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Abstract

Intracellular transport is crucial for the functioning of living cells. Intracellular cargo is
transported in a complex manner. For intracellular cargos to reach their destination in
time, transport needs to be highly regulated. The regulation of microtubule-based transport
by the opposing motors kinesin and dynein is poorly understood. In this thesis, stochastic
simulations are used to study the regulation by number and type of motors, ATP concentration,
roadblocks, the microtubule-associated protein tau and the cargo surface, which determines
how the motors are coupled. Here it is found that the relative number of kinesin and dynein
motors determine the net transport direction and the way motors are coupled the transport
mode: unidirectional or bidirectional. Moreover, a mechanical dynein activation is found
to influence the transport mode of dynein-driven transport. ATP concentration and single
roadblocks had no effect on the transport direction of unidirectionally transported cargo, but
might influence the transport of bidirectionally transported cargo. Furthermore, simulations
hypothesize that tau island formation depends on the MT track identifying the MT track as
an additional regulation factor. In conclusion, transport regulation is different for different
transport modes.

Keywords: Intracellular transport, kinesin, dynein, microtubule, tau protein, stochastic simu-
lations






Kurzzusammenfassung

Intrazelluldrer Transport ist von entscheidender Bedeutung fiir die Funktionsfihigkeit
von lebenden Zellen. Intrazelluldrer Cargo Transport ist sehr komplex. Damit der Cargo
seinen Bestimmungsort zur rechten Zeit erreicht, muss der Transport hochgradig reguliert
werden. Die Regulierung des Transports entlang von Mikrotubuli durch die gegenldufigen
Motoren, Kinesin und Dynein, wirft noch einige Fragen auf. In dieser Arbeit werden
stochastische Simulationen verwendet, um die Regulierung durch Motorkonfiguration, ATP-
Konzentration, Hindernisse entlang der Mikrotubuli, Mikrotubuli assoziierte Tau Proteine
und Cargo-Oberfliche zu untersuchen. Es stellte sich heraus, dass die Motorkonfigurati-
on die Netto-Transportrichtung bestimmt und die Cargo-Oberflache, welche die Art der
Motor-Kopplung vorgibt, den Transportmodus: unidirektional oder bidirektional. Eine me-
chanische Dynein-Aktivierung, des Weiteren, beeinflusst den Modus von Dynein-getriebenem
Transport. Die ATP-Konzentration und Hindernisse beeinflussen die Transportrichtung von
unidirektional transportiertem Cargo nicht, eventuell aber den Transport von bidirektional
transportiertem Cargo. Weitere Simulationen lassen eine Abhingigkeit der Bildung von
Tau-Inseln von der Mikrotubuli-Oberfliche vermuten. Kurz, die Regulierung des Transports
ist fiir verschiedene Transportarten unterschiedlich.

Stichworte: Intrazelluldrer Transport, Kinesin, Dynein, Mikrotubuli, Tau-Proteine, stochasti-
sche Simulationen
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Chapter 1
Introduction

Intracellular transport is essential for the functioning of living cells. Intracellular transport
can be divided into (passive) diffusion or active transport. Ions and small molecules typically
diffuse in the cytoplasm of the cell or through biological membranes following a concentration
gradient [1]. Facilitated diffusion uses channels and carrier proteins to transport molecules
through membranes [1]. Long-range transport of huge vesicles on cellular scales cannot be
realized by diffusion. Since the cellular environment is very crowded [2], diffusion would not
be fast enough. Therefore, active transport processes are needed. Active transport, for instance,
is used to transport mitochondria to locations of low ATP concentrations inside the cell or to
divide chromosomes between the two daughter cells during cell division [3-5].

Long-range intracellular transport is typically carried out along the microtubule-network. The
microtubule-network is a street-like network consisting of polar, intracellular filaments called
microtubules (from now on MT). In basic cells, the MT-network typically grows radially from
the cell center to the cell periphery [2, 6]. Molecular motors from the kinesin and dynein
family move and transport cargo along the MTs. While kinesin motors move towards the
MT plus-end, i.e. the cell periphery, dynein moves towards the MT minus-end, i.e. the cell
center. Previous studies showed that kinesin and dynein motors are bound to the same cargo
simultaneously leading to bidirectional cargo motion, which includes phases of diffusive or
no motion, unidirectional motion and directional reversals . [3, 7-24]. The study by Soppina
et al. [25] even show that endosomes are stretched during bidirectional transport indicating
that a tug-of-war between opposing kinesin and dynein motor teams happens. How the cargo
reaches its destination despite this complex motion patterns remains poorly understood.
Malfunctioning of intracellular transport is linked to neurodegenerative diseases and cancer
[26-28]. In cancer cells, for instance, an altered number of motor proteins has been found.
This is associated with an altered distribution of mitochondria throughout the cell, which in
turn influences the spread of the cancer cells [28]. In tau-related neurodegenerative diseases
it is known that tau detaches from MTs. One of the main functions of tau is to stabilize MTs.
Tau detachment from the MT leads to failing intracellular transport and eventual the death of
the cell [26, 29-31]. That is why it is important to study motor-driven, directed intracellular
active transport and the question arises

How is intracellular cargo transport by opposing kinesin and dynein teams regulated such
that the cargo reaches its destination?

Different approaches can be taken to study potential regulation factors of bidirectional
transport by teams of opposing kinesin and dynein motors. In vivo experiments use artificially
induced changes of the cellular environment to see how the system of interest reacts to such
changes. Due to the complex intracellular environment, in vivo systems are often difficult to
analyze. By contrast, well controlled in vitro assays allow to study simplified transport systems




Chapter 1. Introduction

outside of the cell. In in vitro experiments, components that lead to a certain observation are
well defined. However, the mechanism of how the components work together to produce the
observed effect often remains unclear. Therefore, in silico experiments, i.e. simulations are
needed. Simulations can give concepts, explanations and models of the underlying processes.
Furthermore, simulations can give predictions and forecast important factors to look at
experimentally for further improvement of the understanding of a process. Here, simulations
are used in close cooperation with in vitro experiments to further understand intracellular
transport mechanism and their regulations.

But before transport under different conditions can be simulated, kinesin and dynein models
have to be developed. Several theoretical studies introduced models for kinesin and dynein
[32-36]. The models used here are based on the work by Klein et al. [35]. These models
are adjusted to the given in vitro experiments such as bead and liposome transport or MT
¢gliding assays. In MT gliding assays a glass coverslip is coated with motors and MTs are
propelled above the coverslip. Simulating unidirectional kinesin and dynein gliding assays
the question is addressed why the velocity of unidirectional kinesin transport does not depend
on the number of motors, while the velocity of unidirectional dynein transport increases with
the number of motors.

Previous experimental in vivo studies show that a few kinesin and dynein motors are simul-
taneously bound to the same cargo [3, 9-24]. Changing the configuration of kinesin and
dynein motors can change the transport manner. Rezaul et al. [37], for instance, could show
that adding kinesin to a dynein-driven cargo in vivo could reverse the transport direction.
Moreover, previous MT gliding assays driven by kinesin and ciliary dynein could show that
the transport direction can be tuned by changing the kinesin density [38]. However, for a
better understanding how the number and type of motors regulate the direction of bidirectional
transport, a more systematical approach is needed. Systematically changing dynein and
kinesin numbers in in vitro MT gliding assays shows how the relative motor concentration
determines the transport direction. To understand how teams of kinesin and dynein motors
counteract opposing forces and how the number of motors regulate bidirectional transport,
the here presented bidirectional gliding assay simulations are used.

Yet another factor influencing the transport manner might be the cargo itself. Besides the size
of the cargo, also the diffusion of the motors on the cargo surface might play a role. While
many in vitro studies use beads, where motors are rigidly bound to the cargo (rigid cargo sur-
face), in vivo cargos often have a membrane in which motors can diffuse (fluid cargo surface).
It is unclear how a diffusion of motors on the cargo surface changes transport compared to
rigidly coupled motors. In this work, first unidirectional cargo transport models are used to
study the influence of the cargo surface. Thereby the question is also addressed whether the
dimension of the model (one or three dimensions) plays a role. After that the motor-cargo
model with diffusive motor tails is used to simulate bidirectional vesicle transport and to
understand why a fluid cargo (motor diffusion on cargo surface) is transported bidirectionally
including reversals, while a rigid cargo shows unidirectional motion or is stalled.

Besides the motor-cargo complex itself, also environmental control parameters such as ATP
concentration or the presence of roadblocks on the MT are potential regulation factors. The
theoretical work by Klein et al. [35] shows that the transport direction can be tuned by chang-
ing the ATP concentration and the experimental work by Ferro et al. [39] shows that single
kinesin motors are more affected by roadblocks than single dynein motors. Consequently, it
can be hypothesized that ATP and roadblock concentrations regulate bidirectional transport.
In vitro MT gliding assays show that unidirectional dynein and kinesin transport is indeed




influenced differently by ATP and roadblock concentrations. The directionality of bidirec-
tional MT gliding assays, however, remains unchanged upon changes in ATP and roadblock
concentrations. Here, the simulations of bidirectional MT gliding assays at different ATP
and roadblock concentrations are used to understand why ATP and roadblock concentrations
influence the velocity of unidirectional transport but do not change the directionality of
bidirectional transport.

Although point-like roadblocks do not change the directionality of bidirectional MT gliding
assays, it is still assumable that spatially extended obstacles such as clusters of MT associated
proteins have an effect on the transport direction. For MT associated proteins it is known
that they can change MT-motor affinities or even detach specific motors, while others remain
unaffected. Tau islands, for instance, leave dynein unaffected but detaches kinesin [31, 40].
Thus, MT associated proteins are expected to change the number of motors and therefore the
directionality of intracellular transport. Before a potential regulation of clusters such as stable
tau islands can be discussed, the tau island formation needs to be understood. Here, a tau
adsorption model is introduced to shed light on the formation of stable tau islands which let
dynein pass, but detach kinesin [31, 40].

This thesis is structured as follows: After this introduction, first (chapter 2) the biological
background of intracellular, MT-based transport by teams of kinesin and dynein motors and
the State of Art of bidirectional transport regulation mechanism are introduced. Thereafter
(chapter 3), the theoretical basics of Monte Carlo simulations and stochastic processes
are presented as the main methods used in this thesis. Having introduced the biological
and theoretical background, the studied projects are outlined and the above introduced
research questions are discussed: This means, in chapter 4 unidirectional and bidirectional
MT gliding assays are simulated to understand how kinesin and dynein motors work in a
team. Moreover, this chapter deals with the influence of the environmental factors ATP
and roadblock concentrations. As a different kind of roadblocks, chapter 5 investigates the
formation of stable tau islands on the MT. Chapter 6 and 7 then deal with cargo transport.
While in chapter 6 different cargo transport models including rigid (beads) and fluid cargo
(liposomes) models are analyzed, chapter 7 covers bidirectional liposome transport by kinesin
and dynein. Throughout all result chapters, simulation work is directly compared to experi-
ments. In the end, chapter 8 draws overall conclusions of the presented regulation mechanisms.







Chapter 2

Biological aspects of intracellular
transport
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In the first part of this chapter microtubules will be introduced as intracellular streets for

molecular motors. Then, the molecular motors will be presented with the focus on mammalian
cytoplasmic dynein as a motor walking towards the microtubule minus-end and on kinesin-1
and kinesin-3 as examples for motors walking towards the microtubule plus-end.
In the second part three models for bidirectional transport will be discussed: the exclusionary
presence model, the straight coordination model, and the tug-of-war model. Then, the state of
the Art understanding of unidirectional transport by multiple motors will be presented. Finally
bidirectional transport and possible mechanisms to regulate bidirectional cargo transport by
teams of oppositely directed motors will be introduced. The presented regulation mechanisms
are classified as i) regulation by the type and number of motors, ii) by environmental factors,
iti) by the MT track and iv) by the cargo surface.
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Chapter 2. Biological aspects of intracellular transport

The basis of all living organisms are cells [6]. Dysfunctional cells, like tumor cells, which

unstoppably multiply and spread, can lead to the death of an organism [41, 42]. Cells can
be classified into two categories: eukaryotic and prokaryotic cells. Bacteria i.a. are made of
prokaryotic cells, while plants and animals of eukaryotic cells [6]. Eukaryotic cells have a
nucleus and membrane-bound organelles. The cell organelles are surrounded by the cytosol, a
gel-like fluid, and enclosed by the cell membrane [6]. Various essential cellular functions are
carried out by the different cell organelles and cell compartments. Examples of cell organelles
and cell compartments are mitochondria, the energy-producing factories of the cell, the nu-
cleus which contains the genetic information, and the ribosomes which translate the genetic
information into proteins. The genetic information is then packed by the Golgi apparatus, an-
other cell organelle, and sent to where it is needed [2, 6]. For a functioning cell, all the cell
organelles and cell compartments need to work properly together. If all cell organelles just
were to diffuse in the cytosol, the cell would not function. Instead, organelles need to be ac-
tively located where they are needed at a specific time of the cell life cycle. Mitochondria,
for example, are transported to spots of low energy [3]. Thus, an intracellular organization is
needed.
The cytoskeleton, "the backbone of the cell", is the basis for organizing cell components and
maintaining the cell shape [43]. The cytoskeleton consists of three types of intracellular fila-
ments: actin filaments, intermediate filaments, and microtubules [6, 43]. The actin filaments
form a dense mesh on the inner side of the cell membrane, the so-called actin cortex. On
the one hand, the actin cortex protects the cell from external deformations and mechanical
stress and on the other hand, when actively rearranging, it generates forces and cell locomo-
tion [44]. Intermediate filaments can be found throughout the cell, connecting the inner of
the cell (microtubules, nucleus) with the actin cortex [45, 46]. The main function of interme-
diate filaments is to compensate tensile and compressive forces [45, 46]. Furthermore, they
contribute to cell stiffness, and recent studies show that intermediate filaments play a role in in-
tracellular regulations and signaling [46]. Microtubules (from now on MTs) are the stiffest and
longest intracellular filaments [45, 47]. They mostly grow radially from the cell center to the
cell periphery, giving the cell its shape and an intracellular orientation [6]. This intracellular
orientation is essential for an intracellular organization of the cell compartments and because
of their star-like arrangement throughout the cell, MTs are the basis of long-range intracellu-
lar transport towards the cell center (retrograde) or towards the cell periphery (anterograde).
In the following paragraph a more detailed overview of MTs and their role in intracellular
organization will be given.

2.1 The microtubule cytoskeleton: an intracellular street
network

Microtubules (from now on MTs) are 1 um to 1 mm long [47], stiff (persistence length of
6 mm [47]), (hollow!) tubes [2, 6]. MTs are composed of af-tubulin heterodimers, which
give the MT an intrinsic polarity throughout the filament. Therefore, a clear plus (f-tubulin)
and minus-end (a-tubulin) can be defined [2, 6, 49]. In a cell cycle, during interphase for
most of the time, the minus-end is in the cell center and the plus-end protrudes towards the
cell periphery [6]. That is how the MT array, gives a robust intracellular orientation for

Tt was previously thought that MTs are hollow [2, 6]. However, nowadays it is known that various MT internal
proteins are inside the MT [48].
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2.1. The microtubule cytoskeleton: an intracellular street network

organelle transport. However, the MT array is further known to flexibly rearrange. During
mitosis, for example, MTs first form the mitotic spindle, shrinking spindle MTs then separate
the chromosomes and growing MTs finally reposition the nucleus in the center of the divided
cell [49-51]. This means on a time scale of seconds to minutes [50], MTs shrink, grow, and
dynamically rearrange to adopt different situations and intracellular functions.

To understand how the MT array can rearrange at such short time scales, the MT assembly

\\\\ Curved GDP Curved GTP ,,"/
E 12° kink 4

¥/ Compacted;
[ and twisted
! “Gpp-p 7

Figure 2.1: MT conformational cycle.

The illustration shows the mechanochemical cycle of tubulin binding and unbinding. Cir-
cles show where the particular tubulin conformation can be found in the MT lattice. The
tubulin polymerization and depolymerization is a mechanochemical cycle with constant en-
ergy consumption in form of ATP. The curved GTP tubulin can bind to a free protofilament
at the plus-end of a growing MT. After binding, the curved GTP tubulin straightens into an
expanded GTP state. GTP hydrolysis then guides the tubulin into a compact conformation,
which is 34 shorter. There is also a "compact and twisted" conformation (GDP-Pi state).
It is not yet clear where this conformation is located in the MT lattice (indicated by the
"?7"). When depolymerizing, the compact GDP tubulin goes back to a curved conformation
under the release of energy. To be able to bind again to the MT, GDP must be exchanged
by GTP [49]. Reproduced with permission from Springer Nature. Originally published in
Nature Reviews Molecular Cell Biology, volume 19, pages 451-463 (2018) [49].

and disassembly need to be understood. MTs are composed of heterodimers of a- and
p-tubulin, which string to protofilaments [49]. Usually, 9 to 16 protofilaments are arranged
in the form of a (hollow) cylinder forming a MT [52]. Tubulin heterodimers undergo a
conformational cycle to assemble and disassemble into a MT. The current understanding
of the conformational cycle is reviewed by Brouhard and Rice [49] and summarized in the
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Chapter 2. Biological aspects of intracellular transport

following (see also fig. 2.1 for an illustration)>. The conformational cycle of tubulin binding
and unbinding is a non-equilibrium process because of a constant energy consumption in
form of GTP (an energy deliverer) hydrolysis by tubulin heterodimers. For assembly, free
GTP-tubulin heterodimers bind to a protofilament at the MT plus-end. The plus-end is the
faster growing MT end, where f-tubulin is pointing outwards [50, 53]. Here, the a-tubulin
of the free GTP-tubulin heterodimer binds to the f-tubulin of the existing protofilament.
Since the free GTP-tubulins are curved, free protofilaments, which are not laterally bound,
are curved as well. That is why the plus-end of MTs is often drawn as a funnel indicating the
curved free protofilaments. However, when free protofilaments laterally bind to form "sheets",
the GTP-tubulin starts to straighten. Most of the lateral bonds are homogeneous, meaning a-a
or f-p bonds [2]. However, when the sheet closes to form the tube, the seam bond is mostly
a heterologous bond (a-f). After straightening the tubulin goes into a compact GDP-state
under releasing phosphate (In between, there might be a special, twisted GDP-Pi state, see
fig. 2.1 for more information). Thus, the MT is usually composed of GDP-tubulin dimer.
For disassembly, a GDP-tubulin heterodimer unbinds from the MT end under the release of
energy and goes back to the relaxed, expanded curved state (curved GDP-tubulin). Now, GDP
has to be exchanged with GTP so that the tubulin will be able to bind again to the MT. In vivo,
we have a constant polymerization and depolymerization of tubulin. If the polymerization
prevails, the MT is in the growing state, otherwise in the shrinking state. In the growing state,
there is a cap consisting of GTP-tubulin preventing the MT from depolymerization. Thus, the
cap stabilizes the growing plus-end of the MT [49, 54-56]. A transition to the rapid shrinking
state starts if the MT loses this cap due to GTP hydrolysis, stochastic loss of GTP-tubulin, or if
not enough new GTP tubulin was added [49, 54, 55]. This transition is called catastrophe and
can lead to a complete MT disassembly [50]. However, if the MT can rescue its cap, it starts
growing again. In vivo, the MT is known to frequently undergo catastrophe and rescue events
at the plus-end, while the minus-end is anchored. These frequent transitions from the growing
to the shrinking state are called dynamic instability. In addition to the dynamic instability,
there is another mode called treadmilling. In this case, the MT plus-end continuously grows
while the minus-end continuously shrinks and the MT migrates [50]. This dynamic instability
enables MTs to rearrange at a relatively fast time scale during different phases of a cell cycle.
However, to have a working cell, the (re)arrangement of the MT array needs to be regulated.

MT-associated proteins (MAPs) are known to regulate the MT assembly and disassembly
[49, 57, 58]. The MT dynamics are influenced by MAPs in different ways. First, MAPs
can either induce or inhibit MT nucleation by stabilizing or destabilizing bonds between
tubulin dimers [49, 59]. Second, they can suppress or trigger catastrophe or rescue events
by influencing the mechanochemical tubulin cycle [49, 59, 60]. One way to influence the
mechanochemical cycle is when MAPs preferentially bind to either the curved or the straight
conformation of tubulin and therefore favor a particular conformation. A favored curved
conformation causes that free curved protofilaments do not laterally bind to form sheets and
finally the tube [49]. A third way to influence MT stability is when MAPs interfere with the
MT lattice dynamic. It is known that besides polymerization and depolymerization at the MT
tip, MTs also lose and incorporate tubulin along the MT bulk [61-63]. Thus, MTs are able to
self-repair [63]. MAPs were shown to facilitate the MT repairment and thereby might prevent
MTs from catastrophe [64, 65]. Besides non-motor MAPs, also enzymes or molecular motors
from the kinesin and dynein superfamilies regulate the MT stability in the balk. Molecular
motors damage the MT lattice when walking on the MT and modulate the MT assembly at the

2 Additional information, taken from other sources, are marked in the text.

14



2.2. Molecular motors

MT end [57, 61]. MT-severing enzymes like katanin or spastin cut the MT in pieces or destroy
MTs from the middle. The MAP tau, in contrast, protects the MT from being severed [31, 40].
In section 2.4.3.1 tau proteins are discussed in detail. To conclude, several regulation factors
enable the cell to control the dynamic instability of MTs and as a consequence precisely guide
the rearrangement of the MT array.

We have seen the MT array is a flexibly rearrangeable, polar network throughout the cell.
Therefore it seems to be a good basis for intracellular organization. However, the remaining
question is how does the cell use the MT array for organizing cell compartments. It had
been observed that rearrangement of the MT array helps in positioning specific cargo. For
instance, the nucleus is repositioned in the cell center after cell division [49, 51]. However,
rearranging the MT array by polymerization and depolymerization is not an efficient way to
move organelles. Nevertheless, because of its intrinsic polarity and long range, the MT array
can be seen as a street network that can be used to precisely locate organelles or other cargo
along it. Molecular motors are known to walk along the MTs guided by the intrinsic polarity
of the MTs [6, 66, 67]. These motors have a so-called tail, which can bind cargo and transport
it along MTs. Moreover, to ensure a processive motion along the MT, most motors have two
heads to ensure that at any instance one head is bound to the MT lattice [68, 69].

In summary, the MT array is a flexible street network throughout the cell. Because of its long
range and intrinsic polarity, it provides the basis for intracellular organization through cargo
transport by molecular motors. The next section gives more details about molecular motors.

2.2 Molecular motors

Molecular motors are mechanochemical enzymes that convert the chemical energy of the
energy deliverer ATP into mechanical work. Upon hydrolysis of ATP, they undergo confor-
mational changes to perform a step on a MT [70-75]. The intrinsic structure of the MT gives
the motors an orientation, such that each motor develops a preferred stepping direction. This
means, motors either preferably step towards the MT plus-end or the MT minus-end ensuring
transport to any location within the cell [2, 6, 69, 76-78]. MT-based molecular motors can
be divided into two superfamilies: the kinesin and the dynein superfamily. Members of the
dynein superfamily preferentially step towards the MT minus-end, while most of the members
of the kinesin superfamily preferentially step towards the MT plus-end [69, 76-78]. An
exception is kinesin-14, which preferably steps towards the MT minus-end [79]. Molecular
motors are further classified into processive and non-processive motors. Processive motors
take multiple successive steps before detaching from the MT, while non-processive motors
detach after each step ([80-82]. Most relevant for long-range cargo transport are processive
motors. Processive motors usually have two heads and a tail domain. The tail domain binds
to the cargo (or another filament) and the head domains alternatingly bind and unbind from
the MT in order to step forward. While stepping on the MT, the motors exert a force on the
cargo and move it forward.

Taken together, to transport cargo to any part of a cell, the opposite directed molecular
motors kinesin and dynein bind to cargo and step processively along the MT array. In the next
subsection details of the molecular motor properties and their functionality are given. Here,
the focus is on the two most prominent motors: cytoplasmic dynein and conventional kinesin
(kinesin-1) as well as the less studied motor KIF16B from the kinesin-3 family [78].
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Figure 2.2: Dynein structure.

The illustration shows the complete dynein molecule (left, a), the AAA ring of the motor
domain with a straight linker (middle, b), and with a bent linker (right, c). a) The complete
molecule can be divided into a tail (grey) and a head region (colored). The latter, the
part relevant for transport, consists of two identical motor domains ("Motor’). The linker
(purple), which is part of the motor domain, binds the motor domain to the tail region. The
motor domains consist of a MT binding domain, which interacts with the tubulin of the
MT, and a stalk, which connects the MT binding domain to a AAA ring. The AAA ring is
the ATPase active region of the molecule. b) The AAA ring consists of six AAA domains,
from which AAA1- AAA4 can bind ATP. Conformational changes of the AAA ring are
communicated via the buttress, an appendage of the AAA ring, to the stalk. Conformational
changes of the stalk change the MT binding affinity of the MT binding domains. ATPase
activity at AAA1 is essential for motor stepping. If ADP is bound to AAA1, the linkerisin a
straight conformation expanding over the complete AAA ring (post-power stroke state). c)
Binding of ATP to AAA1 (b — c) bends the linker (pre-power stroke state). The bending of
the linker shifts the buttress and thereby changes the conformational state of the stalk. Used
with permission of Annual Reviews, Inc., from Mechanism and Regulation of Cytoplasmic
Dynein, Michael A. Cianfrocco, Morgan E. DeSantis, Andres E. Leschziner, and Samara L.
Reck-Peterson, volume 31, pages 83-108 (2015); permission conveyed through Copyright
Clearance Center, Inc. Originally published in Annual Review of Cell and Developmental
Biology, volume 31, pages 83-108 (2015) [83].

2.2.1 Cytoplasmic dynein

Members of the dynein superfamily are processive minus-end directed motors [69, 76].
Within the dynein superfamily two classes of dynein motors are distinguished: cytoplasmic
dynein and axonemal dynein. While axonemal dynein is involved in the movement of cilia
and flagella, which are filamentous structures carrying out cell locomotion or act as a sensory
organelle [69, 76] the task of cytoplasmic dynein is intracellular transport and building the
mitotic spindle during cell division [4, 69, 76]. Cytoplasmic dynein is again subdivided
into the two members dynein-1 and dynein-2. While cytoplasmic dynein-2 only carries out
transport within cilia and flagella, dynein-1 is involved in transport mechanisms throughout
the cell. Among others, dynein-1 transports mRNA, certain proteins, and organelles and is
involved in the nuclear migration during cell division [69, 76, 84]. Since the main aspect of
this thesis lies in long-range intracellular transport throughout the cell, the focus must be on
cytoplasmic dynein-1. Initial studies often used the easier-to-handle and less complex yeast
dynein-1 for in vitro experiments [69, 81, 85, 86]. However, it is known that the more complex
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cytoplasmic dynein-1 extracted from mammalian cells has substantially different properties
[69, 87-89]. That is why it is relevant to study cytoplasmic dynein-1 from mammalians.
Here, the focus is on mammalian cytoplasmic dynein-1 (from now on referred to as "dynein").
However, since yeast dynein-1 (referred to as "yeast dynein") is better studied, sometimes
yeast dynein is referred to.
To understand dynein processive movement, we have to zoom into dynein’s submolecular
structure (see also fig. 2.2). The dynein molecule can be divided into a head and a tail region.
The head region is the region interacting with the MT and is a homodimer, which consists of
two identical heavy chain motor domains [69, 76, 84, 90, 91]. The tail region holds the two
motor domains together and binds them to a cargo with the help of additional adaptor proteins
[69, 76, 84, 90]). The motor domains bind to the MT and step on it under the consumption of
ATP [70, 92]. Each motor domain consists of an AAA ring, the ATPase activity component
of the motor domain [69, 76, 89]. The AAA ring contains six AAA domains, from which
AAA1 to AAA4 can bind ATP and AAA1, AAA3, and AAA4 can also hydrolyze ATP. The
ATP hydrolysis at AAAL1 is thought to be essential for the motor stepping, while the others
are assumed to have regulatory roles [69, 76, 91, 92]. The AAA ring has three appendages:
the stalk, the buttress, and the linker (see fig. 2.2 for an illustration). The stalk, a helical,
15 nm long, coiled coil connects the hexametric AAA ring to a small, globular MT binding
domain (MTBD). With the MTBD the dynein motor domain interacts with the MT [69, 76].
Depending on the conformational state of the stalk, the MTBD has a strong, an intermediate,
or a weak MT binding affinity [92, 93]. A so-called a-registry of the stalk leads to a strong MT
binding, a f-registry to a weak MT binding and a y-registry to an intermediate MT binding
[92] (see also fig. 2.4). The second appendage of the AAA ring, the buttress is a small coiled
coil, which interacts with the stalk. The buttress communicates conformational changes of
the AAA ring to the stalk, which then changes the registry. [69, 92]. The third appendage, the
linker, connects the AAA ring to the tail domain of the motor and acts as a power stroke for
stepping [69, 92]. If ADP is bound to AAA1, the linker extends over the complete AAA ring
and docks at AAA4/AAAS. In this straight linker conformation the AAA ring adapts an open
conformation, which leads to an a-registry of the stalk and a strong binding of the MTBD
[69, 92]. However, if ATP binds to AAA1, the linker undocks from AAA4/5 and adapts a
bent conformation. In the bent conformation the AAA ring is in a more closed conformation,
which leads to a f-registry of the stalk and a weak MT binding affinity of the MTBD [69, 92].
While it is known that the ATPase activity at AAALI is essential for motor stepping [69, 92],
the regulatory roles of AAA2 and AAA4 remain less well understood [69, 92]. In summary,
to perform a step on the MT, the motor heads need to unbind and rebind. Thus, the binding
affinity needs to be changed. ATP binding and hydrolysis mediate conformational changes in
the motor domain resulting in changes of the MT binding affinity.
We have seen the MT binding affinity changes in an ATP-dependent manner. But changing
the binding affinity does not directly lead to a processive minus-end directed movement of
dynein. Previous studies show that mammalian dynein exists largely in an auto-inhibited state
[90]. In this auto-inhibited state mammalian dynein is only weakly processive and shows
diffusion-like motion instead of minus-end directed stepping. Note that this auto-inhibited
state does not exist for yeast dynein. Yeast dynein is always active showing processive,
minus-end directed motion. Mammalian dynein, in contrast, needs to be activated to perform
such a motion. Binding dynactin and a cargo adaptor (BicD or Hook3 for instance) at the
motor tail, is known to activate dynein [90, 94-96]. Dynein with dynactin and cargo adaptor
shows (ultra)processive, minus-end directed motion at high velocities [94, 95, 97]. Velocities
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Figure 2.3: Dynein activation by adaptor proteins.

This figure explains the dynein activation by adaptor proteins. A) Different forms of dynein.
Dynein without adaptor proteins can either be in the phi-particle state (motor domains are
in the inverted conformation) or in the open form. In the phi-particle state, the linker of
the two motor domains are connected and hold the AAA ring in a closed conformation,
which leads to a weak MT binding affinity. For the open dynein again two forms exist,
one where the motor domain stalks are inverted and one where the stalks are parallel. The
DDB complex drives the dynein in a stable open form with parallel stalks. B) The sketch
shows how open dynein walks on the MT. The drawing starts with an open dynein bound
to the MT. When one head detaches to perform a step, the detached head likely goes to
the inverted state because this is the favorite state. In the inverted form, it is harder for
the detached motor head to reattach. That is why the complete dynein is likely to detach
from the MT. This explains why dynein without adaptor proteins is poorly processive. C)
The sketch shows how the DDB complex walks along a MT. As the open dynein without
adaptor proteins, the DDB complex starts with both heads bound to the MT. The difference
to the dynein without adaptor proteins is that when one head detaches, the stalks stay in the
parallel conformation. In this conformation the detached (Continuation on next page.)
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Figure 2.3 (previous page): head can easily reattach and the DDB can continue stepping. The figure
is reprinted from the article Cryo-EM Reveals How Human Cytoplasmic
Dynein Is Auto-inhibited and Activated by Kai Zhang, Helen E. Foster,
Arnaud Rondelet, Samuel E. Lacey, Nadia Bahi-Buisson, Alexander W.
Bird, and Andrew P. Carter published in Cell 169, 1303-1314, 2017 [90]
under the Creative Commons CC-BY license.

and run-length of activated mammalian dynein are even longer than for yeast dynein [94].
Looking at the submolecular level (see fig. 2.3), it can be understood why additional adaptor
proteins are needed for a processive and directed motion. Recent Cyro-EM studies by
Zhang et al. [90] found that for single dynein two molecular states exist: a phi-stacked state
(phi-dynein) and an open state [90]. From dynein produced in insect cells more than 85%
were found to be in the phi-stacked state [90]. In the phi-stacked state the two linkers of the
two motor domains are connected and the AAA ring is held in the closed conformation with
the stalk causing a weak MT affinity. Besides a weak MT affinity, phi-dynein additionally
has a weak binding affinity for dynactin and cargo adaptor proteins [90]. This means the
phi-dynein is auto-inhibited. This auto-inhibition is thought to arise in connection with the
(self-)dimerization of dynein motors [90]. Unlike phi-dynein, open dynein has its motor
domains separated from each other. The motor domains are therefore more flexible [90].
Open-dynein shows a higher affinity of MT binding [90]. Because of the lacking linker
connection and the higher flexibility of the single motor domains, the motor domains are
not held in the low-affinity state anymore. However, also open-dynein shows only a weak
processivity and only diffusion-like motion on the MT [89, 90]. This means there is a second
level of inhibition. A closer look to the open dynein shows two sub-states: The inverted state
where the two motor domains point towards each other and a parallel state where the two
motor domains are aligned [90] (see illustration 2.3). For open-dynein the inverted motor
domain state is predominant [89, 90]. EM images show that dynein with adaptor proteins
have their motor domains in a parallel orientation [90]. Thus, it is thought that dynactin
binding aligns the two motor domains for better binding to the MT lattice. This alignment
of the two motor domains is thought to activate the open dynein for processive minus-end
directed motion [90]. Besides an activation by adaptor proteins, several past studies also give
hints to a mechanical or mutual dynein activation without adaptor proteins [13, 89]. Torisawa
et al. [89] shows that dynein motors with truncated tails can be activated when physically
separating the two motor domains. When the two motor domains are physically separated by a
stiff stick, the dynein motor shows processive, unidirectional movement while otherwise only
diffusion-like motion is observed. Belyy et al. [88] also sees a slight increase in velocities
when a single dynein is bound to a bigger cargo compared to a smaller cargo. However, the
velocity remained slower than for dynein activated with dynactin and BICD [88]. These two
studies indicate that there might also be a mechanical dynein activation. Moreover, a more
directed motion with higher velocities is observed when multiple dynein motors are attached
to a cargo [88, 89] or in MT gliding assays [89, 98]. The directed motion in multiple motor
systems gives hint to a mutual dynein activation. However, how mechanical activation could
work inside the cell or how multiple dynein motors can mutually activate each other remain
poorly understood. In summary, there might be several ways how dynein can be activated and
differently activated dynein might have different properties. Past studies show that the way
of activation, mechanically or with adaptor proteins using BICD2, hookl, or another cargo
adaptor leads to slightly different active dynein properties [70, 89, 96]. A first difference is the
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stall force. It is known that dynein motors activated by adaptor proteins have a high stall force
(4.4pN) [88] which is comparable to the stall force of yeast dynein (3.6- 4.8pN) [88, 99, 100],
but higher than the stall force of mechanically activated or single dynein (1-2 pN) [87—
89, 99, 101-103]. Second, the run length and velocity of dynein activated by adaptor proteins
(8.7 um and 892 nm/s) [94] were reported to be higher than from yeast dynein (1.9 um and
85 nm/s) [69, 104] which is automatically active. And third, the velocity of dynein along the
MT, the sideways stepping, and the helical pitch along the MT were shown to vary depending
upon which adaptor protein was involved [70]. Taken together, dynein shows a complex,
two-level auto-inhibition, which needs to be released. While dynein activation by adaptor
proteins was shown on a molecular level, the potential mechanical activation remains less
well understood. However, it is intriguing to understand the different activation mechanisms
because different activation mechanisms lead to slightly different dynein properties. The
two-level auto-inhibition in combination with different activation mechanisms are thought to
be used as regulation mechanisms inside the cell [90, 96, 105, 106].

How an active dynein complex steps processively along a MT complex is still poorly
understood. It is known that under the consumption of one ATP the dynein motor domain
undergoes a mechanochemical cycle to perform a step [70, 71]. However, the complete
mechanochemical cycle including the functions of all AAA is not fully known. In the model
of Rao et al. [92] (see fig. 2.4), the changes in the nucleotide state of AAA1 and AAA3 are
taken into account, while AAA?2 and AAA4 are not considered. AAA?2 is known to be always
in the ATP bound state when the motor is stepping while the regulatory role of AAA4 is not
yet understood [92]. The mechanochemical cycle by Rao et al. [92] describes how the rear
head steps while the front head is strongly bound to the MT (a-registry of the stalk). The
rear head starts in an intermediate binding state (y-registry of the stalk). In the first state of
the cycle, there is ATP or ADP-Pi (transition state) bound at AAA3 and ADP at AAA1. The
exchange of ADP with ATP at AAAT leads to an undocking of the linker from AAAS (open
conformation of the AAA ring). The undocking of the linker causes the f-registry of the
stalk, which lead to a weak MT binding of the MTBD (state 2). A weak binding of the MTBD
can only be achieved when ADP-Pi is bound to AAA3 [71, 92]. It is known that ATPase
mutations at AAA3 prevent the detachment of the MTBD from the MT [71]. However, when
ADP-Pi or ADP is bound at AAA3 the MTBD detaches from the MT (state 3). Driven by
the power stroke of the linker, the free head moves forward (state 4) [69]. Under phosphate
release at AAA1 the free head reattaches to the MT in the weak binding state (state 5). Then
the linker moves back to AAAS and causes a strong MT binding (state 6) [92]. That is how
the rear head becomes the new front head and the dynein motor moves forward (towards the
minus-end).

The model of Rao et al. [92] describes a step where one head passes the other. One head
alternatingly passing the other is called hand-over-hand stepping and is not the only way
dynein motors step [69, 81, 85]. Another way is the inchworm stepping mechanism where the
front head steps forwards and the rear head follows the front head without passing it [69, 81].
Besides the hand-over-hand and the inchworm stepping, it was also observed that one head
takes various successive steps while the other did not move at all [69, 81, 85]. Furthermore,
dynein was observed to frequently take backward steps and steps to the side changing the
protofilament [69, 70, 85, 100]. Besides the stepping mechanism, also the step size varies
between 8 to 32 nm, which are 1 to 4 tubulin dimers [69, 70, 81, 100, 107]. This variety of
stepping mechanisms is thought to be caused by the flexible linker and the size of the motor
domains. Because of the flexible linker and the size of the motor domain, the reattachment
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Figure 2.4: Dynein stepping cycle.

The drawing shows a state-of-the-art model for the dynein stepping taking the nucleotide
states at AAA1 and AAA3 into account. In the model ATP is always bound to AAA2. In
the first state (state 1) of the model, the front head (yellow, left) is in a strong binding a-
registry, and the rear head (right, red) is in an intermediate binding y-registry. The model
describes how the rear head steps forward (towards the left). ATP binding to AAAI leads
to a bent linker (linker undocking) and a weak MT binding of the rear head (f-registry of
the stalk, state 2). When ADP-Pi or ADP is bound at AAA3 the rear head detaches (state 3).
In the next step, the power stroke of the linker (linker priming stroke) moves the rear head
forward. The rear became now the front head (state 4). ATP hydrolysis at AAA1 leads to a
reattachment of the detached head in a weak binding f-registry (state 5). When the linker
moves back to the straight conformation, the new front head goes into the strong binding
state (a-registry, state 6). The figure is reprinted from (Continuation on next page.)
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Figure 2.4 (previous page): the article Molecular mechanism of cytoplasmic dynein tension sensing by
Lu Rao, Florian Berger, Matthew P. Nicholas, and Arne Gennerich pub-
lished in Nature Communications 10, 3332, 2019 [92] under the Creative
Commons CC-BY license.

area of the detached head is large [85]. Thus, the detached head might pass the attached head
or not, or the detached head might change the protofilament or not. Additionally, because of
the flexible linker, the detached head might even step backward. Taken together, dynein shows
a variety of apparently uncoordinated steps giving the impression that there is no inter-head
coordination [69, 85].

As mentioned before, especially dynein activated by adaptor proteins shows a very high
processivity. For a processive motion, it has to be made sure that not both heads detach from
the MT at the same time. Although the different ways of dynein stepping give the impression
of an uncoordinated dynein stepping, the observed high processivity is an indication of an
inter-head communication [91]. Past studies show that at low inter-head separations the
two heads step stochastically with both heads most of the time being bound to the MT
[69, 81, 85, 86, 100]. However, at high inter-head separations a communication between the
heads is observed [81, 86]. At high inter-head separations it was observed that preferentially
the rear head moves forward while the front head pauses [69, 81, 85, 86, 88, 100, 108].
This means under backward load (=pulled towards the MT plus-end) the head seems to bind
more stably to the MT while under forward load (=pulled towards the MT minus-end) the
motor favorably steps. Indeed, recent studies show that a backward load induces the strong
binding a-registry of the stalk [92]. However, a forward load does not directly induce the
weak binding f-registry, but an intermediate y-registry [92]. The transition then to the weak
binding f-registry only occurs in the presence of ATP [86, 92]. According to Rao et al.
[92] these load and ATP-dependent changes of the MT binding affinity hold one motor head
in the strong binding state when the other steps [92]. Note that the references [81, 86, 92]
used yeast dynein for their measurements. However, Elshenawy et al. [70] also showed an
asymmetric response to load for mammalian dynein activated by adaptor proteins indicating
that this might be a universal behavior for all active dynein-1. Taken together the asymmetric
response of the heads to load is thought to cause an inter-head communication, which leads
to a processive motion of activated dynein [70, 86, 92].

The asymmetric responses to load on a sub-molecular level also cause asymmetric responses
to load for the complete dynein molecule. Previous studies show that the detachment rate
of dynein motors increases with forward load indicating that dynein forms a slip-bond with
the MT under forward load [86, 92, 108]. Under backward load previously a catch-bond
behavior was supposed, meaning that the detachment rate decreases under backward load
[33]. However, recent studies refute the catch-bond and propose a "slip to ideal bond" instead,
where the detachment rate increases only very slowly with backward load? [70, 86, 92, 108].
In total dynein’s detachment rate increases faster under forward load than under backward
load and the state of the art proposes a slip-bond under forward load and a "slip to ideal" bond
under backward load [69, 86, 92].

Besides influencing the detachment rates of dynein, load also influences the stepping velocities
of dynein. The stepping behavior of dynein is influenced differently by forward and backward

3"Slip bond" means that the detachment rate increases with load and "ideal bond" means that the detachment rate
remains constant under load.
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loads [70, 109]. The forward stepping rate reduces under backward load up to reaching
the stall force [70, 109]. Under load forces beyond the stall force, dynein steps backward
(towards the MT plus-end) with a small rate independent of the load force [70]. Under
forward loads the forward stepping rate increases with force [70, 109]. The forward stepping
behavior under load of dynein plus adaptor proteins and yeast dynein coincides [70, 109].
However, under backward loads beyond the stall force a constant backward stepping rate is
found for dynein plus adaptor proteins [70] and an increasing backward stepping rate with
load for yeast dynein [109]. Though both were similarly small [70, 109]. If the stepping
rates of mechanically activated dynein change differently under load remains unclear. Taken
together, dynein forward-stepping rates increase with forward loads and decrease with back-
ward loads. Under backward loads higher than the stall force, dynein steps backward [70, 109].

In summary, the minus-end directed dynein motor is a complex macromolecule with several
substructures. Up to date the functioning of the complete molecule is not yet fully understood.
Furthermore, the auto-inhibition and especially the different activation mechanisms still raise
various questions and it remains unclear how the cell uses the two-level auto-inhibition and
the several activation mechanisms to precisely regulate dynein activity inside the cell.

2.2.2 Kinesin-1 (Conventional kinesin)

"Kinesin" comes from the Greek word "kinein" meaning "to move" and was given to the
first discovered member of the kinesin superfamily [110-112]. Over the years more and
more members of the kinesin superfamily were discovered, which needed to be sorted and
classified. In 2004 Lawrence et al. [112] proposed a new standardized nomenclature for the
members of the kinesin superfamily. In this nomenclature all the found kinesin motors (also
called KIF = "kinesin superfamily” and KLP = "kinesin-like protein") were classified into 14
families [112, 113]. Each family has several members with a member-specific structure and
name [68, 113]. What all kinesin motors have in common is a globular domain, which can
attach to the MT, and hydrolyses ATP to step forward [68, 77, 113]. The globular domain,
also called head, is mostly bound to a stalk followed by a tail connecting the two heads. The
tail binds to the cargo (or another filament), which should be transported [113]. A neck, which
is family-specific, connects tail and stalk. Tail and stalk, in contrast, vary within and between
families [113]. The neck is responsible for motor activity and gives the direction of motion
[77, 113]. The majority of kinesin motors move towards the MT plus-end [77], however,
members of the kinesin-14 family move preferentially towards the MT minus-end [77] and
others (kinesin-13 family) do not perform directed motion at all (non-motor kinesins) [77].
In this subsection the focus lies on the most intensively studied KHC (KHC = kinesin heavy
chain), a member of the kinesin-1 family (from now on referred to as kinesin-1) and in the
next subsection the less known member KIF16B (from now on referred to as kinesin-3) from
the kinesin-3 family [78].

Kinesin-1, also called "conventional kinesin" [73], is a plus-end directed motor, which
transports organelles, mRNA strings, or mitochondria, positions the nucleus, or slides MTs
against each other [73, 113]. To understand how kinesin-1 moves along the MT and transports
cargo, an understanding of its structure has to be gained. Kinesin-1 is a heterotetramer
formed by two kinesin heavy chains (KHC) and two kinesin light chains (KLC) (see fig. 2.5
for an illustration of the kinesin structure) [68, 73, 114]. While the two heavy chains build
the two MT-binding heads of the motor, the two light chains form the cargo-binding tail
[68, 73, 91]. Each of the two heavy chains contains one of the two identical, globular motor
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domains [73, 91, 115]. Unlike dynein, where the nucleotide site is spatially separated from
the MTBD [69], for kinesin the globular motor domain is both, ATP and MT binding site
[68, 77]. Depending on the nucleotide state of the motor domain, the motor domain undergoes

Kinesin-1

KLC
Neck
linker Hinge Hinge Heptad
1 2 repeats
Tail

Neck Stalk
coil coil 1 coil 2

TPR motifs

Kinesin-3

'Aq Verhey KJ, et al. 2011.
Annu. Rev. Biophys. 40:267-88

Figure 2.5: Structure of Kinesin-1 and kinesin-3.

The drawing shows the main components of the kinesin-1 (top) and the kinesin-3 (bottom)
structure. Both consist of two identical motor domains (dark green, KHC = kinesin heavy
chain), held together by a neck (neck coil). The neck is followed by a stalk region, which
connects the motor domain to the tail. Kinesin-1 and kinesin-3 have the same motor do-
mains but differ in their stalk and their tail regions. Kinesin-1 has two coiled coils in the
stalk region, while kinesin-3 has three and a kinesin-3 specific forkhead associate (FHA).
The FHA is thought to drive kinesin-3 self-regulation. In this drawing kinesin-3 is shown
as a dimer, however, kinesin-3 also exists as a monomer [77]. Used with permission of
Annual Reviews, Inc., from Kinesin Assembly and Movement in Cells, Kristen J. Verhey,
Neha Kaul, and Virupakshi Soppina, volume 40, pages 267-288 (2011); permission con-
veyed through Copyright Clearance Center, Inc. Originally published in Annual Review of
Biophysics, volume 40, pages 267-288 (2011) [73].

conformational changes, which leads to different MT binding affinities of the motor domain
[68, 114]. Having ATP bound at the motor domain, the motor domain strongly binds to the
MT. In contrast, having ADP bound leads to a weaker bond with the MT [69, 116]. Besides
changing the conformational state of the motor domain, the nucleotide state also changes the
conformational state of the neck linker [68, 115]. The neck linker together with the neck
coiled-coil forms the family-specific neck of the motor [73, 113]. The neck connects the
motor domain with the stalk [91, 115]. If ATP is bound at the motor domain, the neck linker
is in a docked conformation and if ADP is bound, the neck linker is in a flexible conformation
[68]. These conformational changes ensure a processive motion of the motor towards the
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MT plus-end [73]. The stalk of the motor, which connects the neck with the tail, consists
of two coiled-coil domains connected by two hinges [73]. The construction of the stalk is
responsible for the flexibility of the motor [73]. In summary, kinesin-1 changes its structure
in dependence of the nucleotide state of its motor domains to processively move towards the
MT plus-end.

We have seen that dynein is a priori in an auto-inhibited state. This rises the question whether
kinesin needs to be activated as well before processively walking towards the MT plus-end.
Indeed, also kinesin exists in an active and inactive state [117]. In the inactive state, the tail
interacts with the motor domains (folded conformation). This prevents the motor domain
from binding to the MT [73, 77, 117]. Cargo binding separates the tail from the motor domain
and thereby activates kinesin-1 [73, 77, 90, 117, 118]. In the active state, kinesin-1 is in an
extended conformation, where the two motor domains moved closer together [73, 77, 117].
Since the interest lies in kinesin-1, which transports cargo and cargo binding activates
kinesin-1, the focus lies, from now on, only on the kinesin-1 structure in the active state
(referred to as kinesin-1).

We have seen that the MT binding affinity of kinesin-1 changes with the conformational state
of the neck depending on the nucleotide state of the motor domain. However, it remains to
be understood how the changes of the MT affinity lead to a kinesin-1 step towards the MT
plus-end. It is known that kinesin-1 uses a hand-over-hand stepping mechanism, where one
head alternatingly passes the other [68, 69, 91, 115, 119]. For the stepping a mechanochemical
cycle is performed, where the energy of one ATP is converted in a step of 8 nm [72, 73].
The mechanochemical cycles of both motor heads are coupled and shifted towards each
other [91, 114]. Individual steps of the cycle are ATP and force-dependent [69, 120]. For
describing the cycle (see fig. 2.6), kinesin-1 starts with having one head strongly bound to
the MT containing neither ATP nor ADP (state 1) [121, 122]. The other head (rear head) is
detached or in a weakly bound state [116, 123]. This state of the kinesin-1 molecule is the
so-called "ATP waiting state", in which the kinesin-1 spends most of the time [116, 123, 124].
The ATP waiting state ends, when ATP binds to the strongly bound motor head. The ATP
binding induces the partial docking of the neck, which extends the neck linker towards the
MT plus-end. This propels the detached or weakly bound motor domain towards the MT
plus-end and ensures the kinesin-1 stepping directionality [68, 91, 116, 121, 122, 125]. Thus,
the motor domains change place (state 2). A hydrolysis of ATP to the transition state ADP - P;,
induces the complete docking of the neck linker (state 3) and ensures a high MT affinity of
the bound head. The detached head now performs a diffusional search in order to find the
next binding site (tubulin dimer) [91, 122, 124]. In this state it could happen that the bound
motor goes to the ADP state under release of the P;. Having then both heads in the detached
or weakly bound state, the complete kinesin motor detaches from the MT. However, when the
detached head strongly rebinds to the MT under the release of ADP, a step is performed (state
4) [121, 122]. The detached head thereby advances 16 nm and the whole kinesin-1 molecule
8nm [91, 115, 116]. To go back to the ATP waiting state, the new rear head needs to go to the
weakly bound state releasing P;. This hydrolysis is known to be induced by inter-head tension.
For this, two models exist: The rear-gated and the front-gated model [69, 116, 122]. While the
rear-gated model proposes that tension weakens the MT affinity of the rear head and induces
ATP hydrolysis, the front-gated model says that the tension lowers the ATP binding rate to the
front head while waiting for the rear head to hydrolyze ATP [116, 122]. Probably both, the
rear- and the front-gated mechanism contribute to ATP hydrolysis at the rear head before the
front head leaves the ATP waiting state again [116, 122]. For the backward stepping, there are
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Figure 2.6: Stepping cycle of kinesin-1.

The drawing shows the state-of-the-art model for the kinesin hand-over-hand stepping
mechanism. In state [1], the front head is strongly bound in the ATP waiting state and
the rear head contains ADP (detached or weakly bound). ATP binding to the strongly
bound front head induces a partial docking of the neck linker, which moves the rear head
forward (state [2]). The rear head now becomes the new front head. Hydrolyzing ATP to
the transition state ADP-P; induces the complete docking of the neck linker. In this state
(state [3]), the detached or weakly bound head performs a biased diffusional search to find
its next MT binding site. During this process it could happen that the strongly bound head
completely hydrolyzes its ATP and goes to the weakly bound ADP state (state [37]). In this
case the complete kinesin molecule would detach from the MT (state [4,4]). Otherwise,
if the diffusional search is successful, the new front head releases ADP and goes to the
strongly bound state (state [4]). In the final step, the new rear head releases P; and goes to
the ADP bound state (state [1] with exchanged heads). Reprinted with permission of the
Proceedings of National Academy of Sciences. Originally published in the Proceedings of
the National Academy of Sciences of the United States of America (PNAS), volume 111,
no. 39, pages 14136-14140 (2014) [121].

two situations where this forward stepping cycle can be interrupted. First, especially under
high backward loads, it can happen that the diffusional search ends at the side behind the front
head resulting in an reattachment of the detached head behind the front head. Second, it might
happen that in the ATP waiting state the weakly bound head strongly binds behind the front
head under the release of ADP. In this case both heads are in the ATP waiting state and ATP
binding and hydrolysis at the front head is proposed to result in a backward step [116]. Taking
together, both motor domains of kinesin-1 undergo coupled mechanochemical cycles to
perform a step. For both, backward and forward stepping, one ATP per step is consumed and
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the kinesin-1 molecule is displaced 8 nm, the length of one tubulin dimer [72, 114, 116, 124].
We have seen that the individual steps of the mechanochemical stepping cycle depend on the
state and position of the partner motor domain. ATP binding to the front head, first, ensures
that the front head stays strongly bound to the MT, while the other head is detached and
second, extends the neck linker of the bound head towards the MT plus-end such that the
detached head moves forward. Thus, unlike dynein where the inter-head communication is
less obvious, there is a clear inter-head coordination for kinesin-1. This coordination ensures
unidirectional, processive motion, where kinesin-1 can take hundreds of consecutive steps
following one protofilament [72, 91, 114, 116, 125, 126]. Doing so, it can reach speeds of
0.6 — 0.8 um/ s~! [73]. Even under (backward) loads kinesin-1 processively steps [72, 114].
Under forward load the velocity remains constant [124, 127, 128]. However, the velocity
reduces with increasing backward load until reaching the kinesin-1 stall force. With even
more increasing backward load the outcome of the diffusional search becomes more and
more biased towards the MT minus-end and backward steps become more frequent [91, 124].
At the kinesin-1 stall force of 6 — 7pN forward and backward steps balance each other and
kinesin-1 stalls [72, 122]. Under loads higher than the stall force, kinesin-1 steps processively
backward. The backward stepping is ATP dependent, but independent of the load [91, 124].
In this case the kinesin-1 motor domains follow a cycle where the neck docking and extension
towards the MT plus-end are inhibited and the diffusional search is biased towards the MT
minus-end [124, 125]. Besides influencing the stepping, load also increases the detachment
rate of kinesin-1. This means kinesin-1 forms a so-called slip-bond with the MT [33, 108, 127].

Taking together, kinesin-1 is a two-headed motor, which processively steps towards the MT
plus-end following one protofilament and consuming one ATP per step of 8 nm [72, 73, 91,
114, 116, 125]. Under backward load its velocity decreases until reaching stall. For backward
loads higher than the stall force, kinesin-1 inverts its stepping direction [91, 124]. Unlike
dynein, which can still be auto-inhibited when bound to a cargo, kinesin-1 is always active
when bound to a cargo [73, 77, 90, 117, 118].

2.2.3 Kinesin-3

Kinesin-3 is a fast, plus-end directed motor with high processivity [78]. It is involved in
transport of organelles, vesicles, viruses, signaling proteins, endosomes, and mitochondria
[78, 129, 130]. Because of its high processivity, kinesin-3 is especially responsible for long-
range intracellular transport [78]. Furthermore, it was seen that kinesin-3 enhances retrograde
mitochondria transport by dynein [129]. Thus, besides transporting itself, it might also have
a regulatory role. So far, there are 5 subfamilies of the kinesin-3 family discovered: KIF1,
KIF13, KIF16 (KIF16B), KIF14 and KIF28 and some kinesin-3-like proteins [73, 78, 113].
KIF1, also called Unc-104, is the first found member of the kinesin-3 family and the member,
which was studied the most [78, 131]. Here, the main interest lies in KIF16 (KIF16B). How-
ever, since subfamily members of the kinesin-3 family are structurally related and not much is
known about KIF16B, general knowledge about kinesin-3 is gathered.

To understand how its transport properties might differ from kinesin-1, we need to have a look
at structural differences between kinesin-1 and kinesin-3. As all kinesin motors, kinesin-3
has the kinesin-specific globular motor domain [77] and as for kinesin-1 the motor domain is
bound to the stalk by a neck linker [73]. However, the family-specific neck and stalk differ
from kinesin-1 [73]. For kinesin-3 the neck consists of a f-sheet and an a-helix, and the neck
is bound to the stalk by a hinge [73, 78]. The stalk consists of three coiled-coil and a kinesin-3
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specific fork-head associated domain (FHA) [73]. It has been shown that the FHA interacts
with the second coiled-coil and that an interruption of these interactions leads to a higher motor
motility [132]. Thus, the FHA is thought to self-regulate the kinesin-3 activity [73, 113, 132].
Another kinesin-3-specific feature is the K-loop, an insert at the motor domain. The K-loop is
shown to be responsible for a high MT affinity of the motor domain in the ADP-state, where
kinesin-1 motor domains are only weakly bound or detached from the MT [116, 133]. The
K-loop might play a role in the kinesin-3 stepping mechanism [73]. It has been shown that the
K-loop increases the MT binding rate of kinesin-3 motors, but does not influence its proces-
sivity [133]. Another property, which is unique for the kinesin-3 family, is that it exists not
only as a homodimer but also in a monomeric form [68, 77, 78, 113, 130, 134]. The monomer
just consists of one motor domain [77] and only shows slow, diffusion-like motion, while the
dimer shows fast and processive motion [78]. The dimer to monomer transition might be an-
other regulation mechanism [78]. Taking together, special kinesin-3 elements like the FHA,
the K-loop, or the monomer and dimer state, makes it worth looking in detail how kinesin-3
functions differently from kinesin-1. The structural differences might lead to differences in the
motor dynamic and motor inhibition.

As also seen for kinesin-1 and dynein, auto-inhibition might be an essential mechanism for reg-
ulating motor activity. For kinesin-3 two distinct activation mechanisms have been described:
The monomer-dimer switch model and the tail-blocked model [78]. While monomers showed
only low velocities and mostly diffusion-like motion, a processive and fast motion is only ob-
served for dimers [73, 75, 135]. Therefore, the first model suggests a motor dimerization
to activate kinesin-3 motors [78, 135]. The dimerization was often supposed to be cargo-
induced or concentration-dependent [68, 75, 77]. One argument against the monomer-dimer
switch model is that dimers also have been shown to not move processively at high velocities
[73, 75]. Thus, dimerization might not be sufficient for activation [73, 75]. This leads to the
second, the tail-blocked model. The tail-blocked model suggests a compact kinesin-3 confor-
mation, similar to the inhibited state of kinesin-1. In this state the tail interacts with the motor
domain or neck region and therefore inhibits motor activity [78]. Cargo-binding is supposed
to release the motor from this auto-inhibited state [73, 75, 77, 78, 136]. The current under-
standing is that the activation mechanism differs between subfamilies of kinesin-3 [78]. There
are kinesin-3 motors which use the monomer-dimer switch and kinesin-3 motors which use
the tail-blocked model. Others use a combination of both (two-level inhibition) [75, 77, 78].
It has been shown that kinesin-3 exists in a monomeric state as well as in the dimer state in
the cytoplasm [75, 78, 130]. This underlies the current understanding that both activation
mechanisms exist. For KIF16B it was found that a stalk inhibition prevents binding to the MT
[137]. This is taken as an indication of the tail-blocked model [78]. Moreover, it has been
found that KIF16B exists as a monomer in the cytoplasm and that cargo-induced dimerization
activates KIF16B [78, 130]. Thus, for KIF16B a combination of both models might activate
the motor. This means KIF16B as a monomer is a priori inhibited on two levels. Furthermore,
besides these two structural activation models, there is also evidence for mutual, mechanical
activation. It has been shown that multiple monomers move at higher velocities [78] and Ally
et al. [13] suggests that kinesin-3 and dynein mechanically activated each other in Drosophila
neurons [13]. Taking together, depending on the subfamily, kinesin-3 experiences different
auto-inhibition mechanisms presumably to control kinesin-3 activity inside the cell.

The stepping mechanism of an active kinesin-3 dimer is supposed to be similar to the step-
ping of kinesin-1. Both undergo a mechanochemical cycle to perform a hand-over-hand step-
ping under the consumption of ATP [73-75]. Doing so, kinesin-3 steps at velocities around
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950 nm/s [130] similar to kinesin-1, but with a ten-fold higher processivity than kinesin-1
[73, 74]. Unlike active kinesin-3 dimers, inactive kinesin-3 dimers show diffusion-like mo-
tion on the MT as observed for kinesin-3 monomers [73, 75]. For the monomer a biased
diffusion was observed with low velocities (140-150nm/s) [78, 138]. Surprisingly, however,
the monomer shows a processive motion [68, 73, 78, 138]. The processivity of the one-headed
kinesin-3 motor can be reached by the positively charged K-loop of its motor domain [68, 138].
The positive charge of the K-loop is thought to interact with the negatively charged C-terminal
of p-tubulin [68, 78]. This electrostatic potential avoids that the monomer moves away from
the MT but allows the motor to diffuse on the MT in the otherwise weakly bound ADP state
[68, 138]. The anisotropy or the power stroke of the motor induced by the conformational
changes due to ATP binding biases the diffusion towards the MT plus-end, but is not enough to
completely displace the motor to the next binding site [138]. To completely displace the motor,
the thermal diffusion on the MT in the electrostatic potential is necessary [138]. This is how
the monomeric kinesin-3 can processively step on the MT without a second head. In summary,
the stepping mechanism of active kinesin-3 does not differ much from kinesin-1. However, ac-
tive kinesin-3 steps with much higher processivity and even an inactive monomeric kinesin-3
moves processively along the MT.

2.3 Subconclusion

In the first part of this chapter, the long-range, polar MT array is presented as the structural basis
for intracellular organization. The MT array serves as a dynamic street network for molecular
motors to navigate throughout the cell. Molecular motors transport cell organelles, vesicles, or
other intracellular cargo along these "streets". MT-associated molecular motors can be divided
into two classes: the MT minus-end directed dynein motors and the mostly plus-end directed
kinesin motors. Here, the focus is on mammalian cytoplasmic dynein-1 from the dynein su-
perfamily and kinesin-1 as well as kinesin-3 from the kinesin superfamily. Although we have
seen that all of the presented motors step along the MT under the consumption of one ATP
per step using force-sensitive stepping mechanisms, the three motors differ essentially in their
structures and properties. The main difference is their stepping direction, which is towards
the MT plus-end for kinesin and MT minus-end for dynein. The opposite stepping directions
ensure that transport in all directions inside the cell is possible. However, how the cell uses the
different motor properties to organize the precise positioning of cargos at a specific location
and time point still remains an open question. In the first part of this chapter we have seen
that for all three presented motors a more or less complex motor inhibition and some kind of
activation mechanisms exist. Furthermore, kinesin-3 and dynein present some additional as-
sumed regulatory subparts in their molecular structure. But, how the cell uses these regulatory
mechanisms to regulate transport inside the cell remains unclear. Moreover, controlling motor
activity is not the only proposed regulatory mechanism. In the following part of this chapter
the state of the art of regulation mechanisms presumably used to precisely control intracellular
transport by molecular motors will be summarized.
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2.4 State of the Art of regulating bidirectional intracellular
transport

How intracellular transport by kinesin and dynein motors is regulated has been widely studied
in the last decades but there are still many open questions [9, 10, 21, 23, 35, 139]. As already
described in the last chapter, kinesin-1, kinesin-3, and dynein are all auto-inhibited when
diffusing in the cytoplasm and not being bound to a cargo [78, 90, 117]. Not being active in
the absence of a cargo gives the cell two obvious advantages. First, it avoids an unnecessary
consumption of energy (ATP) and second, it avoids a crowding of unloaded motors on the
MTs [73, 75, 78, 136]. For kinesin-1, we learned that cargo binding disconnects the tail from
the motor domain and thereby activates kinesin-1 for stepping pointedly towards the MT
plus-end [73, 77, 90, 117, 118]. For kinesin-3, we have seen that the auto-inhibition is a bit
more complex. Depending on the subfamily, kinesin-3 exists as dimer or monomer in the
cytoplasm, which were both shown to be auto-inhibited [68, 73, 75, 77, 78, 113, 130, 134].
Activation of kinesin-3 is mediated either by cargo binding (for dimers) or by cargo- or
concentration-induced dimerization. Also a combination of both is suggested [73, 75, 78]. As
described before, for dynein an even more complex, two-level auto-inhibition mechanism was
found. At the first level, dynein is in the phi-stacked state. Though, just a release from the
phi-stacked state is not enough for dynein activation. At the second level the motor domains
of dynein need to be parallelized [90] and binding of dynactin along with cargo adaptor
proteins have been shown to activate dynein. Cargo binding does not automatically activate
dynein [88-90, 94]. Thus, while kinesin-1 and kinesin-3 can be assumed to be active when
bound to a cargo, dynein can still be in an auto-inhibited state. Taken together, inhibition in
the absence of a cargo is a first, useful mechanism to regulate the activity of the opposing,
kinesin and dynein, motors in vivo. Further, it might be a way to control the directionality of
cargo transport.

To achieve an efficient transport by the opposite directed motors kinesin and dynein, three
different models have been proposed: i) the exclusionary presence model, ii) the straight
coordination model and iii) the tug-of-war model [10, 21, 23]. While the exclusionary
presence model assumes that just one kind of motor is bound to the cargo at the time, the
straight coordination model and the tug-of-war model presume that both kinds of motors are
bound to the same cargo simultaneously [10, 21, 23]. The straight coordination further says
that the activity of the cargo-bound motors is regulated meaning that just one motor is active
at the time. On the downside, the tug-of-war model expects that both motor teams actively
exert forces against each other and the stronger team determines the transport direction. We
have seen in the absence of cargo, motors are auto-inhibited and one could assume that the
cell controls the direction of transport by just binding one kind of motor to the cargo. Thus,
when a cargo needs to be transported towards the plus-end, only kinesin would bind to the
cargo, while when the cargo needs to be transported towards the minus-end, only dynein
would bind. Support for this exclusionary presence model comes from Kamal and Goldstein
[140]. In Kamal and Goldstein [140] different kinesin-binding and dynein-binding proteins
are listed and it is assumed that these proteins serve as receptors for cargo binding. In addition,
it is assumed that the cell can use these "receptor proteins” to control the (kind of) motors
bound to a cargo [140]. Indeed, Bielska et al. [141] shows that a Hook protein induces an
unbinding of kinesin-3 and a binding of dynein to early endosomes. This indicates that Hook
might be used to control the kind of motors bound to early endosomes in the fungus Ustilago
maydis [141]. If regulatory proteins would always control that only one kind of motor is
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attached to a cargo, one would expect only long, unidirectional cargo runs in vivo. The cargo
would always move till the end of the MT without stopping nor changing the direction. Or
if it changes the direction, it would take some time, because the cell needs to unbind one
type of motor and needs to bind the other one while holding the cargo close to the MT [21].
However, inside the cell many cargos, including mitochondria, chromosomes, endosomes,
vesicles, and more are observed to be transported bidirectionally including pauses of the
cargo and rapid directional switches [11, 19, 21, 142]. Ma and Chisholm [19], for example,
show that cargos inside living Dictyostelium cells move bidirectionally with frequent and
fast directional changes [19] and Hendricks et al. [142] show that latex beads containing
kinesin-1, kinesin-2, and dynein motors move bidirectionally with frequent reversals inside
living mammalian macrophages [142]. Moreover, frequent directional changes were also
observed by Hendricks et al. [11] for vesicles inside cells [11]. The fast directional changes
are in the order of 0.5 s [21] indicating that changes induced by exchanging the motors bound
to the cargo are unlikely. Besides directional changes, also stationary or pausing cargos
were observed [11, 19, 142]. Encalada et al. [18] show that vesicles of live neurons move
bidirectionally with long (up to three seconds) and frequent pauses. Pauses were similar
for anterograde and retrograde transport [18]. The list of bidirectional moved cargo can be
extended and is reviewed by Gross [21] and Welte [23]. Furthermore, if just one motor kind
would be bound to the cargo, inhibiting one motor should not affect the movement of the other.
However, past studies show a mutual dependence of anterograde and retrograde transport
[13-15, 18, 78, 129, 143-146]. Martin et al. [144], for instance, show that both, retrograde
and anterograde transport in extruded axoplasm is impaired if either kinesin or dynein is
inhibited [144]. Haghnia et al. [146] investigated organelle transport in Drosophila axons
and found that defect dynactin, which leads to a dysfunctional dynein, causes a complete
inhibition of anterograde and retrograde organelle transport [146]. The same is found by
Ally et al. [13] showing that in Drosophila melanogaster S2 cells inhibiting kinesin-1 leads
to a disruption of dynein-driven transport and vice versa. Hancock [143] call this mutual
dependence "paradox of co-dependence" and review mutually dependent cargo transport in
[143]. With the exclusionary presence model neither pauses, nor fast directional changes, nor
a mutual dependence of anterograde and retrograde transport can be explained. This means,
while there are hints for the exclusionary presence model, it cannot explain the full range of
observations. The exclusionary presence model reaches its limits when it comes to explaining
how a cargo can be transported bidirectionally including fast reversal, pauses of the cargo and
mutual dependencies between transport directions [21, 23].

While the exclusionary presence model is not completely refuted, many past studies in fact
show that oppositely directed motors are simultaneously bound to the same cargo [3, 9-24].
Hendricks et al. [11] found a small number of kinesin and dynein motors attached to purified
neuronal vesicles [11]. Encalada et al. [18] investigated the motors attached to mammalian
prion protein vesicles of live neurons. They found that mainly kinesin-1 and cytoplasmic
dynein is bound and that their activity is co-dependent [18]. Using an optical trap and
measuring in vivo stall forces, Blehm et al. [147] shows that both motors are attached to lipid
vesicles in human epithelial cells and that dynein reduces kinesin’s stall force [147]. A review
of the topic is included in Jolly and Gelfand [9] and Blehm and Selvin [10]. Together, past
studies show that oppositely directed motors are bound to the same cargo simultaneously. This
supports the coordination or the tug-of-war model but is contradictory to the exclusionary
presence model.

Previous studies give hints for both, the coordination [10, 16, 17, 19, 21, 148, 149] and the
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tug-of-war model [10, 12, 25, 37, 142, 150]. Rai et al. [17], for instance, observe latex bead
phagosomes containing both, kinesin-1 and cytoplasmic dynein, at single molecule resolution
in macrophage cells. Looking at the trajectories they see that phagosomes move with
long, persistent unidirectional runs (about 4 um for plus-end directed motion and 7 um for
minus-end directed runs) inside the macrophage cells. The long runs do not show reversals nor
interruptions. They conclude that during the long runs only one kind of motor is transporting
the phagosome [17]. Laib et al. [148] see a similar behavior for transport within flagella of
Chlamydomonas. Additionally, they show that eliminating retrograde transport, the transport
behavior of anterograde transport did not change and vice versa [148]. Thus, retrograde and
anterograde transport are independent [148]. Another study by Leidel et al. [16] use optical
force trap experiments to investigate lipid droplet transport by kinesin-1 and cytoplasmic
dynein in Drosophila embryos. They found that when detaching and reattaching in an optical
trap, the probability is higher to move in the same direction than reverse the direction after
reattachment [16]. This memory effect suggests that only one kind of motor is active [16].
How the cell coordinates the activity of oppositely directed motors remains unclear. One
possibility would be that scaffolding proteins control the activity of the motors. The possible
regulation by scaffolding proteins is reviewed by Fu and Holzbaur [149]. While there are
studies supporting the coordination model, there are also evidences for a tug-of-war between
oppositely directed motors [10, 25, 37, 142, 150]. The most famous example is an observed
stretching of bidirectional transported endosomes [25]. Soppina et al. [25] investigate bidirec-
tional endosomes transport in live Dictyostelium cells and see an elongation and sometimes
a fission of endosomes during periods of slow motion, after which the endosome changes
its direction [25]. In addition to this, Gennerich and Schild [150] observe size changes of
bidirectionally moved mitochondria inside dendritic cells [150]. The elongation in connection
with reversals and also the size changes of mitochondria in bidirectional movements are strong
evidences that a tug-of-war between opposing motors occurs and stretches the cargo. Besides
measuring size changes, also optical trapping experiments were performed to measure forces
inside cells [142]. Hendricks et al. [142] measure forces exerted on latex beads transported
by kinesin-1, kinesin-2 and dynein inside mouse macrophage cells. They found that equally
large forces were exerted in both directions and that at high forces 8-nm steps were performed
in both directions. They conclude that "opposing teams of stably bound motors (...) operate
near force balance" [142]. Moreover, Rezaul et al. [37] found that a dynein-driven cargo can
be reversed by adding kinesin-1 motors indicating that a tug-of-war competition between the
opposing teams determines the transport direction [37]. Taken together, both models can
explain certain experiments but will fail for others. The coordination model, for instance,
could not explain the size changes observed for mitochondria or endosomes in vivo [25, 150]
and the tug-of-war model could not explain the memory effect found by Leidel et al. [16].
This means, neither a pure tug-of-war model nor a pure coordination model can explain all
experimental findings.

As neither the tug-of-war model nor the coordination model fits as a universal model for
bidirectional transport, we need to look for another, more refined understanding. Previously,
the understanding of the tug-of-war was a complete stalling of the motion or a motion with
frequent interruptions [10]. Because this seemed to be unlikely to explain efficient bidirec-
tional transport, the tug-of-war model was often refuted in the past [21, 23]. However, using
a theoretical mean-field tug-of-war model, where motors of both directions stochastically
bind to and unbind from the MT, Miiller et al. [151] show that seven motility states exist in
dependence of the motor properties. These motility states also include unidirectional long
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runs*. This means the tug-of-war model in principle could also explain unidirectional runs as
observed by Rai et al. [17] or Laib et al. [148]. A closer look to the studies of Rai et al. [17] and
Laib et al. [148] reveal that the cargo pauses before changing the direction [17, 148]. These
pauses could be situations where both motor teams stochastically engage in a tug-of-war.
Support for a mixture of the tug-of-war model and the coordination model also comes from
the dynein dragging model [10, 11, 147]. Several studies show that kinesin is detached
during dynein-driven motion, but dynein remains attached when the cargo is transported in
kinesin direction [10-12, 147]. This leads to a reduction of the total kinesin force during
plus-end directed motion [147]. This means there seems to be a mechanism regulating that
during minus-end motion only dynein motors are attached (coordination model) while during
plus-end motion dynein is exerting forces against the leading kinesin (tug-of-war model).
Consequently, the tug-of-war and the coordination model are not mutually exclusive and
rather a combination of both might be the way to explain efficient bidirectional transport.
A current understanding is that basically a tug-of-war occurs between oppositely directed
motors but the outcome of the tug-of-war can be highly regulated [143].

In fact, in the past, several regulation mechanisms have been proposed. Here, the regulation
mechanisms are categorized into 4 groups: (i) self-regulation by the number and kinds of bound
motors, (ii) regulation by environmental parameters like ATP concentration, (iii) regulation by
the MT track, and (iv) regulation by the cargo. In the next subsections these four categories of
regulation mechanisms will be described in more detail.

2.4.1 The number of motors

As pointed out before, inside the cell cargos are often transported by teams of oppo-
sitely directed dynein and kinesin motors, which engage occasionally in a tug-of-war
[9, 10, 25, 143, 150]. In the past it has been shown that multiple motors working in a team
behave differently than single molecular motors [16, 142, 145, 154]. To understand the
tug-of-war between these teams of oppositely directed motors, first the collective behavior of
many motors of the same kind needs to be understood.

Collective kinesin-1 motion In vivo force measurements of lipid droplets in Drosophila
embryos show a peak at 2.6 pN and 5.2 pN for plus-end directed droplets[15]. Assuming that
forces by multiple motors are additive, Shubeita et al. [15] conclude that peaks correspond to
one and two involved kinesin motors indicating that lipid droplets are transported by multiple
kinesin motors. Knowing that the in vitro stall force of kinesin is in the order of 6 — 7pN
[72, 122, 124] (note in vivo stall force are thought to be smaller [15, 16]), one could still
assume that the higher force peak comes just from one kinesin motor. However, other previous
studies of lipid droplets in Drosophila embryos [16] and kinesin-driven latex beads in mouse
macrophage cells [142] found broad force distribution with forces up to 20 pN. They assume

4While the mean-field model reproduces run lengths observed for lipid droplet transport in Drosophila, it could
not reproduce the detachment behavior of two kinesin or dynein motors bound to a bead in an optical trap [33,
151]. The mean field model assumes an equal force sharing between motors. However, it is known that forces
are not equally shared between motors [152]. Distinct motility states are expected when taking the explicit
motor positions into account [153]. However, also when taking the explicit motor positions into account, high
velocities of more than +500 nm/s could be observed [153] underlying the fact that also when having both
motors engaged in a tug-of-war, unidirectional runs with high velocities are possible.
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that the broad force distribution comes from multiple kinesin motors transporting the latex
bead adding to the assumption of Shubeita et al. [15] [15, 16, 142]. Confirming the results
of Hendricks et al. [142], Rai et al. [17] use western blotting and optical trap measurements
to show that multiple kinesin motors are attached to latex bead phagosomes in macrophage
cells. As Hendricks et al. [142], also Rai et al. [17] and Reddy et al. [155] found high forces,
higher than the usual kinesin stall force [17, 142, 155]. In addition, Reddy et al. [155] see
that forces decrease with decreasing kinesin number indicating that indeed multiple motors
are involved. Taking together these studies show that in vivo transport is often carried out by
multiple kinesin-1 motors.

This rises the question how do multiple kinesin motors work in a team. Using a bead assay
with multiple kinesin motors, Vershinin et al. [139] show that travel distances were longer than
those of single kinesin motors. Run length measurements using DNA scaffolds with 1-2 [156],
1-4 [157] and 1-7 [158] kinesin motors show that the run length increases with an increasing
number of motors. Thereby run lengths up to 15 um could be reached [157, 158]. 5-10 motors
on giant unilamellar vesicles show even longer travel distances of up to one millimeter [159].
A longer run length for two kinesin motors is also predicted by the theoretical work of Khataee
and Howard [160] using a transition rate model and numerically solving the master equations
for this model. While in vitro studies all agree that run length increases with an increasing
number of kinesin motors, an in vivo study of lipid droplets in Drosophila embryos sees no
increase of run length if more kinesin-1 motors are engaged [15]. This is confirmed by Norris
et al. [161] using scaffold proteins with 2 motors inside mammalian cells. Consequently, there
needs to be another mechanism cutting the run length in vivo [15]. Taking together, in vitro
studies show that multiple kinesin motors help each other to increase the run length.

Besides helping each other to increase the run length, also higher forces could be observed
for multi-motor transport [15, 17, 142, 155]. As discussed before, force measurements in vivo
found forces up to 20 pN for cargos transported by multiple motors [16, 17, 142, 155]. This
is in agreement with in vitro studies [162]. All previous studies agree that forces increase
linearly with an increasing number of motors [16, 17, 139, 142, 157]. In vivo studies further
show that forces by multiple motors are additive. Force histograms clearly show peaks
at the single kinesin force, at two times the single kinesin force, at three times the single
kinesin force, etc. [15-17, 142]. A good agreement between in vitro and in vivo studies can
be achieved by Rai et al. [17] showing a clear additive force dependence on the number of
motors. Additive forces are also seen by Vershinin et al. [139] investigating bead assays in
vitro [139]. However, other in vitro studies cannot reproduce the additive behavior of forces
exerted by multiple kinesin motors. The force histograms of Jamison et al. [162] show a force
peak at 7.6 pN and no forces beyond 8 pN for a single kinesin motor and a force peak at 5.6 pN
with a tail up to 14 pN for two kinesin motors [162]. Furthermore, Furuta et al. [157] show
just a weak number of motor dependence of the maximal force produced by kinesin motors
in DNA scaffold assays. This subadditive force behavior can be reproduced by the theory
of Ucar and Lipowsky [163] using a coarse-grained stochastic model. Ucar and Lipowsky
[163] assume that the discrepancies between in vivo and in vitro experiments rise from a
lower kinesin-1 stall force in vivo of approximately 2.5 pN [15, 16] than in vitro of 6 — 7 pN
[72, 122, 124]. However, taking together, we can say that forces exerted by multiple kinesin
motors are higher than the force exerted by a single kinesin [16, 17, 139, 142, 157].

Pulling on the cargo with a higher force is expected to lead to a higher cargo velocity according
to Newton’s equation of motion. This means having a higher force production by multiple
kinesin motors is expected to produce higher velocities of cargos transported by teams of
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kinesin motors. However, in vivo studies of giant unilamellar vesicles [159] or lipid droplets
[15] found that velocities are independent of the number of kinesin motors. Also experiments
with DNA scaffolds in vivo [161] and in vitro [157, 158] observe constant velocities for an
increasing number of kinesin motors. In addition to this, MT gliding experiments, where
motors are fixed at a glass cover and propel MTs above them, show that MT gliding velocities
are independent of the motor density on the glass cover [164-167]. Just for very high kinesin
densities Bieling et al. [165] see reduced MT gliding velocities. This is presumably due
to a mutual steric hindrance of the motors [165]. However, an increase of the velocity
with an increasing number of motors could only be observed when motors were bound to
fluid membranes (vesicles) [145, 168, 169] or non-processive kinesin-14 motors as well as
monomeric kinesin-1 motors [157, 170]. The fluid membrane might be the reason for the
divergent behavior and for both, the non-processive and the monomeric kinesin motors, the
velocity increased with increasing motor number but could by far not reach the kinesin-1 level
[157, 170]. Furthermore, using a transition rate model Jamison et al. [162] predict higher
velocities when the spacing between two motors is less than 12 nm [162]. In summary, teams
of processive kinesin-1 motors poorly cooperate in transporting cargo.

We have seen that multiple kinesins can exert higher forces on cargos, but cannot transport
the cargo at higher velocities. This rises the question why kinesin motors poorly cooperate in
transporting cargo. Previous studies of two kinesin motors in MT gliding assays [171] and
DNA scaffold [156] were zooming into the trajectories and found fractional steps of about
4nm. These fractional steps of transport trajectories of two kinesin motors indicate that the
two kinesin motors step asynchronously and uncoordinatedly [156, 171]. This might lead
to an unequal force distribution between the motors engaged in the transport. An unequal
force distribution was previously hypothesized by Ucar and Lipowsky [163]. Indeed, labeling
single motors in MT gliding assays, Tjioe et al. [152] found that two-thirds of the motors are
pulling the MT, while the rest of the motors are resisting the MT motion. The resisting motors
are slowing down the MT [152] and the tensions between the engaged motors lead to shorter
run lengths of the single motors involved in the transport. Moreover, the fractions of pulling
and resisting motors were independent of the total motor number [152]. This supports the idea
that the tensions between motors are the reason why multi-motor velocities are independent of
the number of motors. Before the study of Tjioe et al. [152], a gliding assay modeling, using
a coarse-grained kinesin model, predicted that one-fourth of the motors are exerting forces
against each other, while the rest is near zero load [164]. While in multi-motor transport
motors exert forces against each other, in optical trap measurements motors are supposed to
be aligned and motor forces might therefore be additive. Taking together multiple kinesin
motors poorly cooperate to transport cargo because they presumably exert forces against each
other due to their unsynchronized stepping. That is why multiple motors cannot transport
cargos at higher velocities than single kinesin motors.

Collective dynein motion Many previous in vivo studies have reported several dyneins
bound to one cargo [13, 17, 20, 142, 147]. In detail, using force measurements of latex bead
phagosomes in macrophage cells, Rai et al. [17] found a broad force histogram with peaks
in 2pN intervals. Knowing that the used effector (RILP) binds two dynein complexes and
assuming a stall force of 1pN for a single dynein motor, they conclude that 6-10 dynein
motors are present on the latex bead in their study [17]. A similar experiment was performed
by Hendricks et al. [142]. They reported a broad force histogram with several peaks and forces
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up to 20 pN [142]. The dynein stall force has been widely debated in the past [89, 142, 147].
As discussed before, for dynein without adaptor proteins a stall force of about 1 — 2 pN was
found [33, 87, 88, 99, 101, 102], while activated by dynactin and BICD?2 a stall force of 4 pN
was found [88]°. For in vivo experiments, it is unclear if dynein plus dynactin is attached to
the cargo or if dynein is somehow activated by adaptor proteins (adaptor proteins other than
BICD might lead to even other stall forces [96]). However, since several clear peaks and
forces up to 20 pN were observed, it is clear that several dynein motors are attached to the
latex bead phagosomes [17, 142]. Combining in vivo and in vitro experiments, Blehm et al.
[147] measure forces exerted on "lipid vesicles in human epithelial cells and on polystyrene
beads in Dictyostelium discoideum" [147]. For both experiments they found a similar broad
force histogram with forces up to 7 pN (occasionally 10 pN) . Assuming a dynein stall force of
1 — 2 pN they suggest that two to four dynein motors are on lipid vesicles in human epithelial
cells [147]. Taking together these in vivo studies show that intracellular cargos are often
transported by teams of multiple dynein motors.

This rises the question how well multiple dynein motors cooperate when working in a team.
Using DNA origami scaffolds of 1-7 yeast dynein motors, Derr et al. [158] could show
that the run length increases with an increasing number of dynein motors. In addition to
this, Mallik et al. [172] used polystyrene beads coated with mammalian dyneins at different
concentrations and could show that at higher dynein concentrations the run length increased
up to 8 pum, while for single mammalian dynein a run length of approximately 0.7 pm was
measured [172]. Thus, as seen for kinesin, also dynein motors working in a team help each
other to achieve longer run lengths of cargos.

As already described before, in vivo experiments show a higher force production for multiple
dynein motors than for a single dynein motor [17, 142, 147]. This is confirmed by in vitro
experiments by Mallik et al. [172] and Torisawa et al. [89] showing clear peaks in force
histograms of polystyrene beads coated with mammalian dyneins. The peaks were at multiples
of 0.8 — 1 pN, the dynein stall force in vitro [33, 87, 88, 99, 101, 102]. This indicates that
forces exerted by multiple dynein motors are equal to the sum of the single dynein stall forces.
Thus, forces are additive [89, 172]. In addition to this, the several peaks of the in vivo studies
are also assumed to be at multiples of dynein stall forces [17, 142]. A theoretical study of Ucar
and Lipowsky [163] compared the force production of strong and weak dynein motors [163].
A motor is commonly referred to as "strong" when the stall force to detachment force ratio
is high and as "weak" when this ratio is low [151, 163]. In the study by Ugar and Lipowsky
[163] the strong dynein has a stall force of 7 pN and the weak dynein a stall force of 1.1 pN,
while both have a detachment force of 2.9 pN [163]. They found that for weak dynein motors,
the collective force is close to the sum of the single dynein stall force, while for strong dynein
the force is close to the sum of the forces exerted by single strong dynein. The force exerted
by a single strong dynein is significantly lower than the single dynein stall force [163]. Ucar
and Lipowsky [163] connect this to the fact that strong dynein frequently detaches before
reaching stall. However, for both, the strong and the weak motor, forces are expected to be
additive [163]. Mammalian dynein motors without adaptor proteins, which have a stall force
of approximately 1 pN, fall in the class of weak motors and are therefore expected to produce
forces which are multiples of their single dynein stall force.

We have seen that multiple dyneins produce additive force. Thus again, we would expect
that multiple dyneins also transport cargo at higher velocities compared to single dyneins.
Indeed, Torisawa et al. [89] see velocities up to 1.1 um/s for dynein-driven gliding assays

3Tt could be that BICD2 bound two dynein motors in this study.
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using mammalian dynein without adaptor proteins. This velocity is much higher than single
dynein velocities [89]. Moreover, using polystyrene beads coated with mammalian dynein
[88] or mammalian dynein motor domains [87] it could be shown that the motile fraction
of these beads increased with increasing dynein concentration [87, 88]. In a more detailed
study, Torisawa et al. [89] used DNA origami scaffolds with 1-8 dyneins and showed that
the drift part of the motion increased up to 400 nm/s with an increasing number of motors.
Thus, multiple mammalian dynein motors without adaptor proteins can produce velocities
higher than the single dynein velocity. Furthermore, previous gliding assay experiments using
axonemal dynein [173], one-headed inner arm dynein [174], monomeric or dimeric dynein 2
[98] showed an increasing gliding velocity with increasing dynein concentration. However,
while gliding assays were performed for axonemal dynein and dynein2 [98, 173, 174] a
detailed analysis of the relationship between the velocity of multiple mammalian cytoplasmic
dynein motors and the number of motors is still missing. Further, it remains unknown how
many motors are needed to transport cargo at such high velocities as seen by Torisawa et al.
[89] and it remains questionable if a better cooperation of mammalian dynein - not activated by
adaptor proteins - alone can lead to such velocities higher than the single molecule velocity of
dynein activated by adaptor proteins [89, 94, 95]. Mammalian dynein without adaptor proteins
is thought to be a weak, non-processive motor [89, 90]. As said before, in theoretical studies
non-processive, weak motors are predicted to cooperate better [163, 175]. Thus, an increase
in velocity is expected with increasing motor numbers. However, multiple non-processive,
monomeric kinesin-1 motors could increase the velocity, but not reproduce the high, single
dimeric kinesin-1 velocity [157, 170]. Thus, it is not yet fully understood how dynein can pro-
duce such high velocities. Moreover, as previously stated (see chapter 2.2.1), various studies
give hints towards a mechanical or mutual dynein activation [13, 88, 89]. How such a mutual
mechanical activation influences the cooperation between dynein motors remains unknown.
In summary, it remains unclear how mammalian dynein motors without adaptor proteins coop-
erate to transport MT at velocities higher than the single molecule velocity of activated dynein.

Taken together, we have seen that even though both, kinesin and dynein forces are additive,
the kinesin velocity remains constant with an increasing number of motors, while the dynein
velocity increases. The influence of this behavior and if it could regulate the tug-of-war
between kinesin-1 and mammalian cytoplasmic dynein remains unclear. Moreover, it remains
unknown whether a mechanical activation plays a role in the tug-of-war competition of dynein
and kinesin motors when simultaneously bound to a cargo.

Tug-of-war between teams of kinesin and dynein motors As said before, teams
of kinesin and dynein motors were found to be simultaneously present on in vivo cargo
and a tug-of-war between the opposing teams of motors is likely to happen [25, 142, 150].
Measuring phagosomes inside cells [17], endosomes inside live Dictyostelium cells [25]
or latex beads in macrophages [142], previous studies find that mostly a few (1-3) kinesin
motors compete against several dynein motors (4-12) [17, 25, 142]. Trajectories of these
cargos include pauses and eventually directional reversals after pauses [17, 25]. Using in vivo
cargos such as neuronal vesicles or purified phagosomes similar trajectories are obtained in
vitro[11, 22]. Combining in vivo and in vitro studies, Blehm et al. [147] observe a presence of
dynein even when the cargo is transported in kinesin direction. They concluded that dynein
cannot win the competition against kinesin alone due to its small stall force [147]. This is
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verified by Belyy et al. [88], which let one dynein compete against one kinesin. They found
that motion is always carried out in kinesin direction [88]. While most studies agree that
more dynein is needed than kinesin, studying lipid droplets in Drosophila Leidel et al. [16]
found a similar amount of kinesin and dynein motors on the cargo [16]. Note that in all the
mentioned studies it is not exactly known how many motors actually exert force against each
other. Thus, it is not known how many of the available motors are attached to the MT. The
attachment rates might vary between experiments. However, the theoretical force study by
Ucar and Lipowsky [163] supports the fact that more dynein than kinesin motors are needed.
In this study, they predict that three kinesin motors are necessary to balance 7 dynein motors
[163]. But further theoretical studies using a tug-of-war model predict a balance between the
opposing teams also when having the same number of motors attached to the cargo. However,
here again, it is unclear how many motors are attached to the MT and actively engaged in a
tug-of-war [35, 151]. Moreover, other studies using other kinds of dynein or kinesin motors
show different results [11, 70, 98, 158]. Derr et al. [158], for example, shows that yeast
dynein normally wins against mammalian kinesin [158]. However, here the focus lies on the
competition between conventional kinesin (kinesin-1) and pure cytoplasmic dynein without
adaptor proteins. In summary, previous studies lead to the conclusion that more dynein motors
are needed to work against kinesin. However, it remains unclear how many motors really are
attached and actively produce forces against each other.

Several studies give hints that changing the motor number could change the transport
direction [11, 37, 38, 176]. An in vivo study by Rezaul et al. [37] could add kinesin motors
on dynein-driven organelles inside pigment cells. By adding kinesin, they could reverse
the direction of the organelle [37]. In addition to this, partially inhibiting dynein in in
vitro experiments, Hendricks et al. [11] could increase processive runs of purified vesicles
and change the directional bias towards the plus-end [11]. Additionally, they performed
theoretical modeling and predict that the ratio of dynein to kinesin motors determines the
transport direction [11]. Using antiparallel MT doublets, Leduc et al. [176] show different
velocity regimes in dependence of the number of antagonistically acting kinesin-1 motors
[176]. Moreover, using ciliary dynein against kinesin in MT gliding assay, Vale et al. [38]
show that the transport directions can be tuned by changing the kinesin density [38]. Taking
together, the number of motors might regulate the tug-of-war competition. But it remains
unclear how many kinesin or dynein motors are needed to constantly win against the opposing
team. Moreover, it remains unclear how motors of the two different teams cooperate (to work
against the opposing team) or influence each other. Additionally, the influence of an eventual
mutual mechanical dynein activation on the outcome of the tug-of-war remains unknown.

To better understand how the number of motors changes the outcome of the tug-of-war and
how many motors are needed for dynein or kinesin-driven motion, a more detailed analysis is
needed.

2.4.2 Environmental control parameters

Different motor properties are predicted to lead to different outcomes of the tug-of-war
[151]. Modifying motor properties by external parameters was previously predicted by
theoretical studies to change the outcome of the tug-of-war between oppositely directed
motors [35, 151]. Using a corse-grained, mean-field model, where attached motors equally
share forces, Miiller et al. [151] could show that in dependence of the motor properties,

38



2.4. State of the Art of regulating bidirectional intracellular transport

different motility states could be observed [151]. In dependence of the motor properties,
they found up to 7 motility states including, i.a., fast minus-end and plus-end runs as well
as stalled cargos [151]. In addition to this, the theoretical study by Klein et al. [35] predicts
that changes in the motor properties induced by environmental factors lead to different
transport directions [35]. Experimentally, several studies show that motor properties depend
on environmental factors [89, 101, 120, 158, 165, 170, 173, 177]. But, to my knowledge, it
could never be directly shown experimentally that the transport direction can be changed by
modifying the motor properties by environmental control parameters. However, some studies
indicate that a regulation mechanism by environmental factors or signaling pathways exist
[3, 178, 179]. Investigating the axonal outgrowth Morris and Hollenbeck [3], for instance,
found that mitochondria were always transported to locations of intensive ATP consumption
[3]. Moreover, Rodionov et al. [178] show that whether a cargo is transported over the MT
cytoskeleton or the actin cytoskeleton is determined by the second messenger cAMP (cyclic
adenosine monophosphate) [178].

This means that it is interesting to understand whether bidirectional transport is regulated
by environmental factors. Here, the focus will be on the ATP concentration as an environ-
mental factor. Moreover, at the end of this section, other environmental factors, which could
potentially regulate bidirectional transport, are briefly mentioned.

ATP concentration If the ATP concentration could be a regulation factor depends on the
spatial and temporal distribution of the ATP concentration inside the cell. Having always a
homogenous ATP distribution inside the cell, even though the motor properties might depend
on the ATP concentration, the ATP concentration could not change the transport. Measuring
the ATP level inside HeLa cells, Imamura et al. [180] could show that the ATP concentration
varies between different cell compartments [180]. Moreover, Albert and Brown [181], found
that the ATP concentration varies temporally in response to extracellular changes. In addition
to this, significantly different ATP concentrations were found in cells of Huntington patients
[182]. This means the ATP concentration is not constantly homogeneously distributed
throughout the cell but varies spatially and temporally. It is therefore intriguing to understand
the impact of the different ATP levels on bidirectional transport.

To better understand the potential impact of the ATP concentration on bidirectional transport,
we need to know how motor properties change with ATP concentration. Potential regulation
of bidirectional transport by the ATP concentration requires an asymmetric response to
changes of the ATP concentration by oppositely directed molecular motors. If, for instance,
an increase in ATP concentration would slow down kinesin, which is engaged in a tug-of-war
with dynein, dynein is expected to take over and drive the motion. For single motors, we know
that both, kinesin and dynein, consume one ATP per step [70-73, 183]. Thus, a dependence of
the stepping velocity on the ATP concentration is expected. Measuring the velocity of single
kinesin motors attached to a quantum dot [184] or in a force clamp [128], it is found that
the velocity increases with the ATP concentration showing a Michaelis-Menten dependence
on the ATP concentration [128, 184]. This dependence is confirmed by several other single
kinesin experiments also using monomeric kinesin-3 [120, 185-187]. Using multi-motor
gliding assays the Michaelis-Menten dependence on the ATP concentration is also shown
for teams of multiple kinesin motors [188, 189]. While the velocity-ATP dependence is
well known for kinesin, less is known about how dynein velocities change with the ATP
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concentration. We know that the dynein molecule has several ATP binding sites, which are
partly supposed to have regulatory functions (compare chapter 2.2.1) [69, 87, 92]. Thus, the
ATP dependence could be more complex than for kinesin-1. Supporting this idea, Ross et al.
[190] show that processive minus-end and plus-end runs have a similar ATP dependence.
However, the found ATP dependence could not be fitted by a simple Michaelis-Menten
function. Instead, two ATP-dependent parameters had to be used indicating that the multiple
ATP binding sites of dynein play a role [190]. Ross et al. [190] were using single dynein
dynactin-GFP complexes. Using individual cytoplasmic dynein motors without adaptor
proteins, Torisawa et al. [89] show a Michaelis-Menten dependence of the single molecule
velocity [89]. Mechanically separating the two dynein heads by a stiff stick, Torisawa et al.
[89] observe an enhanced ATPase activity of the single molecules [89]. This suggests that a
mechanical activation might influence the ATP dependence. Using a MT gliding assay, the
same study shows a Michealis-Menten dependence of the velocity of many dynein motors
[89]. Moreover, also the ATP dependence of inner-arm dynein ¢ and e and single- and double-
headed cytoplasmic dynein was previously studied. Both studies find a Michealis-Menten
dependence of the ATPase activity [191, 192]. Taking together, it is known that the kinesin
velocity depends on the ATP concentration in a Michaelis-Menten-like manner. For dynein
also a Michealis-Menten dependence is suggested, but it remains unclear how a mechanical
activation could influence this dependence. Moreover, further studies are needed to say
whether the velocity of kinesin and dynein change with ATP dependence differently such that
the ATP could potentially regulate bidirectional transport by teams of kinesin and dynein
motors.

Besides the velocity, also the stall forces could change with the ATP concentration. For kinesin
it was previously seen that the stall force slightly varies between 5 and 7.5 pN for low ATP
concentrations less than 100 uM [186]. This is supported by Schnitzer et al. [120], showing a
slightly higher stall force for 2 mM compared to 5 uM. For dynein without adaptor proteins,
the stall force was found to be ATP dependent for low and intermediate ATP concentrations
lower than 1000 uM. For these ATP concentrations a linear increase from 0.3 to 1.1 pN was
observed [101]. Thus, for different ATP regimes, the stall force of dynein and kinesin vary
differently with the ATP concentration. This means varying the ATP concentration could lead
to other outcomes of the tug-of-war between competing teams of dynein and kinesin motors.

This rises the question whether ATP concentration can control bidirectional transport.
Previous experimental studies give hints that the bidirectional transport can be controlled
by the ATP concentration [3]. As said before, bidirectional mitochondria were seen to be
transported to locations where ATP was needed [3]. However, to my knowledge, it could never
be experimentally verified that the ATP concentration can change the transport direction.
A theoretical model by Klein et al. [35] predicts a directional change in dependence of the
ATP concentration. In the model a constant kinesin stall force was used and a changing
dynein stall force as found by Mallik et al. [101]. For both, kinesin and dynein, a Michaelis-
Menten dependence of the single molecule velocity was applied [35]. Taking together,
how the velocity of dynein depends on the ATP concentration is not yet fully understood.
Moreover, it is unknown whether the changes in the stall forces could lead to a different
outcome when a kinesin team is competing against a dynein team. Thus, further experimen-
tal studies are needed to test whether the ATP concentration can change the transport direction.
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Further environmental factors influencing motor properties Besides the
ATP concentration, many other environmental factors influence the motor properties
[23, 35, 70, 78, 88, 132, 178, 193]. Among others there is the viscosity, which is known
to change motor properties [193] and is predicted to change the outcome of the tug-of-war
between kinesin and dynein motors [35]. Yet another environmental factor is the temperature,
which differs spatially and temporally between cell compartments and within the cell cycle
[194, 195]. The velocity of single motors as well as motors working in a team is known to
depend on the temperature in a Arrhenius-like manner [177, 187, 189, 196-199]. Whereby
the exact temperature dependence is different for kinesin-1, kinesin-3 and dynein motors
[177, 187,197, 199]. Thus, also the temperature is a potential regulation factor of intracellular
transport. Other environmental factors can be the dynein adaptor proteins, which are known
to change dynein properties [23, 88, 94, 95]. Also, second messengers are supposed to change
bidirectional transport [178]. Please see reviews [9-11, 21, 23, 78, 143, 145, 200] for further
information.

In summary, motor properties can be regulated by environmental factors and different motor
properties could change the directionality of bidirectionally moving cargo. However, little is
known about how the environmental factors influence bidirectional transport.

2.4.3 The microtubule track

The inside of the cell is a crowded environment. Inside the cell are molecular motors, vesicles,
cell organelles, proteins, and intracellular filaments among other cell compartments [2, 6].
On the MT track, there are molecular motors, but also other, non-motor MT-associated
proteins (from now on called MAPs) [31, 40, 59, 201, 202]. In vitro studies normally use MTs
without associated proteins, however, inside the cell molecular motors need to make their
way over a very crowded MT surface [31, 203-205]. Previous in vivo studies show a clear
influence of non-motor MAPs on MT-based transport [29, 201, 204, 206-208]. Ebneth et al.
[29], for instance, show that changing the concentration of the MAP tau leads to an altered
distribution of cell organelles. Mitochondria, for instance, were found to be clustered at the
MT organization center (MTOC) indicating that the kinesin-driven anterograde transport
failed [29]. An inhibition of kinesin-driven transport by tau was also found by LaPointe et al.
[207] for fast axonal transport. In contrast to kinesin-1 and kinesin-3, dynein-driven transport
is not affected by tau in vivo [204]. While most in vitro studies confirm an inhibition of
kinesin-driven transport by tau proteins [24, 139, 154, 209], Lopez and Sheetz [205] found
a kinesin and dynein inhibition by MAP2 but not by tau using MT gliding assays [205]. In
vitro studies further show that dynein is not at all or way less affected by tau than kinesin
[24, 31, 154, 209]. Further previous studies also show that other MAPs differentially alter
the functioning of motor proteins too [201, 204, 208]. Semenova et al. [201] show a negative
influence on dynein and a positive regulation of kinesin-2 while transporting pigment granules
in live cells [201]. In Drosophila cells, an enhanced kinesin binding and activity induced by
the MAP ensconsin were found [208]. In addition to this, it was found that MAP7 recruits
kinesin, has no effect on dynein but inhibits kinesin-3 [204]. One possible reason why MAPs
influence intracellular transport by kinesin and dynein motors is that they compete for the
same MT binding site [203, 210]. Hagiwara et al. [203], for instance, showed that kinesin,
dynein, tau, and MAP2 compete for the same MT binding site [203]. Taken together, these
asymmetric effects of non-motor MAPs on molecular motors are thought to be used as
intracellular regulation mechanisms of bidirectional transport [77, 204, 207].
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To better understand the effects of non-motor MAPs on molecular motor transport, it is
crucial to know how molecular motors interact with roadblocks. For kinesin, it was previously
found that the motor stops when encountering a roadblock and pauses for 0.2 up to a few
seconds [39, 211, 212]. After that, most studies found kinesin motors which detach from the
MT [39, 40, 209, 211-213]. As a result the overall run length and the overall velocity were
strongly reduced in the presence of roadblocks [39, 209, 211, 213]. Note, however, the speed
between pauses was found to remain unchanged [214, 215]. Besides detaching after pausing,
it was frequently observed that kinesin motors continue moving [211, 212, 214, 215]. While
Telley et al. [212] observe just occasional bypass events, Korten and Diez [215] found that
half of the stopped motors continued after pausing [212, 215]. Previous studies agree that
kinesin motors do not perform side steps but stay on the same protofilament [39, 126, 216].
Thus, it remains unclear how kinesin motors can circumvent roadblocks. Schneider et al.
[211], found shifts of up to +=25nm along the MT axis in connection with bypass events.
Because these long shifts cannot come from stepping events, they propose that in order to
circumvent a roadblock, kinesin needs to detach and reattach after the roadblock again [211].
Unlike Telley et al. [212], who could not find a distinct behavior in dependence of the kind
of roadblock, Ferro et al. [39] found that the pause time depends on whether antibodies or
rigor binding kinesin mutants were used as roadblocks [39, 212]. This indicates that kinesin
might react differently upon different roadblocks. While the velocity of single kinesin motors
strongly decreased with increasing motor concentration [39, 211], the velocity reduction could
be weakened when using multiple kinesin motors [39, 152]. Tjioe et al. [152] explain that
the better performance of multiple kinesin motors is reached by the moving motors, pulling
the stuck motors off the MT [152]. In summary, the movement of single kinesin motors is
strongly impaired by roadblocks but can be improved when using multiple kinesin motors. A
potential bypassing mechanism of kinesin remains not fully understood.

A distinct behavior is observed when dynein encounters a roadblock. Dynein was found to
either reverse direction when encountering a roadblock or not be influenced by the roadblock
at all [31, 209]. Dixit et al. [209] find that dynein plus dynactin reverse direction when
encountering tau patches [209]. Controversially, Tan et al. [31] find that dynein activated
by dynactin and BIC D (DDB) passes tau patches [31]. In addition, using single molecules
of DDB and yeast dynein, Ferro et al. [39] find that dynein remains largely unaffected by
roadblocks [39]. They find that both the run length and the velocity did not change in
the presence of roadblocks [39]. The different behavior of different dynein is likely due
to its activation state: Inhibited dynein might reverse the direction when encountering a
roadblock as observed by Dixit et al. [209], while the movement of active dynein might
remain unchanged [31, 39]. As previously stated, dynein is able to change the protofilament
[39, 217]. This side-stepping ability of dynein is thought to enable dynein to maneuver around
obstacles resulting in similar velocities and run lengths as in the absence of roadblocks [39].
While this is a valid model for dynein to circumvent single roadblocks, it remains unclear
how dynein can pass through tau patches (see below for more details on tau and tau patches).
While Ferro et al. [39] find that cargos transported by multiple dynein motors rotate around
the MT to overcome the roadblocks [39], it remains unknown how multiple dynein motors
without adaptor proteins react in the presence of roadblocks. Thus, more studies are needed
on multiple dynein motors without adaptor proteins in the presence of roadblocks. Moreover,
the role of a potential mechanical activation in the presence of roadblocks remains unknown.

In summary, kinesin and dynein react differently to roadblocks and are supposed to
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use distinct mechanisms to overcome roadblocks. This means roadblocks are a potential
regulation mechanism for bidirectional transport [209].

As said before, many in vivo studies give hints that MAPs regulate bidirectional transport
[29, 201, 204, 206-208]. Three-dimensional measurements of in vivo cargo transport show
that cargos rotate around MTs and it is supposed that molecular motors help each other
to overcome obstacles. A cooperation between kinesin and dynein motors to overcome
obstacles was previously suggested [10, 13, 23, 143, 218]. Past in vivo studies especially
show a regulation of bidirectional transport by tau [29, 207]. Having a closer look at tau,
we see that tau is not stationary on the MT but diffuses on the MT track. Moreover, tau is
found to form patches of several molecules on the MT surface [31, 40] (see the following
subsection for more details on tau). Thus, the regulation by tau and also other MAPs, which
recruit a special motor to the MT, might be very different from the possible regulation of
single, neutral roadblocks. To my knowledge, the influence of single neutral roadblocks on
bidirectional transport has not been studied before. This means it remains unknown how the
distinct behavior of dynein and kinesin upon encountering a roadblock and the distinct bypass
mechanisms influence bidirectionally transported cargos in the presence of roadblocks.
Besides roadblocks or MAPs, also the MT track itself might regulate bidirectional transport.
In fact, previous studies find kinesin-1 motors only on a subset of MTs in vivo [161, 219]. It
is further found that kinesin-1 prefers stable MTs [219-221] while kinesin-2 and kinesin-3
are thought to be non-selective [161, 219, 221]. Besides kinesin-1 being selective with
regard to the MT state, it is also observed, that when stepping on the MT, kinesin-1 leaves
a trace behind itself. This trace shows a higher binding affinity for other kinesin-1 motors
[222, 223]. A theoretical work by Jose and Santen [224] shows that the trace of higher
binding affinity can lead to a lane formation of bidirectionally moved cargos in axons [224].
Unlike kinesin-1, it is not known how dynein is influenced by the MT itself. For mammalian
dynein with dynactin and BICD2 it was found that post-translational modifications of the
MT influence the motor motility [225]. Furthermore, post-translational modifications were
found to also influence kinesin-1 [226]. This means it is also crucial to understand how
the MT itself influences bidirectional transport. However, this is beyond the focus of this thesis.

In summary, the MT cytoskeleton in vivo can be considered as a very crowded street
network. How single motors react when encountering a roadblock is partly understood.
However, further studies are needed to understand whether roadblocks can change the
direction of cargo transport by teams of oppositely directed motors.

As said before, first single neutral roadblocks need to be studied to understand the influence
of the different motor properties on bidirectional transport in the presence of obstacles.
However, the MAP tau is known to form patches, also called islands, on the MT lattice
[31, 40]. These clusters of tau might regulate transport differently [31, 40]. That is why at
the same time, it is crucial to look at tau islands formed by several molecules in detail. The
following subsection will therefore introduce and discuss the MT-associated protein tau in
more detail.
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2.4.3.1 Tau proteins

The MT-associated protein (MAP) tau, also called MAPT, was discovered in 1975 as a
protein that promotes MT polymerization [227, 228]. Besides triggering MT polymerization,
tau bundles and stabilizes MTs for transport especially in axons [30, 210, 227, 229, 230].
Furthermore, tau influences motor transport and protects the MT from severing enzymes
[24, 29, 31, 40, 204]. Malfunctioning of tau is known to cause neurodegenerative diseases,
called tauopathies. Tauopathies include Alzheimer’s disease and frontotemporal dementia
accompanied by parkinsonism [26, 229, 231-233]. In cells of patients with tauopathies, it is
seen that tau does not bind to MTs anymore, but forms filamentous aggregates, also called
neurofibrillary tangles. The formation of these insoluble tau aggregates is known to cause
neuron death [30, 31]. Previous in vivo studies showed that malfunctioning of tau leads
to failing anterograde transport and consequently a distinct distribution of cell organelles
[29]. It is conceivable that this causes cell death. That is why it is crucial to understand the
fundamental functionality of tau and its role in bidirectional transport.

To understand how tau interacts with MTs to regulate transport, the tau structure needs to be
known. In solution, tau is an intrinsically disordered protein not showing any stable secondary
structure [30, 210, 230]. A detailed look reveals that tau has a filamentous structure. It can
be divided into a N-terminus and a C-terminus [30, 234]. The N-terminus is also called
"projection domain" because it projects away from the MT and the C-terminus "assembly
domain" because it supports the MT assembly [234]. To support the MT assembly and
stabilization, the C-terminal contains a positively charged MT binding region, which binds
to several tubulin dimers [30, 235]. The binding region consists of three to four MT binding
repeats, which differ in their MT affinity (R1-R3 or R1-R4) [30, 210, 229, 236]. The more
binding repeats a tau has, the higher is its MT binding affinity [210, 236]. In dependence of
the number of binding repeats tau is called 3R tau or 4R tau [30, 236]. In total, there exist
six tau isoforms, which differ in the number of MT binding repeats (3R and 4R) and the
number of N-terminal inserts (ON, 1N, or 2N) [30, 229, 237]. How the different numbers of
N-terminal inserts influence the tau-MT interaction remains unclear. A recent study shows
that the tau-isoform influences the cell size and the number of MTs and predicts that different
tau isoforms might influence the MT dynamic differently [237]. In summary, a positively
charged MT binding region including three to four MT binding repeats enables tau to interact
with the MT.

To attach the MT, the positively charged MT binding region is supposed to interact with the
negatively charged C-terminal of tubulin [210, 236]. The electrostatic interaction explains
the MT binding affinity of tau [236]. High-resolution cryo—electron microscopy finds that
tau binds longitudinally along MT protofilaments having the MT binding repeats bound
in tandem [210, 238]. In combination with computational modeling, Kellogg et al. [210]
suppose that tau bridges an intra- and an inter-tubulin connection. Ranging from the middle
of one f-tubulin to the middle of the next f-tubulin, one MT binding repeat stretches over
the length of approximately 8 nm, the length of an heterodimer [210, 238]. This is how tau is
supposed to stabilize MTs [210, 236]. While Kellogg et al. [210] only find longitudinal bonds,
Li et al. [239] also suggests lateral bonds [239]. Other previous studies suppose multiple
conformations of tau binding to MTs [240]. Taken together, the electrostatic interaction
between tau and tubulin binds tau to the MT and thereby stabilizes the MT lattice [210, 238].
Due to the electrostatic potential a stable tau MT bond is expected. Previous studies indeed
show static tau on MTs [241, 242]. However, many other studies see rapid diffusing tau on
the MT as well as transitions from static to diffusive tau and vice versa. This indicates a
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flexible MT-tau bond [40, 230, 241-243]. Previous studies report diffusion constants mostly
in the range 0.15 — 0.27 pm? /s [40, 241, 242]. Furthermore, Hinrichs et al. [241] find that
the diffusion is independent of the tau concentration indicating that tau can bypass each other
and might even change the protofilament [241]. This means for intracellular transport, it is
unlikely that tau acts as a static roadblock for kinesin or dynein motors [241]. Presumably,
there needs to be another mechanism by which tau differentially influences kinesin and dynein
[29, 209]. Taking together, tau can be static or diffusive on MTs, and can most likely not be
considered just as a static roadblock for molecular motors. Moreover, it is unclear why some
tau proteins are static while others diffuse.

In some studies, a tau-tau interaction has been observed, which may also give an indication
of how tau interacts with molecular motors [31, 235]. As already mentioned before in
tauopathy cells, tau is observed to form aggregates of several molecules [30, 235]. These
tau aggregates were found to be solid-like [235]. Besides forming these solid-like structures
inside cells, in vitro also liquid-liquid phase separation (LLPS) forming liquid-like drops
were observed [31, 228, 235]. These drops were found to undergo fusion and fission and
it could be shown that the positively charged MT binding region is responsible for forming
tau drops [228, 235]. The latter result indicates a close connection between tau-tau and
MT-tau interaction. Supporting this, Tan et al. [31] found that the C-terminus is responsible
for forming tau condensates on MTs and Hernidndez-Vega et al. [228] show that inducing
tubulin into tau drops leads to the formation of MT bundles in vitro [31, 228]. Thus, tau-tau
interactions might also be relevant for the tau-MT interaction and therefore for motor-driven
transport.

Because of the observed tau-tau interaction in solution a tau-tau interaction on the MT is
expected too. Indeed, a previous study by Rosenberg et al. [243] suggests that tau forms dimer
to stabilize MTs [243]. Furthermore, other studies observe larger tau accumulations, so-called
tau condensates, tau islands, or tau patches [10, 31, 40, 234, 242]. These tau accumulations
are observed to be mainly stationary. Only a slow diffusion of tau molecules inside the islands
could be seen and occasionally a bidirectional movement of small clusters [40, 234]. Thus,
the previously observed static tau [241, 242] could actually be small accumulations of tau
proteins. While diffusive tau binds to the MT independently of the MT track itself [31, 242],
the formation of tau islands or condensates depends on the nucleotide state of the MT lattice
or how the MT is stabilized [31, 242]. On GMPCPP-stabilized MTs, which have a more
expanded tubulin lattice, no island formation could be observed [242, 244]. Because of this
dependence on the MT lattice, Tan et al. [31] suggest that the island formation could be guided
by the MT lattice and local lattice distortion could act as nucleation points for islands to form
[31]. Moreover, Tan et al. [31] found that the C-terminus of the tau molecule is required
for island formations [31]. However, the underlying physical mechanism of stable cluster
formation including the four MT binding domains is unknown. It is crucial to understand the
formation of stable clusters in order to understand how tau potentially regulates bidirectional
transport. Additionally, the interaction of molecular motors with stable tau islands might be
different from the interaction with diffusive tau.

A first hint that tau islands interact differently with molecular motors is given by McVicker
et al. [242] showing that kinesin is not inhibited by tau on GMPCPP-stabilized MTs, where
no tau islands form [242]. Previous in vivo studies, however, showed a severe impairment of
anterograde, kinesin-driven transport by tau [29]. Siahaan et al. [40] then explicitly showed
that kinesin-1 cannot pass tau islands but is not hindered by diffusive tau [40]. In contrast,
they find that kinesin-8 passes tau islands and destroys them at the same time [40]. The ultra
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processive kinesin-3 motor, in contrast, is again inhibited by tau [204]. Investigating the
interaction of dynein with tau islands, Tan et al. [31] find that dynein passes tau islands [31].
Interestingly, for both passing motors, kinesin-8 and dynein, traffic jams at island boundaries
were observed [31, 40]. This indicates that there might be an interaction or even a competition
between tau and molecular motors. This might be the previously reported competition for MT
binding sites [203, 210]. Besides interacting with molecular motors, tau also interacts with
other MAPs. While tau islands were found to protect the MT from MT-severing enzymes such
as katanin or spastin, MAP7 was seen to inhibit tau binding to the MT [31, 40, 204]. Taken
together, tau islands selectively inhibit molecular motors. This might be because binding sites
of kinesin, dynein, and tau overlap and they therefore are competing for the MT binding sites
[203,210]. However, it remains unclear why dynein can pass tau islands, while kinesin cannot.

2.4.4 The cargo surface

In the previous subsections the influence of the motor number, the environment, and the
MT track were discussed without drawing the attention especially to the cargo and its
properties. However, cargo properties are also thought to have an impact on motor transport
[88, 169, 206, 245-248]. Cargo properties which could influence the transport are the cargo
size or the cargo surface. The cargo size was shown to lead to different motility properties
[88, 206, 247, 248]. Belyy et al. [88] find slightly increased velocities for bigger beads trans-
ported by mammalian dynein motors without adaptor proteins. Using myosin motors Nelson
et al. [248] find that velocities increase with cargo size for membrane cargos, but remain
constant for membrane-free cargos. A modeling approach finds slightly reduced velocities for
bigger cargos, which contradicts the experimentally observed tendencies [247]. Regarding
the force production, Pyrpassopoulos et al. [249] find a faster single motor detachment for
bigger cargos due to a higher vertical force. This is underlined by the modeling of Bovyn
et al. [250], which find shorter run lengths for bigger cargos sizes. Taken together, previous
studies show that the cargo size has an effect on transport. However, the exact contribution of
the cargo size on transport by multiple motors is poorly understood.

Besides the cargo size, also the cargo surface might have an effect [248, 250, 251]. The
surface of in vivo organelles often consists of an organelle-specific membrane containing
different lipids [252—-254]. Those lipids are known to differently interact with motor proteins
[253]. It is assumed that pathogens can alter the interaction between motor proteins and
lipids. They might use this feature to establish themselves in the host cell [253]. That is why
it is relevant to study the relative contribution of the interaction of molecular motors with the
cargo surface toward intracellular cargo transport.

Different motor cargo interactions could i) influence the motor distribution on the cargo sur-
face, ii) the mobility of motors on the cargo surface and iii) the flexibility of the motor cargo
bond. An altered motor distribution on the cargo can change the transport [245, 247, 250].
Rai et al. [245] find that a clustering of dynein motors on late phagosomes leads to longer
minus-end run lengths and higher minus-end directed forces. A higher run length of clustered
motors is also found when modeling transport [250]. Thus, clusters seem to perform better
than having all motors individually distributed over the surface of the cargo.

Furthermore, the mobility of motors on the cargo surface may play a role. The mobility of
motors on the cargo differs between most in vitro cargos and in vivo vesicles. On artificial,
in vitro cargos such as quantum dots, latex, or polystyrene beads, molecular motors have an
anchored position on the cargo. The membrane of membrane-enclosed organelles, however,
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is highly dynamic. It is known that lipids and proteins diffuse in the membrane [255, 256].
Thus, motor proteins are not anchored on the cargo surface but rather diffuse on it [22, 169].
Previous studies suggest that diffusion coefficients of molecular motors on the cargo surface
are in the range of a few um?/s [22, 169, 256]. The mobility of molecular motors on the
cargo surface can be altered, for instance by cholesterol [169, 253], but also by the lipid
composition of the cargo surface [246]. This rises the question, how does the mobility of
motors on the cargo surface influence cargo transport by teams of motors. Jiang et al. [246]
find that the kinesin (re)attachment, consisting of a diffusing rate into the attachment zone and
an ordinary kinesin attachment rate, is independent of the motor mobility on the cargo surface.
The theoretical paper by Bovyn et al. [250], in contrast, predicts a faster cargo binding in the
presence of surface diffusion of molecular motors indicating a higher global attachment rate
[250]. Moreover, they and the theoretical paper by Sarpangala and Gopinathan [251] find a
higher number of engaged motors resulting in a longer run length in the presence of motor
diffusion. This indicates that motor transport might be more robust when motors diffuse on
the cargo surface.

But, when the motor can diffuse on the cargo surface, also the motor cargo bond is flexible and
it remains the question, what is the influence of the flexible motor cargo bond on the motor
force production by teams of (opposing) motors and on the cargo transport velocity. While
the work by Sanghavi et al. [22] finds that the force production of kinesin-1 is unaffected
by the flexible motor cargo bond, Campas et al. [257] says that force production differs
because the tangential component of the force vanishes and only the component normal
on the cargo surface play a role. Both, the theoretical paper by Bovyn et al. [250] and
Sarpangala and Gopinathan [251] predict that a flexible motor cargo bond promotes force
sharing between attached motors. A load sharing is also assumed by the in vivo work of Reis
et al. [258] investigating vesicle transport by multiple kinesin motors in Drosophila. Thus,
while experimental studies find ambiguous results for the influence of the flexible motor cargo
bond on the force production of motors, simulation studies coincide in predicting a better load
sharing when having a flexible motor cargo bond.

The altered force production of motors with a flexible motor-cargo bond could also affect the
velocity of cargo transport. For single motors it was previously found that the membrane
does not influence the motor movement [168]. However, results are ambiguous for transport
by teams of motors. For teams of motors transporting a cargo with a flexible motor cargo
bond, Li et al. [168] and Herold et al. [159] found that the transport velocity is unaffected by
the motor number. An in vivo study of Drosophila, however, finds up to three times single
kinesin-1 velocities and suggests that the velocity increases with an increasing number of
motors [258]. An in vitro study using myosin, which is a molecular motor walking on actin
filaments, also finds velocities higher than single-molecule velocities for membrane cargos.
But, the velocity decreases with an increasing number of motors in this study [248]. To
explicitly study the influence of the flexible motor cargo bond, Grover et al. [169] study MT
gliding on lipid bilayers coated with kinesin-1 motors. They find that velocities increase with
increasing density but are independent of the MT length [169]. This indicates that spacing
between the motors may play a role. It remains to compare the performance of multiple
motors for a flexible motor cargo bond versus a rigid motor cargo bond. Studying the MT
gliding, Grover et al. [169] find higher velocities for reduced flexibility. Different behaviors
are observed when studying cargo transport [168, 248]. Nelson et al. [248] find reduced
transport velocities when having a rigid bond between the cargo and myosin motors. Li et al.
[168], however, find equal velocities for low number of motors and reduced velocities when
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o Roadblock ’ Dynein Kinesin E'

Figure 2.7: Summary of regulation mechanism covered in this thesis.

The illustration shows a MT-based, bidirectional cargo transport by teams of minus-end
directed dynein (blue) and plus-end directed kinesin (green) motors. To be efficient, in-
tracellular cargo transport needs to be highly regulated. Different factors might regulate
the transport direction. The number and type of engaged motors influence the transport
direction. But how is the number of engaged motors regulated? The here addressed reg-
ulation mechanisms are classified into environmental factors, the MT track, and the cargo
surface. As an example for environmental factors, it is investigated how the ATP concen-
tration (yellow dots) influences the transport direction. For the MT track, it is tested how
single roadblocks (circles in dark magenta on the MT) influence unidirectional and bidi-
rectional transport and furthermore, a look into the cluster formation of the MT-associated
tau proteins is taken. Clusters of roadblocks, like indicated on the left side of the very left
dynein motor, might regulate transport differently than single roadblocks. At the end, the
cargo surface is addressed. Motors might be rigidly (right side of the cargo with the red
surface) or flexibly (left side of the cargo with the light blue surface) bound to the cargo sur-
face. In the latter case motor tails are able to diffuse on the cargo surface. The motor-cargo
bond might influence cargo transport as well.

having more kinesin-1 motors on a rigid cargo. Nelson et al. [248] on the other hand finds that
reduction of the velocity starts earlier in the case of a flexible motor cargo bond. Thus, past
studies report different influences of the motor-cargo bond on transport velocity. Differences
might be due to different experimental set-ups (MT gliding assay versus cargo transport) or
different motor types (myosin versus kinesin-1).

In summary, past studies indicate that a flexible motor-cargo bond might have an effect on
cargo transport. However, the underlying mechanism remains poorly understood. Moreover,
it remains unknown how the flexible motor cargo bond influences the force production when
having an opposing force like in bidirectional transport.

2.5 Chapter conclusion

This chapter introduces the current understanding of MT-based intracellular transport per-
formed by the opposite-directed motors dynein and kinesin. We have seen that on intracellular
cargos often teams of both, kinesin and dynein motors, are attached and occasionally engage
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in a tug-of-war. The current model of how the cell manages efficient bidirectional transport of
a cargo to a specific location and at a specific time in the cell cycle is a regulated tug-of-war.
Here, four categories of regulation mechanisms are introduced: i) a regulation by the number
of motors, ii) a regulation by environmental control factors such as ATP concentration, iii) a
regulation by the MT track (including MAPs) and iv) a regulation by the cargo surface. See
fig. 2.7 for a summary of the regulation mechanism discussed in this thesis.

To contribute to the understanding of regulating bidirectional transport, the known kinesin and
dynein models will be adjusted to the state-of-art understanding of molecular motors (chap-
ter 4). Then these models will be used to better understand transport by multiple kinesin or
multiple dynein motors (chapter 4). In the next step bidirectional transport by multiple kinesin
and dynein motors is modeled and the question how they depend on the number of motors and
environmental control parameters is addressed (chapter 4). To better understand the regulation
by the MT track, a tau adsorption model is developed and the cluster formation of tau proteins
on the MT is discussed (chapter 5). Moreover, liposome versus bead transport by kinesin-3 is
simulated to see how the motor-cargo bond influences the transport (chapter 6). At the end,
bidirectional liposome transport by kinesin-3 and cytoplasmic dynein is modeled (chapter 7).
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In this thesis, stochastic processes are used as a tool to describe intracellular transport
by teams of opposing kinesin and dynein motors. This chapter first gives details on stochastic
processes as such and how they are modeled. Afterward, transport-related stochastic processes
are presented. These processes include equilibrium processes such as diffusion processes and
Langmuir adsorption kinetics as well as non-equilibrium processes such as driven lattice gas
models. At the end, the state of the Art of modeling intracellular transport by kinesin and
dynein motors is reviewed.
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The previous chapter introduced motor-driven, intracellular transport processes relevant for
this thesis. Intracellular transport processes are systems of many interacting particles of differ-
ent types in a "highly noisy environment" [259]. While in vivo, it is not clear which components
(agents) are involved in the complex system, the types of interacting agents are well defined
and controlled in in vitro experiments. Therefore, in vitro experiments are used as a reference
to study the underlying processes of intracellular transport. Because of the stochastic nature
of the process, intracellular transport is best described by stochastic processes (see definition
below). Moreover, the cargo, the MT, and multiple, interacting molecular motors build an ex-
ample of a complex system. Complex systems consist of the following characteristics defined
by Boccara [260]:

e "They consist of a large number of interacting agents."
e "They exhibit emergence."

e "Their emergent behavior does not result from the existence of a central controller.”
[260]

Emergence means that there is a collective behavior of the interacting particles, which is "diffi-
cult to anticipate from the knowledge of the agents’ behavior” solely [260]. Therefore, a model
is needed. "A model is a simplified mathematical representation of a system" [260]. A model
only includes the characteristics of a process, which are likely to be necessary to produce the
observed behavior [260].

Here, models are the basis of the stochastic processes, which describe intracellular transport.
These stochastic processes are simulated by means of Monte Carlo simulations to see whether
the, in the models, included characteristics of molecular motors, cargos, and MTs are sufficient
to explain the observed behavior of in vitro experiments.

In the following, first stochastic processes and basics of simulating stochastic processes will be
introduced before examples of typical, transport-related stochastic processes will be discussed.
At the end, previously published models for molecular motors will be presented.

3.1 Stochastic processes

Stochastic process Before defining the stochastic process, random variables need to be
introduced. A random variable, also called stochastic variable or random number is a variable
X, which takes a value x out of a set of possible values with a certain probability. The proba-
bilities of all possible values need to sum up to one [259, 261]. One famous random variable
is the outcome of throwing a coin. In this case, both possible values, head and tail, are taken
with equal probabilities if the coin is fair. A stochastic process is then defined by a random
variable or a function of a random variable(s), which evolve in time:

X - X(t) or X - f(X,0). 3.1

One of the first studied stochastic process is the motion of pollen grains in water discovered
and named after the botanist Robert Brown [259]. The motion of these passive particles is
determined by thermal fluctuations of the surrounding water molecules. In this example,
the random variable, i.e. the position of the particle, takes different values over time
[259, 261, 262].
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3.1. Stochastic processes

Langevin equation After Einstein presented a theoretical description of the Brownian
motion [263], Langevin presented, according to him, an "infinitely more simple" description
of the Brownian motion [262, 264]. Langevin argued that the pollen grain moves according to
its Newton’s equation of motion, where the thermal motion of the water molecules is added as
a stochastic force f(7):

e L O (32)

dr? dt ' ’

Thereby is ¢ is the drag coefficient [259, 265]. The so-called Langevin equation is a stochastic
differential equation and remains one common way to describe stochastic motion.

Markov process Another way to define a stochastic process is to describe how the prob-
ability density function of a random variable evolves over time. The joint probability density
function of all realizations of the random variable X at any time ¢

P(Xg, tg; X515 e 3 X0 1) 3.3)

describes the stochastic process completely [262]. A special class of stochastic processes
are Markov processes. Using conditional probabilities, the probability of being in states
Xjy1s Xjq2s -+ » X, attimes t, 1,7, o, ..., 1,, when having been in states x, x,, ... , x, before at
times ,1,,...,1; ', respectively, is given by

P15 B 15 Xppas Tpgs - oo 5 X By | X005 B3 X5 B3 oo s X B
— p(xo’tO;xl’tl; ;xk7tk;xk+1stk+1;xk+2,tk+2; ;xn,tn)
p(x()a t(),xl’tl, ;xk,lk)

(3.4)

When having a Markov process, the subsequent states x;,i,X;,,,...,X, at times
tks1stksas --- » 1, are determined only by the present state x,. Consequently, the conditional

probability becomes:

PO T3 X T -3 X 1| X0 T3 X5 115 o 5 X s T
= DX gy 1 T 15 Xh2s Ty oo 5 X L X5 13- (3.5)

This means Markov processes have no memory effects. The joint probability density function
of a Markov process is consequently given by

(X0 103 X 15115 3 X, 1)

= P(X s | X 15 8ym 1) X (X5 By Xm0 Byn) X oos X p(xy, 11| X0, ) X p(xg, 1)
(3.6)

This means the stochastic process is completely defined by the initial state probability p(x, #,)
and the transition probability p(x; 1, #;41]xs,?;). Taking together, in a Markov process the
subsequent state is determined only by the present state and past states can be neglected
[261, 262].

"Noteitholds 7, <1, <t5....
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Chapman-Kolmogorov equation As said before, a Markov process is fully determined
by the initial state probability and the transition probability. Equation 3.6 is therefore consid-
ered for n = 2:

P(Xq, 103 X1, 113 X0, 15) = p(Xp, 15 ]X1, 1) X p(xy, t1|X0, 1g) X p(xg, tg)- 3.7

Integrating over x; gives
/dxlp(xo,to;xl,tl;xz,tz) = /dxlp(xz,t2|x1,tl)Xp(xl,t1|x0,t0)Xp(xo,to) (3.8)

- P(Xg, 195 X, 15) = / dxp(xy, 1y |x1, 1) X p(xy, 111X0, 19) X p(xq, 7). (3.9)

When dividing by p(x, t5) and using the conditional probability density rule, the Chapman-
Kolmogorov equation is obtained:

p(xz,t2|x0,t0)=/dxlp(xz,t2|x1,t1)Xp(xl,t1|x0,t0). (3.10)

The Chapman-Kolmogorov equation says that the transition probability of going from state O
to state 2 is given by the transition probabilities for going from state O to an intermediate state
1 and from 1 to 2. It thereby has to be summed over all possible intermediate states 1. The
Chapman-Kolmogorov equation fully describes a Markov stochastic process [261, 262].

In praxis, it is often easier to deal with the differential form of the Chapman-Kolmogorov
equation instead of using the given integral form (eq. (3.10)). The differential form of the
Chapman-Kolmogorov equation is (see book by C.W. Gardiner [262] for the derivation of the
differential form):

op(x, t|xq, ty) 9

o = = [AG Dp(x o )] G.11)
10
ta52 [B(x, D)p(x, 1]x0, 10)] (3.12)
+ [y WGl ptbg i) - WOl Dptctlxg ] G13)

with the initial condition (xq,#,) (see also reference [262]). The first term on the right side
of the differential Chapman-Kolmogorov equation describes drift motion, the second term
diffusion and the third term jump processes. From the differential Chapman-Kolmogorov
equation, the time evolution of the probability density function p(x, ) can be calculated.

Fokker-Planck equation Having a Markov process without jump processes (W (x|y,t) =
0), the differential Chapman-Kolmogorov equation converts to the Fokker-Planck equation:

0 0 1 9?

— 1) = —— [A(x,t , 1 ——— [B(x,t ,1)]. 3.14

atp(x ) F [ACx, t)p(x, )] + 292 [B(x, )p(x,1)] (3.14)
The Fokker-Planck equation describes Brownian particles with a drift. The first term describes
the drift caused by an external force A(x, ) o F(x,t) and the second term the diffusion of the
Brownian particle: B(x,t) « D(x,t) [259, 262].
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Diffusion equation Without a drift (A(x,t) = 0), the Fokker-Planck equation becomes
the diffusion equation:

0 1 02
EP(X, 1) = 292 [B(x, )p(x,1)] (3.15)
or
9 bty = DL pix 1) (3.16)
o X2t ‘

if B(x,t) = 2D(x,t) = 2D (homogeneous diffusion). The diffusion equation describes, for
instance, a Brownian particle [259, 262].

Master equation When setting the drift part and the diffusion part of the differential
Chapman-Kolmogorov equation to zero (A(x,t) = 0 and B(x,f) = 0), the Chapman-
Kolmogorov equation converts to the continuous Master equation:

0
Ep(x, 1= / dy[W (x|y,D)p(y, 1) = W(ylx, )p(x,1)]. (3.17)
If the state space of x is discrete, the Master equation is given by

%p(n, 1) = ; [W (n|m, H)P(m,t) — W (m|n, ) P(n,1)]. (3.18)

The Master equation describes jump processes with transition rates given by the matrix W.
In detail, the probability of being in state x is equal to the probability of all transitions into
this state W (x|y,t)p(y,t) ("gain term") minus all transitions out of this state W (y|x, t)p(x, t)
("loss term"). Master equations can describe a wide range of Markov processes [262].

Stationary process A process is called stationary if the statistical properties of the pro-
cess do not change with time anymore. This means the joint probability density is invariant
regarding time translation:

P(xg tos X185 o5 X,,8,) = P(Xg, o + T35 X, 8 + T3 05X, 0, + T). (3.19)

The master equation then becomes:

/dyW(xly,t)P(y,t)=/dyW(ylx,t)p(x,l)- (3.20)

It can clearly be seen that for stationary Markov processes the flux into the state x is identical
to the flux out of the state x [261, 262, 265].
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Detailed balance If for a stationary process, the transition from state x to state y is bal-
anced by the transition from state y to state x, the process fulfills detailed balance. In detail
this means that the integrands of equation 3.20 are equal:

W (x|y,)p(y, 1) = W (ylx, )p(x, 1). (3.2

If the process is in thermal equilibrium, the probability density functions are given by the
Boltzmann distribution and the detailed balance is given by the following equation:

W(x|y,1) _ p(x,1) _ e_ﬁ(Ey_Ex) — o PAE
Wlx,t)  p(y,1)

where AE is the energy difference between state x and y.

(3.22)

First passage times The partial differential equations for the probability density func-
tion of a stochastic process (equations eq. (3.14 ), (3.15), (3.17)) can be solved analytically
or numerically. Knowing the probability density function p(x, ) mean values and higher mo-
ments of the probability density function can be calculated. Besides mean values, another
observable is the first passage time distribution, which is often of interest. The first passage
time distribution describes the time the system first reaches a specific state. An example is a
one-dimensional diffusion in a box with adsorbing boundaries. This means, once the particle
reaches one of the boundaries, it is absorbed by the boundary and stops diffusing in the box.
The so-called survival probability S(#) gives the probability a particle is still alive, i.e. is still
diffusing at a time ¢. For a one-dimensional diffusion in a box with boundaries at a and b, the
survival probability is calculated as [259, 262]:

b

S(t):/dxp(x,t). (3.23)

a

In contrast, the probability of being dead, i.e. absorbed by the boundary, is on one hand given
by 1 — S(¢) and on the other hand by integrating over the first passage time distribution. Thus,
the following equation [261, 266]:

t

1-8@)= /dt'f(t’) (3.24)
0
holds with f(¢) being the first passage time distribution. Consequently, the first passage time
distribution can be calculated by [262, 266]

-9
SO =-=50) (3.25)

and the mean first passage time by [259, 265]

(e ]

(t) = / dtf(t)r. (3.26)

0
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3.2 Simulating stochastic processes

The previous section introduced master equations to describe probability density functions
of stochastic processes. Master equations can be solved analytically, numerically or can be
simulated. Having a system of many interacting particles and many degrees of freedom,
simulating master equations and calculating ensemble averages are the methods of choice.
To simulate a stochastic process, Monte Carlo simulations, named after the famous Casino of
Monte Carlo can be used [267]. Monte Carlo simulations use random numbers to generate
different samples of the process. Having generated a high number of samples, probability
distributions and mean values can be approximated. Monte Carlo simulations are therefore
considered to be a statistical approach [267].

When solving master equations, the Monte Carlo simulations generate random trajecto-
ries/realizations of the stochastic process. A trajectory of a stochastic process described by
master equations consists of multiple consecutive transitions (jumps) between states [265].
The transition rates are given by the transition matrix W of the master equation. The time
update can either be performed in continuous time or approximated in discrete time. In the
case of the discrete-time update mechanism, a small, but fixed A¢ is chosen. After each At,
the probability of a transition is calculated. Transitions are performed with the calculated
probabilities. It thereby has to be made sure that the time update At is small enough [265].
For the continuous time update mechanism, a stochastic simulation algorithm, originally
developed by Gillespie [268], is used. The Gillespie algorithm generates continuous waiting
times between transitions and chooses transitions according to these waiting times. The
Gillespie algorithm is presented in detail below.

Gillespie’s algorithm for time-independent rates The Gillespie algorithm was orig-
inally developed to describe chemical reactions. To introduce the waiting time distribution,
first, a one-reaction process is considered. Let a; be the reaction rate, then a;dz is the prob-
ability that a reaction occurs during the time step dz. The probability that no reaction occurs
during the time interval (#,f + 7) is

Py(r) = [1 - alﬂN (3.27)

with the number of time steps N = %. For an infinitesimally small time step dv — O, the

number of time steps goes towards infinity N — oo and the probability that no transition
occurred during the waiting time 7 becomes

: |V —a,t
Py() = lim [l—alﬁ] — e, (3.28)

The probability that no reaction occurs during the waiting time 7 and then a reaction occurs
directly after, att + 7 + dr, is

P(7) = Py(r)a;dt = e “""a;dr = p(r)dr (3.29)
with the waiting time distribution

p(r) =e “7ay. (3.30)
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To simulate a one-reaction process, waiting times are generated according to the waiting time
distribution. After each waiting time, the reaction is performed [265].

However, when having several possible reactions, not only the waiting times but also the re-
action needs to be chosen. Gillespie [268] describes P(r, u)dt as the probability that y is the
next reaction, which occurs within the time interval (t + 7,t + 7 + d7). If a u is the reaction rate
of the reaction y, then is a,,d the probability that the reaction  occurs in dz. The probability
that no reaction occurs during the waiting time 7 is given by

N
. < T -YMar
Py(x) = lim I—Zavﬁ e Lo % (3.31)

12

with the number of time steps N = i and the number of possible reactions M. For the
probability of the next reaction being ¢ and occurring after a waiting time 7 holds:

P(z, 4) = a, Py(7) = ae” I0 &%, (3.32)

To generate a trajectory of a multiple reaction stochastic process, a waiting time and a reaction
need to be sampled according to P(z, u) [268].

Gillespie [268] published two standard methods to generate the reaction and the waiting time
according to P(z, u) (eq. (3.32)): The direct method and the first reaction method. For the
direct method, the conditional probability given by

P(z, p) = P(t)P(z|p) (3.33)

is considered. The probability that the next reaction, no matter which, occurs after the waiting
time 7 is given by

M M
P(r) = Z P(r,v) = Z ae” Tlar 2 gemar (3.34)
v=l1 v=I
with the reaction rate of all rates
M
a= Y a, (3.35)
v=1
The conditional probability is then
P(r, 1) _ aue_ar a,

= 3.36
P(7) 2‘]/\11 a,e-e a ( )

P(ulr) =
To generate the next reaction and the next waiting time, the waiting time can be generated from
P(7) (eq. (3.34)) and the next reaction can be chosen according to P(u|7) (eq. (3.36)) [268].
For the first reaction method, each reaction is considered independently. For each reaction u
holds that the probability that a reaction y occurs within dz is a,dz and the probability that
no reaction u occurs during the waiting time 7 is

: TN -a,t
Py() = lim [1—a N] — e, (3.37)
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Thus, as for the one-reaction process, the waiting time for each reaction follows the distribution:
p(r) = aﬂe_”/". (3.38)

When considering all reactions independently from one another, it can occur that during
the waiting time 7 of one reaction another reaction occurs. In order to maintain the correct
reaction order, the reaction with the shortest waiting time is carried out. This means, at each
update, the respective waiting times for all reactions are calculated according to eq. (3.38)
and the reaction with the smallest waiting time is performed. If the rates do not change, the
other waiting times can be kept for the next update, otherwise, they are rejected and need
to be recalculated. Depending on the stochastic process, either the direct method or the first
reaction method can be more efficient [268].

Using Gillespie’s algorithm, random trajectories of a stochastic process can be generated by
throwing a waiting time and a transition/reaction. Both, the waiting time and the transitions,
are following a certain probability distribution. The question remains how to generate
numbers/samples that follow a given probability density function.

Tower sampling Tower sampling is a simple sampling method that can be used when
having a finite number of possible states of a distribution, such as the number of reac-
tions/transitions for instance. For the tower sampling, probabilities are added up to a tower
(=cumulative probabilities). The tower consists of several “boxes*. Each box represents one
possible transition and the height of the box reflects the probability for this transition. To
choose a transition a uniformly distributed random variable between 0 and the height of the
tower a = Ei‘il is thrown:

u=rand(0,1) X a (3.39)

where rand(0,1) is a uniformly distributed random variable between zero and one as provided
by several random generators. The box into which the random number u falls is the chosen
transition [267].

When having many possible transitions, a Bisection search algorithm is often used to find
the chosen box. In the bisection search algorithm, the tower (or the search interval) is divided
into two parts and it is checked whether the random number  lies in the upper or lower part. If
the random number is in the upper/lower part, only the upper/lower part is further considered
and again divided into two parts. Then it is again checked whether the random number u is
in the upper or lower part of the chosen part. Continuing this process, the chosen box can be
found more efficiently than going through all the boxes of the tower individually [267].

Inverse sampling The inverse sampling is the analogous to the tower for a continuous
probability density function, such as an exponential waiting time distribution (see eq. (3.38))
for instance. Instead of adding single probabilities up to a tower consisting of unequally high
boxes, for the inverse sampling the cumulative distribution function is calculated:

X

F(x)=/p(x)dx. (3.40)

—00
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In the continuous case, all "boxes" of the "tower" have the same height of dx and would sum
up to 1. Throwing a uniformly distributed random number u in the interval [0, 1], the box with
a corresponding realization x can be found by solving F(x) = u:

X

F(x) = /p(x)dx =u. (3.41)

—0o0

Thus, solving this equation for x gives a random realization x distributed according to p(x)
[265, 267].

One frequently used example are random numbers following an exponential probability density
function:

p(x) = Ae™H. (3.42)

Calculating the cumulative distribution function up to x gives:

F(x)= 4 / e Mdx = (1-e ™). (3.43)

-0

Setting F(x) equal a uniformly distributed random number u and solving this equation for x
gives a random number x following the exponential probability density function:

(1-e™)=u < x:—%ln(l—u):—%ln(ﬂ) (3.44)

where & = 1 — u is also a uniformly distributed random number between zero and one. Thus,
eq. (3.44) gives an exponentially distributed random number x calculated from a uniformly
distributed random number u [265, 267].

Metropolis algorithm A process in thermal equilibrium can benefit from the fact that
the process follows the detailed balance and state probabilities are given by the Boltzmann
distribution (see above). Thus, the following equation applies for the transition rates:

Wix->yp ~p(E,~E,) _ o—PAE
—W(y g e =e . (3.45)

One way to sample a process in thermal equilibrium is to use the Metropolis algorithm, where
a proposed transition is accepted with the following probability

e MEE) = ¢=PAE  fAE >0
W(x — y)dt = | (3.46)

R else.

Thus, the Metropolis algorithm suggests that when a proposed transition reduces the energy,
it will be performed in any case, otherwise with probability p = e “PAF [265, 267].
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Gaussian distributed random numbers Another distribution, which is often used, is
a Gaussian or normal distribution. In the following, the generation of Gaussian distributed
random numbers is described using the so-called Box-Muller transform [265, 267]. When
sampling a Gaussian distributed random variable, the variable first needs to be transformed to
a standard, normal distributed random variable x using

X = M (3.47)

Oy

where p,, is the mean and o, the standard deviation of the Gaussian distributed random variable
y. x follows then a normal distribution with zero mean and a variance of one. To transform
the uniformly distributed random variable back to the given Gaussian distribution, the inverse
transform of

y=ox+u, (3.48)

has to be applied. To derive a formula for how to generate a normally distributed random
number from a uniformly distributed random number, we first rewrite the integration of the
normal distribution:

(o] 1 xz
lz/dx e 2 (3.49)
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Using the polar coordinates two independent integrals can be obtained:
2r o 2r o
| 1 _2
1= drdp—re 2 = [ do— [ dze (3.52)
2r 2r
0 —oo 0 —00

=1 =1

with z = ; The distributions of both integrals can be sampled independently using the inverse
sampling method. Thus, r and ¢ are generated from uniformly distributed random variables

u, v as follows:
@ =2nv and r=vV2z=v-2Inu. (3.53)

Transforming back to cartesian coordinates, two normally distributed random variables are
obtained:

x =rcos(p) =V-2Inucos(2xv) (3.54)
y = rsin(p) = V-2Inusin(2zv). (3.55)

This means, with two uniformly distributed random variables u and v, we can generate two
independent normally distributed random variables x and y [265, 267].
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Uniformly distributed positions on a sphere Besides random numbers in one dimen-
sion, often also random positions on a sphere are needed. Here, it is described how uniformly
distributed positions on a sphere can be generated. Therefore, a sphere with radius r = 1 is
considered. The surface area of such a sphere is:

/ / dA =4z (3.56)
S

= 1=/ LdA. (3.57)
4
Ky

Using spherical coordinates, it is obtained

T 2r T 2r

| = / / Siz(e)dqodez / / (@, 0)dpdo. (3.58)
T
0 O 0 0

Where the joint probability density for the angles is defined as

sin(6)
p(@,0) = yp (3.59)
T
Integrating over the joint probability density gives the separated probability density functions

for @ and 0:

T

_ [sin@®) 1
p(p) = / e do = o (3.60)
0
2
_ sin(6) _ sinf
p(9)—/ yp do = > (3.61)
0

Plugging in the two separated probability density functions splits the two-dimensional integral
into two independent integrals:

T 2

sin 6 1

1= —dl | —dop. 3.62

/2 740 (3.62)
0 0

Using the inverse sampling method, both angles, ¢ and 6 can be generated separately from
uniformly distributed random numbers v and u, respectively:

0 = arccos (1 —2u) @ =2nv. (3.63)

That is how random points on a unit sphere can be generated [267].

Taking together, this subsection described how to simulate master equations by means of
Monte Carlo simulations. The Gillespie algorithm has been introduced to generate random
trajectories in continuous time and several methods have been presented to generate random
numbers according to given distributions.

62



3.3. Transport-related stochastic processes

3.3 Transport-related stochastic processes

In this section transport-related, stochastic processes are presented. The here discussed
processes are the basis of the later presented modeling of intracellular transport (chapter 4, 6
and 7) and tau adsorption (chapter 5).

Diffusion process The first process which is relevant for transport is the one-dimensional
diffusion process. Inactive or passive dynein motors as well as microtubule-associated proteins
such as tau are known to perform diffusion-like motion on microtubules [31, 40, 89, 94, 269].
Moreover, the cargo itself or the MT itself might diffuse in the solution. The diffusion process
is described by the diffusion equation eq. (3.16). Using the Fourier transform

o]

k1) = / e/* p(x, t)dx (3.64)

—0o0
the diffusion equation can be solved in the Fourier space [259]:

op(k, 1
—p(at’ o KDpkr) = plhn) = po(k)e D" (3.65)

with the initial condition py(k). Using the fact that the product of two functions in the Fourier
space is a convolution of the two functions in the position space, the inverse transform is:

. , (x—x")?
p(x,1) = / dx'py(x") 1 / e ik—x")g=kDigp | — / dx'po(x") L5, (3.66)
—0 271'_00 s 47 Dt

Applying the initial condition py(x) = 6(x), the solution of the diffusion equation is found to
be a Gaussian distribution:

2

1) = T aDr 3.67
p(x, 1) DiC (3.67)
with zero mean and mean square displacement

(x*) =2Dt. (3.68)

Diffusion in a harmonic potential The diffusive motion along the MT of a passive mo-
tor attached to the cargo cannot be considered as free diffusion. It is rather a diffusion in a
harmonic potential assuming that the motor acts like a linear harmonic spring. For diffusion
in a harmonic potential V' (x) = %sz, the Fokker-Planck equation (see eq. (3.14)) becomes:

0 0? 0
Ep(x, =D [ﬁ + ﬁKax] p(x,1) (3.69)
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where B(x,t) = 2D, A(x,t) = —%% and % = Dp is applied.

The stationary solution of the Fokker-Planck equation for diffusion in a harmonic potential

is Boltzmann distributed:
K _ /})()c2
Py(x) = \/ 2—ﬁe 2 . (3.70)
T

Due to the special form of the harmonic potential, the stationary solution is Gaussian dis-
tributed as the solution of the diffusion equation. However, while the Gaussian distribution
of the free diffusion widens over time, the stationary solution of the diffusion in a harmonic
potential is clearly localized by the confinement given by the harmonic potential.

Physics at low Reynold numbers The Reynold number describes the ratio of inertial
to viscous force. The inertial force scales as pl>v* and the viscous force as nlv. Thus, the
Reynold number is defined as:

120? i
I (3.71)
nlv n

where p is the density of the fluid, v the velocity and / the characteristic length of the object,
and # the viscosity of the fluid [259, 270]. If the Reynold number is high, i.e. R > 1 the
inertial force dominates the motion and if the Reynold number is low R < 1 the viscous
force. Hence, at low Reynold numbers, the inertia term can be neglected and the Langevin
equation becomes:

S = FOun +10) 672)

where &y is the drag coefficient of the MT and F(x, ) an eventual external force, which acts
on the particle additionally to the noise f(¢) [259, 270].

Stoke’s drag force For a spherical particle with radius R, which moves at low Reynold
numbers through a viscous medium, Stoke’s found the following expression for the drag force
[270, 271]:

F =¢&v (3.73)
with the drag coefficient:

& =6xnR. (3.74)

Hydrodynamics of a MT The typical motion of a MT in vitro can usually be considered
to be a motion at low Reynold numbers (see chapter 4). The MT itself is a rigid rod. Thus, to
describe the viscous force of a MT, the drag coefficient of a cylinder has to be used. Various
approximations of the drag coefficient of a cylinder can be found in literature [272]. The drag
coefficient differs for one-dimensional motions parallel to the MT length axis, perpendicular
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to the MT length axis or for random directions [272, 273]:

_ 2znL

g = log(L/2b) ¥ 7, (parallel) (3.75)
_ 4L .

e R (3.76)
_ 3anL

o = log(L/(2b)) + ¥, (random). 3.77)

L is thereby the length of the cylinder, b the radius and y;, ¥, and y, the end-effect corrections.
Among the different expressions for the end-effect corrections given in literature [272], in this
thesis, the expressions by Broersma [274] are used:

2b 2b\?
= 0207 +0—980 % 22 —0.133 (-) 378
i + *7 T (3.78)
2b 2bh\?
71 = 0.839 +0.18520.233 (f) (3.79)
2b 2bh\?
= 0312 +0.565220.1 (— . .
7, = 0.312+0.56520.100 L) (3.80)
(3.81)

Having the drag coefficient, also the one-dimensional diffusion coefficient can be calculated
using the Einstein relation [259]:

ED = kgT. (3.82)

One-dimensional random walk Since the MT consists of a-f-tubulin subunits, and the
molecular motors orientate their steps along this discrete lattice, the motion of molecular mo-
tors along the MT or along one protofilament of a MT can be described in discrete space. The
one-dimensional random walk model describes diffusion in one-dimensional, discrete space.
In discrete space, the particle hops to neighboring sites on the one-dimensional lattice with
equal transition rates r, = ﬁ. The corresponding master equation describing the random
walk on a lattice with lattice spacing Ax is:

op(x,1) 1 1 1
= —p(x — Ax, 1) + — Ax,1) — —p(x,1). 3.83
ot parPr T Ax D+ ppCet A ) = et 1) (3:83)

In the continuum limit Ax, At — 0 with the definition of the diffusion constant D =

2
limy, A0 %, the master equation becomes the diffusion equation (see eq. (3.16)). See
eq. (3.67) for the solution of the one-dimensional diffusion equation.

Exclusion process The random walk model describes the random motion of an ensemble
of particles, where particle-particle interactions can be neglected (diffusion). In the context of
the thesis, however, spatially extended particles eventually step along the same protofilament of
a MT. Particles interact with the protofilament at specific binding sites, which makes the lattice-
type structure important and hardcore particle-particle interactions cannot be neglected. Inter-
acting particles in discrete space can be described by lattice gas models. Processes describing
many particles with hardcore repulsion/interaction are called exclusion processes [275, 276].
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a) Random walk b) Symmetric exclusion process
o e o e "o oo ®
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Figure 3.1: Lattice gas models. a) The random walk model describes the one-dimensional diffusion
of random particles on a one-dimensional lattice, where particle-particle interactions can
be neglected. The particles hop with equal rates r,, to neighboring sites (left/right). b)
The symmetric exclusion process describes several random walkers on a one-dimensional
lattice. Hardcore interactions are taken into account such that no more than one particle can
occupy one lattice site (exclusion). c) The total asymmetric exclusion process (TASEP) is
the extreme case of the asymmetric exclusion process and describes driven particles, which
stochastically step only in one direction on a one-dimensional lattice. Particles hop to the
right neighboring site with rate r , enter the lattice on the left site with rate a and leave the
lattice on the right site with rate §. Hardcore interactions are taken into account (exclusion
effect). d) In the TASEP with Langmuir kinetics, the particles can additionally attach and
detach to and from the bulk of the lattice to the solution with rates Q, and Qp,, respectively.

For exclusion processes, each particle occupies one lattice site and hops to neighboring lattice
sites with specific rates. A particle can thereby only hop to a neighboring lattice site if this site
is empty (see fig. 3.1b or 3.1c for a schematic). Consequently, a lattice site can either be empty
or occupied by one particle. The simplest exclusion process, i.e. the simple symmetric exclu-
sion process (SEP), describes multiple particles with hardcore interactions, which perform a
random walk (see fig. 3.1b). Let p(x, ¢) describe the probability density that site x is occupied
at time ¢. Then the following master equation describes how the site occupation evolves in
time:

() )
PESD 2 pc L) (= plxs ) + 2 p(x = 1,001 = plx, 1) (3849

- %p(x,t) (I=px+1,1)— %p(x, H-px-1,1). (3.85)

Thereby, the first two terms describe the probability density that the neighboring sites are
occupied times the probability density that the site x is empty such that the particle could hop to
site x with rate one. The two last terms describe the probability density that site x is occupied,
while the neighboring site is empty such that the particle could hop to the neighboring site.
Simplifying this master equation, one obtains:

ap(;’ D _ % (p(x + 1,1) = p(x = 1,1)) = p(x, 1) (3.86)

which is the master equation for a single random walker with hopping rate one (see eq. 3.83).
Thus, the density of the system behaves as a normal diffusion without interactions [276]. How-
ever, a single particle moves differently in the simple symmetric exclusion process compared
to the free random walk. In the case of the exclusion process, the particle moves less far since
it cannot pass other particles. See [276] for more details.
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Totally asymmetric exclusion process While diffusive/passive dynein motors and tau
molecules diffuse along the MT, active intracellular motors step directedly along the MT under
the consumption of energy. The directed, far from equilibrium motion of active motors can
be described by driven lattice gas models. The totally asymmetric exclusion process (TASEP)
describes active, hardcore interacting particles, which stochastically step in one direction on a
discrete lattice. The TASEP is often studied with open boundaries such that particles enter the
one-dimensional, finite lattice on one side with rate @ and leave the system on the other side
with rate g (see fig. 3.1c). The master equation describing the occupation probability density
function p(x, t) for the one-dimensional TASEP with open boundaries and hopping rate one is
given by

dp;);, D = px = 1,0 (1 = plx, 1) = p(x. 1 (1 = plx + 1,1) (3.87)
for the bulk lattice and by
apglt, Dy (1= p(1,1)) = p(1,1)(1 = p(2,1)) left boundary (3.88)
w = p(N = 1,)(1 = p(N, 1) = fp(N, 1) ~right boundary (3.89)
(3.90)

for the boundaries. For the non-equilibrium steady state, three different phases can be dis-
tinguished in dependence of a and f: first the high-density phase for § < 0.5 and a < f,
second the low-density phase for @ < 0.5 and f < a and third the maximal current phase for
a, f > 0.5. For more details see [259, 276].

Langmuir adsorption model While the TASEP only considers particle entry and leav-
ing at the beginning and end of the lattice, molecular motors as well as tau proteins usually
attach and detach from the bulk of the MT. The Langmuir adsorption model describes parti-
cle adsorption and desorption on a one-dimensional lattice taking hardcore particle-particle
interactions into account. Particle motion along the lattice is not considered. In the Langmuir
adsorption model, particles attach to an empty lattice site with the adsorption rate 2, and de-
tach to the solution with the desorption rate Qp, (see fig. 3.1d). The master equation describes
the particle density p (x, ) on the one-dimensional lattice:

dp (x,1)
ot

=0, (1 - p(x.1) = Qpp (x.1). (3.91)

From the master equation, the stationary state density

Q
"= aray 9
A D
and the time evolution of the particle density
Q
p(t) = 5 +—AQ . <] - e—(9A+QD)") (3.93)
A D

can be obtained [259, 277]. The time evolution of the particle density is used in the tau adsorp-
tion model in chapter 5. See Swenson and Stadie [277] for a centennial review of the Langmuir
adsorption model.
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TASEP with Langmuir adsorption model Intracellular transport can be described as a
combination of the Langmuir adsorption model and the TASEP. Combining the two models,
the master equation for the occupation probability density function p(x, ) becomes

ap(;, 2 p(x = 1,0 (1 = p(x,0) + Q5 (1 — p(x, 1)) — p(x,1) (1 — p(x + 1,1)) — Qpp(x, 1)
(3.94)
for the bulk lattice and
apglf D= e -+ Q, (1= p(1,0) = p(1,1) (1 = p(2,1)) = Qpp(1,1) (3.95)
w =p(N = 1,))(1 = p(N,1)) + Q5 (1 = p(N, 1)) = fp(N,1) = Qpp(N,t)  (3.96)

(3.97)

for the boundaries [259]. Here, the Langmuir reservoir given by Q, and Qp competes with
the side reservoirs given by a and f. If the Langmuir reservoir is dominant, the influences of
a and g are not visible and vice versa.

This section introduced stochastic processes, which are the basis of modeling intracellular
transport and MT tau interactions. For molecular motors and MT-associated proteins, however,
rates and interactions are more complex. In many particle transport systems, for instance,
particles are mechanically coupled such that their stepping and detachment rates are force
dependent (see chapters 4, 6 and 7). In the case of the tau adsorption, additional particle-
particle and particle-lattice interactions lead to quite a distinct behavior than expected from the
basic stochastic models (see chapter 5). In the following, the State of Art of more advanced
multi-motor transport models is presented.

3.4 State of the Art of modeling multi-motor transport

When being interested in the collective motion and the mutual interplay of multiple, mechani-
cally coupled molecular motors, explicit motor positions and forces as well as the mechanical
coupling via the cargo need to be taken into account. In the following, typical molecular motor
models, their coupling in multi-motor transport systems and the simulation of multi-motor
trajectories are presented.

Molecular motor heads are usually coarse-grained modeled as point-like particles not
resolving the two motor heads separately [35, 36, 151, 163, 247, 278]. The motor body
should be able to exert a force on the cargo, which scales with the stretching of the motor.
The simplest way is to model the motor body as a linear, Hookean spring. The used Hookean
spring models mostly show no resistance under compression and have a non-zero rest length
reflecting the motor contour length [34-36, 157, 163, 163, 166, 247, 278-281]. Deviating
from this standard, Li et al. [278] tested several kinds of springs with and without a rest length.
They found that the linear spring with a non-zero rest length reproduces the experimental
behavior best supporting the standard model of molecular motors [278].

When not being interested in the mutual interplay between attached motors, but only in the
number and kind of attached motors, a mean-field approach is used to calculate the force. The
mean field approach assumes that forces are equally shared between members of the same
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team [25, 33, 160, 163, 163, 282-284]. However, since motors are stochastic steppers, the
load is not supposed to be equally shared between motors. Thus, when being interested in the
mutual interplay between attached motors the explicit motor positions need to be taken into
account. When taking the explicit motor positions into account, the exerted force is calculated
by the difference between motor head and motor tail positions [33, 35, 153, 163, 281]:

F=x(x,—x— L) (3.98)

with x;, and x, being the motor head and motor tail positions, respectively, k the motor stiffness,
and L the non-zero motor rest length. While the mean-field approach is often considered when
solving the master equation numerically or analytically [32, 151, 160, 283, 285], the explicit
position model is often used in combination with MC simulations [34-36, 153, 163, 247, 286].
Since this work focuses on the mutual interplay between multiple motors, the explicit position
model will be considered in the following.

Having characterized the motors themselves, the motor actions still need to be described. Mo-
tors are typically supposed to be permanently bound to the cargo, but stochastically attach and
detach from the MT or step on the MT when being attached. Motors are modeled to attach
with a constant attachment rate [32-34, 163, 247, 282, 285, 287, 288]. Deviating from this
standard, Khataee and Howard [160] and Li et al. [278] take an attachment potential into ac-
count and use an Arrhenius-like attachment rate. Since there is no reason for motors to stretch
without experiencing a force, the motors are modeled to attach in a relaxed conformation [32—
34, 163, 247, 282, 285, 287, 288]. While the attachment procedure is identical for kinesin
and dynein, the value of the attachment rate can differ between kinesin and dynein motors
[33, 288, 289].

For the detachment of the motor, often the Kramer’s escape rate or the Bell theory is used
[290, 291]. In this case, the detachment rate increases exponentially with the applied load
force

Fsy F

k(F) =k} -ek’ =kJ-efa (3.99)

with Fy = k(’;—T being the detachment force and 6, the length scale of the detachment potential.
0

The unloaded detachment rate kg can be calculated from single motor run length L, and
velocity v:

o_ U
kd—L

(3.100)

run

While most studies use the exponentially increasing detachment rate with different kg and Fy
for dynein and kinesin respectively [32, 34, 151, 157, 163, 165, 176, 257, 278-283, 285, 286,
288, 292], Kunwar et al. [33], Klein et al. [35], and Klein et al. [36] adjust the detachment in
the super stall regime (F > F)) to the experimental findings of Kunwar et al. [33] for kinesin-1
and cytoplasmic dynein to have a more realistic model [33, 35, 36].

As the detachment, also the stepping depends on the load force a motor experiences. While
some studies use force-dependent backward and forward stepping probabilities [34, 163, 281],
most studies use a piecewise force-velocity relation [25, 32-36, 151, 153, 157, 164, 257, 278,
279, 283, 285, 288]. It is thereby distinguished between three force regimes: i) the regime
under assisting load force, ii) the regime under resisting load force up to the stall force and iii)
the super stall regime beyond the stall force. In the assisting force regime either a velocity,
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which increases with increasing assisting force [25, 32, 33, 151, 257], is used or a constant,
force-independent velocity [34, 153, 157, 164, 278, 279, 283, 285, 288]. Kunwar et al. [280],
for instance, use a force-independent velocity, which depends on the ATP concentration in a
Michaelis-Menten-like manner [280]:

_ Upax [ATP]

p= max P2l (3.101)
K, + [ATP]

In the resisting force regime, the velocity decays in an algebraic manner [25, 32-34, 99, 151,
153, 157, 164, 165, 257, 278-280, 283, 285, 288, 292]:

_{, _(F\"
U(F)—U(l <Fs> > (3.102)

In most cases the exponent is set to one w = 1, generating a linear force-velocity relation
[25, 32, 33, 99, 151, 153, 157, 164, 165, 257, 278, 279, 283, 285, 288]. Some studies also
include an ATP dependence in this regime. Klein et al. [35] and Klein et al. [36], for instance,
use the combined ATP and force dependence of the velocity found by Schnitzer et al. [120]
for kinesin-1. Moreover, a complex dependence on load and ATP concentration is also used
by Ohashi et al. [34]. In the super stall regime, the backward velocity is either set to zero
[157, 164, 165, 257, 279, 283, 285], constant [35, 36, 153] or increasing with increasing
load [25, 32, 33, 151, 288]. For dynein and kinesin mostly the same force dependencies
of the velocity are used with motor-specific stall forces, force-independent and backward
stepping velocities. An exception is the study by Khetan and Athale [288], which uses a
linear force-velocity relation for kinesin, while for dynein the step sizes reduce with load
at a constant velocity. Moreover, when focusing on motor stepping, some studies even take
sub-steps of the stepping mechanism into account [175, 286, 293].

Taking together, in the standard molecular motor model, motors are modeled as linear
springs with non-zero rest length. Motors attach to the MT at a constant rate in a relaxed
confirmation. Attached to the MT, they can step along the MT or detach again. The detach-
ment rate depends exponentially on the force, while the stepping rate decreases with force
in the resisting force regime, which is the most relevant force regime for bidirectional transport.

Having characterized the motors, next the MT and the cargo need to be defined. Since
lateral movements are not of interest in most studies, the MT is mostly modeled as a one-
dimensional (discrete) line, reflecting just one protofilament [33, 35, 36, 164, 257, 280, 292].
However, since the MT normally has several protofilaments, no steric exclusion effects (steric
hindrance) of the motors are taken into account [35, 164, 280]. Since most studies focus
on the MT attached motors, detached motors on the cargo are not simulated explicitly. The
cargo is therefore mostly modeled as an infinitesimally small point. This means all motor
tails are bound to the same spot [32, 33, 35, 36, 151, 153]. Deviating from the standard,
Chen et al. [286], Korn et al. [279] and Erickson et al. [247] simulate the cargo-MT system
in three dimensions. All of them distribute the motors randomly on the surface of the cargo
and calculate the three-dimensional force [247, 279, 286]. MT gliding assays in contrast
are modeled both, in one [164, 166, 292] and two dimensions [278, 285, 294-296]. Two
dimensions mean that the coverslip is a two-dimensional surface and the motors are distributed
randomly on this surface [278, 285, 294-296]. In this case, motor forces are calculated in
two dimensions and the MTs are characterized by a position, an orientation and a length
[294-296]. Motors are allowed to attach the MT when the MT is within a sphere with a
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certain radius (contour length) around the motor coverslip position [295]. In one-dimensional
gliding assay simulations, the coverslip is one-dimensional as the MT. For calculating motor
forces, mostly only parallel components are taken into account [164, 166, 292]. Taking
together, while cargo transport is mostly considered just in one dimension with the cargo
being an infinitesimally small point, MT gliding assay simulations can be found in one and
two dimensions.

Monte Carlo (MC) simulations are used to generate a sample of the time development

of the considered system. Thereby, most algorithms implement a discrete time update
[33, 157, 164, 247, 280, 286, 292, 293, 295, 297]. They therefore use either a time interval,
which is smaller than the fastest expected update time [33], or a random sequential update
where several motors are updated at the time [297]. Moreover, MC simulations are also used
with continuous time updates [32, 34, 163, 287]. In this case, the Gillespie Algorithm for
time-independent or time-dependent rate is applied [34-36, 298].
Besides the time, also the cargo position needs to be updated. The cargo can be propagated
by solving its equation of motion or Langevin equation. Because inertia effects are small
compared to friction and motor forces [278, 285, 294], mostly the over-damped limit is
considered and the acceleration term is neglected [34, 164, 278, 279, 285, 294-296]. The
inertia term is found to be small for cargo transport [279] as well as for MT gliding assays
[278, 294]. Besides solving the equation of motion, another approach propagates the cargo
to its equilibrium position [33, 34, 278], which is a valid approach in the over-damped limit
where relaxation times are shorter than next event times (see also chapter 4).

In summary, intracellular transport has been intensively modeled in the past and basic molec-
ular motor models have been developed. However, molecular motors differ in their properties
and not all motor properties are fully studied. That is why molecular motor models always need
to be adjusted to the motor of interest and the recent experimental findings. Moreover, to study
a specific transport experiment, the simulations need to be adjusted to the given experimental
conditions such as transport geometry, temperature, ATP concentration, buffer solution, etc.
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Microtubule gliding assays
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In this chapter, MT gliding assays are simulated and compared to MT gliding experiments.
The MT gliding assay set-up is implemented and existing kinesin and dynein models are incor-
porated in the gliding assay implementation. Comparing simulation results to experimental
results, the kinesin and dynein models are calibrated. To align the simulation to the experi-
mental findings, a mechanical activation is added to the dynein model. Having well-calibrated
dynein and kinesin models, bidirectional gliding assays are studied at varying numbers of ki-
nesin and dynein motors. Moreover, the ATP concentration and the presence of roadblocks
at different concentrations are studied as possible regulation factors of the directionality of
bidirectional transport.
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In vivo, teams of kinesin-1 and cytoplasmic dynein motors are known to be simultaneously
bound to the same cargo [9, 13, 14, 16, 25]. Teams of motors were previously observed
to behave differently than single motors [16, 17, 142, 145, 147, 154, 155]. Hence, it is
important to first understand how multiple kinesin-1 or multiple cytoplasmic dynein motors
work together in a team before considering how oppositely directed teams of kinesin-1 and
cytoplasmic dynein motors work against each other.

To investigate how multiple kinesin-1 (from now on called “kinesin‘) or multiple mammalian,
cytoplasmic dynein motors without adaptor proteins (from now on called “dynein®) work
in a team, MT gliding assays are a suitable tool. In MT gliding assays, the cooperation
between multiple motors can be studied without a potential or additional influence of the
cargo. Furthermore, the motor density can be changed systematically to understand how the
transport depends on the number of involved motors. However, simulations are needed for a
more detailed picture of the transport process on a molecular level. Unlike in the experiment,
where transport velocities can be measured, simulations can additionally give detailed insights
into how many and what kind of motors are involved in the transport and how these motors
work in a team to transport the MT. To model MT gliding assays, previously published kinesin
and dynein models [33, 35] are adapted to the particular kinesin and dynein studied, and
implemented in the gliding assay set-up. All shown experimental results are from experiments
performed by the Stefan Diez lab!.

In the following, it will be presented first the modeling of the MT gliding assay set-up, second
the separate study of unidirectional kinesin and dynein gliding assays, and third the study of
bidirectional gliding assays and the influence of regulation mechanisms such as the number
of motors, the ATP concentration, and roadblocks.

4.1 Modeling gliding assays

In experimental gliding assays, a coverslip is coated with molecular motors and a MT is placed
above. Motors bind to the MT and step on it until detaching stochastically under load or at
the end of the MT. When stepping on the MT, motors exert forces on the MT and propel it
forward. Gliding assays were modeled before in one [164, 166, 292] and in two dimensions
[246, 278, 285, 294-296]. Gliding trajectories from the here presented experiments (fig. 4.1a),
however, reveal that MTs move along straight lines. That is why, here, a one-dimensional
model is used. The used one-dimensional model is presented in the following.

In the one-dimensional model, the coverslip (from now on called surface) coated with molec-
ular motors is modeled as a line, on which motors with a finite radius R are stringed. The
surface presents the global, fixed coordinate systems. In this coordinate system, the position
of the rigidly bound tail of the i motor is denoted as x{. Because it is a priori not known
how far the MT will move in which direction, new motors need constantly be added to the
surface during the simulation to make sure that there are always the amount of motors under
the MT, which represents the given surface density. In detail this means, if the MT is moving
in positive direction, motors are added at the positive end of the line and vice versa. The motor
line density on the one-dimensional modeling surface should always reflect the experimentally
given motor surface density . Therefore, the two-dimensional surface density o needs to be
appropriately transformed into a line density. To calculate the line density, first, the number

'Experiments were performed by Lara Scharrel from the Stefan Diez lab at B CUBE, TU-Dresden. See also the
thesis [299]. I did not perform any experiments myself.
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Figure 4.1: Illustration of gliding assays. a) Figure shows example MT trajectories (x-y-plane). The

shown MTs are bidirectionally transported by kinesin and dynein motors. It can be seen
that MTs move in straight lines. That is why the transport of a MT in a MT gliding assay
can be modeled in one dimension. b) Figure shows an illustration of an experimental glid-
ing assay. The cover slip (green background) is coated with motors (blue circles) and a MT
(orange-red tube) is placed above. All the motors within the attachment area (dark green
rectangle under the MT) are assumed to be able to reach the MT. The attachment area is
given by the rectangle L X Lyy. ¢) Figure shows a sketch of a gliding assay model. The
MT (orange rectangle), with its plus-end on the left and its minus-end on the right side, is
placed above the surface (=coverslip, gray axis line). Here, only one motor, coarse-grained
modeled as a dot, with three different MT positions is drawn (blue dots with a curvy line
representing the motor spring). If the motor has the left MT position, it experiences a pos-
itive force (F’ > 0) and if the motor has the right MT position, it experiences a negative
force (F' < 0). If the motor has the middle MT position, it experiences no force because
the motor is attached at its equilibrium position x.,. The equilibrium position x4, given
in the coordinate system of the MT, is the position of the motor head on the MT directly
above the motor tail position on the surface. Thus, at the equilibrium position the motor
extension Ax‘(?) is zero.
Experiments were performed by Lara Scharrel from Stefan Diez lab at B CUBE, TU-
Dresden. Fig. c) is reproduced/adapted with permission from The Company of Biolo-
gists LTd., Journal of cell science. Originally published in Journal of cell science, volume
132(4), page jcs220079 (2019) [300]. Print permissions for fig. a was given in a private
communication by the Stefan Diez lab at B CUBE, TU-Dresden.

of motors, which can reach the MT in the experiment, needs to be calculated. Assuming that
motors within the lateral width L, around the MT can reach the MT, the area on the sur-
face from where motors are able to attach the MT (from now on called attachment area, see
fig. 4.1b) is:

Aattach = Lattach X LMT 4.1
with Lyt being the MT length. The number of motors within this attachment area A, is
obtained by:

N, attach = Aattach X oy = Lattach X LMT X 0 4.2)

with the experimentally given surface density o,. Having the number of motors, which can
potentially attach the MT, the motor line density can be calculated

N, ttach
’lattach = ZME: = Lattach X Oy (43)
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and the mean distance between motors on the line:
1 1

attach Lattach X Oy

Battach = 1 “4.4)

Thus, A,,ch 1 the one-dimensional motor line density corresponding to the two-dimensional
experimental motor surface density o,. To distribute motors randomly over the one-
dimensional modeling surface, motor tail positions are subsequently calculated as

Xt =xl+u 4.5)
whereby u is a random number uniformly distributed in the interval [2R, 6, — 2R] with R
being the radius of the motor (see table A.1 of the appendix for parameter values and refer-
ences). Once set, the motor tails are permanently bound at xi during the complete simulation.
As the surface, also the MT is modeled in one dimension as a one-dimensional rigid rod. Mod-
eling the MT in one dimension can be considered the standard approach [33, 35, 36, 164, 257,
280, 292]. To characterize the MT, it is therefore sufficient to store the MT plus-end position
Xpmr.+(?) (or the minus-end position Xy (7)) in the global coordinate system and the MT
length Ly r. A second coordinate system (body-fixed coordinate system of the MT, from now
on called MT coordinate system) is chosen such that the plus-end is fixed (origin of the coor-
dinate system) and the motors move in this coordinate system between zero and the MT length
Lyt Positions of MT-attached motor heads, denoted by xfl(t), are stored in the MT coordinate
system.
As a consequence of the one-dimensional representation of the MT gliding assay, molecular
motors are modeled as one-dimensional, linear springs. Molecular motors have been modeled
as linear springs before [33-36, 157, 160, 163, 164, 166, 176, 247, 278-280, 288, 292, 294].
The one-dimensional motor extension is calculated as the difference between head and tail
positions in the global coordinate system:

AX'(1) = x{ — (Xpyr . (D) + X (1)) (4.6)

with Xy, (1) + xil(t) being the position of the motor head in the global coordinate system.
In accordance with previous studies [35, 36, 157, 163, 166, 247, 278-281], a non-zero motor
rest length L is assumed. This means, if the motor extension is less than the motor rest length
L, the motor is not exerting any force on the MT. Thus, compression forces are neglected.
Consequently, the motor force is given by

K (AX'(t) = Ly), AX'(t)> L,
Fi(t)=30, |Ax' ()| < Ly @.7)
K (AX()+ Ly), Ax'(1) <—L,

with k being the stiffness of the motor. Thereby, negative forces are defined as forces pulling
the MT in negative direction of the global coordinate system and positive forces as forces
pulling the MT in positive direction of the global coordinate system. See fig. 4.1c for force
directions and the MT orientation. Taking together, motors, modeled as linear springs with
non-zero rest lengths, exert one-dimensional forces parallel to the MT length axis.

Having characterized the geometry of the gliding assay and the motors, the update mechanism
needs to be described. Motors attach with a constant rate and step and detach with force-
dependent rates. MT-attached motors can exert a force on the MT. Having N, motors attached
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to the MT and therefore a total motor force of

N att

Fo) = ) F(0) 4.8)
1=0

acting on the MT, the MT needs to be moved according to the equation of motion
2

m
or?

Xyt (D) = Fio () = & - omr 4.9)
Thereby, Stoke’s law is used with the drag coefficient { and the velocity of the MT vy;r. The
efficient drag coefficient for a cylinder moved along the cylinder axis is given by [273, 301,
302]:

270 Lyt

= — 4.10
n(p) + 7, @10

with the viscosity #, the MT length Ly, the MT length to MT radius ratio p = Lyp/2r and
the end-effect correction y; for movements parallel to the cylinder axis. Approximations for
the end-effect correction were used as found by de la Torre and Bloomfield [302] (based on
the standard expressions of Broersma [274]). The inertia term

2

m
or?

Xyr4 () 4.11)

could be neglected, if the inertial force is much smaller than the viscous force, that is, if the
Reynold number is low. The Reynold number is defined as

R = Enertial — lU_p (412)
F, viscous n

with / being the characteristic length, v the speed of the object relative to the fluid, p the
density of the fluid and # its viscosity [294, 303]. Using the viscosity and density of water, a
typical MT length of Ly, = 10 pm and a speed of v = 1 um/s (approx. the maximal speed
of kinesin-driven gliding assays [164—167]), a small Reynold number of R ~ 107 <« 1is
obtained [301]. Thus, it is indeed appropriate to neglect the inertia term and model the MT
in the over-damped limit. The equation of motion of the MT movement under the total force
F,,(t) becomes:
02

mﬁXMT#(t) =F,—-¢ vyt =0. (4.13)
When the MT moves in the over-damped limit, the MT may reach its equilibrium position (i.e.
force-free position) before the next motor event (attachment, stepping, or detachment) occurs.
To check whether the MT reaches its equilibrium position before the next motor event, the time
needed until reaching the equilibrium position Az, ., needs to be compared with the update
time A7, 4, the time passing until the next event occurs. According to eq. (4.13), a force of
F,,(t) generates a MT velocity of:

oyt = F“;i(’). (4.14)
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This means, if the difference between the current MT position and its equilibrium position is
AX(y-eq> the MT approximately needs the following time

_ Axto—eq

Atyyeq = (4.15)

OmT

to reach this equilibrium position. The MT could reach its equilibrium position before the next
event occurs, if

Alyeq < A (4.16)

update

holds. At qae
tors) occurs. Comparing Af, ., and At

is thereby the time passing until the next motor event (next update of the mo-

update from simulations?, it can be found that Atypdaee 18
typically in the order of 10~* — 1075, while At . is typically in the order of 1077 — 107%s
[300]. Thus, At is at least 2 orders of magnitude smaller than Af,,4,. This means the
MT can indeed be moved immediately to its force-free, equilibrium position. Consequently,
instead of solving the equation of motion, the MT can be updated by finding its equilibrium
position after each motor event.

To find the closest force-free position of the MT, two runs of bisection search (see section
3.2) are used. The first run of the bisection search tries to find a force-free (equilibrium) MT

position. Therefore, the first search interval is set as follows:

B = [5P01E0 = L, XU | @.17)

most left

with the tail position of the most left, MT-attached motor x;
the most right, MT-attached motor xinOSt "eM  The first run of bisection search ends, when
a force-free MT position is found. However, since motors have a non-zero rest length L,
within which there are force-free, the found force-free MT position is not unique. Because
the MT moves in the over-damped limit, it has to be found the force-free position closest to
the previous MT position. To find the force-free position closest to the previous MT position,
a second run of bisection search is applied. For the second run of bisection search, the first
search interval ranges from the previous MT position to the force-free position found by the
first run of bisection search. The second run of bisection search ends when having found
the force-free position, which is closest to the previous MT position. That is how the MT is
moved in the over-damped limit.

and the tail position of

Moving the MT in the over-damped limit by finding the closest force-free position,
means that rates can be considered to be time-independent. Thus, Gillespie’s algorithm for
time-independent rates (see section 3.2) can be used to propagate the system in continuous
time [268, 298]. Since rates cannot be restored, Gillespie’s first reaction method is used to
select the next event [268, 298].

In summary, a complete simulation run is as follows: at the beginning, no motor is attached
to the MT. In the course of the simulation the motors attach, detach and step on the MT,
the time is updated by means of Gillespie’s Algorithm and the MT is moved by finding the

?In this simulation, the equilibrium position is found by a bisections search algorithm (see below) and the MT is
immediately moved to this position. Af,4,, comes out of the Gillespie algorithm, which is used to find the next
motor event and to propagate the time. Af, ., could be calculated using 4.15 when knowing the equilibrium
position from the bisection search algorithm.
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closest force-free position. The simulation is ended either when the simulation time is over
or if no motor is attached to the MT anymore. From the experiment, it is known that if no
motor is attached, the MT diffuses away from the surface. One simulation run represents the
transport of one MT. In total, the simulation is run N, s times to mimic several MTs in the
experiment.

4.2 Unidirectional gliding assays

In this section, unidirectional kinesin- and dynein-driven gliding assays are studied. The here
presented work has been published in Monzon and Scharrel et al. 2019 [300] (see chapter
appendix D).

4.2.1 Kinesin-driven gliding assay

It has been previously shown that multiple kinesin motors are bound to intracellular cargo
simultaneously [16, 17, 142, 155]. It is therefore intriguing to understand how multiple
kinesin motors work together. This has been intensively studied before [15-17, 139, 142, 155-
159, 164—167]. It has been shown that the run length of the cargo and the total force increase
with increasing number of kinesin motors [15-17, 139, 142, 155-158], but the cargo velocity
is independent of the number of kinesin motors [158, 159, 164-167]. Kinesin is therefore
considered to weakly cooperate. The reason for the weak cooperation is thought to be
the random motor extensions due to the stochastic stepping of the single kinesin motors.
This results in motors, which pull the cargo back while others try to advance the cargo
[152, 156, 164, 171].

As a control for the here presented gliding assay model, unidirectional, kinesin-driven gliding
assay simulations are performed and compared to experiments by the Stefan Diez lab’ to
calibrate model parameters. The aim is to test whether the simulation can confirm the
predictions of former studies about a weak kinesin cooperation. Having already described the
geometry and the update mechanism of the gliding assay implementation, only the description
of the kinesin model is missing. As said before, the model is based on previously published
models by Klein et al. [35] and Kunwar et al. [33]. Here, the model is adjusted to the
state-of-the-art understanding of kinesin motors. For completeness, the whole kinesin model
will be presented in the following.

Kinesin model Kinesin is modeled as a one-dimensional, linear spring with spring con-
stant (i.e. kinesin stiffness) xy;, and the kinesin-specific non-zero rest length L ;,. Within
this rest length, the kinesin motors do not exert any force. Thus, the force a kinesin motor
exerts is calculated as:

| Kin (AX' (1) = Loyin) s AX(0) > Loy,
Fii)y=10, |AX! ()| < Lgin (4.18)
Kiin (AX'(1) + Loyin) »  AX (1) < —Loyip

3Experiments were performed by Lara Scharrel from Stefan Diez lab at B CUBE, TU-Dresden. See also the
thesis [299]. I did not perform any experiments myself.
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with Ax(¢) given by eq. (4.6).

Kinesin motors can perform the following events: i) attachment to the MT, ii) stepping on the
MT, and iii) detachment from the MT. A kinesin motor in the attachment area under the MT
(seeeq. (4.1) and fig. 4.1b) binds to the MT with the kinesin-specific attachment rate k, ;,. As
in previously published molecular motor models [32-34, 163, 247,282, 285, 287, 288], motors
attach in arelaxed conformation. Here, the motor attaches at its equilibrium position x,,, where
the head is exactly positioned above the tail such that Ax’ = x/ — (Xyp . (f) + xfl(t)) =0 (see
fig. 4.1c for an illustration). For the force-dependent stepping the previously published model
by Klein et al. [35] uses the force and ATP-dependent stepping rate found by the experimental
study of Schnitzer et al. [120]. In the here presented model, the same ATP and force-dependent
stepping rate is applied. The force dependence of the stepping rate can be divided into three
force regimes: i) assisting forces (F’ < 0), ii) resisting forces below stall (Fykin > F "> 0)and
iii) super stall forces (F' > F xin)- In the assisting force regime (F < 0) the stepping rate does
not depend on the force, but on the ATP concentration in the following Michaelis-Menten-like
way:

kO - [ATP]
skin([ATP]) = —2——— (4.19)
[ATP] + k

0
cat/ kb
with kgat being the unloaded catalytic turnover rate constant and kg the unloaded second-order
rate constant for ATP binding. The unloaded catalytic turnover rate is defined by the maximal
kinesin forward velocity vg;, divided by the step size d: kgat = Ugyin/d [35, 120]. For the
unloaded second order rate constant kg, the value found by Schnitzer et al. [120] is applied. A
constant stepping rate under assisting forces is supported by previous single molecule experi-
ments [124, 127, 128].
Under resisting forces (Fy,;, > F' > 0), experimental, single molecule studies previously
observed a decrease of the velocity with increasing force up to the stall force [17, 120, 124,
127, 128, 304-306]. Schnitzer et al. [120] suggested a Boltzmann-type force dependence of
the rate constants:

kO
N m :
k,(F") = = qmeFi‘S/kBT with m € {cat,b} 4.20)

with ¢q,, + p,, = 1. The fraction of the unloaded catalytic cycle g, and the fraction of the
unloaded ATP binding p, are taken from Schnitzer et al. [120] and the characteristic length &
is determined such that the stepping rate is small at the stall force:
K cat(Fs in) [ATP] !
cat” s in =0.1s7", 4.21)
[ATP] + kcat(Fs,kin)/kb(Fs,kin)

Syin(F, s.kin> [ATP]) =

This equation is numerically solved using MATLAB. Using the Boltzmann-type force de-
pendence of the rate constants, the stepping rate in the resisting force regime below stall
(Fyxin > F' > 0) becomes:

i Vkin/d - [ATP] k., (F)[ATP]
S (F', [ATP]) = = : _. (4.22)
[ATP] + K,,  [ATP] + k_, (F)/ky(F')

The force dependence under resisting forces is in accordance with experimental findings [17,
120, 124, 127, 128, 304].
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In the super stall regime (F' > F;,), the kinesin motor was observed to step backward with
constant velocity [116, 124, 305]. Thus, the stepping rate in the super stall regime is:

U .
= >kin (4.23)

Skin 4

whereby vy 1, is the kinesin backward velocity (see table A.1 of the appendix for parameter
values). If a motor is chosen to perform a step, the motor head is moved d = 8nm back
or forth in the MT coordinate system. Reaching one of the MT ends, the motor cannot step
further. As only one protofilament is modeled, but the motors are supposed to reach multiple
protofilaments on the MT, exclusion effects (mutual sterical hindrances) are not taken into
account as in previous work [35, 164, 280].

While Klein et al. [35] and Kunwar et al. [33] used a linearly increasing detachment rate in
the super stall regime, here a purely exponentially increasing detachment rate is used. The
exponential detachment behavior was used in previously published kinesin models [32, 34,
151, 157, 163, 165, 176, 257, 278-283, 285, 286, 288, 292] and is predicted by the Kramer’s
or Bell theory [290, 291]:

P

Kqin(F') = kg g, - € asn. (4.24)

The force dependence of all kinesin rates are shown in figure 4.14b and the parameter values
used for the kinesin model are listed and discussed in table A.1 of the appendix A. Parameter
values are taken from literature whenever possible. Kinesin gliding assay simulations were
robust upon parameter changes.

Taking together, kinesin is modeled as a linear spring with a non-zero rest length. In the
model, kinesin attaches at a constant rate, detaches at a rate that increases exponentially with
the load force, and steps with a force and ATP-dependent stepping rate. Unlike the stepping
where the behavior found by Schnitzer et al. [120] for kinesin-1 is used, this model reflects the
standard kinesin model (see section 3.4 for a review of previous models). Having characterized
the motors and the modeling of the gliding assay, results from MT gliding assay experiments
and simulations will be presented in the following.

Results and discussion As kinesin gliding assay simulations should be used to under-
stand gliding assay experiments, first the experiments will be described. In the experiment,
coverslips were coated with kinesin-1 motors at low (o y;, = 10um/s), intermediate
(05 kin = 51 um/s) and high densities (o y;, = 102 um/s). Fluorescent labeled MTs with
varying lengths were put on the motor-coated coverslip (from now on called surface). The
position of the MT was measured at each second (At = 1s). From the position, median
instantaneous velocities plus interquantil ranges are calculated. Kinesin-driven velocities
are denoted positive in our set-up*. For a better comparison with the simulation, the given
MT lengths and surface densities were transformed to a median number of kinesin motors
under the MT using eq. (4.2). Median instantaneous velocities are depicted as a function of
the calculated median number of motors under the MT once for fixed MT length intervals
and varying kinesin densities (fig. 4.2b), and once for fixed kinesin densities and varying
MT lengths (fig. 4.2d). It can be seen that the MT gliding velocity neither changes with

4The geometry is chosen such that when kinesin steps towards the MT plus-end, it exerts a positive force on the
MT, which generates a positive gliding velocity of the MT. See also fig. 4.1c.
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a) Simulation: density dependence b) Experiment: density dependence
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Figure 4.2: Multiple kinesin motors transport the MT at constant high velocity. For simulation

(left) and experiment (right) median velocities (and interquantil range for the experiment)
are depicted as a function of the number of motors. The number of motors is either varied
by varying the kinesin surface density at a constant MT length (upper panels) or by varying
the MT length at constant kinesin densities (lower panels). In the experiments, MT lengths
were binned into intervals and mean values are given for the density dependence (fig. 4.2b).
Median number of motors was calculated for MT lengths and surface densities. In the sim-
ulation, constant MT lengths were applied. For simulation and experiment, constant high
median gliding velocities are observed for varying kinesin densities (fig. 4.2a and 4.2b) as
well as varying MT lengths (fig. 4.2c and 4.2d). All shown experiments were performed
by Lara Scharrel from Stefan Diez lab at B CUBE, TU-Dresden. Reproduced/adapted with
permission from The Company of Biologists LTd., Journal of cell science. Originally pub-
lished in Journal of cell science, volume 132(4), page jcs220079 (2019) [300].

increasing density at a fixed MT length (fig. 4.2b), nor with increasing MT length at a fixed
surface density (fig. 4.2d). For all measured densities and MT lengths, the MT gliding
velocity was around 850 nm/s. In addition, velocity histograms (fig. 4.3d and 4.3b) show
sharp peaks around 850 nm/s. The findings are in accordance with previous studies saying
that the velocity of multiple kinesin motors is independent of the number of kinesin motors
[15, 157-159, 161, 164, 166, 167]. Thus, the experiment confirms the weak cooperation of
multiple kinesin motors.

However, while most studies observed a constant high velocity for multiple kinesin motor
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transport [15, 157-159, 161, 164, 166, 167], Bieling et al. [165] finds a reduction of the
velocity at very high motor densities. This reduction of the velocity is presumably due to
mutual steric hindrance of the motors (exclusion effects). Here, such a reduction of the
velocity at high motor densities is not observed and it can be concluded that exclusion effects
(mutual steric hindrance) are still negligible at the highest experimentally used kinesin density
(6, = 102 um~2). This means the model assumption that MT-attached kinesin motors do
not sterically hinder each other to step or attach, is in accordance with the experiment (see
model description above). Note, however, at even higher kinesin densities, exclusion effects
are expected to become relevant and velocities are expected to decrease. In total, not taking
exclusion effects on the MT into account is in accordance with the experiment for the applied
motor densities.

To simulate the MT gliding assay, the above described gliding assay model with the above
described kinesin model and the parameter values listed in table A.1 of the appendix A are
used. For "measurements” during the simulation, the same measurement interval Az .. = 1s
as in the experiment is applied. However, when measuring the MT position in the simulation,
a Gaussian noise with zero mean and variance o, = 30nm is added to the MT position
mimicking the experimental measurement uncertainty. From the MT position and the time
interval of A¢, ., median instantaneous velocities are calculated as for the experiment. Taking
the same kinesin densities and mean MT lengths as used in the experiment, the simulation
tries to reproduce the experimental data to calibrate the model.

Simulation results (fig. 4.2a and 4.2c) show high median velocities around 850 — 900 nm/s
as in the experiment. The velocities are widely independent of the motor number. Only
at small number of motors (Ny;, < 8) velocities are slightly reduced for very small MTs
(Lyr = 2.5pm) and high (o;, = 102 um~2) and intermediate (y;, = 51 um~2) densities.
If MTs are short, motors often reach the end of the MT and cannot step any further. Motors
at the end of the MT need to be pulled off by other advancing motors and new motors need
to attach. If not enough motors attached to the bulk of the MT exists, this causes a slight
reduction of the velocity. Taking together, as the experiment, the simulation does not show a
strong dependence of the velocity on the number of motors. Thus, the simulation confirms the
weak cooperation between kinesin motors, which is in accordance with previous experimental
and theoretical studies [159, 162, 164—-167]. Hence, the simulation can be used to further
investigate kinesin-driven gliding assays.

It was previously suggested that apart from sterical hindrance, MT-attached motors impair
each other because of stochastically oriented motor forces [152, 156, 164, 171]. Here, the
simulation is used to measure forces, which the attached motors exert on the MT (fig. 4.4b
and 4.4c). It can be seen that while many motors exert positive forces (trying to move the MT
in kinesin-direction) up to the kinesin stall force (Fj;, = 6 pN), there are also motors exerting
high negative forces (holding the MT back) up to 20 pN on the MT. Consequently, the latter
exerts forces against the advancing motors and slows them down. In detail, about 90% of
the motors exert forces close to zero, 7 — 9% exert positive forces, pulling the MT in kinesin
direction and 1 — 3% of the attached motors hold the MT back. Because of the symmetric
force dependence of the detachment rate, advancing motors need to combine forces to be able
to pull the kinesin motors off, which hold the MT back. Moreover, the force histograms show
that forces are not equally shared by MT-attached motors. The same was found before by the
theoretical study of Ucar and Lipowsky [163]. Moreover, previous experimental studies of
gliding assays observed that most motors are near zero force [164] and that there is always a
small fraction of motors holding the MT back [152].
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a) Simulation: length dependence

b) Experiment: length dependence
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Figure 4.3: Instantaneous MT gliding velocities of Kinesin gliding assay simulations and experi-

ments. Histograms of instantaneous MT gliding velocities from simulation (left) and ex-
periment (right). Upper panels show histograms for different MT lengths at intermediate
kinesin density (o y;, = 51 um~2) and lower panels show histograms for different kinesin
densities at a fixed MT length interval of Ly = [10, 15] um. For all simulations, the cor-
responding length distribution of the experiment is applied. All histograms show a peak
at high MT gliding velocities (850 — 900 nm/s) and the simulation reproduces the velocity
histograms of the experiment. All shown experiments were performed by Lara Scharrel
from Stefan Diez lab at B CUBE, TU-Dresden. Reproduced/adapted with permission from
The Company of Biologists LTd., Journal of cell science. Originally published in Journal
of cell science, volume 132(4), page jcs220079 (2019) [300].
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4.2. Unidirectional gliding assays

Furthermore, when comparing force histograms for different number of motors, it can be
seen that the force histograms do not change with the number of motors (for high number of
motors; compare fig. 4.4b with fig. 4.4c). This means the percentage of motors pulling the

a) Ny, =4

b) N, = 30

o

o

IS
T

Normalized histogram
o
o
N
T

o

T T T
0s=102um2

o

o

=
T

Normalized histogram
o
S
T

T T T
0s=102um2

-20

-15

-10 -5
Forces [pN]

10

o

-20

-15

-10 -5
Forces [pN]

10

e
=
=

=50

o
o
1S

Normalized histogram
o
o
N

o

T T T
0s=102um2

-20

L
-15

-10 -5
Forces [pN]

10

Figure 4.4: Force distribution of MT-attached kinesin motors. Normalized histograms of forces
that MT-attached kinesin motors exert on the MT in the simulations. Positive forces pull
the MT in positive direction (kinesin-driven direction) and negative forces pull the MT in
negative direction (see 4.1c for the force definition). In all simulations, a kinesin density
of o yin = 102 um is applied and the MT length is chosen such that on average Ny;, = 4
(fig. 4.4a), Ny;, = 30 (fig. 4.4b) or Ny;, = 50 (fig. 4.4c) motors can potentially attach the
MT. For long enough MTs (Ny;, = 30 and Ny;, = 50) the force distribution is independent
of the number of motors. For short MTs (Ny;, = 4) negative and positive forces are more
pronounced. In all simulations there exist motors, which pull the MT in negative direction
and thereby impair the other motors from further stepping and advancing the MT.

MT back is independent of the total number of available motors under the MT. This has been
shown before by the experimental study by Tjioe et al. [152]. Thus the reason for the weak
kinesin cooperation is that kinesin motors are identical stochastic steppers such that a constant
percentage of motors pull the MT back and slow the advancing motors down. This results in
a MT gliding velocity, which is independent of the number of motors.

As previously mentioned, velocities are slightly reduced for small number of motors
(Nyin < 8) in the simulation (fig. 4.2a and 4.2¢). In detail, the velocities slightly reduce for
small number of motors on short MTs (Lyy = 2.5 um) or at high (o, };, = 102 um~!) or
intermediate densities (6, = 51 um~!) (see fig. 4.2a and fig. 4.2c). To obtain a small
number of available motors at high (or intermediate) densities, the MT needs to be very
short. Thus, slightly reduced velocities are only observed for very short MTs. Looking in
detail at experimental results, it can be seen that for the smallest number of motors at the
high density (o ;, = 102 um~!), the median velocity is also reduced to a very slight extent
(fig. 4.2d). This indicates that also in the experiment the velocity is slightly reduced for short
MTs. Thus, the reduced velocity is not an artifact of the simulation, but rather a weak, but
real effect. Since the effect is less pronounced in the experiment, it can be concluded that the
experimentally given surface density might be overestimated. In the experiment, it is difficult
to measure the surface densities. The experimentally given surface densities are therefore just
rough extrapolations from the kinesin concentration in solution. See our publication Monzon
and Scharrel et al. 2019 [300] (see appendix D) for more information about the estimation
procedure.

Even though the experiment supports the observation that the velocity reduces for very short
MTs, it remains unclear why the velocity is reduced. Measuring the forces motors exert on
(very) short MTs (fig. 4.4a), it is observed that positive forces, as well as negative forces,
are more pronounced and the peak at zero is reduced. This indicates that motors impair each
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Chapter 4. Microtubule gliding assays

other more when the MT is very short. For short MTs, the MT length becomes comparable
with the motor run length (= 1.5 um for this simulation, which is in accordance with previous
experimental studies [157, 158]). If this is the case, most motors reach the MT plus-end. In the
simulation (and the same is expected for the experiment), motors do not detach automatically
at the end of the MT but need to be pulled off by other motors advancing the MT. For short
MTs, they are not many other motors, which advance the MT and can pull off the motors
at the MT end. Consequently, for short MTs, the motors at the end of the MT carry a high
weight and reduce the MT gliding velocity.

Finally, the simulation is used to gain some further insides into the number of engaged motors.
As previously mentioned, neither the exact number of available motors under the MT nor
the number of motors attached to the MT is given by the experiment. Having calibrated the
kinesin model by aligning the simulation and experiment, the simulation can be used to give
an estimate for the number of available and MT-attached motors. Figure 4.5a and 4.5b show
the median number of MT-attached kinesin motors as a function of the number of available
kinesin motors, which are under the MT. It can be observed that almost all motors, which are

a) Simulation: density dependence b) Simulation: length dependence
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Figure 4.5: All available kinesin motors are attached to the MT. Median number of MT-attached
kinesin motors as a function of the available number of motors in the simulation. The
number of available motors is varied either by varying the kinesin density at a fixed MT
length (left) or by varying the MT length at a fixed kinesin density (right). Both cases show
that all available motors are attached to the MT.

able to attach the MT, are attached to the MT. From that, it can be predicted that up to 60
motors are expected to transport the MT at constant high velocities.

In summary, experiment and simulation show widely constant high gliding velocities in-
dependent of the number of MT-attached kinesin motors. These findings are conform with
previous gliding assay studies [164, 166, 167]. Using the simulation, it can be shown that MT-
attached motors exert forces against each other and thereby impede a cooperation between
multiple kinesin motors. Weak kinesin cooperation was found before theoretically and exper-
imentally [152, 157, 162, 164]. Having well-calibrated the kinesin model, the here presented
kinesin model will be used in section 4.3 to investigate bidirectional, kinesin, and dynein glid-
ing assays.
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4.2. Unidirectional gliding assays

4.2.2 Dynein-driven gliding assay

It is known that intracellular cargo is transported by multiple dynein motors
[13, 17, 20, 142, 147]. To get a better understanding of the pure system without any
additional influence factors, mammalian, cytoplasmic dynein without adaptor proteins is
studied. Single mammalian dynein motors without adaptor proteins (from now on referred
to as dynein) are known to be weakly processive and to only perform diffusion-like mo-
tion [89, 90, 307]. How multiple such dynein motors work in a team has been studied
before [89, 158, 163, 172]. It has been observed that run length increases with increasing
number of motors [158, 172] and forces generated by multiple dynein motors are additive
[17, 89, 142, 172]. Unlike single dynein, multiple dynein motors were observed to perform
directional motion [172]. The velocity of multiple dynein motors without adaptor proteins has
been shown to be very high (1000 nm/s) [89]. Moreover, it could be shown that the drift part
of the multiple dynein motility increases with increasing number of motors [89]. However, a
complete analysis of how the transport velocity depends on the number of dynein motors is
missing. Moreover, it remains unclear how dynein motors, which show non-processive and
diffusive motion on the single molecule level, can produce such high velocities when working
in a team.

To understand how multiple dynein motors work in a team, the dynein-driven gliding assay is
modeled. The gliding assay is modeled as introduced in section 4.1 and for dynein, a model is
used, which is based on the previously reported models by Kunwar et al. [33] and Klein et al.
[35]. Here, the model is adjusted to the current knowledge of single dynein properties. In the
following, the complete model is presented.

Dynein model Dynein is modeled as a one-dimensional linear spring with a non-zero rest
length L 4y, as in previous studies [33-36, 163, 288]. Because dynein is a big, roundish
molecule, the here presented model assumes that dynein even exerts a small force when being
stretched less than its rest length (JAX'| < Ly 4yn)- Therefore a non-zero, but small spring
constant is applied when the dynein extension is less than its rest length and a higher spring
constant (stiffness) when it is stretched more than its rest length (JAx| > L07dyn). Different
spring constants in dependence of the motor extension have not been used in the previously
published models by Kunwar et al. [33] and Klein et al. [35]. The dynein force production can
be summarized as follows:

' Kl,dyn : LO,C.lyn + K2,dyn : (Axi(t) - LO,dyn) ’ Axi .> LO,dyn
F'(t) = { k1 gyn - AX'(D), |AX'| < Lo gyn (4.25)
_Kl,dyn : LO,dyn + KZ,dyn : (Axl(t) + LO,dyn) ’ Ax' < _LO,dyn

with the motor extension Ax'(¢) given by eq. (4.6), the motor stiffness K1 ayn When the motor
is stretched less than its rest length and k, 4., When the motor is stretched more than its rest
length. Thus, it holds k| 4y, < K3 gyn-

During the simulation, dynein can perform the following events: i) attach to the MT, ii) step on
the MT, or iii) detach from the MT. All dyneins within the attachment area (see eq. (4.1)) can
potentially attach to the MT with their head region. Dynein motors attach with the constant rate
kqayn- Like kinesin, they attach in a relaxed conformation. Exerting a force even when being
stretched less than its rest length, the only force-free position is when tail and head positions
are identical and Ax’(f) = 0. Thus, dynein attaches to its equilibrium position (compare fig.
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4.1c). Unlike kinesin, where exclusion effects are neglected, dynein can only attach when its
equilibrium position on the MT is empty. Because dynein covers a higher area on the MT
(radius Ryyn = 24 nm [89, 95, 308]) than kinesin (radius R,;, = 4 nm [193]), it is assumed that
exclusion effects (mutual steric hindrance) need to be taken into account. This is in accordance
with the experimental results (see below). As in the model by Klein et al. [35], the same
piecewise defined force-velocity curve is applied for dynein as previously found for kinesin
[120]. Please see equations (4.19), (4.22) and (4.23) for motor stepping in the different force
regimes: i) assisting forces (F' > 0), ii) resisting forces below stall (_Fs,dyn < F' < 0) and iii)
super stall forces (F' < —F 4,,). Note that assisting/resisting forces have the opposite sign for
dynein than for kinesin. However, while the curve is the same as for kinesin, the parameters
are adjusted to known dynein values: for the stall force, a previously reported mammalian
dynein stall force is applied (see table A.1 of the appendix A). For the maximal, force-free
velocity, the dynein single molecule velocities from the experiment are used as mean force-
free forward velocities. While for kinesin, a constant maximal velocity is applied, for dynein
a wide maximal forward velocity distribution is used to generate individual force-free forward
velocities for dynein motors. A wide maximal single molecule velocity has previously been
experimentally observed for single dynein motors [94, 95, 104]. Here, a Gaussian distribution
with mean vy gy, mean and standard deviation o, 4., truncated at Ug 4o, 1owest A4 Vg gyn highest 1S
used. The Gaussian is truncated to avoid too small or even negative velocities. Vg gy jowest
and vg gu; highest are chosen in such a way that the distribution remains symmetric around the
mean. During the simulation, each motor obtains its own maximal velocity drawn from the
truncated Gaussian distribution. Having a different stall force, also a different characteristic
length for the Boltzmann-type force dependence of the first and second order rate constants is
found (see eq. 4.21). Finally, for the constant backward velocity a previously reported yeast
dynein value is applied, which is almost double the kinesin value. As for the attachment also
for the stepping exclusion effects need to be considered. This means, dynein can only perform
a step when the next site on the MT is empty and dynein can only attach to the MT when its
equilibrium position is empty. To perform a step, the same step size as for kinesin is used:
d = 8§nm.

While Klein et al. [35] and Kunwar et al. [33] implemented a catch-bond detachment in the
super stall regime for dynein, the state of art knowledge is that dynein performs a "slip-bond"
under assisting forces and a "slip-ideal bond"> under resisting forces [86, 92]. In particular,
Cleary et al. [86] find that the detachment rate increases faster under assisting loads than under
resisting loads. The detachment behavior of Cleary et al. [86] is modeled here:

Ky (F) = —0.1F' +04 for F'<0 426)
COMTIT 32F 404 for FI>0. '

The force dependence of all dynein rates is shown in figure 4.14c and the parameter values
used for the dynein model are listed and discussed in table A.1 of the appendix A.

Taking together, the dynein model is based on the previously published models by Klein et al.
[35] and Kunwar et al. [33]. Compared to previous models, here, it is added that dynein exerts
a small force when being stretched less than its rest length. Moreover, a linear detachment is
modeled adjusting the model to the state-of-art knowledge of dynein. Furthermore, a more
realistic maximal velocity is used by applying a truncated Gaussian distribution.

>Meaning a detachment rate which increases only very slowly with force, i.e. a detachment behavior somewhere
in between a slip bond and an ideal bond.
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a) Simulation: density dependence b) Experiment: density dependence
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Figure 4.6: Mechanical dynein activation model reproduces the increased dynein cooperation

with increasing number of motors. Median instantaneous velocities (plus interquan-
til range for experiment) are depicted as a function of the number of motors for simulation
(left) and experiment (right). Motor numbers are varied by the dynein density at fixed
MT length (upper panels) or by the MT length at fixed dynein densities (lower panels).
For experimental fig. 4.6b MT lengths are binned into intervals and mean values are given.
Constant MT lengths are applied in all depicted simulations. All simulations are performed
using the mechanical dynein activation model. For simulation and experiment a transition
from small velocities (< 100 nm/s) to high velocities (> 800 nm/s) can be seen as a func-
tion of the number of motors. Moreover, a slightly reduced velocity is seen for high motor
numbers on short MTs (high densities, see fig. 4.6a and fig. 4.6b) for simulation and ex-
periment. Thus, when using the mechanical dynein activation model a good alignment
between simulation and experiment has been achieved. All experiments were performed
by Lara Scharrel from Stefan Diez lab at B CUBE, TU-Dresden. Reproduced/adapted with
permission from The Company of Biologists LTd., Journal of cell science. Originally pub-
lished in Journal of cell science, volume 132(4), page jcs220079 (2019) [300].

Results and discussion In the experiment®, the coverslip (referred to as surface) was
coated with dynein at varying densities. Fluorescent-labeled MTs with varying lengths were
placed on the surface. MT positions were measured after each Az . = 1s to calculate

®Experiments were performed by Lara Scharrel from Stefan Diez lab at B CUBE, TU-Dresden. See also the

thesis [299]. I did not perform any experiments myself.
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instantaneous gliding velocities. To investigate the influence of the number of motors, the
dynein surface density was varied as well as the MT length. For a better comparison with the
simulation, the MT length at a given dynein density was transformed to a number of motors
using eq. (4.2). Median instantaneous velocities are depicted as a function of the number
of motors. The number of motors is once varied by the dynein density at a fixed MT length
interval (fig. 4.6b) and once by the MT length at a fixed dynein density (fig. 4.6d). Note that
even though, dynein-driven velocities are negative in this set-up (compare fig. 4.6), velocities
are shown as positive values in this section for simplicity.

Experimental results (fig. 4.6b and 4.6d) show low instantaneous median gliding velocities
(~ 50 — 100 nm/s) at low number of motors (< 5 motors) and an increase in median velocities
up to approximately 900 nm/s for higher number of motors. Thus, knowing that single dynein
motors diffuse on the MT, the experiment suggests that with increasing number of motors
the diffusive dynein motion becomes a directed transport at high velocities. This indicates
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Figure 4.7: High gliding velocities in the absence of passive dynein motors. Median instantaneous
velocities are depicted as a function of the number of motors varied by the dynein density
at a fixed MT length (left) or by the MT length at a fixed dynein density (right). All simu-
lations were performed using the dynein model, where only active dynein motors exist, but
no passive dynein motors and no mechanical dynein activation. The simulation almost ex-
clusively shows high MT gliding velocities and no transition from small to high velocities.
Reduced velocity can only be seen for short MTs (low number of motors at high densities,
see fig. 4.7b). Reproduced/adapted with permission from The Company of Biologists LTd.,
Journal of cell science. Originally published in Journal of cell science, volume 132(4),
page jcs220079 (2019) [300].

strong cooperation between dynein motors. When varying the number of motors by the
dynein density (fig. 4.6b), the velocity first increases with motor number, but then decreases
again at very high motor numbers. This indicates that at high dynein density, the dynein
motors sterically hinder each other. That is why, exclusion effects cannot be neglected when
modeling the dynein assay at these dynein densities. When comparing median velocities for
the same number of motors, but different MT lengths (see fig. 4.6b), it can be seen that longer
MTs are transported at higher velocities. Thus, the same number of dynein motors performs
better on longer MTs. To summarize, the experiment shows an increasing dynein cooperation
with increasing number of motors, exclusion effects at high densities and higher velocities for
longer MTs.
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4.2. Unidirectional gliding assays

High velocities for a high number of dynein motors have been observed before [89]. Several
previous studies suggest that the transport performed by multiple dynein motors depends on
the number of motors. For instance, it has been shown that the motile fraction [87, 88] or
the drift part of cargo transport by multiple dynein motors [89] increases with increasing
number of motors. Moreover, gliding assays were performed for axonemal [173], inner-arm
dynein c [174], and dynein 2 [98]. They all show an increase in the velocity for increasing
number of motors. The here shown experimental results confirm the number of motor
dependence for mammalian cytoplasmic dynein without adaptor proteins and explicitly show
how the velocity depends on the number of motors. The MT gliding velocity was found to
continuously increases with the number of motors as long as exclusion effects do not play a
role. At high dynein densities, however, motors sterically hinder each other (exclusion effect)
and the velocity reduces. A reduced velocity at high motor numbers has been observed before
for kinesin [165], but not for dynein. Moreover, the experiment shows higher velocities for
longer MTs at the same number of motors. This has not been observed before and might be a
hint for the underlying mechanism of cooperation. Forces applied by multiple dynein motors
were shown to be additive [89, 163, 172]. That is why a better performance of multiple dynein
motors would be expected. However, multiple kinesin motors also produce higher forces but
do not cooperate to produce higher velocities (see above). This means, even though for both
motors higher forces are observed when working in a team [15-17, 142, 142], the kinesin
velocity does not depend on the number of motors, while the dynein velocity increases with
increasing number of motors. Moreover, kinesin teams never reach velocities higher than
the single kinesin molecule velocity. Dynein teams, however, reach velocities more than
30-fold higher than the drift velocity of single dynein motors (ca. 21 nm/s) [89]. Yet another
difference is that at high motor numbers, for kinesin, velocity histograms show sharp peaks
at high velocities, while for dynein, histograms show a wide distribution of intermediate
and high velocities. It remains unclear why for dynein, velocity histograms show such wide
distributions of high velocities and how dynein motors increase the velocity with increasing
number of motors up to values higher than the single molecule velocity.

To shed light on dynein-driven multi-motor transport, the dynein-driven gliding assay is
simulated using the above introduced dynein model. As in the experiment, the number of
motors is once varied by the dynein density at a fixed MT length and once by the MT length
at a fixed dynein density. Fig. 4.7a and fig. 4.7b show median instantaneous velocities as a
function of the motor number at fixed MT lengths or at fixed dynein densities, respectively.
Almost exclusively high MT gliding velocities are observed, when the number of motors is
increased by the dynein density at fixed MT lengths. When increasing the motor number by
the MT length at fixed dynein densities, also mainly high MT gliding velocities are observed.
In this case, however, some smaller velocities could be observed for high dynein densities
and small number of motors. The same effect has been observed for kinesin at high densities
and small number of motors. As previously mentioned, realizing a small number of motors
at a high density means that the MT is very short. For kinesin, it was found that at very
short MTs, the motors which reached the end of the MT slow down the MT (see above). The
slowing down due to motors reaching the end of very short MTs, could also be the reason for
the smaller velocities at high dynein densities and small motor numbers in the dynein-driven
gliding assay simulation.

The comparison between experiment and simulation reveals that the simulation shows mainly
constantly high velocities for all numbers of motors, while the experiment shows a slow
transition from small to high velocities as a function of motor numbers (see fig. 4.7 for the
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Figure 4.8: Simulation reproduces histograms of instantaneous dynein velocities. Normalized his-
tograms of instantaneous MT gliding velocities from simulation (left) and experiment
(right). Upper panels show histograms for different MT lengths at a dynein density of
Osayn = 128 um~2 and lower panels show histograms for different dynein densities at a
fixed MT length interval of Ly = [10, 15] pm. For all simulations, the corresponding
length distribution of the experiment is applied. For the length dependence (upper panels)
as well as for the dynein density dependence (lower panels) an increase of the velocity with
increasing length or increasing dynein density is observed, respectively. The simulation
reproduces the velocity histograms of the experiment. (Continuation on next page.)
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Figure 4.8 (previous page): All experiments were performed by Lara Scharrel from Stefan Diez lab
at B CUBE, TU-Dresden. Reproduced/adapted with permission from The
Company of Biologists LTd., Journal of cell science. Originally published
in Journal of cell science, volume 132(4), page jcs220079 (2019) [300].

simulation and fig. 4.6 for the experiment). Thus, the experimentally observed, increasing
cooperation between dynein motors is missing in the simulation.

Previous experimental studies show that single dynein without adaptor proteins show (biased)
diffusion-like motion [89, 94]. In the current dynein model, however, all dynein motors step
directedly toward the MT minus-end when experiencing a load force smaller than the dynein
stall force. The missing diffusion-like motion of single dynein motors might be the reason
why only high velocities are observed for all numbers of motors. Furthermore, Torisawa et al.
[89] show first that the drift part of MT gliding velocities increases with increasing number of
dynein motors and second that dynein can be mechanically activated (directed motion in the
active state) when physically separating the dynein heads with a rigid rod. That is why, here,
a mutual, mechanical dynein activation is hypothesized for dynein attached to the MT. Since
high velocities (assumed to come from active dynein motors) can also be seen for long MTs
with low dynein density, a mutual activation via direct motor-motor interactions can be ruled
out. Consequently, here it is assumed that MT-attached dynein motors activate each other
when indirectly being coupled via the rigid MT.

In the following, the dynein activation model is presented. For the dynein activation
model, diffusive dynein motors (called passive dynein motors), which activate when be-
ing stretched by the other MT-attached motors, are added to the above presented dynein model.

Mechanical dynein activation model To add passive motors, which diffuse on the MT
to the above presented dynein model, first, the diffusion coefficient of these motors needs to be
estimated from the experiment. Therefore, it is assumed that negative velocities (MT gliding
in positive direction), which are frequently observed for low number of motors, come from the
diffusive motion of passive dynein motors’. To calculate the diffusion coefficient, the distribu-
tion of negative velocities is mirrored at the y-axis and fitted by a Gaussian function. Having
a one-dimensional Gaussian with zero mean, the diffusion coefficient can be calculated from
the variance of the Gaussian (see section A.1 of appendix A for a detailed calculation). The
calculated diffusion coefficients (D ~ 1073) are three orders of magnitude smaller than the
diffusion coefficient of a freely diffusive rigid cylinder with a length similar to the used MTs
(Dypr ~ 107 using the formulas given by [302], compare chapter 3). This rules out that the
negative velocities come from freely diffusing MTs. Fig. 4.9 shows the calculated, experi-
mental diffusion coefficients as a function of the number of motors. With increasing number
of motors the diffusion coefficient decreases. This is expected for a diffusion in a harmonic
potential which increases with the number of motors.

From the experimental data, the diffusion coefficients could be calculated for 2, 6, 10, 14,
and 18 dynein motors. To determine the single motor diffusion coefficient, the diffusive
motion of multiple passive MT-attached dynein motors is implemented and adjusted to the
experimentally given diffusion coefficients for 2,6,10,14 and 18 dynein motors. For the

"It can be ruled out that the negative velocities come from a freely diffusive MT because a freely diffusing MT
would immediately move out of the focus of the camera and would therefore not be tracked any longer.
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"dynein-diffusion" simulation, the MT is modeled with periodic boundaries for simplicity.
Moreover, a fixed number of pas-

sive dynein motors is applied, 5000 : : :
which are permanently attached 4500 F e;l;::r:tfon; +
to the MT. The one-dimensional 4000 | -
diffusion of the passive mo- 3500 |- .
tors in the harmonic potential of & 3000 1
. . E 2500 | .

the motors springs is simulated % 2000

. . . B + T
using ‘[hej Metropolis algorithm 1500 b i
(see section 3.2). Thereby, for 1000 F -
the stepping of the motors on the 500 | N + - -
MT, exclusion effects are taken 0 L L L =

0 5 10 15 20

into account. By varying the free
diffusion rate s, of the passive

motors (diffusion rate in the ab- Figure 4.9: To estimate the single dynein diffusion constant,
sence of a harmonic potential), the simulation diffusion constant is aligned to
the simulation diffusion coeffi- the experimental diffusion constant. The distri-
bution of negative experimental velocities was mir-
rored at the y-axis and fitted by a Gaussian distribu-
tion. From the obtained variance of the Gaussian fit,
the diffusion constant as a function of the number

Mean number of motors

cients can be fitted to the ex-
perimental results (see fig. 4.9).
That is how the best choice for

the free diffusion rate s of single of motors can be calculated (see section A.1 of ap-
passive dynein motors is found pendix A). In the simulation, the energy landscape
(see table A.1 of the appendix of the diffusion in the harmonic potential of the mo-
A for parameter values). Hav- tor springs is implemented using the Metropolis al-
ing the diffusion rate of passive gorithm (see section 3.2). Diffusion coefficients as

a function of the number of motors decrease with
increasing number of motors. By optimizing the
force-free diffusion constant (sg), simulation results
could be fitted to the experimental diffusion coeffi-

dynein motors, passive dynein
motors can be added to the above
presented dynein model.

In the refined dynein model, cients. All shown experiments were performed by
called mechanical dynein activa- Lara Scharrel from Stefan Diez lab at B CUBE, TU-
tion model, dynein motors have Dresden. Reproduced/adapted with permission from
two states: active and passive. The Company of Biologists LTd., Journal of cell sci-

ence. Originally published in Journal of cell sci-

All dynein motors attach in the X
ence, volume 132(4), page jcs220079 (2019) [300].

passive state with the same at-
tachment behavior as described
before and all dynein motors detach with the same detachment rate as introduced previously
(see eq. 4.26). While the at- and detachment rates do not change, the stepping of the passive
motors differs from the above introduced stepping of active motors. Passive MT-attached mo-
tors perform a random walk in the harmonic potential of their motor springs. Thus they step
with the following rate:

s, (F') = spe™ 5 4.27)

with the step size d, the thermal energy f, the individual motor load force F' and the free
diffusion rate s,, which was found with the dynein-diffusion simulation. =+ stands for step-
ping towards the plus- and minus-end, respectively. Besides stepping and detaching, passive
MT-attached motors can activate and active MT-attached motors can deactivate. Because a
direct coupling of the motors (direct motor-motor interaction) could be ruled out, a mechani-
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cal dynein activation by stretching the motors is assumed. In detail, if a passive MT-attached
motor is stretched outside the deactivation region around its equilibrium position xé qt Lo gyn

(i.e. the motor extension |Ax’| is bigger than the untensioned length Ly 4y, see fig. 4.10), it
stochastically activates. For the stochastic activation process, an Arrhenius activation rate is
used:

Ey
ro (Ax) =7} (1 —e_kB_T> (4.28)
whereby the activation energy E, is given by

1 ‘ )
Ea=3 <K1’dynL(2),dyn + Kpayn (1AX'] = Lo gyn) ) : (4.29)

The maximal activation rate rg and the stiffness x4, are a priori unknown parameters,
which were determined by aligning the simulated median velocity to the experimental median
velocity as a function of the number of available dynein motors. If an active MT-attached
motor is stretched inside the deactivation region (see fig. 4.10), it deactivates with the
constant rate ry. Multiple passive MT-attached dynein motors are mechanically coupled via
the rigid MT. When diffusively stepping and thereby diffusively transporting the MT, passive
MT-attached dynein motors stochastically exert forces on each other and thereby stretch
each other. A passive MT-attached motor can thereby occasionally be stretched outside the
deactivation region and activate (see illustration fig. 4.10). An active MT-attached motor then
starts to pointedly step towards the MT minus-end and directedly transports the MT. It thereby
stretches other passive MT-attached motors even more such that they also start to activate.
That is how a mutual mechanical dynein activation can be achieved.

To see whether the dynein activation model can capture the increase in velocity with
increasing number of motors, dynein densities and MT lengths are varied and median
instantaneous velocities were measured as above. Median instantaneous velocities are
depicted as a function of the number of motors once for fixed MT lengths varying the number
of motors by the dynein density (fig. 4.6a) and once for fixed dynein densities varying the
number of motors by the MT length (fig. 4.6¢). Simulation results using the dynein activation
model show small velocities (< 100 nm/s) for small number of motors (5 5 motors) for all
MT lengths and all dynein densities as it was observed in the experiment. Furthermore, the
velocity increases up to high velocities (> 800 nm/s) with increasing number of motors in
accordance with the experiment. For high motor densities (high motor numbers on short MTs:
Lyt = 2pum or Lyt = 4 um in fig. 4.6a), the simulation shows slightly reduced velocities
due to exclusion effects (steric hindrance). The same is seen in the experiment. Besides the
median instantaneous velocities, also velocity histograms of the simulation show a similar
behavior as the experiment (see fig. 4.8). This means, using the mechanical dynein activation
model, the simulation can be aligned with the experiment. Consequently, the mechanical
activation based on the indirect, mechanical coupling of the motors via the MT explains the
increasing cooperation between dynein motors with increasing number of motors.

A mechanical dynein activation has not been introduced to any theoret-
ical dynein model before. Earlier experimental studies, however, sug-
gest some kind of mechanical activation or gave hints to it [13, 88, 89].
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The in vivo experiment by Ally et al. [13], Xeq,
for instance, finds that opposite-directed ‘
kinesin and dynein motors need each other ‘
for transport and demonstrates that impairing deactivation activation
one kind of motor will stop the complete with rate 74 with rate
movement. They hypothesize that a mutual ra(Az’)

mechanical activation is the underlying mech-
anism for their findings. Another hint gives
the study by Belyy et al. [88], which shows
that single dynein motors transport larger
beats at higher velocities than smaller beats.
Since a higher force is needed to transport a

+ Microtubule =

Figure 4.10: Deactivation region. Illustration
shows the dynein deactivation region

larger beat, it can be suggested that the larger (Xeq = Logyn; green), given by the
beat stretches the dynein motors. According dynein untensioned length Lg gyp-
to our model, a stretching of the dynein motor The right passive motor (light blue)
would occasionally activate the motor and is stretched outside the deactivation

region and therefore activates with

could explain the slightly higher velocities. ; !
rate r,(Ax') and the left active mo-

Moreover, as previously IInentioned, Torisawa tor (dark blue) is stretched inside the
et al. [89] show that dynem.motors, where the deactivation region and therefore de-
two motor heads were physically separated by activates with rate r.

a rigid rod, move processively and directedly

towards the MT minus-end. This suggests that besides adaptor proteins there might be
another, mechanical mechanism to pull dynein out of its inhibited state. Zhang et al. [90]
found that adaptor proteins align the dynein motor heads to pull dynein out of the inverted
(inhibited) state (see section 2.2.1 for details). Here, it is hypothesized that when stretching
the complete molecule, the two heads align automatically and are thus mechanically pulled
out of the inhibited state. Moreover, it is hypothesized that dynein without adaptor proteins,
but with mechanically aligned heads, show high velocities as observed for dynein activated
by adaptor proteins. In summary, the mechanical dynein activation model is supported by
previous studies.

The experiment showed higher velocities for longer MTs at the same number of motors (see
fig. 4.6b). The simulation shows the same effect and can explain it. Therefore, the dynein
activation ratio, defined as the ratio of active MT-attached to passive MT-attached motors, is
calculated:

_ Number of active MT-attached dynein motors N, 4.30)

Number of passive MT-attached dynein motors =~ N P

a

The activation ratio gives the relative contribution of active to passive MT-attached motors.
The activation ratio is displayed as a function of the number of motors for fixed MT lengths
(fig. 4.11a) or fixed dynein densities (fig. 4.11b). It can be seen that the activation ratio
strongly increases with the number of motors for Ny, < 20 and levels off for higher number
of motors or even slightly decreases, where exclusion effects become relevant (fig. 4.11a, for
Lyt = 2um and Ly = 4 um). Comparing the activation ratio with the median velocity, it
can be seen that both show a similar dependence on the number of motors. This suggests that
the activation ratio determines the MT gliding velocity. Moreover, the median velocity as
the activation ratio are higher for longer MTs at the same number of motors. This implies on
longer MTs more of the attached motors are activated. A motor presumably stays activated
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a) Simulation: density dependence b) Simulation: length dependence
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Figure 4.11: Dynein activation ratio determines median velocities. Dynein activation ratio is de-
picted as a function of the number of motors for fixed MT lengths (right) and fixed dynein
densities (left). The activation ratio is calculated by dividing the mean number of actively
MT-attached motors by the mean number of passive MT-attached motors. All simulations
were performed using the mechanical dynein activation model. For both cases, the acti-
vation ratio increases with increasing number of motors. For motor numbers over 20, the
activation ratio starts to level off. Comparing the activation ratio with the median velocity
as a function of the number of motors (see fig. 4.6), it can be seen that the dependence
is similar. Thus, the simulation suggests that the activation ratio determines the median
gliding velocity. Reproduced/adapted with permission from The Company of Biologists
LTd., Journal of cell science. Originally published in Journal of cell science, volume
132(4), page jcs220079 (2019) [300].

until reaching the end of the MT, if it is not hindered by other motors or stochastically
detaches. Hence, the longer the MT, the longer a motor can stay activated. On shorter MTs,
the attached motors have to detach more frequently and new motors have to attach. Each
time a new motor attaches, it first needs to be stretched outside the deactivation region to
activate. Only when being activated, a motor contributes to the directed movement of the
MT. That is why more of the attached motors are activated on longer MTs leading to a higher
activation ratio and consequently a higher median velocity. Additionally, the number of active
MT-attached motors is reduced and the number of passive MT-attached motors increased
when exclusion effects play a role (see fig. 4.11a). This means, if an active motor is hindered
by other MT-attached motors, it is likely to deactivate again because it cannot continue
stepping. That is why, the activation ratio and therefore, the median velocity is slightly
reduced, where exclusion effects are relevant (fig. 4.11a for Ly = 2 um and Lyt = 4 um).
Taking together, higher median velocities come along with a higher activation ratio and
reduced median velocities with a reduced activation ratio. Consequently, the simulation
suggests that the median velocity is directly determined by the activation ratio.

Besides measuring the activation ratio, active MT-attached and passive MT-attached motors
are depicted as a function of the number of available motors, separately. Both passive
MT-attached and active MT-attached motors increase with increasing number of motors at
a fixed MT length (fig. 4.12c and fig. 4.12a) and for a fixed dynein density (fig. 4.12d
and 4.12b). Neither for actively MT-attached motors nor for passive MT-attached motors
a saturation of the number of MT-attached motors is visible. However, for high number of
motors (Ngy, > 20), active and passive MT-attached motors increase with a similar slope
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a) Simulation: density dependence b) Simulation: length dependence
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Figure 4.12: Number of active and passive MT-attached motors increases with the number of

motors. Mean number of active MT-attached (upper panels) and passive MT-attached
motors (lower panels) as a function of the number of available motors. The number of
motors is once increased by the dynein density at a fixed MT length (left) and once by
the MT length at a fixed dynein density (right). Active and passive MT-attached motors
monotonically increase with the number of motors. When increasing the number of mo-
tors by the dynein density, the number of passive MT-attached motors increases faster
than the number of actively MT-attached motors at high densities (compare fig. 4.12a
with fig. 4.12c for Lyt = 2 pm or Ly, = 4 pum). All simulations were performed using
the mechanical dynein activation model. Reproduced/adapted with permission from The
Company of Biologists LTd., Journal of cell science. Originally published in Journal of
cell science, volume 132(4), page jcs220079 (2019) [300].

such that the activation ratio does not change significantly anymore (compare with fig. 4.11a).
Consequently, the activation ratio and therefore the median velocity are saturated. This
implies that in this regime, dynein motors do not further increase their cooperation to produce
even higher velocities and the influence of the hindering passive MT-attached motors, causing
reduced velocities, is negligible. Thus, in this regime, the dynein cooperation resembles the
kinesin cooperation.

As it has been done for kinesin, also dynein load forces are measured in the simulation.
Histograms of dynein forces are shown for the mechanical dynein activation model (fig. 4.13a)
and for the dynein model (fig. 4.13b). For both models, dynein forces are more peaked around
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a) Mech. dynein activation model b) Dynein model
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Figure 4.13: Dynein force distribution is peaked around zero. Normalized histograms of forces that
MT-attached dynein motors exert on the MT in the simulations. Negative forces pull the
MT in negative direction (dynein-driven direction) and positive forces pull the MT in
positive direction (see 4.1c for the force definition). In all simulations, a dynein density
of 64y, = 128 um is applied and the MT length is chosen such that Ny;, = 40 motors
can potentially attach the MT. Force histograms are depicted for the mechanical dynein
activation model (left) and the dynein model (right). Forces are more peaked around
zero for the mechanical dynein activation model because of the passive motors, which are
biased towards their equilibrium position at zero force.

zero than kinesin forces. The reason is the smaller dynein stall force of F 4., = 1.25pN
compared to the kinesin stall force of F,;, = 6pN. The small dynein stall force leads to
smaller forces of leading motors (negative forces). Additionally, if leading motors cannot
step very far until reaching stall they do not stretch non-advancing motors. That is why
non-advancing/slowly advancing motors (positive forces) do not exert high forces on the MT
either. Moreover, motor forces are even more peaked around zero in the presence of passive
motors (fig. 4.13a). Passive motors perform a diffusion in the harmonic potential. Because of
the harmonic potential of the motor spring, the diffusive motion is biased towards the motor
equilibrium position, where motors exert no force on the MT. That is why the force histogram
for the mechanical dynein activation model (fig. 4.13a) is even more peaked around zero than
for the dynein model (fig. 4.13b). Taking together, a small stall force and passive MT-attached
motors lead to a force distribution of MT-attached dynein motors which is peaked around zero.

In summary, using the mechanical dynein activation model, the simulation results are in
alignment with the experimental results. The simulation suggests that a mutual mechanical
stretching of multiple MT-attached motors leads to a mutual mechanical motor activation. The
simulation shows that the activation ratio directly determines the median instantaneous veloc-
ities. That is how the simulation explains the increased dynein cooperation with increasing
number of motors. The dynein activation model should be used for future simulations when
modeling cytoplasmic mammalian dynein without adaptor proteins.

4.2.3 Subconclusion

For kinesin, this work shows that the velocity of multiple motors is independent of the number
of motors. The reason, given by the simulation, is that a constant fraction of MT-attached ki-
nesin motors always impairs and slows down the advancing motors. Multiple kinesin motors
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can therefore not produce higher velocities than their single molecule velocity. For dynein, it is
observed that the velocity increases with increasing number of motors until reaching a saturated
median velocity. Using a "simple" kinesin-like motor model with dynein parameters, this un-
conventional dynein behavior could not be reproduced by the simulation. Therefore, a mutual
mechanical dynein activation is postulated here. Adding this mechanical dynein activation to
the dynein model, the increase of the velocity with increasing number of motors is reproduced
by the simulation. In the mechanical dynein activation model, MT-attached dynein motors
stochastically stretch each other by (diffusively) transporting the MT. The mutual stretching of
the motors leads to a mutual, mechanical motor activation. Thus, dynein motors cooperate in
order to pull each other out of the inhibited state. The simulation showed that the median ve-
locity is determined by the activation ratio, the ratio of active to passive MT-attached motors.
Since the mutual activation of dynein is required to reproduce the experimental data, this effect
should be always considered when investigating cytoplasmic dynein without adaptor proteins.
In the following, the here presented kinesin and mechanical dynein activation models are used
to investigate bidirectional transport by kinesin and cytoplasmic mammalian dynein.
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4.3 Bidirectional gliding assays

In vivo, vesicles are known to be transported bidirectionally [7, 14, 25]. Moreover, it is known
that kinesin and dynein motors are bound simultaneously to the same cargo [9, 13, 14, 16, 25].
However, how teams of oppositely directed motors influence each other, remains unclear. Here,
bidirectional gliding assay simulations in close cooperation with corresponding experiments
are used to investigate the transport by teams of kinesin-1 and cytoplasmic, mammalian dynein
motors without adaptor proteins. The here presented work is published in Monzon et al. 2020
(see appendix D).

To model the bidirectional gliding assay, the above introduced kinesin and dynein models (me-
chanical dynein activation model) need to be combined in the gliding assay set-up (see section
4.1 for the one-motor gliding assay model). While the dynein and kinesin models remain un-
changed, the gliding assay model needs to be slightly modified in order to incorporate two
different types of motors. In the following, the modifications for the bidirectional gliding as-
say are presented.

In bidirectional gliding assays, the surface is coated with dynein and kinesin at certain surface
densities o4y, and oy;,, respectively. In the simulation, these densities are transformed into
number of dynein (Ng4y,,) and kinesin motors (N, ) using eq. (4.2) for a given MT length Ly
Thus, on the one-dimensional surface, Ny, dynein and N, kinesin motors need to be subse-
quently aligned such that they represent the given experimental surface densities. Therefore,
random distances between the motors are drawn while taking motor-motor exclusion effects
into account. To build up the surface coated with dynein and kinesin motors at the given ra-
tio, dynein motors are chosen with the constant probability pyy, and kinesin motors with the
constant probability py;,, where py, and py, are given by

Payn = v and Pin= N TN “4.31)

To choose the next motor position on the surface, a uniformly distributed random number in
the interval

[xlast + Ryt + Revrrents 2 Battach — Reurrent — Rnext] (4.32)

is drawn. Where R, is the radius of the last motor, R, . the radius of the current motor,
R, .« the radius of the subsequent motor and &, the mean distance between motors, given
by

attac

LMT
13} = — 4.33
attach Ndyn + Nkin ( )

To know the radius of the subsequent motor, the type of the subsequent motor should be
chosen and stored at the time when setting the current motor.

Besides the surface, also the mutual motor-motor hindrance for MT-attached motors need
to be modified. While for kinesin, exclusion effects on the MT could have been neglected,
for dynein, exclusion effects had to be taken into account. That is why, for the bidirectional
assay, exclusion effects on the MT need to be considered for both motors. A motor can
therefore only attach when its equilibrium position on the MT is empty and an attached motor
can only perform a step if the next motor position on the MT is empty.
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Figure 4.14: Bidirectional MT gliding assay model. a) Figure shows an illustration of the bidirec-

tional gliding assay. The gliding assay is modeled in one dimension neglecting any motion
in y- and z-direction, as well as any rotational degree of freedom. The surface (= coverslip,
gray line) gives the orientation of the global, one-dimensional coordinate system. The MT
(orange rectangle) is placed above the surface with its minus-end on the right and its plus-
end on the left side. If kinesin motors (green) transport the MT, the MT moves towards
the right (positive values) side, while when dynein motors (blue) transport the MT, the
MT moves towards the left side (negative values). The MT is characterized by the MT
plus-end position in the global coordinate system Xy . (f) together with the MT length
Lyt Motor tail positions x| are uniformly distributed on the surface with mean distances
Okin and 64y, between kinesin and dynein motors, respectively. Motors are drawn by a
curvy line, representing the motor spring, and a square for detached motors or a circle for
MT-attached motors. Kinesin motors are drawn in green, passive dynein motors in light
blue and active dynein motors in dark blue. The motor head positions in the MT coordi-
nate system (body-fixed coordinate system of the MT ranging from O to Ly;t) are denoted
by x{l and the equilibrium position in the MT coordinate system by xé " The equilibrium

position is the position of the motor head on the MT, where the motor extension Ax' is
zero. The motor extension Ax' is defined by the (Continuation on next page.)
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Figure 4.14 (previous page): one-dimensional difference between the motor head and the motor tail po-
sitions (see eq. 4.6). Kinesin and dynein motors attach to the MT with the
constant rates k, \;, and k, 4., respectively, and step and detach with the
force dependent rates sy, (F'), Sqyn(F'), kqxin(F') and kg 4., (F'). While
kinesin steps towards the MT plus-end for forces smaller than the kinesin
stall force Fj ;,, active dynein steps towards the MT minus-end for forces
smaller than the dynein stall force F; 4,,. However, both motors step
backward under forces higher than the stall forces (denoted by the red
curved lines of the motors). While the attachment and the detachment of
passive and active dynein motors are similar, the stepping differs. An ac-
tive dynein steps directedly towards the MT minus-end with the stepping
rates sqy, (F 7), while a passive dynein diffuses in the harmonic potential of
the motor spring with rates s, (F'). b) Kinesin stepping (red curve, upper
panel) and detachment rates (green curve, lower panel) as a function of
the motor load force. Negative forces are assisting forces, which pull the
kinesin towards the MT plus-end and positive forces are resisting forces,
which hold the kinesin back. Under resisting forces, the stepping rate is
constantly high while under resisting forces, the stepping rate decreases.
For forces higher than the kinesin stall force F;;, = 6 pN, kinesin steps
backwards with a constant low rate. The kinesin detachment increases
exponentially for assisting and resisting forces with the detachment force
Fy kin = 6pN. ¢) Dynein stepping (upper panel) and detachment rates
(lower panel) as a function of the motor load force. Negative forces are
resisting forces for dynein, which hold the motor back and positive forces
are assisting forces, which pull the motor towards the MT minus-end. The
active dynein stepping rate (red curve) is constantly high under assisting
forces and decreases with increasing resisting forces. For resisting forces
higher than the stall force (F' < —F g4yn = —1.25pN), the dynein motor
steps backwards with a constant small rate. Passive dynein diffusive step-
ping rates s, (F') (blue curves), for stepping towards the MT plus- and
MT minus-end, are mirrored at the y-axis. Both increase exponentially
for stepping away from the equilibrium position xé q (F' = 0). Dynein de-
taches with linearly increasing detachment rates (green curve). Detach-
ment rates increase faster with increasing assisting forces than resisting
forces. d) Example configuration of MT-attached dynein motors. If only
active and passive dynein motors are attached, the motor extensions are
random. Some motors are holding the MT back (negative forces), while
others try to advance the MT (positive forces). e) Example configura-
tion of MT-attached kinesin and dynein motors. If dynein is attached in
the presence of kinesin, kinesin aligns the attached dynein motors under
resisting forces (backward load). Reproduced/adapted with permission
from The Company of Biologists LTd., Journal of cell science. Originally
published in Journal of cell science, volume 133(22), page jcs249938
(2020) [309].
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In the following, the bidirectional gliding assay simulations are used together with bidi-
rectional gliding assay experiments from Stefan Diez lab® to investigate how the number and
kind of motors, the ATP concentration and roadblocks on the MT track influence the transport
directionality.

4.3.1 Regulation by the number of motors

Previous in vivo studies found that multiple dynein and kinesin motors are simultaneously
bound to the same cargo and that a tug-of-war is likely to happen between teams of kinesin
and dynein motors [9, 10, 25, 143, 150]. The number of motors might influence the tug-of-war
between opposing teams. The number of kinesin and dynein motors might vary inside the
cell and between different kinds of cargos [17, 25, 142, 310, 311]. It is therefore intriguing to
understand how the number of kinesin and dynein motors influences bidirectional transport.
Previous studies showed that varying the kinesin number or density can change the transport
direction [37, 38]. However, it is unknown how the dynein number or the mechanical dynein
activation influences bidirectional transport. Moreover, a detailed analysis of how many
dynein and kinesin motors are able to compete against each other is missing in the literature.

A previous MT gliding assay study showed that varying the kinesin densities in gliding
assays could change the transport direction [38]. Therefore, as a first step, the kinesin density
is varied to see whether we see a similar effect. Before describing simulation results, the
experimental results are presented. At a constant dynein density, the kinesin density is
varied from 0.1 um~2 to 100 um~2 including an "only dynein" and an "only kinesin" case.
For the constant dynein density, a high density of 64 um~2 is chosen, where influences of
passive dynein motors are expected to be negligible (see section 4.2.2). MT positions of
fluorescence-labeled MTs with lengths in the interval Ly = 10 — 15 pm are measured for
each measurement time interval Az, = 1s. MT gliding trajectories go from unidirectional,
dynein-driven trajectories for the "only dynein" case and low kinesin densities, over stalled
trajectories for partly low and intermediate kinesin densities to unidirectional kinesin-driven
trajectories for high kinesin densities and the "only kinesin" case (see fig. 4.15b). From MT
positions and time intervals, instantaneous gliding velocities are calculated. Histograms of
instantaneous gliding velocities are depicted at different kinesin densities (see fig. 4.16b).
Velocities are thereby shown as positive when the MT is transported by kinesin motors, which
step towards the MT plus-end and as negative velocities when the MT is transported by dynein
motors, which step towards the MT minus-end. Fig. 4.16a shows that only kinesin transports
the MT at high positive velocities producing a narrow peak at around 800 nm/s. The same
is seen for high kinesin densities (c,;, = 20 — 100 um~2). Thus, for these densities, the
influence of dynein is still negligible. At intermediate kinesin densities (cy;, = 1 — 2 um™2),
however, a balance between kinesin and dynein can be seen producing a peak around zero
velocity. At a very low kinesin density (o;, = 0.1 um™2), kinesin is still able to strongly
slow down dynein producing a velocity distribution with a peak at low negative velocities
and a small tail towards higher negative velocities. The "only dynein" velocity distribution
spreads over a wide range of values (zero to high negative velocities) with a peak at around
—800nm/s. To conclude, this means the experiment shows that the gliding direction can be
changed by changing the kinesin density. This is in accordance with previous studies [37, 38].

8Experiments were performed by Lara Scharrel from Stefan Diez lab at the B CUBE, TU-Dresden. See also the
thesis [299]. I did not perform any experiments myself.
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Figure 4.15: MT gliding trajectories from simulations and experiments. MT gliding trajectories
from simulation a) and experiment b). For both a dynein density of 64, = 64 um=2
is applied and MT lengths are in the range of Ly;r = 5 — 10 um for experiments and
Lyt = 25um for simulations. Kinesin densities are as written in the plots. In the
"only kinesin" case a kinesin density of };, = 100 um~2 is applied. Positive directions
are kinesin-driven and negative directions dynein-driven. Simulations and experiments
show unidirectional kinesin-driven trajectories for the "only kinesin" case and for high
kinesin densities (6y;, = 20 um™2), stalled trajectories for intermediate kinesin densities
(64, = 1.0 um™2) and unidirectional dynein-driven or partly stalled trajectories for low
kinesin densities (6y;, = 0.1 tm~2) and the "only dynein" case. The shown experiments
were performed by Lara Scharrel from Stefan Diez lab at B CUBE, TU-Dresden. Re-
produced/adapted with permission from The Company of Biologists LTd., Journal of cell
science. Originally published in Journal of cell science, volume 133(22), page jcs249938
(2020) [309].

In summary, three different motility states can be distinguished: a kinesin-driven state (high
positive velocities), a dynein-driven state (up to high negative velocities) and a balanced
state, where the dynein and kinesin teams balance each other and almost no net-movement is
observed.

While we have seen that the experimental results are in accordance with previous studies,
it remains to be shown that the simulation shows the same results when using the above
introduced kinesin and dynein models. For the simulation, the same dynein and kinesin
densities and the same MT length distribution are used as in the experiment. Moreover,
the MT position is determined after each experimentally given time measurement interval
At .. = 1s and a Gaussian noise with zero mean and variance op = 30nm is added to
mimic the experimental measurement uncertainty. Simulation trajectories show, similar to the
experiment, a transition from unidirectional dynein-driven, over stalled, up to unidirectional
kinesin-driven trajectories with increasing kinesin concentrations (see fig. 4.15a). From the
MT position and the time interval, instantaneous gliding velocities are calculated. Histograms
of instantaneous velocities from the simulation are shown in fig. 4.16a. As in the experiment,
sharp velocity peaks at high, positive velocities can be seen for kinesin densities higher or
equal 20 um~2. For small kinesin densities (6y;, = 1 — 2um~2), a peak around zero is
observed and for the very small kinesin density and the "only dynein" case, a wide distribution
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of negative velocities can be seen. A comparison of experimental and simulation results
reveals that similar effects are observed in simulation and experiment. Thus, the simulation is
areliable tool to give further insights and explanations of bidirectional transport at a molecular
level.

We have seen that varying the kinesin density can change the transport direction of bidi-
rectional transport. To show this, the kinesin density was varied at a high, constant dynein
density, where the influence of passive motors is expected to be negligible. The previously
presented unidirectional dynein gliding assays (see section 4.2.2), however, showed that the
gliding velocity is strongly influenced by passive MT-attached motors. To understand the
influence of passive motors and the mechanical dynein activation on bidirectional transport,
the dynein density needs to be varied. The influence of the dynein density on bidirectional
transport has not been studied before. To study the influence of the dynein density, three
different constant dynein densities are applied at varying kinesin densities and median
instantaneous velocities are depicted as a function of the kinesin density for simulation (fig.
4.17a) and experiment (fig. 4.17b). For all three dynein densities, a transition from the
dynein- to the kinesin-driven state can be seen and the balanced state was shifted to lower
kinesin densities, the lower the dynein density was. Hence varying the dynein density also
changes the transport direction of bidirectional transport in MT gliding assays.

To learn more about the influence of the passive motors and the mechanical dynein activation,
the results of the lowest dynein density, where passive dynein motors play a role (compare
section 4.2.2 for the dependence on the dynein density) need to be considered in detail. At
the lowest dynein density, the simulation (fig. 4.17a), finds that the median instantaneous
velocity is zero for the "only dynein" case (only dynein-driven) and for small kinesin densities
(balanced state)®. This means, the balanced state and dynein driven-state merge. There are
two possible explanations for why the velocity is zero: i) First no dynein motor is attached at
all for the "only dynein" case or ii) second only passive dynein is attached in the "only dynein"
case. As previously mentioned, in the experiment, the number and types of MT-attached
motors cannot be measured. However, this can easily be done in the simulations. Fig. 4.17d
depicts the number of MT-attached dynein motors in the simulation. The upper panel shows
the median number of total (passive and active) MT-attached dynein motors and the lower
panel the median number of actively MT-attached dynein motors. It can be seen that for small
kinesin densities (oy;, < 0.5 pm, balanced and dynein-driven state) one dynein is attached on
average ruling out the first explanation that no dynein is attached at all. However, looking at
the lower panel, it can be seen that the number of actively MT-attached dynein motors is zero
for all kinesin densities at the lowest constant dynein density. This means the MT-attached
dynein motor is passive and hence the second explanation holds. In the "only dynein" case,
the single passive MT-attached dynein motor has no chance to activate because there are no
other motors that transport the MT and thereby could stretch the single MT-attached dynein
motor. However, in the presence of kinesin (cy;, > 0um™2), there could be a MT-attached
kinesin transporting the MT and thereby occasionally stretching and activating the passive
MT-attached dynein motor. For ¢,;, = 0.5 um™2, for instance, one passive dynein and one
kinesin motor are attached (the median kinesin and dynein number is one, while the median
active dynein number is zero). In this case, median transport velocities reveal that the MT is

9The median instantaneous velocity is not zero in the experiment for the "only dynein" case. Discrepancies
between experiment and simulation most likely come from an uncertain motor density estimation. Experimen-
tally, it is not easy to determine the motor density on the coverslip and therefore, the given motor densities are
rough estimates.
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Figure 4.16: The simulation reproduces the experimental histograms. Normalized histograms of
instantaneous bidirectional gliding velocities from simulation a) and experiment b). For
simulation and experiment a dynein density of o4y, = 64 um~2 is applied and MT lengths
were in the range of Lyt = 10 — 15 um. In the simulation, the same length distribution
as in the experiment is used. Kinesin densities were as written in the plots. In the "only
kinesin" case a kinesin density of ¢,;, = 100 um~2 was applied. At high kinesin densities
(6yin = 20 — 100 um~2), a peak around 800 nm/s can be seen characterizing the kinesin-
driven state. At low kinesin densities (6y;, = 1 — 2 um~2) velocities were peaked around
zero indicating the balanced state. At very low kinesin density (6y;, = 0.1 pum~2) and the
"only dynein" case, a wide distribution of negative velocities can be seen indicating the
dynein-driven state. The simulation shows similar velocity histograms as the experiment
for the kinesin-driven state, the balanced state and the dynein-driven state. The shown
experiments were performed by Lara Scharrel from Stefan Diez lab at B CUBE, TU-
Dresden. Reproduced/adapted with permission from The Company of Biologists LTd.,
Journal of cell science. Originally published in Journal of cell science, volume 133(22),

page jcs249938 (2020) [309].

transported by kinesin (see fig. 4.17a). Thus, the passive MT-attached dynein is not activated,
but dragged by the kinesin motor as previously predicted by the dynein dragging model
[10, 11, 147]. This means, one MT-attached dynein motor cannot stop a kinesin motor and no
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balanced state exists at the lowest dynein density. Hence, one dynein cannot hold against one
kinesin.

It has been shown that at the lowest dynein density, dynein is not able to resist kinesin at all.
This raises the question of how many dynein motors are needed to resist kinesin. To answer
this question a detailed look at the intermediate dynein density (o4, = 13 um™2) is taken.
For the intermediate dynein density, a clear separation between dynein-driven (negative
velocities) and balanced (median velocities around zero) states is observed (see fig. 4.17a).
This indicates that the MT-attached dynein motors are able to resist the MT-attached kinesin
motors. Looking at the number of MT-attached dynein motors (fig. 4.17d) reveals that in the
"only dynein" case, two dynein motors are attached, which are passive on average. However,
since the median velocity is non-zero, the two passive MT-attached dynein motors need to
activate each other temporarily. In the balanced state, however, a passive and an active dynein
is attached (see fig. 4.17d). This means, once kinesin plays a role, the MT-attached kinesin
activates one of the passive MT-attached dynein motors. This raises the question if an active
dynein is strong enough to hold back one kinesin motor. Previously it was established that the
strength of a motor is determined by the stall force to detachment force ratio [151]. A strong
motor is said to have a large ratio and a weak motor, a small ratio. Having a stall force of
F in = 6 pN and a detachment force of Fyy;, = 6 pN, kinesin has a stall force to detachment
force ratio of one. Dynein has a stall force of F 4., = 1.25 pN and an asymmetric detachment
behavior. Dynein detaches faster under forward load (positive forces) than under backward
load (negative forces). This means it has a smaller detachment force under forward load than
under backward load. In the competition with kinesin, detachment under backward load is
relevant. In this case, dynein has a stall force to detachment force ratio of approximately
0.3125, which is significantly smaller than the stall force to detachment force ratio of kinesin.
This means dynein is the weaker motor in the competition with kinesin. It is therefore likely
that kinesin will pull off the one active MT-attached dynein, as observed at the lowest dynein
density, and take over. However, at the intermediate dynein density, typically a second,
passive dynein is attached. When the kinesin pulls off the active dynein, there is still the
passive dynein which could substitute the active dynein. Once the passive dynein is activated
by kinesin, it tries to maintain the balanced state. However, as seen before, one dynein is not
able to resist kinesin. That is why to maintain the balanced state, in the meantime another
passive dynein should attach. Together, that is how on average an active dynein with a passive
dynein as a substitute could temporarily hold back kinesin and it can be concluded that one
active dynein together with a passive MT-attached dynein can temporarily resist a kinesin.
The passive dynein helps out in the case the active dynein is pulled off by the kinesin but does
not exert a directed force.

It could be seen, that two dynein motors can balance one kinesin. However, because dynein
is continuously pulled off by kinesin, more dynein might be necessary to have a more stable
balanced state. Indeed, at a dynein density of oy 4, = 64 um~2, fewer fluctuations of the
instantaneous velocity can be observed (see fig. 4.17a). For this dynein density, six dynein
motors are competing against two kinesin motors in the balanced state. Moreover, the number
of actively MT-attached dynein motors reaches its maximum in the balanced state (see fig.
4.17d). This means, increasing the kinesin density increases the number of activated dynein
motors until reaching the balanced state. This clearly shows that the activity of kinesin
activates dynein. By activating more MT-attached dynein motors, kinesin stabilizes the
balanced state. Besides the number of actively MT-attached dynein motors, also the total
number of active and passive MT-attached dynein motors is maximal in the balanced state
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Figure 4.17: The number of kinesin and dynein motors regulates the direction of bidirectional

transport. Median instantaneous gliding velocities of bidirectional gliding assays: sim-
ulations a) and experiments b). Median velocities are depicted as a function of vary-
ing kinesin densities at a constant dynein density. In the simulation a MT length of
Ly = 25 pm is chosen and experimental lengths were Lyt > 12 um. At all dynein
densities, a kinesin-driven state was found for kinesin densities oy;, > 20 um~2 and a
dynein-driven state for 6, < 0.1 um™2 (gy;, < 0.01 um~2 for the intermediate dynein
density in the experiment). The balanced state is shifted towards lower kinesin densities,
the lower the dynein density is. Thus, the dynein and the kinesin density regulate the
directionality of bidirectional transport. Median numbers of MT-attached kinesin c) and
MT-attached dynein motors d) are depicted for different constant dynein densities as a
function of the varying kinesin densities corresponding to a). The monotonically increas-
ing number of MT-attached kinesin motors does not show a significant dependence on the
dynein density. The number of MT-attached dynein motors is split into the total (passive
and active) number of MT-attached dynein motors (Continuation on next page.)
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Figure 4.17 (previous page): (upper panel) and the number of actively MT-attached dynein motors
(lower panel). The dashed black line shows the one motor value. The
number of MT-attached motors shows that an active and a passive dynein
can resist one kinesin, while one dynein alone cannot. For high dynein
densities (o4, = 64um=2 and o4y, = 128 um™?) the total number
of MT-attached dynein as well as the number of actively MT-attached
dynein motors show a clear maximum at the kinesin density of the bal-
anced state. Thus, kinesin stabilizes the balance state by first maximizing
the number of MT-attached dynein and second by activating the maxi-
mum number of passive MT-attached dynein motors. All shown experi-
ments were performed by Lara Scharrel from Stefan Diez lab at B CUBE,
TU-Dresden. Reproduced/adapted with permission from The Company
of Biologists LTd., Journal of cell science. Originally published in Jour-
nal of cell science, volume 133(22), page jcs249938 (2020) [309].

(see fig. 4.17d). Hence the overall dynein detachment is reduced when kinesin is competing
against dynein. Past studies found a dynein catch-bond behavior at large backward loads [33].
However, the current understanding of dynein detachment is a slowly increasing detachment
rate under backward load [86, 92]. The latter detachment behavior is implemented in the
here presented dynein model. This rules out the catch-bond as an explanation for the reduced
overall detachment in the balanced state. What happens here is that when competing against
kinesin, the MT-attached dynein motors are aligned under backward load (see fig. 4.14e for
an illustration). Under backward load, the detachment rates are smaller than under forward
load. In contrast, when only dynein motors are attached, the motor extensions (and therefore
the motor forces) are randomly distributed (see fig. 4.14d for an illustration and fig. 4.13
for the force distribution of MT-attached dynein motors in the unidirectional gliding assay).
Dynein extensions are random because single dynein motors step stochastically with different
single molecule velocities. This means some motors are under backward load, while others
are under forward load. This increases the overall detachment rate in the dynein-driven state
compared to the case where MT-attached dynein motors are aligned under backward load
by kinesin. Aligning dynein under backward load and therefore reducing the overall dynein
detachment, increases the number of dynein motors and therefore stabilizes the balanced state.
Thus, the balanced state is stabilized by kinesin, which on one hand activates MT-attached
dynein and on the other hand reduces the dynein detachment by aligning MT-attached dynein
under backward load.

This study showed that kinesin stabilizes the balanced state between the kinesin and dynein
team by increasing the number of MT-attached dynein motors. This is in agreement with
previous in vivo studies showing that in the tug-of-war multiple dynein motors compete
against a few kinesin motors [11, 25]. Moreover, by activating passive MT-attached dynein
motors, kinesin produces a stable force balance between the kinesin and dynein team. This
means besides antagonistic effects, also cooperative effects exist between the oppositely
directed kinesin and dynein teams. Inside the cell, the stable force balance might be used to
hold a cargo at a specific position.

Here, it was shown that increasing the available number of dynein or kinesin motors can
shift the force balance to the dynein- or the kinesin-driven state. In vivo, there might be
different mechanisms, which can change the number of engaged motors and thereby shift
the force balance. The number of engaged motors might be changed by locally different
motor concentrations [310, 311] or by different binding affinities. Shima et al. [223] and Peet
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et al. [222] showed that when kinesin steps on the MT, it slightly changes the MT lattice in
such a way that the binding affinity of following up kinesin motors is increased. Jose and
Santen [224] modeled bidirectional axonal transport with a floor field model and showed
that the increased affinity of following-up motors of the same kind and a reduced affinity of
the opposing motors may produce a lane formation in the axon. The increased affinity of
following-up motors produces one lane for kinesin-driven transport and one for dynein-driven
transport. That is one way how regulation of the number of motors leads to different transport
directions.

Besides shifting the force balance by the number of motors, also adaptor proteins might
influence the force balance between kinesin and dynein motors. Activating dynein by adaptor
proteins is known to increase the dynein stall force from ~ 1 pN [33, 87, 88, 99, 101-103] to
4.4pN [88]. An increased stall force could strengthen the dynein team and therefore shift the
force balance toward the dynein-driven state. In future work, it would therefore be intriguing
to investigate adaptor proteins in terms of regulatory mechanisms.

Taking together, cooperative effects between kinesin and dynein motors lead to a stable force
balance between the oppositely directed kinesin and dynein team. Changing the number of
motors is one way to regulate this stable force balance. Another way might be strengthening
one team. One way to strengthen the dynein team might be adding adaptor proteins and
therefore increasing the stall force. Future work should focus on factors influencing the force
balance between kinesin and dynein motors.

4.3.2 Regulation by ATP concentration

The ATP concentration varies temporarily and spatially inside the cell [180, 181] and single
molecule velocities of kinesin and dynein strongly depend on ATP concentrations [71, 88, 120,
190]. To be a potential regulation factor of bidirectionally transported cargo, teams of dynein
and kinesin motors need to react differently to changes in the ATP concentration. That is why,
it is first studied how unidirectional kinesin and dynein gliding assays change with ATP con-
centration.

Unidirectional gliding assay experiment and simulation were performed at kinesin and dynein
motor densities of oy, = 18 um~2 and Ogyn = 18 um~2, respectively and the ATP concen-
tration is varied between 2 — 5000 uM. In the simulation, the stepping rates of kinesin and
active dynein motors are ATP dependent (see eq. (4.19) and eq. (4.22) for kinesin, for dynein
the same equations but dynein-specific parameter values are used). For passive MT-attached
dynein, a Michaelis-Menten-like ATP dependence is added to the force-free diffusion rate:

S0.max * [ATP]
[ATP] + 50 max /Ky

so = so ([ATP]) = (4.34)

with kg being the unloaded rate constant for ATP binding as used for the active motors (see
€q. (4.19)). s max is determined by setting s, ([ATP] = 2000 uM) equal the value of s, found
above for 2000 uM (see section 4.2.2). Using this force-free diffusion rate, the force-dependent
stepping rate is given by

_ Fld

s, = so ([ATP])e” %7, (4.35)

using eq. (4.27).  For simulation and experiment, median instantaneous velocities are
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Figure 4.18: Different reactions of unidirectional gliding assays to varying ATP concentrations
do not lead to a shift of the balanced state in bidirectional gliding assays. a)+b):
Median instantaneous gliding velocities plus IQR are depicted as a function of ATP con-
centration for the unidirectional kinesin a) and dynein gliding assay b), for simulation
(red curve) and experiment (light blue curve). For simulation and experiment, kinesin
and dynein densities of 6, = 18 um~2 and Ogyn = 18 um~2 were applied, respectively.
Experimental and simulation results match for the kinesin and the dynein assay. The
experimental data of the kinesin assay could be fitted by a Michaelis Menten equation
(U = Upax X [ATP]/(K,, + [ATP]) with v, = 914nms~! and K,, = 69 uM, solid fit,
yellow curve). The ATP dependence of the dynein assay could not be fitted by a Michaelis-
Menten equation because the experimental data shows a more linear increase with ATP
concentration instead of a Michaelis-Menten-like dependence. The dashes yellow line
shows the Michaelis-Menten equation found by Torisawa et al. [89] for dynein gliding
assays. For unidirectional dynein assay simulations, the experimental MT length distri-
bution of MT lengths Lyt > 15 um was used and for the unidirectional kinesin assay, a
MT length of Ly;r = 25 um. c¢)+d): Median instantaneous velocities plus IQR of bidirec-
tional gliding assay simulations (c) and experiments (d) at different ATP concentrations.
Median velocities are depicted as a function of varying (Continuation on next page.)
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Figure 4.18 (previous page): kinesin densities at the constant dynein density of 64y, = 18 um~2. In
the simulation a MT length of Ly;r = 25 um was used and in the experi-
ment MTs with lengths Ly > 15 pm. Simulation and experiment show
a stronger reduction of the velocity in the dynein-driven state than in the
kinesin-driven state. The balanced state (y;, = 0.1 — 1.0 um~2 for simu-
lation and 6y, = 1 — 10 um~2 for experiment), however, remained stable
upon different ATP concentrations. This means ATP concentration can-
not regulate the directionality of MT transport in bidirectional gliding
assays. All shown experiments were performed by Lara Scharrel from
Stefan Diez lab at B CUBE, TU-Dresden. Reproduced/adapted with per-
mission from The Company of Biologists LTd., Journal of cell science.
Originally published in Journal of cell science, volume 133(22), page
J€s249938 (2020) [309].

measured as a function of the ATP concentration (see fig. 4.18a and 4.18b). Simulation and
experimental results of the kinesin assay coincide well and could be fitted by a Michaelis-
Menten equation. For dynein, the simulation is also in alignment with the experiment.
However, median velocities of experiment and simulation do not show a Michaelis-Menten-
like dependence on the ATP concentration. For the dynein assay, the median velocity
increases more in a linear manner with the ATP concentration and might not be saturated at
the highest applied ATP concentration of 5000 uM. Consequently, the unidirectional gliding
assays indeed react differently to changes in ATP concentration and ATP concentration could
be a potential regulation factor for bidirectional transport.

The absence of a Michaelis-Menten-like ATP dependence is in conflict with previous
experimental studies [87, 89]. To investigate this discrepancy, the unidirectional gliding
assay is simulated at a higher dynein density for the same ATP concentrations. At the higher
dynein density, indeed a Michaelis-Menten dependence of the gliding velocity can be seen
(see fig. 4.19a). In section 4.2.2, it has been shown that the influence of passive motors
can be neglected at the higher dynein density. However, at the lower dynein density, the
gliding velocity is strongly influenced by passive MT-attached motors. Passive MT-attached
motors slow down the transport velocity at low number of dynein motors. The stepping of
passive motors is modeled to be dependent on the ATP concentration using a Michaelis-
Menten dependence (see eq. (4.34)). This means at lower ATP concentrations the passive
MT-attached motors slow down the MT gliding even more. This explains why, a slower,
almost linearly increasing gliding velocity with increasing ATP concentration is found instead
of a Michealis-Menten-like ATP dependence. Consequently, the ATP dependence of dynein
depends on the number of motors. At saturated number of motors, a Michaelis-Menten
dependence is expected as seen by previous experimental studies [87, 89]. However, at low
number of dynein motors, passive MT-attached dynein motors slow down the transport and
a more linearly increasing velocity as a function of the ATP concentration is found. Future
studies should take into account this number dependence.

While at higher dynein densities a Michealis-Menten dependence on the ATP concentration
is expected as seen for kinesin, at lower dynein densities the dependence on the ATP
concentration differs for kinesin and dynein motors. That is why, bidirectional gliding assays
are performed at a low dynein density and two ATP concentrations, 1000 uM and 5000 uM,
where the differences between dynein and kinesin motors were found to be substantive. Going
from 1000 pM to 5000 pM, the median velocity of the kinesin assay remained almost constant,
while the median velocity of the dynein assay nearly doubled. As for the number dependence,
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the kinesin density is varied at a constant dynein density. A low constant dynein density
of o4y, = 18 um~2 is applied as used in the unidirectional assay (see fig. 4.18a and 4.18b
for the unidirectional assay). Median instantaneous velocities of simulation (fig. 4.18¢) and
experiment (fig. 4.18d) are depicted as a function of the kinesin density at the two different
ATP concentrations 1000 uM and 5000 uM. It can be seen that the simulation is aligned with
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Figure 4.19: Unidirectional gliding assay at high dynein density and bidirectional gliding assay at
low ATP concentrations. a) Unidirectional gliding assay simulations performed at a high
dynein density of o4y, = 64 um~2. Median instantaneous velocities plus IQR are depicted
as a function of ATP concentration. In this simulation a MT length of Lyt = 25 um
was applied. The data of the unidirectional gliding assay simulation at higher dynein
density could be fitted by a Michaelis-Menten equation V,,, X [ATP]/(K,, + [ATP]) with
Viax = 1190+78 nm/s and K,,, = 684+132 uM. b) Bidirectional gliding assay simulations
at varying low ATP concentrations. A MT length of Ly;r = 25 um was applied. Median
instantaneous gliding velocities plus IQR are depicted as a function of varying kinesin
densities at a fixed dynein density of 64y, = 18 um~2. A slight tendency of a shift of the
balanced state towards smaller kinesin densities for lower ATP concentrations can be seen
(see inset). Reproduced/adapted with permission from The Company of Biologists LTd.,
Journal of cell science. Originally published in Journal of cell science, volume 133(22),
page jcs249938 (2020) [309].

the experimental observations. Both experiment and simulation show the dynein-driven state,
the balanced state and the kinesin-driven state for both ATP concentrations. In accordance
with the unidirectional assay, median velocities are reduced for the lower ATP concentration
in the dynein- and kinesin-driven states. As expected, the velocity is stronger reduced in
the dynein-driven state than in the kinesin-driven state (see results of the unidirectional
assays fig. 4.18a and fig. 4.18b). If ATP concentration would regulate the directionality of
bidirectional transport, the balanced state should be shifted to different kinesin densities in
dependence of the ATP concentration. However, the balanced state does not change with the
ATP concentration but remains at the same kinesin density (between 0.1 — 1.0 um~2). Thus,
the balanced state remains stable upon varying ATP concentrations indicating that the ATP
concentration might not regulate the directionality of bidirectional transport.

To understand why the balanced state remains stable upon varying ATP concentrations, the
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simulation is used for a detailed look at events happening at the balanced state on a molecular
level. Fig. 4.20a shows that predominantly passive dynein stepping occurs at the balanced
state. Passive dynein stepping is modeled as ATP-dependent stepping. However, passive
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Figure 4.20: Insights into the balanced state at the sub-molecular level. a) Percentage of events that
occur on a molecular level are depicted as a function of varying kinesin densities. For all
simulations the fixed dynein density was 64y, = 64 um~2. The following events can occur
on the molecular level: kinesin detachment (purple), dynein detachment (green), kinesin
attachment (light blue), dynein attachment (orange), kinesin stepping (yellow), passive
dynein stepping (blue), active dynein stepping (red) and dynein (de)activation (black). At
the balanced state (6y;, = 1.0 um~2) mainly passive dynein stepping occurs. Kinesin
almost did not step at all and active dynein only stepped occasionally (< 10%). b)+c)
Histograms of moved kinesin b) and dynein distances c) in bidirectional gliding assay
simulations. The kinesin density was 6};, = 1.0 um~2 and the dynein density as given in
the sub-figures. The balanced state occurred at o4y, = 64 um~2. At the balanced state,
the moved kinesin and the moved dynein densities are peaked around zero. Thus, at the
balanced state, the motors are strongly localized. Reproduced/adapted with permission
from The Company of Biologists LTd., Journal of cell science. Originally published in
Journal of cell science, volume 133(22), page jcs249938 (2020) [309].

dynein stepping is a diffusive motion in a harmonic potential, rather than a directed motion.
Passive dynein, therefore, does not contribute to the force balance between kinesin and dynein.
Consequently, passive dynein and therefore the ATP concentration does not change the force
balance between kinesin and dynein motors.

Using MT gliding assays, either unidirectional or stalled trajectories can be observed in
dependence of the relative motor concentrations (see fig. 4.15). Stalled trajectories mean
that there is a stable force balance between kinesin and dynein. In order to regulate the
directionality of bidirectional MT gliding assays, this force balance needs to be shifted. Since
the active motors hardly step during the force balance (balanced state), factors that influence
the stepping velocity of the motors cannot shift the stable force balance. Thus, the ATP
dependence of the motor stepping velocity changes the velocity of the unidirectionally moving
cargos, but not the directionality of MT gliding assays.

However, previous studies showed that the ATP concentration also influences the stall
force of kinesin and dynein motors. Since the force balance is determined by the number
and kind of motors as well as the strengths of individual motors, changing the stall force
could influence the force balance. A detailed look at the previous studies reveals that the
kinesin stall varies only slightly at very low ATP concentrations (< 100 pM), but remains
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constant for higher ATP concentrations [186]. Consequently, the kinesin stall force is mostly
considered independent of the ATP concentration [35]. The dynein stall force, in contrast,
increases linearly with the ATP concentration until saturating at a value of ~ 1pN and an
ATP concentration of 1000 uM [101]. The experiments, which were taken as a reference
for the here shown simulations, only applied ATP concentrations in a regime where neither
the dynein nor the kinesin stall force changes. Simulating, however, the bidirectional MT
gliding assay at lower ATP concentrations (see fig. 4.19), where dynein has a smaller stall
force, shows a small tendency of a shift of the balance state towards lower kinesin densities as
expected. A clearer dependence on the ATP concentration could be observed for a simulated
cargo transport with fixed number of motors [35]. It might be, that when having a fixed
number of available motors, the shift of the balanced state can be clarified due to reduced
fluctuations'®. However, the number of motors is not expected to be fixed in real systems.
Thus, whether the ATP concentration can shift the force balance in real systems need to be
tested in future.

A difference between the trajectories of in vivo cargo transport and MT gliding assays is
that while MT gliding assays only show stalled or unidirectionally moving cargos (fig.
4.15), single in vivo cargos often move in both directions including pauses and directional
reversals [7, 8]. This means the balance state might not be as stable in vivo as observed
here for MT gliding assays. Consequently, reducing the stepping velocity of one motor
more than the other in dependence of the ATP concentration would lead to a shorter
distance traveled during the moving (run) state in one direction than in the other. As a
result, the overall directionality would be changed. Thus, influencing the stepping velocity
rather than the force balance could still be a mechanism for how the ATP concentration
could regulate in vivo cargo motion. Future work should focus on testing the influence of the
ATP concentration on transport systems which resembles the mode of motion of in vivo cargos.

4.3.3 Regulation by roadblocks

Previous work showed that kinesin and dynein are asymmetrically influenced by roadblocks
[31, 40, 204, 312]. The reason is a different reaction of the kinesin and dynein motors when
encountering a roadblock [209, 211, 212]. While kinesin shows pausing or detachment events
when encountering a roadblock [209, 211], dynein is thought to change to the neighboring
protofilaments in order to circumvent roadblocks [39]. Consequently, (eventually) detaching
kinesin, roadblocks could shift the force balance between kinesin and dynein. Thus, it is there-
fore thought that roadblocks could regulate bidirectional transport [31, 40, 204, 312].

Before studying bidirectional transport in the presence of roadblocks, it needs to be known how
teams of multiple kinesin or teams of multiple dynein motors react separately to roadblocks.
Therefore, unidirectional gliding assays were performed at kinesin and dynein densities of
Oin = 50 um~2 and Oayn = 50 um~2, respectively. In the experiments, the MTs were coated
with rigor-binding kinesin-1 mutants (from now on referred to as roadblocks) at different con-
centrations. In the simulation, permanently occupied spots on the MT at a given line density
Argp are implemented. The occupied spots have the radius of a kinesin motor R;;, = 4nm.
Both, dynein and kinesin motors are not allowed to attach or step on these occupied spots.
Unidirectional gliding assays were performed at different roadblock concentrations (experi-
ments) and line densities (simulation). Relative median instantaneous velocities are depicted

19Note that in this work fluctuations are in the same range as the observed shift of the balance state.
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as a function of the roadblock concentration for the experiment (fig. 4.21b) and as a function of
the roadblock line density for the simulation (fig. 4.21a). For simulation and experiment, the
median velocities decrease with increasing roadblock concentrations/line densities for kinesin
and dynein. In the experiment and the simulation, a faster decrease is observed for dynein.
Consequently, dynein is more affected by roadblocks than kinesin. This is in contrast to ex-
pectations from single molecules, where dynein was observed to overcome roadblocks more
successfully or not be influenced by roadblocks at all [31, 39]. Furthermore, the result is in
contrast to a previous study showing that cargo transport by multiple kinesin motors is as af-
fected by roadblocks as multiple dynein motors [39].

Dynein being more affected by roadblocks than kinesin in MT gliding assays might be due to
the gliding assay set-up. As said before, the bypassing mechanism of dynein is to take side
steps to neighboring protofilaments. In the simulation, however, only one protofilament is mod-
eled and dynein motors are not able to sidestep in order to overcome a roadblock. Differences
between kinesin and dynein assays raise only from different detachment and (re)attachment
properties. While for the simulation it is known that dynein motors are not able to side step, it
is unknown whether dynein motors are able to perform side steps in the gliding assay set-up.
To test whether the same results would be obtained if dynein were able to side step, the gliding
assay is simulated with seven protofilaments instead of just one protofilament. In the multiple
protofilament simulation, kinesin motors are able to attach to different protofilaments, but not
change the protofilament while being attached. Attached dynein motors, in contrast, change
the protofilament with the side-stepping rate s;4. (see table A.1 for parameter values and refer-
ences). Using the multiple protofilament simulation, multiple dynein motors were as affected
by roadblocks as multiple kinesin motors (see 4.22a). Using the multiple protofilament sim-
ulation, but not allowing dynein to take side steps, multiple dynein motors were again more
affected by roadblocks than multiple kinesin motors as it has been seen for the one protofil-
ament simulation (see fig. A.l of the appendix A). Consequently, it is expected that dynein
motors are not able to take side steps in the gliding assay experiments.

Not being able to sidestep, dynein motors need to detach and attach again after the roadblock
to overcome it. Comparing the dynein attachment rate (k, 4, = 0.2 s~!) with the kinesin at-
tachment rate (k, y;, = 20 s71), reveals that kinesin is able to reattach much faster than dynein
(see table A.1 for the parameter values). That is why, in gliding assays, multiple dynein motors
are more affected by roadblocks than multiple kinesin motors.

Since roadblocks impair multiple kinesin and dynein motors to different degrees, the ques-
tion arises, whether roadblocks can change the transport direction in bidirectional gliding as-
says. Bidirectional gliding assays are therefore performed in the presence of roadblocks at
different roadblock concentrations, in the experiment, and different roadblock line densities,
in the simulation. As before, the kinesin densities are varied at the constant dynein density of
Ogyn = 50 um~2 used in the unidirectional assay. Median velocities are depicted as a function
of the kinesin density for different roadblock line densities for the simulation (fig. 4.21c) and
roadblock concentrations for the experiment (fig. 4.21d). Simulations and experiments show
dynein-driven states, balanced states, and kinesin-driven states. Median velocities reduce in
the dynein- and kinesin-driven state the higher the roadblock concentration or the roadblock
line density. The reduction of the velocity is stronger in the dynein-driven state, which is ex-
pected from the results of unidirectional gliding assays. The balanced state, however, remains
at the same kinesin density for all roadblock concentrations in the experiment and all line den-
sities in the simulation. Consequently, roadblocks cannot change the transport direction in
bidirectional gliding assays. With the multiple protofilament simulation, the same results are
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Figure 4.21: Different reactions of unidirectional kinesin and dynein assays to roadblocks do not

lead to a shift of the balanced state in bidirectional gliding assays. Rigor-binding
kinesin mutants were put on the MTs as roadblocks. While in the simulation a road-
block line density Agp is applied, in the experiment the roadblock concentration is given.
a)+b) Relative median instantaneous velocities with IQR for unidirectional kinesin (pur-
ple curve) and dynein (light blue curve) gliding assays in the presence of roadblocks.
Relative velocities are calculated by the instantaneous velocities in the presence of road-
blocks divided by the velocity in the absence of roadblocks. Relative median velocities
are depicted as a function of the roadblock line density for simulation a) and as a function
of the roadblock concentration for the experiment b). For simulation and experiment, ki-
nesin and dynein densities were oy, = 64y, = 50 um~2, respectively and the MT length
was Ly = 25 pm in the simulation and in the interval of Ly = 25 — 30 um in the
experiment. Median velocities decreased with increasing number of roadblocks in uni-
directional kinesin and dynein gliding assay simulations and experiments. The velocities
decreased faster in the dynein assays than in the kinesin assays. c)+d) Bidirectional glid-
ing assay simulations (c) and experiments (d) in the presence of roadblocks. At a fixed
dynein density of 4y, = 50 um~2, median instantaneous gliding velocities with IQR are
shown as a function of varying kinesin densities. In the (Continuation on next page.)

118



4.4. Conclusion

Figure 4.21 (previous page): simulation, a length of Lyt = 25 um was applied. Relative median ve-
locities were stronger reduced by roadblocks in the dynein-driven state
than in the kinesin-driven state. The balanced state remained at a kinesin
density of 6y;, = 1.0 um~2 in the simulation and of 6y;, = 0.1—1.0 um~2
in the experiment for all roadblock line densities and concentrations. All
shown experiments were performed by Lara Scharrel from Stefan Diez
lab at B CUBE, TU-Dresden. Reproduced/adapted with permission from
The Company of Biologists LTd., Journal of cell science. Originally pub-
lished in Journal of cell science, volume 133(22), page jcs249938 (2020)
[309].

found (see fig. 4.22b). This means, independently of the side-stepping ability of dynein, road-
blocks cannot regulate the directionality in bidirectional MT gliding assays.

To understand why the balanced state remains stable upon different roadblock concentrations,
the distance a motor moves in the balanced state is measured using the simulation. Moved
distances are depicted for kinesin and dynein motors at different dynein densities and a kinesin
density of oy, = 1.0 um~2 (fig. 4.20b and fig. 4.20c). At the balanced state (Ogyn = 64 um=2),
it can be seen that kinesin and dynein motors move very little. In more detail, the median moved
dynein and kinesin distance in the balanced state are 16 nm and 64 nm, respectively, while the
mean distance between roadblocks is ~ 166 nm at a roadblock line density of Az = 6 um™2.
Thus, the mean distance between roadblocks is more than double the moved distance of the mo-
tors. That is why the motors do not "see" the roadblocks in the balanced state. Taking together,
because of the strong motor localization, the balanced state remains stable upon different road-
block concentrations. Consequently, roadblocks cannot regulate bidirectional transport.

Here, it is shown that roadblocks, which hinder both motors, cannot change the force bal-
ance. Having, however, motors that asymmetrically detach one kind of motor, while the other
remains unaffected, could shift the absolute force direction during a moving phase and there-
fore change the direction. Tau islands, for instance, are such roadblocks (see chapter 5 for tau
island modeling and 2.4.3.1 for background information about tau). Tau islands let dynein mo-
tors pass, but detach kinesin-1 motors [31, 40]. Thus, tau islands change the motor distribution
and are therefore expected to regulate the direction of bidirectional transport.

Furthermore as mentioned before, in vivo cargos move bidirectionally including unidirectional
runs, pauses, and directional reversals [7, 8]. Slowing down the cargos more during one trans-
port direction than the other could change the overall transport direction of bidirectionally
moving cargos. Thus, as for the ATP concentration, the influence of symmetric roadblocks
should be tested using a transport system showing bidirectional, in vivo-like transport motion
including reversals.

4.4 Conclusion

In this chapter, MT gliding assay simulations are used to study intracellular transport by multi-
ple motors. Using unidirectional gliding assays, first, the collective motion of several kinesin or
dynein motors was studied. While the kinesin assay simulations are in alignment with the ex-
perimental observations using a known kinesin model [33—35], the standard dynein model [33—
35] could not reproduce the experimentally observed behavior. To reproduce the increase of
MT gliding velocity with increasing number of dynein motors seen in experiments, a mechani-
cal dynein activation is hypothesized and added to the dynein model. Under the assumption of
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Figure 4.22: Dynein is as affected as Kinesin in multiple protofilament simulations in the presence
of roadblocks, but the balanced state remains stable. a) Multiple protofilament simula-
tions of unidirectional kinesin (purple) and dynein (light blue) gliding assays in the pres-
ence of roadblocks. Using the multiple protofilament simulations seven protofilaments
are modeled instead of just one protofilament. Dynein is thereby allowed to change the
protofilament with rate sy, = 4 s~!, while kinesin stays at one protofilament. Kinesin and
dynein densities were oy, = 04y, = 50 um~2, respectively and a MT of Ly = 25 um
was used. Relative median instantaneous velocities (instantaneous velocity divided by the
velocity in the absence of roadblocks) are depicted as a function of the roadblock line den-
sity. In the multiple protofilament simulation, both motors are less affected by roadblocks
and dynein is as strongly affected as kinesin. b) Multiple protofilament simulations of
bidirectional gliding assays in the presence of roadblocks. Relative median instantaneous
velocities are depicted as a function of varying kinesin densities at a fixed dynein density
of 64y, = 50 um~2. The MT length was Ly = 25 um. Even if multiple protofilaments
are involved in the transport, the balanced state stays at the same kinesin density for all
roadblock concentrations. Reproduced/adapted with permission from The Company of
Biologists LTd., Journal of cell science. Originally published in Journal of cell science,
volume 133(22), page jcs249938 (2020) [309].

a mechanical activation, the simulation shows the experimentally found increased cooperation
between multiple dynein motors with increasing number of motors. The here shown and in
Monzon et al. [300] published, mechanical activation mechanism can explain how multiple
dynein motors can transport a MT at high velocities while for single dynein without adaptor
proteins, only diffusion-like motion is observed.

In a second step, the established kinesin and dynein models were incorporated into bidirec-
tional gliding assay simulations. Results of the bidirectional gliding assays show that while
the number and kind of motors determine the transport direction, the balanced state remains
stable under varying ATP and roadblock concentrations. Thus, ATP concentration and road-
blocks are no regulation factors for the directionality of bidirectional transport in MT gliding
assays. Thus, in MT gliding assays, only factors influencing the force balance between kinesin
and dynein motors rather than the single motor stepping, are potential regulation factors.
However, while in MT gliding assays only stalled or unidirectional trajectories (fig. 4.15)
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4.4. Conclusion

could be observed, in vivo cargos often show bidirectional motion including directional re-
versals [7, 8]. Future studies should test whether influencing the motor stepping can regulate
cargo transport directions, when the cargo is transported bidirectionally, including reversals.
Moreover, the simulation shows that MT-attached kinesin motors activate passive MT-attached
dynein and increase the total number of MT-attached motors. Thus, the simulation reveals that
besides antagonistic effects, there are also cooperative effects between kinesin and dynein mo-
tors.

The presented bidirectional gliding assay results including the dependence on the number of
motors, ATP, and roadblock concentrations are published in Monzon et al. [309].
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Chapter 5

Modeling tau adsorption

Contents
5.1 Tauadsorptionmodel . . . . ... ... ... . .......... 124
5.2 Comparison to experiment and parameter discussion . . . . . . . . 133

5.3 Discussion and outlook

In this chapter, the adsorption of the MT-associated protein tau to the MT lattice is modeled.
MT-associated proteins influence each other differently such that molecular motors (belonging
to the MT-associated proteins) are also influenced by non-motor MT-associated proteins. On
the one hand, non-motor MT-associated proteins can reduce molecular motor stepping or even
lead to motor detachment. On the other hand, non-motor MT-associated proteins can have no
effect on the molecular motor MT interaction or even enhance the molecular motor binding
affinity to MTs [31, 40, 313-316]. Here, first, the tau adsorption to the MT and the formation of
tau islands (= dense, stable accumulations of tau) on the MT are studied. The tau adsorption
model is built up using the Langmuir adsorption model as a reference. Then, the simulated
tau adsorption and island formation are compared to the experiments of Siahaan et al. [40].
Finally, model parameters are varied to discuss their influence on tau island formation.

123



Chapter 5. Modeling tau adsorption

The previous chapter showed that although point-like roadblocks have different effects on

unidirectional kinesin and dynein transport, point-like roadblocks cannot regulate the transport
direction in bidirectional gliding assays. However, inside the cell, not only point-like road-
blocks exists but also spatially extended obstacles. Spatially extended obstacles could have a
different effect on the directionality of bidirectional transport than point-like roadblocks. It
could be that a cargo reverses its direction when encountering a spatially extended obstacle
because the leading motor cannot step any further. Spatially extended obstacles could be other
big cargos occupying the MT track or accumulations of other MT-associated proteins. Recent
work showed that the MT-associated protein tau forms islands on MTs!. Tau islands are
stable clusters of tau proteins, which protect the MT from MT-severing enzymes like katanin
for instance [40]. Malfunctioning of tau is known to lead to neurodegenerative diseases like
Alzheimer or fronto-temporal dementia [26, 229, 231-233, 318]. On the intracellular level,
it has been shown that a higher tau concentration leads to different organelle distributions
suggesting that tau has an impact on intracellular transport [29, 316]. That is why it is
intriguing to understand the functioning of tau.
In vitro experiments showed that dynein and kinesin are differently affected by tau islands.
While single DDB (dynein—dynactin—-BicD2N) was observed to pass tau islands, kinesin-1
detached when encountering a tau island [31, 40]. However, the effect of tau islands on
bidirectional intracellular transport remains obscure. To understand the impact of tau islands
on intracellular transport, first, the tau adsorption and island formation need to be understood.
Here, tau island formation is studied using stochastic simulations. Simulations are compared
to the experimental work by Siahaan et al. [40]. Therefore, a tau adsorption model is
developed based on the Langmuir adsorption model and known lattice gas models (see section
3.3 for details on the Langmuir adsorption model and lattice gas models).

5.1 Tau adsorption model

Previous work showed that tau binds longitudinally along MTs [210]. That is why the MT is
modeled as a one-dimensional lattice taking only one protofilament (from now on abbreviated
as PF) into account (see illustration fig. 5.6). The one-dimensional lattice consists of N; sites.
Each site is 8 nm long, the length of one tubulin dimer.

First, only the adsorption and desorption are modeled. Therefore, the adsorption and desorp-
tion rates are estimated from the experimental in vitro study by Siahaan et al. [40]. In this study,
they measured the tau density within (denoted by p;) and outside the islands (=surrounding,
density denoted by pg(?)) as a function of time, as well as the fraction of the MT covered with

islands (f oyerage(?))- From that the total experimental tau density can be calculated:

pexp(t) = fcoverage(t) ot (1 - fcoverage(t)) ) pS(t)‘ .1

The time dependence of the experimental density can be fitted with the time dependence given
by the Langmuir adsorption model (see section 3.3 for details):

Q —_— .
PLangmuir(!) = QaTan . (1 _ o (Q40)) z> ' 52)

IThese "tau clusters" were first called "tau islands" and "tau condensates" [31, 40]. A recent study calls them "tau
envelops" [317].
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5.1. Tau adsorption model

Fitting p.,,(#) with the Langmuir adsorption model (see fig. 5.1) gives an estimate for the tau
adsorption rate €, and desorption rate £2:

Q,=0.003s"" and Q;=0.0465". (5.3)

When simulating just tau adsorption and desorption, the simulation density (fig. 5.2a) follows
the theoretical Langmuir density as expected and
the kymograph (lower row of fig. 5.2a) shows tau

molecules that attach to the MT lattice, stay at- 0.061
tached for a while, and then detach again. The
kymographs show various grey shades because 2 %04
a Gaussian filter is applied to better mimic the g

. . 0.021 . Estimated from
experimental kymographs. Note that using the : Siahaan et al. 2019

Fit using Langmuir

Langmuir model neglects correlation effects be- —— adsorption model

tween tau molecules. 0.001 : = = - _~
In this first model, one tau molecule is just oc- Time [s]

cupying one lattice site, i.e. one tubulin dimer.

However, it is known that the tau isoform used Figure 5.1: Experimer'ltal tau de.nsity can
in the experiment by Siahaan et al. [40] has four :)if):tltﬁgdvg;tl}l};:?eg?:gvzds?;vl:;
MT binding repeats (from now on called MT- ’

. . . an estimate of the tau density in
BRs). Tau is a string-like molecule, where the the experiment of Siahaan et al.

four MTBRs are aligned next to each other (see [40]. Using eq. (5.1), the density
fig. 5.4). Moreover, it is known that tau binds was calculated from the constant
along one protofilament with one MTBR being tau density within islands p;, the
attached from the middle of the beta-tubulin of tau density outside islands pg(1),

and the fraction of the MT cov-
ered with islands fiqyerage(r). The
tau densities inside and outside is-
lands were estimated from fig. 1f
and the MT coverage from fig.

one tubulin dimer to the middle of the beta-
tubulin of the next tubulin dimer [210]. Thus, one
MTBR covers a length of one tubulin dimer of ap-
proximately 8 nm. This means, when adding the

four MTBRs to the tau adsorption model, one tau le (20nM tau) of Siahaan et al.
molecule occupies 1 —4 neighboring sites on the [40]. The blue curve shows the
one-dimensional lattice. When adsorbing from fit using the Langmuir adsorption
the solution tau binds with one randomly chosen model (eq. (5.2)).

MTBR. While for the initial adsorption from the

solution, the global adsorption rate Q, is used, for the further binding and unbinding of MT-

BRs, the intrinsic attachment and detachment rates @, and @y are used, respectively. Since

MTBRs are next to each other in the tau molecule (see fig. 5.4), it is assumed that only the next

neighbor(s) of the MT-bound MTBR(s) can bind to neighboring sites on the lattice and only the

outer bound MTBR(s) can unbind. This means combinations such as bound-unbound-bound-

bound are not allowed. See also the schematic in fig. 5.3a. Since the binding and unbinding of

the MTBRs are stochastic processes at equilibrium, the intrinsic attachment and detachment

rates are connected via the detailed balance:

Da _ ¢ PAE = B (5.4)
Wy

with the thermal energy f = ﬁ and the binding energy B.

A tau molecule completely desorbs to the solution again if all four MTBRs are unbound. In-
cluding four MTBR(s) and intrinsic binding and unbinding processes, the tau molecule should
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a) Langmuir model b) Tau with 4 MTBRs ¢) Tau with diffusion
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Figure 5.2: Building up the tau adsorption model: Langmuir adsorption model, tau with four

MT binding repeats and tau diffusion. Figures show tau per site densities (upper row)
and kymographs (lower row) for different states of the tau adsorption model. Tau per site
density is calculated as the number of tau molecules bound to the one-dimensional lattice
divided by the total number of lattice sites. Kymographs are generated by plotting the
occupancy of the one-dimensional lattice for each measurement time (A7, = 0.125s). A
site, which is occupied, is plotted in white, and an empty site in black. Having tau with four
MT binding repeats (MTBRs), the signal of one tau is equally distributed over the occupied
sites resulting in grey points. Additionally, to better mimic experimental kymographs, the
image is blurred using the Gaussian filter from the python package scipy with sigma =
5 (scipy.ndimage.gaussian_filter). Scale bars are 2 um (horizontal) and 5s (vertical).
a) Only tau adsorption and desorption are modeled reproducing the Langmuir adsorption
model. In this case, one tau molecule is only occupying one lattice site. Since tau molecules
do not move, the kymograph just shows straight lines representing attached tau molecules.
b) The model of a) is used but with tau with four MTBRs. In this case, one tau molecule
can occupy one to four sites on the lattice resulting in a tau per site density lower than the
density from the Langmuir adsorption model. The kymograph is similar to the kymograph
in a). ¢) The tau diffusion is added to the model of b). When the tau molecule diffuses to
the next site, all bound MTBRs are moved by one site. The tau per site density remains
unchanged compared to b), but the kymograph now shows moving tau resulting in randomly
distributed dots instead of straight lines.

still desorb to the solution with the rate Q. This means the tau molecule should, on average,
pass the desorbed state after a time of 1/Q; after binding. This specifies the time scale for in-
trinsic binding and unbinding events. In detail, this means the mean time between binding and
unbinding has to be equal 1/€,. Note that initially one randomly chosen MTBR is bound. To
calculate the mean first passage time to pass to the desorbed state, the set of master equations
of all states is needed. For setting the master equations, it has to be distinguished between MT-
BRs in the middle (denoted by M, MTBR numbers two and three) and MTBRs at the edges
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5.1. Tau adsorption model

(denoted by E, MTBR numbers one and four). The state where all MT binding repeats are
bound is then called Pgy\g- Having three MTBRs bound can either be state Pgypg O Pymg-
For two bound MTBRs, there are the states Pgy;, Py and Py, and when only one is bound, it
can either be Py or Py;. The state where no MTBR is bound is denoted by Ppegorpiion- F1g- 5.3b
shows all possible transitions between the states, which result in the following set of master

equations:

%PEMME = —204 Peyvie + @, (Pevm + Puvie)
%PEMM = o4 (Pemve = 2Pevm) + @a (Pemt + Pavt = Pevm)
%PMME = g (Pemme = 2Pume) + @, (Pum + Pue — Puvie)
%PEM = @q (Pevm — 2Pem) + @, (Pg + Py — Pay)
¥ %PMM =wd(PEMM+PMME_2PMM) + 2w, (PM_PMM) (5.5)
%PME = g (Pume — 2Pue) + @, (Ps + Py — Pyg)
<P = oy (Pyg + Pay — Pg) — 20, P
< Py = oy (Pyg + Pay + 2Py — Pyp) — 4, Py
%PDesorption =y (Py+ Pg).
Dividing by w, and using the detailed balance 5.4, the master equations become:
%PEMME = ~2Povme + ¢ (Pevm + Pumie)
%PEMM = Pemmie — 2Pewiv + €% (Pem + Pum — Pewimt)
%PMME = Pomvie — 2Pume + €7 (Pum + Pue — Pume)
%PEM = Pomm — 2Pem + €7 (Pg + Py — Paw)
> %PMM = Poyv + Puvie — 2Pym + 2675 (PM _PMM) (5.6)
%PME = Pumg — 2Py + ¢ (Pg + Py — Pug)
L P = Pyp + Poy — Ps —2¢7 8P,
= Py = Pyg + Pay + 2Pyy — Py — 4e B Py
%P Desorption = I + Pi

with the reduced time 7 = w, - . The master equations were solved numerically using the
initial condition P; = Py; = 0.5. Knowing the time dependence of the probability densities of
all states, the probability of still being attached (survival probability) can be calculated:

PA(T) =

P(7).
i € {E,M,EM,MM,ME,EMM,MME,EMME }

(5.7
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a) b)

MM

Desorption

Figure 5.3: Tau has four MT binding repeats. a) The schematic shows the model of the four MT
binding repeats (MTBRs) of the tau molecule. The four MTBRs are lined up in the tau
molecule (see also fig. 5.4) such that it can be distinguished between edge (E) and middle
(M) MTBRs. Each MT-bound MTBR occupies one site on the one-dimensional lattice
(red), which represents one protofilament of the MT. Single MTBRs attach and detach
from the MT with the intrinsic rates w, and @y, respectively. For intrinsic attachment,
only the detached neighboring MTBR(s) of the bound MTBR(s) are allowed. For intrinsic
detachment, only the outer-bound MTBRs are allowed. In the schematic the right middle
(M) MTBR is therefore not allowed to detach (see crossed arrow). b) The diagram shows
all possible states of a tau molecule: zhe tau molecule can be bound with all four MTBRs
(EMME), with three of the four MTBRs (EMM or MME), with two MTBRs (EM, MM,
or ME), with only one MTBR (E or M) or be desorbed ("Desorption"). Arrows show
transitions between the states. Red arrows identify transitions, where only one process leads
to this transition, while the orange arrow shows a transition, where two different processes
can lead to (the left M or the right M can detach to get to the state M and another M can
attach to the right or left of the one attached M). In the model, tau molecules initially land
on the lattice either in state M or in state E.

From that the first detachment time density (first passage time density) can be obtained:

d d
fo=—-(1=Py@) =~ > -~ P(2). (5.8)
dt ‘ dr
i € {E,M,EM,MM,ME,EMM,MME,EMME }
Plugging in the master equations (eq. (5.6)), it is found:

To calculate the mean first detachment time in the reduced time, the first detachment time
probability density has to be averaged over all times:

(]

(1) = / T+ (Py + Pydr. (5.10)

0
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5.1. Tau adsorption model

The mean first detachment time in real-time ¢ is calculated as (¢) = (7)/w, and has to be equal
to the inverse of the global desorption rate:

(=L =_—. (5.11)

Using a binding energy of B = —0.1 (see section 5.2 for variation in the binding energy), the
intrinsic detachment rate is found to be:

wg = 0.207s7! (5.12)
Using the detailed balance (see eq. (5.4)), the intrinsic attachment rate is:
w, = wge 8 =0229571 (5.13)

Modeling tau with four MTBRs, one tau molecule can occupy 1 — 4 lattice sites instead of just
one lattice site. That is why the tau per site density (fig. 5.2b) remains lower than the density
given by the Langmuir adsorption model. Besides the tau per site density, which is defined as
the number of bound tau molecules divided by the total number of lattice sites, also the number
of occupied sites divided by the total number of lattice sites can be calculated (occupancy den-
sity). The occupancy density (fig. B.1a of the appendix B) is higher than the Langmuir density
since one tau molecule can occupy up to four sites. In the kymographs, the signal of a bound
tau is distributed equally over the sites, which are occupied by this tau molecule. However,
because of the Gaussian filter and the low resolution, the spread of a tau molecule over several
sites is not visible and the kymograph (lower row of fig. 5.2b) resembles the kymograph of
the Langmuir model (lower row of fig. 5.2a).

Besides tau adsorption and desorption processes, previous experiments show tau diffusion
along the MT [31, 40, 241]. In the next step, tau diffusion is added to the tau adsorption
model. The one-dimensional diffusion constant is given by Siahaan et al. [40]. Tau diffusion
along the lattice is modeled as a one-dimensional random walk (see chapter 3). A tau molecule
is moved to the next site by shifting all bound MTBRs by one site (see fig. 5.6). Thus, if a tau
molecule is initially occupying sites [i, i + 2] (three bound MTBRs, which are occupying sites
i,i+ 1andi+ 2) and is chosen to move to the right, it afterward occupies sites [i + 1,i + 3].
Adding tau diffusion to the simulation leaves the tau per site density (fig. 5.2¢) and the oc-
cupancy density (fig. B.1b of appendix B) unchanged. The tau kymograph (lower row of fig.
5.2¢) now shows random dots instead of stationary lines. However, no bigger tau accumula-
tions, which could have been identified as tau islands, can be observed.

It is known that in the presence of molecular crowding agents, tau molecules form tau
droplets/condensates through liquid-liquid phase separation [235, 319, 320]. Moreover, it was
shown that tubulin could be penetrated into the tau droplets and enhance tau droplet nucleation
[228]. This indicates that tubulin reinforces a tau-tau interaction. Furthermore, previous stud-
ies show that the N-terminal and the C-terminal of the tau molecule (see fig. 5.4) are needed
for island formation on the MT supporting also the existence of a tau-tau interaction [31, 40].
Therefore, a tau-tau interaction is added to the presented tau adsorption model. Although the
C-terminal and the N-terminal are needed to see tau island formations [31, 40], it is not clear
whether edge MTBRs (denoted by E, see fig. 5.3a) need to be next neighbors on the protofil-
ament (i.e. need to be bound to the MT) or a spatial proximity is enough to interact with each
other. Since tau-tau interactions are reinforced even in a liquid-like phase in the presence of
tubulin, a spatial proximity of the C-terminal and the N-terminal is likely sufficient to expe-
rience a tau-tau interaction. That is why, in the tau adsorption model, a tau-tau interaction
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MT binding repeats
N-terminal R1 R2 R3 R4 C-terminal

Figure 5.4: Schematic of the tau molecule. Simplified schematic of the tau molecule. The tau
molecule has the N-terminal at one end of the molecule and the C-terminal at the other
end. Next to the C-terminal the four MTBRs (R1, R2, R3, and R4) are aligned [31, 40].

is added between tau molecules (see fig. 5.6), which are next neighbors on the MT, which is
independent of the types of MTBRs bound. In the model, it is assumed that a tau-tau inter-
action between two tau molecules reduces the diffusion rate and the intrinsic detachment rate
exponentially:

s—s-e !

w; = wy e’ (5.14)
where [ is the interaction energy. Due to the tau-tau interaction energy, which overall reduces
tau desorption, both the tau per site and the occupancy density are drastically increased (fig.
5.5aand fig. B.1c of the appendix B) compared to the simulations without a tau-tau interaction
energy (fig. 5.2c and fig. B.1b of the appendix B). Both densities increase in an almost linear
manner as a function of time for the observed period of 120 s. Adding a tau-tau interaction en-
ergy, the tau kymograph (lower row of fig. 5.5a) clearly shows small, but stable accumulations
of tau, which were not observed in the absence of tau-tau interactions (lower row of fig. 5.2c).
A recent study shows that tau islands compact the MT lattice [317]. It can be assumed that
the MT lattice is therefore also slightly deformed at the island boundaries leading to higher tau
adsorption at island boundaries. That is why a preferential tau adsorption at the boundaries
of existing tau islands is added. Having two interacting tau molecules, the tau molecules are
identified as a tau island. The global adsorption rate is increased in the following way at empty
neighboring sites of existing islands:

(L+p) - (Np + Np)

Q
“ Ng-(1+p)+ Ng

e =0 (5.15)

with the preference p = 500 and the total number of free sites at the boundary of islands Ny
and the total number of free sites not being next neighbors of existing tau islands Ng. To keep
the total global adsorption rate the same as before (€, o, = €2, (N Ft N B)), the adsorption to
free sites not being next neighbors of tau islands is reduced:

Ng + Ny

Q,, =Q,- . 5.16
@r a NB'(1+p)+NF ( )

While the tau per site (fig. 5.5b) and the occupancy density (fig. B.1d of the appendix B)
do not change much, the kymograph (lower row of fig. 5.5b) now shows less but bigger tau
islands.

While in the current model infinitely many tau molecules are available in solution to bind to
the MT, it is expected that the number of available tau molecules is limited in the experiment.
Simulating a reservoir of N, = 80 molecules instead of infinitely many tau molecules limits
the increase of the tau per site (fig. 5.5¢) and the occupancy density (fig. B.1e of the appendix
B). The tau per site density now resembles again more the density given by the fit of the
experimental density using the Langmuir adsorption model. The kymograph still shows tau
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a) Tau-tau interaction  b) Preferential adsorp.  c) Tau reservoir
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Figure 5.5: Building up tau adsorption model: tau-tau interaction energy, preferential adsorp-
tion at island boundaries, and limited tau reservoir. Figures show tau per site densities
(upper row) and corresponding kymographs (lower row) for tau adsorption models where
the tau-tau interaction was added (a), where the preferential adsorption was added (b) and
where a limited tau reservoir was added (c). See the caption of fig. 5.2 for details on the
calculation of the tau per site densities and the generation of the kymographs. Scale bars
are 2 um (horizontal) and 5 s (vertical). a) A tau-tau interaction energy is added when two
tau molecules are next neighbors on the lattice. The tau-tau interaction energy decreases
the intrinsic tau detachment rate and the diffusion rate of interacting tau molecules (see eq.
(5.14)). This leads to higher tau per site densities and the kymograph shows accumulations
of tau molecules. b) When increasing the global adsorption rate at empty boundary sites of
existing islands and decreasing the global adsorption rate at the other empty sites, the tau
per site density remains unchanged compared to a), but the kymograph shows fewer, but
bigger islands. ¢) When limiting the number of tau molecules in the solution (tau reservoir),
the tau per site density saturates and resembles the density given by the fit of the experimen-
tal density using the Langmuir adsorption model. The kymograph shows accumulations of
tau molecules and regions with almost no tau.

accumulations and also regions with almost no tau (lower row of fig. 5.5¢).

Fig. 5.6 summarizes the here introduced tau adsorption model. At all stages of the tau
adsorption model, Gillespie’s algorithm for time-independent rates (see section 3.2) is used
to choose the next event and propagate the system in continuous time [268, 298]. The tau
configuration on the lattice is measured after each At ., and the simulation is terminated after
T,,q- See table B.1 for a list of the standard values for all model parameters.
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Figure 5.6: Tau adsorption model. The schematic shows a MT and the dynamics of the tau molecule

in the tau adsorption model. For transitions between two states, one of the states is drawn
with a lower opacity to be able to distinguish it from the other state.

Representing just one protofilament (higher opacity of the red-orange tube), the MT (red-
orange tube) is modeled as a one-dimensional lattice of discrete sites (orange lattice). Each
site is 8 nm long, the size of one tubulin dimer. Tau molecules are modeled as string-
like molecules with four, lined up MT-binding repeats (MTBRs, see most left, blue tau
molecule). It is distinguished between edge (denoted by E, light blue circles) and middle
(denoted by M, dark blue circles) MTBRs. Tau molecules adsorb to the MT from the so-
lution (blue cloud at the top of the schematic) with the global adsorption rate €2,. When
adsorbing from the solution one of the four MTBRs is randomly chosen to bind to the MT
(see second tau molecule from the right). When being attached, the individual MTBRs de-
tach and attach with the intrinsic rates w4 and w,, respectively (see most right tau molecule).
Thereby, only the outer bound MTBRs are allowed to detach (the dark blue middle MTBR
of the most right tau molecule is not allowed to detach, for instance, denoted by the crossed
arrow). In the same way, only the detached neighbors of the MT-bound MTBRs are al-
lowed to attach to the MT. In the second tau molecule from the right, which is just attached
from the solution, only the left light blue and the dark blue MTBRs are allowed to attach,
while the right light blue is not. To go back to the solution, the last MTBR needs to detach
(rate wy, see second tau molecule from the right). Tau molecules diffuse along the lattice
with rate s. To diffuse to the next binding site, all bound MTBRs are shifted by one site.
See the third tau molecule from the right: all three bound MTBRs are shifted by one site on
the lattice. If two tau molecules are next neighbors on the lattice (see first and second tau
molecule from the left), a tau-tau interaction (see green spring connecting first and second
tau molecule from the left) is added. The tau-tau interaction reduces the intrinsic detach-
ment rate w4 and the diffusion rate s (see eq. (5.14)) of the interacting tau molecules. If two
tau molecules are next neighbors on the lattice (see the first and second tau molecules from
the left), they are building an island (internal definition). Tau from solution preferentially
adsorbs to empty boundary sites of existing tau islands (filled, orange lattice sites). See eq.
(5.15) and (5.16) for adsorption rates in the case of preferential adsorption.
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5.2 Comparison to experiment and parameter discussion

To further investigate and understand the tau adsorption model, in this subsection, first, the
tau adsorption model will be compared to the tau island formation experiments by Siahaan
et al. [40] and second, the impact of each model parameter will be discussed separately.

In the experiments of Siahaan et al. [40], a solution with tau molecules at different
concentrations (20nM — 90nM) is mixed with stabilized MTs. The tau is labeled with
fluorescent proteins to measure tau intensities along MTs (see [40] for more details about the
experimental set-up). Kymographs (see fig. 5.7d and 5.7e for example kymographs at 20 nM
tau concentration) of the experiment clearly show regions with high tau intensities surrounded
by regions with low tau intensities. The kymographs were manually divided into regions of
high tau intensity (called islands) and regions with low tau intensity (called surrounding).
To calculate tau densities, for both types of regions, the tau intensities were summed up and
divided by the intensity of a single tau and the total length of all regions of this type (island
or surrounding). To calculate the number of tau molecules per tubulin dimer, the tau density
was multiplied by the length of a dimer (8 nm) and divided by 13 accounting for 13 PFs [40].
The tau molecules per tubulin dimer density at 20 nM tau concentration (fig. 5.7a) clearly
shows a difference between islands and surroundings. Islands have a density of slightly less
than 0.3 tau per tubulin dimer and the surroundings a density of approximately 0.1 tau per
tubulin dimer [40]. The fraction of the MT(s) covered with islands at a tau concentration
of 20nM (fig. 5.7b) slowly increases over time and does not seem to be saturated after the
measurement time interval of 200s [40]. Counting island nucleation events within time
intervals of 20's (fig. 5.7c) reveals that most islands nucleate within the first twenty seconds.
After 40 s almost no islands nucleate anymore (especially at the lowest tau concentration of
20nM) [40]. Kymographs show the high-intensity island regions clearly separated from the
surroundings. Fig. 5.7d shows an example kymograph with three island nucleation events
(white arrows) and two island fusion events (orange arrows). Interestingly, the borders of
islands are stable over long periods. This means, in this state, island borders neither shrink
nor continue growing [40]. It is not clear what holds islands stably together and what stops
islands from further growing at their stable borders.?

To better understand the physical process, underlying island formation, the tau adsorption
model presented in the previous section is used. The simulation results of the tau adsorption
model are evaluated similarly to the experiment and then compared with the experimental
results.

To measure island and surrounding properties separately from one another, in the exper-
iment, island and surrounding regions are segmented manually. During the simulation an
interaction between two tau molecules occurs when they are next neighbors. One way to
identify islands in the simulation is to use this internal definition saying that tau molecules (at
least two) form an island when they are next neighbors on the MT lattice. Since there might
also be empty lattice sites within islands, the internal island definition allows up to three
empty sites between two islands to still account as one island. Using this definition, already
two neighboring tau molecules would form an island. However, due to limited resolution,
it is unlikely that in experimental kymographs islands consisting of only two tau molecules

2Note that all experimental results including data analysis are taken from Siahaan et al. [40]. I did not perform
any experiments myself and did not do any data analysis of the experimental data.
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Figure 5.7: Tau adsorption experiments show tau island formations on MTs. The figure shows

experimental tau adsorption results from Siahaan et al. [40]. In [40], the MT is manually
segmented into regions of high tau density, i.e. tau islands, and regions of low tau density,
i.e. surroundings. a) Example time development of tau density in islands and surroundings
at 20 nM tau in solution (5 MTs). Tau density (tau molecules per tubulin dimer) is calcu-
lated by taking the sum of the intensity of a given category (island or surrounding), divided
by the intensity of a single tau times the sum of lengths of the category regions and then
multiplied by the length of a tubulin dimer and divided by 13 accounting for the 13 PFs.
Tau density within the islands is higher than the tau density in the surroundings. Solid line
shows the median and the shaded area the interquantil range. b) Figure shows the time de-
velopment of the fraction of the MT covered by islands when having 20 nM tau in solution.
Solid line and shaded area are the median and minimum/maximum when summing up the
length of all islands in a field of view and dividing it by the sum of the lengths of all MTs in
the field of view (3 experiments). The boxplot of the data points (open circles) is generated
using the fraction of single MTs covered with islands. This (Continuation on next page.)
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Figure 5.7 (previous page): means one data point is calculated by summing up the lengths of the islands
on one MT and dividing them by the length of this MT. ¢) Island nucle-
ation rate (median plus/minus maximum and minimum) as a function of
time for different tau densities in the solution. For all tau concentrations,
most islands form in the first 20 seconds. In this thesis, we compare the
simulation results to 20 nM tau in solution. d)+e) Example kymographs of
tau island formations at 20 nM tau in solution. In d), the three white arrows
indicate three island nucleation events and the orange arrows two island fu-
sion events. Remarkably, it takes quite long until the first and second island
fuse. Scale bars are 2 um (horizontal) and 5 s (vertical). Figures a-d are
reproduced with permission from Springer Nature. Originally published
in Nature Cell Biology, volume 21, pages 1086—-1092 (2019) [40]. The
kymograph in e) was produced in the same experiments as published in
[40]. Print permissions were given in a private communication by Markus
Braun from Lansky and Brain Lab at Institute of Biotechnology, Czech
Academy of Sciences, BIOCEV, Prague West, Czech Republic.

could already be identified as islands. That is why a second, external island definition is
used. The external island definition identifies an island when at least N ;, consecutive sites
are occupied. Thereby, again up to three empty sites between two islands are allowed to still
account for one island. Ideally, the results from the internal and external definitions should
not differ much from one another, especially at later time points when islands are established.
Comparing the fraction of the MT covered with islands (from now on referred to as "island
coverage") calculated from the internal and external definition for three different values of
Nin (N € {5,7,91; see fig. B.2d of the appendix B) reveals that the island coverages are
similar for the internal definition and the external definition with N ;. = 5and N_; = 7.
Using the external definition with N_;, = 9, the island coverage is significantly smaller
especially at later time points. This means the value N_;, = 9 is too high so that small islands
are neglected. That is why from now on the external definition with N ;, = 7 is used to
identify the island and surrounding regions.

The tau density of the simulation with the standard parameter set (see table B.1 of the
appendix B) shows a clear separation between islands (slightly less than 0.3 tau per dimer) and
surrounding regions (approximately 0.025 tau per dimer density; see fig. 5.9a). The simulated
tau density in the islands shows less fluctuations than in the experiment, but the mean value
matches well the experimental value (see fig. 5.7a). The tau density in the surrounding is
lower in the simulation than in the experiment. The simulated island coverage (fig. 5.10a)
increases faster at the beginning and reaches higher values than in the experiment (see fig.
5.7b). Moreover, the coverage saturates within the observation period, which is not the case
for the experiment. The number of island nucleation events within 20 seconds time intervals
(called nucleation rate) fit well with the experimental values (compare fig. 5.11a with fig.
5.7c). However, in the experiment the MT has 13 PFs [40], while in the simulation only
one protofilament is modeled. To compensate for this, one could multiply the simulated
nucleation rate by 13. However, because of the tau-tau interaction, it is likely that island
nucleations on different PFs are not independent from one another. That is why comparing
absolute values of the nucleation rate is difficult. But the trend is the same for experiment and
simulation. The simulation kymographs (fig. 5.14a) show many small tau accumulations.
Some of them disappear after a while. Occasionally, the kymographs also show bigger tau
islands. The tau islands of the simulation are not as homogeneous as in the experiment
and borders are not stable. In the simulation, islands even shrink occasionally. Fig. 5.13a
shows the island length distribution after 300 seconds. It can be seen that most of the islands
are less than 0.25 um, and the biggest islands are up to 1.5 um. Siahaan et al. [40] shows
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only the island length distribution at higher tau concentration of 40 nM?. In this experiment,
most islands are up to 1 um long, but there are also many between 1 and 4 um. The biggest
experimental islands are up to 10 um long. Even though islands are expected to be bigger at
higher tau concentrations, it still seems that island lengths are underestimated in the simulation.
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3The here presented simulation focus on the experiment at 20 nM since experimentally given tau densities and
kymographs are from experiments with 20 nM tau in solution.
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Table 5.1: Table shows the different models tested here. The first one ("a) Standard") uses the standard
parameter set (see table B.1 of the appendix B). The corresponding illustration (middle col-
umn) shows all parameters that are changed individually for the other models (b) - 1)). The
illustrations of the other models just mark the parameter, which is changed for this particular
model. The first column says how much the parameter is changed compared to the standard
model and the third column gives a short description of the changed parameter.

Taking together, the simulation reproduces only partly the experiment (table 5.2 lists all
measured variables and evaluates whether experiment and simulation match or not). The
simulation shows similar results to the experiment for the tau island density and the nucleation
rate. But the tau density in the surrounding is lower and the island coverage higher than
in the experiment. Moreover, the number and length of islands together with kymographs
reveal that the simulation produces a lot of small islands without stable boundaries instead
of a few big islands with stable boundaries as seen in the experiment. This means bigger
tau accumulations need to be stabilized and attractive for free tau molecules and small tau
accumulations need to be destabilized such that they contribute more to the surrounding
density.

In the following, single simulation parameters are changed to see their influence and
whether changing individual parameters leads to simulation results closer to the experimental
observations. All models with changed parameters as well as the standard model (standard
parameter set, see table B.1 in appendix B) are defined in table 5.1. The first row of this table
shows the standard model with an overview of all parameters which are changed individually
in the other models. The following rows show all models with one changed parameter,
respectively.

We have seen that islands are not as stable in the simulation as in the experiment. Build-
ing up the tau adsorption model showed that the symmetry of the homogeneous Langmuir
density could be broken when introducing an interaction energy between neighboring tau
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molecules such that islands form. That is why one way to stabilize islands could be to in-
crease the interaction energy between neighboring tau molecules on the MT lattice. Increas-
ing the interaction energy by a factor 1.2 (from I = 5to I = 6, see table 5.1 for the
model definition) keeps the island coverage and the nucleation rate similar (compare fig.
5.10b, 5.11b with fig. 5.10a, 5.11a). The tau density within islands (fig. 5.9b) saturates
slower but to the same value as the simulation with the lower interaction energy (fig. 5.9a).
Having a higher interaction energy,

the tau density in the surrounding is

even lower. Kymographs (fig. 5.14b), EER one MTER three MTER
however, show that island boundaries = two MTBR four MTBR

are more stable when having a higher 100
interaction energy. Moreover, dis-
tributions of the number of MTBRs
bound to the MT show that more tau
molecules are bound with four MTBRs
(see fig. 5.8). Comparing the number
of islands (fig. 5.12b) and the island
length distribution after 5 minutes (fig.
5.13b) reveals that there are less but
bigger islands. To conclude, increasing
the interaction energy favors the island 201
state over the surrounding state, which
results in more stable islands, but the
tau density in the surrounding is even
lower than for the standard simulation.
Moreover, the island coverage remains %
too high. See table 5.2 for a summary
of the influence of the interaction
energy on all measured variables.
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Figure 5.8: Most tau molecules bind with four MTBRs
Another way to stabilize the islands to the MT. The figure shows the percentage

. . of tau, which is bound with four (grey blue),

could be to increase the binding energy . .
B of the MTBRs. Changing the three (light blue), two (middle blue), or one
(dark blue) MTBR after 300 seconds using

binding energy B also changes the the different models defined in table 5.1.

intrinsic detachment and attachment
rates wy and w,, respectively, according to equations (5.12) and (5.13). Note that thereby the
experimentally given mean first passage time for tau to pass the desorbing state after landing
remains the same. Thus, the global desorption rate € is not changed. Increasing the binding
energy by a factor 10 (from B = 0.1 to B = 1, see table 5.1 for the model definition) results
in slightly higher nucleation rates (fig. 5.11c) and a faster increasing island coverage (fig.
5.10c). This indicates again that islands are favored. Also, the fraction of taus bound with
four MTBRs is enhanced even more (fig. 5.8). This leads to slightly decreased tau densities
within the islands, while the surrounding density remained the same (fig. 5.9c). Island
lengths distribution (fig. 5.13c) and the number of islands (fig. 5.12c), however, reveal that
there are more, but smaller islands pointing towards less stable islands. This is underlined
by the kymographs (fig. 5.14c) showing islands as for the standard simulation with lower
binding energy B (fig. 5.14a), i.e. no stable borders. The latter is the case because the global
desorption rate remained the same. The higher binding energy only favored the state, where
tau is bound with four MTBRs, which leads to a faster increasing island coverage. See table
5.2 for a summary of the influence of the binding energy on all measured variables.

A third factor, which could influence the stability of the islands, is the preference p of the
preferential adsorption (eq. (5.15)). Increasing the preference by twofold (from p = 500
to p = 1000, see table 5.1 for the model definition) does not change the tau density of the
surroundings and islands (fig. 5.9d) nor the island coverage (fig. 5.10d). But the nucleation
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rate is slightly reduced (fig. 5.11d). This results in a lower number of islands (fig. 5.12d).
Island length distribution (fig. 5.13d) after 5 minutes reveals that islands are bigger and
kymographs (fig. 5.15a) show more stable island boundaries. However, islands are not yet
as homogeneous as in the experiment. The reason might be that in the simulation only one
protofilament is giving a signal, while in the experiment intensity signals come from 13 PFs
[40]. Thus, increasing the preference of the preferential adsorption has a positive effect on
island stability and the island coverage without changing the tau density in the surrounding.
However, changes are not big enough to overcome discrepancies between experiment and
simulation.

The amount of available tau, i.e. the tau reservoir might have an effect on tau density in islands
and surroundings as well as on the island coverage and the nucleation rate. A higher tau
concentration in the experiment leads to higher tau densities in both, islands and surroundings.
Moreover, the island coverage is the higher, the higher the tau concentration in the solution
of the experiment [40]. Reducing the reservoir in the simulation (see table 5.1 for the model
definition) reduces the island coverage (fig. 5.10e) and increasing the reservoir (see table 5.1
for the model definition) increases the island coverage (fig. 5.10f). In both cases, however,
the island coverage reached saturation, which is not observed in the experiment. The level of
saturation coverage is determined by the reservoir. Reaching saturation means that the flow
into the island state is in equilibrium with the flow out of the island state. In the experiment,
however, the island coverage increases slightly but steadily, which means that the flow into
the island state is greater than the flow out of the island state. Since the coverage is still
lower in the experiment, there has to be another process/factor besides the reservoir, which
limits and slows down the island coverage growth in the experiment. Besides influencing
the coverage, a smaller/bigger reservoir also leads to slightly less/more nucleations within
the first 20 seconds (fig. 5.11e and 5.11f), smaller/bigger islands (fig. 5.13e and 5.13f), and
less/more islands (fig. 5.12e and 5.12f). Moreover, also the tau density in the surrounding
could slightly be tuned with the reservoir (fig. 5.9e and 5.9f). The tau density in the islands
(fig. 5.9¢ and 5.9f), however, as well as the percentages of tau bound with four, three, two,
or one MTBR(s) did not significantly change (fig. 5.8). This suggests that the amount of
available tau is too small. Having a lot of tau in the solution together with the preferential
adsorption should lead to a higher tau density in the islands as observed in the experiment
[40]. Having a higher tau density in the islands, it would be expected that less MTBRs of one
tau are bound to the MT within island regions. Together with the finding that another process
limits island coverage growth draws the picture that in the experiment a lot of tau molecules
are available for potentially adsorbing to the islands, but the island growth (at the boundaries)
is limited by another factor, not included in the simulation. In summary, a lower reservoir can
down-regulate the island saturation coverage, but also leads to an even lower tau density in
the surrounding. A bigger reservoir has the opposite effect. See table 5.2 for an overview of
the influence of the reservoir on all measured variables.

Furthermore, island dynamics are determined by the interplay of the three parameters:
diffusion, global adsorption, and desorption. The most efficient and fastest island growth is
reached when a tau attaches, then diffuses to the next island and stays there until the next tau
arrives. If the tau detaches or diffuses away before the next tau reaches the island, the tau
island growth is less stable and many small islands nucleate. Here, the diffusion rate is given
by the experiment and the global adsorption and desorption rates were estimated assuming
the standard Langmuir adsorption model (see fig. 5.1). The standard Langmuir adsorption
model ignores tau-tau interactions and assumes that one particle only can occupy one site
on the lattice, which is not the case for real tau. This means the real rates can slightly differ
from the estimates. In the standard parameter set, the diffusion rate is six orders of magnitude
higher than the global adsorption rate and five orders of magnitude higher than the desorption
rate (see table B.1 of the appendix B). This means a newly adsorbed tau should have enough
time to find the next island before the next tau attaches to the MT or an existing tau detaches.
When being part of an island, the diffusion rate is exponentially decreased (eq. 5.14) by
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approximately two orders of magnitude but still significantly higher than the adsorption and
desorption rates. This means the new island tau is likely to diffuse away again before the next
tau reaches the island. Consequently, borders are not stable. When drastically decreasing
the diffusion rate by two orders of magnitude (see table 5.1 for the model definition; not in
agreement with the experimentally measured values), kymographs show strongly stabilized
island boundaries. Stabilizing the island boundaries favors the island state resulting in a
slightly higher tau density within islands, but a strongly reduced tau density in the surrounding
(fig. 5.9g). Moreover, there are less (almost half the amount seen with the standard parameter
set, fig. 5.12a) but bigger islands (fig. 5.12g and 5.13g). A lower number of islands leads to a
slower increasing island coverage. To conclude, a lower diffusion rate favors the island state,
which results in stabilized islands but even more reduced tau in the surrounding.

As already mentioned, one of the discrepancies between simulation and experimental results
is that the island coverage increases faster and saturates in the simulation but not in the exper-
iment. The speed of the growth of the island coverage is determined by the global adsorption
rate. When reducing the global adsorption rate by a factor of three (from Q, = 0.003s~!
to Q, = 0.001s7!, see table 5.1 for the model definition), the island coverage indeed grows
slower. However, it still saturates within the observed time period. Having a lower adsorption
rate, the tau density within islands and surroundings does not significantly change (fig. 5.9h),
and one obtains the same amount of islands with similar sizes (fig. 5.12h and 5.13h) compared
to the simulation with the standard parameter set (fig. 5.9a, 5.12a and 5.13a). However, the
nucleation rate (fig. 5.11h) and the kymographs (fig. 5.16b) show that islands nucleate later
when having a lower adsorption rate. The nucleation rate in this case does not follow the trend
of the experiment anymore. Consequently, the adsorption rate does not seem to be the right
parameter to limit the speed of the island coverage growth.

Island Sur.round— Island Nucle- | Number | Island Kymo-
Model density 1ne coverage | ations |ofislands | lengths graph
density

a) Standard X X X X X
byl =121, 0 X - X 0 0 X + X + X
c) B=10B, + X 0 X - + X - X - X
d)p=2p, 0 X 0 X 0 - X + X + X
€) Nieo = 0.75N s 0 X - X + - X + X X
f) Nies = 1.5N 50 0 X + X - + X - X + X
2) s = 0.01 5 X - X - X + - X + X + X
h)Q, =3:Q, 0 [x o [x + [x - [x o [x o |x
) Q4 ~ 11Qy0 + X - X - - X - X + X

Table 5.2: Table shows how the models, defined in table 5.1, perform with regard to the tau density of
islands, tau density of surroundings, island coverage, island nucleation rate, number of is-
lands, length of islands, and the kymograph. The marks v and X specify whether the model
reproduces the experimental observation (see 5.7) or not. The marks +, 0, and — evaluate
whether the model performs better, as good as or worse than the standard model. For the
kymograph, it is difficult to evaluate whether the obtained results are better, as good as, or
worse compared to the standard model because there are always aspects that are better and
others that are worse. The experiment does not give the number of islands and the island
lengths for the here considered tau concentrations in solution (20 nM). Only the length dis-
tribution of tau islands at a higher tau concentration in solution (40 nM) is given [40]. From
this, it can be deduced that the standard model produces too many and too small islands.
Thus, less and bigger islands are considered positive and more and smaller islands negative.

As described above, the desorption rate was estimated assuming the standard Langmuir
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adsorption model combining the island and surrounding regions. In doing so, the tau-tau
interaction is neglected as well as the fact that one tau molecule can occupy several sites.
Another way of estimating the desorption rate is by just considering the surrounding regions
and using the dwell time of tau in the surrounding given by the experiment [40]. Using the tau
dwell time in the surrounding on the other hand ignores that the surrounding constantly loses
tau particles to the islands since the islands constantly grow [40]. Thus, the desorption rate
given by the dwell time can be considered as an upper limit, while the previously estimated
desorption rate using the Langmuir adsorption model for surrounding and island regions is a
lower limit. Using the higher tau desorption rate (approximately eleven-fold higher, see table
5.1 for the model definition) given by the dwell time of tau in the surrounding, drastically
reduces the tau density in the surrounding (fig. 5.9h). Since the desorption is reduced
within islands compared to the surrounding, the island borders seem to be stabilized (see
kymographs in fig. 5.16c), which leads to bigger (fig. 5.13i) but less islands (fig. 5.12i) and a
coverage which increases a bit slower but saturates at higher values (fig. 5.10i). However, the
number of islands (fig. 5.12i) also shows a small reduction towards the end of the observation
time showing that due to the high desorption rate some islands disassemble. Thus, a higher
desorption rate on the one hand stabilizes island borders by almost completely emptying the
surrounding. On the other hand, it leads to island disassembling, which is not observed in the
experiment in the presence of tau in the solution (island disassembling only occurred when
tau was removed from the solution) [40]. This indicates that using the dwell time of tau in the
surroundings overestimates the tau desorption rate.

Taking together, in this subsection, the model parameters of the established tau adsorp-
tion model are changed individually to see if they can lead to simulation results closer to the
experimental observations. All parameter changes had a positive effect on one part of the mea-
sured variables but a negative effect on the other part of the measured variables. Mostly, they
stabilized/destabilized islands on the one hand and reduced/increased the surrounding on the
other hand. Table 5.2 lists all parameter changes and their influence on all measured variables.
In conclusion, the standard model performs best and all parameter deviations lead to further
deficits.
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Figure 5.9: Simulations show high tau densities of islands and low tau densities of surroundings.
Tau densities of islands and surroundings for the different models defined in table 5.1. The
MT is divided into island and surrounding regions using the external definition (N, = 7,
see main text for details). The tau density (tau per tubulin dimer) is calculated as the
number of tau molecules in the island/surrounding regions divided by the number of is-
land/surrounding sites. Solid line represents the median and shaded area the interquantil
range of 50 MTs (Lyt = 10 um). Black dashed line represents the experimental mean
density of islands [40] and black dotted line the approximated experimental density of the
surrounding (estimated from [40]; see fig. 5.7a).
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Figure 5.10: The island coverage from simulations increases fast and saturates within the mea-
surement period. Fraction of the MT covered with islands (called island coverage) for
the different models defined in table 5.1. Solid green line is calculated by summing up the
length of all islands of all simulated MTs (50 MTs) and divided by the sum of the lengths
of all MTs (50 X 10 um). Dotted black line is the estimated experimental equivalent (esti-
mated from [40]; see fig. 5.7b). The boxplot is generated using the fraction of single MTs
covered with islands. This means one data point is calculated by summing up the lengths
of the islands on one MT and dividing by the length of this MT.

143



Chapter 5. Modeling tau adsorption

a) Standard byl =121, c) B=10B,
15 15 15
=) a a
.IE .IE ‘E
£ 104 £ 10] £
1 1 I
€ € €
2 2 2
w wn wn
C s c
2 54 2 54 2 5
3 3 3 [
v 1% 1)
=3 =] =]
E 1 3 ] I 2 I
0 A I I O 0 T 1 T 11 111 0 LT 1117171
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (s) Time (s) Time (s)
d) p= 2P0 e) Nres = 075 Nres,O f) Nres = 15 Nres,O
15 15 15
=) a a
< I <
£ 10] £ 10] £
1 1 I
€ € €
2 2 2
2 2 2
2 5 2 5 2 5
© © ©
o o <
v 1% 1)
2 I 1 ER I E: I I I ]
0 | T 0 | T O T P [ Lol
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (s) Time (s) Time (s)
1 .
g) s~ 0.01 s, hQ,=:Q, HQ,~11Q,,
15 15 15
=) a a
c c <
£ 10] £ 10] £
1 1 I
€ € €
2 2 2
2 2 2
2 5 2 5 2 5
g f g
E Ei Ei I
p=4 =2 =2
0 I I ] I I S R 0 [ I I I I | 0 [ LIr.. T 1
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (s) Time (s) Time (s)

Figure 5.11: The simulated nucleation rate decrease with time. Nucleation rates as a function of
time for the different models defined in table 5.1. The nucleation rate is calculated as the
number of nucleations within 20 seconds multiplied by 3 (to convert in nucleations per
minute) and divided by the MT length Ly;r = 10 um. Bars with high opacity are from
simulations and bars with low opacity are estimated from the experiment at 20 nM tau in
solution [40] (fig. 5.7¢c). Estimates are for the same time interval but slightly shifted to
the right for better visibility.
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Figure 5.12: The number of islands saturates for almost all models. Number of islands as a function
of time from simulation for the different models defined in table 5.1. Solid line shows the
median and the shaded area the minimum and maximum.
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Figure 5.13: Most of simulated islands are shorter than 0.25 yum. Histograms of island lengths from
simulations for the different models defined in table 5.1. Island length were measured after

300 seconds after the start of the adsorption process.
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a) Standard

b) I =121,

Figure 5.14: Example kymographs for standard parameters, higher interaction energy, and
higher binding energy. Example simulation kymographs for the models a) to c) de-
fined in table 5.1. See caption of fig. 5.2 for details on the generation of the kymographs.
Scale bars are 2 um (horizontal) and 5 s (vertical). A higher interaction energy (see fig.
b)) leads to more stable island (boundaries), while a higher binding energy (see fig. c))
has little effect on island stability.
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a)p=2p,

b) Ny, = 0.75 N

¢) N.,=15N,

res res,0

Figure 5.15: Example kymographs for higher preference, smaller and bigger reservoir. Example
simulation kymographs for the models d) to f) defined in table 5.1. See caption of fig. 5.2
for details on the generation of the kymographs. Scale bars are 2 pm (horizontal) and 5's
(vertical). A higher preference (see fig. a)) slightly stabilizes bigger islands and the size
of the reservoir influences island sizes (see fig. b) and c)).

148



5.2. Comparison to experiment and parameter discussion

a) s % 0.01 s,

Figure 5.16: Example kymographs for slower diffusion, lower global adsorption, and higher
global desorption. Example simulation kymographs for the models g) to i) defined in
table 5.1. See caption of fig. 5.2 for details on the generation of the kymographs. Scale
bars are 2 um (horizontal) and 5 s (vertical). A lower diffusion rate (see a)) slightly sta-
bilizes islands, a lower adsorption rate (see b)) reduces island sizes and nucleation events
and a higher global desorption rate (see c)) reduces the tau density in the surrounding.
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5.3 Discussion and outlook

The goal of this chapter was to understand the physical process underlying the formation of
tau islands on the MT lattice. Tau island formation was experimentally studied among others
by Siahaan et al. [40]. Here, a stochastic model with parameters, whenever possible, estimated
from the experiment by Siahaan et al. [40] is used to simulate tau adsorption to the MT lat-
tice. The model is based on the Langmuir and the one-dimensional diffusion model. Adding
a tau-tau interaction when they are next neighbors on the lattice, breaks the symmetry of the
homogeneous Langmuir density, and islands form. Moreover, a preferential adsorption at the
boundaries of existing islands leads to slightly less but slightly bigger islands, and a limited
reservoir of tau molecules in the solution limits the island growth. Simulating this model, is-
lands nucleate with a similar rate as in the experiment (compare fig. 5.11a) with fig. 5.7c) and
have a similar density (compare fig. 5.9a with fig. 5.7a). However, there are also discrepan-
cies between simulation and experimental results: first, the simulated tau density in regions
surrounding the islands (called surrounding) is half than that in the experiment. Second, the
simulated islands are not as stable as seen in the experiment (compare fig. 5.14a with fig. 5.7d
and 5.7e). While in the experiment island boundaries either grow or form clear, stable bor-
ders, in the simulation islands mostly either grow or even shrink. And third, there seem to be
more, but smaller islands in the simulation than in the experiment (see fig. 5.12a and 5.13a
for simulation). Thus, to better approximate the experiment, big clusters should be stabilized
and favored such that less small islands nucleate and small islands should be dispersed such
that they contribute to the surrounding. Changing model parameters (fig. 5.9, 5.10, 5.11, 5.12,
5.13, 5.14, 5.15, 5.16 and tables 5.1 and 5.2) reveals that parameter changes, which stabilize
islands, lead often to more small islands and an even more reduced tau density in the sur-
rounding, and parameter changes increasing the tau density in the surrounding destabilize the
islands. This suggests that there must be other factors influencing the formation of tau islands
that were not considered in this model.

The interaction between MT-bound tau molecules and the MT lattice itself is only partly con-
sidered. It is known that tau islands reduce the lattice spacing of taxol stabilized MTs[317].
This is incorporated in the model in the form of a preferential adsorption at the island bound-
aries. It is thereby assumed that the changed lattice spacing due to tau islands also changes the
lattice in the direct proximity of islands such that tau from solution preferentially adsorbs at
tau island boundaries. However, it might also be that the diffusion of free tau in direct prox-
imity around islands on the MT is enhanced for diffusion towards the island and reduced for
diffusion away from the island. Furthermore, the lattice spacing needs a few seconds to relax
after island removal [317]. Thus, there might be a memory effect of the lattice spacing. The
theoretical work by Jose and Santen [224] shows that a floor field with a memory effect leads
to the formation of a plus and minus lane in bidirectional transport in neurons. In this work,
the motor stepping on the MT changes the lattice and increases thereby the MT affinity for
following-up motors of the same kind. A similar approach could lead to a higher tau affinity
around islands, which could stabilize tau islands without increasing the island nucleation rate.
Another factor, which is not considered in the tau adsorption model is the underlying MT lat-
tice. In the model, it is assumed that the MT has a homogeneous lattice, where all sites are
equal. However, previous studies show that the MT lattice often has defects [63, 321-323].
Here, changing the model parameters indicated that there needs to be another factor limiting
the island coverage growth. Moreover, the simulation only shows clear, constant island bound-
aries at the MT end (fig. 5.16c). In the experiment, such clear borders, which neither grow
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nor shrink over several seconds, are also observed within the bulk of the MT (see fig. 5.7d
and 5.7e). MT lattice homogeneities could be the missing factor that stops island growth and
leads to clear, not growing nor shrinking island boundaries. Lattice inhomogeneities could be
lattice defects such as holes, a GTP-tubulin within the GDP-tubulin lattice, or changes in the
protofilament number [323]. Tau molecules might not be able to diffuse over lattice defects
such as holes. This leads to the fact that no island tau can diffuse away and also no new tau
can be added to the island so that a clear, neither growing nor shrinking border forms. When
having a GTP-tubulin within the GDP-tubulin lattice or irregularities in the tubulin lattice, tau
might not be able to compress the lattice at these spots. If tau is not able to compress the lattice,
which is the case for GMPCPP MTs, islands do not form [317]. Thus, it might be that at such
defects tau still arrives at the island, but newly arriving tau cannot be added to the island (no
tau-tau interaction) because the lattice cannot be compressed. The newly arrived tau would
then either fast diffuse away again leading to a clear, neither growing nor shrinking border, or
form a "new" island. In the kymograph, the latter case would look as if the island were growing
again (see the experimental kymograph, fig. 5.7d for instance). Other lattice inhomogeneities
could be the presence or absence of taxol. To stabilize the MT, taxol binds to tubulin and
thereby expands the lattice [317]. Siahaan et al. [317] show that the amount of taxol is reduced
for tau island regions. Consequently, random taxol-free lattice sites could serve as nucleation
points and eventual sites with rigidly bound taxol could stop island growth and lead to stable
island boundaries. To conclude, an inhomogeneous lattice could be the missing factor that
stops island growth leading to clear, neither growing nor shrinking island borders.

Another difference between experiment and simulation is the dimension of the MT lattice.
While, in the simulation, only one protofilament (PF) is modeled, there are about 13 PFs in
the experiment [40]. This might be the reason why in the experiment islands seem to be more
homogeneous, while in the simulation they often contain holes (compare fig. 5.7d and 5.7e
with fig. 5.14a). Adding the second dimension and lateral interactions between tau molecules
on the MT might not just lead to more homogeneous island signals of the kymographs but
also stabilize the islands. Moreover, when having several PFs, tau molecules diffusing in the
surrounding would be able to pass each other without interacting and directly nucleating an
island as it is the case for the one protofilament simulation. In this way, one could have more
tau in the surrounding without having too many nucleation events.

When performing the experiment at higher tau concentrations in the solution, the tau density
within islands increased and saturated at approximately 0.75 tau per tubulin dimer [40]. Ob-
serving higher densities could either mean that there are several layers of tau or that tau binds
with less MTBRs such that there is space for more tau. If the first were be the case, it would
be expected that the density increases unlimitedly. However, the tau density within the islands
seems to saturate at around 0.75 tau per tubulin dimer for high tau concentrations in the solu-
tion of the experiment [40]. This means it seems more likely that at high tau concentrations
in solution, tau binds with only 1 —2 MTBRs within the islands and therefore the island den-
sity can be higher. A future version of the here presented tau adsorption model could then be
used to test whether there are several layers of tau or if tau is "upstanding" aligned within the
islands, i.e. bound with only 1 —2 MTBRs at high tau concentrations.

In the future, this model could also be used to study the influence of tau islands on bidirectional
transport. Therefore, the tau adsorption model needs to be merged with either the unidirec-
tional/bidirectional gliding assay models (see chapter 4) or with the unidirectional/bidirectional
cargo transport models (see chapter 6 and 7). Doing so, the influence of tau islands first on
single motors, then on teams of one motor specie, and finally on teams of opposite-directed
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motors should be studied.
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Chapter 6

Cargo transport by kinesin-3
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This chapter explores the influence of the cargo itself on the motion of the motor-cargo sys-
tems. The focus will be on how the cargo surface composition regulates transport. Therefore,
the two extreme cases of a fluid cargo surface, on which the motors perform rapid diffusion,
and a rigid cargo surface, on which the motors have a fixed position, are studied. First the
experimental results of liposome (fluid cargo surface) transport by kinesin-3 motors are pre-
sented. To understand the experimental results, liposome transport by kinesin-3 is simulated
first with a point-like cargo model, second with a one-dimensional liposome model, and finally
with a three-dimensional liposome model. To understand the impact of the diffusive motor tails
on the cargo transport, also a bead (rigid cargo surface) is modeled in one dimension and three
dimensions and the simulation results are compared with liposome transport.
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Cargos are actively transported by molecular motors inside the cell [73, 179, 324]. In-
side the cell, there exist various different kinds of cargos such as mitochondria, ribosomes,
phagosomes, etc. [73, 76, 179, 324]. Different kinds of cargos can differ in size or sur-
face composition [88, 168, 248, 324]. Previous studies report different transport behaviors
for cargos of different sizes [88, 324] or different surface compositions [168, 248, 250].
Different surface compositions influ-
ences the mobility of the motors on the
cargo surface. If cargos have dynamic
lipids on their surface (fluid cargo sur-
face), motors diffuse along the cargo
surface. For membrane-free cargos, in
contrast, motors have fixed positions
on the cargo surface [169, 253, 256].
The two extreme cases are membrane-
enclosed cargos, which have a fluid
cargo surface, where motors perform
rapid diffusion and membrane-free car-

gos, which have a rigid cargo surface, Figure 6.1: Experimental set-up. Shown is an illustra-

where motors have fixed positions. The tion of the experimental set-up in real-size ra-
effect of the fluid versus the rigid cargo tios. Due to the lipid bilayer on the liposome
surface (diffusive versus fixed motor surface, kinesin-3 motors (KIF16B) can dif-

fuse on the liposome surface. Kinesin-3 mo-
tors bind to the MTs and walk towards the
MT plus-end. They thereby transport the li-
posome towards the MT plus-end.

positions on the cargo surface) remains
poorly understood.

In in vitro experiments, i.a. liposomes
are used as fluid cargos to investigate
the role of the diffusive motor tails on
cargo transport in a controlled environment. Liposomes are spherical cargos with a surface
consisting of a lipid bilayer [2] such that motor tails perform rapid diffusion along the cargo
surface [22, 169, 256, 325]. To gain further knowledge about how multiple kinesin-3 motors
work in a team, kinesin-3 (KIF16B) motors are used to study the influence of fluid versus rigid
cargo surfaces on cargo transport. In the following, results of liposome transport by teams
of kinesin-3 motors are presented. All shown experimental results are from experiments per-
formed by the Stefan Diez lab!. After presenting the experimental results, the liposome trans-
port by kinesin-3 is modeled to gain further insights into the underlying physical transport
processes. Thereafter, bead transport by kinesin-3 is modeled to study the transport of car-
gos with a rigid cargo surface. Beads do not have a lipid bilayer on their surfaces such that
the motor tails have a fixed position on the cargo surface. A comparison of bead versus lipo-
some transport then reveals how the cargo surface composition (fluid versus rigid) influences
transport properties.

6.1 Experiments of liposome transport by kinesin-3

To investigate liposome transport by kinesin-3, an in vitro assay is used (see fig. 6.1 for
an illustration). In the in vitro assay, stabilized MTs are fixed at the bottom of a glass
coverslip. Fluorescent labeled liposomes with kinesin-3 motors at varying concentrations

!Experiments were performed by Akhil Sai Naidu, Rahul Grover, and Ashwin D’Souza from Stefan Diez lab at
B CUBE, TU-Dresden. I did not perform any experiments myself.
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(cxinz = 1.5 =90 nM) are put on top of the MTs. From tracked positions of fluorescently labeled
liposomes, trajectories can be drawn (see fig. 6.2b for example trajectories) and instantaneous
velocities can be calculated. Velocity histograms (fig. 6.2a) are shown in dependence of the
kinesin-3 concentration. For the lowest kinesin-3 concentration (1.5 nM) the histograms show
two peaks: one low velocity peak close to zero and one high velocity peak at approximately
700nm/s. The low velocity peak is higher for the lowest kinesin-3 concentration compared
to the three higher kinesin-3 concentrations, where the low velocity peak remains constantly
high. With increasing kinesin-3 concentration, the high velocity peak moves to lower velocities
until it merges with the low velocity peak. At the highest kinesin-3 concentration, the velocity
distribution shows only one peak at approximately 300 nm/s. Even though the low velocity
peak is lower for the three higher motor concentrations, the overall mean velocity reduces (fig.
6.2c) suggesting a negative cooperation of multiple kinesin-3 motors at higher motor concen-
trations. In conclusion, the observations indicate that there are two motility states, a slow and
a fast state, which changes differently with increasing motor concentrations.

Besides the velocity histograms, also the trajectories (fig. 6.2b) clearly show a stop- and go-
like motion emphasizing the existence of a slow and fast state. To further analyze the slow and
fast states, the trajectories are segmented using a segmentation algorithm. The segmentation
algorithm is based on the local slope of the trajectory. To be able to calculate the derivative
(slope), the trajectory is first fitted by a B-spline using a weighted least square interpolation
(from python package scipy.interpolate) on a window of five data points (measurement inter-
val: At = 100ms). To distinguish between the slow and the fast state, a threshold for the
derivative is needed. To set a meaningful threshold vy,, the mean velocity of the slow and the
fast state need to be known. Therefore, the velocity histogram is fitted by a double Gaussian:

p(x) = c| exp [—a (x - ,us)z] + ¢, eXp [—ﬂ (x - ,uf)z]. 6.1

From the parameter fit (fig. 6.2a), the parameter values of ¢, ¢,, a, f, p; and p; are obtained for
each kinesin-3 concentration (see table C.2 of the appendix C). A threshold of vy, = 200 nm/s
lies between the mean velocity of the slow y and the fast velocity peak y; for all kinesin-3
concentrations and is, therefore, a meaningful threshold 2. Using this segmentation algorithm,
trajectories can be segmented into slow and fast states (see 6.3 for an example).

Having segmented the trajectories in slow and fast states, the velocity histograms can be split
into histograms of the slow states and histograms of the fast states (see color code of fig.
6.2a). In doing so, the low velocity peak as well as the negative velocities can be related to
the slow state. Comparing the shape and position of the slow state histograms, it can be seen
that velocities of the slow state slightly increase with increasing kinesin-3 concentration. This
means that while at low concentrations the liposome really pauses (slow state histogram is
around zero), there is small drift towards the MT plus-end for higher kinesin-3 concentrations
during the slow state.

Using the segmentation algorithm, also the duration (fig. 6.4a) and the frequency of the slow
states (6.4b) can be calculated. Neither the slow state durations nor the slow state frequencies
show a dependence on the kinesin-3 concentration. The slow state duration is about 2 seconds
and the slow state frequency 0.2 s~! for all kinesin-3 concentrations. This means, getting in

2In more detail, using a threshold of vy, = 200 nm/s, more than 92% of each Gaussian peak is higher/lower than
the threshold for three out of four used kinesin-3 concentrations. The exceptions are the high velocity peak
at 90 nM, where only a percentage of 73.14 % is higher than the threshold and the low velocity peak at 9 nM,
where only a percentage of 82.55 % is lower than the threshold. Note that slightly different threshold values
did not change the outcome.
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Figure 6.2: Experiment: liposome transport results. a) Histograms of liposome point-to-point ve-

locities at varying kinesin-3 concentrations. Slow state velocities are drawn in red and fast
state velocities in green. See main text and caption of fig. 6.3 for the segmentation into slow
and fast states. A double Gaussian fit is shown in yellow. Derivations between the fit and
the real values are small. Histograms show a low and a high velocity peak, which merge
at higher kinesin-3 concentrations. b) Example cargo trajectories show a stop-and-go-like
motion for all kinesin-3 concentrations. The shown trajectories are a random selection of
trajectories longer than 30 seconds. c) This figure shows mean (blue) and variance (ma-
genta) of all liposome velocities and mean velocities of only the fast state (green). Both
means as well as the variances reduce with increasing kinesin-3 concentration. d) His-
tograms of trajectory durations. Trajectories are longer in time for high motor concentra-
tions. Number of samples N, are given in brackets (a+d). All experiments were performed
by Akhil Sai Naidu, Rahul Grover, and Ashwin D’Souza from Stefan Diez lab at B CUBE,
TU-Dresden. Print permissions were given in a private communication by the Stefan Diez
lab at B CUBE, TU-Dresden.
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Figure 6.3: The segmentation algorithm. Example, segmented trajectories from experiment (a) and
simulation (b). Trajectories show the original data (blue and red dots) and the spline inter-
polation (yellow, solid line). Slow state segments are depicted in red and fast state segments
in blue. In the segmentation algorithm, the original data is first approximated by a cubic
spline (weighted least square interpolation from python package scipy.interpolate) over a
fixed window of five data points (measurement interval = 100 ms) to be able to calculate
the derivative. If the derivative at a data point is less than the threshold vy, = 200 nm/s,
the data point is attributed to the slow state, otherwise to the fast state. See main text for
the derivation of the threshold of vy, = 200nm/s. The experiments were performed by
Akhil Sai Naidu, Rahul Grover, and Ashwin D’Souza from Stefan Diez lab at B CUBE,
TU-Dresden. Print permission was given in a private communication by the Stefan Diez
lab at B CUBE, TU-Dresden.

and getting out of the slow state does not depend on the kinesin-3 concentration.

Plotting the mean velocity of the fast state as a function of the kinesin-3 concentration reveals
that the velocity of the fast state decreases in a similar manner with increasing kinesin-3
concentration as the mean velocity of the complete histogram. Consequently, the negative co-
operation of multiple kinesin-3 motors at higher concentrations can be assigned to the fast state.

In summary, the experiment shows a slow and a fast velocity state. While the velocity of
the slow velocity state slightly increases with increasing kinesin-3 concentration, the mean
duration and frequency of the slow state remain unchanged. This means getting into and
out of a slow state is equally likely for all motor concentrations. The reason which causes
this slow state remains unclear. Unlike the slow state, the velocity of the fast state was seen
to significantly reduce with the kinesin-3 concentration. Thus, kinesin-3 motors negatively
cooperate at high motor concentrations. It remains to be found out whether the motor tail
diffusion on the cargo surface is responsible for the slow velocity state or the negative motor
cooperation at higher kinesin-3 concentrations. Previous theoretical studies predict a higher
number of MT-attached motors due to the diffusion of motors on the cargo surface [250, 251].
However, whether the motor tail diffusion on the cargo surface influences the transport
velocity or causes a slow velocity state remains unclear. Therefore, further theoretical work
is needed that directly compares experiment and simulation and takes the geometry of the
motor-cargo complex and the MT into account.
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Figure 6.4: Experiment: duration and frequency of the slow state. a) Mean and histograms of slow

state durations for varying kinesin-3 concentrations. Neither histograms nor means change
significantly with changing kinesin-3 concentrations. b) Mean and histograms of slow state
frequencies for varying kinesin-3 concentrations. The individual frequency of slow states
(blue) is the number of slow states divided by the trajectory duration. The total frequency
of slow states (magenta, independent of the duration of the trajectories) is total number
of slow states per experiment divided by the sum of all trajectory durations. Slow state
frequencies are independent of the kinesin-3 concentration. Number of samples N are
given in brackets. All experiments were performed by Akhil Sai Naidu, Rahul Grover, and
Ashwin D’Souza from Stefan Diez lab at B CUBE, TU-Dresden. Print permission was
given in a private communication by the Stefan Diez lab at B CUBE, TU-Dresden.
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6.2 One-dimensional models of cargo transport by
kinesin-3

In this section, liposome transport by kinesin-3 is modeled. Therefore, in a first step, a known,
point-like cargo transport model [35, 36, 153] is used. A point-like cargo model is a good
first approximation because MT-attached motors are extended radially away from the cargo as
it is expected when motor tails are able to move on the cargo surface. Afterward, the cargo
is modeled with a radius R to study how sliding of diffusive motor tails (one-dimensional
liposome model) versus fixed motor tails on the cargo surface (one-dimensional bead model)
influence cargo transport. Illustrations of fig. 6.5 show all studied one-dimensional cargo
transport models. Finally, the cargo is modeled in three dimensions to take all degrees of
freedom, i.e. y- and z-extensions, cargo rotation, and orientation in relation to the MT, into
account. The cargo is modeled with diffusive motor tails (three-dimensional liposome model)
and with fixed motor tails (three-dimensional bead model) in three dimensions.

Point-like Liposome
cargo model

Microtubule

Figure 6.5: One-dimensional models: the point-like cargo model, the liposome model, and the
bead model. All models neglect degrees of freedom in y- and z-direction as well as any
rotation. Point-like cargo model: All motor tails are at the same point X~(f) (point-like
cargo). Motor heads (green dots) attach to the MT within the attachment area X () + L,
where they are force-free (L, = Ly;,3). The three middle motors therefore experience no
force, motors on the left side of the attachment area (most left motor) experience a forward
force, and motors on the right side (most right motor) a backward force. The head position
of the i™ motor on the MT is denoted by x{l(t). Liposome model: Cargo has a radius of
Rc > 0 and motors are able to slide on the cargo surface (x-direction only) to the position
with the shortest motor extension. Motors attach to the MT within the attachment area
Xc(t) £ L, on the MT, where motors are force-free. Because of the motor sliding, L, is
bigger (or equal compared to the R = 0 case) than the rest length of the motor Ly; ;. The
one-dimensional motor extensions of the two red-marked motors are exactly equal to the
motor rest length L,;,;. Any motor on the right/left of the left/right red motor experiences
a force. The one-dimensional motor extension of the i motor is denoted by Ax(¢), the
corresponding head position by xfl(t) and the tail position by x{(t). The angular 6fn denotes
the angle under which the i motor is attached. Bead model: Motor tails have a fixed
position, denoted by xi(t), on the surface of the cargo with radius R > 0. In the bead
model, motor heads attach the MT in the attachment area around the motor tail position
x}(t) = Ly, To assure that motors attach in a force-free position, the half length of the
attachment area on the MT L, is equal to the rest length L,; 5 of the motor. The motor
head position of the i motor on the MT is denoted by x{l(t) and the bead position by X(?).
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6.2.1 Point-like cargo model

Cargo transport by molecular motors has been modeled in the past [33, 35, 36, 151, 153].
Here, a point-like cargo model, which has been introduced and analyzed before [35, 35, 153]
is used to study liposome transport by kinesin-3 motors. In this first approach, the focus lies
on the cargo transport and interplay of multiple kinesin-3 motors in one direction (x-axis, one-
dimensional model). MT, cargo, and motor extensions and motions in y- and z-direction as
well as any rotational degree of freedom are neglected but will be considered in the following
up sections.

In the point-like cargo model, all motor tails come together in one point, the cargo position,
which is denoted by X () in the one-dimensional coordinate system. The MT, modeled as one-
dimensional line (one protofilament), is placed in the one-dimensional coordinate system such
that movement towards the MT plus-end is considered positive. For simplicity, it is assumed
that the MT is infinitely long.

In the experiment, a total number of N, motors are bound with their tails to the cargo
surface®. However, from the total number of motors N, only a subset of motors N,, < N,
are in the area on the cargo (from now on called "attachment area on the cargo", see fig. 6.6),
from where motors can reach the MT to attach. Since only these motors are contributing
to the cargo transport, only these motors are modeled. To account for motors diffusing on
the cargo surface and exchanging with the motors which cannot reach the MT (motors in the
"reservoir"), individual motor properties are chosen randomly each time they attach to the MT.
Unlike previously published versions of the point-like cargo model [35, 35, 153], where the
number of motors is the same for each cargo, here fluctuations in the number of motors between
cargoes are taken into account. To estimate the number of motors per cargo distribution, the
distribution of motors among the cargos is simulated. In this simulation, there are supposed
to be N cargos in the solution and N motors. To distribute the N motors randomly among
the N cargos, a uniformly distributed random number between 1 and N is thrown N times.
The histogram of the number of motors per cargo (see fig. 6.7a) can be fitted by a Gaussian
distribution with mean y and standard deviation ¢. Performing the simulation for varying
number of motors in the solution N, but a fixed number of cargos N, it can be seen that
number of motors per cargo distributions widen and move to higher means for higher number
of motors in the solution N. Fitting the number of motors per cargo distribution for each
number of motors in solution N reveals that the standard deviation o depends on the mean u
in a square-root-like manner (fig. 6.7b). Fitting a square root to the standard deviation ¢ as a
function of the mean u, the following dependence of mean and standard deviation is derived:

o(u) = 1.06831/p. (6.2)

To take fluctuations in the number of motors per cargo into account, for each cargo the number
of motors N,, is randomly thrown from a Gaussian distribution with mean given by the desired
mean number of motors per cargo (given by the experimental concentration) and the standard
deviation given by eq. (6.2). Since the mean number of motors per cargo is not given by the
experiment, here the simulation is used to give a range of number of motors per cargo where
simulation and experimental results fit bests.

Motors are coarse-grained modeled as roundish objects, which occupy an area of 2 X Ry;,3
on the MT when the motor is attached to the MT (MT-attached motors). Attached motors can
exert a force on the cargo, which is proportional to the motor extension (Hookean spring). The

31t can be assumed that the number of motors per cargo does not change over time.
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Cargo diffuses in harmonic potential

Active kinesin-3 (KIF16B)

Inactive kinesin-3 (KI F16B)§'

Exchange with
reservoir

Microtubule

Figure 6.6: The point-like cargo model including all variations. For a better illustration an extended
cargo and a finite MT is drawn (MT is infinitely long in the simulation). However, all tails
of MT-attached motors come together in one point showing the point-like cargo model.
The MT is drawn as an orange-red tube with the plus-end in positive direction of the one-
dimensional coordinate system. Motors attach to 7 out of 14 protofilaments with the con-
stant rate k,. For simplicity, all protofilaments are modeled to be parallel to the x-axis and
no super-twist of the protofilaments is taken into account (for one-dimensional models).
Motors are drawn as springs with two circles presenting the two motor domains. Although
both motor domains are drawn, in the simulation, the motor domains are coarse-grained
modeled as a single sphere with radius Ry;,3. Single molecule experiments of kinesin-3
(KIF16B) show that about 20 % of kinesin-3 motors are not moving (called "inactive" mo-
tors). Inactive motors (red) attach to and detach from the MT at the same rates as the active
motors (green). In the model, only the motors in the attachment area (magenta), which can
reach the MT, are modeled. Motors, which cannot reach the MT are in the reservoir (blue).
Due to the motor diffusion on the cargo surface, motors in the attachment area are able to
exchange with motors in the reservoir. That is why, with probability p;,..ive = 0.2 a motor
is chosen to be inactive each time it (re)attaches. A motor attaches with the constant rate k,
within the attachment area X(¢) + L, on the MT. Because motors are supposed to attach
in a force-free state, L, is equal to the motor rest length L,;,5. The attachment probability
to the protofilaments ppp is Gaussian distributed over the 7 protofilaments. The mean is
the central protofilament of the upper half space of the MT and the variance is ¢ = 1. The
borders of the Gaussian are chosen such that the 7 protofilaments occupy u + 30 of the
Gaussian distribution. Motors are modeled as linear, Hookean springs. Thus, motor forces
(eq. (6.4)) are proportional to the motor extension xfl(t) — Xc(t). The detachment rates
(detachment from the MT) k4(F) increase exponentially with forward and backward forces
F. The stepping rate s(F) is constant under forward load force (forces pulling the motor
towards the MT plus-end) and decreases with backward forces (forces pulling the motor
towards the MT minus-end) smaller than the stall force Fj ;3. For backward forces higher
than the stall force, the motor steps backward with a small and constant rate [35, 120]. The
cargo diffuses in the harmonic potential of MT-attached motors. Therefore, the Metropolis
algorithm (see section 3.2) is used.
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Figure 6.7: Number of motors per cargo distribution. In an extra simulation, a varying number of
motors N is randomly distributed over a fixed number of cargos N, = 150. The number
of motors represents the number of motors in the solution. a) Shows an example number
of motors per cargo distribution for N = 3000. The distribution could be fitted with a
Gaussian with mean y = 20 and standard deviation ¢ = 4.6052. b) The figure shows the
standard deviations ¢ of the Gaussian fits as a function of the respective means y of the
Gaussian fits of the number of motor per cargo distributions. The standard deviation as a
function of the mean could be fitted by a square-root function o () = 1.0683 \/;_4 .

motor extension is given by the one-dimensional difference between the motor tail and the
motor head attached to the MT:

AX'(1) = x; (1) — x{(1) = x; (1) = X (1) (6.3)

where in the last step it is applied that the motor tail position is identical to the cargo position
for the point-like cargo model (see fig. 6.6 and fig. 6.5). Since kinesin-3 motors are modeled
as linear Hookean springs with a rest length L,; 5, the force a MT-attached motor exerts on the
cargo is:

. Kkin3 (Axi(’) - Lkin3) . AX'(1) > Lygns
Fi(t) =10, |AXI(0)| < Ligns (6.4)
Kkin3 (Ax’(t) + Lkin3) N Ax’(t) < _ij[l3

with xy;,3 being the stiffness of a kinesin-3 motor.

All kinesin-3 motors can perform three different kinds of events: i) detached motors can attach
to the MT, ii) MT-attached motors can detach from the MT, or iii) MT-attached motors can step
along the MT. To model these events, the standard kinesin-1 model, which has been introduced
in section 4.2.1, is used. Thus, motors attach with the constant rate k, in the area X(¢) + L,
around the cargo position (see fig. 6.6). Since motors attach in a force-free position, the half
length of the attachment area on the MT L, is equal to the rest length of the motor L,;,;. For
detachment, a rate is used, which increases exponentially with force:

LF'|

kg(F') = kje 7 (6.5)

where kg is the force-free detachment rate and F, the detachment force (see also eq. (4.24)).
The stepping rate is divided into forward stepping under assisting forces, forward stepping
under resisting forces smaller than the stall force F, and backward stepping under resisting
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forces bigger than the stall force. For the forward stepping rate, the force and ATP dependent
stepping behavior of Schnitzer et al. [120] is used:

,~ v/d - [ATP] koo (F))[ATP]
s (F', [ATP]) = = : :
[ATP] + K,,  [ATP] + ko, (F1)/ky(F')

(6.6)

with the stepsize d and k_,(F") and k,(F') given by eq. (4.20) (see section 4.2.1 for more
details). For the forward stepping under assisting load, s;,(F' = 0,[ATP)) is used. The
backward stepping rate is chosen to be constant and given by

iy_ U
Skin(F!) = l 6.7)
with v, being the backward stepping velocity of kinesin-3 and d the step-
size. Since in real systems, the MT has several protofilaments and mo-

tors are assumed to reach several PFs of the MT, no exclusion effects are
taken into account on the MT for the standard point-like cargo model.
This means motors do
not sterically hmde.r each 1001 s .
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be taken from single
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Figure 6.8: Kinesin-3 rates as a function of the motor load force.

molecule  experiments. The attachment rate k, = 5s~! (blue) is independent of
However, other parame- the motor load force. The rate of motor detachment from
ters such as Fy, I, vy, k, the MT and the stepping rate depend on the motor force
or L;; are not given by and are drawn for different values of the detachment force

Fy = Fyyin3 and the stall force F; = Fyi,3. The detach-
ment rate (green) increases exponentially with forward and
backward forces. The stepping rate (red) is constant under
negative forces (forces pulling the motor towards the MT

the experiment. When-
ever available, literature
values are used. See table

C.1 for parameter values plus-end), decreases under positive forces (forces pulling
and references to the the motor towards the MT minus-end) smaller than the stall
literature. Moreover, see force, and is constant and small for forces bigger than the
fig. 6.8 for attachment, stall force. Under forces bigger than the stall force, the mo-
detachment, and stepping tor steps backward. The stepping was previously published

by Klein et al. [35] and is based on the findings of Schnitzer

rates as a function of the
et al. [120] for kinesin-1.

motor force for different
parameter values.

Having motors exerting forces on the cargo, the cargo should move according to the following
over-damped equation of motion:

N,

att

02 i .0
m—X(0) = 26 Fl—{=Xc)=0 (6.8)
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where N, < N,, is the number of MT-attached motors and { = 6zn R the drag coefficient
with viscosity # and cargo radius R-. The over-damped equation of motion is used because
the Reynold number (R ~ 1077 < 1, see eq. (4.12)) of a cargo with a typical radius of
R- = 60nm is small and the inertia term can therefore be neglected. Instead of numerically
solving this equation of motion, the cargo is immediately moved to the closest force-free
position after each motor event in the simulation. The force-free position (equilibrium posi-
tion, where motor forces balance each other) is found by using a bisection search algorithm
(see section 3.2). It is thereby carefully checked that the next force-free position is reached
according to the equation of motion before the next event occurs. See also section 4.1 for
more details on this update mechanism.

Taking together, the point-like cargo model describes liposome transport in one dimen-
sion. Motor tails, therefore, come together in one point (cargo position), motors attach to
one protofilament of the MT, and motor extensions are given by the one-dimensional differ-
ence between the motor tail position (=cargo position) and the motor head position on the
MT. Motors are modeled as linear, Hookean springs, which attach the MT with a constant rate
and detach and step on the MT with force-dependent rates. As a summary of the model, the
pseudo-code is given:

Algorithm 1 Point-like cargo model

Initialize cargo:
Xc(@®) =0
N,, = generate_number_of_motors_per_cargo((N,,))
Initialize motors:
being_attached = false
Update:
do:
next_event = get_next_event {motor attachment, stepping or detachment}
update_simulation_time()
output {if (simulation_time > next_output_time) : output measurements}
update_motors{motor attachment, stepping or detachment}
move_cargo{closest force-free position or diffusion in harmonic potential }

while (number_of_measurements < max and number_of_attached_motors > 0)

In the following simulation results are presented.

Results: The above-presented point-like cargo model is used to simulate cargo transport by
kinesin-3 for four different numbers of motors N,, = {4, 10, 15,30}. During the simulations,
cargo positions are measured after Az ., seconds as in the experiment (see table C.1 of the
appendix C for explicit values). From the cargo positions, instantaneous cargo velocities are
calculated.

Instantaneous velocity histograms (fig. 6.9a) show narrowed peaks at high velocities of about
800 — 850 nm/s for all number of motors N,,. Peaks become narrower the higher the motor
number N,,, which can also be seen when plotting velocity variances as a function of the

aa’
number of motors (fig. 6.10). Mean velocities increase with increasing number of motors (fig.
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a) Standard point-like cargo model b) Variation I: velocities
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Figure 6.9: Varying the point-like cargo model: histograms. Point-to-point velocity histograms
from the standard model (a) and three model variations I-III (b-d). Number of motors
N,, is varied for each model. a) Standard point-like cargo model: histograms show narrow
peaks with decreasing width for higher number of motors N,,. b) Variation I: point-like
cargo model with Weibull distributed force-free forward velocities (see eq. (6.9) and fig.
6.11). Weibull-distributed forward velocities widen the velocity distribution. Peaks still
become narrower for larger number of motors. ¢) Variation II: point-like cargo model with
Variation I and exclusion on the MT. In total, 7 protofilaments are modeled, to which the
motors attach with Gaussian distributed probabilities. Histograms show peaks similar to
b), but moved to lower velocities for higher number of motors. d) Variation III: point-like
cargo model with Variation I, I, and inactive motors. 20 % of the kinesin-3 motors are
inactive, which means they do not move at all along the MT but attach to and detach from
the MT as normal active kinesin-3 motors. Histograms (Continuation on next page.)
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Figure 6.9 (previous page): show two peaks for low number of motors. One peak is at high velocities

and one at low velocities close to zero. The low velocity peak disappears
for high number of motors.
The number of simulated samples (cargos) Nj is given in brackets.

a) Standard point-like cargo model b) Variation I: velocities
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Figure 6.10: Varying the point-like cargo model: mean velocities. Mean and variance of cargo ve-

locities as a function of motor concentration from the standard model (a) and three model
variations I-III (b-d). The assumed, corresponding number of motors in the attachment
area on the cargo N,, is given in the heading. a) Standard point-like cargo model: vari-
ances are o2 = {0.012,0.0075,0.0053,0.0027} nm? /s> for N,, = {4, 10, 15,30} motors,
respectively. Mean velocities increase with increasing number of motors N,,, while the
variance decreases. b) Variation I: point-like cargo model with Weibull distributed force-
free forward velocities (see eq. (6.9) and fig. 6.11). Variances are higher and mean values
lower compared to a). c) Variation II: point-like cargo model with Variation I and exclu-
sion on the MT. In total, 7 protofilaments are modeled, to which the motors attach with
Gaussian distributed probabilities. Mean velocities decrease with increasing number of
motors. Variances, however, remain unchanged compared to b). d) Variation III: point-
like cargo model with Variation I, I, and inactive motors. 20 % of motors are inactive
motors, which means they attach to and detach from the MT as normal, active motors,
but do not step at all on the MT. Mean velocities are reduced and variances increased
compared to c).
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6.2. One-dimensional models of cargo transport by kinesin-3

6.10). A comparison of simulation and experimental results reveals the following differences
between simulation and experiment:

e Velocity histograms from simulation (fig. 6.9a) show one peak at high velocities, while
the experimental histograms (fig. 6.2a) show a high and a low (close to zero) velocity
peak.

e The high velocity peaks are narrower in the simulation than in the experiment. In detail,
the variance of the simulation is at least one order of magnitude smaller (see caption of
fig. 6.10 for exact values) than in the experiment (fig. 6.2c¢).

e Mean velocities from simulation (fig. 6.10) increase with increasing number of mo-
tors, while mean velocities from experiments (fig. 6.2c) decrease with increasing motor
concentration.

This means the model did not capture all details, which are needed to observe the experimen-
tally seen dependence on the motor concentration.

In the next steps, the following features are added step-by-step to the point-like cargo model
to better align simulations and experiments:

e Variation I: add Weibull distributed motor velocities

e Variation II: add motor-motor exclusion on the MT

e Variation III: add inactive motors

e Variation IV: add cargo diffusion in the harmonic potential of MT-attached motor springs

The features are added one after the other to see their influence and to assign them to specific
results.

Variation I: add Weibull distributed motor velocities: Single motor stepping velocities

influence the cargo velocity. Single motor stepping velocities depend on the load force and
differ between single motors [74, 120, 326]. In the point-like cargo model, single motor ve-
locities depend on the load force of the motor, but all motors have the same force-free forward
velocity. Experiments, however, show a wide distribution of force-free single kinesin-3 veloc-
ities (see fig. 6.11a). The distribution ranges from very low velocities of about 50 — 100 nm/s
up to velocities of 2000 nm/s. This raises the question of whether individual, slow kinesin-3
motors are responsible for the slow state observed in the experiment (fig. 6.2).
To study the influence of different individual motor stepping velocities on cargo transport, the
point-like cargo model is modified such that an individual force-free forward velocity is as-
signed to each motor. To apply the same single-motor force-free velocity distribution as in
the experiment, first, the experimental single motor force-free velocity distribution needs to
be characterized. The experimental single motor force-free velocity distribution (fig. 6.11a)
is well described by a Weibull distribution (fig. 6.11b) with shape parameter k = 2 and mean
A = v; given by the experiment (see table C.1 of the appendix C for parameter values):

~

A
0, x < 0.

k—1
k (z) e/ x>0,

fxes A k) = (6.9)
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Figure 6.11: Weibull distributed velocities of single kinesin-3 motors. a) Velocity histograms of
experimental point-to-point velocities of single kinesin-3 motors in the absence of lipo-
somes or beads. On the x-axis single molecule velocities in [nm/s] are depicted. The
experiment was performed by Akhil Sai Naidu, Rahul Grover, and Ashwin D’Souza from
Stefan Diez lab at B CUBE, TU-Dresden. Print permission was given in a private com-
munication by the Stefan Diez lab at B CUBE, TU-Dresden. b) Weibull distribution with
k =2and A = vy = 900 nm/s (see also eq. (6.9)). Since the original experimental data of
the single kinesin-3 velocities was not available, the experimental data could not be fitted
directly. However, it can be seen that the shown Weibull distribution reproduces well the
single kinesin-3 velocity distribution.

Having characterized the experimental single kinesin-3 motor force-free forward velocity
distribution, the point-like cargo model can be extended by giving each motor its own
force-free forward velocity applying the Weibull distribution.

Results of Variation I: Applying Weibull distributed single motor force-free velocities, the
velocity histograms (fig. 6.9b) show wider peaks at slightly lower velocities (700 — 750 nm/s).
Variances of velocities (fig. 6.10b) have now the same order of magnitude as in the experiment
(fig. 6.2c). However, the mean velocity of the simulation (fig. 6.10b) still increases with
increasing number of motors, while the mean velocity of the experiment (fig. 6.2¢) decreases
with increasing kinesin-3 concentration. Moreover, simulation histograms (fig. 6.9b) still do
not show the additional low velocity peak seen in the experiment (fig. 6.2a). This means the
low velocities seen in the experiment are not caused by individual slow kinesin-3 motors.

In summary, Weibull-distributed single motor velocities widen the cargo velocity distribution
but are not responsible for the experimentally observed slow state.

Variation II: add motor-motor exclusion on the MT: Results from dynein gliding assays
of section 2.2.1 revealed that a reduction of the velocity at high number of motors is caused by
a mutual steric hindrance of the MT-attached motors. Since motors in principle can attach to
different protofilaments, but in the point-like cargo model only one protofilament is modeled,
exclusion effects on the MT were not taken into account. However, it could be that at high
number of motors, motors end up being attached to the same protofilament and hinder each
other even though they can in principle attach to several protofilaments. To study the influence
of sterical motor-motor hindrance, exclusion effects are added for motors attached to the MT.
This means MT-attached motors, which occupy an area of 2R;; ; on one protofilament (see
table C.1 for parameter values), are not allowed to overlap when being attached to the same
protofilament. Here, it is assumed that motors can reach 7 out of 14 protofilaments, i.e. the
upper half space of the MT. When a motor attaches, its protofilament is chosen according to
a Gaussian distribution around the central protofilament with standard deviation ¢ = 1. The
seven protofilaments are distributed over the Gaussian distribution in such a way that they
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6.2. One-dimensional models of cargo transport by kinesin-3

occupy an area of u +30 of the Gaussian distribution and the Gaussian distribution is truncated
at u + 30. Consequently, the motors preferentially attach to the central protofilaments, which
are closest to the cargo. Note that exclusion effects and several protofilaments are added
to the point-like cargo model including variation I (Weibull distributed single motor velocities).

Results of Variation II: Simulating cargo transport with motor-motor exclusion on the
MT, the mean cargo velocity (fig. 6.10c) reduces from over 600 nm/s to around 500 nm/s with
increasing number of motors. This means the experimentally observed reduction of the mean
cargo velocity with increasing motor concentration (fig. 6.2a) can, indeed, be explained by a
mutual sterical hindrance of MT-attached motors. Histograms of cargo velocities (fig. 6.9¢)
show the reduction of the velocity with increasing number of motors but do still not show the
experimentally observed low velocity peak. Thus, the mutual steric hindrance of attached
motors on the MT causes a reduction of the velocity with increasing number of motors, but
not the experimentally observed slow state.

Variation III: add inactive motors: It has been shown that neither slow motors nor
sterically hindered motors cause a slow velocity state of the cargo. To pause the cargo, there
needs to be an opposing force, holding the cargo back. It could be that this opposing force
is caused by MT-attached motors, which do not move at all and behave as an anker. Single
kinesin-3 motor experiments revealed that about 20 % of the used kinesin-3 motors do not
move at all*. To test their influence on cargo transport, 20 % non-moving, from now on called
"inactive" motors are added to the point-like cargo model, which includes variations I and II
(Weibull distributed single motor velocities and exclusion effects on the MT). In the model
with variation III, attaching motors are chosen to be inactive with probability p; ... = 0.2.
Inactive motors attach and detach in the same way and at the same rates as the usual active
motors. However, unlike active motors, inactive motors do not step at all. Thus, inactive
motors stay on the spot on the MT, where they attached, until they detach again. Consequently,
it can be assumed that inactive motors generate an opposing force, which holds the cargo back
when active motors try to advance it. To advance the cargo, the active motors need to pull off
the inactive motors.

Results of Variation III: Simulating cargo transport in the presence of inactive motors
produces velocity histograms (fig. 6.9d), which show a low and a high velocity peak. Thus,
inactive motors can explain the slow state. However, a more detailed comparison of the low
velocity peaks yields that the peak is a lot narrower in the simulation than in the experiment
(fig. 6.2a). Moreover, there are more negative velocities measured in the experiment than in
the simulation. It remains unclear where the negative velocities of the experiment come from.
Moreover, the presence of inactive motors slightly reduces the mean cargo velocities and
increases the variance (see fig. 6.10d) such that both even better approximate the experimental
values (see fig. 6.2¢).

Variation IV: add cargo diffusion in the harmonic potential of MT-attached motor
springs: Analyzing the experimental data revealed that the negative velocities are related to
the slow state. It can therefore be assumed that the negative velocities are due to a diffusion of

“Experimental results are unpublished. Experiments were performed by Akhil Sai Naidu, Rahul Grover, and
Ashwin D’Souza from Stefan Diez lab at B CUBE, TU-Dresden. Print permission was given in a private
communication by the Stefan Diez lab at B CUBE, TU-Dresden.
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Figure 6.12: Point-like cargo model with variations I-I'V. Simulation results produced with the point-

like cargo model with variations I-IV. a) Cargo velocity histograms (blue) for varying
numbers of motors in the attachment area N,,. Using the segmentation algorithm (see
main text and caption of fig. 6.3), trajectories can be divided into slow and fast states. In-
creasing the number of motors N,,, the fast state velocity peak (green) moves to smaller
velocities and finally merges with the slow state velocity peak (red). b) Example trajec-
tories of simulated cargos (trajectory duration longer than 30 seconds) are depicted for
varying numbers of motors in the attachment area N,,. A stop-and-go-like motion with
clear slow states can be seen for all numbers of motors. c¢) Mean (blue) and variance
(magenta) of all cargo velocities as well as mean velocities of only the fast state (green)
are depicted. All three observables decrease with increasing number of motors. d) His-
tograms of trajectory durations. Trajectories are longer in time for high number of motors.
The program was terminated either if no motor was attached to the MT anymore or after
80 seconds. Number of samples (cargos) N, are given in brackets (a +d).

the cargo in the harmonic potential of the MT-attached motors when being stalled. To test this
assumption, the update mechanism in the model is changed. Instead of moving the cargo to
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6.2. One-dimensional models of cargo transport by kinesin-3

the closest force-free position, the Metropolis algorithm (see section 3.2) is used with number
of proposals n,, and a proposal interval of d,, (see table C.1 of the appendix C). Using the
Metropolis algorithm, transitions with lower energy are accepted with probability p = 1 and

transitions with higher energy are accepted with probability p = exp [—%] . That is how the
B
diffusion of the cargo in the harmonic potential is modeled.

Results of Variation IV: Including the diffusion of the cargo in the harmonic potential
of the MT-attached motors widens the low velocity peak in cargo velocity histograms (fig.
6.12a) such that negative velocities are reached. Comparing negative velocities of the sim-
ulation (fig. 6.12a) with negative velocities of the experiment (fig. 6.2a), it can be seen
that negative velocities agree well. This means, the harmonic potential, given by the in-
dividual motor spring constant and the number of MT-attached motors, is well estimated.
The number of MT-
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determined by the at- total

tachment rate and the E > ¢ active
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ture, a known stiffness number of motors in the attachment area N,,. The num-
of kinesin-1 is applied ber of inactive motors increases slower than the number of
(see table C.1 of the active motors.

appendix C). Assuming

that kinesin-3 has a similar stiffness as kinesin-1, the simulation can give an estimate of the
number of MT-attached motors (fig. 6.13). Furthermore, under the assumption of a good
estimate of the attachment rate too, the simulation also gives a prediction of the number of
motors in the attachment area on the cargo. Fig. 6.13 shows the number of MT-attached
motors as a function of the number of motors available in the attachment area on the cargo.
The number of MT-attached motors increases with the number of available motors. While for
the lowest number of available motors, almost all of them are attached, for the highest number
of motors less than half of them are attached to the MT. This means besides the attachment
rate and the number of available motors, also the available space on the MT determines the
number of MT-attached motors (exclusion effects, see variation II).

As discussed before, inactive motors cause a slow state of the cargo. Comparing velocities
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of the slow state for different motor numbers, it can be seen that they have a slightly higher
drift (positive velocities) at higher number of motors (fig. 6.12a). Looking at the number
of active and inactive MT-attached motors (fig. 6.13) reveals that the number of actively
MT-attached motors increases faster with the number of available motors than the number
of inactive MT-attached motors. Having a higher percentage of actively MT-attached motors
(higher number of available motors) makes the team of active motors stronger, such that the
slow velocity state shows a higher drift towards positive velocities compared to lower number
of motors, where the percentage of actively MT-attached motors is lower.

Besides producing negative velocities, adding the diffusion of the cargo in the harmonic
potential of the MT-attached motors slightly reduces the mean velocity and increases the
variance (see fig. 6.12c). Velocity histograms as well as mean velocities and variances are
now in alignment with the experimental findings. Furthermore, trajectories of the simulation
(fig. 6.12b) show stops similar to the experiment (see fig. 6.2b). Consequently, the point-like
cargo model with variations I-IV describes experimental observations.

Note that cargo trajectories are slightly longer in the simulation (fig. 6.12d) than in the
experiment (fig. 6.2d). Simulation trajectories are supposed to be longer because they are
only terminated when either no motor is attached to the MT anymore or the simulation time
t.nq (see table C.1 of the appendix C) is over. Experimental trajectories, in contrast, can
additionally be terminated when the liposome reaches the MT end, when the tracked liposome
moves out of the focus of the camera, when the liposome reaches an intersection of two MTs
or can be shorted by the used tracking software. That is why experimental trajectories are
supposed to be smaller than simulation trajectories. If simulation trajectories were smaller
than experimental trajectories, the motor detachment would be overestimated or number of
motors would be underestimated.

When dividing the trajectories into slow and fast states using the here developed segmentation
algorithm (see section 6.1), the mean velocities of the fast state (fig. 6.12c) as well as duration
and frequency of the slow state (fig. 6.14) can be calculated. Mean velocities of the fast
state are in good alignment with the experiment. Duration of the slow state (fig. 6.14a)
does not depend on the number of motors as seen in the experiments (fig. 6.4a), but is
longer in the simulation than in the experiments. While in the experiments mean durations
are longer than 2 seconds, they are less than 1 second in the simulation. A detailed look
at the trajectories reveals that there are occasionally long stops in the experiment, which
are not observed in the simulation. The origin of these long stops is possibly not due to
inactive motors. Longer stops may occur when the cargo is sterically hindered by either
another cargo or by the experimental set-up. Another possibility is that even advancing
motors are not able to step anymore because of a roadblock on the MT or a defect in the
MT lattice. Besides a hindrance of the cargo or the motors, also geometry could play a role.
Having a point-like cargo, spatial effects of the sliding of motors to the backside of the cargo
(side orientated towards the MT minus-end) due to diffusive motor tails are not taken into
account. It is possible that the sliding to the backside of the cargo causes longer stops. That
is why simulations including the spatial extensions of the liposome are necessary. Unlike
durations, frequencies of the simulated slow state (fig. 6.14b) are similar to the frequencies
of the experiment (fig. 6.4b). Taken together, cargos stop as often in the simulation as in the
experiment but stay a bit longer in the slow state in the experiment compared to the simulation.

A summary of the point-like cargo model including variations I to IV is shown in fig. 6.6.
Simulations of the point-like cargo model reveal the following three main findings:
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Figure 6.14: Point-like cargo model: duration and frequency of slow state. Duration and frequency

of slow state obtained from simulation using the point-like cargo model with variations I
- IV. a) Mean duration of the slow state as a function of the motor concentration as well as
duration histograms for varying number of motors. Although in the simulation the number
of motors in the attachment area on the cargo N,, is given, the mean is drawn as a function
of the motor concentration for a better comparison with the experimental data (fig. 6.4a).
See fig. 6.12c for which concentration corresponds to which number of motors. Mean
and histograms do not show a dependence of the slow state duration on the number of
motors. b) Mean and histograms of slow state frequencies for varying numbers of motors.
The individual frequency of slow states (blue) is the number of slow states divided by
the trajectory duration. The total frequency of slow states (magenta, independent of the
duration of the trajectories) is total number of slow states of all simulations divided by
the sum of all trajectory durations. Slow state frequencies are slightly enhanced for low
number of motors, otherwise independent of the number of motors.

Number of samples Nj is given in brackets.

e Inactive (non-moving) motors cause a slow velocity state. Inactive motors attach to the
MT and hold the cargo back until they are pulled off by active motors.

e Negative velocities come from the diffusion of the cargo in the harmonic potential of the
MT-attached motor springs.

e Sterical motor-motor hindrance (exclusion) on the MT causes a reduction of the velocity
with increasing number of motors.

It might be thought that the inactive motors could also be responsible for the reduction of
the velocity with increasing number of motors. However, simulating cargo transport with
inactive motors, but no exclusion, the reduction of the velocity with increasing number of
motors could not be observed (see appendix figure C.1a).
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Taking together, the simulation results of the point-like cargo model are in alignment with
the experimental observations and provide explanations for the slow state, the negative veloc-
ities, and the reduction of the cargo velocity with increasing number of motors. However, the
point-like cargo model does not take into account the spatial extension of the liposome and
consequently not the sliding of diffusive motor tails on the cargo surface. Effects raising from
a possible more spread motor configuration due to the sliding of motor tails or a possible motor
accumulation in the attachment area on the cargo are not captured. To understand the influence
of the diffusive motor tails (fluid cargo surface), the spatial extension of the cargo needed to
be added to the model.
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6.2.2 Liposome model

Possible effects coming from the sliding of the diffusive motor tails on the cargo surface cannot
be captured in a point-like cargo model. That is why, in this section, a cargo with radius Rq
is modeled and sliding of motor tails are taken into account. The following one-dimensional
liposome model is based on the point-like cargo model with variations I - IV (see previous
section).

Liposome model The liposome has a membrane of lipid bilayers (fluid cargo surface). Mo-
tors are known to rapidly diffuse in the membrane with a diffusion constant in the range of
1 — 20um? /s [22, 169, 256, 325]. Because of the rapid diffusion of the motor tails on the
cargo surface, the typical traveled distance (Ax « \/E) between two attachment events is
much bigger than the diameter of the attachment area on the cargo (2R6,, see fig. 6.15).
That is why it can be assumed that motors uniformly distribute over the surface between two
attachment events and only the fraction of motors which are in the attachment area on the cargo
N,, are taken into account. The attachment area on the cargo is the area from where motors
are able to attach the MT (see fig. 6.15 for an illustration of the attachment area on the cargo).
Motor forces are proportional to motor extensions. Since motor tails are diffusive, it is ex-
pected that tails of MT-attached motors slide to the position on the cargo, where the motor
extension is minimal (compression effects are not explicitly taken into account, but a constant
distance between cargo and MT is modeled). This means MT-attached motors stand perpen-
dicularly from the surface of the sphere (see illustration in fig. 6.5). In the one-dimensional
models, degrees of freedom in y- and z-direction as well as any rotational degrees of freedom
are neglected. That is why the motor extension is given by the difference between the motor

I
| durc
L att !

Microtubule

Figure 6.15: The attachment area on the cargo. The illustrations show the model attachment area
on the cargo, from where the motors can attach to the MT. A side view is shown on the
left, a front view in the middle, and just the rectangular attachment area on the right. The
cargo radius is R¢ and the distance between MT and cargo is dy;pc. The length of the
attachment area on the cargo is defined by the half length of the attachment area on the
MT L, (see side view). The opening angle is labeled 6; and is used to calculate the
length of the attachment area (see eq. (6.15) and illustration on the right). The width of
the attachment area is defined by the three-dimensional correspondence L13<?n3 of the one-
dimensional motor rest length Ly; 5 (see front view and eq. (6.16)). The opening angle
from the front is denoted by 6, and used to calculate the width of the attachment area. On
the right side the attachment area, neglecting the curvature, is drawn to define the angle
¢, which is needed to calculate the attachment area on the cargo including the curvature
of the cargo (see eq. (6.15)).

175



Chapter 6. Cargo transport by kinesin-3

head x{l(t) and the motor tail position x{(t). The motor tail position can be calculated from the
motor head position xil(t) and the center of the cargo position X () as follows (see fig. 6.5 for
an illustration of the geometry):

xp (1) = Xc()
VG40 = Xc(0) + @y + Re?
) X (1) = x,(1)
) Vb0 = X + (dyre + Re)? = Re
* (1) = X (1)

V50 = X + (dyre + Re)?

sin(0! ) =

=  x0=x)-

X <\/ (x (1) = Xc()? + (dyre + Re)? — RC> (6.10)

with dyrc being the constant distance between MT and cargo and an the angular between the
vertical axis and the connection line between the center of the cargo and the motor head (see
fig. 6.5). The motor extension is then:

x; (1) = X (1)

(x} () = Xc()? + (dyrre + Re)?

Ax'(1) = x; (1) — x{(1) =

X <\/(x;;(r) — Xc(0 + (dygre + Ro)? - Rc> . (6.1D)

Plugging in this one-dimensional motor extension in the force calculation in eq. (6.4) gives
the corresponding motor forces for the one-dimensional liposome model.

As for the point-like cargo cargo model, motors attach to a force-free position on the MT.
Because of the spatial extension of the cargo and the diffusive motor tails, the attachment
area X(f) + L, on the MT is more than twice the attachment area of the point-like cargo
model, where L, = L;; holds. L, of the liposome model is still given by L,; 5 but takes
into account that diffusive motor tails would slide to the position on the cargo, where motor
extensions are minimal. To calculate L, the following equation needs to be solved:

. o
AX (1) = Ly — x! = Lygs (6.12)

with Ax/(¢) given by eq. (6.11). Table C.4 of the appendix shows L, for different cargo
radii. Even though motors are force-free over the whole range of X(¢) + L, it is more
likely that they attach close to the center of the cargo X(¢). Close to the center of the cargo
X (1), motor extensions are smaller, while at the edges of X(#) + L., motors are already
almost stretched. That is why a truncated Gaussian distribution with mean X (¢) and standard
deviation ¢ = L, /3 is used to chose the motor head position x;, in the MT for attachment:

M _ Gp=Xc)?
———c 2Waw/¥’ Xc®+ L
Pa(Xp) = 3 V2r(Ly /37 Y X € XD Ly (6.13)
0, else.
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Thus, when a detached motor attaches to the MT, a force-free position x;, within X(¢) + L,
on the MT is chosen according to eq. (6.13). Besides choosing a position along the MT, also
the protofilament has to be chosen. Like in the point-like cargo model, seven protofilaments
are modeled and the attachment probabilities to the protofilaments are Gaussian distributed
(see subsection 6.2.1 for details). Taking exclusion effects on the MT into account, before
attaching, it has to be checked whether the range x;, + Ry;,3 is empty on the chosen protofil-
ament. If this is the case, the motor can attach. It is known from experiment that 20% of
the kinesin-3 motors are inactive. Since motor tails rapidly diffuse on the cargo surface, the
configuration of detached motors in the attachment area on the cargo changes over time. As
said before, because diffusion is high compared to attachment, it is assumed that detached
motors are uniformly distributed over the cargo surface. This means on average 20% of the
detached motors in the attachment area on the cargo are inactive and when a motor attaches,
it is chosen with probability p;.,.ive = 0.2 that the attaching motor is inactive.

In the liposome model, attachment and force-dependent detachment and stepping rates are
used as in the point-like cargo model (see subsection 6.2.1). Furthermore, the same update
mechanism for the cargo position, namely the Metropolis algorithm, is used to move the
cargo in the harmonic potential of MT-attached motors. To calculate the harmonic potential,
extensions of MT-attached motors as given by eq. (6.11) are used. It is thereby taken into
account the sliding of the diffusive motor tails to the positions on the cargo, where motor
extensions are minimal.

In summary, the diffusion of the motor tails on the cargo surface is taken into account in
two ways. First, the configuration of motors in the attachment area changes over time such
that each time a motor attaches, it is chosen randomly whether this motor is inactive or active.
And second, motor extensions are reduced due to the sliding of the diffusive motor tails to the
position with the shortest motor extension on the cargo surface. Consequently, the attachment
area is bigger for the liposome model than for the point-like cargo model. Simulating the
liposome model will show the influence on cargo transport.

Simulation results: To test the liposome model, first the liposome model is simulated with
a point-like cargo R~ = Onm and a uniformly distributed attachment probability p,,, within
Xc(?) + L,y,. Simulating the liposome model with a point-like cargo should lead to the same
results as the point-like cargo model. Fig. C.1b of the appendix C shows that the liposome
model with R = 0 nm reproduces the results of the point-like cargo model.
Next, the liposome is simulated as described above. This means, the radius of the cargo is
R = 60nm and the attachment probability along the MT p,,, is Gaussian distributed (see
eq. (6.13)). Simulating the liposome model with the same parameters as the point-like cargo
model (see table C.1 of the appendix C) produces velocity histograms with less pronounced
low velocity peaks (see fig. C.1c of the appendix C). The point-like cargo model simulations
relate the low velocity peak to a stopping of the cargo (slow state) due to inactive motors. Hav-
ing less pronounced low velocity peaks means that active motors pull off inactive motors more
easily, which results in less pronounced slow states. Thus, active motors team up better in the
liposome model than in the point-like cargo model. Thus, the force response differs between
the point-like cargo model and the liposome model.
Having less pronounced low velocity peaks in the simulation means that inactive motors de-
tach too easily. Active and inactive motors detach with the same force-dependent detachment
rates. The detachment is characterized by the detachment force and the force-free detach-
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Figure 6.16: One-dimensional liposome model.  Simulation results produced with the liposome

model using an optimized number of motors N,, and an increased detachment force
(Fyxin3 = 3pN) compared to the point-like cargo model (fig. 6.12). See table C.1 for
all parameter values. a) Cargo velocity histograms (blue) for varying numbers of motors
in the attachment area N,,. Using the segmentation algorithm (see main text and caption
of fig. 6.3) trajectories can be divided into slow and fast states. Increasing the number
of motors N,,, the fast state velocity peak (green) moves to smaller velocities and finally
merges with the slow state velocity peak (red). b) Example trajectories of simulated cargos
(trajectory duration longer than 30 seconds) are depicted for varying numbers of motors
in the attachment area N,,. A stop-and-go-like motion with clear slow states can be seen
for all numbers of motors. ¢) Mean (blue) and variance (magenta) of all cargo velocities
as well as mean velocities of only the fast state (green) are depicted. All three observables
decrease with increasing number of motors. d) Histograms of trajectory durations. Tra-
jectories are longer in time for high number of motors.

The program was terminated either if no motor was attached to the MT anymore or after
80 seconds. Number of samples (cargos) N, are given in brackets (a +d).
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6.2. One-dimensional models of cargo transport by kinesin-3

ment rate (see eq. (6.5)). While the latter is given by the experiment, the detachment force
of KIF16B is neither known from the experiment nor given by the literature (to the author’s
knowledge). Detachment force values given for other members of the kinesin-3 subfamily
range approximately from 1pN to 2.7 pN [328]. When increasing the detachment force in
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Figure 6.17: One-dimensional liposome model: slow state. Duration and frequency of the slow state
obtained from simulations using the liposome model. a) Mean duration of the slow state
as a function of the motor concentration as well as duration histograms for varying number
of motors. Although in the simulation the number of motors in the attachment area on the
cargo N,, is given, the mean is drawn as a function of the motor concentration for a better
comparison with the experimental data (fig. 6.4a). See fig. 6.16¢ for which concentration
corresponds to which number of motors. Mean and histograms do not show a dependence
of the slow state duration on the number of motors. b) Mean and histograms of slow
state frequencies for varying numbers of motors. The individual frequency of slow states
(blue) is the number of slow states divided by the trajectory duration. The total frequency
of slow states (magenta, independent of the duration of the trajectories) is total number
of slow states of all simulations divided by the sum of all trajectory durations. Slow state
frequencies are slightly enhanced for low number of motors, otherwise independent of the
number of motors.

Number of samples Nj is given in brackets.

the liposome model (from Fy; = 1pN to F; = 3pN) and optimizing the number of mo-
tors in the attachment area on the cargo N,,, a reasonable set of parameters (see table C.1
of the appendix C for the used parameters including literature references) can be found for
which the liposome model (fig. 6.16 and 6.17) is in alignment with the experimental ob-
servations (fig. 6.2 and 6.4). In detail, similar to the experiment, the velocity histograms
(fig. 6.16a) show negative velocities, a low velocity peak, and a high velocity peak, which
merges with the low velocity peak at higher number of motors N,,. Cargo trajectories (fig.
6.16b) show a stop- and go-like motion. Moreover, the mean and variance of the veloci-
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ties as well as the mean of the velocities of the running state decrease with increasing num-
ber of motors N,, (fig. 6.16c). As in the point-like cargo model, trajectories are longer in
the simulation (fig. 6.16d) than in the experiment (fig. 6.2d). Trajectories are supposed to
be longer in the simulation than in the experiment because more factors terminate experi-
mental trajectories (MT end for instance) than simulation trajectories (see subsection 6.2.1).
Shorter trajectories in the simulation would mean that motor detachment is overestimated.
Duration and frequencies

of the slow states (fig. 30
6.17) from the liposome total
model are similar to dura- 251 $+ active

. . ¢ inactive
tion and frequencies from

the point-like cargo model
(fig. 6.14). Mean slow
state durations are, how-

20
151 |

101
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ever, still smaller than in [ T
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As for the point-like 0 ¢ ¢ ¢ | t
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cargo model, the number

Number of motors N,
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(fig. 6.18) increases Figure 6.18: One-dimensional liposome model: number of MT-
with increasing number attached motors. Mean number of MT-attached motors
of available motors in (u=+o0) obtained from simulation with the liposome model.
the attachment area on The total number of MT-attached motors (yellow), the
the cargo. Especially at number of active (green), and the number of inactive MT-

attached motors (red) are shown as a function of the num-
ber of motors in the attachment area on the cargo N,,.
All three increase with increasing number of motors in the
attachment area N,,. The number of inactive motors in-
higher for the liposome creases slower than the number of active motors.

model than for the point-

like cargo model (fig. 6.13).

high number of available
motors, the number of
MT-attached motors is

In summary, adjusting the detachment force and the number of motors in the attachment
area on the cargo in a reasonable, experimental range, aligns the simulation results produced
with the liposome model with the experimental results. Compared to the point-like cargo
model, a higher detachment force is needed to produce a low velocity peak in the histogram,
which is similar to the experimentally given low velocities peaks. This means, in the liposome
model, active motors team up better in order to pull off inactive motors. It might be that
because of the sliding of the motor tails, active motors can better align and therefore increase
their cooperation. However, the number of MT-attached motors revealed that slightly more
motors are attached for the liposome model compared to the point-like cargo model. This
indicates that in the liposome model, due to the spatial expansion of the cargo, there is more
space on the MT for motors. More space also means less motor-motor hindrance, which could
also be the reason for the better cooperation of active motors in the liposome model.
Furthermore, it was above suggested (see section 6.2.1) that the sliding of the motor tails
might lead to "blocked" configurations, which causes an occasionally longer stopping of the
cargo, which increases the duration of the slow states. The liposome model simulations,
however, show that slow state durations are similar to those of the point-like cargo model.
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6.2. One-dimensional models of cargo transport by kinesin-3

This means the sliding of the motor tails does not lead to such a "blocked" configuration with
a longer stopping of the cargo.

To gain a deeper understanding of the influences of the separate liposome model compo-
nents, the following model variants are studied:

1. Liposome model with varied motor forces

2. Liposome model without inactive motors

3. Liposome model without motor-motor exclusion on the MT
4. Liposome model with uniform attachment to protofilaments

5. Liposome model with uniform attachment along the MT in the attachment area
Xc(®) £ Ly

6. Liposome model with varying cargo sizes

7. Liposome model with modeling all motors on the cargo surface (not only in attachment
area on the cargo)

Note that the latter variants do not include the changes of the former variants.

1. Motor forces: Above it has been observed that the force response is different for the
liposome and the point-like cargo model. Here, the individual influences of the kinesin-3
detachment force and stall force are studied explicitly.

To investigate the influence of the detachment force Fy;,3, the kinesin-3 motor detachment
force is increased from Fy;,3 = 3pN to Fy i3 = 3.5pN. Fig. 6.19a and fig. 6.19¢ show that
increasing the detachment force leads to a higher low velocity peak and reduces the overall
mean velocity as well as the mean velocity of the running state compared to the standard
liposome model (fig. 6.16). This means first that inactive motors detach less easily, and
active motors need to exert higher forces to pull off inactive motors. Second, the slightly
reduced mean velocity of the running state means that active motors negatively affect each
other more than in the standard liposome model. Active motors affect each other in two ways:
first, they can sterically hinder each other (motor-motor exclusion effects) or second, they can
impair each other by exerting opposite directed forces on the cargo. The latter is the case
because usually, some motors advance slower than others (because of either simple stochastic,
a lower individual motor stepping rate, or because of being hindered by an inactive motor).
Consequently, some active motors are exerting a force on the cargo directed towards the MT
plus-end and some towards the MT minus-end (motor-motor impairment). Both effects are
enhanced when having a higher detachment force. Having a higher detachment force leads
to reduced detachment such that more motors are attached to the MT and hinder each other
sterically. Moreover, having a higher detachment force, motors, which pull the cargo towards
the minus-end (opposite direction of kinesin-3), can be pulled off less easily from motors that
pull the cargo towards the MT plus-end. Thus, the detachment force determines the strength
of inactive motors and how much active motors are hindered or impaired by other motors.

Increasing the stall force Fjy;,; from 5pN to 7pN leads to a reduction of the low velocity
peak in the histograms (fig. 6.19b) and to higher means of all velocities as well as of the fast
state (fig. 6.19d). Because inactive motors do not step at all, the stall force only affects active
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Figure 6.19: Liposome model variant 1: velocities. Simulation results produced with the liposome
model using a higher detachment force (de’kin, a+c) and a higher stall force (st’kin,
b+d). Velocity histograms (a+b) from all velocities (blue), the fast state (green) and the
slow state (red) as well as mean (blue) and variance (magenta) of all cargo velocities as
well as mean velocities of only the fast state (green). Left (a+c): Low velocity peaks (red)
are more pronounced and fast velocity peaks (green) are shifted to lower velocities com-
pared to the standard liposome model (fig. 6.16). Also, mean velocities (blue and green)
and variances are reduced compared to the standard liposome model (fig. 6.16). Right
(d+b): Low velocity peak is reduced and mean velocities (blue and green) are increased
compared to the standard liposome model (fig. 6.16).

See table C.1 for the complete parameter list and brackets (a + b) for the number of sam-
ples N,.

motors. In detail, a higher stall force means first that active motors step faster at higher forces.
That is why the mean velocity of the fast state is increased. Second, a higher stall force means
that active motors step further until stopping due to reaching the stall regime. This means that
active motors can exert higher forces and are therefore more successful in pulling off inactive
motors. In conclusion, the stall force determines the strength of the active motors.
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6.2. One-dimensional models of cargo transport by kinesin-3

Taken together, motor detachment and stall forces determine the force production of inactive
and active motors. Higher detachment forces shift the force balance between inactive and
active motors towards inactive motors, while higher stall forces shift the force balance towards
active motors.

2. Inactive motors: Simulating the point-like cargo model revealed that the low velocity
peak is caused by inactive motors (see section 6.2.1). While the point-like cargo model
does not take the cargo extension and diffusive motor tails into account, the liposome model
does. Consequently, in the liposome model, motors could at random slide to the backside
of the cargo such that they pull the cargo backwards, i.e. towards the MT minus-end. Such
MT-attached motor configurations could cause a slow velocity state similar to the one from
inactive motors. To test this hypothesis, the liposome model is simulated only with active
motors. Velocity histograms of simulations in the absence of inactive motors (fig. 6.20a)
show that the low-velocity peak vanishes and mean velocities increase (fig. 6.21a). This
means that motors that are at the backside of the cargo do not induce a slow velocity state as
inactive motors do. Consequently, also the liposome model predicts that inactive motors are
needed to induce a slow velocity state.

3. Exclusion on the MT: The point-like cargo model simulations found that the reduction

of the velocity with increasing number of motors is caused by motor-motor exclusion effects
on the MT (see section 6.2.1). However, when taking the cargo extension and diffusive
motor tails into account (liposome model), it could also be that motors which slipped to the
backside of the cargo (side facing the MT minus-end) are responsible for the reduction of the
velocity with increasing number of motors (the more motors, the more motors at the backside
and the harder it is for advancing motors to transport the cargo). Therefore, the liposome
model is simulated neglecting exclusion effects, i.e. motors are allowed to overlap on the MT
(same protofilament). When neglecting exclusion effects, mean velocities (fig. 6.21a) clearly
increase with increasing number of motors. Thus, the sliding to the backside of the cargo does
not reduce the velocity with increasing number of motors.
Velocity histograms (fig. 6.20b) in the absence of exclusion effects show that the low velocity
peak is smaller compared to the standard liposome model (fig. 6.16a). For higher N, the
low velocity peak and the slow state (red histogram at fig. 6.20b) vanish (almost) completely.
This means, when not being hindered by other active or inactive, MT-attached motors, active
motors are stronger and can pull off the inactive motors more efficiently. Consequently, in
the liposome model with exclusion, inactive motors do not only hold the cargo back but also
hinder active motors to advance on the MT track.

4. Uniform attachment to protofilaments: It has been shown that not having exclusion
effects on the MT moves the force balances toward active motors. Here, the question is
how the distribution over the protofilaments influences the cargo transport and the force
balance between active and inactive motors. In the liposome model, the attachment to the
protofilaments is Gaussian distributed such that MT-attached motors are Gaussian distributed
over the protofilaments (no switching of the protofilament of MT-attached kinesin-3 motors>).
To test the influence of the motor distribution over the protofilaments, a uniformly distributed
attachment to the protofilaments is modeled instead of the Gaussian distributed attachment. If
motors attach uniformly to all seven protofilaments (= upper half of the MT), the low velocity

3Tt is assumed that kinesin-3 motors stay on one protofilament as known for kinesin-1 [126].
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Liposome model variants 2-5: velocity histograms. Histograms of all velocities (blue)

as well as from the fast state (green) and the slow state (red) from simulations with varying
numbers of motors N,,. a) 2. Model variant: no inactive motors. The low velocity peaks
vanish completely and the slow state (red histogram) is strongly reduced. b) 3. Model
variant: no exclusion effects on the MT. This means motors can overlap on the MT. The
low velocity peaks are strongly reduced. c¢) 4. Model variant: motors attach uniformly to
all protofilaments. The low velocity peaks are reduced compared to the standard liposome
model (fig. 6.16). d) 5. Model variant: motors attach uniformly within the attachment
area Xc(¢) + L, along the MT. The low velocity peaks seem to be slightly increased
compared to the standard liposome model (fig. 6.16).

peak of the velocity histogram is slightly reduced (fig. 6.20c) and mean velocities (fig. 6.21a)
are higher than for the standard liposome model (fig. 6.16). This means the force balance
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6.2. One-dimensional models of cargo transport by kinesin-3

is shifted towards active motors as it has been seen in the absence of exclusion effects (fig.
6.20b and 6.21a). Thus, a uniform attachment to the protofilaments reduces exclusion effects
on the MT. However, while in the absence of exclusion effects the mean velocity increases
with increasing number of motors, a uniform attachment to the protofilaments still shows the
reduction in mean velocities with increasing number of motors. This means, even though a
uniform attachment to the protofilaments reduces exclusion effects, motors still hinder each
other to advance.

Taken together, the distribution of the MT-attached motors over the protofilaments determines
the degree of mutual hindrance of MT-attached motors and therefore how efficient active
motors are in pulling off inactive motors.

5. Uniform attachment along the MT: The same effect is expected when the attachment
probability within the attachment area X(f) + L, along the MT is uniformly distributed
instead of Gaussian distributed. When they attach uniformly within X(#) + L., exclusion
effects are expected to be reduced and active motors should be more efficient in pulling off
inactive motors. However, when simulating a uniform attachment along the attachment area
Xc(t) £ Ly, the velocity histograms (fig. 6.20d) show a slightly increased low-velocity peak
and mean velocities (fig. 6.21a) are reduced compared to the standard liposome model. This
means the force balance is shifted towards inactive motors, the opposite of what was observed
when having reduced or no exclusion effect on the MT (compare model variants 3-4). This

a) Modifications b) Influence of radius
1.5nM = 4 motors, 3nM = 7 motors, 1.5nM = 4 motors, 3nM = 7 motors,
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Figure 6.21: Liposome model variants 2-6: mean and variance of the velocity. a) Mean of the
complete velocity distribution (blue) and the corresponding variance (red) for different
model modifications (see fig. 6.20 and main text for explanations regarding model modi-
fications). While the variance does not change much for the different model modifications,
the mean does. Not having inactive motors increases the mean compared to the standard
liposome model (indicated as "original"). When not modeling exclusion effects, the mean
increases with increasing number of motors. When distributing the MT-attached motors
uniformly among protofilaments instead of Gaussian, the mean decreases with increas-
ing number of motors but is higher than for the standard liposome model. Attaching the
motors uniformly along the MT in the attachment area X + L, instead of Gaussian
reduces the mean compared to the standard liposome model. This is surprising since
attaching uniformly along the MT should reduce the exclusion effects as it does when at-
taching uniformly to the protofilaments. See main text for an explanation. b) Mean (blue)
and variance (red) of all velocities and mean of only the velocities stemming from run-
ning states (green) for different cargo radii. In the standard liposome model a radius of
Rc = 60nm is used. The variance as well as the mean of the complete histogram and the
mean of the velocities stemming from running states increase with the cargo radius.
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means there has to be another effect.

To understand why the force balance is shifted towards inactive motors when attaching
uniformly along the attachment area on the MT, histograms of MT-attached motor extensions
are calculated to see how motors are distributed along the MT (see fig. C.2b of the appendix
C for uniform attachment and C.2a of the appendix C for Gaussian distributed attachment
along the MT). Active motors would be most efficient in pulling off inactive motors when
all active motors would be sorted toward the MT plus-end (positive motor extension) and all
inactive motors towards the MT minus-end (negative motor extension). In this ideal case (see
fig. 6.22a), active motors could continue stepping towards the MT plus-end without the need
of passing an inactive motor, which acts as roadblocks for active motors. However, when an

a) Sorted b) Unsorted

Liposome Liposome

Latt Latt Latt Latt

X(t) Xc(t)

Figure 6.22: Sorted and unsorted motor configurations along MT. a) A motor configuration along
the MT, where all inactive motors (red) are sorted towards the MT minus-end (left) and
all active motors (green) towards the MT plus-end (right). In this ideal case, all active
motors can continue stepping toward the plus-end without being blocked by an inactive
motor. Consequently, active motors are most efficient in pulling off inactive motors. b)
A motor configuration along the MT, where motors are not sorted. This means some
inactive motors (red, two right motors) are closer to the MT plus-end than some active
motors (green, two left motors). In this case, when the active motors continue stepping
towards the MT plus-end they will be blocked by inactive motors at some point assuming
that shown motors are all on the same protofilament (no switching of the protofilament al-
lowed). Blocked active motors will not be able to contribute to pulling of inactive motors
anymore, but need to be pulled off by other active motors as well in order to further trans-
port the cargo. The further towards the MT minus-end (left) an active motor attaches, the
higher is the chance to be blocked by an inactive motor at some point and the longer is the
way until getting out of the force-free regime (attachment area on the MT X(t)+ L) on
the side facing the MT plus-end (right). Only when getting out of the force-free regime on
the side facing the MT plus-end (two right motors), they contribute to pull off inactive or
blocked motors and transport the cargo towards the MT plus-end. Note that active motors
can even pull the cargo towards the MT minus-end (most left green motor). Altogether,
this is why active motors are less efficient in pulling of inactive motors when motors are
unsorted.

active and an inactive motor are on the same protofilament and the inactive motor is closer to

186



6.2. One-dimensional models of cargo transport by kinesin-3

the plus-end than the active motor (unsorted motor configuration, see fig. 6.22b), the active
motor will at some point be stopped by the inactive motor. Consequently, the active motor
cannot continue stepping anymore (no switching of the protofilament allowed, see above) and
need to be pulled off by other advancing active motors. The comparison of motor extensions
from uniform and Gaussian attachment (fig. C.2b and C.2a of the appendix C) reveals that for
the uniform attachment, slightly more inactive motors are sorted towards the MT plus-end.
This means there are slightly more inactive motors, which could act as roadblocks for active
motors, which are, by chance, sorted towards the MT minus-end. This is one reason why
active motors are less efficient when motors attach uniformly within X &+ L.

A second reason is that when motors attach uniformly within X + L,,,, there are also more

active motors, which attach closer to the MT minus-end. Consequently, they have a "longer
way" until getting out of the force-free regime towards the MT plus-end (positive motor
extension greater than the motor rest length Ly; ;). This means first that the chance is higher
to be stopped by an inactive motor and second, it takes longer until the motor exerts a force
on inactive motors, i.e., contributes to pulling off the inactive motors and transports the cargo
towards the MT plus-end. This is the second reason for active motors being less efficient in
pulling off inactive motors when attaching uniformly within X &+ L.
Taking together, the sorting of active motors to the front (facing the MT plus-end) and inactive
motors to the back (facing the MT minus-end) plays a role (see fig. 6.22). When motors attach
uniformly within X + L, instead of Gaussian distribute