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Abstract

We consider the inverse problem of terahertz tomography which is an imaging tech-
nique for monitoring plastics and ceramics. The underlying mathematical problem
is associated with Maxwell’s equations and simplifications thereof. Starting with
the non-linear eikonal equation as a physical model, we address this problem by
the Landweber iteration respecting the theory of inverse problems. The eikonal
equation results as a high-frequency approximation of the Helmholtz equation and
more generally, of the wave equation. The primary task is to deduce the refractive
index, denoted as n(x), from time-of-flight measurements.

In a second step, we introduce neural networks in the Landweber iteration for the
reconstruction of the refractive index n(x). Applying Landweber’s method, we have
to solve a non-linear partial differential equation for the forward operator for each
initial condition in every step but also need to compute the adjoint operator of
the linearization. To reduce the computing time in the reconstruction process, we
substitute the forward operator F with a convolutional neural network. Using syn-
thetic training data which consists of the refractive index as the input and simulated
measure data as the output, we accelerate significantly the evaluation of the forward
operator, i.e. the solution of the eikonal equation, compared to standard techniques
such as marching schemes. Furthermore, we save energy in the learning process of
the network by generating a sparse forward operator. We add an ℓ1-regularization
term to the cost functional of the convolutional neural network. Then, we compare
the standard Landweber method with the partially learned and the sparse alternative
presenting numerical results.

Additionally, we develop and implement a data-driven anomaly detection algorithm
for inline monitoring with a particular focus on plastics. We propose a density-based
approach to detect anomalies in the radiation’s measured data automatically. We
illustrate numerical results to support our findings. The real measured values are
provided by the German Plastics Center in Würzburg.
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Zusammenfassung

Wir betrachten das inverse Problem der Terahertz-Tomographie, einer bildgebenden
Technik zur Überwachung von Kunststoffen und Keramiken. Das zugrundeliegende
mathematische Problem ist mit den Maxwell Gleichungen und deren Vereinfachungen
verbunden. Ausgehend von der nichtlinearen Eikonalgleichung als physikalisches
Modell gehen wir diese Herausforderung mit Hilfe der Landweber-Iteration unter
Berücksichtigung der Theorie der inversen Probleme an. Die Eikonalgleichung ist
eine hochfrequente Annäherung an die Helmholtz Gleichung und, allgemeiner, an die
Wellengleichung. Die primäre Aufgabe besteht darin, den Brechungsindex, bezeichnet
als n(x), aus Laufzeitmessungen abzuleiten.

In einem zweiten Schritt führen wir neuronale Netze in der Landweber-Iteration zur
Rekonstruktion des Brechungsindex n(x) ein. Bei der Anwendung der Landweber-
Methode müssen wir die nichtlineare partielle Differentialgleichung für den Vorwärts-
operator in jedem Schritt lösen, aber auch den adjungierten Operator der Lin-
earisierung berechnen. Um die Rechenzeit im Rekonstruktionsprozess zu reduzieren,
ersetzen wir den Vorwärtsoperator F durch ein Convolutional Neural Network. Unter
Verwendung synthetischer Trainingsdaten, die aus dem Brechungsindex als Input
und simulierten Messdaten als Output bestehen, beschleunigen wir die Auswer-
tung des Vorwärtsoperators, d.h. die Lösung der Eikonalgleichung, im Vergleich
zu Standardtechniken wie Marschschemata erheblich. Außerdem sparen wir im
Lernprozess unseres Netzes Energie, indem wir einen sparsen Vorwärtsoperator
erzeugen. Wir fügen dem Kostenfunktional des Convolutional Neural Network
einen ℓ1-Regularisierungsterm hinzu. Anschließend vergleichen wir die Standard-
Landweber-Methode mit der teilweise gelernten und der sparsen Alternative und
stellen numerische Ergebnisse vor.

Desweiteren entwickeln und implementieren wir einen datengesteuerten Algorith-
mus zur Erkennung von Anomalien für die Inline-Überwachung mit besonderem
Schwerpunkt auf Kunststoffen. Wir schlagen einen dichtebasierten Ansatz vor, um
automatisch Anomalien in den Messdaten der Strahlung zu erkennen. Wir liefern nu-
merische Ergebnisse, um unsere Erkenntnisse zu untermauern. Die realen Messwerte
werden vom Deutschen Kunststoffzentrum in Würzburg zur Verfügung gestellt.
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Introduction

If we multiply two natural numbers, we will obtain a unique result. Conversely,
the representation of a natural number by two factors does not always consist of a
unique solution and one has to fall back on the principle of prime numbers to obtain
uniqueness. If it rains the whole day, the street will be wet. But, if we see a partially
wet street, we can not guarantee that it has just rained. There could be other reasons
for the wetness, and therefore, it is not possible to say for sure that the rain has just
occurred. Maybe, it has snowed or hailed or someone has just washed his or her car.
These presented examples, familiar to us from childhood, introduce us to the field of
direct and inverse problems which are closely interrelated. Such problems are based
on a causal connection between cause and effect that often can be described by a
mathematical or physical model. When we talk about a direct problem, we know
the cause and we can calculate the effect by given rules or depending on experience.
Considering an inverse problem, on the other hand, the effect and the model are
known, but the cause is unknown. The relation between cause and effect should be
reversed, see Figure 1.

cause

model

effect

inverse problem

?

Figure 1: Structure of an inverse problem

To explain the idea of an inverse problem detached from mathematical concepts, one
can quote Sir Arthur Conan Doyle who created the character of Sherlock Holmes. In
his first detective novel ’A Study in Scarlet ’ he wrote:

Most people, if you describe a train of events to them, will tell you what
the result would be. They can put those events together in their minds
and argue with them that something will come to pass. There are few
people, however, who, if you told them a result, would be able to evolve
from their inner consciousness what the steps were which led up to a
result. This power is what I mean when I talk of reasoning backward, or
analytically ([17], p. 156).

The concept of an inverse problem is not just focused on mathematics but is also
represented in the natural thinking of a person: Mr. Doyle describes in the first
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lines the idea of direct thinking. Giving a starting point and some events, one can
deduce the consequences and solve the direct problem. Many people are blessed
with this gift. The more difficult way of thinking is the inverse one. Only a few
people have the skill of drawing conclusions from results, i.e. ’reasoning backward ’
like Sherlock Holmes and solving the inverse problem. They can reconstruct the
causes. It is similar in mathematics: While the direct problem can often be described
by functions or differential equations underlying physical laws solving the inverse
problem is the more difficult task.

In the history of mathematics, inverse formulations have been established for a long
time and extend from linear regression problems to highly complex applications
related to scientific problems. However, the theory of inverse problems originates
from the second half of the 20th century, see [35]. One of the most famous inverse
problems of our society in the context of mathematics and physics can be found in
medicine: the X-ray tomography. In 1917 Johann Radon deduced the mathema-
tical background that could be involved to create the first computed tomography
scanner in the 60s and 70s. The aim is to determine the density function of an
object. Depending on their absorption coefficient, different materials can absorb
the X-rays to different degrees. A detector is used to measure the decrease in the
intensity of the penetrating radiation through the object. It follows the inverse
problem of reconstructing the density distribution of an object under investigation,
the cause, by the measured reduction of the intensity, the effect. The direct problem
can be modeled by Beer-Lambert’s law, see [15]. Today’s studies on this subject
are concerned with nano and limited-angle computed tomography. Further inverse
problems based on physical phenomena can be found in vector or tensor tomography
[92], magnetic particle imaging [50] or in heat conduction problems in industry [79],
just to name a few.

Mathematically, an inverse problem is described by an operator equation of the
form

F (x) = y. (1)

The forward operator F : D(F ) → Y models the direct problem and maps an
x out of the source space X to a y out of the data space Y . The notation D(F )
represents the domain of the operator F . The corresponding inverse problem deals
with the case that y ∈ Y is known and we have to reconstruct the respective x ∈ X.
The topological spaces X and Y are mostly defined as Banach or Hilbert spaces.
Depending on their mathematical modeling, inverse problems can be subdivided
into two classes: linear and non-linear inverse problems. An inverse problem will
be denoted as linear if the forward operator is linear. Then we write the operator
equation to clarify as

Fx = y. (2)

Accordingly, non-linear inverse problems possesses a non-linear operator F . In
this work, we deal with a non-linear inverse problem. The mentioned X-ray tomogra-
phy illustrates an example of a linear inverse problem.

In real applications, the available data y include noise given by errors in the model,
errors of observation or errors of measurement. In addition, we have to handle
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rounding and discretization errors when moving on to finite-dimensional spaces for
the implementation. We suppose that the noisy data yδ fulfills the inequality

||yδ − y||Y ≤ δ (3)

where || · ||Y denotes the norm of the vector space Y . Due to the ill-posedness of
such problems a direct inversion of the forward operator applied to noisy data yδ

often results in useless solutions xδ. For linear forward operators and any topological
spaces Hadamard [27] defined that the problem Fx = y is well-posed if

� the equation (2) has a solution for all y ∈ Y ,

� the solution is unique,

� the inverse operator A−1 is continuous, such that small disturbances in y cause
small disturbances in x.

If one of these conditions is violated, we call the problem ill-posed. Referring to
Hilbert spaces, we can neglect the first two conditions by introducing the concept
of the generalized inverse. According to Nashed, the definition of ill-posedness is
reduced to stability, see [78]. While ill-posedness is a global property for linear
inverse problems, it is locally defined in the non-linear setting. We call a non-linear
operator equation locally ill-posed in x+ ∈ D(F ) if there is a sequence {xk}k∈N
for every ball centered at x+ that does not converge to x+, but whose sequence of
images {F (xk)}k∈N converges to F (x+).

The ill-posedness of an inverse problem is determined by the topology of the spaces X
and Y . This can be illustrated by the problem of differentiability, see [35, 78], where
we have a well-posed problem for continuous functions and an ill-posed problem for
bounded functions. The ill-posedness of inverse problems mostly results from the
discontinuity of the inverse operator. Small perturbations in the observation increase
strongly by using the inverse of the forward operator directly. The solution is useless.
A way out is provided by so-called regularization methods that stabilize the
inverting process. The inverse mapping is approximated by continuous operators and
an optimum between stability and approximation is found. The total error depends
on the regularization parameter. In the mentioned example of differentiability, one
can overcome the ill-posedness by considering a regularization by the differential
quotient. Until the end of the 20th century, a wide range of regularization methods
for linear inverse problems in Banach and Hilbert spaces were developed, thanks
among others to the work of Tikhonov, see [5]. The investigation of such problems
is considered complete. An overview can be found in the book of Engl, Hanke and
Neubauer [19]. Many of those methods, especially iterative ones, could be transferred
to non-linear inverse problems. A systematic investigation of regularization methods
for non-linear inverse problems started in the 80s. For this investigation, it must be
taken into account that for non-linear inverse problems there is information about the
non-linear operator only in a neighborhood of an element x ∈ X and not on the whole
domain D(F ). As a consequence, for example, the initial value should be chosen
close enough to the solution by giving an a priori information. Famous methods for
the regularization of non-linear inverse problems are the iterative Tikhonov method
[71], the regularized Gauss-Newton method [49] and the Landweber iteration [48].
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The latter is a stable method but extremely time-consuming and will be focused
on in our investigation: We deal with a non-linear inverse problem that is solved
in the first part of this thesis by the iterative Landweber method. Respecting that
in real applications, i.e. in industry, not just a stable and good approximation of
the solution is necessary but also the reconstruction time plays an important role,
we want to accelerate the normal Landweber iteration in a second step. Especially
given the concept ’Industry 4.0 ’ where people, machines and products are directly
networked with each other and the production and control of materials are desired
inline, a fast reconstruction process is indispensable. For this purpose, we establish
a connection to the area of artificial intelligence. By learning the solution of the
parameter-to-solution operator of the inverse problem, we reduce the numerical effort
of Landweber’s method. Instead of solving a partial differential equation with a
time-consuming numerical method, we involve a deep neural network to speed up
the regularization method.

Techniques from the field of machine learning are gaining significant attention nowa-
days. The huge popularity is driven by the increasing computer power and the focus
on big data in our society. Machine learning represents a subfield of artificial intelli-
gence. The latter has been a scientific discipline since the 1950s. The name artificial
intelligence originates from the ’Dartmouth Conference’ in 1956, whereas its vision
was already anchored in people’s minds beforehand, for example, in the literature ’I
robot ’ of Isaac Asimov [4]. Often the work of Alan Turing during the Second World
War is cited as the historical starting point for the scientific discipline of artificial
intelligence [28]. Meanwhile, machines beat us in games like ’Chess’ and ’Go’ and
machine learning software has become a standard for many companies. Technologies
such as ’ChatGPT ’, a large language model developed by the company ’OpenAI ’, have
revolutionized the human mindset [6, 77]. Machine learning includes many algorithms
and techniques like regression, classification or deep learning [25] that usually can be
subdivided into supervised and unsupervised learning methods. In our research, we
focus on the supervised context where algorithms learn their parameters from pairs
of labeled input and output data. Generally speaking, a machine learning algorithm
is trained by observing large data sets in the training process in order to make
predictions about unobserved data. Our machine learning task involves so-called
convolutional neural networks (CNNs) to approximate our forward operator.
CNNs are mainly used for deep learning to recognize structures in the input matrix
by convolution. These networks decrease the number of connections within a layer
in comparison to fully-connected networks. Deep learning is a subsection of machine
learning and provides the basis for some tasks like image and speech recognition and
self-driving cars. Deep neural networks are neural networks with more than one layer.

To reduce the complexity of regularization methods and their computational time,
the current investigation of inverse problems is taking into account more and more
techniques from the field of machine learning. Furthermore, some mathematical con-
cepts are developed to analyze the processes of deep learning, see [1]. In a publication,
Maas et al. show that the learning of an inverse problem directly, i.e. the learning of
the inverse mapping, already fails for simple investigations [63]. Further research
on inverse problems in connection with neural networks can be found, for example,
in publications of Haltmeier [29] or Kaltenbacher [47]. An important theorem for
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neural networks, the universal approximation theorem by Cybenko [14], see Appendix
B.4, states that a one-layer fully-connected network can approximate a continuous
function on a compact subset I ⊆ Rn by using a sigmoidal activation function
if the number of hidden units is large enough. In general, theorems on universal
approximation set boundaries on the theoretical learning capacity of neural networks.
The result of Cybenko was transferred to arbitrary Lp-spaces by Hornik [36] and can
also be extended to the unbounded rectified linear unit as the activation function,
see Appendix B.5. There exist further strong results on universal approximation, for
example, for any function [59]. Recently, the fundamental approximation theorem
has been generalized to infinite-dimensional function spaces, see [26]. Another work
extends the result to CNNs, see [98].

In this work, we aim to combine the theory of inverse problems with the practical
use of deep neural networks by accelerating the iterative Landweber method using a
CNN as the forward operator. We apply the concept to the complex inverse problem
of terahertz (THz) tomography. THz tomography is a relatively new technique
and is gaining importance in science and industry. Because of the characteristics
of the electromagnetic radiation within the THz range, THz tomography is per-
fectly suited as a technique to investigate plastics and ceramics. The object under
investigation is penetrated by electromagnetic radiation from different positions.
Receivers around the object collect information about the radiation. We want to
reconstruct the refraction index n(x), x ∈ Ω ⊆ R2, by measurements of the electro-
magnetic field. The application of THz inspection has expanded rapidly because
the receiver and emitter of THz radiation have become cheaper, and consequently,
has the chance to compete with other tomography techniques like X-ray, ultrasonic
or microwaves. Starting with the non-linear eikonal equation as a physical model,
we solve the inverse problem in the first step by the Landweber iteration, and in
the second step, by a partially learned Landweber method. The eikonal equation
can be seen as a high-frequency approximation of the Helmholtz equation, and more
generally, of the wave equation. Using the Landweber iteration, we have to solve
the eikonal equation as the parameter-to-solution operator in every step and for ev-
ery angular position. We reduce the computing time by learning the forward operator.

In the first chapter, we justify our research and the given mathematical model and
present the motivation for our work. We explain why we concentrate on the inverse
problem of THz tomography, and above all, why we are interested in accelerating
Landweber’s method by machine learning techniques. In Chapter 2, we describe the
physical basics of our research. Starting with the local Maxwell’s equations for a spe-
cial setting, we derive the eikonal equation that is used in the next chapters to model
the propagation of THz radiation. We focus on the inverse problem of THz tomogra-
phy in Chapter 3. We use the eikonal equation to describe our parameter-to-solution
operator that is solved by the Fast Marching Method (FMM). The forward
operator is linearized, and afterwards, we calculate its adjoint. Both, the FMM and
the solution of the adjoint linearized problem are implemented within the Landweber
algorithm to solve the inverse problem. We aim to determine the refractive index n(x)
of an object in order to find defects like air inclusions. Numerical reconstructions are
given at the end of the chapter. In Chapter 4, we accelerate Landweber’s method by
combining it with machine learning techniques. We train a convolutional network
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that solves the eikonal equation and substitute the FMM. We result in a partially
learned Landweber iteration. To reduce the amount of weights in our network we
make the network sparse by an ℓ1-regularization of the cost function in the second
part of Chapter 4. Numerical results for the partially learned Landweber method and
the sparse one are presented and compared with the reconstructions from Chapter
3. The last chapter is based on a joint project with the German Plastic Center
(SKZ) in Würzburg. This chapter can be seen as a kind of digression and the starting
point of the underlying investigations. We deal with inline monitoring for plastics and
ceramics and detect defects with a learned anomaly detection algorithm. In contrast
to Chapter 3 and 4, we have access to real data for this part of our work. Finally, we
conclude with a short overview and discussion. We give an outlook for future research.

Our investigation is a continuation of the research of Prof. Dr. Anne Wald and Dr.
Jens Tepe who already worked in the field of THz tomography in the numeric group
of Prof. Dr. Thomas Schuster at Saarland University.
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1 Motivation

The term ’tomography’ covers imaging procedures for the examination of bodies.
Tomographic methods are used in a wide variety of applications, particularly, in
medical diagnostics and for the analysis of materials and components. The first
experiments on imaging with THz radiation were published in 1976 by Hartwick
et al. [32]. These investigations were followed by a period of twenty years during
which the research on THz radiation stagnated. The technology for generating the
radiation was too complicated and laborious. Neither suitable transmitters for the
generation of THz radiation nor suitable receivers for the detection of the signal
were available [97]. The concerned frequency range, which was hard to handle, is
called the ’THz gap’. In the last two to three decades, this gap was closed thanks
to new developments, for instance, improvements in femtosecond optoelectronics
[69]. Nowadays, there exist two prominent techniques to generate the radiation:
the continuous and the pulsed THz systems. For more information about the THz
systems we refer to Nüßler et al. [75] or Zhong [97].

The publication of Hu et al. [37] marks the starting point of the ongoing research.
THz technologies have rapidly evolved. The senders and detectors have improved
and become more efficient and economical for industry. While Hartwick investigated
in his paper a wavelength between 0.3 mm to 1 mm, THz radiation is defined as
a part of the electromagnetic spectrum with a wavelength of 0.03 mm to 3 mm.
Consequently, it is placed in the electromagnetic spectrum between microwaves and
infrared radiation with a corresponding frequency of 100 GHz to 10 THz, see Figure
1.1. Because of its position in the electromagnetic spectrum, THz radiation includes
wave as well as ray character and describes the transition between electromagnetism
and optics.

Figure 1.1: Electromagnetic spectrum (modified according to [68])

Driven by the development of technology, applications of THz radiation are widespread
in industry. The radiation is utilized in body scanners for security purposes [91],
car painting control and for the pharmaceutical industry [97]. In particular, the
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radiation receives increasing attention in the field of non-destructive testing. The
latter refers to techniques that provide information about the interior of an object
without destroying it. Especially for plastics, ceramics, glass, wood or clothes, non-
destructive testing with THz radiation is perfectly suited because the radiation can
penetrate non-conductive materials. Liquids absorb the radiation while metal reflects
it completely. In contrast to X-rays, THz radiation is non-ionizing and therefore not
dangerous to health. It is applied as a non-contact technique that does not require
a medium to couple with. Furthermore, the radiation achieves a better resolution
compared to microwaves because of its shorter wavelength [74].

A variety of tomography techniques have been explored over the past few years
to reconstruct images using THz radiation. Some techniques have been adapted
and adopted from competing technologies like X-ray or ultrasonic imaging [41,
99]. In the last few years, Prof. Dr. Thomas Schuster’s research group has been
working intensively on new reconstruction methods in the field of THz tomography.
Tepe et al. [88] investigated a modified algebraic reconstruction technique, the
modified ART, to solve the inverse problem while Wald et al. [93] performed an
inverse parameter identification for the Helmholtz equation taking into account the
Gaussian profile of the THz beam. However, both methods have their limits: For the
modified ART, preliminary information about the outer and inner boundaries of the
investigated object is required that is not given in reality and has to be detected. The
Helmholtz equation provides good results in a low-frequency range but fails for high
frequencies. Furthermore, the method of Wald is very time-consuming. In addition,
both reconstruction techniques were combined to generate a predictor-corrector-
method [64]. The idea is to detect the boundaries with a few iterations of Wald’s
parameter identification problem and then use the modified ART to reconstruct.
All methods mentioned aim to determine the complex refractive index ñ(x) which
depends on the position x ∈ R2 (respectively, x ∈ R3). If we reconstruct the complex
refractive index, we can identify density differences, moisture contents and defects
such as air inclusions, see [33]. To define the complex refractive index, we introduce
the refractive index n(x) and the extinction coefficient κ(x).

Definition 1.1 (Refractive index, [15], p. 220).
Let x ∈ Ω ⊆ R2. The refractive index n : Ω → [1,+∞) describes the ratio of
the propagation speed c0 = 299792458 m s−1 in vacuum and the propagation speed
v : Ω → (0, c0] inside a medium. It holds

n(x) :=
c0

v(x)
. (1.1)

Definition 1.2 (Extinction coefficient, [15], p. 223).
Let x ∈ Ω ⊆ R2. The extinction coefficient κ : Ω → [0,+∞) is proportional to the
absorption coefficient α(x) and is defined via

κ(x) := α(x)
c0
4πf

where f is the frequency of the radiation. The absorption coefficient depends on the
measured intensity I0 without absorption, the measured intensity I with absorption
and the thickness z of the absorbing object via Beer-Lambert’s law and is given by

I = I0e
−α(x)z.
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It follows the definition of the complex refractive index as a composition of the
refractive index and the extinction coefficient:

Definition 1.3 (Complex refractive index, [15], p. 224).
Let x ∈ Ω ⊆ R2. The complex refractive index ñ : Ω 7→ C is given by

ñ(x) := n(x) + i · κ(x)

where n(x) is the refractive index and κ(x) the absorption coefficient at position x.

In THz tomography, the object under investigation is illuminated by electromagnetic
radiation in the corresponding frequency range. As illustrated in Figure 1.2, there
is one sender, E1, emitting the radiation. Several receivers around the object, in
the case shown R1 to R18, collect information about the radiation. This information
is used to reconstruct the complex refractive index of the considered domain Ω.
After one measuring process, the measuring system is shifted such that the object is
investigated from different positions.

Ω

E1/R1 R10

R18

R15

R6

Figure 1.2: Schematic two-dimensional representation of a THz tomograph

In Figure 1.3, we illustrate an example of the measured THz signal: The figure
depicts a reference signal of the THz pulse drawn in blue and the measured signal
drawn in red. We notice a vertical reduction of the amplitude because the object
absorbs some radiation. An increase in the absorption coefficient of the object,
i.e. the extinction coefficient, results in a greater vertical shift of the signal. Fur-
ther, we notice a horizontal shift of the signal. Penetrating through an object,
the travel time of the radiation is increased due to the lower propagation speed
inside the object. An increase in the refractive index inside the object, i.e. a re-
duction of the propagation speed, results in a greater horizontal shift of the signal.
The electromagnetic wave reaches the receiver later. The complex refractive index
thus exhibits a direct relationship with the propagation delay of the signal given
by the real part and with the attenuation of the intensity given by the imaginary part.
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Figure 1.3: Time and phase shift of the amplitude of a measured THz signal in red compared
to a reference signal in blue (modified according to [62])

In general, the inverse problem of THz tomography can be formulated as the following
problem:

Problem 1.4 (Inverse problem of the two-dimensional THz tomography).
Determine the complex refractive index ñ(x) for a domain Ω ⊆ R2 by measurements
of the travel time Ti and the transmittance τi =

Ii
Ii0

of an electromagnetic wave with

i = 1, ..., N receivers.

Motivated by the fact that Wald et al. failed for high frequencies, this thesis deals
with a new approach to the inverse problem of THz tomography. We use a high-
frequency approximation of the Helmholtz equation which results in the eikonal
equation and reduce the problem to reconstruct only the refractive index n(x) of an
object. The eikonal equation models the physical relationship between the refractive
index for a referred domain and the travel time of an electromagnetic wave for
high frequencies. Consequently, we focus on the time-of-flight measurements of the
signal and neglect the measurement information about the absorption and reflection.
Further, we concentrate on a two-dimensional reconstruction. It results the reduced
inverse problem of the two-dimensional THz tomography:

Problem 1.5 (Reduced Inverse problem of the two-dimensional THz to-
mography).
Determine the refractive index n(x) for a domain Ω ⊆ R2 by measurements of the
travel time Ti of an electromagnetic wave with i = 1, ..., N receivers.

For our investigation, we focus on plastics and ceramics since THz radiation can
propagate through these materials. Especially in the plastics industry, many products
are produced during an extrusion process. Inline monitoring plays an important
role to intervene directly during the production process. The rate of rejected parts
should be reduced. Fast feedback about defects is desirable. So, a second motivation
of the underlying thesis, besides the reconstruction of the refractive index, is to
reduce the reconstruction time by integrating concepts of machine learning. Starting
with the mathematical and numerical investigation of the reduced inverse problem
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of THz tomography and solving it via Landweber’s method, we aim in a second
step to accelerate the iteration of our reconstruction algorithm. For this purpose,
we study CNNs to learn the solution of the parameter-to-solution operator, given
by the eikonal equation, with a deep neural network instead of using the FMM.
The numerical solution of this first-order non-linear differential equation is the most
time-consuming step using Landweber’s iteration. By substituting it with a deep
neural network, we reduce the numerical effort of one reconstruction through an a
prior learning process.

A third and final motivation for the doctoral thesis includes public discussions:
One of the most debated topics in this day and age is the climate crisis. How can
we generate clean energy? How can we store energy? This discussion must also
be considered in the context of artificial intelligence. On the one hand, artificial
intelligence can be used in the context of smart grid design, developing low-emission
infrastructure and modeling climate change predictions to reduce the effect of the
climate crises [16]. On the other hand, the carbon footprint of training a deep neural
network can be enormous. Using a deep neural network consumes a high amount of
energy. Strubell et al. [87] from the University of Massachusetts investigated that
the converted carbon dioxide (CO2) emission for training a deep neural network is
about eight times higher than the average CO2 footprint consumed by a car during
its lifetime. Compared to the CO2 emission of the learning process of a deep neural
network that is about 400 kg, a human being consumes an average of 5 kg during
one year, see Table 1.1. There are three factors resulting in high energy consumption
for a deep neural network: the size of the training data set, the execution of the
model for one single input and the tuning of the hyperparameters of the model which
results in a huge amount of training processes. Up to now, there are no mathematical
rules for the used hyperparameters like, e.g. the depth and width of a network and
they are determined via a trial and error process.

Table 1.1: The CO2 footprint for training a deep neural network compared to the energy
consumption of a car during its lifetime and the average CO2 emission produced
by a human being within one year (modified according to [87])

CO2 emission

training DNN (model architecture, hyperparameter) ≈ 424 kg

car, avg incl. fuel ≈ 57 kg

human life, avg, 1 year ≈ 5 kg

The greater computer power in the modern world is accompanied by an increase
in the number of parameters used for a deep neural network to learn some tasks.
The CO2 footprint continues to grow. So, respecting the actual discussions in the
context of artificial intelligence, we want to learn the parameters of the network in a
sparse way in the last step of our thesis. We aim to make the algorithm sustainable
by deleting connections in the network. If we set some parameters in the network
equal to zero, we do not need to calculate their gradients during the optimization
process. Further, we obtain sparse matrices for the network parameters that require
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less storage.

In summary, the motivation for the dissertation can be stated in the following three
points:

� We want to solve Problem 1.5, the reduced inverse problem of the two-
dimensional THz tomography, via the eikonal equation and Landweber’s method
within a mathematical framework.

� We want to accelerate the reconstruction algorithm including a CNN by substi-
tuting the solution of the forward operator.

� We want to save energy in the learning process of the network by replacing the
CNN with a sparse CNN.

Note, that the motivation arose from a previous project in collaboration with the SKZ
in Würzburg promoted by the Arbeits-Gemeinschaft industrieller Forschungs-
Vereinigungen (AiF) in which we focused on the detection of anomalies in an inline
process using THz radiation. The results of the project are described in the last
chapter of the thesis.
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2 Physical background

In this chapter, we introduce the physical basis of our investigations. Dealing with
THz tomography, i.e. electromagnetic radiation, we need to study our direct problem
by electromagnetic laws. The propagation of electromagnetic radiation can be
described by partial differential equations. Starting with the Lorentz force law and
Maxwell’s equations we derive step by step the first-order non-linear eikonal equation.
As a high-frequency approximation of the Helmholtz equation, the eikonal equation
is used to model the parameter-to-solution operator that is a part of the forward
operator of the reduced two-dimensional inverse problem of THz tomography, see
Problem 1.5. We obtain a physical relation between the process parameter to be
determined, the refractive index n(x), and the THz data acquired by the measuring
process, the travel time T (x) of the radiation. The Helmholtz equation results from
the wave equation that is an implication of Maxwell’s equations. The Lorentz force
law and Maxwell’s equations describe the interaction between electric and magnetic
fields, and more generally, of all electromagnetic phenomena. The following sections
are based on several standard literature on physical electromagnetic field theory. We
mainly focus on the books of Born and Wolf [8], Demtröder [15] and González-Acuna
and Chaparro-Romo [24].

2.1 Maxwell’s equations

Maxwell’s equations can be written in an integral form, but also in a differential one
respecting the local character. Both versions are converted into each other by using
the Divergence theorem and Stokes’ theorem. For our derivation, we focus on the
differential case. To formulate Maxwell’s equations, we start with the electromagnetic
force, the Lorentz force law, to introduce the electric and the magnetic field.
We define the electric field in position x = (x1, x2, x3)

⊺ ∈ R3 at time t by E(t,x)
as a vector field in which a particle of electric charge q experiences an electric force

FE(t,x) = qE(t,x). (2.1)

Further, we denote the induction field in position x ∈ R3 at time t by B(t,x) as
a vector field in which a stationary electric charge q suffers no magnetic influence
while a moving electric charge experiences a magnetic force perpendicular to its
velocity v(t,x) by

FB(t,x) = q
(
v(t,x)×B(t,x)

)
. (2.2)

The Lorentz force law describes the total electromagnetic force for a point electric
charge exposed to an electric field and an induction field by combining equation (2.1)

13



and (2.2) to

F (t,x) = q
(
E(t,x) + v(t,x)×B(t,x)

)
. (2.3)

If the charge moves parallel to the induction field, the total force depends only on
the electric field, see equation (2.3).

In linear, isotropic media, we associate the electric displacement field D with the
electric field E by

D(t,x) = ϵ(x)E(t,x)

and the magnetic field H with the induction field B by

B(t,x) = µ(x)H(t,x).

The parameters ϵ(x) and µ(x) depend on the position x and are called dielectric
permittivity and magnetic permeability respectively. We assume that both
parameters are time-independent. The dielectric permittivity describes the influence
of the material on the electric field. It is determined by the relative permittivity
ϵr(x) and the permittivity of vacuum ϵ0 via

ϵ(x) = ϵr(x)ϵ0.

In general, if ϵr(x) > 1 the electric field is weakened. Identically, the magnetic
permeability is defined via the relative permeability µr(x) and the permeability of
free space µ0:

µ(x) = µr(x)µ0.

To formulate Maxwell’s equations, we define the charge density ρ(t,x) as the
charge per volume that effects on the electric current density j(t,x) via

j(t,x) = ρ(t,x)v(t,x)

where v is again the speed of the charged particle.

Notation 2.1 ([46], p. 22 et seq.).
For a three-dimensional vector field f : R3 → R3, we define the nabla operator as
∇ := ( ∂

∂x1
, ∂
∂x2

, ∂
∂x3

)⊺, such that the inner product

∇ · f :=
∂

∂x1

f1 +
∂

∂x2

f2 +
∂

∂x3

f3

represents the divergence of the vector field f = (f1, f2, f3)
⊺ and ∇× f the curl of

the vector field f defined by the cross product

∇× f :=


∂

∂x2
f3 − ∂

∂x3
f2

∂
∂x3

f1 − ∂
∂x1

f3

∂
∂x1

f2 − ∂
∂x2

f1

 .
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After introducing all relevant physical parameters, we can formulate the local
Maxwell equations as follows:

∇ ·D(t,x) = ρ(t,x) (2.4)

∇ ·B(t,x) = 0 (2.5)

∇× E(t,x) = − ∂

∂t
B(t,x) (2.6)

∇×H(t,x) = j(t,x) +
∂

∂t
D(t,x). (2.7)

The four partial differential equations are accepted as axioms and describe the
propagation of electromagnetic waves in space in general. The first equation (2.4),
known as Gauss’s law, describes the total electric flux through a closed surface. The
analog for the magnetic flux is represented in equation (2.5) and is called Gauss’s
law for magnetism. It claims that the total magnetic flux passing through a
closed surface is equal to zero. Faraday’s law, equation (2.6), tells that a mag-
netic field that changes in time produces a circulating electric field. According
to that, the last equation (2.7), Ampère’s law, declares that a circulating mag-
netic field is generated by a changing electric displacement field and a current density.

For our purposes, we consider a special case of investigation corresponding to the
study of plastics and ceramics: The space contains no charge. As a consequence, the
charge density ρ and the electric current density j are equal to zero. Additionally, we
assume that our material is non-conductive and non-magnetizable, i.e. the magnetic
permeability µ is set to µ0. With these assumptions, one can transform Maxwell’s
equations to

∇ · E(t,x) = 0 (2.8)

∇ ·B(t,x) = 0 (2.9)

∇× E(t,x) = − ∂

∂t
B(t,x) (2.10)

∇×B(t,x) = µ0ϵ(x)
∂

∂t
E(t,x) (2.11)

which is the basis for the further derivation. To result in equation (2.8), we set

∇ ·
(
ϵ(x)E(t,x)

)
≈ ϵ(x)∇ · E(t,x),

i.e. the dielectric permittivity varies weakly.

2.2 Wave equation

To obtain the eikonal equation, it is necessary to derive the wave equation that is a
consequence of the transformed Maxwell equations. We take Faraday’s law (2.10)
and apply the curl operator on both sides:

∇×
(
∇× E(t,x)

)
= −∇×

( ∂

∂t
B(t,x)

)
. (2.12)
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Notation 2.2 ([46], p. 25).
For a scalar field f : R3 → R, we define the gradient of f as

∇f =
( ∂f

∂x1

,
∂f

∂x2

,
∂f

∂x3

)⊺

and the Laplacian oparator ∆ as

∆f = ∇ · ∇f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

.

In the next step, we use the identity

∇×
(
∇× E(t,x)

)
= ∇

(
∇ · E(t,x)

)
−∆E(t,x).

Combined with equation (2.11) and (2.12), we obtain

∇
(
∇ · E(t,x)

)
−∆E(t,x) = −µ0ϵ(x)

∂2

∂t2
E(t,x).

The last line is reduced to the wave equation

∆E(t,x)− µ0ϵ(x)
∂2

∂t2
E(t,x) = 0 (2.13)

for the electric field E by applying equation (2.8). In vacuum, i.e. ϵ(x) = ϵ0, it holds

∆E(t,x)− 1

c20

∂2

∂t2
E(t,x) = 0. (2.14)

The constant c0 =
√
µ0ϵ0

−1 is called speed of light, see Definition 1.1. The
refractive index is coupled with the relative permittivity and the relative permeability
by

n(x) =
√

µr(x)ϵr(x). (2.15)

We transform the wave equation (2.13) using Definition 1.1 and equation (2.15) to

∆E(t,x)− 1

v2(x)

∂2

∂t2
E(t,x) = 0. (2.16)

The wave equation, a second-order linear partial differential equation, describes
the temporal and local behavior of the electric field E in the considered medium
depending on the refractive index. The equation is used to describe the propagation
of many other waves, such as sound waves or water waves.

Remark 2.3.
If we apply the curl operator to Ampère’s law, we obtain the same result for the
induction field, i.e.

∆B(t,x) =
1

v2(x)

∂2

∂t2
B(t,x).
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2.3 Helmholtz equation

To solve the wave equation, we focus on time harmonic electric waves E(t,x) and
separate them into a factor that depends on the position x and a part that is a
harmonic function of the time t. We write

E(t,x) = u(x)eiωt (2.17)

and insert this separation of variables into the wave equation:

eiωt∆u(x)− 1

v2(x)
u(x)

∂2

∂t2
eiωt = 0

⇔ eiωt∆u(x) +
ω2

v2(x)
u(x)eiωt = 0.

Dividing by eiωt, we derive the partial differential equation

∆u(x) +
ω2

v2(x)
u(x) = 0 (2.18)

for the spatial component of equation (2.17) which is known as the Helmholtz
equation. The parameter ω refers to the angular frequency of the electric wave
that is related to the frequency f by

ω = 2πf .

The Helmholtz equation is often given in the form

∆u(x) + k(x)2u(x) = 0

with the wave number
k(x) =

ω

v(x)
.

2.4 Eikonal equation

The eikonal equation can finally be seen as a high-frequency approximation of the
Helmholtz equation (2.18). In the last step, we consider a time shift in the solution
of the form

u(x) = A(x)e−iωT (x),

such that we write the electric field as

E(t,x) = A(x)eiω
(
t−T (x)

)
.

The function A(x) represents the local wave amplitude which may, in general, be a
complex-valued function. In our case, we consider linear polarized electromagnetic
waves resulting in a real-valued function A(x). The duration T (x) determines the
time of the wave until it reaches position x from the source. We calculate

∇u(x) = e−iωT (x)
(
∇A(x)− iωA(x)∇T (x)

)
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and consequently

∆u(x) = −iω∇T (x)e−iωT (x)
(
∇A(x)− iωA(x)∇T (x)

)
+ e−iωT (x)

(
∆A(x)− iωA(x)∆T (x)− iω∇A(x)∇T (x)

)
= e−iωT (x)

(
∆A(x)− ω2A(x)

(
∇T (x)

)2)
− ie−iωT (x)

(
2ω∇T (x)∇A(x)− ωA(x)∆T (x)

)
.

Inserting this result in equation (2.18) and dividing by e−iωT (x), we obtain(
∆A(x)− ω2A(x)

(
∇T (x)

)2
+

ω2

v2(x)
A(x)

)
− i

(
2ω∇T (x)∇A(x)− ωA(x)∆T (x)

)
= 0.

To be a solution of the Helmholtz equation, both, the real part and the imaginary
part, have to be equal to zero. We focus on the real part

∆A(x)− ω2A(x)
(
∇T (x)

)2
+

ω2

v(x)2
A(x) = 0.

Dividing by ω2 and using a high-frequency approximation, i.e. ∆A(x)ω−2 tends to
zero for high frequencies, we deduce the eikonal equation as a first-order non-linear
partial differential equation since A(x) does not vanish everywhere as

|∇T (x)|2 = 1

v2(x)
. (2.19)

We use the standard notation for the Euclidean norm:(
∇T (x)

)2
=

( ∂T

∂x1

)2

+
( ∂T

∂x2

)2

+
( ∂T

∂x3

)2

= ||∇T (x)||22 = |∇T (x)|2. (2.20)

It results a direct correlation between the travel time T (x) of the electromagnetic
wave required to reach a point x and the material-dependent velocity of the wave v(x).
Equation (2.19) is an adequate choice for modeling the propagation of THz radiation,
and so, for the definition of the parameter-to-solution operator of the considered
inverse problem in the next step. Note that we assumed x ∈ R3 throughout this
chapter; however, the same result is obtained for x ∈ R2 that we utilize in the further
course of the thesis. It should also be mentioned that, apart from Chapter 5, we do
not model the Gaussian beam to stay within a manageable framework.
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3 Inverse problem of terahertz to-
mography

After deducing the eikonal equation in the previous chapter, we use it as a model
to construct the forward operator to solve the reduced inverse problem of THz
tomography, see Problem 1.5. The eikonal equation is a first-order non-linear partial
differential equation that results in a non-linear operator. We define the forward
operator F as a composition of three operators by subdividing F into

F = Q ◦ γ ◦ S.

By S we understand the parameter-to-solution operator for which the eikonal equa-
tion is chosen. The operator S simulates the propagation of an electromagnetic
wave and maps the material-dependent velocity v(x) to the travel time T (x). The
measured data are only available on the boundary of the considered domain. We need
an operator, the trace operator γ, that restricts the solution of the eikonal equation
to this boundary. In reality, we only measure discrete data. An observation operator
Q is applied. The observation operator models the setting of the measuring process
and maps to an N -dimensional vector, where N describes the number of receivers.
To prove that the operator S is well-defined, we consider a special setting for the
refractive index and the travel time to apply the results of the paper ’Generalized
solution of the Hamilton-Jacobi equations of eikonal type’ written by S. N. Kruzhkov
[57].

In the second step, after defining the non-linear forward operator F , we apply the
iterative Landweber method to stabilize the resulting ill-posed problem. For this
purpose, the forward operator has to be linearized. Then, the adjoint of the linearized
forward operator is calculated resulting again in a partial differential equation. To
execute the iterative Landweber method, we numerically solve the forward operator
implementing the FMM. The linearized adjoint problem is solved numerically via a
fast sweeping method including a Gauss-Seidel iteration. Finally, first reconstructions
are presented in this chapter for various refractive indices.

3.1 The forward operator based on the eikonal

equation

The objective of the reduced inverse problem of THz tomography is to reconstruct
either the refractive index n(x) or the velocity v(x). This reconstruction is based
on discrete measurements of the travel time T (x) taken by an electromagnetic wave
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to reach the boundary, originating from the initial position x0 = (x0, y0)
⊺ ∈ Ω. We

limit to the two-dimensional space, i.e. we consider a domain Ω ∈ R2. Consequently,
we neglect the change in n in z-direction. We have

n(x) = n(x, y, z) = n(x, y, 0) = n(x, y)

for all z ∈ R. Furthermore, we note that outside the object, the refractive index
n(x) is equal to 1. Therefore, we can reasonably assume that we are operating in
an environment approximating a vacuum where v(x) ≈ c0, see Definition 1.1. It is
worth noting that the refractive index of air only deviates from this assumption at
the fourth decimal place.

The first part of the direct problem of THz tomography is obtained via the eikonal
equation:

|∇Tv(x, y)|2 =
1

v2(x, y)
, for all (x, y)⊺ ∈ Ω. (3.1)

To show the existence and uniqueness of a solution for the eikonal equation with
Dirichlet boundary condition, we adopt the results from Kruzhkov, see [57]. We deal
with a Hamilton-Jacobi equation of the form

H(x, T,∇T ) := f(x, T, p)− n2(x, y) = 0, (3.2)

where
p := ∇T and f(x, T, p) := |∇T |2.

According to Kruzhkov, we assume n ∈ C2,α(Ω), 0 < α < 1, to have Hölder-
continuous derivatives up to second order and formulate the following four assump-
tions that are obviously satisfied:

Assumption 3.1 ([57], p. 418).

a) The function f(x, T, p) has Hölder-continuous derivatives up to second order
in Ω̄ × R × R2: f ∈ C2,α, 0 < α < 1. Further, we have f(x, T, 0) ≡ 0 and
n(x, y) > 0.

b) Uniformly with respect to (x, T, p) ∈ Q, where Q is a compactum in Ω×R×R2:

inf
ξ∈R2,|ξ|=1

(ξ, fpp(x, T, p)ξ) ≥ λ = const > 0.

c) For any (x, T, p) ∈ Ω× R× R2

HT (x, T, p) ≤ 0, H(x, T, p) ≡ f(x, T, p)− n2(x, y).

d) Uniformly with respect to x ∈ Br(x0) ∩ Ω̄, for any fixed x0, r and M

f(x,M, p) → +∞ as |p| → ∞.

Proof.

a) Clear, according to the definition of f and n.
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b) We have fpp = 2I and it follows λ = 2.

c) We have HT ≡ 0.

d) It holds f = |p|2 → +∞ for |p| → ∞.

We now suppose that a function φ ∈ Lip(∂Ω) is given on the boundary ∂Ω satisfying
the Dirichlet boundary condition

T |∂Ω = φ. (3.3)

By Rademacher’s theorem, see e.g. [20], the gradient ∇φ exists at almost every
interior point of Ω. Further, we define a generalized solution of problem (3.2) and
(3.3) as follows:

Definition 3.2 (Generalized solution).
A function u ∈ Lip(Ω)∩E(Ω) is called generalized solution if it satisfies the equations
(3.2) and (3.3) almost everywhere in Ω. A function u is an element of E(Ω) if the
following inequation is satisfied ∀x, x+∆x, x−∆x ∈ Kδ(y) (where Kδ(y) is a ball
centered at y with the radius δ):

u(x+∆x)− 2u(x) + u(x−∆x)

|∆x|2
≥ −C(y, δ).

Theorem 3.3 (Existence of a solution, [57], p. 418).
Given the conditions of Assumption 3.1, there exists a generalized solution of problem
(3.2), (3.3) if and only if there exists an extension of the boundary function φ into Ω
such that φ ∈ Lip(Ω̄) (preserving the notation φ for it) and almost everywhere in Ω

f(x, φ,∇φ)− n2(x, y) ≤ 0.

Proof. See [57], p. 418 et seqq.

Theorem 3.4 (Uniqueness of a solution, [57], p. 411).
The generalized solution of the problem (3.2) and (3.3) is unique.

Proof. See [57], p. 411 et seqq.

At this point, we define the first part of the forward operator, the parameter-
to-solution operator S, that is essential for our investigation of the direct and
inverse problem of THz tomography. We suppose that there exists a function
φv(x, y) ∈ Lip(∂Ω) such that there exists an extension φv(x, y) ∈ Lip(Ω̄) (we
preserve the notation φv for it). Overall, we assume

φv(x, y) ∈ Lip(Ω̄), φv(x0, y0) = 0, (3.4)

|∇φv(x, y)|2 −
1

v2(x, y)
≤ 0 (3.5)
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Definition 3.5 (Parameter-to-solution operator).
Let v ∈ C2,α(Ω). We define the non-linear parameter-to-solution operator

S : D(S) ⊆ C2,α(Ω) → Lip(Ω̄)

v 7→ S(v) := Tv,

where 0 < α < 1 and Tv solves the partial differential equation (3.1) with the
Dirichelet boundary condition

Tv(x, y) = φv(x, y) on ∂Ω (3.6)

and the initial condition

Tv(x0, y0) = 0, for one (x0, y0)
⊺ ∈ ∂Ω. (3.7)

We have

D(S) = {v ∈ C2,α(Ω) : φv ∈ Lip(Ω), φv(x0, y0) = 0, |∇φv|2 −
1

v2
≤ 0}.

Theorem 3.6.
The parameter-to-solution operator S is well-defined under the assumptions (3.4)
and (3.5) for φv.

Proof. The statement follows directly from Theorem 3.3 and 3.4.

The operator S calculates the travel time Tv required for the THz radiation to reach
the point (x, y)⊺ from its starting point (x0, y0)

⊺ for a given refractive index n and
thus a given velocity v. Due to the fact that the travel time is increasing in time, we
can suppose that φv(x, y) ̸≡ 0 on ∂Ω.

Remark 3.7.

a) One possibility to solve non-linear first-order partial differential equations is the
method of characteristics. The partial differential equation is transformed into
a system of ordinary differential equations. In this work, we solve the eikonal
equation by the FMM, see Subsection 3.4.1. For more information about the
method of characteristics, we refer to Evans [21].

b) The uniqueness of the solution is investigated in the viscosity sense in [13]. For
our investigation, we focus on the discretized case where we have existence and
uniqueness by Theorem 3.24.

c) Since the partial derivatives of the unknown function T appear in quadratic
form in equation (3.1), it is a non-linear differential equation. Consequently,
the unique operator S is indeed non-linear, see Appendix B.7.

In the context of tomographic processes, the emission and measurement of radiation
by both, the sender and receivers, typically occur along a curve encircling the object
under investigation, refer to Figure 1.2. The domain denoted as Ω is defined as the
interior of the measurement setup. The data is generated along the boundary ∂Ω of
this region. To characterize our forward operator, we must confine the operator S to
the boundary of our specified region. We propose that the boundary ∂Ω possesses the
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property of being C1 class, enabling the establishment of a trace operator known for
its continuity and linearity. The trace operator restricts an element of the continuous
functions to the boundary of the domain Ω.

Let Ω ⊆ Rn be an open, bounded domain of class C1 and u ∈ C(Ω̄). Then,
γ : C(Ω̄) → C(∂Ω) defined by

γu = u|∂Ω.

is a linear and continuous mapping. We have

sup
x∈∂Ω

|u(x)| ≤ sup
x∈Ω̄

|u(x)|.

Definition 3.8 (Trace operator).
The operator

γ : Lip(Ω̄) ⊂ C(Ω̄) → C(∂Ω), Tv 7→ Tv|∂Ω

denotes the trace operator.

To define the complete forward operator, the measuring process must be taken into
account. We use a linear observation operator to model the measuring process and
assume that the surfaces of all receivers are contained in ∂Ω. We are guided by the
work of Wald et all, see [93]. Before introducing the observation operator, we need
some notation:

Notation 3.9.
Let N ∈ N be the number of receivers. By

Eν ⊆ ∂Ω, ν = 1, 2, ..., N

we denote the surfaces of the N receivers. Further, we introduce the sensor char-
acteristic of the receiver Eν as a real-valued linear functional eν ∈ C(∂Ω)∗

eν : C(∂Ω) → R.

Definition 3.10 (Observation operator).
The operator Q : C(∂Ω) → RN with

φ 7→ y := (Qφ)ν=1,...,N =
(〈

φ, eν
〉
C(∂Ω)×C(∂Ω)∗

)
ν=1,...,N

=

(∫
∂Ω

eν(x)φ(x) dsx

)
ν=1,...,N

(3.8)

denotes the observation operator modeling the measurement process of THz tomogra-
phy.

Remark 3.11.

a) The observation operator is a continuous linear operator.

b) The observation operator maps the restricted travel time γTv ∈ C(∂Ω) to the
measured values y = (y1, ..., yN)

⊺ ∈ RN .
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c) For our investigations, we use point evaluations, i.e.

eν(x) := δ(x− xEν ), ν = 1, 2, ..., N.

The point xEν ∈ ∂Ω indicates the position of the receiver Eν. Consequently, we
can rewrite

y = (γTv(xE1), ..., γTv(xEN
))⊺ = (Tv(xE1), ..., Tv(xEN

))⊺.

Finally, we summarize our derivation by defining the forward operator as a composi-
tion of the observation operatorQ, the trace operator γ and the parameter-to-solution
operator S:

Definition 3.12 (Forward operator).
The operator F : D(S) ⊂ C2,α(Ω) → RN , 0 < α < 1, with

F (v) := QγS(v) = (Tv(xE1), ..., Tv(xEN
))⊺

is called forward operator of the reduced THz setting.

3.2 Linearization of the forward operator

In the previous section, we deduced the forward operator F , an operator that
describes the mathematical model of the direct problem of THz tomography. Because
S, and consequently F , is non-linear, we deal with a non-linear inverse problem.
To solve this problem with the iterative Landweber method the linearization of the
forward operator F is required. We approximate the non-linear forward operator by
a linear operator. For this, we need the Gâteaux derivative:

Definition 3.13 (Gâteaux derivative [94], p. 112 et seq.).
Let X, Y be normed spaces, U ⊆ X an open set and F : U → Y . Note that F is in
general not linear. The mapping F is called Gâteaux-differentiable in x0 ∈ U , if
there exists a continuous linear operator Ax0 ∈ L(X, Y ) fulfilling

lim
h→0

F (x0 + hν)− F (x0)

h
= Ax0ν for all ν ∈ X.

By F ′(x0) : ν 7→ Ax0ν we denote the Gâteaux derivative of F in x0 ∈ U in the
direction ν ∈ X.

To calculate the linearization of the operator S, we consider the perturbed problem

|∇Tvh(x, y)|2 =
1(

v(x, y) + βh(x, y)
)2 , for all (x, y)⊺ ∈ Ω, (3.9)

Tvh(x0, y0) = 0, for one (x0, y0)
⊺ ∈ ∂Ω, (3.10)

Tvh(x, y) = φvh(x, y), (x, y)⊺ ∈ ∂Ω, (3.11)

for an β ∈ R+ with Tvh := S(v + βh) and φvh fulfilling the assumptions (3.4) and
(3.5).
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Notation 3.14.
For simplicity, we neglect the arguments in the notation and write, for example, T
instead of T (x, y).

We further assume, that the limit

lim
β→0

S(v + βh)− S(v)

β
= lim

β→0

Tvh − Tv

β
=: S ′(v)h

exists for all h ∈ C2,α(Ω).

To calculate the linearization of our operator S, we subtract the eikonal equation for
Tv, see equation (3.1), form the perturbed one for Tvh , see equation (3.9):

(Tvh)
2
x − (Tv)

2
x + (Tvh)

2
y − (Tv)

2
y =

1

v2 + 2βhv + β2h2
− 1

v2

⇔ (Tvh − Tv)x(Tvh + Tv)x + (Tvh − Tv)y(Tvh + Tv)y =
−2βhv − β2h2

v4 + 2v3βh+ v2β2h2
.

Dividing by β ̸= 0 and considering the limit β → 0 yield

(Tvh − Tv

β

)
x
(Tvh + Tv)x +

(Tvh − Tv

β

)
y
(Tvh + Tv)y =

−2hv − βh2

v4 + 2v3βh+ v2β2h2

β→0⇒ 2[S ′(v)h]x(Tv)x + 2[S ′(v)h]y(Tv)y = −2h

v3

⇔ ∇(S ′(v)h) · ∇Tv = − h

v3
.

For these steps, we assume the continuity of the operator S. The initial condition
for (x0, y0)

⊺ results by equation (3.7) and (3.10) in

lim
β→0

Tvh(x0, y0)− Tv(x0, y0)

β
= 0.

Based on the previous calculations, we define the linearization of the operator S that
depends linear on h ∈ C2,α(Ω).

Theorem 3.15 (Linearized parameter-to-solution operator).
For v ∈ D(S) and Tv = S(v), we define the Gâteaux derivative

S ′(v) : C2,α(Ω) → C1(Ω̄)

of the parameter-to-solution operator S as the operator, that maps h ∈ C2,α(Ω) to
the solution z of the partial differential equation

∇z · ∇Tv = − h

v3
in Ω

z(x0, y0) = 0 for one (x0, y0)
⊺ ∈ ∂Ω

z(x, y) ̸≡ 0 on ∂Ω.

(3.12)

It holds S ′(v)h = z.
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Lemma 3.16.
Let X, Y, Z denote normed spaces and U ⊆ X, V ⊆ Y open sets.

a) If F : X → Y is linear, we have that F is Gâteaux-differentiable if and only if
F is continuous with

F ′(x0) = F, x0 ∈ X.

b) If H : U → Y and G : V → Z with H(U) ⊆ V are Gâteaux-differentiable in
x0 ∈ U , respectively H(x0) ∈ V , then G ◦ H is Gâteaux-differentiable in x0

with
(G ◦H)′(x0) = G′(H(x0)) ◦H ′(x0).

Proof. See Werner [94], p. 121.

To obtain the linearization of the forward operator F , we observe the composition
QγS(v). The trace operator and the observation operator are linear, continuous and
thus, see Lemma 3.16 a), Gâteaux-differentiable. Together with the chain rule, see
Lemma 3.16 b), we obtain for the linearized forward operator F ′(v) : C2,α(Ω) →
RN [

F ′(v)
]
h =

[
(QγS)′(v)

]
h

=
[
Q′(γS(v)) ◦ γ′(S(v)) ◦ S ′(v)

]
h

=
[
QγS ′(v)

]
h =

(
z(xE1), ..., z(xEN

)
)⊺

.

3.3 Adjoint linearized problem

Considering the Landweber iteration, see Section 3.4, we have to investigate the
adjoint of the linearized forward operator F ′(v)∗, that is given by the mapping

F ′(v)∗ : RN → C2,α(Ω)∗, σ̃ 7→
[
(γS ′(v))∗Q∗]σ̃.

For σ̃ ∈ RN , we want to find a function µ̃ ∈ C2,α(Ω) such that

F ′(v)∗σ̃ = µ̃.

We split our calculations into two parts and start with the investigation of the adjoint
operator (γS ′(v))∗. While γS ′(v) maps a Hölder-continuous real-valued function
η ∈ C2,α(Ω) to a continuous function on ∂Ω, the adjoint of it maps an element
Q∗σ̃ =: σ ∈ C(∂Ω)∗ to a function µ ∈ C2,α(Ω)∗.

We obtain

µ(η) =
(
η, µ

)
C2,α(Ω)×C2,α(Ω)∗

=
(
η,
(
γS ′(v)

)∗
σ
)
C2,α(Ω)×C2,α(Ω)∗

=
〈
γS ′(v)η, σ

〉
C(∂Ω)×C(∂Ω)∗

.

Before we formulate Theorem 3.19 defining the adjoint operator (γS ′(v))∗, we
introduce the normal derivative and the product rule for divergence:
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Notation 3.17.
The normal derivative ∂

∂n
denotes the partial directional derivative in the direction

of the outward normal vector n of the boundary ∂Ω. We write for a function f

∂f

∂n
:= ∇f · n.

Lemma 3.18 (Product rule for divergence).
For a scalar-valued function φ and a vector-valued function v, we have the following
identity:

div(φv) = φ div v + v∇φ.

Proof. See Appendix B.6.

Theorem 3.19.
Let v ∈ D(S), σ ∈ C(∂Ω)∗. The adjoint of γS ′(v) is given by

(γS ′(v))∗σ :=
ϕ

v3

where ϕ ∈ C2,α(Ω)∗ solves the partial differential equation

∆Tϕ+∇T∇ϕ = 0 in Ω

ϕ(∇T · n) = −σ on ∂Ω.
(3.13)

Proof. Consider the dual pairing of equation (3.12) with some test function ϕ ∈
C2,α(Ω)∗:

(∇z∇Tv, ϕ)C2,α(Ω)×C2,α(Ω)∗ = −
( h

v3
, ϕ

)
C2,α(Ω)×C2,α(Ω)∗

⇔
∫
Ω

(∇z∇Tv)ϕ dxdy = −
∫
Ω

h

v3
ϕ dxdy.

By setting (γS ′(v))∗σ = ϕ
v3

the right-hand side is reformulated to

−
∫
Ω

h

v3
ϕ dxdy = −

(
h,

ϕ

v3

)
C2,α(Ω)×C2,α(Ω)∗

= −
(
h, (γS ′(v))∗σ

)
C2,α(Ω)×C2,α(Ω)∗

= −⟨γS ′(v)h, σ⟩C(∂Ω)×C(∂Ω)∗

= −
∫
∂Ω

zσ dsx

To transform the left-hand side, we use the product rule for divergence. We substitute
φ and v in Lemma 3.18 by φ := z and v := ∇Tvϕ to obtain∫

Ω

(∇z∇Tv)ϕ dxdy =

∫
Ω

div(z∇Tvϕ) dxdy −
∫
Ω

z
(
div(∇Tvϕ)

)
dxdy

=

∫
Ω

div(z∇Tvϕ) dxdy +

∫
Ω

z
(
∆Tvϕ+∇Tv∇ϕ

)
dxdy
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We use the Divergence theorem of Gauß to rewrite the first term∫
Ω

div(z∇Tvϕ) dxdy =

∫
∂Ω

n · ∇Tvϕz dsx.

Finally, by summarizing the calculations, we obtain:∫
∂Ω

z
(
n · ∇Tvϕ

)
dsx = −

∫
∂Ω

zσ dsx

and ∫
Ω

z
(
∆Tvϕ+∇Tv∇ϕ

)
dxdy = 0.

This yields (3.13) since the solution z of the linearized problem typically does not
vanish either on Ω or its boundary ∂Ω.

In the second step, we formulate the adjoint of the observation operator:

Lemma 3.20.
The adjoint of the observation operator (3.8) is defined by Q∗ : RN → C(∂Ω)∗ with

σ̃ := (σ̃ν)ν=1,...,N 7→ Q∗σ̃ =
N∑
ν=1

σ̃νδ(x− xEν). (3.14)

Proof. For φ ∈ C(∂Ω) and σ̃ ∈ RN , we use the Euclidean scalar product on RN

respecting (RN)∗ ∼= RN such that we have

⟨Qφ, σ̃⟩RN = ⟨φ,Q∗σ̃⟩C(∂Ω)×C(∂Ω)∗

⇔
N∑
ν=1

φ(xEν )σ̃ν =

∫
∂Ω

φQ∗σ̃ dsx.

by using the definitions of the scalar products. We identify

Q∗σ̃ =
N∑
ν=1

σ̃νδ(x− xEν).

At this point, we introduce the adjoint of the linearized forward operator
F ′(v)∗:

Theorem 3.21.
Let σ̃ ∈ RN . The adjoint of F ′(v) is given by

F ′(v)∗σ̃ := µ̃

where µ̃ ∈ C2,α(Ω)∗ is defined as

µ̃ :=
ϕ

v

and ϕ ∈ C2,α(Ω)∗ solves the boundary value problem

∆Tϕ+∇T∇ϕ = 0 in Ω

ϕ(∇T · n) = −
N∑
ν=1

σ̃νδ(x− xEν) on ∂Ω.
(3.15)
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Proof. The statement is a consequence of Theorem 3.19, Lemma 3.20 and substituting
σ by Q∗σ̃.

Remark 3.22.

a) Note that equation (3.13) as well as equation (3.15) is to be understood in the
dual space setting tested against ϕ ∈ C2,α(Ω)∗ as in the proof of Lemma 3.19.

b) We do not prove the existence and uniqueness of the solution ϕ. Again, it is a
Hamilton-Jacobi equation for which the theory has already been well studied,
see Remark 3.7. We recommend the work of Crandall and Lions [13]. For our
thesis, we focus on the discretized case where we obtain convergence for our
numerical solution by Section 3.4.2.

3.4 Solving the inverse problem using Landweber

iteration

Due to the previous sections, we are faced with a non-linear operator equation. The
challenge of the resulting ill-posed problems can be addressed in the following ways:
One possibility is to include prior knowledge to make the problem more stable while
the other entails employing specific numerical approaches known as regularization
techniques. The latter involves the point-wise approximation of the discontinuous
inverse. The regularization theory is extensively comprehended and numerous reg-
ularization methods have been analyzed. A common method to solve non-linear
inverse problems is the Landweber method. We give a short overview of the method
referring to Kaltenbacher et al. [48].

In general, the Landweber method can be understood as a gradient descent method
to minimize the least square functional

ϕδ(x) =
1

2
||F (x)− yδ||2 (3.16)

for a non-linear operator equation

F (x) = y

where F : D(F ) → Y with D(F ) ⊆ X is a non-linear, continuous and Fréchet
differentiable operator between Hilbert spaces X and Y .

Considering that the exact data y is rarely available, we represent the measured
perturbed data as the noisy data yδ. We operate under the assumption that these
noisy observations fulfill the inequation

||yδ − y|| ≤ δ.

The Landweber method is motivated by the normal equation and a fixed-point
iteration: In the context of a linear problem, denoted here as

Kx = y,
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where K represents a linear operator, numerous iterative methods aim to approximate
K+y where K+ signifies the Moore–Penrose inverse, as explained in Rieder [78].
The methods rely on a transformation that converts the normal equation into an
equivalent fixed-point equation. This transformation is exemplified as follows leading
to a descent method:

x = x+K∗(y −Kx).

The idea of a descent method is to calculate the new iteration in the direction of the
steepest descent. For the least square functional (3.16), its gradient ∂xϕ

δ(x) with
respect to x is given by

∂xϕ
δ = F ′(x)∗(F (x)− yδ) (3.17)

where F ′(x)∗ denotes the adjoint of the Fréchet derivative, in our case the Gâteaux
derivative, of F in x ∈ D(F ). With an initial guess xδ

0, we obtain the Landweber
iteration

xδ
k+1 = xδ

k − ωF ′(xδ
k)

∗(F (xδ
k)− yδ), k = 0, 1, 2, ... (3.18)

as a descent method where ω > 0 is a relaxation parameter. When the Landweber
iteration is applied to exact data, meaning that we use y instead of yδ, we denote
the iterated solutions as xk instead of xδ

k.

Dealing with noisy data, it is necessary to incorporate a stopping criterion into the
iteration process to act as a regularization method. The discrepancy principle is
a suitable criterion to stop the iteration after k∗ = k∗(yδ, δ) steps fulfilling

||yδ − F (xδ
k∗)|| ≤ τδ < ||yδ − F (xδ

k)||, 0 ≤ k < k∗. (3.19)

where τ > 1.

Remark 3.23 ([48], p. 5 et seqq.).
In the context of non-linear problems, iteration methods such as (3.18) typically
do not converge globally. However, we can establish a guarantee of convergence
within a limited local scope by imposing certain conditions on operator F. Given
some assumptions, one can prove that the stopping index k∗ is finite. An appropriate
choice is

τ > 2
1 + η

1− 2η
> 2

where η < 1
2
ensures the local cone condition

||F (x)− F (x̃)− F ′(x)(x− x̃)|| ≤ η||F (x)− F (x̃)||

for x, x̃ ∈ B2ρ(x0) ⊆ D(F ). The notation B2ρ(x0) defines a closed ball of radius 2ρ
around x0.

For more information about the non-linear Landweber iteration, we recommend the
article of Hanke et al. [31] and the publication of Andreas Neubauer [72]. For our
investigation, we focus on iteration (3.18).
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3.4.1 Numerical solution of the forward operator using the
Fast Marching Method

So far, the forward operator F has been derived as a composition of the observation,
the trace and the parameter-to-solution operator. Further, the Landweber method
has been introduced. We need a numerical procedure to calculate the forward
operator F to obtain the residual

Rδ = (F (v)− yδ)

which is an essential part of the gradient (3.17) and iteration (3.18). For this purpose,
we solve the partial differential equation (3.1) with the initial condition (3.7) via
a finite difference method, the so-called Fast Marching Method (FMM). The
idea of the FMM has been introduced by Sethian [82]. In this section, we describe
the FMM based on a publication by Sethian [83]. Additional information can be
found in the research of Chacon et al. [11]. In the following, the Fast Marching
algorithm is presented to simulate the propagation of THz radiation and thus to
solve the forward operator on a uniform Cartesian grid.

The FMM is an iterative procedure that, beginning at an initial value or a boundary
condition, calculates the travel time that the THz radiation requires to reach a
certain point x ∈ Ω. The differential equation is solved starting from the initial
condition, i.e. from smaller values of the travel time T to larger ones. Such methods
are called upwind schemes [83]. In our case, the initial value models the source
point at which the signal is emitted. To solve the eikonal equation numerically with
the FMM, we have to discretize our domain. We set

Ω = [−a, a]× [−a, a], a ∈ R,

and are interested in a solution on a uniform Cartesian grid with step size h that we
define as

Ωh := {(xi, yj)
⊺ ∈ Ω : xi = −a+ (i− 1)h, yj = −a+ (j − 1)h, 1 ≤ i, j ≤ M}.

The step size h is given by

h :=
2a

M − 1

where M − 1 is the number of equidistant steps in x- and y-direction and M2 the
number of pixels. The FMM also works for triangulated domains or unstructured
meshes, see [52, 84].

We approximate the partial derivative at position (xi, yj)
⊺ by the left-hand and the

right-hand difference quotient and define

Di,jT
+
x :=

T (xi+1, yj)− T (xi, yj)

h
, 1 ≤ i ≤ M − 1, 1 ≤ j ≤ M (3.20)

Di,jT
−
x :=

T (xi−1, yj)− T (xi, yj)

−h
, 2 ≤ i ≤ M, 1 ≤ j ≤ M (3.21)

Di,jT
+
y :=

T (xi, yj+1)− T (xi, yj)

h
, 1 ≤ i ≤ M, 1 ≤ j ≤ M − 1 (3.22)

Di,jT
−
y :=

T (xi, yj−1)− T (xi, yj)

−h
, 1 ≤ i ≤ M, 2 ≤ j ≤ M (3.23)

31



We take the initial value problem (3.1) and an upwind scheme by Rouy and Tourin
[80] to obtain(

max(Di,jT
−
x ,−Di,jT

+
x , 0)

)2

+

(
max(Di,jT

−
y ,−Di,jT

+
y , 0)

)2

=
1

v2i,j
(3.24)

for (xi, yj)
⊺ ∈ Ωh with

vi,j = v(xi, yj).

Starting with the initial condition

T (xi, yj) = 0 for one (i, j) ∈ {1, ...,M} × {1, ...,M},

we calculate iteratively the travel time for all pixels. For the FMM in general,
the starting point can be chosen arbitrarily. We notice that in our case the initial
condition is assigned to a pixel on the boundary of our domain, that is

∂Ωh := {(xi, yj)
⊺ ∈ Ωh : i = 1 ∨ j = 1 ∨ i = M ∨ j = M}.

For all other pixels, we set the travel time to +∞ meaning that it is currently
unknown. In addition, we add some pixels to our domain by defining

T (x0, yj) := T (xM+1, yj) := T (xi, y0) := T (xi, yM+1) := +∞, 1 ≤ i, j ≤ M,

such that the Definition (3.20) - (3.23) of the left-hand and right-hand difference
quotients holds for all elements of the domain Ωh. The refractive index and thus the
velocity vi,j is assumed to be known when solving the considered forward problem.
The FMM searches for the smallest travel time value and then calculates the travel
time for its neighboring pixels using the discretized eikonal equation (3.24). We want
to calculate a solution such that the pixel values increase starting from the initial
value.

The next theorem states that the discretized eikonal equation (3.24) is uniquely
solvable given some preconditions. When calculating the travel time Ti,j at position
(xi, yj)

⊺, we are confronted with several cases. We set TH := min(Ti−1,j, Ti+1,j) and
TV := min(Ti,j−1, Ti,j+1) and consider T ≥ 0.

Theorem 3.24.
Let Ωh be a Cartesian grid with equidistant step width h and M2 pixels. Further the
travel times for the neighboring pixel

{(xi−1, yj), (xi, yj−1), (xi+1, yj), (xi, yj+1)}

of the pixels (xi, yj) are given and at least one travel time is finite. Then we can
construct a unique solution Ti,j, (i, j) ∈ {1, ...,M} × {1, ...,M}, such that

a) Ti,j > max{TH , TV } for TH ̸= +∞ and TV ̸= +∞ and |TH − TV | ≤ h
vi,j

.

b) Ti,j > TH for TV = +∞.

c) Ti,j > TV for TH = +∞.
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d) TH > Ti,j > TV or TV > Ti,j > TH for TH ̸= +∞ and TV ̸= +∞ and
|TH − TV | > h

vi,j
.

Proof. The situation that TH = ∞ and TV = ∞ at the same time is not possible due
to the assumption that at least one neighboring pixel is finite.

a) Let TH ̸= +∞ and TV ̸= +∞ and |TH − TV | ≤ h
vi,j

.

We construct a solution Ti,j > max{TH , TV }. As a consequence we have

(Ti,j > Ti−1,j) ∨ (Ti,j > Ti+1,j), respectively (Ti,j > Ti,j−1) ∨ (Ti,j > Ti,j+1)

and it follows

max(Di,jT
−
x ,−Di,jT

+
x , 0) = max

(
Ti,j − Ti−1,j

h
,
Ti,j − Ti+1,j

h
, 0

)
> 0

and

max(Di,jT
−
y ,−Di,jT

+
y , 0) = max

(
Ti,j − Ti,j−1

h
,
Ti,j − Ti,j+1

h
, 0

)
> 0.

The discretized eikonal equation can be transformed to

(Ti,j − TH)
2 + (Ti,j − TV )

2 =
h2

v2i,j

yielding

Ti,j =
TH + TV

2
± 1

2

√
(TH + TV )2 − 2

(
T 2
H + T 2

V − h2

v2i,j

)
.

This solution exists because of |TH −TV | ≤ h
vi,j

. The solution is unique because

Ti,j =
TH + TV

2
− 1

2

√
(TH + TV )2 − 2

(
T 2
H + T 2

V − h2

v2i,j

)
≤ max{TH , TV } −

1

2

√
(TH + TV )2 − 2

(
T 2
H + T 2

V − h2

v2i,j

)
≤ max{TH , TV }.

leads to a contradiction to Ti,j > max{TH , TV }.

b) We set TV = ∞ and construct a unique solution Ti,j > TH .
It follows that

max(Di,jT
−
y ,−Di,jT

+
y , 0) = 0

and
max(Di,jT

−
x ,−Di,jT

+
x , 0) ̸= 0.

We transform the discrete differential equation (3.24) to

(Ti,j − TH)
2 =

h2

v2i,j

⇔ Ti,j =
h

vi,j
+ TH .
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c) Same argumentation as in b).

d) It remains TH ̸= +∞ and TV ̸= +∞ and |TH − TV | ≥ h
vi,j

. W.l.o.g we set

TV > Ti,j > TH and we use the same argumentation as in b) having

max(Di,jT
−
y ,−Di,jT

+
y , 0) = 0.

Remark 3.25.
Theorem 3.24 states that we can calculate the travel time Ti,j for all 1 ≤ i, j ≤ M
iteratively in an upwind procedure if a source point condition is given. It can be
shown that the solution converges to the viscosity solution [11]. To apply the forward
operator F completely, we have to restrict the solution to the boundary pixel of our
domain Ωh where the receivers are placed.

Building on the previous theorem, we can now describe the Fast Marching algorithm.
The FMM solves the discretized eikonal equation (3.24) starting with an initial value
T (x0, y0). The steps of Algorithm 3.26 are illustrated in Figure 3.1 for a better
understanding.

Algorithm 3.26. (FMM)

STEP 1:
Choose a finite start value Ti0,j0 with (xi0 , yi0)

⊺ ∈ ∂Ωh and mark it as
’reached = 1’.
Set all other pixel values to +∞ and mark them as ’unreached = 0’.

STEP 2:
Starting from the initial value, determine the four neighboring pixels and
mark them as ’active =2’.
Calculate for each neighboring pixel with Theorem 3.24 the travel time. The
neighbor pixel acts for Ti,j in each case.

STEP 3:
From the active pixels, select the one with the smallest travel time and mark
it as ’reached = 1’.
Repeat step 2, starting from this value. Skip a neighboring pixel if it is
already marked as ’reached = 1’.

STEP 4:
Repeat step 3 until all pixels are marked as ’reached=1’.
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(a) (b)

(c) (d)

Figure 3.1: Visualization of Algorithm 3.26 showing Step 1 (a), Step 2 (b) and Step 3 (c)
as well as the fifth iteration (d)

3.4.2 Numerical solution of the adjoint linearized problem

To implement iteration (3.18), a numerical solution of the adjoint of F ′ is needed in
addition to the numerical solution of F derived in the last section. Consequently,
we are interested in a numerical solution to the adjoint linearized problem (3.15),
see Theorem 3.21. The considered partial differential equation is a first-order linear
equation, again a Hamilton-Jacobi equation of the form

H(x, ϕ(x),∇ϕ(x)) = 0, x ∈ Ω,

with Dirichlet boundary conditions. We solve the discretized version of this equation
with a fast sweeping scheme motivated by Kao, Osher and Qian [51]. For a more
detailed description of the underlying method, we refer to [60] that is a basis for this
subsection.

The idea is to calculate the solution of a grid point (xi, yj)
⊺ with the help of its

neighbors, and then, to use a Gauss-Seidel-iteration by following the characteristics.
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For this purpose, we divide our domain as in Section 3.4.1 and transform equation
(3.15) to

(Txϕ)x + (Tyϕ)y = 0 (3.25)

respecting the product rule. We start with a discretization using the central difference
on our equidistant grid and set for simplification

ai+ 1
2
,j := Tx(xi+ 1

2
, yj) =

T (xi+1, yj)− T (xi, yj)

h
,

ai− 1
2
,j := Tx(xi− 1

2
, yj) =

T (xi, yj)− T (xi−1, yj)

h
,

bi,j+ 1
2
:= Ty(xi, yj+ 1

2
) =

T (xi, yj+1)− T (xi, yj)

h
,

bi,j− 1
2
:= Ty(xi, yj− 1

2
) =

T (xi, yj)− T (xi, yj−1)

h
.

We rewrite equation (3.25) using again the central difference for (Txϕ)x and (Tyϕ)y
to

1

h

(
ai+ 1

2
,jϕi+ 1

2
,j − ai− 1

2
,jϕi− 1

2
,j + bi,j+ 1

2
ϕi,j+ 1

2
− bi,j− 1

2
ϕi,j− 1

2

)
= 0 (3.26)

In the second step, we introduce the notations

a±
i+ 1

2
,j
=

ai+ 1
2
,j ± |ai+ 1

2
,j|

2
,

a±
i− 1

2
,j
=

ai− 1
2
,j ± |ai− 1

2
,j|

2
,

b±
i,j+ 1

2

=
bi,j+ 1

2
± |bi,j+ 1

2
|

2
,

b±
i,j− 1

2

=
bi,j− 1

2
± |bi,j− 1

2
|

2
,

(3.27)

such that we can define the values ϕi± 1
2
,j and ϕi,j± 1

2
according to the propagation of

the radiation: If, for instance, the characteristic goes from left to right, we will define

ϕi+ 1
2
,j := ϕi,j for ai+ 1

2
,j > 0.

Analogously, we set
ϕi+ 1

2
,j := ϕi+1,j for ai+ 1

2
,j < 0

and define the values ϕi,j± 1
2
in a similar way. According to notation (3.27), we write

equation (3.26) as follows:

(a+
i+ 1

2
,j
ϕi,j + a−

i+ 1
2
,j
ϕi+1,j)− (a+

i− 1
2
,j
ϕi−1,j + a−

i− 1
2
,j
ϕi,j)

+(b+
i,j+ 1

2

ϕi,j + b−
i,j+ 1

2

ϕi,j+1)− (b+
i,j− 1

2

ϕi,j−1 + b−
i,j− 1

2

ϕi,j) = 0

A reformulation of the last equation results in an expression for ϕi,j in the interior of
our domain:

(a+
i+ 1

2
,j
− a−

i− 1
2
,j
+ b+

i,j+ 1
2

− b−
i,j− 1

2

)ϕi,j

=a−
i+ 1

2
,j
ϕi+1,j − a+

i− 1
2
,j
ϕi−1,j + b−

i,j+ 1
2

ϕi,j+1 − b+
i,j− 1

2

ϕi,j−1.
(3.28)
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Further, we include the boundary conditions

ϕ1,j =
σ̃1,j

Tx1,j

, ϕM,j = − σ̃M,j

TxM,j

, j = 2, ...,M − 1

ϕi,1 =
σ̃i,1

Tyi,1

, ϕi,M = − σ̃i,M

Tyi,M

, i = 2, ...,M − 1

(3.29)

by using equation (3.15) and the outer normal vectors of a square, see Figure 3.2.
For the edges, we set

ϕ1,1 =
σ̃1,1√

2(Tx1,1 + Ty1,1)
,

ϕ1,M =
σ̃1,M√

2(Tx1,M
− Ty1,M )

,

ϕM,1 = − σ̃M,1√
2(TxM,1

− TyM,1
)
,

ϕM,M = − σ̃M,M√
2(TxM,M

+ TyM,M
)
.

(3.30)

with Txi,j
:= Tx(xi, yj) and Tyi,j := Ty(xi, yj).

(−1, 0)⊺ (1, 0)⊺

(0, 1)⊺

(0,−1)⊺

1√
2
(1, 1)⊺

1√
2
(1,−1)⊺1√

2
(−1,−1)⊺

1√
2
(−1, 1)⊺

Figure 3.2: Outer normal vector of a square

Finally, we can use an iterative scheme and the boundary conditions to solve equation
(3.15) via a fast sweeping iterative method, that is a Gauss-Seidel iteration using
different directions. We obtain convergence because the resulting matrix of the
linear system for the calculation of ϕ is irreducibly diagonally dominant, see [60].
The Gauss-Seidel method can be looked up in the book ’Introduction to Numerical
Analysis ’ by Stoer and Bulirsch [86]. We have an iteration mechanism characterized
by the following structure

x(k+1) = Φ(x(k))
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to solve the linear system
Ax = b.

The value x
(k+1)
i = Φi(x

(k)) is calculated via

x
(k+1)
i = − 1

aii

( i−1∑
j=1

aijx
(k+1)
j +

n∑
j=i+1

aijx
(k)
j − bi

)
. (3.31)

We obtain the following algorithm to solve the differential equation (3.25):

Algorithm 3.27. (Fast sweeping method)

STEP 1:
Compute the boundary conditions (3.29) and (3.30). These values are fixed

during the iteration. Set all other values ϕ
(old)
i,j to a larger value.

STEP 2:
Calculate ϕ̃i,j with equation (3.28) using Gauss-Seidel iteration 3.31.

Sweep from i = 1, ...,M and j = 1, ...,M and set ϕ
(new)
i,j = min{ϕ(old)

i,j , ϕ̃i,j}.

STEP 3:
Repeat Step 2 with the other three sweeping combinations:

� i = 1, ...,M and j = M, ..., 1

� i = M, ..., 1 and j = M, ..., 1

� i = M, ..., 1 and j = 1, ...,M .

STEP 4:
Repeat Step 2 and 3 until

||ϕ(new)
i,j − ϕ

(old)
i,j || ≤ ϵ.

3.4.3 Numerical reconstruction with the Landweber itera-
tion

Finally, we have all the ingredients to implement the iterative Landweber method
(3.18). In the further course of the dissertation, we work on a domain

Ω = {x ∈ R2 : ||x||∞ ≤ 0.15 m}

and use an equidistant grid of

M ×M = 57× 57

pixels with a resulting step size of

h =
2 · 15 cm

57− 1
≈ 0.5357 cm.
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Remark 3.28.

a) The domain is chosen based on the measurement setup in Chapter 5.

b) An increasing amount of pixels results in higher numerical costs because of the
iterative PDE solvers introduced in the previous subsection. Further, the number
of pixels influences the learning process of the neural network in Chapter 4.

Our start pixel (x
(j)
0 , y

(j)
0 )⊺, j = 1, ..., J , is rotated around the object of interest on

the boundary ∂Ωh. The parameter J denotes the total number of start positions.
For each starting position, we obtain a forward operator F (j) and a resulting system
of non-linear operator equations

F (j)(v) = (T (j)
v (xE1), ..., T

(j)
v (xEN

))⊺ = (y
(j)
1 , ..., y

(j)
N )⊺.

According to equation (3.17), we get a gradient for each starting condition defined by

gj,δ(v) := ∂vϕ
j,δ(v) = (F (j))′(v)∗(F (j)(v)− yj,δ). (3.32)

Motivated by Wald [93], we define the gradient for each Landweber step as the
average of all available gradients, such that each starting condition contributes the
same amount to the solution of the underlying inverse problem. We set

gδ(v) :=
1

J

J∑
j=1

gj,δ(v) (3.33)

and obtain the implemented Landweber iteration given by

vδk+1 = vδk − ωgδ(vδk), k = 0, 1, 2, ... (3.34)

We generate synthetic measurement data for a given velocity v by the FMM introduced
in the Subsection 3.4.1 and store them in a matrix Y . We have

Y := (F (j)(v))j=1,...,J =


y
(1)
1 · · · y

(J)
1

...
. . .

...

y
(1)
N · · · y

(J)
N

 ∈ RN×J .

We solve the initial value problem

|∇Tv(x, y)|2 =
1

v2(x, y)
, for all (x, y) ∈ Ω

Tv(x
(j)
0 , y

(j)
0 ) = 0

(3.35)

for a fixed velocity v and each initial value (x
(j)
0 , y

(j)
0 )⊺, j = 1, ..., J . The vector

F (j)(v) is composed of the boundary values of the solution due to Definition 3.10 of
the observation operator and Remark 3.11.

In the second step, we add a uniformly distributed noise to the synthetic data. We
use a norm that is independent of the number of starting positions, i.e. we set

||Y δ − Y || = max
j=1,...,J

||yj,δ − yj||RN ≤ δ
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where Y δ is defined as

Y δ :=


y
(1,δ)
1 · · · y

(J,δ)
1

...
. . .

...

y
(1,δ)
N · · · y

(J,δ)
N

 ∈ RN×J .

By choosing random numbers from

Iδ = [−0.001, 0.001],

we obtain
max

j=1,...,J
||yj,δ − yj||RN ≤ 0.001

√
N =: δ.

Given by the number of edge pixels, we end up with a total number of N = 224 and
thus

δ ≈ 0.015.

Finally, we use Landwebers method together with the average of all available gradi-
ents, see equation (3.34), to reconstruct the velocity vδ.

To test the algorithm, we start with a Gaussian function given by

v1 : Ω → R+, v1(x, y) = (3− e
−x2−y2

100 ) · 108. (3.36)

We define the test function v1 in such a way that we are within a reasonable range
of values for THz tomography corresponding to a refractive index n1 ∈ [1, 1.5]. For
our evaluations, we measure the amount of iteration steps n, the relative error

ϵv =
||v − vδn||F

||v||F

and the norm of the residual given by

||Rδ
n|| = ||F (vδn)− yδ|| = max

j=1,...,J
||F (j)(vδn)− yj,δ||.

We use the latter value to apply the discrepancy principle as a stopping rule. By the
norm || · ||F we understand the Frobenius norm

||v||F =

√√√√ N∑
i,j=1

|vi,j|2.

The calculated values are presented in Table 3.1. The goal of this first reconstruction
is to obtain an impression of the Landweber method and the underlying inverse
problem. In Figure 3.3, we illustrate the reconstructed velocity vδ1,k∗ in comparison
to the ground truth velocity v1 by visualizing both together with the reconstruction
error. Further, we plot the relative error and the residual during the iterations in
Figure 3.4. Note, that for each iteration step, we not only have to apply the FMM
J-times, but also the fast sweeping method for the calculation of the adjoint.
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(a) (b)

(c)

Figure 3.3: Reconstruction vδ1,k∗ (b) of the ground truth velocity v1 (a) with the Landweber

iteration showing the error plot v1 − vδ1,k∗ (c)

(a) (b)

Figure 3.4: Relative error (a) and residual (b) during the Landweber iteration for the
reconstruction of v1
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Table 3.1: Reconstruction results and Landweber parameters for the function v1

Amount of iterations k∗ 858

Relative error ϵv 0.49 %

Residual ||Rδ
k∗|| 0.037414

Relaxation parameter ω 1

τ 2.5

We continue with more complex functions to test the algorithm. We aim to approxi-
mate the refractive index of a plastic block by the function

v2 : Ω → R+, v2(x, y) = (3− e
−x8−y8

108 ) · 108

and a plastic block with an air inclusion by the function

v3 : Ω → R+, v3(x, y) = (3− e
−x8−y8

108 + e−
(x+2)8+(y+2)8

300 ) · 108. (3.37)

The function

v4 : Ω → R+, v4(x, y) = (3− e
−x8−y8

108 + e−
(x−3)8+(y−3)8

300 + e−
(x+3)8+(y+3)8

100 ) · 108.

describes a plastic block with two inclusions, one air inclusion and a second inclusion
of different material. We still investigate continuous functions that approach the
non-continuous transitions. We add noise to the synthetic data to obtain Y δ. The
reconstruction results presented in Table 3.2 and illustrated in Figure 3.5 to 3.7
demonstrate good characteristics with a low relative error and robust qualitative and
quantitative detection of inclusions. However, a significant drawback lies in the high
numerical costs associated with the reconstruction process, lasting for hours. This
limitation poses challenges in scenarios where efficiency is a critical factor as it is
necessary for inline monitoring. In the upcoming chapter, we will explore ways to
strike a balance between the achieved accuracy and the associated computational
effort. This will involve optimizing the algorithm through the integration of neural
networks taking into account energy efficiency.

Table 3.2: Reconstruction results and Landweber parameters for the functions v2, v3 and
v4

v2 v3 v4

Amount of iterations k∗ 3466 26594 120000

Relative error ϵv 1.41 % 1.82 % 2.13 %

Residual ||Rδ
k∗ || 0.031428 0.014967 0.0181

Relaxation parameter ω 1 1 0.5

τ 2.1 1 1.25
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(a) (b)

(c)

Figure 3.5: Reconstruction vδ2,k∗ (b) of the ground truth velocity v2 (a) with the Landweber

iteration showing the error plot v2 − vδ2,k∗ (c)
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(a)

(b)

(c)

Figure 3.6: Reconstruction vδ3,k∗ (b) of the ground truth velocity v3 (a) with the Landweber

iteration showing the error plot v3 − vδ3,k∗ (c)
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(a)

(b)

(c)

Figure 3.7: Reconstruction vδ4,k∗ (b) of the ground truth velocity v4 (a) with the Landweber

iteration showing the error plot v4 − vδ4,k∗ (c)
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4 Learned Landweber iteration for
terahertz tomography

In the previous chapter, we implemented the Landweber iteration to handle the
non-linear inverse problem of THz tomography including the underlying physical
model of the eikonal equation. We obtained promising results. The main problem of
the presented algorithm concerns the computational time: For every Landweber step,
we have to solve two partial differential equations for every angular position, one for
the forward operator and one for the adjoint of the linearized forward operator. Since
we have 180 angular positions and thousands of iterations within one reconstruction
the numerical solutions of the partial differential equations have to be fast to avoid
high numerical efforts.

In the next stage of this thesis, we aim to accelerate the given Landweber method
by involving concepts of machine learning. More precisely, we replace the numerical
solution of the forward operator F , which is currently performed via the FMM, by a
CNN Φθ∗(·) such that the Landweber method (3.18) is transformed to a partially
learned Landweber method

vδi+1 = vδi − ωF ′(vδi )
∗(Φθ∗(v

δ
i )− yδ).

We speed up the reconstruction process because of saving time for the evaluation of
the forward operator. For this advantage, we accept a worse reconstruction accuracy
and an upstream learning process to determine the optimal parameters θ∗ of the
network.

Afterwards, we opt to transform the network into a sparse one because the learning
process consumes a significant amount of energy. This modification aims to conserve
parameters, and consequently, investigates the energy reduction during the network’s
learning process. By setting weights to zero, it is not necessary to calculate its
gradients during the optimization process of the network. We obtain a sparse learned
Landweber method, where the learned optimal weights θ̃∗ are sparse, meaning some
entries are equal to zero. We gain a third version of Landweber’s method:

vδi+1 = vδi − ωF ′(vδi )
∗(Φθ̃∗(v

δ
i )− yδ).

To achieve our goals, we first introduce the terms convolutional network and sparse
network in the context of machine learning. Then, we learn the solution of the eikonal
equation via synthetic supervised training data for different network structures and
compare the computing time for the learned eikonal solver and the FMM. Finally, we
include the dense learned forward operator in the Landweber method and compare
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the results to those obtained from Chapter 3, and in the last step, to the ones of the
sparse learned Landweber method. To generate sparsity, we include a regularization
term in the learning process together with a threshold procedure.

4.1 Introduction to convolutional neural networks

and sparse networks

In this section, we introduce the terms convolutional neural networks (CNNs)
and sparse neural networks (SNNs). We start with a short introduction to
machine learning in general but skip the machine learning basics. Readers, that
are not familiar with the fundamentals of machine learning are referred to the
books of Aggarwal, Goodfellow and Nielsen [2, 25, 73] which we use as a guide
in this section, if not otherwise stated. We assume that the terms supervised
and unsupervised learning, hyperparameters in the context of neural networks,
perceptron, training and test data are known. By the term backpropagation
we understand a method to compute the gradients of the weights in the network
using the chain rule to optimize the parameters. We speak of underfitting if the
error in the training set is too high and we speak of overfitting if the difference
between the training and the test error is too large. To counteract underfitting, the
number of layers can be increased. In the case of overfitting, the training data set
should be adjusted [34].

input layer

x1

x2

x3

x4

x5

hidden layer 1
hidden layer 2

. . .

hidden layer L output layer

ŷ1

ŷ2

ŷ3

Figure 4.1: Example of a multilayer perceptron including L hidden layers.

To introduce some notations, we observe Figure 4.1 which is an example of a fully
connected deep neural network, also known as a multilayer perceptron. The
network is composed of an input layer, some hidden layers and an output layer.
Each layer consists of a different amount of units and the layers are interconnected
with weight matrices. It is fully connected because every unit of the previous layer
is connected with every unit of the next layer. Starting on the left side with the
input layer, we take some input vector x ∈ X , where X denotes the domain set
containing the objects we want to predict a certain behavior. The input vector is
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multiplied with the weight matrice W1 that connects the input layer with the first
hidden layer. We add some bias b1 and apply a non-linear activation function τ1(·)
to obtain the values of the first hidden layer:

φ1(x) = τ1(W1x+ b1).

We repeat the procedure for the next hidden layers and end up in the output layer
with an output vector ŷ ∈ Y out of the label set Y. The activation function
τ : Rm → Rm is defined component-wise by a non-linear operator τ ∗ : R → R, i.e.

τ(z) :=


τ ∗(z1)

...

τ ∗(zm)

 .

An activation function characterizes a particular threshold-like behavior observed in
neurons. In other words, it signifies that a specific input threshold must be surpassed
for a neuron to generate an output. In the field of neural networks, there are several
activation functions, e.g.:

� Sigmoid: τ(z) = 1
1+e−z .

� Rectified linear unit (ReLU): τ(z) = max{0, z}.

� Heaviside: τ(z) =

{
0, z < 0

1, z ≥ 0.

The three presented activation functions are illustrated in Figure 4.2. We see that the
bias can shift the activation functions horizontally, and so, determines the threshold
level.

We sum up the explanations and define a feedforward neural network for a regression
process as follows:

Definition 4.1 (Feedforward neural network for regression).
Let L ∈ N denote the number of hidden layers and ui ∈ N the number of units in
layer i. Let Wi ∈ Rui×ui−1 be the weight matrix that connects the i-1-th layer with
the i-th layer and bi ∈ Rui the corresponding bias. Further, let τi be a non-linear
activation function, X := Ru0 the domain set and Y := RuL+1 the label set. The
values of layer i, i = 1, ..., L, are represented by φi : Rui−1 → Rui,

φi(x̃) = φi,Wi,bi(x̃) := τi(Wix̃+ bi).

Then ΦL : X → Y with

x 7→ ΦL(x) = WL+1

(
φL ◦ φL−1 ◦ ... ◦ φ1(x)

)
+ bL+1 = ŷ

is a feedforward neural network for regression with L hidden layers.
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Figure 4.2: Activation functions

Note, that we neglect the activation function for the output layer since we are
in a regression analysis. The network under consideration is a feedforward one,
that compared to recurrent networks means that information only proceeds in one
direction. For our investigations, we only focus on finite-dimensional domain and
label sets X and Y .

Given a supervised training set {(x(1),y(1)), ..., (x(NT ),y(NT ))} ⊆ Ru0 × RuL+1 with
NT ∈ N training data, we are interested in the weights and bias that minimize
the error between the output of the network ŷ(i) and the correct output y(i) for all
i = 1, ..., NT . We introduce the cost function to measure the distance.

Notation 4.2.
In the following, we comprise the parameters of the i-th layer in θi = (Wi, bi).
We denote by Θi the parameter space parameterizing the i-th layer. We define
by Θ := Θ1 × ... × ΘL+1 the parameter space of all weights θ = (θ1, ..., θL+1) in
the network. Further, we write XT = (x(1), ...,x(NT )) for all input training data,
YT = (y(1), ...,y(NT )) for all output training data and Φθ for a network with the
parameters θ.

Definition 4.3 (Cost function).
Let {(x(1),y(1)), ..., (x(NT ),y(NT ))} ⊆ Ru0 × RuL+1 be a training set of NT training
data. The cost function

J : Θ× Ru0×NT × RuL+1×NT → R

is defined as

J(θ,XT ,YT ) :=
1

NT

NT∑
i=1

l

(
ŷ(i),y(i)

)
=

1

N

NT∑
i=1

l

(
Φθ(x

(i)),y(i)

)
, (4.1)

49



that measures the average distance between the output of the network ŷ and the
correct data y. The function l : Ru0 × RuL+1 → R is the so-called loss function
given, for instance, by the mean squared error.

The task of training a neural network is to minimize the cost function with respect
to the parameters θ ∈ Θ, i.e, find θ∗ ∈ Θ with

θ∗ := argmin
θ∈Θ

J(θ,XT ,YT ). (4.2)

Most machine learning models are biologically inspired. They try to reproduce the
functioning of the nervous system and the brain. The multilayer perceptron, see
Figure 4.1, is based on the structure and interaction of nerve cells. Considering a
nerve cell, we have a stimulus captured by dendrites. The stimulus can be identified
as the input of the network. If a threshold potential is reached, an action potential
will be triggered. This is simulated by the activation function acting in each unit.
The signal is transmitted via the axon to the synapses where it is transferred to the
next cell by neurotransmitters. This process is represented by the weighting matrices
and the bias. The nervous system consists of an interaction of all nerve cells. Stimuli
are received and processed which ultimately lead to a reaction illustrated by the
output of the network. Consequently, a deep neural network consists not only of one
perceptron but of an interaction of several layers. By increasing the number of layers
and augmenting the units within each layer, a deep neural network has the capacity
to encode functions and stimuli of growing complexity.

The idea of CNNs originates from a neuroscientific experiment about the mammalian
vision system. Hubel et al. investigated the activity of neurons in cats in response
to images [38, 39]. Unlike in our work, convolutional networks are mostly used for
classification tasks and gained increasing interest by winning the ’ImageNet ’ contest
named Large Scale Visual Recognition Challenge (LSVRC). The network
AlexNet was the first deep neural network producing an error lower than 20%.
Today’s CNNs generate an error less than 5% which is the human error rate for this
task [3].

When talking about convolutional networks, we deal with a special kind of feedforward
network to do learning processes with data that has a grid-like topology. Mostly,
we make predictions for two-dimensional or three-dimensional images. As the name
implies, the networks involve a mathematical operator on two functions with a
real-valued argument called convolution.

Definition 4.4 (Convolution, [23], p. 100).
The convolution f ∗ g of two functions f, g : Rn → C is defined as

(f ∗ g)(x) :=
∫
Rn

f(y)g(x− y) dy. (4.3)

In general, the convolution can be considered as a weighted average of a function,
where the function f is weighted by the function g. The operator used in CNNs does
not correspond exactly to this definition. Usually, we deal with discrete data. We
need the discrete convolution operator:
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Definition 4.5 (Discrete convolution, [23], p. 52).
For discrete two-dimensional real-valued functions I and H, we define the discrete
convolution operator I ∗H as

(I ∗H)(u, v) :=
∞∑

i=−∞

∞∑
j=−∞

I(u− i, v − j) ·H(i, j). (4.4)

Remark 4.6.
The convolution is commutative. We have

(I ∗H)(u, v) = (H ∗ I)(u, v) =
∞∑

i=−∞

∞∑
j=−∞

I(i, j) ·H(u− i, v − j).

Convolutional networks use an operator, the linear filter, that is given in the next
definition. All properties of the (discrete) convolution can be transferred to the linear
filtering, see Appendix B.9.

Definition 4.7 (Linear filter, [9], p. 96).
Let I and H be discrete real-valued functions and R a filter region, such that H(i, j) =
0 outside of R. The linear filter I ∗̂H is defined as

(I ∗̂H)(u, v) :=
∑

(i,j)∈R

I(u+ i, v + j) ·H(i, j). (4.5)

In a CNN, the first argument of Definition 4.7 is the input and the second argument
is the kernel. The output is stated as the feature map. We often work with
multidimensional arrays of data and parameters. So, we result in a tensor.

Remark 4.8.

a) The linear filter represents a discrete convolution with the kernel H∗ creating
from vertical and horizontal mirroring of H, see Appendix B.8.

b) When we speak of convolution in the following, we understand it as Definition
4.7 and use the operator ∗ instead of ∗̂.

c) When we apply several kernels to a two-dimensional input, we obtain a multi-
dimensional feature map, see Figure 4.4. In the next convolutional layer, we
consequently have to use a multidimensional kernel. The convolution operator
then is amplified to the corresponding dimension, see Definition 4.9.

In summary, we can define a convolutional layer as follows:

Definition 4.9 (Convolutional layer).
Let d ∈ N be the dimension of the input, nf ∈ N the number of resulting feature maps,
X ∈ Rn1×...×nd the input and W ∈ Rq1×...×qd×nf the multidimensional convolution
kernel. The convolution operator

∗ : Rn1×...×nd × Rq1×...×qd×nf → R(n1−q1+1)×···×(nd−qd+1)×nf

is given by

X ∗W =

( q1∑
k1=1

· · ·
qd∑

kd=1

w
[j]
k1···kdxl1+k1−1···ld+kd−1

)j=1,...,nf

l1=1,...,n1−q1+1,··· ,ld=1,...,nd−qd+1

. (4.6)
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Then ΦW,B : Rn1×...×nd → R(n1−q1+1)×···×(nd−qd+1)×nf

X 7→ τ(X ∗W +B)

with bias B ∈ R(n1−q1+1)×···×(nd−qd+1)×nf and activation function

τ : R(n1−q1+1)×···×(nd−qd+1)×nf → R(n1−q1+1)×···×(nd−qd+1)×nf

defined component-wise is called a convolutional layer.

The following algorithm describes the application of the convolution operator with
the kernel W applied to a two-dimensional input and generating a multidimensional
feature map. A visual example generating a one-dimensional feature map is given in
Figure 4.3. The considered output pixel y11 is given by

y11 =w11x11 + w12x12 + w13x13 + w21x21 + w22x22 + w23x23

+ w31x31 + w32x32 + w33x33. (4.7)

input

x14

x24

x34

x44

x13

x23

x33

x43

x12

x22

x32

x42

x11

x21

x31

x41

∗

kernel

w11 w12 w13

w21 w22 w23

w31 w32 w33

=

y11 y12

y21 y22

Figure 4.3: Visual Example of Algorithm 4.10 with n1 = n2 = 4, j = 1, q1 = q2 = 3 and
l1 = l2 = 1 with the considered pixel y11 given by equation (4.7)

Algorithm 4.10. (Discrete convolution)

INPUT/OUTPUT:

The kernels w
[j]
k1k2

, k1 = 1, ..., q1, k2 = 1, ..., q2, j = 1, · · · , nf , and the input
xzr, z = 1, ..., n1, r = 1, ..., n2 are given.
We generate an output y

[j]
l1l2

, l1 = 1, ..., n1 − q1 + 1, l2 = 1, ..., n2 − q2 + 1.

STEP 1:
Set l1 = l2 = 1. The kernel W [1] is positioned over the input so that entry
w

[1]
11 falls on entry xl1l2 of the input.
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STEP 2:
The values of w

[1]
k1k2

, k1 = 1, ..., q1, k2 = 1, ..., q2, are multiplied with the
underlying pixels

xl1+k1−1,l2+k2−1 = x1+k1−1,1+k2−1 = xk1k2

and summed up.

STEP 3:
The sum is saved in a new point of the feature map y

[1]
11 .

STEP 4:
Repeat Step 1 to Step 3 for all input entries xl1l2 with l1 = 1, ..., n1 − q1 + 1
and l2 = 1, ..., n2 − q2 + 1.

STEP 5:
Repeat Step 1 to Step 4 for all kernels W [j].

At this point, we can summarize that CNNs are

simple neural networks that use convolution in place of general matrix
multiplication in at least one of their layers ([25], p. 330).

In such networks, the convolution operator is often combined with other functions. A
layer consists typically of three steps: first, a convolution, then an activation function,
see Definition 4.9, and finally a pooling operator, where the size of the grid is
reduced and the output of the activation function at a specific location is substituted
by a representation derived from the surrounding outputs. For example, one can
use the max-pooling operator where one takes the maximum out of a rectangular
neighborhood each time to reduce the size. Some commonly used pooling functions
involve computing the average within a rectangular neighborhood, calculating the
ℓ2-norm within such a neighborhood or performing a weighted average that takes
into account the distance from the central pixel. Further, it is possible to use a fully
connected layer following a convolutional layer. Then, the given tensor is flattened
into a vector and the fully connected layer is applied to generate, for example the
output of the network, see Figure 4.4.

Remark 4.11.
There are two processes that we can use within a convolution:

a) When we skip some positions in the convolution process, we are talking about
the term stride. Using, for example a stride of two, we shift our overlapping
kernel each time by two entries. By doing this, we reduce the computational cost
and result in a down-sampling of the output. Mathematically, we can transform
equation (4.6) to

X ∗s W =

( q1∑
k1=1

· · ·
qd∑

kd=1

w
[j]
k1,··· ,kdxl1+k1−1,··· ,ld+kd−1

)j=1,...,nf

li∈Ii
(4.8)

53



using Ii = {sj + 1|j ∈ N0, sj + 1 ≤ ni − qi + 1}.
Unless otherwise stated, we use a stride of s = 1.

b) Another process, that is often used within a convolutional layer, is padding
to change the input size and to give more weight to the edge pixel of the input.
Normally, the periphery of the layer will receive a lower level of representation
in contrast to the central pixels by using the convolution operator. Padding is
done by adding some pixels around the borders of the input, respectively, the
output of a hidden layer before using the convolution. The values of the added
pixels are set to zero. By a padding of p the feature map is amplified by p in
each dimension. The computational costs increase.
If not otherwise specified, we will use a padding of p = 0.

input of
n1 × n2 pixels

convolution with a
q1 × q2 × nf kernel

feature map of
(n1 − q1 + 1)× (n2 − q2 + 1)× nf pixels

pooling

flatten

...

output layer

...

Figure 4.4: Example of a CNN including convolution, pooling, flattening and a fully
connected layer

When we build a deep neural network, we often result in complex architectures
with a high amount of parameters. The approximation theorems show that we can
approximate Lp-functions with multilayer feedforward networks if we use enough
hidden units and a bounded and non-constant activation function. Note that the
ReLU is unbounded. We can show that it is discriminatory, and thus, we obtain the
universal approximation theorem, see Appendix B.4. For more information about
the universal approximation theorems, we refer to [14, 26, 36, 59, 98].
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Training a deep neural network consequently leads to solve high-dimensional opti-
mization problems because the weights should minimize the cost functional given by
equation (4.2). To reduce the computational costs, the aim is to reduce the number of
parameters which results in sparsity generating regularization. One wants to set pa-
rameters that have a low influence on the performance of the network to zero in order
to save time in the optimization process. If a parameter is equal to zero, connections
will be suppressed and consequently less derivatives have to be calculated for the
optimization step. These efforts are additionally bolstered by the recently proposed
’lottery ticket hypothesis’ which suggests that within dense, feedforward networks,
there exist sub-networks with fewer neurons that, when trained in isolation, can
attain the same level of test accuracy as the original network [22]. Sparsity generating
regularization has already proven itself in the context of inverse problems, see e.g. [43].

To induce sparsity, a regularization term is introduced into the cost function, effec-
tively acting as a penalty. This regularization term aims to reduce the magnitudes of
weights and connections, thereby promoting a sparse architecture and guaranteeing
a faster optimization process. Thus,

argmin
θ∈Θ

(
J(θ,XT ,YT ) + αR(θ)

)
(4.9)

is solved with the functional R(θ) ∈ R that leads to a sparse minimizer. The
regularization parameter α ∈ R+ controls the influence of the functional on the
weights. By using an iterative optimizer more and more weights are removed from
the network. The idea of sparsity is illustrated in Figure 4.5. On the left side, we see
the dense architecture. Through the optimization process, connections are removed
and we result in the sparse setting on the right side. The more weights equal to zero
exist, the less complex the model is.

Figure 4.5: Idea of sparsity in the context of neural networks

Another objective of deleting parameters is to prevent overfitting. High values of the
weights are suppressed by introducing a penalty term into the minimization process.
We aim to find an equilibrium between minimizing the cost function J(θ,XT ,YT )
and controlling the penalty term R(θ), where the regularization parameter α controls
the influence of the penalty term. This balance helps the model to generalize
effectively to unfamiliar data, enhancing its robustness and reliability. One prominent
regularization method is the ℓ1-regularization, also known as Lasso regularization
[90]. As the name suggests, the ℓ1-norm is used, such that we include the absolute
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values of our network parameters θ. So, large coefficients are strongly penalized. We
set

R1(θ) = ||θ||1 =
L+1∑
i=1

||θi||1. (4.10)

The ℓ1-regularization opts for fewer parameters, respectively, for driving some weights
to zero and thus, reduces the influence of less important weights. At the same time,
the most crucial parameters are identified resulting in a more efficient model. The
second idea is to use weight decay by substituting the regularization term by the
squared ℓ2-norm, see e.g. [56]. We have

R2(θ) = ||θ||22. (4.11)

Remark 4.12.
While the ℓ1-regularization pushes each weight towards zero by a constant amount,
the ℓ2-regularization decreases the weights in proportion to their magnitude. The
ℓ1-penalty is not differentiable at zero and we have to include subgradients in the
optimization process. In reality, a thresholding step is required for both, the ℓ1- and the
ℓ2-regularization to obtain sparsity. If a weight is smaller than a threshold parameter
in absolute value, it will be forced to zero.

Another well-known regularization term is the so-called group lasso introduced by
Yuan and Lin in 2006 [96]. Building upon the notation of reference [81] and using
the symbol G to represent the set of all parameter groups, e.g. given by kernels of
convolutional layers, weight matrices between dense layers or bias terms, we can
establish a sparsity promoting regularization term acting on groups of parameters

R1,2(θ) =
∑
g∈G

√
ng||g||2. (4.12)

In this context, the variable ng represents the number of elements in group g, such
that

√
ng ensures that we apply a corresponding weight across all groups.

The three regularization terms introduced here represent just a limited subset of the
available options. It is also feasible to combine these terms in various ways to create
additional regularization techniques. To generate sparse neural networks, it is also
possible to use techniques like dropout, also known as pruning, or freezing [10, 95].
Dropout or pruning involves the random removal of specific network units, as implied
by their names. Freezing is the practice of fixing certain weights while performing
the optimization process solely with the other weights. For both techniques, fewer
derivatives have to be calculated and computing time is saved accordingly.

4.2 Learned solution of the eikonal equation

With several thousands of iterations and a reconstruction over days, it is unimagin-
able to use the given algorithm from Chapter 3 in an economy where an efficient
reconstruction process is desirable. It is not a problem that arises specifically from
our inverse problem but appears in general whenever multiple partial differential
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equations have to be solved for multiple angular positions.

As commonly acknowledged, the Landweber method is quite slow necessitating the
implementation of acceleration techniques to enhance its practical applicability. One
possibility is the steepest descent method where the relaxation parameter ω is
not fixed and depends on the current iteration [48, 76]. As an alternative, one can
skip to the Levenberg–Marquardt method [30, 44] or the iteratively regularized
Gauss–Newton method [7, 45] that are second-order iterative methods to solve
a non-linear inverse problem. The notable benefit of these approaches lies in their
ability to achieve the specified stopping criteria with significantly fewer iterations
compared to the Landweber iteration or the steepest descent method. However, each
of these iterations consumes more time than a single step in the Landweber iteration,
and again, results in a high numerical effort.

Another way to obtain faster convergence, especially for small perturbations δ > 0,
is the Nesterov acceleration first introduced by Nesterov [70]. The Nesterov accel-
eration is effective even when applied to non-linear inverse problems. In comparison
to the Landweber iteration (3.18), the Nesterov acceleration applies the Landweber
step to a linear combination of the last two iterates given by

zδk = xδ
k +

k − 1

k + α− 1
(xδ

k − xδ
k−1),

such that the new iterate is calculated via

xδ
k+1 = zδk − ωF ′(zδk)

∗(F (zδk)− yδ).

Here, the parameter ω is again a relaxation parameter and the scaling parameter
α ≥ 3 is normally chosen as α = 3, see [40].

For our interest, we investigate a new approach to speed up the Landweber iteration.
Recall, that in our setting the gradient is given as an average over all directions, see
equation (3.33). This means we have to evaluate J-times the forward operator F to
calculate one iteration step. In this section, we substitute this process with a deep
neural network given by a CNN. So, given an input, the task of the network is to
calculate the travel time for J = 180 starting positions of the signal only using one
evaluation, respectively, one forward pass. The input in our case is a 57× 57 pixels
image of the refractive index n. The output is available as the travel time T of the
radiation for 57× 57× 180 pixels. The total supervised data set can be written as

X×Y := {(X(1), Y (1)), ..., (X(Ñ), Y (Ñ))} ⊆ X × Y := R57×57 × R57×57×180. (4.13)

We generate this synthetic training set using simulated FMM data as output data
for our network training. The values of the input training matrix X(i) ∈ R57×57,
i = 1, ..., Ñ , resemble the external structure of the objects under investigation. We
vary the refractive index of the objects and the inclusions in a range of one to two
having x

(i)
zr ∈ [1, 2], z, r = 1, ..., 57. Further, we shift the position of the defect and

modify its size. The second part of the input training data consists of some iterates
within some reconstructions, i.e. we do a reconstruction with the normal Landweber
algorithm and add some iterates nδ

k to our training set. The last part of the input
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training data is given by a data augmentation using a relative noise of 2 % and 5 %.
Figure 4.6 illustrates the refractive index of some input training data X(i) ∈ R57×57.
Part (a) shows a possible object under investigation, part (c) a noisy one and picture
(b) and (d) some iterates of a reconstruction.

(a) (b)

(c) (d)

Figure 4.6: Surface plot of the refractive index of some training input data X(i)

Remark 4.13.
At this point, we would like to mention that there are many ways to compose the
training data set. Of course, the items have a direct influence on the training process,
and thus, on the performance of the reconstruction in the next chapter. The training
set presented here yields the best results for our setting. Also, the amount of training
data can be increased arbitrarily. Our goal was to keep the investigations within a
manageable framework ending up with Ñ = 1800 supervised training data.

The output training data Y (i) ∈ R57×57×180 are received via the FMM. We initialize
in Algorithm 3.26, more precisely in Theorem 3.24

vz,r =
c0

x
(i)
zr

, z, r = 1, ..., 57,

for every input training data X(i) and solve the initial value problem (3.35) for every
starting position j = 1, ..., J to obtain the supervised training set. If we take, e.g.
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the input training data X(1) given in Figure 4.6 (a), we will obtain 180 matrices
of the dimension 57× 57 summarized in the tensor Y (1). The images in Figure 4.7
represent the contour lines of the travel time of the first and the 46th dimension, i.e.
angular position, of this output tensor.

(a) (b)

Figure 4.7: Contour plot of two angular positions of the output training data Y (1)

Before we start the learning process, we have to think about the structure of the
network and the hyperparameters that occur. As mentioned earlier, we prefer a
CNN. There are only weak guidelines about the depth and width of the network.
The network used was found by trial and error and is presented in the Figure 4.8.
The number of layers and units is limited by the computing power of the used
hardware. The input of the network passes through three convolutional layers and
two fully connected layers. The output is a vector that can be reshaped to the output
Ŷ ∈ R57×57×180. The ReLU function is used as the activation function throughout the
complete network. Each convolutional layer is followed by a max-pooling operator
to reduce the amount of parameters.
As one can see, there are many ways to change the hyperparameters of the network:
Regarding the convolutional layers the amount of layers, the size of the kernels, the
number of the resulting feature maps, the stride and the padding for each convolution
can be adjusted. Concerning the fully connected layers again the number of layers
can be changed as well as the amount of units within a layer. Further, one can
substitute the max-pooling operator, e.g. by an average operator and one can use
another activation function.

The network and the optimization process of the weights are implemented via Python
using the library torch. Several optimization algorithms are available for neural
networks. The most famous among them are, for example the Stochastic Gradient
Descent (SGD) and the Adaptive Moment Estimation (Adam). The latter
is used in our case. The choice of the appropriate optimization algorithm depends
on several factors, including the nature of the problem and the architecture of the
neural network. The Adam algorithm uses momentum and an adaptive learning
rate. The following algorithm is pre-implemented in torch based on the publication
of Kingma and Ba [53]. Note that we want to find the parameters θ∗ that minimize
the cost function J(θ,XT ,YT ). In the following algorithm, we understand θ as a
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vector of all weights of the network.
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Figure 4.8: Structure of the implemented CNN
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Algorithm 4.14 (Adam algorithm).

INPUT:
Initialize the first momentum m0 and the the second momentum r0:

m0 = r0 = 0.

Set t = 0 and choose β1, β2 ∈ [0, 1), ϵ = 10−8 and a small parameter a.

STEP 1:
Set t = t+ 1 and calculate

gt = ∇θJ(θ,XT ,YT )|θ=θt−1 ,

mt = β1mt−1 + (1− β1)gt,

rt = β2rt−1 + (1− β2)g
2
t ,

m̂t =
mt

1− βt
1

, r̂t =
rt

1− βt
2

.

STEP 2:
Update θt = θt−1 − a m̂t√

r̂t+ϵ
.

STEP 3:
Repeat Step 1 and Step 2 until convergence.

To control the learning process, we split our synthetic data set 4.13 randomly into a
training data set

XT ×YT := {(X̃(1), Ỹ (1)), ..., (X̃(NT ), Ỹ (NT ))} ⊆ X×Y

consisting of 90 % of the data, i.e. NT = 1620, and a validation set XV × YV

including the remaining 10 %, such that

X×Y = (XT ×YT ) ·∪ (XV ×YV ).

Further, we set β1 = 0.9 and β2 = 0.999 and choose a small parameter a = 10−5. We
go through 4000 epochs with a batch size of all training data.

Remark 4.15.

a) Normally, the cost functional J(θ,XT ,YT ) is not differentiable because of the
activation functions used in the network. In our case, we use the ReLU function
that is not differentiable at zero. The pre-implemented optimization toolbox in
torch handles this problem by including subgradients. For more information
about subgradient methods, we refer to [42].

b) To accelerate the training process of the network, it is possible to subdivide the
training data into batches. For the first optimization step the first batch is
used, then the second and so on. An epoch is completed when all batches have
been run through once. In our case, we can use a batch size of 1620 because of
having a small training set.
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The cost function is given by using the mean squared error as the loss function. We
obtain for the optimization process

J(θ,XT ,YT ) =
1

NT

NT∑
i=1

l

(
Φθ(X̃

(i)), Ỹ (i)

)

=
1

NT

NT∑
i=1

1

57 · 57 · 180
||Φθ(X̃

(i))− Ỹ (i)||22

=
1

1620 · 584820

1620∑
i=1

584820∑
j=1

(
Φθ(X̃

(i))j − Ỹ
(i)
j

)2

. (4.14)

The values of the cost function after some epochs for the training and the validation
set are given in Table 4.1. Note, that we use

J(θ,XV ,YV ) =
1

Ñ −NT

Ñ∑
i=NT+1

l

(
Φθ(X̃

(i)), Ỹ (i)

)
(4.15)

for the evaluation of the validation set. We notice a small deviation between the
values of the two cost functions which can be reduced by further increasing the
amount and the diversity of the training data.

Table 4.1: Value of the cost function for the training and validation set

Amount of epochs 3000 4000 6000

J(θ,XT ,YT ) 0.0054 0.0045 0.0035

J(θ,XV ,YV ) 0.0064 0.0055 0.0045

Up to this point, we have generated the training and validation data set, defined the
structure of the network and determined its parameters via an optimization process
of the cost function. In the following, we investigate how well the network maps
unknown inputs and how large the time saving is. We start with a randomly chosen
input XTest1 . Its external structure resembles the external structure of the training
data, see Figure 4.9 (a). Note that here the material-dependent velocity is depicted
and not the refractive index. We compute the forward operator once via the FMM
and once via the deep neural network Φθ∗ . The overlapping contour lines for one
angular position are plotted in Figure 4.9 (b). For this example, we can calculate
the relativ error er as

er =
||Φθ∗(XTest1)− FMM(XTest1)||

||FMM(XTest1)||
= 0.0124.

The results for unchanging external structures are very promising. The error increases
by translating to new structures, see Figure 4.9 (c) and (d). However, with a relative
error of 3.65 %, we are still within a low error range considering that no round
external structures were integrated into the learning process.
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(a) (b)

(c) (d)

Figure 4.9: Comparison of the performance of the FMM and the CNN for two test data
XTest1 (a) andXTest2 (c) displaying the overlapping contour lines of the solution
of the forward operator given by the FMM and the network for one angular
position (b), (d)

While the influence of the relative error on the reconstruction will be investigated
in the next subsection, we would like to conclude this subsection by comparing the
computation time between the two forward operators. The aim was to speed up the
Landweber iteration. So, if we accelerate the evaluation of the forward operator,
we can automatically achieve our goal. The implementation was done on an Intel
Core i9-11900K processor containing eight kernels and a RAM of 64 GB. For the
evaluation of the FMM, we use all eight kernels, such that the differential equation
is solved parallel for some initial conditions. For the forward pass through the CNN,
just one kernel is necessary. If we look at our test file XTest1 again, we can see an
average speedup by a factor of 8.8. Nearly the same holds for the second test data
XTest2 with a speedup by the factor 9.3 because the evaluation time is independent
of the value of the refractive index. We can thus record the first result for Chapter 4:

The substitution of the forward operator solved by the FMM with a CNN including
an a prior learning process results in a significant acceleration of one iteration step
in the Landweber iteration.
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4.3 Numerical evaluation of the learned Landwe-

ber iteration

In the last subsection, we developed and tested a way to replace the forward operator
with a CNN. The learning process resulted in a significant improvement of the
computation time concerning the evaluation of the forward operator together with a
low relative error in the solution. Now, we investigate how the new forward operator
affects the reconstruction process using the Landweber method. From a mathematical
point of view, we aim to reconstruct with the learned Landweber iteration

vδi+1 = vδi − ωF ′(vδi )
∗(Φθ∗(v

δ
i )− yδ), i = 0, ..., k∗ − 1, (4.16)

where vδk∗ denotes the approximated solution after k∗ − 1 iteration steps. We test
different phantoms that are unknown to our learned network and calculate the total
reconstruction error. By comparing the normal Landweber iteration with the learned
one, we observe that we include an error ϵ(vδi ) in every iteration step having

F (vδi ) = Φθ∗(v
δ
i ) + ϵ(vδi ), (4.17)

such that the normal iteration step is corrupted by the term ωF ′(vδi )
∗ϵ(vδi ). We

obtain

vδi+1 = vδi − ωF ′(vδi )
∗(F (vδi )− ϵ(vδi )− yδ)

= vδi − ωF ′(vδi )
∗(F (vδi )− yδ) + ωF ′(vδi )

∗ϵ(vδi ).

We start with example v1, the Gaussian function of equation (3.36). The stopping
index k∗ is chosen as the first iterate where the norm of the residual stops decreasing.
It holds

||yδ − Φ∗
θ(v

δ
i )|| − ||yδ − Φ∗

θ(v
δ
i+1)|| ≥ 0 for i = 0, ..., k∗ − 1,

||yδ − Φ∗
θ(v

δ
i )|| − ||yδ − Φ∗

θ(v
δ
i+1)|| < 0 for i = k∗.

We compare the relative error of the reconstruction via the learned Landweber
method using Network 4.8 of the previous subsection with the results of Chapter 3.
First of all, we notice that the reconstruction with the relaxation parameter ω = 0.1
already stops after 152 steps. It is obvious, that the reason could be the error term
in the learned Landweber iteration. Nevertheless, we result in a low relative error
of 1.69 % that, however, is about three times higher than the relative error of the
normal Landweber iteration. So, the quality of the reconstruction becomes worse, but
the reconstruction time is significantly reduced by accelerating the evaluation of the
forward operator. The latter is an enormous advantage concerning inline monitoring.
Figure 4.10 displays the reconstruction of v1 and the absolute error v1 − vδ1,k∗ using a
noise of 2 % for the travel time data. In Figure 4.11, we compare the development of
the relative error of the normal and the learned Landweber iteration. We see that
we obtain similar results in the first iterations, but the learned Landweber method
reaches its lower bound faster. This is due to the error term in the forward operator,
leading to modelling inaccuracy.
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(a) (b)

Figure 4.10: Reconstruction vδ1,k∗ (a) of the material-dependent velocity v1 with the learned

Landweber iteration showing the error plot v1 − vδ1,k∗ (b)

Figure 4.11: Development of the relative error for the normal and the learned Landweber
iteration for the reconstruction of phantom v1

In the second step, we investigate more complex structures. Again, we include a
defect in the plastic block. This time, we observe a central air inclusion by using the
function

v5 : Ω → R+, v5(x, y) = (3− e
−x8−y8

108 + e−
x8+y8

300 ) · 108.

Further, we use function v3, see equation (3.37), to compare again our results with
the normal Landweber iteration. For both reconstructions, we obtain qualitative
information about the position of the unknown defect and a relative error between
four and five percent. While we obtain quantitative inferences applying the nor-
mal Landweber procedure, we obtain only the external structure with the learned
Landweber procedure. We can only recognize the approximate structure and position,
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see Figure 4.12. At this point, it is important to mention that the blue artifacts of
the reconstructions are normal in a small iteration range and are normally smoothed
by more iterations. Here, the stopping index is significantly lower and the artifacts
are present. All in all, we use a relatively small training set. It is left to amplify the
training data to obtain more detailed results. For this, better hardware is necessary
or we have to transfer the network to a server. In Table 4.2, we summarize the
reconstruction parameters and results for the three investigated functions:

Table 4.2: Reconstruction parameters and results for the functions v1, v3 and v5 with the
learned Landweber iteration

v1 v3 v5

Amount of iterations k∗ 152 11 29

Relative error er 1.69 % 4.93 % 4.36 %

Residual ||Rδ
k∗|| 0.5703 0.8856 1.1644

Relaxation parameter ω 0.1 2.5 1.5

(a) (b)

Figure 4.12: Reconstruction vδ3,k∗ (a) and vδ5,k∗ of the material-dependent velocity v3 and
v5 with the learned Landweber iteration

Note that we are mainly interested in the execution time of the reconstruction
process and the quantitative structure of the object under investigation. For further
qualitative information one can use, e.g. the modified ART developed by Jens Tepe
et al. [88]. We see that both goals have been achieved. On the one hand, we were
able to accelerate the reconstruction process and, on the other hand, we were able to
localize possible defects.

Finally, it is important to mention that we can improve the reconstruction process
using some preliminary information. Suppose we include the information that we
search for a defect in the middle. In that case, we can improve the reconstruction
of the learned Landweber iteration with respect to phantom v5, see Figure 4.13.
Here, we use the same structure for the network but an adapted training data set
including more centered defects. However, if we reconstruct phantom v1 with this
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training data, we will fail due to an overfitting process. In Figure 4.14, we present
the reconstruction of phantom v5 after the same number of steps using the normal
Landweber iteration and we obtain a worse reconstruction which also contains the
blue artifacts. The reconstruction with the normal Landweber method is of course
significantly better if the number of iterations is increased, see Figure 4.15.

Figure 4.13: Reconstruction vδ5,k∗ of the velocity v5 after k∗ = 25 iterations of the learned
Landweber method using an adapted training data set

Figure 4.14: Reconstruction vδ5,k∗ of the velocity v5 after k∗ = 25 iterations of the normal
Landweber method
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Figure 4.15: Reconstruction vδ5,k∗ of the velocity v5 after k∗ = 13000 iterations of the
normal Landweber method

4.4 Sparsity-based learning of the eikonal equation

The presented learned Landweber method is the result of an excessive energy con-
sumption. To obtain the findings of the last subsection several cycles consisting of
the generation and selection of the training data, the determination of the network
structure and an evaluation process with the final reconstruction via the learned
Landweber method were performed. Especially, the optimization process of the net-
work parameters and the evaluation process is costly and leads together with the high
amount of free parameters to enormous computational costs. We end up optimizing
large models with billions of parameters. The enhancement in the performance of
deep learning models is largely driven by the expansion of network weights and the
subsequent increase in computational requirements for training the network [95].
Consequently, the computational costs are exponentially increasing and the carbon
footprint associated with training expansive neural networks has become important
for many companies [16]. One way out is the inclusion of mathematical concepts that
result in sparse weights of the network with which we deal in the following subchapter.
We generate sparse parameters θ̃ meaning that some weights are set to zero. In doing
this, we neglect small parameters or those with minimal impact on the network’s
output. In our research, we mainly focus on using a regularization term within the
optimization process, see equation (4.9), and transfer the theory to the given example
of learning the solution of the eikonal equation. We investigate whether the SNN
performs as well as the dense one. The investigations done in this subsection are
inspired by the project DELETO - Deep Learning in Tomography founded by
the Bundesministerium für Bildung und Forschung (BMBF) where sparse
neural networks represent a central content.

We start the investigations of a simpler problem, a kind of toy problem, to gain
a first impression about the application of sparsity-generating processes. For this
purpose, we use the so-called MNIST database, a large data set of handwritten
digits that includes 60000 training and 10000 validation items [58]. We model a CNN
consisting of two convolutional layers and two fully connected layers with a total of
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21330 weights. The network aims to solve the classification task of recognizing the
given number. The complete structure of the network is provided in Appendix C.1.
For this toy problem, we compare the performance of the dense network with the
sparse ones where the sparsity is generated once without regularization just using a
threshold parameter (pruned network) and once by installing an ℓ1-regularization
in the optimization process together with a threshold parameter (regularized net-
work). Furthermore, we introduce freezing in the learning process of the parameters
(frozen network) where some weights are randomly skipped in the optimization
process. In Table 4.3, we show the results of these four optimization processes:
We see that the dense network performs best, closely followed by the regularized
network. The pruned network is better than the randomly freezing process but worse
than the ℓ1-regularization. All in all, we generate a sparsity of 45.74 % with the
ℓ1-regularization term which is remarkable seeing that the accuracy only is 0.007 %
worse. By the term sparsity in this context we mean the percentage of weights
equal to zero among all weights of the network.

Table 4.3: Performance of a dense network, a regularized network, a pruned network and a
frozen network applied to the MNIST database

network dense regularized frozen pruned

J(θ,XT ,YT ) 0.1481 0.1725 0.3215 0.2092

J(θ,XV ,YV ) 0.1333 0.1615 0.2994 0.191

accuracy 0.96 0.953 0.915 0.946

After this initial experiment, we want to transfer the idea of sparsity to a more
complex task: the learning process of the solution of the eikonal equation. Due
to the results of the toy problem, we only compare the dense network with the
regularized one. In a first setting, we use a small data set consisting of 340 data
that are subdivided into 306 training and 34 validation data. We compare two dense
networks, one with 18 million parameters (dense network 1) and another with 1370
million parameters (dense network 2). For the larger network, we also generate
a SNN using an ℓ1-regularization combined with a threshold parameter. We apply
these networks to the regression problem of solving the eikonal equation. The results
are very promising, as shown in Table 4.4. The larger network achieves a sparsity of
50.8 % resulting in minimal performance reduction. Additionally, we observe that
the network with fewer parameters performs significantly worse than the network
with more weights which is consistent with existing literature. The findings are
visualized for an input from the validation set in Figure 4.16. We see the overlapping
contour lines of the travel time T (x) calculated once using the FMM and once using
the neural network, for all three settings.
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(a) (b)

(c)

Figure 4.16: Visualization of the network performance for the dense network 1 (a), dense
network 2 (b) and the SNN (c) in comparison to the ground truth contour
lines of the travel time T (x)

Table 4.4: Performance of two dense networks and a sparse one applied to the eikonal
equation using a small data set

network dense 1 dense 2 sparse

J(θ,XT ,YT ) 0.0315 0.0015 0.0017

J(θ,XV ,YV ) 0.0433 0.0032 0.0035

Based on the good results of the preliminary examinations, we now deal with the
actual problem: We use the network of Figure 4.8 and add some sparsity promoting
regularization term to the cost functional. The generated sparsity can be controlled
by two parameters, the regularization parameter α as well as the threshold parameter
ζ. We use an ℓ1-regularization, i.e. we solve

θ̃∗ = argmin
θ∈Θ

(
J(θ,X, Y ) + αR1(θ)

)
. (4.18)

We take again the Adam algortihm 4.14 where gt is given corresponding to equation
(4.18) as

gt = ∇θ

(
J(θ,X, Y ) + αR1(θ)

)∣∣∣∣
θ=θt−1
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We perform a thresholding after fifty iterations and set all weights less than ζ to
zero. We only update the moments and parameters according to the non-zero values.
The Adam algorithm 4.14 is transformed to the sparsity-generating Adam algorithm
as follows:

Algorithm 4.16. (Sparsity generating Adam algorithm)

INPUT:
Initialize the first momentum m0 and the the second momentum r0:

m0 = r0 = 0.

Set t = 0 and choose β1, β2 ∈ [0, 1), ϵ = 10−8 and a small parameter a.
Choose a threshold parameter 0 < ζ << 1 and a regularization parameter
α.

STEP 1:
Set t = t+ 1 and calculate

gt = ∇θ

(
J(θ,X, Y ) + αR1(θ)

)∣∣∣∣
θ=θt−1

,

mt = β1mt−1 + (1− β1)gt, rt = β2rt−1 + (1− β2)g
2
t ,

m̂t =
mt

1− βt
1

, r̂t =
rt

1− βt
2

.

STEP 2:
Update θt = θt−1 − a m̂t√

r̂t+ϵ
.

STEP 3:
For t mod 50 = 0 set all weights less than ζ equal to zero.

STEP 4:
Repeat Step 1, 2 and 3 until convergence. Skip all weights equal to zero.

Remark 4.17.
The fourth step of Algorithm 4.16 can be modified. Instead of skipping the weights
equal to zero, we can use subgradients for these weights. In the implementation, we
use for every layer a mask with entries equal to zero to guarantee the sparsity and to
skip the parameters equal to zero.

We choose different values for the threshold parameter ζ and for the regularization
parameter α and measure the generated sparsity, the value of the cost function for
the training data and the value of the cost function for the validation set. Note
that we use the cost functions (4.14) and (4.15) to compare the values with the
dense network of Subsection 4.2. If we select the parameters α and ζ to large, the
promoted sparsity will tend to be 100 % which results in unusable networks for the
reconstruction. For the whole investigation, we fall back on the same training and
validation data as in Section 4.2. The results are illustrated in Table 4.5. We depict
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the values of the cost functions and the generated sparsity for tree combinations of
threshold parameter and regularization parameter. We see that the choice of smaller
parameters leads to a lower sparsity of the weight θ̃∗i , i = 1, 2, 3, but to a lower value
of the cost functions. In total, we carry out 4000 epochs, again, with a batch size
corresponding to the amount of training data. We notice that the sparse networks
perform slightly worse than the dense network where the values of the cost functions
are given in Table 4.1. It is noteworthy that with the choice of α = ζ = 10−8 we
obtain nearly the same result though we save about 12 % of the parameters.

Table 4.5: Performance of the sparse network applied to the eikonal equation using the
data set of Section 4.2 for different threshold parameters ζ and regularization
parameters α

Threshold parameter ζ 1 · 10−7 5 · 10−8 1 · 10−8

regularization parameter α 1 · 10−7 5 · 10−8 1 · 10−8

J(θ,XT ,YT ) 0.007 0.0066 0.0056

J(θ,XV ,YV ) 0.0079 0.0056 0.0046

Sparsity of θ̃∗i 59.11% 48.31% 11.9%

To conclude this subsection, we illustrate the distribution of the sparsity in Figure
4.17 where we see the percentage of weights equal to zero per layer for the three
settings of α and ζ. We notice that the highest percentage of zero elements occur
in the fully connected layers, therefore, in the last two layers of the network. At
this point, it would be interesting to investigate whether the percentages will change
significantly if the layers are arranged differently. Does the sparsity depend on the
type of layer or the position of the layer in the network? A suitable explanation
is provided by vanishing gradients: The weight updates are very small in the front
layers near the input, and so, these weights tend slower to zero [34].

4.5 Numerical evaluation of the sparsity-based

learned Landweber iteration

Analogous to Subsection 4.3, we investigate how the SNN affects the reconstruction
process and compare our results, especially with the learned Landweber iteration. We
transform equation (4.16) into a sparsity-based Landweber iteration by substituting
the optimal dense weights θ∗ by the optimal sparse weights θ̃∗. We obtain a third
version of Landweber’s method

vδi+1 = vδi − ωF ′(vδi )
∗(Φθ̃∗(v

δ
i )− yδ), i = 0, ..., k∗ − 1, (4.19)

where again vδk∗ denotes the approximated solution after k∗ − 1 iterations steps. We
focus on phantom v1 and v5 and use the optimal weights θ̃∗1, θ̃

∗
2, θ̃

∗
3 within the neural

network to reconstruct. The stopping index k∗ is chosen as the first index for which
the norm of the residual no longer decreases. It holds

||yδ − Φθ̃∗(v
δ
i )|| − ||yδ − Φθ̃∗(v

δ
i+1)|| ≥ 0 for i = 0, ..., k∗ − 1,

||yδ − Φθ̃∗(v
δ
i )|| − ||yδ − Φθ̃∗(v

δ
i+1)|| < 0 for i = k∗.
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Figure 4.17: Percentage of the weights equal to zero per layer (convolutional layer (conv),
fully connected layer (fc))

We note that the reconstruction results for the two phantoms under consideration
are only minimally worse than the reconstruction results of Subchapter 4.3, see Table
4.6, comparing the relative error and using the same relaxation parameter ω and
noise level δ. Applying the sparse weight θ̃∗3, the relative error increases by 0.22 %
for the reconstruction of v1 and just by 0.01 % for the reconstruction of v5. This is
remarkable as approximately 12 % of the weights were set to zero. As the values of
the cost function of Table 4.5 suggest the reconstruction is worse for θ̃∗1 and θ̃∗2 but
still remarkably close to the results of the learned Landweber method, considering
that approximately 50 % of the weights were eliminated.

Table 4.6: Reconstruction results for the functions v1 and v5 with the sparsity-based learned
Landweber iteration using θ̃∗1, θ̃

∗
2, θ̃

∗
3

v1 v5

Network weights θ̃∗1 θ̃∗2 θ̃∗3 θ̃1
∗

θ̃2
∗

θ̃3
∗

Amount of iterations n∗ 71 50 130 26 28 29

Relative error er 2.08 % 2.78 % 1.91 % 4.58 % 4.76 % 4.37 %

Residual ||Rδ
k∗ || 1.992 0.9447 0.6095 1.4604 1.64 1.1511

Parameter ω 0.1 0.1 0.1 1.5 1.5 1.5

If we look at the reconstruction images, see Figure 4.18, we can also make quantita-
tive statements as in Subsection 4.3. We recognize the defect in the center of the
object, see Figure 4.18 (b). Of course, just like the learned Landweber method, the
sparsity-based one does not provide exact reconstructions. The iteration of the two
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methods stops earlier than the normal Landweber method due to the inaccuracy in
the forward operator. By expanding the training data and increasing the size of the
network, the learning process associated with the reconstruction should be improved.

(a)

(b)

Figure 4.18: Reconstruction vδ1,k∗ (a) and vδ5,k∗ (b) of the material-dependent velocity v1

and v5 with the sparsity-based learned Landweber method using θ̃3
∗

According to our research, a SNN performs almost as well as a dense network. To
generate good reconstruction results, the modeling of the network and the training
data play the most important roles. Once these have been found, the sparsity
approach used here can achieve significant energy savings without a deterioration of
the reconstruction. Regarding the ℓ1-regularization term, it is important to fine-tune
the parameters α and ζ to control the sparsity.
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5 Learned anomaly detection with
terahertz radiation in inline mon-
itoring

The following chapter is based on the AiF project Terahertz-Prozesstomografie
bei der Extrusion von Kunststoffhalbzeugen in collaboration with the SKZ in
Würzburg. The content is published in [64, 66, 67]. We deal with process monitoring
in the extrusion of plastics using THz radiation. Detecting internal defects in a
material is one of the main challenges in inline monitoring of plastics. We aim to
reduce product discard by an efficient inline control that intervenes directly during the
manufacturing process. In the project, we concentrate on whether a defect is present
and not on the exact reconstruction of the object. The latter is investigated in the
previous chapters. The content of the project marks the starting point of the whole
investigations presented in this thesis. In addition to the detection of defects, the
exploration aims to assess the appropriateness of the eikonal equation as a suitable
physical model for simulating the high-frequency propagation of electromagnetic
waves.

In the first study, we use supervised training data from a measuring system that ap-
proximates an inline process. The measuring system and the real-time measurements
were generated by the SKZ in Würzburg. We use THz radiation from 120 GHz to
170 GHz. The system consists of one emitter and three receivers that rotate around
the object of interest. We measure data encoding intensity, refraction, reflection and
temporal information. With these data, we develop a technique based on a learned
probability density function to automatically detect outliers in an inline process.
A threshold parameter is determined. If a measurement falls below this threshold
parameter, there is a high probability that a defect is present. In a further study, we
restrict ourselves to a single feature, the temporal information, and include simulated
data in the learning process. For this purpose, we model the propagation of the
THz radiation by the eikonal equation to enlarge the set of data for this feature.
We simulate a diversity of defects without the need for further time-consuming
measurements. We test our investigations on an unknown object and compare the
anomaly detection trained on the hybrid data with the anomaly detection based on
non-simulated ones.

In the following, we present the mathematical basis of anomaly detection and the
resulting algorithm. Then, we describe the measurement system and the data set
before illustrating and discussing the numerical results.
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5.1 Classification algorithm

We evaluate measurements of THz radiation from an inline process with a machine
learning technique called anomaly detection to detect defects in products. We
define an anomaly as a significant variation from typical values [65]. The idea
of anomaly detection to alarm if a measurement is inconsistent with the expected
behavior is a typical machine learning task and is applied in many different fields,
e.g. in fraud detection, health care, insurance or cyber security [12]. In our research,
it is used to detect defects in the interior of an object during an inline process. The
starting point of the algorithm are measurements from intact, i.e. defect-free objects
to generate a set of training data {x(1), ...,x(m)} ⊂ Rd, m ∈ N. Each data point has
the same dimension d ≥ 1 that describes the number of attributes called features.
The attributes are represented by real numbers. We focus on random variables and
a probability density function. For a profound theory of stochastic concepts, we
recommend the work of Klenke and Shiryaev [55, 85]. For our algorithm, we assume
that the data x(i) are realizations of a real-valued random variable X. Motivated
by the shape of the distribution of the data, see Figure 5.4, and the fact that it is
appropriate to model the scattering of measurements as normal distributed, see [18],
we suppose our data and its attributes to follow a Gaussian distribution. To obtain
our probability density function

p : Rd → R

we first determine the parameters of the Gaussian distribution for a given training
data set. Then, we learn a threshold parameter ϵ∗ and decide depending on this
parameter and the probability density function, whether a new data point xtest is
an outlier, i.e. an anomaly, or not. To learn the parameter ϵ∗ we use a validation
set and a decision function. Typical data of intact objects are characterized by a
relatively large value of p(·), whereas anomalous data are identified by small val-
ues of p(·). The algorithm, which is presented in detail below, is based on [61] and [89].

Notation 5.1.
We use the notation x if x ∈ Rd with d > 1 throughout the entire chapter. If d = 1,
we write x.

Let x ∈ R be a realization of an N (µ, σ2)-distributed random variable X with mean
µ ∈ R and variance σ2 ∈ R. We define the probability density function of the
univariate Gaussian distribution by

p(x;µ, σ2) :=
1√
2πσ

e−
(x−µ)2

2σ2 . (5.1)

and compute the values of µ and σ2 with the help of the training data and the
formulas

µ =
1

m

m∑
i=1

x(i) and σ2 =
1

m

m∑
i=1

(x(i) − µ)2.

Accordingly, let x(i) ∈ Rd with d ≥ 2 be a N (µ,Σ)-distributed random vector X,
then we estimate the parameter µ ∈ Rd and the covariance matrix Σ ∈ Rd×d by

µ =
1

m

m∑
i=1

x(i) and Σ =
1

m

m∑
i=1

(x(i) − µ)(x(i) − µ)⊺ (5.2)
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and characterize the probability density function of the multivariate Gaussian distri-
bution by

p(x;µ,Σ) :=
1

(2π)
d
2 |Σ| 12

e−
1
2
(x−µ)⊺Σ−1(x−µ). (5.3)

We denote the determinant of Σ by |Σ|. In the multivariate setting it is also possible
to calculate the probability density function using the assumption that the features
x1, x2, ..., xd are independent and identically distributed. Then, we use the functions
p(xi;µi, σ

2
i ), i = 1, ..., d, and learn its parameters as in the one-dimensional case.

Under this assumption the probability density function is calculated by

p(x;µ, σ2) = p(x1;µ1, σ
2
1) · p(x2;µ2, σ

2
2) · ... · p(xd;µd, σ

2
d).

After determining the probability density function in a first step, we learn in a second
step a threshold parameter ϵ∗ to identify whether a measurement is inconsistent or
not. For this, we need a further supervised data set, the validation set. We label each
measurement x

(i)
V with a value y

(i)
V ∈ {0, 1}, where y

(i)
V = 1 indicates an anomalous

measurement and y
(i)
V = 0 a defect-free one. The validation set is given by

{(x(1)
V , y

(1)
V ), (x

(2)
V , y

(2)
V ), ..., (x

(l)
V , y

(l)
V }) ⊂ Rd × {0, 1}, l ∈ N.

For a probability density function p, any ϵ > 0 and x ∈ Rd, we define the decision
function f by

f(x, ϵ) :=

{
1, p(x) < ϵ

0, otherwise.
(5.4)

Using the validation set and a given value ϵ, we compare the values of the decision
function f(x

(i)
V , ϵ) and the labels of the data y

(i)
V for i = 1, 2, ..., l to compute the

confusion matrix

C :=

TP FP

FN TN

 ∈ N2×2. (5.5)

The matrix C characterizes the quality of the classification for a fixed ϵ and consists
of four entries: the entry true positive (TP) counts the number of data points with

f(x
(i)
V , ϵ) = y

(i)
V = 1,

true negative (TN) represents the amount of data points with

f(x
(i)
V , ϵ) = y

(i)
V = 0,

false positive (FP) gives us the number of measurements with

f(x
(i)
V , ϵ) = 1 ̸= y

(i)
V = 0,

and false negative (FN) sums up the measurements with

f(x
(i)
V , ϵ) = 0 ̸= y

(i)
V = 1.

If the confusion matrix resembles a diagonal matrix, i.e. FN ≈ 0 and FP ≈ 0, we
will know that the classification works well.
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Via the entries of the confusion matrix, we define the two values precision (prec) and
recall (rec) that depend for a fixed probability density function and an unchanged
validation set on the threshold parameter ϵ. It holds

prec(ϵ) =
TP

TP + FP
∈ [0, 1], (5.6)

rec(ϵ) =
TP

TP + FN
∈ [0, 1]. (5.7)

If the confusion matrix is diagonal, the two values take the right interval boundary,
i.e. prec(ϵ) = rec(ϵ) = 1. Our classifier performs poorly if both values are close to
zero. We use the F1-score

F1(ϵ) = 2
prec(ϵ) · rec(ϵ)
prec(ϵ) + rec(ϵ)

(5.8)

to calculate the threshold parameter ϵ∗. The F1-score combines the precision and
recall value by the harmonic mean. Finally, the threshold parameter ϵ∗ is given as
the value that maximizes the F1-score. We set

ϵ∗ = argmax
ϵ∈[0,pmax]

F1(ϵ), (5.9)

where pmax represents the maximal value of the probability density function p.

In the last step, we access our test set

{(x(1)
T , y

(1)
T ), (x

(2)
T , y

(2)
T ), ..., (x

(l)
T , y

(l)
T )} ⊆ Rd × {0, 1}, l ∈ N

to evaluate the anomaly detection algorithm. The test data set has the same
composition as the validation data set and consists of supervised measured data.
We calculate the confusion matrix and the F1-score for the test set for the learned
probability density function of the multivariate Gaussian distribution and the learned
threshold parameter ϵ∗. If the classifier fails, i.e. that the F1-score is far away from
the value 1, we must augment our data sets. We have to increase the number of
measurements or include simulated data. If the F1-score is close to one the classifier
can be used to indicate whether an unknown data set includes irregularities. In this
case, we identify our measurement xnew as an outlier, and consequently, intervene the
inline process, if the value of the probability density function p(xnew) is smaller than
the threshold parameter ϵ∗. The following Algorithm 5.2 summarizes the classification
algorithm.

Algorithm 5.2. (Density-based anomaly detection)

INPUT:

� Training set {x(1),x(2), ...,x(m)} ⊆ Rd

� Validation set {(x(1)
V , y

(1)
V ), (x

(2)
V , y

(2)
V ), ..., (x

(l)
V , y

(l)
V )} ⊆ Rd × {0, 1}

� Test set {(x(1)
T , y

(1)
T ), (x

(2)
T , y

(2)
T ), ..., (x

(l)
T , y

(l)
T )} ⊆ Rd × {0, 1}
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� Measured data {x(1),x(2), . . . ,x(J)} ⊆ Rd

STEP 1:
Consider the training set as realizations of an N (µ,Σ)-distributed random
variable, µ ∈ Rd, Σ ∈ Rd×d, and estimate the probability density function
(5.3) by (5.2).

STEP 2:
Use the validation set and the decision function (5.4) to construct the
confusion matrix C (5.5) and to find an optimal threshold parameter ϵ∗ ≥ 0
by finding the maximizer (5.9) of the F1-Score (5.8).

STEP 3:
Evaluate the algorithm by using the test set. If the evaluation fails, enhance
the training data set.

CLASSIFICATION:
for j = 1 : J

if p
(
x(j);µ,Σ

)
< ϵ∗ then set y(j) = 1 (an outlier/defect has been

detected)
else y(j) = 0 (no outlier/defect detected).

5.2 Terahertz measuring system and data set

The original THz tomography system displayed in Figure 5.1 was constructed at
the Plastic Center in Würzburg. The system aims to simulate the procedure of
an inline monitoring process. All measured objects and the measured data used
for the anomaly detection algorithm were generated and recorded by employees of
the SKZ. Figure 5.2 shows the setup of the THz measuring system from Figure
5.1 as a cross-section. The figures illustrate that the system consists of an emitter
that also acts as a receiver and two further receivers. The transmitter E1 emits
electromagnetic radiation of a frequency between 0.12 and 0.17 THz. At the same
time, it measures reflection data, see receiver R1 in Figure 5.2. A second receiver
R2 is located opposite the emitter to collect information about the transmission
process. The third receiver is placed near the second one to register signals caused
by the refraction of the radiation. The measuring equipment is fixed on a turntable
that rotates around the object of interest. In Figure 5.1, one can also notice two
lenses causing the Gaussian beam of the electromagnetic radiation and the observed
object in the center of the system. If we compare this setting with Figure 1.2, we
can see that the number of receivers is significantly reduced. Only limited financial
resources were available for the AiF project, which prevented an increase in the
number of receivers. Further, we neglected the modeling of the lenses in our previous
investigations of the reduced inverse problem of THz tomography in Chapter 2 to 4.

While the investigated object is fixed, it is possible to shift the turntable vertically
with a step size of 1 mm. For every vertical position k a complete 360◦ rotation
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Figure 5.1: THz tomography system at Plastic Center (SKZ), Würzburg

Figure 5.2: Schematic THZ tomograph

is realized in Z steps. Consequently, we scan two-dimensional slices of the entire
three-dimensional object by shifting and rotating the turntable. We obtain a d-
dimensional matrix X = (xkz)k=1,...,K,z=1,2,...,Z for every measured object. Each single
d-dimensional entry xkz of the matrix is composed of five features: Receiver R1

informs about phase and absorption information of the reflection process. The second
receiver R2 registers the same information about the transmission process. Figure
1.3 illustrates a measured horizontal shift,i.e. the phase shift, and a vertical shift,
i.e. the absorption loss, of the amplitude in red compared to the reference signal in
blue. The fifth feature belongs to receiver R3. Since no reference signal is given for
this receiver, we only detect whether a signal is present or not and how intense it
is. Due to the calibration measurement where no refraction occurs, receiver R3 only
provides information about the amplitude of the signal.

To generate the training, validation and test data used for our anomaly detection,
solid pipes made of polyethylene were constructed. The pipes have a diameter of
10 cm and are characterized by its refractive index of about n = 1.53 and its absorp-
tion coefficient α = 0.06 cm−1. We first scanned solid pipes without defects. The
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K × Z-matrices for the features path difference and amplitude ratio in transmission
are represented in Figure 5.3. We see the angular position on the x-axis and the
vertical shift on the y-axis. One rotation consists of Z = 380 angular positions and
the turntable is shifted in Z = 120 steps.

(a) (b)

Figure 5.3: Data points for the path difference (a) and the amplitude ratio (b) of a solid
pipe without defects in transmission

In a second step, we manufactured vertical and horizontal holes in the pipes. We filled
some of them with materials like oil, metal or polyethylene of a different refractive
index. We thus create synthetic defects. All in all, we end up with a data set
containing 220400 five-dimensional data points of measurements from intact solid
pipes and 105965 data points from defect samples. To generate our training set
{x(1),x(2), ...,x(m)} ⊆ R5 we use 60% of the intact measurements. The remaining
intact data points are distributed evenly among the test and validation data so that
the data sets are each composed of 20% of the typical data and 50% of the anomalous
measurements.

In Figure 5.4, we present an example of the distribution of the data points that
originate from measurements with defect-free solid pipes. We see the registered
values at receiver R2 opposite the transmitter. Indeed, the distribution resembles a
Gaussian distribution concerning both the path difference on the left side as well as
the amplitude ratio on the right side. Similar results can be found for receivers R1

and R3. The latter only provides measurements of the amplitude as mentioned before.

Comparing our THz measuring system and our data set to a real inline process, we
have to specify one difference: The material moves continuously instead of being
fixed. In our investigation, we simulate the movement of the material by the step-wise
shift of the measuring system. In reality, for example in an extrusion process, the
emitter and the receivers describe a different trajectory: Using a horizontally and
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(a) (b)

Figure 5.4: Distribution of the data points registered at receiver R2

vertically fixed measuring system that rotates around an object that continuously
moves through the measuring system, we obtain a helical trajectory relative to the
material. So, instead of having two-dimensional data for K slices, we deal in a real
inline process with three-dimensional data since the object is not shifted but moving
continuously.

5.3 Numerical results for measured data sets

In our first investigation, we use the data set described in section 5.2 to evaluate our
classification algorithm. We set d = 5 by dealing with the five features measured by
our three receivers, such that we utilize information about the refraction, reflection
and transmission of the radiation. After learning the parameters of the algorithm
and evaluating them with the test set, we apply the classification to investigate
an unknown pipe. We show that our application is suitable for an inline process
monitoring based on THz radiation.

According to Algorithm 5.2, we first use the training set to compute the parameters
of the multivariate Gaussian distribution (5.3) with d = 5. We obtain

µ =



53.601002

1.015691

0.139608

0.010417

83.159275


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and

Σ =



0.258068 −0.012679 0.003472 0.000218 −0.355831

−0.012679 0.001625 −0.000057 −0.000001 −0.012545

0.003472 −0.000057 0.002129 −0.000013 −0.034956

0.000218 −0.000001 −0.000013 0.000016 −0.000867

−0.355831 −0.012545 −0.034956 −0.000867 3.299866


.

Afterwards, we estimate the threshold parameter ϵ∗ = 2.260130 via optimizing the
F1-score for the validation set. In the third step of Algorithm 5.2, we calculate the
confusion matrix

C =

 52982 434

0 43266

 .

for the given test set and the corresponding F1-score F1(ϵ
∗) = 0.995921. We evaluate

that each outlier is found and that only 434 data points are incorrectly detected as
an anomaly though they do not represent a defect. Consequently, our F1-score tends
to one, which is the desired result. The learning process is complete.

In the next step, we scan an unknown solid pipe that may contain defects. We
measure the five features mentioned above and apply the classification part of the
anomaly detection algorithm. For this purpose, we calculate the probability density
function for our measured data {x(1)

M ,x
(2)
M , ...,x

(J)
M } ⊆ R5 with the learned expected

values and covariance matrix. We have J = K · Z, where again K = 315 indicates
the number of vertical shifts and Z = 380 the number of angular positions per slice.
Figure 5.5 visualize the results Y = (ykz)k=1,...,K,z=1,...,Z of the classification: A yellow
pixel corresponds to an outlier, i.e. ykz = 1, while a blue pixel shows no irregularity,
i.e. ykz = 0. We note that the classification algorithm detects two defects that both
appear twice in Figure 5.5 because of doing a full 360◦ rotation. Consequently, the
defects are scanned in 180◦ intervals. Reading the plot from top to bottom, we see
that the first horizontal lines are marked completely yellow. The transition between
air and material is mapped in these lines. They are followed by an area of 40 cm
representing an anomaly. After some blue horizontal lines, a second yellow area
appears that indicates a second defect. For the lower 20 cm of the pipe no deviation
from the standard is measured.

By comparing our measurements with the exact dimension of the object, we notice
that the pipe indeed contains two defects: a vertical damage of 4 cm from above and
a second one, a lateral hole of 8 mm in the lower half. Our investigation aimed to
find anomalous areas in the material, not to characterize the defect or to determine
the exact dimension. Considering the results, we can state that our goals were
achieved. Based on the presented results, a full reconstruction of the interior of the
object can be investigated, see Chapter 3. By reconstructing only critical areas, it
is again possible to save a lot of time which is an important factor in inline monitoring.
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Figure 5.5: Investigation of an unknown pipe using the classification algorithm

Regarding the computational time of Algorithm 5.2, it is obvious that the total time
depends on the amount of data used for the learning process. In our case, we need
about three seconds (Intel Core i7-8565U processor). The most time-consuming part
is the solution of the optimization problem in step two depending on the step size
used for ϵ. Furthermore, the amount of correct measurements used for the learning
process influences the performance significantly. We use the maximum number of
measurements generated at the SKZ.

5.4 Numerical results based on partly simulated

data

In the following section, we refer to the physical model from Chapter 2. We reduce
our previously used five-dimensional data set to one feature, the temporal information
of receiver R2, and involve simulated data instead. We validate our simulation by
comparing synthetic with real measured data. Afterwards, we enlarge our data set
for the one-dimensional case. Using the eikonal equation, we generate time-of-flight
measurements of intact and damaged objects without further time-consuming real-
time measurements. Moreover, no further objects with defects need to be generated.
To demonstrate an added value of the synthetic data, we compare the anomaly
detection algorithm using the hybrid data set with the anomaly detection algorithm
only applied to the measured data for the one-dimensional case.

As derived in the previous chapters the travel time T of electromagnetic radiation can
be described by the eikonal equation (2.19) for high frequencies from a theoretical
point of view. Because of our measuring system, we focus again on a domain Ω ⊆ R2.
Additionally, we consider a suitable constraint T (x0, y0) = 0 for an initial value
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(x0, y0)
⊺ ∈ ∂Ω on the boundary ∂Ω of the domain Ω, such that we result in the

partial differential equation (3.1) with the initial condition (3.7).

Figure 5.6 represents a simulation of the travel time of the THz radiation emitted at
position (x0, y0)

⊺ = (−15, 0)⊺. The partial differential equation is solved by the FMM,
see Chapter 3. We take into account the usual geometry of the THz beam generated
by the lenses in our measuring system that focus the electromagnetic radiation.
Therefore, we deal with a Gaussian intensity profile that can be characterized by
its Rayleigh zone z0 and its waist size w0, see [88, 93]. When solving the eikonal
equation for the simulated data we restrict our domain to the Gaussian beam, whose
radius w(z) is given by

w(z) = w0

√
1 +

(
z

z0

)2

where z describes the distance from the waist of the beam. A transformation for
z ̸= 0 leads to

w(z) = w0z

√
1

z2
+

1

z20
.

For z ≫ z0 we see that w(z) approaches a straight line which was assumed in our
simulation in Figure 5.6 to approximate the Gaussian profile.

Figure 5.6: Simulation of the travel time of the THz radiation by solving the eikonal
equation and approaching the Gaussian profile

In the next step, we validate the physical model and the resulting simulated data
by comparing it with real measurements of our inline measuring system. We scan a
polyethylene solid pipe with a diameter of 10 cm and a homogeneous refractive index
of n = 1.53, and simultaneously, simulate the process via the FMM implemented in
MATLAB. Figure 5.7 visualizes the result: We see the path difference of the THz
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radiation on the y-axis as a function of the angular position for simulated data in
blue and measured data in red. We add a uniform noise of 3 % to our simulated
data to account for measurement and observation errors. Indeed, the two data series
yield comparable results by comparing a 360◦ measurement of one slice. The mean
value is a good benchmark to compare the simulated and measured data. We obtain
a mean value of ssim = 53.119081 mm for the simulated data and a mean value of
sreal = 53.602705 mm for the measured ones. It results a relative error ∆rel of

∆rel =
sreal − ssim

sreal
· 100 % = 0.9022 %,

indicating a good consistency of simulation and measurement.

Figure 5.7: Comparison of the simulated and the measured data for a solid pipe with a
diameter of 10 cm and a refractive index of n = 1.53

The simulation of the data provides a basis for a more economic application of our
anomaly detection algorithm. By the generation of synthetic data the manufacturing
process of the material, in our case the solid pipes, can be limited. It is possible to
simulate defects instead of constructing them after the extrusion process. Especially
for complex inline products, such as window frames for example, a virtual object
design is a great advantage. We can increase our data set without time-consuming
measurements. We focus on a one-dimensional setting because the solution of
the eikonal equation only simulates one of the five features. So, we augment our
data set described in section 5.2 for the feature travel time measured at receiver
R2. Analogous to the previous subsection, we perform a one-dimensional anomaly
detection concerning the feature travel time of receiver R2. We subdivide our hybrid
data as in Section 5.2. After learning the parameters of the univariate Gaussian
distribution p(x;µ, σ2) and the threshold parameter ϵ∗, we investigate the unknown
pipe. The parameters of equation (5.1) are given by

µ = 53.546907 and σ2 = 0.282028.
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The optimization problem of Step 2 in Algorithm 5.2 yields the optimal threshold
parameter ϵ∗ that leads to a maximal F1-score of 0.489209. The F1-score for the
hybrid data set is significantly lower than the F1-score from Section 5.3 because of
the reduced number of features. Figure 5.8 depicts the matrix Y of the anomaly
detection of the unknown pipe using the learned parameters of the one-dimensional
Gaussian distribution resulting from the hybrid data set. As in the plot of Figure
5.5, we indicate defects by yellow pixels and normal measurements by blue pixels.

Figure 5.8: One-dimensional anomaly detection for the unknown pipe using a hybrid data
set

To validate the one-dimensional anomaly detection with a hybrid data set and to
demonstrate an added value, we also learn the parameters only by the real measured
data of receiver R2, i.e. we neglect the simulation. Figure 5.9 presents the result:
It is obvious that in the hybrid setting the vertical damage is detected more reli-
ably than in the setting without simulations. The second defect area in the lower
part of the pipe is weakly detected in both cases because we consider only one feature.

Comparing the results of this section to the results of Section 5.3, we conclude that
the best classification was archived by the multidimensional setting. However, a
tendency to over-sensitivity is evident that would appear with a further increase
in the number of features. The investigation from this section serves as a proof of
concept to show the potential of synthetic data in machine learning applications. A
more accurate anomaly detection is already possible for one feature using a hybrid
data set instead of only measured data. For a multivariate approach with simulated
data, further physical models have to be investigated to simulate the remaining four
features. One possibility to simulate the intensity of the THz beam measured by
receiver R2 is given by Tepe et al. [88], where a modified ART was developed to
reconstruct the absorption coefficient and the refractive index. Another challenge will
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Figure 5.9: One-dimensional anomaly detection set for the unknown pipe using only mea-
sured data

be to classify the defect with regard to the material properties, shape and size. To
this end, it is conceivable to amplify the anomaly detection algorithm towards a deep
learning approach using deep neural networks. For the generation of simulated data,
it will be vital to investigate the nature of typical defects in practical applications.
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6 Conclusion and outlook

Motivated by an AiF project in cooperation with the SKZ in Würzburg, the thesis
dealt with the examination of the inverse problem of THz tomography including
data-driven enhanced methods. We investigated a completely new physical approach
in the context of THz tomography, the eikonal equation, to simulate the propagation
of electromagnetic radiation in the THz range. The initial project is discussed in the
last chapter of the thesis, however, represents the starting point of our investigations.
Building on existing research, especially the one of Wald et al. [93], we derived a
high-frequency approximation of the wave equation resulting in the eikonal equation.
During project work, we developed an anomaly detection in inline monitoring of
plastics and ceramics. We used simulated as well as real measured data provided by
the SKZ. The main results of the project are firstly, that the eikonal equation is a
practicable physical model to simulate the propagation of electromagnetic waves for
high frequencies, and secondly, that we could detect defects in an extrusion process
of plastics. Following these findings, we continued the study of the inverse problem of
THz tomography using the eikonal equation in this thesis. While in the project the
focus was on detecting defects, we expanded the research in our thesis to reconstruct
the interior of an object for the two-dimensional case. We take into account the
aspect of time efficiency and energy saving that are the most important factors in
industry in addition to the accuracy of the reconstruction.

So, in the first part of the thesis, we introduced the topics of THz tomography and
machine learning with regard to historical developments and existing research and
presented some basis. We established the eikonal equation as the physical model
and the reduced inverse problem of reconstructing the refractive index n from THz
tomographic measurements.

In the next part, we discussed the mathematical investigations of the inverse problem.
We examined the non-linear forward operator including the parameter-to-solution
operator, the trace operator and a linear observation operator. We derived an expres-
sion for the Fréchet derivative and its adjoint, enabling us to compute the gradient of
the least squares functional. This gradient is crucial in the reconstruction techniques
we utilized resulting in the Landweber method. The analysis then focused on the
numerical solution of the forward operator and the adjoint of the Fréchet operator.
We introduced the FMM to solve our forward problem and a method based on the
difference quotient to calculate the adjoint of the linearization. Finally, we imple-
mented the Landweber iteration to reconstruct the refractive index of tested objects
with noisy synthetic data. The results are suitable for a qualitative and quantitative
evaluation. So, we solved the reduced inverse problem of the two-dimensional THz
tomography.
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In the following section of the thesis, we presented two enhanced methods, a partially
learned Landweber and a sparse learned Landweber method. Both methods are
data-driven. The main focus here was time efficiency and energy saving. The forward
operator derived in the first part, especially the solution of it using numerical meth-
ods, is time-consuming. By substituting the original forward operator with a CNN,
we achieved the second objective of the thesis: We could accelerate the reconstruction
process accepting an increase in the relative error of the reconstruction and focusing
on quantitative results. Further, we could save weights and consequently energy in the
learning process of the CNN by using a regularization technique in the optimization
process of the parameters resulting in a sparse network. The sparse network used
for the solution of the forward operator performed almost as well as the dense network.

In conclusion, all the objectives outlined in the motivation of the thesis have been
successfully achieved. The research combines mathematical theory with real-time
problems. The influence of industrial factors is noticeable throughout the entire
investigation, especially in the last two chapters. This thesis represents one of the
first scientific approaches in applying data-driven methods to THz tomography. The
results obtained can be transferred to other physical models or inverse problems.
Future research endeavors will focus on adapting, refining and optimizing the ap-
proach pioneered in this thesis. Finally, the next few lines will provide an overview
of potential extensions and improvements for the thesis.

First of all, one can switch the physical model. The eikonal equation was chosen
since the Helmholtz equation causes problems in particular for higher frequencies.
Models using the wave equation fully capture the inverse problem in spatial and
temporal dimensions but are numerically complex to implement. So, using the eikonal
equation, we reduce the complexity of the underlying problem and only focus on the
reconstruction of the refractive index neglecting the absorption coefficient. It remains
the task of current research to investigate the problem using the wave equation.
Here, the use of artificial intelligence could improve efficiency: It is imaginable that
the solution of the wave equation is learned via a neural network, according to the
solution of the eikonal equation in our thesis, using both real measurement data and
simulated data. Again, the numerical effort would be reduced in the reconstruction
process identically to the investigations in the underlying thesis.

To improve the results of Chapter 4, it is necessary to amplify the data set, ideally
with real measurement data. In contrast to the AiF project presented in Chapter
5, it is possible and affordable nowadays to increase the number of receivers on
the entire measurement ring and thus generate real measurements that match our
reconstruction algorithm. A wide range of varied data can reduce overfitting. The
network could react more flexibly to complex data. To handle an increasing data set,
the hardware has to be adapted. More computer power is unavoidable and the switch
to a server has to be made. The CNN can then be expanded in width and depth.
It would be interesting to investigate whether more computer power automatically
results in a better reconstruction. Note, that the approximation theorems postulate
a more precise learning process of the forward operator by amplifying the amount of
parameters within the network. Regarding the sparsity ansatz, it would be interesting
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to compare further regularization terms with the ℓ1-regularization, for example the
group lasso presented in equation (4.12). Furthermore, in our investigations, we
pursued a dense-to-sparse approach. It is also possible to start with a sparse net,
resulting in a sparse-to-sparse approach.

Staying in the setting of the thesis, it is left to substitute the evaluation of the
adjoint of the linearized forward operator F ′(n)∗ by a second network. This would
lead to a further acceleration of the reconstruction process accompanied by a further
increase in the reconstruction error. Two approaches are conceivable at this point:
On the one hand, the numerical solution of the partial differential equation given in
Theorem 3.21 can be learned according to the learning process already completed for
the forward operator. Thus, in Algorithm 3.27 a second network Ψθ∗∗ can be placed
with the optimal parameters θ∗∗. We obtain for the reconstruction

vδi+1 = vδi − ωΨθ∗∗(Φθ∗(v
δ
i )− yδ), i = 0, ..., k∗ − 1.

On the other hand, it is possible to use the existing network Φθ∗(·), respectively
Φθ̃∗(·), and calculate its gradient for the implementation of the learned Landweber
method. We obtain

vδi+1 = vδi − ωΦ′
θ∗(v

δ
i )

∗(Φθ∗(v
δ
i )− yδ), i = 0, ..., k∗ − 1.

The difference between both approaches is, that once a second learning process
is required generating a new approximation error and once the existing error is
transferred to the gradient.

Furthermore, the error analysis and the convergence of the learned Landweber
iteration is an open question. Up to now, the network has been selected via a trial
and error process and the learned Landweber method is stopped depending on the
relative error. A time-consuming process is performed, consisting of generating the
network, learning the parameters and finally testing the network within a Landweber
iteration. If the reconstruction fails, a new learning process will be started or
the training set will be changed. In general, there are plenty of mathematical
investigations left regarding neural networks. In the underlying case, it would be
desirable to estimate the error

||ϵ(v)|| = ||Φθ∗(v)− F (v)||

of the learned network and its influence of the convergence of the reconstruction.
From a mathematical point of view, it would be an enormous step to obtain a
convergence statement similar to the discrepancy principle and Remark 3.23.

Finally, there is the possibility of connecting the learned Landweber method with a
post-processing to improve the reconstruction. For this, it is necessary to include a
new network mapping the reconstruction to a reworked version to better identify
the defects and material parameters. For example, one could use an variational
autoencoder network [54]. Additionally, further information about the object to be
reconstructed could be included, e.g. the probability of some defects.

To conclude the thesis, it can be generally stated that the use of data-driven
enhanced methods in THz tomography is possible and can be applied in the field of
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non-destructive testing for dielectric materials. The ideas and results presented in
this thesis can be applied to many other areas whenever a partial differential equation
is solved in a time-consuming manner. Overall, the potential of THz tomography is
far from exhausted and there are many starting points for further development to
make it suitable for effective industrial use.
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A Notations

F forward operator

D(F ) domain of F

x an element of Rn

|| · ||Y norm of the vector space Y

δ noise

yδ noisy data

n(x) refractive index at position x

v(x) material dependent velocity of the radiation at position x

c0 speed of light

N number of receivers

T (x) travel time at position x

S parameter-to-solution operator

γ trace operator

Q observation operator

Eν surface of receiver ν

eν senor characteristics

F ′(v)∗ linearized adjoint operator

M2 number of pixels

J number of angular positions

k∗ stopping index

Rδ residual

ϵv relative error

ω relaxation parameter for Landweber
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X domain set of a network

Y label set of a network

ŷ output vector of a network

Wi weight matrix connecting the i-1-th layer with the i-th layer

bi bias in the i-th layer

τ(·) activation function

L number of hidden layers

NT number of training data

XT input training data

YT output training data

XV input validation data

YV output validation data

θ weights in a network

θ̃ weights in a sparse network

Θ parameter space of all weights in the network

J(·, ·, ·) cost functional

l(·, ·) loss function

R(·) regularization functional of the cost function

θ∗ optimal weights in a network

Φθ∗(·) learned forward operator

α regularization parameter for the cost functional

ζ threshold parameter for the sparsity

Φθ̃∗(·) learned sparse forward operator

θ̃∗ optimal weights in a sparse network

p(·;µ, σ2) probability density function of the univariate Gaussian distribution

p(·;µ,Σ) probability density function of the multivariate Gaussian distribution

ϵ∗ optimal threshold parameter of the anomaly detection

f(·, ϵ) decision function with threshold parameter ϵ

C confusion matrix
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B Some supplementary mathemat-
ical theory

Definition B.1 (Sigmoidal).
A function τ ∗ : R → R is called sigmoidal if the following conditions hold:

a) lim
z→∞

τ ∗(z) = 1.

b) lim
z→−∞

τ ∗(z) = 0.

Definition B.2 (Discriminatory).
Let I = [0, 1]m, µ a Borel measure on I. A function τ ∗ : R → R is called discrimi-
natory if ∫

I

τ ∗(wTx+ b) dµ(x) = 0 for all w ∈ Rm, b ∈ R

then µ = 0.

Lemma B.3.
Any continuous sigmoidal function τ ∗ : R → R is discriminatory.

Theorem B.4 (Universal approximation theorem, [14]).
Let I = [0, 1]m and τ : Rn → Rn component-wise defined by a continuous discrimina-
tory function τ ∗ : R → R. Then

{φn : Rm → R : φn(x) = wT τ(Wx+ b), W ∈ Rn×m, b, w ∈ Rn}

is dense in C(I).

Lemma B.5. Let I ⊂ Rm, τ ∗ : R → R with

τ ∗(z) = ReLU(z).

Then τ ∗ is discriminatory, i.e. we obtain the universal approximation property of
ReLU networks.

Proof. Let µ be a Borel measure and for all w ∈ R and b ∈ R it holds∫
I

ReLU(wx+ b) dµ(x) = 0.

We construct a sigmoid bounded, continuous (Borel measurable) function by sub-
tracting two ReLU-functions with different parameters.
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Consider

f(x) =


0 x < 0

x x ∈ [0, 1]

1 x > 1

Any function f̃(x) := f(wx+ b) can be described by

f̃(x) = ReLU(wx+ b)−ReLU(wx+ b− 1)

For any w ∈ R, b ∈ R we have∫
I

f(wx+ b) dµ(x) =

∫
I

ReLU(wx+ b) dµ(x)−
∫
I

ReLU(wx+ b− 1) dµ(x) = 0.

We obtain µ = 0 because f is discriminatory.

We have Σn(f) = span{f(wx+ b) : w ∈ Rn, b ∈ R}and Σ1(f) is dense in C([0, 1]) by
the proof. It follows that Σn(f) is dense in C([0, 1])n

(See ’An overview of artificial neural networks for mathematicians ’ Guilhoto, 2018)

Lemma B.6 (Product rule for divergence).
For a scalar-valued function φ : Rn → R and a vector-valued function v : Rn → Rn,
we have the following identity:

div(φv) = φ div v + v∇φ.

Proof. Let φ : Rn → R and v : Rn → Rn

div(φv) =
n∑

l=1

∂(φvk)

∂xk

=
n∑

l=1

(
φ
∂vk
∂xk

+
∂φ

∂xk

vk

)
= φ div v + v∇φ

Theorem B.7. The parameter-to-solution operator S is non-linear.

Proof. Let us assume that S is linear. Then it holds

S(λv) = λS(v).

for a scalar λ ∈ R. So, we have that S(λv) = Tλv solves

|∇Tλv(x, y)|2 =
1

λ2v2(x, y)

⇔ λ2|∇Tλv(x, y)|2 =
1

v2(x, y)

⇔ |∇Tλ2v(x, y)|2 =
1

v2(x, y)

for the given starting condition. We obtain

S(v) = Tλ2v

which is a contradiction to S(v) = Tv and the uniqueness of the operator.
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Theorem B.8.
The linear filter given by Definition 4.7 represents a discrete convolution with the
kernel H∗ creating from vertical and horizontal mirroring of H.

Proof.

(I ∗H∗)(u, v) =
∞∑

i=−∞

∞∑
j=−∞

I(u− i, v − j) ·H∗(i, j)

=
∑

(i,j)∈RH

I(u− i, v − j) ·H∗(i, j)

=
∑

(i,j)∈RH

I(u− i, v − j) ·H(−i,−j)

=
∑

(i,j)∈RH

I(u+ i, v + j) ·H(i, j)

Theorem B.9 (Properties of the convolution, [23], p. 107).
For f, g, h, g1, g2 : Rn → C, a ∈ C, we have the following properties:

a) Commutativity:
f ∗ g = g ∗ f.

b) Linearity:
a(f ∗ g) = (af) ∗ g = f ∗ (ag).

f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2.

c) Associativity:
(f ∗ g) ∗ h = f ∗ (g ∗ h).
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C Source code

Code C.1.

c l a s s Net (nn . Module ) :
d e f i n i t ( s e l f ) :

super (Net , s e l f ) . i n i t ( )
s e l f . conv1 = nn . Conv2d (1 , 10 , k e r n e l s i z e = 5)
s e l f . conv2 = nn . Conv2d (10 , 20 , k e r n e l s i z e =5)
s e l f . f c 1 = nn . Linear (320 ,50)
s e l f . f c 2 = nn . Linear (50 ,10)

d e f forward ( s e l f , x ) :
x = F. r e l u (F . max pool2d ( s e l f . conv1 ( x ) , 2 ) )
x = F. r e l u (F . max pool2d ( s e l f . conv2 ( x ) , 2 ) )
x = x . v iew (=1 ,320)
x = F. r e l u ( s e l f . f c 1 ( x ) )
x = s e l f . f c 2 ( x )
r e tu rn F . l o g s o f tmax ( x , dim = =1)

Remark C.2.
The code for Chapter 3, 4 and 5 is uploaded on github, see
https://github.com/tschus71/THZ.
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Einführung Mit Java. Springer-Verlag, 2009.

[10] T I Burgess, K Howard, E Steel, and E L Barbour. To prune or not to prune;
pruning induced decay in tropical sandalwood. Forest Ecology and Management,
430:204–218, 2018.

[11] A Chacon and A Vladimirsky. Fast two-scale methods for eikonal equations.
SIAM Journal on Scientific Computing, 34(2):A547–A578, 2012.

[12] V Chandola, A Banerjee, and V Kumar. Anomaly detection: A survey. ACM
computing surveys (CSUR), 41(3):1–58, 2009.

[13] M G Crandall and P-L Lions. Viscosity solutions of Hamilton-Jacobi equations.
Transactions of the American mathematical society, 277(1):1–42, 1983.

[14] G Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems, 2(4):303–314, 1989.
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