
Numerical investigation of ageing in the

mechanical behaviour of crosslinked

polyurethane adhesives under the

influence of moisture

Dissertation

zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultät

der Universität des Saarlandes

vorgelegt von

Siva Pavan Josyula, M.Sc.

Saarbrücken

2023



Tag des Kolloquiums: 19.11.2024

Dekan: Prof. Dr.-Ing. Dirk Bähre
Gutachter: Prof. Dr. Martin H. Müser
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simulation, Universität des Saarlandes and Prof. Dr.-Ing. habil. Ralf Müller
from the Fachgebiet Kontinuumsmechanik, Fachbereich Bau- und Umweltin-
genieurwissenschaften, Technische Universität Darmstadt for accepting to be
examiners of my dissertation.

I would like to sincerely thank the German Federation of Industrial Research
Associations - AiF and the industrial partners for funding the project. Next,
I would also like to thank my project partners Bettina Zimmer, M.Sc. from
Lehrstuhl für Adhäsion und Interphasen in Polymeren, Universität des Saar-
landes and Dipl.-Ing. Andreas Wulf, Dr.-Ing. Olaf Hesebeck, Dr. Katharina
Koschek and Dr. Markus Brede from Fraunhofer-Institut für Fertigungstech-
nik und Angewandte Materialforschung for their cooperation and support in
the experimental investigation required for understanding the ageing process
in adhesives under the influence of moisture in this project.

Further, I would like to extend my gratitude to my colleagues at Lehrstuthl
für Angewandte Mechanik, Universität des Saarlandes to participate in dis-
cussions and provide me with a friendly environment. I want to thank Pra-
teek Sharma, M.Sc. and Ing. Luciano Fissore for long discussions on the
numerical implementation of material models in deal. II. I want to extend
my gratitude to apl. Prof. Dr.-Ing. Dr. rer. nat. Anne Jung for technical
discussions, reviewing presentations and proofreading project reports written
in German language with helpful suggestions.



I must express my profound gratitude to my family for the unflinching love
and motivation they provided me since my childhood. Which gave me endless
courage, support in all means to follow my dreams. I want to extend special
thanks to my brother and his family for their continuous motivation and
support throughout my doctoral studies.

Saarbrücken, October 2023

Siva Pavan Josyula



Abstract

Applications of adhesives are exponentially increasing in the production of
lightweight bonded structures. The mechanical behaviour of these materials
is very complex because of the ageing process under environmental condi-
tions. IGF-project 19730 N addresses the ageing of crosslinked polyurethane
adhesives under the influence of moisture concentration at an isothermal con-
dition of 60◦C. An extensive experimental investigation was planned with
a primary focus on ageing and softening due to moisture absorption. The
data generated from the experimental investigation is used for the numerical
investigation. The motivation of this work is to develop material models to
analyse the material behaviour using finite element method. The finite-strain
viscoelastic behaviour is modelled based on phenomenological theories. The
viscoelastic material model is coupled with the diffusion model to investigate
the ageing of the mechanical behaviour. The Langmuir-type diffusion model
is used in this work to investigate the anomalous moisture diffusion. Further,
a phase-field fracture material model is implemented to investigate the crack
propagation in the samples aged under different humid conditions. Finally,
the damage model is coupled with the diffusion model to numerically analyse
the moisture influence on fracture toughness of the material.





Zusammenfassung

Die Anwendungen von Klebstoffen zur Fertigung leichter Verbundstruk-
turen nehmen exponentiell zu. Aufgrund des Alterungsprozesses unter
Umweltbedingungen ist das mechanische Verhalten dieser Materialien sehr
komplex. IGF-Projekt 19730 N untersucht die Alterung von vernetzten
Polyurethanklebstoffen unter dem Einfluss der Feuchtigkeit bei isothermen
Bedingungen von 60◦C. Es wurde eine extensive experimentelle Unter-
suchung geplant, bei der das Alterungsverhalten und die Weichmachung
aufgrund von Feuchteaufnahme im Hauptgrund stehen. Die Ergebnisse der
experimentellen Untersuchung werden für die numerische Untersuchung ver-
wendet. Der Grund für diese Arbeit ist die Entwicklung von Materialmod-
ellen zur Berechnung des Materialverhaltens mit Hilfe der Finite-Elemente-
Methode. Das viskoelastische Verhalten wird auf der Grundlage phänomenol-
ogischer Theorien modelliert. Das viskoelastische Materialmodell wird mit
dem Diffusionsmodell gekoppelt, um die Alterung des mechanischen Verhal-
tens zu untersuchen. Das Langmuir-Modell für die Diffusion wird in dieser
Arbeit verwendet, um die anomale Feuchtigkeitsdiffusion zu untersuchen.
Außerdem wird ein Phasenfeld-Bruchmaterialmodell implementiert, um die
Rissausbreitung in den unter verschiedenen feuchten Bedingungen gealterten
Proben zu untersuchen. Das Schadensmodell wird mit dem Diffusionsmodell
gekoppelt, um den Einfluss der Feuchtigkeit auf die Bruchfestigkeit numerisch
zu berechnen.
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1

Introduction

The results presented in this dissertation were obtained as a part of AiF
project (IGF-Project Nr. 19730 N) titled “Berechnung des instationären
mechanischen Verhaltens von alternden Klebverbindungen unter Einfluss von
Wasser auf den Klebstoff”at the Lehrstuhl für Angewandte Mechanik headed
by Prof. Dr.-Ing. Stefan Diebels at the Universität des Saarlandes in coop-
eration with Lehrstuhl für Adhäsion und Interphasen in Polymeren headed
by Prof. Dr. rer. nat. Wulff Possart at the Universität des Saarlandes and
Dipl.-Ing. Andreas Wulf, Dr.-Ing. Olaf Hesebeck, Dr. Katharina Koschek
and Dr. Markus Brede from Fraunhofer-Institut für Fertigungstechnik und
Angewandte Materialforschung (IFAM), Bremen.

The demand for efficient structural components and products is growing with
an increase in the applications of lightweight manufacturing methods of air-
craft, wind energy [150] and automotive engineering [27, 9, 129, 33] or the
need to miniaturise the components in technologically advanced areas like mi-
croelectronics [155]. Such complex applications in the modern industry can
be achieved from composite structures engineered with various tailored mate-
rials. In manufacturing composite structures, the demand for efficient bond-
ing methods is increasing to bond similar or distinct materials [131, 79, 10].

1



2 1. Introduction

Adhesive bonding technology is one of the oldest bonding processes because
of the practical advantages over friction and joining processes. The force
transmission in bonded joints ensures a homogeneous stress distribution for
the joint to remain intact during deformation and absorb high energies.
Therefore, bonded joints are used in the crash zones of automobiles. In
addition, using adhesive helps dampen vibrations and reduces mechanical
stresses. For this reason, structural bonding is now a highly recommended
joining technique, even in high-tech applications. Polymers dominate manu-
facturing lightweight structures or material composites such as coating and
adhesive [104, 80, 156, 1]. Epoxies, polyamides and polyurethane are the
most widespread structural adhesives.

1.1 Motivation and state of the art

The molecular interactions between the adhesive and the adherents result
in the bonding of materials. These bonded joints are chosen because of
their advantages over mechanically bonded joints. Nevertheless, the bonding
process with adhesives is very complex because of the individual surface pre-
treatment processes, adhesive mixing and application at bonded joints. The
bonding process and the curing of adhesives need to be coordinated and
controlled at a defined time, temperature and pressure.

The reliability of bonded joints for a longer product lifetime is the primary
concern in the industrial application [66, 96, 107]. The adhesive material
interacts with the surrounding atmosphere or diffusing media because its hy-
groscopic behaviour leads to ageing in the bonded joints [13, 93]. The term
ageing defines changes in properties of the adhesive bond that occur dur-
ing the service time [116]. The ageing of adhesives affects the performance
of bonded joints resulting in the degradation of mechanical properties like
strength, durability, and fracture toughness. Therefore, the influence of tem-
perature and humidity must be considered in manufacturing bonded joints.

Crosslinked polyurethane adhesives are investigated to understand their
mechanical behaviour in manufacturing bonded joints. The crosslinked
polyurethane adhesives show large deformation viscoelastic behaviour.
Therefore a finite-strain viscoelastic model is used to model the mechani-
cal behaviour within the framework of continuum finite-strain theory. These
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materials absorb moisture from the surrounding atmosphere because of their
hygroscopic nature. Further, the mechanical and diffusion models are cou-
pled to investigate the ageing process under moisture influence. A phase-field
damage model is used to investigate the failure under tension in the aged
samples.

Various research works are carried out on the numerical modelling of rubber-
elastic, quasi-incompressible materials with conventional theories of material
modelling based on the theories of continuum mechanics. These theories
are classified into phenomenological [105, 123, 157, 64] and micro-mechanical
models. Generally, the phenomenological models are formulated based on the
principal invariants [105, 123, 124] to model hyperelastic behaviour. Many
efforts are made to model time-dependent viscoelastic behaviour by extend-
ing phenomenological models with an evolution equation to describe viscous
behaviour [122, 141, 58, 101, 86, 57, 121].

The early work of Treloar [143, 144, 145, 146] is the basis for most of the
advanced micromechanically motivated material models. The initial work of
Treloar [143, 144] concerns the molecular network theory and micromechan-
ical approaches used in formulating hyperelasticity laws. It is necessary to
distinguish between Gaussian and non-Gaussian theories in large deforma-
tions to model an efficient material model since they need to be more com-
prehensive in describing geometrical nonlinearity. Therefore, non-Gaussian
theories based on inverse Langevin chain statistics are proposed to formulate
network material models under large deformation. A typical example of a
material model based on the Langevin function is proposed by Arruda and
Boyce [8, 20], Anand [5], Bischoff et al. [14], and Wu et al. [153].

Experimental investigation performed to investigate the ageing process is
used to develop a coupled diffusion and deformation material model. Many
material models are proposed to analyse the moisture influence on the me-
chanical behaviour [30, 38, 106, 127, 148]. The influence of the fluid transport
on the mechanical behaviour due to the swelling deformation is investigated
in the polymer gels [61, 151]. Sharma et al. [130] have proposed a model
to investigate polyamide ageing due to moisture transport. Goldschmidt et
al. [46] investigated the ageing phenomena of epoxy adhesives under the in-
fluence of moisture with the coupled formulation. Fick’s law of diffusion is
more popular because of the simplistic formulation, but the diffusion in the
crosslinked polyurethane adhesive is anomalous [67] in nature. Therefore, the
diffusion material model proposed by Carter & Kibler [23] called Langmuir-
type diffusion is used to simulate moisture absorption and desorption at an
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isothermal condition. The Langmuir-type diffusion model is used to analyse
the moisture transport in polymers [75, 137] and in structural adhesives like
epoxy [117, 135, 140].

In order to manufacture reliable bonded joints, it must be demonstrated
that the adhesives acting as an interface in bonded joints will not fail under
operating loads. The failure of the adhesive bonds results from the separa-
tion caused by the growth of one or more cracks through the material. In
this context, the damage behaviour is investigated with a phase-field the-
ory of fracture, where a continuous field variable represents the cracks. This
method allows a simple algorithmic implementation, as the crack surfaces
need not be explicitly modelled. The Phase-field fracture is modelled based
on a variational approach by minimising the energy potential to analyse the
fracture behaviour [40]. Several contributions are made to model the ductile
[25, 83, 97] and the brittle [6, 29, 36, 78, 149] fracture with phase-field fracture
formulations. A Phase-field variable is introduced to distinguish between the
damaged and undamaged material [19].

The parameters belonging to the material model must be identified to repre-
sent the material behaviour consistent with the experimental investigation.
In the automated process of identification of parameters, the data sets ob-
tained from the experiments are compared with data sets generated by nu-
merical analysis. The error is minimised by optimising the parameters set
[15]. Based on this gradient-free method, numerous works [45, 70] have al-
ready been carried out to identify the material parameters of material models
to investigate viscoelastic materials. This work uses a gradient-free search
algorithm to identify the optimal material parameters.

1.1.1 Outline of thesis

The objective of the dissertation is to model the mechanical behaviour of
adhesives under the influence of moisture concentration. The experimental
investigation for the moisture diffusion and mechanical behaviours are inves-
tigated at Lehrstuhl für Adhäsion und Interphasen in Polymeren, Saarland
University and Fraunhofer-Institut für Fertigungstechnik und Angewandte
Materialforschung (IFAM), Bremen. The test data obtained from the exper-
imental investigation were used in this work to model diffusion, viscoelastic
and fracture behaviours using the finite element method. These behaviours
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are coupled to investigate the influence of moisture on mechanical behaviour.
The thesis is organised as follows:

Chapter 2 presents the fundamentals of non-linear continuum mechanics used
to model the mechanical behaviour of bodies under external loading condi-
tions. This chapter also includes kinematics used to describe deformation,
fundamental mapping of geometry, stress measures, and body motion. In
addition, fundamental physical effects are introduced with the balance equa-
tions. At this point, the balance equation for momentum is explained in
detail as it represents the basis for the subsequent implementation in the
context of the finite element method.

Chapter 3 deals with the coupled formulation between moisture diffusion
and finite-strain viscoelasticity to understand the ageing of the material un-
der the moisture influence. The moisture transport is modelled with the
Langmuir-type diffusion model to consider mobile and immobile moisture
concentrations. The moisture diffused in the material will degrade the stiff-
ness of the material. Therefore moisture dependent stiffness parameters are
defined to formulate the multi-physically coupled material model. Hence,
the constitutive equations for stress are calculated as a function of the local
moisture concentration.

Chapter 4 introduces the phase-field fracture model based on the variational
approach for a viscoelastic material. The generalised formulation for phase-
field fracture is based on the diffusive crack in the geometry, and this formu-
lation is derived by regularising the crack surface. The phase-field equation
for fracture is governed by the crack driving force.

Chapter 5 deals with the numerical aspects involved in this work. This chap-
ter briefly describes the numerical methods used to implement the material
theory in the open-source finite element library deal.II [7]. The implementa-
tion of the coupled material models discussed in Chapters 3 and 4 within the
finite element method framework are explained with the help of algorithms
in this chapter.

This work investigates two commercially available adhesives, adhesive-A and
adhesive-B, for moisture diffusion. The ageing of mechanical behaviour under
the influence of moisture is numerically investigated on the adhesive-A. Chap-
ter 6 focuses on identifying the material parameters of the Langmuir-type
diffusion model for both commercial adhesives. The gradient-free algorithm
proposed by Nelder & Mead [109] is used to identify the optimal material
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parameters. The diffusion test data used to identify the optimal parameters
of the Langmuir-type diffusion model are carried out at Fraunhofer-Institut
für Fertigungstechnik und Angewandte Materialforschung (IFAM), Bremen.

Chapter 7 discusses identifying the mechanical parameters and the numerical
investigations on the multi-physically coupled diffusion and viscoelasticity.
The uniaxial tensile tests conducted at Lehrstuhl für Adhäsion und Inter-
phasen in Polymeren, Saarland University on aged samples of adhesive-A
are used to investigate the moisture influence on the viscoelastic behaviour
of the material. The optimal stiffness parameters identified from the curve
fitting process are investigated to derive the relationship between the stiff-
ness parameters and moisture concentration. Tear tests are carried out on
the aged angular sample following DIN ISO 34-1 standard to investigate the
tear strength of the adhesive at Fraunhofer-Institut für Fertigungstechnik
und Angewandte Materialforschung (IFAM), Bremen. The tear test data is
used to identify the critical energy release rate required to investigate damage
behaviour using a phase-field damage model.

In Chapter 8, the multi-physically coupled material model formulation be-
tween viscoelasticity, moisture diffusion and phase-field damage is discussed.
The stability of the proposed formulation is discussed with the help of nu-
merical examples. In this, a double V-notched sample is used to perform a
numerical investigation for the damage behaviour on the aged samples with
inhomogeneous moisture distribution. The load-displacement data from nu-
merical simulations of the samples with inhomogeneous moisture distribution
is compared with the results of dry and saturated samples to check the reli-
ability of the material model.

Since modelling polymer adhesive bonds is highly complex, a description
of the material behaviour can only be comprehensive sometimes. For this
reason, an outlook on possible future work is given in the conclusion. Chapter
9 briefly summarises the work carried out in the thesis.



2

Fundamentals of continuum mechanics

This chapter summarises the fundamental equations of continuum mechanics
necessary to develop and understand the proposed material model concerning
the finite-strain viscoelastic behaviour of a material. The quantities and
methods are introduced to provide an overview for a reader of this thesis.
Marques and Creus [94], Cho [26], and others offer supplementary literature
on viscoelasticity. The kinematics of large deformations and stresses in the
continuum are explained initially. Subsequently, conservation laws associated
with the finite element formulation are introduced. Detailed explanations of
continuum mechanics and the conservation laws discussed here are found
in references [16, 50, 56, 63, 85] and the fundamentals of the finite element
method are summarised by Zienkiewicz et al. [159, 160].

A macroscopic body B is a system of an infinite set of uniformly and con-
tinuously distributed material points. Physical quantities such as stresses,
displacements or temperatures are associated with the material points. The
body is defined in a three-dimensional Euclidean space at time t > 0 with
the boundary ∂B. A base system ei with i = 1, 2, 3 is defined for the material
point of the problem, where the position vector is defined to identify each
material point.

7



8 2. Fundamentals of continuum mechanics

2.1 Kinematics of finite deformation

Kinematics describes geometry, motion, and deformation of the body’s B
as a function of time t. Each material point of the body is described by
a position vector x (χ, t) in Euclidean space. The position vectors of the
material points of the body in the reference configuration are expressed by
the vector X (χ, t). For time t > t0, the position vectors are represented by
the vector x (χ, t) in the current configuration, see Figure 2.1.

u

e3

e2

e1
O

dX
dx

X x

χ (X, t)

X Y

X

Y

B
∂B

Reference configuration
t = t0

Current configuration
t > t0

Figure 2.1: Description of the continuum material domain in reference (left)
and current configuration (right)

The motion of the body is defined with a vector field χ using the unique
mapping of the body from the reference to current configurations. Here, the
position x of a material point in the current configuration is a function of the
time t and the reference configuration’s position vector X. Since the motion
of the deformable body χ is invertible, the material point can be traced back
from the current configuration into the reference configuration X with the
inverse of the motion χ

−1. The definition for position vectors in the current
and reference configurations follows

x = χ(X, t) , X = χ
−1(x, t). (2.1)

The gradient is represented as the derivative with respect to the position
vector x of the current configuration
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grad(•) =
∂(•)
∂x

, (2.2)

symbol div(•) used later is associated with the divergence operator related
to grad(•). In contrast, the derivative with respect to the position vector X
of the reference configuration is represented with

Grad(•) =
∂(•)
∂X

. (2.3)

The displacement vector describes the motion of a material point from the
reference to the current configurations. This displacement vector is calculated
as the difference between the current and the reference configuration position
vectors. The displacement vector u is expressed as

u(X, t) = x (X, t) − X. (2.4)

The partial derivative of the motion function to the position vector X of the
reference configuration results in the local deformation gradient tensor F

F =
∂χ(X, t)

∂X
=

∂x

∂X
= Gradx = I + Gradu, (2.5)

where I is the second-order tensor. The deformation gradient tensor F is
used to map the differential line element dX of the reference configuration
to the line element dx of the current configuration using

dx = F · dX. (2.6)

The description of the motion χ (X, t) is unique and invertible. Therefore,
the inverse of the deformation gradient tensor F−1 exists, which maps the
infinitesimal line element dx back to the reference configuration

dX = F−1 · dx with F−1 =
∂X

∂x
. (2.7)

The Jacobi determinant of the deformation gradient tensor F measures vol-
ume change due to the body’s deformation. This measure is used to map
an infinitesimal volume element dV in the reference configuration onto a
deformed volume element dv in the current configuration with

dv = J dV, (2.8)
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where the Jacobi determinant is calculated as

J = detF. (2.9)

A relationship between a vector element dA of an infinitesimal surface el-
ement in the reference configuration and a surface element in the current
configuration da is established with the help of the deformation gradient
tensor F and the Jacobi determinant J

da = (detF)F−T · dA . (2.10)

The deformation of a body comprises a rigid body motion and the actual
deformation. The deformation gradient tensor is associated with the orthog-
onal rotation tensor R and right stretch tensor U or left stretch tensor V.
Thus, the deformation gradient tensor is decomposed as

F = R ·U = V ·R. (2.11)

The deformation tensor describes the local change in the distance due to
deformation as the square of the differential line element. The deformation
tensor in the reference configuration is defined using the right Cauchy-Green
deformation tensor C as

C = FT · F = U2 with dx2 = dX ·C · dX, (2.12)

analogously the deformation tensor in the current configuration is expressed
with the left Cauchy-Green deformation tensor B as

B = F · FT = V2 with dX2 = dx ·B−1 · dx. (2.13)

The strain tensors are introduced as a difference in the squares of the line
elements for the current and reference configurations. The most common
choice of strain measurement is the Cauchy-Green-Lagrange strain tensor E
in the reference configuration

E =
1

2
(C − I), (2.14)

while the strain measures in the current configuration are expressed using
the Euler-Almansi strain tensor as

A =
1

2
(I − B−1) . (2.15)
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The tensors E and A can be transformed into one another using “push-
forward”and“pull-back”mathematical operations. The relationship between
E and A is defined with the mathematical operations as

A = F−T ·E · F−1, E = FT ·A · F . (2.16)

A detailed explanation of the kinematics for the finite-strain deformation can
be found in the literature [34].

2.2 Stress tensors

The kinematics of a deformable body has been described so far, but not how
deformations are caused. The resulting stresses inside the body must be
considered to represent the body’s behaviour due to external loads. External
loads are divided into volume forces and surface forces. Volume forces such
as gravity act on the entire body, and the surface loads act on the surface
alone.

df

n

n

df
da

B1

B2

S

t

Figure 2.2: Section of a body subjected to an external load

Figure 2.2 shows an imaginary section along the surface to illustrate the
quantities acting inside the body. This imaginary section divides the body
into two parts B1 and B2. The local force df at the imaginary cross-section



12 2. Fundamentals of continuum mechanics

is related to the corresponding partial surface da. Since the sectional forces
are assumed to be continuously distributed over the cross-sectional surfaces,
the traction vector t is defined as a finite limit value of the quotient of the
resulting load vector ∆f and the infinitesimal area element ∆a

t = lim
∆a→0

∆f

∆a
=

df

da
. (2.17)

The orientation of the surface element da is given by its normal vector n

resulting in a vector-valued area element. Based on the Cauchy stress theo-
rem, a relationship between the traction vector t and the normal vector n is
defined as

t = T · n. (2.18)

In the equation (2.18), T is the Cauchy stress formulated by linearly mapping
the normal vector to the stress tensor. The Cauchy stress is defined in the
deformed state of the current configuration. Alternatively, the stresses in the
current configuration are calculated with the Kirchhoff stress tensor τ based
on the Cauchy stress tensor. The Kirchhoff stress tensor is often used in the
numerical implementation of the viscoelastic behaviour

τ = JT. (2.19)

2.3 Balance principles

The balance equations describe universal laws of nature independent of the
continuum properties and are valid for all materials. Balance equations are
first given in integral form as global statements for the entire body. For suffi-
ciently smooth fields of the quantities to be balanced, it is possible to choose
local formulations as differential equations of an arbitrarily small fraction of
the body. In continuum mechanics, the balance equations for mass, momen-
tum, moment of momentum, energy, and entropy are considered [34, 120].
The following chapter discusses the necessary balance equations to evaluate
mechanical behaviour. For details on the other balance equations, references
are suggested for a general case of finite deformation [147, 63, 56].

The axiom for the balance of momentum is given as a temporal change in



2.3. Balance principles 13

the momentum l equals the resultant forces f acting on the body B

l̇ = f . (2.20)

In deriving the balance equation of momentum, the momentum density of a
body is determined as the product of mass density ρ and its velocity v = ẋ.
The forces f acting on the body are classified into external contact and local
external body forces ∂B. The resulting forces are obtained by integrating
the external contact force t over the actual placement’s surface ∂B and the
external body force ρb over the actual body volume. The external body force
is typically due to the effects of gravitational pull. The balance of momentum
is derived from the momentum and forces as

d

dt

∫

B

ρ ẋdv =

∫

∂B

t da +

∫

B

ρb dv, (2.21)

with ρ as the mass density. The global statement for the balance of momen-
tum is derived with the help of the balance of mass ρ̇ + ρ div ẋ = 0 and by
applying the divergence theorem to the surface integral of the equation (2.21)
leading to momentum balance

∫

B

(
ρ ẍ − divT − ρb

)
dv = 0. (2.22)

Equation (2.22) must hold good for any given volume. Hence the expression
has to agree with the local statement

divT + ρ (b− ẍ) = 0. (2.23)

Since quasi-static behaviour is assumed in the present work, the dependence
of acceleration ẍ and body forces acting on the body are not considered.
Thus, the local statement for the balance of momentum is reduced to

divT = 0. (2.24)

The introduced stress and deformation measures form the basis for the gen-
eral characterisation of the material behaviour. They are used in the follow-
ing to develop and implement a material model to represent the behaviour
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of crosslinked polyurethane systems. Furthermore, assumptions regarding
kinematics are essential for characterising inelastic material behaviour due
to viscous effects.

To define a thermodynamically consistent material model, the material model
must satisfy the balance of internal energy ǫ (first law of thermodynamics).
The balance of energy describes the thermo-mechanical effects coupling the
thermal and mechanical fields. The ageing of adhesives under the moisture
influence is investigated in isothermal conditions; therefore, the thermal fields
are neglected. The balance of energy for the coupled diffusion and mechanical
effects is given as

ρǫ̇−T : D+ div (Rmq) = 0, (2.25)

where Rm is the chemical potential and q is the moisture flux. Taking into
account the balance of energy (2.25), the entropy inequality is defined for an
isothermal condition as

ρǫ̇−T : D+ div (Rmq) ≥ 0. (2.26)

The free energy function W is introduced in the entropy inequality in the
form of the Legendre transformation for an isothermal condition as W = ǫ
leading to the Clausius-Planck inequality [71, 138]

ρẆ −T : D+ div (Rmq) ≥ 0. (2.27)



3

Modelling coupled diffusion and

finite-strain viscoelasticity

The hygroscopic property of the crosslinked polyurethane adhesives causes
the moisture to diffuse from the atmosphere leading to the ageing of the ma-
terial. A multi-physically coupled material model is proposed in this chapter
to investigate the ageing process. The coupled material model is formulated
by coupling a finite-strain viscoelastic model with a diffusion model. Here,
the viscoelastic behaviour is modelled with a phenomenological viscoelastic
model under large deformation and coupled with the Langmuir-type diffusion
model. The Langmuir-type diffusion model is used because of the anomalous
moisture diffusion typically seen in the polymers.

3.1 Modelling anomalous diffusion of moisture

Diffusion is the transport of molecules from a high-concentration system to a
low-concentration system due to a larger concentration gradient. The mois-

15
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ture diffusion in crosslinked polyurethane adhesives shows anomalous be-
haviour leading to mobile and immobile moisture concentrations [67]. The
moisture molecules that are physically free to diffuse in spatial direction with
time are referred to as mobile moisture concentration, and the molecules
forming a reversible physical bond with the polymer chains are referred to as
immobile moisture concentration [118, 134].

The moisture transport is generally modelled with Fick’s second law of dif-
fusion [38]. However, Fick’s model does not consider the discontinuous be-
haviour on account of the relaxation of molecules after settling in pockets of
free volume resulting in a non-Fickian behaviour [2, 30, 142]. In the other case
of anomalous moisture diffusion, Fick’s law does not distinguish between the
mobile and the immobile moisture concentrations. Therefore, the Langmuir-
type diffusion model [23] is used in this work and the diffusion equation is

ṁ = D∆mf = D div (grad (m−mb)) , (3.1)

where ˙(•) is the material time derivative d(•)/dt, D is the diffusion coefficient
defining the concentration of moisture diffused through a unit area in a unit
of time. mf andmb are mobile and immobile moisture concentrations and the
total moisture concentration m is calculated as the algebraic sum of mobile
and immobile concentrations m = mf +mb. m = mb+mf = 0 represents the
dry state and m = mb +mf = m∞(H) represents a saturation state, where
m∞(H) is the total moisture concentration at the saturation state for H%
of humid climate condition.

The immobile moisture concentration of the Langmuir-type diffusion model
is evaluated with the help of an evolution equation

ṁb = αm− (α + β)mb. (3.2)

The symbol α is a material parameter that amounts to the rate at which
the mobile moisture becomes immobile, and β represents the rate at which
the immobile moisture becomes mobile. The rate of change in immobile
concentration is zero ṁb = 0 at equilibrium. As a result, the equilibrium
equation is expressed as

αm∞

f = β m∞

b , (3.3)

m∞
f and m∞

b are the mobile and immobile moisture concentrations at the
equilibrium state. Equation (3.3) holds to the entire body irrespective of spa-
tial position. The mobile and the immobile concentrations can be calculated
from the total moisture concentration m∞ = m∞

f + m∞
b at the equilibrium
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state as
m∞

f =
m∞

1 + α/β
, m∞

b =

α
β
m∞

1 + α/β
. (3.4)

Both initial and boundary conditions are required to solve the diffusion prob-
lem. The boundary conditions are defined with the Dirichlet and Neumann
boundary conditions, and the initial conditions are assigned to the entire
spatial material domain Ω at time t0 = 0

m (x, t = 0) = m0 (x) , mb (x, t = 0) = mb0 (x) ∀x ∈ Ω. (3.5)

The moisture concentration is specified on the Dirichlet boundaries ∂ΩD,
and the moisture flux represents the Neumann boundary condition across the
boundary ∂ΩN . The Dirichlet and the Neumann boundaries in the material
domain Ω need to satisfy the conditions

∂ΩN ∪ ∂ΩD = ∂Ω, ∂ΩN ∩ ∂ΩD = ∅. (3.6)

The applied Dirichlet boundary conditions are

m (x, t) = mD ∀x ∈ ∂ΩD, (3.7)

where mD is the total moisture concentration measured for the saturated
sample, and the Neumann boundary conditions are

q · n = D (gradmf) · n = q (x, t) ∀x ∈ ∂ΩN , (3.8)

where the moisture flux q over the boundary ∂ΩN is given by

q = −D
∂mf

∂x
= −D (gradmf ) , (3.9)

and n is the outward normal vector on the domain boundary.

3.1.1 Comparison of Langmuir and Fick’s diffusion models

Langmuir-type diffusion is compared with Fick’s diffusion to establish the
need for a material model based on anomalous diffusion behaviour. Fick’s
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first Law describes the material flux q as

q = −D gradm, (3.10)

where D is the diffusion coefficient and gradm is the moisture concentration
gradient. Fick’s second law describes the balance of mass for the diffusive
fluids, and the localised form of diffusion is

ṁ = − divq. (3.11)

Inserting equation (3.10) in Fick’s second law of diffusion leads to

ṁ = D div (gradm) . (3.12)

The moisture concentration and flux are the Dirichlet and Neumann bound-
ary conditions for Fick’s diffusion model. Fick’s diffusion model also follows
the conditions for the Dirichlet ∂ΩD and Neumann ∂ΩN boundaries given
in the equation (3.6) and the boundary conditions given in equations (3.7)
and (3.8). The comparison of Fick’s diffusion and Langmuir-type diffusion is
conducted on a polyurethane adhesive of thickness 2.5mm. The experimen-
tal investigation is carried-out at Lehrstuhl für Adhäsion und Interphasen in
Polymeren (LAIP), Saarland University. The numerical simulation results
of Fick and Langmuir-type diffusion models are compared with the moisture
diffusion test data as shown in the figure (3.1). The parameters1 of Fick’s
and Langmuir-type diffusion models are listed in Table 3.1.

Table 3.1: Parameters of Fick and Langmuir diffusion models

D
[
mm2 s−1

]
α
[
s−1
]

β
[
s−1
]

Langmuir-type diffusion 2.9e − 06 2.4e − 06 3.9e − 06

Fick diffusion 2.9e − 06 - -

The classical evaluation of the diffusion behaviour is considered a function of
the square root of time to follow classical Fick’s law of diffusion considering
linear mass uptake [31]. The investigation for moisture diffusion is carried
out for one-dimensional moisture diffusion using gravimetric tests. Figure 3.1
shows the gravimetric test (Experimental) and the numerical investigation
performed using Fick’s and Langmuir-type diffusion models to investigate the

1The material parameters of Fick’s and Langmuir-type diffusion models are obtained
through the curve fitting process. The details of the curve fitting are given in chapter 6.
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moisture absorption in polyurethane adhesive. Fick’s diffusion curve follows
the experimental curve until the start of the second plateau of the moisture
uptake at ≅ 410

√
s. The numerical investigation performed with Langmuir-

type diffusion shows a good fit with the experimental data.
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Figure 3.1: Comparison of Fick and Langmuir-type diffusion with the exper-
imental test data. Gravimetric tests for moisture absorption (Experimental)
are conducted at LAIP, Saarland University.

Since the results from the Langmuir-type diffusion model follows the ex-
perimental test data, the simulation data from the Langmuir-type diffusion
model is further investigated to understand the anomalous diffusion. Figure
3.2 compares the simulation and test data, where the total, mobile and im-
mobile moisture concentrations are obtained from the numerical simulation
using the Langmuir-type diffusion model. From the plotted cure, it is evi-
dent that the moisture absorption is initially dominated by Fickian diffusion.
Then the moisture absorption is followed by slower absorption due to the
secondary absorption. The secondary absorption rate corresponds to immo-
bile moisture concentration, and the slower absorption corresponds to mobile
moisture. The total moisture concentration is calculated as the algebraic sum
of mobile- and immobile concentrations. The second plateau is seen in the
diffusion tests at time

√
t = 410

√
s due to increased immobile concentration
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with time. The mobile moisture reaches a maximum at
√
t = 420

√
s and

then transforms into immobile moisture until saturation.
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Figure 3.2: Moisture diffusion in the sample with Langmuir-type diffusion

3.2 Finite-strain viscoelasticity

This section discusses a one-dimensional viscoelastic model based on the rhe-
ological model as a foundation principle to derive constitutive equations for a
viscoelastic material model under large deformations. The rheological model
consists of a spring element connected in parallel with j = 1, 2, ..., n spring-
dashpot elements (Maxwell elements) as shown in Figure 3.3. The spring
element represents the material’s elasticity, and a Maxwell element describes
the rate-dependent behaviour. A Maxwell element approximates the relax-
ation of the viscoelastic material with discrete relaxation time. A discrete
spectrum of relaxation time is considered by combining several Maxwell ele-
ments in parallel.
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µ1

µ11 µ12 µ1n

η1 η2 ηn

Figure 3.3: Rheological model of the viscoelasticity with nMaxwell elements.

Figure 3.4 shows the schematic description of the Maxwell element, where a
Hooke element (spring) of stiffness µ1n is connected in series with a Newton
element (dashpot) with viscosity ηn.

µ1n ηn

ε

εe εi

Figure 3.4: Maxwell element

The strain ε in the Maxwell element is computed as a sum of strains of the
spring εe and the dashpot εi, whereas the stresses in both elements are equal

ε = εe + εi, σ = σe = σi. (3.13)

The finite-strain viscoelastic model is developed based on the rheological
model shown in Figure 3.3. An essential step in implementing the mate-
rial model is to multiplicatively decompose the deformation gradient F into
elastic and inelastic parts [88, 87]. The multiplicative decomposition of the
deformation gradient introduces a fictitious intermediate configuration to rep-
resent a relaxed local state. Therefore, each Maxwell element must have a
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fictitious intermediate configuration.

Current configuration

Intermediate configuration

Reference configuration

dX dx

dx̂

x̂

e3

e2

e1

O

X x

F

Fi Fe

X

Y

Y

X

X

Y

Figure 3.5: Multiplicative decomposition of the deformation gradient based
on a fictitious intermediate configuration

Figure 3.5 shows the schematic representation of the multiplicative de-
composition of deformation tensor into elastic Fe and inelastic Fi parts
[48, 89, 92, 122, 141]. The decomposition of the deformation gradient is
[91]

F = Fe · Fi . (3.14)

The line elements of reference, intermediate and current configurations are
defined with dX, dx̂ and dx. The line element of a configuration can be
transformed into another configuration using the deformation gradient F and
the decomposed components of the deformation gradients Fe and Fi. The
transformation relations of the line elements are

dx = F · dX,

dx̂ = Fi · dX,

dx = Fe · dx̂ .

(3.15)

The strain tensor Γ of the intermediate configuration is calculated with the
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“push-forward” and the “pull-back”mathematical relationships [141, 89, 122,
92, 48]. The strain tensor Γ is determined from the push-forward transforma-
tion of the Green-Lagrangian strain tensor E with the inelastic deformation
gradient Fi as

Γ = F−T
i · E · F−1

i (3.16)

or from the pull-back transformation of the Almansi strain tensor A with the
elastic part Fe of the deformation gradient as

Γ = FT
e ·A · Fe. (3.17)

The strain tensor Γ of the intermediate configuration can be additionally
split into elastic part Γe of the Green-Lagrange type of the strain tensor and
the inelastic part Γi of the Almansi type of the strain tensor

Γ = Γe + Γi, (3.18)

and the elastic Γe and the inelastic Γi parts are

Γe =
1

2

(
FT

e · Fe − I
)

und Γi =
1

2

(
I− F−T

i · F−1
i

)
. (3.19)

The deformation measures of the jth Maxwell element defined at the interme-
diate configuration are the right elastic Cauchy-Green deformation tensor Cj

e

and the inverse of the left inelastic Cauchy-Green deformation tensor (Bj
i )

−1

Cj
e = FT

e · Fe,
(
B

j
i

)−1
=
(
Fi · FT

i

)−1
. (3.20)

The inelastic right Cauchy-Green deformation tensor C
j
i in the reference

configuration and the elastic left Cauchy-Green deformation tensor Bj
e in the

current configuration of the jth Maxwell element are given by

Ci := FT
i · Fi, Be := Fe · FT

e . (3.21)

The elastic left Cauchy-Green deformation tensor Bj
e can be expressed in

terms of the inelastic right Cauchy-Green deformation tensor C
j
i with the
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deformation gradient F in the intermediate configuration as

Bj
e = F ·

(
C

j
i

)−1 · FT . (3.22)

3.2.1 Kinematic split

A nearly incompressible material behaviour motivates the multiplicative de-
composition of the deformation gradient tensor into its isochoric and volu-
metric components. This decomposition of the deformation gradient F is

F = Fvol · Fiso, (3.23)

where Fvol and Fiso are the volumetric and isochoric components respectively.
The deformation gradient components are calculated as [39]

Fvol = J1/3I, Fiso = J−1/3F. (3.24)

Current configuration
Intermediate
configuration

Volumetric− Isochoric

Reference configuration

Fvol

F

Fe
iso

Fi
iso

Fiso

Figure 3.6: Representation of decomposed volumetric and isochoric compo-
nents of deformation gradient
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The elastic and inelastic components deformation gradient of equation (3.14)
are enforced onto the isochoric component of the deformation gradient as
represented in Figure 3.6, thus leading to

Fe
iso = (detFe)

1/3
Fe, and Fi

iso = (detFi)
1/3

Fi. (3.25)

Consequently, the associated left Cauchy-Green deformation tensors B and
Bj

e of j
th Maxwell element are formulated

B̄ = J−2/3B, and B̄j
e = J−2/3Bj

e (3.26)

I1 and I3 are the first and third invariants of the Cauchy-Green deformation
tensor. These invariants are calculated as follows

I1 = tr (B) ; I3 = det (C) = det (B) = J2, (3.27)

and the modified counterparts of the invariants are calculated as

Ī1 = J−2/3I1; Ī3 = det
(
C̄
)
= det

(
B̄
)
. (3.28)

This work does not use second invariant-based material models like the
Mooney-Rivlin model [105, 123]. Therefore calculation of the second in-
variant is not discussed.

3.3 Modelling the coupled formulation

Adhesives absorb moisture from the surrounding atmosphere because of their
hygroscopic property. The moisture diffused in the material leads to a decay
in the material’s properties. The ageing under the influence of moisture con-
centration can be modelled with a coupled material model. There are well-
established theories to model environmental effects like temperature [73, 74]
or humidity [46, 119, 130] on the mechanical behaviour of polymers. In these
theories, Fick’s law of diffusion is used to evaluate the effect of humidity on
viscoelastic behaviour. In this work, a finite-strain viscoelastic model is cou-
pled with the Langmuir-type diffusion model to consider anomalous moisture
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diffusion. The influence of the moisture concentration is superimposed over
the mechanical behaviour by considering the moisture-dependent stiffness.
The moisture-dependent stiffness parameters are formulated based on the
theories proposed by Goldschmidt et al. [46] and Sharma et al. [130]

3.3.1 Constitutive theory

The constitutive equations required to describe the mechanical behaviour of
the material under the influence of the additional physical conditions must es-
tablish a free energy function constituting both the mechanical and external
factors. To this end, the effects of the moisture influence on the mechanical
behaviour are considered under isothermal conditions. The moisture trans-
port into the material leads to stiffness and swelling deformation decay. Here,
ageing due to decay in the stiffness is accounted to establish free energy func-
tion, and the swelling deformation is not considered due to an assumption
that the swelling deformation due to moisture diffusion is negligible. Thus the
free energy of the coupled viscoelastic and diffusion behaviours is formulated
as the sum of mechanical and diffusion parts, Wmech and Wm

W = Wmech

(

J, IB̄1 , I
B̄

j
e

1 , m
)

+Wm(m,mb). (3.29)

In contradiction to a purely incompressible formulation of the viscoelastic
materials [59, 122], we employ a nearly incompressible behaviour because of
small volumetric strains. Therefore, an uncoupled response is considered in
the free energy function [55, 132]. The mechanical part is dependent on the
moisture concentration and the free energy function is formulated as a mois-
ture concentration dependent function [46]. A further assumption is based
on the additive decomposition of the nearly incompressible viscoelastic free
energy into volume-changing part Wvol and isochoric part (shape-changing)
consisting of equilibrium part Weq and the rate-dependent part of the non-
equilibrium part W j

neq represented by j = 1, 2, ..., n Maxwell elements as
shown in Figure 3.3 [55]

Wmech

(

J, IB̄1 , I
B̄

j
e

1 , m
)

= Wvol (J,m) +Weq

(

ĪB̄1 , m
)

+

n∑

j=1

W j
neq

(

IB̄
j
e

1 , m
)

.

(3.30)
The mechanical components of the free energy defined in the equations (3.30)
are substituted into the equation (3.29), leading to
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W = Wvol(J,m) + Weq

(

IB̄1 , m
)

+
n∑

j=1

W j
neq

(

IB̄
j
e

1 , m
)

+ Wm(m,mb).
(3.31)

The mechanical free energy is coupled with the moisture concentration by
considering the material parameters as a function of moisture concentration.
The equilibrium part of the free energy function is motivated by a polynomial
function of the isochoric first invariant of the left Cauchy-Green deformation
tensor ĪB̄1 using the Yeoh model [157, 158]

Weq

(

ĪB̄1 , m
)

= c10(m)
(

ĪB̄1 − 3
)

+ c20(m)
(

ĪB̄1 − 3
)2

+ c30(m)
(

ĪB̄1 − 3
)3

, (3.32)

where c10(m), c20(m) and c30(m) are the moisture dependent material pa-
rameters. A general quadratic form is considered in current formulation
[63, 22, 111, 112, 113] for the volumetric part of free energy density function

Wvol (J,m) =
1

G(m)
(J − 1)2 , (3.33)

where G(m) is the moisture-dependent compression modulus. The total non-
equilibrium free energy of the Maxwell elements is computed as the sum of
j = 1, 2, ..., n energies of the individual Maxwell elements

n∑

j=1

W j
neq

(

IB
j
e

1 , m
)

=

n∑

j=1

W j
neq

(

ĪB̄
j
e

1 , m
)

=

n∑

j=1

c10j(m)
(

ĪB̄
j
e

1 − 3
)

. (3.34)

The constitutive quantities R and the process variable S are needed to model
a material behaviour with an assumption that the constitutive quantities R
are dependent on the process variable S. The process variables S are

S =
{
B,Bj

e, m, gradm
}
, (3.35)

and the constitutive quantities R are

R = {W,T,q} . (3.36)

The physical ageing of the adhesives is investigated under the influence of
moisture concentration at an isothermal condition with no chemical age-
ing. The Clausius-Planck inequality is followed the equation (2.27) due the
isothermal condition. The Clausius-Planck inequality is
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ρẆ −T : D+ div (Rmq) ≥ 0, (3.37)

where Rm is the chemical potential and q is the moisture flux. The material
time derivative of the free energy function is derived with the process variable
to evaluate dissipation as

Ẇ =
∂Wvol(J,m)

∂B̄
: Ḃ+

∂Weq

(
IB̄1 , m

)

∂B̄
: Ḃ+

n∑

j=1

∂W j
neq

(

IB̄
j
e

1 , m
)

∂B̄j
e

: Ḃj
e +

∂Wm (m,mb)

∂m
: ṁ.

(3.38)

From the established relationship between the deformation tensors B and
Bj

e with the deformation velocity D, the time derivatives of the deformation
tensors are formulated as

Ḃ = 2D ·B and Ḃj
e = 2D ·Bj

e − 2Fj
e ·

△

Γ
j
i ·
(
Fj

e

)T
, (3.39)

where the inelastic deformation rate of the intermediate configuration
△

Γ
j
i

is an outcome of applying the product rule over Ḃj
e. After inserting the

material time derivative of free energy (3.38) and the time derivatives of the
deformation tensor leads to the Clausius-Planck inequality as

(

−2ρB · ∂Wvol

∂B
− 2ρB · ∂Weq

∂B
−

n∑

j=1

2ρB̄j
e ·

∂Wneq

∂B̄j
e

+T

)

: D

+

n∑

j=1

2ρ
∂Wneq

∂B̄j
e

:

(

Fj
e ·

△

Γ
j
i ·
(
Fj

e

)T
)

+

(

−ρ
∂Wm(m,mb)

∂m
+Rm

)

· ṁ

− gradRm · q ≥ 0.
(3.40)

The entropy inequality condition in equation (3.40) depends linearly on the
independent variables D, ṁ. The entropy inequality is evaluated based on
Coleman and Noll [28] leading to constitutive relation for the Cauchy stress

T =2ρB · ∂Wvol(J,m)

∂B
+ 2ρB · ∂Weq

(
IB1 , m

)

∂B
+

n∑

j=1

2ρB̄j
e ·

∂W j
neq

(

IB
j
e

1 , m
)

∂B̄j
e

,

(3.41)
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the first term corresponds to the volumetric stress component analogues to
the hydrostatic component, and the other two terms corresponds to the equi-
librium and non-equilibrium parts. Applying the chain rule to the volumetric
stress component with the relationship ∂J/∂B = JB−1 and free energy of
the volumetric part and the isochoric parts of the equilibrium and the non-
equilibrium parts are assumed to be W(•) = ρW(•) [55] leads to

T = JW ′

vol(J,m)I+ 2B · ∂Weq

(
IB1 , m

)

∂B
+

n∑

j=1

2B̄j
e ·

∂W j
neq

(

IB
j
e

1 , m
)

∂B̄j
e

, (3.42)

where W ′
vol = ∂Wvol/∂J is the hydrostatic pressure component [132]. The

third term of the equation (3.40) leads to the definition of the chemical po-
tential

Rm = ρ
∂Wm(m,mb)

∂m
, (3.43)

and the dissipation inequality is simplified to

n∑

j=1

2ρ
∂W j

neq

(

IB
j
e

1 , m
)

∂B̄j
e

:

(

Fj
e ·

△

Γ
j
i ·
(
Fj

e

)T
)

− gradRm · q ≥ 0. (3.44)

The first term of the dissipation inequality of equation (3.44) is used to
derive the evolution equation of the right Cauchy-Green deformation. After
some mathematical calculations and using the kinematic relations of finite
deformation discussed in section 3.2 leads to [56, 90, 128]

˙̄Cj
i =

4

rj

[

C̄− 1

3
tr
(

C̄ ·
(
C̄

j
i

)−1
)

C̄
j
i

]

(3.45)

where rj is the relaxation time associated with the dashpot of the jth Maxwell
element. The relaxation times are the material constants computed as

rj =
µ10n

ηn
. (3.46)

The second term is characterised by the diffusive flux to ensure the positivity
of the simplified dissipation inequality

q = −D (gradRm) , (3.47)
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where D is the diffusion coefficient. Free energy of the moisture diffusion
Wm(m,mb) is considered as

Wm(m,mb) =
1

2
(m−mb)

2 , (3.48)

where mb is the immobile moisture concentration and the chemical potential
of diffusive free energy is derived from the equations (3.43) and (3.48)

Rm =
∂Wm(m,mb)

∂m
= m−mb. (3.49)

From equations (3.47), (3.49) and the balance of mass [16, 56, 63, 85] leads
to the diffusion equation

dm

dt
= D div (grad (m−mb)) . (3.50)

The evaluation of the diffusion equation is discussed earlier in section 3.1.

3.3.2 Influence of moisture on viscoelastic properties

The material softens under the moisture influence, causing the material’s
stiffness to decay without applying any external mechanical loads on the
material [53, 68, 139]. Interpolating material parameters evaluate the depen-
dency of the material parameters on the moisture at the extreme states of
the material, i.e., dry and saturated states. The interpolation of parameters
is followed by [130]

µ (m) = f(m)µdry + (1− f (m))µsat. (3.51)

µ (m) is the interpolated stiffness parameters of the viscoelastic material
model. µdry and µsat are the viscoelastic parameters of dry and saturated
material. In contrast, the relaxation times of the coupled material model
are kept constant analogous to the thermo-viscoelastic behaviour proposed
by Johlitz et al. [47, 73] as this assumption gives the advantage to fit the
loading rates used in the experiments with the relaxation times of the material
model. f (m) is a decay function to interpolate the material parameters at
the integration points.
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The decay function f (m) : [0, 1] → [1, 0] plays a crucial role in coupling the
viscoelastic behaviour with the moisture diffusion. To be precise, it deter-
mines the decay in the viscoelastic material parameters under the influence
of the local moisture concentration. Therefore, the decay function should
satisfy certain conditions as follows

• f(m) has to be a monotonically decay function;

• for the local moisture concentration interval 0 ≤ m ≤ m∞(H), the
value of the decay function must lie between the interval 1 ≤ f(m) / 0;

• f(m = 0) = 1 defines the dry state and f(m = m∞(H)) ≈ 0 defines
the saturated state of the material at H% humid climatic condition.

The material parameters of the aged samples were used to identify the in-
terpolation function. Goldschmidt et al. [46] investigated the ageing of
polyurethane adhesives under the influence of moisture by considering a
power law to consider the decay in stiffness parameters. However, the cur-
rent work uses an exponential function as the power law function decays
more slowly and is not differentiable at zero. An exponential decay func-
tion is advantageous in calculating physically admissible stiffness parameters
under the moisture influence. The order and coefficients of the exponential
decay function are identified by fitting the experimental data with the curve.

3.3.3 Governing equation

The Langmuir-type diffusion discussed in section 3.1 is coupled with the
finite-strain viscoelastic behaviour to analyse the ageing process. The coupled
material model considers moisture-dependent stiffness parameters due to the
decay of stresses T. As a result, the balance of momentum follows

div
(
T
(
B̄, B̄j

e, J,m
))

= 0. (3.52)

The constitutive equation of Cauchy stress T
(
B̄, B̄j

e, J,m
)
is defined in equa-

tion (3.42). The moisture diffusion is modelled with the Langmuir-type dif-
fusion model as outlined in section 3.1. The governing equation to model
anomalous moisture diffusion is

ṁ = D∆mf = D div (grad (m−mb)) , (3.53)
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where the immobile moisture concentration is evaluated with

ṁb = αm− (α + β)mb. (3.54)

3.3.4 Boundary conditions

The field variables of the coupled system of equations are the displacement
field variable u and the moisture concentration field m, respectively. It is
necessary to define the boundary conditions to solve the coupled equations
discussed in section 3.3.3. Accordingly, the surface ∂Ω is decomposed ac-
cording to the field variables displacement u and moisture concentration m

∂Ω = ∂ΩD
u ∪ ∂ΩN

t and ∂Ω = ∂ΩD
m ∪ ∂ΩN

q (3.55)

with ∂ΩD
u ∩ ∂ΩN

t = ∅ and ∂ΩD
m ∩ ∂ΩN

q = ∅. The Dirichlet and Neumann
boundary conditions concerning the mechanical problem are postulated to
relate to the displacement and traction field

u (x, t) = uD (x, t) on ∂ΩD
u and T · n = t on ∂ΩN

t , (3.56)

where t is the traction on the surface ∂ΩN
t with the normal vector n. The

Dirichlet and Neumann boundary conditions are postulated for the mois-
ture diffusion problem, as discussed in section 3.1. The Dirichlet boundary
conditions are given as

m (x, t) = mD ∀x ∈ ∂ΩD
m (3.57)

and the Neumann boundary conditions are given as

q · n = D (gradmf ) · n = q (x, t) ∀x ∈ ∂ΩN
q . (3.58)
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Phase-field modelling of fracture

Modelling of crack propagation is an existing challenge in polymer materials
[49, 152]. In this context, the crack propagation is well understood within
the framework of theoretical continuum mechanics [81]. The energy balance
at the crack propagation boundary is described based on Griffith’s criterion.
Griffith’s theory states that a crack propagates when the energy release rate
at the crack propagation zone is higher than the surface energy built up. The
conventional method in modelling crack separates the material into a broken
and intact material by an interface. However, such a method requires a priori
knowledge of the exact position of the interface and is complex to model in
three-dimensional systems. Therefore, the phase-field method is developed
to have a decisive advantage over sharp interface models since the explicit
interface tracking becomes redundant [108].

A distinction is made between physical and mechanical approaches in mod-
elling the phase-field material models. The physical model approaches are
based on the Ginzburg-Landau phase transformation. In contrast, the me-
chanical approaches are based on Griffith’s failure theory. A review of the
different approaches in modelling phase-field ductile fracture is detailed by
Ambati et al. [4]. These models use order parameters to distinguish broken
and intact material by minimising the system’s free energy [78]. Phase-field

33
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fracture models describe crack propagation in homogeneous materials under
different loads [19, 82, 103], including plastic effects [4, 62, 35, 3] and multi-
physics problems [100, 102, 136]. Based on Griffith’s theory, a model with
position-dependent crack resistance was presented by Hossain et al. [65] for
studies of fracture strength in materials.

4.1 Fundamentals of fracture

This section summarises the failure modes based on fracture mechanics. Well-
documented literature is recommended for the detailed introduction to frac-
ture mechanics [110, 115]. In macroscopic point of view, the crack is propa-
gated in the material by forming a new surface at the interface region. The
opposite surfaces of the crack are called crank flanks and the crack end is
called crack tip. The deformation of a crack is divided into three independent
modes, as shown in Figure 4.1. Mode I is critical in most engineering ap-
plications caused due to the orthogonal opening of two crack flanks under a
tensile load. The Mode II failure is due to the sliding of crack flanks against
each other in the crack plane under shear load. Mode III is generated by
loads transverse to the crack flanks and causes lateral shear.

Mode I Mode II Mode III

F

F

F

F
F

F

Figure 4.1: The three basic types of failures in fracture mechanics [52]

The motivation of the current work is to investigate the tear strength of the
adhesive samples aged under the moisture influence. Tear tests to investi-
gate fracture toughness on the adhesive samples are prepared based on the
DIN ISO 34-1 standard. The angular sample is chosen to examine the tear
strength of adhesive samples under tensile loading conditions.
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4.2 Griffiths’s theory of failure

Griffith was the first to study the energy balance in the case of crack prop-
agation [51]. Griffith’s studies state that the energy released during crack
propagation and the energy required to form a new surface must be bal-
anced. Griffith’s energy balance considers a crack propagation ∆A in a two-
dimensional body with unit depth. The energy release rate Ec is defined
as the differential of the potential energy to the infinitesimally small crack
propagation

Ec = lim
∆A→0

−∆Π

∆A
= −∂Π

∂A
. (4.1)

In a purely elastic case, the internal energy Π is called as the strain energy
E. The crack propagates when the critical energy release rate Ec exceeds the
material-specific crack resistance, and the fracture criterion is followed by

E −Ec ≤ 0. (4.2)

Griffith’s criterion for fracture [51] is established in linear fracture mechanics
that is equivalent to the stress intensity criterion for crack propagation [69].
The crack surface energy Γ proportional to the crack area A results in

Ec =
∂Γ

∂A
. (4.3)

4.3 Modelling phase-field fracture model

The fracture in the polyurethane adhesives is modelled using a finite-strain
phase-field theory without considering the influence of the moisture on the
fracture behaviour at an isothermal condition. The basic idea behind the
variational formulation of the phase-field fracture model is to minimise the
total free energy by obeying a kinematically admissible displacement field.
The total free energy W of the coupled formulation takes the form

W
(

ĪB̄1 , Ī
B̄

j
e

1 , J, φ
)

= Wb

(

ĪB̄1 , Ī
B̄

j
e

1 , J, φ
)

+Ws (φ) . (4.4)
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The first term Wb

(

ĪB̄1 , Ī
B̄

j
e

1 , J, φ
)

is the bulk energy and the second term

Ws (φ) is the surface energy of a propagating crack. The associated field
variables are the displacement u (x, t) and the phase-field variable φ (x, t).
The solid domain Ω ⊂ R

3 in the reference configuration of the material body
is defined in three dimensions in space. These field variables are also studied
in the temporal domain in the range of time T ⊂ R. Consequently, the
time-dependent phase-field variable φ (x, t) is introduced in a spatial domain

φ =

{

Ω× T → [0, 1]

(x, t) → φ (x, t) ,
(4.5)

and the corresponding displacement field u (x, t) in time for the applied in-
crement of load in the spatial domain is defined as

u =

{

Ω× T → R
3

(x, t) → u (x, t) ,
(4.6)

and calculated using the equation (2.4). Based on a well-known Griffith
energy balance, the surface energy is

Ws(φ) =

∫

Γ

EcdΓ, (4.7)

where Ec is the critical energy release rate. The solution to this problem is
not possible with the existing mathematical relationships since the crack area
Γ is an unknown entity. Therefore, the crack area Γ is regularised using the
crack surface density function γ(φ, gradφ) leading to the volumetric integral
of the surface energy density functional

Ws(φ) =

∫

Ω

Ecγ(φ, gradφ) dV. (4.8)

4.3.1 Regularization of the crack surface density function

The primary concern of the phase-field fracture model is to regularise the
crack surface by a diffusive smeared crack within the localised band of a finite
length controlled by the length-scale parameter ℓf . This section summarises
the regularisation of the crack surface by considering a 1D crack problem of
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the constant cross-sectional area of Γ. The sharp crack on the cross-section is
indicated with a variable φ(x) ∈ [0, 1], in which the material is characterised
by indicating φ(x) = 0 as the broken state and φ(x) = 1 as the intact state.
The phase-field crack (4.5) is approximated using an exponential function

φ(x) = 1− exp

(

−|x|
ℓf

)

, (4.9)

as illustrated by the diffusive crack topology shown in Figure 4.2b.

-1 0 1
0
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φ
(x
)

x

(a) Sharp crack at x = 0

ℓf−ℓf

-1 0 1
0
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0.2

0.4

0.6

0.8
φ
(x
)

x

(b) Regularised crack of finite
width at x = 0

Figure 4.2: Modelling sharp crack at x = 0 (left) and a regularised diffusive
crack (right) obtained from the minimisation of the crack topology, which is
controlled by the length scale parameter ℓf .

The length-scale parameter ℓf governs the width of the diffusive crack, and
the value of the exponential function (4.9) equates to the values phase-field
variable defined in equation (4.5) for ℓf → 0. The exponential function (4.9)
is a monotonically decreasing function and implies that the equation (4.9) is
a solution for the ordinary differential equation [24]

φ′′(x)− 1

ℓ2f
(1− φ(x)) = 0 in Ω, (4.10)

where (•)′ and (•)′′ are the first and second order derivatives, ∂ (•) /∂x and
∂2 (•) /∂x2. The derivatives of the exponential function are
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φ′(x) =− sgn(x)

ℓf
e
−

|x|
ℓf

φ′′(x) =

[
sgn(x)

ℓf

]2

e
−

|x|
ℓf =

1

ℓ2f
e
−

|x|
ℓf =

1

ℓ2f
φ(x).

(4.11)

The differential equation (4.10) applied with the boundary condition F re-
sults in the Euler Lagrange equation of the variation principle [103, 19]

φ = arg

{

inf
φ∈F

Π(φ)

}

with F = {φ(0) = 0, φ(±∞) = 1} , (4.12)

and the function Π(φ) is expressed as

Π(φ) =

∞∫

−∞

1

2

[
(1− φ)2 + ℓ2f(φ

′)2
]
dV. (4.13)

Π(φ) is a simple construct of the integral for the Galerkin-type weak form
of equation (4.10) [103]. The exponential function (4.9) is substituted in
equation (4.13) and integrated over the volume to build relationship between
Π and the crack surface Γ as

Π(φ) = ℓfΓ(φ). (4.14)

The crack surface density is introduced with the regularised crack functional
γ (φ, gradφ) by evaluating the equations (4.13) and (4.14)

Γ(φ) =
1

ℓf
Π(φ) =

∫

Ω

[
1

2ℓf
(1− φ)2 +

ℓf
2
|gradφ|2

]

dV

=

∫

Ω

γ (φ, gradφ) dV.

(4.15)

4.3.2 Degradation of the bulk energy

The bulk energy is the stored mechanical energy and degrades as the crack
propagates. The degradation in the mechanical energy is formulated by mul-

tiplying the free energy W0

(

ĪB̄1 , Ī
B̄

j
e

1 , J
)

of the intact material with the degra-
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dation function g (φ)

Wb

(

ĪB̄1 , Ī
B̄

j
e

1 , J, φ
)

= g(φ)W0

(

ĪB̄1 , Ī
B̄

j
e

1 , J
)

. (4.16)

The degradation of the bulk energy defined in the equation (4.16) needs to
satisfy the necessary conditions of the intact and broken material for the
value of the phase-field variable φ ∈ [0, 1]

Wb

(

ĪB̄1 , Ī
B̄

j
e

1 , J, φ = 1
)

= W0

(

ĪB̄1 , Ī
B̄

j
e

1 , J
)

, Wb

(

ĪB̄1 , Ī
B̄

j
e

1 , J, φ = 0
)

= 0 ,

∂Wb

(

ĪB̄1 , Ī
B̄

j
e

1 , J, φ
)

< 1 and ∂Wb

(

ĪB̄1 , Ī
B̄

j
e

1 , J, φ = 0
)

= 0.

(4.17)
The equations (4.8), (4.15) and (4.16) are substituted in the equation (4.4)
and integrated over the volume to derive the free energy density [19, 40]

W
(

ĪB̄1 , Ī
B̄

j
e

1 , J, φ
)

=

∫

Ω

g(φ)W0

(

ĪB̄1 , Ī
B̄

j
e

1 , J
)

dV +

∫

Ω

Ec

[
1

2ℓf
(1− φ)2 +

ℓf
2
|gradφ|2

]

dV.

(4.18)

4.3.3 Degradation function

The energy degradation function g(φ) plays a vital role in interpolating
stresses due to changes in unbroken to broken states at the transition zone.
The degradation function influences changes in material parameters between
intact and broken states. This function also establishes the coupling between
the viscoelastic energy and the evolution equation for damage. The chosen
degradation function g(φ) must satisfy the following conditions

• g(φ = 1) = 1 defining the intact material and g(φ = 0) = 0 defining
the broken material;

• g′(φ) = ∂g(φ)/∂φ < 1 as g(φ) is a monotonically decreasing function,
and the derivative must be continuously differentiable;

• g′(0) = 0 controls the contribution of the stored material energy by
eliminating the viscoelastic energy function W0 when g(φ = 0) = 0 in
the evolution of the phase-field crack functional, see equation (4.40b).
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A classical second-order degradation function is considered in the degrada-
tion of the bulk energy. This function takes into account for an additional
regularization parameter ζ [18, 60, 84]

g(φ) = (1− ζ)φ2 + ζ. (4.19)

The regularisation parameter ζ > 0 is employed to regularise the bulk energy
to guarantee a converged solution. The parameter ζ > 0 must be small
to avoid overestimating mechanical energy and underestimating the crack
energy of the phase-field evolution equation [17, 18, 21].

4.4 Thermodynamic consistency

The work performed on the body can be partitioned into a mechanical con-
tribution and a contribution by the micro force system characterised by the
micro stress vector and the internal and external micro forces that lead to
the tearing of the material. As a result, the virtual power takes the form

Ė = Pmech + Pmic, (4.20)

where Ė corresponds to the total power, Pmech denotes the mechanical power
and Pmic denotes the power of the micro force system. The virtual power of

the system for the considered generalised virtual velocity V =
{

u̇, φ̇
}

is

∫

Ω

T : gradu̇ dV +

∫

Ω

ω · gradφ̇ dV +

∫

Ω

ς φ̇ dV =

∫

∂Ω

t · u̇dA +

∫

Ω

b · u̇ dV +

∫

∂Ω

χ φ̇ dA +

∫

Ω

Υ φ̇ dV,

(4.21)

where T is the Cauchy stress tensor, t = T·n is traction, and b is the external
body force acting on the system. The components of the micro force system
are the microscopic stress ω power-conjugate to grad φ̇, microscopic internal
force ς, external traction χ and the external microscopic force Υ are the
power-conjugate to φ̇.

By applying the virtual velocity V = (u̇, 0) over the equation (4.21) leads to
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the balance equation of momentum

divT+ b = 0. (4.22)

By considering the virtual velocity V =
(

0, φ̇
)

leads to the phase-field equa-

tion
divω − ς +Υ = 0 (4.23)

after applying the divergence theorem, the microscopic traction is computed
as χ = ω · n.

4.4.1 Material theory

The entropy inequality (Clausius-Duhem inequality) is required to formulate
a thermodynamically consistent material law. The details of the thermody-
namic evaluation of phase-field damage are complex due to the many terms
involved. However, constitutive equations need to postulate to a material
model and build relations between the kinematics and the balance equations.
By assuming the Clausius-Duhem inequality as a condition for a non-negative
entropy, the following inequality is obtained for an isothermal condition based
on the micro force system [42, 43, 54]

T : D+ ω · gradφ̇+ ς φ̇− Ẇ ≥ 0, (4.24)

where Ẇ denotes the rate of the free energy function. The free energy density
of the phase-field damage model is given by the sum of the mechanical and
the regularised fracture energy

W
(

J, ĪB̄1 , Ī
B̄

j
e

1 , φ, gradφ
)

= Wb

(

J, ĪB̄1 , Ī
B̄

j
e

1 , φ
)

+Wφ(φ, gradφ), (4.25)

where the mechanical free energy function Wb corresponds to the nearly in-
compressible viscoelasticity under large deformations. The free energy func-
tion of the finite-strain viscoelasticity is formulated as the algebraic sum
of the volume-changing part Wvol and the isochoric parts consisting of the
equilibrium Weq and the non-equilibrium W j

neq components [55]. The non-
equilibrium represents the overstresses due to rate-dependent properties rep-
resented by j = 1, 2, ..., n Maxwell elements. The mechanical free energy is
a function of the damage variable as discussed in chapter 4.3.2, and the free
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energy function is formulated as

Wmech

(

J, ĪB̄1 , Ī
B̄

j
e

1 , φ
)

= Wvol (J, φ)+Weq

(

ĪB̄1 , φ
)

+

n∑

j=1

W j
neq

(

ĪB̄
j
e

1 , φ
)

. (4.26)

As a result of inserting the equation (4.26) in equation (4.25), the energy
function is expressed as

W
(

J, ĪB̄1 , Ī
B̄

j
e

1 , φ, gradφ
)

= Wvol(J, φ) + Weq

(

ĪB̄1 , φ
)

+

n∑

j=1

W j
neq

(

ĪB̄
j
e

1 , φ
)

+ Wφ(φ, gradφ).
(4.27)

The process variables to evaluate the inequality are (4.24)

S =
{
B,Bj

e, φ, gradφ
}
. (4.28)

The time derivative of the free energy function Ẇ derived with the process
variables to express Clausius-Duhem inequality yields

Ẇ =
∂Wvol (J, φ)

∂B
: Ḃ+

∂Weq

(
IB̄1 , φ

)

∂B
: Ḃ+

n∑

j=1

∂W j
neq

(

IB̄
j
e

1 , φ
)

∂Bj
e

: Ḃj
e

+
∂W

∂φ
: φ̇+

∂W

∂gradφ
: grad φ̇,

(4.29)

and the equation (4.29) is applied to the inequality (4.24) leading to the
simplified form

(

−2ρB · ∂Wvol

∂B
− 2ρB · ∂Weq

∂B
−

n∑

j=1

2ρB̄j
e ·

∂Wneq

∂B̄j
e

+T

)

: D

+

n∑

j=1

2ρ
∂Wneq

∂B̄j
e

:

(

Fj
e ·

△

Γ
j
i ·
(
Fj

e

)T
)

+

(

ς − ∂W

∂φ

)

· φ̇

+

(

ω − ∂W

∂ gradφ

)

· grad φ̇ ≥ 0.

(4.30)

Based on the argumentation of Coleman & Noll, the first term of the inequal-
ity leads to the constitutive equation for the stress tensor by introducing an
assumption W(•) = ρW(•) [55] for the free energy of the volumetric part and
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the isochoric parts of the equilibrium and the non-equilibrium parts

T = 2B · ∂Wvol

∂B
+ 2B · ∂Weq

∂B
+

n∑

j=1

2B̄j
e ·

∂Wneq

∂B̄j
e

. (4.31)

The remaining inequality function leads to the residual dissipation equations
concerning the evolution equations for the inelastic deformation rates of n
Maxwell elements [128, 90]

n∑

j=1

2ρ
∂Wneq

∂B̄j
e

:

(

Fj
e ·

△

Γ
j
i ·
(
Fj

e

)T
)

≥ 0, (4.32)

further applying the inequality condition over the group of terms leads to
(

ς − ∂W

∂φ

)

· φ̇+

(

ω − ∂W

∂ gradφ

)

· grad φ̇ ≥ 0 (4.33)

and the consequent constitutive equations of the microscopic phase-field
equation follows

ω =
∂Wφ(φ, gradφ)

∂φ
, ς =

∂Wφ(φ, gradφ)

∂ gradφ
. (4.34)

Finally, the constitutive equations (4.34) are substituted in the equation
(4.23) to obtain the phase-field equation

div

(
∂Wφ(φ, gradφ)

∂ gradφ

)

− ∂Wφ(φ, gradφ)

∂φ
= 0. (4.35)

Based on the micro force balance law, Gurtin [54] proposed the general form
of evolution for the damage order parameter φ consistent with the equation
(4.34) takes the form

φ̇ = −M

(

W − Ec

(

ℓf divφ− 1

ℓf
(1− φ)

))

, (4.36)

where M > 0 is a scalar mobility parameter. An assumption of a constant
mobility parameter leads to the regularised crack surface density function
discussed in section 4.3.1
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4.5 Governing balance equations

The weak form of the free energy function is derived by applying the vari-
ational principle to the total potential energy and is derived as the partial
derivative of the total free energy with the field variables (u, φ)

δW =

(
∂W

∂u

)

: δu+

(
∂W

∂φ

)

: δφ. (4.37)

Furthermore, the continuum domain Ω is integrated over the total volume
dV leading to the weak form of the coupled formulation for the admissible
test functions of phase-field δφ and displacement field δu

δW =

∫

Ω

{g(φ)T : gradsδu+ g′(φ) δφW0} dV+

∫

Ω

{

Ec

[

− 1

ℓf
(1− φ) δφ+ ℓf gradφ gradδφ

]}

dV,

(4.38)

gradsδu = 1
2

[

gradδu+ (gradδu)T
]

is involved due to symmetric stress ten-

sor. After substituting the degradation function defined in the equation
(4.19) and the derivative of degradation function ∂g(φ)/∂φ in the coupled
form given in equation (4.38) follows:

δW =

∫

Ω

{[
(1− ζ)φ2 + ζ

]
T : gradsδu

}
dV+

∫

Ω

{

2 (1− ζ)φ δφW0 + Ec

[

− 1

ℓf
(1− φ) δφ+ ℓf gradφ gradδφ

]}

dV.

(4.39)

The strong form of the coupled formulation gives the local statement for the
phase-field method and is derived by applying the divergence principle to
equation (4.39)

div
([
(1− ζ)φ2 + ζ

]
T
)
= 0 (4.40a)

2 (1− ζ)φW0
︸ ︷︷ ︸

driving force

+Ec

[

− 1

ℓf
(1− φ) + ℓf divφ

]

︸ ︷︷ ︸

resistance to crack

= 0. (4.40b)
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Equation (4.40a) refers to the balance of momentum describing the viscoelas-
tic response, and equation (4.40b) is the phase-field evolution of the diffusive
crack. The first term of the phase-field evolution is responsible for driv-
ing the crack, and the second term refers to the geometric resistance to the
propagation of the crack. W0 is the energy stored in material domain with
W0 = max

0<φ<t
W0 (x, φ) to avoid an irreversibility in the crack propagation [100].

The time derivative of the phase-field variable needs to follow φ̇ ≤ 1 to avoid
crack irreversibility.

4.5.1 Boundary conditions

The necessary boundary conditions have to be postulated for the displace-
ment field variable u and the phase-field damage variable φ to solve the
phase-field damage formulation. To this end, the surface ∂Ω is decomposed
to the primary fields, the displacement and damage fields

∂Ω = ∂ΩD
u ∪ ∂ΩN

t and ∂Ω = ∂ΩD
φ ∪ ∂ΩN

∇φ (4.41)

with ∂ΩD
u ∩ ∂ΩN

u = ∅ and ∂ΩD
φ ∩ ∂ΩN

∇φ = ∅. The prescribed displacement u
and traction t of the mechanical problem on the boundaries are postulated
with the Dirichlet and Neumann boundary conditions

u (x, t) = uD (x, t) on ∂ΩD
u and T · n = t on ∂ΩN

t . (4.42)

For the phase-field damage, the cracked region is constrained by the Dirichlet
and the Neumann boundary conditions on the crack surface with

φ (x, t) = 0 at x ∈ ∂ΩD
φ and ∇φ · n = 0 on ∂ΩN

∇φ. (4.43)

4.6 Mesh sensitivity study

It is a well-established fact that the numerical solution obtained from the
finite element method depends on the size of the finite element mesh, es-
pecially in the case of damage evolution. In the phase-field approach, the
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propagation of a crack is treated in terms of the diffusive order parameter.
Initial studies with locally refined finite element meshes produce good results
with smaller errors in the force-displacement comparison of the test and the
simulation results. However, a refined mesh representing a sharp crack is
computationally expensive. Therefore, a mesh sensitivity study is performed
to ensure a convergent solution with a computationally less expensive mesh
size, i.e., using a coarser mesh size in finite element analysis. The mesh sensi-
tivity study is conducted on a V-shaped notch specimen consistent with the
angular specimen described in DIN ISO 34-1. This specimen is applied with
the tensile load boundary conditions (see Figure 4.3).

35mm

66
m
m

20mm

Figure 4.3: V-shaped notch sample of thickness 2mm applied with tensile
boundary conditions

Miehe et al. [103] proposed criteria of the mesh size for 2D elements, which
is adapted for 3D elements. According to the proposed criteria, the initial
crack length ℓf mm, and the mesh size hmm need to satisfy the condition

h ≪ ℓf
2
. (4.44)

In this current study for the mesh sensitivity, the V-notched sample is dis-
cretised with 8-node hexahedral elements with a refined mesh at the tran-
sition zone. The sensitivity study is conducted for a length-scale parameter
ℓf = 9mm. Here six different mesh sizes hmm are used to demonstrate
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the sensitivity of the mesh in crack propagation. Figure 4.4 shows the six
different meshes refined locally at the V-shaped notch.

(a) Mesh 1:
h = 0.502mm

(b) Mesh 2:
h = 1.230mm

(c) Mesh 3:
h = 1.490mm

(d) Mesh 4:
h = 2.028mm

(e) Mesh 5:
h = 2.734mm

(f) Mesh 6:
h = 3.751mm

Figure 4.4: Meshes with different mesh lengths are considered to study the
mesh sensitivity with locally refined meshes at the transition zone

The discretised finite element model with different mesh sizes is defined with
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the finite strain viscoelastic material properties and the critical energy release
rate as the phase-field damage material parameter (see Table 4.1).

Table 4.1: Finite-strain viscoelastic material parameters and phase-field dam-
age parameters to perform the mesh sensitivity study

Material parameters of finite-strain viscoelastic model

Relaxation

times [s]
Stiffness parameters

Equilibrium

c10 [MPa] 9.886

c20 [MPa] -1.414

c30 [MPa] 3.214

D [MPa] 0.306

Non-equilibrium

c101 [MPa] 0.5 4.886

c102 [MPa] 10 0.886

c103 [MPa] 100 0.055

c104 [MPa] 1000 0.005

Energy release rate Ec [N/mm2] 4.12

The load-displacement curve is shown in figure 4.5 for different mesh lengths.
It can be depicted from the curves that the initial slope of the individual
curves is approximately the same. However, the deviation in the peak forces
to failure is ≤ 15% with a change in mesh size. The maximum force re-
quired to initiate a crack in the sample decreases for smaller mesh lengths
hmm. This decrease in peak force is due to the approximation of steep gra-
dients at locally refined meshes. However, the locally refined mesh increases
computational efforts and costs. The value of the phase-field order variable
reaches a minimum with the crack propagation at the notch. However, the
material also degrades the viscoelastic properties globally. As a result, the
numerical results lead to a singularity at the phase-field variable φ = 0.17
for h = 1.23mm. The phase-field model computes the crack propagation
to 0.21 ≤ φ ≤ 0.31 for other mesh sizes. In this work, a mesh length of
h = 1.23mm is adopted to compromise with the accuracy of the numerical



4.6. Mesh sensitivity study 49

results to reduce computational efforts.
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h = 2.734mm

h = 2.028mm
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h = 1.230mm

h = 0.502mm

Figure 4.5: Computational results of single edge V-shaped notch sample with
different mesh length

Computational results of the crack propagation in the V-shaped notched
specimen with a mesh size of h = 1.2301mm are shown in the figures 4.6a
-4.6f until fracture at time t = 990 s. It is realised that the material tends to
degrade its stiffness at the transition region and globally with a maximum
value of the phase-field variable φ ≅ 0.75 close to the faces applied with
displacement and fixed boundary condition.
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Phase-field variable φ

1.00 0.75 0.50 0.25 0.00

(a) Time t = 0 s (b) Time t = 500 s (c) Time t = 600 s

(d) Time t = 700 s (e) Time t = 800 s (f) Time t = 990 s

Figure 4.6: Meshes with different mesh lengths are considered to study the
mesh sensitivity with locally refined meshes at the transition zone
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Numerical implementation

The moisture diffusion and mechanical behaviours have been described in
chapters 3 and 4 using the initial boundary value problem of a coupled system
of equations. The solution of this system is generally not possible analytically.
For this reason, the finite element method is used to approximate the solution.
However, the finite element method can not solve with the strong form of the
differential equation. Hence, the so-called weak form is derived as the integral
over the solution domain. This weak formulation is a primary requirement
in the application of approximation methods. Integral principles in the basis
of continuum mechanics are based on [12]

• the principle of virtual work,

• the principle of virtual forces,

• and the principle of minimisation of the total potential.

The following chapter describes the numerical implementation of the weak
forms and the solution strategies used to solve the defined partial differential
equations. For the numerical implementation, the open-source finite element
library deal. II is used to solve the coupled system of equations [11, 7].

51
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5.1 Coupled diffusion and viscoelasticity

The governing partial differential equations for the coupled system of equa-
tions are defined in Chapter 3 to model the ageing behaviour of adhesives
under the moisture influence

div
(
T
(
B̄, B̄j

e, J,m
))

= 0, (5.1a)

ṁ−D div (grad (m−mb)) = 0, (5.1b)

where the immobile moisture concentration mb distributed in the spatial
domain of the material is evaluated with the evolution equation (3.2). The
weak form of the governing equations is derived to solve the coupled problem
using the finite element method.

To this end, the weak form of the diffusion equation is derived by multiplying
equation (5.1b) with an arbitrary test function δm and integrating over the
material volume

∫

Ω

δm ṁdV =

∫

Ω

δmD div (grad (m−mb)) dV. (5.2)

Applying the divergence theorem on equation (5.2) leads to
∫

Ω

δm ṁdV =

∫

Ω

[div (δmD grad (m−mb))− gradδm ·D grad (m−mb)] dV.

(5.3)
The first term of the right side is transformed into a surface integral using
the divergence theorem. This transformation results in an expression for the
flux on the boundary
∫

Ω

div (δmD grad (m−mb)) dV =

∫

∂Ω

δmD grad (m−mb) · n dA =

∫

∂Ω

δmq dA.

(5.4)
Combing equations (5.4) and (5.3) and considering the flux-free boundary
conditions leads to the weak form of the diffusion equation as

∫

Ω

δm ṁdV +

∫

Ω

[gradδm ·D grad (m−mb)] dV = 0. (5.5)
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The diffusion is a long time process for the material to reach from the initial
to the steady state. Therefore, the mathematical equation must consider a
larger time step to solve the problem with less computational effort. Both
the explicit and implicit time derivatives have temporal truncation errors for
larger time steps [95]. Therefore a second order time derivative proposed
by Crank-Nicolson [32] is used to solve the diffusion problem. The time
discretisation of the weak form using the Crank-Nicolson method leads to
the residual rm(m)

rm(m) =

∫

Ω

δm
mt+1 −mt

∆t
dV +

∫

Ω

[

gradδm ·D 1

2
grad

(
mt+1 −mt+1

b

)
]

dV

−
∫

Ω

[

gradδm ·D 1

2
grad

(
mt −mt

b

)
]

dV = 0,

(5.6)
where (•)t+1 and (•)t are the values of the field variables calculated at current
time t+1 s and previous time t s steps. The evolution equation (3.2) is solved
locally using the Crank-Nicolson method to evaluate the immobile moisture
concentration as

mt+1
b −mt

b

∆t
=

1

2

[
α
(
mt+1 −mt

)]
− 1

2

[
(α + β)

(
mt+1

b −mt
b

)]
. (5.7)

Based on the virtual displacements principle, an infinitesimally small and
kinematically admissible test function is chosen as a virtual displacement δu
to derive the weak formulation of the momentum balance equation (5.1a) as

∫

Ω

δu · divT
(
B̄, B̄j

e, J,m
)
dV = 0. (5.8)

The divergence theorem is applied on equation (5.8) to derive the residual
ru(u) of the momentum balance

ru(u) =

∫

Ω

T
(
B̄, B̄j

e, J,m
)
: grads δu dV−

∫

∂Ω

t · δudA = 0, (5.9)

where the Cauchy stress tensor is calculated using the equation (3.42)1 by
considering the moisture-dependent stiffness parameters2.

1Detailed explanation in derivation and evaluation of the Cauchy stress tensor is given
in the section A.1

2Interpolation of the stiffness properties concerning the finite-strain viscoelastic ma-
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5.1.1 Linearisation

The weak form of the balance of momentum shown in the equation (5.9) yields
the static equilibrium in the form of a non-linear differential vector equation.
The differential equation is treated to consider the geometrical non-linearity
because of the large deformations. The linearised approximation of the non-
linear governing equations is solved with Newton’s method using

R (Ξ+∆Ξ) ≈ R(Ξ) + D∆ΞR (Ξ) · dΞ = 0, (5.10)

where D∆Ξ (•) represents the directional derivative, also known as the spatial
tangent tensor, that describes the change in the residuals R(Ξ) in the direc-
tion of the unknown vector Ξ. The component of the directional derivative
Kmm known as the diffusive matrix is

Kmm =

∫

Ω

grad δm grad δm dV, (5.11)

and the direction derivative component Kuu in the direction ∆u is

Kuu = D∆ur(u) =

∫

Ω

D∆u

(
T
(
B̄, B̄j

e, J,m
))

: grads δu dV

+

∫

Ω

T
(
B̄, B̄j

e, J,m
)
:
[
Grad δu · D∆uF

−1
]
dV,

(5.12)

the directional derivative Kuu is simplified to

Kuu = D∆ur(u) =

∫

Ω

grads ∆u :
4
κ
(
B̄, B̄j

e, J,m
)
: grads δu dV

+

∫

Ω

grad δu :
[
grad∆u ·T

(
B̄, B̄j

e, J,m
)]

dV.

(5.13)

Here, the tangent
4
κ is calculated as the sum of the volumetric

4
κ vol and

isochoric components composing of the equilibrium
4
κ eq

(
B̄, m

)
and j =

terial model is discussed in the chapter 3.3.2. The interpolated stiffness parameters are
calculated at every integration point to consider the influence of the inhomogeneous mois-
ture distribution on the stiffness properties.
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1, 2, ..., n non-equilibrium
4
κneq

(
B̄j

e, m
)
parts of the viscoelastic model. The

equation (A.6) in the Appendix defines the tangent matrices. B̄j
e of the jth

non-equilibrium part is calculated from the evolution equation of the inelastic
right Cauchy-Green deformation tensor C̄j

i (see chapter 3.3). This evolution
equation is solved with the implicit Euler method in time combined with the
local Newton method in space at every integration point [72].

5.1.2 Finite element implementation

The diffusive flux over the Neumann boundary is neglected because of the
symmetric boundary conditions, and the mechanical problem is considered
with the traction-free Neumann boundary conditions. To this end, the weak
forms of the coupled system of equations follow:

ru(u) =

∫

Ω

T
(
B̄, B̄j

e, J,m
)
: grads δu dV = 0

rm(m) =

∫

Ω

δm
mt+1 −mt

∆t
dV +

∫

Ω

[

gradδm ·D 1

2
grad

(
mt+1 −mt+1

b

)
]

dV

−
∫

Ω

[

gradδm ·D 1

2
grad

(
mt −mt

b

)
]

dV = 0.

(5.14)
The Finite-Element-Method is based on the approximation of the displace-
ment u and the moisture concentrationm. The approximation of the primary
variables follows

u =

nele∑

i=1

Nu
i ui, m =

nele∑

i=1

Nm
i mi, (5.15)

where nele is a set of degrees of freedom of an element andNu
i and Nm

i are the
shape functions of the displacement field u and the moisture concentration

Nu
i =





Ni 0 0
0 Ni 0
0 0 Ni



 , (5.16)

where, Ni = N1,N2, ...,Nnele denotes the respective shape function values of
an element at the quadrature points associated with the respective nodes.
The virtual quantities of the primary variables and their derivatives are dis-
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cretised as

δu =

nele∑

i=1

Nδu
i δui, δm =

nele∑

i=1

Nm
i δmi,

gradsδu =

nele∑

i=1

Su
i δui, grad δm =

nele∑

i=1

Sm
i δmi.

(5.17)

Here, the strain-displacement matrix S is introduced as the derivative of the
shape function

Su
i =











Ni,x 0 0
0 Ni,y 0
0 0 Ni,z

Ni,y Ni,x 0
0 Ni,z Ni,y

Ni,z 0 Ni,x











, Sm
i =





Ni,x

Ni,y

Ni,z



 with





Ni,x

Ni,y

Ni,z



 =







∂Ni

∂x

∂Ni

∂y

∂Ni

∂z






. (5.18)

Inserting the approximated field variables and their derivatives in the resid-
uals of the coupled system of equations leads to

ru(u) =

∫

Ω

T
(
B̄, B̄j

e, J,m
)
: (Su

i )
T dV = 0

rm(m) =

∫

Ω

Nm
i

mt+1 −mt

∆t
dV +

∫

Ω

[

Sm
i ·D 1

2
grad

(
mt+1 −mt+1

b

)
]

dV

−
∫

Ω

[

Sm
i ·D 1

2
grad

(
mt −mt

b

)
]

dV = 0.

(5.19)
The displacement u and moisture concentration fields m of the coupled sys-
tem of equations are solved with the Newton-Raphson method using equation
(5.10). The linearisation is followed by

[
Kuu Kum

Kmu Kmm

]

︸ ︷︷ ︸

D∆ΞR(Ξ)

[
du
dm

]

︸ ︷︷ ︸

dΞ

=

[
−ru(u)
−rm(m)

]

︸ ︷︷ ︸

R(Ξ)

. (5.20)

The monolithic solution may encounter convergence problems because of the
rearrangement of the stress field with a change in moisture concentration.
Therefore, the displacement u and diffusion m fields of the coupled problem
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are solved individually as a coupled staggering field to find a stable implicit
solution. In this method, the governing equation for moisture diffusion is
solved in the first step then the effects of moisture on the stiffness properties
are superimposed to investigate the viscoelastic behaviour. To this end, the
elements of the tangent matrix Kum and Kmu are set to ”null”. As a result
of this approach, the system of equations is solved as follows

[
Kuu 0
0 Kmm

][
du
dm

]

=

[
−ru(u)
−rm(m)

]

. (5.21)

The tangent matrix of the displacement and moisture concentration fields
are expressed as

D∆uru(u) = Kuu =

∫

Ω

[

Su
i :

4
κ : Su

j + Su
i :
[
Su
j ·T

]]

dV

D∆mrm(m) = Kmm =

∫

Ω

Sm
i Sm

j dV.

(5.22)

Analytical integration of these integrals are complex and even impossible in
some cases. Therefore, a numerical quadrature scheme based on the Gauss
quadrature approximates the corresponding integrals. This method replaces
integrals with the weighted sum of the integral evaluated at the integration
points. The integral function then takes the form

∫

Ω

f (x) dV =

gp
∑

q=1

wqf (xq) . (5.23)

gp is the number of integration points, wq are the weight factors, and the
function values are calculated at the corresponding integration points xq.
The coupled system of equations and the evolution equations are solved at
the integration points. Using the staggered approach, the Gauss quadrature
is applied to solve the coupled system. The implementation of the coupled
diffusion and viscoelasticity in deal.II is explained with the help of the Algo-
rithms 1 and 2.

The implementation of the Langmuir-type diffusion model in deal. II is ex-
plained with algorithm 1. The geometry is imported as input data to gen-
erate the finite element mesh, and the boundary faces are defined to apply
Dirichlet and Neumann boundary conditions (see equation (3.7) and (3.8)).
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Algorithm 1: Implementation of Langmuir-type diffusion

Given : Three-dimensional geometry parameters (length, width and
thickness) and material parameters D, β, α

Return: Solution values mf , mb, m = mf +mb on each cell
1 Set initial values of solution variables m = mb = 0
2 foreach time loop with time step ∆t = 1s do
3 Assemble system of equations
4 foreach cell k ∈ Ω do
5 extract function values of total moisture concentration m
6 extract function values of immobile moisture concentration mb

7 extract gradients of function values for free moisture
concentration gradmt

8 foreach qudrature points q on each cell k do
9 extract shape values at the total and immobile moisture

concentration degrees of freedom per cell
10 extract gradient of shape values at the total and immobile

moisture concentration degrees of freedom per cell
11 extract weight factors wq

12 update the immobile moisture concentration with
mt+1

b = mt
b +∆mb

13 compute left-hand side A
14 compute right-hand side B

15 end

16 end
17 Apply Dirichlet boundary conditions
18 Apply Neumann boundary conditions
19 Solve the system of equations
20 Solve the evolution equation to identify immobile moisture

concentration mb & ∆mb = mt+1
b −mt

b

21 Update total moisture concentration m = mf +mb

22 Distribute results to destination vectors

23 end

Then the material parameters are defined to specify the diffusion behaviour
of a specific material. The number of degrees of freedom (DOF) is deter-
mined for the defined mesh to initialise the solution vectors and matrices of
appropriate size. Once the model is set up, the time increment is initiated
with the time step size of ∆t s. A control flow statement is programmed to
implement and assemble the residual rm(m) and the diffusivity matrix Kmm.
The assembled system of matrices is solved with a preconditioned generalised
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minimal residual method [126] with Jacobi preconditioning. Output of the
simulation results at each time step is distributed to the destination solution
vectors and is saved to the visualisation data with inbuilt output drivers of
deal. II.

Algorithm 2: Implementation of finite-strain viscoelasticity model

Given : Geometry and material parameters of finite-strain
viscoelastic material model

Return: Computation of residual and tangent matrix
1 foreach cell K ∈ Ω do
2 extract local values and gradients of the vector
3 extract local values of total absolute moisture concentration m

foreach quadrature point q point on each cell K do do
4 compute total moisture concentration m at quadrature points
5 extract displacement gradient gradu
6 compute deformation gradient tensor F = I+ gradu

7 compute C̄
j
i of j

th Maxwell element using evolution equation
(3.45)

8 compute B̄j
e = F · (C̄j

i )
−1 · FT of jth Maxwell element

9 interpolate the mechanical properties as the function of
moisture concentration

10 evaluate Teq and
4
κ

iso

eq with Weq

11 evaluate Tvol and κeq with Wvol

12 evaluate Tj
neq and κ

j
neq with W j

neq

13 compute the sum of equilibrium and non-equilibrium
Kirchhoff stress and tangent tensors

14 Assemble residual and tangent matrices computed at every
degree of freedom for all cells.

15 end
16 update applied boundary conditions
17 solve the system of equations
18 update field variables
19 distribute results to the destination vectors
20 output results to visualisations and data files for post-processing

21 end

After solving the diffusion problem, the influence of the moisture concen-
tration is superimposed over the finite-strain viscoelastic model. Algorithm
2 explains implementing the finite-strain viscoelastic material model. The
first step in implementing the viscoelastic material model requires extract-
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ing the local displacement vector values and their gradients to compute the
deformation gradient and the Cauchy-Green deformation tensors.

The inelastic deformation tensor C̄j
i of j

th Maxwell element is computed with
the evolution equation using the implicit Euler method in time combined with
the local Newton method in space. Then B̄j

e of j
th Maxwell element is com-

puted with the mathematical relationship B̄j
e = F · (C̄j

i )
−1 · FT . The stress

and tangent tensors are calculated for the equilibrium and non-equilibrium
parts of the viscoelastic model to build the residual and the tangent ma-
trices. These matrices are assembled to solve the problem using the finite
element method. The displacement boundary conditions are applied as the
Dirichlet boundary conditions to introduce tensile loading conditions. The
finite element model is solved using Newton’s method with pseudo time incre-
ment until the residual norm reaches the convergence tolerance. The solution
vectors are assigned to the destination output vectors and written to the vi-
sualisation and output files for post-processing.

5.2 Modelling phase-field damage model

An analytical solution to the strong form of the partial differential equation
is often impossible. For this reason, the finite element method is chosen as an
approximate method to solve the coupled formulation defined in equations
(4.40a) and (4.40b).

5.2.1 Finite element implementation

In order to develop a numerical scheme of the coupled system, it is convenient
to express the partial differential equations in weak forms.

rui =

∫

Ω

{[
(1− ζ)φ2 + ζ

]
T : gradsδu

}
dV = 0

rφi =

∫

Ω

{

2 (1− ζ)φ δφW+Ec

[

− 1

ℓf
(1− φ) δφ+ℓf gradφ gradδφ

]}

dV = 0.

(5.24)

In the context of the finite element method, the approximation of the primary
variables displacement u and phase-field variable φ follows
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u =

nele∑

i=1

Nu
i ui φ =

nele∑

i=1

Nφ
i φi, (5.25)

where Nφ
i is the shape function concerning the phase-field variable and Nu

i is
the displacement shape function used to interpolate between the quantities
at the quadrature points as given by:

Nu
i =





Ni 0 0
0 Ni 0
0 0 Ni



 . (5.26)

In equation (5.26) Ni is the value of the shape function of the displacement
field ui = (ux, uy, uz)

T at the quadrature points associated with the respective
nodes. The gradient of the phase-field variable φi follow

gradφ =

nele∑

i=1

S
φ
i φi. (5.27)

Herein, the S matrix is introduced as

Su
i =











Ni,x 0 0
0 Ni,y 0
0 0 Ni,z

Ni,y Ni,x 0
0 Ni,z Ni,y

Ni,z 0 Ni,x











S
φ
i =





Ni,x

Ni,y

Ni,z



 , (5.28)

where, Ni,x, Ni,y and Ni,z are the derivatives of the shape functions evaluated
as ∂Ni/∂x, ∂Ni/∂y and ∂Ni/∂z. In the same way, virtual quantities of the
displacement and phase-field variables are approximated as

δu =

nele∑

i=1

Nu
i δui δφ =

nele∑

i=1

Nφ
i δφi

gradsδu =

nele∑

i=1

Sδu
i ui grad δφ =

nele∑

i=1

S
φ
i δφi.

(5.29)

The finite element formulation to solve the coupled system of equations with
an incremental method follows:
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[
Kuu Kuφ

Kφu Kφφ

][
du
dφ

]

=

[
−ru(ui)
−rφ(φi)

]

. (5.30)

Since the primary variables defined in the equation (5.25) hold for the ar-
bitrary values δu and δφ, the residuals of the coupled system of equations
defined in equation (5.24) are expressed in term of the virtual quantities given
with equation 5.29 as

rui =

∫

Ω

{[
(1− ζ)φ2 + ζ

]
T : (Su

i )
T
}
dV = 0,

rφi =

∫

Ω

{

2 (1− ζ)φNiW + Ec

[

− 1

ℓf
(1− φ)Ni + ℓf (S

φ
i )

TS
φ
j

]}

dV = 0,

(5.31)

the elements of the tangent matrix are

Kuu
i,j =

∂rui
∂uj

=

∫

Ω

(
(1− ζ)φ2 + ζ

)(

Su
i :

4
κ : Su

j + Su
i :
[
T · Su

j

])

dV,

K
uφ
i,j =

∂rui
∂φj

=

∫

Ω

2(1− ζ)φSu
i : T

TNu
j dV,

K
φu
i,j =

∂rφi
∂uj

=

∫

Ω

2(1− ζ)φNu
i T

T : Su
j dV,

K
φφ
i,j =

∂rφi
∂φj

=

∫

Ω

{

(1− ζ)W Nφ
i N

φ
j + Ec

[
1

ℓf
Nφ

i N
φ
j + ℓf(S

φ
i )

T : Sφ
j

]}

dV.

(5.32)

The coupled system for the displacement field u and the phase-field φ are
solved simultaneously using a monolithic approach. Newton’s method is the
basis to solve the coupled equations system using equation (5.30) with a
pseudo-time step increment until the system of equations reaches predefined
convergence tolerance.

Algorithm 3 describes implementing the finite-strain phase-field damage
model. The finite element mesh of the three-dimensional geometry is im-
ported as an input file. The material parameters concerning the stiffness and
damage parameters are initialised. The local values and gradients of the dis-
placement and phase-field variables are extracted to implement the coupled
material model. The deformation gradient F is calculated to evaluate the
deformation tensors.
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Algorithm 3: Implementation of finite-strain phase-field damage

model
Given : Geometry and material parameters of the material model
Return: Computation of residual and tangent matrix

1 foreach cell K ∈ Ω do
2 extract local values and gradients of phase-field and displacement

field variables
3 foreach quadrature point on each cell K do do
4 extract displacement gradient gradu
5 compute deformation gradient tensor F = I+ gradu

6 compute C̄
j
i of j

th Maxwell element with the evolution
equation

7 compute B̄j
e = F · (C̄j

i )
−1 · FT of jth Maxwell element

8 evaluate Teq and
4
κ eq with Weq

9 evaluate Tvol and
4
κvol with Wvol

10 evaluate Tj
neq and

4
κ

j
neq with W j

neq

11 compute free energies of equilibrium and non-equilibrium
parts and critical fracture energy

12 compute the sum of equilibrium and non-equilibrium
Kirchhoff stress, free energy and tangent tensors

13 check whether the total free energy density is greater than the
previous time step

14 assemble left and right-hand sides of matrices at every degree
of freedom for all cells

15 end
16 update applied boundary conditions
17 solve the system of equations
18 update field variables
19 distribute results to the destination vectors
20 output results to visualisations and data files for post-processing

21 end

The free energy density, Cauchy stress and tangent tensors are evaluated to
implement the coupled equations for the phase-field damage model as dis-
cussed in chapter 4. The FE-Model is applied with displacement boundary
condition as the tensile load boundary condition, and the phase-field frac-
ture boundary condition is applied to prepare the finite element model. The
prepared finite element model is solved using Newton’s method with the pre-
conditioned direct generalised minimal residual method [126]. The solution
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vectors are written to visualisation data with the output drivers for post-
processing. The force, time and displacement data for every time step are
written to the destination output file to validate simulation results with the
experimental results.

5.3 Implementation in deal.II

Deal.II is an open-source FEM library developed in C++ used to implement
the material models [11, 7]. Deal.II is used in the current project because
of the flexibility to implement and incorporate changes in the code. Deal.II
provides a wide variety of inbuilt packages to import finite element meshes,
solution schemes to solve and visualisation drivers to output solution data. A
particular problem is implemented by defining classes and functions to import
or create the mesh, setting up the degrees of freedom, defining boundary
conditions, and solving for the results to visualise with inbuilt output drivers.

Figure 5.1 shows the class hierarchy of the program implemented to solve the
coupled system of equations in deal.II. The standard parent class ”main ( )”
is defined to initialise tensors and vectors in the essential classes and header
files. The main function inherits the derived class to run the program.

• set runtime parameters( ): The parameters of the material model are
initialised with an input file by defining parameter.h header file that
includes a built-in header file parameter handler.h. This function is
also used to import the data of finite element mesh by reading the
data.UNV input file with the built-in header file grid in.h.

• setup system( ): The number of degrees of freedom is determined in
this class. The necessary vectors and matrices are set up with the
appropriate sizes to describe the system tangent, solution, and residual
vectors required to define a boundary value problem.

• setup point history( ): The point history subclass is set up to store
the information on the elastic and inelastic deformation tensors and the
material parameters at the integration points.

• determine mesh dependent parameters( ): This function is specially
defined for the phase-field fracture model to identify the minimum di-
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ameter of the finite element mesh. This enables locating the position of
the initial crack in the geometry without modelling the crack explicitly.
A conditional statement is initialised to verify that the mesh size h is
always less than the length-scale parameter ℓf .

main ()
get parameters.dat

set runtime parameters ()
setup system ()
setup point history ()

for− loop (time increment)
ut+1 = ut +∆u

set initial bc ()
assemble system ()

while − loop (Newton′smethod)
set newton bc ()
solve ()

viscoelastic step ()
compute stretchVSstress ()
output results ()

run ()

determine mesh dependent parameters ()

Figure 5.1: Class hierarchy in the implementation of the coupled formulation.

Once the finite element model is built, the load increment with time on the
geometry is defined with a control flow statement (for-loop), and the system
of equations is solved using Newton’s iterative method with a pseudo-time
step increment until the tolerance is reached.

• set initial bc( ): This function is used to define boundary conditions
to prepare the finite element model that represents the experimental
setup.

• assemble system( ): The tangent and residuals at the individual de-
grees of freedom are computed, and the system of matrices is assembled
to obtain a global system required for the problem to solve.

• set newton bc( ): Non-linear problems are traditionally solved with the
help of Newton’s iterative method in several pseudo-time steps until the
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tolerance is reached. The set of applied boundary conditions is set to
the null value so that there is no increment of load in the pseudo-time
step resulting in the overestimation of the simulation results.

• solve( ): deal.II provides a wide variety of solvers programmed within
the finite element library. This work uses a generalised minimal residual
method (GMRES) solver [126] with the block diagonal preconditioner
to solve the coupled system of equations.

• viscoelastic step( ): This header file is implemented to compute the
deformation tensor at integration points with the evolution equation.

• compute stretchVSstress( ): The stresses at each quadrature point are
computed with the constitutive equation described in Chapter 3.

• output results( ): To analyse the simulation results, it is necessary to
have suitable visualisation data. Deal.II visualisation drivers enable
output data in numerous formats (eps, povray, Gnuplot, SVG, vtk,
vtu,...) for post-processing.

A list of functions presented in this work to implement the coupled material
model can be found in the tutorial [114] of deal.II independent of the problem.
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Identification of moisture diffusion

parameters

This chapter investigates moisture diffusion in polyurethane adhesives with
experiments and numerical simulations. The experimental investigation
of moisture diffusion is conducted at Fraunhofer-Institut für Fertigung-
stechnik und Angewandte Materialforschung on two commercially available
crosslinked polyurethane adhesives, and the material-specific parameters are
identified from curve fitting process.

The goal of identifying parameters is to fit experimental and simulation data
curves with minimum deviation by adjusting the material parameters. The
curve fitting algorithms are classified into gradient-free and gradient meth-
ods. This work employs a gradient-free algorithm to identify optimum pa-
rameters since the gradient-based methods lead to local minima that may
not be a unique solution and depends on the start value. To this end, the
simplest gradient-free method proposed by Nelder and Mead [109] is cho-
sen to optimise material parameters. This method is one of the known and
simplest gradient-free methods in non-linear optimisation, and the Matlab
optimisation toolbox is used to identify optimal material parameters.

67
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The algorithm is based on an iteration of a simplex in n-dimensional param-
eter space. A simplex is a convex envelope spanned by n + 1 points for the
iteration step. In the first step, the n+ 1 points for the parameters concern-
ing the material model are chosen to search for the optimal set of parameters
that can converge with a minimum error. Then the Nelder-Mead algorithm is
employed with a simplex of n+1 points on the objective function to minima.
The minimisation of the objective function fmin follows

fmin (p1, p2, p3, ..., pm) = min

{

1

n

n∑

i=1

(
Csim,i(t)− Cexp,i(t)

Csim,i(t) + Cexp,i(t)

)2
}

, (6.1)

where, p1, p2, p3, ..., pm are the material parameters of the concerning mate-
rial model. Csim,i(t) and Cexp,i(t) are the simulation and experimental data
of n values for n points in time t s.

6.1 Gravimetric investigation

The measurement of moisture absorption was carried out using dynamic va-
por absorption based on the gravimetric method. A sample of the adhesive is
prepared, and the reference weight of the sample is measured to analyse the
moisture diffusion. Then, the sample is placed in the climate chamber at a
given humid atmosphere and temperature until the steady state. During the
measurement, the increase or decrease in the weight of the sample relative
to the reference is measured continuously to calculate the moisture diffusion.
Two commercially available adhesives (adhesive-A and adhesive-B) are used
to investigate the moisture absorption and desorption at an isothermal con-
dition of 60◦C. The continuous increase or decrease in the weight of the
sample is used to calculate moisture mass uptake or release

Mass uptake (or) release (%) = Mt (%) =
wt − w0

w0

%, (6.2)

where wt is the weight of the sample measured at time t s and w0 is the
reference weight of the sample measured just before the moisture uptake or
release by the sample.



6.1. Gravimetric investigation 69

6.1.1 Moisture diffusion in adhesive-A

A thin sample of thickness 0.833mm is used to investigate moisture absorp-
tion at different relative humid atmospheric conditions varying between 10%
to 98% relative humidity at 60◦C. Table 6.1 shows the equilibrium moisture
content m∞(H)% at the saturation state attained by the sample for H%
relative humid atmosphere conducted at 60◦C.

Table 6.1: Equilibrium moisture content absorbed by adhesive-A

H% 10% 20% 30% 40% 50%

m∞(H)% 0.11% 0.24% 0.34% 0.49% 0.69%

H% 60% 70% 80% 95% 98%

m∞(H)% 0.84% 0.95% 1.09% 1.38% 1.70%

Moisture absorption isotherm is determined from the moisture equilibrium
content at every relative humid (H%) condition. Moisture absorption is
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Figure 6.1: Isotherm of moisture diffusion in the crosslinked polyurethane
adhesive-A at an isothermal condition 60◦C
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conducted for different relative humid climates varying between 0% to 98% at
60◦C. Moisture absorption isotherm is non-linear, and equilibrium moisture
content ranges between 0% and 1.70%, as shown in Figure 6.1.

Further, moisture desorption by the adhesive-A is investigated on the aged
samples by placing the aged samples in a dry atmosphere. The decrease in the
sample’s weight is measured continuously to calculate the moisture release.
Table 6.2 shows the equilibrium moisture content released m−∞(H)% by the
sample aged at H% relative humid atmosphere conducted at 60◦C.

Table 6.2: Equilibrium moisture content released by adhesive-A

H% 10% 20% 30% 40% 50%

m−∞(H)% 0.11% 0.24% 0.34% 0.49% 0.69%

H% 60% 70% 80% 95% 98%

m−∞(H)% 0.84% 0.95% 1.09% 1.38% 1.70%

Moisture desorption isotherms of the adhesive-A vary between 0% and 1.70%.
The equilibrium moisture content listed in Tables 6.1 and 6.2 for absorption
and desorption is identical because of no chemical reaction between mois-
ture and the adhesive. Figure 6.2a-6.2b show the changes in the mass of
the adhesive-A samples under different humid atmospheres, and the mass
increases or decreases for the higher humidity atmosphere of the respective
absorption or desorption tests. The time required for the adhesive-A sample
to attain equilibrium is the same for different ambient humid conditions. As a
result of this behaviour, parameters of the Langmuir-type diffusion model can
be identified to analyse both the absorption and the desorption behaviours.

6.1.2 Moisture diffusion in adhesive-B

Thin samples of adhesive-B with a thickness of 0.15mm are used to investi-
gate moisture diffusion. These thin samples are placed in a climate chamber
with humid air at an isothermal condition to record moisture absorption.
Then, the periodic increase in weight of the sample is measured to quantify
diffusion behaviour with the equation (6.2). These tests are conducted at
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(a) Moisture absorption
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(b) Moisture desorption
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Figure 6.2: Experimental observation of moisture (a) uptake and (b) release
by the adhesive-A sample under different ambient conditions at 60◦C
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different ambient conditions with the relative humidity varying between 0%
to 95% at an isothermal condition of 60◦C. Table 6.3 lists the equilibrium
moisture content m∞(H)% diffused in the sample.

Table 6.3: Equilibrium moisture content absorbed by adhesive-B

H% 10% 30% 50% 80% 95%

m∞(H)% 0.97% 1.16% 1.33% 1.56% 1.71%

The moisture equilibrium content m∞(H)% at every relative humid (H%)
condition determines the moisture absorption isotherm. Moisture absorption
is conducted for different relative humid climates varying between 0% to
95% at 60◦C. Absorption isotherms is non-linear, and ranges between 0%
and 1.71% are shown in Figure 6.3.
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Figure 6.3: Isotherm of moisture diffusion in the crosslinked polyurethane
adhesive-B at an isothermal condition 60◦C

Further, the moisture desorption by the sample is investigated by placing
the samples aged at different humid conditions in a climate chamber with a
dry atmosphere. The continuous change in the sample’s weight due to the
moisture release is recorded to calculate the moisture content released by
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the samples. The equilibrium moisture content m−∞(H)% released by the
samples at H% humid atmosphere is listed in Table 6.4. The mass released

Table 6.4: Equilibrium moisture content released by adhesive-B

H% 10% 30% 50% 80% 95%

m−∞(H)% 0.97% 1.16% 1.33% 1.56% 1.71%

by the samples is identical to the moisture absorbed, showing no chemical
ageing under the influence of moisture. Figure 6.4a-6.4b shows the changes in
the mass of the adhesive-B samples under different humid atmospheres. The
time required for the adhesive-B sample to attain equilibrium at 10% humid
climatic conditions is larger than the other ambient conditions. Although
the equilibrium moisture content is the same in absorption and desorption
behaviours, the kinetics of desorption show that the material holds the dif-
fused moisture for a longer time than the time required for the material to
saturate, as shown in the Figures 6.4a and 6.4b.

(a) Moisture absorption
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(b) Moisture desorption
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Figure 6.4: Experimental observation of moisture (a) uptake and (b) release
by the adhesive-B sample under different ambient conditions at 60◦C

Diffusion is generally expressed in terms of the concentration gradient. Hence,
unique material properties can be identified irrespective of the boundary
value problem. However, moisture absorption and desorption curves are de-
pendent on the boundary value problem in adhesive-B. Higher desorption
curves may be because of the moisture condensation in the capillaries of the
material, causing the sample to dry at larger times. The other reason for the
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higher desorption curve could be because of the slower desorption rate of the
impurities added to the material causing the chemical potential to drive the
diffusion. Therefore the diffusion parameters are identified individually for
the moisture absorption and desorption.

6.2 Langmuir-type diffusion parameters

The Langmuir-type diffusion model is used to investigate anomalous moisture
diffusion instead of the traditional Fick’s diffusion model1. The primary
aspect of the numerical investigation is to identify the parameters intended
to simulate the material behaviour under the applied boundary conditions.
To this end, the Nelder-Mead optimisation algorithm [109] is used to identify
the diffusion parameters of adhesive-A and adhesive-B.

6.2.1 Diffusion parameters for adhesive-A

The 0.833mm thick sample is spatially discretised and applied with the
boundary conditions for the numerical simulation. The moisture is dif-

0.
83
3
m
m

equilibriummoisture
concentration

isolated surface

Figure 6.5: Boundary conditions applied to investigate the moisture diffusion.

fused through two surfaces keeping other surfaces insulated to assume one-

1Fick’s diffusion model does not consider the immobile and mobile moisture concen-
trations. Therefore, the Langmuir-type diffusion model is considered to analyse moisture
diffusion. For further details on selecting the Langmuir-type diffusion model, see the
chapter 3.1.
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dimensional diffusion. Figure 6.5 shows the applied diffusion boundary condi-
tions, where the boundaries along thickness are applied with the equilibrium
moisture concentration (see Table 6.1) as the Dirichlet boundary condition
and the isolated surfaces are applied with the moisture flux free Neumann
boundary conditions to solve the diffusion problem.

In parameter identification, an initial set of arbitrary diffusion parameters
D, α, β is initialised to prepare the finite element model. The prepared FE-
model is solved for the sample saturated at 98% using a preconditioned direct
generalised minimal residual method [126] with the optimization algorithm.
The optimization algorithm identifies the optimized diffusion parameters and
the diffusion parameters are listed in Table 6.5.

Table 6.5: Identified Langmuir-type diffusion parameters for adhesive-A

D
[
mm2 s−1

]
7.925e − 05

α
[
s−1
]

2.727e − 05

β
[
s−1
]

2.247e − 03

The mobile mf , immobile mb and total moisture m concentration are ob-
tained as the solution output from the numerical analysis. The experimental
and simulation data are compared to validate the material parameters. Fig-
ure 6.6 compares the experimental and simulation data measured for the
sample saturated under 98% relative humid atmosphere. The comparison
curve illustrates that the total moisture concentration calculated from the
numerical analysis coincides with the test data. The mobile and immobile
moisture concentrations2 from the numerical analysis are plotted in blue and
green curves. The moisture diffusion follows Fickian behaviour until 18

√
s

where the total and mobile moisture concentrations follow the curve over-
lapping with the test results. Later increment in the curve is followed by a
secondary absorption curve characterised as the immobile moisture concen-
tration.

2Gravimetric experiment can not characterise the diffused moisture into mobile and
immobile moisture concentrations. Huácuja-Sanchez et al. [67] have investigated the
water diffusion in the polyurethane adhesives, concluding with FT-IR measurements that
the moisture concentration diffused in the sample exits in two phases. It is necessary to
investigate moisture diffusion with more sophisticated experimental methods like 2H NMR
spectra [140], to measure mobile, immobile moisture concentration and the total moisture
concentration.
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Figure 6.6: Comparison between experimental (Exp) and simulation data of
moisture absorption at 60◦C with 98% relative humidity in air

The thin sample is investigated for both absorption and desorption of mois-
ture simultaneously with the diffusion parameters listed in Table 6.5. Equi-
librium moisture concentration m∞(H)% absorbed by the sample saturated
at 98% relative humidity listed in Table 6.1 is applied as the boundary con-
dition. Figure 6.7 shows the local moisture distribution along the thickness
of the sample at various time intervals until the saturation state is reached.
The blue contour in the visualisation plots defines the dry region, and the red
contour defines the maximum total moisture concentration with m = 1.7%.
Time t = 0 s is referred to as a dry sample with the equilibrium moisture con-
centration applied as the Dirichlet boundary conditions on the boundaries.
The moisture diffuses in the sample until the saturation is reached at time
t = 4, 925 s.
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Total moisture concentration

0.0 0.4 0.8 1.3 1.7

Time = 0 s Time = 180 s

Time = 360 s Time = 540 s

Time = 900 s Time = 1350 s

Time = 2160 s Time = 4, 925 s

Figure 6.7: Moisture distribution in the sample at different times from the
initial state to the state of saturation

Once the sample in the climate chamber reaches equilibrium, the boundary
conditions are switched from humid to dry air to record desorption kinetics.
These experimental details are incorporated into the finite element model by
switching boundary conditions to a dry atmosphere. The top and bottom
surfaces of the saturated sample are defined with 0% relative humidity on the
surface, and other surfaces are isolated to restrict interaction with surround-
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ings, as shown in Figure 6.5. The optimum diffusion material parameters
identified for the sample saturated at 98% r.H. listed in Table 6.5 are used in
the finite element simulation of the moisture desorption. In Figure 6.8, the

Total moisture concentration

0.0 0.4 0.8 1.3 1.7

Time = 12, 525 s Time = 12, 705 s

Time = 12, 885 s Time = 13, 065 s

Time = 13, 425 s Time = 13, 875 s

Time = 14, 685 s Time = 17, 505 s

Figure 6.8: Moisture distribution in the sample at different times from the
saturation to the dry state.

sample at time t = 12, 525 s is referred to saturated sample, where the bound-
ary condition is shifted from humid to dry air condition. Due to the shift in
the boundary conditions, the sample releases moisture from the boundaries
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to the surroundings with time increment until the sample becomes dry at
time t = 17, 505s.
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Figure 6.9: Moisture absorption and desorption behaviour in a crosslinked
polyurethane adhesives at 60◦C with 98% of humid air

Figure 6.9 shows the classic evaluation of moisture transport, where the global
moisture concentration is plotted against the square root of time. The sample
applied with the absorption boundary conditions reaches saturation at

√
t =

86.1
√
s. The moisture concentration at the boundaries is switched from

absorption to desorption boundary conditions at time
√
t = 111.92

√
s to

investigate moisture release by the sample and the sample is dried at time√
t = 140.07

√
s. The results from the numerical simulation shows that the

time required for the sample to reach saturation state is observed to be
same3 for the sample to become dry from the saturation state as similar to
the diffusion tests performed on the material.

The total moisture concentration is significantly influenced by the immobile
moisture concentration leading to the second plateau in the moisture diffusion
curves of the polyurethane adhesives as discussed in chapter 3.1.1. Figure 6.9
shows that the influence of the immobile moisture concentration is not large
on the total moisture concentration in adhesive-A. Therefore, simple Fick’s

3The boundary conditions are shifted from humid to dry state at time tD(0) = 12, 525 s.
This sample becomes dry at time tD(∞) = 17, 505 s. The difference between the start
time for desorption and the time when the sample is dried tD(0) − tD(∞) = 4, 980 s is
approximately equal to the time required for the sample to reach saturation tA(∞) =
4, 925 s.
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law of diffusion can be used to analyse the moisture diffusion in a 0.833 mm
thick adhesive-A sample.

A thin sample of 0.833mm thickness is spatially discretised into a finite
element mesh to investigate moisture diffusion at different relative humid
conditions. The boundaries of the finite element mesh are applied with the
equilibrium moisture content m∞(H)% for the selected relative humidity H%
listed in Table 6.1 as boundary conditions. The prepared finite element model
is defined with the diffusion parameters listed in Table 6.5.
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Figure 6.10: Experiment (Exp) and simulation (Sim) comparison of moisture
uptake by adhesive-A at different relative humid conditions (r.H.)

The moisture diffusion is evaluated by plotting the moisture uptake against
the square root of time. Figure 6.10 shows the comparison between the
experimental and the simulation results carried out to understand absorption
behaviour with the identified diffusion parameters4. These curves show good
agreement between the simulation and test results of moisture absorption.

Desorption behaviour by the adhesive-A samples is investigated on the sam-
ples saturated at different humid atmospheric conditions varying between 0%

4Moisture absorption by the sample saturated at 98% r.H. shown in the Figure 6.10
has already been discussed in the identification of the parameters for adhesive-A sample,
see Figure 6.6 on page 76
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r.H. to 98% r.H. under an isothermal condition of 60◦C. The thin sample of
0.833mm thickness is spatially discretised to define the equilibrium moisture
content m−∞(H)% listed in Table 6.2 measured for H% humid condition as
the boundary conditions. The diffusion parameters listed in Table 6.5 are
used to analyse moisture release by the adhesive-A samples.
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Figure 6.11: Comparison of the experiment (Exp) and the simulation (Sim)
of the moisture released by adhesive-A at different relative humid conditions
(r.H.)

The simulation results are validated by comparing with the desorption curves
measured in gravimetric tests. Figure 6.11 shows the comparison between
experimental and simulation results of the moisture release. These curves
are in a good agreement validating the diffusion parameters to investigate
the moisture desorption.

6.2.2 Diffusion parameters for adhesive-B

A finite element simulation of a 0.15mm thick adhesive-B sample is inves-
tigated to identify material parameters. The sample is spatially discretised



82 6. Identification of moisture diffusion parameters

to apply the equilibrium moisture content of 95% relative humidity as listed
in Table 6.3 as the Dirichlet boundary conditions. The other surfaces are
isolated to assume a good approximation of one-dimensional diffusion. The
optimisation algorithm is employed to identify material parameters. The
optimum parameters are identified by minimising the error between the sim-
ulation and experimental results, as summarised in Table 6.6.

Table 6.6: Parameters of Langmuir-type diffusion identified for adhesive-B

D
[
mm2 s−1

]
6.03e − 06

α
[
s−1
]

6.95e − 01

β
[
s−1
]

8.16e − 00

The numerical analysis is performed for different humid conditions using the
diffusion parameters listed in Table 6.6. Figure 6.12 shows the comparison of
experimental and simulation results carried out using the diffusion parame-
ters. The samples saturated at lower moisture concentrations do not fit with
experimental data. This anomaly in the diffusion behaviour is due to the
non-linear isotherm of diffusion, as shown in Figure 6.3.
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Figure 6.12: Experiment (Exp) and simulation (Sim) comparison of the mois-
ture absorption by adhesive-B different relative humid conditions (r.H.)
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6.2.3 Effective diffusion parameters

In traditional diffusion theories, the diffusion coefficient is assumed to be a
constant material property irrespective of the boundary value problem. How-
ever, there are many reaction-diffusion systems with the diffusion parameters
dependent on the boundary value [41, 133]. In here, the moisture diffusion
in the adhesive-B is solved using the Langmuir-type diffusion equation with
the effective diffusion parameters. These effective diffusion parameters are
derived as the product of diffusion parameters and an exponential function
of relative humidity as follows

Deff = D0e
−

(χ−A1)
2

2B2
1 ; αeff = α0e

−
(χ−A2)

2

2B2
2 ; βeff = β0e

−
(χ−A3)

2

2B2
3 , (6.3)

Deff , αeff and βeff are the effective diffusion parameters calculated from the
optimal diffusion parametersD0, α0 and β0 identified for the sample saturated
at the maximum relative humid atmosphere and χ is the relative humidity
calculated as

χ =
m∞(H%)

m∞(95%)
. (6.4)

m∞(H%) is the equilibrium moisture content for H% of relative humidity
in the atmosphere, and m∞(95%) is the equilibrium moisture content of the
sample saturated at 95% r.H. A1, A2, A3, andB1, B2, B3 are the empirical
constants used to calculate the effective diffusion parameters. The Langmuir-
type diffusion model based on effective material parameters is reformulated
using equations (3.1) and (3.2) as

ṁ = D0e
−

(χ−A1)
2

2B2
1 div (grad (m−mb)) ,

ṁb = α0e
−

(χ−A2)
2

2B2
2 mf − β0e

−
(χ−A3)

2

2B2
3 mb.

(6.5)

In the identification of the effective diffusion parameters, the parameters
listed in Table 6.6 for a saturated sample at 95% humid atmosphere are
considered as the diffusion parameters (D0, α0, β0) and χ is calculated using
the equilibrium moisture content listed in Table 6.3 with equation (6.4). The
empirical constants are identified on the sample exposed to 10% r.H. using
the optimization algorithm and are listed in the Table 6.7.

The effective diffusion parameters are used to analyse the moisture absorption
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Table 6.7: Empirical constants of the effective diffusion parameters in the
moisture absorption

A1 0.87 B1 0.18

A2 0.79 B2 0.026

A3 0.80 B3 0.028

for different humidities in the air at an isothermal condition of 60◦C. The
simulation and experimental results are compared to validate the effective
diffusion parameters. Figure 6.13 shows the comparison of the results and
the comparison shows a good approximation between the experimental and
simulation results.
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Figure 6.13: Experimental (Exp) and simulation (Sim) comparison of mois-
ture absorption in adhesive-B at different relative humid conditions (r.H.)

Effective diffusion parameters are identified to analyse moisture desorption in
adhesive-B. The moisture desorption parameters are identified for the sample
saturated at 95% r.H. using the optimisation algorithm and are used to iden-
tify the empirical constants. The desorption parameters are listed in Table
6.8 for the sample saturated at 95% r.H. to reach a dry state.

The test data of the sample saturated at 10% r.H. is used to identify the em-
pirical constants with the optimisation algorithm. The diffusion parameters
listed in Table 6.8 and χ calculated with the equation (6.4) were used to cal-
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Table 6.8: Identified Langmuir diffusion parameters of adhesive-B

D
[
mm2 s−1

]
7.49E − 06

α
[
s−1
]

1.36E − 01

β
[
s−1
]

9.17E − 04

culate the effective diffusion parameters. The optimum empirical constants
identified with the optimization algorithm are listed in Table 6.9

Table 6.9: Empirical constants of the effective diffusion parameters in the
moisture desorption

A1 3.29 B1 0.88

A2 2.05 B2 0.65

A3 − B3 −

The effective diffusion parameters are used to analyse the moisture desorption
that were saturated at different relative humidities. The simulation and the
experimental data are compared to validate the effective diffusion parameters.
Figure 6.14 shows a good approximation between the test and simulation
results validating the effective diffusion parameters for moisture desorption.
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Figure 6.14: Experiment (Exp) and simulation (Sim) comparison of moisture
desorption by adhesive-B at various relative humid conditions (r.H.)





7

Parameter identification of the ageing

mechanical properties

This chapter discusses the numerical analysis of the ageing in polyurethane
adhesives under the moisture influence. To this end, the effect of the mois-
ture concentration on the viscoelastic behaviour is investigated by conducting
the uniaxial tensile tests on the tailored tensile test samples at Lehrstuhl für
Adhäsion & Interphasen in Polymeren, Universität des Saarlandes. These
tailored tensile test samples are aged under different humid atmospheric con-
ditions, and a tensile load is applied to the aged samples to measure stretch
and stresses. Finally, tear tests are conducted on the angular samples aged
under different humid atmospheric conditions at Fraunhofer-Institut für Fer-
tigungstechnik und Angewandte Materialforschung to investigate the fracture
toughness. The viscoelastic parameters of the aged samples are identified
from the curve fitting process, and these parameters are used in the damage
simulation using the phase-field damage model. The critical energy release
rate of the material required for the phase-field damage model is identified
by fitting simulation and tear test data.

87
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7.1 Ageing of mechanical properties

The mechanical behaviour of the adhesive-A samples is significantly influ-
enced by moisture diffusion. The uniaxial tensile test are used to investigate
the influence of the moisture diffusion on the viscoelastic behaviour (see chap-
ter 2 of IGF-Project 19730 N, Wulf et al. [154]). The fracture will likely start
at any position along the cross-section in the classical tensile specimens with
constant cross-section, making it difficult to measure strains locally at the
observation window. Therefore, a tailored specimen is manufactured with a
smaller cross-section at the centre of the sample. Tailored samples do not
experience either pre-stress or pre-strain in the manufacturing process. Fig-
ure 7.1 shows the geometry of the tailored sample with a thickness of 2mm
used for the experimental investigation with the uniaxial tensile test.

A

75

12.54

15.43R60

A

Figure 7.1: Tailored tensile test samples with a necked cross-section at the
centre of the sample: all dimensions are in millimetres

Aged samples of adhesive-A are prepared by placing post-cured samples in a
climatic chamber with a humid atmosphere until equilibrium. Four batches
of aged samples are prepared under four relative humid states at an isother-
mal condition of 60 ◦C. The uniaxial tensile test of these aged samples is
conducted at a strain rate of 0.0005 s−1. The stress-stretch data from the
experimental investigation of aged samples with homogenous moisture dis-
tribution at equilibrium are used to identify the material parameters of the
finite-strain viscoelastic material model. The parameters of the samples aged
at different relative humid atmospheric conditions are used to develop func-
tionally depend stiffness parameters on the local moisture concentration.

In the tensile test conducted on the aged samples, the strains are measured
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locally at 2mm from the centre of the sample. Therefore, the 2mm span
from the centre of the tailored sample is discretised into finite element mesh
for the numerical simulation. The bottom surface of the finite element mesh
is applied with the fixed support boundary conditions, and the top surface is
applied with the displacement boundary conditions to impose stretch due to
tension. In modelling the viscoelastic behaviour, four Maxwell elements are
connected in parallel to the basic elastic spring component. c10, c20 and c30
are the material parameters of the basic elasticity and the inelastic parame-
ters of j = 1, 2, ..., 4 Maxwell elements are represented with c10j . The asso-
ciated relaxation times of the Maxwell elements are chosen to be constant.
The viscoelastic parameters identified with the optimization algorithm are
summarised in Table 7.1.

Table 7.1: Material parameters of the finite-strain viscoelastic material model
identified for the different relative humid atmospheres at 60◦C

Material parameters of finite-strain viscoelastic model

Relaxation

times [s]
0% r.H. 29% r.H. 67% r.H. 100% r.H.

Equilibrium

c10 [MPa] 9.886 7.886 7.196 7.072

c20 [MPa] -1.414 -1.357 -1.122 -1.128

c30 [MPa] 3.214 1.443 0.918 0.872

D [MPa] 0.306 0.244 0.241 0.314

Non-equilibrium

c101 [MPa] 0.5 4.886 2.886 2.296 2.172

c102 [MPa] 10 0.886 0.231 0.139 0.107

c103 [MPa] 100 0.055 0.017 0.014 0.011

c104 [MPa] 1000 0.005 0.003 0.002 0.001

The corresponding stress-stretch data from the uniaxial tension tests are com-
pared with simulation data obtained from the optimum material parameters.
Figure 7.2 shows the comparison between the experiment and the simulation
data with the standard deviation as an error bar. The tension test data plot-
ted in the comparison corresponds to the mean values calculated from the
test series consisting of five samples for aged samples at individual humid
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(d) Aged sample at 100%r.H.

Figure 7.2: Stress - stretch data from uniaxial tensile tests of aged adhesive-A
samples with homogeneous moisture distribution performed at 60◦C with a
strain rate of 0.0005 s−1

climatic condition. The standard deviation in the form of the error bar in-
dicates that the problem is well-posed and sufficient for further investigation
of tensile behaviour under a higher strain rate.

The material parameters identified for a lower strain rate of 0.0005 s−1 listed
in Table 7.1 are used to investigate tensile behaviour under a higher strain
rate of 0.05 s−1. The aged specimen’s stress paths for the applied strain
rate are analysed from the stress-stretch diagram. Figure 7.3 compares the
simulation and the uniaxial tensile test data of the dry and aged samples.
The experimental data plotted in Figure 7.3 correspond to the mean values
calculated from the test series consisting of five sample for aged samples at
individual humid conditions. The stresses in the material increase with an
increase in the strain rate due to an increase in the non-equilibrium stress
because of the viscoelastic behaviour. Although the standard deviation in-
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(d) Aged sample at 100%r.H.

Figure 7.3: Stress - stretch data of aged adhesive-A samples with homoge-
neous moisture distribution performed at 60◦C with a strain rate of 0.05 s−1

creases between the simulation and the experimental data, the simulation
results are still agreeable using the material parameters listed in Table 7.1
with a maximum error of 8.5% seen in the dry sample.

The optimal material parameters listed in Table 7.1 are used to analyse vis-
coelastic behaviour for lower and higher strain rates. The standard deviation
between the experimental and simulation results are maximum of 8.5% for
higher strain rates and a minimum of less than 2% for lower strain rates. Even
with the increasing deviation under the larger strain rates, the reproducibility
of the viscoelasticity is still agreeable. Hence, the identified stiffness param-
eters of the finite-strain viscoelastic material model can be used to identify
the moisture-dependent stiffness parameters.
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7.1.1 Parameter identification for coupled formulation

The experimental investigation shows that the stiffness parameters decay
with an increase in moisture concentration (see Table 7.1). Therefore,
moisture-dependent stiffness parameters are considered to enable a geometry-
independent description. The decay in the material stiffness is calculated as
the function of the local moisture concentration through interpolation. The
associated relaxation times of the Maxwell elements are chosen to be con-
stant. The interpolation of stiffness parameters follows

µ (m) = f (m)µdry + (1− f (m))µsat. (7.1)

µ (m) are the stiffness parameters of the finite-strain viscoelastic model calcu-
lated at the integration points. The moisture-dependent stiffness parameters
of the equilibrium element are represented with c10 (m) , c20 (m) and c30 (m)
and the non-equilibrium elements of j = 1, 2, ..., 4 Maxwell element is repre-
sented with c10j (m). µdry and µsat are the stiffness parameters of the dry and
the saturated samples listed in Table 7.1. f (m) is a function of the moisture
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Figure 7.4: Exponential decay function to interpolate the stiffness parameters

concentration used to interpolate the stiffness parameters and formulated
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using an exponential function

f (m) = e−Λmwhere 1 ≤ f (m) / 0, (7.2)

where Λ = 3.93 is a parameter of the coupling function f(m). The coupling
parameter Λ is determined from the individual material parameters of the
volumetric, equilibrium and non-equilibrium parts. Figure 7.4 shows the
evolution of the coupling function f(m) with an increase in the local moisture
concentration.

7.1.2 Investigation of the coupled problem

The coupled formulation is validated by comparing test data of dry and
saturated samples with the simulation results of a tailored sample with in-
homogeneous moisture concentration. The aged tailored tensile finite el-
ement model with inhomogeneous moisture is prepared by applying 98%
diffusion boundary conditions for different times. The equilibrium mois-

Uniaxial loading

G
u
ag
e
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n
gt
h
=

2
m
m

moisture

diffusion

moisture

diffusion

No-flux boundary

No-flux boundary

Figure 7.5: Left and right faces of 2mm wide cross-section of the tailored
tensile sample is subject to moisture diffusion for time t s with no-flux bound-
aries and then the sample is uniaxially loaded with a strain rate of 0.0005 s−1
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ture content m∞ (H) = 1.70% is applied as the diffusion boundary con-
ditions to prepare finite element models of the aged samples for time
t = 4000 s, 10000 s, 15000 s, and 60000 s. 2mm cross-section from the cen-
tre of the tailored sample is selected to numerically investigate the tensile
behaviour and the simulation results are compared with the uniaxial tensile
tests. Figure 7.5 shows the schematic representation of the applied boundary
conditions to investigate the influence of the inhomogeneous moisture dis-
tribution on the viscoelastic behaviour. The coupled formulation is solved
using the staggered method, where the diffusion problem is solved in the first
step, and the influence of the local moisture concentration is superimposed
on the viscoelastic behaviour in the second step.

The Langmuir-type diffusion parameters listed in Table 6.5 are used to in-
vestigate moisture diffusion for 98% relative humid conditions. Figure 7.6

Total moisture concentration

0.0 0.4 0.8 1.3 1.7

Time = 4000 s Time = 10000 s

Time = 15000 s Time = 60000 s

Figure 7.6: Moisture distribution in the tailored tension sample aged for
different times

shows the moisture distribution in the spatial domain of the sample at dif-
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ferent ageing times. Figure 7.7 compares the total moisture concentration
profiles measured along the direction of moisture diffusion at the centre of the
samples. It can be interpreted from the curves that the sample reaches sat-
uration at time t = 60, 000 s realising a homogeneous moisture distribution.
In comparison, the moisture distribution is inhomogeneous with 0 < m < 1.7
in the sample simulated for smaller time periods.
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Figure 7.7: Distribution of moisture over the cross-section of the adhesive
sample determined by simulation at different times

The tensile behaviour of the aged sample with inhomogeneous moisture dis-
tribution is investigated for a strain rate of 0.0005 s−1. The viscoelastic pa-
rameters listed in Table 7.1 are used to interpolate the stiffness parameters
due to the inhomogeneous moisture distribution. The local stiffness param-
eters are interpolated from the dry and the saturated properties using the
equation (7.1). The stretch vs stress curves from the simulation results is
compared with the tensile test data of the dry sample (0% r.H.) and the
sample saturated at 100% relative humid atmosphere. It is evident from the
curves that the stress for a given stretch reduces with an increase in local
moisture concentration. The sample saturates at time t = 60, 000 s, and the
stress-stretch curve is shown in green colour coincides with the uniaxial ten-
sile test results of the saturated sample at 100% r.H. humid climatic condition
in blue. The stress-stretch curves of samples with inhomogeneous moisture
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distribution obtained for time t = 4000 s, 10000 s, and 15000 s lie between the
experimental data of the dry and saturated samples.
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Figure 7.8: Comparison of the stress-stretch curves of the samples with in-
homogeneous moisture distribution with dry and saturated samples at 100%
relative humidity in climate

7.2 Phase-field damage parameters

Angular specimens with the geometry proposed in DIN ISO 34-1 (shown in
Figure 7.9) were prepared for adhesive-A with a thickness of 2mm to perform
the tear test. An initial crack of 9.13mm length was made at the notch of
the specimen to investigate the tear strength. Aged samples are prepared to
investigate the moisture influence on the tear strength of the material. The
aged samples of adhesive-A are prepared by placing post-cured samples in a
climatic chamber with humid air until saturation. These aged samples are
prepared at four different humidity conditions at 60◦C.

The test sample is clamped on both ends at approximately 22mm and
stretched until the sample fails. A cross-head displacement measurement
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Figure 7.9: Geometry of the angle sample based on DIN ISO 34-1: all di-
mensions are in millimetres

is adequate to define the displacement boundary conditions on the free ends
of the finite element model. The finite element model is prepared with a
three-dimensional hexahedral mesh refined at the transition zone. The cross-
section at the notch of the sample is the transition zone where the crack
initiates and propagates until failure. The mesh is refined at the transition
zone following the mesh refinement condition proposed by Miehe et al. [103]
(see Equation (4.44)). The FE-mesh of the angular specimen follows the mesh

Figure 7.10: FE mesh of the angular sample discretised into finite elements
with refined mesh at the transition zone in the centre of the sample.

sensitivity study condition between mesh size h and initial crack length ℓf ,
so that the regularised crack surface Γ(φ) is resolved in the finite element
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approximation. Following the mesh sensitivity study as discussed in chapter
4.6, the mesh size of h = 1.23mm is maintained at the transition zone for
a length-scale parameter of ℓf = 9.31mm. Figure 7.10 shows the finite ele-
ment mesh used for the numerical fracture simulation using the phase-field
method.

In the experimental investigation, the free ends of the angular specimen are
stretched at a constant strain rate until the sample fails. Therefore, the free
ends of the finite element model are applied with fixed boundary conditions in
the -x and -z translational degree of freedom and the displacement boundary
conditions uy = 0.011mm are applied in the -y direction. Finally, the phase-
field damage boundary condition is applied to the sample with φ = 0 defining
the initial crack at the notch.

uy uy

Figure 7.11: Angular specimen with 9.13 mm initial crack is applied with the
displacement boundary conditions as tensile loading until failure

7.2.1 Dry sample

The fracture toughness is initially investigated on an adhesive-A dry sample
using the finite element method. The finite element model of the angular sam-
ple is defined with the material properties of the dry sample (0% r.H.) listed
in Table 7.1. The input parameters for the phase-field model are the initial
crack length ℓf = 9.13mm and the critical fracture energy Ec = 4.182N/mm.



7.2. Phase-field damage parameters 99

Time t = 25 s Time t = 30 s

0.75

1.00

0.50

0.25

0.00

φ

Time t = 35 s Time t = 43 s

Figure 7.12: Contour plots of the crack propagation at different times of the
finite element simulation in the angular sample (DIN ISO 34-1) under tensile
loading condition

The finite element model for a dry sample is solved monolithically using the
Newton’s iterative method in a quasi-static manner. This means each time
step of the simulation is solved in several pseudo-time steps until the residual
norm reaches a tolerance. The solution scheme is solved in several time steps
with a constant time increment until fracture. Figure 7.12 shows the contour
plots of the diffusive crack under tensile load. A network of fine cracks is
formed on the sample surface at time t = 25 s, and these cracks grow until
the material fails into two pieces at time t = 43 s.

The force-time and the force-displacement curves from the simulation are
compared with the experimental test data. The test used in the comparison
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is the mean value calculated from the series of three angular test samples
manufactured at the same atmospheric conditions [154]. Figure 7.13 com-
pares the experimental and the simulation data, where the deviation between
the curves is shown with the error bars. The standard deviation increases to
the maximum for the stretch close to failure, as seen in the force-displacement
curve, see Figure 7.13b.
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Figure 7.13: Tear tests are performed on dry samples of adhesive-A at 60◦C

7.2.2 Aged sample

The influence of moisture concentration on fracture toughness is investigated
in the aged samples. These aged samples were prepared in humid climatic
conditions with relative humidities of 29% r.H., 67% r.H. and 100% r.H. at
a temperature of 60◦C. The length scale parameter ℓf and the critical en-
ergy release rate Ec are the required material parameter for the investigation
of the damage using the phase-field approach. The length scale parameter
ℓf = 9.13mm is the initial crack imparted in the angular specimen at the
notch, and the critical energy release rate is identified using the optimisation
algorithm. The critical energy release rate Ec is identified individually for
the samples aged at different relative humid conditions (29% r.H., 67% r.H.
and 100% r.H.) manufactured under the isothermal condition of 60 °C. The
optimal value of the critical energy release rate is listed in Table 7.2.

The force-time and the force-displacement curves from the simulation and
the tests are compared to verify the identified material parameters of the
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Table 7.2: Material parameters of the phase-field damage material model
identified for aged samples at different relative humidities in the atmosphere
at an isothermal condition of 60◦C

Identified critical energy release rate of the aged samples

ageing condition 29% r.H. 67% r.H. 100% r.H.

Ec [N/mm] 5.25N/mm 4.82N/mm 4.52N/mm

phase-field damage model. Figures 7.14, 7.15, and 7.16 show the comparison
of the experiment and the simulation data. The tear test data (Experiment)
shown in the figures correspond to the mean values of the series of three
angular test samples manufactured for each atmospheric condition of three
different relative humid conditions of 29% r.H., 67% r.H. and 100% r.H. at an
isothermal condition of 60 °C. The standard deviation between the curves is
represented in Figure 7.14, 7.15 and 7.16 with the error bars. The deviation
in the form of small error bars indicates that the problem is well posed, and
the phase-field material parameters are verified for the numerical analysis.
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Figure 7.14: Tear tests are performed on the samples of adhesive-A aged
at 29% relative humid atmospheric conditions with homogeneous moisture
distribution at 60◦C
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Figure 7.15: Tear tests are performed on the samples of adhesive-A aged
at 67% relative humid atmospheric conditions with homogeneous moisture
distribution at 60◦C
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Figure 7.16: Tear tests are performed on the samples of adhesive-A aged
at 100% relative humid atmospheric conditions with homogeneous moisture
distribution at 60◦C

The critical energy release rate of the aged samples shown in Figure 7.17
indicates that the adhesive material becomes ductile under the influence of
moisture, thus leading to an increase in the critical energy release rate. The
critical energy release rate is minimum for the dry sample and reaches a
maximum for the sample saturated at 29% relative humidity.
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Figure 7.17: Critical fracture energy release rate Ec of adhesive-A samples
aged at different relative humidities (r.H.) in the atmosphere at 60◦C
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Coupled diffusion-deformation-damage

Due to the ageing mechanism, the moisture diffused in the adhesive sam-
ples influences the mechanical properties. The ductility of the sample also
depends on the local moisture concentration diffused in the material. The
influence of moisture on the viscoelastic behaviour and fracture toughness is
experimentally investigated in chapter 7. A material model is required for
the numerical investigation of moisture influence on mechanical behaviour.
To this end, a multi-physically coupled material model is formulated between
the moisture diffusion, viscoelasticity and damage. The primary focus of this
chapter is to give the theoretical background required for the coupled formu-
lation and provide results of the numerical evaluation to validate the need
for the material model quantitatively.

8.1 Diffusion coupled with phase-field damage

Moisture influence on the fracture toughness of adhesives is not yet fully
understood but studied mostly with an emphasis on moisture influence in

105
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the interface fracture between the adhesive and adherents in the bonded
joints [37, 125]. From these studies influence of moisture on the debonding
is investigated but not its influence on the tear strength. Here a multi-
physically coupled material model is used to analyse the effects of moisture
on the fracture toughness of the polyurethane adhesive. The thermodynamic
consistency of the multi-physically coupled formulation is discussed with the
Clausius-Duhem inequality and the Coleman-Noll procedure.

8.1.1 Thermodynamical consistency

The work done in the coupled mechanical diffusion problem can be decom-
posed into mechanical and diffusion parts. The mechanical part is further
decomposed into the work done by the mechanical forces and the micro forces
causing damage. This leads to virtual power as

Ė = Pmech + Pmic + Pdiff , (8.1)

where E is the total power, Pmech denotes the mechanical power, Pmic denotes
the power of the micro force system and Pdiff is the power spent to diffuse
moisture through the material domain. The virtual power of the system for

a generalised virtual velocity V =
{

u̇, φ̇, ṁ
}

takes the form

∫

Ω

T : gradu̇ dV +

∫

Ω

ω · gradφ̇ dV +

∫

Ω

ς φ̇ dV −
∫

Ω

Rmq ·NdA =

∫

∂Ω

t · u̇ dA +

∫

Ω

b · u̇ dV +

∫

∂Ω

χ φ̇ dA +

∫

Ω

Υ φ̇dV,

(8.2)

T is the Cauchy stress tensor, t is traction, and b is the external body force
acting on the system. ω is the microscopic stress power conjugated to grad φ̇,
microscopic internal force ς, external traction χ and the external microscopic
force Υ are the power-conjugate to φ̇. The diffusive power is introduced with
chemical potential Rm for the diffusive flux of q over the boundary.

Equilibrium equations of the viscoelastic, phase-field and diffusion behaviours
are derived by setting an arbitrarily varying component of the generalised
virtual velocity to value zero. The governing equation obtained after applying
variational principle are
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divT+ b = 0, ∀ V = {u̇, 0, 0} (8.3a)

divω − ς +Υ = 0, ∀ V =
{

0, φ̇, 0
}

(8.3b)

ṁ+ divq = 0, ∀ V = {0, 0, ṁ} (8.3c)

where equation (8.3a) corresponds to the balance of momentum describing
the finite-strain viscoelastic behaviour, equation (8.3b) corresponds to phase-
field microscopic force balance that describes the damage behaviour, and the
equation (8.3c) describes the mass transport within the material domain.
The traction t and microscopic traction χ defined in the definition of the
virtual power given in equation (8.2) is computed as t = T ·n and χ = ω ·n.

8.1.2 Material theory

The constitutive equations developed within the framework defined in equa-
tions (8.3a), (8.3b), and (8.3c) represent a specific definition of the relation-
ships between kinematics and balance equations. These constitutive equa-
tions serve to couple mechanical behaviour with diffusion and damage. For
the continuum mechanical description, the standard argument of the entropy
principle has to be fulfilled

T : D+ ω · gradφ̇+ ς φ̇− div (Rmq)− Ẇ ≥ 0. (8.4)

Entropy inequality is still valid and independent of the considered material
class. The Clausius-Planck inequality is evaluated with the process variables
corresponding to the nonlinear viscoelasticity, the phase-field variable φ and
moisture concentration m to introduce the constitutive relations

S =
{
B,Bj

e, φ, gradφ,m
}
, (8.5)

where B,Bj
e are the right Cauchy deformation tensor of the equilibrium and

non-equilibrium springs. This free energy is additively decomposed into a
mechanical Wmech, phase-field Wφ and diffusive Wm energies as

W = Wb

(

J, ĪB̄1 , Ī
B̄

j
e

1 , φ,m
)

+Wφ (φ, gradφ,m) +Wm(m,mb). (8.6)

Due to the kinematic coupling between the mechanical, phase-field and dif-
fusion energies, the mechanical free energy is the function of the phase-field
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and diffusion variables. The mechanical free energy is additively decomposed
into the volume-changing part Wvol and the shape-changing parts consisting
of the equilibrium Weq and jth non-equilibrium W j

neq parts to model a nearly
incompressible viscoelastic behaviour

Wb

(

J, ĪB̄1 , Ī
B̄

j
e

1 , φ,m
)

= Wvol (J, φ,m)+Weq

(

ĪB̄1 , φ,m
)

+

n∑

j=1

W j
neq

(

ĪB̄
j
e

1 , φ,m
)

.

(8.7)
By combining equations (8.6) and (8.7) leads to the free energy function
formulation as

W = Wvol(J, φ,m) +Weq

(

ĪB̄1 , φ,m
)

+

n∑

j=1

W j
neq

(

ĪB̄
j
e

1 , φ,m
)

+ Wφ(φ, gradφ,m) +Wm(m,mb).

(8.8)

The time derivative of the energy function is derived according to the chain
rule of the differentiation

Ẇ =
∂Wvol (J, φ,m)

∂B
: Ḃ+

∂Weq

(
IB̄1 , φ,m

)

∂B
: Ḃ+

n∑

j=1

∂W j
neq

(

IB̄
j
e

1 , φ,m
)

∂Bj
e

: Ḃj
e

+
∂W

∂φ
: φ̇+

∂W

∂gradφ
: grad φ̇.+

∂Wm(m,mb)

∂m
: ṁ,

(8.9)
after substituting the time derivative of free energy in the equation (8.4) leads
to the inequality equation

(

−2ρB · ∂Wvol

∂B
− 2ρB · ∂Weq

∂B
−

n∑

j=1

2ρB̄j
e ·

∂Wneq

∂B̄j
e

+T

)

: D

+
n∑

j=1

2ρ
∂Wneq

∂B̄j
e

:

(

Fj
e ·

△

Γ
j
i ·
(
Fj

e

)T
)

+

(

ς − ∂W

∂φ

)

· φ̇

+

(

ω − ∂W

∂ gradφ

)

· grad φ̇+

(

−ρ
∂Wm(m,mb)

∂m
+Rm

)

· ṁ

− gradRm · q ≥ 0.

(8.10)

The entropy inequality is evaluated based on the argumentation of Coleman
& Noll leading to the constitutive equation for the Cauchy stress. After
considering an assumption for the free energy function W(•) = ρW(•) [55]
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leads to the Cauchy stress tensor as

T = 2B · ∂Wvol

∂B
+ 2B · ∂Weq

∂B
+

n∑

j=1

2B̄j
e ·

∂Wneq

∂B̄j
e

, (8.11)

and the constitutive equations for the microscopic phase-field equations

ω =
∂Wφ(φ, gradφ,m)

∂φ
, ς =

∂Wφ(φ, gradφ,m)

∂ gradφ
. (8.12)

By inserting the constitutive equations of ω and ς in equation (8.3b) leads
to the local micro force balance

div

(
∂Wφ(φ, gradφ,m)

∂ gradφ

)

− ∂Wφ(φ, gradφ,m)

∂φ
= 0. (8.13)

The phase-field evolution equation is derived from the phase-field constitutive
equation based on the micro-force balance proposed by Gurtin [54]. The
phase-field evolution equation dependent on the local moisture concentration
takes the form

φ̇ = −M

(

Wb

(

J, ĪB̄1 , Ī
B̄

j
e

1 , φ,m
)

− Ec (m)

(

ℓf divφ− 1

ℓf
(1− φ)

))

, (8.14)

where Ec(m) is the critical energy release rate formulated as the function of
the local moisture concentration to consider the influence of the moisture dif-
fusion. Further evaluation of the inequality equation (8.10) lead to chemical
potential

Rm = ρ
∂Wm(m,mb)

∂m
. (8.15)

After the evaluation, the residual dissipation equation remains

n∑

j=1

2ρ
∂Wneq

∂B̄j
e

:

(

Fj
e ·

△

Γ
j
i ·
(
Fj

e

)T
)

− gradRmq ≥ 0, (8.16)

that have to be fulfilled by all the terms of the inequality separately. The first
term of the inequality is evaluated to obtain the inelastic right Cauchy-Green
deformation tensor

˙̄Cj
i =

4

rj

[

C̄− 1

3
tr
(

C̄ ·
(
C̄

j
i

)−1
)

C̄
j
i

]

. (8.17)
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The chemical potential Rm is evaluated by substituting the free energy func-
tion of moisture diffusion W (m,mb) given in equation (3.48) in the equation
(8.15). Constitutive equation satisfying the second term of the residual dis-
sipation equation (8.16) is defined as

q = −D (gradRm) , (8.18)

where Rm is the chemical potential defined in the equation (3.43) and the
moisture flux as takes the form (see Chapter 3.3.1)

q = −D grad (m−mb) . (8.19)

The moisture flux and balance of mass lead to the diffusion equation

dm

dt
= D div (grad (m−mb)) (8.20)

where the immobile moisture concentration is evaluated with the evolution
equation (3.2) as discussed in the chapter 3.1.

8.1.3 influence of moisture diffusion on fracture toughness

The influence of the moisture concentration on the fracture toughness is
considered by taking the moisture-dependent critical energy release rate. A
prerequisite of this theory is to compute the energy release rate at the inte-
gration points based on the local moisture concentration. As a result, the
moisture-dependent energy release rate takes the form

Ec (m)

Ec (m = 0)
= g(m) ∀m ∈ [0, 1.70] (8.21)

where Ec (m = 0) is the critical energy release rate of the dry sample. The
bulk energy decreases as the crack propagates in the material because of the
decay in the material stiffness. Where the decay in the stiffness is evaluated
using the moisture-dependent viscoelastic parameters. The decrease in the
bulk energy is evaluated by multiplying the bulk energy with the degradation
function g (φ) as follows

Wb

(

ĪB̄1 , Ī
B̄

j
e

1 , J, φ,m
)

= g(φ)W0

(

ĪB̄1 , Ī
B̄

j
e

1 , J,m
)

, (8.22)
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where W0

(

ĪB̄1 , Ī
B̄

j
e

1 , J,m
)

is the mechanical energy dependent on the mois-

ture concentration. The moisture-dependent stiffness parameters µ (m) are
calculated by interpolating the dry and saturated stiffness parameters as dis-
cussed in chapter 7.1.1. The constitutive equation for the Cauchy stress is
calculated with the moisture-dependent stiffness parameter as

T
(
B̄, B̄j

e, J,m, φ
)
= g(φ)

(

Tvol(J,m) +Teq(B̄, m) +
∑n

j=1T
j
neq(B̄

j
e, m)

)

.

(8.23)
After taking into account degradation and decay in the mechanical properties
and energies discussed in the equations (8.22) and (8.23) and combining with
the phase-field evolution equation (8.14) with the set of equilibrium equations
(8.3a), (8.3b) and (8.3c) yields

div
(
g (φ)T

(
B̄, B̄j

e, J,m
))

= 0 (8.24a)

g′ (φ)W0

(

ĪB̄1 , Ī
B̄

j
e

1 , J,m
)

+ Ec(m)

[

− 1

ℓf
(1− φ) + ℓf divφ

]

= 0 (8.24b)

ṁ−D div (grad (m−mb)) = 0 (8.24c)

8.2 Boundary conditions

The coupled formulation is specified with the Dirichlet and Neumann-type
boundary conditions. The surface ∂Ω is decomposed to define boundary con-
ditions according to the primary field variables. These boundary conditions
are postulated based on the corresponding primary field variables

∂Ω = ∂ΩD
u ∪ ∂ΩN

t , ∂Ω = ∂ΩD
m ∪ ∂ΩN

q and ∂Ω = ∂ΩD
φ ∪ ∂ΩN

∇φ (8.25)

with ∂ΩD
u ∩∂ΩN

t = ∅, ∂ΩD
m∩∂ΩN

q = ∅ and ∂ΩD
φ ∩∂ΩN

∇φ = ∅. The prescribed
deformation u and traction t of the mechanical problem on the boundaries
is postulated with the Dirichlet and Neumann boundary conditions

u (x, t) = uD (x, t) on ∂ΩD
u and T · n = t on ∂ΩN

t . (8.26)

The Dirichlet and Neumann boundary conditions are derived on the crack
surface for the phase-field damage model with

φ (x, t) = 0 on ∂ΩD
φ and ∇φ · n = 0 on ∂ΩN

∇φ. (8.27)



112 8. Coupled diffusion-deformation-damage

and the Dirichlet- and Neumann-type boundary conditions for moisture dif-
fusion are given by

m (x, t) = m (x, t) on ∂ΩD
m and

q · n = D (gradmf ) · n = q (x, t) on ∂ΩN
q .

(8.28)

8.3 Finite element implementation

The weak forms of the coupled system of equations for diffusion, phase-field
and viscoelasticity follow

ru(u) =

∫

Ω

g (φ)T
(
B̄, B̄j

e, J,m
)
: grads δu dV = 0,

rφi =

∫

Ω

[2 (1− ζ)φ δφW ] dV + Ec

∫

Ω

[

− 1

ℓf
(1− φ) δφ+ℓf gradφ gradδφ

]

dV = 0,

rm(m) =

∫

Ω

δm
mt+1 −mt

∆t
dV +

∫

Ω

[

gradδm ·D 1

2
grad

(
mt+1 −mt+1

b

)
]

dV

−
∫

Ω

[

gradδm ·D 1

2
grad

(
mt −mt

b

)
]

dV = 0.

(8.29)
Displacement field u, damage φ and moisture concentration m variables of
the coupled system are approximated as

u =

nele∑

i=1

Nu
i ui, m =

nele∑

i=1

Ni mi, φ =

nele∑

i=1

Nφ
i φi, (8.30)

where nele is a number of an unknown degree of freedom of an element. Nu
i ,

Nφ
i and Ni are the shape functions of the displacement, damage and moisture

concentration. The shape function of the displacement field follows

Nu
i =





Ni 0 0
0 Ni 0
0 0 Ni



 , (8.31)

where, Ni = N1,N2, ...,Nnele denotes the respective shape function of the
element at the quadrature points associated with the respective nodes. Con-
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sequently, the virtual quantities of the primary variables and their corre-
sponding derivatives are discretised as

δu =

nele∑

i=1

Nδu
i ui, δm =

nele∑

i=1

Ni δmi, δφ =

nele∑

i=1

Nφ
i δφi

gradsδu =

nele∑

i=1

Su
i δui, grad δm =

nele∑

i=1

Sm
i δmi, grad δφ =

nele∑

i=1

S
φ
i δφi.

(8.32)

Here, the derivative of the shape function as S matrix is introduced to eval-
uate the strain-displacement matrix as

Su
i =











Ni,x 0 0
0 Ni,y 0
0 0 Ni,z

Ni,y Ni,x 0
0 Ni,z Ni,y

Ni,z 0 Ni,x











, Sm
i =





Ni,x

Ni,y

Ni,z



S
φ
i =





Ni,x

Ni,y

Ni,z



 , with





Ni,x

Ni,y

Ni,z



 =







∂Ni

∂x

∂Ni

∂y

∂Ni

∂z






.

(8.33)
Inserting the approximated field variables and their derivatives in the resid-
uals of the coupled system of equations leads to

ru(u) =

∫

Ω

g (φ)T
(
B̄, B̄j

e, J,m
)
: (Su

i )
T dV = 0

rφi =

∫

Ω

[2 (1− ζ)φNiW ] dV + Ec

[

− 1

ℓf
(1− φ)Ni + ℓf(S

φ
i )

TS
φ
j

]

dV = 0

rm(m) =

∫

Ω

Nm
i

mt+1 −mt

∆t
dV +

∫

Ω

[

Sm
i ·D 1

2
grad

(
mt+1 −mt+1

b

)
]

dV

−
∫

Ω

[

Sm
i ·D 1

2
grad

(
mt −mt

b

)
]

dV = 0.

(8.34)
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This system of coupled equations is to be solved with the help of the Newton-
Raphson iterative method







Kuu Kuφ 0

Kφu Kφφ 0

0 0 Kmm













du

dφ

dm






=







−ru(ui)

−rφ(φi)

−rm(mi)






, (8.35)

and the components of the tangent stiffness matrix are

Kuu
i,j =

∂rui
∂uj

=

∫

Ω

(
(1− ζ)φ2 + ζ

)(

Su
i :

4
κ (m) : Su

j + Su
i :
[
T (m) · Su

j

])

dV,

K
uφ
i,j =

∂rui
∂φj

=

∫

Ω

2(1− ζ)φSu
i : T

T (m) ·Nu
j dV,

K
φu
i,j =

∂rφi
∂uj

=

∫

Ω

2(1− ζ)φNu
i ·TT (m) : Su

j dV,

K
φφ
i,j =

∂rφi
∂φj

=

∫

Ω

{

(1− ζ)W (m) Nφ
i N

φ
j + Ec

[
1

ℓf
Nφ

i N
φ
j + ℓf(S

φ
i )

T : Sφ
j

]}

dV,

Kmm
i,j =

∂rmi
∂mj

=

∫

Ω

Sm
i Sm

j dV.

(8.36)
The moisture diffusion equation is first solved from the coupled system of
equations. Then the moisture influence is super-imposed over the mechanical
properties by computing these properties at every integration point as the
function of moisture concentration.

8.3.1 Numerical implementation

The multi-physically coupled diffusion, deformation and damage system is
solved in a two-step process. The first step solves the diffusion problem
using the Langmuir-type diffusion model. The second step solves the phase-
field damage model monolithically using the moisture-dependent mechanical
parameters. The coupled system of the equations is solved as a coupled stag-
gering field to find a stable implicit solution as monolithic solutions encounter
convergence problems.
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The multi-physically coupled material model is implemented in deal. II and
the implementation of the material model is explained with the help of the
algorithms discussed in chapter 5.1.2. The diffusion problem solved using the
Langmuir-type diffusion equation is explained with the Algorithm 1. The fi-
nite element mesh is imported to define the material properties and apply the
desired boundary conditions to solve the moisture diffusion problem. Then
the local moisture concentration is superimposed over the fracture problem
to calculate the local stiffness and the critical-energy release rate of the ma-
terial to investigate the moisture influence on the mechanical behaviour. The
fracture problem is solved using the finite-strain phase-field damage model,
and Algorithm 3 describes implementing the material model in deal. II. The
set of classes and header files required to implement the coupled material
model in deal.II FEM library is discussed in chapter 5.3.

8.4 Numerical simulation of notched specimen

Here the multi-physically coupled model is investigated on the double V-
notched sample with the identified material properties of adhesive-A listed
in chapter 6 & 7 to validate the reliability of the proposed coupled material
model. At first, the double-notched V-shaped sample is numerically analysed

66
m
m

100mm

15mm

3m
m

3m
m

Figure 8.1: Bottom face of the sample applied with fixed boundary conditions
and top face applied with displacement boundary conditions
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for failure with the phase-field damage model. A schematic representation of
the considered doubled V-notched sample with the applied tensile boundary
conditions is shown in figure 8.1.

The finite-strain viscoelastic parameters and the phase-field damage identi-
fied for the adhesive-A sample in chapter 7 are used to evaluate the damage
behaviour in a double V-notched sample. A three-dimensional specimen of a
double V-notched sample of thickness 2 mm is discretised into finite element
mesh with a mesh size of h = 1.23mm. The finite element model is analysed
to investigate the fracture behaviour using the material properties of the dry
and the aged samples listed in Table 8.1. The FE model is applied with
displacement boundary conditions on the top face, and the bottom face is
applied with fixed boundary conditions.

Table 8.1: Stiffness and energy release rate of polyurethane adhesive material
identified for the different relative humid atmosphere at 60◦C

Material parameters of finite-strain viscoelastic model

Relaxation

times [s]

0% r.H. 29% r.H. 67% r.H. 100% r.H.

Equilibrium

c10 [MPa] 9.886 7.886 7.196 7.072

c20 [MPa] -1.414 -1.357 -1.122 -1.128

c30 [MPa] 3.214 1.443 0.918 0.872

D [MPa] 0.306 0.244 0.241 0.314

Non-equilibrium

c101 [MPa] 0.5 4.886 2.886 2.296 2.172

c102 [MPa] 10 0.886 0.231 0.139 0.107

c103 [MPa] 100 0.055 0.017 0.014 0.011

c104 [MPa] 1000 0.005 0.003 0.002 0.001

Energy release rate Ec [N/mm] 4.18 5.25 4.82 4.52
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The load-displacement curves from the FE simulation of the dry and aged
samples are shown in figure 8.2. The load-displacement curve of the dry
sample shows better tensile behaviour when compared with the saturated
sample. Still, the dry sample fails at a smaller load than the saturated
samples because of the lower fracture toughness. From figure 8.2, it is evident
that the sample’s ductility increases with the increase in the diffused moisture
concentration in the sample up to 29%, and a further increase in the moisture
concentration leads to a decrease in the material’s ductility.
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Figure 8.2: Load-Displacement comparison of dry and aged samples of the
double V-notched samples from FE-simulation

8.4.1 Moisture-dependent mechanical properties

The influence of moisture diffusion on the energy release rate Ec is considered
by taking a moisture-dependent energy release rate in the coupled problem.
Where the energy release rate dependence on the moisture concentration is
defined using a cubic spline function

Ec (m)

Ec (m = 0)
=







−1.56m3 + 0.93m+ 1, ifm ∈ [0, 0.34] ,

1.11m3 − 2.73m2 + 1.86m+ 0.89, ifm ∈ [0.34, 0.95] ,

−0.19m3 + 0.97m2 − 1.65m+ 2.01, ifm ∈ [0.95, 1.70] .

(8.37)
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The viscoelastic parameters are calculated by interpolating material param-
eters of the dry and saturated sample

µ (m) = f (m)µdry + (1− f (m))µsat. (8.38)

µ (m) is the resultant moisture-dependent stiffness parameters of the finite-
strain viscoelastic model calculated at the integration points. µdry and µsat

are the material parameters of dry and saturated samples at 60◦C listed in
table 7.1. f (m) is the interpolation function for adhesive-A is calculated as

f (m) = e−3.93m where 1 ≤ f (m) / 0, (8.39)

8.5 Numerical evaluation

The coupled formulation is validated by conducting a numerical investigation
on a double V-notch sample of adhesive-A. The adhesive-A material prop-
erties are considered from the chapters 6.2.1, 7.1.1 and 7.2.2. The double
V-notched sample is applied with the diffusion and tensile boundary condi-
tions. The influence of ageing on fracture is investigated on samples aged for
different times t = 500 s, 1000 s and 1500 s. A simple schematic representa-
tion of the aged geometry of the applied boundary conditions is illustrated
in Figure 8.3a and 8.3b.
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(a) Step 1: Moisture diffusion from the
left and right surfaces
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(b) Step 2: Tensile loading

Figure 8.3: Double V-notched sample is influenced by moisture diffusion to
age the sample in (a) Step 1, and then the tensile boundary conditions are
applied until failure in (b) Step 2
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The influence of moisture on the tear strength of adhesive-A is investigated
for different relative humid atmospheric conditions. The tear strength is
investigated for 29% r.H. climatic conditions, and the aged samples are pre-
pared for 500h, 1000h and 1500h to understand the local effects of moisture
diffusion on the tear strength. The diffusion of moisture is investigated in
the first step then the moisture-dependent mechanical parameters of vis-
coelasticity and damage are calculated locally to consider the local effects of
inhomogeneous moisture distribution.

The Langmuir-type diffusion parameters identified for the adhesive-A sample
listed in Table 6.5 is used to analysing moisture diffusion. The equilibrium
moisture concentration for 30%r.H. atmosphere listed in Table 6.1 is used as
the diffusion boundary conditions. Diffusion boundary conditions are applied
at the 15 mm cross-section at the start of V-notch on both sides to realise one-
dimensional moisture diffusion. Figure 8.4 shows the distribution of moisture
measured at the notch along the cross-section AB as shown in Figure 8.3a
and varies between 0 < m < 0.35.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50 60 70 80 90

M
oi
st
u
re

u
p
ta
ke

[%
]

Length [mm]

30% r.H.500h

30% r.H.1000h

30% r.H.1500h

Figure 8.4: Distribution of moisture concentration at the centre along the
100mm length of the double V-notched sample at 30% r.H. at 60 °C

The tensile boundary conditions are applied on the sample with the inhomo-
geneous moisture distribution to analyse the tear strength using coupled for-
mulation. The material parameters for dry and 29% r.H. saturated samples
listed in Table 8.1 were used to calculate the moisture-dependent stiffness
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parameters and energy release rate using the equations (8.38) and (8.37).
The load-displacement data evaluated from the FE simulation is compared
with the dry and saturated sample at 29% r.H. for the qualitative evaluation
of the coupled-material model. Figure 8.5 compares the load-displacement
data from FE-simulation of the double-V notched samples with inhomoge-
neous moisture against a dry (0% r.H.) and saturated sample at 29% r.H. as
shown in Figure 8.2. The comparison shows that the sample becomes ductile
as the ageing of the material progress with time, and the material saturated
at 29% r.H shows higher tear resistance to fracture.
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Figure 8.5: Load-Displacement comparison for the samples aged from 500h
to 1500h with the dry and saturated sample at 29% r.H. at 60 °C

Maximum load and displacement values for the aged samples at failure are
tabulated in Table 8.2. The load required for the sample to fail increases until
the saturation is reached, and the displacement of the sample also increases
showing ductile behaviour.

Table 8.2: Maximum load-displacement data of the sample aged at 29%r.H.
at an isothermal condition of 60 °C

Load-Displacement

0% r.H. 500h 1000h 1500h 29% r.H.

Displacement [mm] 5.427 5.724 6.237 6.435 6.435

Load [N] 80.709 84.172 85.224 85.971 89.701
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The coupled formulation is evaluated for 67%r.H. atmospheric conditions in
the next step. Here, the equilibrium moisture concentration for 70%r.H.
atmosphere listed in Table 6.1 is used as the diffusion boundary condition
since diffusion tests were not performed for atmosphere with 67%r.H.1. The
Langmuir-type diffusion parameters of adhesive-A listed in Table 6.5 are used
in analysing moisture diffusion. Figure 8.6 shows the inhomogeneous mois-
ture distribution measured at the notch along the cross-section AB shown in
Figure 8.3a and varies between 0 < m < 0.95.
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Figure 8.6: Distribution of moisture concentration at the centre along the
100mm length of the double V-notched sample aged at 70%r.H. at 60 °C

The tensile boundary conditions are applied to the aged samples with inho-
mogeneous moisture distribution to investigate the tear strength of the mate-
rial. The material parameters of dry and 67% r.H. saturated samples listed in
Table 8.1 were used to calculate the moisture-dependent stiffness parameters
and energy release rate using the equations (8.38) and (8.37). The load-
displacement data from FE-simulation performed on the aged samples with
inhomogeneous moisture distribution is compared with the load-displacement
data obtained from the FE-simulation of dry sample and saturated sample
at 67% r.H. Figure 8.7 shows the load-displacement comparison of an aged

1Here, the moisture absorbed by the sample saturated for a climate with 67%r.H. at
60°C is assumed to be approximately same as the moisture absorbed by the sample at
70%r.H.
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sample with inhomogeneous moisture distribution against dry and saturated
sample at 67% r.H. shown in Figure 8.2.
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Figure 8.7: Load-Displacement comparison of the samples aged from 500h to
1500h with the dry and saturated sample for 67% r.H. at 60 °C

Maximum load and displacement values required by the sample until failure
obtained from FE-simulation are tabulated in Table 8.3. The investigation
performed with 67%r.H. climate condition shows that the material becomes
ductile with the largest displacement and tear strength for the sample aged
for 1000h. Further ageing leads to decreased material ductility with smaller
displacement and tear strength. The saturated sample at 67%r.H. shows
ductile behaviour than the dry material with larger displacement and higher
tear strength at failure.

Table 8.3: Maximum load-displacement of the sample aged for 67%r.H. at
an isothermal condition of 60 °C

Load-Displacement

0% r.H. 500h 1000h 1500h 67% r.H.

Displacement [mm] 5.427 6.183 6.543 6.336 5.805

Load [N] 80.709 84.836 85.612 84.994 84.083
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The behaviour of the double V-notched sample is investigated for the at-
mosphere with 100%r.H humid condition. In the first step, the moisture
distribution due to moisture diffusion is investigated by applying diffusion
boundary condition listed in Table 6.2 and the Langmuir-type diffusion pa-
rameters of adhesive-A listed in Table 6.5 are used in analysing moisture dif-
fusion. Figure 8.8 shows the moisture concentration distribution measured
at the transition zone along the cross-section AB as shown in Figure 8.3a.
The investigation is carried for samples aged for 500h, 1000h and 1500h and
varies between 0 < m < 1.70.
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Figure 8.8: Distribution of moisture concentration at the centre along the
100mm length of the double V-notched sample aged at 100%r.H. at 60 °C

To investigate the fracture behaviour, the tensile load boundary conditions
are applied on the samples aged for 500h, 1000h and 1500h. The moisture-
dependent stiffness parameters and energy release rate properties are cal-
culated with the equations (8.38) and (8.37) using the material parameters
listed in Table 8.1. The load-displacement data from the FE-simulation of
the aged double V-notch samples with the inhomogeneous moisture distri-
bution is compared with the load-displacement FE-simulation data of dry
and saturated sample at 100% r.H. Figure 8.9 shows the comparison of load-
displacement data of aged samples with inhomogeneous moisture against the
dry and saturated sample at 100% r.H. shown in the Figure 8.2.

The maximum load and displacement at the fracture of the samples are tab-
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Figure 8.9: Load-Displacement comparison of the samples aged from 500h to
1500h with the dry and saturated sample for 100% r.H. at 60 °C

ulated in Table 8.4. The tear strength increases as the material is exposed to
a humid atmosphere for 500h. Further ageing leads to a decrease in the tear
strength of the material. The dry shows higher tear strength than the satu-
rated sample at 100% r.H. However, the elongation of the saturated sample
is higher in comparison due to the increased material’s ductility. The ductile
behaviour also depends on the moisture distribution, where the material’s
ductility is maximum for 1000h aged sample and decreases with further age-
ing of the material until saturation.

Table 8.4: Maximum load-displacement data of the sample aged at 100%r.H.
at an isothermal condition of 60 °C

Load-Displacement

0% r.H. 500h 1000h 1500h 100% r.H.

Displacement [mm] 5.427 5.976 6.291 5.967 5.814

Load [N] 80.709 83.159 82.143 79.881 78.125
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Summary and outlook

9.1 Summary

This thesis aims to develop a desired material model to analyse the ageing
in crosslinked polyurethane adhesives under the influence of moisture. In
this work, tests conducted on the diffusion and mechanical behaviour under
isothermal conditions at 60◦C are carried out at Lehrstuhl für Adhäsion
und Interphasen in Polymeren, Saarland University and Fraunhofer-Institut
für Fertigungstechnik und Angewandte Materialforschung (IFAM), Bremen.
The moisture diffusion is investigated on two commercial adhesive materials
referred to as adhesive-A and adhesive-B, whereas the tensile and fracture
behaviour is investigated only on adhesive-A.

The dynamic vapour sorption method investigates moisture transport in the
adhesive samples for different humidity conditions at an isothermal condi-
tion. Initially, adhesive samples are placed in a climate chamber until the
saturation state is reached to record moisture uptake in absorption. Once the
samples reach saturation, the atmosphere in the climate chamber is shifted
to dry air to measure mass release in desorption.

125
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The Langmuir-type diffusion model is used to analyse moisture diffusion in
selected adhesive materials. Material parameters of the diffusion model are
identified to simulate moisture diffusion for different saturation states in the
adhesive-A sample. Kinetics of the moisture absorption and desorption in
adhesive-B follow different profiles since the chemical potential of the ma-
terial is the driving force of diffusion but not the concentration gradient.
Therefore, the material parameters for absorption and desorption behaviours
are identified individually. Concentration-dependent diffusion parameters de-
pend on the boundary conditions used in the Langmuir-type diffusion model
to analyse non-linear moisture diffusion in adhesive-B.

The nearly incompressible finite-strain viscoelastic behaviour of the
crosslinked polyurethane is modelled based on the rheological properties
considering the material’s elastic and viscous parts. This material model
is modelled by considering four Maxwell elements connected in parallel to
the elastic spring component. An evolution equation is used to compute the
deformation in the elastic spring element of the Maxwell element. The con-
stitutive equations for stresses defined in Chapter 3 were used to implement
the finite-strain viscoelastic model in the open-source finite element library
deal.II programmed in C++.

The moisture diffusion in the polyurethane adhesive results in the ageing
of the material leading to softening of the material because of the decay in
the stiffness. In order to investigate the ageing process, the finite-strain vis-
coelastic material model is coupled with the Langmuir-type diffusion model.
The softening of the material due to the ageing is considered in numerical
simulation by using moisture-dependent stiffness parameters. The moisture-
dependent stiffness parameters are calculated by interpolating the dry and
saturated stiffness parameters using an exponential decay function. The cou-
pled material model is solved using a staggered method, where the Langmuir-
type diffusion is solved in the first step, and the finite-strain viscoelastic
model is solved using the Newtons method.

The fracture behaviour in crosslinked polyurethane adhesives is modelled
with the phase-field damage model under large deformations. The finite-
strain phase-field model was modelled by coupling the finite-strain viscoelas-
tic material model with a crack propagation model based on Griffith’s theory.
A numerical investigation of the finite-strain phase-field damage model is car-
ried out on the angular specimen described in DIN ISO 34-1 to evaluate the
tear strength of the adhesive-A specimen. Aged samples are used in the ex-
perimental investigation to understand the influence of moisture on fracture
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behaviour in crosslinked polyurethane adhesives. Finally, the finite-strain
phase-field damage model is coupled with the Langmuir-type diffusion model
to understand moisture’s influence on adhesive-A’s fracture toughness.

The material parameters required for the numerical simulation are identified
using the gradient-free algorithm proposed by Nelder & Mead. The sim-
ulation results are compared with the experimental results to validate the
identified material parameters. Finally, the material models corresponding
to the coupled diffusion-deformation and diffusion-deformation-damage are
investigated numerically. The numerical results are compared with the ex-
perimental data to check for the validity of the proposed material models.

9.2 Outlook for the future work

Environmental conditions like temperature and humidity influence the
crosslinked polyurethane adhesives. The present work is focused mainly on
the influence of local moisture concentration transported into the material
at an isothermal condition. However, temperature influences moisture dif-
fusion, hence it is necessary to investigate temperature influence to identify
temperature-dependent material parameters with Arrhenius law. The diffu-
sion tests conducted on the adhesive-B show that moisture absorption and
desorption kinetic follow different paths. Therefore further investigation on
the chemical potential of the adhesive-B is necessary to formulate a diffusion
equation that can be used to simulate absorption and desorption behaviour
with unique material parameters.

This work focuses on modelling the finite-strain viscoelasticity using phe-
nomenological material model. The material models based on the phe-
nomenological theories are formulated from the empirical relation derived
from the experimental data and observation. The parameters of phenomeno-
logical models are identified by fitting the experimental data and have no rele-
vance to the material’s molecular structure. Therefore, the micromechanical
network models need to be formulated based on the statistical mechanics
with a motivation to describe the complex micromechanical behaviour. 8-
chain model [20, 8] and the micro-sphere model [99, 98, 44] are some of the
popular micromechanical network material models to investigate polymer
network materials.
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Coupled material model for diffusion and finite-strain viscoelasticity can cap-
ture the effects of local moisture concentration on mechanical behaviour.
However, the coupled material model does not account for the swelling in
the material on account of moisture diffusion. The swelling deformation
can be accounted for by considering the multiplicative decomposition of the
deformation into swelling and mechanical deformations. The multiplicative
decomposition of the deformation gradient requires experimental investiga-
tions that measure swelling strains. The presented multi-physically coupled
material model does not consider the influence of mechanical deformation on
diffusion. Thus the material model cannot capture bending effects on the
moisture distribution.

In this work, the study of modelling fracture is restricted to Mode I failure.
The parameters obtained for Mode I failure can not be used in Mode II and
Mode III failure simulation. The experimental investigation are needed to
identify critical fracture energy of Mode II and Mode III for the phase-field
fracture simulation. The experiment and simulation in the current work only
help us understand some aspects of the ageing process under the influence of
moisture. The material models presented in this work provide a significant
basis for further consideration in material modelling for the future work. This
prospect of work will enable a more precise understanding of ageing in the
crosslinked polyurethane adhesives at different isothermal conditions.
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A

Theroretical Background

A.1 Stress and elasticity tensors

The free energy density function used in the definition of the viscoelastic
material models is dependent on the left Cauchy-Green deformation tensor.
The stresses and tangent operators required to implement a material model
in the material configuration need to be derived [76, 77]. The general formu-
lation to derivate Kirchhoff stresses is discussed with the help of the equation
(3.42) using the relationship between Kirchhoff and Cauchy stress tensors

τ = 2B ·
∂W
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146 Appendix A. Theroretical Background

The necessary derivatives of invariants and tensors required to derive stress
tensors with equation (A.1) are

∂B̄

∂B
= J−2/3
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The decoupled form of isochoric and volumetric parts of Kirchhoff stress
tensor are obtained by applying the product and chain rules on the equation
(A.1) and with the help of the relations given in equation (A.2) yields
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(A.3)

(•)′ is the first order derivative of the free energy density function. These
measures are derived from the free energy density functions given in the
equations (3.32), (3.33) and (3.34)
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The derivation of the shape and volume-changing parts of the tangent tensor
are the second order derivative of the free energy function
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and are derived by applying the chain and product rule of the tensors. The
tangent tensors of the shape and volume changing parts follows

4
κ eq =4

(

Weq

(
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+ ĪB̄1

(

Weq

(
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(•)′ is the first order derivative of the free energy given in equation (A.4)
and (•)′′ is the second-order derivative of the free energy density functions.
These measures are derived from the free energy density functions defined in
the equations (3.32), (3.33) and (3.34)
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• Siva Pavan Josyula and Stefan Diebels. ’A phase-field approach de-
scribing degradation in aging polymer bonds’, 12. Workshop Kontinu-
umsmechanik, 25 - 27. September 2019, Schwarzenborn.

• additionally five internal lectures and six lectures in the context of
project meetings

B.3 Poster

• S. P. Josyula and S. Diebels, ’Phase-field Damage Model to Describe
Aging in Polymer Adhesives due to Moisture Diffusion’, Doktoranden-
tag der Naturwissenschaftlich Technischen Fakultät III der Universität
des Saarlandes, November 2019, Saarbrücken.
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