RAPH

KARL MARK G
Memo-SEKI-MK-54-01

=
O
—
e
<
&
=
e
o)
@
<4
]
x 0O
< A
x O
o]
, ™
< &
44
0
4
3
5]
=
B

s onas 1YATOYHd -1Y36
WIGINEISIBSIEY 1B)ISISMUN
IA3S

ARWIOIU) Y43iaquyoed

THE MARKGRAF KARL REFUTATION
PROCFEDURE

KARL MARK G RAPH

Universitdt Kaiserslautern Universitdt Karlsruhe
Fachbereich Informatik Institut fiir Informatik I
Postfach 3049 Postfach 6380

D-6750 Kaiserslautern D-7500 Karlsruhe 1

WEST GERMANY WEST GERMANY

Druck: Abteilung Foto-Repro-Druck der Universitat Kaiserslautern

Karl Mark G Raph is the pseudo name of the authors of this
jointly written report. They are the memberbs of the MKRP-
Project, which currently (January 1984) consists of the
following people:

Susanne Biundo, Dipl. Inf.,
(Induction Prover; Karlsruhe)

Karl-Hans Bldsius, Dipl. Math.,
(Equality Reasoning; Kaiserslautern)

Hans-Jdirgen Bilrckert, Dipl. Math.,
(Unification Theory; Kaiserslautern)

Norbert Eisinger, Dipl. Inf.,
(Theoretical Problems of the Clause Graph Calculus;
Kaiserslautern)

Alexander Herold, Dipl. Math.,
(Unification Theory; Kaiserslautern)

Thomas Kdufl, Dipl. Inf.,
(Program Verification; Karlsruhe)

Christoph Lingenfelder, Dipl. Phys.,
(Proof transformation; Kaiserslautern)

Hans-Jirgen Ohlbach, Dipl. Phys.,

(Supervisor; Kaiserslautern)

Manfred Schmidt-SchauB8, Dipl. Math.,
(Supervisor; Kaiserslautern)

Joérg H. Siekmann, Prof. Dr. (Ph. D.), grad. Ing.,
(Project leader; Kaiserslautern)

Christoph Walther, Dipl. Inf.,
(Induction Prover, Sorted Logic; Karlsruhe)

University of Kaiserslautern University of Karlsruhe

January 1984

6.1.
6.2.
6.3.

6.4.

THE MARKGRAF KARL REFUTATION PROCEDURE

INTRODUCTION
OVERVIEW OF THE SYSTEM
METHODS AND TECHNIQUES OF THE MKRP SYSTFM

6.3.1. A Many Sorted Calculus based on Resolution and
Paramodulation

6.3.2. Paramodulated Connection graphs

6.3.3. Subsumption and Connection graphs

6.3.4. Deletion of Redundent Links in Connection graphs

6.3.5. Terminator

6.3.6. Heuristic Selection Criteria

6.3.7. Refinements

6.3.8. Clause Reduction

6.3.9. Unification

6.3.10.Equality Reasoning

6.3.11.Proofs by Induction

6.3.12.Preprover

THE LOGIC MACHINE

6.4.1. Preprocessing
6.4.1.1. Presimplification
6.4.1.2. Normalization and Splitting
6.4.1.3. Clause Simplification
6.4.1.4. Construction of the Connection Graph

6.4.2. The Deduction IL.oop
6.4.2.1. Factoring
6.4.2.3. Termelimination
6.4.2.4. Terminator
6.4.2.5. Term Rewriting Rules
6.4.2.6. Literal Rewriting Rules
6.4.2.7. Conditional Term Rewriting Rules
6.4.2.8. Deduction Rules

6.4.2.9. Refinements
6.4.2.10.Deletion Steps
6.4.2.11.Resolution of Conflicts
6.4.2.12.Termination of the Loop

6.4.3. Index of the Options and the Modulconfiguration.

6.5. SOFTWARE TOOLS

6.6. HOW TO USE THE SYSTEM
6.6.1. The MKRP Operating System
6.6.2. The Input Language
6.6.3. The Editor
6.6.4. The Output Facilities
6.6.5. A Test Run

6.7. SUMMARY, EVALUATION AND FUTURE PLANS

6. THE MARKGRAF KARL REFUTATION PROCUDURE
Uberhaupt hat der Fortschritt das an sich, daB er

viel grdéBer ausschaut, als er wirkliche ist
J. N. Nestroy, 1859

6.1. INTRODUCTION

The current state of development of the Markgraf Karl Refutation

Procedure (MKRP), a theorem proving system under development
since 1977 at the University of Karlsruhe, West Germany, is
presented and evaluated in the sequel. The goal of this project
can be summarized by the following three claims: it is possible
to build a theorem prover (TP) and augment it by appropriate
heuristics and domain-specific knowledge such that
(i) it will display an active and directed behaviour in its
striving for a proof, rather than the passive
combinatorial search through very large search spaces,
which was the characteristic behaviour of the TPs of the
past. Consequently
(ii) it will not generate a search space of many thousands of
irrelevant clauses, but will find a proof with
comparatively few redundant derivation steps.

(iii) Such a TP will establish an unprecedented leap 1in
performance over previous TPs expressed in terms of the
difficulty of the theorems it can prove.

‘With about 25 man years invested up to now and a source code of
almost 2000 K (bytes of Lispcode), the system represents the
largest single software development undertaken in the history of
the field and the results obtained thus far corroborate the first

two claims,

The final (albeit essential) claim has not been achieved yet:
although at present it performs substantially better than most
other automatic theorem proving systems, on certain classes of

examples (induction, equality) the comparison is unfavourable for

the MRKP-system. But there is 1little doubt that these
shortcomings reflect the present state of development; once the
other modules (equality reasoning, a more refined monitoring and
induction) are operational, traditional theorem provers will

probably no longer be competitive.

This statement is less comforting than it appears: the comparison

is based on measures of the search space and it totally neglects

the (enormous) resources needed in order to achieve the behaviour
described. Within this frame of reference it would be possible to
design the "perfect" proof procedure: the supervisor and the
look—-ahead heuristics would find the proof and then guide the

system without any unnecessary steps through the search space.

In summary, although there are good fundamental arguments
supporting the hypothesis that the future of TP research is with
the finely knowledge engineered systems as proposed here, there
is at present no evidence that a traditional TP with its capacity
to quickly generate many ten thousands of clauses is not just as
capable. The situation is still (at the time of writing)
reminiscent of todays chess playing programs, where the programs
based on intellectually more interesting principles are
outperformed by the brute force systems relying on advances in

hardware technology.

The following paragraph summarizes the basic notions and
techniques of theorem proving as far as they are relevant here
(and may be skipped by a reader already familiar with the field).

Section 6.2 provides an overview of the whole system, including
those parts whose development is not completed yet. This section
should give a feeling for the general ideas and principles that
guided the design of the overall structure of the MKRP system,

Section 6.3 is written from the methodoloigcal point of view and

describes the major novel techniques and methods that are used

within the MKR-Producer.
In contrast section 6.4. uses the flow of control as a guiding
line to present the actual working of the Logic Machine, the

innermost part of the MKRP-system.

Section 6.5 quickly reviews some of the software tools that were
developed for the implementation of the system and section 6.6

gives an overview of how to use the system,
Basic Techniques and Terminology

The language used in this report is that of first-order predicate
logic with which we assume the reader to be familiar. From the
primitive symbols of this logic we use: u,X,y,z as individual
variables; a,b,c,d as individual constants; P,0,R as predicate

constants; f,g,h as function letters. The equality predicate

will be denoted by E and mostly written in infix notation as =
to improve readability. Individual constants and variables are
terms as well as n-placed functions applied to n terms. As
metasymbols for terms we use r, s and t. The arity of functions
and predicates will be clear from the context. An n-place

predicate letter applied to n terms is an atom. A literal is an

atom or the negation thereof. For literals we use L,K. The
absolute value |L| of a literal L is the atom K such that either

L is K or L is ~ K.

A clause is a finite set of literals for which the metasymbols
C,D are used. A clause is interpreted as the disjunction of its
literals, universally quantified (over the entire disjunction) on
its individual variables. The empty clause is denoted as o. A

ground clause, ground literal or ground term is one that has no

variables occurring in it. A substitution § is a mapping from

variables to terms almost identical everywhere. Substitutions are
extended to mappings from terms to terms by the usual morphism.
Substitutions are also used to map literals (clauses) to literals

(clauses) in the obvious way. A substitution is denoted as a set

of pairs §={(vy * tl) coe (vn « tn)} where the v, are variables
and the ti are terms. The term 6(t) (the literal §(L.), the clause
§(C)) is called an instance of t (an instance of L, an instance
of C). We use 6,0, for substitutions. A substitution o is called
a unifier for two atoms L and K iff o(L)=0(K); o iscalled a most

general unifier (mgu) of L and K, if for any other unifying

substitution § there exists a substitution A such that §=Xog,

where o denotes the functional composition of substitutions. A

matcher (or one-way unifier) for two literals L and K relative to
L is a substitution ¢ such that oL = K.
The Herbrand Universe H(S) of a set S of clauses is the set of

all ground terms that can be constructed from the symbols
occurring in S (if no individual constant occurs in S we add the

single constant symbol c). A Herbrand instance H(t) of a term t

is an instance §(t), such that all the terms in § are from H(S);
similarly we define a Herbrand instance of an atom, a literal, a

clause. An interpretation T of S is a set of ground literals,

whose absolute values are all the Herbrand instances of atoms of
S such that for each Herbrand instance L of an atom exactly L or
~L is in T. An interpretation T satisfies a ground clause C iff C
T #+ 6. T satisfies a clause C if it satisfies every ground

instance of C in H(C); T satisfies a set of clauses S if it
satisfies every clause in S. A model M of a set of clauses S is
an interpretation that satisfies S. If S has no model it is
and a set of clauses

1]

unsatisfiable. For the equality predicate

S, a model M of S is an E-model if
(i) t=t € M for all terms t
(ii) if the literals L e M and s = t € M and if L™ is obtained
from L by replacing an occurence of s in L by t then
L™ e M,
If S has no E-models then it is E-unsatisfiable.

Two literals are complementary if they are of opposite sign and

have the same predicate letter.

If ¢ and D are clauses with no variables in common and L and K

are complementary literals in C and D respectively, and if |L]|
and |K| are unifiable with most general unifier ¢, then R=ad(C-
{L})w o(D-{K}) 1is a resolvent of C and of R and each literal L

in R descends from a literal L” in C or D.

If C is a clause with two literals I. and K and if a most general
unifier o exists such that o(L)=0(K) then F=0(C-K) is called a
factor of C. If C and D are clauses with no variables in common,
and szt is a literal in C, and r is a term occurring in D such
that there exists o with o(s)=o(r), and D" (s obtained from D by

replacing r in D by t then P=0o(D7)uvo(C-{s=zt}) is a paramodulant

of C and D. This inference rule is called paramodulation.

A connection graph CG is

(i) a set of clauses S
(ii) a binary relation R over literals in S, such that (L,K)eR
if |L| and |K| are unifiable and L and K are of opposite sign.

Sometimes we write <S> for the connection graph obtained from S.

A literal L in S is pure if it does not occur in any of the pairs
of R i.e. it is not connected and the clause containing L may
then be deleted in CG. A connection graph is graphically
represented by drawing a link between L and K for every (L,K)eR.
I, and K are said to be connected. Instead of repeating the
definition of the connection graph proof procedure [KO75J we give
an example for one derivation step. Consider the following

connection graph:

(D{lk\jg;\ QPi:}Jis} w4vu__lij;}'}
Ol o - —_—
{}j/iM}63 (V) -~ -Th
ﬂ“*%?
T
oy

Suppose we want to obtain the resolvent of clause (I) and clause
(I1), i.e. we want to resolve upon link (1). This is done by
adding the resolvent to the graph and by connecting the resolvent
in the following way: if a literal I in the resolvent descends
from a literal L™ in one of the parent clauses and if L~ was
connected to some literal K and if K and L. are unifiable, then I
and K are connected by a link. Finally the link resolved upon is
deleted and all tautologies and all clauses containing pure

literals are deleted.

For the connection graph above, resolving upon link (1) leads to
a tautology, which is deleted, hence (I) and (II) are deleted

since K, ~ K is now pure.

Similarly clauses (III), (IV) and (V) are deleted; i.e. after one

step the whole connection graph shrinks to:

——

!
=

—

~p

This potentially rapid reduction of the original graph causes the
practical attraction as well as the theoretical problems of this
proof procedure. A more formal presentation of the procedure is

contained in Paragraph 6.3.10.

Apart from the deletion of clauses containing pure 1literals
there are additional deletion rules, which become particularily
significant in the context of connection graphs: every deletion

of a clause may cause further deletions of clauses (and links)

and the resulting complex interplay is still not very well
understood theoretically (see e.g. [BI81| [FI81| [sm82]).

A clause C is a tautology if it contains two complementary
literals L and K such that |L|=|K| or a literal of the form t=t,.

A clause C subsumes a clause D if |C|<|D| and there exists a
substitution 8§ such that 8CcD. (This is the definition of §-
subsumption in [LOV78]).

Subsumed clauses and tautologeous clauses may be deleted from the
graph, as discussed in Sec. 6.3.3 and 6.3.4 respectively. The
unrestricted use of these delition rules is known to make the

respective proof procedure incomplete and even inconsistent.

A traditional refinement restricts the search space by blocking

certain possible resolution steps. For example a UNIT refutation,

in which at least one of the parent clauses of a resolvent must
be a unit clause, is such a refinement.

SET-OF-SUPPORT is also a refinement: the set of clauses is
partitioned into two subsets (usually the set of the axiom
clauses S and the set of the theorem clauses T) and resolution
is only permitted if at least one parent clause is in T. The
resolvents are put into T, i.e. the effect of set-of-support is
most profitable at the beginning of the search, but it fades the

more the deduction proceeds.

A LINEAR refinement selects a top clause from the set of theorem
clauses and uses this clause as one of the parents for a
resolution step. Then the resolvent becomes the top clause and so

on either until the empty clause has been derived or backtracking

is necessary.

The development of complete refinements was the main focus of
research in theorem proving in the past and there may bhe close to
a hundred now (see e.g. [LOV78| [CHL73]), some of those are used

to advantage in the MKR-Procedure as well,

In contrast to a refinement, which only restricts the number of
possible steps (and often "cuts off garbage and gold alike"), a
strategy gives active advice as to what to do next. The
development and integration of such strategies into one system
was the main research problem of the MKRP project and the
technigues developed so far are presented in the following
sections. Strategic information overrides any other information:
even if a particular refinement was chosen, the resulting
deduction may be very different. Only if nothing better is known,

does the system behave like a traditional theorem prover.
Completeness

The MKR-Procedure is incomplete, vyet even worse it 1is
inconsistent as it stands. This is partly so, because the
implementation is not completed and partly because there are open
theoretical problems in the connection graph procedure itself,see
e.g. [BI81] and [sM82]. Most of the cases causing
incompleteness (except paramodulation) however are irrelevant for
practical examples; quite on the contrary, for some of them it is

a hard job to find an example where it is in fact relevant.

In particular there are the following cases:

- As all reductions are performed before factorization, the graph
may collapse although the clause set is unsatisfiable (i.e. the
system is inconsistent):

Example: < ~P(a,x) , ~P(x,a)>

< P(a,x), P(x,a)>
All four R=1links are tautology links and will be deleted
causing purity deletion of both clauses, although the factors

<P(a a)> and <NOT P(a a))> would allow for a refutation.

- Tautologies are deleted without any restriction, although this

is known to be inconsistent, see [SM82].

10

- Subsumed clauses and links are deleted without any restriction,

which can also cause inconsistency, see [SM82] [E181].

- Paramodulation and equality reasoning is not fully implemented.
Especially the mechanism to generate only those P-links into
variables which are necessary for completeness is not yet
completed. Unrestricted generation of P-links from each side of
an equation into each variable would blow up the graph without
significantly increasing the total amount of information.

Hence, P-links into variables are not generated so far.

These deficiencies may be the reason that a proof exists, but
cannot be found by the system, Even worse, the graph may collapse
(usually indicating satisfiability), although the initial clause

set is unsatisfiable.

As more theoretical results about clause graph procedures become
known [EISBJ, we hope to eliminate at least the cases causing
inconsistency, whereas completeness results, although interesting
as they may be from a theoretical point of view, are of course

less important for practical purposes.

11

6.2. OVERVIEW OF THE SYSTEM

The working hypothesis of the MKRP project first formulated in
an early proposal in 1975, reflects the then dominating themes of
artificial intelligence research, namely that TPs have attained a
certain level of performance, which will not be significantly
improved by:
(i) developing more and more intricate refinements (like unit
preference, linear resolution, TOSS, MTOSS, ...), whose

sole purpose is to reduce the search space, nor by

(ii) using different logics (like natural deduction logics,

sequence logics, matrix reduction methods etc.)

although this was the main focus of theorem proving research in
the past and of course it 1is not entirely without its merits

even today.

The relative weakness of current TP-systems as compared to human
performance is due to a large extent to their lack of the rich
mathematical and extramathematical knowledge that human
methematicians have: in particular, knowledge about the subject

and knowledge of how to find proofs in that subject.

To a lesser, but still important extent the relative weakness of
current TP-systems can be attributed to the insufficient emphasis
which in the past has been laid onto the software engineering
problems and - sometimes even minor - design issues that in their
combination account more for the strength of a system than any

single refinement or "logical improvement".

Hence the object of the MKRP-project is firstly to carefully
design and develop a TP system comparative in strength to
traditional systems and secondly to augment this system with the
appropriate knowledge sources and heuristic methods. As a test

case and for the final evaluation of the project’™s success or

12

failure, the knowledge of an algebraic treatment of automata
theory shall be made explicit and incorporated such that the
theorems of a standard textbook [DE71] can be proved
mechanically. These proofs are to be transformed into ordinary
natural language mathematical proofs, thus generating the first

standard textbook entirely written by a machine.

The MKRP system is also heavily used as the deduction component
of the program verification project, as described elsewhere in

this report.
A Bird s—eye View

Proving a theorem has two distinct aspects: the creative aspect
of how to find a proof, usually regarded as a problem of
psychology, and secondly the logical aspect as to what
constitutes a proof and how to write it down on a sheet of paper,

usually referred to as proof theory.
These two aspects are in practice not as totally separated as
this statement suggests (see e.g.[SZGQJ), however we found it

sufficiently important to let it dominate the overall design of

the system:

//)A<: SUPERVISOR
4 DATA
USER il

BANKS
<:ALOGWTMACHWE'

Figure 1

13

The SUPERVISOR, consists of several independent modules and has

the complex task of generating an overall proposal (or several
such) as to how the given theorem may best be proved, invoking
the necessary knowledge that may be helpful in the course of the
search for a proof and finally transforming both proposal and
knowledge into technical information sufficient to guide the
LOGIC MACHINE through the search space.

The LOGIC MACHINE is at heart a traditional theorem prover based
on Kowalski“s connection graph proof procedure [KO75J, augmented

by several components, which select the most appropriate

deduction steps to be carried out.

The DATA BANKS consist of the factual knowledge of the particular
mathematical field under investigation, i.e. the definitions,
axioms, previously proved theorems and lemmata, augmented as far

as possible by local knowledge about their potential use.

14

A view from a lesser Altitude

The diagram of Fig. 2 refines Fig. 1 in order to gain a feeling
for the working of the system:

Markgraf Karl Theorem Proving System
Overall Structure

@ Correct Formulas in External Format and Control Info
(® Prefix Formulas in Internal Format and Control Info
© Clauses and Control Info

@ Proots

Er&)v& 2

15

The user communicates with the system via the INPUT and the
OUTPUT INTERFACE.

The numerous INPUT facilities essentially have the function to
set the parameters and options governing the later bhehaviour of

the system,.

Some of the interactive facilities of this level were only
designed for the intermediate stages of development and shall be
taken over to an increasing degree by the SUPERVISOR as it
develops, with the intention to move this interface with the user
altogether to the outside and to make the SUPERVISOR take most of
the low level decisions. Two sets of instructions however are to
stay: the Editor is used to set up (and to read) the DATA BANKS
in a way easily intelligible for the user. It also performs a

syntactical and semantical analysis of the DATA BANK, which is of

considerable practical importance in view of the fact that it

eventaully contains a whole standard mathematical textbook.

The second set provides the user with several options to express

control information to influence the later search for a proof.

The OUTPUT INTERFACE provides facilities for tracing the
behaviour of the system at different degrees of abstraction using

the available Protocol Options. The Proof Transformation modules

are currently under development and transform a resolution style
proof into a natural deduction proof and in a second stage
translate this natural deduction proof into a proof stated in

natural language.

The PROBLEM SUPPLIERS are the internal interface to the systen,
which either compile the theorems of the user or feed the output
of a verification condition generator into the MKR-procedure.

Other devices (e.g. we plan to prove certain hardware
configurations and flow diagrams of a factory to be correct) may

be plugged into the system at this point of entry.

16

Depending on the kind of the formulas the system may decide that
the theorem is best be proved by structural induction, in which
case the INDUCTION MODULE takes over control. This module, which
is not yet fully developed, uses the MKR-Procedure in order to
prove the base cases as well as the actual induction step and
hence whether or not the theorem is to proved by induction, the
information in (b) is now handed over to the two main components
of the SUPERVISOR, the DOMAIN SPECIFIC PREPROCESSORS and the META
REASONING components.

The PREPROCESSORS are domain specific experts that are called for

various tasks depending on the kind of input formula.

The PREPROVER, one of these experts, consists of fast special
purpose theorem proving techniques (like e.g. the Nelson-Oppen
technique [NO77|) and elaborated simplification methods (like
e.g. an evaluation of arithmetic terms and the simplification
techniques of the King simplifier [K169j), which are used to
advantage for highly redundant or very special input formulas as

for example in program verification tasks (see 6.3.12).

A second preprocessor tries to deal with the problem that the
MKRP system has mainly been designed for the refutation of
comparatively small sets of formulas (say fifty clauses)
requiring however deep deductions (say proofs of up to two
hundred steps). Although such a situation is generally the case
in mathematics, for certain applications 1like proving
verification conditions just the opposite is the case. There are
in general rather large sets of formulas to be refuted requiring
relatively few deduction steps. In such circumstances the
SPLITTING allows to split the initial graph into a set of
subgraphs such that if each of these (sometimes many hundreds)

subgraphs has been refuted so is the original graph.

Another preprocessor, which is standard in every ATP system based

on resolution, is concerned with the syntax of the input formulas

17

and translates these 1into clausal form, The elimination of

equivalence and implication signs is also optimized [EW83J.

Finally the resulting clause set is again simplified as much as
possible (see 6.4.1.1) and the clause graph is constructed and

again simplified.

These domain specific preprocessors are a main focus of our
current developments and additional techniques will be
implemented: for example a more elaborated definition expansion
expert, an expert to transform special formulas automaticlly into

attributes and so on.

The META REASONING components are the second major focus of our
current developments, which however are not stable enough yet to
be included into this report. The main job of these components is
to "taylor" the input formula into a more appropriate format
for the LOGIC MACHINE. For example the set of clauses can be
reformulated by an extensive use of the sorted logic: instead of
expressing certain facts at the clause level, they can be coded
to advantage into the sort relationships. Also equalities may be
better coded into the unification algorithms, clauses with two
literals are often better used as literal rewriting rules and so
on. Finally the transformation of the original formulas on the
basis of their underlying meaning as well as the activation of
additional knowledge (definitions, lemmata and theorems) that may
be useful in the search for a proof is to be carried out by

these components.

At this point, indicated by the line _. . in Fig. 2, the
SUPERVISOR has essentially finished its task and generated a set
of clauses and control information hopefully appropriate for the
task at hand: this information can be viewed as a proposal, which
is now handed over to the LOGIC MACHINE, the actual deduction
component of the MKRP system,

18

Up to this point the decisions and activities of the SUPERVISOR
are to some extent based on the meaning of the theory under
investigation and on knowledge about proofs in this theory (i)

and its top goal may be formulated as: to be helpful in finding a

proof by generating an appropriate clause set and appropriate
control information. Once it has done so, the topgoal becomes "to

derive a contradiction (the empty clause) and this goal implies

that different kinds of information are now useful: the original
information based on the semantics (which is by now coded into
various parameters, priority values and activation modules) and
in addition information based on the syntax of the formula under

investigation as well as standard theorem proving techniques.

The achievement of this second goal is the task of the LOGIC
MACHINE and hence it most closely corresponds to a traditional
theorem prover. But its actual operation is again very different
from a traditional system: since a traditional refinement does
not specify which literal to resolve upon next, a classical
resolution based theorem prover is not guided towards this goal
in a step by step fashion. For example linear resolution reduces
the search space as compared to binary resolution, but within the

remaining space the search is as blind as ever.

(i) The proof techniques of human mathematicians developed for
special problems in particular mathematical fields are
sometimes usefully known by a machine too, but more often

specially developed machine oriented techniques are more

advantageous: as it so happend evolution did not provide
us with a powerful deduction component built-in and hence
a human mathematician can not rely on this useful device
and is forced to develop rather different heuristics and

techniques for himself.

19

The LOGIC MACHINE consists of two main components: the ILogic
Engine, which is an extended clause graph theorem prover based to
a large extent on Kowalski”s connection graph calculus [KO?SJ and

the Selection Module,

Once the initial connection graphs are set up, the search for a

proof commences by the selection of the next "most appropriate"
deduction step. This selection process, which constitutes the

"heuristic intelligence" of the MKR-Procedure turns the initial

representation of clauses (the connection graph) into a proof

procedure (based on connection graphs) as it defines a particular
selection function mapping graphs to links. This selection
function is situated in the Selection Module and is implemented
as a production system [OH82j: each "production", which is called
an operation block, consists of an activation condition, an

update function and an executed function. The currently

implemented operation blocks are summarized in Fig. 3 and are

described in Sec. 6.4.

LOGIC MACHINE

i : o Reducing Term -
: i
Factoring Reflexivities Steps slimination
/ Term.
Rewriting
Reotles
Terminator - :':__ ;’te'?f o
Roles
RE““"“"." "~ Deduction
opng . Rates
. Proceduat .. . ! n . .
A i Reductions: . Refinements:. _ Conditienal
Atachment ; ‘ " Rewriting:
Roles

Fig.3

Each of these operationi blocks corresbonds to a'particdlar task,

which is usually to carry out a sequence of special deduction or

20

reduction steps. Once the activation condition that describes
certain graph configqurations, becomes true this task is executed
and the local memory of the operation block is updated. In other
words the flow of control - and hence the sequence of deduction

and reduction steps actually carried out - is data driven by the

current state of the clause graph and not preprogrammed. It
should not be necessary to say that the complex interplay of
these operation blocks, which “suggest™ which step to take next,
prevents of course the overall deduction from being standard and

the respective completeness results do not necessarily hold.

To summarize, five different levels may be distinguished within

the MKRP system:

Level Corresponding Objects Operations upon
MKRP these Objects
Component

ONE PROBLEM Formulas of the Syntactical analysis
SUPPLIERS INPUT language Semantical checks
Syntax transfor-
mations

TWO PREPROCESSORS Wellformed formulas |Natural deduction.
of the sorted Splitting.
calculus. Rewriting
Attributes of Special Decision

: Method
;ﬁggf;izzsa"d Simplification

Evaluation of terms

THREE LOGIC MACHINE Clause graphs Graphoperations,
like Resolution,
Reduction,

Deletion, Para-
modulation,
Rewriting,

Symbolic Evaluation,
etc.

FOUR META Graphoperations Transformation of
REASONING predicates intc

g sort relationships.
Transformation of
clauses into
deduction rules.
Definition
Expansion

FIVE PROCF Proofs Transformation of
TRANSFORMERS proofs
Resolutionproof =
Mating

proof + Gentzenproof
= Natural Language

Figqure 4:

21

Performance Statistics

To gain a feeling for the improvement achieved up to now, Fig. 5
gives a sample of some test runs. In order to avoid one of the
pitfalls of statistical data, which is to show the improvement
achieved on certain examples and not showing the deterioration on
others, the system has been tested on almost all of the main
examples quoted in the ATP literature: [WM76|, [RRYKU82|. Of all
examples tested thus far, the examples of Fig. 5 are
representative, They are taken from the extensive, comparative
study undertaken at the University of Maryland [WM76 |, where
eight different proof procedures were tested and statistically

evaluated on a total of 152 examples.

e _LQD..—AF‘ bl < wd e F i\
| C-P NOC -G G-P wer-p | ¢ G P i
| s = - e -
02 (943)| 0,306 (N,01%) 7 7 1’
63 (2:€5) 1 0,302 (0,CC2) 5 16 0,8
g9 (221)] 0,236 '0,CY) 12 - 0,44
17 31%4) | 0,412 0,045 3 3 1
5) = 10 o,°
' & =] O, w07
3 7 2,571
¥ 12 0,523
1S a O 225
11 ne 0,iz
7 11
1.2 0)
' B |
o f I Radas
G P = T
o ey 7

The table is to be understood as follows: the first column gives
the name of the set of axioms in [WM76 |, e.g. LS-35 in line 9.
The next three columns quote the findings of [WM76J, where the
figure in brackets gives the value for the worst proof procedure

among the eight tested procedures and the other figure gives the

22

value for the proof procedure that performed best. The final
three columns give the corresponding values for the Markgraf Karl
Procedure. For example, in order to prove the axiom set LS-35
(line 9) the best proof procedure of [WMG76| had to generate 335
clauses in order to find the proof, which consisted of 14
clauses, and the worst proof procedure had to generate 1.521
clauses in order to find that proof. In contrast our system

generated only 9 clauses in order to find an even shorter proof

(of 8 clauses). As these figures are typical and hold uniformly
for all cases, they are the statistical expression and
justification for the first two claims put forward in the
introduction.

The potential explosion of the number of links is the bottleneck
of the connection graph proof procedure: the following
“challenge”™ proposed by P. Andrews, Carnegie Mellon at the 1979

deduction Workshop, provides a point of demonstration:

[(Ix ¥y Px =Py) = ((Ix Ox) = (¥y Py))]
=[(Ix ¥y O0x = Qy) = ((Ix Px) = (¥y Qy))]

A straightforward translation of this formula into clausal normal
form would result in up to 16 000 clauses (worst case). Using an
improved translation algorithm the group at Argonne National Lab
transformed it into a clauseset of 86 clauses with eight literals
each and deduced 1052 clauses in order to find a proof [SIG76 |.
[s1G80].

The MKR-Procedure also uses an optimized translation algorithm,
which generated 128 clauses of eight literals each. But this would

result in an initial graph with more than 100 000 links and

several thousand links would be added to the graph with each
resolution step. If all these links were decleared "active" the
computation of the selection functions would become intolerably

expensive,

In actual fact the above formula is split and reduced into eight

23

parts of eight clauses each, where each clause has at most two

literals. The initial eight graphs resulting from each split part
never exceed 100 links and the system only deduced a total of 58
clauses before it easily found a proof. The G-penetrance varied

from 0.8 to 1.0 during the eight runs.

The stipulated active and goal directed behavior of the MKRP-

system, which finds its statistical expression in the very high
G-penetrance, even holds for hard and extremely difficult
theorems (judged by the standards of present day theorem proving
systems). For example an open problem of modular lattice theory,
which was first solved with the aid of a computer [GB69]|, has
become well known in the ATP literature under the name of SAM’s

Lemma. The only system, so far capable of fully automatically

finding a proof for this theorem, is that at Argonne National Lab
[MOW76 | .

A protocol and description of how the MKRP-system found a proof
also, is presented in Sec. 6.7 and the statistics there show the

same hight G-penetrance.

Finally in [OW83| the proof found by the MKRP-system of a very
difficult and until recently open problem taken from relevance
logics is presented, which up to now none of the strong American

systems could solve.

In [MOW76 | some of the most difficult theorems so far proved by a
TP system are presented and we have tested their examples also.
Comparison with their reported results, shows that if the MKRP
system finds a proof it is superior to the same degree as

reported in Fig. 5 above.

However, there are still several difficult examples reported in
[MOW76J which we can not prove at present. The strength of the
system [MOW76J derives mainly from a successful technique to
handle equality axioms and almost all the examples quoted in

24

[MOW76 | rely on this technique. For that reason, as long as the
equality reasoning modules of the MKRP-system are not fully
developed, there is no fair comparison with respect to these
examples.

Finally among the very large systems which presently dominate
theorem proving research is the system developed by R. Boyer and
J. S. Moore at SRI [BM78|. Their system relies on powerful
induction techniques and although most of the examples quoted in
[BM78j could be proved by the MKRP-system at present, a
justifiable comparison is only possible once our induction

modules are completed.
Kinship to other Deduction Systems

The advent of PLANNER [HE72| marked an important point in the
history of automatic theorem proving research [AH72|, and
although none of the techniques proposed there are actually
present in the MKRP system it is none the less the product of the
shift of the research paradigm, of which PLANNER was an early
hallmark.

More influential and directly relevant is the work of W. Bledsoe,
University of Texas [BT75), [BB75], [BBH72]|, [BL71], [BL77].
However, in contrast to [BT75J, we tried to separate as much as
possible the logic within which the proofs are carried out from

‘the heuristics which are helpful in finding the proof.

The strongest (resolution based) system up to now has been that
of L. Wos and colleagues , Argonne National Lab and most of their
techniques, like demodulation, heuristic weighting of terms,
paramodulation and others have been adapted for the MKRP-system
also. Although both systems are rather different in principle at

present they vary little in strength.

The starting point for the Induction Modules was the theorem

prover of Boyer and Moore [BM78|. The main difference between

25

their system and the MKR-Procedure is the use of a (slightly)
different logic and the use of different theorem provers for the
actual proofs of the base cases and the induction steps: wheras
Boyer and Moore use a comperatively weak but specially tailored
positive prover, the MKRP system uses the resolution (i.e.

refutation) components of the Logic Machine.

26

6.3. METHODS AND TECHNIQUES

"As a rule," said Holmes,"the more bizarre a thing
is, the less mysterious it proves to be. It is
your commonplace, featureless cases which are
really puzzling."

A.C. Doyle, The Red-Headed League

6.3.1. A many Sorted Calculus based on Resolution and

Paramodulation

The MKR-Procedure is based on a sorted version of the first order
predicate calculus. For example formulas like

(i) ¥x:S. P(x) and 3Ix:S. P(x)
are treated formally as abbreviations for

(ii) ¥x. S(x) ~ P(x) and Ix. S(x) — P(x).

Well sorted formulas are frequently used in mathematics, because

they provide a convenient shorthand notation for ordinary first-

order formulas. But sorts also influence the deductions from a

given set of well sorted formulas. For instance, if P is a
predicate only defined on the sort Z of integers, we will never
perform a deduction like ¥x:Z. P(x) I P(/2). Proofs are
simplified, because a many-sorted calculus is more adapted to a

many-sorted theory and hence not surprisingly deductions which

respect sorts as well as the usage of well sorted formulas

reflect the everyday usage of predicate 1logic.

A many-sorted (mehrsortig) calculus can be developed from a given

(sound and complete) first-order one-sorted (einsortig) calculus

as follows: Assume there is a set of sort symbols §, ordered by a
given subsort order <g and variable and function symbols are

associated with certain sort symbols. The sort of a term ftf{,

which is different from a variable, is then determined by the
sort of its outermost function symbol. Now in the construction of
well sorted (sortenrecht) formulas for each argument position of

27

a function or predicate symbol only well sorted terms of a

certain domainsort or of subsort of this domainsort are allowed.

The inference rules of the many-sorted calculus are the inference

rules of the given calculus, but with the restriction that only
well sorted formulas may be deduced. Starting with well sorted

formulas this guarantees that only well sorted formulas are
derived in a deduction. Now leth:- ¢ denote that ¢ is a theorem
of the many-sorted calculus and let AX Ff-o indicate that there
is a deduction of ¢ from the axioms AX. Further let us assume
that there is a notion of truth for well sorted formulas and let
Fy ¢ denote the validity of the well sorted formula ¢ and
let AX k3 ¢ denote the semantic implication. Obviously we are
only interested in a many-sorted calculus which is sound and

complete, i.e. we allow only definitions of Ff-and H+ which

guarantee

(1)by ¢ iff |5+ ¢, for each well sorted formula ¢.

Assume our definitions satisfy (1): which formulas do we expect
as theorems of the many-sorted calculus compared to its one-
sorted counterpart? For a comparison, we let the relations
between the function symbols and the sort symbols as well as the
subsort order be represented by the set Az of sort axioms
(Sortenaxiome). For a well sorted formula ¢ as e.g. (i) above,
the relativization 3 (Sortenbeschrdnkung, Relativierung) of ¢ is

the unabbreviated version of ¢ e.g. (ii) above, where sort

symbols are used as unary predicate symbols to express the sort
of a variable. Now we can state what kind of theorems we expect
in a many-sorted calculus: The definitions of |y andky should

ensure
(i) vy ¢ iff AL 0 and

(2)

(ii) h5 ¢ iff Al |-¢, for each well sorted formula 0.

28

Condition (2) is called the Sort-Theorem (Sortensatz), 2(i) is

its modeltheoretic part and 2(ii) its prooftheoretic part.

The Sort-Theorem also shows the advantages of using a many-

sorted calculus: shorter deductions with smaller formulas from a

smaller set of hypotheses are obtained, when proving k§-¢
instead of Az o.

The reason is that deductions about sortrelationships, which are
performed explicitly in the one-sorted calculus, are built into

the inference mechanism in the many-sorted calculus.

The connection between a first—-order one-sorted calculus and its
many-sorted counterpart can be summarized as follows:
(1)
by ¢ Lf-o

2(1) 2(ii)

(3)

Suppose soundness and completeness of the given one-sorted
calculus (3) are known. Then in order to show the commutativity
of the above diagram either a proof of both parts of the Sort-
Theorem 2(i) and 2(ii) is needed or a proof of one of its parts
2(i) or 2(ii) together with a proof of the soundness and
completeness of the many-sorted calculus (1).

ooo

In his thesis, J.Herbrand presented a many-sorted version of his
calculus and proved the prooftheoretic part of the Sort-Theorem
[HER30J. However Herbrand™s proof is inadequate, because he did

not consider that certain deductions in his one-sorted calculus

cannot be translated to deductions in the many-sorted calculus.

29

This was pointed out by A. Schmidt [SCH38J, who proposed a many-
sorted version of a Hilbert-Calculus without subsorts and proved
the prooftheoretic part of the Sort-Theorem for this calculus
[scH38, ScCH52].

H. Wang defined a many-sorted version of a Hilbert-Calculus
without function symbols and subsorts [WAN52|. He proved the
soundness and completeness of his calculus and the modeltheoretic
part of the Sort-Theorem. Wang also gave an alternative proof of
the prooftheoretic part of the Sort-Theorem by an application of

the Herbrand-Theorem.

P.C. Gilmore pointed out that this proof is inadequate. He

extended the many-sorted calculus of Wang by the introduction of
subsorts and presented an improved version of the proof-theoretic
part of the Sort-Theorem for this extended calculus [GIL58].

T. Hailperin presented a calculus which can be viewed as a
generalization of Wangs’s many-sorted calculus [HAI57|. In this
calculus sortrelationships can be expressed by arbitrary first-
order formulas instead of atomic formulas, i.e. unary predicates.
Hailperin proved a theorem which corresponds to the

prooftheoretic part of the Sort-Theorem.

A. Oberschelp [OBE62| proposed several many-sorted versions of a
calculus of Montague and Henkin [MH56|. In these calculi function
symbols and subsorts are admitted. Oberschelp proved the
soundness and completeness of his calculi and also gave the
proofs for the modeltheoretic parts of the Sort-Theorems.

A.V. Idelson discussed forms of many-sorted calculi of
constructive mathematical logic [IDE64J, which are based on the
calculus of natural deduction [GEN34|.

000

30

The advantages of a many-sorted calculus are well recognized
within the field of automated theorem proving e.g. [HAY71,HEN72 |
and several theorem proving programs successfully use some kind
of many-sorted calculus, e.g. [WEY77, CHA78, BM79 |
(unfortunately without a sound theoretical foundation). Since

most theorem proving programs are based on an RP-calculus, i.e. a

first-order calculus whose inference rules are factorization,

resolution and paramodulation [ROB65, WR73| and whose formulas

(called clauses) are in skolemized conjunctive normal form, it
would be useful to extend the results of the above quoted works
to an RP-calculus enriched by sorts.

In [WA82) the IRP-calculus a many-sorted version of the RP-

calculus 1is defined as outlined above and a notion of

unsatisfiability of sets of well sorted clauses is introduced.

Soundness and completeness of the IRP-calculus as well as the

modeltheoretic part of the Sort-Theorem are shown in [WA82][, i.e.

it is shown that the following diagram is commutative:

(1)
S is IE-unsatisfiable &———— S F—jﬁﬁr o

(2.1) (2.2)
§ u A is E-unsatisfiable «—— ST y al P———Rp- O
(3)

Here SE denotes the extension of the set S of well sorted clauses
by all functionally-reflexive axioms [WR73j and o denotes the
empty clause.

In particular [WA82| shows that the IRP-calculus is only
complete provided the subsort order imposes a certain structure
on the set of sort symbols. Moreover in the case of
paramodulation the set of well sorted clauses to be refuted has

to be in a certain format to ensure completeness.

31

It is also shown that these restrictions can be abandoned without
loosing completeness, if the EIRP-calculus is extended by an

additional inference rule, the so called weakening rule, which

derives a variant of a clause by renaming it with variables of a
subsort. This rule is specific to a many-sorted calculus since it
cannot be applied if only one sort is given and hence the RP-

calculus is but a special case of the IRP-calculus.

The practical application of the IRP-calculus in the MKRP system,

leads to a drastic reduction of the search space and to shorter

refutations of smaller sets of shorter clauses as compared to the

RP-calculus. However certain modifications are necessary to
obtain a theorem prover based on the IRP-calculus. Essentially

they concern:

- the input-language compiler

- the skolemization routine

~ the unification algorithm and

- the computation of factors, resolvents and paramodulants.

The Compiler

The Compiler tests whether a given input string satisfies the
rules of syntax and those of the “static semantics™, for example
that function symbols are used with a proper arity etc., and
produces as “code” a first-order formula in an internal

representation.

The rules of the static semantics have to be extended such that

only well sorted first-order formulas are accepted: For each

atomic formula A in a formula given as input, the compiler has to

determine whether A is a well sorted atomic formula.

This problem is the same as for programming languages with sorts
(often called types, e.g. in PASCAL or ADA) and was solved using

wellknown techniques of compiler construction.

32

In addition a device is required to define a set of sort symbols,

a subsort order and some sorted signature (see Sec. 6.6.).
The Skolemization Routine
The skolemization of a first-order formula requires that each

occurence of an existentially quantified variable symbol y is

replaced by a skolem term t, and all existential quantifiers are

removed.

For I-skolemization, i.e. skolemization under sorts, this process

remains the same, but in addition the signature I has to be
extended, yielding a signature I* for the new function symbols

introduced by the skolemization.

The Unification Algorithm

At the very heart of every unification algorithm, variable
symbols have to be replaced by terms. The resulting substitution,
represented as {x+t}, is then composed with other substitutions
of this kind, yielding the final unifier., Hence each unification
algorithm contains a sequence of statements like

(1) if x = t then return { }
(2) if x € vars ({t}) then stop/failure

(3) return {x+«t}

The unification algorithm is modified to obtain a Iunification

algorithm by replacing statement (3) by the sequence of

statements:

(3.1) if [t] < [x] then return {x«t}

(3.2) if t is not a variable or [t]ng[x] = ¢ then
stop/failure

(3.3) if [x] <g [t] then return {t<«x}

(3.4) let {s;...s;} = max ([t] ng [x])

33

(3.5) let {z,...,2)} be a set of new variables and [z;]| = s
(3.6) returm {{x+z,, tez;},...,{x¢z,, tez;}}

Here sy ng S, ={se$|s<$sl and s<$ 52} and
max($) = {58$|s<$ s” for each s7e€$}

For each I-unifiable set of I-terms the I-unification algorithm
returns a set of I-unifiers (and not a single unifier as usual),
because a unification problem may have several most general

solutions under sorts.

Computation of Factors, Resolvents and Paramodulants
We outline an implementation, which avoids the explicit

computation of weakened variants:

Let A be a clause in a I-deduction and let B¢ A such that |B|>2
and let U(B) be the I-mgus for the literals in B:
U(B) = {Tl,-oo'Tn}-

Then every I-clause T;A has to be computed
each of which is a I-factor of a weakened variant of A.
Let A,B be clauses in a I-deduction, LAeA and LBeB such that L,
and Lp are complementary and

u({loyleligld) = {ry,00a,t b
Then every I-clause has to be computed

Ti(A - LA) U Ti(B—LB),

each of which is a I-resolvent of some weakened variant of A and

B.

Let A, B be clauses and let 1l=r €B and LeA be the literal to be
paramodulated upon, i.e. 1 and a subterm in L are I-unifiable.
Now a I-paramodulant can only be derived if the sort of r is also
compatible with the position of the subterm inL : this again may
drastically reduce the search space.

For each weakening substitution every I-paramodulant of some

weakend variant of A and B has to be computed.

34

After the computation of a i-factor, I-resolvent or I-
paramodulant the variable symbols of these I-clauses have to be
renamed using an appropriate E-renaming substitution.

The Markgraf Karl Refutation Procedure was adapted to the IRP-
calculus according to the modifications stated above and the
following is a proof protocol of the new system, proving a many-
sorted version of the well known monkey-banana-problem [LOV7S8 |:

khkkhkkhhkkhhkhkkhkkkkkhkhkkhhkkkkhkkhkhkkkhkhkkhkhkhhkhkhhkhkhkhkhkkhkhkhkhkhkhhhkkkhkkkhkhkkhkkki

*

* MARKGRAF KARL REFUTATION PROCEDURE, UNI KARLSRUHE, VERSION
* 12-0CT-82

* DATE: 2-Nov-82 16:46:27

*

khkkhkkhkhkkhkhkkkhkhhkhkhkkhkhkkhkhkhkhkhkhkhhhhkhhkhkhkhkhkhkhhkkhkhhhkhhkhhkhkhkhkhkkhkhkhkhkhkhkkkkkkk

AXIOMS GIVEN TO THE THEOREM PROVER:
SORT ANIMAL, TALL: IN.ROOM
TYPE BANANA, FLOOR: IN.ROOM
TYPE CHAIR: TALL
TYPE MONKEY: ANIMAL
TYPE CAN.REACH (ANIMAL IN.ROOM)
TYPE CLOSE.TO (IN.ROOM IN.ROOM)
TYPE ON (IN.ROOM IN.ROOM)
TYPE UNDER (IN.ROOM IN.ROOM)
TYPE CAN.MOVE.NEAR (ANIMAL IN.ROOM IN.ROOM)
TYPE CAN.CLIMB(ANIMAL TALL)
AXM1 : ALL X:ANIMAL Y:IN.ROOM NOT CLOSE.TO(X Y) OR CAN.REACH(X
Y)

AXM2 : ALL X:ANIMAL Y:TALL NOT ON (X Y) OR NOT UNDER(Y BANANA)
OR CLOSE.TO(X BANANA)

AXM3 : ALL X:ANIMAL Y:IN.ROOM Z:IN.,ROOM NOT CAN.MOVE.NEAR(X Y
Z) OR CLOSE.TO(Z FLOOR) OR UNDER (Y Z)

AXM4 : ALL X:ANIMAL Y:TALL NOT CAN.CLIMB(X Y) OR ON(X Y)

AXM5 : CAN.MOVE.NEAR(MONKEY CHAIR BANANA)

35

AXM6 : NOT CLOSE.TO (BANANA FLOOR)

AXM7 : CAN.CLIMB(MONKEY CHAIR)
THEOREM GIVEN TO THE THEOREM PROVER:

THM8 : NOT CAN.REACH(MONKEY BANANA)

AXM2 + AXM3 --> RES1 : ALL X:ANIMAL Y:TALL Z:ANIMAL CLOSE.TO(X
BANANA)
OR NOT ON(X Y) OR CLOSE.TO(BANANA FLOOR)
OR NOT CAN.MOVE.NEAR(Z Y BANANA)
RES1 + AXM5 --> RES2 : ALL X:ANIMAL CLOSE.TO(BANANA FLOOR) OR NOT
ON(X CHAIR)
OR CLOSE.TO (X BANANA)
AXM1 + RES2 --> RES3 : ALL X:ANIMAL CAN.REACH(X BABANA) OR NOT ON

(X CHAIR)
OR CLOSE .TO(BANANA FLOOR)
ASM6 + RES3 --> RES 4 : ALL X:ANIMAL NOT ON(X CHAIR) OR

CAN.REACH(X BANANA)
THM8 + RES4 --> RES5 : NOT ON(MONKEY CHAIR)
RES5 + AXM4 --> RES6 : NOT CAN.CLIMB(MONKEY CHAIR)
RES6 + AXM7 --> RES7 : EMPTY

THE FOLLOWING CLAUSES WERE USED IN THE PROOF:
AXM7 AXM4 AXM5 AXM3 AXM2 RES1 RES2 AXM1 RES3 AXM6 RES4 THM8 RESS5
RES6 RES7.

THE THEOREM IS PROVED. END OF PROOF 2-NOV-82 16:47:22.

The following expressions (see Sec.6.6) are used:

SORT s1s..+.5S,3S to denote s;¢¢g Sy

TYPE Cy,e.0,C 2 s toO denote that c,eC has rangesort s

TYPE P(slu.sn) to denote that P has the domainsorts Sqreee

ALL x:s to denote the universal quantification of a variable
symbol x with rangesorts

The system also solved the monkey-banana-problem, using the one-

sorted axiomatization from [LOV?SJ. The following diagram shows

the proof statistics of both example runs:

36

CPU-SECONDS USED: 3.32 11.38 29%

NUMBER OF STEPS EXECUTED: 7 16 44%
NUMBER OF LINKS GENERATED: 22 99 22%
NUMBER OF LINKS IN INITIAL GRAPH: 8 23 35%
NUMBER OF CLAUSES GENERATED: 15 29 52%
INITIAL CLAUSES: 8 13
RESOLVENTS: 7 12
FACTORS: 0 4
NUMBER OF LITERALS GENERATED: 28 75 37%
IN INITIAL CLAUSES: 14 24
IN DEDUCED CLAUSES: 14 51
LEVEL OF PROOF: 7 12 58%
NUMBER OF CLAUSES IN PROOF: 15 25 60%

G-PENETRANCE: 1.00 0.86(CLAUSES IN PROOF / CLAUSES GENERATED)
D-PENETRANCE: 1.00 0.75(DEDUCED CLAUSES IN PROOF / CLAUSES
DEDUCED)

The first column lists the statistical values for the proof using
the many-sorted calculus, the second column lists the values for
the one-sorted calculus and the third column shows the ratio

between the values of both example runs.

In the proof statistics, the value for “number of links
generated™ corresponds to the size of the search space, the value
for "number of steps executed~ is a measure of the expense of the

actual search and “level of proof~ represents the search depth.

The comparison between the statistical values of both protocols
immediately reveals the advantages of using an automated theorem
prover based on the IRP-calculus. The values are typical for all
examples (and of course for more complex ones) that have been

proved by this system.

37

6.3.2. Paramodulated Connection Graphs

This section, which is based on [SW80 | gives an account of how
the connection graph proof procedure of [KO75| can be extended
to the case of equality by the introduction of special links
connecting those terms that can be paramodulated upon.

To gain a notion of the problem involved, assume that two one-
literal ground clauses {P(a)} and {~P(b)} form a connection graph

(Example 1(a)).

Example 1
{r@m} {r@}

{~rw)} {~pby}
(a) (b)

As they stand these two clauses are not resolvable with each
other. Now if it were known that a is equal to b and some way
could be found of entering this information into the connection
graph so as to be able to make a substitution into one of the
literals then the two literals would become resolvable. The
initial idea is to introduce this information in the form of an
equality unit {azb} which is then connected to the clauses by two
special links indicating possible paramodulations, either of b
into {P(a)} of a into {~P(b)} (Example 1(b)). (These links will
be called paramodulation links or P-links in the sequel, as
opposed to the normal links connecting unifiable literals,
hereafter referred to as R-links.)

Now, to complete the idea, a link is included to indicate the
potential resolvability of {P(a)} and {~P(b)} (Example 1l(c)). But
because these clauses are not unifiable as they stand, the link
cannot be an ordinary R-link. Rather the link indicates that the

38

two literals connected can be made complementary under
paramodulation: that is after certain paramodulation steps these
two literals may be resolved upon. The information represented by
such a link is absolutely essential, if the basic principle of
the connection graph proof procedure is to be extended to the
case of paramodulation. Unfortunately it is in general
undecidable, whether such a link is to be set or not.

This fundamental problem will be discussed in the following
paragraph, but before an example is given to demonstrate some of
the advantages which would result, if the connection graph proof
procedure could be extended by paramodulation links.

Example 2 illustrates the incompatibility deletion for
paramodulation links. The graph consists of the four clauses
{p(f(a,x),x),Q(b)}, {~0(z)},{~P(f(y,a),a)} and {f(a,b)=f(b,a)l}.
All possible P- and R-links are set and

Example 2

0}

{~Pii(y, a).)} {~Q}

each link is labeled with it"s corresponding substitution, e.q.
x<=b in P-1link (1).

39

Paramodulation links (1) and (2) are incompatible with link (3)
and may hence be deleted, since the respective paramodulants
would contain pure literals. Note that in the case of
incompatibility between a paramodulation 1link and a resolution

link always the paramodulation link is erased.

The point of demonstration is, that the equality unit becomes
pure after the incompatibility check and hence the whole
(equality) clause is erased. This may lead to a snowball-effect
of other clauses being erased as a consequence. This familiar
effect from the original proof procedure is demonstrated here to
hold also for R-1link and P-links, hence apart from the obvious
motivation to provide for equality rule in connection graphs,
there is the additional chance that the graph enriched by P-links
may reduce much more rapidly.

The Problem

In order to achieve the effect mentioned in the previous
paragraph, we would like to have a connection graph as dense as
possible. In particular we would like to have the following

links:

(i) all complementary literals in different clauses which are

unifiable are connected with a link called R-1link;

(ii) all equations permitting paramodulation into a particular
term of some literal are connected with a link to that
term, called P-link;

(iii) all 1literals which can be made complementary under

paramodulation and unification are connected by a link.
The problem concerns the links of (iii): it is neither

practically feasible nor (in general) theoretically possible to
ever set all links of (iii). Consider a group G whose wordproblem

40

is unsolvable. Let S be a set of clauses containing all the
equations defining group G. Let P(wl) and ~P(w2) also be in S,
where wjy and w, are words in G and it is now impossible to decide
whether or not P(wl) and ~P(w2) should be connected. So let us
try the following solution: Suppose we do not initially set all
the links in (iii), then the resulting situation arises: Let
s={{a=d}, {b=d}, {p(a)}, {~P(b)}} and the initial connection

graph is given in example 4(a):

Example 4

da=d} {d=b}
I;n @

P {~ P} Py} {~ Py}
() {b)

Now, after paramodulating on links(l) and (2), we obtain the
connection graph <{P(d)}, {~P(d)}> in example 4(b). But since
P(a) and ~P(b) were not connected by a link, the paramodulants
cannot inherit any links,i.e. P(d) and ~P(d) are not connected by
a link and therefore cannot be resolved upon. The obvious

solution then may be, after each paramodulation step, to search
through the whole graph and compare the paramodulant with every

other literal for unifiability.

But to start searching for unifiable literals after each
paramodulation step would destroy one of the main principles of
the connection graph proof procedure, which is precisely to
eliminate the unsuccessful search for unifiability.

A Solution to the Problem

In order to solve this problem we demonstrate that P-links can
have more than Jjust the one function of recording possible

41

paramodulations. Their additional function is to store

information.
Consider example 4(a) again in which we add another P-1link

connecting the d”s of the two equality units i.e. the graph now

becomes:

/O

=i} f=n}

{P@)} {~p)}

Suppose we select link (1)

N

{a=d} {d=b}
{H//TE;/:iww}

d}

where (4) is the link inherited from (3).

If we now select link (2)

{85///25\:E=1}
L J7

where (5) 1is inherited from (3) and (6) is inherited from (4).

42

If links are inherited which eventually connect non-equality
literals (link (6) above) a special process is initialized which
checks whether the connected literals are resolvable and if so
then the P-1link is recoloured into an R-link. Otherwise it is

erased.

That 1is, potentially unifiable literals are discovered (without
exhaustive search) and the appropriate links are set, including
connections between the right- and left-hand side of equality
literals as e.g. in:
TN
{a=g(a)}

(such links are called “auto-links~ later on).
The Proof Procedure

The following proof procedure PROOF is essentially that of
[KO75J augmented by additional steps to handle paramodulation.
However we do not quite use the basic procedure of [KO75J, but a
refinement due to M. Bruynooghe, which avoids certain
redundancies of the old procedure by employing “internal links~.
Such “internal 1links~ were also suggested by R.Kowalski in
[KO?SJ. Note that a resolution step (paramodulation step) on such
an “internal link~ is to be understood as a step using two copies
of the same clause, Also we do not label each link with its
associated most general unifier, as once the unifiability of two
terms has been established the retention of the mgu is logically
superfluous for the procedure presented below. An actual
implementation however, may or may not retain this information

for pragmatic reasons.
At the top level of the proof procedure PROOF initially sets up

the connection graph <S;> for the set of clauses S with the help
of CONSTRUCT-GRAPH and then calls PROVE.

43

Let S be a set of clauses.

PROOF (S)
CONSTRUCT-GRAPH (S)+<¢(S7>
PROVE(<S;>)
END-OF-PROOF .

The recursive procedure PROVE terminates if the graph contains
the empty clause or is empty itself and otherwise SELECT-A-LINK
non-deterministically. After either RESOLVEing or PARAMODulating
upon the link 1 in the graph (51> (depending on the type of 1)
all tautologies and pure clauses are removed by DELETE, which
then returns a new graph to PROVE.

Let <S;> be a connection graph.

PROVES (¢S >)
ifoe<s;> then terminate with <Sl> unsatisfiable,
elseif <8,> is empty then terminate with <§;> satisfiable.
SELECT-A-LINK(<¢S;>)+1
if type(l)=R-link then RESOLVE(<Sl>,l)*<Sz>
elseif type(l)=P-link then PARAMOD(<S;>,1)*<S,>
END-OF-PROVE

Let S be a set of clauses.
CONSTRUCT-GRAPH(S)

(1) Generate and include in the graph all factors of
clauses in S.

(2.1) For every pair(|L|, |K|]) of unifiable (equality or
nonequality) literals with opposite sign in distinct
clauses in the graph, insert an R-link connecting the
literals L and K.

(2.2) For every pair (|L|,|K|) of unifiable (renamed) literals
with opposite sign in the same clause, insert an R-1link

44

connecting the literals.

(3.1) For every pair of literals consisting of either a non-
equality or equality literal and a second equality
literal in distinct clauses, such that the left-hand side
(or right-hand side) of the second equality is unifiable
with some term in the first literal, insert a P-1link
connecting the terms in the literals.

(3.2) For every equality literal containing a term on one side
which can be substituted into the term on the other side,
insert a P-link connecting the terms in the literal.

END-OF-CONSTRUCT-GRAPH

Let <S3> be a connection graph and let 1 be an R-link in <817,
Let C and D be the clauses connected by 1.
RESOLVE(<S3”>,1)
Add the resolvent R of C and D associated with 1 to <S;>.
INHERIT-R-LINKS(<Sy>,C,D,R).
INHERIT—P—LINKS(<Sl>,C,D,R).

For each factor F of R:
Add F to <§;p°
INHERIT-R-LINKS(<S;’>,R,R,F)
INHERIT—P-LINKS(<Sl>,R,R,F).
* Add all possible R-links and P-links between the factor of R
and R.
Return the new graph
END-OF-RESOLVE .,
Note: Step* should be avoided in an appropriate refinement.

Let <Sl> be a connection graph and let 1 be a P-link in <§1>. Let
C be the clause containing an equality literal and let D be the
clause paramodulated upon.
PARAMOD(<S7”>,1)
Add the paramodulant P associated with 1 to <Sy>
INHERIT-R-LINKS(<S;>,C,D,P)
INHERIT-P-LINKS(<S;>,C,D,P)

45

If a new P-link connects a term in a literal L in P to some
other term in a nonequality literal K
andif L and K are complementary unifiable
then erase the P-link and connect L
and K by an R-1link
else erase the P-link
For each factor F of P:
Add F to <Sy>
INHERIT-R-LINKS(<S;”>,P,P,F)
INHERIT-P-LINKS(<Sy>,P,P,F)
*Add all possible P-links and R-links between the factors of
R and R
Return the new graph

END-OF-PARAMOD.
Note: Step* should be avoided in an appropriate refinement.

The INHERIT-procedures above connect the newly generated
paramodulant and resolvent to the graph and the DELETE procedure

erases all tautologies and pure clauses.

In [SW80| soundness and completeness of the paramodulated
connection graph proof procedure are shown relative to the
respective results for the original proof procedure; i.e. it is
shown that if the proof procedure of Kowalski is sound and
complete so is this one.

Recently it was shown that Kowalski”s proof procedure is not

complete - in fact it is not even consistent .

Equality Reasoning

The proof procedure as presented has certain advantages over
ordinary paramodulation, for practical purposes however the

search space is still too explosive: there are just too many
links - i.e. paramodulation possibilities - in the graph.

46

In order to overcome this problem we originally experimented with
certain refinements, but even then, the explosion in the number

of P-links is unmanageable for any real application.
In 6.3.10 a feasable solution for this problem is presented.

6.3.3 Subsumption and Connection Graphs

One of the striking properties of the connection gréph proof
procedure is that the application of a deletion operation can
result in the applicability of further deletion operations, thus
potentially leading to a snowball effect which rapidly reduces
the graph. The probability of this effect rises with the number
of deletion rules available.

A very powerful deletion rule for resolution based systems is
the subsumption rule ([LOV78]). Unfortunately a test for
subsumption is very expensive and is usally implemented only for
restricted cases. In this section a test for subsumption based on
the principal idea of the connection graph proof procedure is
developed, which in contrast to the standard test ([LOV78]) is
sufficiently efficient to permit unrestricted subsumption in
practical cases. Though not limited to it, the test is most
naturally embedded into the connection graph proof procedure, but
unrestricted combination of subsumption or tautology with purity
deletion is shown in [EISlJ to make a connection graph proof
procedure inconsistent and hence incomplete.

The deletion rules contribute both to the practical attractivity
and the theoretical difficulties of the connection graph proof

procedure. The original rules of [KO75| are: delete a clause if
it contains a pure literal and delete a clause which is a
tautology. Further possible rules include: delete a link if its
resolvent is a tautology (see 6.3.4.), delete a clause if it is
subsumed by another clause in the graph, delete a link if its
resolvent is subsumed by another clause in the graph. Note that
each deletion may cause a purity to arise, thereby causing

47

further deletions, It is not yet known as to which combinations
of these deletion rules preserve the completeness of the

procedure.
Subsumption and the S-link Test

Let C and D be clauses. C ©-subsumes D, if |C|<|D| and © is a
substitution such that ©(C)cD.The standard test for O-subsumption
works as follows: given C and D, first make sure that |C|<|D|
and that D is not a tautology. Then negate D and change variables
in D to constants, yielding a set D of ground unit clauses. C 6~
subsumes D iffo is derivable from {C} v D. (Details can be
found in [CL73] and [LOV78].

The positive aspect of this subsumption test is that it uses the
same mechanism which underlies the entire deduction system, i.e.
resolution. But from a practical point of view this turns out to
be a disadvantage. Normally one has to check for subsumption as
soon as a new clause is generated, i.e. after each resolution
step. This means that each "major" resolution step is followed by
several "minor" resolution steps for the subsumption test, thus
multiplying the overall expense. Yet even worse, dgiven a
resolvent C there is no hint as to which clauses potentially
subsume or are subsumed by C. So the test, already expensive in
itself, has to be performed within an iteration over all elements
of the given set of clauses. In practice, of course, one would
first make sure that the predicates are in common, so that the

test is not performed during each iteration step.

The resulting cost is such that for practical systems only
restricted versions of subsumption are implemented, e.g. only for
cases where the subsuming clause is a unit. Omitting subsumption,

on the other hand, can cause considerable redundancies.

The central problem for subsumption test consists in efficiently
finding out which literals in which clauses are unifiable.

48

Disregarding the signs of the literals this corresponds to the
very same problem that arises when two clauses have to be
selected for the next resolution step. In both cases comparing
all literals of all clauses is a possible but inefficient

solution.

In the resolution case the connection graph procedure provides
for a more efficient alternative. The literals of a set of
clauses are compared with each other once and forever when the
initial graph is constructed. Subsequently the necessary
information is directly available ‘in the form of the links.
Because of the inheritance mechanism for links the new literals
in resolvents and factors need not go through any search process
either. Thus the problem of finding two resolvable clauses is

reduced to simply picking a link.

This basic idea can be applied to the subsumption problem by
introducing links of a new type that connect unifiable literals.
Formally we define a subsumption graph (S-graph) as a pair (C, S)
such that
1) C is a set of clauses
2) Let LIT be the set of all literals occuring in the clauses

of C. Then S ¢ C x LIT x C x LIT is a relation such that

a) (¢, L, C°, L7)es » C # C°, LeC,L"eC”, L and L~ are

unifiable
b) (C, L, C°, L") €S <-> (C°, L™, C, L)eS

The S-graph is said to be S-total, if condition 2a) also holds in
the opposite direction., A literal L in a clause C is S-pure, if
there are no C7, L™ such that (C, L, C7, L7)eS. The elements of S
are called S-1links.

Given a set of clauses to be refuted, we initially compute all
possible S-1links between literals in these clauses. When a new
resolvent or factor is derived, the S-links are inherited from
the parent clauses in the same way as the resolution links in

49

the connection graph proof procedure. But in contrast to
resolution links (R-links) S-links are never deleted, unless one
of the parent clauses is removed from C it can be shown easily
that under these circumstances the S-graph remains S-total

throughout the entire computation (see [EIS81]).

In order to develop a subsumption test using s-graphs we need
some further definitions:

Let (C,S) be a S-graph, ceC a clause and Lec a literal.

We define con(C,L) := {peC) | 3KeD (C,L,D,K)eS} as the set of
all clauses connected to L in C by S-links.

Further let sub(C) :=/jcon(C,L) be the set of all clauses
connected to every literal in L by S-links

For LeC and another clause DeC we define

uni(C,L,D) := {o|JKeD: (C,L,D,K)eS ~ 0(L) = K} as the set of all
matching substitutions mapping L onto some literal in D. Finally
let UpreeerUy be sets of substitutions. Then merge(Ul,.u,Un) :=
{(Glu-uon)EUlX;n~XUn| the o; are pairwise strongly compatible}
is the subset of their cartesian product, for which the
functional composition of the components yields a unique

substitution regardless of their order.

The subsumption test is provided by the following theorems:
Theorem 1

Let (C,S) be an S-total subsumption graph and

C = {Ly,...,L;}eC a clause, n > 1. Then for DeC
C o-subsumes D iff |Cc| < |D| ~ Desub(C) A

merge(uni(C,Ll,D),...,uni(C,Ln,D)) # ¢ .

Theorem 2

Let (C,S) be an S-total subsumption graph and D =

{Ky,.../KpteC a clause, m > 1. Then for C # O

n
C o-subsumes D only if Cel/con(D,K;).

i=1

50

Detailed proofs can be found in [EI81].

The following example illustrates the principle of a test based
on Theorem 1. Assume the set of clauses C = {C, Dl,Dz,D3,D4} with
C = {Pub,Quv}, D, = {pxy,Qya}, D, = {Pzb,Pab,Qab}, D3 = {Pww,Rw},
Dy = {Qaa,Rb}. We want to find all clauses subsumed by C. In this
case only S-links connected to C are relevant, so for reasons of

clarity all other S-1links are omitted in the S-graph for C:

Now |c| <« lDil for all i and sub(C) = {Dl’Dz}' because D3 and
Dy are each connected to only one literal of C. We have to
associate with each literal of C a set of matching substitutions
for each clause in sub(C). In this case uni(C,Pub,Dy) = @
because there is no o such that o(Pub) = Pxy. Thus D; can be

disregarded.

For D, we obtain uni(C,Pub,Dz) = {{u := 2z}, {u := a}} and
uni(C,Quv,D,) = {{u := a, v := b}}. The substitutions {u := a}
and {u := a, v := b} are strongly compatible, thus C subsumes Dy
(but none of Dl,D3,D4).

The main point of the test is that the expensive unification is
postponed until the function sub preselected a plausible subset
of candidates for subsumption. In case we are looking for
subsuming rather than subsumed clause, this preselection process
is slightly more complicated. By Theorem 2 we first determine all
clauses connected by at least one S-link to the given clause D.

Then from this set we ascertain those C for which |[Cc| < |D| and

51

Desub(C) holds and only then the unification operations are

performed.

In both cases this preselection and the fact that the literals to
be unified are explicitly known, can save considerable time. On
the other hand some effort has to be invested for the computation
of all S-1links in the initial graph. As with the connection graph
proof procedure this advance cost can be higher than a possible
gain, if the set of clauses is only small. For more complex
examples however, there is certainly a pay off. But of course any
gain in time has to be paid for by additional storage needed for
the S-1links.

Refinements of the S-l1link Test

The inheriting mechanism of S-links can be optimized in the same
way as described in [B75J for resolution links. Here the proofs

are very simple because S-graphs are always total.

Another refinement results from the observation that for a clause
C contaning an S-pure literal sub(C) = @#. That means that such a

clause cannot subsume any other clause.

When computing the uni(C,Li,D) we need to know which KeD are
unifiable with Li. As the definition of uni shows, these are
exactly those literals we already had to consider for the
computation of con and sub. The information obtained during the
computation of con and sub should be stored in an appropriate
data structure to avoid having to recompute it for uni.

Thus far the S-link test was developed without considering the
underlying inference mechanism. Since they are based on the same
principal idea as connection graphs, S-graphs appear to be
combined most naturally with this inference method. We can modify
the definition of a connection graph to be a triple (C,R,S) such
that (C,R) is a connection graph (in the hitherto sense) and

52

(C,S) is an S-graph. For such a graph we can define a new kind of
subsumption: a clause C subsumes an R-1link (Dl'Kl'D2'K2)' if C

subsumes the resolvent of (Dl'Kl'Dz'Kz)‘

This link subsumption rule is a very powerful technique, since
deleting subsumed resolvents has the effect as if all resolutions
leading to subsumed resolvents were performed prior to other
steps. This results in a stronger reduction of the graph than in
the usual case where subsumptions occur only randomly. The
difference is similar to the one between deleting tautology

clauses and deleting tautology links in a graph (see 6.3.4.).
Practical Results

On the average a graph has about the same number of S-1links as it
has R-links. This may seem an inappropriate increase in storage
requirement., But in the actual implementation S-links need much
less storage than R-links. Moreover, it is not the physical
storage that is important, but the number of active R-1links in
the search space, and this number can be reduced considerably.

Practical tests indicate that the reduction of the graph caused
by subsumption usually more than compensates for the storage used
by the S-links. An example is P, Andrews “challenge” proposed at
the deduction workshop in Austin 1979:(3x Qx = Vy Qy) = (Ix V y
Ox = Qy). Here subsumption reduces the initial graph by 89% of
the clauses and by 99,5% of the R-links (which is however an

extreme case).

In order to get some experience with more "natural" problems, a
selection of examples from [MOW76| and [WM76| was run using the
strategies basic resolution, set-off-support, and unit

refutation, each with and without subsumption.

The results show (see [EI81| for the actual figures) that

subsumption usually caused a considerable improvement of the

53

penetrances, i.e. fewer unnecessary steps were performed. This
demonstrates the reduction of the search space. Sometimes the
system even found a proof where it did not without subsumption.
The incrase of the R-value indicates that subsumption infact has

a very strong impact on the size of the graph.

6.3.4 Deletion of Redundant Links in Connection graphs

The connection graph proof procedure allows the removal of a

clause from the graph, if it is a tautology or a pure clause.

This clause deletion rule can be transferred to links if we view
a link as a potential clause: each link represents a potential
factor, resolvent or paramodulant. Links which generate
tautologies or pure clauses are called redundant links. Since
non-redundant well as redundant links are copied (i.e.
inherited) in the process of a derivation, the elimination of
redundant links as early as possible (i.e. immediately after
their generation) prohibits their occasional exponential growth.
The connection graph proof procedure is extended by several new
types of links in order to formulate necessary and sufficient

criteria that links are redundant.
Multicoloured Graphs

A connection graph is a set of clauses together with several sets

of links. The latter include so far:

> F-LINKS, the set of factorisation links
> R-LINKS, the set of resolution links

> P-LINKS, the set of paramodulation links

> IP-LINKS, the set of information links

54

> S-LINKS, the set of subsumption links

> T-LINKS, the set of tautology links which are subclassified

into

TS-LINKS
TR-LINKS
TP-LINKS (see below)

> PC-LINKS, the set of parent connector links (see below)

Some of these links may again be classified as active, passive,
inhibited or inheritance only and in addition are sorted

according to various priorities as described in section 6.4.

A factorisation link (F-1link) is a pair <C,0>, where C is a
clause and ¢ is a most general unifier (mgu) for oLg = oL,
(1<i<n) where {LO'Ll'“"Ln} ¢cC. If 1 = <C,0> is an F-1link, the

clause oC is the factor of C, formed by 1.

A resolution link (R-link) is a 5-tuple <C,M,D,L,0> where C,D are
clauses, MeC and LeD are literals such that ~oM = oL and o is
most general.

A paramodulation link (P-link) 1 is a 6-tuple <C,M,a,D,N,0> where
Cand D are two distinct clauses, M is a non-equality literal in
C, N is an equality literal of the form s = t in D, a is an
admissible term access function for M and o is a mgu for oca(M) =

Gs.
A subsumption link (S-1link) is a 4-tuple <C,M,D,L> where C,D are
clauses, MeC and LeD are literals such that L and M are

unifiable., These 1links are used to compute the subsumtion

relation as discussed in section 6.3.3.

T-Links and PC-Links are defined below.

55

Tautologies

A clause is a tautology, iff

(1) it contains a literal of the form t I t, where T is some

equational theory or

(2) it contains two complementary literals.

We classify tautologies according to the way they are genérated:

Type 1:
A tautology is generated by an application of a substitution to

a clause (this happens on factorisation, resolution and

paramodulation).
Example:

The application of the factoring-substitution {x/a y/a} to the
clause C = <~Px, Py, Qxa, Qay> results in a factor of C, <~Pa,

Pa, Qaa> which is a tautology.

Type 2:
The two complementary literals in a tautology stem from distinct

parent clauses and are made complementary by the application of a
substitution to both parent clauses (this happens on resolution

and paramodulation).

Example:
Resolution with the parent clauses <Px, ~Qxa> and <Qay, Py>

results in the resolvent <Pa, ~Pa> which is a tautology.

Type 33
The tautology is generated by replacing a subterm of a literal in

a clause and by applying a substitution to the clause (this

happens only on paramodulation).

56

Example:
Paramodulation with the parent clauses <~Pf(f(a)),Pa> and
<f(f(x)) = x> results in the paramodulant <-Pa, Pa> which is a

tautology.

Type 4:
The tautology is generated by inserting complementary equal

literals in a clause which stem from two distinct clauses and are
made complementary equal by subterm replacement and application
of a substitution to both clauses (this happens only on

paramodulation) .

Example:
Paramodulation with the parent clauses <~Pf(f(a))> and
<f(f(x))=x, Pa> results in the paramodulant <~Pa, Pa> which is a

tautology.

Tautology detection

The different types of tautologies are now analyzed in order to

prevent their generation during the search for a proof.

Type 1 - Tautologies:

Tautologies that are generated in this way are detected using
socalled Tautology Substitution Links:

(DEF) A tautology substitution link (TS-1ink) is a triple <C,L,K>
where C is a clause and L and K are complementary unifiable
literals in C, or is a triple <C,s,t> where s and t are unifiable
terms and P(s,t) is a literal in C and P is a reflexive predicate
(or ~ P(s,t) is a literal in C and P is an irreflexive

predicate).

Subsequently we assume connection graphs to be fully TS-

connected, i.e. all TS-links are set.

57

(DEF) An F-link <C,o0> or a
R-1link <C,M,D,N,0> or a
p-link <C,M,a,D,N,0> or a
P-link <D,N,a,C,M, 0>

is tj-redundant iff there exists a

TS-link <C,L,K> or a TS-link <C,s,t>
such that
L¥M, K#M (Pst#*M) or ~Pst#M
and o|L| = o|K]|(os = ot).

Type 2 - Tautologies

Tautologies of this type are detected on the basis of socalled

Tautology Resolvent Links:

(DEF) A tautology resolvent link (TR-1link) is a quadruple
<C,L,D,K> where C and D are distinct clauses and LeC and KeD are
complementary unifiable literals.

In a fully TR-connected connection graph each pair of
complementary unifiable literals in distinct clauses is connected

with exactly one TR- or R-link.

Subsequently we assume connection graphs to be fully TR-

connected.

(DEF) An R-link <«C,M,D,N,0> or a
P-1link <C,M,a,D,N,0> or a
p-link <D,N,a,C,M,0>

in a connection graph is 7,-redundant, iff there is an

R-1link <«C,L,D,K,O> or a
TR-1link <C,L,D,K>

58

such that
L¥M, K#N and o|L| = o|K].

Type 3 - Tautologies

We introduce another new link type to detect tautologies of this

type:

(DEF) A tautology paramodulant link (TP-1link) is a 5-tupel <C, M,
a, D, s=t>, where C and D are distinct clauses, M is a non-
equality literal in C, s = t is an equality literal in D and o is
an admissible term access function for M, such that a(M) and s

are unifiable terms.

In a fully TP-connected connection graph each side of an equality
literal is connected to a subterm of a non-equality literal in
another clause by exactly one P- or TP-link, whenever the side of

the equality and the subterm are unifiable.

Subsequently we assume connection graphs to be fully TP-

connected.

(DEF) A P-link <C,M,0,D,s = t,0> in a connection graph is 13-
redundant, iff there is a P-link <C,N,a,D,t = s5,0> or a TP-1link
<C,N,a,D,t = s> such that M and N have opposite signs and the

same predicate symbol, o|M]| 2 o|N| and ot = ca(N).

K 2 L for some literals K and L, iff L = K except for the

subterms of L and K given by a.
Type 4 - Tautologies

It is characteristic for tautologies of this type that the two
complementary equal literals are the paramodulated literal and a

literal stemming from the equality clause.

59

(DEF) A P-link <C,M,a,D,s = t,0> in a connection graph is 714~
redundant, iff there exists a literal NeD different from s = t
such that M and N have opposite signs and the same predicate

symbol, o|M| & o|N| and ot = oca(N).

Remark

The detection of type-4 tautologies involves a search for the
literal NeD. This problem could be solved by the introduction of
a new class of links (similar to P-links), which connect one side
of an equality with a subterm of a literal in the same clause.
Using these links the literal NeD could be found without search.
We reject this solution: As in the case of P-links, the number of
those links in a connection graph would be very large, so that
the cost of generating, inheriting and storing these 1links
exceeds the cost of the search for a specific literal in a
clause. Note that this argument does not hold for TP-links, since
the number of TP-links compared to the number of P-links in a

connection graph is very small indeed.
Tautology Redundant Links
Now in order to avoid the generation of tautologies, we say:

An F-, R- or P-link 1 in a fully TS-, TR- and TP-connected
connection graph is tautology redundant (t-redundant), iff 1 is
T;-redundant for some ie{1l,2,3,4}.

Theorem 1
A clause generated by an F-, R- or P-link in a fully TS-, TR- and
TP-connected connection graph is a tautology, iff 1 is a Tt-

redundant link.
Theorem 1 gives a necessary and sufficient condition to detect

links which generate tautologies by means of TS-, TR- and TP-

links.

60

The actual implementation uses this information to avoid the
generation of tautologies and extends the Connection Graph Proof

Procedure by a t-link reduction rule:

(1) For each clause in the initial graph create all TS-links to
guarantee the fully TS-connected property of the graph.

(2) After creation of the initial graph, remove each t-redundant
F-link from the graph. Recolour each t-redundant R- or P-link to
a TR- or TP-link to guarantee that the graph is still fully TR-

or TP-connected.

(3) After generation of a factor, remove the associated F-link
from the graph. After generation of a resolvent or paramodulant,
recolour the associated R- or P-link to a TR- of TP-link (R- and
P-links must not be removed to guarantee the fully TR- and TP-
connected property of the graph). In addition generate all TS-

links for the factor, resolvent or paramodulant.

(4) After generation of a resolvent or paramodulant, remove each
1-redundant F-link from the graph, which is attached to the
resolvent of paramodulant. After generation of a factor,

resolvent or paramodulant, recolour each t-redundant R- or P-link
to a TR- or TP-link, which is connected to a literal in the

factor, resolvent or paramodulant.

(5) After recolouring an R- or P-1link, check the link™s parent

clauses for purity.
Pure Clause Generation

A clause is pure, iff it contains a literal which is not
connected by an R- or P-link.

A link connecting a literal in a factor or resolvent is either
inherited from a link connecting its parent literal or

is newly created and connects a literal in its parent clause.

61

In order to check for purity with a given literal L in clause C
and a substitution ¢ of an F- or R-1link, we have to search C for
literals Kj, which are unifiable with oL.

Given a literal L, we find some of the literals Ki with the help
of the TS-links. Unfortunately not all literals K; are given by
these links.

Example:
C = <-P(x), P(f(x))>
\
{x/a} {x/f(a)}
<P(a)> <-P(f(f(a)))>

Since -P(x) and P(f(x)) are not unifiable, we have no TS-link
between these literals. But we can connect the descendant P(f(a))
of P(f(x)) in C to =-P(x) in C. The problem is to take into
account the renaming of variables in factors and resolvents,

which is done by introducing socalled parent connector links.
Pure Clause Detection

(DEF) A parent connector link (PC-1link) is a triple <C,L,K> where
C is a clause, L and K are literals in C which are unifiable only

after renaming, i.e.

ALL 6. 8|L| # o|K| and
EXp EXv. p is variable renaming of K
and v|L| = vpl|K]|

We assume connection graphs to be fully PC-connected and the TS-
links and the PC-links denote the literals K in a clause C which
are unifiable (at least after renaming) with a given literal in
C.

62

Purity Redundant Links
Purity redundant links are defined as:

(DEF) An R-link <C,M,D,M,0> or an F-1link <C,0> 1is purity

redundant (m-redundant), iff

EX L & C-{M}

(resp. LeC in case of an F-1link)

such that

(1) ALL R-LINKS <C,L,Cj,Ljr0;°
~EX 0. Opo|L| = 8|L,|

and

(2) ALL TS-LINKS and PC-LINKS <C,L,K>
~EX 8. 6uo|L| = 0]|K]|

where m is a variable renaming for C.

Theorem 2
A clause generated by an F- or R-LINK 1 in a fully TS- and PC-

connected connection graph is pure, iff 1 is a wm-redundant link.
Purity Link Reduction

Theorem 2 gives a necessary and sufficient condition which is
used in the MKR-Procedure to avoid the generation of pure
clauses. The Proof procedure is extended by a m-link reduction

rule:

(1) For each clause in the initial graph and for each resolvent
or factor create all TS- and PC-links to ensure that the graph is
fully TS- and PC-connected.

(2) After creation of the initial graph and after each creation
of a factor or resolvent, remove from the graph each t-redundant
link, which is connected to a literal in a clause of the initial

graph or in the factor of resolvent.

63

If t-link reduction is applied, instead of removing n-redundant
R-links from the graph, "recolour" these links to TR-links to
ensure that the graph is still fully TR-connected.

(3) After removing or recolouring an R-1link, remove or recolour
each m-redundant 1link, which is connected to a literal in a

parent clause of the removed or recoloured R-link,

Pure Clauses under Paramodulation

The extension of w-link reduction to P-links is of 1little
practical value, since the purity principle is so rarely
applicable in paramodulated connection graphs. Consider for
instance axiom clauses like <~x»0, successor (predecessor (x)) =
x> or <~f(x) = f(y), x = y>.

In paramodulated connection graphs each variable representing one
side of an unnegated equality in a clause C is connected to each
term in a clause different from C. Hence clauses like those given
in the example prevent each other from becoming pure. These
examples do not represent artificial problems but types of axioms
which occur very often in axiomatizations with equality. The
restricted success compared to its great expense does not seem to
justify extending m-1link reduction to paramodulated connection

graphs.

However, these arguments are not specific to paramodulation: If
we incorporate equality by a predicate symbol E and do not use
paramodulation, the substitution axioms for predicates (for
instance for a unary predicate P:

<~E(xy), ~P(x), P(y)>)
guarantees that no literal with predicate symbol P becomes pure
unless the substitution axiom itself become pure, which is

prevented by the axiom of symmetry <~E(xy), FE(yx)>.

64

Eliminating the Search for R-link Inheritance

A further usage of TS- and PC-links is the following: After
forming a resolvent or factor it is necessary to search for
literals in the resolvent (or factor), which are unifiable with a
literal in the parent clauses. For such pairs of literals an R~
link is added to the graph. We call such an R-link a parent
connection. (The original procedure of [KO75| requires a search
and connection for both parent clauses. It is easy to verify,
that this approach results in the multiple inheritance of R-links
or - even worse - in the inheritance of R-links already removed

from the graph).

The problem consists in the fact that the search for parent
connections can be very expensive because we have to perform
(x + y) * (x + y) tests for unifiability, where x and y are the
number of literals in a resolvents parent clauses. This expensive
search can be dispensed with in fully TS- and PC-connected graphs
since for each literal L in a resolvent or factor the unifiable
literal K in its parent clause C is given by a TS- or PC-1link
<C,L,K>,

Generation Rules for Links in Extended Connection Graphs

During the construction of an initial connection graph, each time
two literals L and K in a clause C are unifiable, a TS-1link
<C,L,K> is added to the graph. Each time two literals L and K in
a clause C are unifiable after renaming, a PC-link <C,L,K> is
inserted into the graph. TR- and TP-links are generated in the
initial graph by application of the t-link reduction rule to the
R- and P-links of the initial graph.

65

6.3.5 Terminator

Todays theorem proving calculi may be classified into those that
start with a given set of logical formulas and create new
formulas by the application of certain deduction rules like
resolution [RO65|, paramodulation [WR73], natural deduction rules
[BL77], [NE74] etc, until the theorem (forward reasoning) or a

refutation (backward reasoning) has been derived.

Recently new calculi of a different kind like Andrews”™ mating
calculus [AN81| or Bibel”s matrix calculus [BI81| have been
developed which initially do not deduce any new formulas, but
only test certain path conditions ensuring satisfiability or
unsatisfiability of the initial formula set. Only if this test
fails may the need arise to copy certain formulas. Kowalski's
connection graph proof procedure [KO75J in its original
formulation is of the first kind: A connection graph consists of
the nodes labeled by clauses in conjunctive normalform and links
(connections) between complementary unifiable 1literals
representing possible resolution steps. A deduction is performed
by the selection of a link, creating the corresponding resolvent,
inserting it into the graph and deleting the selected 1link,
potentially causing further deletions of links and clauses.

This proof procedure can be transformed into a calculus of the
second kind using an idea originally proposed by S.Sickel [SI76J:
instead of adding resolvents to the graph, the search for a proof
is essentially done on the initial graph by "walking along" the
links until a refutation has been found, thus "unrolling the
graph" [S176].

The method proposed here is very much in that spirit but used for
a very special - albeit important - case only: If the clause set
is unit refutable, i.e. the empty clause can be derived by
successive resolution steps with one-literal clauses, the clause
graph has to contain a special subtree (refutation tree or
terminator situation) which just represents this chain of unit

resolutions.

66

Examples:

S dlha b Mo b

Fig.l a) b) c)

Every box in fig.l represents a literal, a string of boxes is a
clause and complementary unifiable boxes (literals) are connected
by a link. If all unifiers attached to the link in fig. la) are
compatible, this represents a one-level terminator situation,
since it immediately allows for the derivation of the empty
clause., Similary fig. 1lb) represents a two-level terminator
situation (a kernel which is connected to a one-level terminator
situation) and fig. 1lc) a 3-level terminator situation if all

unifiers are compatible,

The terminator component of the MKRP system, which detects
configurations of the above kind, is used in two ways: first it
acts like a simple and fast theorem prover and 1is activated on
the initial connection graph. If it fails, the full machinery of
the Logic Machine is activated. Secondly it is used to overcome
the problem that the heuristic selection functions have the very
limited horizon of one step ahead, since the computation of a
further n-level look ahead for n»>2, is so prohibitively expensive
that it outweighs the advantage. For that reason the Terminator
is used as a different n-level look ahead technique, which checks
at tolerable costs if there is a proof within a predefined
complexity bound. This use is the no-loop-requirement of [SI76 |
and is akin to the n-level-look-ahead heuristic proposed by
[KO75]. It is one of the main sources for the success of the

current system,

67

A clause graph is a refutation tree (a terminator) if:

- Every literal of a clause is attached to exactly one
link.
- The unifiers of the links are compatible.

- The graph is cycle free.

The following important result is known about refutation
trees [HR78]:

Theorem:

A unit refutable clause set S is unsatisfiable if there exists a
refutation tree for the factored set S.

Of course the knowledge of the existence of such a refutation
tree is of little practical use unless a fast method for
extracting it from a given graph is known. An exhaustive and
unsophisticated search for such a terminator configuration is
prohibitively expensive in large graphs, hence an efficient
extraction of a refutation tree (if it exists) from a given graph
is the task of the presented TERMINATOR algorithm.

The Algorithm

The first attempt to implement an N-level terminator algorithm
used a recursive technique [SS81]: A non-unitclause C was
selected and examined for a one-level situation. If the first
test failed, the algorithm was called recursively for other non-
unitclauses connected to C, trying to find a chain of unit
resolutions which resolves away all literals exept that one
connected to C, and the one-level test for C was performed once
again taking advantage of this new information. This algorithm
considerably increased the overall strength of the system, since
the interaction between the TERMINATOR and the MKR-Procedure
essentially amounts to a bidirectional search for a refutation.
Unfortunately the algorithm itself was rather inefficient,
because no results of former TERMINATOR calls had been stored,

68

and therefore the same part of the clause graph had to be
examined again and again. Hence only the N = 1 case was ever

within practical limits.

Whereas the old algorithm worked from inside the refutation tree
to the leaf nodes (unitclauses), the new algorithm works just in
the opposite direction and stores every information it has onces
generated for later use. We shall present the working of the

algorithm using a few examples.

The input clauses are divided into the set of unitclauses (UNITS)
and the set of non-unitclauses (NON-UNITS). NON-UNITS are sorted
according to increasing literal number. For each element C of
NON-UNITS of which every literal except at most one is connected
to at least one element of UNITS a compability test is performed.
An example will illustrate this test:

Suppose C has four literals: C = <L1 L2 L3 L4>. Each literal Li
may be connected to a set of unitclauses complementary to Li and
let U be the set of unifiers associated with these connections

(there may be more than one unifier associated with each link):

BVl

[FHoilr2 3 [ua]

We start with the first literal and compute the set of "merged"

unifiers:

= * = eg= *
U, *U {o:0 o,%0,, 0,60, 0,€0, }

where 01*02 is a most general merge substitution (resp.unifier,
see below) of oy and Gy - Similarly we calculate

— * - *
Uppz = Upp"U3 and U534 = Upp370,

69

If Ujp34 * ¢ then every element of Uy,3, allows to resolve away
the whole clause, i.e. a proof is found. If Ujy34 =4¢, but 0123 ¢
we apply every substitution of Uj,3 to literal L4 thus
generating new unitclauses and insert them into the UNITS-List.
With this step we deduce in fact new formulas, but we only use
them as a compact representation of the merged unifiers with two
additional advantages:

l. A very simple and fast subsumption test between the
unitclauses allows to detect if the result of a unit resolution
chain is an instance of the result of another chain. In general
the deletion of subsumed unitclauses prunes the search space
considerably.

2. The treatment of the input unitclauses is just the same as the
treatment of the deduced onces, which simplifies the data- and

control structures.

If Ujo3g + ¢ we create new unitclauses in the same way applying
* * a @

U12 U4 to L3I Ul U34 to L2 and U234 to L1. The 1links of the

initial graph provide now the information to attach all the new

unitclauses to complementary literals in other clauses,

(respectively other literals in the same clause, if it |is

selfresolving).

The clauses in NON-UNITS are examined several times, constantly
producing new unitclauses, either until the proof is found or
until a certain boundery value is exceeded. If a terminator
situation is found, the datastructures we use to represent the
units and the link allow for an immediate extraction of the
refutation tree, which is then used to generate an ordinary

resolution proof.

The TERMINATOR is called from the MKR-Procedure at the beginning
of the search for a proof and, if it does not find an immediate
proof it is called again each time a certain number of steps has
been performed by other components of the system, hence the

overall behaviour amounts to a tightly controlled and

70

sophisticated bidirectional search. In particular the other link
selection mechanism in the system prefer those resolution and
paramodulation steps which are expected to transform a non-unit

refutable clause graph into an unit refutable one.

A second application of the TERMINATOR is the generation of
unitclauses, for instance the rewrite component of the system can
decide that a specific unit equation might be usefull as a
rewrite rule and charges the TERMINATOR to deduce, if possible,

the desired equation from a conditional equation.
The Compatibility Test

The bottleneck of the terminator algorithm is the compatibility
test:

We have a set A with n substitutions and a set B with m
substitutions. Now the task is to unify each substitution in A
with each substitution in B, i.e. to compute the most general

merge substitution for each such pair.

A unifier for two substitutions o,T and A is a substitution
such that

0¥t : = A,0 = A.7T is called the merge substitution of

g and T.

There are fast unification algorithm known for the unification of
terms [RO71), [BA73|, [MM79], the most recent are even linear
[PWw78], [KK82|. The unification of substitutions was first
investigated in [VV?SJ, better and more efficient algorithms are
surveyed in [HE83J. But for |A| = n and |B| = m they still have
to perform n*m such operations and in many applications this
number may be greater than 105, i.e. the known methods are out of
the question. For that reason a very fast merging algorithm for
large sets of substitutions was developed which exploids special

conditions present in the terminator situation. The problem is to

71

find a representation for the substitutions such that there is a
direct access from each substitution ¢ in set A to those which
are compatible with ¢ in set B.

The working of the algorithm will be illustrated with the

following examples.
Example 1
<~PXy ' ~Pyz ’ Pxz>

| | v,X,y,z are variables
<Paf(v)> <Pf(b)c>

set A: {(x/a, y/f(v))} n
set B: {(y/f(b), z/c)} m

Since only links between unitclauses and non-unitclauses are
considered, we know that the single literal of the unitclause is
not present in the resolvent after resolution upon such a link.
Therefore only the substitution components for variables of the
non-unitclause are relevant for the resolvent, provided the
unifier is in normal form [HE83| and the variables in different
clauses are disjoint. Since these conditions can be ensured, it
is admissible to discard all other substitution components.
Because of this it is possible to represent the remaining
components in a table using a fixed ordering of the variables
occurring in the non-unitclauses. This representation will be

called a T-representation.

For example 1 we obtain: : X y Z
A : a f(v) z
B : x f(b) c

In this case it is easy to see that the unification of the
corresponding terms in the table is sufficient to get a most

general instance of the substitutions.

72

In this example it is:

X V% z or in standard representation:

- - ——— —

a f(b) ¢ (x « a, v « £(b), z « c)

The main problem, however is the merging of two non-singleton
sets A and B of substitutions.

Suppose we have two lists A and B with three elements in each
list:

Example 2 T-representation

A : X Yy z B : X y VA v,w,X,y,z are
———————————————————————————————— variables
Al : a f(v) b Bl : b a z
A2 : a y w B2 : a a b n =
A3 : b b B3 : f(b) b =

The representation is then changed a second time: Equal terms
occurring in different substitutions but in the same column of
the T-representation are stored only once. The substitutions
themselves are represented by pointers to their terms. These
terms have also pointers back to the substitutions in which they
occur; and from the terms of group A links to every unifiable
term in the same position of group B are generated. In addition
the unifiers for these single terms are attached to the links. We

call this representation the P-representation.

73

P-representation of example 2:

The complexity of the merging algorithm is a function of the task
of generating the links between unifiable terms, which can be
further improved by grouping the terms into lists of variables,
constants, ground terms (without variables) and composed terms to
exploit the fact that some single-term-unifiers are trivial
(variables with constants etc.) whereas others are impossible
(constants with ground terms).

On the basis of the P-representation it is now easy to extract
for a substitution o in group A all compatible ones in group B.
For every term of o and every link attached to this term: attach
the single-term-unifier corresponding to this link at every
substitution of group B in which the term pointed to by the link
occurs:

74

For example 2 we obtain:

Bl B2 B3
from Al: (z/b) (NIL) (NIL) (NIL (v/b) (NIL)
from A2: (y/a) (w/z) (NIL) (y/a) (w/b) (NIL) (y/f(b)) (w/b)
from A3: (z/b) (x/a) (NIL) (x/a) (NIL)

All those substitutions in B with exactly p compatible single-
term-unifiers, where p is the length of the T-representation
(=number of variables in the non-unit clause), are compatible
with o. For example 2 we obtain three compatible pairs of

substitutions:

T X y z
Al * B3 : a f(b) b
A2 * B2 : a a b
A3 * B3 s a f(b) b

Although the generation of the single-term links is not linear in
general, the algorithm shows a linear (in n) behaviour in most
practical examples, i.e. instead of n * m operations only n

operations are performed on average.
Summary
With the terminator algorithm two main goals have been achieved:

l. Actually nothing has to be done twice, because all relevant
intermediate results (merged substitutions) can be stored
without requiring too much space.

2. The compatibility test is enormously reduced in complexity,
allowing the fast unification of millions of pairs of

substitutions.

75

These are the main advantages compared to similar methods for the
extraction of refutation trees (respectively graphs), like S.
Sickel™s graph unrolling [SI76J or Chang and Slagle”s usage of
rewrite rules [CS79J. Although their calculi are complete for
non-unit refutable clause sets as well, their practical
usefullness is questionable, unless their efficiency problems are

solved.

The implementation of the terminator algorithm has considerably
increased the performance of the MKR-Procedure. For instance we
have solved SAM”s Lemma, a famous problem in automated theorem
proving, which was first proved with an interactive theorem
prover [GOSB69J, and later by the automated theorem prover at

Argonne National Lab. It had to deduce 22000 clauses before
finding a proof [COW76J. The TERMINATOR generated only 190

unitclauses until the proof was found [OH82].

6.3.6. Heuristic Selection Criteria

In contrast to the global search strategies and global heuristics
some heuristic selection functions are based on local syntactical
information about the graph or the resolvent (paramodulant)

respectively.

Initially we experimented with about 20 different heuristic
features, where each feature attaches a certain value to every
link k in Gj. Gy is the present graph, G, is the resulting
graph after resolution upon link k and Res is the resolvent

resulting from this step:

(i) Sum of literals in Gi+1
(ii) Sum of clauses in Gi+1
(iii) Sum of links 1in Gi+1
(iv) Average length of clauses in Gj4)

(v) Average sum of links on literals in Gi+l

(vi) Sum (resp. average sum) of constant symbols in Gj4

76

(vii) Number of distinct predicate symbols in Gj4)
(viii) Number of distinct variables in Giy
(ix) Sum of literals of Res
(x) Sum of links of Res
(xi) Sum of constant symbols in Res
(xii) Sum of distinct variables in Res
(xiii) Number of distinct predicate symbols in Res
(xvi) Term complexity of Res
(xv) Minimum of links on literals in Res
(xvi) Complexity of the most general unifier o
attached to link k
(xvii) Age of Res
(xviii) Degree of isolation of Res
(xix) Degree of isolation of the parents of Res.

The problem is that although each heuristic feature has a certain
worth, the cost of its computation can by far outweigh its
potential contribution. Also it may not be independent of the
other heuristic features; for example features (xi) and (xii)
both measure the "degree of groundness of Res", but in a
different way. Similarly the values for Res and for G;4+1 are not
independent for certain features (e.g. xiii and vii). Also there
are the two problems of finding an appropriate metric for each
feature and to decide upon their relative worth in case of

conflict with other features.

Originally the information contained in the heuristic features
was entered in two different ways: certain facts (e.g. decreasing
size of the graph) had absolute priority over all other
information (see also the merge feature of TT in [DA78]). Most of
the information of the other features however was expressed as a
real number in [O,lj, where we experimented with several (linear,
nonlinear) metrics [SS81|. This information was then entered in a
weighted polynomial and the resulting real number (the priority
value) expressed the relative worth of the particular link and

was attached to each 1link.

77

The system has been designed such that heuristic features can
easily be added and deleted and after more than two years of
experimentation the system stabilized with the following set of

features.

1. Complexity of the Graph

1.1 FCLSUM = (I of clauses of Gj;)) minus (I of clauses of Gj)
1.2 FLINKSUM = (I of links of Gi+l) minus (I of links of Gi)
1.3 FCANCEL = {P/P is predicate symbol occurring in G, !}

Complexity of the Resolvent

2.1 FAGE = Age of Res
FLITSUM = Sum of literals in Res
FTERM = Term complexity of Res

2.4 FRESISO = Degree of isolation of Res

3. Complexity of the Parents of Res
3.1 FPARISO = Degree of isolation of the parents

These features are used to influence the actual derivation in the
following way: all steps that lead to a reduction in the size of
the graph have absolute priority and are immediately executed.
That is, every link which leads to a graph with fewer clauses or
fewer 1links or both is put into a special class, which is
executed before any further evaluation takes place. The decision
whether or not a link leads to a reduction is based on
information from the reduction module and is optionally taken for
every link or for the active links only. Note that the reduction
in the size of the graph may lead to further deletions, hence a
potential snowball effect of deletions is carried out immediately
which accounts for one of the main sources of the strength of the

system,
The realisation of the paramount importance of those features

having absolute priority (and their former costly computation)

has led to a different implementation now: we no longer compute a

78

weighted polynomial as in the original heuristic module [BES81J.
Instead the features 1.1 and 1.2 are removed from this module and
the selection module selects and executes the corresponding steps
prior to everything else (see section 6.4.).

The heuristics 2.4. and 3.1, are completely abandoned, whereas
the remaining features 2.1., 2.2. and 2.3. are now realised in
the following way: each list of links to be executed (see section
6.4.) is sorted such that for the resolvent Res(i) resulting from
the ith link in that list:

(i) either the number of literals of Res(i) is smaller than
the number of literals of Res(i+l) (unit preference)

(ii) or (number of literals of Res(i)) = (number of literals of
Res(i+l) and the term complexity of Res(i+l) is less than
the term complexity of Res(i).

(iii) or term complexity of Res(i) = (term complexity of
Res(i+l)) and the age of Res(i) is less than the age of
Res(i+l).

Now always the first element of a list is executed first.
The age of a clause is computed by the following formula:

FAGE := (1 - AGE/Dpy)>/2

where Age: max{Age(Parentl), Age(Parent2)} + 1

D user defined maximally admitted depth of derivation

max*

This feature is mainly used to avoid "infinte holes" in the
search space, since after too many steps in one direction, the
age of the resolvents become too high and different steps are
tried, i.e. after a while a "breadth-first" strategy is enforced

again.

The term complexity of a term is computed as:

79

1 if no nested terms in Res

n
1/2[1-(1/n ¢ (51)3/2) /5,372 | otherwise
i=1

where: s;: maximal nesting depth of ith term in Res
Smax: user defined maximally admitted depth of nesting

n : number of terms in Res

The term complexity of a clause is the average of the term

complexity of the terms occurring in it.

6.3.7. Refinements

Although the traditional research paradigm of automated theorem
proving was strongly rejected right from the very start of this
project, some of the traditional results turned out to be not

entirely without value:

A link in a connection graph represents a potential resolvent and
the complex and expensively computed selection functions, which
pick the most promising candidate, have to examine every link: in
a realistic setting there may be several thousands in a graph to

be examined again and again for each step.

But suppose the system is to simulate a unit-refutation, i.e.
a derivation of the empty clause, where at least one of the
parents of every resolution step is a unit clause. In that case
the selection functions are allowed to pick only those links that
connect at least one unit clause.

If by appropriate on-off switches only those links emanating from
unit clauses are declared active and all other links passive the
selection functions have to be computed only for the small
fraction of the graph that is declared active.

It should not be too difficult to see that by an appropriate

80

setting of the on-off switches every traditional refinement
[LOV78] can be simulated.

Seen from this point of view a traditional refinement acts like
a cone of light that illuminates certain parts of the graph and
shades those that are (hopefully) irrelevant for a proof - and it
is a comforting fact to know that if the refinement is complete,
the shaded parts are at least theoretically irrelevant.

On the other hand it is a wellknown fact that the "shaded parts"
of blocked resolutions represent "garbage and gold" alike: hence
the strategic information of the system overrides the information
of every particular refinement. Only if nothing better in known
does it take the refinement information into account and it
should not be necessary to say that the complex interplay of the
many sources of information that are taken into account (see

6.4.) prevent the overall deduction from being standard.

6.3.8. Clause Reduction

Deduction steps, which in a certain sence reduce the complexity

of a clause, are called clause reduction.
Term Rewriting

A given equation 1l=r can often be turned into a directed equation
1=>r such that the complexity of the term 1 is greater than that
of r. For example x * 0 = 0 is such an equation., Directed
equations are computationally very useful: if i is some subterm
occurring in a literal Ly and | is an instance of 1, i.e. 3o

~ A

such that 1 = o¢l, then replacing 1 in L by or does not change
the truth value of Lj if 1=r is assumed valid. If Ly * I denotes
such a replacement, we say a given set of directed equations is

Notherian if there is no infinite sequence Ly * L; > L, > ... The
set of equations is confluent if for every L;» Ly with L, * Ly

there exists L, such that L, * L and L, * L (see [HO80] for a

survey) .

81

If the initial set of clauses contains a set of equational unit
clauses, which are confluent and Notherian, they can be used to
compute normal forms and hence are removed from the initial
clause set: they are only used to compute the normal forms in the

initial set and subsequently in every deduced clause.

Unfortunately most sets of equational unit clauses are not
confluent and Notherian, but they may still be used for rewriting

purposes (see 6.4.).

The essential difference between a rewriting step and a
paramodulation step is the unification requirement: in order to
rewrite the term i in a literal L using the equation l>r we
require i= o0l and replace i by or. But in order to para-

modulate the term i in L using l1l»r we have the weaker

requirement of ol = ol in order to replace 1 by or in L.

For example P(f(x,y),2z) can not be rewritten with the equation
f(x,0)=>0, but can be paramodulated to P(0,z). P(£f(1,0),z) can be
rewritten to P(0,z), hence rewriting does not change the value of

a literal, but is only used to manipulate its syntax.
Conditional Term Rewriting

Single equations (units) do not occur too often in clause sets:
usually an equation requires some condition to be true before it
can be applied. For example for all x,y: if P(x) and Q(f(y)) then
g(x,y)=C where P and Q state some properties of x and y such that
g(x,y)=C holds.

The clause form is
<~Px, ~Q(f(y)), g(x,y)=C>
and such clauses are treated in a special way:
if the literals preceeding the equation can be resolved away with
at most a predefined number of steps then these steps are

executed prior to anything else and o[g(X,y)=C] is used as a

82

rewriting equation. Here o is the substitution resulting from

these resolution steps(see 6.4.2.9).
Literal Rewriting

A very similar kind of "rewriting" can be done with two-literal
clauses (instead of equations). For example:
for all x: P(f(x)) implies P(x)
can be used to reduce a literal like
P(£(£(£(0)))) to P(0).
Such two-literal clauses are marked by the user (see 6.4.2.7) and

all possible reduction steps are performed with a high priority.
Conditional Literal Rewriting

An assertion
for all x,y: P(x) and OQ(f(x)) and P(f(x)) implies P(x)
has the clausal form

<~Px, ~Qf(x), ~Pf(x), Px>

An actual implementation will make sure that these literals are
not randomly resolved upon, but that the first two literals are
resolved away prior to everything else and the remaining two

literals are then used as a literal rewriting rule.
Demodulation

Suppose several rewriting steps can be sequentially applied to a
literal L in a clause C (with some abuse of notation):

Co *C »CH > ... »C
Although not complete theoretically and often dangerous
practically it may nevertheless be useful sometimes to not save
the intermediate results C;, Co,ece,Cp_7.

If these clauses are erased once C has been deduced, the
replacement of Cp by C is called demodulation [WR67 |, or Cy is

demodulated to Cn°

83

Demodulation is user controlled by appropriate options (see
6.4.).

Replacement Resolution

Suppose we have a unit clause <Pa> and a clause <~Pa,Qx>., The
resolvent is <Q0x>, which subsumes its second parent clause. The
result of the resolution step with the subsequent subsumption
could also be obtained by simply erasing ~Pa in <~Pa,Qx>. This
observation, called replacement subsumption in [RO65] can

advantageously be generalized in several ways:

Firstly possible merging of literals can be taken into account,
as for example in:
<Pa,Qb> <~Pa,Qb>, i.e. we still may Jjust erase ~Pa.

Secondly the instantiation process can be taken into accont, as
for example in:

<Pa,~Px> and <~Pa,Qy>, where the second clause is to be replaced
by <~Px,Qy> (resolution plus subsequent subsumption).

Finally elaborate additional techniques can be employed, as for
example in:

<Pa,Qy> and <~Px,Qa,x#¥a>. The resolvent is <Qy,Qa,ata>. The
literal a*a is false in any interpretation and may hence be
deleted, i.e. a factor of the final resolvent is <Qa>, which
could be obtained immediately by erasing Px and x=a in the
parent.

The advantage of these replacement rules is that all the
intermediate steps are discarded and most importantly: these
reduction steps can be carried out prior to everything else, thus

taking the burden off the deductive machinery.

This is but one instance of a more general aim: a traditional
theorem proving system is confronted with a bewildering number of
possible deduction steps, most of which result in trivial symbol

manipulations and although these steps are necessary, they

84

clutter the view for the "essential logical" steps that actually
constitue the final proof. The general aim is to remove as many
trivial deduction possibilities from the view of the selection
mechanism of the Logic Machine and to build them into its hard

wired core.
Replacement Factoring

Just as a resolvent may subsume one of its parents, a factor may
subsume its parent and can be obtained by simply erasing the
appropriate literal of the parent in the first place. Similar

generalizations as above are possible.
Merge Resolution

If a clause contains two identical literals they may be merged
into one literal without effecting the truth value of that

clause. For example <Qa,Qa,Pf(x)> becomes <Qa,Pf(x)>.

The importance of merging can be seen more clearly in combination
with a resolution step:

For example the two clauses <~Py,Qa> and <Pa,Qa> resolve and
merge to the unit clause <Qa> (i.e. a shorter clause!). Such a
step is called a merge resolution and the realization of the
importance of merge resolution steps is - besides the realization
of the importance of unit clauses [WR64| - the second major
observation in the history of the field [AN68J: merging is the
"golden key" in the search for a proof.

6.3.9. T-Unification

Although the problem was mentioned earlier in the theorem proving
literature; it has been particularly clear since Robinson’™s paper
in 1967 [ROBG?J, that substantial progress would be achieved - in
fact "a new plateau" - if certain troublesome axioms could be

taken out of the database and "built into" the rules of

85

inference.

These axioms include the equality axioms, partial ordering,
(naive) set theory; or they may be simply the associativity,

commutativity or idempotency laws.

For certain axioms the resolution process yields a large number
of resolvents all of which - although they are syntactically

different - have the same meaning in the following sense:

If for example the axioms define multiplication and one axiom

states that multiplication is associative
f(f(x'Y)lz) = f(X,f(Y,Z))

the following situation might arise. Suppose some axioms contain

strings of multiplied constants, e.g.
f(f(f(f(a,b),d)e)q)

then resolution with the above formula will eventually produce

all possible combinations:

f(f(f(a,b),f(d,e)),q)
f(a,f(£(b,d),f(e,q)))
f(f(f(a,b),d),f(e,qg)) ... etc.

Since they are syntactically different the TP regards them as
different formulas, although semantically they denote the same

object in any interpretation.

A similar situation can arise for other axioms, and the storage
will be gradually filled with redundant clauses of this type.
This phenomenon has been referred to as "semantic noise".

86

However apart from the problem of the "semantic noise", i.e. the
fact that a whole equivalence class is unnecessarily computed,
there is also the problem that these axioms considerably enlarge
the search space, which is demonstrated in [SI75J using again the

case of associativity as an example.

Two different approaches towards a solution aiming at the "new
plateau" in ATP have emerged so far: either to build the axioms
into different inference rules [SL72| or to build the axioms into

the unification algorithm [PL72].

The first approach - adopted e.g. by Slagle in [SL72J - appears
to be rather weak, since the search space seems to be of the same
complexity as before and only a reduction in actual computation

time - the least important of all costs - is claimed.

The second approach has been adopted by many workers in ATP, and
provided some motivation for the growth of a theoretical field of
its own, concerned mainly with equational axioms (see [SSSZJ for

a survey).

Given two terms and an equational theory the unification problem
is to find substitutions for the variables such that these terms
become equal in the given theory. Suppose now that we have a T-
unification algorithm for a given theory T, which solves this
problem, then the axioms in T may be removed from the data base
provided the set of unifiers has the following property:

- all elements of the set are unifiers (correctness)

- all unifiers are represented by this set (completeness)

- the set satisfies a minimality condition (minimality)

Under these conditions the theorem prover is complete [PL72J and
based on this result many unification algorithms have been
developed. The following table summerizes the major results that
have been obtained for special theories which consist of

combinations of the following equations:

87

f(x,f(y,z))

C (commutativity) f(x,y) f(y,x)

D (distributivity) D: f(x,9(y,z)) = £(£f(x,y),£f(x,2))
D: f(g(x,y),z) = g(f(x,2),f(y,z))

H,E (homomorphism, endomorphism) ¢(xoy) = ¢(x)y(y)

A (associativity) f(f(x,y),z)

I idempotence f(x,x) = x

Abbreviations:

FPA: Finitely Presented Algebras
0G: Quasigroups

AG: Abelian Groups

H10: Hilbert”s 10 Problem

Sot: Second order terms
Hot: Higher order terms (i.e. > 3 order)

Theory Type Unification A
T of T decidable recursive

o] 1 Yes Yes Yes
A = Yes Yes Yes
C w Yes Yes Yes
I w Yes Yes Yes
A+C w Yes Yes Yes
A+I ? Yes ? No
C+I w Yes Yes Yes
A+C+I w Yes Yes Yes
D ®© ? Yes Yes
D+A 90 No Yes Yes
D+C ® ? Yes Yes
D+A+C L No Yes Yes
D+A+I ? Yes ? No
H,E 1 Yes Yes Yes
H+A o Yes Yes Yes
H+A+C w Yes Yes Yes
E+A+C L ? ? No

88

0G w Yes Yes Yes
AG w Yes Yes Yes
H10 ? No ? No
FPA w Yes Yes Yes
sot, ? No - -

T=0

Hot, 0 No - =

T=0

The column "type of a theory" indicates the cardinality of a
minimal set of unifiers and the column "A" says whether or not a
type conformal algorithm is known. The condition type conformal
is a slight weakening of the minimality condition.

For details see [SS82].

But two main problems remain when building these algorithms into
an automated theorem prover. The first one is that these
algorithms are only designed for one function symbol (which
defines the theory) and constants and variables. For example let
f be a commutative function, i.e. f(x,y) = f(y,x) then terms like
f(g(a),h(e,y)) are forbidden,

The second unsolved problem is the combination of several such
algorithms. The immediate intuitive approach of iteratively
invoking does not solve the problem as the following example

shows: let f be idempotent and g commutative. Given the terms

S g(f(a,y),9(x,y)) and t = g(g(c,a)y), the s and t are
unifiable with o = {y/a,x/c} but it is not apparent which

algorithm is to be invoked.

The following is a short report of what is implemented at the
moment and what is planned for the near future:

The unification module contains an algorithm for ordinary term-
unification and a fully integrated unification algorithm for
associative terms. In addition there are special algorithms and

data structures used for the computation in the connection graph.

89

We also have implemented but not integrated algorithms for the
following theories:
associality + commutativity, commutativity, idempotency,

commutativity + idempotency and assoc., + comm., + idemp.

The incorporation of the A+C-case into the Markgraf-Karl-
Refutation-Procedure is the most pressing task in the future,
since many algebraic structures like abelian groups, rings,
fields, lattices, sets and so on are defined with these two

axioms,

A special study is under way to compare the known R-unification
algorithms (i.e. for tree terms) with respect to the following
problems: (i) effeciency, (ii) applicability for the MRKP-system
and (iii) possible hardware realization.

Finally we intend to develop and incorporate heuristically
motivated unification algorithms that are not complete but
sufficiently efficient: some theories (like e.g. associativity)
are infinite, i.e. there exists in general an infinite set of
most general unifiers for two given terms. But even finite sets
of unifiers may be far too large to be practically computable or
else even if the finite set is reasonably small (as in the A+C-
case) the computation of this set is far too expensive. In all
these cases efficient methods to compute a heuristically
motivated subset of the whole set of unifiers have to be found.
The difficult part is not so much to find such methods, but to
gain enough experience for a practical evaluation, i.e. if the
increase in efficiency outweighs the loss of completeness.

90

6.3.10 Equality Reasoning

Introduction

The use of the equality axioms in a theorem prover based on
resolution has turned out to be very inefficient, since too many
additional resolution operations involving the equality axioms
are possible. This problem is well recognized whithin the field
(see [WR67), [RW69|, [s169]|, [M069], [BR75|, [SH78], [HR78],
[DI79]).

A way out is to directly incorporate equality into the proof
procedure. One of the various methods proposed with this aim in
mind is paramodulation, as described in 6.3.2: with one
additional rule of inference, the paramodulation rule, the
equaliy axioms become superfluous except for the reflexivity
axiom,

But paramodulation, i.e. the replacement of terms by equal terms,
can be applied almost everywhere in a clauseset and therefore
paramodulation alone still does not solve the problem of "how to
handle equality in an automatic theorem proving system".
Strategies or methods are required to control the enormous amount
of potential steps and to make sensible use of the paramodulation
rule.

A promising control mechanism may result from the "paramodulation
if needed" idea, which states that the paramodulation rule should
only be used to reduce differences between potentially
complementary literals, such that an inference step (by

resolution) becomes possible,

There are several methods known to realize the if needed idea
(e.g [sH78]|, [HR78]|, [DI79]. The most explicit realization of
which is Morris™ E-resolution [MO69].

An E-resolution step can be viewed as a sequence of
paramodulation steps such that two potentially complementary
literals become unifiable, followed by the appropriate resolution
step. This could be an optimal realization of the if needed idea

91

and potentially one of the best ways to handle equality in an
ATP, because equations are only used when needed, i.e. to remove
the difference between terms, which prevent their unification.
Furthermore the equations are only used if it is possible to

remove such differences completely.

An implementation of a proof procedure based on E-resolution
however is unfeasable without additional search and control

mechanisms, because two major problems remain:

(i) Equality of two terms with respect to the given set of
equations is undecidable, and therefore in general it is
impossible to continue searching for equations until the
potentially complementary literals under consideration are
unifiable (or definitely not unifiable). Hence the first problem
is to organize the search for equations and the application of E-
resolution in such a way, that the proof procedure is efficient
and complete. The proof procedure based on E-resolution presented
by Morris [M0O69| is designed to ensure completeness [AN70 | rather

than efficiency.

(ii) Before an E-resolution step can be executed, the necessary
equations have to be found and because of the enormous search
space an unsophisticated and exhaustive search for such equations

is prohibitively expensive.

In the following the essential ideas of the paramodulation-if-
needed paradigm and the ideas of the paramodulated clause graph
procedure (PCG-procedure) are combined by incorporating E-
resolution into the PCG-procedure. This combination provides an
efficient search procedure for possible E-resolutions, and a
control mechanism to direct the search for E-resolutions solving

the two problems (i) and (ii) mentioned above.

Paramodulation and resolution concern at most two clauses,

whereas E-resolution is a generalization of resolution which

92

involves many clauses, therefore new structures (called paths)
will be used to represent such macro-operations. A path repesents
a sequence of P-links and consists of the necessary information
to perform the respective macro-operation. During the search for
a proof it is possible to select links as well as paths for the
derivation of new clauses. ER-paths (E-resolution-paths)
representing possible E-resolution steps are defined such that an
ER-path connects two complementary literals and consists of the

equations which make both literals unifiable.

Using this definition, the above stated problems of E-resolution
may then be rephrased as:

(i) the integration of ER-paths into the proof procedure

(ii) the problem to search for ER-paths

Integration of Paths into the Proof Procedure

Just like R-links and P-1links paths should be searched for and
created right at the beginning, when the initial graph is formed,
and the information contained in a path should then be inherited
during the subsequent search for a proof.

But since the eguality of two terms is undecidable, not every ER-
path can be found in the initial graph. For that reason a new
link type, PER-1link (potential E-resolution link) connecting
potentially complementary literals is introduced. These PER-links
provide the toplevel information for the proof procedure to
search for the corresponding ER-paths, and during this search

three cases can occur:

a) All possible ER-paths corresponding to a PER-link are found.

b) It is detected that there does not exist an ER-path for a
given PER-1link.

c) The search for ER-paths has to be terminated because of space

or time limitations.

For each of these three cases different operations are performed:

93

a)

b)

c)

If all ER-paths are found, the PER-link is erased and replaced
by the ER-paths. All possible ways to remove the differences
between the literals connected by the PER-link are known now
and given by the ER-paths. If an ER-path is selected, the E-
resolution step corresponding to the ER-path is executed by
the proof procedure.

There exists no ER-path between the literals connected by the
PER-1link, i.e. the differences between the respective terms
cannot be completely removed and therefore the PER-1link is
deleted.

If the search is terminated and no (or not all) ER-paths are
found, the PER-link remains in the graph. If nevertheless a
PER-1link is selected by the proof procedure, then an operation
is executed to reduce the difference between the literals
connected by the PER-link using the information obtained from

the incomplete search.

PER-links are treated as a special case and are only used by the

global strategies as auxiliary links to control the search for

paths.

During the actual search for a proof ER-paths as well as PER-

links are inherited and used to compute new ER-paths and new PER-

links. Hence each ER-path used in the proof was already present

in

the initial graph or has been inherited from an initial ER-

path.

This method of using ER-paths has three main advantages:

(i)

ER-paths and PER-links contain important information for
global strategies which plan and control the whole search
for a proof. This information is particularily useful,
because it is already available at the beginning of the

proof.

(ii) An efficient handling of equality is possible, because the

search is done in the small initial graph only. Furthermore

only a few paths are found by inheritance.

94

(iii) Strong additional deletion rules are available, which
greatly reduce the potential number of paths as well as the
size of the graph. For example in case b) above the
deletion of a PER-link may lead to a pure clause (just as
in the usual clause graph proof procedure) causing the
wellknown snowball effect of deletions to start.

The Search for Paths Using Constraints

An unsophisticated and exhaustive search for ER-paths (i.e. for
E-resolution steps) is prohibitively expensive, because of the
very large search space, the size of which essentially depends on
the number of equations (ne) in the clauseset, on the average
number of subterms (ns) in a literal, and on the ratio (r) of
positive to total (i.e. positive plus negative) unification
tests. Finally it depends on the search depth (sd). A breadth
first search procedure, like that of Morris [M069| must execute
((2 * ne * ns * r)sd * 1/r) calls of the unification algorithm,
Also (2 * ne * ns * r)sd equality replacements have to be carried
"out in order to get all possible E-resolvents for one PER-1link.
For example if a clauseset has ten equations, on average five
subterms per literal and 10% of the unification attempts are

successful, then for a search depth of ten steps there are 1011

10 replacement

calls of the unification algorithm and 10
operations necessary. To worsen the situation, Morris [MO69J
observed that in a usual clauseset most PER-links do not have an
E-resolvent, thus most effort is spent in vain.

In order to obtain a practical search procedure, the enormous

search space has to be reduced somehow.

In the following we propose a reduction of the search space by
exploiting constraints, where the constraints use the information
contained in the P-links.

For a given clausegraph and a PER-link there are usually many P-

links connecting the effective equations and the two literals. If

95

these P-links are visualized graphically, certain structures
emerge, e.dg. an equality-chain as in the simple example 1. In
most cases the structure is a more complex equality-net as

example 2 demonstrates:

<Q a b>
<P a> ////////
// <da = f(b,c) >
<a = g(b) > //
/ <b = a» <c = e> <b = j>
<b = > \
| <E(a,&) = i>
<P g(c)> l ///////
<O i j»
Example 1 Example 2

An equality-net (EN) and a compatible equality-net are defined as
special graph structures of P-links. Each compatible equality-net
is an ER-path and represents a possible E-resolution step. Vice
versa for each possible E-resolution step there exists a
compatible EN in the graph, which builds the appropriate ER-path.
These conditions hold, because the PCG-procedure is complete
[sW79]. In order to find the ER-paths, the compatible equality-

nets must now be searched for.

To this end several conditions can be stated which are necessary
but not sufficient for the compatibility of an EN. Such
constraints are checked step by step drastically reducing the
search space. This method is known as exploiting constraints in

other fields of artificial intelligence.

The following examples show two reasons for the incompatibility

of equality-nets:

96

<P g(a) > <P a»>

{x «-—- a} /
<a = b>
g(x) = f(x)> \
{ x¢== b} <f(b) = c>
<P f(b) > /
<P ¢>
Example 3 Example 4

In example 3 the combination of P-link 1 and P-link 2 is
incompatible, because their unifiers {x «-- a} and {x +-- b} are
incompatible. In example 4 P-link 1 and P-link 2 are
incompatible: after paramodulation on link 1, link 2 cannot be
inherited to the paramodulant <P b>, since the access depth does

not coincide.
Some of the constraints to be used are:

(i) In a compatible EN all unifiers of the P-links concerned
must merge to one mgu (i.e. the unifiers must be

compatible, provided a proper variable renaming).

(ii) In a compatible EN: for each maximal equality-chain in the
EN the sum of all access depths must be equal to zero and

each partial sum must be less or equal to zero.

(iii) In a compatible EN, no chain of two links in the EN is
compatible, i.e. if an equality-chain of length 2 is
incompatible. (Note: incompatible is different from not

compatible).

The search procedure can be improved considerably by additional

constraints.
Although such constraints are very usefull, they are not

expensive to compute, for example only some integers must be

97

added to detect the incompatibility of an EN caused by condition
24

After the reduction of the search space the most promising ENs
are selected for a full compatibility test, and the surviving
candidates are used to build the ER-paths.

Summary and Future Plans

Paramodulation based on P-links is already incorporated into the
MKRP-system. The method to control the paramodulation steps as
outlined above is currently being implemented and evaluated on
the basis of the present findings. It is still to early however

to draw any definite conclusions.

6.3.11. Proofs by Induction

A survey of the Induction-Proof System is presented which is
currently under developement and partely implemented.

The System Language

For a system designed to prove theorems by induction, i.e.
proving theorems in constructives theories, it is a necessary
prerequisite that the objects under investigation are defined in
a constructive way. Hence each induction theorem proving system
must provide a system language which contains some kind of a
programming language, called the algorithmic sublanguage, to

allow
- the definition of well-founded sets, and

- the definition of functions and predicates (which operate on
these well-founded sets).

98

To express properties of the functions and predicates defined
using the algorithmic sublanguage, the system language has to
contain another sublanguage, called the logic sublanguage. The
algorithmic and the logic sublanguage constitute the system

language of an induction theorem proving system.

For the Karlsruhe induction theorem proving system we have chosen
the many-sorted first-order language PLL (see 6.3.1 and 6.6.2) as
the logic sublanguage, because the theories under investigation
are many-sorted and hence properties of functions and predicates
are most conveniently expressed in a many-sorted first-order
language [WAS82].

The logic sublanguage PLL is extended by the algorithmic
sublanguage, yielding the Predicate Logic Programming Language
(PL2), which is the system language of the Karlsruhe induction
theorem prover [WA83J. The algorithmic sublanguage consists of a
definition principle for well-founded sets and for functions and

predicates.

Well-founded sets are represented by structured sorts or
structures for sort. Structures are introduced by a so called

structure declaration.

Functions and predicates defined on the well-founded sets
represented by structures are introduced by a function
declaration or a predicate declaration respectively, i.e. a
definition principle which uses the techniques of functional

composition, definition by cases and definition by recursion.

The semantic of PL2 is defined by a mapping of PL2 expressions
into formulas of the logic sublanguage PLL, yielding the so
called definition formulas: Formulas of the logic sublanguage are
mapped into themselves. Expressions of the algorithmic
sublanguage are treated as abbreviations for the definition

formula of the respective expression.

99

Additionally each function and predicate declaration is
associated with a PLL formula, called the uniqueness formula,
which expresses that the intended function or predicate is unique

for each given input.

The recursion formula for a function or a predicate declaration,
is a PLL formula, which expresses that for a given well-founded

order relation the intended function or predicate will terminate.

Specification of the System

The induction theorem proving system can be viewed as a system
which maintains a sequence of PLL formulas, called the database,

whose conjunction represents a certain mathematical theory.

There are only two operations defined by the system:

- extend the data base by a new PLL formula
- remove the PLL formula most recently inserted from the data

base

However the system will not accept just any formula for extension
of its data base. The expressions given to the system have to

be admissible PL2 expressions:

- a structure declaration is always an admissible expression

- a function or predicate declaration is an admissible expression
if the associated uniqueness formula and (for some well-founded
order relation) the associated recursion formula can be proved
by the system using the conjunction of formula in the data base
as hypotheses,

- a PLL formula is an admissible PL2 expression if it can be
proved by the system using the conjunction of formula in the

data base as hypotheses,

100

For each PL2 expression given as input, the system has to
improve the admissibility of the expression. For each admissible
expression, its definition formula will be used to extend the

data base.

It can be shown, that by accepting only admissible expressions,
the conjunction of formulae in the data base is always

satisfiable.

Practical Implications

Using the specification of the last section, the induction
theorem proving system is used to define theories by extending
its data base by formulae which represent well-founded sets, by
function and predicates, which operate on these well-founded sets
and by formulae, which state properties about this function and

predicates.

The constraint to admissible expressions as input for the system
guarantee that the theory represented by the conjunction of the

formulae in the data base is always consistent.

To check the admissibility of a given input, two main problems

have to be solved by the system:

(1) find a well-founded order relation (if possible), such that
the recursion formula for a given function can be proved,

and
(2) prove the formulas involved with the admissibility tests.
Problem (1) is called recursion analysis: Using special
heuristics the system attempts to find a well-founded order

relation which guarantees the termination of the given function

or predicate.

101

Problem (2) splits into the following subproblems:
(2.1) Find adequate induction schemes such that the formula
obtained from the given formula by instantiations

suggested by the induction scheme can be proved without

induction, and

(2.2) influence the control of a resolution theorem prover such

that the formula thus obtained can be proved.
Conclusion
Presently the following problems have been solved:

- definition of the system language PL2 of the induction theorem

proving system

- implementation of a PL2 compiler

- developement and implementation of a “simplification”™ module
which transform PLL formulas to equivalent but simpler PLL

formulas. (This module is in particular useful to prove

uniqueness formulas)

The following modules are presently under development:

- the recursion—-analysis-module,

- a module which eliminates existential gquantifiers by skolem
functions for which constructive definitions are obtained using
techniques of program synthesis.,

- a control-module which performs the necessary interactions

between the induction system and the resolution theorem prover,

i.e. the logic machine of the MKRP-system.

102

6.3.12 Preprover

The preprover is part of the Domain Specific Preprocessors
mentioned in section 6.2 (see figure 2) and consists of

simplification techniques and fast decision methods.
The Nelson-Oppen Method for Combining Decision Procedures

In 1979 G.Nelson and D.Oppen [NO79j have developed a method for
combining decision procedures for several (disjoint) theories
into a decision procedure for the combination of the theories.
The method , which is applicable to gquantifier-free first-order
theories, is particularly useful for applications in program
verification. We have implemented a special version of the
method, which contains decision procedures for the following
quantifier-free theories: real arithmetic under addition and
order, the theory of equality with uninterpreted function symbols
and the theory of list structures under cons, car, cdr and atom.
The implementation thus constitutes a special theorem prover for
the combination of the above theories. Besides implementing the
prover we have also improved some theoretical results which are
relevant to the method and have given a rigorous proof of
correctness of the method, see [BA82a], [BA82b]|.

The Nelson-Oppen method is based on a specific kind of
interaction between the individual decision procedures which have
to be combined. Roughly speaking, interaction takes place by
"propagating equalities", that is, all equalities between
variables which are found to be a logical consequence of a given
formula by one decision procedure are transmitted to all other
decision procedures. Practical experience has shown that the
capability of the individual decision procedures to detect the
relevant equalities in an efficient way, heavily influences the
efficiency of the overall method. Therefore we have extended some
of the decision procedures, which are contained in our prover, in

an appropriate way in order to achieve a better performance of

103

the general proving procedure.

Work has now been undertaken in implementing and including a
decision procedure for the theory of arrays under store and
select, We also plan to include further decision procedures for
theories which are useful for application in program
verification. Consideration will also be given to developing

methods for using the theorem prover as a simplifier.

The Simplifier of King

In order to prove theorems that are generated mechanically by a
VCG, King developed a powerfull special purpose simplifier for
arithmetics [KI69].

The simplifier consists of four parts:

(i) the computation of canonical arithmetical terms and of

standarized equality and unequality relations.

(ii) a satisfiability test for systems of equality and
unequality relations which also reduces the number of

relations in the system.

(iii) logical reductions like subsumption working on the
conjuncts of the disjunctive normal form of the

theorem,

(iv) a linear solver working on linear relations using

methods of linear algebra.

A handsimulation of the simplifier together with the
truthfunctional reduction method to be described below for the
case of a sorting program (and others), has demonstrated the

extrem usefulness of this combination: Allmost all verification

104

conditions were proved and the remaining ones were substantially
simplified. Furthermore the transformation of arithmetical
expressions and relations into normal forms eases the work of

other theorem provers to be carried out afterwards.
Truthfunctial Reduction

In order to prove a theorem of the form A-B *» A-C we may simply
prove A.B + C instead. Calling reductions of this kind
truthfunctional reductions, they may be extended to quantified

subformulae also:

For example in
(ALL x A) ~+ B

A may be reduced to A" and if x does not occur in A~ then
A" -+ B
may be further reduced.
In combination with the King simplifier of the previous paragraph
these truthfunctional reductions become a powerfull technique for

the simplification of mechanically generated theorems.

At the moment there exists a simplifier for arithmetical
relations and expressions, it reduces expressions and relations
with constant arguments and tries to simplify arithmetical
expressions and relations containing variables as much as

possible.

The implementation of the King simplifier and the truthfunctional

reduction method is under way.

A Production System for the Control of the Simplifiers and Fast

Decision Procedures

Simplifiers or fast decision procedures work satisfactorily only

if they are applied to problems of appropriate kind. It is

105

therefore desirable to control the order of their application
automatically. For that reasons the call of the most appropriate
decision or simplification component is to be carried out by a
production system (similar to the selection module, see 6.4),
which states the criteria of applicability in its conditional

part.

6.4. The Logic Machine

The logic machine (LM) of the MKRP is an automated theorem prover
for a sorted first-order calculus and consists of the selection
module and the logic engine. The selection module embodies the
control and selection functions that govern the behaviour of the
logic engine, a traditional theorem prover based on an extension

of Kowalski”s Connection Graph Proof Procedure.

We shall now depart from this conceptual point of view and
present the system (May 1983) using the flow of control as a

guiding line.

A typical session, after starting and initializing the MKRP
system, begins by typing in some axiom and theorem formulas. If
all formulas are accepted by the system, the user types in OK and

the search for a proof commences.

Further progress is controlled by the control module and is
divided into the main phases, each of them with several

subphases:
Phase 1l: Preprocessing
- Conversion of the formulas into clausal form and
construction of the connection graph.

-~ Application of the simplification rules to the

formulas.

106

Phase 2: The deduction loop

- Selection and execution of a resolution,
paramodulation or factorization step, and
- Reduction of the graph until certain break off

conditions come true.

If it is possible to split the formulas into several smaller
pieces and the option GEN:SPLITTING is not NIL, some steps of
phase 1 and the deduction loop are performed for every single
split part. The proof of the original theorem is assumed to be
correct only after the system has found a refutation for every

split part.

These major phases, summarized in fig.l, are now sufficiently
elaborated in order to understand why the logic machine makes a
particular step in a particular situation and to enable the user
to set and apply the control options. Although the default values
of these control options are preset in an "optimal" way, they are
of course not optimal for every theorem and some knowledge about
the mechanism they are controlling is a prerequisite for a manual
setting, which is advantageous in exploiting the whole power of

the system,
A complete description (at the implementational level) is outside

of the scope of this report, at the end of this section, however

the major modules are mentioned and summarized in fig.6.

107

— -
X ot

[INITIALIZATION]

v
[ADJUSTMENT OF THE OPTIONS]

Y
[FORMULA EDITING AND COMPILATION]

Y
[PRESIMPLIFICATION|

Y
[NORMALIZATION]

4
(CONNECTION GRAPH CREATION|

Y
[SIMPLIFICATION

/
LINK SELECTION

DEDUCTION STEP REDUCTION STEP

No L _{ONE OF THE TERMINATION CONDITIONS IS TRUE]

Yes

Yes No

[MORE SPLIT PARTS?}——————> S T O P

Figure 1l: Flow of Control

108

6.4.1 Preprocessing

The initial formulas given to a theorem prover are usually highly
redundant - in particular when they are automatically generated,

for example by a verification condition generator.

Secondly the use of the connection graph prover with its
extensive and expensive selection procedures is sometimes like
using a steamhammer to crack a nut: the theorem may be just too

simple to activate the whole machinery.

For these reasons elaborated simplification and fast special
purpose theorem proving techniques are called upon, before the

logic machine is activated.
The actual programs of the preprocessing phase are located within
the modules PRESIMPLIFICATION, NORMALIZATION, SIMPLIFICATION and

CONSTRUCT, all of which are coordinated by the CONTROL module.

6.4.1.1 Preprover

This module which is still under developement, is planned as a
special expert system, containing simplification techniques for
arithmetic, logical expressions, equalities and inequalities, set
theory and others. Fast special purpose decision methods, as
discussed in 6.3.10 are employed to either proof or at least

reduce the initial formulas.

If the theorem has not been proved the reduced and simplified set

of first-order formulas is passed on.

6.4.1.2 Normalization and Splitting

The formulae remainig after simplification, which are already in
prefix form, are now converted in skolemized conjunctive normal
form subject to various optimization techniques. As a result

109

there are two sets of variable disjoint clauses: the axiom

clauses and the theorem clauses.
If the option GEN:SPLITTING was set to TRUE or to a natural
number the variable disjoint parts of the input formula are split

into several sets of clauses , which can be proved independently
[F183].

Example:
A theorem NOT [(A OR B) AND (C OR D)
(after negation)

is split into the two parts

NOT (A OR B), NOT (C OR D)
And a theorem NOT [A IMPL (B AND C)| (after negation)
is split into NOT (A IMPL B), NOT (A IMPL C)
The algorithm is optimized for getting a maximum number of split

parts with a minimum number of clauses.

6.4.1.3 Clause Simplifications

The resulting set of clauses is further simplified according to

the following rules:
Deletion of Tautological Clauses

A clause containing two literals which have

different signs
- the same predicate symbols and
- corresponding term lists, which are equal under a given theory

is recognized as a tautology.

110

Example: <NOT P(a), P(a), Q(x) > is a tautology
<NOT P(f(a,f(b,c))), P(f(f(a,b),c)), 0Q(x) > is a
tautology, if f has the attribute "associative"
If R is a symmetric predicate:
<NOT R(a,b), R(b,a), Q(x) > is a tautology too.

A clause containing a literal of the form R(tl, t,) with t; equal
to t, under a given theory is recognized as a tautology too, if R

is a symmetric predicate.

Example: <g(a) = g(a), Q(x) > is a tautology.
<rR(f(a,f(b,c)),f(f(a,b),c)), 0(x) > is a tautology if R

is reflexive.
Deletion of Multiple Literals

Two literals are recognized as identical and one of them is

erased if they have

- the same sign
- the same predicate symbol
- corresponding term lists, which are equal under a given theory

Example: If f is associate and P is symmetric in
<P(a,f(X,f(y,Z))), P(f(f(le)rY)Ia) >
then the second literal is erased.

Deletion of Reflexive or Irreflexive Literals

Suppose the predicate R denotes a reflexive [irreflexive]| binary
relation. Now if the literal R(t;rt,) occurs in a clause and t,
is equal to t2 under a given theory T, then this literal is false
and hence may be deleted. If the clause was a unit, all further
processing is stopped with the theorem proved.

The literal t; = t, is but a special case of this rule and may

hence be deleted.

111

Replacement Factoring

A clause may be subsumed by its own factor.

Example: <P(x), P(a), P(b) > has a factor:
<P(a), P(b) >, which subsumes its parent.

A literal L in a clause C is recognized as a factorization
literal and immediately removed if there is a second literal M in

C that can be factored, i.e.:

L and M have the same sign

L and M have the same predicate symbol

- there is a matcher p such that pL=M

- for any other literal K in C, which is affected by p:

pK is either FALSE (contradicts the reflexivity or
irreflexivity) or else is equal to another literal, which is

not affected.

6.4.1.4 Construction of the Connection Graph

Once the clause simplification is finished the following steps

are performed:

- The generation of the axiom graph, i.e. the search for and the
construction of the links between the axiom clauses.

- The initial reduction of the axiom graph.

If there are more than one split parts of the theorem, the axiom
graph is saved automatically and then for every split part of the

theorem:

- The theorem clauses are connected to the axiom graph, i.e. the
links between the theorem clauses and axiom clauses are drawn.

- A graph simplification and an

- Initial reduction of the entire graph are performed.

112

Initial Reduction of the Axiom Graph

The reductions described below as well as the deletion of

tautologies may be switched on and off by setting the following
options to TRUE or NIL:

RED: PUR.INITIAL RED:PUR.CLAUSES .INITIAL
RED: TAU.INITIAL RED:TAU .CLAUSES.INITIAL
RED: SUB.INITIAL RED:SUB.CLAUSES .INITIAL

Depending on the adjustment of these options the following

reductions take place:

(i)

(ii)

(iii)

(iv)

Clause subsumption (RED:SUB.CLAUSES .INITIAL)
Elimination of clauses which are subsumed by other
clauses, see section 6.3.3

Link tautology (RED:TAU.INITIAL)
Elimination of R- and P-links which would generate a
tautological resolvent of paramodulant, see section
6.3.4

Link subsumption (RED:SUB,INITIAL)
Elimination of an R-link the resolvent of which would be
subsumed by an already existing clause, see section
6.3.3

Link purity (RED:PUR.INITIAL)
Elimination of R- and F-links the resolvent resp. factor

of which would be pure, see section 6.3.4

Graph Simplification

After the theorem clauses are connected to the axiom graph, the

complete graph (with axiom and theorem clauses) is further

simplified by:

(v)

Purity

113

Every clause containing a predicate symbol which does not occur
with opposite sign in any of the other clauses is removed from

the graph.

Note: A literal may be connected by a P-link -{i.e. it is not
pure in the sense defined belowl}- although there is no

literal with opposite sign and the same predicate symbol.
(vi) Deletion of Isolated Partial Graphs
This simplification is performed if

- there is at least one theorem clause and
- there is no equality literal in the graph.

In this case clauses are deleted, if they are completely
separated from the theorems, i.e. no resolution with a theorem
clause is possible. This deletion rule preserves completeness
only if the axioms are satisfiable (which at this stage we always

assume to be the case).

Example: AXM1 <NOT P(b) NOT S(a)>
AXM2 < P(b) S(x)>
AXM3 <NOT R(a)>
AXM4 < R(x) Q(a)>
THM1 < NOT Q(x)>

AXM1 and AXM2 are removed.

Initial Reduction of the Entire Graph

Now the four initial reductions for the axiom graph mentioned
aboved are applied again to the entire graph. Additionally, a
fifth reduction is performed, which could not be applied to the
axiom graph alone, because of the missing links to the theorem

clauses:

114

(vii) Clause Purity (RED:PUR.CLAUSES .INITIAL)
Elimination of clauses with at least one literal which

is not connected by at least one R- or P-link.

Once all the above operations are performed the initial graph
construction is finished and the search for a proof commences.

This search for a proof is done in the following deduction loop
and the first essential step to be carried out in this loop is a
call to the terminator (see 6.3.5) to see if an easy proof can be
found within a predefined complexity bound. If a proof can not be
found so easily, the actual search is started.

6.4.2 The Deduction Loop

The selection of the most appropriate resolution, paramodulation
or factorization step as well as the decision when certain
reduction rules are to be applied are a central issue of the MKRP

system,

The selection module is organized as a production system and
consists of a number of rules (which are called operation blocks)
of the form:

CONDITION + ACTION
These rules (operation blocks) are ordered and the first rule in
-this order, whose condition becomes TRUE, takes over control and

performs a chain of correlated deductions.

More specifically, each operation block consists of the following

three key functions:

(i) The update function
This function permanently watches the changing
connection graph and updates the internal information

necessary for its operation block; in other words each

115

(ii)

(iii)

production has a local memory, which can be read and

updated.

The activate function

The activate functions of the blocks are called in a
fixed order at the beginning of the deduction loop and
immediately after the currently activated operation
block has released control. The first activate function
which returns a positive value, determines that its
operation block shall take over control for the néxt

steps.

The 'execute function
This function actually selects the links to be operated

upon and the particular reductions to be performed.

The following paragraphs describe the currently implemented

operation blocks in the same order as their activation functions
are called initially, the overall flow of the control is however

data driven by the actual state of the graph and may of course be

entirely different.

6.4.2.1

Factoring

a)

b)

c)

Activation condition:

There is at least one F-link in the graph.

Deductions:

All F-links in the current graph are worked off.

Reductions:

The executed F-links are removed after each step. The clause

reduction rules are applied to the factors only after the

last F-links has been removed.

116

d)

6.4.2.2

User control:

Factorization of the initial graph is switched on by setting
the option FAC:INITIAL to TRUE.

Factorization during the subsequent steps is switched on by
setting FAC:EACH.STEP to TRUE.

Remark: As long as any of the other operation blocks is

active, no factorization is performed.

Graph Reduction

Deductions which generally reduce the size of the connection

graph or else are for other reasons important enough to be

carried out immediately are given a favoured status with high

priority.

a)

Activation conditions:
There is at least one R-link which satisfies at least one of

the following conditions:

- Both parent clauses are pure after resolution upon this

link (i.e. they can be deleted).

The resolvent subsumes one of the parent clauses
(replacement resolution, i.e. the parent is deleted).

One parent clause is a unit clause and the other one
becomes pure after resolution upon this link, (i.e. the
resolvent replaces the parent clause and has fewer
literals).

Resolution upon this link is a merge resolution, such that
the resolvent has fewer literals than either of the

parents.

Remark: These conditions are tested only once for every 1link, so

the purity conditions which may change during the
progress of the proof are not always recognized.

117

b) Deductions:
All favoured R-links are worked off.
c) Reductions:
At each step the clause reduction rules are applied.
d) User control:
None.
6.4.2.3 Term Elimination
a) Activation conditions
There is at least one unit equality clause in the graph,
satisfying one of the following conditions:
- The form of the clause is
constant = term
and the constant does not occur in the term,
- The form of the clause is
f(X1r +os +X,) = term
and the function symbol f does not occur in term and no
theory is defined for f.
With such an equation every occurrence of the constant or
function symbol can be eliminated in the entire graph,
subject to the proper sort relationships.
b) Deductions:

The paramodulations necessary to eliminate constant and
function symbols satisfying the conditions given in a) are

carried out.

118

c)

d)

Reductions:

Each time such an equation has been worked off, the equation
and every parent (of the paramodulant thus generated) is
removed from the graph.

The remaining paramodulants are reduced.

User Control:

None.
Example: AXM1 <P(cl) OQ(cl) 0Q(c2)>
AXM2 <cl = c2>
AXM1 + AXM2 = PAR1 <P(c2) 0(cl) Q0(c2)>
PAR]l + AXM2 = PAR2 <P(c2) 0Q(c2)>

AXM1, AXM2 and PARl are removed.

(Notice: Each clause is paramodulated only once).

Remarks:

6.

Due to missing P-links in the current implementation, it is
possible that not all occurrences of the constants or functions

are eliminated.

The treatment of functions for which theories 1like
associativity etc. are declared is not yet implemented:
In order to preserve completeness one has to insert a clause

which expresses the theory and to paramodulate this clause too.

4.,2.4 Terminator

The terminator is a separate module, which is called by the

selection module and finds a refutation for a unit refutable

clause set (see section 6.3.5). The terminator operation block

119

within the selection module determines when the terminator has to

be activated and it processes the output of the terminator

module.

Three options influence the flow of control within the

terminator:

(i) STR:TERM.DEPTH

If this value is set to a natural number, no unit clauses
with a term list deeper nested than this number are

internally generated.

(ii) TERM.ITERATIONS

This number determines how often a non-unit clause is
examined for a terminator situation.

Remember that a first examination of a clause might fail,
but a second or third one succeed because in the meantime
new unitclauses may have been generated during the
examination of the other clauses.

If TERM:ITERATIONS is equal to zero, no new unitclauses
are generated and only the one level terminator situations

can be found.

(iii) TERM:UNITS

The effect of this option is explained below.

The terminator operation block within the selection module

consists of:

a)

Activation condition:

Case 1: TERM: ITERATIONS = 0

Because this is a very fast operation mode for the
terminator, it is called after every resolution step and
takes over control immediately once a terminator situation

has been found.

120

b)

c)

d)

Case 2: TERM: ITERATIONS > O

This is a more time consuming operation mode for the
terminator used only for difficult examples. The module is
called at the beginning of the proof and is called again
whenever at least three clauses are generated by other
operation blocks (and are not subsequently removed by

reduction operations).

Deductions:

If a terminator situation has been found, the corresponding
resolution steps are performed.

If a terminator situation has not been found, but some
unitclauses can be calculated, the action to be taken
depends on the option TERM:UNITS:

TERM:UNITS = NIL
The result of the terminator is ignored and control is

released.

TERM:UNITS = TRUE
The resolution steps which generate the unitclauses as

proposed by the terminator are performed.

Reductions

Intermediate results, i.e. those non-unit clauses, which are
necessary to deduce unitclauses are deleted. In the
TERM:UNITS = TRUE mode, the reduction rules are then applied

to the remaining new clauses.
User control:

Adjustment of STR:TERM.DEPTH, TERM:ITERATIONS and
TERM:UNITS.

121

6.2.4.5 Term Rewriting Rules

A unit equality clause tl := t2 resp. tl =: t2 (formulated with

the special equality symbol := resp. =:) is treated as a rewrite

rule

(see 6.3.9). Each P-link connected to the side of the

equation marked by the colon is worked off as soon as possible.

a)

b)

c)

d)

Activation condition:
There is at least one P-link, not marked "inhibited" and
connected to the marked side of unit equality clause (with a

one-way unifier).

Deductions:
Every paramodulation step, which uses this equation as a
rewrite rule (or demodulator) is performed.

Depending on the options

STR:P .CONFLUENT = TRUE
STR:P .CONFLUENT = NIL
a normal form is computed or not.
Reductions
Case 1: Option STR:P .DEMODULATION = NIL
all paramodulants are reduced.
Case 2: Option STR:P .DEMODULATION = TRUE

the parent clauses and the intermediate results
are removed from the graph and the remainig new

clauses are reduced.
User control:

Usage of the special equality signs := or =: in the input
language and adjustment of the option STR:P.DEMODULATION.

122

Example: AXM1: <R(f(y))>

AXM2: <P(f(f(a))) OQ(f(f(b)))>
AXM3: <E(f(x)) := x>

AXM2 + AXM3 = PARl: <P(a) Q(f(f(b)))>

PAR1 + AXM3 = PAR2: <P(a) OQ(b)>

TRUE AXM2 and PAR1 are removed.

If STR:P.DEMODULATION
(Notice: No clause is paramodulated more than once).

Side effects:

P-links connected to the other not preferred side of the equality
literal are marked "inhibited". All P-links connecting the
preferred side of the equality, but marked with a unifier (i.e.
not a one-way unifier) are also inhibited. For example the P-link
between AXM3 in the above example is inhibited for rewriting
purposes. These inhibited links may only be selected for term

elimination purposes.

6.4.2.6 Literal Rewriting Rules

A similar type of rewriting, not for terms, but for whole
literals is handled in this operation block. For example:
P(f(x)) : IMPL P(x) 1is a candidate for these reductions, where
the left hand literal is replaced by the right hand one.

a) Activation condition:
A clause is marked as literal rewrite rule, if

- the clause consists of exactly two literals

- the predicate of both literals are equal

- the literals have opposite signs

- one of the literals is marked preferred by a colon.

If there is such a clause and an R-link connecting the preferred

literal (with a matcher), the operation block is activated.

123

b) Deductions:
All resolution steps necessary to rewrite this literal are
performed.

c) Reductions:

Case 1: STR:R.DEMODULATION = NIL

all resolvents are reduced.

Case 2: STR:P.DEMODULATION = TRUE
the parent clause and intermediate results are

removed, the remaining new clauses are reduced.

d) User control:
- Marking literals as "preferred" is indicated in the input
language by writing :IMPL :AND OR: etc.
- Adjustment of the option STR:R.DEMODULATION.

Example:
Input language P(f(a)) AND P(£f(b))
ALL x P(f(x)) :IMPL P(x)
Clausal form: AXM1: <P(f(a)) P(f(b))>

AXM2: <NOT P(f(x)) P(x)>

AXM1 + AXM2
RES1 + AXM2

RES1 <P(a) P(f(b))>
RES2 <P(a) P(b)>

If STR:P.DEMODULATION = TRUE, AXM1l and RES1l are removed.
Side effect:

All R-links connecting such a literal rewrite rule which are not

preferred are marked "inhibited".

124

6.4.2.7 Conditional Term Rewriting Rules

This is a combination of term rewriting rules and deduction rules

as explained below.

A clause is marked as "conditional term rewriting rule", if

- the clause consists of at least two literals

- one literal is a term rewriting rule as explained above.

- all other literals are marked preferred.

Example:

a)

b)

c)

d)

All x,y P(x) AND Q(f(y)) :IMPL g(x y) := ¢

Activation condition:

- There is a P-link connecting the preferred side of the
equation.

- Every preferred literal is connected via an R-link to a
unitclause.

- The unifiers of these R-links are compatible with each
other and with the matcher of the P-link.

Deductions:
The literals representing the conditions areresolved away

and afterwards the term rewriting is performed.

Reductions:

The reductions of the resolvents depend on the option
STR:R.DEMODULATION and the reductions of the paramodulants
depend on STR:P.DEMODULATION as described below for the

deduction rules and term rewriting rules above respectively.

User control:
Adjustment of STR:R.DEMODULATION and STR:P.DEMODULATION and
by the usage of the colons in the input language.

125

Example:

Input language: All x,y P(x) AND Q(f(y)) :IMPL g(x y) := C
P(a) AND Q(£f(b))
R(g(a b) ¢c) OR R(c g(a b))

Clausal form: AXM1l: <NOT P(x) NOT Q(f(y)) g(x y) := o
AXM2: <P(a)>
AXM3: <Q(f(b))>
AXM4: <R(g(a b) c) R(c g(a b))>

AXM1 + AXM2 = RESl: <NOT Q(f(y)) g(a y) := c>
RES1 + AXM3 = RES2: <g(a b) := c>

RES2 + AXM4 = PARl: <R(c c) R(c g(a b))>

RES2 + PAR1l = PAR2: <R(c c)>

If STR:R.DEMODULATION = TRUE then RES1l is deleted.
I1f STR:P.DEMODULATION = TRUE then PARl is deleted.

Side effects:
All other R- and P-links connecting the conditional term
rewriting rule which do not satisfy the conditions given in a)

are marked "inhibited".

6.2.4.8 Deduction Rules

A clause is marked as a deduction rule, if

- the clause consists of at least two literals

- at least one but not all literals are marked preferred.

a) Activation condition:
Each preferred literal in a deduction rule is connected via
an R-link to a unit clause and this set of R-1links is

compatible.

126

b)

c)

d)

Deductions:
The set of compatible R-links to unitclauses resp. their

descendants is worked off.

Reductions:

STR:R.DEMODULATION = NIL

Once the set of R-links has been worked off, the new
resolvents are reduced and the intermediate clauses are
kept.

STR:R.DEMODULATION = TRUE v
Intermediate clauses are removed and the remaining clauses

are reduced.

User control:
adjustment of STR:R.DEMODULATION and the usage of the

junctor symbols with colons to mark a formula as a deduction

rule.
Example:
Input language: P(a) AND Q(a) :IMPL R(b)
All x P(x) AND Q(a)
Clausal form: AXM1l: <NOT P(a) NOT Q(a) R(b)c«

AXM2: <P(x)>
AXM3: <Q(a)>

AXM1 + AXM2
RES1 + AXM3

RES1: <NOT Q(a) R(b)>
RES2: <R(b)>

If STR:R.DEMODULATION = TRUE, RES1 is removed.

127

6.4.2.9 Refinements

This is the last operation block, which is activated only if none
of the other blocks is in control.

Classical refinement strategies like set-of-support, linear etc,
are simulated in this block by classifying the R- and P-links as
active or passive depending on the actually chosen strategy. Only
one of the classified R- or P-links is selected and control is

then released again.

a) Activation condition:
The activation condition is always TRUE.

b) Deductions:
Only one resolution or paramodulation.

c) Reductions:
The resolvent resp. paramodulant is reduced.

d) User control:
- Selection of the resolution strategy STR:RESOLUTION and
paramodulation strategySTR:PARAMODULATION.

Resolution Refinements

The following is a listing of the refinements that are

implemented so far, further extensions are planned.

BASIC

All links are marked active such that the selection mechanism

described above cause a breadth first search.

User option: STR:RESOLUTION = BASIC

128

SET-OF-~SUPPORT

Case 1: There is no theorem clause:
The strategy is switched to BASIC.

Case 2: There is at least one theorem clause:
All theorem clauses of the initial graph are assumed to
be in the set of support. Hence all R-links between
axioms are marked passive and those between axioms and
theorem clauses are marked active., Later on all new
clauses derived from at least one supported parent are
put into the set of support and the R-links connecting
to them are marked active. All other links are marked

passive.
LINEAR

All R-1links connecting the top clause are marked active. During
the following deduction steps the active links are passivated and
the links connecting the new clauses are activated resulting in
a linear deduction chain. If no active link is available, for
instance because the newly deduced clause is a tautology and
removed from the graph, a backtracking mechanism reactivates one

of the formerly created clauses.

The LINEAR resolution strategy interferes with the
paramodulation strategies and activates only the P-links for the
top clause.

The top clause of the LINEAR strategy is either user defined by a
concatenation of "LINEAR", with the printname of the top clause
or else is asked for by the system.

Example: STR:RESOLUTION = LINEAR.THM2" (or L.THM2)
defines THM2 as top clause.
If the user does not know the printname before starting
the proof, he may use STR:RESOLUTION = LINEAR and the

129

system prints the clauses and then asks for the top

clause.

UNIT

All R-links connecting unit clauses are activated, the other
links are passivated.

User option: STR:RESOLUTION = UNIT

Combined Resolution Refinements

UNIT RESOLUTION prunes the search space considerably, but
unfortunately it is not complete for all clause sets. For this

reason, the user can define strategies:

STR:RESOLUTION = U-SOS
STR:RESOLUTION = U-B
STR:RESOLUTION = U-L

saying "if the clause sets is Horn renamable then UNIT
RESOLUTION, else SET-OF-SUPPORT" (resp. BASIC or LINEAR). The
clause set is then automatically tested weather it is Horn
renamable, i.e. unit refutable, using a fast technique proposed
in [LE78], and the actual strategy is adjusted according to the
result of the test.

Paramodulation Refinements
Equality reasoning is a top-level module of its own and is
currently being developed as described in 6.4.1. For that reason

we only present the few rudimentary facilities that remained

permanently within the logic engine.

130

NONE

All P-links are passivated. Hence, as long as any active R-1link
is available, no paramodulation is performed.

User option: STR:PARAMODULATION = NONE

REWRITE

If this option is taken a unit equality clause is automatically
defined as a rewrite equation if the term size of one side of the
equation is larger than that of the other side. P-1links
connecting a unitclause to the larger side of the equation (with

a matcher) are activated, the other ones are passivated.
User option: STR:PARAMODULATION = REWRITE
UNIT ANCESTRY

P-links between a unit equation E and a unit clause, of which
none of the ancestors is E itself, are activated, the other ones
are passivated.

This strategy allowes to deduce copies of each unitclause under a
given equation, but paramodulation into the descendant of such a

copy (by the same equation) is suppressed.

Example: AXM1 <NOT Q(b)>
AXM2 < Q(x) OR P(a)>
AXM3 < a= f(a)>
AXMA4 <f(x) = g(c)>

AXM1, AXM2 = RES1 <P(a)>
RES1, AXM3 = PAR1 <P(f(a))>
PARl, AXM4 = PAR2 <P(g(c))>

The last two paramodulation steps are performed by this strategy,

131

but further paramodulation steps with PAR1 producing
<P(f(f(a)))>, <«P(f(f(f(a))))> etc. are suppressed.

6.4.2.10 Deletion Steps

The following deletion operations, which have all been explained
above, can be (dis)activated by setting the option keys to NIL or
TRUE :

Clause purity RED:PUR,.CLAUSES .EACH.STEP
Clause subsumption RED:SUB.CLAUSES .EACH.STEP
Clause tautology RED:TAU .CLAUSES .EACH.STEP
Link tautology RED:TAU .EACH .STEP
Link subsumption RED:SUB .EACH.STEP
Link purity RED:PUR.EACH.STEP

If the options are set TRUE the reductions are processed as
described in 6.4.1.1 and 6.4.1.4.

All the clause simplifications of 6.4.1.3 are also performed as

soon as a new clause is generated.

6.4.2.11 Resolution of Conflicts

A clause may fulfill several of the above requirements resulting
in a conflict of which operation is to be performed. For this
reason the clauses in the initial graph as well as every deduced
clause are classified according to the following priority

hierarchy:
1. eliminating equation

2. conditional term rewrite rule

3. term rewrite rule

132

4, literal rewrite rule

5. deduction rule

Hence, for instance, a clause satisfying the conditions for a
literal rewrite rule as well as for a deduction rule is

classified as a literal rewrite rule.

The refinement operation block classifies the R- and P-links as
"active" and "passive". It depends now on the actual resolution
strategy which of these links is selected for the next deduction
step. To this end the list of active R-links is sorted according
to unit preference strategy, i.e. the link with smallest link
depth as first criterion and fewest number of literals in the
resolvent as second criterion is the one with the highest
priority. If the resolution strategy is LINEAR, the passive links
are sorted such that backtracking is simulated.

The link to be operated upon is selected in the following order:
Case 1: The resolution strategy is not LINEAR

1. The first one in the list of active P-links.
2. The first one in the list of active R-links.
3. The first one in the list of passive P-links.

Case 2: The resolution strategy is LINEAR
1. The first one in the list of active R-links.
2. The first one in the list of active P-links.
3. The first one of the passive R-links.
4, The first one of the passive P-links.

There is an additional test to be performed at every step,
depending on the options STR:TERM.DEPTH and STR:LINK.DEPTH, both
of which can be set to NIL or to a natural number,

If STR:TERM.DEPTH is set to a natural number N, all R- and P-
links generating clauses with terms lists deeper nested than N

are marked "inhibited" in order to avoid the creation of very

133

deeply nested term lists.

Example: STR:TERM.DEPTH = 1
<P(x) O(f(x))>
x/f(a) ===)> Q(f(f(a)))>

<NOT P(f(a))>
The term depth of f(f(a)) is 2 (maximum number of nested

functions), so this resolution step would be suppressed.

If STR:LINK.DEPTH is set to a natural number, all R- and P-links
with a link depth greater than this number are marked "inhibited"

too.

The link depth 4 is defined as follows:

Links between clauses in the initial graph have the link depth
d(L) = 0. For all other links L:

d(L) = 1 + max(d(L1l), d(L2))
where L1 and L2 are the links which generated the two clauses
connected by L.

6.4.2.12 Termination of the Loop

The processing is terminated with positive result, if a

refutation is found, i.e. the empty clause has been deduced.

It is terminated with negative result, if one of the following

conditions come true:

(i) The number of deduction steps exceeds the boundary value
GEN:MAXIMUM.STEPS.

(ii) The graph is collapsed, i.e. all clauses are removed.

134

(iii) The strategy operation block is activated, but there is
no active link (resp. passive P-link) available. (LINEAR
strategy still works with passive links).

Two additional functions are permanently watching the graph and
may intervene regardeless of the currently activated operation

block:

(iv) As soon as an R-1link between two unitclauses 1is
generated, a refutation is found and the first of these
functions will notice that fact and terminate with

positive result.

(v) An unsatisfiable clause set has at least one positive
clause (a clause with only positive literals) and at
least one negative clause.

If this condition is not fulfilled, either in the
initial graph, or later due to the deletion of some
clauses, the second function will stop all further

processing and terminate with negative result.
Finals Remarks:

The classification of the links as active and passive is only
respected by the refinement operation block. All other blocks
‘ignore this classification.

For example, if the resolution refinement is SET-OF-SUPPORT, the
reduction blocks may nevertheless force a resolution step with
two axiom clauses. In this case however, the resolvent is not
inserted into the set of support. In other words, the refinements
do not provide the most important information, but are only taken
into account if nothing else is against it, i.e. even with the
strategies switched on, the system is not a "classical" theorem

prover.

Resolution upon passive R-links is generally forbidden in the

135

refinement operation block (except for LINEAR strategy), because
we assume that the completeness results for the refinements
(which hold for ordinary resolution) are also valid for the
connection graph procedure. Our paramodulation strategies however
are not complete, therefore we allow paramodulation upon passive
P-links too. Hence, "passive" P-links are not really passive, but
they are links with lower priority than "active" ones.

Those links which are marked inhibited by some blocks are (with
very rare exceptions) completely forbidden for all of the
operation blocks. An exception is made, if it is necessary to
paramodulate with an inhibited P-link in order to eliminate a
constant or function symbol from the graph. Also it is too
difficult (and therefore not checked) to observe the link depth
boundary values for resolutions proposed by the terminator.
The link depth boundary value is ignored too, when resolving away
the conditions in conditional term rewrite rules and deduction

rules.

6.4.3. The Module Configuration

At the bottom of the system there is a storage management
module, which was necessary to save space and to overcome some
gross blunders of the SIEMENS INTERLISP system .

On the top of this module the data structures for the usual
logical objects (as e.g. variables, literals, clauses, links
etc.) are defined as abstract data types.

The next layer provides the operations for various unification
tasks and for the manipulation of the connection graph: each
layer is carefully designed to operate only on those items
defined at the layer below (see also [LMO82| for such an

architecture).

The last layer is used by the deduction and reduction modules,

136

which perform the logical operations (like resolution,
subsumption, factoring etc.). The order of these steps is
determined in the selection module, which states for any given
state of the graph which step is to be taken next.

The interplay between these modules is organized by the control
module, which also initiates the various preprocessors and
provides the necessary information for the protocol module.

6.5 Software tools

In the course of the development and implementation of the MKRP
system many deficiencies of the programming environment, in this
case SIEMENS-INTERLISP, were detected. To overcome these problems
we developed several software tools to ease the program
development and to increase the productivity. Of these tools
three are of a more general kind: a service library, a module-
concept [EI82| and a measurement-system [MI83| for INTERLISP.

These tools are surveyed in these section.
The Service Library

The service-library is a collection of functions for basic
operations and datatypes extending the INTERLISP standard. It
represents the collective programming experience of our project
‘and is constantly modified according to the joint decisions of
our group. It is a very useful tool increasing productivity by
avoiding the “reinvent-the-wheel” effect. Especially the
extensions of LISP by functions for manipulating sets for
accessing the operating-system, for symbolic computation and for
an extended file-handling are important for our programming
purposes and are heavily used. All our programs run in this much
more comfortable environment without affecting their portability,
because the service-library itself is implemented in standard
INTERLISP.

137

A Module Concept

The introduction of a module-concept is the result of our effort
to adopt features of typed languages, e.g. PASCAL, for INTERLISP.
Essentially it consists of some identifier-conventions, e.g. the
use of module-prefixes in variable or function names, and a large
set of supporting functions. The new variable types LOCAL,
COMMON, GLOBAL, EXTERNAL and the distinction between interface
and internal functions of a module are introduced this way. These
variable types and the module-concept are supported by an
extension of the standard MAKEFILE command. It computes a
detailed analysis of the call-hierarchy and the used variables of
each function as well as a crossreference list of each variable
of a module., Additionally open macros and substitution macros are
automatically derived from the function definitions. This eases
considerably the updating and the use of functions and supports a
modular programming style, while avoiding runtime inefficiencies.
Together with commenting and programming conventions this module-
concept allows the static detection of some trivial errors like
missing quotes or misspelled identifiers and greatly reduces the
amount of run-time errors and the costs of testing.

The Measurement System

In order to optimize algorithms, to measure their performance and
to get a detailed insight into the program execution, we
developed a measurement system, Versatility, exactness,
reproducability and minimality are the basic demands such a
system should fulfill. In order to achieve these requirements, a
special measurement language was developed. In the dialogue-part
of the system the user specifies, using this language, which
resources and which program or module he wants to be measured.
Using this information a task-specific measurement program is
completed, which, when loaded, automatically performs the
measurement and saves the results. Thus for each task only a

fraction of the system is in core, minimizing the inevitable

138

additional load of the CPU. To guarantee exact and reproducable
results the system takes its own fraction of the consumed
measured resources exactly into considerations: For example a
detailed measurement of the MKRP system resulted in a more than
tenfold increase in execution time (with a CPU-time error of +-
20%).

After the execution of the measured programs the results can be
evaluated using a separate module of the system. This allows the
preparation of statistical evaluations of sets of measured
programs as well. The measurement system can be augmented by

simply inserting new task-specific measuring functions.

In the present implementation the consumed CPU-time, the used
LISP-storage, the number of calls and the share of subfunctions

and submodules can be measured for each function or module.
Software Engineering Aspects

A large software developement of this kind could not be
implemented without strict obedience to generally accepted
software standards: apart from the selfimposed (i.e. not
supported by INTERLISP) discipline with respect to modularisation
and typing as mentioned above, the system has been designed in

several layers.

These layers are as follows: at the bottom there is an INTERLISP
system augmented by a special memory management system, that
tries to cope with the extraordinary space requirements.

On top of this layer there is an intermediate level of auxiliary
functions that are used to program the next conceptual level,
which consists of abstract data types like clause, link etc. and
provides functions like GETCLAUSE, MAKECLAUSE, GETUNIFIER and so
on. This is the lowest conceptual level from the MKRP system
point of view and provides the programming primitives for each

139

layer above. In particular this way a change in the interal
representation does not affect the whole system, but only

requires a reformulation of the intermediate level.

On top of these data structure functions are the three layers
described in the previous paragraph on the module configuration
and it is most interesting to see that these structures are very
similar to the implementational structures of the Argonne
National Lab Prover [LMO82|. The fact that their system was
completely independently implemented but nevertheless the same
pattern of implementational structures emerged is a clear
indication of their "objective" nature and may be seen as the
early hall mark of an emerging engineering discpline of theorem

proving.

Just as a compiler or operating system consists of generally
agreed upon parts (the symbol table, the parser, scheduling
etc.), all of which are implemented according to well understood
techniques and principles, a theorem prover is a wellstructured
software product based on the historical software engineering
experiences of earlier implementational attempts. A presentation
and evaluation of these techniques would be one of the most
desirable publications in order to prevent the "reinvention of

the wheel" for every new theorem proving system.,

6.6. How To Use The System

After the LOGON command the user types
Do ATP, X

which loads the INTERLISP system and the MKRP modules and sets up
an initial system. Depending on the option X, which can be

- Cl0, C50, Cl00

- 110, I50
the system is either compiled (C) or interpreted (I) and consists

140

of a small configuration (10) for testing purposes or a medium
(50) or large (100) configuration, depending on the anticipated

work space.

The user is now in the operating system of the MKRP-PROCEDURE, he
may use the input language PLL to formulate his problem, edit and
check his input and finally set the output options, all of which

are briefly surveyed below.

6.6.1 The MKRP Operating System

The operating system provides the following user commands:

HELP CONTINUE
EXIT EDIT
LOGOFF OPTIONS
PROVE LISP
INDUCTION HC

v

Their effect is briefly summarized as follows:

HELP CO explains a command CO to the user.

EXIT and LOGOFF are the termination commands.

Prove is the main command at this level, which provides the
entry to the actual theorem proving system: after a short
dialogue with the user,in the course of which source and
destination of the axioms, theorem and proof(s) respectively
are settled, the search for a proof is initiated.

INDUCTION enters the induction theorem proving facilities
and CONTINUE is a useful command for the resumption of
interrupted proof runs.

The OPTIONS command is the key into the module, which sets the

various parameters (options) that govern the overall search

behaviour. These options are classified into four areas:
RED, STR, GEN, PR

which can be set and updated with the following commands:

141

PRINT <area> displays the actual setting of the options

<{area> on the screen,

in

WRITE <area> <file> writes the actual settin of the options in

<area> onto a file <file>, for example for later

use.

READ <file> reads the setting of the options from <file> into

the predefined area.

\Y TRUE manual teletype control on
v NIL manual teletype control off
OK terminates the setting of the options

The four areas consist of the following options,

called by typing the name of the area.

RED

which can be

This area collects the options that govern the reduction steps.

The user can switch the reductions on and off by typing TRUE and

NIL:

RED Defaults
RED:SUB.CLAUSES .INITIAL T
RED:SUB.CLAUSES .EACH.STEP
RED:SUB.INITIAL
RED:SUB.EACH.STEP
RED:PUR.CLAUSES .INITIAL
RED:PUR.CLAUSES .EACH.STEP
RED:PUR.INITIAL
RED:PUR.EACH.STEP
RED:TAU .CLAUSES.INITIAL
RED:TAU .CLAUSES .EACH.STEP
RED:TAU.INITIAL
RED:TAU .EACH.STEP

4 34 3 9 9 3 349 3 3 3 3

142

STR

This area collects the options that are used to switch the

refinements on or off:

STR Defaults

FAC: INITIAL NIL
FAC:EACH.STEP NIL
STR:RESOLUTION SET-OF-SUPPORT
STR: PARAMODULATION UNIT-ANCESTRY
STR:LINK.DEPTH NIL
STR:TERM.DEPTH NIL
STR:R.DEMODULATION T

STR:P .DEMODULATION T

TERM:UNITS T

TERM: ITERATIONS 0

GEN

The options of this area are used to influence some general

parameters:

1 GEN:BATCH .ANSWER (Default SC)
IMPORTANT ONLY IF PROVER RUNS IN BATCH.
IS NEEDED IF THERE IS NO MORE SPACE FOR MEMORY-MODULE.

ABORT (a)
CONTINUE (C)
SAVE-ABORT (sa)
SAVE-CONTINUE (sC)
2 GEN:SAVE.FILE (Default SAVE.DEFAULTS)
<FILENAME> SYSTEM SAVES GRAPHS ON THIS FILE (IF

GEN:GRAPH ,SAVING NOT NIL !)

3 GEN:GRAPH .SAVING (Default NIL)
NIL : NO FEFFECT

143

PR

This

POSITIVE INTEGER: NUMBER OF DEDUCTION-STEPS BETWEEN TWO
SAVINGS OF THE GRAPH (SEE GEN:SAVE.FILE)

GEN:MAXIMUM.STEPS (Default NIL)
POSITIVE INTEGER (NIL MEANS “INFINITE™)
THIS IS MAXIMUM NUMBER OF DEDUCTION-
STEPS AT PROOF)

GEN : MANUAL . CONTROL (Pefault NIL)
INFLUENCE OF USER ON PROOF:
T, Y, YES SWITCHED ON
NIL, N, NO SWITCHED OFF
GEN:SPLITTING (Default 0)
AND-SPLIT OF THEOREM:
NIL, N, NO SWITCHED OFF
NAT NUMBER SWITCHED ON. MAXIMAL NESTING DEPTH UP

TO WHICH MULTIPLICATION INTO DNF TAKES
PLACE IN ORDER TO ENABLE SPLITTING

T, Y, YES SWITCHED ON. MULTIPLICATION IN ALL
NESTING DEPTHS.

area collects the options that account for the proof

protocol mode:

PR Default
PR:PREPROCESSING NIL
PR:STEP .MODE LR
PR:DUMP NIL
PR:CLAUSE .MODE I
PR:LINK ,MODE I
PR:TRACE.FILE NIL
PR:TERMINAL NIL
PR:PROOF .FILE PR .DEFAULT

144

All of these options are set to a predefined default value that
turned to be optimal for most runs. However to get the most out
of the system they should be individually adjusted for every
problem,

6.6.2. The Input Language

The PREDICATE LOGIC LANGUAGE (PLL), a formal language in which
sorted first-order predicate logic formulas can be formulated, is
described. Axioms and theorems, which are given to the MARKGRAF
KARL REFUTATION PROCEDURE, are represented in PLL and the
language constructs of PLL which reflect the special facilities

of this system are exhibited, i.e.

- an inference mechanism based on a many-sorted calculus,

- the incorporation of special axioms into the inference
mechanism, and

- the control of the inference mechanism using special derivation

strategies.

Basic Concepts

In PLL all usual junctors, denoted OR, AND, IMPL, EQV and NOT,
the universal quantifier ALL and the existential quantifier EX
are present., Junctors and quantifiers have the following

priorities when used in a formula without parantheses:

(1) NOT

(2) AND

(3) OR

(4) IMPL
(5) EQV

(6) ALL, EX

145

In a formula without parantheses, the rightmost junctor has

precedence over all junctors with the same priority left of it.

Example

NOT A OR B AND C is equivalent to (NOT A) OR (B AND C) and
A IMPL B IMPL C is equivalent to A IMPL (B IMPL C).

In PLL the sign = denotes the equality symbol, i.e. we use a
first-order predicate calculus with equality. As an example for
using PLL, we axiomatize a group:

Example

* AXIOMIZATION OF A GROUP WITH EQUALITY,
* F IS A GROUP OPERATOR AND 1 IS THE IDENTY ELEMENT

ALL X,Y EX Z F(X Y) =12

ALL X,Y,Z F(X F(Y 2)) = F(F(X Y) 2)
ALL X F(1 X) = X AND F(X 1) = X
ALL X EX Y F(X YY) =1

A theorem given to the MKRP system could be for instance:

* IDEMPOTENCY IMPLIES COMMUTATIVITY

ALL X F(X X) =1 IMPL (ALL X,Y,F(X Y) = F(Y X))

The lines starting with a “*” are PLL-comments. We give another

axiomatization of a group:
Example
* AXIOMATIZATION OF A GROUP WITHOUT EQUALITY

* P(X Y Z) MEANS F(X Y) = Z WHERE F IS THE
* GROUP OPERATOR. E IS THE LEFTIDENTTY.

146

ALL X,Y EX 2 P(X Y Z)

ALL X,Y,2,U,V,W P(X Y U) AND P(Y Z V) IMPL
(P(X V W) EQV P(U 2 W))

ALL X P(E X X)

ALL X EX Y P(X Y E)

Now a theorem could be for instance:
* LEFTIDENTITY IS RIGHTIDENTITY

ALL X P(X E X)

The Many-Sorted Calculus

Assume we have a set of symbols ordered by the subsort order, a
partial order relation which is reflexive, antisymmetric and
transitive. Variable, constant and function symbols are
associated with a certain sort symbol. The sort of a variable or
constant symbol is its rangesort and the sort of a term which is
different from a variable or constant symbol is determined by the

rangesort of its outermost function symbol.

All argument positions of a function or predicate symbol are
associated with certain sort symbols, called the domainsorts. In
the construction of the well formed formulas of the many-sorted
calculus, only those terms may fill an argument position of a
function or predicate symbol, whose sorts are subsorts of the
domainsorts given for the argument position of the respective
function or predicate symbol.
&

Beside the increase of readabflity of axiomatizations, the usage
of the information given by the range- and domainsorts and by the
subsort order prevents the inference mechanism of the theorem
prover to do useless derivations. The theoretical foundation of
the many-sorted calculus implemented in the MARK GRAF KARL

147

REFUTATION PROCEDURE can be found in [WAL82|.

As an example for an application of a many-sorted calculus we
axiomatize sets of letters and digits and some basic operations

for these sets:
Example

* DEFINITION OF THE SORTS LETTER AND DIGIT, I.E.
* A,B, ... ,2 ARE CONSTANTS OF SORT LETTER AND
* 0,1, ... ,9 ARE CONSTANTS OF SORT DIGIT

TYPE A,B,C,D,E,F,G,H,1,J,K,L,M,N,0,P,0,R,S,T,U,V,W,X,Y,%2 : LETTER
TYPE 0,9,8,7,6,5,4,3,2,1 : DIGIT

* LETTER AND DIGIT ARE SUBSORTS OF SORT SIGN
SORT LETTER, DIGIT:SIGN

* DEFINITION OF THE EMPTY SET AND SET-MEMBERSHIP,
* T.E. EMPTY IS A CONSTANT OF SORT SET AND MEMBER
* IS A BINARY PREDICATE DEFINED ON (SIGN SET)

TYPE EMPTY:SET

TYPE MEMBER(SIGN SET)

ALL X:SIGN NOT MEMBER(X EMPTY)

ALL U,V:SET U = V EQV (ALL X:SIGN MEMBER (X U) EQV MEMBER (X V))

* DEFINITION OF SINGLETONS, I.E.
* SINGLETON IS A FUNCTION MAPPING SIGN TO SET

TYPE SINGLETON(SIGN) :SET

ALL X:SIGN ALL U,V:SET (MEMBER(X U) OR MEMBER(X V))
EQV MEMBER (X UNION (U V))

148

Theorems to be proved by the ATP system could be for instance:

* UNION IS IDEMPOTENT AND EMPTY IS AN IDENTITY ELEMENT

ALL X:SET UNION (X X) = X AND UNION(EMPTY X) = X
* SINGLETON IS INJECTIVE
ALL X,Y:SIGN SINGLETON(X) = SINGLETON(Y) IMPL X =Y

* EACH LETTER IS A SIGN

ALL Y:SET (EX U:LETTER MEMBER(U Y))
IMPL (EX X:SIGN MEMBER(X Y))

Attributes of Functions and Predicates

Attributes are abbreviations for their defining axioms, i.e.
first-order axioms which axiomatize certain properties of

functions or predicates.

The effect in stating a certain attribute of a function or
predicate using an attribute declaration is formally the same as
giving the defining axiom to the ATP. At the moment the following

properties can be declared.

Attribute Declaration Defining Axiom

REFLEXIVE (P) ALL X P(X X)

IRREFLEXIVE(P) ALL X NOT P(X X)

SYMMETRIC(P) ALL X,Y P(X Y) IMPL P(Y X)
ASSOCIATIVE(F) ALL X,Y,Z F(X F(Y 2)) = F(F(X Y) 2)

The defining axioms of attributes are incorporated into the

inference mechanism of the system as described above.

149

Example

In example 2.1.2 for instance the associativity of the group
operator F could be stated by: ASSOCIATIVE (F). In example 2.2.1
we could write as an axiom: ASSOCIATIVE(UNION).

Special Junctors and Equality Symbols

For the junctors introduced above, PLL offers various alternative

notations:

Junctor Alternative Notations
AND AND: , *AND or :AND:
OR OR: , :OR or :0R:
IMPL IMPL: , <IMPL or ¢sIMPL:
EQV EQV: , tEQV or :EQV:

The eqality symbol = can be alternatively denoted by :=, =: or

The colon-notation of junctors and equality symbols is used to
influence the sequence of deductions as discussed in section 6.4,
Formally there is no difference between junctors and equality

symbols written with or without colons.

The Syntax of PLL

The formal syntax of PLL defined by a context free grammar is
contained in [WA83], which presents additional details and
examples.

Semantic Constraints for PLL

In the sequel we state the semantic constraints (i.e. the context

dependent language features) for PLL. The strings in angle

150

brackets, e.g. <term>, refer to the production rules of the

PLL-grammar as defined in [WA83],

Sort Symbols
Sort symbols are introduced with their first usage in

- a <sort declaration>, e.g. SORT LETTER,DIGIT:SIGN,ALPHABET
- a <type declaration>, e.g. TYPE A,B:BOOL,
TYPE MEMBER(SIGN,SET) or TYPE SINGLETON(SIGN):SET,
- a <variable declaration>, e.g. ALL Z:INT EX N:NAT ABS(Z) = N.

The direct subsort relation imposed on the set of sort symbols is
a partial, irreflexive and non-transitive relation such that the
predefined sort symbol ANY is no direct subsort of each sort
symbol and each sort symbol different from ANY is a direct

subsort of at least another sort symbol.

The subsort order imposed on the set of sort symbols is the

reflexive and transitive closure of the direct subsort relation.

The subsort symbols left of the colon in a <sort declaration> are
direct subsorts of each sort symbol to the right of the colon in

the <sort declaration>.

The sort symbols right of the colon in a <sort declaration> are
direct subsorts of ANY, provided these sort symbols are

introduced by this <sort declaration>.

The sort symbols which are introduced by a <type declaration> or
by a <variable declaration> are direct subsorts of ANY.

Example

For the <sort declaration> given above LETTER and DIGIT are
subsorts of SIGN and of ALPHABET, and SIGN and ALPHABET are

151

direct subsorts of ANY. Hence LETTER, DIGIT and SIGN are subsorts
of SIGN and ANY, SIGN, ALPHABET, LETTER and DIGIT are subsorts
of ANY,

Variable Symbols

Variable symbols are introduced by a <variable declaration> in a

<quantification>.

Example

ALL X,Y EX Z:S P(X Y 2Z)

The scope of a <variable symbol> is the <quantification>
following the <variable declaration> in a <quantification»>.

In its scope each <variable symbol> has as rangesort the sort
symbol given by the <sort symbol> following the colon in its
<variable sort> of the <variable declaration>. If no <variable
sort> is present, the rangesort of the <variable symbol> is the
predefined sort symbol ANY.

Example

The expression given in the above example have the following

sorts:

rangesort(Y) = ANY and
S.

rangesort(X)

rangesort(2Z)
In each <quantification> variable symbols are consistently

renamed from left to right to resolve conflicts on multiple

introductions of variable symbols.

152

Example

ALL Y,X P(Y) is the same as ALL X,Y P(Y) and
ALL X (EX X P(X)) IMPL Q(X) is the same as
ALL X (EX Y P(Y)) IMPL Q(X)

Constant Symbols

Constant symbols are introduced with their first usage

- in a <type declaration>, e.g. TYPE -1,+1:INT

- as <terms>, e.g. ALL X P(X A) OR F(C) =D

Each constant symbol has a rangesort the <sort symbol> following
the colon in the <type declaration> which introduces the
<constant symbol>,

Example

For the expressions given above we find

rangesort(-1l) = rangesort(+l) = INT.

The rangesort for a constant symbol which is introduced with its

first usage as a <term> is ANY.
Note that in PLL variable symbols are always preceded by a
quantifier and thereby can always be distinguished from constant

symbols. As a consequence there is no concept of free variables
in PLL.

Function Symbols
Function symbols are introduced with their first usage in
- a <type declaration>, e.g. TYPE ABS(INT):NAT

- a <attribute declaration>, e.g. ASSOCIATIVE (PLUS)
- a <term>, e.g. ALL X P(F(X)) OR G(X) = A

153

Each function symbol is associated with a sort symbol for each
argument position i, called its ith domainsort, with a natural
number, called its arity, and with a sort symbol, called its

rangesort.

Function symbols which are introduced by <type declaration> have
as ith domainsort the <sort symbol> given on the ith position in
the list of <sort symbols> following the <function symbol> in the

<type declaration>,
Example

For the expression TYPE PRODUCT(SCALAR VECTOR):VECTOR we get
domainsort (PRODUCT 1)=SCALAR and domainsort (PRODUCT 2)=VECTOR.

A <function symbol> which is introduced by a <property
declaration> or by its first usage in a <term> has ANY as ith

domainsort for each argument position i.
The arity of a function symbol is defined as

- the number of sort symbols in the list of <sort symbols>
following the <function symbol> in the <type declaration> which
introduces the <function symbol>

- two, for a <function symbol> introduced by a <attribute
declaration>

- or else the number of arguments on its first usage in a <term>,

Example
For the expressions given above we get arity(ABS) =1,
arity(PLUS) = 2 and arity(F) = arity(G) = 1.

The rangesort of a <function symbol> is defined by the <sort
symbol> following the colon in a <type declaration>. Its
rangesort is ANY if the <function symbol> is introduced by a
<property declaration> or by its first usage in a <term>.

154

Example

For the examples given in the expressions above we get
rangesort(ABS) = NAT

rangesort (PRODUCT) = VECTOR, and

rangesort(PLUS) = rangesort(F) = rangesort(G) = ANY.

Predicate Symbols

A predicate symbol is introduced with its first usage in
- a <type declaration>, e.g.TYPE MEMBER(SIGN SET)
- a <atom> in a quantification, e.g. EX X,Y P(X Y) AND O

Each predicate symbol is associated with a natural number, called
its arity, and with a sort symbol for each argument position i,

called its ith domainsort.

The arity and domainsort of predicate symbols are determined in
the same way arity and domainsorts are determined for function

symbols.

The <equality symbols> are predefined predicate symbols whose
arity is 2 and whose 1lst and 2nd domainsort is ANY. They are the

only predicate symbols which are written in infix notation.

“TRUE” and "FALSE™ are predefined predicate symbols with arity O,

which have the obvious meaning.

In the following the numbers in angle brackets, e.t. <23>, denote
error code numbers returned by the PLL-compiler of the MARKGRAF
KARL REFUTATION PROCEDURE (summarized below) when given a
semantically incorrect <expression> as input. The phrase unknown
symbol denotes a string of the terminal alphabet of the PLL-
grammar, which was not used before.

155

Semantically correct Sort Declarations

A <sort declaration> SORT S1, ... ,Sm:Tl, ... ,Tn is semantically

correct, if

- all Si and all Tj (i=1l...m, j=1l...n) are sort symbols or else
are unknown symbols (otherwise error message) <61,62,63,64> and
Si is a direct subsort of Tj <1> or else at least one of the

symbols Si and Tj is an unknown symbol <2>,
Semantically correct Type Declarations
A <type declaration> T is semantically correct if

- T is TYPE Cl, ... ,Cn:S and S is a sort symbol or else is an
unknown symbol <61,62,63,64> and for all i=1l,..n Ci 1is a
constant symbol with rangesort(Ci = S <14 or Ci is an unknown
symbol <11,12,16,17>

- or T is TYPE P(S1l,...Sn) and for all i=l...n Si is a sort
symbol or else is an unknown symbol <61,62,63,64> and P is a
predicate symbol with arity(P)=n <34> and
domainsort(P=i)=Si<36> or else is an unknown symbol
«31,32,36,37>

- or T is TYPE F(Sl...Sn):S and for all i=1l...n S and Si are sort
symbols or else are unknown symbols <61,62,63,64> and F is a
function symbol with arity(F)=n <23>, rangesort(F)=S <27> and
domainsort (F i)=Si <26> or an unknown symbol <21,22,24,28>,

Semantically correct Attribute Declarations

A <attribute declaration> ASSOCIATIVE(F) is semantically correct

if

- F is a function symbol with arity(F)=2 <23>, rangesort (F) =
domainsort(F 1) = domainsort(F 2) <26> or else is an unknown

symbol <21,22,24,28>.

The <attribute declarations>s REFLEXIVE(P), IRREFLEXIVE(P) and

156

SYMMETRIC(P) are semantically correct if

- P is a predicate symbol with arity(P)=2 <34> and domainsort
(P 1) = domainsort (P 2) <36> or else is an unknown symbol
<31,32,33,37>.

Semantically correct Terms, Atoms and Quantifications

The sort of a term t, denoted sort(t), is the rangesort of t, if
t is a variable or constant symbol, and else is the rangesort of
the outermost function symbol of t.

A <term> T is semantically correct if

- T is a constant symbol, a variable symbol or an unknown symbol
<11,12,16,17>

- or T is F(Tl...Tn) and for all i=1l.,.n, Ti is a semantically
correct term, F is a function symbol with arity(F)=n <23> and
sort (Ti) is a subsort of domainsort(F i) <81> or else F is an
unknown symbol <21,22,24,28>,

An <atom> A is semantically correct if

- A is a predicate symbol with arity(A)=0 <34> or A is an unknown
symbol <31,32,33,37>

- or A is P(Tl..Tn) and for all i=1l...n, Ti is a semantically
correct term, P is a predicate symbol with arity(P)=n <34> and
sort(Ti) is a subsort of domainsort(P i) <81> or else P is an

unknown symbol <31,32,33,37>

- or A is Tl = T2, Tl and T2 are semantically correct terms and =

is an <equality symbol>.

A <quantification>Q is semantically correct if

157

- Q0 is ALL X... or EX X... and X is a variable symbol or an
unknown symbol <51,52,53,55> and each atom in Q is semantically

correct.
Errors detected by the Compiler
The PLL compiler of the ATP system checks each input for
syntactical and semantical correctness. An input containing signs
which are not member of the terminal alphabet is responded by a
message.
k*x SYMBOL ERROR <<< xxx IS NO ADMISSIBLE SYMBOL
where xxx is a sign which is not member of the terminal alphabet.

For a syntactically correct input, the compiler responds

$++++ SYNTAX ERROR >>> xxx NOT ACCEPTED
UNEXAMINED REMAINDER OF THE INPUT >>> zzz

where xxx is the sign which causes the syntactical incorrectness

and zzz is the unanalysed remainder of the given input.

For a syntactically correct but semantically incorrect input, the

compiler responds

***** SEMANTIC ERROR nnn >>> message
UNEXAMINED REMAINDER OF THE INPUT »>>> 2zzz

where “nnn” is the semantic error code, “message” is an error

message explaining the kind of the semantic error and “zzz is

the (not analysed) remainder of the given input.

158

Particularities of the Input Routines

Since the whole ATP system is an INTERLISP program, the special
features of the INTERLISP input routines have to be taken into

account, i.e.

() is read as NIL

- "X is read as (QUOTE X)

- < is read as (

- > is read aé a non empty sequence of)”s

- > closes all left-brackets up to the first left-superbracket <«

- each left-bracket has to be matched by a right-bracket or by a
right-superbracket>

- each input has to contain an even number of " (i.e. the string

indicator)
- a sequence of blanks is read as one blank (except in a string)

- + is read as a blank if it is followed by a sequence of digits,
e.g. +4711 is read as 4711

- a sequence of zeroes is read as a zero, unless the sequence is

preceeded by non-zero sign, e.g. 007 is read as 7.
Separator Characters

In INTERLISP each of the following characters separates S-

expressions:

- a blank

159

- a bracket, i.e.), (, > or <
- the quote sign, i.e., ~

- the string indicator, i.e. "

Signs acting as separators in PLL are
- all INTERLISP separators

- the colon, i.e. X:Y is the same as X : Y and

- the comma, i.e. X,Y is the same as X , Y .

6.6.3. The EDITOR

The EDITOR is a screen oriented, syntax directed editor for
sorted logical formulae, which evolved as the MKRP-Procedure
developed: It is based on the practical experience of almost five
years of use. Although the MKRP system is at best a pilot
implementation for purely research purposes it turned out that
the use of the system became intolerably complicated even for the

experienced user without strong software support.

The EDITOR provides about fourty commands the major ones are now
summarized to get a feeling for what can be done. The formulae in
the area to be edited are divided into two kinds: the active area
and the passive area. Roughly the passive area consists of the
most recently inserted formulae and the symbol table, the
semantic checks and others have not been performed or updated for
these formulae. The problem is, that the system maintains a
record of everything that is going on, in particular a listing of
the intended meaning of the symbols occurring in the formulae,
their arity and so on and this record is built up only for the

active area.

160

INSERT <formula> 1inserts a syntactically and semantically

DELETE -
DELETE
DELETE
+SHIFT

w N

++SHIFT

=SHIFT

=-=SHIET

EDIT 3

READ <file>

WRITE <file>

SWITCH 3 4

UNDO

correct formula as the last one into the active
area

deletes all formulae

deletes formula No 2

deletes all formulae from the third one onwards.
shifts the first formula of the passive area into
the active area

shifts all formulae of the passive area into the
active area

shifts the last formula of the active area into
the passive area

shifts all

calls the LISP-editor for the formula No 3

reads a <file>, which must have been created by
the WRITE command

the content of the edited area will be saved on
<file> so that it can be restored later with the
READ command

formula 3 and formula 4 in the passive area are
exchanged

"Undoes" the last destructive command

REPLACE <OLD><NEW> replaces formula <OLD by formula <NEW> in the

PRINT <file>

SHOW

active and passive area

writes the symbol table and all formulae in
readable format onto <file>

<Symbol 1> ... <Symbol m>

<Kind 1>...... <Kind n> displays all

<symbol 1> to <symbol m> or every symbol of the
kind <Kind 1> to <Kind n>

There are five kinds of symbols:

SORT

RELATION

CONSTANT

FUNCTION

PREDICATE

161

PREFIX displays the compiled prefix form of the formulae

INFIX displays the (uncompiled) input formulae in infix

STATE displays the distribution of formulae in the
active and passive areas

HELP <COMMAND> explains the use of <COMMAND>

H HELP even more explanation
OK terminates the user session with the EDITOR
6.6.4. The Output Facilities

When the user sets the options for a proof, he can specify a file
(proof file), upon which the course of the search for the proof
is recorded. At run-time as little time as possible should be
lost. Therefore all the information which is important for the
final proof documentation is written onto the proof file in a
very fast way and compact format. Thus a dense and complicated
sequence of “words” is generated in the file containing all the
essential information (the events; for a similar approach see
[LMO82)

This information includes:
- the user”s input: axioms, theorems, options
- preliminary trans-
formation: axioms and theorems in the internal
language or the symbol table of all

symbols used

- proof steps: parent clause(s), type of operation,
resulting clause, unifier

statistical data: this can be printed also in order to
analyze the logical performance (number
of clauses, of 1links, G- and R-

penetrance etc.)

162

Only after the proof is finished the data on the proof file is
further processed such that the course of the proof can be

exactly reconstructed.

There are four levels of abstraction upon which the search for a

proof can be recorded.

DUMP: the complete dump of the proof file

IMPLEMENTATIONAL: a very detailed (but readable) record of
everything that happened (and why it
happened) during the search for a proof

LOGICAL: a pretty printed record of the resolution
steps that were performed

PROOF: Similar to LOGICAL but only those steps are
recorded that were actually used in the
proof

Current work transforms the PROOF in a first transformation into
a natural deduction style proof and a second transformation is
then to translate this natural deduction proof into "natural
language", i.e. a format close to a human mathematician™s way of

expressing his reasoning.

6.6.5. Traces

For debugging purposes some of the modules have additional
protocol functions. These functions can only be activated fron
the LISP level and not from the ATP operating system.

In order to activate a trace function, a programmer calls the
LISP interpreter and writes:

(mod-TRACE ON) or (mod-TRACE T), where mod is an abbreviation of

163

the module name,

(mod-TRACE ON) directs the trace to the general protocol file and
(mod-TRACE T) to the terminal.

With (mod-TRACE OFF) the trace is switched off.

The following trace functions are available:

l.

Normalization: NORM-TRACE

Detailed information about the transformations of the prefix

formula to clausal form are printed.

Selection: SEL-TRACE

Information about the activation of the operation blocks and

deduction and reduction steps are printed.

Terminator: TERM-TRACE

The name of the currently examined clause together with
statistical values about the compatibility test of unifiers
are printed. In addition all internally generated unitclauses
are listed.

Connection graph: CG-TRACE

All objects (clauses, links, unifiers) which are removed from
the graph together with a short explanation why they are

removed, are listed.

164

6.6.6. A Test Run

The following protocol lists a typical session: the first set of
instructions is used to set up the database etc. The second set
is the final output protocol. The theorem to be proved is P.

Andrew” s (small) challenge problem:
(ALL x, Qx = EX y. Qy) = (EX x ALL y 0x = Qy)

The session as it appears on the Screen:

DO ATP,C50 .

% P500 LISPV4/ /81=09=-29 LOADED

ATP SYSTEM: MARKGRAF KARL REFUTATION PROCEDURE, UNI KARLSRUHE
VERSION: 21-DEC-83

DEUTSCH, ENGLISH? (D/E)

e

THE DIALOGUE LANGUAGE IS ENGLISH FOR THIS ATP-SESSION.
HCELP] PRINTS A LIST OF ALL AVAILABLE COMMANDS.
HCELP] <COM> EXPLAINS THE COMMAND <COM>.

a
o

THIS IS THE OPTIONS-MODULE. FOR ASSISTANCE TYPE HLELP].
&

&

pr:proof.file pr.andrews.small

PR: PROOF.FILE = PR.ANDREWS.SMALL

gen:splitting 1

GEN: SPLITTING = 1

&

ok

a

p

CALLING THE FORMULA EDITOR. PLEASE EDIT THE AXIOM FORMULAS:
H PRINTS A LIST OF ALL AVAILABLE EDITOR-COMMANDS.
0K TERMINATES THIS EDITOR-SESSION.

>

165

ok

EDITOR TERMINATED.

WARNING: THERE ARE NO AXIOM FORMULAS!

CALLING THE FORMULA EDITOR. PLEASE EDIT THE THEOREM FORMULAS:

>

r $kinf47.f.th.andrews.small

DATE OF FILE GENERATION: 15-JUL-83 12:49:01

SYMBOL-TABLE AND ONE FORMULA LOADED FROM FILE $KINF47.F.TH.ANDREWS.SMALL.
INSERTED IN THE ACTIVE AREA AT POSITION 1.

>

L=
* 1 *x (CALL X Q@ (X)) EQV (EX Y @ (Y))) EQV (EX X ALL Y @ (X) EQV Q (Y))

>

ok
EDITOR TERMINATED.

---------------------- NOW THE PROOF BEGINS: ======c--—c-—-—e—eaeeeo-

*xkkxx REFUTATION OF SPLIT PART 1 INITIATED. ////1/117117171171177771717170717°111777

THEOREM 53 MSEC LINKS:2 +0 -0 CLAUSES: 4 +0 -0 STORE:265 49
REDUCED 25 MSEC LINKS:2 +0 -0 CLAUSES: 4 +0 =0 STORE:265 49
THEOREM 168 MSEC LINKS:10 +0 -0 CLAUSES: 4 +0 =0 STORE:264 49
REDUCED 69 MSEC LINKS:10 +0 -0 CLAUSES: 4 +0 =0 STORE:264 49
THEOREM 91 MSEC LINKS:12 +0 -0 CLAUSES: 4 +0 =0 STORE:263 49
REDUCED 440 MSEC LINKS:12 +1 -1 CLAUSES: &4 +0 -0 STORE:261 49
MARKED 135 MSEC LINKS:12 +0 -0 CLAUSES: & +0 =0 STORE:260 49
STEP 1 109 MSEC LINKS:16 +4 -0 CLAUSES:5 +1 =0 STORE:260 49
210 MSEC LINKS:5 +1 -12 CLAUSES:3 +0 =2 STORE:259 49
*k%*k*x REFUTATION DETECTED BY TERMINATOR! dkkkx
STEP 2 102 MSEC LINKS:7 +2 -0 CLAUSES: 4 +1 =0 STORE:257 49
11 MSEC LINKS:7 +0 =0 CLAUSES: 4 +0 -0 STORE:257 49
STEP 3 48 MSEC LINKS:7 +0 -0 CLAUSES:5 +1 =0 STORE:256 49

N
**%k*x REFUTATION OF SPLIT PART 1 SUCCEEDED. //////1/11111111111701717711077171

*k%** REFUTATION OF SPLIT PART 2 INITIATED. //////17/11/111111177111177°177717171

THEOREM 345 MSEC LINKS:21 +0 -0 CLAUSES: 4 +0 -0 STORE:252 49
REDUCED 168 MSEC LINKS:13 +0 -8 CLAUSES:3 +0 =1 STORE:252 49
THEOREM 105 MSEC LINKS:16 +0 -0 CLAUSES:3 +0 =0 STORE:251 49
REDUCED 838 MSEC LINKS:16 +4 -4 CLAUSES:3 +0 -0 STORE:248 49
MARKED 103 MSEC LINKS:16 +0 -0 CLAUSES:3 +0 =0 STORE:247 49
STEP 1 358 MSEC LINKS:22 +14 =8 CLAUSES: & +1 =0 STORE:246 49

156 MSEC LINKS:11 +1 =12 CLAUSES:3 +0 =1 STORE:245 49
STEP 2 1317 MSEC LINKS:16 +5 -0 CLAUSES: 4 +1 =0 STORE:243 49

220 MSEC LINKS:3 +1 =14 CLAUSES:?2 +0 =2 STORE:242 49

166

*%xkx*k REFUTATION DETECTED BY TERMINATOR! ddkdik*

STEP 3 104 MSEC LINKS:6 +3 -0 CLAUSES:3 +1 -0 STORE:241 49
12 MSEC LINKS:6 +0 -0 CLAUSES:3 +0 =0 STORE:241 49
STEP 4 49 MSEC LINKS:6 +0 -0 CLAUSES: 4 +1 =0 STORE:240 49

*k%** REFUTATION OF SPLIT PART 2 SUCCEEDED. //////1/1111111/1111111711111171111
kkhkhkkdkdkkkkhkkkkkdkkx PROOF SUCCESSFULLY TERMINATED. Jdkkhdkdddddkkkkkkk

pr pr.andrews.small

TCOMPL FORMAT IWOC.ATP.PROT.EXECUTE CREATED 10-DEC-83 08:50:32 FILENAME: IWOC

«ATP.PROT.EXECUTE.COM.OO
ATP.PROT.EXECUTECOMS

TCOMPL FORMAT IWOC.ATP.PROT.PREPARE CREATED 10-DEC-83 08:51:26 FILENAME: IWOC
-.ATP.PROT.PREPARE.COM.OO

ATP.PROT.PREPARECOMS

TCOMPL FORMAT IWOC.ATP.PROT.DATASTRUCTURE CREATED 10-DEC-83 08:56:42 FILENAME
: IWOC.ATP.PROT.DATASTRUCTURE.COM.0O
ATP.PROT.DATASTRUCTURECOMS

TCOMPL FORMAT IWOC.ATP.PROT.PRINT CREATED 10-DEC-83 09:01:24 FILENAME: IWOC.A
TP.PROT.PRINT.COM.0OO

ATP.PROT.PRINTCOMS

PROTOKOLL AUF FOLGENDE DATEI ERZEUGT: PR.ANDREWS.SMALL.LIST.0O0

a

ex

167

The Final Protocol

% % % % % % d de J de J k% kK K d g de kg kg Kk kg dede de ke ok kK dede ek ok ok ok ok ke ok

* *
* ATP-SYSTEM : M K R P » UNI KARLSRUHE ~*
* *
* VERSION : 21-DEC-83 *
* DATE : 18-JAN-84 20:28:58 *
*

% % Je % % d J g K de g de de kK K Kk dede ke ke ke k ok dedede e ke ke ke ke ke ke ok ke k dek ok

FORMULAE GIVEN TO THE EDITOR

THEOREMS : (CALL X @ (X)) EQV (EX Y @ (Y)))
EQV
(EX X ALL Y Q@ (X) EQV Q@ (Y))

REFUTATION OF SPLITPART 1

INITIAL CLAUSES * T1 : ALL X:ANY =-@(C_1) =-a(X)
* T2 : ALL X:ANY +Q(X) +Q(C_2)
* T3 : ALL X:ANY +Q(C_3) =Q(X)
* T4 : ALL X:ANY =-Q(C_3) +Q(X)

T1 1_REPL_?2 ==> % T1.1 : =-Q(C_1)

T2 2_REPL_1 ==> % T2.1 : +Q(C_2)

T&r2 + T1.1.1 =-=> % R1 : =Q(Cc_3)

T3,1 + R1-,1 =-=> % R2 : =Q(C_2)

T2.1,1 + R2.,1 =-=> % R3 :

REFUTATION OF SPLITPART ?2

INITIAL CLAUSES : * T1 : ALL X,Y:ANY +Q(X) =Q(Y)

T2 @ =Q(C_4) +Q(C_S)

* T3 : ALL X:ANY =Q(X) =Q(F_1(X))

* T4 : ALL X:ANY +Q(X) +Q(F_1(X))
T4r1 + T1,2 -=> * R1 : ALL X,Y:ANY +Q(F_1(X)) +Q(Y)
R1 1_REPL_2 -=> % R1.1 : ALL X:ANY +QCF_1(X))
R1.1»1 + T1,2 ==> * R2 : ALL X:ANY +Q(X)
R2,1 + T3,1 -=> * R3 : ALL X:ANY =Q(F_1(X))
R2,1 + R3.,1 -=> * R4

Q- E- D-

169

Literatur:

[aH72 | Andersen B., Hayes P.

[ANG68 |

(aN70 |

[AN81 |

[B75 |

[BA73 |

[BB75 |

(BBH72 |

An Arraignment of Theorem Proving or the Logicians

Folly. Comp. Logic Memo 54, Univ. of Edinburgh

Andrews P.
Resolution with Merging. JACM, vol 15, no 3, 1968

Anderson R.
Completeness Results for E-Resolution. Proc Spring
Joint Conf., 1970, 653-656

Andrews P.B.
Theorem Proving via General Matings. J.ACM 28:2, 193-
214, 1981

Bruynooghe M.
The Inheritance of Links in a Connection Graph. Report

CW 2, Katholieke Universiteit Leuven, 1975

Baxter L.D.
An Efficient Unification Algorithm. Univ. of Waterloo,
Techn. Report CS-73-23, 1973

Ballayntyne M,, Bledsoe W.
Autom. Proofs and Theorems in Analysis wusing
nonstandard Techniques. ATP-23, 1975, Univ. of Texas

Bledsoe W., Boyer B., Hemmeman

Computer Proofs of Limit Theorems. J.Art. Int., vol 3,
1972

170

[BES81 |

[RI81]

[BL71 |

[BL77 |

[BM78 |

[BM79 |

[BR75 |

{BT75 |

[CHL73 |

Bldsius K., FEisinger N., Siekmann J., Smolka G., Herold
A.,Walther C.

The Markgraph Karl Refutation Procedure. Proc. IJCAI-
81, Vancouver, 1981

Bibel W.
On Matrices with Connections. JACM 28:4, 633-645, 1981

Bledsoe W.
Splitting and Reduction Heuristics in ATP. J. Art.
Int., vol 2, 1971

Bledsoe W.
A maximal method for set variables in ATP.

ATP-33, Univ., of Texas, 1977

Boyer R.S., Moore J.S.
A Computational Logic., Academic Press, 1978

Boyer R.S., Moore J.S.
A Computational Logic. Academic Press, 1979

Brand D.
Proving Theorems with the Modification Method. SIAM
Journal of Comp., vol 4, no 4, 1975

Bledsoe W., Tyson M,
The UT Interactive Prover. Univ. of Texas, ATP-7,
1975

Chang C.L., Lee R.C.

Symbolic Logic and Mechanical Theorem Proving. Academic

Press, 1973

171

[cs79 | Chang C.L., Slagle J.R.
Using Rewriting Rules for Connection Graphs to Prove
Theorems. Artificial Intelligence 12 (1979) 159-180

[CHA78| Champeaux D. de
A Theorem Prover Dating a Semantic Network. Proc. of
AISB/GI Conference, Hamburg, 1978

[DE71] Deussen P.
Halbgruppen und Automaten. Springer 1971

[DI79] Digricoli V.J.
Resolution by Unification and Equality. Proc 4th

Workshop on Automated Deduction, 1979, Texas

[EI81 | Eisinger N,
Subsumption and Connection Graphs. IJCAI-81, Vancouver,
1981

[E182] Eisinger N.

A Pragmatic Module Concept for INTERLISP. Univ,.
Karlsruhe, Bericht 23, 1982

[EWS3 | Eisinger N., Weigele M.
A Technical Note on Splitting and Clausal Form
Algorithms. Proc. GWAI-83, Springer Fachberichte, 1983

[GB69 | Guard, Oglesby, Bennet, Settle
Semi-Automated Mathematics. JACM 16, no 1, 1969

[GEN34| Gentzen G.

Untersuchungen Uber das logische SchlieBen.
Mathematische Zeitschrift 39, 1934

172

[GIL58 |

[HAIS7 |

[HAY71 |

[HE72 |

[HEN72 |

[HER30 |

[HO80 |

[HR78 |

Gilmore P.C.
An Addition to "Logic of Many-Sorted Theories".
Compositio Mathematica 13, 1958

Hailperin T.
A Theory of Restricted Quantification I. The Journal of
Symbolic Logic 22, 1957

Hayes P.
A Logic of Actions. Machine Intelligence 6,
Metamathematics Unit, Univ., of Edinburgh, 1971

Hewitt C.
Description and Theoretical Analysis of PLANNER. AI-TR-

258, MIT

Henschen L.J.
N-Sorted Logic for Automatic Theorem Proving in Higher-

Order Logic. Proc. ACM Conference, Boston, 1972

Herbrand, J.

Recherches sur la théorie de la démonstration
(Thése Paris). Warsaw, 1930, chapter 3.

Also in "Logical Writings" (W.D. Goldfarb ed.), D.
Reidel Publishing Company, 1971

Huet, Oppen
Equations and Rewrite Rules: A Survey, SRI Technical
Report, CSL-11, 1980

Harrison M.C., Rubin N.

Annother Generalization of Resolution. JACM, vol 25, no
3, 341-351, July 1978

173

[IDE64 |

(K169 |

(K075 |

[LE78 |

[LMO82 |

[Lov78 |

[MH56 |

[M183 |

[MM79 |

Idelson, A.V.

Calculi of Constructive Logic with Subordinate
Variables, American Mathematical Society Translations
(2) 99, 1972 - Translation of Trudy Mat. Inst. Steklov.
72, 1964

King J.
A Program Verifier. Ph,D. Carnegie Mellon, 1969

Kowalski G.
A Proof Procedure using Connection Graphs. JACM, vol
22, no 4, 1975

Lewis H.R.
Renaming a Set of Clauses as Horn Set. JACM 25, 1, 1978

Lusk L., McCune W., Overbeck R.

Logic Machine Architecture: Kernel Functions and
Inference Rules. Proc. CADE-82, Springer Lect. Notes,
vol 138, 1982

Loveland D.W.
Automated Theorem Proving: A Logical Basis. North-
Holland Publishing Company 1978

Montague R., Henkin L.
On the Definition of Formal Deduction. The Journal of
Symbolic Logic 21, 1956

Mischke G.
An Interlisp Function Measurement System., Univ,
Karlsruhe, 1983

Martelli H., Montaneri U.

An Efficient Unification Algorithm. Univ. of Pisa,
Techn. Report, 1979

174

[MO69 |

[NO77 |

[OBE62 |

[oH82 |

[ps8l |

[Pw78 |

[rRO71]

[RW69 |

Morris J.B.

E-Resolution: An Extension of Resolution to include the
Equality Relation. Proc IJCAI, 1969, 287-294

Nelson, Oppen
Fast Decision Algorithms based on Congruence Closure.
Stanford Univ., STAN-CS-77-646

Oberschelp A.
Untersuchungen zur mehrsortigen Quantorenlogik.
Mathematische Annalen 145 ,1962

Ohlbach H.J.
The Markgraph Karl Refutation Procedure: The Logic
Engine. Interner Bericht 24/82, Univ. Karlsruhe, 1982

Peterson G., Stickel M.
Complete Sets of Reductions for Equational Theories
with Complete Unification Algorithms. JACM 28:2, 1981

Paterson M., Wegman M.
Linear Unification. Journal of Comp. and Syst., 16,
1978

Robinson J.A.
Computational Logic: The Unification Computation.

Machine Intelligence, vol.6, 1971

Robinson G., Wos L.
Paramodulation and TP in first—-order Theories with

Equality. Machine Intelligence 4, 135-150

[scH38 | schmidt A.

iber deduktive Theorien mit mehreren Sorten von
Grunddingen. Mathematische Annalen 115, 1938

175

[scH51 |

[SH78 |

[s169 |

[s176]

[s1G76 |

[s1G80 |

[sm82 |

[ss81 |

[ss82 |

Schmidt A.

Die Zuldssigkeit der Behandlung mehrsortiger Theorien
mittels der {iblichen einsortigen Prddikatenlogik.
Mathematische Annalen 123, 1951

Shostak R.E.
An Algorithm for Reasoning About Equality. JACM, July
1978, vol 21, no 7

Sibert E.E.
A machine-oriented Logic incorporating the Fquality
Axiom. Machine Intelligence, vol 4, 1969, 103-133

Sickel S.
A Search Technique for Clause Interconnectivity Graphs.
IEEE Trans. on Computers C-25(8), 823-835, 1976

Sigart
ACM Special Interest Group on AI, April 1981, no76

dito
no80

Smolka G.

Completenes and Confluence Properties of Kowalski’s
Clause Graph Calculus, Univ. Karlsruhe, Techn. Report
31/82, 1982

Siekmann J., Szabd P.
Universal Unification and Regular ACF-Theories. Proc.
of 7th IJCAI, Vancouver 1981

Siekmann J., Szabd P.

Universal Unification and a Classification of
Equational Theories. 6th Conference on Automated
Deduction, Springer LNCS 138, 1982

176

[sw79 |

(5269]

[va75 |

[wWas2 |

(wa83 |

[WaN52 |

[WEY77 |

(WM76 |

[WR64 |

Siekmann J., Wrightson G.

Paramodulated Connectiongraphs. Acta Informatica, 1979

Szabo
"The Logic Writings of G. Genken"

van Vaalen J.
An Extension of Unification to Substitutions with an
Application to ATP. Proc of 4th IJCAI, 1975

Walther Ch.
PLL - A First Order Language for an Automated Theorem
Prover. Bericht 35/82, Univ. Karlsruhe, 1982,

Walther Ch.
A Many Sorted Calculus based on Resolution and

Paramodulation. Bericht 34/82, Univ. Karlsruhe, 1983

Wang H.
Logic of Many-Sorted Theories. The Journal of Symbolic
Logic 17, 1952

Weyhrauch R.W,.

FOL: A Proof Checker for First-Order Logic. MEMO AIM-
235.1, Stanford Artificial Intelligence Laboratory,
Stanford University, 1977

Wilson G., Minker J.

Resolution, Refinements and Search Strategies: A
Comparative Study, IEEE Trans. on Comp., vol-C-25, no
8, 1976

Wos L., Carson D., Robinson G.

The Unit Preference Strategy in Theorem Proving. AFIPS
Joint Comp. Conf., vol 26, 1964

177

[WR67 |

[WrR73 |

Wos L., Carson D., Robinson G., Shallar L.
The Concept of Demodulation in Automated Theorem
Proving, JACM, vol 14, no 4, 1967

Wos L., Robinson G.

Maximal Models and Refutation Completeness:
Semidecision Procedures in Automated Theorem Proving.
In "Wordproblems" (W.W. Boone, F.B. Cannonito, R.C.

Lyndon, eds.), North-Holland Publishing Company, 1973

178

