive to hard-coded layouts. This
approach becomes feasible through the e�cient code generation and the following e�cient
and e�ective compilation to machine code. In particular, we built a data structure for describing
the desired data layout to the DBMS. The DBMS takes this description to generate at query
compilation time the necessary code to access the data in the way that is described by our data
structure. A very nice side e�ect of our approach is that it separates storage and data layout
from the remainder of the system. Where other compiling systems expose internal data layouts
in other components, e.g. query execution, our system achieves a clean separation of concerns.
While a similar separation of concerns is achieved in DBMSs with interpreting query execution,
we are able to eliminate any interpretational overheads through JIT compilation.

After successfully separating storage and data layout from the remainder of the sys-
tem, in particular query execution, we decided that we want to achieve the same de-
gree of separation of concerns and encapsulation for all parts of our DBMS. This lead to
our abstract concept of building our DBMS as a composition of individual components.
While this is not a new idea at all – and was already explored three decades ago by
Batory et al. [Bat+88], Carey and DeWitt [CD87], and Carey et al. [Car+91] – we are able to

25

overcome abstraction overheads through our approach of JIT compiling not only queries but
also any code that is part of query execution, e.g. storage access. The fact that our DBMS is
composable and hence can be con�gured – or mutated – on a �ne granule to one’s demands
explains our choice for its name: mutable, a play on words frommutation and table (to emphasize
our focus on relational data).

Chapter 4 provides a more extensive motivation for building a new DBMS and our design.
This section also dives deeper into our design considerations and the goals we have set for the
project. Further, in that chapter, I provide an extensive list of components of mutable, describe
their interfaces, and provide examples.

26

Chapter 2

Query Optimization

This chapter is based on my publication “E�ciently Computing Join Orders with

Heuristic Search” [HD23b]. This work was published in the research track of

SIGMOD 2023. This workwas co-authored bymy Ph.D. advisor Prof. Dr. Jens Dit-

trich.

2.1 Introduction

The Structured Query Language (SQL) is the dominant programming language to query and
transform relational data, that is usually stored in (relational) database management sys-

tems ((R)DBMS). SQL is a declarative language: it only expresses what to compute without
specifying how to compute. This declarative style of expressing operations burdens a DBMSwith
determining a query execution plan (or simply query plan) that de�nes how the computations
required by a query are done. A crucial part of determining a query plan is determining a join
order, i.e. the order in which individual relations are joined by the respective join predicates of
the query. The join order has a major impact on the performance of the query plan and hence it
is of utmost importance to a DBMS to compute a “good” join order – or at least to avoid “bad”

join orders [BC05; Lei+15]. This problem is known as the join order optimization problem (JOOP)
and it is generally NP hard [IK84; CM95]. There exists a comprehensive body of work on
computing join orders. It can be divided into work on computing optimal join orders [IK84;
Sel+79; CM95; MN06; DT07; FM11a; FM11b], work on greedy computation of potentially sub-
optimal join orders [Feg98; WP00; Neu09; NR18], work on adaptive re-optimization of join
orders [KD98; Ng+99; WNS16; Per+19], and recent work based on machine learning [Mar+19;
Mar+21; Neg+21].

Ono and Lohman [OL90] derive analytically the number of distinct plans w/o Cartesian
products, showing that the amount of plans is generally exponential in the number of relations.

27

For queries with many relations, the search space of plans quickly becomes too large to explore
exhaustively. DBMSs therefore de�ne a threshold beyondwhich suboptimal but faster algorithms
are used [NR18]. Interestingly though, optimal algorithms need not be exhaustive.

In the domain of AI planning, searching extremely large search spaces is a frequent task
and research in that area has brought forth algorithms to e�ciently explore such search spaces.
An important class of such algorithms is best-�rst search (BFS). BFS enables e�ciently �nding
optimal or nearly optimal solutions without exhaustively exploring the entire search space.
It has proven itself useful in a wide range of applications [ES11; Sal17]. The question arises
whether and how BFS can be applied to JOOP.

Contributions. In this work, we present a new approach to join order optimization that is
based on heuristic search, an important subset of BFS. In particular, we make the following
contributions.

1. To the best of our knowledge, we present the �rst formal reduction of JOOP to shortest
path. We present formalizations for both bottom-up and top-down join ordering and
investigate their dualism. (Section 2.2)

2. We de�ne heuristic search, perform a theoretical analysis of heuristic search applied to
our shortest path problem, and elaborate the general search procedure. (Section 2.3)

3. We present an e�cient search space representation for both bottom-up and top-down
search. Additionally, we devise two crucial optimizations, one of which is highly particular
to the search space of JOOP. (Section 2.4)

4. We identify and circumvent a potential pitfall when incorporating a DBMS cost model
into heuristic search, that severely limits the e�ciency of the search. (Section 2.5)

5. We experimentally evaluate our approach and compare it to state-of-the-art algorithms.
(Section 2.7)

6. We propose a new benchmark that systematically explores the Query Graph Exploration
Landscape (QGraEL) along the three query graph dimensions number of relations, graph
density, and edge distribution. (Section 2.7.3)

This chapter is organized in the order of contributions. We discuss related work in Section 2.6.

28

2.2 Join Order Optimization as a Shortest Path Problem

In this section, we formalize join order optimization as a shortest path problem. We begin
with a brief excursion to shortest path and graph search. We then reduce bottom-up join order
optimization to shortest path. We investigate the dualism of bottom-up and top-down join
order optimization when expressed as a shortest path problem. Lastly, we analyze the time
complexity of solving JOOP via shortest path.

2.2.1 The Shortest Path Problem

We formally de�ne the shortest path problem on directed graphs as follows. Let � ≔ (+ , �)
be a graph with vertices + and directed, weighted edges � ⊆ {(D, E,F) | D, E ∈ + ,F ∈ R+}. For
an edge 4 = (D, E,F), we call D the tail, E the head, and F the weight of 4 . A path % =

41 . . . 4: ∈ �: is a sequence of edges with ∀ 8 ∈ {1, . . . , : − 1}. head(48) = tail(48+1). We say
that % starts in tail(41), ends in head(4:), and has length |% | = : . The weight of a path is
de�ned as weight(%) ≔ ∑ |% |

8=1 weight(48). Let =0, =∗ ∈ + be the start and goal of a search problem,
respectively, and further let P(=0, =∗) ≔ {% | % starts in =0 ∧ % ends in =∗} be the set of all paths
from =0 to =∗. We then de�ne the shortest path as

arg min

%∈P(=0,=∗)
weight(%) (2.1)

A shortest path algorithm computes a solution for the shortest path problem, that is a shortest
path algorithm computes for some� ≔ (+ , �) and=0, =∗ ∈ + a path % according to De�nition 2.1.

2.2.2 Reducing JOOP to Shortest Path

A

B C

D

Figure 2.1: Example
query graph.

We will now formulate join ordering as a shortest path problem. To
do so, we need to formalize JOOP and then reduce it to shortest path.
Note, that this requires a reduction from NP-hard JOOP to PTIME
shortest path where the size of the search space for shortest path is
exponential in the size of the query graph �Q (in the worst case). We
use the query graph in Figure 2.1 as a running example throughout this
section. For some query Q, let �Q ≔ (', �) be the query graph of Q,
with relations ' as vertices and joins � ⊆

(
'
2
)1 as edges. For Figure 2.1,

we have ' = {�, �,�, �} and � =
{
{�, �}, {�,�}, {�, �}, {�, �}

}
. The

1The notation
((
:

)
, read “from set (choose :”, denotes all subsets of (of size : , i.e. {B ⊆ (| |B | = :}. Observe,

that
��� ((:) ��� = (|(|

:

)
.

29

goal of join order optimization is to order the joins in � such that the induced plan for Q has
minimal cost. In this work, we restrict ourselves to binary, inner joins. We call a subset (⊆ ' a
subproblem of Q, e.g. {�, �, �} is one subproblem of Q. We say that a join 9 = {A1, A2} ∈ � joins
two disjoint subproblems (1, (2 if A1 ∈ (1 ∧ A2 ∈ (2. For example, join 9�� = {�, �} ∈ � joins
subproblems {�, �} and {�}, written 9�� ({�, �}, {�}). Every join 9 ∈ � can hence be treated
as a partial function 2' × 2' ⇀ 2' :

9 : ((1, (2) ↦→ (1] (2 if 9 = {A1, A2} ∧ A1 ∈ (1 ∧ A2 ∈ (2

The precondition of 9 ensures that 9 is only applicable to two disjoint subproblems that are
joinable by 9 . For example, 9�� ({�, �}, {�}) = {�, �, �} while 9�� ({�, �}, {�}) is unde�ned.
Note, that this de�nition of 9 requires specifying the two subproblems (1, (2 to join. However,
we want to represent a query plan as a sequence of joins, i.e. without explicitly specifying for
each join what subproblems are joined. We can leverage a join 9 ’s precondition to formulate a
hoisted de�nition 9∗ that operates on sets of subproblems. In particular, 9∗ automatically selects
from a set of pairwise disjoint subproblems (1, . . . , (= the two subproblems (8 , (: for which
9 ((8 , (:) is de�ned:

9∗ : {(1, . . . , (=} ↦→
(
{(1, . . . , (=} \ {(8 , (: }

)
∪ { 9 ((8 , (:)}

where 9 = {A8 , A: }, A8 ∈ (8 , and A: ∈ (: . For example,

9∗��
({
{�, �}, {�}, {�}

})
=
{
{�}

}
∪
{
9�� ({�, �}, {�})

}
With the hoisted de�nition of joins, we can de�ne a plan as a sequence of all joins in � . Let
? = 91 . . . 9 | � | be a plan. Then ? (S) ≔ 9∗| � | ◦ · · · ◦ 9

∗
1 (S) denotes the sequential application of

joins to some set of subproblems S. Any plan ? joining all relations ' of query Q, formally
?

((
'
1
))

= {'}, is a feasible plan for Q. Note, that “feasible” e�ectively means “without Cartesian
products”. Consider, for example, the plan ? = 9�� 9�� 9�� 9�� . We have

?
(('
1

))
= 9∗�� ◦ 9∗�� ◦ 9∗�� ◦ 9∗��

({
{�}, {�}, {�}, {�}

})
= 9∗�� ◦ 9∗�� ◦ 9∗��

({
{�}, {�, �}, {�}

})
= 9∗�� ◦ 9∗��

({
{�, �, �}, {�}

})
=
{
{�, �,�, �}

}
= {'}

30

b
o
t
t
o
m
-
u
p

t
o
p
-
d
o
w
n

A

B C

D

A

B C

D A

B C

D A

B C

D A

B C

D

9�� ({�}, {�}) withF = � ({�}, {�}, 9��)

A

B C

D A

B C

D A

B C

D A

B C

D

A

B C

D 9�� ({�}, {�,�, �}) withF = � ({�}, {�,�, �}, 9��)

=0

=∗

Figure 2.2: Search space for the shortest path. Sets are represented by their induced subgraph,
e.g. =0 is

{
{�}, {�}, {�}, {�}

}
.

Observe, that query & from Figure 2.1 is cyclic. Therefore, in this plan ? , 9�� is subsumed2 by
applying both 9�� and 9�� beforehand. The goal of join order optimization according to our
de�nition is to compute a feasible plan ? of minimal cost.

We now reduce JOOP to shortest path. The idea of our reduction is that every application
of a join 9 to two subproblems (1, (2 forms an edge in the search space for shortest path. The
weight of this edge is the cost of performing this join. Search starts in the initial vertex =0 =

(
'
1
)
.

The search space consists of all vertices reachable from =0 through successive application of the
joins in � . Figure 2.2 shows the search space for the query graph in Figure 2.1. The search space
is a directed graph, with edges directed away from =0 (read bottom to top). The vertices of the
search space are sets of subproblems yet to be joined together. Each subproblem of a vertex
is drawn as a connected subgraph (csg) with solid edges; dashed edges represent joins not yet
applied. Every path from the start =0 =

(
'
1
)
to the goal =∗ = {'} is a sequence of joins joining

all relations in ' and therefore a feasible plan according to our de�nition. Further, the weight of
such a path equals the cost of the corresponding plan. We call the search space constructed
by this reduction of JOOP to shortest path SPJOOP. We can now solve JOOP by computing a
shortest path according to 2.1 in SPJOOP.

So far, we did not explain how weights are computed. It is fair to assume that a DBMS can
provide a cost model to predict the cost of joining two subproblems� : 2' × 2' × � → R+. With

2Either 9�� degrades to a selection predicate or is applied simultaneously with 9�� by conjunction of 9�� ’s and
9�� ’s join predicates.

31

cost model � , we can de�ne the weight of an edge as

weight

(
(D, E)

)
≔ min

{
� ((1, (2, 9)

���� 9 ∈ � ∧ (1, (2 ∈ D ∧
E = (D \ {(1, (2}) ∪ { 9 ((1, (2)}

}
A join subsumed by other joins can be evaluated in two ways: either by a join algorithm that
supports a conjunction of multiple predicates or by a selection succeeding the subsuming joins.
Either way, we expect � to compute the costs accordingly.

2.2.3 The Dualism of Bottom-Up and Top-Down Join Order Optimization

The reduction in Section 2.2.2 is for bottom-up join ordering: initially all relations are disjoint
in =0 and then joins are applied to join subproblems until all relations are joined together in =∗.
In top-down join ordering, we start with all relations already joined together and “undo” joins
until all relations are pairwise disjoint. Undoing joins means partitioning a subproblem (into
smaller subproblems (1, (2 with ∃ 9 ∈ � . 9 ((1, (2) = (. Observe in Figure 2.2 that top-down join
ordering corresponds to a search starting in =∗ with goal =0 and edges directed towards =0.
The search space of top-down join ordering is dual to that of bottom-up join ordering. Hence,
top-down join ordering is the dual problem of bottom-up join ordering.

2.2.4 Complexity of SPJOOP

Join order optimization is well-known to be NP hard [IK84; CM95]. This means that solving
JOOP requires time exponential in the size of the query graph�Q . Since our reduction of JOOP
to shortest path preserves optimality, solving JOOP by computing a shortest path in SPJOOP,
that is constructed by our exponential-time reduction in Section 2.2.2, must have worst-case
time exponential in the size of the query graph. To prove that this is indeed the case, we give
the following constructive argument.

Ono and Lohman [OL90] show that queries whose query graph�Q = (', �) is a clique have
Θ(3 |' |) many connected complement pairs (CCP), where a CCP is a pair of subproblems ((1, (2)
s.t. ∃ 9 ∈ � . 9 ((1, (2) and (1, (2 induce csgs in �Q . We show that for each CCP in �Q there
exists at least one vertex in SPJOOP: For every CCP ((1, (2) in �Q there exists at least one set of
subproblems S, s.t. S contains the CCP. Exactly one such S contains the CCP and otherwise
only base relations, i.e. S =

{
(1, (2

}
∪
(
'\((1∪(2)

1
)
. This S is a vertex in SPJOOP. Hence, SPJOOP

has |+ | ∈ Ω(3 |' |) many vertices. Because every vertex in SPJOOP (except the goal) has at least
one outgoing edge, there are |� | ∈ Ω(3 |' |) many edges.

For computing a shortest path, we can choose from a broad set of shortest path algorithms.
Because we are only interested in shortest paths from =0 to =∗, our problem is the special

32

case single-pair shortest path, with pair (=0, =∗). Schrijver [Sch04] gives an extensive survey
of shortest path algorithms. In the class of uninformed (or blind) search, algorithms only have
information of the start =0 and the search space (cf. Figure 2.2). This e�ectively means that
the knowledge of =∗ is of no use to uninformed search. Of this class of algorithms, even the
asymptotically best have a worst-case time complexity that is at least linear in the size of the
search space, i.e. Ω(|+ |) or Ω(|� |). Since both |+ | and |� | of SPJOOP are exponential in the size
of the query graph �Q (in the worst case), computing a shortest path in SPJOOP requires time
exponential in the size of�Q (in the worst case). However, the mentioning of uninformed search
suggests that there must be informed search. Informed search, or heuristic search, has additional
knowledge beyond the problem description, that allows for a goal-oriented search. We discuss
this in the following Section 2.3.

2.3 JOOP as a Heuristic Search Problem

After reducing JOOP to SPJOOP in Section 2.2, we explore how to solve SPJOOP with heuristic
search. We therefore extend search by a heuristic function. The heuristic function (or just
heuristic) estimates for a given vertex in the search space the weight of a shortest path from
that vertex to a goal. The heuristic enables the search to focus on vertices that it deems
to lead to shorter paths. We can apply heuristic search to our shortest path problem if we
can de�ne a heuristic for our search space. We discuss important properties of heuristic
functions in Section 2.3.1 and their impact on heuristic search in Section 2.3.2. We motivate that
heuristic search enables us to gradually sacri�ce optimality, in terms of plan cost, for e�ciency.
In Section 2.3.3, we then describe conceptually how we apply heuristic search to SPJOOP with
a potentially exponentially large search space. We present proof sketches for completeness,
soundness, and optimality in Section 2.3.4 and study di�erent performance criteria of heuristic
search in Section 2.3.5. We discuss how to �nd a heuristic for SPJOOP in Section 2.5.

2.3.1 Properties of Heuristic Functions

A heuristic function ℎ estimates for some vertex E the weight of a shortest path from E to
a goal. The optimal heuristic ℎ∗ returns for each vertex E exactly the weight of a shortest
path from E to a goal. A heuristic ℎ is goal-aware if the heuristic value of any goal is 0,
formally E is goal ⇒ ℎ(E) = 0. In SPJOOP, checking whether a vertex is a goal is simple
and we therefore assume all heuristics to be goal-aware. A heuristic underestimates if there
exists a vertex for which the heuristic underestimates the weight of a shortest path to goal,
i.e. ∃ E ∈ + . ℎ(E) < ℎ∗(E). Likewise, a heuristic overestimates if ∃ E ∈ + . ℎ(E) > ℎ∗(E). A

33

heuristic that never overestimates is called admissible. Admissibility becomes important when
we discuss optimality of heuristic search. A heuristic ℎ is called consistent if the heuristic never
overestimates the weight of a single edge, i.e. ∀ (D, E,F) ∈ �. ℎ(D) ≤ ℎ(E) +F . Every consistent
and goal-aware heuristic is also admissible and ℎ∗ is consistent.

2.3.2 Properties of Heuristic Search

To exploit a heuristic we need to perform heuristic search. In particular, we will focus on
Dijkstra’s algorithm [Dij+59] and famous �∗ [HNR68]. There are two interesting properties
of �∗, that we will mention here, as they will guide us when we design and evaluate heuristics.

Optimality. Algorithm �∗ is optimal, that is it computes the shortest path from start to goal,
if the heuristic ℎ is admissible [HNR68].

Time Complexity. Dechter and Pearl [DP85] have shown that if the heuristic ℎ is consistent,
algorithm �∗ is optimally e�cient, i.e., there exists no BFS algorithm that �nds a shortest path
with traversing fewer vertices of the search space.

According to these two properties, if we are able to devise an admissible heuristic for SPJOOP,
we are guaranteed that �∗ will �nd a shortest path, which corresponds to an optimal plan
of JOOP. Further, if we are able to devise a consistent heuristic for SPJOOP that is e�ciently
computable, i.e. in PTIME, we know that we can e�ciently solve SPJOOP (even if not in PTIME).
A naïve attempt would be to devise an optimal heuristic for SPJOOP. However, an optimal
heuristic for SPJOOP cannot be computed in PTIME:

Theorem 1. Unless P =NP, any optimal heuristic for SPJOOP is not in PTIME, formally:
∀ℎ.

(
∀ E . ℎ(E) = ℎ∗(E)

)
⇒ ℎ ∉ PTIME.

We will prove Theorem 1 by contradiction, showing that if an optimal heuristic ℎ were
computable in PTIME, we could solve JOOP in PTIME, contradicting the fact that JOOP is
NP hard [IK84; CM95]. Our proof relies on the conjecture P ≠ NP and on bounding the
complexity of shortest path. With a depth 3 , where 3 is the minimal length of any path from =0

to =∗, and a maximum branching factor 1, the complexity of shortest path is in O(13) [RN20].
In SPJOOP, 1 is bounded by the number of joins |� | and 3 is exactly |' | − 1. Hence, we can
bound the time complexity by O(|� | |' |−1). So far, this bound is not really helpful. However, for
optimal ℎ, 1 becomes 1. We prove this by contradiction (compare [ES11, Theorem 2.9 on p. 72]):

Lemma 1. Assume an edge (D, E,F) ∈ � and further∀ (D, E ′,F ′) ∈ �. ℎ∗(E) +F ≤ ℎ∗(E ′) +F ′.
Then E lies on a shortest path from D to a goal.

34

Algorithm 1 BFS with on-demand search space computation.
1: function BFS(=0 : start vertex)
2: L ← [=0] ⊲initialize open list

3: while L not empty do

4: D,6D ← extract-best(L) ⊲extract next best vertex with its cost

5: if D is goal then
6: return Success ⊲found path from =0 to =∗
7: end if

8: for each (D, E,F) ∈ � in expand(D) do ⊲expand D

9: add(L, E, 6D +F) ⊲add successors of D to L
10: end for

11: end while

12: return Failure ⊲no path from =0 to =∗ was found
13: end function

Proof of Lemma 1 by contradiction. Assume E does not lie on a shortest path from D to goal.
Then ∃ (D, E ′,F ′) ∈ � with E ≠ E ′ and E ′ lies on a shortest path from D to goal. By optimality
of ℎ∗, it holds ℎ∗(D) = ℎ∗(E ′) +F ′. Because E does not lie on a shortest path from D to goal, it
holds ℎ∗(D) < ℎ∗(E) +F . Hence, ℎ∗(E ′) +F ′ < ℎ∗(E) +F . E �

By Lemma 1, if ℎ is optimal, it is su�cient for a search algorithm to pursue only a single edge
minimizing ℎ(E) +F . This means, with an optimal heuristic the branching factor 1 becomes 1
and our time complexity bound collapses to O(1 |' |−1) = O(1). However, our bound does not
account for the evaluation of ℎ.

Proof of Theorem 1 by contradiction. With 3 = |' | − 1 and 1 ≤ |� |, ℎ is evaluated at most(
|' | − 1

)
· |� | times. This term is polynomial in the size of the query graph�Q = (', �). Assume

for the sake of contradiction that we have an optimal heuristic ℎ ∈ PTIME. We would then
be able to compute a shortest path in SPJOOP in PTIME. Since a shortest path in SPJOOP is an
optimal plan for JOOP, we would be able to solve JOOP in PTIME. E �

We now know that an optimal heuristic cannot be computed e�ciently, i.e. in PTIME.
However, if we were able to approximate ℎ∗ by some heuristic ℎ ∈ PTIME and ℎ were consistent,
then we could compute an optimal solution optimally e�ciently with �∗. Interestingly, for
practical purposes, the heuristic need not be consistent to achieve an e�ective branching factor
close to 1.

35

2.3.3 Searching an Exponentially Large Space

In Section 2.2.4 we learned that the number of vertices |+ | and the number of edges |� | of SPJOOP
are exponential in the size of the query graph �Q . Hence, �nding a shortest path in SPJOOP
requires time exponential in the size of �Q . Constructing the entire search space a priori to the
actual search would render our approach ine�cient if not infeasible. Therefore, in our algorithm
we will explore the search space on demand only.

We describe conceptually how the search space is computed successively and on demand
by BFS and provide pseudo-code in Figure 1. We assume that BFS uses a container of vertices,
usually called open list; some BFS algorithms implement this open list as a priority queue
(e.g. �∗), some implement it as a single vertex (e.g. hill climbing). In each iteration of BFS, the
best vertex is extracted from the open list to be expanded next (line 4). The de�nition of best
depends on the search algorithm and is usually based on some combination of the weight 6
of the path by which the vertex was reached from the start =0 and the heuristic value ℎ of the
vertex. For example, �∗ de�nes best as the vertex minimizing 6 + ℎ. When a vertex is expanded,
some or all successors (but at least one) of this vertex are computed and added to the open list
(line 9). BFS proceeds until one of two termination criteria is met: (1) When a goal is extracted
from the open list (line 5), BFS has found a path from start to this goal and the search terminates
successfully. (2) When the open list runs empty, no path from start to a goal was found and BFS
terminates unsuccessfully (line 12).

Depending on the BFS algorithm, we may in the worst case explore the entire search space
before reaching a goal. For �∗, this may happen when all joins have nearly the same cost,
making edge weights nearly uniform and degrading �∗ to breadth-�rst search. We believe, that
situations in which (almost) the entire search space is explored are highly unlikely in the real
world. We provide Table 2.1 in Section 2.3.5, which supports our claim with empirical data.

Figure 2.3 shows an example run of �∗ on the search space in Figure 2.2. The algorithm
starts in vertex =0 = 1 . We annotate each vertex with the weight 6 of the path from start 1 .
Additionally, we annotate vertices with their heuristic value ℎ. For example, start 1 has
6 = 0, ℎ = 50. Vertex 1 represents the four subproblems {�}, {�}, {�}, and {�}. We expand 1

by applying any one of the four possible joins in � , thereby generating four successors. For
each such successor we compute the weight 6 of the path from the start to that successor as
well as the heuristic ℎ. We label each edge with its weight, as resulting from expansion. For the
expansion of 1 , edges are labeled 20, 70, 120, and 10. The vertex of minimal 6 + ℎ that was not
yet expanded is expanded next. Here, 2 with 6 +ℎ = 10 + 40 = 50 is expanded. 2 represents the
three subproblems {�}, {�}, and {�, �}. From 2 , we can either join {�} with {�} or {�} with
{�, �}. Hence, the two successors 3 & 4 are generated by expansion of 2 . We again compute 6

36

A

B C

D

A

B C

D A

B C

D A

B C

D A

B C

D

F = 20 70 120 10

A

B C

D A

B C

D A

B C

D A

B C

D

20 30

A

B C

D

30
15

1

2

3 4

5

6 = 0
ℎ = 50

6 = 20
ℎ = 50

6 = 70
ℎ = 70

6 = 120
ℎ = 30

6 = 10
ℎ = 40

6 = 30
ℎ = 20

6 = 40
ℎ = 15

6 = 60 3 / 6 = 55 4
ℎ = 0

Figure 2.3: Search tree for bottom-up �∗. Vertices are labeled 1 with their order of expansion.
Dashed edges mark vertices generated by expansion and are labeled with the weight of the
edge. Solid edges additionally were pursued by the search. Two vertices are never generated
and the goal is generated twice, �rst with 6 = 60 by 3 and then with 6 = 55 by 4 . The �nal
plan is � Z (� Z (� Z �)).

and ℎ of these successors. Next, 3 with 6 + ℎ = 50 is expanded into goal 5 with 6 = 60, ℎ = 0.
Notice, that at this point, the algorithm does not terminate yet, as we only added a goal 5 (line 9
in Figure 1). The next vertex to expand is 4 and expansion yields 5 , again. However, this time 5

is reached by a path with weight 6 = 55. The next vertex to expand is 5 with 6 + ℎ = 55 + 0.
Since 5 is a goal, the search terminates successfully with a shortest path of weight 55.

2.3.4 Completeness, Soundness, Optimality

In this section, we show that the successive computation of the search space during BFS does
not harm completeness, soundness, and optimality. We therefore sketch the proofs for these
properties, assuming a BFS algorithm that is complete, sound, and optimal. However, before we
do so, let us highlight three properties of the search space, that will help us with the proofs.
(1) The search space is acyclic: there is no non-empty path that starts and ends in the same
vertex. (2) The search space has no dead-ends: every vertex except the goal has at least one
successor. (3) The goal =∗ has depth |' | − 1: every path from =0 to =∗ has exactly length |' | − 1.
These properties follow directly from the construction of the search space in Section 2.2.2.

37

Completeness. As the search space has no dead-ends, expand yields for each non-goal vertex
at least one successor. Because the search space is acyclic, each expand reduces the distance (in
edges) to =∗ by one. Therefore and because the goal has �nite depth, BFS will �nd a path from
=0 to =∗, if one exists.

Soundness. Soundness of our heuristic search follows from soundness of the reduction
in Section 2.2.2, soundness of the BFS algorithm, and soundness of expand. The latter is sound
if it yields for a given vertex D only successors E w.r.t. �, i.e. ∃ (D, E,F) ∈ �.

Optimality. In Section 2.2.2 we have shown that an optimal solution of the problem reduced
to shortest path corresponds to an optimal solution of JOOP. Assuming optimality of BFS, what
remains to show is that expand preserves optimality. This is the case if for every vertex D,
expand(D) yields at least one vertex E s.t. E lies on a shortest path from D to goal. If expand
yields all successors, this is trivially the case.

We now have a profound understanding of heuristic search and its applicability to our
shortest path problem. Before we dive into the algorithmic challenges in Section 2.4, we present
di�erent performance criteria for evaluating heuristic search.

2.3.5 Performance Criteria

There are di�erent measures to assess the performance of heuristic search. Of course, we look
at running times in our evaluation in Section 2.7. If we allow for suboptimal solutions, an
additional measure is how far o� a computed solution is from an optimal solution (i.e. a shortest
path). Another measure, that we already learned about in Section 2.3.2, is the e�ective branching
factor 1∗, which allows us to evaluate how informative a heuristic is to the search. However,
1∗ cannot be measured directly but is derived from the depth of the goal (which is |' | − 1)
and another important measure for heuristic search: the number of generated vertices [RN20].
Because the depth of the goal is �xed, the only remaining variable for computing 1∗ is the
number of generated vertices. Therefore, this number alone already allows us to compare
di�erent heuristics by how informative they are to the search. It also allows us to compare
di�erent search algorithms by how goal-oriented they explore the search space. We can even
compare our approach to classical dynamic programming (DP): the number of vertices generated
corresponds to the number of ccps joined and can directly be compared to the number of ccps
enumerated by DP.

With this knowledge, we conduct our �rst experiment. We compare classical DP imple-
mented by DPCCP [MN06] to blind and heuristic search. As blind search we perform Dijkstra’s

38

Table 2.1: Comparison of DPCCP to search with Dijkstra and �∗↓ + ℎsum by the number of CCPs
that are enumerated to compute an optimal plan. We consider four di�erent graph topologies
and vary the number of relations. Less is better and the best per column is underlined.

chain cycle star clique

5 10 15 5 10 15 5 10 15 5 10 15

DPCCP 20 165 560 36 321 1106 32 2304 114 688 90 28 501 7 141 686

Dijkstra↑ 10 438 2702 13 130 2875 18 218 404 22 2884 26 992

Dijkstra↓ 20 202 2629 44 650 6288 24 1026 61 739 91 191 313 >30 000 000

�∗↓ + ℎsum 10 53 522 16 118 557 10 265 12 568 29 20 969 7 050 206

algorithm in both directions: bottom-up, labeled Dijkstra↑, and top-down, labeled Dijkstra↓. As
heuristic search we perform �∗↓ (top-down) with admissible heuristic ℎsum (cf. Section 2.5). We
compare the three algorithms by the number of ccps joined in Table 2.1. Because heuristic ℎsum
is admissible, �∗↓ computes an optimal plan, like DPCCP and Dijkstra’s algorithm. The best result
in each column is underlined. Before we draw conclusions from our experiment, we want to em-
phasize that DPCCP enumerates all ccps exactly once without duplicates [MN06]. The proportion
of unique ccps to the number of relations |' | is polynomial for chain and cycle topologies and
exponential for star and clique topologies [OL90; MN06]. From the results in Table 2.1, we can
make two key observations: (1) On star and clique topologies, Dijkstra↑ enumerates signi�cantly
less ccps than DPCCP. On chain and cycle topologies, �∗↓ + ℎsum enumerates signi�cantly less
ccps than DPCCP. We conclude that heuristic search is able to �nd an optimal plan without
enumerating all ccps; sometimes only a fraction of all ccps is required. (2) When we compare
our two top-down searches, Dijkstra↓ and �∗↓ + ℎsum, we observe how much of an impact the
heuristic has on the search: the heuristic sometimes reduces the number of ccps enumerated by
more than one order of magnitude.

According to Observation 1, search and particularly heuristic search �nds a provably optimal
plan without the need to enumerate all ccps. In contrast, traditional algorithms for computing
an optimal solution enumerate all ccps (with or without duplicates) [Sel+79; VM96; Van98;
MN06; FM11a; FM11b]. Whether it is possible to compute an optimal plan via search in less
time depends on whether search can be implemented e�ciently. We describe the algorithmic
challenges we face in the following Section 2.4. Observation 2 exempli�es the impact the
heuristic has on the search’s performance. Therefore, in Section 2.5, we explore and evaluate

39

di�erent heuristics.

2.4 Algorithmic Challenges

To be able to e�ciently search for a shortest path from =0 to =∗, we must be able to e�ciently
explore the search space. In Section 2.3.3, we argue that we must not compute the entire search
space a priori to the search but instead compute the explored regions successively. Exploring
the search space is done by successively expanding vertices to their successors, as exempli�ed
in Figure 2.3.

In Section 2.4.1, we present a vertex representation that enables e�cient generation of
successors via expand and e�cient evaluation of a heuristic function ℎ. Consequently, in Sec-
tion 2.4.2 we show how to e�ciently compute successor vertices for this representation in
bottom-up and top-down search. As the search’s performance also heavily depends on the
implementation of the open list, we present in Section 2.4.3 an implementation that supports fast
insertion of generated successors, fast extraction of the next best vertex, and e�cient handling
of duplicates. As we shall see in Section 2.4.4, some duplicates are actually desired while others
are undesired. We develop an algorithm to suppress the generation of undesired duplicates
already when expanding a vertex, thereby preventing attempts to insert undesired duplicates
into the open list.

2.4.1 Vertex Representation

The vertices of our search space are sets of subproblems, i.e. sets of sets of relations. We can
incrementally assign to each relation in the query graph a unique index, starting at 1. For
the query graph in Figure 2.1, we could assign indices � ↦→ 1, � ↦→ 2, � ↦→ 3, � ↦→ 4. Each
subproblem can then be represented as a bit vector 11 . . . 1 |' | with bit 18 set if relation with
index 8 is within the subproblem. For example, the subproblem {�, �} is represented by the
bit vector 0011. A vertex is then represented as a sequence of bit vectors V , with one bit
vector per subproblem. Additionally, the bit vectors are kept sorted lexicographically to allow
for hashing and e�cient equality testing. For example, the vertex with label 2 in Figure 2.3,{
{�},{�},{�,� }

}
, is represented byV = [1000, 0100, 0011]. To e�ciently store and operate on

bit sets, we employ the same case distinction as Neumann and Radke [NR18], using a 64 bit
integer for queries with up to 64 relations, a 128 bit integer for up to 128 relations, a dynamic
array of 64 bit vectors for up to 1024 relations, and a dynamic array of sorted relations for more
than 1024 relations.

40

Algorithm 2 Bottom-up vertex expansion.
function expandBottomUp(VD : representation of vertex D)

for 8 = 1 to |VD | − 1 do
for : = 8 + 1 to |VD | do

18 ←VD [8] ⊲representation of subproblem (1
1: ←VD [:] ⊲representation of subproblem (2
for each 9 ∈ � joining 18 and 1: do

; ←VD [1 : 8 − 1] ◦ VD [8 + 1 : : − 1] ⊲sliceVD to replace 18 . . .

A ←VD [: + 1 : |VD |] ⊲. . . and 1: by (18 | 1:) . . .
VE ← ; ◦

(
18 | 1:

)
◦ A ⊲. . . and maintain lexicographical order

yieldVE by 9 ((1 = 18 , (2 = 1:) ⊲emit how to generate successor

end for

end for

end for

end function

2.4.2 Vertex Expansion

Given a vertexD, expand(D)must compute all outgoing edges of that vertex. The term “outgoing”
is now relative to the direction of join ordering: outgoing edges in bottom-up join ordering are
incoming edges in top-down join ordering and vice versa, cf. Figure 2.2. Given the representation
VD of a vertexD in the search space, the task is to compute all edges (D, E,F) ∈ �, i.e. the outgoing
edges of D. We now make a case distinction about the search direction.

Bottom-Up Search

In bottom-up search, there exists an edge (D, E,F) ∈ � if there is a join 9 ∈ � s.t. 9∗(D) = E .
Expanding the de�nition of hoisted joins from Section 2.2.2, we get

9∗(D) = E ⇔ ∃ (1 ≠ (2 ∈ D. E =
(
D \ {(1, (2}

)
∪
{
9 ((1, (2)

}
From this de�nition we can derive Figure 2 to compute all outgoing edges of D: we simply need
to test for all pairs of subproblems ((1, (2) whether there exists a join 9 ∈ � s.t. 9 ((1, (2).

Time Complexity. Figure 2 iterates over all pairs of subproblems (skipping symmetric pairs)
and over all joins. Note that there can be at most |' | many subproblems inVD . In the innermost
loop,VD is sliced to constructVE . This can be done in a single pass overVD . We can therefore
bound Figure 2’s time by O(|' |3 · |� |). Judging by the asymptotic runtime, our algorithm appears
to be very ine�cient. However, our experiments in Section 2.7 reveal that expansion makes up

41

Algorithm 3 Top-down vertex expansion.
function expandTopDown(VD : representation of vertex D)

for 8 = 1 to |VD | do ⊲partition each subproblem ofVD

for each ccp
(
11, 12

)
in PARTITIONMinCutAGaT(VD [8]) do ⊲[FM11b, Fig. 6]

VE ←VD [1 : 8 − 1] ◦ VD [8 + 1 : |VD |] ⊲remove subproblem at index 8

InsertSortedLex(VE, 11) ⊲insert 11 lexicographically

InsertSortedLex(VE, 12) ⊲insert 12 lexicographically

yieldVE by 9 ((1 = 11, (2 = 12) ⊲emit how to generate successor

end for

end for

end function

for only a small fraction of overall search time.

Top-Down Search

Analogously to bottom-up search, in top-down search, there exists an edge (D, E,F) ∈ � if
there is a join 9 ∈ � s.t. 9∗(E) = D. Again, by expanding the de�nition of hoisted joins from
Section 2.2.2, we get

9∗(E) = D ⇔ ∃ (1 ≠ (2 ∈ E . D = E \ {(1, (2} ∪
{
9 ((1, (2)

}
⇔ ∃ (1 ≠ (2 ∈ E ∃ (∈ D. 9 ((1, (2) = (

This means, there exists an edge (D, E,F) ∈ � if there is a subproblem (in D that can be
partitioned into subproblems (1, (2 in E such that there is a join 9 ∈ � with 9 ((1, (2) = (. Enumer-
ating these partitions is exactly the problem of top-down join ordering [VM96; DT07; FM11a;
FM11b]. We select an existing partitioning algorithm to enumerate all ccps of a subproblem,
here PARTITIONMinCutAGaT [FM11b], to implement top-down vertex expansion in Figure 3.

Time Complexity. Fender and Moerkotte [FM11b] analyze the time complexity of
MincutLazy and �nd that it is worst for clique queries with O(|' |2) time. MinCutAGaT,
which is based on MincutLazy, exhibits the same asymptotic runtime behavior. Analyzing
our Figure 3, we see that the outer-most loop performs no more than |' | iterations. Further,
slicing VD to construct VE and the two invocations of InsertSortedLex require at most
O(|' |) time. We conclude that Figure 3’s time complexity is bounded by O(|' |4). Note that
MinCutBranch [FM11a] exhibits better asymptotic runtime behavior than MinCutAGaT for
cycle and clique queries but is signi�cantly more complex. As our evaluation in Section 2.7
shows, vertex expansion takes only a small share of overall search time and we therefore opt

42

for MinCutAGaT in this work.

2.4.3 Open List and Duplicate Detection

As shown in Figure 1, BFS extracts in each iteration of the outer loop the next best vertex from
the open list with extract-best, expands it into its successors, and adds the successors to
the open list with add. To e�ciently implement extract-best and add, we require a data
structure that e�ciently supports (1) �nding the next best vertex, (2) removing the next best
vertex, and (3) adding newly generated successor vertices. There is one more operation that the
data structure should support. To motivate this, let us look again at the example in Figure 2.3.
The goal 5 is generated twice, �rst by 3 with 6 = 60 and afterwards by 4 with 6 = 55. When 5

is generated the second time, it is already present in the open list. One way to support this, is
by allowing for duplicates in the open list. This is safe, since duplicates have the same heuristic
value ℎ and hence the duplicate with smaller 6 is extracted �rst from the open list. However,
if duplicates occur frequently, they cause the open list to grow unnecessarily large, thereby
degrading performance. A better way to cope with duplicates is to detect them while they are
being added to the open list. We therefore devise a scheme for the detection of duplicates (DeDup):
A new vertex is immediately added to the open list. When a duplicate vertex is being added to
the open list, we compare the 6 values of this duplicate and the vertex already in the open list.
A duplicate with equal or greater 6 is discarded, as it cannot lead to �nding shorter paths. A
duplicate with smaller 6 means that we have found a shorter path from =0 to this vertex. Instead
of adding the duplicate to the open list, we reduce 6 of the vertex already within the open list

to 6 of the duplicate that is being added. The data structure should therefore also support an
operation to (4) reduce 6 of an already incorporated vertex.

Data structures �t for this task are heaps. They provide exactly the aforementioned required
operations (1) find-min, (2) delete-min, (3) insert, and (4) decrease-key. There are many
di�erent implementations of heaps, e.g. binary heap, binomial heap, Fibonacci heap, and pairing
heap, to name a few [Cor+16, 6.1 Heaps on p. 151]. Some heaps do not support decrease-key.
In that case, the operation can be emulated by �rst deleting the vertex of old 6 and then re-
inserting the vertex with new6. However, we shall use boost::heap::fibonacci_heap, which
e�ciently supports the decrease-key operation.3

DeDup requires that we can search for a particular vertex in the heap – an operation that
is usually not (e�ciently) supported. We therefore naïvely use a hash table in addition to the
heap. The hash table serves two purposes: (1) It stores for each seen vertex a handle. If the
vertex is currently in the heap, the handle references the heap entry. Otherwise, the vertex has

3Note that Boost implements max-heaps.

43

Algorithm 4 Add vertex to open list with duplicate handling.
function add(L : open list, E : vertex to add, 6E : cost of E)

if E in L.table then ⊲is E a duplicate?

if 6E < L.table[E] .6 then ⊲reached E on a cheaper path?

if L.table[E].handle is None then ⊲not in open list?

L.table[E].handle← insert(L.heap, E , 6E + ℎ(E))
L.table[E] .6← 6E ⊲remember cost of E

else

decrease-key(L.heap, L.table[E].handle, 6E + ℎ(E)) ⊲update cost

L.table[E] .6← 6E ⊲remember updated cost

end if

end if

else

L.table[E].handle← insert(L.heap, E , 6E + ℎ(E)) ⊲insert and save handle

L.table[E] .6← 6E ⊲remember cost of E

end if

end function

Algorithm 5 Extract best vertex from open list.
function extract-best(L : open list)

E, 6E ← find-min(L.heap) ⊲get best vertex and its cost

delete-min(L.heap) ⊲remove best vertex from heap

L.table[E].handle← None ⊲update handle

return E, 6E
end function

been extracted from the heap and the handle is None. (2) The hash table stores for each seen
vertex the weight 6 of the cheapest path by which the vertex was reached. With the handle we
are able to perform a decrease-key operation when a vertex is reached on a cheaper path. It
also enables us to identify whether a vertex is currently in the heap or has already been deleted.
Storing 6 inside the hash table enables us to discard duplicates not reached on a cheaper path,
even when the vertex has already been extracted from the open list. DeDup implicitly requires
that the heap can provide handles to entries. This is usually the case when the heap provides
referential stability

4 of its elements. We implement add and extract-best with DeDup in
Figure 4 and Figure 5, respectively. Note, that in the pseudo-code the open list L contains both
the heap and the hash table. Further, Figure 4 de�nes the best vertex as the one minimizing
6E + ℎ(E), as is required by �∗; any other de�nition of best is possible.

We demonstrate the necessity of DeDup with a small experiment. We compare two im-
plementations of the open list: one implementation with DeDup and one implementation that

4Referential stability is also called pointer stability.

44

Table 2.2: The impact of DeDup. We run Dijkstra↑ on queries of 10 relations and count new
and duplicate vertices.

chain cycle star clique

without DeDup
#new 497 819 115 1497

#duplicates 182 577 224 726 72 13 710

with DeDup
#new 497 819 115 1497

#duplicates 1140 1408 22 191

simply allows for duplicates and performs no duplicate checking at all. We compute optimal
plans for queries of 10 relations using bottom-up search with Dijkstra’s algorithm and we
count the new and duplicate vertices generated by vertex expansion. We present our �ndings
in Table 2.2. Note, that whether we allow for duplicates in the open list only a�ects how many
duplicates are generated and how often the same vertex is expanded but it does not a�ect which
unique vertices are expanded or generated. The explored region of the search space remains the
same. Hence, and as we expect, the amount of newly generated, unique vertices is independent
of whether we allow for duplicates. In stark contrast, the amount of duplicates generated when
allowing for duplicate vertices in the open list is up to two orders of magnitude larger. To
understand why allowing for duplicates in the open list has such a devastating e�ect on the
amount of vertices generated, we have to understand that every single duplicate extracted from
the open list is expanded and hence all its generated successors become duplicates in the open
list, leading to an exponential blow-up of duplicates. In the following Section 2.4.4, we discuss
how we further prevent some duplicates of ever being generated.

2.4.4 Duplicate Prevention

In previous Section 2.4.3, we proposed DeDup to e�ciently eliminate duplicates in the open list.
However, DeDup does not prevent the generation of duplicates during vertex expansion. In the
following, we identify two classes of duplicates: desired and undesired duplicates. We then devise
a scheme to prevent the generation of undesired duplicates during vertex expansion (PreDup). We
consequently extend vertex representation from Section 2.4.1 and expansion from Section 2.4.2.

To introduce the notion of desired and undesired duplicates, let us consider the two examples
in Figure 2.4. Both examples show a fraction of the search space of Figure 2.2. In Figure 2.4a,
we see two paths leading from the start =0 to a vertex E , where relations A, B, and C have been
joined. These two paths, despite leading to the same vertex, correspond to two di�erent partial

plans: one plan joins A and B �rst, the other joins B and C �rst. In contrast, in Figure 2.4b, we

45

A

B C

D

A

B C

D A

B C

D

A

B C

D

� Z � � Z
�

(� Z �) Z � � Z (� Z �)

=0

E

(a) Desired duplicate, with each of the two paths
corresponding to a unique partial plan.

A

B C

D

A

B C

D A

B C

D

A

B C

D

� Z � � Z
�

� Z
� � Z �

=0

E

(b) Undesired duplicate, with both paths corre-
sponding to the same partial plan.

Figure 2.4: Example of desired versus undesired duplicates.

D

E

D′ D′′

E′ E′′

91 (@, A)

92(B, C)

92(B, C)

91 (@, A)

=
V ′ V ′′

Figure 2.5: General pattern of undesired duplicates. Vertex D must contain four subproblems
@, A, B, C , s.t. @ can be joined with A and B can be joined with C . The order of the two joins can
be permuted, resulting in two paths % ′ and % ′′ of exact same weight, formally weight(% ′) =
weight(% ′′). Hence, E is generated twice with the same cost.

see two distinct paths from =0 to E that correspond to the exact same partial plan: although
the two paths order the joins � Z � and � Z � di�erently, this ordering has no semantics
in the corresponding partial plan. In the example of Figure 2.4a, we do want to generate the
duplicate of E , as it may reveal a shorter path to E . If the duplicate does not reveal a shorter path,
it will be discarded by DeDup (cf. Section 2.4.3). In the example of Figure 2.4b, however, we
would be wise not to generate the duplicate of E . Its path corresponds to an already considered
partial plan. Therefore, E has already been generated with the exact same cost 6 and hence the
duplicate of E will de�nitely be discarded by DeDup.

We devise a scheme to prevent the generation of such undesired duplicates during vertex
expansion, named PreDup. We say that a duplicate vertex is undesired, if the vertex was
reached before on some path % ′ and is now reached on a di�erent path % ′′ and it can be shown

46

Algorithm 6 Extension of Figure 2 to prevent redundant paths.

function expandBottomUp(VD : representation of vertex D)
for 8 = 1 to |VD | − 1 do

for : = 8 + 1 to |VD | do
18 ←VD [8] ⊲representation of subproblem (1
1: ←VD [:] ⊲representation of subproblem (2

if

(
18 | 1:

)
<lex ∇(VD) then ⊲undesired duplicate?

continue ⊲skip

end if

for each 9 ∈ � joining 18 and 1: do

; ←VD [1 : 8 − 1] ◦ VD [8 + 1 : : − 1]
A ←VD [: + 1 : |VD |]
VE = ; ◦

(
18 | 1:

)
∇ ◦ A ⊲maintain lexicographical order

yieldVE by 9 ((1 = 18 , (2 = 1:) ⊲emit how to generate successor

end for

end for

end for

end function

that – independent of cardinalities – weight(% ′) = weight(% ′′). In that case, we say path % ′′

is redundant. We provide a general pattern of undesired duplicates in Figure 2.5. There is a
redundant path between vertices D and E , if D has four subproblems @, A, B, C such that @ can be
joined with A and B can be joined with C , i.e. ∃ 91, 92 ∈ � . 91(@, A), 92(B, C). In that case, any path
from D to E that includes both these joins can be transformed into another, valid path from D to
E by exchanging the order of the two joins. These two paths have the exact same weight, hence
E is generated twice with exact same cost 6. The idea of PreDup is to prevent the generation of
undesired duplicates by preventing the search from pursuing redundant paths. More precisely,
in Figure 2.5, the search may either perform 92(B, C) after 91(@, A) or 91(@, A) after 92(B, C) but not
both. To implement this, we exploit the fact that our vertex representation in Section 2.4.1
keeps the sequence of bit vectors V sorted lexicographically. We have 91(@, A) = @ ∪ A and
92(B, C) = B ∪ C , with either @ ∪ A <lex B ∪ C or B ∪ C <lex @ ∪ A . We store in V the subproblem
that was the result of the most recent join, indicated with ∇. By storing the most recently joined
subproblem, we can suppress the generation of undesired duplicates during expand: we skip
joins whose join result is lexicographically smaller than the stored subproblem of the expanded
vertex. For example, let @ <lex A <lex B <lex C . When expanding D we get D′ with ∇(VD′) = @ ∪ A

47

and D′′ with ∇(VD′′) = B ∪ C and

forVD′ : 92(B, C) = B ∪ C ≮lex @ ∪ A = ∇(VD′) 3

forVD′′ : 91(@, A) = @ ∪ A <lex B ∪ C = ∇(VD′′) 7

Because we suppress join results that are lexicographically smaller than the stored subproblem,
during vertex expansion the stored subproblem can only become larger w.r.t. the lexicograph-
ical ordering. Hence, no matter how E ′′ is reached from D′′ in Figure 2.5, we know that
∇(VE′′) ≥lex ∇(VD′′) and therefore 91(@, A) is suppressed when expanding E ′′. We extend our
algorithm for bottom-up vertex expansion of Section 2.4.1 accordingly in Figure 6 and highlight
the necessary modi�cations. In the initial vertex =0 =

(
'
1
)
, the lexicographically smallest sub-

problem is marked. An extension of top-down expansion, as in Figure 3, would be analogous:
the most recently partitioned subproblem is stored and subproblems lexicographically smaller
than the most recently partitioned subproblem are not further partitioned. In the initial vertex
of top-down search, i.e. =0 = {'}, the single subproblem ' is marked. We need to show that
BFS with expand as in Figure 6 is still complete, sound, and optimal.

Completeness. Looking at Figure 2.5, we see that our scheme only prevents expanding E ′′ to
E , i.e. the edge E ′′ E , still leaving an alternative path from D to E . More generally, all vertices
that were reachable from =0 before our modi�cation are still reachable from =0. This particularly
holds true for =∗.

Soundness. Our scheme neither introduces new edges into the search space nor does it alter
the weights of existing edges. Therefore, any path found from =0 to =∗ corresponds to a feasible
plan.

Optimality. In Figure 2.5, the paths % ′ and % ′′ have the exact same weight. If either of the
paths, say % ′′, is eliminated by our scheme, then E is still reached by % ′ of exact same weight
as % ′′. If % ′′ was an optimal path, so is % ′, and hence an optimal path to E is found.

To evaluate the gain of PreDup, we rerun the same experiment as in Table 2.2. This time,
we use DeDup (cf. Section 2.4.3) and compare bottom-up search with and without PreDup. We
present our �ndings in Table 2.3. Let us �rst look at star topology: We see that the number of
generated new and duplicate vertices does not change. This is expected, as in star topology there
are no bushy plans and therefore there are no redundant paths and no undesired duplicates.
Next we look at chain, cycle, and clique topologies: We see that the number of generated
duplicates is signi�cantly reduced, as we expected. However, and maybe to your surprise, we

48

Table 2.3: The impact of PreDup on the experiment of Table 2.2. Both con�gurations include
DeDup (cf. Section 2.4.3).

chain cycle star clique

DeDup only
#new 497 819 115 1497

#duplicates 1140 1408 22 191

DeDup + PreDup
#new 377 626 115 891

#duplicates 299 419 22 109

can also see that the number of generated new vertices shrunk. To understand why that is the
case, let us reconsider Figure 2.3. With our scheme for preventing undesired duplicates, we have
∇(2) = {�, �}. When 2 is expanded, our scheme prevents the generation of 3 as successor,
since {�, �} <lex {�, �}. However, successor 4 is still generated and consequently a shortest
path is found, with one unique vertex less generated.

2.5 Heuristic Functions for JOOP

So far, we presented how to solve join order optimization by heuristic search and the algorithmic
challenges that arose. In this section, we present three heuristics for the search problem and
their respective heuristic properties. However, we must �rst understand how to derive edge
weights from a DBMS’ cost model and how heuristics depend on the cost model.

2.5.1 From DBMS Cost Model to Edge Weights

In Section 2.2.2 we introduced a cost model� and used it to de�ne the weights of the edges of the
search space. The weight of a path is de�ned as the sum of the weights of its edges. A heuristic
estimates the weight of a shortest path to the nearest goal. Therefore, heuristics depend on the
cost model. It is hard, if not infeasible, to de�ne an informative heuristic independent of the
cost model. In this work, we focus on the well-known and frequently used cost model Cout, that
assesses a plan by the sum of the cardinalities of all intermediate results [CM95; Neu09; NR18;
FM11a; FM11b]. It is recursively de�ned as

�out()) ≔

0 if) ∈ '

|) | +�out()1) +�out()2) if) =)1 Z)2
(2.2)

49

Table 2.4: The impact of the de�nition of edge weights on the number of vertices generated. We
run Dijkstra↑ on queries of 10 relations. Both approaches compute a solution that is optimal
w.r.t. De�nition 2.2.

chain cycle star clique

#vertices generated
with De�nition 2.3 1014 2484 344 1864

with De�nition 2.4 676 1045 137 1000

In order to weigh the edges of the search space according to Cout, we must recursively decompose
De�nition 2.2 to match our de�nition of cost model � from Section 2.2.2:

� ((1, (2, 9) ≔ |(1 Z (2 | (2.3)

While this de�nition of � is coherent with Cout, it has one major pitfall that signi�cantly hurts
bottom-up heuristic search: According to De�nition 2.2, the cardinality of the result set of the
query is always included in the total cost. When comparing entire plans by their cost, the
cardinality of the result set always cancels out. This is, however, not the case when comparing
two entries of the open list in bottom-up heuristic search: Every entry for the goal already
includes in its 6 the cardinality of the result set while entries for non-goal vertices do not include
this cardinality in their 6 yet, despite the fact that this cardinality occurs as edge weight on any

path to goal. When the heuristic frequently underestimates, this leads to goals added to the
open list being arti�cially pushed towards the end, delaying their expansion and ultimately
delaying �nding a plan. We therefore devise a variant of � that simply excludes the cardinality
of the result set:

� ((1, (2, 9) ≔

0 if 9 ((1, (2) = '

|(1 Z (2 | otherwise
(2.4)

Plans optimal w.r.t. De�nition 2.4 are also optimal w.r.t. Cout of De�nition 2.2. We evaluate the
impact of the two de�nitions of � on bottom-up heuristic search by comparing the number of
vertices generated in Table 2.4. Our experiment demonstrates that with De�nition 2.4 bottom-up
heuristic search converges faster towards a goal. Note that this pitfall does not exist in top-down
heuristic search, as the cardinality of the result set is immediately incorporated in all vertices
when the initial vertex is expanded.

2.5.2 Four Simple Heuristics

The following heuristics are designed particularly for Cout of De�nition 2.2, with edge weights
computed according to De�nition 2.4. In addition to the cost model, heuristics depend on the

50

direction of the search, i.e. bottom-up vs. top-down, because heuristics estimate the distance to
goal and the goal depends on the search’s direction.

The zero heuristic. The simplest heuristic is the one assigning the same constant value to
any vertex. This heuristic provides no additional information to the search. We de�ne the
particular constant heuristic with constant zero ℎzero(E) = 0. Observe, that ℎzero is goal-aware,
consistent, and admissible. When used as heuristic for �∗, the search degrades into Dijkstra’s
algorithm. Naturally, ℎzero can be used for both bottom-up and top-down search.

The sum heuristic. This heuristic provides a lower bound for the remaining cost to reach the
goal in top-down search. All subproblems that are not base relations are yet to be partitioned.
Looking at De�nition 2.4, each subproblem that is not a base relation or ' will add its cardinality
to the overall cost Cout. We can therefore calculate a lower bound for the remaining cost by
summing up the cardinalities of all subproblems that are neither base relations nor ':

ℎsum(E) ≔

0 if E = {'}∑
(∈ E\('1)

|(| >Cℎ4AF8B4

Since ℎsum is a lower bound of the remaining cost, it never overestimates and therefore it is
admissible and can be used to compute an optimal plan. Note that ℎsum only accounts for the
current subproblems, i.e. the subproblems in E . It does not consider any subproblems formed
by partitioning subproblems in E . Therefore, ℎsum often underestimates the remaining cost
dramatically and the error grows with the distance (in #edges) of E to the goal.

TheGOO heuristic. We devise a heuristic ℎ
GOO↑ for bottom-up search by greedily computing

a reasonable path from the current vertex to goal using greedy operator ordering (GOO) [Feg98].
GOO iteratively selects and joins two subproblems until only a single subproblem remains. The
two subproblems to join (1, (2 are chosen to minimize |(1 Z (2 |. As ℎGOO↑ estimates the remain-
ing distance to goal by computing an actual path, the heuristic never underestimates. However,
because the subproblems to join (1, (2 are chosen greedily, the heuristic often overestimates.
Hence, BFS with ℎ

GOO↑ does not guarantee �nding an optimal plan. We also devise a variant
of this heuristic for top-down search, named ℎGOO↓. This variant partitions each subproblem
(= (1 Z (2 s.t. |(1 | + |(2 | is minimized.

51

1.0

1.2

1.4

1.6

1.8

2.0

b∗

chain

1.0

1.3

1.6

1.9

2.2

cycle

5 7 9 11 13 15

#relations

1.0

1.3

1.6

1.9

2.2

b∗

star

5 7 9 11 13 15

#relations

1.0

1.6

2.2

2.8

3.4

clique

A∗↑ + hzero A∗↑ + hGOO↑ A∗↓ + hzero A∗↓ + hsum A∗↓ + hGOO↓

Figure 2.6: Information value of di�erent heuristics.

2.5.3 Informative Value of Heuristic Functions

We compare the four heuristics ℎzero, ℎsum, ℎGOO↓, and ℎGOO↑ by how informative they are to
heuristic search. We assess the heuristics by their e�ective branching factor 1∗ (cf. Section 2.3.2).
Note, that �∗ with ℎzero is exactly Dijkstra’s algorithm. We calculate 1∗ – the average branching
factor per vertex expansion – from the depth 3 of the goal and the number # of generated
vertices by solving the following equation [RN20].

= 1∗ + (1∗)2 + · · · + (1∗)3 (2.5)

We experimentally determine 1∗ for the four heuristics on the four topologies chain, cycle,
star, and clique. We consider both bottom-up and top-down search with�∗. We vary the number
of relations from 5 to 15, count the generated vertices, and from that derive the actual branching

52

factor 1∗ according to De�nition 2.5. We repeat each experiment �ve times with di�erent seed
(for details see Section 2.7). We present our results in Figure 2.6. We can generally observe that
di�erent heuristics provide di�erent information value to the search and that their information
value varies between the query topologies. In particular, we make �ve important observations:
(1) �∗↑ + ℎzero is generally more informative than �∗↓ + ℎzero. This is due to De�nition 2.4,
where in bottom-up search the cost 6 of a vertex already includes the cardinality of the current
subproblems, which is not the case in top-down search. (2) ℎsum corrects the aforementioned
de�ciency of ℎzero and signi�cantly reduces 1∗. (3) For chain and cycle topology, �∗↓ + ℎsum

results in smaller 1∗ than �∗↑ + ℎzero, while for star and clique topology, exactly the opposite is
the case. This observation suggests that di�erent types of queries are better solved by bottom-up
or top-down search. (4) Both �∗↑ + ℎ

GOO↑ and �∗↓ + ℎGOO↓ achieve least 1∗ for cycle, star, and
clique topologies. This inadmissible heuristic causes the search to quickly converge towards a
goal, but the solution can be suboptimal. (5) We can observe for each heuristic how 1∗ evolves
with growing number of relations. When 1∗ grows with increasing number of relations, then
the information value of the heuristic shrinks. Contrary, if 1∗ shrinks with increasing number
of relations, the information value of the heuristic grows. For example, ℎGOO↓’s information
value for star topology grows the more relations the query involves. The information value of
ℎsum for clique topology shrinks with increasing number of relations.

2.6 Related Work

2.6.1 Classical Join Ordering

Ibaraki and Kameda [IK84] prove that the problem of join order optimization is generally
NP hard, even when allowing for only a single join method (i.e. nested-loops join). The au-
thors provide a polynomial-time greedy algorithm, that computes an optimal plan if the query
graph is a tree, e.g. a star query. The algorithm requires that the cost function, under which
optimization is performed, satis�es the adjacent sequence interchange (ASI) property. The ASI
property requires that a cost-bene�t ratio, named rank, can be computed for each join. The
work was further extended by Krishnamurthy, Boral, and Zaniolo [KBZ86] and the algorithm
is sometimes referred to as IK/KBZ. Cluet and Moerkotte [CM95] show that summarizing the
cardinalities of intermediate results serves as a good cost model, named Cout, that also satis�es
the ASI property. We do not require ASI for heuristic search.

Selinger et al. [Sel+79] were the �rst to use DP to compute an optimal join order. Their
algorithm, frequently referred to as DPsize, enumerates all (partial) plans in increasing number
of relations, until a �nal, optimal plan is found. Cartesian products are performed as late as

53

possible, i.e. never when the query graph is connected. Ono and Lohman [OL90] derive analyt-
ically for di�erent topologies the number of distinct plans, excluding Cartesian products. For
both star and clique topology, the number of plans is exponential in the number of relations.
Vance and Maier [VM96] and Vance [Van98] improve upon DPsize by devising a more e�cient
enumeration scheme following Gray code order [Gra53]. This algorithm is frequently referred
to as DPsub. Moerkotte and Neumann [MN06] further improve plan enumeration via DP. Their
algorithm DPCCP enumerates all connected pairs of connected subgraphs without duplicates by
traversing the query graph in a particular order. Chaudhuri et al. [Cha+95] invent top-down
plan enumeration by decomposing a set of relations into two smaller sets and recursively
computing optimal plans for these sets. In their work, the authors only consider linear plans.
DeHaan and Tompa [DT07] generalize top-down plan enumeration to bushy plans and ex-
clude Cartesian products. Their algorithm builds upon e�ciently �nding minimal graph cuts
by computing the biconnected components of the query graph, that are organized in the bi-
connection tree. The authors show that top-down planning integrates well with cost-based
branch-and-bound pruning, however the bene�t is limited when Cartesian products are ex-
cluded. Fender and Moerkotte [FM11a; FM11b] further improve top-down plan enumeration
with two algorithms: (1) TDMinCutAGaT extends the work of DeHaan and Tompa [DT07] by re-
placing the biconnection tree with an advanced generate and test routine. (2) TDMinCutBranch

avoids connectedness checks by ensuring that only ccps are generated, thereby improving the
complexity of �nding a cut.

While the aforementioned algorithms enumerate all ccps, heuristic search is often able to
�nd a provably optimal plan without enumerating all ccps. On the contrary, when the heuristic is
uninformative, duplicates occur frequently. Branch-and-bound pruning is implicitly performed
by the open list when ordering by 6 or 6 + ℎ and ℎ is goal-aware. In contrast to prior work,
heuristic search pursues those joins �rst that it deems to lead to cheaper plans.

2.6.2 Greedy Join Ordering

Fegaras [Feg98] presents greedy operator ordering (GOO), a greedy algorithm that repeatedly
joins in each iteration the two subproblems leading to the smallest result size, until all relations
are joined. GOO is a BFS with the heuristic de�ned as the result size of the most recent join and
greedy BFS as search.

Neumann [Neu09] proposes query simpli�cation to reduce the complexity of plan enu-
meration until it becomes tractable with DP. Simpli�cation introduces ordering constraints,
reducing the considered plans but sacri�cing optimality. Neumann and Radke [NR18] propose
linearization of the query graph. Their algorithm, named LinearizedDP, precedes DPCCP with a

54

linearization phase based on IK/KBZ. Linearization, similarly to query simpli�cation, greedily
reduces the amount of plans considered by DP, potentially pruning the optimal plan and hence
rendering DP suboptimal.

2.6.3 Heuristic Search

To the best of our knowledge, Sellis [Sel88] work on MQO is the �rst to apply heuristic search in
the context of query optimization. In this particular work, multiple plans are generated for each
query and a heuristic search algorithm then selects for each query exactly one plan, considering
common intermediate results and minimizing the overall cost of executing all queries. Note,
that this is a di�erent optimization problem than join order optimization, where a single plan
for a single query is computed.

Marcus et al. [Mar+19] train an ML model to predict the cost of the best plan constructible
from a given partial plan. They use this model as heuristic for BFS. An argument is missing as
to why the problem can be solved by search and whether the learned model has good heuristic
properties. A general analysis of the search problem is lacking. Since the learned model may
overestimate plan costs, the heuristic is inadmissible and hence search is suboptimal.

2.7 Evaluation

2.7.1 Setup

System. We implement our heuristic search and related state-of-the-art join ordering algo-
rithms in mutable [Haf+23], a main-memory database system currently developed at our group.
Queries are provided to mutable as SQL statements, for which mutable computes a query plan
with one of the join ordering algorithms. We use cost model Cout in all experiments. mutable
provides an interface to read cardinalities from a �le. We use this feature to provide exact
cardinalities to the process of join order optimization. We further exploit this feature to simulate
queries with varying selection and join selectivities without the need to generate actual data.

Data. We evaluate all algorithms on the four query topologies chain, cycle, star, and clique, as
they are a de-facto standard for evaluating join order optimization [DT07; FM11b; MN06; Neu09;
Fen14; SMK97]. In addition, with this work we introduce a new benchmark which includes
the former four topologies as special cases (Section 2.7.3). We vary number of relations and
to simulate varying selection and join selectivities, we randomly generate 10 cardinality �les
per query. A �le assigns to each subproblem a cardinality, where the cardinality assigned to a
base relation represents the cardinality after selection (i.e. including selection selectivities) and

55

Algorithm 7 Generation of cardinalities.
function cardinality-gen(�Q : query graph of query Q, 2min : minimum cardinality, 2max :
maximum cardinality)

� ← new HashMap() ⊲cardinalities of subproblems

for each A in �Q .' do ⊲initialize cardinalities of base relations

� [A] ← rand(2min, 2max) ⊲random cardinality in range 2min to 2max

end for

�′ ← new HashMap() ⊲maximum possible cardinality per subproblem

for each csg ((1, (2) of �Q do ⊲enumerated in DPCCP [MN06] order

21 ← cardinality((1,�,�′, 2min, 2max) ⊲get cardinality of (1
22 ← cardinality((2,�,�′, 2min, 2max) ⊲get cardinality of (2
if (1 ∪ (2 not in �′ then

�′ [(1 ∪ (2] ← 21 · 22 ⊲set max. cardinality of (1 ∪ (2
else

�′ [(1 ∪ (2] ← min(�′ [(1 ∪ (2], 21 · 22) ⊲update max. cardinality

end if

end for

� [�Q .'] ← cardinality(�Q .') ⊲cardinality of result

return �

end function

function cardinality((, � , �′, 2min, 2max)
if (not in � then ⊲no �xed cardinality for (yet?

2′ ← min(�′ [(], 2max

2) ⊲max. cardinality of (, bounded by 2max

2

� [(] ← 2min + (2′ − 2min) · rand(0, 1) ⊲random cardinality of (

end if

return � [(]
end function

the cardinality assigned to a subproblem of multiple relations represents the cardinality after
selection and join (i.e. including selection and join selectivities). We randomly generate these
cardinalities with our algorithm cardinality-gen, given in Figure 7. Note that our algorithm
produces correlated selectivities, i.e. it does not hold in general that sel(� Z � Z �) = sel(� Z
�) · sel(� Z �).

Hardware. We run our experiments on a desktop computer with an AMD Ryzen Threadripper
1900X CPU at 3.8GHz and 32GiB DDR4mainmemory. We disable the CPU’s dynamic frequency
scaling to reduce noise in our measurements.

Visualization. In line charts, the lines connect the arithmetic means and are highlighted by
their 95% con�dence interval. In box plots, the boxes show the interquartile range (25% - 75%)
with a horizontal bar at the median (50%) and whiskers range from min to max – hence there

56

10 20 30 40 50

100 µs

1 ms

10 ms

100 ms

1 s

10 s

O
pt

im
iz

at
io

n
tim

e

chain

10 15 20

star

10 20 30 40 50

#relations

100 µs

1 ms

10 ms

100 ms

1 s

10 s

O
pt

im
iz

at
io

n
tim

e

cycle

10 15

#relations

clique

DPCCP TDMinCutAGaT A∗↑ + hzero A∗↓ + hzero A∗↓ + hsum

Figure 2.7: Comparison of our heuristic search to baselines DPCCP and TDMinCutAGaT w.r.t.
optimization time required to compute an optimal plan (less is better).

are no outliers.

2.7.2 Comparison to State of the Art

We compare our join order optimization via heuristic search to state-of-the-art algorithms.
We distinguish between optimal and potentially suboptimal algorithms. We �rst compare
by optimization time and then, for the potentially suboptimal algorithms, we compare the
computed plans by their normalized cost.

We compare the optimization times of optimal join ordering algorithms in Figure 2.7. We
make 4 key observations: (1) For chain and cycle, the fastest heuristic search is �∗↓ + ℎsum.
(2) For star and clique, the fastest heuristic search is �∗↑ + ℎzero. (3) �∗↓ + ℎsum always outper-
forms �∗↓ + ℎzero, emphasizing the importance of an informative heuristic. (4) Both DPCCP and
TDMinCutAGaT are unmatched by our heuristic search on the chain and cycle topologies. On the
star and clique topologies, however, our �∗↑ + ℎzero performs best, at roughly 10G faster than
DPCCP or TDMinCutAGaT.

We compare the optimization times of suboptimal algorithms in Figure 2.8. For all four

57

10 20 30 40 50

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

O
pt

im
iz

at
io

n
tim

e
chain

10 15 20

star

10 20 30 40 50

#relations

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

O
pt

im
iz

at
io

n
tim

e

cycle

10 15

#relations

clique

LinearizedDP GOO A∗↑ + hGOO↑ A∗↓ + hGOO↓

Figure 2.8: Comparison of our heuristic search to baselines LinearizedDP and GOO w.r.t. opti-
mization time required to compute a potentially suboptimal plan (less is better).

topologies, we make the same observation: GOO is fastest, heuristic search is slowest, and
LinearizedDP lies in between. On chain and cycle, both heuristic searches are equally fast,
whereas on star and clique, �∗↑ + ℎ

GOO↑ is signi�cantly faster than �∗↓ + ℎGOO↓.
In addition to the optimization times, we evaluate in Figure 2.9 the cost of the plans computed

by suboptimal algorithms, normalized to the cost of an optimal plan. We can see that�∗↑ + ℎ
GOO↑

generally produces the best plans. In particular, �∗↑ + ℎ
GOO↑ improves over GOO in almost all

cases. Surprisingly, �∗↓ + ℎGOO↓ produces signi�cantly worse plans than �∗↑ + ℎ
GOO↑ on star and

clique topologies. LinearizedDP produces exceptionally costly plans on the star and clique
topologies. This is due to LinearizedDP’s greedy linearization step, that is based on IK/KBZ,
a greedy algorithm to compute optimal linear plans [IK84; KBZ86; NR18]. The problem with
IK/KBZ is that it assumes uncorrelated join selectivities, an arti�cial constraint that is not
provided by our data generation (cf. Figure 7). Therefore, IK/KBZ computes a suboptimal
linearization, which rules out many good plans for LinearizedDP.

A general observation that we can make for heuristic search is that both optimization time
and plan cost are correlated to the e�ective branching factor 1∗ of Figure 2.6: a smaller 1∗ leads

58

10 13 16 19 22 25 28

1

10

102

103

104

N
or

m
al

iz
ed

P
la

n
C

os
t

chain

10 12 14 16 18 20

star

10 13 16 19 22 25 28

#relations

1

10

102

103

104

N
or

m
al

iz
ed

P
la

n
C

os
t

cycle

10 11 12 13 14 15 16

#relations

clique

LinearizedDP GOO A∗↑ + hGOO↑ A∗↓ + hGOO↓

Figure 2.9: Comparison of our heuristic search to baselines LinearizedDP and GOO w.r.t. plan
cost of the computed plan, normalized to the optimal plan as computed by any optimal algorithm
(less is better, 1 is optimal).

to less optimization time and a better plan. This general rule does not apply, however, when com-
paring two searches of opposite direction, e.g. on star topology, �∗↓ + ℎGOO↓ achieves smaller 1∗

than �∗↑ + ℎzero, but the latter is always faster. This supports our hypothesis from Section 2.5.3,
that di�erent types of queries are better solved by bottom-up or top-down search.

2.7.3 QGraEL: A New Benchmark for JOOP

Motivation

We analyze the four topologies studied in Section 2.7.2 together with the queries of the TPC-
H and JOB benchmarks. For our analysis we introduce two measures on the query graph:
density and edge skew. Density is simply de�ned as the graph density � (�Q) ≔ 2 | � |

|' | (|' |−1) with
�Q ≔ (', �), and it captures the ratio between actual edges and maximally possible edges in�Q .
We de�ne edge skew as a measure for the distribution of degrees in �Q , where the degree of
a vertex is simply the number of edges at this vertex. We calculate edge skew as the ?-value
of the j2 test of the actual distribution of degrees in �Q and expecting a uniform distribution

59

0 5 10 15 20 25 30

#relations

0.0

0.5

1.0
D

en
si

ty

uncharted
space

disconnected

(a) By density.

0 5 10 15 20 25 30

relations

0.0

0.5

1.0

E
dg

e
sk

ew
(p

-v
al

ue
)

disconnected

chain
cycle
star
clique
TPC-H
JOB

(b) By edge skew (?-value).

Figure 2.10: Landscape of possible query graphs.

of degrees. For example, a cycle has a uniform distribution of degrees, i.e. every relation has a
degree of 2. The j2 test will then compute ? = 1 for no edge skew. For star, one relation has high
degree while all other relations have degree 1 and ? will be close to 0, signaling high edge skew.

With measures density and edge skew, we draw the entire landscape of queries in Figure 2.10.
For density in Figure 2.10a, clique is at the upper limit with a density of 1, i.e. every possible join
exists in �Q , and chain and star are at the lower limit, with exactly = − 1 joins for = relations;
graphs with fewer joins are disconnected. For edge skew in Figure 2.10b, clique and cycle have
a uniform distribution of degrees and are at the upper limit of 1. With increasing number of
relations, the edge skew of star increases and ? converges towards 0.

We additionally draw the queries of TPC-H and JOB into the landscape in Figure 2.10. We
observe that all those queries have close to minimal density and high edge skew, leaving large
uncharted spaces in both dimensions.

A New Benchmark

With this work we propose the new benchmark Query Graph Exploration Landscape (QGraEL).
It systematically explores query graphs in three dimensions: number of relations, density, and
edge skew. We evaluate every query in QGraEL with both DPCCP and �∗↑ + ℎzero and compare
their optimization times. This enables us to evaluate for which graph properties which algorithm
performs better.

Results

Figure 2.11 shows our results, depicted along the three dimensions number of relations, density,
and edge skew. We explore the landscape as much as possible, i.e. until either algorithm reaches

60

0 5 10 15 20 25 30

relations

0.0

0.5

1.0

D
en

si
ty

timed out

disconnected

(a) By density.

0 5 10 15 20 25 30

relations

0.0

0.5

1.0

E
dg

e
sk

ew
(p

-v
al

ue
)

disconnected

S
pe

ed
-u

p
ov

er
D

P
C

C
P

←
sl

ow
er

fa
st

er
→

10×

2×

5×

1×

2×

5×

10×

(b) By edge skew (?-value).

Figure 2.11: Speed-up of �∗↑ + ℎzero over DPCCP in QGraEL. The color encodes the relative
improvement of optimization time, and it is capped at 10 in both directions. Note, that in the
worst case, �∗↑ + ℎzero is less than 10x slower than DPCCP while in the best case we achieve
speed-ups >1000x.

a �xed timeout. The color encodes the improvement or deterioration of heuristic search over
DPCCP. We observe that large spaces of the landscape that have been unexplored so far are
clearly dominated by heuristic search. While the color coding in Figure 2.11 is clamped to 10x in
both directions, Figure 2.12 visualizes the full range of relative improvement, with exceptional
speed-ups of up to 1000x.

2.7.4 Detailed Evaluation of Heuristic Search

We perform an in-depth evaluation of heuristic search to understand how much the di�erent
operations contribute to the overall optimization time. We measure how much time is spent in
each function via statistical pro�ling with the Linux perf tool. We pro�le two runs: �∗↓ + ℎsum on
a chain query of 40 relations (chain-40) and�∗↑ + ℎzero on a star query of 22 relations (star-22).
We visualize the collected pro�ling data as a �ame graph, that is a stacked horizontal bar chart,
where one bar corresponds to one function and the width of the bar corresponds to the time
spent within this function. When one function is called from another function, their bars are
vertically stacked from bottom to top and in the order of the call stack. Figure 2.13 presents
our �ndings. For search with �∗↑ + ℎzero, the heuristic is optimized out during compilation and
hence does not appear in the �ame graph. We can see that search spends a large share of its
optimization time in Expand(), however only a fraction of time is spent inside the function
itself. This observation supports our claim in Section 2.4.2, that vertex expansion makes up for
only a small fraction of overall search time. On chain-40, most time is spent on evaluating

61

10 20 30

relations

10−1

100

101

102

103

R
el

at
iv

e
O

pt
im

iz
at

io
n

Ti
m

e

DPCCP

Figure 2.12: Relative improvement in optimization time of optimal heuristic search over DPCCP.
There are fewer data points towards higher number of relations as DPCCP times out more
frequently, making a relative comparison impossible.

the heuristic and on extracting the top element from the heap. On star-22, more than half
of the time is spent on cardinality estimation. Note, that the optimization times are relative:
on star-22 search does not spend more time on cardinality estimation than on chain-40 but
instead search on star-22 spends less time on managing the open list. This is due to search on
star-22 being more goal-oriented than search on chain-40, hence generating less duplicate
vertices. The generation of duplicates on chain-40 leads to frequent recalculation of heuristic
values without progressing further towards the goal.

2.8 Conclusion

With this work, we provide a sound and generic framework for join order optimization via
heuristic search. Our optimizations make heuristic search practical for application in a real
DBMS, as our evaluation con�rms. Figure 2.14 shows that we are able to extend the Pareto
frontier of optimization time vs. plan cost. Our optimal solution�∗↑ + ℎzero outperforms SOTA by
up to 2 orders of magnitude on star and clique topologies. Our suboptimal solution �∗↑ + ℎGOO↑
provides a middle ground between GOO, which is fast but shows high variance in plan quality,
and our optimal solution. While this paper aims to be self-contained, there are many aspects or
variations to our approach that did not �t into a single paper. We would like to give a glimpse
of what future research may focus on: • designing more informative heuristics, potentially
tuned for di�erent query topologies, • applying di�erent search strategies, e.g. beam search,
iterative deepening �∗, fringe search, • anytime search, where search proceeds until a resource is
exhausted or search is stopped and then retrieving the best plan found so far, or • bidirectional
heuristic search, where search is simultaneously performed bottom-up and top-down and when

62

A∗↓ + hsum@chain− 40

Expand()
explore state
h sum()

OpenList::add()
OpenList::extract best()
cardinality estimation

fibonacci heap::pop()
fibonacci heap::push()

unordered map::find()
unordered map::insert()

0% 20% 40% 60% 80% 100%

Relative execution time

A∗↑ + hzero@star − 22

C
al

ls
ta

ck
C

al
ls

ta
ck

Figure 2.13: Detailed running time analysis of heuristic search.

10−4 10−3 10−2 10−1 100

Time [s]

1.0

1.5

2.0

N
or

m
al

iz
ed

pl
an

co
st

ours

star-18
GOO A∗↑ + hzero A∗↑ + hGOO↑

10−4 10−3 10−2 10−1 100

Time [s]

ours

clique-15

Figure 2.14: Pareto frontier of optimization time vs. plan cost.

both searches meet, a plan is found. We believe that our work serves as a foundation for and
enables future research in the direction of computing join orders with heuristic search.

We would like to thank Karl Bringmann (MPII) for clarifying Section 2.2.4 & Section 2.3.2
and proofreading Theorem 1, Daniel Gnad (Linköping University) for supporting this work
with his expertise in AI planning, and Felix Brinkmann for conducting an initial investigation
on the applicability of AI planning to JOOP as part of his Bachelor’s thesis.

63

64

0.00 0.25 0.50 0.75 1.00
Compilation time [ms]

0

50

100

150

200

Ex
ec

ut
io

n
tim

e
[m

s] DuckDB

HyPer
mutable (ours)

Figure 3.1: Design space of query execution en-
gines, based on TPC-H Q1 benchmark results.
The compilation time is the time to translate a
QEP to machine code. The execution time is the
time to execute the machine code and does not
include the compilation time.

Chapter 3

Query Compilation

This chapter is based on my publication “A Simpli�ed Architecture for E�-

ciently Compiling SQL Queries with WebAssembly” [HD23a]. This work was

published in the research track of EDBT 2023. This work was co-authored by

my Ph.D. advisor Prof. Dr. Jens Dittrich.

3.1 Introduction

To execute SQL queries, database systems must determine for each query a query execution plan

(QEP) that de�nes how to execute the query. The QEP is then executed by either interpretation
or compilation. Many early database systems used an interpreter for query execution, as it is
easy to maintain and portable [Klo+14]. The Volcano model presented a generic and extensible
design, adopted by many database systems that followed [Gra94]. The induced overhead of
interpretation was dwarfed by the high costs for data accesses in disk-based systems [BZN05a;
Neu11; Ker+18]. However, in modernmainmemory systems data accesses are signi�cantly faster
and the interpretation overhead suddenly takes a large share in query execution costs [Ail+99;
Neu11]. Therefore, main memory systems must keep any overheads during query execution at

65

a minimum to achieve peak performance. This development was the reason for an extensive
body of work on query interpretation and compilation techniques and sparked a seemingly
endless debate which of the two approaches to prefer [Rao+06; KVC10; Neu11; SZB11; Klo+14;
Ker+18; KLN21]. Recently, Kohn, Leis, and Neumann proposed an adaptive approach to query
execution, where the database system can seamlessly transition from interpreted to compiled
query execution [KLN18]. This approach requires both a query interpreter and a query compiler
that must be interoperable, which is achieved by a particular execution mode namedmorsel-wise

execution [Lei+14]. Kersten, Leis, and Neumann followed up on this work and present adaptive
execution by switching from non-optimized to optimized code during query processing [KLN21].
Despite the promising results of both works, we believe that implementing either approach
requires expertise in interpreter and compiler design and poses an immense development e�ort,
ultimately preventing wide-spread adoption.

In this work, we propose a new architecture for query execution engines of database systems.
Rather than reengineering compiler technology, we suggest to employ a suitable and – most
importantly – existing execution engine that takes care of just-in-time (JIT) compilation and
adaptive execution. We dramatically reduce the complexity of the system by relying on existing
infrastructure. By translating the QEP to an interchange format and delegating execution to
an underlying engine, we are able to drastically reduce compilation times while maintaining
competitive execution performance, as exempli�ed in Figure 3.1.

Contributions In this work, we present a new approach to JIT compilation of SQL queries to
e�cient machine code by building on existing JIT compiler infrastructure and the new low-level
language WebAssembly.

1. We present a new, simpli�ed, conceptual architecture of a query execution engine that
allows us to delegate JIT compilation, optimization, and adaptive execution to an under-
lying engine. Like that, we avoid reengineering techniques researched and developed by
the compiler community for decades. (Section 3.2)

2. We demonstrate how to implement this architecture in a real database system:mutable. We
use WebAssembly as intermediate representation and Google’s V8 as backend. However,
any other backend with similar properties as V8 conceptually works as well. mutable
supports the full pipeline of compiling SQL queries to executable code. (Section 3.3)

3. We discuss in detail the pros and cons over compiling with LLVM, adaptive compilation,
and vectorized execution. (Section 3.4)

66

4. We discuss current limitations of our approach and how they will get resolved in the
(near) future. (Section 3.5 & Section 3.6)

5. We provide an extensive experimental study, showcasing that even though we use an
architecturally much simpler approach than state-of-the-art, we are able to match or even
outperform state-of-the-art query compilers like HyPer. (Section 3.8)

We discuss related work in Section 3.7. We conclude our work in Section 3.9.

3.2 A New Architecture for Compiling Query Engines

We begin by motivating the need for an architectural simpli�cation of query engines. We then
propose our architecture and discuss pros and cons. In Figure 3.2a we present an overview of
the architectures of prominent compiling query engines.

3.2.1 Other Architectures

HyPer. Although the very �rst relational database system, System R, already compiled
queries to machine code [Cha+81], compiling queries only really became maintainable with
the use of a compilation framework, such as LLVM used in HyPer [Neu11]. The original
architecture of HyPer is shown in the second column of Figure 3.2a. HyPer translates the
QEP with its own compiler to LLVM IR, the intermediate representation (IR) of LLVM . LLVM
provides a large set of optimization passes that can be applied to the IR, potentially transforming
the IR and increasing program e�ciency. HyPer applies a �xed, handpicked subset of LLVM ’s
optimization passes [Neu11]. This subset was chosen such that optimization time is balanced
with optimization gain. After applying the optimization passes to the IR, HyPer runs LLVM’s
machine code generation to obtain executable code. HyPer then runs this code on the hardware.

HyPer w/ adaptive execution. Potentially long-running compilation with LLVM delays
query execution. Therefore, Kohn, Leis, and Neumann propose in a follow-up work to extend the
compilation pipeline by interpretation and adaptively switching from interpreted to compiled
execution as soon as compilation completes [KLN18]. This architecture is shown in the �rst
column of Figure 3.2a and is an extension of the original architecture of HyPer. It uses the same
compiler to translate QEPs to LLVM IR. At this point, there are three paths to proceed with.
The �rst path H1 translates the LLVM IR with their bytecode generator to LLVM bytecode, an
IR developed by the authors that is similar to LLVM IR yet optimized for interpretation. This
LLVM bytecode is then interpreted by their bytecode interpreter. The second and third path, H2

67

QEP

x86/?

(slightly
optimized)

V
8

QEP

x86/ARM/...

(slightly
optimized)

x86/ARM/...

(optimized)

tier-up

HyPer [Neu11]

Compiler

LLVM
Optimizer

LLVM Machine
Code Generator

Hardware

L
L
V
M

QEP

x86/ARM/. . .

(possibly
optimized)

HyPer
w/ adaptive

execution [KLN18]

Compiler

Bytecode
Generator

Bytecode
Interpreter

QEP

LLVM

Bytecode

H1 H2 H3

Umbra [KLN21]

Tidy Tuples
(Compiler)

Compiler

Flying Start
(Compiler &

Machine Code

Generator)

Hardware

Umbra IR

U1
U2

mutable (ours)

Compiler

Liftoff
(Compiler &

Machine Code

Generator)

TurboFan
(Optimizing

Compiler)

Hardware

WebAssembly

LLVM IR

(a) Architectural overview of compiling query engines.

HyPer w/ adaptive

execution [KLN18]

HyPer [Neu11] Umbra [KLN21] mutable (ours)

Interpretation

Fast JIT Compilation

Optimizing Compilation

Adaptive Execution

Di�erent HW
(x86, ARM, etc.)

3 7 7 3

7 7 3 3

3 3 3 3

3 7 3 3

3 3 3(?) 3

(b) Feature matrix for the architectures in Figure 3.2a.

Figure 3.2: Orange means (potentially re-) implemented by the system itself, green means
used o� the shelf, and red means desirable but lacking.

68

and H3, both rely on the original architecture of HyPer: H2 directly translates the LLVM IR to
machine code, producing an “O0” executable. H3 incorporates LLVM optimizations, eventually
producing an “O2” executable. While the query is being executed by interpretation of the LLVM
bytecode, the LLVM IR is optimized and compiled to machine code in the background. Once this
process completes (and the query has not yet terminated), the system switches from interpreted
to compiled execution. Switching is enabled by morsel-wise execution [Lei+14].

Umbra. Although the architecture of HyPer with adaptive execution reduces query latency
without sacri�cing performance for long-running queries, initial interpretation is still slow
and compilation with LLVM takes relatively long. This observation lead to another follow-up
work by Kersten, Leis, and Neumann, in which the authors drop interpretation entirely in favor
of fast JIT compilation [KLN21]. This architecture, shown in the third column of Figure 3.2a,
is implemented in Umbra. In this architecture, the QEP is �rst translated by Tidy Tuples
into their own Umbra IR. Umbra provides two compilation paths, U1 and U2, for this IR. U1
translates the IR directly to machine code with their JIT compiler Flying Start. This compiler
performs only a �xed amount of passes over the IR, employs only a few fast optimizations, and
generates slightly optimized “O1” machine code. Its purpose is to produce machine code fast
while exploiting some potential for optimization. U2 translates the Umbra IR further to LLVM IR
and follows the LLVM compilation pipeline as in HyPer, eventually producing a fully optimized
“O2” executable. Similar to HyPer with adaptive execution, Umbra uses morsel-wise execution
to switch from the code produced by Flying Start to the fully optimized code produced by
LLVM .

Criticism

The original design of HyPer is clean and simple: use an existing compilation framework
to compile QEPs to e�cient machine code. However, the choice for LLVM introduces the
de�ciency of long compilation times delaying execution. Both HyPer with adaptive execution
as well as Umbra work around this de�ciency by introducing an alternative, much faster path
to begin query execution and combine this with adaptively switching to optimized code when
available. By inspecting our overview in Figure 3.2a, we can observe the sheer engineering e�ort
that both systems undertake to enable this alternative path. We argue that neither approach will
�nd wide-spread adoption as both require expert knowledge in interpreter and compiler design
as well as immense development e�orts. We therefore present a new architecture, that is as
clean and simple as the original architecture of HyPer, yet brings the same bene�ts as Umbra.

69

3.2.2 Our Architecture

Requirements. To make justi�ed decisions for our architecture, we �rst establish a common
notion of our requirements: (1) We want to minimize the latency of query execution. (2) At
the same time, we want to maximize the throughput of long-running queries. (3) Any kind of
optimization should not add to the latency, meaning that optimization must be interweaved with
execution. (4) Rather than solving (1)-(3) ourselves, we want to build on existing infrastructure.

Towards a solution. (1) To minimize latency of query execution, we can use interpretation
or fast compilation of QEPs. (2) To increase throughput, we can apply crucial optimizations
when compiling, e.g. register allocation. (3) To avoid optimization delaying query execution,
optimization and query execution can happen in parallel. Query execution should switch
to execution of the optimized code as soon as it becomes available. To increase adaptivity,
optimizations should be applied on a �ne granule: rather than waiting for the entire QEP to
be optimized, we can compile and optimize individual pipelines and immediately make use
of the optimized code. (4) Existing infrastructure providing the desired traits comes in the
shape of JIT compilation frameworks or entire engines, controlling compilation, execution, and
re-optimization.

Implementation. With a suitable JIT infrastructure at hand, the architecture of the query
engine becomes surprisingly simple: translate the QEP to the interchange format and submit it
to the infrastructure implementing (1)-(3) for execution. To our satisfaction, there is a plethora
of projects implementing requirements (1)-(3) in an o�-the-shelf engine. We give an overview of
available projects and potential interchange formats in Section 3.7. Our choice for implementing
this architecture is as follows: We translate QEPs toWebAssembly and delegate execution to the
V8 engine. V8 is Google’s JavaScript and WebAssembly engine and it ful�lls all our aforemen-
tioned requirements. The fourth column of Figure 3.2a shows how V8 embeds into our proposed
architecture. V8 provides two compilation tiers: fast compilation with Liftoff [Ham18] and
optimizing compilation with TurboFan [V8 08]. Although initially WebAssembly is compiled
with Liftoff to quickly start execution, V8 gradually replaces code during execution by opti-
mized code produced by TurboFan as soon as it becomes available [Ham18; Nie+20]. V8 hence
not only compiles WebAssembly but also takes care of adaptive execution. V8’s Liftoff ful�lls
the same purpose as Umbra’s Flying Start while V8’s TurboFan can be seen as an optimizing
compiler like LLVM with optimization passes, yet it is designed for a JIT environment and
hence much faster. While Umbra has to implement and steer switching from non-optimized to
optimized code, we can rely on V8 gradually optimizing the code during execution. Further,
V8 provides �ne-granular control over which optimizations to perform, whether to optimize

70

adaptively during execution, and whether to enable the Liftoff compiler. One more bene�t
particular to V8 is that it compiles WebAssembly, which is an excellent interchange format be-
tween QEP and V8 as we elaborate in Section 3.3. We provide a summarized feature comparison
in Figure 3.2b.

3.3 WebAssembly

Having a fast JIT compiler is inevitable to reducing latency in a compiling query engine, but
it is certainly not enough. A (JIT) compiler takes as input the program, encoded in text or
some kind of bytecode. We hence must translate the QEP to a suitable format accepted by the
compiler. This step adds to the overall compilation time. It is therefore necessary to choose a
�tting interchange format to enable fast translation of QEPs.

WebAssembly, or shortWasm, is “a low-level assembly-like language with a compact binary
format that runs with near-native performance” [MDN]. Among the many high-level goals of
WebAssembly, we see three key features that make it the instrument of choice for JIT compiling
QEPs. The �rst key feature is that WebAssembly is size and load-time e�cient, allowing for
fast code generation, fast JIT compilation to machine code, and resource-friendly caching of
already compiled code [Haa+17; Jan+19]. Second, WebAssembly is a virtual instruction set

architecture (ISA) and therefore hardware independent and embeddable in many environments.
Third, WebAssembly can be compiled to execute at near native speed [Jan+19] and make use of
modern hardware capabilities, e.g. SIMD [V8 08]. Many WebAssembly engines o�er debugging
interfaces. The V8 engine provides an interface using the Chrome DevTools protocol over web
socket. A developer can launch Google Chrome and connect to the V8 instance. The developer
then has access to a wide range of debugging tools, including breakpoints, watchpoints, and
memory inspection.

Although the name “WebAssembly” suggests that it was developed for the web,
WebAssembly is primarily a virtual ISA that can be embedded in an execution environment.
We highly recommend to the curious reader the work of Haas et al. [Haa+17], where the design
of WebAssembly is elaborated in great detail and advantages over other low-level IRs are
discussed.

3.3.1 Embedding WebAssembly

Despite its many bene�ts, WebAssembly comes with two signi�cant limitations. The �rst
limitation is that WebAssembly does not provide a standard library. Data structures like hash
tables, algorithms like sorting, and even basic routines such as memcpy are not available out of

71

Listing 3.1 Example query to demonstrate the pipeline model.

1 SELECT R.x, MIN(S.x)
2 FROM R, S
3 WHERE R.x < 42 AND R.id = S.rid
4 GROUP BY R.x;

the box. The second limitation is that WebAssembly does not support generic programming.
Hence, we cannot simply implement a library with generic algorithms and data structures
ourselves. However, we shall work around these limitations by building on the ability to rapidly
generate and compile WebAssembly. We solve the entire problem of not having a library by
doing ad-hoc code generation: Every algorithm and data structure required by a QEP is generated

during compilation. We do this in such a way, that we provide the concrete types of generic
components, as required in the QEP, to the code generation process, which directly produces
monomorphic code. Our approach allows us to rapidly generate code that is already fully
inlined and specialized for the data types used in the QEP. We are able to achieve performance
improvements that, in some cases, can have a tremendous impact. We elaborate our approach
of ad-hoc library code generation in Section 3.5.

3.4 Compiling SQL to WebAssembly

In this section, we elaborate how to compile QEPs of SQL queries to WebAssembly. We dissect
a QEP into pipelines, for which we generate code in topological order. We brie�y revisit the
pipeline model in Section 3.4.1. In Section 3.4.2 we sketch how we compile simple relational
operators to WebAssembly. In Section 3.4.3 we explain how we compile complex operators
without relying on an existing library by integrating ad-hoc generation of algorithms and data
structures into the compilation process.

3.4.1 Pipeline Model

A QEP is – in its most essential form – a tree with tables or indexes at the leaves and
relational operators at the inner nodes.1 Figure 3.3 shows a QEP for the query in Listing 3.1.
The edges between nodes of the tree point in the direction of data �ow.

The tree structure of a QEP can be dissected into pipelines [BFV96]. A pipeline is a linear
sequence of operators that does not require materialization of tuples. To identify the pipelines
of a QEP, we hence must identify all operators that require materialization, named pipeline

1The authors are aware that a QEP need not strictly be a tree and in some situations a representation as directed
acyclic graph is desirable [NK15].

72

c R.x, MIN(S.x)

W R.x; MIN(S.x)

ZR.id = S.rid

f R.x < 42

R

S
1

2

3

Figure 3.3: A QEP for the query in Listing 3.1, containing three pipelines enumerated in
topological order.

breakers [Neu11]. The most common pipeline breakers are grouping, join, and sorting; table
scan, index seek, selection, and projection are not pipeline breakers.

In Figure 3.3, we have colored and enumerated the three pipelines of the QEP. Pipeline 1
scans table R, selects all tuples where R.x < 42, and inserts all qualifying tuples into a hash
table for the join. Pipeline 2 scans table S and probes all tuples against the hash table constructed
by pipeline 1. Every pair of tuples from R and S that satis�es the condition R.id = S.rid is
joined and inserted into another hash table where groups of R.x are formed. Pipeline 3 iterates
over these groups and performs the �nal projection.

After dissecting the QEP into pipelines, each pipeline is compiled separately. However, we
must order the pipelines such that all data dependencies of the QEP are satis�ed. For example,
pipeline 3 iterates over all groups produced by grouping. Hence, pipeline 2 that forms those
groups must be executed before pipeline 3. By topologically sorting the pipelines we compute
an order that satis�es all data dependencies in the QEP.

The pipeline model allows us to dissect a QEP into linear sequences of operators that
process tuples without need for intermediate materialization. The pipeline model does not
dictate whether to push or pull tuples, whether to process tuples one at a time or in bulk, or
whether to execute the QEP by compilation or interpretation. In this work, we compile the
pipelines of a QEP such that a single tuple is pushed at a time through the entire pipeline until
it is materialized in memory.

73

3.4.2 Compiling Simple Operators

To compile simple operators toWebAssembly, we follow the approach of Neumann [Neu11], i.e.
we generate data-centric code. We do not yet implement advanced code generation techniques,
such as relaxed operator fusion [MMP17] or access-aware code generation [CGK20]. However,
the approach of Neumann [Neu11] does not work for complex operators, as we will outline in
Section 3.4.3. Generating WebAssembly code is very similar to generating LLVM code. In the
following, we brie�y sketch how we compile simple operators of a QEP.

Table scan, index seek, and pipeline breakers. The start of a pipeline – which is either a
table scan, an index seek, or a pipeline breaker – is translated to a loop construct. For a table
scan, we emit code to access all tuples of the respective table. For an index seek, we emit code to
iterate over all qualifying entries in the respective index. For a pipeline breaker, e.g. grouping,
we emit code to iterate over all materialized tuples, e.g. groups. The remainder of the pipeline is
compiled into the loop’s body.

Selection. A selection is compiled to a conditional branch. It is debatable whether to prefer
short-circuit evaluation. For “simple” predicates, short-circuit evaluation is likely a bad choice:
it introduces a conditional branch that unnecessarily stresses branch prediction [SZB11]. It
may further lead to a conditional load from memory, which may negatively impact prefetch-
ing [Ker+18]. For “complex” predicates, short-circuit evaluation likely pays o�: a conditional
branch can bypass costly evaluation of the right hand side of a logical conjunction or dis-
junction [Ros02]. This transformation is a part of if-conversion [All+83]. We perform the
aforementioned transformations during query optimization and before compilation. This opti-
mization relies on domain-speci�c knowledge, e.g. predicate selectivities, that is inaccessible to
the Wasm compiler. We do not implement predication in this work: every selection is compiled
into one or more conditional branches.

Projection. The projection of an attribute or aggregate does not require an explicit operation.
The code necessary to access the attribute’s or aggregate’s value has already been generated
when compiling the beginning of the pipeline. To compile the projection of an expression, we
compile the expression and assign the result to a fresh local variable. In contrast to interpretation,
projecting attributes away is performed implicitly and requires no further code. Because the
attribute that is projected away is not used further up in the QEP, no code using the attribute is
generated. The register or local variable holding the attribute’s value is automatically reclaimed
during compilation to machine code [Boi+08].

74

3.4.3 Compiling Complex Operators

Compiling complex operators that need sophisticated algorithms and data structures is particu-
larly di�cult in our setting, as we cannot rely on an existing standard library providing generic
implementations. We solve this de�ciency by the ad-hoc generation of required algorithms and
data structures during compilation of the QEP. We will explain this in detail in Section 3.5.

Hash-based Grouping & Aggregation. Hash-based grouping is a pipeline breaker: the
incoming pipeline to the grouping operator assembles the groups in a hash table and updates the
group’s aggregates. The pipeline starting at the grouping operator iterates over all assembled
groups as explained above.

An important distinction between our work and previous work is how inserts and updates to
the hash table are performed. Previous work – including both interpretation- and compilation-
based execution – relies on the existence of a pre-compiled library that provides a hash table
implementation [Neu11; KLN18; KVC10]. There, operations on the hash table must use a
type-agnostic interface, ruling out e�ective implementations of certain has table designs. The
major issue is that the type of hash table entry is unknown at the time when the library is
compiled. To look up a key, the key’s hash is required. The hash can be computed outside

the library and the computed hash value can be passed through the hash table’s interface, as
done by Neumann [Neu11]. However, hash collisions must be resolved and duplicates must be
detected. Because of the type-agnostic interface, the hash table has no means to compare two
keys. Hence, a callback function for pair-wise comparison is passed to the hash table’s lookup
function. Note, that looking up = keys requires at least = such callbacks! The situation gets
worse if the hash table must be able to grow dynamically. To grow a hash table, all elements
of the table must be rehashed. Again, because the hash table is type-agnostic, it has no means
to compute the hashes. Hence, a callback function for hashing must be provided in addition
to the comparison callback or the computed hash values must be stored within the hash table.
Another downside of using a pre-compiled library is that calls to the library cannot be inlined
at the call site: every access to the hash table requires a separate function call.

We resolve these issues by generating and JIT compiling the code for the hash table during
compilation of the QEP. Although sounding expensive and prohibitive, we show in Section 3.8
that generating and compiling WebAssembly is a�ordable at running time. We explain the
generation of library code in detail in Section 3.5.

Simple Hash Join. A simple hash join is a pipeline breaker for one of its inputs: the incoming
pipeline, by convention the left subtree of the join, inserts tuples into a hash table. The pipeline
of the join probes its tuples against that hash table to �nd all join partners. The same distinction

75

between our work and previous work as for Hash-based Grouping & Aggregation applies here.
To avoid arti�cial constraints on hash table design and to avoid issuing a function call per access
to a hash table, we generate and JIT compile the required hash table code during compilation of
the QEP. This approach is elaborated in Section 3.5.

Sorting. Sorting is a pipeline breaker and very similar to Grouping & Aggregation. Before the
sorting operator can produce any results, all tuples of the incoming pipeline must be produced
and materialized. After the incoming pipeline has been processed entirely, the sorting operator
can output tuples in the speci�ed order.

We implement the sorting operator by collecting all tuples from the incoming pipeline
in an array and sorting the array with �icksort. The way we integrate sorting into the
compiled QEP is an important distinction between our work and previous work. In previous
work that performs compilation, a sorting algorithm already exists as part of a pre-compiled
library that is invoked to sort the array. The interface to this sorting algorithm is type-agnostic,
i.e. the sorting algorithm does not know what it is sorting. In order to compare and move
elements in the array, additional information must be provided when invoking the sorting
algorithm. For comparison-based sorting, the size of an element in the array and a function
that computes the order of two elements must be provided. This is very well exempli�ed by
qsort from libc. This design leads to two severe performance issues. First, because the size of
the elements to sort is not known when the library code is compiled, a generic routine such
as memcpy must be used to move elements in the array. This may result in suboptimal code to
move elements or even an additional function call per move. Additionally, values cannot be
passed through registers and must always be read from and written to memory, obstructing
optimization by the compiler. Second, to compute the order of two elements an external function
must be invoked. This means, for every comparison of two elements the sorting algorithm must
issue a separate function call. (To sort = elements, at least Θ (= log=) such calls are necessary!)

When the QEP is being interpreted, e.g. in the vectorized execution model, similar problems
emerge. Although tuples need not be moved if an additional array of indices is used, the sorting
algorithm must delegate the comparison of two tuples to the interpreter, where the predicate to
order by is dissected into atomic terms that are evaluated separately. This leads to signi�cant
interpretation overhead at the core of the sorting algorithm.

We resolve the aforementioned issues by generating and JIT compiling the library code
during compilation of the QEP. Our generated sorting algorithm is precisely tuned to the
elements to sort and the order to sort them by. In particular, the comparison of two elements is
fully inlined into the sorting algorithm. We explain this approach in detail in Section 3.5.

76

Listing 3.2 Vectorized processing example. A selection vector is successively re�ned to compute
R.x < 42 AND R.y > 13.

1 /* Create a fresh vector with indices
2 * from 0 to VECTOR_SIZE - 1. */
3 sel0 = create_selection_vector(VECTOR_SIZE);
4 /* Evaluate LHS of conjunction. */
5 sel1 = cmp_lt_i32_imm(sel0 , vec_R_x , 42);
6 /* Evaluate RHS of conjunction. */
7 sel2 = cmp_gt_i64_imm(sel1 , vec_R_y , 13);

3.5 Ad-hoc Library Code Generation

In Section 3.3.1 and Section 3.4.3 we already motivated ad-hoc generation of specialized library
code during compilation of a QEP. In this section, we elaborate our technique along the example
of generating specialized �icksort. While other building blocks of QEPs, e.g. hash join,
would also suit as interesting example of our approach, we choose �icksort for two reasons:
(1) �icksort is a recursive algorithm. We demonstrate that our ad-hoc generation is not
limited to mere code fragments but can generate entire recursive functions ad-hoc. (2) At its
core, �icksort repeatedly performs pair-wise comparison of elements when partitioning the
data set. This part of the algorithm bene�ts most from specialization to a particular element type
and sort order, demonstrating the signi�cant impact specialization can have on performance
(cf. Section 3.8.2). We begin with partitioning and inlined comparison of elements before we
explain how we generate �icksort. Note that we need not generate code for an entire library
(e.g. libc or STL) but we generate code for only those routines required by the QEP. Therefore,
ad-hoc generation must be implemented only for those parts of libraries used by QEPs.

3.5.1 Conceptual Comparison

Before diving into the code generation example, let us reconsider our approach on a conceptual
level and compare it with alternatives. A problem that is inherent in all query execution engines
is that their supported operations must be polymorphic. Joins, grouping, sorting, etc. must be
applicable to attributes of any type and size. We aim to provide this polymorphism at query
compilation time by generating specialized library code. To understand how other systems
solve this task, let us look at state-of-the-art solutions.

Vectorized Interpretation. In the vectorized processing model, operations are specialized
for the di�erent types of vectors. In Listing 3.2, we provide an example for the evaluation
of a selection with a conjunctive predicate. The initial selection vector sel0 is successively
re�ned by calls to vectorized comparison functions cmp_* and eventually sel2 contains all

77

indices where the selection predicate is satis�ed. A vectorized query interpreter executes a
QEP by calling these vectorized functions and managing the data �ow between function calls.
To achieve short-circuit evaluation of the condition, the selection vector sel1 is passed to the
second comparison, such that the right-hand side of the conjunctive predicate is only evaluated
for elements that also satisfy the left-hand side. In a compiling setting, short-circuit evaluation
is usually implemented as a conditional branch. In the vectorized processing model, that control
�ow is converted to data �ow. Conditional control �ow can bene�t from branch prediction,
which works well in either case when the selectivity is very high or very low. However, when
the control �ow is converted to data �ow, the bene�t on low selectivities is lost [SZB11; Pir+16;
Ker+18], as we exemplify in our example in Listing 3.2. Assume that the left-hand side of the
condition is barely selective. Although the outcome of evaluating the left-hand side can be well
predicted, evaluation of the right- hand side in line 7 can only start once the comparison in
line 5 completes. Hence, this design completely eliminates the processors ability to predict the
outcome of evaluating the left-hand side and executing the right-hand side unconditionally and
out of order, as opposed to how it would be in a data-centric setting. A drawback of interpretation
is that operations must be specialized and compiled ahead of time. It is infeasible to provide
vectorized operations for arbitrary expressions, as there are in�nitely many. Therefore, the
interpreter dissects expressions into atomic terms for which a �nite set of vectorized operations
is pre-compiled. For our example in Listing 3.2, this means that the interpreter must always
evaluate one side of the conjunction after the other and cannot evaluate both sides at once.

Linking with pre-compiled library. In a compilation-based processing model, e.g. HyPer,
every operation in the QEP is compiled to a code fragment. The produced code is speci�c to the
types of the operation’s operands. Arbitrarily complex expressions are compiled directly rather
than taking a detour through pre-compiled functions for expression evaluation, like in the
interpretation model. Thereby, the compiler can choose to implement short-circuit evaluation
by conditional control �ow.

The biggest drawback of compiling QEPs is the time spent compiling. While direct compi-
lation to machine code could be done rapidly, the produced code would certainly be of poor
quality. Therefore, compilation-based systems employ compiler frameworks like LLVM to per-
form optimizations on the code. While these optimizations can greatly improve the performance
of the code, they require costly analysis and transformation. Hence, compilation of queries can
easily take more than a hundred milliseconds [KLN18].

To reduce the amount of code to compile, recurring routines like hash table lookups or
sorting are pre-compiled and shipped in a library. During compilation of a QEP, when an
operation can be delegated to a pre-compiled routine, the compiler simply produces a respective

78

Listing 3.3Demonstration of a compilation-based processing model with calls to a pre-compiled
library. Every insertion into the hash table requires a separate function call.

1 /* Initialize hash table. */
2 HT *ht = lib_HT_create ();
3 /* Iterate over all rows of table R. */
4 for (auto row : tbl_R) {
5 /* Evaluate selection predicate. */
6 if (row.x < 42 and row.y > 13) {
7 /* Compute hash of R.id. */
8 auto hash = ... row.id ...;
9 /* Insert into hash table. */
10 char *ptr = lib_HT_insert(ht, hash , /* #bytes= */ 8);
11 *(int*) ptr = row.id; // key
12 *(int *)(ptr+4) = row.x; // value
13 }
14 }

function call to the library. This is a trade-o� between compilation time and running time and
the biggest drawback of this approach. Function calls to a pre-compiled library prevent inlining
and obstruct further optimization, thereby potentially leading to sub-optimal performance. We
demonstrate this in Listing 3.3, where every insertion into a hash table requires a separate
function call. The library code for probing the hash table can be compiled and optimized
thoroughly ahead of time. Because the size of a hash table entry is unknown when the library
is compiled, the size must be provided at running time when inserting an entry. In the example,
the hash table must allocate 8 bytes per entry to store R.id and R.x and it is the task of the
caller to assign those values to the entry.

Full compilation. In this approach, code for the entire QEP with all required algorithms
and data structures is generated and compiled just in time. By generating the code just in
time, it is possible to produce highly specialized code, target particular hardware features,
and enable holistic optimization. One example for full compilation is template expansion, as
done in the Hiqe system [KVC10]. Hiqe provides a set of generic algorithms and data
structures that are instantiated and compiled to implement the QEP. Another example is code
generation via staging, as done in LegoBase. Here, metaprogramming is used to write a query
engine in Scala LMS, that when partially evaluated on an input QEP outputs specialized C code
that implements the query [Klo+14]. While full compilation can achieve the highest possible
throughput, both Hiqe and LegoBase take considerable compilation time with hundreds of
milliseconds for single TPC-H queries.

79

V8
WebAssembly

Compiler
QEP

Data

WebAssembly code

Result set

WebAssembly
Codegen

type
information

specialized algorithms
and data structures

• inlined hash table insertion & lookup
• specialized qsort function
• . . .

Figure 3.4: Compilation with on-demand code generation in mutable. QEPs are compiled to
WebAssembly and dispatched to V8. Specialized code is generated on demand for algorithms
and data structures required by the QEP.

3.5.2 Our Approach: JIT Code Generation

Full compilation is very similar to our approach of generating required library routines just
in time and JIT compiling the QEP. The key distinction is how code is generated. Previous
work generates code in a high-level language. This code must then go through parsing and
semantic analysis before it is translated to a lower level IR where optimizations are performed
before executable machine code is produced. Going through the entire compiler machinery
takes a lot of time. Our approach, depicted in Figure 3.4, bypasses most of these steps. We
generate specialized algorithms and data structures directly in WebAssembly. By picking a
suitable WebAssembly engine, e.g. V8, we ful�ll all the requirements given in Section 3.2.2.
Our approach is able to produce highly specialized algorithms and data structures and enables
holistic optimization without the drawback of long code generation and compilation times.

3.5.3 Code Generation by Example

To provide the reader with a better understanding of how we generate library code just in time,
let us exemplify our code generation along the example of �icksort. We build the example
bottom up, beginning with code generation for partitioning and the comparison of two elements
before we explain code generation of the recursive �icksort algorithm. We use pseudocode,
as it is easier to read and understand than Wasm and because our approach of ad-hoc code
generation is independent of a particular language.

Hoare’s partitioning scheme. Hoare’s partitioning scheme creates two partitions
from a sequence of elements based on a boolean predicate such that all elements in the �rst

80

Listing 3.4 Pseudocode for the generation of specialized code that implements Hoare’s parti-
tioning.
1: function Partition(order, begin, end, pivot)
2: Emit(; ← begin)
3: Emit(A ← end)
4: Emit(while ; < A)
5: EmitSwap(; , A − 1)
6: 2; ← EmitCompare(order, ; , pivot)
7: 2A ← EmitCompare(order, pivot, A − 1)
8: Emit(; ← ; + 2;)
9: Emit(A ← A − 2A)
10: Emit(end while)
11: return ;

12: end function

partition do not satisfy the predicate and all elements in the second partition satisfy the predicate.
We apply Hoare’s partitioning in our generated�icksort algorithm, that in turn is used to
implement sorting of tuples. In our setting, the sequence of tuples to partition is a consecutive
array.

We provide pseudocode for the generation of specialized partitioning code in Listing 3.4.
The function Partition takes four parameters: the order is a list of expressions to order by,
begin and end are variables holding the address of the �rst respectively one after the last tuple
in the array to partition, and pivot is a variable holding the address of the pivot to partition
by. The pivot must not be in the range [begin, end). First, the algorithm copies the values of
begin and end by introducing fresh variables ; and A in lines 2 and 3 and then emitting code
that assigns the value of begin to ; in line 4 and the value of end to A in line 5. Next, in line 6, a
loop header with the condition ; < A is emitted. The code emitted thereafter forms the loop
body. In line 7, EmitSwap is called to emit code that swaps the tuples at the addresses ; and
A − 1. Note that this is a function call during code generation. The call will emit code directly
into the loop body, as if inlined by an optimizing compiler, and there will be no function call
during execution of the generated code. In lines 8 and 9, EmitCompare is called to emit code
that compares the tuples at addresses ; and A − 1 to the tuple at address pivot according to the
order speci�ed by order. Each call returns a fresh boolean variable that holds the outcome of the
comparison. Just like EmitSwap, calls to EmitCompare emit code directly into the loop body
without the need for a function call in the generated code. The value of variable 2; will be true
if the tuple at address ; compares less than the tuple at address pivot w.r.t. the speci�ed order.
Line 10 emits code that advances ; to the next tuple if 2; is true, otherwise ; is not changed.
Similarly, line 11 emits code to advance A to the previous tuple if 2A is true. This is a means of
implementing branch-free partitioning. In line 12, the loop body for the loop emitted in line 6 is

81

Listing 3.5 Pseudocode for the generation of code that compares two elements based on a
speci�ed order.
1: function EmitCompare(order, ; , A)
2: Emit(E ← 0)
3: for each expr in order do

4: E; ← Compile(expr, ;)
5: EA ← Compile(expr, A)
6: switch type(expr) do
7: case int
8: Emit(;C ← E; <int EA)
9: Emit(6C ← E; >int EA)
10: case �oat
11: Emit(;C ← E; <�oat EC)
12: Emit(6C ← E; >�oat EC)
13: ... ⊲cases for remaining types

14: end switch

15: Emit(E ← 2 · E + 6C − ;C)
16: end for

17: Emit(2 ← E < 0)
18: return 2

19: end function

�nished. Eventually, Partition returns the variable ; , which will point to the beginning of the
second partition once the loop of line 6 terminates.

The code presented in Listing 3.4 looks almost like a regular implementation of partitioning.
However, the function emits code that will perform partitioning. An important part of parti-
tioning, that we skipped in Listing 3.4, is how the code to compare two tuples based on a given
order is generated. Therefore, we also provide pseudocode for EmitCompare in Listing 3.5.

First, EmitCompare creates a fresh variable E in line 2 and initializes it to 0 in line 3. Then,
in line 4, the function iterates over all expressions in order. The call to Compile in line 5 emits
code to evaluate expr on the tuple pointed to by ; and returns a fresh variable holding the value
of the expression. Analogously, line 6 evaluates expr on the tuple pointed to by A . Next, type-
speci�c code to compare the values E; and EA of the evaluated expression is emitted. Because
the particular code to emit depends on the type of expr, line 7 performs a case distinction on
the type. This case distinction is performed during code generation and the generated code will
only contain the emitted, type-speci�c code. In case the expression evaluates to an int, lines 9
and 10 emit code to perform an integer comparison of E; and EA . The cases for other types
are analogous. After emitting type-speci�c code for the comparison of E; and EA , line 16 emits
code to update E based on the outcome of the comparison. After generating code to evaluate
all expressions in order and updating E accordingly, lines 18 and 19 introduce a fresh boolean

82

Listing 3.6 Generated partitioning code for the order ['.G + '.~, '.I].
Input: b, e, p
Output: ?;
1: var ?; ← b ⊲Initialize pointers to the �rst and

2: var ?A ← e ⊲one after the last tuple, respectively.

3: while ?; < ?A do

4: ⊲ EmitSwap(?; , ?A − 1)
5: var Etmp ← ∗?; ⊲Use temporary variable

6: ∗?; ← ∗(?A − 1) ⊲to swap tuples

7: ∗(?A − 1) ← Etmp ⊲at ?; and ?A − 1.
8: ⊲ EmitCompare(['.G + '.~, '.I], ?; , p)
9: var El,pivot ← 0
10: var E; ← ?; .G +int ?; .~ ⊲Compile('.G + '.~, ?;)
11: var Epivot ← p.G +int p.~ ⊲Compile('.G + '.~, p)
12: var Elt ← E; <int Epivot
13: var Egt ← E; >int Epivot
14: El,pivot ← 2 · El,pivot + Egt − Elt
15: var E; ← ?; .I ⊲Compile('.I, ?;)

16: var Epivot ← p.I ⊲Compile('.I, p)
17: var Elt ← E; <int Epivot
18: var Egt ← E; >int Epivot
19: El,pivot ← 2 · El,pivot + Egt − Elt
20: var Ecl ← El,pivot < 0
21: ⊲ EmitCompare(['.G + '.~, '.I], p, ?A − 1)
22: . . . ⊲Code omitted for brevity.

23: var Ecr ← Epivot,r < 0
24: ?; ← ?; + Ecl ⊲Advance left cursor.

25: ?A ← ?A − Ecr ⊲Advance right cursor.

26: end while

variable 2 that will be set to E < 0, which evaluates to true if the tuple at ; is strictly smaller
than the tuple at A .

To put it all together, let us exercise an example. We invoke Partition with the order

['.G + '.~, '.I], begin ‘b’, end ‘e’, and pivot ‘p’. The generated code is given in Listing 3.6.
Initially, in lines 1 and 2, the addresses of the �rst and one after the last tuple are stored in fresh
variables. Then the loop in line 3 repeats as long as pointer ?; points to an address smaller
than ?A . Lines 5 to 7 show the code produced by EmitSwap, that swaps two tuples using a
temporary variable. In lines 9 to 20, the tuple at ?; is compared to the pivot according to the
speci�ed order. Variable Ecl is true if the tuple at ?; compares less than the pivot, false otherwise.
Analogously, the tuple at ?A −1 is compared to the pivot. To keep the example short and because
the code is very similar, we omit this code and only show a place holder in line 22. At the end
of the loop, in lines 24 and 25, the pointers ?; and ?A are advanced depending on the outcome
of the comparisons.

83

Listing 3.7 Pseudocode to generate specialized �icksort.
1: function �icksort(order)
2: Emit(function qsort(begin, end))
3: Emit(while end − begin > 2)
4: Emit(mid← begin + (end − begin)/2)
5: < ← EmitMedianOf3(begin, mid, end − 1)
6: EmitSwap(begin,<)
7: mid← Partition(order, begin + 1, end, begin)
8: EmitSwap(begin, mid − 1)
9: Emit(if end −mid ≥ 2)
10: Emit(qsort(mid, end))
11: Emit(end if)
12: Emit(end← mid − 1)
13: Emit(end while)
14: Emit(end function)
15: end function

The generated code will partition the range [b, e) such that the �rst partition contains only
tuples that compare less than p and the second partition contains only tuples greater than or
equal to p, w.r.t. the speci�ed order. Note that the generated code is not a function. Instead, this
code can be generated into a function where partitioning is needed. Hence, the entire code for
partitioning will always be fully inlined and specialized for the order to partition by.

�icksort. �icksort sorts its input sequence by recursive partitioning. In our implemen-
tation of �icksort, we compute the pivot to partition by as a median-of-three. With our code
generation for partitioning at hand, generating �icksort is relatively simple. We provide
pseudocode in Listing 3.7. Line 2 de�nes a new function qsort, line 3 emits a loop that repeats
as long as there are more than two elements in the range from begin to end. Inside this loop,
lines 4 to 7 emit code to compute the median of three and bring the median to the front of the
sequence to sort. Line 8 emits the code to partition the sequence begin + 1 to end using as pivot
the median of three. After partitioning, the median must be swapped back into the partitioned
sequence, which is done by line 9. Line 10 checks whether to recurse into the right partition.
Line 11 emits a recursive call to sort the right partition with qsort. Afterward, in line 13, code
is emitted to update end to the end of the left partition.

We can see that by executing our�icksort code generation, we obtain a specialized, fully
inlined qsort function that can be called to sort a sequence by the order speci�ed during code
generation.

84

3.6 Executing WebAssembly in a Database System

In the preceding sections, we explained how to compile a QEP and its required libraries to
WebAssembly. In this section, we elaborate how we execute WebAssembly in an embedded
engine. Although this approach works with any embeddable engine, we describe the process of
embedding and executing WebAssembly in V8.

The WebAssembly speci�cation requires that each module – think of translation unit in C
– operates on its personal memory. This memory is provided by the engine, here V8. To execute
a compiled QEP inside the engine, all required data (tables, indexes, etc.) must reside in the
module’s memory. One way to achieve this is by copying all data from the host to the module’s
memory. However, this incurs an unacceptable overhead of copying potentially large amounts
of data before executing the QEP. An alternative is to use callbacks from the module to the host
to transfer single data items on demand. For such a purpose, V8 allows for de�ning functions in
the embedder that can be called from the embedded code. However, such callbacks also incur a
tremendous overhead, because the VM has to convert parameters and the return value from the
representation in embedded code to the representation in the embedder and vice versa. At the
time of writing, V8 provides no method to use pre-allocated host memory as a module’s memory.
Therefore, we patch V8 to add a function for exactly that purpose: SetModuleMemory() sets
the memory of a WebAssembly module to a region of the host memory. While this function
enables us to provide a single consecutive memory region from the host to the module, it is not
su�cient to provide multiple tables or indexes (which need not reside in a single consecutive
allocation) to a module. The problem is that WebAssembly – in its current version – only
supports 32 bit addressing. Hence, we cannot simply assign the entire host memory to the
module. Instead, we are limited to 4GiB of addressable linear memory inside the module. In
the following, we describe pagination implemented with a technique named rewiring to work
around this limitation. However, we want to stress that 64 bit addresses in WebAssembly are
on the way and pagination will become obsolete eventually.

3.6.1 Accessing Data by Rewiring

Rewiring [SDS16] allows for manipulating the mapping of virtual address space to physical
memory from user space. In particular, it enables us to map the same physical memory at two
distinct virtual addresses. We exploit this technique to have data structures residing in distinct
allocations appear consecutively in virtual address space and then use this address range as the
module’s memory.

We exemplify this technique in Figure 3.5. Assume a query accessing two tables A and
B. The tables reside in completely independent memory allocations, hence there is no single

85

Module

V8

rewiring
Host Memory

Virtual Address Space
0x7ffd 8000 0000:

0x7ffe 7fff ffff:

4 GiB

Table A (1GiB)

Table B (5GiB)

Result Set (1 GiB)

1GiB

2GiB

1GiB

Se
tM

od
ul

eM
em

or
y(

)
(o
ur

pa
tc
he
d
V8

)

Module Linear Memory

0x0000 0000:

0xffff ffff:

4GiB

read

write

rewire_next_chunk(B)

Figure 3.5: Example of mapping tables and output to a module’s memory. The module can
callback to the host to request mapping the next 2GiB chunk of table B.

4GiB virtual address range that contains both A and B entirely. Further, the query computes
some results, and we therefore allocate 1GiB of memory to store the query’s result set. To
give the module access to all required memory, we �rst allocate consecutive 4GiB in virtual
address space. Then we rewire table A, a portion of table B, and the memory for the result set
into the freshly allocated virtual memory. Finally, we call SetModuleMemory() with the freshly
allocated virtual memory. The module now has access to both tables and can write its results
to the memory allocated for the result set. Note that table B is 5 GiB and cannot be rewired
entirely into the virtual memory for the module. To give the module access to the entire table,

86

we install a callback rewire_next_chunk() that lets the host rewire the next 2GiB chunk of
table B, thereby allowing the module to iteratively process entire B.

3.6.2 Result Set Retrieval

Similarly to how data is made available to the module, we use rewiring to communicate the
result set back to the host. As can be seen in Figure 3.5, the module writes the result set to a
rewired allocation of 1 GiB. If the module produces a result set of more than 1GiB, it produces
the result set in chunks and issues a callback in between to have the host process the current
chunk of results.

3.7 Related Work

In addition to our motivation for using V8 and WebAssembly in Section 3.2.2 and Section 3.3,
respectively, we present in Section 3.7.1 JIT frameworks and engines that might be used al-
ternatively. In Section 3.7.2, we augment the comparison with related work that is conducted
throughout Section 3.2.1, Section 3.4.3, and Section 3.5.1.

3.7.1 JIT Frameworks & Engines

The idea to build query execution on top of a JIT engine occurred as early as 1997 in the
context of JIT compilation in the Java Virtual Machine (JVM) [Cra+97]. These thoughts
were later implemented in Java’s HotSpot VM [Kot+08] and are still being developed today
in GraalVM [Ora12]. Let us have a quick look at JIT compilers and engines we considered:
MIR [Mak] provides an IR with an interpreter and fast JIT compiler, however it is still in early
development by only a small community and does not provide adaptive execution out of the box.
LibJIT [Fre] provides a framework for on-demand JIT compilation and reoptimization. However,
it is lacking automation of adaptive execution and inlining. When we focus on executing
WebAssembly, we have access to a rich set of engines. For brevity, we only mention a few
examples: Wasmer [Was] is a feature-rich WebAssembly runtime but does not provide e�cient
embedding. SpiderMonkey is Mozilla’s JavaScript andWebAssembly engine and quite similar
to Google’s V8. We chose V8 over SpiderMonkey because of its better documentation and
because it is written in C++, like our database system mutable.

3.7.2 Query Execution

Interpretation. Graefe [Gra94] proposes a uni�ed and extensible interface for the implemen-
tation of relational operators in Volcano, named iterator interface. Ailamaki et al. [Ail+99]

87

analyze query execution on modern CPUs and �nd that poor data and instruction locality as
well as frequent branch misprediction impede the CPU from processing at peak performance.
Boncz, Zukowski, and Nes [BZN05b] identify tuple-at-a-time processing as a limiting factor of
the Volcano iterator design, that leads to high interpretation overheads and prohibits data par-
allel execution. To overcome these limitations, Boncz, Zukowski, and Nes [BZN05b] propose
vectorized query processing, implemented in the X100 query engine within the column-oriented
MonetDB system. Menon, Mowry, and Pavlo [MMP17] build on the vectorized model and
introduce stages to dissect pipelines into sequences of operators that can be fused. By fusing op-
erators, Menon, Mowry, and Pavlo are able to vectorize multiple sequential relational operators.
Their implementation in Peloton [Pav+17] shows that operator fusion increases the degree of
inter-tuple parallelism exploited by the CPU.

Compilation. Rao2006compiled explore compilation of QEPs to Java and having the JVM
JIT-compile and load the generated code. However, their approach sticks to the Volcano itera-
tor model, restricting compilation from unfolding its full potential. Follow-up work explores
compiling QEPs to vectorized Java code in Spark [ALX16]. Potential compilation overheads are
not discussed. Schiavio, Bonetta, and Binder [SBB21] and Grulich, Zeuch, and Markl [GZM21]
both recently explored the support of polyglot UDFs. Both approaches build on Truffle,
GraalVM’s compiler-compiler. We believe the JavaScript + WebAssembly eco system could
very well support polyglot programming, too. There already exists a wide range of transpilers,
e.g. Transcript translates Python to JavaScript or Emscripten compiles LLVM-based lan-
guages to WebAssembly. With HIQUE, Krikellas, Viglas, and Cintra [KVC10] propose query
compilation to C++ code by dynamically instantiating operator templates in topological or-
der. They report query compilation times in the hundreds of milliseconds. Neumann [Neu11]
presents compilation of pipelines in the QEP to tight loops in LLVM. Complex algorithms
are implemented in C++ and pre-compiled, to be linked with and used by the compiled query.
With the implementation in HyPer, Neumann achieves signi�cantly reduced compilation times
in the tens of milliseconds. Klonatos et al. [Klo+14] address the system complexity and the
associated development e�ort of compiling query engines in their LegoBase system, where
metaprogramming is used to write a query engine in Scala LMS that, when partially evaluated
on an input QEP, yields specialized C code that implements the query. Despite the clean design,
the code generation through partial evaluation as well as the compilation of the generated code
leads to compilation times in the order of seconds.

Adaptive. A recent advancement in query execution is adaptive execution by
Kohn, Leis, and Neumann [KLN18] and Kersten, Leis, and Neumann [KLN21], that we

88

already discussed in great detail in Section 3.2.1.

3.8 Evaluation

In this section, we want to experimentally verify that our architecture of embedding an o�-
the-shelf JIT engine provides competitive performance to state-of-the-art systems. We want to
stress that our goal is not to outperform existing systems but to demonstrate that our approach
enables us to achieve similar performance at much lower engineering costs.2 We begin by
evaluating the performance of QEP building blocks, then we survey TPC-H queries, and �nally
we examine compilation times.

3.8.1 Experimental Setup

We implement our approach in mutable [Haf+23], a main-memory database system developed
by the Big Data Analytics Group at Saarland University. Although mutable supports arbitrary
data layouts, we conduct all experiments using a PAX layout with 4MiB block. Since mutable
does not yet support multi-threading, all queries run on a single core.

We compare to three systems: (1) PostgreSQL 15.4 as representative for Volcano-style
tuple-at-a-time processing, (2) DuckDB v0.8.1, implementing the vectorized model as in Mon-
etDB/X100, and (3) HyPer, an adaptive system performing interpretation and compilation of
LLVM bytecode, as provided by the tableauhyperapi Python package in version 0.0.17360.
For PostgreSQL, we disable JIT compilation of expressions. Enabling JIT compilation in
PostgreSQL did deteriorate execution times in all of our experiments. Further, we disable write-
ahead logging (WAL) completely and explicitly create all tables with parameter UNLOGGED to
remedy ACID-related overheads to query execution within PostgreSQL. While earlier versions
of HyPer implemented the approach of Kohn, Leis, and Neumann [KLN18], recent versions of
HyPer implement the approach of Kersten, Leis, and Neumann [KLN21], which cannot be dis-
abled.3 Further, with a recent update, HyPer’s log �le does not contain detailed information on
time spent on interpretation, non-optimizing compilation, or optimizing compilation anymore.
HyPer only reports compilation time and execution time, and it is not possible anymore to
observe whether interpreted execution happened before compiled execution. We therefore
report the overall execution time as given in HyPer’s log �le, and, if present, the compilation
time. We run all our experiments on a machine with an AMD Ryzen 7800X3D with 8 physical

2Please be aware that performance di�erences are not only due to architectural di�erences but – much more
likely – due to di�erent implementations of the same algebraic operations. In mutable we only use text-book
implementations of algebraic operations.

3This is in stark contrast to the evaluation conducted in my paper corresponding to this chapter [HD23a].

89

0

50

Ex
ec

ut
io

n
tim

e
[m

s]

(a) Selection on one 32-bit integer a�ribute. (b) Selection on one 64-bit �oating-point a�ribute.

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

0

50

Ex
ec

ut
io

n
tim

e
[m

s]

(c) Selection on two 32-bit integer a�ributes
with the same selectivity for both.

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

(d) Selection on two 32-bit integer a�ributes
with one selectivity �xed to 1%.

DuckDB (single core)
DuckDB (16 cores)

HyPer (single core)
HyPer (16 cores)

mutable (single core)

Figure 3.6: Evaluation of selection with one and two one-sided range predicates.

cores at 4.2 GHz base clock, 96MiB L3 cache, and 32GiB main memory. All data accessed in the
experiments is memory resident. We repeat each experiment �ve times.

3.8.2 Performance of Query Building Blocks

With our �rst set of experiments, we evaluate the performance of individual query building
blocks across di�erent systems. We use a generated data set with multiple tables and 10 million
rows per table. Tables contain only integer and �oating-point columns, where integer values are
chosen uniformly at random from the entire integer domain [−231; 231 − 1] and �oating-point
values are chosen uniformly at random from the range [0; 1]. All columns are individually
shu�ed and hence all columns are pairwise independent (uncorrelated). For HyPer andmutable,
we report only execution times without compilation times. We further enforce compilation
with the optimizing TurboFan compiler.

Selection. In our �rst set of experiments, we run several COUNT(*)-queries with di�erent
WHERE-clauses to evaluate the performance of selection. In Listing 3.8, we exemplify the structure
of these queries. Figure 3.6 (a) and (b) show our measurements for selection on a 32-bit integer
and a 64-bit �oating-point column, respectively. We omit our �ndings for PostgreSQL, as
the times are above 200ms. Both mutable and DuckDB implement selection by conditional

90

Listing 3.8 Example queries for our experiments in Figure 3.6. The numeric constants are
varied to achieve the desired selectivity of the selection predicate.

1 SELECT COUNT (*) FROM T WHERE i32 < 42; -- Fig. 3.6 (a)
2 SELECT COUNT (*) FROM T WHERE f64 < 0.42; -- Fig. 3.6 (b)
3 SELECT COUNT (*) FROM T WHERE i32a < 42 AND i32b < 42; -- Fig. 3.6 (c)
4 SELECT COUNT (*) FROM T WHERE i32a < 42 AND i32b < -2104533975; -- Fig. 3.6 (d)

branching. Therefore, both systems su�er from frequent branch misprediction at selectivities
around 50% [SZB11; Ros02]. The execution time of HyPer remains una�ected by varying
selectivity; our educated guess is that HyPer compiles branch-free code. We can see that mutable
outperforms DuckDB on all selectivities and for both integer and �oating-point columns. This
is likely the case because DuckDB, which implements the vectorized execution model, has the
overhead of maintaining a selection vector [SZB11; Pir+16].

We conduct two additional experiments, where we perform a selection on two, pairwise-
independent integer columns. In our third experiment, shown in Figure 3.6 (c), both conditions
are varied with equal selectivity. This means, the overall selectivity of the selection is the squared
selectivity of either condition. Since mutable does not implement short-circuit evaluation and
instead evaluates the selection predicate as a whole, a selectivity of

√
50% ≈ 71% per condition

presents the worst-case for branch prediction with a time of 35ms. DuckDB, which implements
the vectorized model, must �rst evaluate one condition to a selection vector before evaluating
the second condition on the selected rows. Because the conditions are evaluated individually,
branch misprediction occurs up to twice as often and branch prediction is worst at a selectivity
of 50% per condition with an execution time around 61ms. As the selectivity grows, the second
condition must be evaluated more often. This can be seen in the slight asymmetry of the
execution time curve. HyPer’s execution time signi�cantly grows with the selectivity from
around 5ms at 0% to 17ms at 100%. HyPer again produces branch-free code. However, it
appears that the second column is only accessed if the �rst condition is satis�ed, causing an
increase in execution time with increasing selectivity.

In our fourth experiment, shown in Figure 3.6 (d), only one condition is varied while the
other is �xed to a selectivity of 1%. The overall selectivity of the selection is hence in the
range from 0% to 1%. Since mutable evaluates the entire selection predicate as a whole, branch
prediction works reliably well, and we observe a constant execution time of around 11ms.
DuckDB appears to evaluate the condition with varying selectivity �rst, leading to branch
misprediction and execution times of up to 45ms.

91

Listing 3.9 Example queries for our experiments in Figure 3.7.

1 SELECT COUNT(DISTINCT i32) FROM T; -- Fig. 3.7 (a) & (b)
2 SELECT COUNT(DISTINCT (i32a , i32b , i32c)) FROM T; -- Fig. 3.7 (c)
3 SELECT SUM(i32a), SUM(i32b), SUM(i32c) FROM T GROUP BY i32; -- Fig. 3.7 (d)

0 2M 4M 6M 8M 10M
Number of rows

0

100

200

300

Ex
ec

ut
io

n
tim

e
[m

s]

(a) Group by single 32-bit integer a�ribute.

101 102 103 104 105

Number of distinct values

0

100

200

300

Ex
ec

ut
io

n
tim

e
[m

s]

(b) Group by 32-bit integer a�ribute
with varying no. of distinct values.

1 2 3 4
Number of a�ributes to group by

0

500

1000

Ex
ec

ut
io

n
tim

e
[m

s]

(c) Group by varying number
of 32-bit integer a�ributes.

1 2 3 4
Number of aggregates

0

50

100

Ex
ec

ut
io

n
tim

e
[m

s]

(d) Group by with varying number of aggregates.

DuckDB (single core)
DuckDB (16 cores)

HyPer (single core)
HyPer (16 cores)

mutable (single core)

Figure 3.7: Evaluation of grouping & aggregation.

Grouping & Aggregation. Our next experiment evaluates the performance of grouping and
aggregation. We run several COUNT(DISTINCT ...) and aggregate queries. In Listing 3.9, we
exemplify the structure of these queries. We vary the experiment in several dimensions: (a) the
number of rows in the table, (b) the number of distinct values in the column being grouped by,
(c) the number of attributes to group by, and (d) the number of aggregates to compute. Figure 3.7
presents our �ndings.

In Figure 3.7 (a) to (c), a lion share of execution time is spent on hash table operations.
mutable generates a specialized hash table implementation per query, with all hash table
operations fully inlined into the query code, and is thereby able to gain an advantage over the
other systems. We must note that HyPer achieves impossible execution times in Figure 3.7 (b)

92

Listing 3.10 Example queries for our experiments in Figure 3.8.

1 SELECT id FROM T ORDER BY i32; -- Fig. 3.8 (a) & (b)
2 SELECT id FROM T ORDER BY i32a , i32b , i32c; -- Fig. 3.8 (c)

0 5M 10M
Number of rows

0

1

2

3

4

5

Ex
ec

ut
io

n
tim

e
[s

]

(a) Order by single
32-bit integer a�ribute.

101 102 103 104 105

Number of distinct values

0

1

2

3

4

5
Ex

ec
ut

io
n

tim
e

[s
]

(b) Order by 32-bit integer a�ribute
with varying no. of distinct values.

1 2 3 4
Number of a�ributes

0

1

2

3

4

5

6

Ex
ec

ut
io

n
tim

e
[s

]

(c) Order by varying number
of 32-bit integer a�ributes.

DuckDB (single core)
DuckDB (16 cores)

HyPer (single core)
HyPer (16 cores)

PostgreSQL (16 cores)
mutable (single core)

Figure 3.8: Evaluation of sorting.

for 10 to 1000 distinct values: We believe that HyPer answers our queries from internal statistics
rather than actually executing the query.

In Figure 3.7 (d) we evaluate the performance of aggregation by altering the SELECT-clause
to compute a varying number of aggregates. The time for hash table lookup is dwarfed by the
time to compute the aggregates.

Sorting. Our next experiment evaluates the performance of sorting, as needed in ORDER BY-
clauses or for merge-join. Similar to the experiment on grouping, we vary the experiment in
several dimensions: the number of rows in the table, the number of attributes to order by, and
the number of distinct values in the column to order by. For evaluation, we execute queries
as exempli�ed in Listing 3.10, and Figure 3.8 presents our �ndings. We can observe a slight
improvement over DuckDB and a signi�cant improvement over HyPer and PostgreSQL, that
we credit to mutable’s generation and consequent holistic optimization of the sorting operation,
described in detail in Section 3.5.3. In contrast to interpretation or the use of a pre-compiled
library, in�icksort generated by mutable the pair-wise comparison of elements and the entire
routine for partitioning are fully inlined and specialized to the elements’ types. No callbacks
are required to compare elements and no dynamic dispatches are required to determine an
element’s runtime type.

93

Listing 3.11 Example queries for our experiments in Figure 3.9.

1 SELECT COUNT (*) FROM T JOIN S ON T.id = S.tid; -- Fig. 3.9 (a)
2 SELECT COUNT (*) FROM T JOIN S ON T.x = S.x; -- Fig. 3.9 (b)

0 2M 4M 6M 8M 10M
Number of rows per table

0

500

1000

Ex
ec

ut
io

n
tim

e
[m

s]

(a) Foreign-key join on 32-bit integer a�ribute.

0 2M 4M 6M 8M 10M
Number of rows per table

0

1

2

3

Ex
ec

ut
io

n
tim

e
[s

]

(b) N:M join on 32-bit integer a�ribute.

DuckDB (single core)
DuckDB (16 cores)

HyPer (single core)
HyPer (16 cores)

PostgreSQL (16 cores)
mutable (single core)

Figure 3.9: Evaluation of equi-join.

Equi-Join. In this experiment, we evaluate the performance of a foreign key join and an
=:< equi-join. We sketch the structure of our queries in Listing 3.11. We perform the =:<
join on non-key columns to avoid the systems using a pre-built index, since mutable does not
yet support indices.4 We �x the selectivity of the joins to 10−6 and vary the size of the input
relations. We present our �ndings in Figure 3.9. In (a), we see the expected linear behavior
for all systems. There is a slight decrease in execution time from 4M to 5M rows for DuckDB.
This is likely due to pre-allocation of an internal hash table for the hash join and the resulting
load factor of that hash table. In (b), we observe the expected quadratic behavior. Notable here
is that HyPer exhibits the strongest curvature and becomes the slowest of the systems from
around 4M rows onwards. Our educated guess is that duplicates w.r.t. the join predicate lead to
long collision chains in HyPer’s hash table.

3.8.3 TPC-H

So far, our experiments only focus on individual query building blocks. Next, we conduct an
experimental evaluation of TPC-H queries. By the time of writing, mutable – and in particular
our WebAssembly backend – only supports a subset of SQL and hence we are only able to
evaluate the TPC-H queries 1, 3, 6, 12, and 14. We are further constrained to SF 1, as for

4In particular, mutable cannot map non-consecutive data structures like indices from process memory into the
WebAssembly VM. This is future work.

94

Q1 Q3 Q6 Q12 Q14
0

100

200

Ex
ec

ut
io

n
tim

e
[m

s]

2231 302877
(a) Execution times.

Q1 Q3 Q6 Q12 Q14
0

2

4

6

Co
m

pi
la

tio
n

tim
e

[m
s] 14.9

(b) Compilation times.

DuckDB (single core)
DuckDB (16 cores)

HyPer (single core)
HyPer (16 cores)

PostgreSQL (16 cores)
mutable (single core)

Figure 3.10: Evaluation of TPC-H queries on an SF 1 database. Compilation times for mutable
are split into the time to compile SQL to WebAssembly (dark) and the time to compile
WebAssembly to machine code (light).

larger scale factors the data structures constructed during execution exceed the Wasm linear
memory. We are currently unable to exploit the technique described in Section 3.6 for data
structures; it is only applied to rewire single, consecutive memory regions. For HyPer, we
extract compilation and execution times from its log �le. For mutable, we provide detailed
timings for the translation of the QEP to WebAssembly and the compilation and execution of
WebAssembly with TurboFan. We present our �ndings in Figure 3.10.

With regard to compilation times, mutable’s optimizing compilation with TurboFan is up to
27.4x faster than HyPer’s compilation (Q6). Note that mutable’s compilation times include the
generation and compilation of required algorithms and data structures, e.g. hash table operations.
At the same time, mutable’s execution times are competitive to HyPer’s – except for Q14 where
HyPer on a single core signi�cantly outperforms all other systems. It is worth mentioning that
the reason why HyPer compiles faster on 16 cores is likely that no optimizing compilation is
performed. This behavior matches our observations in our paper [HD23a], where we evaluated
HyPer when it was still implementing the approach of Kohn, Leis, and Neumann [KLN18] and
the produced log �le contained detailed timings.

3.9 Conclusion

Our goal was to simplify the architecture of query execution engines while ful�lling the high-
level requirements of low latency, high throughput, and adaptive execution. We proposed to
embed a suitable o�-the-shelf JIT engine into the database system to delegate the execution of
QEPs to. By compiling QEPs to an e�cient IR and delegating execution to said engine, we have

95

met that goal. Our architecture requires much less engineering and maintenance than previous
solutions. At the same time, our experimental evaluation con�rms that we achieve low latency
because of fast JIT code generation and high throughput because of adaptive (re-) optimization
during query execution – all fully handled by the embedded engine.

We are convinced that our approach is considerably simpler to understand and implement
than current state-of-the-art. By relying on successful, battle-tested infrastructure for JIT
compilation and execution, we signi�cantly reduce the required development e�ort to build
an adaptive yet highly e�cient query execution engine. With the ongoing standardization of
WebAssembly [MDN; W3C] and the immense interest and amount of ongoing work in engines
supporting this language [V8 08; Moz; Byt; Was; App], our approach provides a reliable and
future-proof solution to adaptive query execution.

Further, we think that our ad-hoc generation of specialized algorithms and data structures
shapes a new path for query compilation, potentially leading to much more e�cient query
processing than was possible so far.

96

Chapter 4

mutable - A Modern Database System

for Research & Fast Prototyping

This chapter is based onmy publication “mutable - AModern DBMS for Research

and Fast Prototyping” [HD23c]. This work was published in the research track

of CIDR 2023. This work was co-authored by my Ph.D. advisor Prof. Dr. Jens Dit-

trich.

4.1 Introduction

Bobby Tables is a young Ph.D. student in the �eld of database systems, who just recently started
doing her own research. Bobby has an idea how to compute join orders more e�ciently. At
some point, Bobby has to implement her idea to perform an empirical evaluation. Bobby now
has to make an important decision: She can (1) implement her idea in an existing (open-source)
system or (2) implement her idea stand-alone, i.e. not integrating it into a system. Bobby asks
for guidance from her Ph.D. advisor, who tells her that there are strengths and weaknesses to
either approach and presents the following arguments regarding implementation in an existing
system:

+ Bobby can save some development e�ort by implementing her approach in an existing
system. She will be able to rely on a rich infrastructure taking care of many things
unrelated to her topic of research, e.g., parsing and semantic analysis, concurrency
control, bu�er management, storage, or query execution.

+When related algorithms have been implemented in the same system, Bobby can use
them “o� the shelf” for her evaluation.

97

+ There is always this one reviewer that expects you to evaluate your approach in a real
database system. Bobby can consider it done.

− System-speci�c design decisions may (negatively) a�ect experiments. In the case of
join ordering, a system with particularly slow query execution may dwarf Bobby’s
improvements over related works when comparing end-to-end workload execution
times.

− Bobby may have to re-implement related algorithms in the chosen system, somewhat
contradicting the argument of saving development e�ort.

− Alternatively, Bobby can evaluate implementations in other systems. However, this has
the signi�cant downside of leading to an “apples to oranges” comparison. In the case
of join ordering, di�erent systems may use di�erent cost models, di�erent cardinality
estimation, or simply deploy more or less e�cient data structures. All these factors can
obfuscate Bobby’s empirical �ndings.

After some consideration, Bobby decides to implement her join ordering algorithm in
an existing system. But which system should she choose? Bobby searches online for some
candidates and quickly �nds the Database of Databases (dbdb.io). The site lists a whopping
875 database systems as of December 2022. Bobby is convinced that she will �nd a suitable
system for her implementation among these many candidates. She uses the �lter to re�ne
her search to systems of “Academic” or “Educational” type and having a relational data model.
Surprisingly, from the initial 875 systems only 34 remain. Still, Bobby is con�dent as she spots
some famous research projects within the list: PostgreSQL, HyPer, MonetDB, DuckDB, and
NoisePage, to name a few. Bobby takes a closer look at the open-source systems to understand
how she can implement and integrate her join ordering algorithm. She �nds that all systems
provide some form of (online) documentation. However, the documentation is mainly targeted
at database users and administrators. Sometimes, the documentation also includes a description
and motivation of internal design decision, e.g., what algorithm for join ordering is implemented
in the system. Some systems provide APIs and accompanying documentation for extending the
supported data types or implementing user-de�ned functions or for embedding a system. Sadly,
no system provides a documentation targeted at database researchers and developers, that
would explain how new algorithms for solving a particular database problem – like join ordering,
for example – can be implemented in the system [Duc; CMU; Pos; Mon]. From Bobby’s point of
view, it is unclear whether such APIs even exist and proper documentation is just lacking. In
addition to these problems, the aforementioned systems generally do not ship with alternative
implementations of the same system component, e.g., di�erent algorithms for computing join

98

https://dbdb.io/

orders. This is cumbersome for Bobby, as she cannot easily pick up and evaluate algorithms of
related works.

The tragedy of Bobby Tables is a story many Ph.D. students and post-doctoral researchers
are familiar with. For this reason, in this paper, we propose a new database system that is
designed for researchers, scholars, and developers. We present a system that can serve as a
universal framework for implementing and experimenting with new database technology and
that can serve as a common test bed for experimental evaluations. What would such a system
have to look like? How would one design such a system? This work is a mix of a system and a
vision paper.

4.1.1 Outline

In Section 4.2, we present our design goals, contrast to prior work, and propose our approach
with mutable. Section 4.3 to Section 4.7 present some of mutable’s features, both conceptually
and by example.

4.2 Database System Design

To help Bobby out of her misery, we want to design a database system that is mainly targeted
at academic research. We work out the following design goals that we deem inevitable to foster
e�cient research and education.

4.2.1 Design Goals

Extensibility. The DBMS should be easily extensible to augment it with new algorithms.
There should be as little obstacles as possible to get started developing with the system. Proper
documentation and clean APIs will go a long way to ful�ll this design goal.

Separation of Concerns. When implementing a new algorithm in the DBMS, one should
not need to know about implementation details of the remainder of the system. The system
should be split into individual components. Each component will ful�ll a single purpose and
is independent of other components. In particular, components shall appear to the outside as
stateless and hence make it impossible to rely on internal state. This principle must guide the
design process of the API.

99

Abstraction. . . To enable easy adoption by practitioners and researchers, abstractions are
necessary to focus attention on details of importance to our community. With abstraction, we
can form a common “language of symbols” we operate with. To achieve this, types, functions,
classes, and methods should be named and designed in consistence with academic terminology
and usage. Complex theoretical constructs need to be broken down into atoms and the system
should be designed around these atoms.

. . .without regret. Traditionally, abstraction in software design comes at a cost. For example,
abstraction through interfaces (or abstract classes) comes at the cost of dynamic dispatches,
posing a considerable overhead for frequently called functions. Abstractions, in general, pose
arti�cial boundaries that hinder a compiler from specializing and aggressively optimizing
code. Enabling aggressive optimization by the compiler and avoiding overheads from dynamic
dispatches will be absolutely necessary to achieve maximum performance.

These design goals are very broad and are �tting to any software system. In the following,
we will elaborate in more depth how these goals apply to a database system and how we aim to
achieve them.

4.2.2 Related Work

Certainly, each of the aforementioned design goals has already been studied by our community.
We therefore brie�y revisit prior work and emphasize potential shortcomings in their design.

Extensible DBMSs can be dissected into two groups. The �rst group contains “complete”
DBMSs with support for extending the system by a user. Such systems may allow for intro-
ducing abstract data types (ADT) into the language by implementing them in a domain-speci�c

language (DSL). Other common extensibility features are custom storage techniques or data
access methods. Systems belonging to this group are ADT-Ingres [SRG83], R2D2 [KW87],
PostgreSQL [SR86; RS87], Starburst [Sch+86; Haa+89], and DuckDB [RM19].

The second group is formed of systems providing “DBMS building blocks” to ease the
construction of specialized, purpose-built systems. Two ambassadors of this group, that have a
strong academical background, are GENESIS [Bat+88] and EXODUS [CD87; Car+91]. GENESIS
provides a “�le” (storage) management system, named JUPITER, that is composed of several
layers. JUPITER provides several implementations for each layer and can be arbitrarily composed
by selecting one implementation for each layer. For example, to implement a new bu�er
management strategy in GENESIS, onemust �rst implement JUPITER’s bu�er management layer
and then con�gure JUPITER to use this implementation for bu�er management. While GENESIS’
extensibility evolves around storage management, EXODUS aims to provide a framework for

100

building a custom DBMS. EXODUS ships with a generic storage manager with support for
concurrent and recoverable operations on objects of any size, a library of type-agnostic access
methods, a query optimizer generator, and tools for constructing query language front-ends.
While EXODUS provides much �exibility, it does not provide a complete, o�-the-shelf DBMS.
Of all these extensible systems, none ful�lls our goal of abstraction without regret. The authors
of GENESIS not only acknowledge this fact, but even envision how to resolve this issue in the
future:

From the side of software development, a technology is needed to compose layers of software
at compile time (not at run-time as we are now doing). Compile-time composition has the
potential of eliminating unneeded generality [. . .] through code simpli�cation.

— Batory et al. [Bat+88]

Consequently, systems that compile queries naturally fall into this category: While allowing
for composition of (physical) operators to form a query plan is an abstraction, compiling the
�nal plan produces code free of (or with less) abstractions [Neu11; Klo+14; MMP17; KLN21;
HD23a]. However, dbdb lists only a single database system of “Academic” or “Educational” type
that performs code generation, namely NoisePage. It appears that NoisePage is the only open-
source, relational database system capable of achieving abstraction without regret. However,
this system appears not to be designed for extensibility or exchangeability of components.

4.2.3 Our Approach: The mutable System

As we did not see a single DBMS su�ciently satisfying our aforementioned design goals, we
decided to start building a new database system, named mutable [/'mju:t@bl/]. Our system aims
to ful�ll our design goals, as we elaborate next, and it is particularly �tted for academic research
and education.

Extensibility. To achieve extensibility, mutable is a system composed of independent com-
ponents. We provide a visualization of this concept in Figure 4.1. This design is very similar
to that of GENESIS’ storage system JUPITER (Section 4.2.2). Each component in the system
ful�lls a single, logically isolated task, e.g., plan enumeration for query optimization. Di�erent
implementations of the same component can easily be interchanged to mutate system behav-
ior. Therefore, the system can easily be extended by providing a new implementation of a
component.

Separation of concerns. A separation of concerns is achieved through a paradigm named
“The Value is the Boundary” that was proposed by Gary Bernhardt at SCNA 2012 [Ber12]. To us,

101

mutable Cardinality
Estimation

Plan
Enumer-
ation

Cost
Function

Data
Layout

Storage

Query
Execution

. . .

DPccp
DPsub
DPsize

TDMinCutAGaT
TDMinCutBranch

Implementations

Figure 4.1: Components of mutable with multiple, interchangable implementations of plan
enumeration.

this paradigm means that the components appear to the outside world as stateless. They take
values (potentially in the shape of data structures) as input, and they produce values (again,
potentially data structures). Components shall not be dependent on internal state of other parts
of the system. This design guarantees that a developer of one component need not be concerned
with the implementation of any other component in the system. Dissecting the intrinsic logic
into separate components and de�ning the “values” that need to be communicated in between is
one of the crucial design processes involved in building mutable. Naturally, we must represent
state at some point. This is what Gary Bernhardt named the imperative shell. It is an imperative
layer that connects the individual components, communicates the values between them, and
holds the state of the system. Our work on mutable aims to provide both, an implementation
of this imperative shell and the development of components. In Section 4.2.4 we elaborate
the concept of imperative shell, and in Section 4.3 and following we elaborate the design and
development of components.

Abstraction. . . Abstraction is achieved by designing types, classes, methods, functions etc.
in consistence with their academic usage and using the nomenclature common in our academic
research.

. . .without regret. To achieve abstraction without regret, we envision a development pro-
cess that heavily exploits metaprogramming to eliminate abstractions, as envisioned by
Batory et al. [Bat+88]. For this purpose, be build on specialization through template-based
metaprogramming and just-in-time (JIT) compilation. More precisely, we are developing a DSL
that gives developers the impression of writing regular, imperative code. In the background,

102

execution of that DSL code actually produces code that is compiled and executed. Compilation
and execution of such generated code is handled implicitly by mutable. The developer need not
be concerned with this process. By compiling (and potentially optimizing) this code, mutable is
able to avoid abstraction overheads when executing the compiled code. Consider, for example,
the development of amulti-version concurrency control (MVCC) algorithm, where each executing
query must produce its read- and write-sets. In a traditional system, the MVCC component
might have to register callbacks at the storage component to be informed of any read and write
operations. Each such callback is an indirect function call, introducing unnecessary overhead
to query execution. If this approach were implemented in mutable, however, the MVCC com-
ponent would register callbacks at the storage component that are implemented in our DSL.
As a consequence, when the query is compiled, the code for data access is directly augmented
by code to generate the read- and write-sets. Thereby, the indirect call that was originally
necessary to achieve abstraction has been eliminated.

In the following sections, we present several features of mutable in detail. We believe that
these features make the system an appealing choice for researchers. We accompany our feature
presentation with examples, such that the reader can observe how our implementation ful�lls
our design goals.

4.2.4 mutable: The Imperative Shell

As we explained above, components are designed to provide no observable state to the outside.
This guarantees that no part of the system may rely on implementation details exposed through
internal state. Further, this level of encapsulation guarantees that components can safely be
exchanged. However, a database system is an inherently stateful system. This state must be
represented somewhere. Observe that, though the components themselves are stateless, they
consume and produce values that represent state. These values must be communicated (or
passed) between the components of the system, and they may be stored to persist state. This
is exactly the task of the imperative shell. It connects the components, it controls the �ow of
data between them, and it represents state by storing values produced by components. Thereby,
the imperative shell de�nes the interfaces of components, in terms of values consumed and
produced.

Let us make this more concrete with an example. The tables of a database system represent
state and are held within the imperative shell. However, the logic that operates on tables
may be implemented in an execution backend component. Di�erent backends may implement
operations di�erently, yet they must all adhere to some common speci�cation.

103

R S T

'.83 = (.A83 (.83 =) .B83

R.x < 42 S.name LIKE ’Bobby%Tables’ T.y > 13

Figure 4.2: A query graph with three relations and two join predicates. Each relation has one
selection predicate.

4.3 Components

Problem. In systems research – like our domain – it is necessary to conduct empirical
studies to evaluate novel approaches. More so, we must also evaluate prior work to enable
comparison and to contrast to our own work. In this process, it is important to perform the
evaluations of both our and prior work under the exact same conditions. Only then can we truly
compare our experimental �ndings and draw conclusions. However, this process is frequently
disturbed. Consider, for example, the scenario that the original implementation of an algorithm
is completely inaccessible. In this case, we must reimplement this algorithm to conduct our
evaluation. Thereby, we may unknowingly improve or deteriorate the original algorithm.
Nevertheless, reimplementation causes delay to our research. In an alternative scenario, the
algorithm might be available, but as part of a complete system. In that case, we can �t our
evaluation to the respective system. We must take great care to replicate the conditions under
which the algorithm is evaluated. And yet, speci�cs to the system may unwittingly alter the
experimental results.

Vision. Ideally, all algorithms of all related works are directly available for evaluation within
a unifying system. Further, these algorithms all implement a common interface. This common
interface guarantees that the conditions, under which evaluations are performed, are identical:
all implementations share the same “view of the world”. Because of the common interface, all
implementations are completely interchangeable.

Approach. The mutable system is composed of many components, as illustrated in Figure 4.1.
For each component, we have devised an interface that describes precisely what information
a component receives as input and what information a component produces as output. The
process of designing component interfaces follows the principle “The Value is the Boundary”,
proposed by Bernhardt [Ber12]. As we shall see in the following, this design principle allows
for clean separation of concerns, enables isolated testing of components, and further enables
experimentally evaluating components in isolation of the remainder of the system.

104

Listing 4.1 Interface of the PlanEnumerator component.

1 struct PlanEnumerator {
2 /** Enumerate feasible plans for query \p G.
3 * \param G graph representation of the query
4 * \param CE cardinality estimator component of the
5 * queried database
6 * \param CF cost function to minimize
7 * \param PT table of best plans found , with one
8 entry per feasible partial plan
9 */
10 virtual void enumerate_plans(
11 const QueryGraph &G, // value (in)
12 const CardinalityEstimator &CE, // component
13 const CostFunction &CF, // component
14 PlanTable &PT // value (in & out)
15) const = 0;
16 };

Table 4.1: Incoming PlanTable for the
invocation of the PlanEnumerator. The
PlanTable has been populated with en-
tries for single relations.

Relations Cardinality Cost Plan

{'} 50 0 '

{(} 20 0 (

{) } 35 0)

Table 4.2: Final PlanTable after the invocation of
the PlanEnumerator. Note that there is no entry
for {',) } since our implementation in Listing 4.2
does not consider Cartesian products.

Relations Cardinality Cost Plan

{'} 50 0 '

{(} 20 0 (

{) } 35 0)

{', (} 17 17 ' Z (

{(,) } 13 13 (Z)

{', (,) } 7 20 ' Z ((Z))

Example. To exemplify our approach, let us look at mutable’s interface for (logical) join order
optimization. In mutable, join ordering computes for a given query graph a partial order in
which sets of relations are joined. Figure 4.2 shows an example of a query graph. To compute a
join order for this query, mutable invokes the PlanEnumerator component through the inter-
face presented in Listing 4.1. The �rst argument to invocation is the query graph. The second
argument is the CardinalityEstimator component. Its task is to estimate the cardinality of
any given set of relations of the query graph, e.g., to estimate cardinality({', (}) = 17. The
third argument is the cost function to minimize with optimization. The fourth argument is
a PlanTable, a data structure similar to a dynamic programming (DP) table. Although the
PlanTable can be used for computing a join order via dynamic programming, it can also be

105

Listing 4.2 DPccp implementation of a PlanEnumerator component.

1 struct DPccp : PlanEnumerator {
2 void enumerate_plans (...) const override {
3 const AdjacencyMatrix &M = G.adjacency_matrix ();
4 auto handle_CSG_pair = [&](Subproblem left , Subproblem right) {
5 PT.update(G, CE, CF, left , right); // update PlanTable for each CCP
6 };
7 M.for_each_CSG_pair_undirected(handle_CSG_pair);
8 }
9 };

populated with entries in any other fashion. The PlanTable is expected to be populated with en-
tries for single relations, as exempli�ed in Table 4.1. The result of invoking the PlanEnumerator
is a PlanTable populated with entries that form a valid logical plan. Table 4.2 shows the �nal
PlanTable after join ordering.

We can observe how the PlanEnumerator component ful�lls “The Value is the Boundary”:
To the outside world, a PlanEnumerator instance appears stateless. It consumes and produces
values but it does not leak any state information, thereby preventing other components from
relying on internal state. At the same time, the PlanEnumerator uses other components, namely
CardinalityEstimator and CostFunction. These components appear stateless to the outside,
too. To evaluate a PlanEnumerator – be it for testing or benchmarking – it su�ces to (1) con-
struct the QueryGraph, (2) provide CardinalityEstimator and CostFunction components,
and (3) initialize a PlanTable. The ease with which we can isolate a PlanEnumerator from the
remainder of the system makes testing, debugging, and benchmarking very accessible.

Now that we have seen the conceptual design of the interface, we will actually implement
a PlanEnumerator. We will implement algorithm DPccp by Moerkotte and Neumann [MN06].
To do so, let us go through the actual implementation of DPccp in mutable, given in Listing 4.2.
In line 3, we get a handle on the graph’s adjacency matrix. This data structure enables us
to e�ciently enumerate all pairs of connected subgraphs (CSGs) that are connected to one
another. In line 4 and 5, we de�ne a lambda, that takes a connected CSG pair as parameters
left and right, and forwards it as a newly found plan to the PlanTable. Finally, in line 7,
we let the adjacency matrix M enumerate all connected CSG pairs and provide the lambda of
line 4 as callback. Eventually, when the PlanEnumerator returns after enumerating all plans,
the PlanTable will contain an entry with the �nal plan, e.g., as in Table 4.2.

Our example demonstrates how concise mutable’s API is. With only 5 lines of code we are
able to implement a state-of-the-art algorithm for join ordering. Of course, the complex graph
traversal of DPCCP is realized by the adjacency matrix and remains completely hidden through
the use of a callback function. Nonetheless, the code strongly expresses intent and almost

106

appears to be a conceptual description of the algorithm. Also observe that our implementation
does not rely on any implementation details of other components and ful�lls only a single,
isolated task: enumerating join orders. Our design lets a researcher easily exchange this
particular implementation for another in our system.

With respect to abstraction overheads, we should note that PlanTable is not an abstract
type. Further, PlanTable::update() is implemented in a header �le and its implementation
resides within the same translation unit as our DPCCP implementation. The compiler will
therefore inline the call to PT.update() and abstraction overheads are eliminated through
compile-time composition. The same holds true for for_each_CSG_pair_undirected().

4.4 Code Generation

Problem. In the previous section, we avoided abstraction overheads by relying on the com-
piler’s ability to inline calls. However, this technique is not always applicable. Abstract types
with virtual methods are sometimes necessary to achieve extensibility or composability. This
is particularly true for query execution, where the query plan is a tree composed of abstract
nodes and even within nodes we have abstractions, e.g., for expressions. To remedy abstraction
overheads, queries can be compiled to machine code. However, we still see three problems
impeding research in that direction: (1) Systems building on LLVM [LLV22], a rich compiler
infrastructure, simply cannot achieve peak compilation speed as LLVM is not built for JIT
compilation [Haa+17]. (2) Many compiling systems are not openly accessible, preventing ex-
tending, modifying, or even properly evaluating the query compilation process. (3) Systems that
are openly accessible usually provide a low-level interface to code generation, that is similar
to LLVM. Such an interface exacerbates adoption by DBMS researches that are not compiler
experts [KLN21; FMT20].

Vision. Adoption of query compilation should not be any harder than directly implementing
an algorithm in the programming language the DBMS is written in. The implementation should
express the intent of the algorithm and must not be strictly coupled to the code generation pro-
cess. Code generation should be designed with JIT compilation in mind. A suitable intermediate

representation (IR) and compiler infrastructure should be provided.

Approach. We believe that a key technique to realizing our vision is metaprogramming. It
allows us to pretend to the developers that they are writing regular code while code generation
is performed in the background. This technique is becoming increasingly popular, e.g. LegoB-
ase [KLN21], HyPer [Neu21], Umbra [KLN21], and Flounder IR [FMT20] provide DSLs for

107

Listing 4.3 Implementation of selection via conditional branching w/o short-circuit evaluation
of the selection predicate.

1 struct Sel : PhysicalOperator <
2 Sel , // type for the curiously -recurring template pattern (CRTP)
3 SelectionLOp // pattern of logical operator(s) to match
4 > {
5 static void execute(const Match <Sel > &M, CodeGenContext &Ctx , consumer_t consume)
6 {
7 /* Inject our code generation into that of our child. */
8 M.child.execute ([&M, &Ctx , consume=std::move(consume)](){
9 /* Compile selection predicate w/o short -circuit evaluation. */
10 _Boolx1 pred = Ctx.compile(M.selection.predicate ());
11 /* Conditional branching w/o short -circuit evaluation. */
12 IF (pred) {
13 /* Emit code for the remainder of the pipeline. */
14 consume ();
15 };
16 });
17 }
18 };

code generation through metaprogramming. We have therefore developed a deeply-embedded
DSL in C++ with a similar syntax to C++, that makes transitioning back and forth between
DBMS code and generated query code seamless. We provide an implementation of the backend
component with WebAssembly as IR and Google’s V8 engine for JIT compilation and adaptive
execution. In this work, we will only super�cially describe our approach and focus on examples.
Please refer to our separate work on JIT compiling SQL through WebAssembly to machine
code with Google’s V8, that is published at EDBT’23 [HD23a].

Example. In our example in Listing 4.3, we will implement code generation for selection w/o
short-circuit evaluation of the selection predicate. For this section, it is su�cient to focus on
lines 5 to 16. We will explain the remainder in the following Section 4.5. Line 5 declares the
execute() method that “executes” the operator. In the context of code generation, this method
actually generates the code for this operation. In an interpreting execution backend, this method
would indeed execute the operator. This method’s �rst parameter is the match, describing
what part of the logical plan to execute. We elaborate this further in the following Section 4.5.
The second parameter is the code generation context. It holds information necessary for code
generation, e.g., an environment of named variables required to compile SQL predicates. The
third parameter is a callable that “executes” the remainder of the pipeline. Note, that our
model works slightly di�erent from Neumann’s produce/consume model, that was initially used
in HyPer [Neu11]: rather than having produce() and consume() methods, we use a lambda to
inject the consuming code into the child’s code generation. Our approach is very similar to the

108

approach proposed in the LB2 query compiler [TER18], that was later adopted by HyPer [Neu21].
In line 8, the handle M.child points to the physical operator implementing the logical child of
the matched selection. On this child, we invoke execute() and pass as argument a lambda, that
is de�ned in the following lines. In line 10, said lambda uses the CodeGenContext to compile
the selection predicate to an abstract syntax tree (AST) in the underlying IR. Observe, that the
return type is _Boolx1, which is de�ned by our DSL and represents a value at query runtime of
boolean type. Additionally, the leading underscore _ expresses that the value may be NULL and
the trailing x1 expresses that this value is scalar. (Our DSL by now supports code generation
of SIMD code. To distinguish between scalar and vectorial runtime values, we use su�xes
xN, where N is a suitable SIMD vector width.) In line 12, the lambda performs a conditional
branch based on the compiled predicate. Note the peculiar syntax with an uppercase IF and
the semicolon after the closing brace in line 15. This is our DSL, that mimics C++ in its syntax.
Behind the scenes, the IF generates code with a conditional branch based on condition pred.
DSL code in the then-block emits IR that is only executed when the predicate is satis�ed. In
line 14, the lambda invokes consume() to emit the consuming code of Sel’s parent. DSL code
executed by consume() emits code within the then-block. This means, code generated further
up in the same pipeline will only be executed if the selection predicate is satis�ed.

While there is some boilerplate code in Listing 4.3, the actual code generation happens
in lines 10 to 15. Because of our DSL, that code is understandable by developers unfamiliar
with code generation or compilation. Even more, we believe that with little practice developers
will be able to bene�t from compilation through metaprogramming with our DSL without
necessarily having to understand the processes behind it.

4.5 Physical Optimization

Problem. After implementing physical selection Sel in Section 4.4, we must inform the
optimizer somehow that this is a suitable implementation for logical selection. While this
step might appear trivial at �rst glance, there may be multiple physical implementations of
the same logical operator, each �tted for a particular situation and hence with dependent
cost. This fact calls for an optimization step that assigns physical implementations to logical
operators. However, a one-to-one assignment of physical to logical operators is insu�cient:
Menon, Mowry, and Pavlo [MMP17] propose to fuse operators to produce more specialized
implementations that can improve performance over naïve sequential application. This raises
the question of how such fused operators can be considered in the optimization step.

109

Listing 4.4 Register Sel with the physical optimization process.

1 PhysicalOptimizer &PO = ...;
2 PO.register_operator <Sel >();

Table 4.3: Physical implementations of graph patterns.

Graph Pattern Pattern C++ Code Algorithm

' Scan scan

f

?
SelectionLOp

branching selection

predicated selection

Z

? ?
JoinLOp

simple-hash join

sort-merge join

Γ

Z

? ?

pattern_t<GroupingLOp, JoinLOp> groupjoin

Vision. ADBMS researcher should be free to providemultiple physical implementations of any
composition of logical operators. The optimization step that assigns physical implementations
to the logical plan must consider all implementations and �nd the best of all possible physical
plans.

Approach. In Section 4.3, we mentioned that the logical plan only induces a partial order and
is represented as a tree. We implement a second optimization phase that enumerates physical
implementations of the logical plan to �nd the best physical implementation. We treat physical
operator implementations as partial graph covers and enumerate all possible coverings of the
logical plan. This can be done in linear time [Bru07, p. 11, Section 2.5.2].

Example. After implementing selection in Sel, we must register Sel with the physical
optimization process. In Listing 4.4, we invoke method register_operator() and pass as
template argument the concrete type Sel. The method extracts from Sel the pattern to match,
that was provided in line 3 of Listing 4.3. While the pattern to match a single SelectionLOp
is trivial, our mechanism allows for more complex patterns to be declared. We provide some
examples in Table 4.3. The helper class pattern_t allows for recursively composing patterns.

110

In addition to execution, physical operators can de�ne custom physical cost functions as well
as pre- and post-conditions to be considered in optimization. For example, it is possible to
provide di�erent cost functions for sort-merge join vs. simple-hash join and to formulate a
post-condition for sort-merge join informing the optimizer that the join result is sorted on the
join key.

4.6 Physical Data Layout Independence

Problem. The ability to decouple the physical data layout from the logical schema is a cen-
tral building block of DBMSs. Some systems delegate this task to frameworks, like Apache
Arrow [Len19], while others implement a particular physical data layout directly, e.g., NoiseP-
age [22b]. Delegating this task to a framework introduces a framework’s overheads into query
processing. Directly implementing usually leads to hard-coding the data layout into the DBMS.

Vision. It should be possible to provide di�erent strategies for mapping from a logical table
schema to physical data layouts. A compiling backend should compile these mappings to direct
data accesses, embedded in the compiled query, to avoid interpretation overheads.

Approach. In mutable, we provide a concise method of describing the mapping from schema
to data layout. Our method is generic enough to support arbitrary layouts of �nite size. More
precisely, our method allows for arbitrarily nested structures composed of various types, sup-
porting even bit addressing and alignment. For example, the BOOL and BITMAP types need not
be aligned to a whole multiple of a byte nor does their size need to be a whole multiple of a byte.
A current limitation of our method is that we do not support variable-sized �elds or pointers.

To e�ciently access data through the description provided by a DataLayout, we translate
DataLayouts in our interpreter and WebAssembly-based backends. The latter we present
in Section 4.4.

Example. In Listing 4.5, we construct a DataLayout for a table with attributes INT(4)

PRIMARY KEY, CHAR(6), and BOOL. We lay out the data in PAX layout [MMP17] with PAX
blocks of 128 tuples. The entire PAX layout is conceptually an inde�nite sequence of PAX blocks.
We �rst create an empty DataLayout in line 1. Then, we create a PAX block of 128 tuples and a
stride of 12.288 bits in line 2. In lines 3 to 17, we add the attributes to the PAX block. To add an
attribute to the PAX block, we specify the type of the attribute together with the o�set of the
attribute’s column within the PAX block and the stride of a single attribute. In lines 18 to 22,

111

Listing 4.5 Implementation of a PAX layout.

1 DataLayout layout;
2 auto &block = layout.add_inode(/* num_tuples= */ 128, /* stride_in_bits= */ 12288);
3 block.add_leaf(// INT (4) PRIMARY KEY
4 /* type= */ Type:: Get_Integer(Type::TY_Vector , 4),
5 /* idx= */ 0,
6 /* offset= */ 0,
7 /* stride= */ 32);
8 block.add_leaf(// CHAR (6)
9 /* type= */ Type:: Get_Char(Type::TY_Vector , 6),
10 /* idx= */ 1,
11 /* offset= */ 4096, // 128 * 32
12 /* stride= */ 48); // 6 * 8
13 block.add_leaf(// BOOL
14 /* type= */ Type:: Get_Boolean(Type:: TY_Vector),
15 /* idx= */ 2,
16 /* offset= */ 10240, // 4096 + 128 * 48
17 /* stride= */ 1);
18 block.add_leaf(// NULL bitmap
19 /* type= */ Type:: Get_Bitmap(Type::TY_Vector , 3),
20 /* idx= */ 3,
21 /* offset= */ 10368, // 10240 + 128 * 1
22 /* stride= */ 3);

we add the NULL bitmap to the PAX block. The NULL bitmap contains one bit per attribute,
indicating whether the corresponding attribute is NULL.

In ourWebAssembly-based execution backend, a scan of a table using the given DataLayout
is compiled to a single loop iterating with four pointers – one per column and one for the
NULL bitmap. On every 128-th iteration, the pointers are advanced to the next PAX block.

mutable encapsulates the concept of computing DataLayouts for a table schema in a com-
ponent. Such a component acts as a factory for creating DataLayouts. We have implemented
one component for row layout and one for PAX layout. For PAX layout, one can specify either
the number of tuples per block or the size in bytes of a single PAX block.

We see two limitations in our current implementation of this approach: (1) We do not
support variable-length structures, e.g. arrays of variable length. (2) We do not support pointers
to connect sequences of data, e.g. we cannot represent linked lists. Currently, all data must be
�nite and stored consequently in memory. Because of these limitations, we are currently only
compatible with the full Apache Arrow [22a] speci�cation. However, we are convinced that
our approach can be extended by dynamically sized structures and pointers, and eventually it
can support the full Arrow speci�cation. The major obstacle we see here at the moment is the
JIT code generation of data accesses from a DataLayout speci�cation with dynamically sized
structures or pointers.

112

4.7 Automated Evaluation

Problem. Evaluating DBMS algorithms or entire systems usually means running benchmarks.
Writing benchmarks is therefore an inevitable task in our research. The results of benchmarks
must be gathered, organized, and visualized to be easily interpretable. To enable comparison to
related works, multiple algorithms or systems must be evaluated. Since evaluation is a process
that is interleaved with research, it must be done repeatedly. Repeating evaluation by hand is
tedious and automating evaluation for multiple algorithms or systems can be very cumbersome.

Vision. We envision a unifying evaluation framework, that researchers can easily implement
experiments in and augment by new algorithms or systems to evaluate. The system should
automate the process of repeated evaluation, gathering results, storing results persistently, and
even visualizing results.

Approach. For this purpose, we have built a toolkit, that is composed of three tools: (1) The
benchmarking tool runs a set of declaratively formulated experiments and collects results. The
experiments are speci�ed as YAML �les and in such a way that we can run the same experiment
on various database systems for comparison. The benchmarking tool can be set up to run
repeatedly, e.g., daily or after each new commit to the main branch. Gathered experimental
results are stored persistently in a database server. (2) A web server provides a REST API to
read the gathered data from the database server. It provides both the original data and some pre-
de�ned aggregated values. (3) An app that we developed for this purpose visualizes the results
and monitors the benchmarking results over time. The app raises alerts when benchmarks were
not run or when performance anomalies occurred. Our app is integrated with GitLab so that
one can sign in to an administrative console through one’s GitLab account. Once signed in,
our app o�ers to directly create a GitLab issue from a raised alert. The issue is �lled with a
description of the alert as well as a breadcrumb link to directly go from GitLab issue to our app.
Our app also tracks throughout the lifetime of an issue whether it has been resolved or rejected.
Alerts can also be marked as expected, e.g. when performance improved expectedly because
of an optimization in the code, or they can be marked as false positive, e.g. when the server
running the benchmarks had unexpected load from other sources.

Example. The experiments are written in a descriptive YAML �le, providing a textual de-
scription of the experiment, how the measurement data is to be interpreted in a chart, what
data to load before the benchmark, and how to run the workload on each system. We provide
an example for TPC-H query 1 in Listing 4.6. The speci�cation of the systems is particular to

113

Listing 4.6 Sketch of the YAML �le for TPC-H Q1.

1 description: TPC -H Query 1 # Description. Mandatory
2 suite: TPC # Mandatory
3 benchmark: TPC -H # Mandatory
4 name: Q1 # Optional , defaults to path
5 readonly: true # Optional , defaults to false
6 chart: # Chart configuration. Every field is optional
7 x:
8 scale: linear # One of "linear", "log"
9 type: Q # One of Q, O, N, or T
10 label: ’Scale factor ’ # Axis label
11 y:
12 scale: linear # One of "linear", "log"
13 type: Q # One of Q, O, N, or T
14 label: ’Time [ms]’ # Axis label
15 data: # Data to load before benchmark
16 - table: # Specification of a table
17 name: ’Lineitem ’
18 attributes:
19 l_orderkey: INT(4)
20 l_partkey: INT(4)
21 ...
22 file: benchmark/tpc -h/data/lineitem.tbl
23 format: # Format of the file
24 filetype: DSV
25 delimiter: ’|’
26 header: false
27 systems:
28 ’mutable ’:
29 ... # Spec. of experiment
30 ’PostgreSQL ’:
31 ... # Spec. of experiment
32 ’HyPer ’:
33 ... # Spec. of experiment
34 ’DuckDB ’:
35 ... # Spec. of experiment

the respective system. We provide database connectors for several database systems, with the
option to provide one’s own connector. Queries must also be re-written per system because of
potential SQL dialects or varying feature support.

Our benchmarking tool picks up the YAML �le and runs the experiment, gathers the
experimental results, and inserts all information related to the experiment to a relational
database. A REST API written in Django provides easy access to the data.

Our browser app, written in Dart with Flutter, provides interactive visualization of the
data. On the landing page – the “Dashboard” – we show an aggregated view of three hand-
picked benchmark suites, namely “operators”, “plan-enumerators”, and TPC-H, as depicted
in Figure 4.3. This is a heavily aggregated view of performance over the past days and intended
to provide quick information on system behavior. Though the ~-axis is value-less, it is linear
and less is better.

114

Figure 4.3: Aggregated performance statistics for selected benchmark suites, as visible on our
dashboard. Provides an easily accessible overview over performance evolution.

The “Dashboard” provides a very brief overview over the performance. Our app provides a
detailed visualization of single experiments in the “Recent Experiments” tab. Figure 4.4 shows
the visualization of an experiment for one-sided range queries on integer columns.

Figure 4.4: Interactive visualization of collected measurements for experiment
operators Chevron-right selection-onesided Chevron-right INT(4).

The chart description from the YAML �le is used to label the axis, select the scale of the axis,
and automatically select the most appropriate style for visualization. We currently provide
scatter, line, and bar charts displaying the median result of multiple runs as well as a scatter plot
showing all measurements of all individual runs. We can hide single entries by toggling them

115

in the chart legend. Hovering over the chart shows the precise measured values. Additional
information is displayed above the chart: the location of the experiment, the machine the
experiment was run on, and the exact time and date of the experiment.

We can manually select a di�erent timestamp to inspect experimental results from another
benchmark run. This can come in handy whenever we witness unexpected measurements in
our experiments: we can go back in time to observe how exactly our measurements changed.

However, to understand how the performance of our system or that of other systems we
compare to evolved over time, manually going back and forth through our timestamps is not
very convenient. We therefore provide a visualization of experiment results over time in our
“Continuous Benchmarking” tab. This tab provides aggregated performance statistics over
time for every single experiment. Figure 4.5 shows the continuous benchmarking chart for the
experiment in Figure 4.4.

Figure 4.5: Visualization of experiment results over time.

In Figure 4.5, we can actually see two charts. The chart at the top shows the aggregated

116

performance of the several systems over time. The smaller chart below allows us to select the
exact range of time to visualize in the top chart. This feature lets us interactively zoom in
on time ranges of particular interest. To aggregate the experimental results and associate a
single numeric value to each timestamp and system, we decided to compute the Riemann sum
of each experiment run per system and timestamp. The Riemann sum approximates the area
under the curve. For example, the aggregated value for DuckDB (single core) at timestamp
2023-09-04 09:53, as depicted in Figure 4.4, would be the Riemann sum approximation of the area
under the bright green curve. Since less execution time means better performance, consequently
less area under the curve means better aggregated performance. Hence, in the “Continuous
Benchmarking” charts, a smaller value on the y-axis is better.

Looking at Figure 4.5, we observe a performance improvement for mutable around July 30.
While performance improvements are appreciated, we may want to ensure that the witnessed
performance improvement can be attributed to a performance-enhancing change in our code.
Our continuous benchmarking visualization provides an easy facility for this purpose. First, we
click on the “range selection” icon in the header of the experiment chart.

A blue range selection overlay appears in the chart. We drag the start and end of that overlay to
precisely cover the time range in which we witness a performance anomaly.

After selecting the appropriate range, we click on the GitLab icon Gitlab, that appeared in the
header of the chart. This button will open a new browser tab showing the history of commits
within the selected time range together with the actual changes to the code. We �nd this feature
to be invaluable for diagnosing the cause of a drift in performance over time.

117

Manually detecting such performance anomalies would be very cumbersome, particularly
with hundreds of experiments being performed every single day. We have therefore integrated
into our Django REST API a mechanism to automatically detect and report performance
anomalies. Detected anomalies are reported on our “Dashboard”. For the particular performance
change shown in Figure 4.5, a performance anomaly was detected. The report shows in which
experiment an anomaly was detected and the date of the anomaly. Further, we show a likelihood
of this anomaly being a true anomaly rather than being noise. In fact, this likelihood is used in
the �rst place to decide whether a new measurement is considered a potential anomaly.

To compute the likelihood of a measurement being an anomaly, we �rst compute the
standard deviation and the mean of the measurements of the past 10 days before the current
measurement. Then, we compute the delta of the computed mean and the current measurement
and divide this delta by the standard deviation. The resulting factor is the likelihood of the
current measurement being an anomaly. If this likelihood exceeds a hard-coded threshold, our
system will consider this a potential anomaly and report it on the “Dashboard”. The proposed
method mainly aims to �lter out noise. We chose the hard-coded threshold for when the
likelihood is considered a potential anomaly empirically. Anyway, the threshold should be
chosen such that it suppresses false positives, i.e. noise remains below said threshold, but never
such that it suppresses true positives, i.e. the threshold being higher than the likelihood of an
actual performance anomaly.

Our anomaly detection is designed as an interactive protocol with a developer validating
each of the reported potential anomalies. A developer can then classify each anomaly as one of:
• false positive, the anomaly is credited to noise in the measurements, or • expected, the anomaly
was expected because of a prior change to the code, or • con�rmed, the anomaly cannot be
credited to noise and was not expected and hence needs further investigation. This process is
depicted in Figure 4.6.

Figure 4.6: Updating the status of a performance anomaly report.

Our app supports updating the status of an anomaly report by �rst selecting a new status and
then clicking on the blue right arrow. A very important feature here is that by con�rming a
performance anomaly, our app will create an issue in our GitLab project and �ll the issue with

118

all information available on the anomaly. Once the issue is tagged as being looked into or is
closed in the GitLab project, our app recognizes this and presents the issue as either “Being
Looked At” or “Closed”.

To see the full tool in action, visit our benchmark website at cb.mutable.uni-saarland.de.

119

https://cb.mutable.uni-saarland.de

120

Chapter 5

Conclusion

With my Ph.D. thesis, I made three major contributions in the domain of DBMS research.
My �rst contribution, presented in Chapter 2, approaches the prominent and important

problem of join ordering from a new angle. I reformulate the join order optimization problem as
a graph search problem, provide a strong theoretical foundation, and then take on an extensive
e�ort to construct an e�cient algorithm for solving this new optimization problem. Through
several experimental evaluations, I was able to con�rm that my novel approach improves over
SOTA asymptotically, with speed-ups of 1000x or more for certain problem instances.
Future Work. To my belief, reformulating join ordering as a graph search problem creates
a new angle to tackle the join order optimization problem. My work, presented in Chapter 2,
forms the foundation for what may become a large body of follow-up work. Many choices that I
made in Chapter 2 have alternatives that I was not able to explore due to a lack of time or space.

For example, di�erent search algorithms may reveal new bene�ts of join ordering by graph
search. As another example, bidirectional searchmay provide a solution that is naturally adaptive
to the given query shape, preferring bottom-up search for star- or clique-shaped queries and
preferring top-down search for chain- or cycle-shaped queries. I am currently supervising a
Bachelor’s thesis, where my student and I extend �∗ in various ways. We added cost-based
pruning, enabling more aggressive pruning of the search space while still maintaining optimality.
While we only have preliminary results at this time, in some early experiments we witnessed
a signi�cant reduction in the number of explored vertices and hence a tremendous speed-up
over search as presented in Chapter 2. We also extended �∗ by anytime search, allowing for
specifying a budget for the search. When that budget is exhausted, search terminates early, and
potentially without �nding a complete plan. We then greedily complete the partial solution,
that is closest to the goal, to a complete plan. While this approach is not optimal anymore, it
enables the application of heuristic search in time-constrained settings.

121

These early results already suggest that heuristic search still has potential that we have yet
to explore.

My second contribution, presented in Chapter 3, proposes a simpli�ed design of JIT
compiling queries to machine code. By building on existing JIT engines, that are developed by a
large community of compiler experts, well-funded by big tech companies, and widely applied
in production, we are able to lift a tremendous burden o� of DBMS developers’ shoulders. Our
results show that it is feasible to embed general-purpose JIT engines into a DBMS. Further, our
approach achieves query compilation and query execution times that are on par with SOTA.
Our particular choice for using WebAssembly– which does not support generic programming
and does not provide a standard library – as intermediate representation therefore forces us
to reimplement some library routines through metaprogramming and JIT code generation.
However, we are able to show that the combination of WebAssembly and V8 enables such fast
code generation and compilation to machine code, that generating all parts of a query – even
library routines such as hashing or sorting – becomes worthwhile.
Future Work. I was supervising a Master’s thesis, where my student and I extend my ap-
proach from Chapter 3 in various ways. We include the relaxed operator fusion proposed by
Menon, Mowry, and Pavlo [MMP17] and generalize it to allow for repacking data into di�erent
formats at intermediate points of materialization. We further turn the placement of arti�cially
introduced points of materialization, named “soft pipeline breakers”, into an optimization prob-
lem. Additionally, we implement a physical plan optimization that exploits our ability to rapidly
generate and compile code. Our physical optimization is able to generate special-purpose data
structures or algorithms as they seem �t for a particular query. For example, if the query
requires us to build a hash index on some intermediate result, we can exploit if the hash key is
unique and generate specialized probing code that avoids a duplicate check.

I believe that rapid code generation and compilation is the key technology to query compila-
tion through metaprogramming. Generating and composing code, that is tailor-made for a single
particular query to achieve a maximum throughput, will be necessary to build a DBMS that
competes for peak performance. The granule at which we compose this code can become more
and more �ne-granular, as we are able to properly phrase the composition as an optimization
problem. Ultimately, query compilers may become special-purpose program synthesizers, that
treat an SQL query as a program speci�cation.

My third contribution, presented in Chapter 4, presents a novel DBMS that I built to
support the research of my thesis, but that has become something more. My design of mutable
aims towards easy extension andmodi�cation. mutable should support future DBMS researchers
in quickly implementing and evaluating their research ideas. By licensing mutable under AGPL,
we guarantee that any evolution of that system must be made publicly available. I hope that

122

this eventually contributes towards fair and reproducible evaluations and simpli�es the process
of conducting experiments. The extensibility of mutable is such a central aspect of the system,
that we are – at the time of �nishing this thesis – building multi-version concurrency control

as well as bu�er management and persistent storage as plug-in features. Usually, MVCC and
bu�er management are both deeply embedded into a DBMS’ design. With mutable, we want to
walk the extra mile and make every layer of a DBMS an exchangeable component. While such
exchangeability and �exibility usually comes at the cost of performance, we make heavy use of
the metaprogramming introduced in Chapter 3 to mitigate runtime overheads.

123

124

Bibliography

[22a] Arrow - A cross-language development platform for in-memory analytics. The Apache
Software Foundation. 2022. url: https://arrow.apache.org.

[22b] NoisePage - Database Management System Project. 2022. url: https://noise.page.

[Ail+99] Anastassia Ailamaki et al. “DBMSs on a Modern Processor: Where Does Time Go?”
In: VLDB’99, Proceedings of 25th International Conference on Very Large Data Bases,

September 7-10, 1999, Edinburgh, Scotland, UK. Ed. by Malcolm P. Atkinson et al.
Morgan Kaufmann, 1999, pp. 266–277. url: http://www.vldb.org/conf/1999/
P28.pdf.

[All+83] John R Allen et al. “Conversion of control dependence to data dependence.” In: Pro-
ceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of programming

languages. 1983, pp. 177–189.

[ALX16] Sameer Agarwal, Davies Liu, and Reynold Xin. Apache Spark as a compiler: Joining

a billion rows per second on a laptop. 2016.

[App] Apple Inc.WebKit. url: webkit.org (visited on 04/30/2021).

[Bat+88] Don S. Batory et al. “GENESIS: An Extensible Database Management System.” In:
IEEE Trans. Software Eng. 14.11 (1988), pp. 1711–1730. doi: 10.1109/32.9057. url:
https://doi.org/10.1109/32.9057.

[BC05] Brian Babcock and Surajit Chaudhuri. “Towards a robust query optimizer: a princi-
pled and practical approach.” In: Proceedings of the 2005 ACM SIGMOD international

conference on Management of data. 2005, pp. 119–130.

[Ber12] G. Bernhardt. Boundaries. 2012. url: https://www.destroyallsoftware.com/
talks/boundaries.

125

https://arrow.apache.org
https://noise.page
http://www.vldb.org/conf/1999/P28.pdf
http://www.vldb.org/conf/1999/P28.pdf
webkit.org
https://doi.org/10.1109/32.9057
https://doi.org/10.1109/32.9057
https://www.destroyallsoftware.com/talks/boundaries
https://www.destroyallsoftware.com/talks/boundaries

[BFI91] Kristin P. Bennett, Michael C. Ferris, and Yannis E. Ioannidis. “A Genetic Algorithm
for Database Query Optimization.” In: Proceedings of the 4th International Conference
on Genetic Algorithms, San Diego, CA, USA, July 1991. Ed. by Richard K. Belew and
Lashon B. Booker. Morgan Kaufmann, 1991, pp. 400–407.

[BFV96] Luc Bouganim, Daniela Florescu, and Patrick Valduriez. “Dynamic load balancing
in hierarchical parallel database systems.” PhD thesis. INRIA, 1996.

[BMK09] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. “Database Architecture
Evolution: Mammals Flourished long before Dinosaurs became Extinct.” In: Proc.
VLDB Endow. 2.2 (2009), pp. 1648–1653. doi: 10.14778/1687553.1687618. url:
http://www.vldb.org/pvldb/vol2/vldb09-10years.pdf.

[Boi+08] Benoit Boissinot et al. “Fast liveness checking for SSA-form programs.” In: Proceed-
ings of the 6th annual IEEE/ACM international symposium on Code generation and

optimization. 2008, pp. 35–44.

[Bru07] R. T. E. Bruns. “Instruction selection on directed acyclic graphs.” In: (2007).

[Byt] Bytecode Alliance. Wasmtime. url: http://wasmtime.dev (visited on 09/06/2021).

[BZN05a] Peter A. Boncz,Marcin Zukowski, andNiels Nes. “MonetDB/X100: Hyper-Pipelining
Query Execution.” In: Second Biennial Conference on Innovative Data Systems

Research, CIDR 2005, Asilomar, CA, USA, January 4-7, 2005, Online Proceedings.
www.cidrdb.org, 2005, pp. 225–237. url: http://cidrdb.org/cidr2005/papers/
P19.pdf.

[BZN05b] Peter A. Boncz,Marcin Zukowski, andNiels Nes. “MonetDB/X100: Hyper-Pipelining
Query Execution.” In: CIDR 2005, Second Biennial Conference on Innovative Data

Systems Research, Asilomar, CA, USA, January 4-7, 2005, Online Proceedings.
www.cidrdb.org, 2005, pp. 225–237. url: http://cidrdb.org/cidr2005/papers/
P19.pdf.

[Car+91] Michael J. Carey et al. “The Architecture of the EXODUS Extensible DBMS.” In: On
Object-Oriented Database Systems. Ed. by Klaus R. Dittrich, Umeshwar Dayal, and
Alejandro P. Buchmann. Topics in Information Systems. Springer, 1991, pp. 231–256.

[CB05] Thomas M Connolly and Carolyn E Begg. Database Systems: A Practical Approach

to Design, Implementation, and Management. Pearson Education, 2005.

[CD87] Michael J. Carey and David J. DeWitt. “An Overview of the EXODUS Project.” In:
IEEE Data Eng. Bull. 10.2 (1987), pp. 47–54. url: http://sites.computer.org/
debull/87JUN-CD.pdf.

126

https://doi.org/10.14778/1687553.1687618
http://www.vldb.org/pvldb/vol2/vldb09-10years.pdf
http://wasmtime.dev
http://cidrdb.org/cidr2005/papers/P19.pdf
http://cidrdb.org/cidr2005/papers/P19.pdf
http://cidrdb.org/cidr2005/papers/P19.pdf
http://cidrdb.org/cidr2005/papers/P19.pdf
http://sites.computer.org/debull/87JUN-CD.pdf
http://sites.computer.org/debull/87JUN-CD.pdf

[CGK20] Andrew Crotty, Alex Galakatos, and Tim Kraska. “Getting swole: Generating access-
aware code with predicate pullups.” In: 2020 IEEE 36th International Conference on

Data Engineering (ICDE). IEEE. 2020, pp. 1273–1284.

[Cha+81] Donald D. Chamberlin et al. “A History and Evaluation of System R.” In: Commun.

ACM 24.10 (1981), pp. 632–646. doi: 10.1145/358769.358784. url: https://doi.
org/10.1145/358769.358784.

[Cha+95] Surajit Chaudhuri et al. “Optimizing queries with materialized views.” In: Pro-
ceedings of the Eleventh International Conference on Data Engineering. IEEE. 1995,
pp. 190–200.

[CM95] Sophie Cluet and Guido Moerkotte. “On the Complexity of Generating Optimal
Left-Deep Processing Trees with Cross Products.” In: International Conference on
Database Theory. Springer. 1995, pp. 54–67.

[CMU] CMUDatabase Group.NoisePage. url: https://github.com/cmu-db/noisepage/
tree/master/docs (visited on 2022).

[Cod70] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks.” In: Commun.

ACM 13.6 (1970), pp. 377–387. doi: 10.1145/362384.362685. url: https://doi.
org/10.1145/362384.362685.

[Cod72] E. F. Codd. “Relational Completeness of Data Base Sublanguages.” In: Research
Report / RJ / IBM / San Jose, California RJ987 (1972).

[Cor+16] Thomas H. Cormen et al. Introduction to Algorithms. The MIT Press, 2016.

[Cra+97] Timothy Cramer et al. “Compiling Java Just in Time.” In: IEEE Micro 17 (3 1997),
pp. 36–43.

[Dia+13] Cristian Diaconu et al. “Hekaton: SQL server’s memory-optimized OLTP engine.”
In: Proceedings of the ACM SIGMOD International Conference on Management of

Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013. Ed. by Kenneth A. Ross,
Divesh Srivastava, and Dimitris Papadias. ACM, 2013, pp. 1243–1254. doi: 10.1145/
2463676.2463710. url: https://doi.org/10.1145/2463676.2463710.

[Dij+59] Edsger W Dijkstra et al. “A note on two problems in connexion with graphs.” In:
Numerische mathematik 1.1 (1959), pp. 269–271.

[DP85] Rina Dechter and Judea Pearl. “Generalized best-�rst search strategies and the
optimality of A.” In: Journal of the ACM (JACM) 32.3 (1985), pp. 505–536.

127

https://doi.org/10.1145/358769.358784
https://doi.org/10.1145/358769.358784
https://doi.org/10.1145/358769.358784
https://github.com/cmu-db/noisepage/tree/master/docs
https://github.com/cmu-db/noisepage/tree/master/docs
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/2463676.2463710

[DT07] David DeHaan and Frank Wm Tompa. “Optimal top-down join enumeration.” In:
Proceedings of the 2007 ACM SIGMOD international conference on Management of

data. 2007, pp. 785–796.

[Duc] DuckDB Foundation. DuckDB. url: https://duckdb.org/ (visited on 2022).

[ES11] Stefan Edelkamp and Stefan Schrodl. Heuristic search: theory and applications. Else-
vier, 2011.

[Feg98] Leonidas Fegaras. “A new heuristic for optimizing large queries.” In: International
Conference on Database and Expert Systems Applications. Springer. 1998, pp. 726–735.

[Fen14] Pit Fender. “Algorithms for E�cient Top-Down Join Enumeration.” In: (2014).

[FIL14] Craig Freedman, Erik Ismert, and Per-Åke Larson. “Compilation in the Microsoft
SQL Server Hekaton Engine.” In: IEEE Data Eng. Bull. 37.1 (2014), pp. 22–30. url:
http://sites.computer.org/debull/A14mar/p22.pdf.

[FM11a] Pit Fender and Guido Moerkotte. “A new, highly e�cient, and easy to implement
top-down join enumeration algorithm.” In: 2011 IEEE 27th International Conference

on Data Engineering. IEEE. 2011, pp. 864–875.

[FM11b] Pit Fender and Guido Moerkotte. “Reassessing top-down join enumeration.” In:
IEEE Transactions on Knowledge and Data Engineering 24.10 (2011), pp. 1803–1818.

[FMT20] Henning Funke, JanMühlig, and Jens Teubner. “E�cient generation of machine code
for query compilers.” In: 16th International Workshop on Data Management on New

Hardware, DaMoN 2020, Portland, Oregon, USA, June 15, 2020. Ed. by Danica Porobic
and Thomas Neumann. ACM, 2020, 6:1–6:7. doi: 10.1145/3399666.3399925. url:
https://doi.org/10.1145/3399666.3399925.

[Fre] Free Software Foundation, Inc. LibJIT. url: https://www.gnu.org/software/
libjit (visited on 09/06/2021).

[FWY08] Liying Fang, Pu Wang, and Jianzhuo Yan. “A multi-copy join optimization of in-
formation integration systems based on a genetic algorithm.” In: 2008 The Third
International Multi-Conference on Computing in the Global Information Technology

(iccgi 2008). IEEE. 2008, pp. 223–228.

[GD87] Goetz Graefe and David J. DeWitt. “The EXODUS Optimizer Generator.” In: Pro-
ceedings of the Association for Computing Machinery Special Interest Group on Man-

agement of Data 1987 Annual Conference, San Francisco, CA, USA, May 27-29, 1987.
Ed. by Umeshwar Dayal and Irving L. Traiger. ACM Press, 1987, pp. 160–172. doi:
10.1145/38713.38734. url: https://doi.org/10.1145/38713.38734.

128

https://duckdb.org/
http://sites.computer.org/debull/A14mar/p22.pdf
https://doi.org/10.1145/3399666.3399925
https://doi.org/10.1145/3399666.3399925
https://www.gnu.org/software/libjit
https://www.gnu.org/software/libjit
https://doi.org/10.1145/38713.38734
https://doi.org/10.1145/38713.38734

[Gra53] Frank Gray. Pulse code communication. US Patent 2,632,058. Mar. 1953.

[Gra94] Goetz Graefe. “Volcano - An Extensible and Parallel Query Evaluation System.” In:
IEEE Trans. Knowl. Data Eng. 6.1 (1994), pp. 120–135. doi: 10.1109/69.273032.
url: https://doi.org/10.1109/69.273032.

[GZM21] Philipp Marian Grulich, Ste�en Zeuch, and Volker Markl. “Babel�sh: e�cient
execution of polyglot queries.” In: Proceedings of the VLDB Endowment 15.2 (2021),
pp. 196–210.

[Haa+17] Andreas Haas et al. “Bringing the web up to speed with WebAssembly.” In: Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 2017, pp. 185–200.

[Haa+89] Laura M. Haas et al. “Extensible Query Processing in Starburst.” In: Proceedings of
the 1989 ACM SIGMOD International Conference on Management of Data, Portland,

Oregon, USA, May 31 - June 2, 1989. Ed. by James Cli�ord, Bruce G. Lindsay, and
David Maier. ACM Press, 1989, pp. 377–388. doi: 10.1145/67544.66962. url:
https://doi.org/10.1145/67544.66962.

[Haf+23] Immanuel Ha�ner et al. mutable. 2023. url: https://mutable.uni-saarland.de.

[Ham18] Clemens Hammacher. “Lifto�: a new baseline compiler for WebAssembly in V8.”
In: V8 JavaScript engine (2018).

[HD23a] Immanuel Ha�ner and Jens Dittrich. “A Simpli�ed Architecture for Fast, Adaptive
Compilation and Execution of SQL Queries.” In: Proceedings of the 26th International
Conference on Extending Database Technology, EDBT 2023, Ioannina, Greece, March

28 - March 31, 2023. OpenProceedings.org, 2023.

[HD23b] Immanuel Ha�ner and Jens Dittrich. “E�ciently Computing Join Orders with
Heuristic Search.” In: Proc. ACM Manag. Data (2023).

[HD23c] Immanuel Ha�ner and Jens Dittrich. “mutable: A Modern DBMS for Research and
Fast Prototyping.” In: 13th Conference on Innovative Data Systems Research, CIDR

2023, Amsterdam, The Netherlands, January 8-11, 2023. www.cidrdb.org, 2023.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A formal basis for the heuristic
determination of minimum cost paths.” In: IEEE transactions on Systems Science and

Cybernetics 4.2 (1968), pp. 100–107.

[HR83] Theo Härder and Andreas Reuter. “Principles of Transaction-Oriented Database
Recovery.” In: ACM Comput. Surv. 15.4 (1983), pp. 287–317. doi: 10.1145/289.291.
url: https://doi.org/10.1145/289.291.

129

https://doi.org/10.1109/69.273032
https://doi.org/10.1109/69.273032
https://doi.org/10.1145/67544.66962
https://doi.org/10.1145/67544.66962
https://mutable.uni-saarland.de
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291

[HSH07] Joseph M. Hellerstein, Michael Stonebraker, and James R. Hamilton. “Architecture
of a Database System.” In: Found. Trends Databases 1.2 (2007), pp. 141–259. doi:
10.1561/1900000002. url: https://doi.org/10.1561/1900000002.

[IK84] Toshihide Ibaraki and Tiko Kameda. “On the optimal nesting order for computing
n-relational joins.” In: ACM Transactions on Database Systems (TODS) 9.3 (1984),
pp. 482–502.

[Jan+19] Abhinav Jangda et al. “Not so fast: Analyzing the performance of WebAssembly vs.
native code.” In: 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19).
2019, pp. 107–120.

[KBZ86] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. “Optimization of Nonrecur-
sive Queries.” In: VLDB. Vol. 86. 1986, pp. 128–137.

[KD98] Navin Kabra and David J DeWitt. “E�cient mid-query re-optimization of sub-
optimal query execution plans.” In: Proceedings of the 1998 ACM SIGMOD interna-

tional conference on Management of data. 1998, pp. 106–117.

[Ker+18] Timo Kersten et al. “Everything you always wanted to know about compiled and
vectorized queries but were afraid to ask.” In: Proceedings of the VLDB Endowment

11.13 (2018), pp. 2209–2222.

[KLN18] André Kohn, Viktor Leis, and Thomas Neumann. “Adaptive execution of compiled
queries.” In: 2018 IEEE 34th International Conference on Data Engineering (ICDE).
IEEE. 2018, pp. 197–208.

[KLN21] Timo Kersten, Viktor Leis, and Thomas Neumann. “Tidy Tuples and Flying Start:
fast compilation and fast execution of relational queries in Umbra.” In: The VLDB
Journal (2021), pp. 1–23.

[Klo+14] Yannis Klonatos et al. “Building e�cient query engines in a high-level language.”
In: Proceedings of the VLDB Endowment 7.10 (2014), pp. 853–864.

[Kot+08] Thomas Kotzmann et al. “Design of the Java HotSpot client compiler for Java 6.”
In: ACM Transactions on Architecture and Code Optimization (TACO) 5.1 (2008),
pp. 1–32.

[KVC10] Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. “Generating code for
holistic query evaluation.” In: Proceedings of the 26th International Conference on Data
Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA. Ed. by Feifei Li
et al. IEEEComputer Society, 2010, pp. 613–624. doi: 10.1109/ICDE.2010.5447892.
url: https://doi.org/10.1109/ICDE.2010.5447892.

130

https://doi.org/10.1561/1900000002
https://doi.org/10.1561/1900000002
https://doi.org/10.1109/ICDE.2010.5447892
https://doi.org/10.1109/ICDE.2010.5447892

[KW87] Alfons Kemper and Mechtild Wallrath. “An Analysis of Geometric Modeling in
Database Systems.” In: ACM Comput. Surv. 19.1 (1987), pp. 47–91. doi: 10.1145/
28865.28866. url: https://doi.org/10.1145/28865.28866.

[Lei+14] Viktor Leis et al. “Morsel-driven parallelism: a NUMA-aware query evaluation
framework for the many-core age.” In: Proceedings of the 2014 ACM SIGMOD inter-

national conference on Management of data. 2014, pp. 743–754.

[Lei+15] Viktor Leis et al. “How good are query optimizers, really?” In: Proceedings of the
VLDB Endowment 9.3 (2015), pp. 204–215.

[Len19] Geo�rey Lentner. “Shared Memory High Throughput Computing with Apache
Arrow™.” In: PEARC. 2019.

[LLV22] LLVM Team. The LLVM Compiler Infrastructure. 2022. url: https://llvm.org.

[LP77] Michel Lacroix and Alain Pirotte. “Domain-Oriented Relational Languages.” In:
Proceedings of the Third International Conference on Very Large Data Bases, October

6-8, 1977, Tokyo, Japan. IEEE Computer Society, 1977, pp. 370–378.

[LZF13] Per-Åke Larson, Mike Zwilling, and Kevin Farlee. “The HekatonMemory-Optimized
OLTP Engine.” In: IEEE Data Eng. Bull. 36.2 (2013), pp. 34–40. url: http://sites.
computer.org/debull/A13june/Hekaton1.pdf.

[Mak] Vladimir Makarov. MIR. url: https://github.com/vnmakarov/mir (visited on
09/06/2021).

[Mar+19] Ryan Marcus et al. “Neo: A Learned Query Optimizer.” In: Proceedings of the VLDB
Endowment 12.11 (2019).

[Mar+21] Ryan Marcus et al. “Bao: Making learned query optimization practical.” In: Proceed-
ings of the 2021 International Conference on Management of Data. 2021, pp. 1275–
1288.

[MDN] MDN Web Docs. WebAssembly Developer Reference. url: https://developer.
mozilla.org/en-US/docs/WebAssembly (visited on 04/30/2021).

[MMP17] Prashanth Menon, Todd C Mowry, and Andrew Pavlo. “Relaxed operator fusion for
in-memory databases: Making compilation, vectorization, and prefetching work
together at last.” In: Proceedings of the VLDB Endowment 11.1 (2017), pp. 1–13.

[MN06] Guido Moerkotte and Thomas Neumann. “Analysis of two existing and one new
dynamic programming algorithm for the generation of optimal bushy join trees
without cross products.” In: Proceedings of the 32nd international conference on Very

large data bases. Citeseer. 2006, pp. 930–941.

131

https://doi.org/10.1145/28865.28866
https://doi.org/10.1145/28865.28866
https://doi.org/10.1145/28865.28866
https://llvm.org
http://sites.computer.org/debull/A13june/Hekaton1.pdf
http://sites.computer.org/debull/A13june/Hekaton1.pdf
https://github.com/vnmakarov/mir
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly

[Mon] MonetDB B.V. MonetDB. url: https://www.monetdb.org/documentation-
Jan2022/dev-guide/ (visited on 2022).

[Moz] Mozilla Developer Network. SpiderMonkey. url: developer.mozilla.org/en-
US/docs/Mozilla/Projects/SpiderMonkey (visited on 04/30/2021).

[Neg+21] Parimarjan Negi et al. “Steering query optimizers: A practical take on big data
workloads.” In: Proceedings of the 2021 International Conference on Management of

Data. 2021, pp. 2557–2569.

[Neu09] Thomas Neumann. “Query simpli�cation: graceful degradation for join-order op-
timization.” In: Proceedings of the 2009 ACM SIGMOD International Conference on

Management of data. 2009, pp. 403–414.

[Neu11] Thomas Neumann. “E�ciently compiling e�cient query plans for modern hard-
ware.” In: Proceedings of the VLDB Endowment 4.9 (2011), pp. 539–550.

[Neu21] Thomas Neumann. “Evolution of a Compiling Query Engine.” In: Proc. VLDB Endow.

14.12 (2021), pp. 3207–3210. doi: 10.14778/3476311.3476410. url: http://www.
vldb.org/pvldb/vol14/p3207-neumann.pdf.

[Ng+99] Kenneth W Ng et al. “Dynamic query re-optimization.” In: Proceedings. Eleventh
International Conference on Scienti�c and Statistical Database Management. IEEE.
1999, pp. 264–273.

[Nie+20] Tobias NieSSen et al. “Insights into WebAssembly: compilation performance and
shared code caching in Node.js.” In: CASCON ’20: Proceedings of the 30th Annual

International Conference on Computer Science and Software Engineering, Toronto,

Ontario, Canada, November 10 - 13, 2020. Ed. by Lily Shaddick et al. ACM, 2020,
pp. 163–172. doi: 10.5555/3432601.3432623. url: https://dl.acm.org/doi/
10.5555/3432601.3432623.

[NK15] Thomas Neumann and Alfons Kemper. “Unnesting arbitrary queries.” In: Daten-
banksysteme für Business, Technologie und Web (BTW) (2015).

[NR18] Thomas Neumann and Bernhard Radke. “Adaptive optimization of very large join
queries.” In: Proceedings of the 2018 International Conference on Management of Data.
2018, pp. 677–692.

[OED] OED Online, ed. Oxford English Dictionary. Oxford University Press. (Visited on
07/12/2013).

[OL90] Kiyoshi Ono and Guy M. Lohman. “Measuring the Complexity of Join Enumeration
in Query Optimization.” In: VLDB. Vol. 97. 1990, pp. 314–325.

132

https://www.monetdb.org/documentation-Jan2022/dev-guide/
https://www.monetdb.org/documentation-Jan2022/dev-guide/
developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://doi.org/10.14778/3476311.3476410
http://www.vldb.org/pvldb/vol14/p3207-neumann.pdf
http://www.vldb.org/pvldb/vol14/p3207-neumann.pdf
https://doi.org/10.5555/3432601.3432623
https://dl.acm.org/doi/10.5555/3432601.3432623
https://dl.acm.org/doi/10.5555/3432601.3432623

[Ora12] Oracle. OpenJDK: Graal project. 2012. url: openjdk.java.net/projects/graal/
(visited on 04/30/2021).

[Pad+01] Sriram Padmanabhan et al. “Block Oriented Processing of Relational Database
Operations in Modern Computer Architectures.” In: Proceedings of the 17th Interna-

tional Conference on Data Engineering, April 2-6, 2001, Heidelberg, Germany. Ed. by
Dimitrios Georgakopoulos and Alexander Buchmann. IEEE Computer Society, 2001,
pp. 567–574. doi: 10.1109/ICDE.2001.914871. url: https://doi.org/10.
1109/ICDE.2001.914871.

[Pav+17] Andrew Pavlo et al. “Self-Driving Database Management Systems.” In: CIDR. Vol. 4.
2017, p. 1.

[Per+19] Matthew Perron et al. “How I learned to stop worrying and love re-optimization.”
In: 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE. 2019,
pp. 1758–1761.

[Pir+16] Holger Pirk et al. “Voodoo – A Vector Algebra for Portable Database Performance
on Modern Hardware.” In: Proceedings of the VLDB Endowment 9.14 (2016), pp. 1707–
1718.

[Pos] PostgreSQL. PostgreSQL. url: https://www.postgresql.org/docs/14/index.
html (visited on 2022).

[PWZ96] Marko Petkovek, Herbert S Wilf, and Doron Zeilberger. A = B. A K Peters. Ltd.,
1996.

[Rao+06] Jun Rao et al. “Compiled Query Execution Engine using JVM.” In: Proceedings of
the 22nd International Conference on Data Engineering, ICDE 2006, 3-8 April 2006,

Atlanta, GA, USA. Ed. by Ling Liu et al. IEEE Computer Society, 2006, p. 23. doi:
10.1109/ICDE.2006.40. url: https://doi.org/10.1109/ICDE.2006.40.

[RM19] Mark Raasveldt and Hannes Mühleisen. “DuckDB: an Embeddable Analytical
Database.” In: Proceedings of the 2019 International Conference on Management

of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5,

2019. Ed. by Peter A. Boncz et al. ACM, 2019, pp. 1981–1984. doi: 10.1145/3299869.
3320212. url: https://doi.org/10.1145/3299869.3320212.

[RN20] Stuart Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach. 4th ed.
Prentice Hall, 2020.

[Ros02] Kenneth A Ross. “Conjunctive selection conditions in main memory.” In: Proceed-
ings of the twenty-�rst ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems. 2002, pp. 109–120.

133

openjdk.java.net/projects/graal/
https://doi.org/10.1109/ICDE.2001.914871
https://doi.org/10.1109/ICDE.2001.914871
https://doi.org/10.1109/ICDE.2001.914871
https://www.postgresql.org/docs/14/index.html
https://www.postgresql.org/docs/14/index.html
https://doi.org/10.1109/ICDE.2006.40
https://doi.org/10.1109/ICDE.2006.40
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212

[RS87] Lawrence A. Rowe and Michael Stonebraker. “The POSTGRES Data Model.” In:
VLDB’87, Proceedings of 13th International Conference on Very Large Data Bases,

September 1-4, 1987, Brighton, England. Ed. by Peter M. Stocker, William Kent, and
Peter Hammersley. Morgan Kaufmann, 1987, pp. 83–96. url: http://www.vldb.
org/conf/1987/P083.PDF.

[Sal17] Saïd Salhi. Heuristic search: The emerging science of problem solving. Springer, 2017.

[SBB21] Filippo Schiavio, Daniele Bonetta, andWalter Binder. “Language-agnostic integrated
queries in a managed polyglot runtime.” In: Proceedings of the VLDB Endowment

14.8 (2021), pp. 1414–1426.

[Sch+86] Peter M. Schwarz et al. “Extensibility in the Starburst Database System.” In: 1986
International Workshop on Object-Oriented Database Systems, September 23-26, 1986,

Asilomar Conference Center, Paci�c Grove, California, USA, Proceedings. Ed. by Klaus
R. Dittrich and Umeshwar Dayal. IEEE Computer Society, 1986, pp. 85–92. url:
http://dl.acm.org/citation.cfm?id=318842.

[Sch04] Alexander Schrijver. “Combinatorial optimization: Polyhedra and e�ciency (algo-
rithms and combinatorics).” In: Journal-Operational Research Society 55.9 (2004),
pp. 1018–1018.

[SDS16] Felix Martin Schuhknecht, Jens Dittrich, and Ankur Sharma. “RUMA has it: rewired
user-space memory access is possible!” In: Proceedings of the VLDB Endowment 9.10
(2016), pp. 768–779.

[Sel+79] Patricia G. Selinger et al. “Access Path Selection in a Relational Database Manage-
ment System.” In: Proceedings of the 1979 ACM SIGMOD International Conference on

Management of Data, Boston, Massachusetts, USA, May 30 - June 1. Ed. by Philip A.
Bernstein. ACM, 1979, pp. 23–34. doi: 10.1145/582095.582099. url: https:
//doi.org/10.1145/582095.582099.

[Sel88] Timos K Sellis. “Multiple-query optimization.” In: ACM Transactions on Database

Systems (TODS) 13.1 (1988), pp. 23–52.

[SMK97] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. “Heuristic and random-
ized optimization for the join ordering problem.” In: The VLDB Journal 6.3 (1997),
pp. 191–208.

[SR86] Michael Stonebraker and Lawrence A. Rowe. “The Design of Postgres.” In: Proceed-
ings of the 1986 ACM SIGMOD International Conference on Management of Data,

Washington, DC, USA, May 28-30, 1986. Ed. by Carlo Zaniolo. ACM Press, 1986,

134

http://www.vldb.org/conf/1987/P083.PDF
http://www.vldb.org/conf/1987/P083.PDF
http://dl.acm.org/citation.cfm?id=318842
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099

pp. 340–355. doi: 10.1145/16894.16888. url: https://doi.org/10.1145/
16894.16888.

[SRG83] Michael Stonebraker, W. Bradley Rubenstein, and Antonin Guttman. “Application of
Abstract Data Types andAbstract Indices to CADData Bases.” In: Engineering Design
Applications, Database Week, May 1983. IEEE Computer Society, 1983, pp. 107–113.

[SZB11] Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. “Vectorization vs. compila-
tion in query execution.” In: Proceedings of the Seventh International Workshop on

Data Management on New Hardware. ACM. 2011, pp. 33–40.

[TER18] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. “How to Architect a
Query Compiler, Revisited.” In: Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018.
Ed. by Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein. ACM, 2018,
pp. 307–322. doi: 10.1145/3183713.3196893. url: https://doi.org/10.1145/
3183713.3196893.

[V8 08] V8 Project Authors. V8: Googles open source high-performance JavaScript and We-

bAssembly engine. 2008. url: https://v8.dev/.

[Van98] Bennet Vance. Join-order optimization with Cartesian products. Oregon Graduate
Institute of Science and Technology, 1998.

[Vel08] Stoyan Vellev. “An adaptive genetic algorithm with dynamic population size for
optimizing join queries.” In: (2008).

[VM96] Bennet Vance and David Maier. “Rapid bushy join-order optimization with cartesian
products.” In: ACM SIGMOD Record 25.2 (1996), pp. 35–46.

[W3C] W3CWebAssembly Community Group.WebAssembly. url: www.webassembly.org
(visited on 04/30/2021).

[Was] Wasmer, Inc.Wasmer. url: https://wasmer.io (visited on 09/06/2021).

[WNS16] Wentao Wu, Je�rey F Naughton, and Harneet Singh. “Sampling-based query re-
optimization.” In: Proceedings of the 2016 International Conference on Management

of Data. 2016, pp. 1721–1736.

[WP00] Florian Waas and Arjan Pellenkoft. “Join order selection (good enough is easy).” In:
British National Conference on Databases. Springer. 2000, pp. 51–67.

135

https://doi.org/10.1145/16894.16888
https://doi.org/10.1145/16894.16888
https://doi.org/10.1145/16894.16888
https://doi.org/10.1145/3183713.3196893
https://doi.org/10.1145/3183713.3196893
https://doi.org/10.1145/3183713.3196893
https://v8.dev/
www.webassembly.org
https://wasmer.io

136

Glossary

Abstract Data Type, ADT Formally, a class of objects whose logical behavior is de�ned by a
set of values and a set of operations. 100

ACID ACID (atomicity, consistency, isolation, durability) is a set of properties of database
transactions intended to guarantee data validity despite errors, power failures, and other
mishaps [HR83]. 89

CNF Conjunctive normal form. 14

CODASYL Conference/Committee on Data Systems Languages 12, 137

Connected complement pair, CCP A pair of disjoint connected subgraphs (CSG) that are
connected to each other by at least one edge. 32, 39

Connected Subgraph, CSG A subgraph of an undirected graph that is connected, i.e. each
two vertices of the subgraph are connected by a sequence of edges of the subgraph. 137

Data Base Task Group, DBTG The working group founded within CODASYL to devise a
standard for communicating with DBMSs. 12

Database Management System, DBMS A software system that enables users to de�ne, cre-
ate, maintain, and control access to the database [CB05]. 11, 12, 23–28, 31, 49, 62, 99–101,
107, 108, 110, 111, 113, 121–123, 137, 138

Database, DB A structured set of data held in a computer, especially one that is accessible in
various ways. 11, 12, 137

Domain-speci�c language, DSL A computer language specialized to a particular application
domain. 100

Just-in-time, JIT 24–26, 66, 122

137

multi-version concurrency control, MVCC A concurrency control scheme for DBMSs. 123

Ngram, Google Ngram The Google Books Ngram Viewer (Google Ngram) is a search engine
that charts word frequencies from a large corpus of books and thereby allows for the
examination of cultural change as it is re�ected in books. The corpus is a sample of books
written in English and published in the United States. 12

Normal form “A normal form is a way of representing objects such that although an object
may have many names, every possible name corresponds to exactly one object.” [PWZ96,
p. 7] 14, 137

SOTA State of the Art. 11, 22, 62, 121, 122

Write-ahead logging, WAL A family of techniques for providing atomicity and durability in
DBMSs [HSH07]. 89

138

	Abstract
	Acknowledgement
	Introduction
	A Brief History of Database Management Systems
	The Relational Model in a Nutshell
	Towards Query Optimization
	Rule-Based Transformative Query Optimization
	Combinatorial Query Optimization
	Query Optimization by Dynamic Programming

	From Query Plan to Query Execution
	A New DBMS for Research and Fast Prototyping

	Query Optimization
	Introduction
	Join Order Optimization as a Shortest Path Problem
	The Shortest Path Problem
	Reducing JOOP to Shortest Path
	The Dualism of Bottom-Up and Top-Down Join Order Optimization
	Complexity of SPJOOP

	JOOP as a Heuristic Search Problem
	Properties of Heuristic Functions
	Properties of Heuristic Search
	Searching an Exponentially Large Space
	Completeness, Soundness, Optimality
	Performance Criteria

	Algorithmic Challenges
	Vertex Representation
	Vertex Expansion
	Open List and Duplicate Detection
	Duplicate Prevention

	Heuristic Functions for JOOP
	From DBMS Cost Model to Edge Weights
	Four Simple Heuristics
	Informative Value of Heuristic Functions

	Related Work
	Classical Join Ordering
	Greedy Join Ordering
	Heuristic Search

	Evaluation
	Setup
	Comparison to State of the Art
	QGraEL: A New Benchmark for JOOP
	Detailed Evaluation of Heuristic Search

	Conclusion

	Query Compilation
	Introduction
	A New Architecture for Compiling Query Engines
	Other Architectures
	Our Architecture

	WebAssembly
	Embedding WebAssembly

	Compiling SQL to WebAssembly
	Pipeline Model
	Compiling Simple Operators
	Compiling Complex Operators

	Ad-hoc Library Code Generation
	Conceptual Comparison
	Our Approach: JIT Code Generation
	Code Generation by Example

	Executing WebAssembly in a Database System
	Accessing Data by Rewiring
	Result Set Retrieval

	Related Work
	JIT Frameworks & Engines
	Query Execution

	Evaluation
	Experimental Setup
	Performance of Query Building Blocks
	TPC-H

	Conclusion

	mutable - A Modern Database System for Research & Fast Prototyping
	Introduction
	Outline

	Database System Design
	Design Goals
	Related Work
	Our Approach: The mucmutable!90!blackt able System
	mucmutable!90!blackt able: The Imperative Shell

	Components
	Code Generation
	Physical Optimization
	Physical Data Layout Independence
	Automated Evaluation

	Conclusion
	Glossary

