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Abstract: Head and neck squamous cell carcinomas (HNSCC) have an overall poor prognosis, espe-
cially in locally advanced and metastatic stages. In most cases, multimodal therapeutic approaches
are required and show only limited cure rates with a high risk of tumor recurrence. Anti-PD-1 anti-
body treatment was recently approved for recurrent and metastatic cases but to date, response rates
remain lower than 25%. Therefore, the investigation of the immunological tumor microenvironment
and the identification of novel immunotherapeutic targets in HNSCC is of paramount importance. In
our study, we used tissue samples of n = 116 HNSCC patients for the immunohistochemical detection
of the intratumoral and peritumoral expression of T cell exhaustion markers (PD-1, LAG-3, TIM-3)
on tumor infiltration leukocytes (TIL), as well as the expression level of stromal senescence markers
(IL-8, MMP-3) on tumor-associated fibroblasts. The clinical parameter of the vitamin D serum status
as well as the histopathological HPV infection status of the tumor was correlated with the expression
rates of the biomarkers and the overall patient survival. An increased peritumoral and intratumoral
expression of the biomarkers PD-1 and TIM-3 significantly correlated with improved overall patient
survival. A high peritumoral expression of LAG-3 correlated with better overall survival. A positive
HPV tumor status correlated with a significantly elevated expression of PD-1 and TIM-3. Biomarkers
of stromal senescence showed no influence on the patient outcome. However, the vitamin D serum
status showed no influence on patient outcomes or biomarker expressions. Our study identified
PD-1, LAG-3, and TIM-3 as promising targets of a therapeutic strategy targeting the tumor microen-
vironment in HNSCC, particularly among HPV-positive patients, where a higher expression of these
checkpoints correlated with an improved overall survival. These findings support the potential of
antibodies targeting these immune checkpoints to enhance treatment efficacy, especially in the context
of bispecific targeting.

Keywords: HNSCC; biomarker; TME; HPV; PD-1; LAG-3; TIM-3; IL-8; MMP-3

1. Introduction

Head and neck squamous cell carcinomas (HNSCC) are the sixth-most common
cancer type globally, with 895,000 new cases and 457,000 deaths in 2022 [1]. Major risk
factors include chronic nicotine and alcohol consumption, with a growing contribution
from high-risk HPV infection, particularly in oropharyngeal cancers [2]. Locally advanced
and metastatic HNSCC stages maintain a poor prognosis, with five-year survival rates of
approximately 60% [3].
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The majority of HNSCC patients require multimodal treatment, including surgery,
radiation, and chemotherapy. However, tumor recurrence is common [4] with highly
limited therapeutic approaches for this challenging clinical setting. Recently, two anti-
PD-1 immune checkpoint inhibitors (ICIs), pembrolizumab and nivolumab, have been
approved for the treatment of recurrent and metastatic HNSCC [5] for first-line [6] and
second-line treatment either as a monotherapy or in combination with platinum-based
chemotherapy [7,8]. However, response rates remain at a low level, around 25%, and
resistance to immune-checkpoint inhibition is frequently observed over time. The limited
clinical success of the currently approved immunotherapeutic strategies underscore the
need for further research in head and neck cancer immuno-oncology, particularly as HNSCC
is among the most immune-infiltrated human cancers [9,10]. In the context of possible
adjuvants, vitamin D has been shown in preclinical and retrospective clinical studies to
be a positive prognostic marker, as well as a possible agent for increasing response rates
due to its immunomodulatory properties [11,12]. Furthermore, the molecular processes
of T cell exhaustion and stroma senescence as potential mechanisms of evading immune
surveillance and an antitumoral immune response came into the spotlight over the past
years with, however, only limited data in head and neck cancer so far [13,14].

T cell exhaustion represents a state of T cell dysfunction that arises during chronic
infections and cancer development. It is defined by poor T cell effector function, a high ex-
pression of inhibitory checkpoint receptors including CTLA-4, PD-1, TIM-3, BTLA, VISTA,
and LAG-3 [15], and an altered transcriptional program. LAG-3, a key checkpoint receptor
alongside PD-1 and CTLA-4, promotes tumor growth by inhibiting the immune response at
high expression levels [15]. Similarly, TIM-3, which is highly expressed in tumor-infiltrating
lymphocytes, suppresses anti-tumor immunity through its interaction with Galectin 9 in
various cancers [16]. Overall, T cell exhaustion was shown to be associated with the ineffec-
tive immunological control of chronic infections and several cancer types [17,18] including
melanoma [19], chronic myeloid leukemia [20], ovarian cancer [21], and non-small cell
lung cancer [22].

In addition to tumor-infiltrating leucocytes, peritumoral stromal tissue represents the
major component of the tumor microenvironment (TME). Peritumoral stroma primarily
consists of cancer-associated fibroblasts (CAFs) and an extracellular matrix (ECM) and
was shown to have a relevant role in cancer progression through cell–cell and cell–matrix
interactions in different cancer types [23]. Cancer development and progression as well
as tumor treatment can induce stromal changes and lead to the accumulation of senes-
cent stromal cells that are characterized by the so-called senescence-associated secretory
phenotype (SASP). Those senescent stromal cells produce and secret a multitude of small
molecules including cytokines, growth factors, and ECM components, which can create an
immunosuppressive, inflammatory TME that may promote tumor growth and metasta-
sis [24]. Among those secreted small molecules, matrix metalloproteinases (MMPs) modify
the ECM, contributing to premature stroma aging, and are involved in angiogenesis, which
promotes cancer cell growth and migration [25]. Another important factor in TME is IL-8,
which is a chemokine with various pro-tumorigenic functions within the TME. It promotes
tumor cell proliferation and transformation into migratory or mesenchymal phenotypes,
angiogenesis, and the recruitment of immunosuppressive cells [26].

Against this background, we investigated the expression of five surrogate markers of
T cell exhaustion (PD-1, TIM-3, LAG-3) and stromal senescence (IL-8, MMP-3) in a cohort of
n = 116 HNSCC patients. By correlating the biomarker expression with the patients’ clinical
and histopathological data as well as vitamin D status, we aimed to gain new insights into
head and neck cancer tumor and immunological biology as well as potentially identify new
therapeutic strategies targeting the tumor microenvironment.
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2. Results
2.1. Expression of T Cell Exhaustion and Stromal Senescence Markers Correlates with HPV Tumor
Status but Not Vitamin D Serum Level

In an initial step, a semiquantitative analysis of intratumoral immunohistochemical
staining targeting the five biomarkers PD-1, TIM-3, LAG-3, IL8, and MMP-3 was performed,
followed by an assessment of peritumoral staining. The analysis revealed distinct differ-
ences in expression levels, ranging from negative or minimal staining (score 0–1) to high
levels of staining (score up to 12). A representative illustration is provided in Figure 1,
where, on the left, low expression levels are demonstrated by a corresponding low number
of positively stained cells and a weak staining intensity. On the right, tumors and the
TME exhibit a significantly stronger staining intensity and a higher number of positively
stained cells. A subsequent analysis of immune cell infiltration patterns with respective
IHC biomarker staining in the peritumoral and intratumoral region is presented in Figure 2,
highlighting the variability in the degree of infiltration across the tumor microenvironment.
The intratumoral and peritumoral biomarker expression was correlated with the HPV
tumor status (positivity defined as p16+ and HPV-DNA+), as well as the 25-OH-vitamin D
serum level (VitD low ≤ 10 ng/mL; VitD high > 10 ng/mL).
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Figure 1. IHC representation of immune markers LAG-3, TIM-3, PD-1, IL-8, and MMP-3 (A–E). The 
images illustrate representative sections of the tumor as well as the tumor microenvironment. On 
the left side, a low immune reactive score (IRS) is depicted, characterized by a small number of 
positively stained cells and a weak staining intensity. On the right, a correspondingly high IRS is 
shown. In panels D and E, arrows indicate positively stained cells. The intratumoral regions are 
identified by tumor cell nests, while the peritumoral stroma is shown accordingly. Magnification: 
10×. 

Figure 1. IHC representation of immune markers LAG-3, TIM-3, PD-1, IL-8, and MMP-3 (A–E). The
images illustrate representative sections of the tumor as well as the tumor microenvironment. On the
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left side, a low immune reactive score (IRS) is depicted, characterized by a small number of positively
stained cells and a weak staining intensity. On the right, a correspondingly high IRS is shown. In
panels D and E, arrows indicate positively stained cells. The intratumoral regions are identified by
tumor cell nests, while the peritumoral stroma is shown accordingly. Magnification: 10×.

Figure 2. Correlation of the expression of T cell exhaustion and stroma senescence biomarkers with
HPV tumor status and vitamin D status. (A,B) IRS of LAG-3 depending on HPV and vitamin D
status. (C,D) IRS of TIM-3 depending on HPV and vitamin D status. (E,F) IRS of PD-1 depending
on HPV and vitamin D status. (G,H) IRS of IL-8 depending on HPV and vitamin D status. (I,J) IRS
of MMP-3 depending on HPV and vitamin D status. Statistical analysis was performed using the
Mann–Whitney U test in all cases. The black dots symbolize one patient each, and the red lines show
the median with the interquartile range.

Here, HPV-positive tumors showed a significant increase in both the peritumoral and
intratumoral expression of the T cell exhaustion markers PD-1 (p = 0.0142, peritumoral
median IRS of 0.0 vs. 0.5; p = 0.0344, intratumoral median IRS of 0.0 vs. 0.0) and TIM-3
(p = 0.0180, peritumoral median IRS of 6.0 vs. 3.5; p = 0.0315, intratumoral median IRS of
4.0 vs. 2.5) as shown in Figure 2. The LAG-3 expression demonstrates a clear tendency
toward increased levels in association with HPV infection; however, statistical significance
was not reached, with p = 0.21 for peritumoral and p = 0.12 for intratumoral regions
(median IRS of 2.0 vs. 1.0 peritumoral and 2.0 vs. 1.0 intratumoral). By contrast, HPV
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infection resulted in a highly significant suppression (p = 0.0076) of MMP-3 expression on
intratumoral TILs (median IRS of 1.5 vs. 3.0), while the expression on peritumoral TILs
remained unchanged. No influence of the HPV tumor status on the fibroblast expression of
stroma senescence surrogate markers could be observed. Regarding the patients’ vitamin
D status, none of the analyzed biomarkers showed a significant correlation with vitamin
D supply. However, there was a trend toward increased expression levels of PD-1, TIM-3,
and LAG-3, and a decreased expression level of MMP-3 in VitD-high patients compared
to VitD-low patients. For LAG-3, the intratumoral median IRS was 1.0 in both groups,
while the peritumoral median IRS was 1.5 in VitD-low and 1.0 in VitD-high patients. TIM-3
showed intratumoral median IRS values of 2.5 for VitD-low and 3.0 for VitD-high patients,
with a consistent peritumoral IRS of 3.5 in both groups. For PD-1, the intratumoral median
IRS was 2.0 in VitD-low patients and 3.0 in VitD-high patients, while the peritumoral IRS
was 1.5 in both groups. The IL-8 expression showed no variation, with intratumoral and
peritumoral IRS values of 2.0 and 1.5, respectively, for both groups. Lastly, MMP-3 had a
higher intratumoral IRS in VitD-low patients (3.0) compared to VitD-high patients (2.0),
with identical peritumoral IRS values of 2.5 for both groups. No significant differences
were observed across all biomarkers analyzed.

2.2. High Levels of PD-1, LAG-3, and TIM-3 Expression Predict Improved Overall
Patient Survival

Looking at the potentially prognostic relevance of the analyzed surrogate markers of T
cell exhaustion and stroma senescence, we found significant correlations only for the T cell
exhaustion markers PD-1, TIM-3, and LAG-3. Here, a high expression of PD-1 (defined by
a PD-1 expression above the statistical mean of all samples) correlated with a significantly
improved overall survival. PD-1-high patients showed a two-year overall survival of
87% in contrast to 58% in the PD-1-low group. This correlation was significant for PD-1
expression on both peritumoral (p = 0.0101) and intratumoral immune cells (p = 0.0266,
Figure 3E,F).

A similar trend was observed for TIM-3: a high peritumoral TIM-3 expression showed
a highly significant (p < 0.0001) overall survival benefit compared to low peritumoral TIM-3
expression. The two-year overall survival within these groups was 86% (TIM-3 peritumoral
high) vs. 51% (TIM-3 peritumoral low). For TIM-3 expression on intratumoral immune
cells, comparable effects were shown. Moreover, a significant survival advantage was
observed for highly expressed LAG-3 on peritumoral TILs with a two-year survival of
77% (LAG-3 peritumoral high) vs. 56% (LAG-3 peritumoral low). However, no signifi-
cant overall survival advantage was observed for a high intratumoral LAG-3 expression
(p = 0.34).

By contrast, there was no significant correlation with the patients’ overall survival
regarding the expression of the stromal senescent markers MMP-3 and IL-8 on intra- and
peritumoral fibroblasts (Figure 3G–J).

2.3. Positive HPV Tumor Status but Not Vitamin D Serum Level Predicts Improved Overall
Patient Survival

The overall survival of the included HNSCC patients was correlated with the HPV
tumor status and vitamin D status. We could show that HPV-positive HNSCCs showed a
significantly better prognosis, with an overall survival rate of 85% after 2 years, compared
to 55% in HPV-negative cases. For vitamin D, a trend towards improved overall survival
in VitD-high patients compared to VitD-low patients was observed, particularly within
the first 24 months after diagnosis (Figure 4). However, no statistical significance could
be achieved.
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Figure 3. Overall survival of HNSCC patients depending on intratumoral and peritumoral expression
of T cell exhaustion and stroma senescent biomarkers. Patient overall survival depending on LAG-3
expression (A,B), TIM-3 expression (C,D), and PD-1 expression (E,F) on intratumoral (left image)
and peritumoral TILs (right image), respectively. From (G–J), the influence of intratumoral (left
image) and peritumoral (right image) expression of stroma senescence markers on tumor-associated
fibroblasts on overall survival is shown (G,H) for IL-8; (I,J) for MMP-3. The log-rank test (Mantel–
Cox) was used for the statistical analysis in each case. Censored data are indicated as black dots on
the Kaplan–Meier curves.



Int. J. Mol. Sci. 2024, 25, 13490 7 of 15

Figure 4. Patients’ overall survival depending on HPV tumor status and vitamin D status. (A) Illus-
tration of overall survival as a function of HPV tumor status. (B) Illustration of overall survival as a
function of vitamin D status. The log-rank test (Mantel–Cox) was used for the statistical analysis in
each case. Censored data are indicated as black dots on the Kaplan–Meier curves.

3. Discussion

HNSCCs are among the most common cancers worldwide, presenting a substantial
social and economic burden [1]. Advanced-stage HNSCCs have limited treatment options
and are associated with a poor prognosis [3]. Immune checkpoint inhibitors (ICIs) such as
the PD-1/PD-L1 axis blockade provide new therapeutic options for recurrent or metastatic
HNSCCs, but response rates remain modest with clinically relevant remissions being
observed in less than 25% of cases [9,27]. Hence, new immunotherapeutic strategies are
urgently needed and have been intensively studied over the past years with an increasing
focus on the immunological and non-immunological tumor microenvironment [28]. The
PD-1 pathway enables tumor cells to evade immune surveillance and resist treatment [29].
Anti-PD-1/PD-L1 antibodies have shown promise as checkpoint inhibitors, with overall
low response rates, and adverse events have been noted, underscoring the need for a better
understanding of the PD-1-mediated immunosuppression of cancer [29].

In this context, we investigated the expression of the T cell exhaustion markers PD-1,
TIM-3, and LAG-3 on intra- and peritumoral TILs as well as the expression of the stroma
senescence markers IL-8 and MMP-3 on intra- and peritumoral tumor-associated fibroblasts
in a cohort of n = 116 HNSCC patients. We found a significant survival benefit for patients
with an increased expression of the T cell exhaustion markers PD-1, LAG-3, and TIM-3
on intra- and peritumoral immune cells while the expression of the stroma senescence
markers MMP-3 and IL-8 on intra- and peritumoral fibroblasts showed no influence on the
patient outcome.

Considering the prognostic value of the aforementioned biomarkers in head and neck
cancer, current literature evidence remains sparse with only a few studies including in most
cases only a limited subset of patients.

The immune markers LAG-3, TIM-3, and PD-1 were examined in a multicenter study
by Zou et al. in head and neck lymphoepithelioma-like carcinomas [30]. TIM-3 and LAG-3
were co-expressed with markers like PD-L1, B7H3, IDO-1, and VISTA, indicating a role in
immune regulation within the tumor microenvironment. However, high expressions of
these biomarkers were linked to worse disease-free and overall survival. The contrast to
our findings may be linked to the relationship between checkpoint inhibitor expression
and HPV infection. In HPV-positive HNSCCs, a higher expression of markers like TIM-3
and LAG-3 suggests a more active immune environment, potentially leading to a better
response to checkpoint blockade therapy. HPV-positive tumors typically show greater
immune cell infiltration, including TILs, which express these markers [31]. Conversely,
HPV-negative tumors often have a less active immune landscape and respond poorly to
immunotherapy. Thus, in HPV-positive cases, elevated checkpoint expression may signal a
better therapeutic prognosis due to increased immunogenicity.

Another study from Yang et al. found that TIM-3 was highly expressed on intratumoral
and/or stromal TILs in 91.3% of HNSCC cases [32]. TIM-3 TIL expression correlated with
the tumor size, lymph node metastasis, and TNM stage, with lower TIM-3+ TIL levels
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linked to significantly better survival and prognosis. Here, too, there are discrepant results
to our trials, but these can be attributed to the positivity of the HPV status. The results
suggest that TIM-3 is a potential oncologic target in HNSCCs.

When looking at the stromal senescence markers IL-8 and MMP-3, no significant
effect on overall survival was observed, but there was a significant association of MMP-3
expression with HPV positivity. Liu et al. could show that MMP-3 mRNA expression was
elevated in HNSCCs compared to normal tissue and was significantly correlated with the
pathological stage of HNSCC patients [33]. Additionally, MMP-3 expression correlated
with immune cell infiltration, and as significant predictors of clinical outcomes in HNSCCs.

With respect to the HPV tumor status, the significantly improved overall survival in
HPV-positive compared to HPV-negative HNSCC patients in our cohort is in line with
numerous prospective and retrospective large-scale clinical studies of the past years and
underlines the outstanding relevance of HPV as a prognostic and predictive biomarker in
head and neck cancer, especially in oropharyngeal SCCs [34,35]. Considering the relevance
of HPV for the response to immune checkpoint inhibition, phase III clinical trials that
led to the FDA and EMA approval of pembrolizumab and nivolumab for RM-HNSCC
treatment found no predictive value of HPV. However, several studies have shown better
outcomes of HPV+ HNSCC patients undergoing a PD-1/PD-L1 axis blockade in contrast
to HPV- HNSCC patients [36]. Exemplarily, Wang et al. demonstrated that the HPV
status can predict the efficacy of PD-1 inhibition in HNSCC patients independent of PD-
L1 expression, likely due to an HPV-induced inflamed immune microenvironment [37].
As our study showed that a positive HPV tumor status is associated with an increased
expression of the T cell exhaustion biomarkers PD-1, TIM-3, and LAG-3, our results provide
a potential explanation for their observation. ICI could thus positively influence and
reactivate antitumoral T cell response, which seems to be driven into an exhausted stage in
a much stronger manner than in non-HPV associated cases.

Apart from their relevance as potential prognostic biomarkers, the proteins investi-
gated in our study may also serve as potential targets for new TME-directed immunother-
apeutic strategies. Wuerdemann et al. demonstrated that intratumoral CD8+ T cells in
oral HNSCCs showed a significantly upregulated expression of LAG-3, TIM-3, and VISTA,
and concluded that those proteins could be used as targets for new immunotherapeutic
strategies [38]. Indeed, numerous ongoing clinical trials are investigating the efficacy of
ICIs targeting LAG-3 and TIM-3 in various cancer types including head and neck cancer
(e.g., NCT04811027, NCT05287113), especially in combination with PD-1 antibodies. In
melanoma, the dual LAG-3 and PD-1 inhibitor Opdualag was already approved by the FDA
for treating unresectable or metastatic disease in adults and children [39,40]. In addition,
combining ICIs or using bispecific antibodies (BsAbs) that target two ICPs at the same time
is a promising approach to overcoming resistance to single-agent therapy as proven by the
recently approved BsAbs targeting anti-LAG-3/TIGIT [40]. However, no LAG-3 and/or
TIM-3 inhibitors are approved for the treatment of head and neck cancer so far, so further
clinical studies are needed.

In addition to the HPV tumor status, we also investigated a potential correlation of
the patients’ 25-OH-vitamin D serum level with T cell exhaustion and stroma senescence
biomarkers. In previous projects, vitamin D was shown to stimulate the infiltration of TME
in head and neck cancer with various immune cells subtypes and additionally enhance their
anti-tumor effector function, resulting in improved patient survival [11]. In the present
study, we only found a tendency towards improved overall survival in VitD-high patients,
which is in line with numerous previous studies of our own and other groups [11,12,41–43].
However, we did not find any significant correlation of 25-OH-vitamin D serum levels
with the expression levels of the T cell exhaustion and stroma senescence biomarkers
investigated, suggesting that vitamin D has no major role in those molecular processes.

From a critical point of view, there are some limitations that need to be considered
when interpreting the study results. Our study highlights the complex interplay of T cell
exhaustion and stromal senescence markers within the tumor microenvironment and their
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potential prognostic value in HNSCC. While we observed associations between certain
checkpoint markers and patient survival, the limited size and heterogeneity of our patient
cohort constrain the generalizability of these findings. Additionally, the surrogate markers
we used only partially represent the biology of T cell exhaustion and stromal senescence,
as these markers are also involved in other cellular functions.

Future studies should leverage RNA sequencing and pathway analyses to provide
a more comprehensive and specific assessment of these biological processes. Moreover,
further analyses with a larger and more homogeneous cohort, ideally with multivariate
models, would be crucial to confirm the independent prognostic relevance of these markers.
Expanding upon these findings could guide the development of therapeutic approaches
that more effectively target the unique immune landscape in HNSCCs.

Another limitation of this study is potential interobserver variability in IHC inter-
pretation, despite involving three independent investigators, including a board-certified
pathologist. While using the mean IRS reduced variability, standardized protocols or
automated tools are needed for greater consistency in future studies.

In our study, we excluded salivary gland tumors, but their differential diagnosis is
important. Salivary gland tumors, such as pleomorphic adenomas, Warthin’s tumors, and
malignancies like mucoepidermoid carcinoma and adenoidcystic carcinoma, share clinical
features with HNSCCs, complicating diagnosis. Accurate differentiation relies on clinical
presentation, imaging, histopathology, and molecular profiling. Immunohistochemical
markers like p63, CK7, and EGFR distinguish these tumors [44]. Molecular characteristics,
such as MAML2 fusions in mucoepidermoid carcinoma, differentiate salivary gland tumors
from HNSCCs, which often involve TP53 mutations [44]. Although salivary gland tumors
were not included, further research into their molecular profiles and comparisons to HNSCC
will enhance diagnostic accuracy and treatment strategies, improving patient outcomes.

4. Materials and Methods

A total of n = 116 patients with histologically proven HNSCC were included in our
study. All patients were diagnosed and treated between 2006 and 2021 at the Department
of Otorhinolaryngology, Head and Neck Surgery at the Saarland University Medical Center
(Homburg/Saar, Germany). The patient cohort consisted of 97 male and 19 female patients
with a median age of 64.2 years. Tumor node metastasis (TNM) and American Joint
Committee on Cancer (AJCC) stages were defined according to the seventh version of the
AJCC/Union for International Cancer Control (UICC) head and neck cancer staging system.
Further epidemiological and clinical characteristics are shown in Table 1. The findings in
this study are based on treatment modalities, specifically surgery, radiotherapy (RT), and
radiochemotherapy (R(C)T).

For all patients, the pre-therapeutic 25-OH-vitamin D serum level was available and
therefore included in our analyses. Here, a distinction was made between patients with a
sufficient vitamin D supply (57 patients, 25-OH-vitamin D, ≥10 ng/mL, VitD-high) and
insufficient vitamin D supply (59 patients, <10 ng/mL, VitD-low). All patients gave their
written informed consent for the scientific use of their tissue samples and clinical data. All
experiments were performed in accordance with the Declaration of Helsinki and its later
amendments as well as the relevant guidelines and regulations. The study was approved
by the Saarland Ethics Review Committee (reference number 280/10). For the experiments
in our study, tumor tissue samples either taken during diagnostic panendoscopy for
the histological verification of tumor diagnosis or during therapeutic tumor resection
were used.
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Table 1. Demographic and clinical patient data. * The 7th version of the TNM/UICC classification
was used to categorize the carcinomas.

HNSCC Patients

No. of Patients 116

Sex
male 97 (84%)

female 19 (16%)

Median age [years]
male 64.5

female 62.8

HPV Status
positive 22 (19%)

negative 94 (81%)

Vitamin D Status
high 57 (49%)

low 59 (51%)

Primary tumor

oral cavity 36 (31%)

larynx 32 (28%)

oropharynx 31 (27%)

hypopharynx 11 (9%)

multiple localizations 6 (5%)

T * stage

1 18 (16%)

2 48 (41%)

3 26 (22%)

4 24 (21%)

N * stage

0 38 (32%)

1 18 (16%)

2 52 (45%)

3 8 (7%)

M * stage
0 108 (93%)

1 8 (7%)

UICC * Stage

I 14 (12%)

II 14 (12%)

III 24 (21%)

IVa 49 (42%)

IVb 7 (6%)

IVc 8 (7%)

4.1. HPV Tumor Status

The HPV tumor status was determined using a combination of p16 immunohistochem-
ical (IHC) staining and HPV-DNA-PCR analysis. Among the 116 HNSCCs patients, 81%
were found to be HPV-negative, while 19% tested positive for HPV. Only those patients who
showed both positive p16 IHC staining and positive HPV-DNA-PCR results were classified
as having HPV-positive tumors. Due to the notably poorer prognosis and distinct tumor
biology observed in discordant cases (where patients tested as p16-negative/HPV-positive
or p16-positive/HPV-negative), it was predefined that both tests need to be positive to
assign an HPV-positive tumor status.

For HPV-DNA-PCR testing, DNA was extracted from fresh-frozen tumor samples
using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol. The HPV-DNA-PCR was conducted on the LightCycler 2.0
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(Roche Diagnostics, Mannheim, Germany) using GP5+/6+ primers, following previously
established procedures. Detection of the PCR amplification products was achieved with
SYBR Green and gel electrophoresis. The PCR process included an initial denaturation
step at 95 ◦C for 15 min, followed by 45 cycles of denaturation at 95 ◦C for 10 s, annealing
at 45 ◦C for 5 s, and elongation at 72 ◦C for 18 s. After amplification, a melting curve
analysis was performed over a temperature range of 45 ◦C to 95 ◦C, with an increase of
0.2 ◦C per second. Each PCR run included HPV16- and HPV18-positive controls, with
melting temperatures (Tm) of 79 ◦C and 82 ◦C, respectively. The gene for glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was amplified as an internal control.

For the immunohistochemical detection of p16, the CINtec p16 histology kit (Roche Di-
agnostics) was used according to the manufacturer’s guidelines on formalin-fixed paraffin-
embedded tissue samples obtained as described below. Epitope retrieval was achieved
by heat-induced unmasking after deparaffinization in a rice cooker for 20 min, using the
provided retrieval buffer. The p16 antibody was then applied, and the detection of stain-
ing was performed as recommended. Each batch of staining included both positive and
negative controls.

4.2. Immunohistochemistry

Formalin-fixed paraffin-embedded (FFPE) tissue samples of the included patients
were used for histopathological and immunohistochemical analyses of the tumor microen-
vironment (TME). Therefore, fresh tissue samples were first placed in PBS-buffered 4%
formalin for 24 h and then embedded in paraffin using Tissue-Tek®VIPTM5 JR (Olympus,
Tokyo, Japan). Next, FFPE tissue sections were prepared to perform immunohistochemical
staining targeting PD-1, TIM-3, IL-8, LAG-3, and MMP-3. Initially, 3 tissue sections of
10 µm thickness were discarded to subsequently generate 3 µm thick sections using a Leica
RM2235 rotary microtome (Leica Microsystems, Wetzlar, Germany). Sections were then
transferred onto Superfrost Ultra Plus microscope slides (Menzel-Gläser, Braunschweig,
Germany) and dried at 37 ◦C overnight. Deparaffinization was carried out, followed by
heat-induced epitope unmasking in a 10 mM citrate buffer (pH 6.0). Nonspecific binding
sites were blocked by the subsequent incubation of the slides with 3% BSA (Sigma Aldrich,
St. Louis, MO, USA) in PBS (Sigma Aldrich) at pH 7.2 for 30 min. Sections were then ex-
posed to primary antibodies targeting IL-8 (1:2350, ab18672), PD-1 (1:750, ab52587), TIM-3
(1:5600, ab241332), LAG-3 (1:350, ab209236), and MMP-3 (1:1000, ab52915; all antibodies
from abcam, Cambridge, UK) for 1 h at room temperature. Visualization was performed
using the Dako REALTM Detection System, Alkaline Phosphatase/RED (Dako Agilent
Technologies, Glostrup, Denmark) according to the manufacturer’s instructions. Finally,
counterstaining with hematoxylin (Sigma Aldrich) was performed before the slides were
mounted with coverslips.

A semiquantitative analysis of immunohistochemically stained tumor samples was
performed using the Immunoreactivity Score (IRS) according to Remmele and Stegner
(1987). The IRS assigns numerical values from 0 to 4, depending on the staining intensity
and the percentage of stained cells in relation to all cells. The grading includes no reaction
(0), weak staining reaction (1), moderate staining reaction (2), and strong staining reaction
(3). The percentage of stained cells in relation to all cells was quantified with 0% (0), <10%
(1), 10–50% (2), 51–80% (3), and >80% (4). Both numerical values were then multiplied
resulting in a final IRS between 0 (negative) and 12 (strongly positive). For PD-1, TIM-3,
and LAG-3, only immunoreactivity on peri- and intratumoral leukocytes was analyzed,
and for MMP-3 and IL-8, only immunoreactivity on intra- and peritumoral fibroblasts was
analyzed. The boundary between intratumoral and peritumoral regions was defined based
on histopathological landmarks. The intratumoral region refers to the area within the tumor
mass, including tumor cell nests and the immediately surrounding stroma infiltrated by
leukocytes. By contrast, the peritumoral region is defined as the stromal area within a close
margin around the tumor mass, carefully avoiding overlap with adjacent non-tumor tissues.
To distinguish CAFs microscopically, we relied on their characteristic spindle-shaped
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morphology, elongated nuclei, and spatial localization within the stromal compartment of
the tumor. All IHC stainings were analyzed by three independent investigators including
one board-certified pathologist. For statistical analyses, the arithmetic mean of the three IRS
values per tissue sample was used. To define whether a high IHC expression was present,
the mean IRS of all samples was determined. The individual samples were defined as
having either high or low expression according to the mean value as a diagnostic threshold.

4.3. Statistical Analysis

For statistical analysis, Prism 9 software (GraphPad Software, Boston, MA, USA)
was used. To check the acquired data for Gaussian distribution, the Anderson–Darling
test, D’Agostino and Pearson test, Shapiro–Wilk test, and Kolmogorov–Smirnov test were
used. If data passed ≥2 of the normality tests, parametric tests were used for statistical
testing (unpaired t test with Welch’s correction, one-way ANOVA test). If the data did not
pass ≥2 of the aforementioned normality tests, non-parametric tests were used (Mann–
Whitney U test, Kruskal–Wallis test). The overall survival rates of the patient collective were
analyzed using the Mantel–Cox test (log-rank test) and presented in Kaplan–Meier curves.
p values < 0.05 were considered statistically significant (α = 0.05). The tests that were used
for statistical testing are indicated in the figure legends or the text, respectively.

5. Conclusions

Taken together, we have shown that the increased expression of the T cell exhaustion
markers PD-1, LAG-3, and TIM-3 is associated with a significantly improved overall sur-
vival in HNSCC patients, and that HPV-positive disease is associated with an increased
expression of these biomarkers. Further studies are necessary to uncover the clinical rele-
vance of these observations and evaluate a potential clinical use of T cell exhaustion markers
as single or combinational immunotherapeutic targets in head and neck cancer therapy.
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