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Abstract

Embedded Systems – hidden computers – are all around. Programed by humans or, eventually,
arti�cial intelligences, embedded systems run software to enrich, entertain, and evaluate our
lives on all imaginable grounds. Safety-critical systems, such as vehicles or industrial production
plants, feature numerous bespoke embedded computers whose software monitors, measures,
and manipulates things in their environment. Since programmers and arti�cial intelligences
make mistakes, software contains errors. Software testing is therefore indispensable for �nding
programming �aws, ideally before deployment.

Automated software testing methods can automatically generate test data for programs to
assist test engineers with the task of crafting test cases. However, available techniques are
primarily established for testing applications on personal computers and servers. Deploying
automated software testing techniques on embedded systems is subject to additional challenges,
mainly arising from the low number of shared communalities in terms of interfaces, peripherals,
as well as hardware and software architectures. This thesis examines obstacles to fuzzing
embedded systems and defects of state-of-the-art approaches. Furthermore, it introduces two
new methods for fuzz testing embedded systems, overcoming the distilled defects. Also, both
methods leverage only generic and widespread features for analyzing embedded programs
during runtime and thus are applicable on a variety of devices in practice.
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Zusammenfassung

Eingebettete Systeme – versteckte elektronische Rechner – sind allgegenwärtig. Programmiert
von Menschen, oder zukünftig auch von künstlichen Intelligenzen, führen eingebettete Sys-
teme Programme aus, um menschliches Leben zu bereichern, zu belustigen und zu bewerten.
Sicherheitskritische Systeme, wie Fahrzeuge oder Industrieanlagen, enthalten zahlreiche maß-
geschneiderte eingebettete Rechner, deren Programme Dinge in ihrer Umgebung mustern,
messen und manipulieren. Da Programmierer und künstliche Intelligenzen Fehler machen, kön-
nen Programme fehlerhaft sein. Gründliches Testen von Programmen ist deshalb unerlässlich,
idealerweise bevor diese ausgeliefert werden.

Automatisierte Programmtestverfahren können automatisch Testdaten für Programme er-
zeugen, um Testingenieure beim Erstellen von Testfällen zu unterstützen. Die verfügbaren
Techniken sind jedoch in erster Linie für das Testen von Anwendungen auf traditionellen
Heim- und Dienstgeberrechnern gedacht. Diese auf eingebetteten Rechnern anzuwenden ist mit
zusätzlichen Herausforderungen verbunden, die sich hauptsächlich aus der geringen Anzahl
von Gemeinsamkeiten in Bezug auf Schnittstellen und Peripherie, sowie durch Verwendung
verschiedener Architekturen ergeben. Diese Dissertation untersucht die Herausforderungen
automatisierte Programmtestverfahren auf eingebetteten Rechnern auszuführen und deckt
Lücken im Stand der Technik auf. Des Weiteren stellt sie zwei neue Methoden vor, welche diese
Lücken schließen sollen. Beide Methoden nutzen nur weit verbreitete Funktionalitäten, um
Programme auf eingebetteten Rechnern während der Laufzeit zu analysieren und sind deshalb
auf einer Vielzahl von Geräten in der Praxis anwendbar.
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1 Introduction

Software is what makes devices appear smart. The software joins the circuits on a processor in
such a way that inputs get interpreted and logically processed into outputs. From a theoretical
perspective, it is undecidable whether non-trivial software programs behave well for any input.
Nevertheless, developers want to ensure proper function of software before shipping. Best
practice since decades has been developers creating tests that execute the program or parts of
it with di�erent inputs and verify the outputs for these [PY08]. The input space of programs,
however, grows exponentially with the amount of bits required to represent it. Already a
program input of 33 bytes1 takes 2264 ≈ 1079 unique bit combinations, which is enough to
number each of the estimated 1078 protons in the universe [Edd31]. Many programs even digest
arbitrarily large inputs, making it infeasible to exercise through all possible concrete inputs.
Consequently, tests only cover a subset of a program’s input space and manually creating test
inputs for covering large program parts is laborious.

Fuzzing promises relief – at least to the manual task of creating test inputs. Fuzzing techniques
generate massive amounts of randomized inputs to test software. Basically, a fuzzer tries to
brute force inputs that cause the software to crash. Since purely random generated input
has small chances of reaching large parts of the code, sophisticated fuzzing tools make use
of additional information. Knowledge of the input structure or dynamically extracted code
coverage information can guide fuzzers to generate rich test inputs [LZZ18]. Attractively,
fuzzing is an unsupervised method. Once set up, a software developer can focus on other tasks
while the fuzzer �nds bugs in background.

Despite its simple underlying principles, fuzzing demonstrated its ability to detect program-
ming errors in practice. Google alone lists tens of thousands of bugs found by fuzzing within
their OSS-Fuzz initiative [Goo16b]. Several industry standards now recommend fuzzing as one
of the testing methods to ensure robustness [Int18b; Int18a], including the recently released
ISO/SAE 21434 - Road vehicles - Cybersecurity [Int21].

Fuzzing user space applications for general purpose operating systems on personal computers
or servers is perhaps the best-established use of fuzzing in practice. However, this addresses
only a fraction of electronic devices that execute software. Embedded systems outnumber
personal computers and servers by far and are used pervasively in modern society, for instance
in smart meters, pacemakers, vehicles, and factory robots, to name just a few. More precisely,
general-purpose computers and servers account for less than 1% of all the microprocessors
sold every year [Gar23; SI19; IC 22] and almost all deployed microprocessors in the world end
up in embedded systems. While the embedded computing market grows constantly and is
expected to continue this trend in the near future [Als19], code bases in industry grow steadily,

1An empty Microsoft Word document takes multiple thousand bytes.
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1 Introduction

too [Sac22]. Manual software testing is laborious and the growth of deployments and code
yields a signi�cant demand for e�ective embedded fuzzing methods.

This thesis is about applying fuzzing on embedded systems, which is challenging. A large
share of recently published embedded fuzzing approaches relies on virtualization of the em-
bedded system [Yun+22; Eis+22], bene�tting from easily accessible insights to program exe-
cution and scalability. Such virtualization, however, requires a trade-o� between speed and
�delity [Fas+21; Wri+21]. Worse even, it requires not only virtualization of the microproces-
sor itself, but also of all other hardware components on the board as well as virtualizing the
way they communicate with each other. Given the enormous diversity of available hardware
peripherals [Hea02], this requires considerable setup and con�guration costs, if possible at
all. Alternative hardware-based embedded fuzzing methods use exotic or hardware-speci�c
features, such as hardware tracers, lacking broad applicability.

The following restrictions make many of the currently existing fuzzing techniques impractical
to non-applicable on embedded systems:

• The executable code may come in read-only or very constraint memory, and thus cannot
be modi�ed to obtain insights like coverage information during runtime.

• There may be no storage or channel available to feed back runtime information.

• Embedded �rmware is tightly coupled with the speci�c hardware, hampering virtualiza-
tion which could provide desired runtime information.

• Code and components may come from third parties, with lack of source code and limited
documentation available.

• Input formats speci�cations might be unknown.

• There is a staggering variety of languages, processors, peripherals, and operating systems
preventing a one-�ts-all solution.

1.1 Motivation

In 2019, the security researcher Anna Prosvetova found that via exploiting critical vulnerabilities
in the Wi-Fi driver of a smart pet feeding machine an attacker can modify the �rmware of the
enclosed microcontroller2, giving an attacker full control over the feeding schedule. While an
average house cat will probably make its way to �nd alternative food sources until their masters
recognize the machines’ malfunction, such vulnerabilities can cause severe damage in other
embedded system appliances.

As every product, the ones including embedded systems are subject to rules of the free
market economy. Testing takes time and therefore is expensive. This leads to a tradeo� between
thorough software development and the acceptance of errors in the products sold. According
to Rollbar’s State of Software Code Report 2021 [Rol21], 88% of software errors are caught
after deployment by users and 86% of all developers wish for better tools to detect and �x

2https://www.zdnet.com/article/security-researcher-gets-access-to-all-furrytail-pet-feeders-around-the-world/

2



1.2 Contribution

errors. Consequently, to be considered, software testing methods for embedded systems must
be e�cient and be applicable with low e�orts. The motivation of this thesis is to ful�l this
demand by providing sophisticated fuzz testing methods for embedded systems.

1.2 Contribution

Decades of research and development on virtualization of hardware did not lead to accurate
emulators for arbitrary devices. Powerful hardware tracing methods, which enable fuzzing on the
actual hardware, are costly and rarely available. Crafting input speci�cations in a fuzzer usable
format is time-consuming. This thesis proposes embedded fuzzing solutions that do not demand
such hardly available features or speci�cations. Boiling down the common characteristics
of embedded devices, it turns out that breakpoints can interrupt the execution on reaching
program addresses and watchpoints can do similar on memory accesses. Both are deployable
via generic interfaces. Strategic use of breakpoints and watchpoints helps programmers to
analyze a program during runtime. Hardware breakpoints and watchpoints correspond to actual
registers in the debug logic of the microcontroller. Consequently, the number of simultaneously
deployable breakpoints and watchpoints is limited. This thesis presents new methods that
require only access to limited numbers of breakpoints and watchpoints to enable sophisticated
fuzzing of embedded systems on the hardware itself.

Speci�cally, this thesis’ contributions are:

• A thorough review and discussion of state-of-the-art solutions for embedded fuzzing.

• GDBFuzz: Using the limited number of available hardware breakpoints in microcontrollers
for coverage-guided fuzzing.

• GDBMiner: Using limited amounts of hardware watchpoints for data-�ow analysis to
learn context-free grammars that are usable for generation-based fuzzing.

1.3 Publications

The following publications arose during working on this dissertation, and they build the
foundation of this work and are re�ected to a large extent in it.

• Max Eisele, Marcello Maugeri, Rachna Shriwas, Christopher Huth, and Giampaolo
Bella. „Embedded fuzzing: a review of challenges, tools, and solutions“. In: Springer
Cybersecurity (2022).

In this literature review, we investigate and taxonomize the current state of the art
of embedded fuzzing approaches. Particularly, we present and summarize the top 42
approaches we feel are most relevant and discuss their advantages and disadvantages. We
hypothesize that there is no golden tool for embedded fuzzing, and we reveal the demand
for more practically and broadly applicable solutions. Chapter 3 re�ects the contents of
this paper.

3



1 Introduction

• Max Eisele. „Debugger-driven Embedded Fuzzing“. In: 2022 IEEE International Confer-

ence on Software Testing, Veri�cation and Validation (ICST). (Best Submission Award).
2022.
With this paper on the Doctoral Symposium of the 2022 International Conference on
Software Testing, Veri�cation and Validation, I �rst present the concept of approaching
common debug interfaces of microcontrollers with the GNU Debugger (GDB) tool to build
generic embedded fuzzing solutions. I list abstract debug features, such as hardware
breakpoints, hardware watchpoints, and single-stepping, and outline that these can enable
partial coverage-guidance for fuzzing, learning input speci�cations from sample inputs,
and concolic execution. The ideas of this paper led to the next two publications.

• Max Eisele, Daniel Ebert, Christopher Huth, and Andreas Zeller. „Fuzzing Em-
bedded Systems Using Debug Interfaces“. In: Proceedings of ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA 2023). 2023.
In this paper, we present GDBFuzz, which enables coverage-guided fuzzing for any
system using hardware breakpoints. GDBFuzz distributes the limited amount of hardware
breakpoints randomly on the basic blocks of the target program to obtain partial code
coverage information. Furthermore, it boosts the limited execution insights by using
dominator relations derived from the control �ow graphs of the target programs. We
show in the evaluation that GDBFuzz reaches more code in less time compared to fuzzing
without feedback, is applicable to many diverse microcontroller setups, and performs
where other solutions fail. Chapter 4 features the concept, implementation details, and
evaluation from this paper.

• Max Eisele, Johannes Hägele, Christopher Huth, and Andreas Zeller. „GDBMiner:
Mining Precise Input Grammars on (almost) any System“. In: Under Submission. 2024
This paper presents GDBMiner, a tool for learning context-free grammars from any
system o�ering common debug capabilities. It leverages stepwise execution and data
watchpoints for analyzing at which program parts the target program consumes parts
of the input. By �nding common nodes in the resulting tree structures in a second step,
GDBMiner produces context-free grammars, which can enable generation-based fuzzing.
Chapter 5 describes the design, implementation, and evaluation of GDBMiner.

Additionally, the following secondary publications addressed further facets of automated
software testing, but are not part of this thesis.

• Matthias Börsig, Sven Nitzsche, Max Eisele, Roland Gröll, Jürgen Becker, and
Ingmar Baumgart. „Fuzzing Framework for ESP32 Microcontrollers“. In: 2020 IEEE

International Workshop on Information Forensics and Security (WIFS). IEEE. 2020, pp. 1–6.

• Maria Irina Nicolae, Max Eisele, and Andreas Zeller. „Revisiting Neural Program
Smoothing for Fuzzing“. In: Proceedings of the 31th ACM Joint European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE

2023). 2023.
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1.4 Thesis Structure

1.4 Thesis Structure

To enhance the readability and comprehension, this thesis visually emphasizes crucial contents
as:

Definitions for providing consistent terminology.
Theorems for �xing key facts or interrelations.
Takeaways for capturing essential �ndings.

HW or SW
component

Steps
or

Statesinteraction

Figure 1.1: Meaning of shapes in �gures throughout this dissertation.

The shapes in the �gures of this thesis have consistent meanings. As shown in Figure 1.1,
hardware and software components are depicted as angular boxes; algorithmic steps or states
visualized as rounded boxes.

The remainder of this thesis is organized as follows. Chapter 2 explains background knowledge
and concepts. Chapter 3 discusses state-of-the-art resulting from our literature review. Chapter 4
introduces the concept of GDBFuzz and Chapter 5 describes GDBMiner approach. This thesis
ends with a discussion about future work and a conclusion in Chapter 6.
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2 Background

This chapter describes notions, concepts, and methods that are important for this thesis. It
starts with the de�nition of software bugs in Section 2.1, explains how fuzzing reveals bugs
in Section 2.2, outlines what embedded systems are in Section 2.3, and how debuggers help to
analyze programs in Section 2.4. The remaining Sections 2.5 to 2.7 detail the concept of program
control �ow, dominator relations, and context-free grammars in conjunction with fuzzing.

2.1 So�ware Bugs

The origin of the term “bug” regarding �aws in electronic devices lies well back in time and
appears to be not fully identi�ed. However, it is clear that Thomas Edison – inventor of the
electric light bulb, the automatic telegraph and the carbon telephone transmitter – already
wrote about failure inducing bugs in his apparatus starting from 1876 [MI13]. At that time
he probably really referred to insects that caused malfunctions in his inventions, but later on
he described “�xing a bug” as “an expression for solving a di�culty”. Soon after, the term was
incorporated in The Standard Electrical Dictionary [Slo92] from 1892 and de�ned as “Any fault

or trouble in the connections or working of electric apparatus”.
“Bug” is quite unspeci�c when it comes to software malfunctions, which is why the

ISO/IEC/IEEE International Standard - Systems and software engineering–Vocabulary [Int17]
distinguishes between three terms:

De�nition 1: [Error]

An error is a human action that produces an incorrect result.

In other words, errors are mistakes, such as programming �aws.

De�nition 2: [Fault]

A fault is a manifestation of an error in software.

Consequently, programming errors can result in program faults, for instance, an incorrect output.

De�nition 3: [Failure]

A failure is the termination of the ability of a system to perform a required function or its
inability to perform within previously speci�ed limits.

7
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Faults can lead to failures that prevent continuing the normal execution of a program or system,
for instance, because of an illegal memory access. The term bug suits best to the de�nition of
fault, but informally programmers use it universally for errors, faults, and failures. Debugging
or “�xing a bug” thus describes the process of �nding root causes of a bug and the correction of
corresponding programming errors.

As an example, the function process_data in Listing 2.1 contains a bug. It does not verify
that the function parameter length lies within the range of the local array stack_array.
When the �rst four characters of parameter buffer meet the constraints from line 4-7, that is
they equal “bug!” and length is larger or equal 20, the memcpy function writes beyond the
range of stack_array – it over�ows. These Out-of-bounds Write bugs spearhead the 2022

CWE Top 25 Most Dangerous Software Weaknesses [The22]. Attackers might exploit such bugs
with cleverly crafted inputs that lead to an alternation of the execution �ow and can result in
arbitrary code execution. Further details about exploitation of bugs is out of scope of this thesis.

Listing 2.1: Buggy function with possible stack over�ow, inspired by [GLM12].
1 void process_data(char* buffer , unsigned int length) {
2 char stack_array [20];
3
4 if( length > 0 && buffer [0] == ’b’)
5 if( length > 1 && buffer [1] == ’u’)
6 if( length > 2 && buffer [2] == ’g’)
7 if( length > 3 && buffer [3] == ’!’)
8 memcpy(stack_array , buffer , length );
9 }

2.2 Fuzzing

Decades ago, Miller et al. [MFS90] tested Unix command line tools with random data, observed
failures like crashes and hangs resulting from software errors, and called this method “fuzzing”.
Attractive is that the method is automated and unsupervised, meaning the testing process is
solely executed by a computer, resulting in good scalability and allowing developers to focus
more on creative and administrative tasks. Prerequisites for fuzzing are a well-de�ned way of
evaluating inputs on a program and bug oracles that determine whether faults occur while the
program processes inputs. Manès et al. [Man+19] de�ne a bug oracle as follows:

De�nition 4: [Bug Oracle]

A bug oracle is a program, perhaps as part of a fuzzer, that determines whether a given
execution of the program under test violates a speci�c correctness policy.

Providing a distinct way of evaluating inputs on the target program is subject to a test engineer
who leverages knowledge of the system or the program to connect a fuzzer to it. Often it
requires some code for this purpose, which is called fuzz driver or fuzz harness.

8
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De�nition 5: [Fuzz Harness]

The fuzz harness is a program, mechanism, or a part of the target program that exposes a
well-de�ned input interface for fuzzing.

In the original work, Miller generated random strings to fuzz test standard UNIX utilities via
UNIX pipes and, as simple bug oracle, checked if the target programs emitted crash signals or
did not �nished execution within a prede�ned amount of time (hang) [MFS90]. Modern fuzzing
setups transfer test cases via shared memory mechanisms [Swi16; Mic17; Fio+20] or compile the
fuzzing logic directly into the target program [LLV15] to minimize overhead. More sophisticated
fuzz harnesses might �ll complex data structures with fuzzing data, invoke multiple functions
of the target program, and perform error checks.

Memory fault detectors like AddressSanitizer [Ser+12] help to �nd non-crashing memory
corruptions. Di�erential [McK98] and metamorphic [Che+18b] testing techniques can serve as
bug oracles beyond failures and memory corruption, but are out of scope of this thesis.

Figure 2.1 shows how a fuzzer sends test inputs via a harness to a target while the bug oracle

observes the execution correctness and collects failing inputs – bugs.

Fuzzer

Bug Oracle

Harness Target <
Bugs

o

Input



Fault?

Figure 2.1: Overview of the fuzzing �ow.

In practice, fuzzing is an iterative process that generates and evaluates huge amounts of
inputs over time. Fuzzing campaigns over hours, days, and weeks are not uncommon [Liy+23].

Since fuzzing relies on observable faults, it can only detect bugs in code that is actually
executed, which is why reaching a high code coverage is desired and reached code coverage
is the most used metric in comparing fuzzers [BSM22]. With this purpose in mind, tons of
di�erent fuzzing techniques have been developed, mainly divided into mutation-based fuzzing,

where known inputs to the program are randomly mutated, and model-based fuzzing, where
test data is generated based on a speci�cation of the input language [Man+19].

Additionally, literature divides fuzzers often into blackbox, graybox, and whitebox approaches
depending on the amount of static and dynamic analysis a fuzzer performs on the target source
or binary code [Man+19; LZZ18; God20]. Blackbox fuzzing keeps the target program or system
unopened and uninvestigated and approaches only publicly facing interfaces. Whitebox fuzzing
traditionally is to symbolically solve constraints that are statically extracted from the source
code to mathematically derive inputs that trigger di�erent code paths. Graybox fuzzing lies
somewhere in between and uses lightweight analysis to guide fuzzing. However, this thesis
refuses to categorize methods into graybox, and whitebox fuzzing, because they have low
expressiveness and conceal important di�erences, especially in the realm of embedded systems.
For example, code coverage feedback through source code instrumentation, as well as through
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binary emulation are both considered graybox approaches. The former requires source code
and the latter not, which makes a huge di�erence in practice. The term graybox, therefore, is
too vague for practical approaches and will not be used further in this thesis.

2.2.1 Mutation-based Fuzzing

Mutation-based fuzzing starts with few sample inputs for the target program, called seeds. The
seeds are initially added to the input corpus, a collection of base inputs, from which mutated
test inputs are generated. If no seeds are provided, the fuzzing campaign starts with an empty
input corpus and generates the �rst input purely random. Mutation operators are, for instance,
bit �ips, value replacements, random string insertions, and deletions.

Mutation-based fuzzing is particularly e�ective when test inputs that trigger previously
unseen behavior of the target are added back to the corpus, called feedback-driven fuzzing.
Coverage-guided fuzzers consider the execution of new code paths or blocks as previously
unseen behavior and thus add newly generated test cases to the corpus when they increase code
coverage. Dozens of coverage-guided fuzzers exist and this �avor of fuzzing is what found tens
of thousands of bugs in the OSS-Fuzz project [Goo16b]. Figure 2.2 shows where the feedback
channel is added into the previously introduced fuzzing �ow.

Fuzzer

Bug Oracle

Harness Target

ü

<
Bugs

o

Input



Fault?

Feedback

Figure 2.2: Feedback-driven fuzzing �ow.

The rate of newly found code coverage during fuzzing usually decreases drastically over time.
Recent work even suggests an exponential dependency between reached coverage and spent
e�ort [BF20], which results in logarithmic appearing coverage over time plots.

Consider the code of the function process_data in Listing 2.1 that causes a stack bu�er
over�ow when the �rst four characters of input match "bug!" and length has a greater
value than 20. A fuzzer without feedback needs to guess the �rst four characters correctly from28∗4 = 232 = 4, 294, 967, 296 combinations1 at once. A coverage-guided fuzzer can progress on
each comparison step with 28 possible combinations individually. In summary, this lowers the
number of combinations to (1 + 2 + 3 + 4) ∗ (4 ∗ 28) = 10, 240 [BLW21], increasing the overall
probability of generating an input that triggers the stack over�ow during fuzzing.

Fuzz testing on general purpose operating systems often leverages source code instrumentation,

where additionally inserted code feeds code coverage back to the fuzzer. Alternatively, binary
rewriting or dynamic instrumentation tools can inject instrumentation mechanisms into compiled
code or emulators can obtain the required code coverage feedback during runtime when no
source code, and therefore no code instrumentation at compile time, is available. Control �ow

1Assuming 8-bit characters.
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graphs and corresponding measurement of code coverage is essential for this thesis and further
elaborated in Section 2.5.

2.2.2 Model-based Fuzzing

Model-based fuzzers leverage knowledge of the target’s input format to generate test cases from
scratch that ideally cover most of the input space. There are various methods to create suitable
models that allow e�cient generation of test inputs [PBR16; Yan+11; SZ22; HZ19; Sor+20].
They all have in common that creating an input speci�cation model is a manual task and that
this task has to be exercised for each individual input format or protocol. A great advantage is
the independence of the models, making them reusable across multiple programs e.g. a model
for the PNG image format enables fuzzing for all PNG parsing programs; an SQL query model
for various database management systems. Another advantage is that model-based fuzzing
requires no modi�cation of the target program or system, avoiding code instrumentation and
establishing a feedback channel. Furthermore, models can de�ne expected outputs of the target
or series of inputs and outputs and thus also �nd non-crashing logical bugs [Per17].

A number of published methods attempt to automate the labor-intensive task of creating
input models and thus try to solve the major drawback of model-based fuzzing [GMZ20; Bas+17;
KLS21; SZ22]. A large portion of model-based fuzzers uses context-free grammars and since
these are a substantial part of this thesis they are further explained in Section 2.7.

2.3 Embedded Systems

Literature varies on what exactly makes up an embedded system. One de�nition says that “an
embedded is designed to perform a dedicated function” [Noe12], which, for instance, disquali�es
personal computers or modern smartphones as such. Others de�ne that “Embedded systems are
information processing systems embedded into enclosing products” [Mar21], from which one
could argue that smartphones or laptops are included. However, it is clear that an embedded
systems runs software on any kind of processor or microcontroller and interacts with the outside
world e.g. via sensors, actuators, or data interfaces.

Through the embedded character the dissemination of embedded systems is easily underesti-
mated. Looking at the numbers, there are approximately 300 million annually shipped units
of general purpose PCs and servers worldwide over the last 5 years [Gar23; SI19]. Over the
same period, yearly shipments of microcontrollers are estimated to exceed 30 billion units [IC
22], meaning that about 99% of all software running devices, including smartphones, are not
computers in the classical sense.

Embedded systems are highly diverse. While there might be two relevant processor architec-
tures (x86, ARM) for personal computers and mainly three operating systems (Windows, Linux,
macOS) [Sta23], there are a magnitude more in the embedded systems sector, for instance, ARM,
RISC-V, MIPS, Xtensa, MSP430, and countless specialized operating systems or abstraction
frameworks. This diversity impedes a detailed generic grasp of embedded systems, and leaves
us with the simple minimal architectural model for embedded systems in Figure 2.3.
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Application

System
So�ware

HW

Figure 2.3: Embedded systems architecture model according to Noergaard [Noe12].

The model consists of only three layers, from which the two uppermost are software and in
conjunction are referred as �rmware. While the application layer contains program logic, the
system software layer locates potential operating systems, bootloaders, drivers, and Hardware
Abstraction Layer (HAL) modules. There are embedded systems without a dedicated operating
system, often referred to as bare-metal systems. If done right, the software from the application
layer might be portable over di�erent systems and, for instance, can be cross-compiled into user
applications for fuzzing. The system software, however, is tailored to the expected hardware
and running it in a di�erent environment requires major e�ort, such as emulating, mocking, or
stubbing expected features. A good example therefore are drivers that access registers of the
hardware directly and expect precise and timely behavior of the hardware.

2.4 Debuggers and Breakpoints

Programmers use debuggers to investigate programs at runtime, notably to understand unex-
pected program behavior. Debugging tools therefore can externally control the execution of a
program at the programmer’s pace, as well as examine memory values, such as variables or the
execution stack. Speci�cally:

• Breakpoints on instruction addresses interrupt the execution when reached.

• Watchpoints on memory addresses interrupt the execution on memory accesses.

• Single-stepping executes a single instruction at a time only.

2.4.1 Debug Units

The hardware-side implementation of debugging capabilities depends on the processor archi-
tecture. However, commonly there are dedicated debug units on the processor that can control
the execution on demand.

For instance, the ARMv7-M Architecture [ARM21] intends a Flash Patch and Breakpoint (FPB)
unit and a Data Watchpoint and Trace (DWT) unit. The FPB unit can virtually patch instructions
or data in the �rmware by remapping it, but also features breakpoint registers that halt the
execution when the program counter equals their value. The DWT unit contains comparator
registers that can serve for multiple debugging tasks e.g. counting memory accesses or realize
data watchpoints. ARM speci�es approaching the debug units from outside via a Joint Test
Action Group (JTAG) debug port [IEE13] or ARM’s Serial Wire Debug (SWD) port [ARM06].
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Usually a microcontroller can control its own debug units, allowing debugging of user
applications from an operating system. However, particularly for embedded systems without
general purpose operating systems like Linux, it is more common to attach a debug probe to a
provided debug port and perform debug operations from the programmer’s PC that also hosts
the development environment and the source �les of the application [Ver08].

Debug interfaces on commercial devices are ideally closed or disabled to prevent attacks.
However, it has been shown several times in the past that disabled debug interfaces can be
reopened, using fault injection attacks like power or clock glitching [Sko11; Kha20]. Also, the
�rmware from a commercial device can be transferred to an equivalent development board with
accessible debug interface, and thus enable debugging.

2.4.2 GNU Debugger

A popular debugger for user programs since decades is the GNU Debugger (GDB) [S+88; LO96].
It is versatile and provides a uni�ed debug interface for most software and systems. GDB
works for Assembly, C, and C++, the top 3 languages for embedded systems [Jet22], but also
supports Ada, Objective-C, Rust, Pascal, Modula-2, FORTRAN, Go, and many more compiled
programming languages; it can also be applied on binaries without source code. It supports
most microprocessor instruction sets, including ARM, x86, Motorola 68000, MIPS, PA-RISC,
PowerPC, and RISC-V. Its GDB remote serial protocol [Gat99] is the de facto standard protocol
for connecting di�erent debug backends to various debugging frontends and is implemented
by most available on-board and o�-board microcontroller debug probes, for instance from
Segger [Seg22], STMicroelectronics [STM19], or Lauterbach [Lau22], serving as a generic
abstraction layer for debugging embedded systems.

2.4.3 Breakpoints

GDB distinguishes between hardware breakpoints that correspond to actual registers on the
chip and software breakpoints that are realized by patching the binary with interrupt inducing
instructions. The result is that the number of available hardware breakpoints is limited, but
they can be set to any program address, regardless of the memory type the respective code is
stored in. In contrast, software breakpoints are not limited in their amount, but require frequent
rewriting of the program, which can be slow, can wear out eventual �ash memory, or in case of
read-only memory, simply be impossible.

2.4.4 Watchpoints

The situation is similar with watchpoints that allow observing speci�c variables or memory
regions for read and/or write access. Hardware watchpoints are e�cient, but come in small
numbers, if at all. Software watchpoints are unlimited in numbers, but can require interrupting
execution with every step or emulating the application, resulting in a huge performance impact.
If supported by the hardware, GDB o�ers masking of watchpoint target addresses for covering
a whole memory region with a single watchpoint [S+88].

13



2 Background

2.5 Control Flow Graphs

Analyzing programs is usually done on the basic block level [All70].

De�nition 6: [Basic Block]

A basic block is a linear sequence of program instructions having a single entry point and
a single exit point.

Basic blocks can therefore contain control �ow changing instructions, such as jumps or con-
ditional branches exclusively as last instruction. Exceptions are calls to other functions. They
interrupt the linear execution of instructions within a basic block, but because function calls are
designed to return to the caller, the linear execution of the basic block is not violated. Therefore,
call instructions are typically allowed in the middle of a basic block. This thesis, however,
leverages an interprocedural view on control �ow and for the sake of simplicity call instructions
do terminate basic blocks in the remainder of this thesis, to allow precise re�ection of call and
return sites.

De�nition 7: [Control Flow Graphs]

A Control Flow Graph (CFG) describes all possible control �ow between the basic blocks of
a program.

Local control �ow graphs serve for �ow analysis within functions [All70], and are constructed
by ignoring control �ow changes from call and return instructions. Consequently, there is one
control �ow graph for each function of a program. Figure 2.4 shows the local control �ow
graphs of the program from Listing 2.2.

Listing 2.2: Example C program.
1 int funcA(int x) {
2 return x + 5;
3 }
4
5 int main(int x) {
6 int ret;
7 if ( x & 1) {
8 ret = funcA(x);
9 ret --;

10 } else {
11 ret = funcA(-x);
12 ret++;
13 }
14 return ret;
15 }

1: int ret;

if ( x & 1)
main:

2: ret = funcA(x);

3: ret--;

4: ret = funcA(-x);

5: ret++;

6: return ret;

7: return x + 5;funcA:

Figure 2.4: Corresponding local control �ow graphs.
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2.6 Dominator Relations of Control Flow Graphs

Dominator relations describe further coherence between nodes in a control �ow graph. We
use the notion of pre- and postdominator from Agrawal [Agr94] and assume that control �ow
graph G has exactly one entry point and exactly one exit point2:

De�nition 8: [Predomination]

A node u ∈ G predominates another node v ∈ G, denoted as u pre←←←←←←←←←←←←←←←←←→ v, if every path from
the entry node to v contains u.

De�nition 9: [Postdomination]

A node w ∈ G postdominates another node v ∈ G, denoted as w post←←←←←←←←←←←←←←←←←←←←←←→ v, if every path
from v to the exit node contains w .

The dominator relations can be represented as (dominator) trees and there exist e�cient
algorithms to compute them from local control �ow graphs [CHK01]. The postdominator tree
equals the predominator tree from the reversed control �ow graph [Agr94]. From any pre- and
postdominator tree, we can derive the following transitive knowledge about other nodes:

Theorem 1: [Reachability]

If node v is reached, all parent nodes in the predominator tree have been reached before
and all parent nodes in the postdominator tree will be reached afterwards.

As a result, reaching all leave nodes in the dominator tree of a program su�ces to achieve 100%
code coverage.

2.7 Context-Free Grammars

Context-free grammars are mathematical descriptions for context-free languages. They can
serve for generating inputs that belong to the corresponding language or for verifying if
an input belongs to that language. For instance, the language of correctly parenthesized
expressions – for every opening parentheses there is a closing one – is a popular example
of a context-free language. In contrast to regular languages, context-free languages can take
care of these matching parentheses, which makes them ideal for describing mathematical
expressions, but also the syntax of programming languages. Generating strings from a context-
free grammar is easy, and deciding whether a string is producible by a given context-free

2For functions with multiple returns, the returning blocks are connected to a new virtual return block leading to a
single exit node in the control �ow graph.
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grammar is e�cient [Ear70]. Limits of context-free languages are context-sensitive properties,
for instance, matching arbitrary named tags as they are used in the XML format, or checksums
over the content.

Formally, a context-free grammar is a four-tuple G = (V , T , P, S), with variable (or non-
terminal) symbols V , terminal symbols T , the set of productions P , and the start symbolS [HMU01]. A production rule p ∈ P is a relation (v, x) with variable v ∈ V mapped to a string
of variables and terminals x ∈ (V ∪ T )∗. As an example, this grammar G represents correctly
parenthesized expressions:⟨S⟩ ::= ⟨S⟩⟨S⟩ | (⟨S⟩) | �

S

( S

S

( S

�
)

S

( S

�
)

)

Figure 2.5: Grammar parse tree on ‘(()())’.

Applying G on the string ‘(()())’ yields the parse tree in Figure 2.5.

2.7.1 Recursive Descent Parsers

Recursive descent parsers make the dominating share among parsers used in practice [Mat+19].
They operate in a top-down manner, recursively calling parser subroutines that match non-
terminals, and can precisely parse LL(1) grammars [Knu71] whose production rules are un-
ambiguous when reading a string character by character. Having a context-free grammar,
it is possible to generate sound recursive descent parsers automatically, for instance, with
ANTLR [PQ95].

Listing 2.3 shows a recursive descent parser written in C for the parenthesis language. The
single production rule is called recursively. Thus, the parser does not require loops for parsing,
while it still can parse strings of arbitrary length (as long as the stack memory is not exhausted
during execution).

2.7.2 Fuzzing with Grammars

Grammars can be used to generate structured random inputs for fuzzing [SP21; HZ19], which
have much higher chances of triggering code beyond the �rst input parsing stage in the
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Listing 2.3: A recursive decent parser for correctly parenthesized expressions
1 void parse_S(const char *input , int *position) {
2 if (input[* position] == ’(’) {
3 (* position )++;
4 parse_S(input , position );
5 if (input[* position] != ’)’)
6 error("Expected␣closing␣parenthesis");
7 (* position )++;
8 parse_S(input , position );
9 }

10 }

target program. The advantage is that grammar-based fuzzing does not require a coverage
feedback mechanism, but it requires the input speci�cation of the target program in form of a
grammar. As a result, grammar-based fuzzing is, in particular, interesting for testing embedded
systems, where retrieving coverage feedback is hard [Mue+18b; Wri+21; Eis+22]. Generating
input from grammars can be done trivially, for instance, by starting at the start symbol and
randomly selecting production rules that match non-terminal symbols in the current string until
only terminal symbols remain. More sophisticated methods measure the coverage of applied
production rules and try to maintain an equal distribution across all possible paths [HZ19].
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In this chapter we explain challenges regarding embedded fuzzing and systematically present
methods that try to overcome these. We contend that the diversity of embedded systems on
multiple levels is the essential reason why fuzzing embedded systems is still an open challenge
at present. Reliable, holistic fuzz testing of embedded systems ought to cover both the �rmware
code and the appropriate environment for that �rmware. Due to diversity the fuzzer needs to
scale up to innumerable variants of hardware and �rmware that are often poorly documented.

We hypothesize that a golden tool and solution for fuzzing embedded systems (embedded

fuzzing for short) does not exist yet. To verify this hypothesis, we formulate the following
research question: What are the main features and limitations of current tools for fuzzing embedded

systems? To address this question, this chapter conducts a systematic review of the state of the
art of approaches to embedded fuzzing. Our review rests on a formal description of fuzzing for
embedded systems and our developed taxonomy used to categorize the reviewed works. We
leverage these to advance a clustering of the reviewed works upon the basis of their underlying
mechanisms.

The treatment highlights that emulation-based approaches work well for academic examples
but may fail on real-world use cases. By contrast, hardware-based approaches with all their
incarnations may yield good results though are less scalable and portable. Hybrid approaches
seem to bear disadvantages from both worlds. By presenting the whole picture of fuzzing for
embedded systems, this chapter demonstrates features as well as limitations of each reviewed
work, ultimately demonstrating what kind of future research is needed and deriving directions
on how to pursue it.

Section 3.1 de�nes the criteria for a piece of research to be included in our review, and
Section 3.2 introduces our extended model for fuzzing embedded systems. Thereafter, we
review related work of hardware-based and emulation-based embedded fuzzing in Section 3.3
and Section 3.4, respectively. Abstraction-based approaches are reviewed in Section 3.5. We
summarize the relevant works for embedded fuzzing in Section 3.6, discuss future trends in
Section 3.7, and related work in Section 3.8. We conclude the chapter in Section 3.9.

3.1 Inclusion Criteria

To systematically �nd relevant work on embedded fuzzing we �rst de�ne our inclusion criteria

(C1 - C4) in this section, as follows:

C1 Research papers that are published in the top �ve venues in the category “Engineering
& Computer Science”, sub-category “Computer Security & Cryptography” according to
Google Scholar [Goo22].
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C2 Research papers that are published during the �ve years between 2017 and 2021.

C3 Research papers that mention “fuzzing” and “�rmware” or, alternatively, “fuzzing” and
“embedded”.

C4 Research papers or tools that we feel convey relevant approaches to embedded fuzzing.

The �rst two criteria are objective, as Scholar o�ers convenient selection and sorting facilities
for research venues. The chosen area of security is the one that we found most relevant to
fuzzing in general, considering fuzzing as a technique for unveiling software vulnerabilities
that an attacker could exploit. To con�rm this, we also tried subcategories “Software Systems”
and “Computing Systems” but none of the corresponding papers survived the criterion C4. The
�ve venues arising through the �rst criterion are:

V1 ACM Symposium on Computer and Communications Security.

V2 IEEE Transactions on Information Forensics and Security.

V3 USENIX Security Symposium.

V4 IEEE Symposium on Security and Privacy.

V5 Network and Distributed System Security Symposium.

Criterion C3 is also objective. Scholar o�ers a convenient search facility for the contents of
published papers. We searched in each of the �ve identi�ed venues with following search string:

fuzzing AND (�rmware OR embedded)

However, many papers identi�ed this way were not relevant to our purposes for a variety of
reasons, ranging from fuzzing being treated only marginally or being mentioned only in the
paper references. Here is where criterion C4 comes into play, indicating that we had to exercise
manual scrutiny to further select the very contributions that would convey relevant approaches
and tools for embedded fuzzing.

Moreover, we decided to appeal to an additional, purposely subjective, inclusion criterion in
order to freely represent our experience through the review. It is apparent that criterion C4
does not deliberately refer to a speci�c time window or venue, hence applying it in isolation
from the previous criteria provides us with the freedom of selection we also wanted to have.
Therefore, our resulting inclusion criteria can be represented as a sentence in propositional
logic:

(C1∧C2∧C3∧C4) ∨ (C4 ∧¬(C1∧C2∧C3)).

Clearly, this sentence is logically equivalent to C4 because our personal judgement had to be
applied to all possible candidates. However, its construction allows us to represent the numbers
of papers for the meaningful combinations of criteria and venue as well as the papers that we
freely decide to consider. Such numbers, in particular for the two main disjuncts in the sentence,
can be found in Table 3.2. The selection process is additionally depicted in Figure 3.1.

It can be understood why our review features a total of 42 papers.
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Papers from the top �ve
“Computer Security &

Cryptography” conferences
(C1) published within
the last �ve years (C2)

4299

Automated �ltering
according to relevant

search string (C3)
219

Manual selection (C4)
24

Union 42
Apply C4 to papers

outside of C1, C2, and C3
18

Figure 3.1: The selection process for �nding relevant works, including the numbers of papers
each step has mined.

3.2 Terminology

In this section, we propose a formal description of embedded fuzzing to mathematically describe
fuzzing as a stochastic process. We therefore describe the distinct tasks an embedded fuzzer
must ful�l in an algorithmic manner. We use the notation introduced by Böhme [Böh18] and
apply it to fuzzing systems.

Let a system  be our target that we fuzz. The sample space for system  is the input space

D. Fuzzing is then a stochastic process (D, , P) of selecting inputs ti from the input space D.
The event space  , or fuzzing campaign, is then the collection of all drawn input, i.e.

De�nition 10: [Fuzzing Campaign]

 = {ti |ti ∈ D}Ni=1
The probability function P dictates the selection of an input ti with probability pi to be part

of the fuzzing campaign  . Note that we leave out the often used but poorly speci�ed terms
blackbox, graybox, or whitebox fuzzing. The degree of smartness is modeled by adjusting
probability function P , i.e. probability pi for each drawn test input. A tool that implements the
sampling function of (D, , P) is called a fuzzer.

The probability function P can depend on observations of the system  . If no observations
in�uence the probability pi for selecting a new input ti (all pi’s are equal), the fuzzing campaign

is a uniform random tester1.
Sampled inputs ti are processed by system  with its con�guration C, as in De�nition 11. The

con�guration C describes the static environment of the system, including hardware properties.
1Even a non-deterministic blackbox fuzzer could have some non-empty observations or some non-uniform

probabilities.
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Table 3.2: Numbers of papers per criterion and venue.

C1∧C2 C1∧C2∧C3 C1∧C2∧C3∧C4 C4 ∧¬(C1∧C2∧C3)

V1 1400 61 2 -

V2 1350 12 1 -

V3 716 79 15 -

V4 518 38 2 -

V5 315 29 4 -Σ 4299 219 24 18

In contrast to existing formal de�nitions, we introduce an observing mechanism that can
observe system  in desired dimensions that are not further speci�ed. The observation of the
system’s behavior when processing input ti is then described by Oti ∈ O and is obtained by

De�nition 11: [Execution Observation]

Oti observe←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C(ti), 1 ≤ i ≤ N
where observe←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← describes the observations of the system during the execution. This construction
allows, for example, to gather code coverage of a system or to observe whether exceptional states
of the system have been reached. It also allows us to monitor emitted physical side-channel
data or perform liveness checks of the system after a processed input. Further observations can
be execution time or the output of a system. The speci�c observation space depends on the
actual device and observer.

For fuzzing, Algorithm 1 is built around De�nition 11, which is called in line 4, where Oti is
the concrete observation of system C on processing input ti .

The algorithm continuously samples inputs ti ∈ D on behalf of the probability function P ,
which are then processed by system S. The observation Oti is inspected for unspeci�ed behavior
in function specified. For example, the speci�cation can contain maximum execution durations
or illegal states of the system. If unspeci�ed behavior is discovered, the (hopefully) responsible
input ti is preserved in T×.

Finally, the probability function P may be adjusted by function adjust, based on the new
observation Oti . For example, mutation-based coverage-guided fuzzers implicitly alter their
probability function, when a new execution path has been discovered by adding the responsible
input to an input corpus. On each iteration, a seed is picked from the input corpus and mutated
randomly to generate a new input – so the seeds directly in�uence the probability space of
newly sampled inputs.
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Algorithm 1: System fuzzing algorithm.
Input: System  with con�guration C, initial seed corpus ℂ, probability function P
Output: Inputs leading to unspeci�ed behavior T×

1 T× = ∅ while ¬( Timeout() ∨ Abort()) do // fuzzing loop

2 Pick ti ∈ D with probability pi // sample input

3 Oti observe←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C(ti)
4 if ¬ specified(Oti ) then
5 T× = {ti} ∪ T× // preserve input

6 end
7 P = adjust(P ,Oti ) // may benefit from Oti
8 end

Di�erential Fuzzing [NNP19; Nol+20; HEC20] refers to fuzzing of functionally equivalent
programs with the goal of revealing di�erences in observations Oti , particularly diverging
outputs of the programs which indicate logical bugs. With an adaption of algorithm 1, systems
can be fuzzed di�erentially, e.g. to test two implementations of the same algorithm for a deviating
behavior.

We model stateful fuzzing by allowing ti to contain multiple inputs, ti = ⟨t1i , t2i , … , tmi ⟩.
Executing such a sequence on system  brings it to a state s, which we collect as part of ’s
observation Oti .
Ensemble Fuzzing, as introduced by Chen et al. [Che+19], is when multiple fuzzers execute

algorithm 1. The main idea is that the di�erent tools synchronize their observations. The same
system S can be run with di�erent con�gurations C and C′. For example, con�guration C′ can
have the input validation, such as a checksum, turned o� to allow a fuzzer to get deeper into
the System under Test (SUT) more quickly. The original con�guration C is then used to validate
inputs from con�guration C′ to reduce false positives.
Fuzzing Harness, or Fuzz Wrapper, is an adapter between a fuzzer and a speci�c target.

Applications that process data directly from a �le or console input channel can most likely be
fuzzed without any adapter in between. For all other cases – a typically lightweight – fuzzing
harness is necessary to route input data from the fuzzer to the target’s interface.

3.3 Hardware-Based Embedded Fuzzing

The high coherency of software and hardware in embedded systems suggests that fuzz testing
is to be performed on the actual device. However, observing of the device, i.e. implementingobserve←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← , already poses a challenge. In this section, we present approaches that aim to run the
target application in its designed hardware environment.

Fan et al. [FPH20] ported the popular fuzzer AFL to ARM-based Internet of Things (IoT)
devices. Within their ARM-AFL project they developed a code instrumentation strategy for
ARM assembly and implemented a lightweight heap memory corruption detector. The whole
fuzzing process runs on the target device itself, leading to a high throughput. In principle, the
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fuzzing process works exactly like fuzzing on a desktop PC. The target process is observed on
crash signals and code coverage in each Oti . ARM-AFL requires Linux as the operating system
and the source code of the target program.

Frida [Rav19] is a dynamic code instrumentation toolkit that can hook into arbitrary user
processes enabling transparent access to the execution. It can also be controlled remotely,
allowing for hooking into Linux, QNX, Android, and iOS applications. In addition, Frida
enables the collection of code coverage data from the hooked process to facilitate fuzzing.
However, the Frida server application must be executed on the target device, which can be
challenging on closed/commercial devices.

Bogdad and Huber [BH19] developed Harzer Roller – a linker-based instrumentation
tool for embedded security testing. They address the problem that embedded �rmware often
needs closed-source libraries in order to communicate with the hardware, which cannot be
instrumented by the compiler. These libraries are usually shipped as an object �le and are
integrated into the �rmware by the linker. To be able to generate call traces, all functions within
the object �le are renamed, and appropriate proxy functions are generated. For detecting stack
over�ows, a stack canary can be generated by the framework before calling the original function.
The authors state that this technique is meant for simple embedded devices with limited debug
capabilities. The instrumentation of an object �le increases its size up to 150%, which usually
makes it impossible to instrument all libraries on memory-limited targets. The framework has
been used for fuzzing an ESP8266 using Boofuzz [Per17] as blackbox fuzzer.

Oh et al. [Oh+15] present a simple Dynamic Binary Instrumentation (DBI) method for em-
bedded systems without any dependency on the operating system. They connect the target
device with a debugger and insert software breakpoints at manually chosen locations. When a
breakpoint is reached, the instrumentation framework is noti�ed, and the breakpoint is removed
for further execution. This method enables observation of manually selected, executed code
parts inOti and could be used for coverage-guided fuzzing of any embedded system that provides
a suitable debugger. According to the measurements of the authors, the overhead of this method
is only around 1%. However, the measurements have only been performed on one device.

Börsig et al. [Bör+20] present a method to instrument code for ESP32 microcontrollers,
whereby the coverage data is returned to the fuzzer’s host via a JTAG connection. For this, the
source code must be available and the GCC coverage instrumentation mechanism is used. The
input data is sent to the target via the original channel, e.g. Wi-Fi. However, the transfer of the
coverage data via the JTAG interface slows down the fuzzing process roughly by a factor of ten.

Tychalas et al. [TBM21] investigate security evaluation of Programmable Logic Controllers
(PLCs). Although, PLC binaries are not regular programs, the authors show that they can
introduce vulnerabilities into systems. To reveal such vulnerabilities, they propose a method to
instrument PLC binaries, and enable coverage-guided fuzzing on them.

Song et al. [Son+19] presented PERISCOPE to examine communication between peripherals
and drivers over Memory-Mapped IO (MMIO) and Direct Memory Access (DMA) for Linux-
based systems. It therefore needs to be compiled into the target’s kernel to hook into MMIO and
DMA regions that drivers use to communicate with the hardware. The extension PERIFUZZ
allows fuzzing on this hardware-OS boundary by injecting fuzzing data into the corresponding
memory regions.
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Delshadtehrani et al. [Del+20] designed the programmable hardware monitor PHMon for
debugging, assisting vulnerability detection, and enforcing security policies. A prototype of
the hardware monitor has been deployed on an Field Programmable Gate Array (FPGA) in
conjunction with a RISC-V processor. It can be used to generate coverage feedback directly from
the execution on the hardware. The authors state that coverage-guided fuzzing with PHMon
and AFL is 16 times faster than fuzzing in a full-system emulator. However, the hardware
monitor module needs to be included directly on the hardware chip, to enable this performance
advantage.

Sperl et al. [SB19] present a side-channel approach of gathering code coverage from embedded
systems by precisely monitoring the power consumption of the target device during execution.
Therefore, an oscilloscope is used to record power traces, which are processed further on a host
PC to recognize the di�erent executed basic blocks. The recognition is realized by machine
learning classi�cation algorithms. With this technique, they are able to approximate the control
�ow graph with correlation coe�cients of up to 0.9. For correct results the setup needs to be
calibrated and trained on the actual device under test.

García et al. [Gar+20] use timing and electromagnetic emanation side channels from embed-
ded devices for analyzing implementations of cryptographic algorithms. They use these side
channels in a specialized feedback-driven fuzzing algorithm to recover cryptographic private
keys.

Chen et al. [Che+18a] present IoTFuzzer, which aims for fuzzing IoT devices that are con-
trolled by mobile phone applications – in this case Android apps only. It makes use of the fact
that accompanying mobile apps of IoT devices are aware of the exact protocol and encryption
for controlling the device. The idea is to reuse the mobile app to send correct messages to the
target device, thereby enabling protocol-aware fuzzing. For this, the mobile app is initially
scanned for functions that consume user input and send it to the IoT device. These functions
are then re-used to send fuzzing messages to the target device. This way, the generation of
syntactically and semantically correct fuzzing messages is ensured. Crashes are detected by
observing the communication or performing liveness checks.

Redini et al. [Red+21] have re�ned this method in their tool DIANE. In contrast to IoTFuzzer,
DIANE tries not to hook into the function that consumes user input �rst, but the last possible
one, before the message is encoded and send to the SUT. Thereby, eventual sanitization of the
user input within the mobile application is bypassed and the possible input space is enlarged.

Snipuzz [Fen+21], also aims to fuzz test IoT devices with accompanying mobile applications.
Unlike IoTFuzzer and DIANE, it additionally analyzes responses from the target device to enable
feedback-driven fuzzing. Appropriate message sequences are gathered by reading the public
API, when it is available, or from analyzing the communication between the accompanying
mobile application and the target device. As an alternative, the accompanying mobile application
can also be disassembled, but this usually requires more e�ort. Although Snipuzz aims to be
lightweight, it requires some manual analysis to gather valid initial seeds and select the right
message sequences for fuzzing.

Aafer et al. [Aaf+21] present a technique to perform feedback-driven fuzzing of Android TV
boxes based on logging outputs. First, static analysis is applied to extract logging statements
within the target’s �rmware. With taint analysis, the collected logging statements are classi�ed
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according to whether they are related to input validation. This labelled collection of logging
statements is then used to train a neural network model, which serves as a classi�er for logging
outputs. During fuzzing, output logs are analyzed by using the model to detect diverging
behavior of the target and to provide feedback to the fuzzer. In addition, they introduce an
external component that detects visual and auditory anomalies by capturing and comparing
video and audio signals before and after each fuzzing step. This method generates a coarse-
grained feedback, compared to branch code coverage, and is designated for rather talkative
devices, that give feedback via logs.

3.4 Emulation-Based Embedded Fuzzing

Emulators o�er transparency and control of the emulated subject and enable a precise observa-
tion Oti of internal operations in manifold dimensions. Furthermore, multiple instances of an
emulator can be created easily, enabling horizontal scaling of the fuzzing process.

However, running �rmware of embedded devices in an emulator is subject to several chal-
lenges, which are carved out well by Wright et al. [Wri+21]. Most notable for fuzzing is the
�delity and the e�ort needed to adapt an emulator to a speci�c target.

Executing the application within an emulator can be realized by either replacing the hardware
layer with a system emulator or by moving only the application into a user-mode emulator.

This section presents the most notable approaches that enable embedded fuzzing in an
emulator.

3.4.1 User Mode Emulation Fuzzing

User applications, built for running in an operating system, can potentially be executed very
easily in an emulator, because of the well-de�ned operating system interfaces at the application
layer. An emulator therefore replaces or interchanges the operating system layer i.e. the kernel.
User mode emulators like QEMU can thereby even emulate applications from (in particular
Linux-based) embedded systems independently of the instruction set architecture. In best
case only system calls from the application must be forwarded to the host system. However,
applications might expect speci�c hardware (drivers) or �le systems to be present and the
emulator needs to treat according requests adequately.

Application

Custom
Kernel

EmulatorFuzzer Harness

Figure 3.3: Scheme of fuzzing applications in a user-mode emulator.
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All investigated fuzzing frameworks in this category use a custom kernel for this purpose,
also depicted in Figure 3.3. The dotted box depict that only the application layer originates from
the actual target �rmware.

Chen et al. [Che+16] developed the Firmadyne framework, which allows for automated
dynamic analysis of Linux-based embedded �rmware images. It extracts the root �le system
from a binary �rmware image and utilizes a custom kernel to run the image within the QEMU
full-system emulator. With this setup, dynamic analysis of the user applications in the �rmware
can be performed, which is demonstrated by providing a set of known exploits that can be
tried on the emulated device. Even though the full-system mode of QEMU is used, Firmadyne
should be considered to enter at the application layer, because it deploys its own customized
kernel and only the user space applications from the �rmware are executed. The custom kernel
partially compensates for missing hardware emulation, for example, by providing an emulated
NVRAM that embedded devices often use.

The Firmadyne framework is enhanced by Kim et al. in FirmAE [Kim+20]. They claim that
the Firmadyne framework could only get 16.28% of their tested set of �rmware images up and
running for dynamic analysis. To solve this problem, they introduced heuristics to con�gure
boot parameters, kernel parameters, network interfaces, and �le systems correctly. With these
modi�cations, they were able to automatically run 79.36% of the aforementioned set of �rmware
images within QEMU.

FirmFuzz [Sri+19] is an automated introspection and analysis framework for IoT �rmware. It
is designed for embedded devices that o�er user interfaces through a webpage and are based on
Linux. The QEMU system emulator is set up with a customized kernel in conjunction with fake
peripheral drivers to compensate for potential missing hardware emulation. A headless browser
is used to communicate with the device automatically through a virtual network interface to
�nd user interfaces. After the static analysis of the �rmware, a generation-based fuzzer is set
up. Seed input data is generated, using the contextual information that is gathered from the
�rmware image. The target is monitored for faults by the modi�ed Linux kernel within the
emulator.

FIRM-AFL [Zhe+19] is based on AFL and Firmadyne. The idea is to speed up fuzzing within
QEMU by letting the target user process run in the user-mode as long as possible. When
necessary, the user process is translated to the full-system emulator of the appropriate device
hardware. As a result, the overhead of a full-system emulation is largely omitted. The authors
state that with this mechanism, the fuzzing process can be sped up by a factor of ten. However,
it is required that the target device runs a POSIX-compatible operating system and the hardware
can be emulated by QEMU.

Transferring embedded applications from Linux-based devices into an emulator by providing a
customized kernel can be successful in some cases, in particular when the target application does
not rely on special hardware peripherals. Nevertheless, there remain many embedded systems
to which this does not apply, and which demand a di�erent approach for emulation-based
fuzzing.
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3.4.2 Full-System Emulation Fuzzing

Once an embedded system can be emulated adequately, code coverage, fault states, and other
meta information of the execution can be obtained easily. The next section is about methods
that enable full-system emulation of embedded devices. For a correct emulation of embedded
�rmware, all hardware peripheral accesses must be treated in the emulator.

Peripheral Emulation

Application

System
So�ware

EmulatorFuzzer Harness

Figure 3.4: Scheme of fuzzing embedded applications in a full-system emulator.

A hardware access manifests itself in read and write operations on the hardware address
space. Additionally, hardware interrupts are a mechanism to let hardware peripherals trigger
code areas from the �rmware. Implementing software equivalents of hardware peripherals and
providing them on their expected locations in the hardware address space is a way to enable
emulation. When all peripherals from a target device can be emulated, an unmodi�ed �rmware
image can be executed and fuzzing can be enabled with little e�ort, as depicted in Figure 3.4.

The QEMU system mode is a popular full-system emulator, which already provides con�gura-
tions for several microcontrollers and peripherals and supports a large variety of architectures.
TriforceAFL [HN16] combines AFL with QEMU and enables emulation-based coverage-guided
fuzzing for targets that can be emulated with QEMU. If the desired target device is not supported,
the implementation and con�guration can be very laborious and requires deep knowledge of
the hardware.

Herdt et al. [Her+20] present a di�erent solution for emulating the whole hardware of an
embedded system. They apply libFuzzer to a SystemC Virtual Prototype (VP). SystemC is
de�ned as IEEE-1666 standard [Gro11] and provides a set of C++ libraries to de�ne virtual
prototypes. Virtual prototypes are models of the entire hardware system and allow an accurate
simulation. They are an established way of testing systems during their development in the
industry. Fuzzing is performed on the virtual hardware by using a fully booted state of the
system, which is preserved by a fork-server mechanism. However, the complete system must
be described in SystemC, which requires deep insights into the SUT and can again require a lot
of manual work.

Clements et al. [Cle+20] present HALucinator to address the problem of emulating peripher-
als by using the HAL as an entry point. First, it locates HAL functions in the �rmware through
binary analysis. Second, it intercepts the execution of the HAL functions and instead mimics
its expected behavior. Handlers for each HAL function must be implemented manually once.
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Beside correct emulation, HALucinator can intercept functions that provide random values
and is able to replace them by deterministic functions, which can render fuzzing more e�cient.

Kim et al. [Kim+19] proposed RVFuzzer for detecting input validation bugs in robotic vehicles.
Robotic vehicles are cyber-physical systems managed in real-time by a microcontroller. It needs
to control actuators, process sensor data, and react to control commands. A careful validation
of incoming control commands is therefore required, especially if they are received from an
unencrypted broadcast medium. RVFuzzer tries to detect (sequences of) control commands that
bring the robotic vehicle into an unstable state. Therefore, the control program is connected
to a physical simulation of the robotic vehicle, and input commands as well as environment
parameters are mutated. Instabilities are detected by observing whether the presumed state in
the control program deviates too much from that in the simulation.

Peripheral Proxying
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Figure 3.5: Scheme of embedded fuzzing with peripheral proxying.

When deep knowledge about the SUT is missing, hardware accesses of the �rmware must
be treated di�erently. An alternative solution is to forward each hardware access to the real
device. Therefore, a proxy application is introduced to route appropriate values and triggered
interrupts between the actual hardware and the emulation, as shown in Figure 3.5.

PROSPECT [KPK14] uses TCP/IP connection to forward hardware accesses, Avatar [Zad+14]
a debugging connection, and SURROGATES [KKM15] routes hardware accesses through a
dedicated FPGA to the actual hardware.

Regarding mobile system drivers, Talebi et al. [Tal+18] developed Charm that enables fuzzing
of device drivers by forwarding hardware peripheral accesses through a USB-based connection.
Since the drivers need to be modi�ed for this method, Charm works only with open source
drivers.

Avatar has a successor, Avatar2 [Mue+18a], which is not only intended for hardware
access rerouting, but more for orchestrating di�erent frameworks to enable dynamic analysis.
Muench et al. [Mue+18b] enable coverage-guided fuzzing on a wide variety of devices by
using PANDA [Dol+15] as the emulator, Avatar2 [Mue+18a] for forwarding non-emulatable
hardware accesses, and Boofuzz [Per17] as the fuzzer. Furthermore, they uncover the issue of
silent memory corruptions that can occur in embedded devices without Memory Management
Units (MMUs) or operating systems that take care of memory accesses. These are memory
corruptions that do not result in a crash of the device upon occurrence and are therefore are
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not easily observable. To detect silent memory corruptions, they present heuristics that can be
applied to an emulator, regardless of the manner of hardware access treatment. When using
these heuristics, all occurring memory corruptions of a device can be discovered.

Peripheral proxying o�ers a solution for emulating an embedded device without excessive
implementation e�ort. However, the forwarding of peripheral accesses to the real hardware
can present a bottleneck, depending on the number of requests to the hardware. Additionally,
manual con�guration and setup of the proxying mechanism is required.

Peripheral Modeling

Application

System
So�ware

Emulator

MMIO

Fuzzer Peripheral
Model

Figure 3.6: Scheme of embedded fuzzing with peripheral modeling.

Where implementing virtual hardware requires too much e�ort and peripheral proxying is
too slow for fuzzing, automated hardware modeling can be a solution. The idea is to learn how
to respond to hardware accesses such that the �rmware continues its execution. The peripheral
model is thereby directly connected to the MMIO address space and can be supported by the
fuzzer, as depicted in Figure 3.6.

Gustafson et al. [Gus+19] present a semi-automated re-hosting framework, called PRE-
TENDER. They solve the modeling of hardware peripherals by means of preliminary obser-
vation and recording of the behavior of the real device with Avatar2. As a result, not only
accesses to the hardware are recorded, but also the timings and orders of interrupts. Next, a
rather complex step of categorizing MMIO registers and initializing State Approximation model

occurs. This should allow for smart responses to hardware accesses of the �rmware. Finally,
human interaction is needed to de�ne the entry point of the fuzzing data. The authors state
that PRETENDER allows for a survivable execution, which can just be su�cient for a dynamic
analysis of the device.

Spensky et al. re�ned this approach with Conware [Spe+21], which can also learn hardware
peripheral behavior by �rst recording interactions between the �rmware and the real hardware
peripheral and subsequently extracting models for each of them. The extracted models can then
be used for a full-system emulation. In contrast to PRETENDER, Conware claims to be more
generic and can even model peripheral behavior that has not been recorded directly.

A hardware-agnostic approach for embedded fuzzing is presented by Feng et al. [FML20].
Their framework P2IM responds to each peripheral access (a read from the MMIO address space)
with input data from the fuzzer. Therefore, the MMIO registers are categorized into Control
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Registers, Status Registers, Data Registers, and Control-Status Registers by observing how the
�rmware accesses the registers. Depending on the category, interaction with the registers is
treated di�erently. Most important is the treatment of Data Registers, where P2IM directly
injects input data from the fuzzer. Thereby, the fuzzer itself models all the peripheral input
generically, omitting the need for �nding and choosing the correct input vector for the target.
The interrupt emulation is implemented quite pragmatically by sequentially �ring one interrupt
per 1000 executed basic blocks. When the initially supplied fuzz input bu�er is exhausted,
the execution is terminated and the code coverage is fed back to the fuzzer. The explorative
nature of the fuzzer is used to improve the hardware peripheral modeling successively. The
framework allows existing fuzzers to be added as a drop-in component, o�ering AFL as default.
However, peripherals that use DMA are not modeled by P2IM, as this would require insights on
the internal design of the target device.

For automatic emulation of DMA input channels in P2IM, Mera et al. [Mer+21] present
the drop-in solution DICE. It observes the behavior of running �rmware in the emulator and
recognizes candidates for DMA input channels heuristically. In principle, it searches for pointers
to the internal RAM that are written to memory-mapped IO-registers. The authors claim that,
during their tests, DICE did not create any false positive categorization and successfully detected
21 out of 22 actively used DMA input channels. With negligible overhead, it enables fuzzing of
DMA input processing �rmwares without further hardware knowledge.

Johnson et al. [Joh+21] present a more targeted peripheral modeling approach with Jetset.
In this case, an analyst manually de�nes a goal address in the �rmware that should be reached,
and Jetset tries to derive the necessary hardware peripheral responses to reach this address
with symbolic execution. For instance, the transition from kernel space to user space can be
used as such a goal address. The explicit goal address allows Jetset to mitigate path explosion
during symbolic execution.

Zhou et al. [Zho+21] enable peripheral modeling in their tool µEmu by mixing symbolic and
concrete execution to calculate appropriate responses to hardware accesses. First, all hardware
peripheral dependent inputs are treated symbolically. To avoid path explosion, symbolically
calculated values are cached and reused during concrete execution. When invalid execution
states are reached, the responsible cached values and the state itself are marked as invalid and
di�erent paths are taken by future symbolic executions. This way, the hardware peripherals are
enhanced iteratively.

Scharnowski et al. [Sch+22a] re�ne the mechanism of P2IM. Instead of putting a memory-
mapped register into a category, their framework Fuzzware handles each individual access to a
memory-mapped register by additionally considering the program counter on each access. On
the �rst occurrence of an access, the emulator is reset to the instruction right before accessing
the memory-mapped register and symbolic execution is used to determine whether and how
the value a�ects the further execution. Accordingly, the individual memory-mapped register
access is assigned just enough random input bits to ensure that all dependent branches can be
reached. This leads to a minimal consumption of input bits from the fuzzer while fuzzing the
whole peripheral interaction. The authors claim that DMA could also be modeled with further
e�ort, but this is considered out of scope of their work.
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3.4.3 Sandbox Emulation Fuzzing
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Figure 3.7: Scheme of embedded fuzzing through sandbox emulation.

In cases where a full-system emulation is not feasible, lightweight sandbox emulation can be
a solution. Thereby, the binary code is executed from a manually chosen point with a manually
created context. The idea is to fuzz functions that do not communicate with peripherals at all,
meaning that the hardware peripherals do not need to be emulated. This technique is almost
hardware-independent since only a simulator for the respective instruction set is required.
Fuzzing a function from a binary �rmware �le within a sandbox can be realized as shown in
Figure 3.7.

Miasm is a reverse engineering tool to analyze, modify, and partially emulate binary programs.
It o�ers features such as assembling and disassembling for various architectures, emulation
with Just-in-Time (JIT) and symbolic execution. In combination with Python-AFL, Miasm can
be used to perform fuzzing [Gue17]. Therefore, a sandbox is created by Miasm, input data needs
to be mapped to appropriate memory addresses, and registers need to be initialized correctly.
This technique is mainly interesting for penetration testers, who reverse engineer binaries and
want to perform fuzzing of interesting functions in this way. If the source code is available, it is
easier to perform fuzzing of hardware-independent functions by compiling them into a user
application and using a general purpose fuzzer.

The Unicorn CPU Simulator [ND15] is used by Nathan [Vos17] similarly.
Maier et al. present BaseSAFE in [MSP20], where they also used the Unicorn CPU Simulator

to fuzz di�erent layers of a smartphone baseband chip on manually selected target functions
and manually created memory contexts. The downside of these sandbox emulation fuzzing
approaches is the constrained, manual selection of the target function and manual creation of
the execution context.

A semi-automated approach of supplying an execution context to the target code is presented
by Harrison et al. [Har+20] with their tool PartEMU. They present required steps that allow
experts to set up and con�gure an emulator to enable dynamic analysis of trust zones from
embedded systems. Based on a set of criteria, hardware and software components are either
emulated or reused, and they explain how speci�c emulation stubs can be implemented. Never-
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theless, developing such an emulation-based execution context can involve huge manual e�ort
and requires expert knowledge.

Ruge et al. taking the manual sandboxing to the extreme with their highly specialized
framework for fuzzing wireless modem �rmware in an emulated environment Franken-
stein [Rug+20]. They run the �rmware of a Broadcom Bluetooth chip within QEMU user
mode. Through sophisticated reverse engineering, about 100 locations in the code have been
determined, where the execution needs to be redirected and substituted manually. This hooking
is required to ensure correct emulation of the �rmware. With this setup, they were able to fuzz
the Bluetooth modems of popular mobile phones from Apple and Samsung and unveiled several
security problems. However, the setup is highly customized and requires a lot of manual e�ort
to adapt it to other embedded �rmware.

An automated sandbox-based fuzzing tool for IoT Firmware is presented by Gui et al. with
FIRMCORN [Gui+20]. First, the �rmware image is disassembled, and detected functions are
rated based on the memory operations they contain and the use of predetermined sensitive

functions, such as read, strcpy, and execve. For high rated functions, a context dump
(memory and register values) at the starting point of the function is gathered from the actual
device. This allows speci�c fuzzing of potential vulnerable functions within the CPU emulator
Unicorn. An automated mechanism detects crashes of the emulator, which result from missing
emulated hardware, and skips these crashing functions during further virtual execution. They
state that the tool is developed for Linux-based devices only, but it should be possible to extend
it to further platforms.

3.5 Abstraction-Based Execution Environment

Symbolic execution is known for several decades [Kin76] and seems not to be located within the
domain of fuzzing at �rst glance. It analyzes the target program independently of its execution
environment. The core idea is to treat all input vectors of a program symbolically (similarly
to a variable in a mathematical formula) and derive input constraints for all possible program
paths. From these constraints, concrete inputs can be extracted that are known to trigger all
possible program paths – which is exactly the goal of fuzzing.

However, for each conditional branch in a program, each possible path must be considered in
di�erent states. This can lead to the state explosion problem and usually prevents the use of
pure symbolic execution in real-life applications.

3.5.1 Symbolic Execution of Embedded Firmware

Symbolic execution does not execute the program code directly, but rather interprets it. It is
therefore a good candidate for tackling the challenge of lacking hardware peripheral emulation.
All values from hardware peripherals can therefore be symbolized, and possible program paths
can be calculated. However, the more hardware values are symbolized, the more constraints
and paths are present, which can easily grow exponentially.

Davidson et al. [Dav+13] implemented FIE, which allows symbolic execution of �rmware
for MSP430 microcontrollers by using a modi�ed version of KLEE [C+08]. They assume that
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software of embedded systems is simple enough to allow symbolic execution. Therefore, the
target �rmware is compiled into a representation that can be symbolically executed with KLEE.
FIE includes two notable optimizations: state pruning and memory smudging. State pruning
detects whether the current state has already been reached before and prunes it, instead of adding
it to the set of active states. The memory smudging function allows avoiding an intractable
state, e.g. an in�nite loop with an increment inside. In this case, the state pruning cannot work
because the state is not equivalent due to the presence of the increased variable. The memory
smudging sets a threshold for consecutive states that di�er only in one memory location.

Corteggiani et al. [CCF18] present Inception, a symbolic execution engine for embedded
�rmwares, also based on the KLEE engine. They added a mechanism to symbolically execute
assembly code, which is commonly found in embedded �rmware code. Additionally, they enable
hardware access forwarding for retrieving concrete values from the actual hardware to reduce
the symbolical input space.

3.5.2 Concolic Execution of Embedded Firmware

Concolic execution refers to the combination of concrete and symbolic execution. In this
case, traces are used to analyze reached conditions during a concrete execution, and related
constraints are derived. These constraints can be used to generate new input data that exercises
a di�erent path of the code. This idea is also termed as hybrid or concolic fuzzing.

Several general-purpose hybrid fuzzers, such as QSYM [Yun+18], SymCC [PF20] are available,
as well as frameworks that focus on concolic execution for embedded �rmwares. Herdt et
al. [Her+19] present an approach to integrate a concolic testing engine based on virtual SystemC
prototypes for the RISC-V architecture. This is once again subject to all the requirements of
virtual prototypes.

Ai et al. [ADG20] propose a concolic execution approach for embedded devices that supports
various architectures. They perform the concrete execution on the physical device and move
the symbolic execution to the host via a debugging connection.

Although concolic execution is a promising method to test code, it faces similar challenges as
other embedded fuzzers, because it relies on concrete program traces.

3.6 Reviewing Embedded Fuzzing Approaches

Before we classify the presented embedded fuzzing approaches, we develop our taxonomy
criteria. Devising meaningful categories for the existing approaches in order to e�ectively
group them requires care and consideration of existing attempts. Notably, general principles for
evaluating and benchmarking traditional fuzzers exist, as suggested by Klees et al. [Kle+18].
Accordingly, fuzzers should be tested against a large set of benchmark programs, such as
GCG [Def14] or LAVA-M [Dol+16] multiple times for at least 24 hours, with the performance
plotted over time. The performance should ideally be measured in the number of detected bugs.
The reached code coverage can be used as a secondary performance measure. Additionally,
di�erent sets of seeds should be considered and documented. Arguably, a transfer of these
principles to embedded fuzzers would be useful. However, current research on embedded
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fuzzing still faces more fundamental issues of portability and scalability, namely about enabling
a fuzzing approach over the widest possible variety of embedded systems of any complexity.

Wright et al. [Wri+21] propose to compare di�erent re-hosting frameworks particularly with
regard to the amount of user interaction needed for the setup, termed as application e�ort.
The application e�ort refers to the ease of adapting a framework to new targets. Preferably,
a framework can be adapted with little knowledge of the target and low con�guration e�ort.
It could be measured in the estimation of time required for the setup, but this would heavily
depend on the developer, thus making the results highly subjective and inappropriate for an
objective comparison.

3.6.1 Taxonomy Criteria

In light of the existing classi�cation attempts, we feel that the relatively young �eld of embedded
fuzzing may currently be partitioned most bene�cially on the basis of how the execution
environment is served to the SUT. Therefore, we build three essential categories: hardware-
based approaches for those that use the very hardware of the SUT to operate, emulation-based
approaches for those that re-host the �rmware of the SUT into an emulator, abstraction-based
approaches for those that abstract away the details of the hardware. We further classify each
category according to �ner observations.

Hardware-based approaches let the target software run in its designated environment. There-
fore, we decide to further divide these approaches upon the basis of how they gather feedback
from the hardware about the execution of the software. Thus, the hardware category features
the three sub-categories Instrumentation, Side-Channel, and Message Interface Reusing.

A de�ning feature for emulation-based approaches is the way they treat hardware peripheral
accesses. Therefore, we coherently decide the �ve sub-categories User Mode Emulation, Full-
System Emulation, Peripheral Proxying, Peripheral Modeling, and Sandboxing.

The last category features abstraction-based approaches, hence the two sub-categories for
enabling the abstraction process are Symbolic Execution and Concolic Execution. It should
be noted that concolic approaches usually need traces from the execution environment and
therefore a concrete execution environment but (manually) selected input vectors can be made
symbolic. Therefore, we decide to keep these with abstraction-based approaches.

These categories, also depicted in Figure 3.8, serve as a �rst criterion for our taxonomy criteria

and help us to distinguish the general mechanism of each approach. Our de�ned taxonomy,
based on the approaches’ execution environments, is again re�ected in the rows of Table 3.9.
Second, the columns in Table 3.9 show what we feel are the relevant elements of comparison for
each work.

• Source Code Agnostic - This criterion indicates whether the fuzzer requires the source
code of the SUT to run, which is a major factor for many application scenarios.

• Available - This criterion indicates whether any implemented tool of the proposed ap-
proach is readily available and functioning, irrespective of whether it is open or closed
source.
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Embedded Fuzzing

Hardware-based

Instrumentation

Side-Channel

Message Interface Reusing

Emulation-based

User Mode Emulation

Full-System Emulation

Peripheral Proxying

Peripheral Modeling

Sandboxing

Abstraction-based
Symbolic Execution

Concolic Execution

Figure 3.8: Embedded Fuzzing Taxonomy.

• Key Contributions & Limitations - This column presents the key features as well as the
limitations of each approach.

3.6.2 Overview of Embedded Fuzzing Approaches

A summary of the relevant embedded fuzzing approaches arranged according the criteria from
Figure 3.8 is given in Table 3.9.
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Table 3.9: Reviewed embedded fuzzing works.

Environment Tool So
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Key Contributions Limitations

H
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ar
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Instrumen-
tation

ARM-AFL [FPH20] 7 7 Static instrumentation for ARM code On-target fuzzing only

Frida [Rav19] 3 3 Dynamic instrumentation for various OSes Application on the target required

Harzer Roller [BH19] 3 7 Static instrumentation for object �les Function traces only

Os-less DBI [Oh+15] 7 7 Dynamic instrumentation with breakpoints Manual selection of breakpoint locations

ESP32 Fuzzing [Bör+20] 7 3 Static instrumentation for ESP32 applications Slow coverage data transmission

ICSFuzz [TBM21] 3 3 Static instrumentation for PLC binaries Dedicated to PLCs

PERIFUZZ [Son+19] 7 3 Fuzzing at HW-OS boundary, driver monitor-
ing

Must be compiled into the kernel

PHMon [Del+20] 3 3 Hardware module for gathering coverage data Speci�c hardware required

Side-
Channel

Side-Channel Aware
Fuzzing [SB19]

3 7 Code-coverage derived from power analysis Calibration needed

Certi�ed Side
Channels [Gar+20]

3 7 EM and timing side-channels For crypto libraries only

Message
Interface
Reusing

IoTFuzzer [Che+18a] 3 3 Reuse of accompanying mobile applications Not feedback driven, Android only

DIANE [Red+21] 3 3 Enhanced IoTFuzzer mechanism Not feedback driven, Android only

Snipuzz [Fen+21] 3 3 Communication analysis for feedback For unencrypted channels only
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Android TV
Fuzzing [Aaf+21]

3 7 Using log output for feedback Detailed logs needed, Android only

User Mode
Emulation

Firmadyne [Che+16] 3 3 Custom kernel for emulation Linux-based applications only

FirmAE [Kim+20] 3 3 Enhanced Firmadyne mechanism Linux-based applications only
Em

ul
at

io
n-

ba
se

d

FirmFuzz [Sri+19] 3 3 Fuzzing of IoT con�guration webpages Linux-based applications only

Firm-AFL [Zhe+19] 3 3 Speedup by hybrid user and system emulation Linux-based applications only

Full-System
Emulation

TriforceAFL [HN16] 3 3 Coverage-guided fuzzing with QEMU Target must be emulatable by QEMU

SystemC VP
Fuzzing [Her+20]

3 7 Coverage-guided fuzzing on VP Virtual prototype required

HALucinator [Cle+20] 3 3 Re-hosting at HAL Stubs for HALs required

RVFuzzer [Kim+19] 3 7 Fuzzing controller for robotic vehicles Rich physical simulation required

Peripheral
Proxying

PROSPECT [KPK14] 3 7 Peripherals proxying through TCP/IP Requires pthreads and TCP/IP support on
target

SURROGATES [KKM15] 3 7 Proxying through a custom FPGA JTAG connection required

Charm [Tal+18] 7 3 Proxying through USB Recompilation needed

Avatar2 [Mue+18a] 3 3 Flexible, multipurpose orchestration Debug access to device required

Peripheral
Modeling

PRETENDER [Gus+19] 3 3 Peripheral modeling by recording and learning
of peripheral behavior

Unseen peripheral behavior not modeled

Conware [Spe+21] 3 3 Additional modeling of unseen peripheral be-
havior

Program for recording must be executed
on the target

P2IM [FML20] 3 3 Peripheral modeling by automated classi�ca-
tion of requests

Missing DMA support
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DICE [Mer+21] 3 3 Modeling of DMA-based peripherals DMA bu�er size unknown in advance

Jetset [Joh+21] 3 3 Peripheral modeling by symbolic execution
and manual guidance

Manual guidance required

µEmu [Zho+21] 3 3 Peripheral modeling by concolic execution Caching can cause false hardware models

Fuzzware [Sch+22a] 3 3 Peripheral modeling by detailed classi�cation Not for complex systems

Sandboxing

MIASM [Gue17] 3 3 Multi-purpose reverse engineering tool Reverse engineering required

BaseSAFE [MSP20] 3 3 Coverage-guided fuzzing of baseband chips Manually assembled environment

PartEMU [Har+20] 3 7 Coverage-guided fuzzing of Trust Zones Manually assembled environment

Frankenstein [Rug+20] 3 3 Coverage-guided fuzzing of wireless
�rmwares

Customized for one speci�c device

FIRMCORN [Gui+20] 3 3 Automated sandboxing of functions Linux-based applications only

A
bs

tra
ct
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n-
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d

Symbolic
Execution

FIE [Dav+13] 7 3 Symbolic execution for MSP430 microcon-
trollers

Complex programs lead to state explo-
sion

Inception [CCF18] 7 3 Symbolic execution, even for handwritten as-
sembly and binary libraries

Complex programs lead to state explo-
sion

Concolic
Execution

Concolic Testing on
VP [Her+19]

3 3 Concolic testing of RISC-V virtual prototypes Target must be prototyped

Concolic Execution on
Proxy [ADG20]

3 7 Symbolic execution on host combined with
concrete execution on target

For Unix-like systems only
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Overall, the wide variety of approaches in Table 3.9 demonstrates the diversity in the steadily
growing research �eld of embedded fuzzing.

3.7 Discussion and Future Directions

Desktop user programs communicate via well-de�ned syscalls and do run in their particular
virtual address space. Therefore, fuzzing such programs can bene�t from di�erent �avors of
feedback and sanitizing options. Similarly, well-de�ned target constraints and boundaries are
present for hardware fuzzing. Hardware fuzzing approaches can leverage hardware designs
represented in Hardware Description Languages (HDLs) [Tri+22; Lae+18]. In between, em-
bedded fuzzing faces a much less precisely speci�ed environment. Generalized statements
about interfaces, the environment, and other circumstances can not be made for embedded
applications. In fact, an embedded program is an accumulation of machine code instructions
that only function properly together with their intended environment and made assumptions.

This is why despite the growing attention and proliferation of embedded systems, the research
�eld of embedded fuzzing still lacks generic solutions. Even comparing di�erent tools remains
a big challenge. It would seem that most tools are evaluated on a small set of targets, chosen by
the authors themselves, whereas it would be useful to devise public, independent benchmarks.

The e�ectiveness of embedded fuzzers can only be evaluated when testing can be performed
on a large collection of test subjects. A benchmarking suite for embedded fuzzers may consist
of open-source embedded �rmwares in conjunction with appropriate hardware peripheral
emulation solutions. In this way, di�erent fuzzing strategies can be evaluated on embedded
systems instead of relying on the ones that are developed for user applications.

Furthermore, the di�erent characteristics of embedded systems in contrast to user applications
should be considered. Traditional fuzzing originates from quickly terminating data processing
applications. Embedded systems, on the other hand, are continuously running systems that
usually do not terminate after processing a single input. If the internal state of a system changes
during sequences of inputs, it is called stateful. Recently, several fuzzers for stateful software
have been proposed [Yu+19; PBR20; Nat22a; Sch+22c]. In particular, Pham et al. [PBR20] showed
that stateful programs, like network servers, have to be fuzzed with awareness of their state to be
e�cient. Since embedded systems typically are stateful, stateful embedded fuzzing approaches
are needed as well.

Most reviewed papers are emulation-based and emulators currently seem to be the preferred
way of enabling embedded fuzzing. Beside their mentioned advantages, there is always the
disadvantage of a lower �delity, which makes it necessary to validate all found bugs on the
actual hardware or at least an accurate model of it. This process may be automated by putting
the actual device in the loop and testing input candidates directly.

The other disadvantage of emulators is the setup and con�guration e�ort required to imitate
the whole execution environment. However, with the actual hardware, there is an environment
already present in which the embedded software runs as expected. Therefore, we see more
research potential in performing fuzzing on the actual hardware and extracting feedback
from existing functionalities e.g. debug interfaces. Common embedded debugging tools from
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Lauterbach [Lau22] or Segger [Seg22] provide real-time tracing mechanisms for a wide variety
of microcontrollers, which may be used for fuzzing feedback.

Another albeit rarely handled aspect is that an embedded system has multiple interfaces that
can be highly entangled. Further research is needed to consider the entire system, and not only
individual functions, interfaces, or processes while fuzzing. Such a fuzzer could fuzz on multiple
interfaces simultaneously, while observing the system. Multiple fuzzers or harnesses would
need to synchronize their observations, similarly to ensemble fuzzing.

Recently, plenty of automated peripheral modeling approaches, such as P2IM [FML20] and
Fuzzware [Sch+22b], have been proposed. For now, they seem to target rather simple embedded
systems. Since they need to model all hardware peripherals that are accessed by the �rmware,
the approaches do not scale well for more complex systems. Nevertheless, automated peripheral
modeling remains one of the most promising methods to enable generic embedded fuzzing.
Further research in this area could also enable emulation-based fuzzing with low application
e�ort for more complex embedded systems. Another option could be to design generic and
reusable HALs to ease re-hosting and enable e�cient fuzz testing of hardware-related code.
Moreover, as highlighted by Böhme et al. [BCR21] for traditional fuzzing, we also advocate a
larger scope for embedded fuzzers, which should identify a range of vulnerabilities, such as
information and timing leakages, and not just faults.

Future research and tools should aim to unite existing techniques in an embedded ensemble
fuzzing framework in order to eliminate their current, individual disadvantages. In addition,
such a framework should be cross-architecture, state-aware, and compatible with emulated and
real devices. Embedded Fuzzing should consider the whole system in all its details.

3.8 Related Work

Detailed summaries of the challenges of fuzzing embedded systems [Mue+18b] and security
analysis of embedded systems [Fas+21; Wri+21] have been published. However, these reviews
do concentrate almost solely on emulation-based approaches. We agree that emulation-based
approaches are on the rise, but to get the full picture of embedded fuzzing, hardware-based
approaches in all their facets need to be considered, too. We aim to draw such a complete
picture and particularly want to highlight the diversity and creativity of the reviewed methods
in this chapter.

3.9 Conclusion

This chapter reviewed the current state of the art of embedded fuzzing. To structure the �eld, we
proposed a formal de�nition of embedded fuzzing and suggested a taxonomy for it. We carved
out the additional challenges of embedded fuzzing compared to the research �eld of traditional
fuzzing. Furthermore, we showed that no easily applicable solution for embedded fuzzing exists.
As traditional fuzzing has already found numerous vulnerabilities in non-embedded software,
e�cient and easily applicable embedded fuzzing can increase the security and integrity of the
ubiquitous embedded systems people interact with every day.
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4 GDBFuzz

In this chapter, we present a new hardware-based method for fuzzing embedded systems as they
are, without requiring virtualization, yet using a uni�ed approach applicable to a vast variety
of embedded systems. As discussed in Section 2.4, most microcontrollers contain debug units,

through which a debug probe can set breakpoints, execute the program up to a breakpoint, and
inspect the current program state, including the program counter and memory values. Hardware
breakpoints are dedicated registers in the debug unit that halt the execution when the program
counter equals the register value and can be set even when the code is read only; they neither
alter nor slow down program code.

The key idea of our method is that by systematically setting breakpoints in the code based
on the Control Flow Graph (CFG) of the program and by checking which inputs trigger which

breakpoints, we can retrieve coverage information, and thus provide the necessary guidance
for a feedback-driven fuzzing strategy. As the number of hardware breakpoints within a
microcontroller is limited, we set them to a subset of the program’s code blocks only, and relocate
them periodically. Since many debug probes are addressable via the GNU Debugger (GDB),
we have implemented the above strategy in a fuzzer named GDBFuzz, which can leverage
GDB interfaces in any system to systematically generate test inputs guided by coverage. The
intended setup is depicted in Figure 4.1.

GDBFuzz

GDB

Application/
System

Debug Probe

input

control

execution info

Figure 4.1: How GDBFuzz works. GDBFuzz leverages a Debug Probe that is connected to an
Embedded System to control execution—notably to set (hardware) breakpoints and
detect which inputs trigger which code blocks, and thus obtain coverage without
having to instrument or virtualize �rmware.

As it can be applied to any program and system that GDB can debug, GDBFuzz is one of
the least demanding and most versatile coverage-guided fuzzers. Figure 4.2 summarizes the
GDBFuzz operation. Based on the control �ow graph of the target program, GDBFuzz sets
the available hardware breakpoints to random nodes from the control �ow graph that are yet
unreached. GDBFuzz then repeatedly generates input, sends it to the target device, and checks
if it triggers a breakpoint indicating new code coverage, or if it crashes the target system.
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Extract CFG Set Breakpoints Generate Input
+ Send Input

Wait for
Controller Reply

Save Input
+ Save Coverage

Log Crash
+ Restart Target

if breakpoint is hit

if target crashes

if no breakpoint is hit

1 2 3 4 5 6

Figure 4.2: GDBFuzz in operation. After extracting the control �ow graph (1), GDBFuzz sets
breakpoints on unreached basic blocks (2). Next, it generates a new test input, sends
it to the target (3), and then waits for the execution to stop (4). If execution hits
a breakpoint (= new coverage), GDBFuzz saves input and coverage (5), sets new
breakpoints (2) and keeps on fuzzing. If no breakpoint is hit (= no new coverage),
GDBFuzz tries a new input (3). If the program has crashed (6), GDBFuzz logs it and
restarts the target.

In our experiments, GDBFuzz shows to be easily applicable on a number of microcontroller
boards and even regular user applications. It achieves a much higher coverage than blackbox
fuzzing and solutions based on virtualization, and also detected a number of known and new bugs.
In summary, to the best of our knowledge, GDBFuzz is the �rst hardware-based, architecture-

agnostic, source-code independent, non-invasive, and easy applicable method for coverage-guided

fuzzing of embedded systems, and we are happy to recommend it to anyone who wants to
systematically test the robustness of embedded systems.

The remainder of this chapter is organized as follows. Section 4.1 explains control �ow related
mechanisms and presents the overall design of GDBFuzz; Section 4.2 describes implementation
details. We evaluate our work in Section 4.3; Sections 4.4 to 4.6 conclude and discuss the work
including related and future work.

4.1 Design

Since we want to leverage hardware breakpoints for fuzzing feedback, we �rst need to determine
at which memory addresses the target program resides. Trivially, all addresses within the
executable memory regions of the device could be considered. However, only a fraction of
memory addresses contain instructions that are actually executed, rendering a trivial solution
ine�ective for fuzzing feedback. Similar to state-of-the-art coverage-guided fuzzers, we therefore
work on the basic block level of the target program. Hence, we extract the control �ow graph from
the target program, which represents basic blocks as nodes and describes possible transitions
between them as edges. As we show in the remainder of this section, this enables us to derive
dominator relations of control �ow graphs, which help us to reduce the number of breakpoint
interruptions during fuzzing and avoid unnecessary overhead.

As shown in Figure 4.2, GDBFuzz leverages the control �ow graph of the target program to
set available hardware breakpoints to randomly chosen basic blocks that are yet unreached. It
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then repeatedly generates test cases by applying mutations to randomly drawn inputs from
the input corpus, and sends the test cases to the target input interface. If the debug probe
signals a breakpoint hit, GDBFuzz marks the corresponding node and its dominating nodes
as reached, and adds the responsible test case to the corpus. Test cases that cause crashes or
timeouts are preserved separately. When no breakpoint interrupt occurred after a prede�ned
amount of exercised test cases, GDBFuzz relocates the hardware breakpoints to newly chosen
nodes. After each relocation, GDBFuzz �rst tests all inputs from the corpus again to check if
they already reach the newly targeted basic blocks. Like coverage-guided fuzzing with full code
instrumentation, the evolutionary algorithm causes the input corpus to grow over time with
inputs that reach di�erent code areas.

The remainder of this section describes how we treat interprocedural control �ow graphs
and how we extract them from the target program, how we �nd a fuzzing entry point in the
target application, and how we detect and handle bugs during execution.

4.1.1 Interprocedural Control Flow Graphs and Dominator Relations

GDBFuzz requires an interprocedural view on control �ow of programs. Interprocedural control
�ow graphs describe additional call and return connections on top of all local control �ow
graphs of a program. The resulting graphs describe possible transitions of basic blocks within
whole programs instead of only functions. However, constructing interprocedural control �ow
graphs is by far not trivial.

Simply connecting all local control �ow graphs by adding all call and return instructions as
edges would lead to control �ow ambiguities. Considering the example program in Listing 2.2
and its local control �ow graphs in Figure 2.4, for instance, and adding the two call and the two
implicit return edges, would erroneously re�ect control �ow over the blocks 2-7-5 and 4-7-3.

More general, when a function has multiple callers a trivial construction of an interprocedural
control �ow graph is impossible, because it results in ambiguous paths from every calling
function to every return point. Context-sensitive control �ow algorithms �x that by ensuring
that return edges only point back to the actual call site of the current function while traversing
the control �ow graph, for instance when deriving interprocedural dominator graphs [Agr99;
DVD07]. However, published context-sensitive algorithms are complex and implementations
are rarely available. Therefore, this thesis uses the following simple approach to express
interprocedural control �ow relations.

First, we construct a semi-interprocedural control �ow graph, where we connect the local
control �ow graphs by inserting all calls as edges from the call site to the callee. We omit
return edges when building the semi-interprocedural control �ow graph to avoid introducing
incorrect �ow. This corresponds to the Simple Block Model from the reverse engineering tool
Ghidra [Nat19]. Additionally, we compile a corresponding reversed semi-interprocedural control
�ow graph by reversing all local control �ow graphs, skip call edges, and only add the reversed
return edges. Again, we avoid inserting ambiguities by removing context-sensitive call edges.
Figures 4.3 and 4.4 show the two control �ow graphs extracted from the program in Listing 2.2.

Since the two semi-interprocedural control �ow graphs re�ect only valid control �ow, we
can derive dominator relations with the algorithms for local control �ow graphs, as presented
in Section 2.6. The corresponding semi-interprocedural dominator trees for the program in

45



4 GDBFuzz

1: int ret;

if ( x & 1)
main:

2: ret = funcA(x);

3: ret--;

4: ret = funcA(-x);

5: ret++;

6: return ret;

7: return x + 5;funcA:

Figure 4.3: Semi-interprocedural control
�ow graph.

1: int ret;

if ( x & 1)
main:

2: ret = funcA(x);

3: ret--;

4: ret = funcA(-x);

5: ret++;

6: return ret;

7: return x + 5;funcA:

Figure 4.4: Reversed semi-interprocedural
control �ow graph.

Listing 2.2 are shown in Figures 4.5 and 4.6. The postdominator tree is calculated from the
reversed semi-interprocedural control �ow graph.

1: int ret;

if ( x & 1)
main:

2: ret = funcA(x);

3: ret--;

4: ret = funcA(-x);

5: ret++;

6: return ret;

7: return x + 5;funcA:

Figure 4.5: Predominator tree of the semi-interprocedural control �ow graph.

1: int ret;

if ( x & 1)
main:

2: ret = funcA(x);

3: ret--;

4: ret = funcA(-x);

5: ret++;

6: return ret;

7: return x + 5;funcA:

Figure 4.6: Postdominator tree of the semi-interprocedural control �ow graph.

For convenience, we can merge the pre- and postdominator graph: {(u, v)|u pre←←←←←←←←←←←←←←←←←→ v ∨ u post←←←←←←←←←←←←←←←←←←←←←←→ v},
requiring us to only handle a single dominator graph for the whole target program. The resulting
graph is not a tree anymore, but still Theorem 1 remains valid on it. Figure 4.7 shows the merged
semi-interprocedural dominator graph.

Compared to context-sensitive interprocedural dominator graphs, our semi-interprocedural
approach can not re�ect all interprocedural relations. For instance, when a function calls two
functions that call the same subroutine, our approach appends the subroutine’s subtree to the
parent function, although it is clear that both called functions will be executed. However, our
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1: int ret;

if ( x & 1)
main:

2: ret = funcA(x);

3: ret--;

4: ret = funcA(-x);

5: ret++;

6: return ret;

7: return x + 5;funcA:

Figure 4.7: The merged pre- and postdominator trees.

approach might only miss a single of such an interprocedural dominator relation per function
call in the worst case, but therefore exclusively consists of simple and comprehensive algorithms
and data structures.

4.1.2 Extracting Control Flow Graphs

Control �ow graphs can be obtained trivially during program compilation, because the compiler
is aware of the entire control �ow. However, as source code may not be available for all software
components on an embedded system and to broaden its applicability, GDBFuzz is designed to
work on binaries. Ghidra [Nat19] is an open source reverse engineering tool which supports
most common processor architectures, is scriptable, and is therefore well suited for our needs.
Like all binary disassembling approaches, Ghidra cannot guarantee to detect all control �ows,
especially when it comes to indirect branches or aggressive compiler optimizations [Pan+21].
Therefore, we re�ne and update the control �ow graph iteratively during fuzzing, which we
describe in Section 4.2.

4.1.3 Finding Entry Points

We focus fuzzing on a region in the �rmware where input processing of our targeted input
interface occurs. Therefore, the extracted control �ow graph should start at the beginning of the
input processing, termed as entry point. Choosing the entry point is a task for the test engineer,
who thus requires knowledge about the target. However, the following semi-automated way of
�nding a suitable entry point has turned out to be useful in our analysis.

1. Send a test input to the target device and interrupt the execution immediately.

2. Use gdb find to rediscover the test input in the memory of the device.

3. Set a data watchpoint to the �rst address of the rediscovered input data.

4. Send the test input again.
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5. All program counter addresses on now occurring interrupts are candidates for an entry
point.

These steps are conducted once, as part of the GDBFuzz setup.
GDBFuzz can also work with symbol names as entry point if they are included in the binary, to

avoid the need of searching the entry point after each re-compilation. This is particularly useful
in continuous integration setups, such that new software versions can be fuzzed seamlessly.

4.1.4 Detecting Bugs

Bug oracles detect whether a bug is triggered during execution. Since fuzzing origins from
testing user applications, a common bug oracle is to observe the target process on raised error
signals, e.g. segmentation faults. To �nd bugs that do not trigger faults directly, sanitizers and
assertions are used. These are usually deployed at compile time, but there are methods to inject
sanitizers directly into binaries [Din+20]. However, more sophisticated bug oracles are still an
open research problem [BCR21] and out of scope of this work.

GDBFuzz relies on the triggered bugs being observable, meaning that faults or other misbe-
havior must be triggered by the bug. Silent corruptions, as demonstrated in [Mue+18b], can
therefore not be discovered, unless additional sanitizers are used during compilation. Faults can
be detected, for instance, by occurring connection errors like timeouts or error response codes.
Additionally, breakpoints can be set on locations of fault handlers via the debugging interface,
which also catches fault signals from deployed sanitizers.

Since the location of the fault handlers in the code commonly does not change during runtime,
software breakpoints can be used to detect their execution such that all hardware breakpoints
are available for the coverage feedback mechanism. Software breakpoints are well suited in this
case, since they are not repositioned during fuzzing. If software breakpoints are not available
for the SUT, a subset of available hardware breakpoints can be used, too, with the disadvantage
of decreased fuzzing performance1.

Obtaining the locations of fault handlers is done in a manual to semi-automated way, be-
cause embedded systems vary dramatically in features, such as processors, operating systems,
frameworks, libraries, and sanitizers. In our experience, the default fault handlers e.g. from
FreeRTOS [Fre22], Arduino [Ard22a], and STM32CubeMX [STM22] typically end in an in�nite
loop. Ghidra can identify functions with in�nite loops [Nat22b], which can then be considered
as potential fault handlers. For all our test applications, it was su�cient to rely on timeouts
that are provoked by the in�nite loops in the fault handlers, not requiring any further setup
work for us.

4.1.5 Handling Bugs

Whenever GDBFuzz detects a crash or a timeout, it

1. deduplicates the bug to identify whether the bug is unique, i.e. whether it is the �rst time
that this bug was found;

1We evaluate the in�uence of the number of available breakpoints on performance in Section 4.3.
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2. preserves the input triggering this bug if the bug is unique;

3. restarts the target system; and

4. continues fuzzing.

The same bug may be triggered multiple times during fuzzing. Analyzing each bug requires
substantial e�orts, which is why deduplication is required. The goal is to provide the test
engineer a minimal set of inputs triggering only unique bugs. We use hashes of the call
stack [Man+19] to uniquely identify and deduplicate bugs.

When a bug is triggered, the target system may be in a non-recoverable state. Similarly, if a
timeout occurs, the target system may hang forever. For this reason, we reset the target system
via GDB after a fault has been discovered.

4.2 Implementation

GDBFuzz consists of the following components:

Test Data Generator. Like all coverage-guided fuzzers, GDBFuzz preserves inputs that trigger
di�erent code areas in the input corpus, and derives new inputs by mutating these. Dozens
of general purpose mutation-based fuzzers have been published in recent years [Man+19].
We therefore do not develop a mutation algorithm from scratch, but reuse the muta-
tion engine from libFuzzer [LLV15]. The actual mutation engine in GDBFuzz is easily
interchangeable.

GDB Controller. The GDB controller manages the debugging connection to the SUT. Common
debug probes usually provide a GDB Server via a TCP socket. We use the Python package
python-gdb-mi for sending and receiving debugging commands, like setting breakpoints
or continuing the execution.

Target Connection. The target connection component is an abstraction for sending test inputs
to the target device. It handles connection or disconnection events depending on the
actual interface. It also handles error feedback from the protocol. Embedded systems
can feature tons of di�erent input interfaces and channels from where untrusted input is
consumed. Popular interfaces include Wi-Fi, Bluetooth, NFC, but also all kind of external
facing buses like CAN, USB, Pro�bus, or I 2C . GDBFuzz can include custom interface
adapters to enable a broad applicability. For our case study, we implemented adapters for
TCP, Serial, and USB connections, as well as UNIX pipelines to enable fuzzing of Linux
applications.

Ghidra Controller. We use the reverse engineering tool Ghidra to obtain the control �ow
graph of the target application. For interchanging requests and data between Ghidra and
GDBFuzz, we use the ghidra-bridge Python package. GDBFuzz can connect to a running
Ghidra instance or start a headless instance on the target binary.

Dynamic Control Flow Graph Refinement. As mentioned earlier, reverse engineering
tools cannot guarantee to detect the whole control �ow of a program [Pan+21]. Missing
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control �ow manifests itself as a dangling node in the control �ow graph without succes-
sor that is not marked as terminal by Ghidra. When �nding a test input that triggers the
execution of such a dangling node, we perform the following steps:

1. Set a breakpoint to the dangling node and send the test input that triggers it to the
SUT.

2. When the interrupt occurs, perform a single step.
3. Read the value of the program counter.
4. Report the found edge to Ghidra and reanalyze the binary.

Ghidra is then usually able to recover even more control �ow based on the reported edge.

4.3 Evaluation

In this section we evaluate GDBFuzz in two di�erent settings, guided by eight research questions
(RQs).

1. For the hardware-based setting we pick a variety of common development boards, listed
in Table 4.8 together with their corresponding architectures, utilized debug probes, and
the number of available hardware breakpoints.

Table 4.8: Details of our development boards including architecture, utilized debug probe, and
the number of available hardware breakpoints.

Board Architecture Debug Probe #HW Br.

STM32L4S5I [STM20a] ARM STLinkv3 6

CY8CKIT-062-WIFI-BT [Inf18] ARM KitProg3 6

ESP32-DevKitC_V4 [Esp16] Xtensa J-Link Ultra 2

EXP430F5529LP [Tex13] MSP430 eZ-FET lite 8

On each development board we deploy four di�erent classes of applications, listed in
Table 4.9 with an initially given seed. The Buggy program exposes the buggy function
from Listing 2.1 to a serial input interface and serves as a ground truth. The speci�c
applications for each board are derived from examples shipped with the development
boards, or compatible tool chains3. The HTTP and USB application classes require the
appropriate interface to exist on the target board.

2. The application-based setting features 16 programs from Google’s Fuzzer Test Suite [Goo16a],
compiled as x86 Linux applications, and provides a scalable and independently measurable

2Empty USB Command Block Wrapper (CBW) frame
3The actual applications and corresponding references are in the replication package
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Table 4.9: Application classes and initial input seeds for our case study on embedded hardware.

Name Description Seed

Buggy Buggy program from Listing 2.1 None

JSON Parses serial data as json string "1000, 2000, 3000"

USB USB mass storage client 55 53 42 42 00…2

HTTP HTTP server via Wi-Fi "GET / HTTP1.1"

evaluation environment. GDBFuzz can execute an application either in a QEMU instance,
enabling live measuring of reached code coverage, or with GDB directly, enabling low
overhead and unlimited amounts of breakpoints4. We compile the applications with
compiler optimizations (-O3), and execute the corresponding experiments on a server
with four Intel Xeon Gold 6144 CPU’s and 1.48 TB of RAM.

4.3.1 GDBFuzz vs. Blackbox Fuzzing

GDBFuzz enables coverage-guided fuzzing on systems where coverage measurement is hardly
possible5. We therefore utilize the partial coverage extraction mechanism of GDBFuzz itself, to
measure coverage di�erences between GDBFuzz and blackbox fuzzing in our hardware-based
setting. Speci�cally, we deploy GDBFuzz, but omit adding new inputs to the input corpus during
fuzzing to simulate a blackbox fuzzer. As a result, we can investigate how the evolutionary
fuzzing algorithm of GDBFuzz performs, and can consequently address our �rst research
question:

RQ1: How does GDBFuzz compare against blackbox fuzzing on embedded systems?

Figure 4.10 shows coverage over time plots for all board and application class combinations.
Each experiment is repeated twice, leading to an accumulated experiment time of 56 days.
Without exception, GDBFuzz achieves a higher code coverage across all runs than blackbox
fuzzing and shows that it can greatly bene�t from the partial coverage information it retrieves
via hardware breakpoints. In particular for the Buggy program, blackbox fuzzing has little to
no chance to ful�ll all conditions to trigger the contained stack over�ow bug, as theoretically
described in Section 2.2. In this application class, GDBFuzz achieves almost 100 iterations per
second on the powerful CY8CKIT board, while it can only reach about 1.5 iterations per second
on the low performance MSP430 board. This explains why it takes way longer for GDBFuzz to
solve the input constraints on the latter, and we can also see how important throughput is for
fuzzing. Nevertheless, GDBFuzz performs well on all of our development boards, �nds the bug
in all cases, and reports the resulting crashes properly.

4QEMU theoretically enables an unlimited amount of breakpoints, too, but su�ers from an increasing execution
overhead.

5Otherwise we would use the available mechanism for coverage-guided fuzzing
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Figure 4.10: Reached basic blocks over time for GDBFuzz and blackbox fuzzing on embedded
hardware (N=2).

Takeaway 1

Coverage-guided fuzzing with a limited amount of breakpoints is e�ective and
outperforms blackbox fuzzing on embedded systems.

4.3.2 GDBFuzz vs. State of the Art

As showed in Chapter 3, there are multiple approaches that claim to enable coverage-guided
fuzzing for embedded systems, raising the following question:

RQ2: How does GDBFuzz compare to existing embedded fuzzing methods?�AFL [Li+22] is a hardware-based embedded fuzzer that uses the ARM Embedded Trace
Macrocell (ETM) interface to extract code coverage from an embedded program. Our CY8CKIT-
062-WIFI-BT development board features such an ETM interface, and we have access to the
tracing hardware required therefore. However, the publicly available version of �AFL reported
implausible results on our setup, which we could not resolve despite having vendor support. We
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noted that �AFL uses raw trace data functions, which are unreliable in some implementations,
and are marked for internal use only [Gmb19]. Also, and in contrast to GDBFuzz, �AFL requires
very speci�c hardware, which is why it is not a direct competitor; we are not aware of a generic
hardware-based embedded fuzzing approach to compare GDBFuzz against.

Most of published embedded fuzzing methods are emulation-based, from which only periph-

eral modeling approaches can enable coverage-guided fuzzing for embedded systems on a scale
and are competitors to GDBFuzz. We therefore compare GDBFuzz against the latest peripheral
modeling approach Fuzzware [Sch+22b], whose authors claim embedded fuzzing on the actual
hardware to be impractical. Fuzzware works on all ARM Cortex-M-based microcontrollers, so
we can fuzz all applications from the �rst two development boards in Table 4.8.

First, we need to agree on how we compare emulation-based to hardware-based approaches.
Li et al. [Li+22] compared peripheral modeling approaches to their hardware-based approach�AFL by the number of the achieved fuzzing iterations per hour. We agree that the number
of executions per time is an important metric for fuzzing. However, for a fair comparison,
the same or at least similar code areas must be executed in that time. Peripheral modeling
approaches like P2IM [FML20] and Fuzzware [Sch+22b] use fuzzing to iteratively carve an
arti�cial execution environment for the �rmware. Over time the peripheral models are re�ned,
and the execution speed decreases since the �rmware can be further executed. By design,
peripheral modeling does not target speci�c code areas. This makes throughput a meaningless
measure for comparing these di�erent approaches, because it is unclear whether the same code
parts are executed in this time.

We therefore compare embedded fuzzing approaches based on the number of reached basic
blocks in a targeted region of the �rmware during fuzzing, as also done in [Sch+22b].

Emulation-based approaches can be scaled up easily by using multiple cores, which is more
complex and expensive with hardware-based approaches. To let Fuzzware bene�t from its
scalability, we assign 16 cores for each trial, while GDBFuzz runs as a single instance for the
same amount of time. Afterwards, we evaluate how many basic blocks from the target regions
have been reached by Fuzzware and GDBFuzz.

Table 4.11 lists the absolute and relative number of reached basic blocks using Fuzzware and
GDBFuzz. Although it had signi�cantly more computing power provided, Fuzzware did not
reach any basic block on six out of eight applications, whereas GDBFuzz covered a substantial
part of them. On the remaining two applications, GDBFuzz reached more basic blocks than
Fuzzware. The USB controller on the STM32 board transfers data via DMA, which is not
supported by Fuzzware, but is required to execute the application. From our experience DMA
is a widely used mechanism to interact with hardware peripherals, and the lack of DMA support
by Fuzzware is a major drawback. The Wi-Fi and Transmission Control Protocol (TCP) protocol
handling on the STM32 board takes place in a separate chip connected via Serial Peripheral
Interface (SPI) to the microcontroller. In order to trigger the execution of the HTTP parser,
Fuzzware would need to model the inter chip communication protocol correctly, which it did
not.

On the CY8CKIT board Fuzzware can not execute any application, because the boot phase
of the CY8CKIT development board requires interaction between the two contained processors,
which Fuzzware is not able to model.
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Table 4.11: Covered basic blocks by Fuzzware with 16 cores, and GDBFuzz after 24 hours of
fuzzing.

Target Basic Blocks Covered

Fuzzware GDBFuzz

ST
M

32
buggy 11/17 (64.7%) 14/17 (82.3%)

json 435/560 (77.7%) 472/560 (84.3%)

usb 0/518 (0%) 220/518 (42.5%)

http 0/166 (0%) 126/166 (75.9%)

CY
8C

KI
T

buggy 0/13 (0%) 11/13 (84.6%)

json 0/1217 (0%) 704/1217 (57.8%)

usb 0/456 (0%) 236/456 (51.8%)

http 0/402 (0%) 205/402 (51.0%)

For complex embedded programs with DMA and complex boot routines, more computing
power will not lead Fuzzware to reach the targeted code. In general, the more complex
the targeted input interface, the harder it is for peripheral modeling approaches to provide
reasonable fuzz data.

Takeaway 2

GDBFuzz fuzzes software on embedded systems without requiring any instrumentation
or other software change.

4.3.3 Reveal Bugs with GDBFuzz

The main goal of fuzzing is to �nd software bugs, which leads to the question:

RQ3: Can the method reveal actual bugs in embedded software code?

For answering RQ3, we �rst have a look at two known real-world bugs. The USB enumeration
handling of the STM32CubeL4 USB Middleware [STM20b] contains the known vulnerabilities
CVE-2021-34259 and CVE-2021-34268 that were found using �AFL [Li+22]. We verify that GDB-
Fuzz can detect such real-world vulnerabilities and use a �rmware based on the USB host Mass
Storage Device Class (MSC) example application version 1.17.1 from STM32CubeL4 [STM21].
The STM32 microcontroller acts as USB host in this MSC application. Our setup therefore
is similar to that from the �AFL authors. To generate USB tra�c, we plug a common USB
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�ash drive as USB client into the USB port. We then introduce a fuzzing harness into speci�c
stages of the USB enumeration, where we replace the USB data frame with fuzz data just before
the USB host processes this data. Namely, we replace the raw device descriptor or the device

con�guration that is sent by the client device before any parsing of the fuzz data. The introduced
fuzzing harness receives fuzz data from GDBFuzz via a serial interface. Both mentioned CVEs

manifest themselves as timeout when triggered, because the USB host middleware gets wrongly
con�gured by malformed device descriptor or device con�guration USB packets. Basically they
are caused by missing validity checks for the untrusted data from the USB client. With GDBFuzz
and the appropriate fuzzing harnesses, both CVEs are triggered and detected in less than 5
minutes during our experiments.

During evaluation, we discovered three previously unknown bugs, which we reported to the
corresponding vendor:

1. An in�nite loop in the STM32 USB device stack, caused by counting an uint8_t index
variable to an attacker controllable uint32_t variable within a for loop [Eis22c].

2. A bu�er over�ow in the Cypress JSON parser, caused by missing length checks on a �xed
size internal bu�er [Eis22a].

3. A null pointer dereference in the Cypress JSON parser, caused by missing validation
checks [Eis22d].

Takeaway 3

GDBFuzz reveals real vulnerabilities in embedded software.

4.3.4 GDBFuzz vs. AFL++

The application-based setting allows us to fuzz Linux applications with GDBFuzz, which raises
the research question:

RQ4: How does GDBFuzz compare against the state-of-the-art fuzzer AFL++?

For a fair comparison between GDBFuzz and AFL++ [Fio+20], we let them operate on the
uninstrumented binary using QEMU mode for AFL++ (-Q) and GDBFuzz with QEMU, too. As
live measurement is impossible with the modi�ed QEMU version included in AFL++, we replay
the respective input corpora after fuzzing and measure the reached number of basic blocks
thereby. We con�gure GDBFuzz to use eight breakpoints, which is a realistically low number
of breakpoints available in real microcontrollers.

Figure 4.12 shows coverage over time plots for GDBFuzz and AFL++. Obviously, AFL++
covers more code over time than GDBFuzz. AFL++ is designed and optimized for exactly
this kind of applications and can bene�t from its exhaustive code instrumentation. However,
we think that GDBFuzz with just eight utilized breakpoints is not too far away. On some
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Figure 4.12: Basic block covered by GDBFuzz and AFL++ on applications where code instru-
mentation is possible (N = 10).

application, GDBFuzz could even reach a similar number of basic blocks. We also emphasize
that AFL++ falls back to blackbox fuzzing in scenarios where emulation and instrumentation is
not available—and this is again where GDBFuzz is superior.

Takeaway 4

If one can deploy AFL at little cost, use it; otherwise, consider GDBFuzz as a potentially
less demanding alternative.

4.3.5 Boost by Dominator Relations

Let us now evaluate speci�c elements of the GDBFuzz design.

RQ5: How much does GDBFuzz bene�t from dominator relations?

To answer RQ5, we analyze the average number of breakpoint interrupts, as well as the
average number of reached basic blocks during the previous experiments in Table 4.13.
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Table 4.13: Averaged results of the benchmark (N=10).

Target #Interrupts Basic Blocks Precision New Blocks New Edges

boringssl 511.6 1398.8 99.69% +674.16% +708.61%

freetype2 1281.1 3537.8 99.91% +433.22% +460.42%

guetzli 258.3 2274.4 99.68% +21.52% +21.36%

harfbuzz 1086.2 2668.2 99.88% +13.86% +14.11%

json 306.5 736.0 97.69% +0.0% +0.0%

lcms 229.6 813.3 99.04% +12.24% +12.2%

libarchive 152.3 431.0 99.26% +0.36% +0.23%

libjpeg 534.0 1403.7 98.96% +148.02% +150.58%

libpng 370.4 1050.5 97.21% +0.03% +0.02%

libssh 303.2 1013.5 99.61% +19.29% +19.94%

libxml 260.8 732.1 98.73% +0.05% +0.21%

openssl 109.8 286.7 100.0% +0.64% +0.6%

proj4 182.6 437.8 99.8% +3.26% +3.15%

re2 589.1 1613.0 99.88% +4.13% +3.95%

sqlite 1080.0 4364.3 98.19% +1.59% +1.65%

vorbis 400.44 1387.0 99.57% +12.77% +12.36%

Across all our experiments, each breakpoint interrupt led to 3.15 marked basic blocks on
average, meaning that the number of probed basic blocks is reduced by 68.25%. This ratio is
better than in experiments of the e�cient code instrumentation algorithm presented in [TH02],
where the authors achieved to reduce the number of instrumentation points only by 34% to49% in their experiments. GDBFuzz can presumably reduce the overhead further, because we
additionally use post dominator relations and the described semi-interprocedural control �ow
graph.

As we can see in the Precision column, the vast majority of the marking dominating basic
blocks was correct. Incorrectly marked basic blocks can result from incorrect reverse engineered
control �ow. The reached precision of mostly more than 99% is su�cient for coverage-guided
fuzzing since it is a stochastic process and does not rely on 100% correct coverage data. Popular
fuzzing tools, like AFL++, store coverage data in hash maps and also miss some coverage during
fuzzing due to hash collisions.
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Takeaway 5

Across over our experiments, dominator relations reduced required breakpoint
interruptions by more than two thirds.

4.3.6 Revealing Control Flow

GDBFuzz can guide reverse engineering tools to reveal undetected control �ow, as we described
in Section 4.2, and we investigate by the question:

RQ6: How well can GDBFuzz aid reverse engineering tools to reveal unrecognized control
�ows?

We answer RQ6 by comparing the average relative number of additional revealed basic
blocks and edges against the ones that Ghidra initially detects. Since the targets have been
compiled with activated compiler optimizations, recovering the control �ow is particularly
hard for reverse engineering tools. In Table 4.13, we can see that up to 674.16% additional basic
blocks and 708.61% additional edges could be revealed during our experiments. A lower number
of newly found control �ow does not necessarily show a lower performance from GDBFuzz,
but rather a good reverse engineering performance of Ghidra.

Takeaway 6

GDBFuzz reveals undetected basic blocks and edges for reverse engineering during
fuzzing.

4.3.7 Impact from the Number of Available Breakpoints

The amount of available breakpoints varies across di�erent microcontroller families and models,
which raises the question:

RQ7: How does the number of available breakpoints a�ect the fuzzing performance?

For estimating how di�erent numbers of breakpoints in�uence the fuzzing performance, we
execute the applications directly with GDB and use ordinary software breakpoints for the
feedback, since QEMU does not scale well with an increasing amount of breakpoints. This way
we have arbitrarily many breakpoints available without impacting execution time, and can
estimate how their number in�uences the achieved coverage over time. To answer RQ7, we
execute GDBFuzz in the application-based setting using an exponentially increasing number of
virtual breakpoints from 1 to 65536. Representative, Figure 4.14 shows the reached basic blocks
over time on four applications6, averaged from 2 runs.

6Plots for all other applications available in the repository
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Figure 4.14: Fuzzing performance of GDBFuzz on four applications using di�erent numbers of
virtual breakpoints (N=2).

Unsurprisingly, more used breakpoints lead to more covered code blocks per time. In our
experiments, it roughly seems that doubling the number of breakpoints yields to a linear
improvement of fuzzing performance. Exponential correlations between e�ort and revenue
are common in the research area of fuzzing [BF20]. Likewise, our experimental observation
between the number of utilized breakpoints and coverage over time suggests an exponential
correlation.

Takeaway 7

Linearly more coverage over time requires exponentially more breakpoints.

4.3.8 GDBFuzz vs. Blackbox Fuzzing

As pointed out in Section 4.3.4, AFL++ falls back to blackbox fuzzing when no conforming
instrumentation mechanism is available. This motivates our �nal research question:

RQ8: How does GDBFuzz compare to blackbox fuzzing on the application-based setting?
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To compare GDBFuzz against blackbox fuzzing, we measure reached basic blocks directly
during fuzzing using QEMU, because there is no corpus to replay for blackbox fuzzing.

0h 6h 12h 18h 24h

2175

2200

2225

2250
boringssl

0h 6h 12h 18h 24h

4500

5000

5500
freetype2

0h 6h 12h 18h 24h

4400

4600

4800

guetzli

0h 6h 12h 18h 24h

2800

3000

3200

3400
har�uzz

0h 6h 12h 18h 24h
500

600

700

800
json

0h 6h 12h 18h 24h

800

1000

lcms

0h 6h 12h 18h 24h

375

400

425

libarchive

0h 6h 12h 18h 24h

1400

1600

libjpeg

0h 6h 12h 18h 24h
900

950

1000

1050

libpng

0h 6h 12h 18h 24h

980

1000

1020

libssh

0h 6h 12h 18h 24h

800

820

840

libxml

0h 6h 12h 18h 24h
282.5

285.0

287.5

290.0

openssl

0h 6h 12h 18h 24h

200

400

proj4

0h 6h 12h 18h 24h

1200

1400

1600

re2

0h 6h 12h 18h 24h

6000

6500

sqlite

0h 6h 12h 18h 24h

1400

1450

1500

vorbis

Relative time (hours)

#
Re

ac
he

d
Ba

sic
Bl

oc
ks

GDBFuzz
GDBFuzz(8<?;4
Blackbox

Figure 4.15: Reached coverage from GDBFuzz with and without using dominator relations, and
blackbox fuzzing measured by QEMU (N = 10).

Figure 4.15 shows measured coverage over time results for blackbox fuzzing, GDBFuzz, and
a trimmed version (GDBFuzzSimple) that does not make use of dominator relations as described
in Section 2.5. This larger scale benchmark with independent code coverage measurements
con�rms the results from the development boards: GDBFuzz outperforms blackbox fuzzing
in all experiments. Furthermore, we can see that using dominator relations to gain transitive
knowledge led to more and faster code coverage on most target applications. Nevertheless, even
GDBFuzzSimple greatly outperforms blackbox fuzzing in all experiments.

Takeaway 8

GDBFuzz outperforms blackbox fuzzing in an application-based setting on a larger scale,
too.
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4.4 Discussion

Now that we showed how well GDBFuzz works, we want to discuss the design choice of using
code block coverage as metric, how fuzzing with GDBFuzz works in practice, and the threats to
validity of our evaluation experiments.

4.4.1 Block and Branch Coverage

While most state-of-the-art fuzzers like AFL++ [Fio+20] and libFuzzer [LLV15] leverage edge
coverage, we use block coverage to guide the evolutionary fuzzing algorithm. Extracting edge
coverage with our methods, would require to probe already reached blocks multiple times,
which would increase overhead drastically. Nagy et al. [NH19] use software breakpoints to
detect the execution of new basic blocks for normal software. They �nd that edge coverage
cannot bene�t from its �ner granularity because of the required constant instrumentation
overhead. Since edge instrumentation would introduce even more overhead in our setting
than source code instrumentation on normal software, we estimate block coverage as the only
feasible coverage metric in GDBFuzz.

4.4.2 Fuzzing Firmware Drivers

Fuzzing drivers, or the middleware of embedded software, can be implemented in a blackbox
approach, by injecting fuzz data to external facing interfaces, or as a whitebox approach, by
compiling a fuzz harness into the �rmware to fetch and redirect the fuzz data to the driver
function. Whitebox approaches o�er more �exibility since driver functions can be called directly
and an acknowledgment signal can be fed back to the fuzzer, which indicates a function has
properly returned. However, expert knowledge about the code and the system is required to
implement a suitable fuzzing harness. Also, an implemented harness works on a distinct code
base only, and false positives can be produced since input can be sanitized in the hardware
already before the tested driver function is reached [Li+22]. A whitebox approach was suitable
for replicating the known CVE’s, revealed by �AFL, since the faulty functions were known and
the original �nders have chosen the same way.

A blackbox approach usually requires less setup e�ort, because data routes to the targeted
interface should exist in most test setups anyway, and the test engineer therefore just needs
to connect an existing route to GDBFuzz by implementing a suitable Python class. As a
consequence, our connection adapters work out of the box e.g. for all existing USB device
drivers. The previously unknown bugs we found with GDBFuzz, have been triggered without
the development and use of extensive harnessing functions, but on the unchanged �rmware.

4.4.3 Threats to Validity

Empirical studies are necessarily fraught with threats to validity. To address external validity
doubts, we have tested the method on di�erent development boards with di�erent debuggers
and architectures and made sure that we can �nd real-world bugs. Additionally, we conducted
a larger case study on known fuzzer benchmarking targets. To minimize the risk of systematic
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errors and addressing internal validity doubts, we decoupled coverage measurements from our
tool during evaluation and repeated each experiment multiple times. The implementation of
GDBFuzz is publicly available to allow reproduction of our results.

4.5 Related Work

There are approaches that use software breakpoints for measuring code coverage and obtaining
fuzzing feedback, in order to avoid the overhead and impediments of source code instrumenta-
tion [Nag+21; NH19; Gro20]. The idea is to insert software breakpoints into unreached basic
blocks and therefore allow the program to execute at full speed until new coverage is reached.
Once the execution runs into a breakpoint, the corresponding instruction is removed from
the binary to avoid further overhead. Oh et al. [Oh+15] use software breakpoints to measure
code coverage in embedded �rmware. They extract the start address of each basic block of the
program during compilation and insert software breakpoints at each of them, also removing
them once they are hit. The advantage of using software breakpoints is that their number is
unlimited, but in contrast to hardware breakpoints they require rewriting of the �rmware image
on each change.

4.6 Conclusion and Future Work

The �eld of embedded fuzzing lacks generic, easy applicable, and e�cient solutions. We propose
a debugger-driven fuzzing method that relies only on the presence of a GDB compatible debug
probe and hardware breakpoints on the microcontroller. GDBFuzz therefore enables cheap,
non-intrusive, and source code agnostic coverage-guided fuzzing on embedded systems. It is
designed to work out of the box for a wide variety of microcontrollers and input interfaces. In
contrast to earlier assertions, we showed that hardware-based embedded fuzzing is practical
and reveals software bugs. As fuzzing is performed on the raw hardware, execution is fast and
naturally accurate. Detected failures are real and can be easily replicated.

We evaluated our implementation GDBFuzz on four embedded application classes featuring
four di�erent microcontrollers, showing that it beats blackbox fuzzing and the latest emulation-
based approach Fuzzware in all cases. Furthermore, we tested GDBFuzz in an emulated
environment on popular fuzzer benchmarking targets to gain more experiment data and statistics.
We showed that leveraging dominator relations boosts the performance of GDBFuzz, and that
already a single hardware breakpoint is su�cient for enabling coverage-guided fuzzing. We
also showed that GDBFuzz can reveal control �ow that is missed by a reverse engineering
tool during fuzzing. All in all, if an embedded system provides a debugger interface, GDBFuzz
provides a practical fuzzing solution.

Future work on GDBFuzz could focus on enhanced strategies for choosing basic blocks to
probe and incorporating established fuzzing optimizations, like corpus minimization, dictionaries,

or di�erent seed schedules. Also, fuzzing for stateful embedded systems could be considered in
future work.
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In this chapter, we will focus on model-driven fuzzing, where the main challenge is to create
proper input models. We will use context-free grammars as input models, since they are simple
to de�ne, but can represent rich properties of an input speci�cation. Recent research has
demonstrated that input grammars can be mined from inputs and programs:

• Autogram [HZ17] traces data �ow of di�erent parts of the input into functions and vari-
ables and compiles resulting rules to a context-free grammar. However, it is implemented
for Java programs only, and therefore, unsuited for a variety of systems and programs.

• Mimid [GMZ20] leverages control �ow, as well as data �ow instrumentation of the
target program to reconstruct derivation trees, and subsequently uses a number of active
learning steps—basically testing for interchangeability of subtrees—to translate these into
a grammar. Mimid requires the program code to be written in Python or C (Cmimid).
Cmimid requires the C code to:

1. Not use macros and enumerations;
2. Have individually separated case statements with braces and without fall-throughs;

and
3. Avoid goto statements.

While such restrictions pose little problems for the proof-of-concept of a prototype, they
make Cmimid impractical for industrial use. Even if the source code is available, it cannot
be easily rewritten to match Cmimid requirements.

• Arvada [KLS21] is a black-box approach that only requires oracle requests (tests whether
an input is accepted by the target program) to approximate a grammar. It therefore o�ers
an approach to grammar mining that only requires the ability to execute a program. How-
ever, by construction, Arvada has less information available than code-based approaches,
and the resulting grammars may thus be less precise.

To mine input grammars in our context, we have created a novel approach that does not su�er
from the above limitations—and actually is set to be applicable for binaries and executables
in any programming language, on any operating system, using any processor architecture,
even without source code. The key ingredient of our approach is, again, to use the GNU

Debugger (GDB) as interface to the program under test, allowing a grammar miner to:

1. Step through the program, identifying the code executed.

2. Use watchpoints to track data accesses during execution.

63



5 GDBMiner

These features give our grammar miner the ability to associate input data with code locations

that process them. This, in turn, allows a grammar miner to group input bytes that are processed
by the same code into equivalence classes and hence grammar elements. Also taking the call
stacks of the processing code into account, we can produce precise and human-readable input
grammars.

Using GDB to step through executions is time-consuming—but once a grammar is mined from
a system, it can be used again and again for high-speed generation of valid inputs, o�setting any
e�ort spent to mine the grammar in the �rst place. As explained in Section 2.4, GDB supports
remote debugging, where GDB runs on one machine, and the program under test runs on another.
GDB then communicates with a remote GDB Server on the program under test that understands
the GDB protocol through a serial device or TCP/IP. This is particularly useful for embedded
devices, as the stub and the communication require only few resources. Furthermore, it allows
our approach to even mine grammars from programs on embedded systems.

GDBMiner

GDB

Application/
System

GDB Server

input

control

execution info

Figure 5.1: GDBMiner connects to a GDB-compliant GDBServer in order to set data watchpoints
and trace the execution of inputs within an Application or System.

We have implemented the above grammar mining approach in an open source tool named
GDBMiner, depicted in Figure 5.1, bringing input grammar mining to any program that can
be debugged with GDB—from C-compiled executables on general-purpose PCs to read-only
binaries on embedded systems.

With GDBMiner, we contribute a uni�ed, language- and architecture-agnostic approach for
mining input grammars on any system with debugging capabilities. As we show in our evalua-
tion, GDBMiner produces input grammars that are precise, well-structured, and very suitable
for test generation, especially for black-box testing. The versatility of GDBMiner and the uni-
versality of the resulting grammars enables e�cient software testing under adverse conditions,
including embedded systems; and thus speci�cally addresses the needs of software engineering
in practice.

The remainder of this chapter is organized as follows. Section 5.1 presents the idea of our
approach. We cover implementation details in Section 5.2. Section 5.3 evaluates GDBMiner
against the state of the art. Section 5.4 closes with conclusion and future work.
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5.1 Design

Mining input grammars refers to deriving grammars from programs that match their input
space best possible. Mimid [GMZ20] and Arvada [KLS21] are currently, to the best of our
knowledge, the two most e�ective methods to do so. Both require a set of valid seed inputs as a
starting point. Seeds for a program are obtained by collecting example inputs that are available
or by intercepting messages to the program during runtime.

Mimid [GMZ20] applies comprehensive instrumentation in terms of control and data �ow
instrumentation to the target code to �nd at which point of the execution the program consumes

which bytes of the input data. It determines the consumption of a character using dynamic
tainting to even track when the program accesses eventual copies of input bytes or extracted
tokens of a lexer stage. For the control �ow instrumentation, Mimid introduces a stack that,
similar to a call stack, keeps track of active control �ow scopes, such as loops, if/else branches,
and function calls. From tracking the execution while parsing a set of valid seed inputs and in
conjunction with the documented input data accesses, Mimid recovers derivation trees, which
already remind on parse trees of grammars. Mimid then searches for compatible nodes in these
trees by swapping their subtrees and probing if the resulting new input is accepted by the
target program. Mimid’s source code aware approach enables the extraction of meaningful and
human-readable labels from symbols, but it requires exhaustive instrumentation.

In contrast, Arvada [KLS21] is a black-box approach and contents itself with oracle requests
whether an input is accepted by the target program or not. Also, based on a set of valid seed
inputs, it tries to condense symbols in the input to bubbles, meaning they are assigned a new
non-terminal symbol, and subsequently tries to merge di�erent bubbles when they turn out
to be compatible. Arvada chooses candidates for new bubbles randomly, which makes it a
non-deterministic approach with respect to the seed inputs.

Similar to the Mimid algorithm, we exploit that the call stack of a recursive descent parser
should express a branch of the derivation tree when a symbol is consumed; that is when the
program processes a character of the input bu�er last. The call stack in this case does not only
contain the called functions but additionally all taken control �ow decisions like conditional
branches and loops. Cmimid determines the consumption of a character using LLVM’s data �ow
sanitizer [LLV22] that can even track when the program accesses eventual copies of input bytes.
In contrast to Mimid, we relax the condition to consider a symbol to be consumed and just take
the point where the program accesses the character in the input bu�er last. This allows us to
use data watchpoints for tracking accesses to the input bu�er and therefore a programming
language independent and source code agnostic approach. Moreover, it allows us to run the
method on arbitrary systems that o�er standard debugging capabilities.

Figure 5.2 shows the di�erent stages of GDBMiner for mining grammars. In short, we
use the single-step feature of the debugger to trace the execution of the targeted program and
additionally log accesses to the input bu�er with watchpoints. Based on the tracing data, we
�rst reconstruct all control �ow graphs of the involved functions, detect loops and conditional
branches, and reconstruct derivation trees for each input. If the system under test o�ers only a
limited amount of hardware watchpoints, we trace the same input multiple times with a sliding
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Figure 5.2: How artifacts emerge through the di�erent stages of GDBMiner. By tracing the
execution of the Seeds, GDBMiner obtains Traces, from which it derives Control
Flow Graphs. From the graphs, GDBMiner recovers Control Flow Scopes, which are
required to reconstruct the Derivation Trees. Finally, GDBMiner extracts a Grammar

through active learning.

window of available watchpoints. Finally, we take the recovered derivation trees and apply the
Mimid mining algorithm, consisting of multiple generalization steps.

5.1.1 Tracing

Before we can trace the parser of the target program, we need to determine the location of the
input bu�er in memory that the program reads from. The location of the input bu�er depends
on the concrete program and the execution environment, which is why we require the user to
specify a symbol name or the actual address. To trace only the parsing stage rather than tracing
the entire program, it is advisable to provide an entry point and optionally an exit point. Good
candidates are parser functions, which usually have “parse” in the name and take a character
bu�er pointer as a parameter, which in turn holds the input bu�er location. We explain more
details in Sections 5.2.1 and 5.3.4.

Having the address of the input bu�er and an entry function, we can start tracing the
processing of the input. First, we let the program execute until the entry function using a
breakpoint. On reaching the entry point, we byte-wise assign watchpoints on all addresses of
the input bu�er. For the actual tracing, we use the single-step functionality of GDB to walk
through the program under test instruction by instruction. At each interrupt, we document
the current program counter address and the current stack trace. In addition, we document
eventual watchpoint hits (accesses to the input bu�er) and reference them to the latest trace
entry. We repeat this procedure until we step out of the entry function or we reach a de�ned
exit point. Consequently, each trace element consists of a program address, a list of return
addresses on the stack, and a list of watchpoints hits. To obtain a complete set of traces, we
execute these steps for each seed input once.

5.1.2 Recovering Control Flow Graphs

Since we need to detect loops and conditional branches in our target program, we �rst need to
recover the Control Flow Graphs of all involved functions. The Control Flow Graph expresses
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possible control �ow sequences of a function as a directed graph from the entry to the exit
node. Statically recovering Control Flow Graphs from binary programs is its own discipline in
academia [Pan+21]. However, since we have single-step traces available, we can dynamically
recover the relevant parts of the Control Flow Graph from a binary program.

We therefore iterate over the list of executed instructions and stack traces. If the stack length
remains equal between two subsequent instructions, we add the transition as edge to our graph.
When we observe an increase of the stack length, the last instruction must have been a function
call. We ignore the call edge and connect the call instruction with the return address that is saved
on the stack. When we observe a decrease of the stack length, we do not add anything to the
graph. This way the Control Flow Graph of a function stays consistent and, most importantly,
within the function itself.

5.1.3 Recognizing Control Flow Structures

1

2
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4

5

6

conditional scope

loop scope

ba
ck

ed
ge

Figure 5.3: Conditional and loop scopes in a simple control �ow graph.

Based on a Control Flow Graph G = (V , E), and the predominator relation from De�nition 8,
we can locate back edges in G [ASU07]:

De�nition 12: [Back Edge]

An edge (u, v) ∈ E is a back edge, if the head v predominates its tail u, namely v pre←←←←←←←←←←←←←←←←←→ u.

Given a back edge (u, v), the corresponding natural loop is the set of nodes that can reach
the tail u without going through the head v [ASU07], or rather the nodes that can still reach u,
when we remove v from the graph:
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De�nition 13: [Natural Loop]

The natural loop of back edge (u, v) consists of the nodes:{w | w ∈ V and reachable (G ⧵ {v}, w, u)}.

Having these e�cient computable properties, we can �nd all loops in Control Flow Graph G
by iterating over all edges, checking whether it is a back edge, and, if that is the case, associate
the corresponding natural loop with the head of the back edge.

A node with multiple successors in G is a conditional branch. We de�ne the scope of a
conditional branch as:

De�nition 14: [Conditional Scope]

The conditional scope of node u, where |G[u]| ≥ 2 is: ⋃v∈G[u]{w | v pre←←←←←←←←←←←←←←←←←→ w}.

The scope of a conditional node therefore is the union of all dominated nodes of its successors.
Figure 5.3 shows loop and conditional scopes in a relatively simple control �ow graph with a
single conditional branch and a single loop. We can easily identify the back edge that closes the
loop between nodes 3 and 4.

5.1.4 Recovering Derivation Trees

Based on the single-step traces, the Control Flow Graphs of all functions, the detected natural
loops, and the scopes of conditional branches, we can now start to recover a derivation tree

for each seed input. We want to represent the execution �ow of a parser in these derivation
trees, particularly which function stack is responsible for which input character. Similar to
grammar parse trees, derivation trees therefore have only non-terminal symbols as leaf nodes.
As Mimid showed, we can recover derivation trees by analyzing the control �ow of the parsing
program. Since we cannot bene�t from the extensive instrumentation used by Mimid, we need
the additional processing step, described in Algorithm 2, to translate single-step traces into a
derivation tree.

First, we initialize the list that represents the current call stack (Line 1), as well as the
dictionary that represents the derivation tree we want to build from the trace (Line 2). Starting
from Line 8 we process each trace element iteratively. For each element, we �rst check if the
program address belongs to the start of a function, and if so, append that function and its scope
to the stack and the currently active tree branch. Next, in Line 12, we test whether the current
address does not belong to the uppermost scope on the stack. If that is the case, we remove all
left scopes from the stack. Similar to entered functions, we check if the current address enters a
new loop scope (Line 15) or a conditional scope (Line 19) and also append the respective scope
addresses to the stack and the tree. If the current trace element contains watchpoint hits, we
add the corresponding index as a leaf node to the current active tree branch in Line 22. After
exercising the whole trace, the tree might contain some input bu�er indices multiple times and
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Algorithm 2: Recover derivation trees from traces.
Input: A single-step trace
Output: A derivation tree to the trace

1 STACK ← [(0, [])] # init stack

2 TREE ← {} # init tree

3

# helper function to add a scope to the tree

4 def add_scope(id, scope):
5 TREE[STACK[-1].id].append(id) # add to parent

6 STACK.append ((id , scope)) # push to stack

7

# iterate over trace addresses

8 foreach id, addr ∈ trace do
9 if addr ∈ func_entries then # function start

10 add_scope(id , function_scope(addr))
11 while addr ∉ STACK[-1].scope do # check scope

12 STACK.pop() # drop exited scope

13 if addr ∈ loop_entries then # loop start

14 add_scope(id , loop_scope(addr))
15 S ← CFG[addr] # get successors of addr from CFG

16 if |S| ≥ 2 ∧ S ⊆ STACK[-1].scope then
# start of a conditional scope

17 add_scope(id , cond_scope(addr))
# attach eventual watchpoint hits

18 foreach idx ∈ watchpoint_hits(id) do
19 TREE[STACK[-1].id].append(idx)

branches that do not have such indices at all. We keep only the last access to each byte of the
input bu�er and discard others. In a separate step, we remove all branches in the tree that do
not end with an input bu�er index, resulting in our desired derivation tree.

Let us consider the JSON array parser in Listing 5.1 as an example for typical parser code.
The function parse_val consecutively tries to match the character at the current cursor
position within a large switch statement. When the value starts with a square bracket, it calls
the parse_array function, if nothing matches it parses the current value as a number. The
function parse_array �rst checks if the character at the current cursor ends the array with
a closing squared bracket and returns if that is the case. If not, it repeatedly calls parse_val
as long as values are followed by a comma. If it reads a closing squared bracket, it ends the loop
and returns.

Figure 5.4 shows the derivation tree that our approach recovers with the explained algorithm
from the JSON parser code processing the string ‘[1,2,3]’. The inner nodes of the tree represent
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Listing 5.1: JSON parser (array parser excerpt). Adopted from [Sch17].
1
2 int parse_val(char ** cursor ) {
3 ...
4 switch (** cursor) {
5 ...
6 case ’[’: {
7 ++(* cursor );
8 valid = parse_array(cursor );
9 break;

10 }
11 default: {
12 double number = strtod (* cursor );
13 ...
14 }
15 }
16 }
17 int parse_array(char** cursor) {
18 ...
19 int valid = true;
20 if (** cursor == ’]’) {
21 ++(* cursor );
22 return ;
23 }
24 while (valid) {
25 valid = parse_val(cursor );
26 if (!valid) break;
27 ...
28 if (has_char(cursor , ’]’)) break;
29 else if (has_char(cursor , ’,’)) continue;
30 else valid = false;
31 }
32 ...
33 }
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Figure 5.4: Recovered derivation tree from JSON with input ‘[1,2,3]’ using Algorithm 2.

functions or control �ow structures of functions. Since we cannot simply distinguish between
switch statements and if/else constructs in a trace, all conditional branches are named as “if ”
e.g. the case statement of function parse_val is identi�ed as parse_val:if1. Similarly, we name
label all �avors of loops, e.g. while, do while, and for loops, as “loop”. Mimid puts each new
iteration of a loop on the same level in the tree. Our approach di�ers from Mimid in treating
multiple loop iterations. Notably, we can see that the program processes digits followed by a
comma in the loop parse_array:loop1 and that our approach attaches subsequent loop iterations
as a child branch of the previous one. From our observation, loops in parsers are usually not
limited by a constant value, but consume input until a certain character is reached. For instance,
in the case above, the parse_array:loop1 loop ends reading the character ‘]’. Nesting the loop
iterations leads to more generalizing grammars, as we explain in the next section. The resulting
tree expresses at what point the program uses which characters of the input bu�er.

5.1.5 From Derivation Trees to a Grammar

Given a derivation tree, we can derive a context-free grammar by treating all leaf nodes as
terminals, all inner nodes as non-terminals, and create production rules for each inner node to
the concatenation of all its child nodes. We can merge multiple grammars by union the sets of
variables, terminals, and productions. The resulting grammar matches the input language of
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the program as long as all inner nodes of the derivation tree with the same name are compatible
with each other. Hence, interchanging them still results in accepted inputs. In practice, however,
this is rarely the case.

Like Mimid, we use an active learning stage, where we examine exactly this compatibility
among identically named nodes. For each pair of identically named nodes (a, b), we:

1. Replace the subtree of node b with the one of node a.

2. Extract the resulting input string.

3. Check if the target program can parse the input.

Additionally, we cross-check if node a is replaceable by node b. If in both cases the program
accepts the input, we consider the nodes compatible and assign them a common name, if not, we
assign di�erent names. Since we process all possible pairs of nodes, the worst case complexity
of this approach is quadratic.

Applying this process to the derivation tree in Figure 5.4, we �gure out that all parse_val
nodes are interchangeable. In contrast, the �rst has_char node is not compatible with the last
has_char node, and we need to distinguish them in the resulting grammar.⟨START⟩ ::= ⟨json_parse⟩⟨json_parse⟩ ::= ⟨parse_val⟩⟨parse_val⟩ ::= ‘[’⟨parse_val:if1⟩ | ‘1’ | ‘2’ | ‘3’⟨parse_val:if1⟩ ::= ⟨parse_array⟩⟨parse_array⟩ ::= ⟨parse_array:loop1⟩⟨parse_array:loop1⟩ ::= ⟨parse_val⟩⟨has_char1⟩⟨parse_array:loop1⟩ | ⟨parse_val⟩⟨has_char2⟩⟨has_char1⟩ ::= ‘,’⟨has_char2⟩ ::= ‘]’

Figure 5.5: The grammar derived from the tree in Figure 5.4.

Figure 5.5 shows the preliminary grammar derived from the derivation tree in Figure 5.4. We
can see that the has_char node appears as ⟨has_char1⟩ and ⟨has_char2⟩ in the resulting grammar,
depending on whether another loop iteration ⟨parse_array:loop1⟩ follows. The grammar can
already serve for generating valid JSON arrays of arbitrary length, including nested arrays and
the digits 1, 2, and 3.

Usually, we have multiple seed inputs and therefore multiple derivation trees to learn a
grammar from. For a correct grammar, we have to apply the aforementioned active learning
steps on all equally named nodes across all obtained derivation trees. Then, we simply merge
the individual grammars into a single one.
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However, the mined grammar is still cluttered and by far not minimized. To clean the grammar,
we remove non-terminals with single rules and replace them with their children accordingly.
Additionally, we use the Mimid algorithm to generalize terminal symbols by replacing them
with prede�ned dictionaries of symbols (digits, letters, punctuation) and verifying that the
program still accepts generated inputs. Finally, we check if we can replace a symbol with
multiple characters and insert appropriate replication rules.

5.2 Implementation

Our implementation consists of the Tracer component that takes care of generating traces for
di�erent systems and the Miner component that exercises the recovering of the control �ow
graphs, the control �ow structures, the derivation trees, as well as performing active learning
steps adopted from Mimid.

5.2.1 Tracer

We use the Python pygdbmi package to control the execution of the target system or program via
GDB debug commands. Common instruction set architectures support one to sixteen hardware
watchpoints [Gre+12], forcing us to trace each seed input repeatedly while sliding a window of
available watchpoints over the input bytes. For Linux user programs, Valgrind [NS07] o�ers the
usage of an unlimited amount of virtual watchpoints. It does so by letting the target program
run in an emulator leading to precise control over all its memory accesses. This allows us to
cover each byte of the input bu�er individually with a watchpoint to recognize accesses during
tracing on Linux. Another option would be, e.g., QEMU’s user mode emulation [Bel05].

To save time, we only single-step through functions we are interested in. Therefore, we start
tracing at a manually de�ned entry function and stop tracing when we step out of the entry
function or at a manually de�ned exit point. Additionally, we o�er to blacklist functions that
get skipped during tracing. When a called function f matches the blacklist regular expression,
the tracer skips f including any subroutines using the GDB �nish command, which continues
the execution until f exits (step out). Frequent blacklist candidates, for instance, are functions
like malloc or free. De�ning the location of the input bu�er in form of a symbol name or
memory address also is a manual task. While this sounds like tedious work, the proceeding
therefore is quite simple when using the �nd function of GDB to locate input bytes in memory:

1. Start the program with GDB, set a breakpoint to the main function, and continue the
execution.

2. Step through the program until the �nd function of GDB �nds the input we execute the
program with. Note the address of the found input bu�er.

3. Set a watchpoint to the �rst address of the input bu�er.

4. Restart the program, wait for a watchpoint hit, and take the �rst address of the current
function or the function on the stack as entry point.
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5. Take the address of the last instruction of the chosen entry function as exit point.

Alternatively, a suitable entry function and the corresponding input bu�er can be determined
from reading function signatures when there is source code available.

The entry point, the blacklisted functions, as well as the input bu�er location are de�ned by
their symbol names or alternatively by their actual addresses. The latter is of interest when
tracing a binary program without debug symbols.

A concrete trace consists of a list of trace entries that each logs the current address, function
name, function arguments, stack, and eventual watchpoint hits.

Since we rely on single stepping for generating the traces, we require the watchpoint im-
plementation to trigger interrupts even during that operation mode, which unfortunately is
not true for the ARMv7 debug unit [ARM21]. We therefore have to investigate the state of the
watchpoint registers after every single-step. On ARMv7 processors the corresponding bit is
in the DWT_FUNCTION register, which we can simply read with the GDB examine command.
Therefore, after every single step, we examine the corresponding bits of the debug unit and
attach eventually triggered watchpoint events to the current trace entry.

5.2.2 Miner

The miner component starts with a set of raw traces and �rst recovers the control �ow graphs
of functions in the target program, as explained in Section 5.1.2. Next, it extracts all natural
loops, as explained in Section 5.1.3. With these prerequisites, we now exercise Algorithm 2 to
obtain a derivation tree for each of the traces.

As detailed in Section 5.1.5, the next task for the miner component is to discover compatible
subtrees from the set of derivation trees. Therefore, we require the program to re�ect whether
the input was valid or not during or after execution. On Linux programs, we simply consider
the input to be valid if the exit code is zero, which is the common convention. For embedded
programs, however, we require a protocol-speci�c feedback mechanism. Error codes or behavior
is common for most protocols. However, we simply stick to a serial connection that responds
with zero when the input is valid or a negative number if parsing fails for our evaluation setup.
This feedback oracle su�ces to exercise active learning steps, as explained in Section 5.1.5.

5.3 Evaluation

For evaluating GDBMiner, we �rst consider the eleven programs listed in Table 5.6 as
a case study for our evaluation, along with handwritten golden grammars that cover the
program’s input speci�cations. We obtained these from the published replication pack-
ages from Mimid [GMZ20] and the referenced open source repositories. The programs
thereby use language-speci�c control �ow structures, such as setjmp and longjmp in
C, std::exception and std::visit in C++, and Rust’s match and std::result
mechanisms.
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Table 5.6: Programs for our case study.

Program Accepted input PL Origin

From Cmimid replication package

cgidecode CGI-style escaped strings. C [GMZ20]

json JSON format. C [GMZ20]

mjs Micro Java Script programs. C [GMZ20]

tinyc TinyC programs. C [GMZ20]

Our additional selection of programs

calc Arithmetic operations. C [Bui10]

xml XML format. C [Hel13]

calcrs Arithmetic operations. Rust Original

jsonrs JSON format. Rust [Lin16]

calccpp Arithmetic operations. C++ [Fah17]

jsoncpp JSON format. C++ [Oku09]

xmlcpp XML format. C++ [Kal06]

The informed reader surely recognizes that XML is not a context-free format because it
requires matching opening and closing tags of arbitrary length.1 However, we adhere to the
subset of XML from [KLS21] for our evaluation, which limits possible tags to the characters a,
b, c, d. In practice, programs usually consume inputs with such a limited set of possible tags,
making them context-free and suitable for our approach.

We compile all programs in debug mode (-O0) to keep most of the structure from the source
code, all symbol names, and most importantly a consistent stack at all times. We examine stack
frames during tracing to determine function calls and return addresses, which get messed up
when using compiler optimizations. Using reverse engineering tools like Ghidra [Nat19] would
allow GDBMiner to operate on optimized or even obfuscated binaries, but that is out of scope
for this work.

As in [GMZ20; KLS21] we measure the quality of the mined grammars as precision and
recall values. We therefore generate 1,000 inputs from the mined grammars and test how many
generated inputs the target program accepts. The resulting precision value therefore is the
number of accepted inputs divided by the number of tested inputs. Subsequently, we generate
1,000 inputs from the golden grammar and test how many of them are parsable by the mined

1Can be shown with the Pumping Lemma.
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grammars, using the Early parsing algorithm [Ear70]. The corresponding recall value is the
number of parsable inputs divided by the number of generated inputs.

Achieving a high precision score alone is easy, because one can trivially construct a grammar
that just generates the seed inputs leading to 100% precision. On the other hand, simply getting
a high recall value is easy as well, because a grammar that can generate any string gets a recall
value of 100%. The harmonic mean between precision and recall values, known as F1-score,
condenses the two performance values into a single accuracy value we use to compare the
di�erent approaches.

5.3.1 Resulting Grammars

First, we have a look at grammars that GDBMiner creates. Figure 5.7 shows a grammar

⟨START⟩ ::= ⟨parse_sum.0-1⟩⟨parse_sum.0-1⟩ ::= ⟨parse_mult.0-1⟩ | ⟨parse_mult.0-1⟩ ⟨parse_sum.1-0-c⟩⟨parse_sum.0-1⟩⟨parse_mult.0-1⟩ ::= ⟨parse_primary.0-c⟩ | ⟨parse_primary.0-c⟩ ⟨parse_mult.0-0-c⟩⟨parse_mult.0-1⟩⟨parse_sum.1-0-c⟩ ::= ‘+’|‘-’⟨parse_primary.0-c⟩ ::= ‘(’⟨parse_sum.1-1⟩ | ⟨DIGIT_s⟩⟨parse_mult.0-0-c⟩ ::= ‘*’|‘/’⟨parse_sum.1-1⟩ ::= ⟨parse_mult.0-1⟩ ⟨parse_sum.1⟩⟨parse_sum.1⟩ ::= ‘)’ | ⟨parse_sum.1-0-c⟩ ⟨parse_sum.1-1⟩⟨DIGIT_s⟩ ::= ⟨DIGIT⟩ | ⟨DIGIT⟩ ⟨DIGIT_s⟩⟨DIGIT⟩ ::= ‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’

Figure 5.7: Mined grammar for valid math expressions.

mined by GDBMiner from the calc program using 20 seed inputs. We can see that GDBMiner
recovered the recursive nature of mathematical expressions and that it can generate arbitrary
deep expressions, e.g. with the sequence of non-terminals ⟨START⟩ → ⟨parse_sum.0-1⟩ →⟨parse_mult.0-1⟩ → ⟨parse_primary.0-c⟩ → ⟨parse_sum.1-1⟩ → ⟨parse_mult.0-1⟩. With ten
non-terminals and 26 production rules, the mined grammar comes close to the handwritten
grammar, which requires six non-terminals and 21 production rules. More importantly, the
resulting grammar is correct and has reasonable names for non-terminals.
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Table 5.8: Precision values in percentage averaged from 30 runs.

Program Cmimid Arvada GDBMiner

cgidecode 100±0 100±0 100±0
json 100±0 82.89±6.81 100±0
mjs 98.01±3.77 87.59±11.19 91.67±6.47
tinyc 100±0 78.07±15.02 67.15±9.28
calc 100±0 99.99±0.06 100±0
xml N/A 31.13±14.46 98.59±0.52
calcrs N/A 100±0 100±0
jsonrs N/A 76.53±9.03 97.20±3.75
calccpp N/A 100±0 99.86±0.75
jsoncpp N/A 78.48±8.40 100±0.
xmlcpp N/A 50.41±23.90 96.41±1.80

Takeaway 9

Grammars from GDBMiner are human-readable.

5.3.2 Comparison against State of the Art

Next, we want to compare GDBMiner against the current state-of-the-art grammar miners
Mimid [GMZ20] and Arvada [KLS21]. We therefore compile the programs as Linux user ap-
plications that read input from stdin and return a non-zero value if the parsing fails. Our test
hardware for this part of the evaluation is a server with four Intel Xeon Gold 6144 CPUs and
1.48 TB of RAM.

As in [KLS21] we randomly generate 20 seed inputs from the golden grammar and let the
three grammar mining approaches operate on exactly the same set of seed inputs. We repeat
each experiment 30 times to compensate for the probabilistic nature of seed generation and the
approaches itself, average the achieved precision and recall values, and calculate the standard
deviation.

Table 5.8 shows the achieved precision values. Cmimid achieves the highest precision on all
the �ve programs it can compile. Deriving input grammars from control �ow is very precise,
but Cmimid has high requirements that the xml C source code does not ful�l. Cmimid does not
support C++ and Rust at all.
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Table 5.9: Recall values in percentage averaged from 30 runs.

Program Cmimid Arvada GDBMiner

cgidecode 100±0 93.62±3.05 100±0
json 52.08±7.41 66.32±12.34 61.70±10.32
mjs 57.96±31.56 59.38±40.98 82.66±27.56
tinyc 50.95±9.95 58.23±32.29 2.33±1.10
calc 4.65±0.75 100±0 100±0
xml N/A 86.20±15.47 76.20±9.78
calcrs N/A 100±0 100±0
jsonrs N/A 60.89±12.74 56.21±11.31
calccpp N/A 100±0 100±0
jsoncpp N/A 70.90±10.45 66.07±8.23
xmlcpp N/A 94.83±10.67 95.92±5.13

Takeaway 10

GDBMiner is more versatile than Mimid, yet achieves similar precision.

As a black-box approach, Arvada is easily applicable but delivers mixed precision results only.
GDBMiner obtains the best precision on nine out of the eleven test programs. This is not
surprising, as it is similar to the Mimid approach but much more versatile.

Takeaway 11

GDBMiner generates more precise grammars than Arvada.

Looking at the averaged recall results in Table 5.9, Arvada achieves best values on seven out
of the eleven programs, while GDBMiner is mostly close behind and has best results on �ve.
One outlier is GDBMiner on the tinyc program. Looking into the implementation, we can see
that tinyc employs a lexer stage, which �rst translates input characters into prede�ned tokens.
The actual parsing operates not the input bu�er, but on the stream of tokens. Since GDBMiner
can only track accesses to the input bu�er, it looses track between input characters and their
point of consumption in the program. Consequently, the derivation tree gets �awed, and the
subsequent mining step can not generalize reasonably. Cmimid works around that limitation
by explicitly following token compares on programs with preprocessing lexer stages, using
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Table 5.10: F1-scores in percentage averaged from 30 runs.

Program Cmimid Arvada GDBMiner

cgidecode 100 96.70 100

json 68.49 73.68 76.31

mjs 72.85 70.78 86.93

tinyc 67.50 66.71 4.50

calc 8.88 99.99 100

xml N/A 45.74 85.96

calcrs N/A 100 100

jsonrs N/A 67.82 71.23

calccpp N/A 100 99.93

jsoncpp N/A 74.50 79.57

xmlcpp N/A 65.82 96.17

dynamic taint tracking. A generic taint tracking stage that works under our limited assumptions
would be required to �x this inability of GDBMiner. However, only mining on a single of our
case study programs would bene�t from such a step, and therefore we keep GDBMiner’s tracing
stage simple and refrain from more complex analysis.

Compiling the averaged F1-scores in Table 5.10, we can see that GDBMiner achieves the
highest score on nine out of the eleven targets of our case study. Mined grammars with highF1-scores signify that generated inputs are most likely valid but also cover a large portion and
wide variety of available input features. Not surprisingly, we found that using more input seeds
leads to higher recall values, because they have higher chances of covering more input features.
Using 20 seeds, as done in [KLS21], seems to be a reasonable amount for all our case study
programs, but an optimal value highly depends on the target program and diversity of the seeds.

Takeaway 12

GDBMiner yields most of the best accuracy scores.

The time needed to mine the grammars is rather unimportant as long as it remains within a
usable frame. Nevertheless, we would like to concede that Arvada and Cmimid require only a
few minutes for the runs, while GDBMiner can take several hours. This is taken to the extreme
when mining on embedded hardware, which is why we will examine the temporal behavior
closer in the next section.
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Table 5.11: Performance of GDBMiner on embedded hardware.

Program Precision Recall Tracing (hh:mm:ss) Mining Time (hh:mm:ss)

cgidecode 93.9% 97.5% 01:09:50 00:00:48

json 99.3% 88.1% 03:29:14 00:02:24

xml 99.4% 93.5% 33:35:21 01:12:37

5.3.3 Evaluation on Embedded Programs

Next, we evaluate GDBMiner under the restricted conditions of embedded systems. We therefore
choose the B-L475E-IOT01A Discovery kit for IoT from STMicroelectronics as a representative
platform. It features an ARM Cortex-M4 core, several sensors and interfaces, six hardware
breakpoints, four hardware data watchpoints, and an on-board debug probe. For our case study,
we build programs for evaluating GDBMiner on embedded hardware using the cross-platform
framework platformIO [Kra14]. We use libraries from its dependency management system for
parsing cgidecode [Ota23], json [Ard22b], and xml [Kak21] data. The applications fetch input
via the serial interface, run the corresponding parser functions, and return zero if the input was
valid or a negative number else.

Tracing on embedded hardware with a limited amount of hardware watchpoints is signi�-
cantly slower than on Linux applications mainly from three reasons:

1. The ARM Cortex-M4 core on our embedded hardware runs at a frequency of 120 MHz
compared to 4.20 GHz of the Intel Xeon Gold 6144 we used in the experiments before.

2. The overhead of the debugging mechanism itself. GDBMiner needs to transfer each
debug command �rst via TCP to a GDB server application, which transmits it via USB
to the debug probe on the development board, and �nally the debug probe forwards
commands via the SWD (Single Wire Debug) protocol to debug unit on the processor.

3. The limited amount of hardware watchpoints forces us to trace each seed input multiple
times. The exact number of traces we need to exercise per seed is determined by the
length of the seed divided by the number of available watchpoints. Tracing a seed with
20 characters and the four available watchpoints requires �ve repetitions.

Again, we generate 20 seed inputs from the golden grammar for each test program, and
calculate precision and recall values of the resulting grammar from 1,000 evaluation inputs.
Additionally, we measure the time elapsed for tracing and mining. Table 5.11, shows that
GDBMiner achieves high precision and recall values across all programs from our case study
within a reasonable amount of time, even under the challenging conditions on our embedded
hardware.
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Takeaway 13

GDBMiner e�ectively mines input grammars even when the number of hardware
watchpoints is limited.

5.3.4 Full-stack case study

Finally, we go through the steps necessary to run GDBMiner on a real-world program and show
what kind of analysis we can do with the resulting grammar. Industry extensively uses open
source programs and to make all steps reproducible we will also demonstrate GDBMiner on an
open source program. We want to emphasize again that GDB is available for most platforms
and architectures, and hence these steps work on any program with a parser. The SVG++
library [Max14] processes Scalable Vector Graphics (SVG) images using di�erent XML parser
backends and includes an application that renders given vector images into a pixel-based image
format. The followings steps are required to apply GDBMiner:

1. Con�gure to build SVG++ in debug mode.

2. Looking at the main function of the render application and ensuring that it reads input
data from a char bu�er.

3. Adopt a demo SVG image from Mozilla’s SVG docs [MDN23] as seed, depicted in Fig-
ure 5.12a.

4. De�ne entry and exit points by source �le line numbers and the char bu�er name.

On our laptop with an Intel i7-10610U CPU, tracing and mining took about 14 hours. The
resulting grammar is compatible with the fuzzingbook’s grammar fuzzer [Zel+19]. A collection
of generated images is shown in Figure 5.12b to visually express the diversity possible with
grammar-generated inputs.

The grammar allows us to perform the following types of static and dynamic program analysis.

1. We can generate an unlimited number of random, but valid SVG images to test the SVG
renderer looking for inputs causing timeouts or crashes. Indeed, many of our generated
inputs cause hangs when de�ned shape sizes are too huge. A robust render application
should cope with any input image, in our opinion, which is why we consider this behavior
as buggy. For the following analysis, we alter the grammar to let numbers consist of one
to three digits, only.

2. We analyze the grammar alone and reveal that any attribute within a node can be re-
de�ned arbitrarily times, such as multiple fill=<color> for the same shape node.
The alternative XML parser backend of SVG++ does not allow attribute rede�nitions,
resulting in a di�erent grammar. However, it is the programmer’s decision whether this
poses valid behavior.
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(a) SVG seed image. (b) Fuzzed images from mined grammar.

Figure 5.12: Mining and fuzzing a grammar of an SVG renderer.

3. We also compare the result of various SVG renderers to reveal di�erences. Again, we
found that the default XML parser of the SVG++ library accepts rede�nitions of node
attributes, while the alternative XML backend, as well as Mozilla Firefox’s SVG parser
throw an error on rede�nitions.

5.3.5 Threats to Validity

Like any empirical study, ours is subject to threats to validity.

External validity refers to the generalizability of research �ndings beyond the speci�c study
context. While our subjects cover a number of features in input languages, they in no way
can be representative for all input languages used—a data set that is not known. We think,
however, that the restrictions placed by Cmimid on the C source code are unlikely to be
met by most C programs; and we also think that tools like Arvada, which do not take
the input-processing program into account, are by construction limited in their ability
to infer a source language. While our results may not be representative, they at least
con�rm these assumptions.
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Internal validity refers to the degree to which a study provides causal conclusions about the
relationship between variables. To minimize the risk of systematic errors, we veri�ed
that our miners produce the required results on a small set of sample programs before
applying it to the full set of targets.

Construct validity refers to the extent to which the variables and measurements accurately
represent the underlying theoretical constructs. For accuracy, we use the standard mea-
sures of precision and recall that have been used in the literature on grammar mining
before [HZ17; GMZ20; KLS21]. As it comes to readability, we are not aware of established
metrics that would capture the readability of grammars; we leave it to the readers to
decide whether they can comprehend the structure.

5.4 Conclusion and Future Work

In this chapter, we presented a practical debugger-driven grammar mining approach, called
GDBMiner, which is able to derive context-free input grammars from any system that can be
debugged with GDB. We explained how we leverage the debugger single-step functionality to
trace programs and use limited amounts of hardware watchpoints to trace input bu�er accesses.
Additionally, we explained how we recover control �ow graphs, reveal control �ow structures,
and recover derivation trees from just the obtained traces. Finally, we showed that we can
transform the recovered derivation trees to receive human-readable and highly precise input
grammars. GDBMiner generates near-perfect precise grammars and compared to state-of-
the-art approaches reaches mostly higher accuracy (F1) scores. We achieve similar results on
embedded hardware using GDBMiner, as well. We �nd that GDBMiner is a versatile solution
to mine precise input grammars from programs small and large, and recommend considering
GDB as a robust and uni�ed interface to a large variety of programs and architectures.

Potential future work could focus on the following topics:

Handle tokenizers. On one of our eleven case study programs, the point of input byte con-
suming mismatches the point of reading it due to a tokenizing stage. Static or dynamic
mechanisms could detect such copying, and thus track bytes accurately in such cases
regardless.

Binary formats. Knowing the proper syntax for input formats is helpful for fuzzing; yet,
there are also semantic constraints to be ful�lled. Further research is required to infer
higher order input speci�cations like ISLa [SZ22], which additionally specify semantic
constraints across inputs, and in turn allow generating semantically valid inputs.

Speedup. GDBMiner is slow, requiring several hours to mine a grammar. Even when if the
resulting grammar can generate myriads of test inputs rapidly e�ciently, and therefore
easily justi�es the initial investment in CPU time, future work could investigate means
to speed up GDBMiner without sacri�cing versatility, notably by leveraging advanced
tracing capabilities of modern microprocessors.
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With the presentation of GDBMiner, we ful�l the industrial demand of versatile and accurate
test data generators.
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6 Closing

After discussing scienti�c contributions to the research community in the previous chapters,
this �nal chapter concludes the dissertation. It encapsulates the main outcomes, highlights the
implications of our research, and �nally outlines potential future work lying ahead.

6.1 Conclusion

Practical application of fuzzing on embedded systems su�ers from major challenges and imped-
iments, as exhaustively explained in this thesis. We learned that:

• Cross-compiling embedded code for fuzzing is e�cient – for hardware-independent code.

• Hardware-tracing approaches are powerful – if the hardware features tracing capabilities.

• Emulation-based fuzzing works great – given the availability of an appropriate emulator.

• Peripheral modeling automates emulation – presently for rather simple peripheral devices.

For all other cases, there were no easily applicable methods for fuzzing embedded systems
prior to ours.

We analyzed the features and characteristics of embedded systems that can support us in
establishing e�cient automated software testing methods on the hardware itself. We identi�ed
single-stepping, along with setting hardware breakpoints and watchpoints, as the bare minimum
of analysis methods available on most microcontrollers. Additionally, we �nd that these debug
features can be controlled in an abstract way via the GDB remote serial protocol. Stripping down
our requirements to just this limited set of features, allowed us to develop novel approaches
that enable fuzzing embedded systems on a scale. We call it debugger-driven embedded fuzzing.

• GDBFuzz demonstrates that coverage-guided fuzzing on embedded systems is possible
by extracting partial code coverage from hardware breakpoints. Already a single break-
point can bene�cially guide fuzzing and the use of dominator relations lowers interrupt
overheads.

• GDBMiner enables learning of highly precise input speci�cations as context-free gram-
mars on any system by tracing the execution with single-stepping and data watchpoints.
Extracted context-free grammars enable grammar-based fuzzing but also serve for verify-
ing input speci�cations.

Both approaches operate on the machine code level, which implicates that missing source code
is not an obstacle, and they are programming language independent. Also, both approaches
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would be deployable in modern continuous integration and continuous delivery pipelines to
allow continuous fuzzing of embedded systems during software development. We are therefore
convinced that both methods can lead to more robust and secure embedded devices in the future.
For transparency, and to foster further research, all code and raw experiment data is publicly
available under:

https://github.com/boschresearch/gdbfuzz
https://github.com/boschresearch/gdbminer

6.2 Future Work

This thesis aims to establish the �eld of debugger-driven embedded fuzzing with lots of remaining
potential for future research beyond GDBFuzz and GDBMiner. For now, we learned that:

1. GDBFuzz aims to maximize reached code coverage with the generated inputs using a
feedback loop.

2. GDBMiner learns input grammars from a program under test, which can subsequently
generate arbitrary amounts of valid test inputs without needing a feedback loop.

Both methods leverage only generic debug primitives, provided by GDB, allowing e�ective
deployment on most embedded systems.

The question arises whether coverage-guided fuzzing and learning input speci�cations are
orthogonal to each other. There are several publications that address both research areas: For
instance, Godefroid et al. [GPS17] showed that code-coverage feedback can guide the learning
of a recurrent neural network to generate diverse and valid PDF �les. Moreover, Le et al. [Le+21]
demonstrate how applying mutations to grammars can enhance their quality. Furthermore,
Blazytko et al. [Bla+19] present an approach to infer generalized input speci�cations during
coverage-guided fuzzing, and in turn leverage the input speci�cations to generate fuzzing inputs.
The learning and the fuzzing task can therefore mutually bene�t from each other. Consequently,
a combination of GDBFuzz and GDBMiner might be an obvious way to further improve testing
of systems.

There are essentially two possible straightforward combinations:

1. Use learned grammars to generate better test cases for coverage-guided fuzzing.

2. Use coverage-guided fuzzing to enhance the set of seed inputs for grammar learning or
the learning step itself.

The use of context-free grammars to enhance coverage-guided fuzzing was shown by Ascher-
mann et al. [Asc+19]. On top of the common mutation-based input generation, their approach
generates inputs using the grammar and performs grammar-aware minimization and mutations
on inputs. An example for a grammar-aware mutations is swapping matching subtrees from the
parse trees of di�erent seed inputs. A similar extension to GDBFuzz using learned grammars
from GDBMiner would require little engineering e�orts. A mutually supportive method like
in [Bla+19] might also be feasible.

Let us careful think through the second option to combine GDBFuzz and GDBMiner:
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1. GDBFuzz grows an input corpus by exploring the input space of the program under test
over time.

2. GDBMiner could reuse this input corpus, as it depends heavily upon seeds that already
cover large parts of the valid input space.

In practice, however, it is easier to derive an invalid input from a valid one using mutations
than vice versa, which is why GDBFuzz mostly generates invalid inputs. Triggering the error
handling code of a program under test increases the code coverage, which additionally guides
GDBFuzz into generating invalid inputs. It is therefore unlikely, but not impossible, that
GDBFuzz can improve a set of seed inputs, such that GDBMiner can learn a more generic
grammar. Obviously, the chances of success depend heavily on the quality of the initial seeds in
this case. Symbolic or concolic approaches may drastically improve chances of reaching new
input language features, but this is beyond the scope of this work.

The thought experiment of synthesizing GDBFuzz and GDBMiner in di�erent ways reveals
the potential for cross-fertilization of ideas and methodologies. The synthesis of these ap-
proaches might open up new avenues for future research. The following – certainly incomplete
– list is a collection of further proximate subtopics and coarse ideas of solutions.

Sanitization. Fuzzing relies on observable faults to �nd bugs. Silent memory corruptions

are hard to detect, because the program does not run into an exceptional state that
re�ects the fault. Memory sanitization is an e�ective method for �nding such memory
faults. However, the required code instrumentation is not available or applicable for a
variety of microcontrollers, in particular when source code is missing. A debugger-driven

memory sanitizer might use hardware watchpoints to observe allocated memory regions
on over�ows. Similar to our presented approaches, such a sanitizer can not observe
all memory bu�ers at once, but only a subset depending on the number of available
watchpoints.

Di�erential Fuzzing. Invalid or unintended outputs of programs also do not manifest them-
selves via exceptions or interrupts. Di�erential Fuzzing leverages at least two di�erent
implementations of the same application and �nd di�erences between them while fuzzing.
Di�erent behavior or output might indicate implementation �aws. There are tons of
protocols de�ned for embedded systems, most with multiple competing implementations,
supplying lots of candidates for di�erential fuzzing. GDBFuzz can thereby generate test
cases by coverage-guided fuzzing, or GDBMiner can learn an input model from one
implementation to generate test inputs for all implementations.

Concolic Execution. A roadblock for coverage-guided fuzzing frequently occurs when parts
of the input must exactly match prede�ned magic values. For instance, a USB CBW frame
starts with 0x55 0x53 0x42 0x42. Guessing such values correctly from scratch is
unlikely. Symbolic execution can cope with such explicit values well, but quickly su�ers
from the path-explosion problem. Concolic execution selectively treats only parts of the
inputs symbolically, to avoid too complex constraints. Debugger-driven concolic execution

could augment debugger-driven fuzzing by applying symbolic execution on basic blocks
that seem hard to reach i.e. the block was targeted often by GDBFuzz, but never reached.
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Collecting the required constraints from the program in dependence of the respective
input can be realized by a single-step pass, similar to how GDBMiner analyzes the system
under test.

Stateful Fuzzing. Coverage-guided fuzzing expects the target program to behave determinis-
tically, meaning that the same input always yields the same coverage-footprint. However,
this might not be true if the system under test maintains a state. Trivially, we can reset or
reboot the system after each test input or sequence of test inputs. However, this comes
with an additional overhead and might prevent the fuzzer from reaching “deep” program
states. Stateful fuzzing maintains awareness of the current state of the system and can
therefore generate test cases more selectively. Learning state machines from a system
under test could therefore lead to more e�ective fuzzing of stateful systems. The state of
a system should be re�ected somewhere in its memory, which is accessible via a debug
probe. Again, we can leverage GDB to analyze the system’s memory during its execution
in order to �nd state re�ecting variables. Observing these, while testing sequences of
inputs would allow extracting a state machine.

Rich Input Specifications. Context-free grammars are great for describing repetitive and
recursive patterns of a language. Nevertheless, these grammars are unable to represent
context-sensitive properties such as check sums or length �elds. Learning richer input

speci�cations from the target program could enable generating massive amounts of valid
inputs for all kinds of programs. Therefore, we require an even deeper analysis than that
of GDBMiner. Instead of only extracting the control �ow, we would need to grasp the
constraints which lead to control �ow decisions, similar to the earlier proposed debugger-
driven concolic execution. These constraints could then augment context-free grammars
mined with GDBMiner, for instance in the ISLa [SZ22] format.

Machine Learning. The number of proposals to use machine learning (ML) for software
engineering and security automation skyrocketed in the past decade. Blindly following
such hypes, however, may lead to premature conclusions regarding the e�ectiveness of
such methods. In [NEZ23], we could show that a �avor of ML-guided fuzzing approaches,
namely neural program smoothing, cannot be as e�ective as claimed from a theoretical
point of view and also underperforms in practice. Nevertheless, there will certainly be
areas where machine learning methods can enhance over traditional ones. For instance,
choosing a promising subset of nodes to probe from the Control Flow Graph in GDBFuzz
could be supported by ML.

As a �nal note, we hope that with our debugger-driven methodology we could open a door
towards generic software analysis methods for embedded systems, and that future methods
will continue to build on this foundation.

Happy Fuzzing!



Abbreviations

CFG Control Flow Graph
DBI Dynamic Binary Instrumentation
DMA Direct Memory Access
DWT Data Watchpoint and Trace
ETM Embedded Trace Macrocell
FPB Flash Patch and Breakpoint
FPGA Field Programmable Gate Array
GDB GNU Debugger
HAL Hardware Abstraction Layer
HDL Hardware Description Language
IoT Internet of Things
JIT Just-in-Time
JTAG Joint Test Action Group
MMIO Memory-Mapped IO
MMU Memory Management Unit
MSC Mass Storage Device Class
PLC Programmable Logic Controller
SPI Serial Peripheral Interface
SUT System under Test
SWD Serial Wire Debug
TCP Transmission Control Protocol
VP Virtual Prototype
SVG Scalable Vector Graphics
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