
Saarland University

PhD Thesis

Provably Accurate Verdictors
Foundations and Applications

A dissertation submitted towards the degree

Doktor der Ingenieurwissenschaften

of the Faculty of Mathematics and Computer Science of Saarland University.

Submitted by

Maximilian A. Köhl

Saarbrücken

2024

ii

Dean of the Faculty Prof. Dr. Roland Speicher

Date of the Colloquium 05 November 2024

Chair of the Committee Prof. Dr. Sven Apel

Commission Prof. Dr. Holger Hermanns

Prof. Dr. Clemens Dubslaff

Prof. Dr. Benjamin Kaminski

Prof. Dr. Martin Leucker

Academic Assistant Dr. Andreas Schmidt

©2024 Maximilian A. Köhl

Abstract

This thesis introduces provably accurate verdictors, systems designed to provide
provably accurate answers to pressing operational questions about a system by ob-
serving its behavior. For instance, verdictors can detect faults in aircraft sensors or
incorrect configurations in manufacturing equipment at runtime. Such information
is critical for ensuring system safety and availability, enabling informed safeguarding
and timely interventions. Adopting a model-based methodology, this thesis lever-
ages formal models as the ground truth for a system’s behavior and properties. A
comprehensive theoretical framework is established, providing a precise formal char-
acterization for what it means to provide provably accurate answers. Building on
this framework, the thesis develops generic algorithms for implementing and syn-
thesizing provably accurate verdictors in both discrete and continuous-time settings,
focusing on robustness against observational imperfections such as losses and delays.
The versatility and effectiveness of these algorithms is demonstrated across diverse
applications, including runtime verification and fault diagnosis. Additionally, the
thesis introduces variability-aware monitoring, addressing significant challenges in
monitoring configurable systems with configurable verdictors. With Momba, a new
state-of-the-art tool for formal modeling is presented. Using Momba, the theoretical
contributions of the thesis are implemented, validated, and empirically evaluated.

iii

iv

Zusammenfassung

Diese Dissertation stellt nachweisbar akkurate Verdiktoren vor, Systeme, die durch die
Beobachtung eines Systems akkurate Antworten auf betriebskritische Fragen liefern.
So können zur Laufzeit Fehler in Flugzeugsensoren oder falsche Konfigurationen von
Produktionsanlagen erkannt werden. Solche Informationen sind entscheidend für die
Systemsicherheit und -verfügbarkeit, da sie fundierte Schutzmaßnahmen und recht-
zeitige Eingriffe ermöglichen. Diese Arbeit verfolgt einen modellbasierten Ansatz, bei
dem formale Modelle als Referenz für das Systemverhalten dienen. Es wird ein theo-
retisches Rahmenwerk entwickelt, das präzise definiert was es bedeutet, nachweisbar
akkurate Antworten zu liefern. Darauf aufbauend werden generische Algorithmen
zur Implementierung und Synthese von nachweisbar akkuraten Verdiktoren für
diskrete und kontinuierliche Zeitmodelle entwickelt, wobei der Schwerpunkt auf Ro-
bustheit gegenüber Beobachtungsimperfektionen, z.B., Verzögerungen und Verlusten,
liegt. Die Vielseitigkeit und Effektivität dieser Algorithmen wird in verschiedenen
Anwendungsbereichen wie Laufzeitverifikation und Fehlerdiagnose demonstriert.
Zudem wird variabilitätsgewahres Überwachen eingeführt, um konfigurierbare Sys-
teme mithilfe von konfigurierbaren Verdiktoren zu überwachen. Mit Momba wird
ein modernes Werkzeug für formales Modellieren vorgestellt. Die entwickelten An-
sätze werden in Momba implementiert und durch empirische Studien evaluiert sowie
validiert.

v

vi

Acknowledgements

This workwas partially funded by theDeutsche Forschungsgemeinschaft (DFG) under
project number 389792660, TRR 248, CPEC, see https://perspicuous-computing.science,
by the VolkswagenStiftung as part of Grant AZ 98514 (EIS), and by the ERC Advanced
Investigators Grant 695614 (POWVER).

Usage of Generative AI. This thesis has been written shortly after generative AI
gained widespread popularity, especially in the form of large language models for
generating text. Following scientific best practices, the guidelines adopted by Nature
and Springer,1 and the position of the Deutsche Forschungsgemeinschaft [Deu23], I
hereby acknowledge and document the usage of generative AI.

As a non-native speaker of English, producing idiomatic text can be a challenge.
To this end, I utilized OpenAI’s ChatGPT,2 a large language model, to assist in the
writing of parts of this thesis. The model helped in crafting more fluent and idiomatic
English expressions, enhancing the readability and clarity of the presentation. All
substantive research, theory, analyses, conclusions, and opinions presented herein
are my own. The use of ChatGPT was limited to linguistic assistance and did not
contribute to the intellectual content of this thesis. I thank OpenAI for providing this
tool, which allowed me to improve the overall quality of my writing.

Personal Acknowledgements. Completing my PhD thesis was not a solitary
journey, and I am deeply grateful to those who supported me along the way.

First and foremost, I would like to express my sincere gratitude to my supervisor,
Holger Hermanns, for his guidance, insights, and support throughout my doctoral
studies. Holger’s emphasis on crafting a compelling narrative in every paper greatly
influenced how I write and present my work. His challenging critiques, always driven
by belief in my potential, pushed me to constantly improve. I am also especially
thankful to Clemens Dubslaff for his invaluable feedback, guidance, and the collabo-
ration on key papers underlying this thesis. I joyfully recall our discussions where we

1 https://web.archive.org/web/20240505224504/https://www.nature.com/articles/d41586-023-00191-1
2 https://web.archive.org/web/20240511214551/https://openai.com/chatgpt/

vii

https://perspicuous-computing.science
https://web.archive.org/web/20240505224504/https://www.nature.com/articles/d41586-023-00191-1
https://web.archive.org/web/20240511214551/https://openai.com/chatgpt/

viii

brainstormed and discussed ideas that eventually turned into great papers. Without
both of you, this thesis would not have been possible.

In addition, I like to thank the independent reviewers Martin Leucker and Ben-
jamin Kaminski for taking the time and effort to evaluate my thesis.

During my almost six years at the chair, I had the pleasure to work with amazing
colleagues. I am grateful to Andreas Schmidt, Lena Becker, Sebastian Biewer, Gabriel
Dengler, Felix Freiberger, Nazareno Garagiola, Alexander Graf-Brill, Nils Husung,
Michaela Klauck, Nikolai Käfer, Gilles Nies, Robin Ohs, Florian Schießl, Sarah Sterz,
Gregory Stock, Hanwei Zhang, and Dominic Zimmer for their camaraderie and
support throughout my time at the chair. I enjoyed the time spent with everyone,
sharing experiences, challenges, and successes. Some of my colleagues also became
close friends. In particular, I would like to thank Florian for enduring my sometimes
hour-long monologs reflecting onmywork, thesis, and life, andMichaela for the great
papers we wrote and the amazing time we spent together at various conferences. I
also had many fun times with Felix, who has been my office mate since the beginning,
and with Sarah, who always was ready for a philosophical discussion. Furthermore,
I would like to thank Lena and Gregory for their relentless “early nom” support. A
special thank you also goes to Sabine Nermerich and Christa Schäfer, who always
guaranteed a smooth processing of all administrative matters.

Besides my colleagues, I am deeply thankful to Christel Baier, Kevin Baum, Dimitri
Bohlender, Bernd Finkbeiner, Timo Gros, Jörg Hoffmann, Sascha Klüppelholz, Markus
Langer, Daniel Oster, Yannik Schnitzer, Maximilian Schwenger, Timo Speith, Marcel
Steinmetz, Julius Wenzel, and Verena Wolf for the opportunity to collaborate on
exciting research and for the work we accomplished together.

Lastly, and most importantly, I want to thank my parents and family for their
unwavering support and encouragement throughout my academic journey. Their
belief in me has been a constant source of strength and motivation.

This thesis would not have been possible without the support of all of you, and I
am truly grateful for everything you have done.

Contents

General Remarks xiii

Mathematical Notations xv

1 Introduction 1
1.1 Contributions . 7

1.1.1 Theoretical Framework . 8
1.1.2 Generic Verdictor Algorithms 9
1.1.3 Formal Modeling Toolbox . 10
1.1.4 Applications and Evaluation 11

1.2 Relevant Publications and Artifacts 13
1.3 Outline . 15

I Theoretical Foundation 17

2 Foundations 19
2.1 Mathematical Basics . 19
2.2 Formal Models . 24

2.2.1 Transition Systems . 24
2.2.2 Continuous-Time Models . 28
2.2.3 Lattice Automata . 30

2.3 Temporal and Modal Logics . 32
2.3.1 Linear Temporal Logic (LTL) 32
2.3.2 Computation Tree Logic (CTL) 33
2.3.3 Basic Modal Logic . 34

2.4 Configurable Systems . 35
2.5 Runtime Verification . 38

2.5.1 LTL Runtime Verification . 39
2.5.2 Stream-Based Monitoring with Lola 40

2.6 Model-Based Fault Diagnosis . 44

ix

x CONTENTS

2.7 Fault Trees . 46

3 Theoretical Framework 49
3.1 Verdict Domains . 50
3.2 Verdict Transition Systems . 54

3.2.1 Monotonicity, Refinement, and Equivalence 57
3.2.2 Determinization and Minimization 58

3.3 Observation Models . 60
3.3.1 Observation Model Transformers 64
3.3.2 Applicability and Tightness 66

3.4 Provably Accurate Verdicts . 68
3.4.1 Sound, Complete, and Robust VTSs 70
3.4.2 VTS Synthesis Problem . 73

3.5 A Unifying Foundation . 76
3.5.1 Traditional Model-Based Fault Diagnosis 76
3.5.2 LTL Runtime Verification . 77
3.5.3 Stream-Based Runtime Monitoring 79

3.6 Discussion . 81

II Generic Verdictor Algorithms 83

4 Modular Discrete-Time Verdictor Synthesis 85
4.1 Model-Based Construction . 87

4.1.1 Verdict-Annotated System Models 87
4.1.2 Annotation Tracking . 92

4.2 Most Specific Predictions . 95
4.3 Imperfect Observations . 98

4.3.1 Limited Observability . 99
4.3.2 Delays . 102
4.3.3 Losses . 105
4.3.4 Bounded Out-of-Order Arrivals 109
4.3.5 Possibility Lifting . 114

4.4 Finalization . 115
4.4.1 Language-Relaxing Minimization 116

4.5 Discussion . 118

5 Robust Continuous Time Verdictor Algorithm 121
5.1 Timing Imprecisions . 126
5.2 Observation Model . 129

5.2.1 Occurrence and Observation Times 130
5.2.2 Consistency of Events and Observations 133

CONTENTS xi

5.2.3 Out-of-Order Observations 136
5.3 Verdictor Building Blocks . 138

5.3.1 Active Prefix Verdictor . 139
5.3.2 Bound Consistency . 141

5.4 Verdictor Algorithm . 142
5.4.1 Bounded History Approximation 150
5.4.2 Non-Monotonic Verdicts . 151

5.5 Discussion . 152

III From Theory to Practice 155

6 Formal Modeling Toolbox Momba 157
6.1 Architecture and Design . 159
6.2 Momba: User Perspective . 163

6.2.1 Scenario-Based Model Construction 164
6.2.2 Validation by Simulation . 169
6.2.3 Invoking Analysis Tools . 171

6.3 Evaluation: State Space Exploration 172
6.3.1 Tools and Engines . 173
6.3.2 Benchmark Setup and Results 175

6.4 Discussion . 179

7 Runtime Verification and Fault Diagnosis 181
7.1 Model-Based Runtime Verification 182

7.1.1 Robust and Predictive Runtime Verification 182
7.1.2 CTL Runtime Verification . 186

7.2 Fault Diagnosis . 188
7.2.1 Traditional Diagnosers . 188
7.2.2 Modal Logic Fault Queries 189

7.3 Case Study: Robust Real-Time Diagnosis 191
7.3.1 Scalability of the Verdictor Algorithm 193
7.3.2 Impact of the History Bound 195
7.3.3 Impact of Latency and Jitter 198

7.4 Discussion . 199

8 Variability-Aware Monitoring 201
8.1 Example: Real Driving Emissions . 203
8.2 Configurable LTL₃ Monitoring . 205

8.2.1 Featured VTSs . 206
8.2.2 Featured LTL₃ Monitoring . 207

8.3 Configurable Monitoring with Lola 211

xii CONTENTS

8.3.1 Family-Based Specification Analysis 213
8.4 Configuration Monitoring . 217

8.4.1 Configuration Monitor Synthesis 217
8.4.2 Evaluation on Community Benchmarks 220

8.5 Discussion . 223

9 Conclusion and Outlook 225

Appendix 230

A Detailed Proofs 233
A.1 Modular Discrete-Time Verdictor Synthesis 233

A.1.1 Proof of Theorem 4.1.1 . 233
A.2 Robust Continuous Time Verdictor Algorithm 235

A.2.1 Proof of Lemma 5.2.1 . 235
A.2.2 Proof of Lemma 5.2.2 . 236
A.2.3 Proof of Lemma 5.2.3 . 237
A.2.4 Proof of Theorem 5.3.1 . 239
A.2.5 Proof of Theorem 5.3.3 . 240
A.2.6 Proof of Theorem 5.3.2 . 241
A.2.7 Proof of Theorem 5.3.4 . 243

Bibliography 253

General Remarks

We herein state general remarks regarding references to websites, the availability of
data and software used for this thesis, and the presentation of proofs.

References to Websites. References to websites are provided as Internet Archive
URLs. The Internet Archive3 is a non-profit organization providing a digital library
of websites at specific points in time. Internet Archive URLs have the form

https://web.archive.org/web/<time>/<url>

where <url> is the URL of the website and <time> is a timestamp of the form:

<year><month><day><hour><minute><second>

Thus, these URLs specify specific versions of websites which also have a timestamp
attached to them and which can be retrieved as long as the Internet Archive keeps
operating. We believe this to be superior for traceability over merely stating access
times. The Internet Archive has been founded in 1996 and still provides access to
versions of websites going back all the way to the late 1990s.4 Note that websites are
not reindexed if they do not change and timestamps do correspond to the point in
time a website has been indexed by the Internet Archive. Thus, this thesis may refer
to rather old versions, which were still most recent at the time of writing.

Data Availability Statement. The results presented in this thesis are primarily
based on peer-reviewed publications. Wherever applicable, the artifacts associated
with these publications, such as datasets, source code, and supplementary materials,
are publicly available via Zenodo. Zenodo is a platform operated by Cern and pledges
to archive the artifacts for at least 20 years.5 As a quick reference, we provide an
overview over all artifacts and the publications they are associated with:

3 https://web.archive.org/web/20240513000827/https://web.archive.org/
4 https://web.archive.org/web/20240513015940/https://archive.org/about/
5 https://web.archive.org/web/20240513044447/https://about.zenodo.org/policies

xiii

https://web.archive.org/web/20240513000827/https://web.archive.org/
https://web.archive.org/web/20240513015940/https://archive.org/about/
https://web.archive.org/web/20240513044447/https://about.zenodo.org/policies

xiv CONTENTS

(AT1) ATVA’24 Artifact: Configuration Monitor Synthesis [KDH24]
https://zenodo.org/doi/10.5281/zenodo.12583621

(AT2) Artifact: Robust Model-Based Diagnosis of Real-Time Systems [KH23]
https://zenodo.org/doi/10.5281/zenodo.7896267

(AT3) (TACAS21 Artifact) Momba: JANI Meets Python [KKH21]
https://zenodo.org/doi/10.5281/zenodo.4431779

(AT4) QComp 2023: State Space Exploration Artifact [And+24]
https://zenodo.org/doi/10.5281/zenodo.10626176

(AT5) Full Source Code and Documentation of Momba
https://zenodo.org/doi/10.5281/zenodo.13205840

The artifact (AT5) contains the most recent version of Momba at the time of writing,
including the source code of the implementations of the techniques developed in
this thesis. The source code also contains further documentation clarifying imple-
mentation details, e.g., with respect to data structures. It does not contain the data
produced by the experiments presented in the respective individual papers.

Detailed Formal Proofs. To ensure the readability of themain text, detailed formal
proofs of the theoretical results established in this thesis are located in Appendix A.
The body of the thesis primarily presents proof sketches and complete proofs of
results that are sufficiently brief to maintain narrative flow. This arrangement has
been chosen to allow the reader to focus on the conceptual and methodological
developments within the core chapters, while providing the rigorous mathematical
details separately for those interested in the deeper technical aspects.

https://zenodo.org/doi/10.5281/zenodo.12583621
https://zenodo.org/doi/10.5281/zenodo.7896267
https://zenodo.org/doi/10.5281/zenodo.4431779
https://zenodo.org/doi/10.5281/zenodo.10626176
https://zenodo.org/doi/10.5281/zenodo.13205840

Mathematical Notations

As a quick reference, we list main notations used throughout this thesis.

℘(𝑋) Power set of 𝑋. 19
|𝑋| Number of elements of 𝑋. 19
∇𝑋 Element 𝑥 of a singleton set 𝑋 = {𝑥}. 19

𝑋 ⊍ 𝑌 Union of disjoint sets 𝑋 and 𝑌. 19
{ 𝑥 ∈ 𝑋 | Φ(𝑥) } Largest subset of 𝑋 whose elements satisfy Φ. 19
{ 𝑔(𝑥) | Φ(𝑥) } Set generated by 𝑔(𝑥) for those 𝑥 satisfying Φ. 19

𝑋⇀ 𝑌 Set of partial functions from 𝑋 to 𝑌. 20
⋅ Irrelevant component of a tuple. 20

[𝑎, 𝑏] Closed interval between 𝑎 and 𝑏. 22
𝔹[AP] Set of Boolean expressions over AP. 23

Interval Arithmetic

[𝑎1, 𝑏1] ⊞ [𝑎2, 𝑏2] Interval addition of [𝑎1, 𝑏1] and [𝑎2, 𝑏2]. 22
[𝑎1, 𝑏1] ⊟ [𝑎2, 𝑏2] Interval substraction of [𝑎1, 𝑏1] and [𝑎2, 𝑏2]. 22
[𝑎1, 𝑏1] ⊡ [𝑎2, 𝑏2] Interval multiplication of [𝑎1, 𝑏1] and [𝑎2, 𝑏2]. . . . 22
[𝑎1, 𝑏1] ⧄ [𝑎2, 𝑏2] Interval division of [𝑎1, 𝑏1] and [𝑎2, 𝑏2]. 22

Sequences, Words, and Languages

Σ Alphabet of symbols. 22
Σ⋆ Set of finite words over Σ. 22
Σ𝜔 Set of infinite words over Σ. 22
Σ⋇ Set of finite and infinite words over Σ. 22
𝜎 Finite or infinite word. 23
𝜍 Finite or infinite semiword. 23
𝜖 Empty word. 22

|𝜎| Length of a finite word 𝜎. 23

xv

xvi CONTENTS

𝜎 (𝑖) 𝑖-th symbol of 𝜎, starting at 1. 23
𝜎[𝑖..𝑗] Subsequence of 𝜎 from the 𝑖-th to the 𝑗-th symbol. 23
𝜎 ⋄ 𝜎′ Concatenation of 𝜎 and 𝜎′. 23
𝜎⇂𝐴 Projection of 𝜎 onto 𝐴 ⊆ Σ. 23

(a𝑖) 𝑛𝑖=1 Word generated by a𝑖 for 𝑖 from 1 to 𝑛. 23
Head(𝜎) Head 𝜎 (|𝜎|) of a finite non-empty word 𝜎. 23
Tail(𝜎) Tail 𝜎[1.. |𝜎|−1] of a finite word 𝜎. 23
Pref(𝜎) Set of all finite prefixes of 𝜎. 23
𝜎 ≤ 𝜎′ 𝜎 is a prefix of 𝜎′. 23

Formal Models

𝔖 Transition System (TS) .
⟨𝒮, 𝐼,Act,↠⟩

24

ℭ Continuous-Time Transition System (CTS)
⟨𝒮, 𝐼,Act ⊍ ℝ+

0 ,↠⟩
28

𝔗 Timed Automaton (TA) .
⟨𝐿, 𝐼,Act, ℂ, 𝐸, Inv⟩

29

𝔉 Featured Transition System (FTS) .
⟨𝒮, 𝐼,Act,↠, 𝐹,Conf, 𝑔, 𝜄⟩

37

𝔙 Verdict Transition System (VTS) .
⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩

54

ℱ Featured Verdict Transition System (FVTS)
⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈, 𝐹,Conf, 𝑔, 𝜄⟩

206

Formal Models

Post(𝑆, 𝐴) States reachable from some 𝑠 ∈ 𝑆 via some 𝛼 ∈ 𝐴. 25
After(𝜎) States reached after 𝜎 ∈ Act⋆. 25
ℒ(𝔖) Language of a TS 𝔖. 25

𝜌 Run 𝜌 ∈ ↠⋆ of a TS. 26
Runs(𝔖) Set of runs of a TS 𝔖. 26
Trace(𝜌) Trace of a run 𝜌. 26
After(𝜌) States reached after a run 𝜌. 26
Dur(𝜌) Duration of run 𝜌 of a CTS. 28
Tw(𝜌) Timed word of a run 𝜌 of a CTS. 28

Observations and Events

Obs Set of observables. 54
𝜔 Observation sequence 𝜔 ∈ Obs⋆ over some Obs. 54

Runs(𝜔) Runs that may induce 𝜔. 62

CONTENTS xvii

Act Set of actions of a system. 24
Faults Set of fault actions of a system. 44
OAct Set of observable actions of a system. 65
UAct Set of unobservable actions of a system. 65

↓𝑡 Time an observation is made, i.e., an observation time. . . . 129
↑𝑡 Time an event occurred, i.e., an occurence time. 130

xviii CONTENTS

Chapter 1

Introduction

In today’s highly interconnected and automated world, computers control almost
everything from airplanes to manufacturing plants to medical devices. Ensuring
the reliability of these systems is paramount as human lives often depend on them.
Furthermore, damages or disruptions of service can often incur significant financial
losses, for instance, when a manufacturing line becomes inoperable. However, main-
taining a consistently safe and functional state amid complex operational demands,
potential technical failures, and human errors presents a major challenge.

Addressing this challenge requires not only design-time strategies but also the
ability tomonitor a system’s execution and to ascertain its operational state at runtime.
Monitoring a system enables manual or automated interventions when issues arise as
well as safeguarding the system from entering unsafe or non-functional states [e.g.
Pin+17b; LBW09; Fal+11; Blo+15; Pin+16; Jan+20]. For instance, in aviation, pilots are
constantly provided with diagnostic information that enables them to swiftly take
corrective actions when necessary, e.g., when an engine is on fire [SKY]. At the same
time, the aircraft is safeguarded from piloting errors, for instance, by preventing in-
flight trust reversal. In manufacturing and healthcare, equipment typically needs to
be monitored for technical issues and misconfigurations to detect potential problems
early, to ensure the efficient operation of equipment, to prevent any damages, and
importantly, to protect workers and patients at all times [Zon+20; THE93]. As a result,
a medical x-ray machine may shut down automatically if it detects a problem with
its radiation shielding or cooling system, and a factory worker may be prevented
from starting a production process when the equipment is ill-configured.

In all these cases, techniques applied at runtime are also a crucial cornerstone of
design-time considerations and assurance cases. They complement process-based
measures and design-time verification approaches, all aimed at ensuring a system’s
reliable operation. Against this backdrop, this thesis develops techniques for obtaining
accurate and decisive information about the current execution and state of a system

1

2 CHAPTER 1. INTRODUCTION

at runtime. These techniques are designed to effectively answer questions such as:
(Q1) Does the x-ray machine still operate within its safe limits?
(Q2) Has there been a fault in a vital sensor of the aircraft?
(Q3) Has the manufacturing equipment been correctly configured?

We loosely refer to such questions by the umbrella term operational questions. Answer-
ing these questions accurately enables not only timely interventions and corrective
actions but also robust safeguarding mechanisms. Examples may be shutting down
medical equipment before its use becomes unsafe, informing pilots about faults, and
preventing workers from starting a manufacturing process. Hence, accurate answers
to such questions are essential for keeping systems safe and functional. Conversely,
incorrect answers can have catastrophic consequences: An x-ray machine may expose
patients and medical staff to hazardous levels of radiation, misreported faults may
lead pilots to taking wrong or no corrective actions, and ill-configured manufacturing
equipment may halt production and put workers’ lives at risk. Hence, this thesis
strives for techniques that provide answers with provable guarantees.

A Model-Based Methodology. To provide accurate answers with provable guar-
antees to operational questions, the techniques developed in this thesis build upon
formal models. Formal models are mathematical representations of systems and their
possible behavior. Formal models precisely describe a system’s behavior under vari-
ous circumstances and its interaction with its environment. As such, they have found
widespread and successful use for verifying systems at design time, particularly
through various forms of model checking [CE81; QS82; CW96; BK08]. Given a formal
model that faithfully represents the behavior of a system, model checking systemati-
cally verifies whether the system fulfills specific requirements. For instance, model
checking can be used to verify that an x-ray machine never overexposes patients or
that a traffic light controller always lets traffic pass through an intersection fairly.

While model checking is invaluable for verifying a system’s behavior against
requirements at design time, implementing the desired behavior often critically
requires internal knowledge about a system’s state at runtime. For example, an
x-ray machine may only avoid overexposing patients because it can detect and
appropriately respond to failures of its cooling system. Otherwise, overheating may
cause an overdosage if it damages critical circuitry responsible for controlling the
dosage. Although model checking can confirm that the machine is designed to react
appropriately under such circumstances, model checking does not produce a detector
for cooling system failures. Yet, such a detector may be essential to implement an
overdosage protection. Any model of the machine verified to not overexpose patients
will likely include such a detector together with other control components. So, model
checking and design-time verification do not eliminate the need for techniques that
provide accurate and decisive information about a system’s state at runtime.

The techniques developed in this thesis leverage formal models by combining

3

the knowledge about a system they represent with observations of a running system.
Thereby, they allow answering operational questions effectively and accurately. In
this setting, formal models serve as a ground truth for system faults, configurations,
and properties of interest at runtime. The strength of this model-based methodology
lies in its ability to deliver provable guarantees on the provided answers. This ensures
that interventions and safeguarding mechanisms can be based on well-grounded and
accurate information about the present state of the system.

The Big Picture. Having motivated the challenges addressed by this thesis and the
approach we are taking to address them on a high-level, we now need to introduce
some technical terminology. This terminology will establish a common language to
describe and understand the contributions made by this thesis.

First, we refer to answers to the broad range of operational questions stated earlier
as verdicts. To capture the broad range of operational questions, verdicts can range
from simple yes-no-unknown statements, indicating the satisfaction or violation of
properties (Q1), to elaborate diagnoses indicating the presence of faults (Q2), and to
sets of possible configurations the system be in (Q3). As we will show, by requiring
only a few simple structural properties on verdicts, the techniques we develop can be
generic across all those questions. This enables us to take a unified approach towards
techniques for answering those questions effectively and accurately.

Second, we refer to systems designed to process observations and produce verdicts
as verdictors. The techniques developed in this thesis aim at the effective implemen-
tation and synthesis of verdictors that are provably accurate. That is, they are proven
to produce accurate verdicts based on a formal system model. As these verdicts con-
stitute answers to practically relevant operational questions, they can then serve as
a basis for timely interventions and safeguarding mechanisms. Figure 1.1 illustrates
this general architecture upon which this thesis is built.

System Verdictor Verdicts
Observations

System Model

Intervention / Safeguarding / …

Figure 1.1: The general architecture upon which this thesis is built.

Throughout this thesis, we assume that observations are caused by events that
occur within a system. While a system may internally be governed by continuous
dynamics, we take events and observations to be discrete and instantaneous. For
instance, the power drawn by an x-ray tube may change continuously. To observe it,
however, it needs to be measured at specific discrete points in time. Measurements

4 CHAPTER 1. INTRODUCTION

are events that occur within the system and can cause observations to be made by a
verdictor, for instance, the observation that the tube currently draws 2.4 kW.

Observational Imperfections. In real-world scenarios, observations obtained
from a system are seldomly perfect. For instance, sensor data may be distorted
by noise, observations sent over a network may be delayed or lost, and resource
constraints may limit sensor deployment and data logging. We subsume these varied
issues under the umbrella term observational imperfections, encompassing all effects
that adversely affect the acquisition of observations by a verdictor. Observational
imperfections pose significant challenges for obtaining accurate verdicts.

For example, lost or delayed observations may induce the phenomenon that the
system transitioned into a completely different state than the observations would
otherwise indicate. Consequently, if a verdictor does not account for these losses and
delays, it risks producing inaccurate verdicts. Relying on such potentially erroneous
verdicts for interventions and safeguarding could then have adverse effects on a
system’s availability and safety, as decisions would be based on potentially flawed
information. For instance, erroneously activating the fire suppression system of an
aircraft’s engine despite there being no firewould significantly degrade the state of the
aircraft by rendering the engine inoperable. Likewise, an erroneously activated airbag
of a car can easily lead to an accident and an erroneously shut down manufacturing
plant quickly incurs high financial losses. Thus, it is paramount to take observational
imperfections into account to ensure accurate verdicts.

While dealing with observational imperfections is paramount, addressing all
conceivable observational imperfections would be a Herculean effort and definitely
infeasible within the scope of this (or any other) thesis. For instance we do not address
signal processing [Orf95; RM87], which is an entire research field dedicated to dealing
with noise and other imperfections in measurements and communication signals,
e.g., by deploying sophisticated filtering techniques [WB95; Che+06]. Techniques
developed in signal processing and similar areas can be exploited by preprocessing
any measurements before they are passed as observations to a verdictor.

Within the scope of this thesis, we aim to account for observational imperfections
that can be effectively dealt with by exploiting the information about a system’s
operational behavior encoded in the system’s model. To this end, we focus on a
subset of common and realistic observational imperfections. This thesis specifically
focuses on limited observability, concerning inherent limitations on which events
within a system can be observed, and on delays, losses, and timing imprecisions in-
duced by networks. These observational imperfections are common and typically
unavoidable in practice, in particular, as systems are increasingly more distributed,
usually requiring that observations are transmitted over shared networks. For in-
stance, different machines on a manufacturing floor are typically connected to each
other via shared networks such as Real-Time Ethernet [Fel05], Profibus [TV99], or

5

CAN [Di +12; THW94]. By taking into account these imperfections, we enhance
the practical relevance and robustness of the techniques we develop, ensuring they
perform effectively under real-world conditions.

Observational imperfections are often aggravated by the fact that additional
active correction techniques cannot be used as these would affect the system’s behav-
ior, especially in the case of real-time systems [Yan96; TFC90; Tsa+90]. Changing a
system’s behavior may invalidate the model on which verdicts are based, thereby
rendering any guarantees void, or even have direct adverse effects on the safety and
functioning of the system itself. For instance, in case of a shared network connecting
manufacturing equipment, requiring lost observations to be sent again may induce
additional load, change the timing of events, or cause overload situations for the net-
work or equipment, thereby posing a potential hazard for the safety and functioning
of the manufacturing process. For these reasons, we focus on completely passive
techniques that cannot affect a system’s behavior in any way.

Prior Work. Of course, the idea to use observations to obtain information about a
system’s state at runtime is not new at all. In particular, the research areas of runtime
verification [HG05; LS09] and model-based fault diagnosis [Sam+95] are concerned
with techniques aimed at detecting the satisfaction or violation of properties (Q1)
and at detecting faults (Q2), respectively. The techniques we present in this thesis
are inspired by, build upon, and expand the results established in those areas.

In the area of runtime verification, a plethora of different approaches have been
proposed and studied. Prominent approaches roughly fit into two categories: Logic-
and automata-based [e.g. BLS06b; FFM12; CPS08; Bar+04; MB06; AFR16] and stream-
based [e.g. DAn+05; Fay+19; Con+18; GS18]. Logic- and automata-based approaches
typically construct an automaton that yields verdicts when fed with a sequence of
observations. Stream-based approaches are based on algorithms that incrementally
consume multiple sequences of observations, coined input streams, and produce
multiple sequences of values, coined output streams. In both cases, these techniques
aim at the implementation or construction of a runtime monitor, a system that
processes observations of some sort and typically produces a truth verdict indicating
the satisfaction or violation of some property [HG05; LS09]. Conceptually, this fits the
general architecture depicted in Figure 1.1, where a runtime monitor then is a special
form of verdictor for answering operational questions about property satisfaction.
However, runtime monitors are typically not constructed based on a formal model
of a system but implemented or constructed for a given specification, i.e., a formal
characterization of the property to be monitored. Although, some works also aim to
exploit knowledge about a concrete system to address observational imperfections
or for predictions [e.g. ZLD12; Pin+17a; Fer+21; CTT19].

Model-based fault diagnosis has been pioneered by Sampath et al. [Sam+95].
Here, the idea is to implement or construct a diagnoser based on a formal model of

6 CHAPTER 1. INTRODUCTION

the system that also models the effect of different faults on the system’s behavior.
Exploiting this knowledge about a system’s behavior in the presence of faults, it
then becomes possible to diagnose faults within the system based on observations
of its behavior. Similarly to runtime verification, conceptually this fits the general
architecture in Figure 1.1, where a diagnoser then is a special form of verdictor for
answering operational questions about the occurrence of faults. Since its inception,
several works have build upon this idea, also addressing observational imperfections
to some extent [e.g. Car+13; Mha+17; Tri02; BCD05; ALH06; TYG08].

The striking similarities between runtime verification and fault diagnosis have
been recognized and discussed among researches from the different fields [Hav+10].
Yet, we are not aware of any attempts to develop a general theoretical foundation
unifying runtime verification and fault diagnosis into a coherent framework, e.g.,
such that results and algorithms can be shared and made usable for both. This
thesis contributes such a foundation, or at least a versatile starting point for it, by
approaching the problem of answering operational questions in a more generic way
than existing work. Among other things, this allows us to address observational
imperfections and predictions in a way that is usable for both runtime verification
and fault diagnosis, and that can be combined with existing techniques.

Configurable Systems. Neither runtime verification nor fault diagnosis specifi-
cally addresses the question which configuration a system may have (Q3), nor do
the established techniques take configurability of a system into account. Yet, almost
all modern systems are instances of highly configurable designs. The usually huge
amount of possible configurations of such systems do not only pose several signifi-
cant challenges for their design and analysis [CE00; Ape+13] but naturally also raise
further challenges for analyzing their behavior at runtime. In particular, a verdictor
may need to be adapted to the configuration of a system in order to produce accurate
verdicts. For instance, the properties of interest or the behavior indicative of a fault
may depend on the configuration of the system.

While it may be necessary to adapt a verdictor to the configuration of a system,
often a system’s configuration is not readily exposed at runtime [AFW18], and thus
is initially unknown. Recall our earlier example, where a factory worker configures a
machine prior to a production step. This may involve setting up physical components
whose configuration simply cannot be queried by software. Moreover, finding out an
a-priori unknown configuration of a system is an operational question in its own
right, e.g., to be able to check that it is correct (Q3).

Addressing these challenges, this thesis introduces variability-aware monitoring. It
contributes tailored techniques, enabling verdictors to be adapted to the configuration
of a system and to ascertain a system’s configuration solely by observing its behavior.
We refer to the latter as configuration monitoring. These techniques open up entirely
novel applications not covered by any prior work.

1.1. CONTRIBUTIONS 7

1.1 Contributions

From the preceding discussions it should be clear that this thesis makes cross-cutting
contributions across the research areas of runtime verification, fault diagnosis, and
configurable systems. We aim to develop effective techniques for obtaining provably
accurate information about a system’s operational state and its execution at runtime.
This information may range from whether a property is satisfied or violated, to the
occurrences of faults and the configurations a system may have.

Concretely, the main contributions of this thesis are:
(1) A model-based theoretical framework that provides a precise formal char-

acterization for what it means to produce accurate verdicts,
(2) generic verdictor algorithms for implementing and synthesizing provably

accurate verdictors based on formal system models,
(3) a general-purpose and state-of-the-art formal modeling toolbox in which

the developed algorithms have been implemented, and
(4) an exploration of concrete applications complemented by empirical evalua-

tions of the developed techniques demonstrating their efficiency.
Figure 1.2 provides a high-level overview of the contributions of this thesis, how
they are reflected in the thesis’ structure, and key references to the papers on which
they are primarily based. The theoretical framework and formal modeling toolbox
are foundational contributions that enable the generic verdictor algorithms and their
concrete applications and evaluation. We now discuss the individual contributions
and their relations to each other in more detail.

Theory Practice

Foundations

(1) Contribution FT

Theoretical Framework
Chapter 3

[KDH24]

(3) Contribution FP

Formal Modeling Toolbox
Chapter 6

[KKH21]

Techniques

(2) Contribution TT

Generic Algorithms
Chapter 4, Chapter 5

[KDH24; KH23]

(4) Contribution TP

Applications and Evaluation
Chapter 7, Chapter 8

[KDH24; KH23; DK22]

Figure 1.2: High-level overview of the contributions and structure of this thesis,
including references to the papers on which they are primarily based.

8 CHAPTER 1. INTRODUCTION

1.1.1 Theoretical Framework

Contribution FT. To provide rigorous criteria for what it means to produce
accurate verdicts about a given system, we introduce a theoretical framework
formalizing the key concepts behind Figure 1.1. We show that this framework
also provides a unifying foundation for existing work in the spectrum of runtime
verification and model-based fault diagnosis.

The model-based approach pursued in this thesis aims to deliver provable guarantees
on verdicts. For safety- and mission-critical applications, it is vital that verdicts
accurately reflect the actual state of the system. This ensures that any critical decisions
based on them are well-grounded. To prove that the techniques we develop indeed
deliver such guarantees, we first need to establish a theory that provides criteria for
what it means to produce accurate verdicts about a given system.

As central ingredients of the theoretical framework, we introduce verdict transition
systems (VTSs), observation models, and verdict oracles. VTSs are formal represen-
tations of verdictors, capturing how verdicts evolve and are refined over time as
new observations are made. Observation models describe which observations may
be generated by the executions of a system, and verdict oracles ascribe verdicts to
executions of the system. The verdict ascribed to an execution by a verdict oracle
serves as the ground truth for the respective execution of the system. Notably, obser-
vation models are sufficiently general to accommodate several common and realistic
observational imperfections. By combining these central ingredients, we then obtain
rigorous criteria for what it means to produce accurate verdicts about a given system
and based on observations subject to observational imperfections. These criteria will
later serve as proof obligations for the algorithms we develop.

VTSs are very general allowing them to also serve as a unifying foundation for
existing work in the spectrum of automata-based runtime verification and model-
based fault diagnosis. To substantiate this claim, we demonstrate that paradigmatic
instances of existing work indeed naturally fit within the theoretical framework.
Recall that while it has been recognized that runtime verification and diagnosis share
similarities [Hav+10], we are not aware of any attempts to unify and generalize them
into a coherent formal foundation, such that results and algorithms can be shared
and made useable for both. As we will show, our theoretical framework can provide
such a foundation, thereby enabling generic algorithms.

1.1. CONTRIBUTIONS 9

1.1.2 Generic Verdictor Algorithms

Contribution TT. We develop generic algorithms for implementing and
synthesizing provably accurate verdictors. These algorithms are grounded
in verdict-annotated system models and account for observational imperfec-
tions. In the discrete-time setting, the algorithms account for limited observ-
ability and network-induced delays, losses, and out-of-order observations. In
the continuous-time setting, they account for limited observability, network-
induced delays and out-of-order observations, as well as timing imprecisions
concerning the specific point in time an observation is made.

The algorithms we develop are inherently generic and versatile, making them ap-
plicable to a wide range of operational questions. In particular, they are suitable
to answer the broad range of operational questions introduced earlier concerning
properties (Q1), the presence of faults (Q2), and possible system configurations (Q3).
To this end, they take system models with verdict annotations as a basis. Verdict anno-
tations can be used to encode information about properties, faults, and configurations
into a system model. Furthermore, they serve as the ground truth for verdict oracles
as per the theoretical framework. We will discuss several concrete applications that
instantiate the generic algorithms as part of Contribution TP. By adopting a generic
approach, we are able to establish general correctness theorems about our algorithms,
proving that the resulting verdictors indeed provide accurate verdicts. The algorithms
we develop cover both discrete- and continuous-time settings.

Modular Discrete-TimeVerdictor Synthesis. The discrete-time setting is charac-
terized by observations that do not carry an explicit time component, i.e., observations
are assumed to be made by the verdictor in some order, however, not at a specific
point in time. For the discrete-time case, we develop modular building blocks for the
explicit synthesis of verdictors. To this end, we will be using VTSs as an intermediate
and target representation. Concretely, we develop building blocks for constructing
VTSs from verdict-annotated system models and for transforming VTSs to account
for limited observability and network-induced delays, losses, and out-of-order ob-
servations. In addition, we present transformations for VTSs to produce accurate
predictions, by taking the system’s future behavior into account, and to optimize
them for efficient implementations in hardware and software. These modular building
blocks can then be combined to meet the specific requirements of an application,
e.g., in terms of observational imperfections. Furthermore, they can also be applied
to VTSs obtained with third-party techniques from runtime verification and fault
diagnosis, thereby enhancing their practicability.

10 CHAPTER 1. INTRODUCTION

Continous Time Verdictor Algorithm. In the continuous-time setting, the tim-
ing of events—and thus of observations—becomes a crucial factor for answering
operational questions. For instance, the time difference between two observations
may indicate a fault within the system. While the timing is crucial, its accurate
assessment is often hindered by timing imprecisions in practice. In particular, net-
works may induce variable delays and reorder observations, and hardware clocks are
limited in precision, causing clocks to drift apart. To ensure accuracy, verdictors must
account for these imprecisions, which is especially challenging as they open up an
infinite continuum of possible observation times. Tackling this challenge, we develop
a generic verdictor algorithm that takes into account the timing of observations and
compensates for clock drift and offsets, varying delays, and delay-induced reordering.
As in the discrete-time case, the algorithm rests on a verdict-annotated system model.
Based on an observation model capturing the timing imprecisions, we prove that the
algorithm indeed provides accurate verdicts as per the theoretical framework.

1.1.3 Formal Modeling Toolbox

Contribution FP. We present Momba, a toolbox for formal models. Momba
provides APIs for the programmatic constructions of models, for state space
exploration, and for conducting model analyses. We evaluate Momba’s state
space exploration engine empirically on community benchmarks. The tech-
niques presented in this thesis have been implemented as part of Momba and,
in particular, utilize Momba’s state space exploration engine.

At the core of the model-based approach this thesis adopts are formal models. Dealing
with formal models encompasses a variety of tasks some of which can be challenging
from time to time—especially for newcomers. Momba is a flexible Python framework
and strives to deliver an integrated and intuitive experience to aid the process of
model construction, analysis, and validation. It provides convenience functions for
the modular and programmatic construction of models. Building upon the JANI
format [Bud+17], a community standard for exchanging formal models between
tools, Momba is compatible with the existing JANI ecosystem and several state-of-
the-art model analysis tools are readily available via Momba’s APIs. Most important
for the purposes of this thesis is Momba’s state space exploration engine, which is
used for implementing some of the algorithms developed in this thesis. Furthermore,
this engine allows empirically validating a model, for instance, by rapidly prototyping
a tool for interactive model exploration and visualization, or by connecting it to a
testing framework. It is crucial that a model faithfully represents the real system
as otherwise results and insights obtained from it may not be grounded in reality.
Models build with Momba can then be used as a basis for verdictors.

1.1. CONTRIBUTIONS 11

As the techniques developed in this thesis, in part, rely on Momba’s state space
exploration engine, a significant amount of engineering effort has been spend to make
it competitive with the state of the art. To this end, Momba’s state space exploration
engine has been written in Rust, a relatively new programming language offering
best-in-class performance on par with low-level languages like C. To show that
Momba’s state space exploration engine can indeed compete with the state of the
art, we empirically evaluate it and compare it to well-established tools.

Building upon Momba’s extensible core, we implemented the algorithms devel-
oped in this thesis. This implementation will serve as the basis for the empirical
evaluation of the contributed techniques as part of Contribution TP.

1.1.4 Applications and Evaluation

Contribution TP. We present several concrete and novel applications based
on the generic algorithms developed as part of Contribution TT. They cover
all three research areas: runtime verification, fault diagnosis, and configurable
systems. Beyond instantiating the generic algorithms, we further extend them
and develop complementary techniques for the configurable systems setting.
Moreover, we empirically evaluate and demonstrate the efficacy of the developed
techniques on benchmarks for selected applications.

The generic algorithms (Contribution TT) and the formal modeling toolbox Momba
(Contribution FP) are the basis of this fourth contribution. This contribution is
twofold, consisting in runtime verification and fault diagnosis techniques on the one
hand and the entirely new area of variability-aware monitoring on the other.

Runtime Verification and Fault Diagnosis. While traditional runtime verifica-
tion techniques do typically not take a system’s model into account, the model-based
approach adopted in this thesis allows several new contributions to this area. In
particular, our techniques allow us to synthesize monitors that are robust with respect
to certain observational imperfections or that predict the violation or satisfaction
of properties in the future. Beyond these contributions, our model-based approach
enables runtime verification for computation tree logic (CTL) [CE81]. CTL is a well-
established logic for expressing temporal properties over possible future behaviors.
As the name suggests, CTL formulas express properties of computation trees, cover-
ing all possible system behaviors. The crux of enabling CTL runtime verification lies
in the usage of a formal system model to obtain such trees. For instance, one may
ask whether there exists an execution path from which all future paths lead to an
unsafe state—clearly, this path must then be avoided.

12 CHAPTER 1. INTRODUCTION

With regard to fault diagnosis, our algorithms extend the state of the art by
enabling diagnosers to be robust against observational imperfections, to produce
predictions about future faults, and to consider transient faults from which the sys-
tem may recover. Beyond these contributions, our generic algorithms furthermore
enable a novel diagnosis paradigm based on modal logic [BRV01]. Modal logic allows
the expression of necessities and possibilities concerning faults and their combi-
nations, extending the flexibility of questions regarding faults. While diagnosis in
the continuous-time setting has been addressed in the literature before [Mha+17;
Tri02; BCD05], robustness against variable delays and timing imprecisions, as enabled
by our generic continuous time verdictor algorithm, represents a significant step
forward. We evaluate the continuous time verdictor algorithm for this purpose and
also empirically study the effect of various observational imperfections on the quality
of obtained diagnoses in this setting.

Variability-Aware Monitoring. Recall that existing work on runtime verification
and fault diagnosis barely addresses the variability found in almost all modern
systems. To produce accurate verdicts, however, verdictors need to be aware of the
possible configurations a system may have and, crucially, also be able to adapt to
them. Towards such variability-aware monitoring, we consider configurability of
verdictors themselves as well as of the system that is being observed.

We extend our theoretical framework with a configurable variant of VTSs, repre-
senting verdictors that can themselves be configured, e.g., to match the configuration
of a system. Configurable VTSs also enable a compositional approach to verdictor
synthesis. We demonstrate this approach on featured linear temporal logic [Cla+13]
(FLTL). FLTL enables the expression of temporal properties that depend on a system’s
configuration. For instance, an FLTL formula may require that a certain component is
eventually initialized, only if the system actually has such a component. Our approach
enables the synthesis of runtime monitors for sets of FLTL formulas.

We also show how stream-based approaches can be made to account for system
configurations. To this end, we introduce a configurable variant of the stream-based
specification language Lola [DAn+05], together with efficient algorithms to analyze
all possible configurations of a configurable Lola specification for well-formedness
and efficient monitorability. Well-formedness guarantees that a monitor can indeed be
synthesized and efficient monitorability guarantees that a monitor will only consume
a statically-known and bounded amount of memory at runtime.

To adapt a configurable verdictor to a system’s configuration, this configura-
tion must be known. To determine an initially unknown configuration of a running
system we introduce configuration monitoring. A configuration monitor determines
the configuration of a system solely by observing its behavior. We show that con-
figuration monitors can be effectively synthesized from featured transition systems
(FTSs) [Cla+13], a well-established formal model for configurable systems, by instan-

1.2. RELEVANT PUBLICATIONS AND ARTIFACTS 13

tiating our generic verdictor synthesis techniques and deriving verdict annotations
from an FTS model. Using benchmarks from the configurable systems community,
we then evaluate the generic synthesis techniques for this purpose and, again, study
the effect of limited observability. These experiments also reveal interesting insights
as to why model checking techniques for configurable systems are effective.

Configuration monitors enable us to check a system’s configuration at runtime
(Q3), even if the system does not readily expose its configuration or we do not trust
the configuration it exposes. When combined with configurable verdictors, they
enable a powerful self-adaptive paradigm where a verdictor is configured to match a
configuration determined by configuration monitoring, as we will discuss.

1.2 Relevant Publications and Artifacts
The contributions are primarily based on the following peer-reviewed work:

[KDH24]: Maximilian A. Köhl, Clemens Dubslaff, and Holger Hermanns.
“Configuration Monitor Synthesis”. In: Automated Technology for Verifi-
cation and Analysis, ATVA 2024.

[KH23]: Maximilian A. Köhl and Holger Hermanns. “Model-Based Diag-
nosis of Real-Time Systems: Robustness Against Varying Latency, Clock
Drift, andOut-of-Order Observations”. In:ACMTransactions on Embedded
Computing Systems, TECS 2023.

[DK22]: Clemens Dubslaff and Maximilian A. Köhl. “Configurable-by-
Construction Runtime Monitoring”. In: Leveraging Applications of Formal
Methods, Verification and Validation, ISoLA 2022.

[KKH21]: Maximilian A. Köhl, Michaela Klauck, and Holger Hermanns.
“Momba: JANI Meets Python”. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems, TACAS 2021.

The relation to the individual contributions is indicated in Figure 1.2. The evaluation
of Momba’s state space exploration engine has been conducted and published as part
of the Quantitative Verification Competition (QComp) 2023 [And+24].

In addition to the peer-reviewed work, this thesis contains novel unpublished
results. In particular, the overarching theoretical framework which binds together all
the individual works has not been published before. Furthermore, some of the more
specific results presented in the papers have been generalized for this thesis.

Revelant Artifacts. All publications listed above have their own artifacts enabling
the reproduction of the empirical results they and this thesis present.

14 CHAPTER 1. INTRODUCTION

(AT1) ATVA’24 Artifact: Configuration Monitor Synthesis [KDH24]
https://zenodo.org/doi/10.5281/zenodo.12583621

(AT2) Artifact: Robust Model-Based Diagnosis of Real-Time Systems [KH23]
https://zenodo.org/doi/10.5281/zenodo.7896267

(AT3) (TACAS21 Artifact) Momba: JANI Meets Python [KKH21]
https://zenodo.org/doi/10.5281/zenodo.4431779

(AT4) QComp 2023: State Space Exploration Artifact [And+24]
https://zenodo.org/doi/10.5281/zenodo.10626176

The artifact (AT3) has undergone artifact evaluation as part of TACAS 2021 and
has been granted all available badges: complete, well-documented, easy to reuse, and
consistent. The artifact (AT1) has undergone artifact evaluation as part of ATVA 2024
and has been granted all available badges: available, functional, and reusable.

The empirical results presented in this thesis are taken from the original publica-
tions and can be reproduced with the respective artifacts. In addition, we provide a
fifth artifact (AT5) including the most-recent version of Momba at the time of writing.
Notably, this artifact includes the source code of the implementations of all the tech-
niques developed in this thesis. The source code also contains further documentation
clarifying implementation details, e.g., with respect to data structures:

(AT5) Full Source Code and Documentation of Momba
https://zenodo.org/doi/10.5281/zenodo.13205840

We consider (AT5) to be an explicit part of the contributions of this thesis. It repre-
sents the significant engineering effort which has been spent on Momba and the
implementation of the techniques contributed by this thesis.

Other Work. Extending beyond the primary focus of this thesis, the author was
also involved in the following noteworthy scientific works. While these works are not
the primary focus of this thesis, they clearly influenced the overall research direction
and motivation behind this thesis.

– Together with his coauthors, the author developed an operationalization of the
explainability concept [Köh+19] for the purposes of requirements engineering.
This ties in with earlier work on trustworthy AI the author was involved in
[BKS17]. Diagnosis and monitoring techniques, which are a focus of this thesis,
are motivated by the need to understand the runtime behavior of a system and
ultimately are meant to increase the trustworthiness of the system.

– The author pioneered the usage of the stream-based specification language
Lola for exhaust emission monitoring [KHB18]. This work has been the basis

https://zenodo.org/doi/10.5281/zenodo.12583621
https://zenodo.org/doi/10.5281/zenodo.7896267
https://zenodo.org/doi/10.5281/zenodo.4431779
https://zenodo.org/doi/10.5281/zenodo.10626176
https://zenodo.org/doi/10.5281/zenodo.13205840

1.3. OUTLINE 15

for later work where the author was involved [Her+18; Bie+21; Bie+23]. These
works are the primary motivation behind configurable verdictors.

– The author was involved in the development of a high-performance, safe, and
modular decision diagram (DD) framework in Rust [Hus+24]. DDs are a core
data structure used by some of the techniques presented in this thesis. This
work was honored with the EASST best paper award at ETAPS 2024.

– Momba has been used in two other works of the author [Gro+22; Faq+20],
where it has been shown to be effective and extensible.

The work on explainability and runtime verification can be seen as a starting point
from which the distinguishing contributions of this thesis emerged.

1.3 Outline
This thesis is organized into three parts. In Part I, we introduce the foundational
concepts and the theoretical framework (Contribution FT) that underpins this thesis,
providing a solid basis for exploring the synthesis, implementation, and application
of verdictors. In Part II, we develop the generic verdictor algorithms for discrete-
and continuous-time settings (Contribution TT) that power the applications of this
thesis. In Part III, we then put all the theory into practice by presenting Momba
(Contribution FP) and by considering concrete applications (Contribution TP). The
structure overall follows the contributions, as indicated in Figure 1.2.

Part I: Theoretical Foundation. The first part establishes the necessary founda-
tions for the thesis. In Chapter 2, we introduce the basic mathematical concepts and
notations that are pivotal for understanding the formalisms used throughout this
thesis, and recapitulate other necessary background. After establishing all the basics,
we present the novel theoretical framework in Chapter 3.

Part II: Generic Verdictor Techniques. The second part presents the generic
verdictor algorithms. In Chapter 4, we introduce the modular building blocks for the
flexible synthesis of verdictors in the discrete-time setting. In Chapter 5, we address
the challenges posed by timed observations subject to delays and timing imprecisions
by introducing the continuous time verdictor algorithm.

Part III: From Theory to Practice. This final part explores practical applica-
tions and empirically validates the developed techniques. In Chapter 6, we present
Momba. In Chapter 7, we explore applications in the area of runtime verification
and fault diagnosis and evaluate the continuous time verdictor algorithm in the fault

16 CHAPTER 1. INTRODUCTION

diagnosis setting. In Chapter 8, we introduce variability-aware monitoring covering
configurable verdictors and configuration monitoring, and evaluate the discrete-time
verdictor synthesis approach on configuration monitoring.

Part I

Theoretical Foundation

17

Chapter 2

Foundations

This thesis is rooted in formalmethods, a research area concernedwithmathematically
rigorous approaches for ensuring the reliable operation of systems [CW96]. As such,
the contributions of this thesis are built upon a firm mathematical foundation. In this
chapter, we introduce the basic mathematical concepts and notations used throughout
this thesis (Section 2.1). Furthermore, we recapitulate the necessary background on
formal models (Section 2.2), temporal and modal logics (Section 2.3), modeling of
configurable systems (Section 2.4), runtime verification (Section 2.5), model-based fault
diagnosis (Section 2.6), and fault trees (Section 2.7), as far as they are relevant for the
contributions presented in this thesis. Readers already familiar with those concepts
and topics may skip this chapter and return to it on-demand.

2.1 Mathematical Basics

We assume familiarity with elementary higher-order logic, set theory, and arithmetic.
Readers are referred to introductory text books on these subject matters.

For a set𝑋, we denote the power set of𝑋 by℘(𝑋), i.e.,℘(𝑋) is the set of all subsets
of 𝑋. In case 𝑋 is finite, we denote its size by |𝑋|. For a singleton set 𝑋 = {𝑥}, we use
the notation∇𝑋 to denote the single element 𝑥 of 𝑋. We use the usual notation ∪, ∩, ∖,
and × for union, intersection, difference, and the Cartesian product, respectively. If sets
are disjoint, we also denote their union by ⊍. We use the notation { 𝑥 ∈ 𝑋 | Φ(𝑥) } to
denote the set of elements of 𝑋 that do satisfy some constraint Φ(𝑥). In case 𝑋 is clear
from the context, we may also omit it and simply write { 𝑥 | Φ(𝑥) }. In addition, we
use the notation { 𝑔(𝑥) | Φ(𝑥) } to denote the set whose elements are generated by the
expression 𝑔(𝑥) over those 𝑥 that satisfy the constraint Φ(𝑥). We use angle brackets
for tuples, e.g., ⟨𝑥1, 𝑥2, 𝑥3⟩ is a tuple with three components 𝑥1, 𝑥2, and 𝑥3. We use a
centered dot ⋅ to denote that a component of a tuple is irrelevant in the context of a

19

20 CHAPTER 2. FOUNDATIONS

constraint, quantification, or other binding context. For instance, { 𝑥 | ⟨𝑥, ⋅⟩ ∈ 𝑌 } is
the set of all first components of the tuples found in 𝑌 and ∀ ⟨𝑥, ⋅⟩ ∈ 𝑌 quantifies
over all tuples in 𝑌 while binding their first component to 𝑥 and ignoring the second
component. This allows us to reduce unnecessary notational overhead by avoiding
bindings of values to variables that do ultimately not matter.

As usual, we denote the set of natural numbers, of integers, of rationals, and of
reals by ℕ, ℤ, ℚ, and ℝ, respectively. We take the natural numbers to include the
number zero. We denote the set of positive reals and rationals, including zero, by ℝ+

0
and ℚ+

0 , respectively. We denote the set of natural numbers without zero by ℕ+. We
use < and ≤ to denote the usual strict and non-strict order on numbers.

We use the notation○𝑛
𝑖=1𝑥𝑖 to apply an operator○ over an 𝑛-tuple ⟨𝑥1,… , 𝑥𝑛⟩

of arguments. Likewise, we use {𝑋𝑖}𝑛𝑖=1 to denote a family of 𝑛 sets.

Relations and Functions. An 𝑛-ary relation 𝑅 over a family {𝑋𝑖}𝑛𝑖=1 of sets for
𝑛 > 0 is a subset of the Cartesian product ×𝑛

𝑖=1 𝑋𝑖, i.e., 𝑅 ⊆ ×𝑛
𝑖=1 𝑋𝑖. For 𝑛 = 2

and 𝑛 = 3, we call relations binary and ternary, respectively. For a binary relation
𝑅 ⊆ 𝑋 × 𝑌 over sets 𝑋 and 𝑌, we write 𝑥 𝑅 𝑦 to denote that ⟨𝑥, 𝑦⟩ ∈ 𝑅, and 𝑥 �̸� 𝑦 to
denote that ⟨𝑥, 𝑦⟩ ∉ 𝑅. A binary relation 𝑅 ⊆ 𝑋 × 𝑌 is

– left-total iff ∀𝑥 ∈ 𝑋 ∶ ∃𝑦 ∈ 𝑌 ∶ 𝑥 𝑅 𝑦,
– surjective iff ∀𝑦 ∈ 𝑌 ∶ ∃𝑥 ∈ 𝑋 ∶ 𝑥 𝑅 𝑦,
– functional iff ∀𝑥 ∈ 𝑋 ∶ ∀𝑦, 𝑦′ ∈ 𝑌 ∶ 𝑥 𝑅 𝑦 ∧ 𝑥 𝑅 𝑦′ ⟹𝑦 = 𝑦′, and
– injective iff ∀𝑦 ∈ 𝑌 ∶ ∀𝑥, 𝑥′ ∈ 𝑋 ∶ 𝑥 𝑅 𝑦 ∧ 𝑥′ 𝑅 𝑦⟹𝑥 = 𝑥′.

A partial function 𝑓 ⊆ 𝑋 ×𝑌 from a set 𝑋 to a set 𝑌 is a functional binary relation
over 𝑋 and 𝑌. We also write 𝑓∶ 𝑋⇀ 𝑌 to indicate that 𝑓 is a partial function from 𝑋
to 𝑌 and denote the set of all partial functions from 𝑋 to 𝑌 by 𝑋⇀ 𝑌. The domain
Dom(𝑓) ⊆ 𝑋 of a partial function 𝑓∶ 𝑋⇀ 𝑌 is the set of elements 𝑥 ∈ 𝑋 such that
𝑥 𝑓 𝑦 for some 𝑦 ∈ 𝑌, i.e., Dom(𝑓) ≔ { 𝑥 | ∃𝑦 ∈ 𝑌 ∶ 𝑥 𝑓 𝑦 }. For 𝑥 ∈ Dom(𝑓), we
denote the unique element of 𝑌 assigned to 𝑥 by 𝑓(𝑥). In case 𝑓 is injective, its inverse
𝑓−1∶ 𝑌 ⇀ 𝑋 is defined by 𝑓−1 ≔ { ⟨𝑦, 𝑥⟩ | 𝑥 𝑓 𝑦 }. A function 𝑓 ⊆ 𝑋 × 𝑌 from set 𝑋
to set 𝑌 is a partial function with Dom(𝑓) = 𝑋, i.e., a functional and left-total binary
relation. We also write 𝑓∶ 𝑋 → 𝑌 to indicate that 𝑓 is a function from 𝑋 to 𝑌 and
denote the set of all functions from 𝑋 to 𝑌 by 𝑋 → 𝑌. A function 𝑓 is bijective iff
it is surjective and injective. In this case, we also call 𝑓 a bijection. The inverse of a
bijection is itself a bijection. For a partial function 𝑓∶ 𝑋⇀𝑌 and a subset 𝒳 ⊆ 𝑋, we
define the 𝒳-projection 𝑓⇂𝒳 of 𝑓 as { ⟨𝑥, 𝑦⟩ ∈ 𝑓 | 𝑥 ∈ 𝒳 }. Note that the 𝒳-projection
is itself a function from 𝒳 to 𝑌, i.e., 𝑓⇂𝒳 ∈ 𝒳 → 𝑌.

For a set 𝑋, a binary relation 𝑅 ⊆ 𝑋 × 𝑋 is

– reflexive iff ∀𝑥 ∈ 𝑋 ∶ 𝑥 𝑅 𝑥,
– irreflexive iff ∀𝑥 ∈ 𝑋 ∶ 𝑥 �̸� 𝑥,
– transitive iff ∀𝑥, 𝑥′, 𝑥″ ∈ 𝑋 ∶ 𝑥 𝑅 𝑥′ ∧ 𝑥′ 𝑅 𝑥″ ⟹𝑥𝑅 𝑥″,

2.1. MATHEMATICAL BASICS 21

– symmetric iff ∀𝑥, 𝑥′ ∈ 𝑋 ∶ 𝑥 𝑅 𝑥′ ⟹𝑥′ 𝑅 𝑥,
– antisymmetric iff ∀𝑥, 𝑥′ ∈ 𝑋 ∶ 𝑥 𝑅 𝑥′ ∧ 𝑥′ 𝑅 𝑥⟹𝑥 = 𝑥′, and
– asymmetric iff it is antisymmetric and irreflexive.

A binary relation 𝑅 ⊆ 𝑋 ×𝑋 is an equivalence relation iff it is reflexive, transitive, and
symmetric. For a set 𝑋, let Id𝑋 ≔ { ⟨𝑥, 𝑥⟩ | 𝑥 ∈ 𝑋 } be the identity function. Note that
Id𝑋 is an equivalence relation. For a binary relation 𝑅 ⊆ 𝑋 × 𝑋, the reflexive closure
of 𝑅 is defined as 𝑅 ∪ Id𝑋 and the irreflexive kernel of 𝑅 is defined as 𝑅 ∖ Id𝑋.

Orders and Lattices. A partial order ⪯ ⊆ 𝑋×𝑋 over a set 𝑋 is a reflexive, transitive,
and antisymmetric binary relation. A total order ⪯ ⊆ 𝑋 × 𝑋 is a partial order where
all elements are comparable, i.e., 𝑥 ⪯ 𝑥′ or 𝑥′ ⪯ 𝑥 for all 𝑥, 𝑥′ ∈ 𝑋. A (partially)
ordered set is a tuple ⟨𝑋, ⪯⟩ where ⪯ is a (partial) order over the set 𝑋. The dual ⪯d

of a partial order ⪯ inverts the order relationship, i.e., 𝑥 ⪯d 𝑥′ iff 𝑥′ ⪯ 𝑥. The dual of
a (partially) ordered set ⟨𝑋, ⪯⟩ is the (partially) ordered set ⟨𝑋, ⪯d⟩.

For a partially ordered set ⟨𝑋, ⪯⟩, a lower bound of a subset 𝒳 ⊆ 𝑋 is an element
𝑏 ∈ 𝑋 such that 𝑏 ⪯ 𝑥 for all 𝑥 ∈ 𝒳. A lower bound 𝑏 of 𝒳 is called infimum, or
greatest lower bound, iff 𝑏′ ⪯ 𝑏 for all lower bounds 𝑏′ of 𝒳. An upper bound of a
subset 𝒳 ⊆ 𝑋 is an element 𝑏 ∈ 𝑋 such that 𝑥 ⪯ 𝑏 for all 𝑥 ∈ 𝒳. An upper bound 𝑏
of 𝒳 is called supremum, or least upper bound, iff 𝑏 ⪯ 𝑏′ for all upper bounds 𝑏′ of
𝒳. Infimum and supremum are not guaranteed to exist, but, if they exist, they are
uniquely determined. In case they exist, we denote the infimum by inf𝒳 and the
supremum by sup𝒳, respectively. In case (inf𝒳) ∈ 𝒳, we call inf𝒳 the minimum of
𝒳, and also denote it by min𝒳. Analogously, in case (sup𝒳) ∈ 𝒳, we call sup𝒳 the
maximum of 𝒳, and also denoted it by max𝒳.

A partially ordered set ⟨𝑋, ⪯⟩ is a meet-semilattice iff every two element subset
{𝑥, 𝑥′} ∈ 𝑋 has a greatest lower bound, coinedmeet and denoted by 𝑥⊓𝑥′. Analogously,
a join-semilattice is a partially ordered set where every two element subset {𝑥, 𝑥′} ∈ 𝑋
has a least upper bound, coined join and denoted by 𝑥⊔𝑥′. A meet- or join-semilattice
is complete iff every non-empty subset 𝒳 ⊆ 𝑋 has a greatest lower bound (meet)
or least upper bound (join), respectively. We use the notation ⊔𝒳 to denote the
join of the non-empty set 𝒳 ⊆ 𝑋 and ⊓𝒳 to denote the meet of the non-empty set
𝒳 ⊆ 𝑋. The dual of a meet-semilattice is a join-semilattice and vice versa. Complete
meet-semilattices, as we defined them, are also known as Scott domains, originating
in the work of Scott on domain theory [Sco82]. Hence, complete join-semilattices, as
we defined them, are duals of Scott domains. We write LOpCost(𝑘) (lattice operation
cost) for the worst-case time complexity of computing the join/meet of 𝑘 elements.
As a graphical representation of semilattices, we use Hasse diagrams [Bir40] where
the order ⪯ is represented by arrows. See Figure 3.1 for examples. A meet- or join-
semilattice is bounded if 𝑋 has a minimum or maximum, respectively. In this case,
we call min𝑋 the bottom element, denoted by ⊥, and max𝑋 the top element, denoted

22 CHAPTER 2. FOUNDATIONS

by ⊤. A partially ordered set ⟨𝑋, ⪯⟩ is a lattice iff it is a meet-semilattice and a join-
semilattice. A lattice is bounded if 𝑋 has a minimum and a maximum. A lattice is
complete if every set 𝒳 ⊆ 𝑋, including the empty set, has a greatest lower bound
(meet) and least upper bound (join). A complete lattice is always bounded.

Given a pair of partially ordered sets ⟨𝑋1, ⪯1⟩ and ⟨𝑋2, ⪯2⟩ we define the product
partial order of ⪯1 and ⪯2, denoted by ⪯1 × ⪯2, over 𝑋1 × 𝑋2 such that:

⟨𝑥1, 𝑥2⟩ (⪯1 × ⪯2) ⟨𝑥′1, 𝑥′2⟩ ⟺ 𝑥1 ⪯1 𝑥′1 ∧ 𝑥2 ⪯2 𝑥′2

The product order preserves lattice properties, i.e., iff ⟨𝑋1, ⪯1⟩ and ⟨𝑋2, ⪯2⟩ are both
a meet- or join-semilattice, then so is the partially ordered set ⟨𝑋1 × 𝑋2, ⪯1 × ⪯2⟩.
Likewise, boundedness and completeness are preserved.

Monotone and Continuous Functions. While there exist more general defini-
tions of monotone and continuous functions, for the purposes of this thesis, the
following specialized definitions suffice. A function 𝑓∶ ℝ → ℝ is strictly monotone iff
either 𝑓(𝑥) < 𝑓(𝑥′) for all 𝑥 < 𝑥′ (strictly increasing) or 𝑓(𝑥) > 𝑓(𝑥′) for all 𝑥 < 𝑥′

(strictly decreasing). It is continuous at a point 𝑥0 ∈ ℝ iff for every real number 𝜖 > 0
there exists a real number 𝛿 > 0 such that for |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜖 for all 𝑥 ∈ ℝ with
|𝑥 − 𝑥0| < 𝛿, also known as the epsilon-delta definition of continuity. It is continuous
simpliciter iff it is continuous at every point 𝑥0 ∈ ℝ.

Interval Arithmetic. A closed interval, denoted by [𝑎, 𝑏], over a set of numbers,
e.g., ℚ or ℝ, is a set containing all numbers 𝑥 such that 𝑎 ≤ 𝑥 ≤ 𝑏. For an interval
I = [𝑎, 𝑏], we use min I and max I to denote the lower bound 𝑎 and upper bound 𝑏,
respectively. We introduce the following arithmetic operations on intervals:

[𝑎1, 𝑏1] ⊞ [𝑎2, 𝑏2] ≔ [𝑎1 + 𝑎2, 𝑏1 + 𝑏2]
[𝑎1, 𝑏1] ⊟ [𝑎2, 𝑏2] ≔ [𝑎1 − 𝑏2, 𝑏1 − 𝑎2]
[𝑎1, 𝑏1] ⊡ [𝑎2, 𝑏2] ≔ [min {𝑎1𝑎2, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2} ,max {𝑎1𝑎2, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2}]

[𝑎1, 𝑏1] ⧄ [𝑎2, 𝑏2] ≔ [𝑎1, 𝑏1] ⊡ [1𝑏2
, 1𝑎2

] if 0 ∉ [𝑎2, 𝑏2]

Note that the respective intervals contain exactly those numbers that can be obtained
by combining the numbers contained in both intervals with the respective scalar
operator. For operations operating on scalars and intervals, we use the same notation
treating a scalar 𝑥 as a closed interval [𝑥, 𝑥].

Words and Languages. For a non-empty set Σ of symbols, coined an alphabet, we
denote the set of all finite and infinite sequences over Σ by Σ⋆ and Σ𝜔, respectively.
We also refer to such sequences as words. We denote the empty word by 𝜖. Further,
let Σ⋇ ≔ Σ⋆ ⊍ Σ𝜔 be the set of finite and infinite words over Σ.

2.1. MATHEMATICAL BASICS 23

Formally, a word 𝜎 ∈ Σ⋇ over Σ is a partial function 𝜎∶ ℕ+ ⇀Σ without gaps
starting at 1, i.e., a functional binary relation 𝜎 ⊆ ℕ+ × Σ such that:

∀𝑘 ≥ 1 ∶ 𝑘 ∈ Dom(𝜎) ⟹ ∀1 ≤ 𝑖 ≤ 𝑘 ∶ 𝑖 ∈ Dom(𝜎)

As a word 𝜎 is a partial function, we follow the usual notation and denote its 𝑖-th
symbol by 𝜎(𝑖). We denote the length of a finite word by |𝜎|. Note that every partial
function 𝜍∶ ℕ ⇀ Σ can be normalized to represent a word by removing all gaps
and shifting the symbols to start at 1. We call such functions with potential gaps
semiwords and denote their normalization by Word(𝜍). According to this definition,
words and semiwords are sets of pairs ⟨𝑖, a⟩ ∈ ℕ+ × Σ where 𝑖 ∈ ℕ+ is an index into
the word (or semiword) and a ∈ Σ is the symbol found at the respective index. This
representation is advantageous for various definitions in this thesis.

For 𝜎 ∈ Σ⋆ and 𝜎′ ∈ Σ⋇, let 𝜎 ⋄ 𝜎′ denote the concatenation of 𝜎 and 𝜎′:

𝜎 ⋄ 𝜎′ ≔ Word(𝜎 ∪ { ⟨|𝜎| + 𝑖, a⟩ | ⟨𝑖, a⟩ ∈ 𝜎′ })

For a set 𝐴 ⊆ Σ of symbols and 𝜎 ∈ Σ⋇, we define the 𝐴-projection of 𝜎, denoted by
𝜎⇂𝐴, as the word obtained by removing all symbols from 𝜎 which are not in 𝐴:

𝜎⇂𝐴 ≔ Word({ ⟨𝑖, a⟩ ∈ 𝜎 | a ∈ 𝐴 })

For a finite word 𝜎 ∈ Σ⋆ of length 𝑛 ∈ ℕ, we also use the notation (a𝑖) 𝑛𝑖=1. Here,
a𝑖 denotes the 𝑖-th symbol of 𝜎, i.e., a𝑖 = 𝜎(𝑖). If 𝑛 > 0, we refer to a𝑛 as the head
of 𝜎, denoted by Head(𝜎). We refer to the prefix of 𝜎 without the head as the tail,
denoted by Tail(𝜎), i.e., Tail(𝜎) = (a𝑖) 𝑛−1𝑖=1 . The tail of the empty word 𝜖 is the empty
word itself. Hence, if 𝑛 > 0, then 𝜎 = Tail(𝜎) ⋄Head(𝜎). We use 𝜎[𝑘..𝑗] to denote the
part of the word between the 𝑘-th and 𝑗-th symbol and 𝜎[𝑘..] to denote the part of
the word starting at the 𝑘-th symbol. For a word 𝜎 ∈ Σ⋇, we denote the set of finite
prefixes of 𝜎 by Pref(𝜎). In case 𝜎 is finite, then Pref(𝜎) includes 𝜎 itself. We define a
partial order ≤ ⊆ Σ⋆× Σ⋆ over finite words such that 𝜎 ≤ 𝜎′ iff 𝜎 is a prefix of 𝜎′,
i.e., iff 𝜎 ∈ Pref(𝜎′). As usual, we denote the irreflexive kernel of ≤ by <.

A language ℒ over an alphabet Σ is a set of finite words, i.e., ℒ ⊆ Σ⋆. For a set
𝐴 ⊆ Σ, let ℒ⇂𝐴 ≔ {𝜎⇂𝐴 | 𝜎 ∈ ℒ } denote the 𝐴-projection of ℒ. A language ℒ is
prefix-closed iff it contains all prefixes of the words it contains, i.e., Pref(𝜎) ⊆ ℒ for
all 𝜎 ∈ ℒ. Note that this is equivalent to Tail(𝜎) ∈ ℒ for all 𝜎 ∈ ℒ.

Boolean Expressions. Given a non-empty set AP of atomic propositions, the set of
Boolean expressions 𝔹[AP] over AP is defined according to the following grammar:

𝔹[AP] ∋ 𝜙 ⩴ true | 𝑝 ∈ AP | ¬𝜙 | 𝜙 ∧ 𝜙

The semantics of Boolean expressions are defined as usual. Formally, we define a de-
notational semantics ⟦⋅⟧𝔹∶ 𝔹[AP] → ℘(℘(AP)) mapping each Boolean expression

24 CHAPTER 2. FOUNDATIONS

to a set of satisfying sets. The function ⟦⋅⟧𝔹 is defined as follows:

⟦true⟧𝔹 ≔ ℘(AP) ⟦𝑝⟧𝔹 ≔ {𝑃 ⊆ AP | 𝑝 ∈ 𝑃 }
⟦¬𝜙⟧𝔹 ≔ ℘(AP) ∖ ⟦𝜙⟧𝔹 ⟦𝜙1 ∧ 𝜙2⟧𝔹 ≔ ⟦𝜙1⟧𝔹 ∩ ⟦𝜙2⟧𝔹

The negation operator ¬ takes precedence over ∧. As usual, we use parentheses to
clarify the syntactical structure of nested expressions. For notational convenience,
we define the following operators as usual:

– 𝜙1 ∨ 𝜙2 ≔ ¬(¬𝜙1 ∧ ¬𝜙2)
– 𝜙1 →𝜙2 ≔ ¬𝜙1 ∨ 𝜙2
– false ≔ ¬true

Note that ⟨℘(℘(AP)) , ⊆⟩ is a complete lattice with ⊔ = ∪ and ⊓ = ∩. Every Boolean
expressions 𝜙 corresponds to an element ⟦𝜙⟧𝔹 of this lattice. Furthermore, for every
element of the lattice, there exists a characteristic Boolean expression in conjunctive
normal form, i.e., using only negation ¬ and conjunction ∧. The ⊔ and ⊓ operators
of the lattice correspond to the connectives ∨ and ∧ as defined above.

We use the operator symbols ∧, ∨, and ¬ for Boolean expressions and as logical
meta operators, e.g., when stating theorems and definitions.

2.2 Formal Models
Formal models describe the operational behavior of systems in a mathematically
rigorous way such that it becomes amenable to formal analysis techniques like
model checking [CW96; BK08]. We consider system models with discrete time and
continuous time, both based on the general model of transition systems.

2.2.1 Transition Systems

As a general mathematical model describing the operational behavior of systems,
we rely on transition systems (TSs). In the literature, different variants of transition
systems have been proposed, all rooted in the seminal work by Keller [Kel76]. For
the purposes of this thesis, we will use the following variant.

Definition 2.2.1 A transition system 𝔖 is a tuple ⟨𝒮, 𝐼,Act,↠⟩ where
– 𝒮 is a set of states,
– 𝐼 ⊆ 𝒮 is a non-empty set of initial states,
– Act is a set of actions, and
– ↠ ⊆ 𝒮 × Act × 𝒮 is a transition relation.

We call 𝔖 finite iff 𝒮 and↠ are finite.

2.2. FORMAL MODELS 25

The intuitive operational semantics is that at any point in time, the system is in
some state 𝑠 ∈ 𝒮. From this state, it may then transition to a successor state 𝑠′ ∈ 𝒮
iff there exists a transition ⟨𝑠, 𝛼, 𝑠′⟩ ∈ ↠ between 𝑠 and 𝑠′. Each transition has an
action 𝛼 ∈ Act attached to it. In the context of this thesis, actions usually correspond
to types of events that occur when the system takes a transition, i.e., an event is an
occurrence of an action. If multiple transitions exist in a state, which of the possible
transitions is taken in a state is left unspecified by a transition system. It may, for
instance, be determined by the input given to the system. Note that transition systems
are very general, as they can be infinite and do neither constrain the state set nor the
action set in any way. As such, they are computationally universal, i.e., any Turing
machine can be molded into a transition system. In fact, they go beyond what is
computationally possible as, in general, a state set and action set may be uncountably
infinite, which is required for modeling continuous time.

For a subset 𝑆 ⊆ 𝒮 of states and a subset 𝐴 ⊆ Act of actions, let Post(𝑆, 𝐴) denote
the set of states reachable from a state 𝑠 ∈ 𝑆 via some transition with some action
𝛼 ∈ 𝐴. Formally, we define Post∶ ℘(𝒮) × ℘(Act) → ℘(𝒮) as follows:

Post(𝑆, 𝐴) ≔ ⋃
𝑠∈𝑆

⋃
𝛼∈𝐴

{ 𝑠′ ∈ 𝒮 | ⟨𝑠, 𝛼, 𝑠′⟩ ∈ ↠ } (2.1)

A state 𝑠 ∈ 𝒮 is terminal iff Post({𝑠} ,Act) = ∅, otherwise, it is live. For notational
convenience, we abbreviate Post({𝑠}, {𝛼}) as Post(𝑠, 𝛼).

We call 𝔖 deterministic iff |𝐼| = 1 and |Post(𝑠, 𝛼)| ≤ 1 for all states 𝑠 ∈ 𝒮 and
actions 𝛼 ∈ Act, i.e., iff there exists exactly one initial state and at most one transition
per state and action. Otherwise, we call it non-deterministic. We call 𝔖 input-enabled
iff |Post(𝑠, 𝛼)| ≥ 1 for all states 𝑠 ∈ 𝒮 and actions 𝛼 ∈ Act.

For a finite word 𝜎 ∈ Act⋆, let After(𝜎) denote the set of states reached after 𝜎,
i.e., the set of states the system may be in after taking transitions labeled with the
actions on 𝜎. Formally, we define After∶ Act⋆ → ℘(𝒮) recursively as follows:

After(𝜖) ≔ 𝐼 After(𝜎 ⋄ 𝛼) ≔ Post(After(𝜎), {𝛼}) (2.2)

A word 𝜎 ∈ Act⋆ is accepted by 𝔖 iff After(𝜎) ≠ ∅. We refer to the words accepted
by 𝔖 as traces. The language ℒ(𝔖) of 𝔖 is the set of its traces, i.e.:

ℒ(𝔖) ≔ { 𝜎 ∈ Act⋆ || After(𝜎) ≠ ∅ }

It is easy to see that ℒ(𝔖) is prefix-closed.
If 𝔖 is finite, then 𝔖 can be seen as a non-deterministic finite automaton over Act

where all states are accepting. The class of non-deterministic finite automata where
all states are accepting have been studied in the literature [Cev+14; KRS09]. They
are exactly the prefix-closed languages over finite alphabets [KRS09, Theorem 8].
Minimization for them is known to be PSPACE-hard [KRS09, Corollary 3].

26 CHAPTER 2. FOUNDATIONS

An execution fragment of 𝔖 is a word ̂𝜌 = (⟨𝑠𝑖, 𝛼𝑖, 𝑠′𝑖⟩)
𝑛
𝑖=1 ∈ ↠⋆ such that

𝑠′𝑖−1 = 𝑠𝑖 for all 1 < 𝑖 ≤ 𝑛. A run of 𝔖 is an execution fragment starting in an
initial state, i.e., where 𝑠1 ∈ 𝐼. We denote the set of all runs of 𝔖 by Runs(𝔖). It
is easy to see that Runs(𝔖) is a prefix-closed language, just like ℒ(𝔖). Each run
𝜌 = (⟨𝑠𝑖, 𝛼𝑖, 𝑠′𝑖⟩)

𝑛
𝑖=1 ∈ Runs(𝔖) induces a trace (𝛼𝑖) 𝑛𝑖=1 ∈ Act⋆, denoted by Trace(𝜌).

A run is terminal iff it ends in a terminal state, i.e., iff Post({𝑠′𝑛} ,Act) = ∅. For a given
run 𝜌 ∈ Runs(𝔖), let After(𝜌) denote the set of states the system may be in after 𝜌.
Formally, we define After(𝜌)∶ Act⋆ → ℘(𝒮) recursively as follows:

After(𝜖) ≔ 𝐼 After(𝜌 ⋄ ⟨𝑠, 𝛼, 𝑠′⟩) ≔ {𝑠′}

A path is a word 𝜋 = (𝑠𝑖) 𝑛𝑖=1 such that 𝑠𝑖+1 ∈ Post({𝑠𝑖} ,Act) for all 1 ≤ 𝑖 < 𝑛. We
denote the set of all paths starting in a state 𝑠 ∈ 𝒮 by Paths(𝑠).

State and Transition Labels. When modeling systems, it is often useful to at-
tach additional labels to states and transitions. For instance, it is quite common
to label transitions or states with sets of atomic propositions for model checking
purposes [BK08]. For a given transition system ⟨𝒮, 𝐼,Act,↠⟩, a state labeling is a
tuple ⟨Λ, 𝜆⟩ where Λ is a set of state labels and 𝜆∶ 𝒮 → Λ is a state-labeling function.
Analogously, a transition labeling is a tuple ⟨Γ, 𝛾⟩ where Γ is a set of transition labels
and 𝛾∶ ↠ → Γ is a transition-labeling function.

Depending on the context, one may think of Act as inputs and Λ as outputs. Under
this interpretation, state-labeled transition systems are a potentially infinite and
non-deterministic generalization of Moore machines [cf. Moo56].

Modeling Languages and Formats. Over the years, a plethora of different model-
ing languages and formats have emerged to conveniently describe different variants
of transition systems and transfer them between tools. Process calculi such as Hoare’s
CSP (Communicating Sequential Processes) calculus [Hoa78] or Milner’s CCS (Calculus
of Communicating Systems) [Mil80], can be seen as early variants of compositional
modeling languages. They enable the description of transition systems in terms of
multiple communicating processes. The LOTOS specification language [BB87], the
PRISM language of the PRISM model checker [KNP11], the Promela language of the
Spinmodel checker [Hol97], and theModest language of theModest Toolset [Hah+13],
are noteworthy modeling languages building upon the idea of composition modeling.
The JSON automata network interchange (JANI) format [Bud+17], is a popular format
for interchanging models between tools and supports a huge variety of different
model types. It is mostly used in the quantitative verification community, where
system properties such as reachability probabilities or expected rewards and timings
are studied. JANI is supported by most state-of-the-art tools in that area, e.g., ePMC
[Hah+14], the Modest Toolset [HH14], and Storm [Hen+22]. For the purpose of this
thesis, we stay mostly agnostic with respect to modeling languages and formats.

2.2. FORMAL MODELS 27

Instead we directly work with the mathematical objects they describe. Momba and
our tool support is centered around the JANI format.

Discrete-Time Models. In discrete-time models, time is not explicitly modeled
and assumed to pass in discrete steps between transition, however, not necessarily
in equidistant amounts. While any real system always operates within the spacetime
continuum, discrete-time models abstract away that fact. As such, they are useful if
we do not care about the actual amount of time that may pass between transitions,
for instance, if we are interested in properties or aim to describe behaviors that are
independent of the actual amount of time passing between transitions.

Example 2.1 As an illustrative example, Figure 2.1 shows a discrete-time model of a
coffee machine. Here, as usual, states are depicted as circles (or rounded rectangles)
and transitions between the states are depicted as arrows, labeled with the respective
actions. In this case, the set of actions Act is defined as follows:

Act ≔ {request, dispense, blink, pump_fault, short_circuit}

The model captures the following behavior: The coffee machine accepts requests for
coffee (request). In response to each request, it may then either dispense (dispense)
the coffee or one of two faults may occur. Either the pump breaks (pump_fault), in
which case the machine continues to accept requests but never dispenses a coffee,
or there may be a short circuit (short_circuit), in which case the machine starts
blinking (blink). Note that the model does not specify the amount of time it takes
to brew a coffee. Clearly, brewing coffee is not instantaneous, so some time has to
pass between each request and dispense transition. The model abstracts over this
fact while still capturing useful properties of coffee machines, such that a coffee is
eventually dispensed after a request unless the coffee machine is faulty.

i d

p

s

pump
_fau

lt

short_circuit

request

blink

request

dispense

Figure 2.1: Model of a coffee machine including possible faults.

Discrete-time models and their extensions, e.g., for probabilistic behaviors, have
successfully been used to describe and analyze the behaviors of a whole host of
systems. To give a few examples, such systems range from network protocols [Duf+06;
KNP12] to space exploration [HLP01]. Furthermore, they are also commonly used to
describe planning problems [GN92; Hof+20].

28 CHAPTER 2. FOUNDATIONS

2.2.2 Continuous-Time Models
While discrete-time models can faithfully capture the behavior of many systems
where the timing of events does not play a role, they are not suitable in cases where
the timing does play a role. Coming back to Example 2.1, one could imagine that
even with a faulty pump, a coffee will be dispensed, however, it will be dispensed
slower than when the pump is not faulty. To model this behavior, we need to consider
time explicitly. This is where continuous-time models become necessary.

Definition 2.2.2 For a set Act of actions such that Act ∩ ℝ+
0 = ∅, a continuous-

time transition system (CTS) is a TS ℭ = ⟨𝒮, 𝐼,Act ⊍ ℝ+
0 ,↠⟩.

Note that the actions of the TS ℭ are Act ⊍ ℝ+
0 . Each such action 𝛼 ∈ Act ⊍ ℝ+

0 of a
CTS ℭ either corresponds to a discrete action 𝛼 ∈ Act or to the elapse of some time
Δ𝑡 ∈ ℝ+

0 . Discrete actions are assumed to be instantaneous, i.e., they do not take any
time. The duration Dur(𝜌) of a run 𝜌 ∈ Runs(ℭ) of ℭ is the total elapsed time:

Dur(𝜖) ≔ 0 Dur(𝜌 ⋄ 𝛼) ≔ {
Dur(𝜌) + 𝛼 if 𝛼 ∈ ℝ+

0

Dur(𝜌) otherwise

Each run 𝜌 ∈ Runs(ℭ) further induces a timed word Tw(𝜌) ∈ (ℝ+
0 × Act)⋆:

Tw(𝜖) ≔ 𝜖 Tw(𝜌 ⋄ 𝛼) ≔ {
Tw(𝜌) ⋄ ⟨Dur(𝜌), 𝛼⟩ if 𝛼 ∈ Act

Tw(𝜌) otherwise

A timed word is a sequence of tuples ⟨𝑡, 𝛼⟩ where 𝑡 is the time the action 𝛼 occurred.
In the following, we will work with timed words, as it usually only matters when
certain actions occurred while the exact steps in which time passes are irrelevant.
This is in line with existing work on timed system models [AD91].

Timed Automata. Timed automata are a well-established formalism to model
continuous-time systems. They have been pioneered by Alur and Dill [AD91]. Timed
automata extend finite transition systems with real-valued clocks over which clock
constraints can be defined to constrain how time may evolve.

Definition 2.2.3 For a finite set ℂ of clocks, a clock constraint 𝑔 is an expression
of the form 𝑥 − 𝑦 ∼ 𝑐 where 𝑥, 𝑦 ∈ ℂ ⊍ {0}, ∼ ∈ {<,≤}, and 𝑐 ∈ ℚ [BY03].

We denote the set of all finite sets of clock constraints over ℂ by C[ℂ].
For a finite set ℂ of clocks, a clock valuation 𝜂∶ ℂ → ℝ+

0 is a function mapping
each clock to a real number. We denote the clock valuation assigning zeros to all
clocks by 𝜂0, i.e., 𝜂0(𝑥) ≔ 0 for all 𝑥 ∈ ℂ. A clock valuation 𝜂 satisfies a clock

2.2. FORMAL MODELS 29

constraint 𝑥−𝑦 ∼ 𝑐, denoted by 𝜂 ⊨ 𝑔, iff 𝜂′(𝑥)− 𝜂′(𝑦) ∼ 𝑐 where 𝜂′∶ ℂ⊍ {0} → ℝ+
0

such that 𝜂′(𝑥) = 𝜂(𝑥) for 𝑥 ∈ ℂ and 𝜂(0) = 0. A clock valuation 𝜂 satisfies a set
of clock constraints 𝐺 ⊆ C[ℂ], denoted by 𝜂 ⊨ 𝐺, iff 𝜂 ⊨ 𝑔 for each 𝑔 ∈ 𝐺. Given a
set R ⊆ ℂ of clocks and a clock valuation 𝜂∶ ℂ → ℝ+

0 , we define (𝜂 ↓ R)∶ ℂ → ℝ+
0

such that (𝜂 ↓ R)(𝑥) = 0 if 𝑥 ∈ R and (𝜂 ↓ R)(𝑥) = 𝜂(𝑥) otherwise. That is, 𝜂 ↓ R
resets the clocks in R to zero. For Δ𝑡 ∈ ℝ+

0 , we define (𝜂 ⊕ Δ𝑡)∶ ℂ → ℝ+
0 such that

(𝜂 ⊕ Δ𝑡)(𝑥) = 𝜂(𝑥) + Δ𝑡. That is, 𝜂 ⊕ Δ𝑡 advances the values of all clocks by Δ𝑡 into
the future. With these definitions in place, we now define timed automata.

Definition 2.2.4 For a finite set ℂ of clocks and a finite set Act of actions, a
timed automaton 𝔗 is a tuple ⟨𝐿, 𝐼,Act, ℂ, 𝐸, Inv⟩ where

– 𝐿 is a finite set of locations,
– 𝐼 ⊆ 𝐿 is a set of initial locations,
– 𝐸 ⊆ 𝐿 × C[ℂ] × Act ×℘(ℂ) × 𝐿 is an edge relation, and
– Inv∶ 𝐿 → C[ℂ] assigns a progress invariant to each location.

We follow the usual terminology and call the states of a timed automaton locations
in order to distinguish them from the states of its semantics.

The intuitive semantics is that the state of a system, at any point in time, is
given by some location 𝑙 ∈ 𝐿 and a clock valuation 𝜂∶ ℂ → ℝ+

0 assigning a value
𝜂(𝑥) ∈ ℝ+

0 to each clock 𝑥 ∈ ℂ, i.e., the state is a pair ⟨𝑙, 𝜂⟩. The progress invariant
describes how time in any given location 𝑙may pass. For any state ⟨𝑙, 𝜂⟩, 𝜂must satisfy
Inv(𝑙), i.e., 𝜂 ⊨ Inv(𝑙). Among other things, this enables modeling upper bounds on
the time the system may be in a given location. A transition ⟨𝑙, 𝐺, 𝛼,R, 𝑙′⟩ can only be
taken in a state ⟨𝑙, 𝜂⟩ iff 𝜂 satisfies the clock guard 𝐺 and (𝜂 ↓ R) satisfies the progress
invariant Inv(𝑙′) of the successor location 𝑙′. It will then lead to the state ⟨𝑙′, 𝜂 ↓ R⟩
where the system is in location 𝑙′ and the clocks in R are reset to zero. Formally, the
real-time evolution of a timed automaton 𝔗 induces a continuous-time transition
system ⟦𝔗⟧ defined as follows.

Definition 2.2.5 For a TA 𝔗 = ⟨𝐿, 𝐼,Act, ℂ, 𝐸, Inv⟩, we define the CTS

⟦𝔗⟧ ≔ ⟨𝐿 × (ℂ → ℝ+
0), 𝐼 × {𝜂0} ,Act ⊍ ℝ+

0 ,↠⟩

where the transition relation ↠ is the smallest relation such that:

⟨𝑙, 𝐺, 𝛼,R, 𝑙′⟩ ∈ 𝐸 𝜂 ⊨ 𝐺 𝜂′ = (𝜂 ↓ R) 𝜂′ ⊨ Inv(𝑙′)
⟨⟨𝑙, 𝜂⟩ , 𝛼, ⟨𝑙′, 𝜂′⟩⟩ ∈ ↠

Δ𝑡 ∈ ℝ+
0 𝑙′ = 𝑙 𝜂′ = 𝜂 ⊕ Δ𝑡 ∀0 ≤ Δ𝑡′ ≤ Δ𝑡 ∶ (𝜂 ⊕ Δ𝑡′) ⊨ Inv(𝑙)

⟨⟨𝑙, 𝜂⟩ , Δ𝑡, ⟨𝑙′, 𝜂′⟩⟩ ∈ ↠

30 CHAPTER 2. FOUNDATIONS

Normal Operation

Faulty Pump

𝑙𝑁1 𝑙𝑁2[𝑥 ≤ 14]

𝑙𝐹1 𝑙𝐹2[𝑥 ≤ 20]

request

reset {𝑥}

dispense

[𝑥 ≥ 10]

request

reset {𝑥}

dispense

[𝑥 ≥ 12]

pump_fault pump_fault

Figure 2.2: Continuous-time model of a coffee machine.

Example 2.2 Figure 2.2 shows a timed automaton modeling a coffee machine. In
contrast to Figure 2.1, time is explicitly modeled. We use rectangles to depict locations
and arrows to depict edges. Clock guards are written in square brackets and the
clocks to be reset are indicated by reset followed by a set of clocks. The model encodes
the following behavior: When the coffee machine is operating normally, it takes
between 10 and 14 seconds for the coffee to be dispensed. When a coffee is requested
(request) the clock 𝑥 is reset to zero. The dispense transition (dispense) only
becomes enabled, after the clock 𝑥 reaches 10 seconds. The progress invariant of
𝑙𝑁2 ensures that the machine takes the dispense transition after at most 14 seconds.
In this model, the pump may also become faulty. Unlike in Figure 2.1, the coffee is
still dispensed in this case, however, at a slower rate. If the pump is faulty, it takes
between 12 and 20 seconds to dispense the coffee.

As with transition systems, it can sometimes be useful to attach additional labels
to the locations or edges of a timed automaton, analogously to state and transition
labels. We use the same notation as for transition systems.

2.2.3 Lattice Automata

Lattice automata, pioneered by Kupferman and Lustig, generalize Boolean accep-
tance of classical finite automata to the multi-valued setting [KL07], providing an
automata-theoretic foundation for multi-valued reasoning about and verification of
systems [Kup22; BG04; BG99; AK14]. For a lattice ⟨𝐿, ⪯⟩, a lattice automaton (LA)
is a tuple ⟨𝐿, Σ, 𝑄, 𝑄0, 𝛿, 𝐹⟩ where Σ is a finite alphabet, 𝑄 is a finite set of states,

2.2. FORMAL MODELS 31

𝑄0∶ 𝑄 → 𝐿, 𝛿∶ 𝑄 × Σ × 𝑄 → 𝐿, and 𝐹∶ 𝑄 → 𝐿. A run of a lattice automaton on
a word 𝜎 = (𝑎𝑖)𝑛𝑖=1 ∈ Σ⋆ of length 𝑛 is a sequence 𝑟 = (𝑞𝑖)𝑛𝑖=0 ∈ 𝑄⋆ of 𝑛 + 1 states.
Each such pair of a word and a run, induces a value of the lattice 𝐿:

val(𝜎, 𝑟) ≔ 𝑄0(𝑞0) ⊓ (
𝑛

⨅
𝑖=1

𝛿(𝑞𝑖−1, 𝑎𝑖, 𝑞𝑖)) ⊓ 𝐹(𝑞𝑛)

The 𝐿-language ℒ∶ Σ⋆ → 𝐿 of a lattice automaton maps each word 𝜎 ∈ Σ⋆ to an
element of the lattice. It is defined by joining the values induced by all runs on a
word, i.e., ℒ(𝜎) ≔ ⨆{ val(𝜎, 𝑟) | 𝑟 is a run on 𝜎 } [KL07]. Kupferman and Lustig study
𝐿-languages as induced by lattice automata and their closure properties.

Due to the finiteness of the state set and alphabet, only finitely many elements
of the lattice 𝐿 can actually be generated by words. Hence, one does not loose any
expressiveness6 by restricting lattice automata to finite lattices. While the original
definition is not restricted to finite lattices, the results shown by Kupferman and
Lustig indeed operate under the assumption that the lattices have a finite number
of elements [cf. KL07, Section 3]. Furthermore, Kupferman and Lustig often refer to
top and bottom elements, which are only guaranteed to be defined if the lattice is
bounded and must not be assumed if LA were defined over arbitrary lattices. As one
does not loose any expressiveness by restricting lattice automata to finite lattices
and Kupferman and Lustig assume finiteness, and thus bondendess, for their results,
we assume that it was their intention to restrict LA to finite lattices. Thus, in the
following we assume that LA are always defined over finite lattices.

Following Kupferman and Lustig, we may interpret val(𝜎) = ⊤ and val(𝜎) = ⊥ as
clear acceptance and rejection of a word 𝜎, respectively. In fact, the class of traditional
non-deterministic finite automata corresponds to the class of lattice automata over
{⊤, ⊥} [KL07]. A lattice automaton is called simple, iff the image of 𝑄0 and 𝛿 is {⊤, ⊥}.
For a simple lattice automaton, 𝑄0(𝑞) = ⊤marks 𝑞 as an initial state and 𝛿(𝑞, 𝑎, 𝑞′) =
⊤ marks the existence of an 𝑎-labeled transition from 𝑞 to 𝑞′. As established by
Kupferman and Lustig, every LA can be transformed into an equivalent7 simple one
with a linear blowup in the size of the lattice [KL07, Theorem 6].

Following the original work by Kupferman and Lustig, which focused primarily on
the theoretical framework and closure properties of LA and 𝐿-languages, the theory
of lattice automata has been further extended in subsequent works. In particular,
minimization of deterministic lattice automata has been studied [HK11; HK15], which
turns out to be NP-complete. Furthermore, approximations of lattice automata [HK12]
and the ability of changing values of individual transitions without changing the
𝐿-language of a lattice automaton [GK15] has been studied.

6 In terms of expressible 𝐿-languages.
7 In the sense that it preserves the 𝐿-language.

32 CHAPTER 2. FOUNDATIONS

2.3 Temporal and Modal Logics
Temporal logics are used to formally specify temporal properties of systems. In case of
the coffee machine example, such a property might be that every request is eventually
met or met within a certain time bound. The predominant variants of temporal logic
are linear temporal logic (LTL) [Pnu77] and computation tree logic (CTL) [CE81], or
generalizations and variants thereof such as the modal 𝜇-calculus [BS69; Koz82].
Temporal logics are not a focus of this thesis, however, we will encounter them a few
times, so a brief introduction is in order. For a comprehensive introduction, we refer
to standard textbooks [e.g. BK08]. Modal logics are closely related to temporal logics
and used to formally specify properties over possibilities and necessities.

Temporal logics are often used in the context of model checking to specify prop-
erties a system must satisfy. Given a set of atomic propositions AP, it is common to
assume that the system is modeled as a transition system ⟨𝒮, 𝐼,Act,↠⟩ where states
are annotated with sets of atomic propositions by some state labeling ⟨℘(AP) , 𝜆⟩.
In fact, when combining such a state labeling with a transition system, we obtain a
typical definition used for model checking [BK08, p. 20].

2.3.1 Linear Temporal Logic (LTL)

Linear temporal logic has been pioneered by Pnueli [Pnu77]. It extends traditional
Boolean expressions with temporal operators to express properties of linear strands
of time. For a set AP of atomic propositions, we define the set of LTL formulas LTL[AP]
over AP according to the following grammar:

LTL[AP] ∋ 𝜑 ⩴ true | 𝑝 ∈ AP | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 U 𝜑 | ○𝜑

In addition to the traditional Boolean operators, LTL introduces the until operator
U and the next operator ○. The semantics of LTL is defined over infinite words
𝜋 ∈ ℘(AP) 𝜔 in terms of a binary satisfaction relation ⊨LTL ⊆ ℘(AP) 𝜔 × LTL[AP]
defined as follows:

𝜋 ⊨LTL true

𝜋 ⊨LTL 𝑝 iff 𝑝 ∈ 𝜋 (1)
𝜋 ⊨LTL ¬𝜑 iff 𝜋⊭LTL𝜑
𝜋 ⊨LTL 𝜑1 ∧ 𝜑2 iff 𝜋 ⊨LTL 𝜑1 and 𝜋 ⊨LTL 𝜑2
𝜋 ⊨LTL 𝜑1 U 𝜑2 iff ∃𝑛 ∈ ℕ ∶ 𝜋[𝑛..] ⊨LTL 𝜑2 and ∀1 ≤ 𝑖 < 𝑛 ∶ 𝜋[𝑖..] ⊨LTL 𝜑1
𝜋 ⊨LTL ○𝜑 iff 𝜋[2..] ⊨LTL 𝜑

The formula 𝜑1 U 𝜑2 expresses that 𝜑2 eventually holds and, until it does, 𝜑1 holds.
The formula ○𝜑 expresses that 𝜑 holds next. We also define ∨, →, and false as

2.3. TEMPORAL AND MODAL LOGICS 33

syntactic sugar like we did for Boolean expressions. In addition, we define ♦𝜑, read
as eventually 𝜑, as true U 𝜑, and �𝜑, read as always 𝜑, as ¬(♦(¬𝜑)).
Example 2.3 Coming back to the coffee machine example, we can define the property
that every request for a coffee is eventually met as:

�(request→ ♦dispense)

Note that the discrete-time model of the coffee machine (see Figure 2.1) does not
satisfy this property as faults may prevent a coffee from being dispensed.

For continuous-time systems, the real-time extension of LTL introduces a timed
until operator that requires that 𝜑2 holds within a certain time bound. For further
details, we refer to the existing literature [AH90; Hen98; Bou07].

2.3.2 Computation Tree Logic (CTL)
While the semantics of LTL is defined over infinite words corresponding to linear
strands of time with a predetermined future, CTL takes a different approach, known
as branching time [CE81]. For a set AP of atomic propositions, the set of CTL formulas
CTL[AP] over AP is defined according to the following grammar:

CTL[AP] ∋ Ψ ⩴ true | 𝑝 ∈ AP | ¬Ψ | Ψ ∧Ψ | E[Ψ UΨ] | EXΨ | A[Ψ UΨ]

As CTL requires a time with branches, its semantics is usually defined over Kripke
structures [Kri63], a variation of transition systems. For our purposes, we define the
semantics of CTL over a transition system ⟨𝒮, 𝐼,Act,↠⟩, whose states are labeled
with ⟨℘(AP) , 𝜆⟩, in terms of a binary satisfaction relation ⊨CTL ⊆ 𝒮 × CTL[AP]:

𝑠 ⊨CTL true

𝑠 ⊨CTL 𝑝 iff 𝑝 ∈ 𝜆(𝑠)
𝑠 ⊨CTL ¬Ψ iff 𝑠 ⊭CTL Ψ

𝑠 ⊨CTL Ψ1 ∧ Ψ2 iff 𝑠 ⊨CTL Ψ1 ∧ 𝑠 ⊨CTL Ψ2

𝑠 ⊨CTL E[Ψ1 U Ψ2] iff ∃ (𝑠𝑖) 𝑛𝑖=1 ∈ Paths(𝑠) ∶ ∃𝑘 ∈ ℕ ∶
𝑠𝑘 ⊨CTL Ψ2 ∧ ∀1 ≤ 𝑖 < 𝑛 ∶ 𝑠𝑖 ⊨CTL Ψ1

𝑠 ⊨CTL EXΨ iff ∃𝑠′ ∈ Post({𝑠} ,Act) ∶ 𝑠′ ⊨CTL Ψ

𝑠 ⊨CTL A[Ψ1 U Ψ2] iff ∀ (𝑠𝑖) 𝑛𝑖=1 ∈ Paths(𝑠) ∶ ∃𝑘 ∈ ℕ ∶
𝑠𝑘 ⊨CTL Ψ2 ∧ ∀1 ≤ 𝑖 < 𝑛 ∶ 𝑠𝑖 ⊨CTL Ψ1

We also define ∨,→, and false as syntactic sugar like we did for Boolean expressions.
In addition, we further define the following syntactic sugar:

AXΨ ≔ ¬EX¬Ψ AFΨ ≔ A[true U Ψ] AGΨ ≔ ¬EF¬Ψ
EFΨ ≔ E[true U Ψ] EGΨ ≔ ¬EF¬Ψ

34 CHAPTER 2. FOUNDATIONS

While LTL expresses properties of infinite sequences without taking branching into
account, CTL has explicit operators to take branching into account. For instance, the
intuitive semantics of E[Ψ1 U Ψ2] is that there exists some path, i.e., some way to take
transitions in the underlying TS, such that on that path, Ψ2 holds for the last state of
the path and Ψ1 holds for all states visited in between. As such quantifiers over paths
can be nested, complex branching properties can be expressed.

Given a CTL formula Ψ , we denote the set of all states that do satisfy Ψ by ⟦Ψ⟧CTL,
i.e., ⟦Ψ⟧CTL ≔ { 𝑠 ∈ 𝒮 | 𝑠 ⊨ Ψ }. Although LTL and CTL look similar, both allow the
expression of properties that are not expressible with the other.

Example 2.4 In case of the coffee machine (see Figure 2.1), we may have a property
like EX i expressing that there exists a path such that in the next step the coffee
machine is in the idle state i (assuming 𝜆(i) = {i}). The set of states satisfying this
property is {d}. The property AX i is not satisfied by any state because there always
exists a path not leading to i in the next step. The property EF i is satisfied in the
state i and d but violated in the states p and s. In these states the coffee machine is
stuck in a broken state and there exists no path back to the idle state i.

Modal μ-Calculus. The modal μ-calculus [BS69; Koz82] generalizes and extends
both LTL and CTL. Like CTL, the semantics of a modal 𝜇-calculus formula is defined
over a transition system and induces a set of states. Some of the techniques we
develop in this thesis work for any logic that has a semantics over transition systems
and whose formulas induce sets of states. The details of the modal μ-calculus will not
be relevant, we merely note that our techniques will straightforwardly generalize to
it. For concrete examples, we will be using CTL.

2.3.3 Basic Modal Logic

In the literature, a variety of different modal logics have been proposed and stud-
ied [BRV01]. For our purposes, we introduce a variant known as basic modal logic [cf.
BRV01]. For a set of atomic propositions AP, the set of basic modal logic formulas
MO[AP] over AP is defined according to the following grammar:

MO[AP] ∋ Ψ ⩴ true | 𝑝 ∈ AP | ¬Ψ | Ψ ∧ Ψ | | NΨ

Basic modal logic extends Boolean expressions with the necessity operator NΨ ex-
pressing that Ψ is necessary in all possible worlds. Formally, a possible world is a
set of atomic propositions. The traditional semantics of basic modal logic is defined
over pairs ⟨𝑃,𝑊⟩ where𝑊 ⊆ ℘(AP) is the set of all possible worlds and 𝑃 ∈ 𝑊 is a
possible world. As for LTL and CTL, we capture the semantics in terms of a binary
satisfaction relation ⊨MO ⊆ (℘(AP) × ℘(℘(AP))) ×MO[AP]:

2.4. CONFIGURABLE SYSTEMS 35

⟨𝑃,𝑊⟩ ⊨MO true

⟨𝑃,𝑊⟩ ⊨MO 𝑝 iff 𝑝 ∈ 𝑃
⟨𝑃,𝑊⟩ ⊨MO ¬Ψ iff ⟨𝑃,𝑊⟩ ⊭MOΨ
⟨𝑃,𝑊⟩ ⊨MO Ψ1 ∧ Ψ2 iff ⟨𝑃,𝑊⟩ ⊨MO Ψ1 ∧ ⟨𝑃,𝑊⟩ ⊨MO Ψ2

⟨𝑃,𝑊⟩ ⊨MO NΨ iff ∀𝑃′ ∈ 𝑊 ∶ ⟨𝑃′,𝑊⟩ ⊨MO Ψ

In line with the intuitive semantics, the necessity operator NΨ states that Ψ holds
in all possible worlds, i.e., that Ψ is necessary. We also define ∨, →, and false

as syntactic sugar like we did for Boolean expressions. In addition, we define the
possibility operator PΨ ≔ ¬N (¬Ψ) as syntactic sugar. The possibility operator PΨ
thus states that Ψ holds in some possible world, i.e., that Ψ is possible.

Denotational Semantics. In addition to the satisfaction relation and analogously
to ⟦⋅⟧𝔹 for Boolean expressions, we define a denotational semantics

⟦⋅⟧MO∶ MO[AP] → ℘(℘(℘(AP)))

for modal logic formulas. To this end, we assume that atomic propositions only occur
inside necessity or possibility operators. This restriction is necessary as formulas
such as ¬𝑝 are only ascribed meaning based on an arbitrary world fixed for the
satisfaction relation, while the denotational semantics ascribes meaning independent
of any fixed world. The denotational semantics of a modal logic formula is the set of
sets of possible worlds for which the formula is satisfied:

⟦true⟧MO ≔ ℘(℘(AP))
⟦¬Ψ⟧MO ≔ ℘(℘(AP)) ∖ ⟦Ψ⟧MO

⟦Ψ1 ∧ Ψ2⟧MO ≔ ⟦Ψ1⟧MO ∩ ⟦Ψ2⟧MO

⟦NΨ⟧MO ≔ {𝑊 ⊆ ℘(AP) | ∀𝑃 ∈ 𝑊 ∶ ⟨𝑃,𝑊⟩ ⊨MO Ψ }

Similar to Boolean expressions, the denotational semantics corresponds to a complete
lattice ⟨℘(℘(℘(AP))) , ⊆⟩. Every modal logic formula Ψ where atomic propositions
only occur inside necessity or possibility operators corresponds to an element ⟦Ψ⟧MO

of this lattice. The ⊔ and ⊓ operators of the lattice correspond to the connectives ∨
and ∧ as defined above. For some set 𝑋 ∈ ℘(℘(℘(AP))) of sets of possible worlds,
we say that 𝑋 satisfies Ψ iff 𝑋 ⊆ ⟦Ψ⟧MO.

2.4 Configurable Systems
Most modern systems are highly configurable. For the purposes of this thesis, we
adopt the well-studied feature-oriented approach where the variability within a

36 CHAPTER 2. FOUNDATIONS

product line is described via features representing incremental or optional units of
functionality [Zav00; Ape+13; CN02]. Given a set of features 𝐹, also called a feature
domain, configurations are represented by sets 𝑐 ⊆ 𝐹 of features. A system can
only be configured towards valid configurations Conf ⊆ ℘(𝐹). Valid configurations
are typically modeled by feature diagrams [Kan+90; SHT06]. Feature diagrams also
capture the hierarchical composition of features from sub features.

Figure 2.3 shows an example of a feature diagram for a vending machine product
line [cf. Cla+13; Dev+14]. Features are depicted as boxes. In this case, the vending
machine root feature consists of three sub features cancel, beverages, and free, where
beverages is again decomposed into a soda and tea feature.

vending machine

beverages cancel free

soda tea

Figure 2.3: Feature diagram of a vending machine product line [cf. Cla+13; Dev+14].

The valid compositions of features are represented by different types of branchings
within the diagram. Figure 2.4 shows the standard branchings together with their
interpretations.

feature

all of …

feature

some of …

feature

one of …

Figure 2.4: Standard branchings of feature diagrams [cf. Kan+90; SHT06].

Small circles above a feature indicate exceptions to the branchings, e.g., the hollow
circles in Figure 2.3 indicate that the cancel and free feature are both optional. Hence,
a soda vending machine must at least offer soda or tea and may optionally offer free
drinks and the option to cancel a request for a drink.

We underline the parts of the feature name that we use in formal definitions. For
example, in case of the vending machine, we have 𝐹 = {v, c, b, f, s, t}. Note that the
number of valid configurations is in general exponential in the number of features.
In case of the vending machine, we have 12 distinct valid configurations.

2.4. CONFIGURABLE SYSTEMS 37

For further details regarding feature diagrams and their semantics, we refer to
Schobbens, Heymans, and Trigaux [SHT06]. For the purposes of this thesis, we take
feature diagrams to be graphical representations of Boolean expressions over 𝐹. That
is, each feature diagram corresponds to a Boolean expression 𝜙 ∈ 𝔹[𝐹] such that
⟦𝜙⟧𝔹 is the set of valid configurations Conf.

Featured Transition Systems. Behaviors of configurable systems are commonly
modeled as featured transition systems (FTSs) [Cla+13]. FTSs are an extension of
transition systems where transitions and initial states are labeled with feature guards.
A feature guard is a Boolean expression over some feature domain 𝐹.

Definition 2.4.1 Given a set of actions Act and of features 𝐹, a featured transition
system (FTS) 𝔉 is a tuple ⟨𝒮, 𝐼,Act,↠, 𝐹,Conf, 𝑔, 𝜄⟩ where

– ⟨𝒮, 𝐼,Act,↠⟩ is a TS,
– Conf ⊆ ℘(𝐹) is a set of valid configurations,
– 𝑔∶ ↠ → 𝔹[𝐹] assigns a feature guard to each transition, and
– 𝜄∶ 𝐼 → 𝔹[𝐹] assigns a feature guard to each initial state.

The set Conf is a set of valid configurations as discussed above. It may be given by a
feature diagram or some Boolean expression. An FTS assigns a feature guard 𝑔(t) to
each transition t ∈ ↠. These feature guards restrict the configurations in which the
respective transitions can be taken. Additionally, an FTS assigns a feature guard 𝜄(𝑠)
to each initial state 𝑠 ∈ 𝐼. These feature guards restrict the initial states for a given
configuration. We also refer to the tuple ⟨𝐹,Conf, 𝑔, 𝜄⟩ as a feature extension of the
underlying transition system.

Formally, the configuration semantics of an FTS for a given valid configuration
𝑐 ∈ Conf is obtained by keeping only the initial states and transitions whose guards
are fulfilled by the configuration 𝑐.

Definition 2.4.2 For a given FTS 𝔉 = ⟨𝒮, 𝐼,Act,↠, 𝐹,Conf, 𝑔, 𝜄⟩ and valid con-
figuration 𝑐 ∈ Conf, the 𝑐-projection of 𝔉, denoted by 𝔉⇂𝑐, is a TS

⟨𝒮, 𝐼⇂𝑐,Act,↠⇂𝑐⟩

where 𝐼⇂𝑐 ≔ { 𝑠 ∈ 𝐼 | 𝑐 ∈ ⟦𝜄(𝑠)⟧𝔹 } and ↠⇂𝑐 ≔ { t ∈ ↠ | 𝑐 ∈ ⟦𝑔(t)⟧𝔹 }.

Note that these definitions naturally carry over to timed automata labeling edges
instead of transitions and initial locations instead of initial states. For further details,
we refer to the work by Cordy et al. [Cor+12].

Example 2.5 As an illustrative example, consider an email system with an encryption
and signing feature [cf. Dub22]. Figure 2.5 shows the FTS and feature diagram

38 CHAPTER 2. FOUNDATIONS

modeling the system. We use annotations of the form 𝜙 ∶ 𝛼 to indicate that some
transition ⟨𝑠, 𝛼, 𝑠′⟩ has a feature guard 𝜙 as per 𝑔. The arrows pointing at the initial
states are also annotated with guards as per 𝜄. According to the feature diagram
shown in Figure 2.5, the valid configurations of the email system are 𝑐e = {m, e},
𝑐s = {m, s}, and 𝑐s∧e = {m, e, s}. Depending on the configuration, an email is signed
(sign), encrypted (enc), or both, before it is sent (send).

true
s : sign

¬e : send
e :
en
c

true
: send

e ∧ ¬s : enc

email system

sign encrypt

Figure 2.5: An email system with an encryption and signing feature [cf. Dub22].

2.5 Runtime Verification
Runtime verification techniques aim at detecting the violation or satisfaction of
properties at runtime by observing a system’s behavior [HG05; LS09]. As such, they
complement traditional verification techniques, such as model checking [CW96].
Unlike those traditional techniques, runtime verification techniques do not seek to
rule out property violations before a system is deployed. Instead, they enable the
detection of when a runtime property is satisfied or violated. They are considered
more lightweight and are particularly useful in scenarios where the full system cannot
be verified before deployment, e.g., due to scalability issues. They are useful even if
it is known that a system may violate a property as they enable taking corrective
actions in response to detected incorrect behaviors [LS09].

The usual approach to runtime verification is to construct or implement a monitor
from some specification of a property. Such a specification can, for instance, be an
LTL property [BLS06b]. A monitor then reads a finite trace produced by a system and,
based on that trace, indicates whether the property is satisfied or violated—a process
known as monitoring. Monitoring can be online, where a monitor incrementally reads
the trace from a running system as it is generated, or offline, where a monitor has
full access to a previously recorded and stored trace [LS09].

There exist many different runtime verification techniques (see Chapter 1 for refer-
ences). As paradigmatic instances, we recapitulate LTL runtime verification [BLS06b;

2.5. RUNTIME VERIFICATION 39

BLS11; BLS07] and the stream-based specification language Lola [DAn+05; Bau+20].
LTL runtime verification takes a logic- and automaton-based approach, explicitly
synthesizing a monitor from an LTL formula. Lola pioneered stream-based runtime
verification where output streams are computed from input streams.

2.5.1 LTL Runtime Verification
For an LTL formula 𝜑, LTL runtime verification aims at deciding from a finite word 𝜎
whether all continuations of 𝜎 satisfy or violate 𝜑 [BLS06b; BLS11; FFM12; BLS07],
which corresponds to detecting good and bad prefixes of 𝜑 [KV01]. The seminal
work of Bauer, Leucker, and Schallhart introduced LTL3 monitoring [BLS06b]. Recall
that the LTL semantics are defined over infinite words (see Section 2.3.1). To lift the
LTL semantics to finite words, LTL3 monitoring uses the three-valued truth domain
𝔹3 = {t, ?, f} where t indicates that the formula must be satisfied, f indicates that
the formula must be violated, and ? indicates that it is unknown whether the formula
is satisfied or violated. Formally, the three-valued semantics of an LTL formula 𝜑 over
a set AP for a finite word 𝜎 ∈ ℘(AP) ⋆, denoted by [𝜎 ⊨ 𝜑]3LTL, is given by:

[𝜎 ⊨ 𝜑]3LTL ≔
⎧

⎨
⎩

t if ∀𝜎′ ∈ ℘(AP) 𝜔 ∶ 𝜎 ⋄ 𝜎′ ⊨LTL 𝜑
f if ∀𝜎′ ∈ ℘(AP) 𝜔 ∶ 𝜎 ⋄ 𝜎′ ⊭LTL 𝜑
? otherwise

(2.3)

An LTL3 monitor for an LTL formula 𝜑 is a deterministic finite input-enabled transi-
tion system ⟨𝒮, 𝐼,℘(AP) ,↠⟩ together with a state labeling ⟨𝔹3, 𝜆⟩ such that

𝜆(∇After(𝜎)) = [𝜎 ⊨ 𝜑]3LTL

for all words 𝜎 ∈ ℘(AP) ⋆. As a monitor is deterministic and input-enabled, the set
After(𝜎) is guaranteed to be a singleton set, i.e., contain exactly one state for each
finite word 𝜎. Thus, ∇ is used to denote this state. The outcome of the monitor is
then obtained by taking the label of this state.

? ? f
{dispense}

∅

{request}
{dispense, request}

{dispense}

{dispense, request}

{request}
∅

{dispense, request}
{dispense}
{request}
∅

Figure 2.6: LTL3 monitor for the LTL property defined in Example 2.6.

Example 2.6 Recall the example of the coffeemachine (Example 2.1). Figure 2.6 depicts
an LTL3 monitor over the set AP = {dispense, request} for the property that every

40 CHAPTER 2. FOUNDATIONS

request for a coffee is met in the next step, i.e., � (request→○dispense). Note
that we can never be sure that this property is satisfied because it may always be
violated by a request in the unknown future that is not met. Hence, there is no
state labeled with t. On the other hand, we can be sure that the property has been
violated when we observe an instance of request that is not followed by dispense
in the next step. The monitor detects such occurrences and transitions to the state
labeled with f in response, indicating a violation of the property. The other states
are labeled with ? as the monitor cannot be sure that the property is satisfied but has
not yet detected a violation either. While the coffee machine model (Figure 2.1) does
not satisfy the property, the monitor enables us to detect when the coffee machine
becomes faulty and does not dispense a coffee upon request.

Beyond LTL₃ Monitoring. LTL3 monitoring falls short for properties like

� (request→ ♦response) (2.4)

i.e., that every request is eventually met with a response. The fundamental reason
is that those properties do neither have good nor bad prefixes. After a request, it
is always possible, that a response will eventually follow, i.e., the property is never
violated in finite time. At the same time, it is always possible that a future request will
not be followed by a response, i.e., the property is never satisfied in finite time. To deal
with such properties, Bauer, Leucker, and Schallhart introduce RV-LTL monitoring
using the truth domain 𝔹4 = {t, tp, fp, f} instead of 𝔹3, where tp denotes possibly
true and f

p denotes possibly false [BLS07]. An RV-LTL monitor for the property
(2.4) will produce fp iff there is a pending request that has not been met yet and
tp otherwise. For a detailed discussion of different truth domains and the property
classes they cover, we refer to Falcone, Fernandez, and Mounier [FFM12].

2.5.2 Stream-Based Monitoring with Lola

Another popular approach to runtime verification is stream-based monitoring. In
the literature, a variety of different stream-based monitoring techniques have been
proposed [DAn+05; Con+18; Fay+19; GS18]. As a paradigmatic example, we focus
on the stream-based specification language Lola which has first been introduced by
D’Angelo et al. [DAn+05]. In later work, Lola has been extended with parametrized
streams (Lola 2.0) [Fay+16] and for real-time systems (RTLola) [Fay+19; Bau+20]. For
the purposes of this thesis, we introduce the original variant of Lola.

The fundamental idea of stream-based monitoring is to compute output streams
from input streams, where a stream is a sequence of values of some type. For instance,
a stream may be a sequence 𝜎 ∈ ℤ⋆ of integers.

2.5. RUNTIME VERIFICATION 41

Lola’s Syntax. Let 𝒯 be a set of data types and 𝕊 be a set of typed stream variables,
i.e., each 𝑠 ∈ 𝕊 has an associated type 𝑇𝑠 ∈ 𝒯. In the following, we treat types as
sets of values that inhabit it. A Lola specification over 𝒯 and 𝕊 is a partial function
L∶ 𝕊⇀ 𝔼 assigning stream variables to typed stream expressions. The set of typed
stream expressions 𝔼 is defined inductively as follows:

(i) Constants and stream variables of type 𝑇 are expressions of type 𝑇.
(ii) Let 𝑔∶ 𝑇1 ×⋯× 𝑇𝑘 → 𝑇 be a 𝑘-ary operator and 𝜂1,… , 𝜂𝑘 be expressions of

type 𝑇1,… , 𝑇𝑘, then 𝑔(𝜂1,… , 𝜂𝑘) is an expression of type 𝑇.
(iii) Let 𝜂 be a Boolean expression and 𝜂1 and 𝜂2 be expressions of some type 𝑇,

then ite(𝜂, 𝜂1, 𝜂2) is an expression of type 𝑇.
(iv) Let 𝑠 be a stream variable of type 𝑇, 𝑐 be a constant of type 𝑇, and 𝑧 ∈ ℤ, then

𝑠[𝑧, 𝑐] is a stream expression of type 𝑇.
We slightly deviate from the original definition for notational convenience. In partic-
ular, we do not allow expressions of the form 𝜂[𝑧, 𝑐] where 𝜂 is an arbitrary stream
expression. It has been shown that those can be rewritten to 𝑠′[𝑧, 𝑐] by introducing
an additional stream variable 𝑠′ such that L(𝑠′) = 𝜂 [DAn+05].

A Lola specification L defines stream expressions for the set Dom(L) ⊆ 𝕊 of
stream variables. Those variables are coined dependent while the remaining variables
are coined independent. The idea is that the stream expressions constrain the values
the dependent variables can have at certain points in time.

Lola’s Semantics. The semantics of Lola is defined in terms of evaluation models.
An evaluation model 𝜇 of length 𝑁 assigns a sequence 𝜇(𝑠) = (𝜇𝑖(𝑠))𝑁𝑖=1 of values
of type 𝑇𝑠, i.e., a stream of type 𝑇𝑠, to each stream variable 𝑠 ∈ 𝕊. Note that the
individual streams all have the same length 𝑁. Given an evaluation model 𝜇 of length
𝑁we inductively define an evaluation function ⟦⋅⟧𝑖 for evaluating stream expressions
at certain points 1 ≤ 𝑖 ≤ 𝑁 in time as follows:

⟦𝑐⟧𝑖 = 𝑐 ⟦𝑠⟧𝑖 = 𝜇𝑖(𝑠) ⟦𝑔(𝜂1,… , 𝜂𝑘)⟧𝑖 = 𝑔(⟦𝜂1⟧𝑖,… , ⟦𝜂𝑘⟧𝑖)

⟦ite(𝜂, 𝜂1, 𝜂2)⟧𝑖 = {
⟦𝜂1⟧𝑖 if ⟦𝜂⟧𝑖 = t

⟦𝜂2⟧𝑖 otherwise

⟦𝑠[𝑧, 𝑐]⟧𝑖 = {
𝜇𝑖+𝑧(𝑠) if 1 ≤ 𝑖 + 𝑧 ≤ 𝑁
𝑐 otherwise

An evaluation model 𝜇 is consistent with a Lola specification L, denoted by 𝜇 ⊨ L,
iff ⟦L(𝑠)⟧𝑖 = 𝜇𝑖(𝑠) for all 𝑠 ∈ Dom(L) and 1 ≤ 𝑖 ≤ 𝑁. That is, the values of each
dependent stream variable 𝑠 ∈ Dom(L) over time are exactly those values to which
the respective expressions specified by L evaluate to.

By using an offset expression of the form 𝑠[𝑧, 𝑐], one can access the value of a
stream variable 𝑠 in the past as well as the future. The default value 𝑐 in an offset

42 CHAPTER 2. FOUNDATIONS

expression is used at time step 𝑖 iff the time step 𝑖 + 𝑧 lies outside of the streams
provided by the evaluationmodel. Offset expressions are arguably themost innovative
feature of Lola and responsible for its great expressive power. We refer to the original
Lola paper for a detailed discussion [DAn+05].

Example 2.7 Imagine we would like to calculate the acceleration of a vehicle from its
velocity. Assume that the velocity is measured every second in kilometers per hour
(kmh−1) and we want the acceleration to be computed in meters per square second
(ms−2), taking into account the velocity measurement one step into the past and the
measurement one step into the future. Formally that is, given a sequence 𝑣 = (𝑣𝑖)𝑁𝑖=1,
we aim to compute a sequence 𝑎 = (𝑎𝑖)𝑁𝑖=1 such that

𝑎𝑖 =
𝑣𝑖−1 + 𝑣𝑖+1
2 ⋅ 3.6

for all 2 ≤ 𝑖 ≤ 𝑁−1. For the edge cases 𝑖 = 1 and 𝑖 = 𝑁, we may assume the
velocity to be zero. Figure 2.7 exemplifies the computation for the different cases.
The translation into a Lola specification L is straightforward with

L(𝑎) ≔ 𝑣[−1, 0] + 𝑣[+1, 0]
2 ⋅ 3.6

and leaving 𝑣 as in independent variable. An evaluation model consistent with L

then provides a stream 𝑎 according to the approach described above.

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

𝜇(𝑣) =

𝜇(𝑎) =

𝑎4 =
𝑣3 +𝑣5
2 ⋅ 3.6𝑎1 =

0+𝑣2
2 ⋅ 3.6

𝑎7 =
𝑣6 +0
2 ⋅ 3.6

Figure 2.7: Computing accelerations from velocities as per Example 2.7.

Monitoring and Well-Formedness. A monitoring algorithm for a Lola specifica-
tion L should incrementally compute values for the dependent stream variables based
on incrementally provided values for the independent stream variables such that
these values together form an evaluation model consistent with L. For this reason,
we also refer to the streams for the independent variables as input streams and to
the streams for the dependent variables as output streams.

The semantics of Lola is defined declaratively and does not directly induce a mon-
itoring algorithm. In fact, it may even be impossible to compute output streams for a

2.5. RUNTIME VERIFICATION 43

given Lola specification and input streams, as there may not exist any consistent eval-
uation model or there may exist multiple such models leading to ambiguity [DAn+05].
For instance, imagine a dependent variable 𝑥 for a Boolean stream that is defined as
its own negation at each point in time:

L(𝑥) ≔ ¬𝑥[0, true]

While this is a syntactically valid Lola specification, no evaluation model is consistent
with it. To rule out such specifications, D’Angelo et al. call a Lola specification well-
defined iff for any set of appropriately typed input streams, all of the same length, it
has exactly one consistent evaluation model [DAn+05]. Well-definedness ensures
that monitoring is a well-defined algorithmic problem.

From a practical perspective, well-definedness is still difficult to check and deal
with. Instead, the original paper introduces a purely syntactic criterion called well-
formedness such that the following theorem holds [DAn+05, Theorem 1]:

Theorem 2.5.1 If a specification is well-formed, then it is well-defined.

Well-formedness is defined by means of a dependency graph:

Definition 2.5.1 Let L be a Lola specification over the stream variables 𝕊. The
dependency graph for L is a directed and weighted multi-graph 𝐺 = ⟨𝕊, 𝐸⟩ where
𝐸 is the set of edges. An edge is a triple ⟨𝑠𝑥, 𝑠𝑦, 𝑧⟩ where 𝑠𝑥, 𝑠𝑦 ∈ 𝕊 and 𝑧 ∈ ℤ.
The set 𝐸 of edges contains an edge ⟨𝑠𝑥, 𝑠𝑦, 𝑧⟩ iff 𝑠𝑥 ∈ Dom(L) and the expression
L(𝑠𝑥) contains an offset expression 𝑠𝑦[𝑧, 𝑐] for some constant 𝑐.

Intuitively, the existence of an edge ⟨𝑠𝑥, 𝑠𝑦, 𝑧⟩ in 𝐸 records the fact that the stream for
𝑠𝑥 depends on the stream for 𝑠𝑦 with an offset of 𝑧. Now, if there exists a cycle whose
weights 𝑧 sum up to zero, i.e., a zero-weight cycle, then the value of some stream at a
given time circularly depends on the very same value. Due to such cycles, there may
then be multiple evaluation models for a given specification or none at all. That is
why well-formedness forbids precisely such cycles [DAn+05, Definition 4].

Definition 2.5.2 A Lola specification is well-formed iff its dependency graph
does not contain any zero-weight cycle.

By checking well-formedness of a specification, one makes sure that the moni-
toring problem is well-defined for it. It is this property of well-formedness that has
to be checked in order to ensure that the monitoring algorithm presented in the
original Lola paper can be used [DAn+05]. We refer to this paper for further details
regarding the monitoring algorithm and Theorem 2.5.1. Note that the zero-weight

44 CHAPTER 2. FOUNDATIONS

cycle problem, i.e., the problem of deciding whether a zero-weight cycle exists, is
known to be NP-complete, which can be shown by a simple reduction from the
NP-complete subset-sum problem [Bai+18, Theorem 3.12].

Efficient OnlineMonitoring. In general, monitoring for a given Lola specification
may require access to the entire history of all streams. In case of online monitoring,
this is usually undesirable, as it means that the monitor will run out of memory when
the input streams become too long. To address this issue, D’Angelo et al. introduce
the notion of efficiently monitorable specifications. If the dependency graph of a
specification has no positive cycles, then the specification is efficiently monitorable,
meaning that it is monitorable with a bounded amount of memory independent of
the length of the input streams [DAn+05, Theorem 3].

In the context of online monitoring, the computation of output streams may also
be delayed if their values depend on future values. For an example, recall Example 2.7.
Here, the velocity one step into the future is required to compute the acceleration at
the present point in time. Efficient monitorability also puts an upper bound on the
delay with which streams may lag behind.

2.6 Model-Based Fault Diagnosis
Model-based fault diagnosis aims at detecting faults based on a formal system model
and from the observable behavior of a system [e.g. Tri02; Sam+95; BCD05; Car+13;
ALH06; TYG08]. For the purpose of this thesis, we recapitulate the seminal work on
model-based fault diagnosis by Sampath et al. [Sam+95]. We refer to this work and
the techniques it developed as traditional model-based fault diagnosis.

Traditional model-based fault diagnosis assumes a system to be modeled as a
deterministic and finite TS 𝔖 = ⟨𝒮, 𝐼,Act,↠⟩, whose actions are partitioned into
a set of observable actions OAct ⊆ Act and unobservable actions UAct ⊆ Act. The
latter includes a set Faults ⊆ UAct of fault actions, partitioned into fault classes
ℱ = {𝑓1,… , 𝑓𝑛}. The diagnosis techniques developed by Sampath et al. synthesize a
diagnoser from such a system model. A diagnoser reads a sequence of observable
actions and produces a diagnosis indicating which faults have occurred.

Assuming that faults may occur multiple times, formally, a diagnoser 𝒟 is a
deterministic TS ⟨℘(𝒮 × ℘(ℱ)) , 𝐼𝒟,OAct,↠𝒟⟩. Each state 𝑞 ∈ ℘(𝒮 ×℘(ℱ)) of a
diagnoser corresponds to a diagnosis d(𝑞) ⊆ ℘(ℱ) defined as follows:

d(𝑞) ≔ { 𝐹 | ⟨⋅, 𝐹⟩ ∈ 𝑞 } (2.5)

For a diagnosis 𝑑 ⊆ ℘(ℱ), each 𝐹 ∈ 𝑑 indicates a possibility that faults of the classes
𝑓𝑖 ∈ 𝐹 occurred. Hence, a fault of class 𝑓𝑖 certainly occurred iff 𝑓𝑖 ∈ 𝐹 for all 𝐹 ∈ 𝑑 and
it possibly occurred iff 𝑓𝑖 ∈ 𝐹 for some 𝐹 ∈ 𝑑 [Sam+95, cf. Definition 6]. The diagnosis

2.6. MODEL-BASED FAULT DIAGNOSIS 45

{⟨i, ∅⟩} {⟨d, ∅⟩, ⟨p, {𝑓𝑝}⟩, ⟨s, {𝑓𝑠}⟩}

{⟨s, {𝑓𝑠}⟩}

{⟨p, {𝑓𝑝}⟩}

request

dispense

request

request

blink

blink

Figure 2.8: Diagnoser synthesized from the model of the coffee machine (Figure 2.1).

produced for a sequence 𝜔 ∈ ℒ(𝔖)⇂OAct of observable actions, generated by running
the system 𝔖, is then given by d(∇After(𝜔)). Note that 𝒟 is constructed such that
ℒ(𝒟) = ℒ(𝔖)⇂OAct. Hence, for each trace 𝜎 ∈ ℒ(𝔖) of the diagnosed system, the
diagnoser𝒟 produces a diagnosis d(∇After(𝜎⇂OAct)) indicating which faults occurred,
taking only observable actions into account. For further details, we refer to the work
of Sampath et al. [Sam+95].

Example 2.8 Figure 2.8 depicts the diagnoser constructed from the model of the coffee
machine (Figure 2.1). Here, request, dispense, blink ∈ OAct are observable and
pump_fault, short_circuit ∈ Faults are fault actions. Further, each fault action
forms a fault class 𝑓𝑝 and 𝑓𝑠, respectively. In states {⟨p, {𝑓𝑝}⟩} and {⟨s, {𝑓𝑠}⟩} of the
diagnoser, pump_fault and short_circuit certainly occurred, respectively, and
in state {⟨i, ∅⟩} no fault possibly occurred. In state {⟨d, ∅⟩, ⟨p, {𝑓𝑝}⟩, ⟨s, {𝑓𝑠}⟩}, both
faults possibly occurred but no fault certainly occurred.

Continuous-Time Systems. Building upon the work by Sampath et al., Tripakis
extended model-based fault diagnosis to the continuous-time setting [Tri02]. Here, a
timed automaton serves as the model of the system and its possible faults. Like with
traditional model-based diagnosis, the actions of the timed automaton are partitioned
into observable, unobservable, and fault actions. Faults are then diagnosed based on
timed words of observable actions, taking the timing of events into account. Bouyer,
Chevalier, and D’Souza further improved the work by Tripakis. They developed
techniques based on deterministic and event-recording timed automata [BCD05].
For further details, we refer to the respective original papers. Notably these existing
techniques share the assumption that the timing of events can be observed precisely,
an assumption that we relax with the contributions of this thesis.

Other Model-Based Techniques. The term “model-based diagnosis” is used in
various ways in the literature. Kleer and Williams [KW87] and Reiter [Rei87] in-

46 CHAPTER 2. FOUNDATIONS

dependently developed an approach which can also be classified as model-based
diagnosis [cf. BLS06a]. In contrast to the approach by Sampath et al., their approach
does not rest on an explicit modeling of individual faults and their influence on
observable behavior. Instead, they merely require a model of the nominal behavior
of the different components of a system from which they then identify misbehaving
components. Here, a model can also be a specification in terms of pre- and post-
conditions of component behavior. A component is considered misbehaving iff the
pre-conditions on its input are satisfied but its post-conditions are violated. Building
upon this idea Bauer, Leucker, and Schallhart propose to use runtime verification
techniques to detect misbehaving individual components and then extrapolate causes
in terms of minimal sets of misbehaving components responsible for the malfunc-
tioning of a system [BLS06a]. Again other works consider nominal system models in
terms of differential equations or other descriptions of continuous system behavior,
also commonly referred to as “models” and “model-based diagnosis” [Fra90; Ise05].
Furthermore, there is an entire class of techniques that build machine-learned models
from historic data of system behavior in order to identify and predict faults [Car+19].
Note that throughout this thesis and unless stated otherwise, “model” means an
operational model in terms of some kind of transition system.

2.7 Fault Trees

Fault trees are a popular tool to model, understand, and analyze how faults of individ-
ual components may lead to failures of an entire system. Their inception goes back
to the early 1960s. Watson and Mearns pioneered fault trees for the launch control
system of the Minuteman intercontinental ballistic missiles developed by the United
States [Eri99]. Since then, fault trees have been adopted for a wide range of safety-
critical applications from nuclear power plants to aviation to medial applications.
They became a key tool to asses risks of failure as part of reliability analyses. We
refer to Ruijters and Stoelinga for a comprehensive overview [RS15].

As the name “fault tree” suggests, a fault tree is usually a tree. The leaves of a
fault tree correspond to basic fault events of individual components, and inner nodes
correspond to Boolean gates describing how higher-level faults result from lower-
level faults. Figure 2.9 shows the standard graphical representation of disjunction
(or) and conjunction (and) gates. Note that despite the name “fault tree,” definitions
found in the literature often allow sharing of subtrees between nodes. Thus, a fault
tree can also be a directed acyclic graph [RS15, cf. Section 2.1.2].

Example 2.9 Figure 2.10 shows a fault tree for the coffee machine (Example 2.1). Here,
the pump fails iff its inlet becomes clogged or its shaft breaks. This fact is modeled by
an or gate indicating that a fault of any sub fault is sufficient for the pump to fail. In
contrast, a short circuit occurs iff there are exposed wires and there is fluid leakage.

2.7. FAULT TREES 47

disjunction (or gate) conjunction (and gate)

Figure 2.9: Standard disjunction and conjunction fault tree gates [cf. RS15].

no coffee

broken pump

clogged inlet broken shaft

short circuit

exposed
wires

fluid leakage

Figure 2.10: A fault tree for the coffee machine (Example 2.1).

This fact is modeled by an and gate indicating that a short circuit requires all sub
faults to occur. As for feature diagrams, we underline the parts of the fault names
that we use in formal definitions. The set of basic events is given by:

{ci, bs, ew, fl}

While the graphical representation of fault trees as in Figure 2.10 is useful for
humans, from a mathematical perspective, fault trees can be represented as negation-
free Boolean expressions over the set of basic fault events where we ascribe additional
names to subexpressions. For instance, the entire fault tree shown in Figure 2.10
corresponds to the following Boolean expression:

no coffee

⏞⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏞(ci ∨ bs)⏟⎵⏟⎵⏟
broken pump

∨ (ew ∧ fl)⏟⎵⏟⎵⏟
short circuit

The broken pump subexpression corresponds to the event that the pump broke. The
short circuit subexpression corresponds to the event that there was a short circuit. If
any of these events occurs, then there will be no coffee. For this thesis, we always
directly work with the Boolean expressions corresponding to fault trees.

48 CHAPTER 2. FOUNDATIONS

Chapter 3

Theoretical Framework

In this chapter, we establish an overarching theoretical framework that serves as
the cornerstone for the subsequent contributions of this thesis. Centered around the
concept of verdictors, as previously discussed in Chapter 1 (recall Figure 1.1), this
framework fulfills three pivotal roles within the scope of this thesis:

(FT1) The framework offers rigorous formalizations of core concepts and criteria
with respect to which we then prove the remaining contributions correct.
In particular, following the model-based methodology layed out earlier (cf.
Chapter 1), we establish formal criteria for what it takes for a verdictor to
produce accurate verdicts with respect to a given system model and based
on observations subject to observational imperfections.

(FT2) The framework introduces verdict transition systems (VTSs) as a represen-
tation of verdictors, which then also serves as the target representation
for the generic and modular discrete-time verdictor synthesis algorithms
developed in the subsequent chapter (cf. Contribution TT).

(FT3) The framework offers a unifying foundation for automata-based runtime
verification and model-based fault diagnosis. It elucidates the connection
between those traditional techniques and the contributions of this thesis.
Furthermore, it enables the broad range of applications of the algorithms
developed in the subsequent chapters of this thesis.

The theoretical framework constitutes Contribution FT of this thesis.

Overview. The formalizations introduced in this chapter include verdict domains,
verdict transition systems, and observation models. Together they capture all concepts
appearing in Figure 1.1 and form a complete framework for verdictors.

49

50 CHAPTER 3. THEORETICAL FRAMEWORK

Verdict domains define the set of possible verdicts a verdictor can produce, along
with a partial order that ranks verdicts based on their specificity. For instance, in the
case of runtime verification, it may sometimes be unknown whether a property is
satisfied or not (cf. Section 2.5.1). This verdict is less specific than a verdict indicating
a clear satisfaction or violation of the property. In particular, when faced with ob-
servational imperfections, one often needs to make some concessions with respect
to the specificity of verdicts: We want verdicts to correctly reflect the state of the
system at all times, however, it is fine if a verdict is less specific in cases where a more
specific verdict simply cannot be justified, e.g., due to observational imperfections.
We demonstrate that both traditional LTL runtime verification truth domains (recall
Section 2.5.1) and diagnoses from model-based fault diagnosers (recall Section 2.6)
constitute verdict domains with a respective specificity ranking.

VTSs formally represent how verdictors obtain and refine verdicts over time as
new observations are made. Observation models represent how system runs generate
sequences of observations that are fed into a verdictor. As a ground truth for verdicts,
we further introduce verdict oracles that assign a verdict to each run of a system.
Based on these concepts, we then specify what it takes for a verdictor to produce
accurate verdicts with respect to a given system and observation model.

Relevant Publications. Verdict transition systems, including some of the key
results, have been introduced by the author of this thesis in:

[KDH24]: Maximilian A. Köhl, Clemens Dubslaff, and Holger Hermanns.
“Configuration Monitor Synthesis”. In: Automated Technology for Verifi-
cation and Analysis, ATVA 2024.

The broader framework presented here has been specifically developed to show how
the various contributions of the first author integrate under a coherent theoretical
umbrella. It hence extends and generalizes the published works.

Chapter Structure. Section 3.1 introduces verdict domains, Section 3.2 introduces
verdict transition systems, and Section 3.3 introduces observation models. Section 3.4
establishes the formal criteria for what it takes for a verdictor to produce accurate
verdicts with respect to a given system and observation model. Section 3.5 discusses
how existing work in the spectrum of automata-based runtime verification and
model-based fault diagnosis naturally fits into the theoretical framework. Finally,
Section 3.6 concludes this chapter.

3.1 Verdict Domains
A verdictor processes observations and produces verdicts (recall Figure 1.1). As a
fundamental assumption made throughout this thesis, we assume that verdicts can

3.1. VERDICT DOMAINS 51

be ordered based on their specificity. As a simple example, recall the three-valued
truth domain 𝔹3 = {t, ?, f} of LTL3 runtime verification (Section 2.5.1). Here, t and
f are more specific than ?, since they represent definite truth values while ? does
not, and t and f are incomparable as neither is more specific than the other. As a
generalization, we assume that verdicts form a verdict domain.

Definition 3.1.1 A verdict domain is a complete join-semilattice ⟨𝒱, ⊑⟩.

We call ⊑ the specificity order. A verdict 𝑣1 is more specific than a verdict 𝑣2 iff 𝑣1 ⊏ 𝑣2,
where ⊏ is the irreflexive kernel of ⊑. Given a non-empty set V ⊆ 𝒱 of verdicts, their
join ⊔V is the most specific verdict subsuming all verdicts in V.

Remark. The fact that the join exists for any non-empty set V ⊆ 𝒱 of verdicts will play
a crucial role throughout this thesis, in particular, when we consider observational
imperfections. The upshot is that, in cases where we cannot discern certain runs of
a system due to observational imperfections, we are interested in the most specific
verdict that is in line with all the plausible runs.

Let us now have a look at different instances of verdict domains extrapolated
from LTL3 runtime verification and traditional model-based fault diagnosis, as well
as for the novel application of configuration monitoring.

LTL₃ Runtime Verification Verdicts. As discussed above, the three-valued truth
domain 𝔹3 = {t, ?, f} of LTL3 runtime verification forms a verdict domain. This
domain has its origins in Kleene’s three-valued logic [Kle38]. Figure 3.1 shows two
partial orders over 𝔹3. Figure 3.1a shows the traditional truth order. Here, ⊓ and ⊔
correspond to conjunction and disjunction, respectively, as defined by Kleene. In
contrast, Figure 3.1b shows the specificity order. While the truth order induces a com-
plete lattice, the specificity order only induces a complete join-semilattice. Note that
traditional work on runtime verification always considers the truth ordering [FFM12],
which does not capture the specificity of the verdicts.

?

t

f

(a) Three-valued truth domain.

?

t f

(b) Three-valued verdict domain.

Figure 3.1: Partial orders on the truth domain of LTL3 runtime verification.

52 CHAPTER 3. THEORETICAL FRAMEWORK

Diagnoses as Verdicts. Recall that a diagnosis produced by traditional model-
based fault diagnosis techniques is a set 𝑑 ⊆ ℘(ℱ) of sets of fault classes. Also
recall that a fault of class 𝑓𝑖 certainly occurred iff 𝑓𝑖 ∈ 𝐹 for all 𝐹 ∈ 𝑑 and it possibly
occurred iff 𝑓𝑖 ∈ 𝐹 for some 𝐹 ∈ 𝑑 (cf. Section 2.6). These considerations lead to an
inherent notion of specificity: A diagnosis 𝑑 is more specific than another diagnosis
𝑑′ iff it considers less sets of fault classes possible, i.e., iff 𝑑 ⊊ 𝑑′. For instance, in
case of the coffee machine (recall Example 2.8), the diagnosis 𝑑 = {{𝑓𝑝}} is more
specific than 𝑑′ = {∅, {𝑓𝑝} , {𝑓𝑠}} as 𝑑 ⊊ 𝑑′. The diagnosis 𝑑 indicates that the pump
certainly is broken whereas the diagnosis 𝑑′ indicates that it is possible that the
machine functions normally (∅), has a broken pump ({𝑓𝑝}), or has a short circuit
({𝑓𝑠}). Formally, we obtain the following definition for diagnosis verdicts:

Definition 3.1.2 Given a set ℱ of fault classes, the traditional diagnosis verdict
domain is ⟨℘(℘(ℱ)) , ⊆⟩. Verdicts 𝑑 ∈ ℘(℘(ℱ)) are diagnoses.

Note that for 𝑁 = |ℱ| fault classes, there are 22𝑁 possible diagnoses. For the coffee
machine example, this equates to 16 possibilities.

Simplified Diagnosis Verdicts. For illustrative purposes, we also introduce a
simplified variant of the verdict domain of traditional diagnosis as per Definition 3.1.2.
This simplified version can only indicate fault classes of which faults certainly oc-
curred, giving rise to the following verdict domain:

Definition 3.1.3 Given a set ℱ of fault classes, the simplified diagnosis verdict
domain is ⟨℘(ℱ) , ⊇⟩. Verdicts 𝑣 ∈ ℘(ℱ) are sets of fault classes of which faults
certainly occurred.

Note that the specificity order here is ⊇ and not ⊆. This is the case as the fault classes
𝑓 ∈ 𝑣 within a verdict 𝑣 ∈ ℘(ℱ) now indicate necessities, since they indicate fault
classes of which faults certainly occurred. Therefore, a verdict 𝑣1 is more specific than
a verdict 𝑣2, denoted by 𝑣1 ⊏ 𝑣2, iff it indicates that more faults certainly occurred,
i.e., iff 𝑣1 ⊋ 𝑣2. In the case of traditional diagnosis, verdicts are sets of possibilities
instead, hence, there the order is ⊆ (cf. Definition 3.1.2).

As an example, the simplified diagnosis verdict domain for the coffee machine
(cf. Example 2.8) is ⟨℘({𝑓𝑝, 𝑓𝑠}) , ⊇⟩. Here, ∅ is the least specific verdict and {𝑓𝑝, 𝑓𝑠} is
the most specific verdict. Figure 3.2 depicts this verdict domain. For instance, the
verdict {𝑓𝑝, 𝑓𝑠} according to which the pump certainly failed and a short circuit also
certainly occurred (not actually possible in the model) is more specific than the
verdict {𝑓𝑝} according to which only the pump certainly failed.

Each traditional diagnosis according to Definition 3.1.2 can be simplified by just
intersecting all the sets within a diagnosis thereby reducing it to the set of fault
classes of which faults certainly occurred.

3.1. VERDICT DOMAINS 53

∅

{𝑓𝑝} {𝑓𝑠}

{𝑓𝑝, 𝑓𝑠}

Figure 3.2: Simplified diagnosis verdict domain for the coffee machine example.

Configuration Verdicts. One of the novel applications enabled by the contribu-
tions of this thesis is configuration monitoring (cf. Chapter 1). Recall that a system can
be configured towards a set Conf of valid configurations (cf. Section 2.4). A verdictor
for configuration monitoring produces configuration verdicts, indicating which config-
urations the system may possibly be in. A configuration verdict thus is a non-empty
set 𝐶 ∈ ℘(Conf) ∖ {∅}, as the system must be in some configuration. Intuitively,
such a set 𝐶 ∈ ℘(Conf) ∖ {∅} is more specific than another 𝐶′ ∈ ℘(Conf) ∖ {∅} iff
it considers less configurations possible, i.e., iff 𝐶 ⊆ 𝐶′. Formally, the verdict domain
of configuration monitoring is defined as follows:

Definition 3.1.4 Given a set Conf of valid configurations, the configuration
verdict domain is ⟨℘(Conf) ∖ {∅} , ⊆⟩.

As an example, Figure 3.3 depicts the verdict domain for configuration monitoring
of the email system introduced earlier (Example 2.5).

{𝑐s∧e, 𝑐s, 𝑐e}

{𝑐s∧e, 𝑐e}{𝑐s∧e, 𝑐s} {𝑐s, 𝑐e}

{𝑐e}{𝑐s} {𝑐s∧e}

Figure 3.3: Verdict domain for configuration monitoring of the email system.

Remark. The lattice ⟨℘(Conf) , ⊆⟩ is commonly used in the context of model check-
ing of configurable systems [GLS08; Cla+10; Bee+16]. Here, elements of the lattice
represent sets of system configurations that may satisfy/violate a given specification.
In contrast to the verdict domain considered here, those sets can be empty iff no
configuration satisfies/violates the specification.

Answers to Operational Questions. The presented verdict domain definitions
demonstrate the versatility of verdict domains. Verdict domains can be used to capture

54 CHAPTER 3. THEORETICAL FRAMEWORK

the truth domain of LTL3 runtime verification and diagnoses from traditional model-
based diagnosis techniques. At the same time, they generalize and unify them under
a coherent definition, which can also be used for novel applications, as demonstrated
by configuration verdicts. As such, verdicts can serve as answers to the pressing
operational questions exemplified in Chapter 1. The contributions of this thesis will
exploit the complete join-semilattice properties of verdict domains.

3.2 Verdict Transition Systems
With verdict domains in place, we now introduce verdict transition systems (VTS) as
a formal representation of verdictors. VTSs capture how verdicts are obtained and
evolve over time as new observations are made.

Definition 3.2.1 For a set Obs of observables, a verdict transition system 𝔙 is
a tuple ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ where

– ⟨𝒬, 𝐽,Obs,⇾⟩ is a TS,
– ⟨𝒱, ⊑⟩ is a verdict domain, and
– ⟨𝒱, 𝜈⟩ is a state labeling.

The state labeling ⟨𝒱, 𝜈⟩ assigns a verdict 𝜈(𝑞) to each state 𝑞 ∈ 𝒬. We also refer to
the tuple ⟨𝒱, ⊑, 𝜈⟩ as a verdict extension of the underlying TS ⟨𝒬, 𝐽,Obs,⇾⟩.

Modeling Verdictors. Intuitively, a verdictor has an internal state, modeled by
the elements of the set 𝒬. In response to new observations, it updates its internal
state, modeled by⇾, and then produces a verdict based on this state, modeled by the
state-labeling function 𝜈. Note that any practical verdictor can be modeled this way
as any Turing machine can be molded into a VTS (cf. Section 2.2).

In practice, it is desirable that verdictors are deterministic. When feeding an
observation sequence 𝜔 ∈ ℒ(𝔙) into a verdictor, we want to obtain a definite and
uniquely defined verdict. In case a VTS is indeed deterministic, the verdict produced
for some observation sequence 𝜔 ∈ ℒ(𝔙) is 𝜈(∇After(𝜔)).8 Formally, an observation
is an occurrence of an observable on an observation sequence, i.e., an observation is
a tuple 𝜃 = ⟨𝑖, o⟩ ∈ 𝜔 of some observation sequence 𝜔. Recall that sequences are a
special form of partial functions which are sets of pairs ⟨𝑖, o⟩ where 𝑖 is the index at
which the symbol o occurs within the sequence (see Section 2.1).

The careful reader may have already noticed that this definition is very close to
how LTL runtime monitors (Section 2.5.1) and traditional diagnosers (Section 2.6) are
defined. Given that we already established that their outputs form verdict domains

8 Recall that ∇𝑋 denotes the element 𝑥 of a singleton set 𝑋 = {𝑥}.

3.2. VERDICT TRANSITION SYSTEMS 55

(see examples in Section 3.1), it is easy to see that VTSs indeed generalize LTL runtime
monitors and traditional diagnosers under a unified definition.

Example 3.1 Figure 3.4 shows an example of a VTS as it may be synthesized from
the model of the coffee machine (recall Figure 2.1) with the generic algorithms
presented in this thesis. It is a simplified version of a diagnoser (cf. Example 2.8)
that observes non-fault actions of the system model and indicates fault classes of
which faults certainly occurred, i.e., the verdict domain in this case is ⟨℘({𝑓𝑝, 𝑓𝑠}) , ⊇⟩
(recall Definition 3.1.3 and the discussion around it). For instance, after observing
two requests in direct succession we can be certain that the pump failed leading to
the verdict {𝑓𝑝}. We will later introduce the formal tools to characterize the relation
between this VTS and the system model precisely.

∅ ∅

{𝑓𝑠}

{𝑓𝑝}

request

dispense

request

request

blink

blink

Figure 3.4: VTS for diagnosing certain faults of the coffee machine.

Non-Determinism. According to Definition 3.2.1, VTSs may be non-deterministic.
Non-deterministic VTSs provide more modeling freedom for verdictors. We will also
exploit this freedom later when synthesizing VTSs from system models. As a VTS 𝔙
may be non-deterministic, an observation sequence 𝜔 ∈ ℒ(𝔙), may lead to multiple
states with different verdicts. To account for these possibilities, we utilize the fact
that the verdict domain is a complete join-semilattice to determine the most specific
verdict subsuming all non-deterministically possible verdicts:

Definition 3.2.2 For each trace 𝜔 ∈ ℒ(𝔙), 𝔙 produces a verdict 𝜈(𝜔):

𝜈(𝜔) ≔ ⨆{𝜈(𝑞) | 𝑞 ∈ After(𝜔) } (3.1)

Recall that After(𝜔) is the set of states reached after 𝜔, which is guaranteed to be
non-empty for every trace 𝜔 ∈ ℒ(𝔙). Further, recall that the join ⊔V of a non-empty
set of verdicts V corresponds to the most specific verdict subsuming all verdicts
in V. Hence, 𝜈(𝜔) is the most specific verdict subsuming all the non-deterministic

56 CHAPTER 3. THEORETICAL FRAMEWORK

possibilities. Again, take 𝔹3 as an example, if both t and f are non-deterministically
possible, 𝔙 produces ? indicating an unknown truth value.

Relation to Lattice Automata. Recall Section 2.2.3 for the definition of lattice
automata. From the definition of verdict domains and VTSs, it is obvious that VTSs
share similarities with lattice automata. VTSs are strictly more general than lattice
automata in the sense of expressible 𝐿-languages.

Lemma 3.2.1 For a bounded lattice 𝐿, any 𝐿-language expressible by a lattice
automaton can also be expressed by a corresponding VTS.

Proof. As established by Kupferman and Lustig, every lattice automaton can be
transformed into a simple one [KL07, Theorem 6]. Recall that for simple lattice
automata, 𝑄0(𝑞) = ⊤ marks initial states and 𝛿(𝑞, 𝑎, 𝑞′) = ⊤ marks the existence of
transitions (see Section 2.2.3). Hence, any simple lattice automaton ⟨𝐿, Σ, 𝑄, 𝑄0, 𝛿, 𝐹⟩
is trivially transformed into a VTS with 𝒬 = 𝑄, Obs = Σ, 𝐽 = { 𝑞 | 𝑄0(𝑞) = ⊤ },
⇾ = { 𝑡 | 𝛿(𝑡) = ⊤ }, 𝒱 = 𝐿, and 𝑣 = 𝐹. This transformation retains the 𝐿-language
ℒ∶ Σ⋆ → 𝐿 of the original lattice automaton. For each 𝜎 ∈ Σ⋆, we have:

ℒ(𝜎) = {
𝜈(𝜎) if 𝜎 ∈ ℒ(𝔙)
⊥ otherwise

Here, ⊥ is the bottom element of the bounded lattice 𝐿 (cf. Section 2.2.3). While the
reverse transformation also applies if𝒱 is a bounded lattice and the VTS is finite, VTSs
are more general as they only require the verdict domain 𝒱 to be a join-semilattice,
may be non-deterministic, and may be infinite.

Relation to Runtime Monitoring. Leucker and Schallhart characterize a runtime
monitor as “a device that reads a finite trace and produces a certain verdict” [LS09,
p. 294]. They go on to note that “a verdict is typically a value from some truth domain
[and] a truth domain is a lattice with a unique top element true and a unique bottom
element false.” VTSs are similar to this idea, however, they use a specificity ordering
instead of a classical truth ordering (cf. Section 3.1), which is the crux enabling us
to deal with observational imperfections. Again, the order of a truth domain would
follow a traditional truth order, where true and false are the bounds, however, a
specificity ordering will diverge from that (recall Figure 3.1).

Relation to Moore Machines. As pointed out in Section 2.2.1, state-labeled tran-
sition systems are a potentially infinite and non-deterministic generalization of
Moore machines [cf. Moo56]. At its core, a VTS is a transition system with verdict-
labeled states. If a VTS is finite and deterministic, then it is indeed a Moore machine
outputting a verdict when fed an observation sequence as input.

3.2. VERDICT TRANSITION SYSTEMS 57

3.2.1 Monotonicity, Refinement, and Equivalence

Next, we introduce VTS monotonicity, refinement, and equivalence. All three are
important foundational notions for VTSs and verdictors.

Monotonicity. An interesting class of VTSs is the class of monotonic VTSs. Intu-
itively, a VTSs is monotonic iff verdicts become only more specific as new observa-
tions are made. Let us first define what it takes for a state to be monotonic:

Definition 3.2.3 A state 𝑞 ∈ 𝒬 of a VTS ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ is called mono-
tonic iff 𝜈(𝑞′) ⊑ 𝜈(𝑞) for all its successors 𝑞′ ∈ Post({𝑞}, Obs).

That is, the verdicts of the state’s successors are at least as specific as the verdict of
the state itself. This definition is straightforwardly lifted to VTSs:

Definition 3.2.4 A VTS is monotonic iff all its states are monotonic.

If a VTS is not monotonic, then it is called non-monotonic.

Example 3.2 The simplified diagnoser for the coffee machine discussed in Example 3.1
is monotonic. Recall that it identifies faults which certainly occurred. Once a fault cer-
tainly occurred, it cannot be made undone. Hence, any VTS identifying faults which
certainly occurred is monotonic. If we look at traditional diagnoser constructed from
the coffee machine (see Example 2.8) and its verdict domain (recall Definition 3.1.2),
we see that the traditional diagnoser is non-monotonic. After requesting a coffee
in the initial state of the diagnoser, the verdict becomes less specific, as it is now
possible that the machine functions normally, that the pump broke, or that there has
been a short circuit.

Refinement. Typically, one is interested in verdicts that are as specific as possible,
i.e., most specific without sacrificing correctness. For instance, in case of Example 3.1,
one wants the verdict to contain all faults that certainly occurred but no faults that
did not certainly occur. To formally capture that a VTS yields more specific verdicts
than some other VTS, we introduce a refinement relation.

Definition 3.2.5 Let 𝔙1 and 𝔙2 be two VTSs over some verdict domain ⟨𝒱, ⊑⟩.
We say that 𝔙1 refines 𝔙2, denoted by 𝔙1 ⦤ 𝔙2, iff

(RE1) 𝔙1 and 𝔙2 have the same language, i.e., ℒ(𝔙1) = ℒ(𝔙2), and

(RE2) 𝔙1 produces at least as specific verdicts as 𝔙2, i.e., 𝜈1(𝜔) ⊑ 𝜈2(𝜔) for
all observation sequences 𝜔 of their language, i.e., for all 𝜔 ∈ ℒ(𝔙1).

58 CHAPTER 3. THEORETICAL FRAMEWORK

Equivalence. If two VTSs produce exactly the same verdict for each observation
sequence, then we may favor one over the other for other properties. For instance,
one may be smaller than the other. To formally capture that two VTSs are equivalent
in that sense, we introduce an equivalence relation.

Definition 3.2.6 Let 𝔙1 and 𝔙2 be two VTSs over the same verdict domain. We
say that 𝔙1 and 𝔙2 are verdict-equivalent, denoted by 𝔙1 ≡ 𝔙2 iff they refine
each other, i.e., iff 𝔙1 ⦤ 𝔙2 and 𝔙2 ⦤ 𝔙1.

It is easy to see that ≡ is indeed an equivalence relation, i.e., that it is reflexive,
transitive, and symmetric. Furthermore, it is the coarsest equivalence relation such
that equivalent VTSs produce the same verdicts for all observation sequences:

Lemma 3.2.2 Given two VTSs, 𝔙1 and 𝔙2, over some verdict domain ⟨𝒱, ⊑⟩ and
with ℒ(𝔙1) = ℒ(𝔙2), 𝔙1 ≡ 𝔙2 iff 𝜈1(𝜔) = 𝜈2(𝜔) for all 𝜔 ∈ ℒ(𝔙1).

Proof. As ℒ(𝔙1) = ℒ(𝔙2), (RE1) is mutually satisfied. If 𝔙1 ≡ 𝔙2, then mutually
(RE2) and, hence, 𝜈1(𝜔) = 𝜈2(𝜔) for all 𝜔 ∈ ℒ(𝔙1) due to antisymmetry of ⊑. If
𝜈1(𝜔) = 𝜈2(𝜔), then mutually (RE2) due to reflexivity of ⊑.

Remark. For a given language ℒ ⊆ Obs⋆ and verdict domain ⟨𝒱, ⊑⟩, refinement
induces a complete join-semilattice among those equivalence classes of VTSs that
accept ℒ. The top element of this join-semilattice is the class of VTSs that accept ℒ
and produce the least-specific verdict of the verdict domain. The join of this join-
semilattice combines VTSs towards a VTS that produces most specific verdicts that
are at most as specific as the verdicts produced by the individual VTSs. For finite VTSs,
the join can be computed by a straightforward product construction and combining
the verdicts of product states with the join of the verdict domain.

3.2.2 Determinization and Minimization

Recall that VTSs will serve as a target representation for verdictor synthesis (FT2). For
this, it is desirable that synthesized VTSs are deterministic andminimal. Deterministic
VTSs are straightforwardly implemented by an efficient lookup table and storing a
single state which is updated in response to new observations. If a VTS is minimal,
then the size of the individual states as well as the lookup table is minimized, which
is especially important when implementing VTSs on space-constrained devices such
as embedded devices or FPGAs [Bod+04; Zha+22].

In the following, we establish results for the determinization and minimization
of finite VTSs, as they may be used to explicitly represent verdictors.

3.2. VERDICT TRANSITION SYSTEMS 59

Determinization. In automata theory it is well-known that a non-deterministic
finite automaton can be transformed into an equivalent deterministic one at the
cost of an exponential blow up of the state space [RS59]. A similar result has been
shown for lattice automata [KL07]. Similarly, any finite VTS can be determinized by
applying the usual power set construction [RS59].

Definition 3.2.7 Let 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ be a finite VTS. We define a
deterministic VTS 𝔙det ≔ ⟨℘(𝒬) ∖ ∅, {𝐽} ,Obs,⇾′, 𝒱, ⊑, 𝜈′⟩ with

𝜈′(𝑄) ≔ ⨆{𝜈(𝑞) | 𝑞 ∈ 𝑄 } (3.2)

and where ⟨𝑄, o, 𝑄′⟩ ∈ ⇾′ iff 𝑄′ = Post(𝑄, {o}) ≠ ∅.

Importantly, determinization preserves the produced verdicts:

Theorem 3.2.1 For each finite VTS 𝔙, 𝔙 and 𝔙det are verdict-equivalent.

Proof. From the traditional power set construction we inherit that 𝔙det is indeed
deterministic, that it accepts the same language as 𝔙, and that ∇Postdet(𝜔) = Post(𝜔)
for all 𝜔 ∈ ℒ(𝔙). Applying Lemma 3.2.2, it remains to show 𝜈(𝜔) = 𝜈det(𝜔) for all
𝜔 ∈ ℒ(𝔙). Using definitions (3.1) and (3.2), we obtain:

𝜈(𝜔) = ⨆{ 𝜈(𝑞) | 𝑞 ∈ Post(𝜔) } = 𝜈det(∇Postdet(𝜔)) = 𝜈det(𝜔)

This result also generalizes to infinite VTSs. If a VTS is infinite, then the join
in (3.2) may be over an infinite non-empty set of verdicts. As the verdict domain
is a complete join-semilattice (recall Definition 3.1.1), the join of any infinite set of
verdicts is defined. Hence, Definition 3.2.7 also applies to infinite VTSs.

The complexity of the construction for finite VTSs is inherited from the traditional
power set construction. As with standard finite automata, determinization may lead
to an exponential blowup of the reachable state space. In addition, for each of the 2|𝒬|

states of 𝔙det the join over at most |𝒬| verdicts must be computed as per (3.2). Hence,
the worst-case time complexity is 𝒪(2|𝒬| ⋅ LOpCost(|𝒬|)). Recall that LOpCost(𝑘) is
the complexity of computing the join/meet over 𝑘 elements (cf. Section 2.1).

Minimization. In addition to determinization, another well-known result in au-
tomata theory concerns minimization. For any finite automaton there is a unique
minimal deterministic finite automaton accepting the same language [Ner58; Myh57].
This result carries over to VTSs. Let us first define minimality.

60 CHAPTER 3. THEORETICAL FRAMEWORK

Definition 3.2.8 A finite deterministic VTS 𝔙 is minimal iff all deterministic
VTSs that are verdict-equivalent to 𝔙 have at least as many states as 𝔙.

We now establish the following result.

Theorem 3.2.2 For each finite VTS there is a unique minimal deterministic VTS.

Proof Sketch. In contrast to deterministic finite automata, the transition relation
of a deterministic VTS may be a partial function. To see why the results for finite
automata carry over to finite VTSs, assume all missing transitions to end in a non-
accepting trap state, while all other states are accepting. In the minimal VTS, states
then correspond to the classes of the coarsest partition where states with distinct
verdicts or Myhill-Nerode equivalence classes [Ner58; Myh57] are separated. These
classes guarantee verdict-equivalence as states with different verdicts or a different
language belong to different classes. Further, there cannot be less states since this
would require merging states with different verdicts or Myhill-Nerode classes, which
would result in a VTS that is no longer verdict-equivalent.

Typical minimization algorithms for finite automata use partition refinement.
Building upon Hopcroft’s earlier work [Hop71], Valmari and Lehtinen present an
algorithm starting with a partition into accepting and non-accepting states [VL08].
Their algorithm is specifically designed for finite automata with partial transitions.
VTSs do not have accepting and non-accepting states but they do have partial tran-
sitions, i.e., they are not input-enabled. The algorithm by Valmari and Lehtinen
is easy to adapt for VTS minimization by initially partitioning states according to
their verdicts instead of into accepting and non-accepting states. The worst-case
time complexity for the resulting VTS minimization algorithm is inherited from the
original algorithm for finite automata with partial transitions since all states of a
VTS may still form their own class. It lies in 𝒪(|⇾| ⋅ log |𝒬|).

Recall that VTSs generalize lattice automata via simplification (see Lemma 3.2.1). A
similar minimization result for simple lattice automata has been stated by Halamish
and Kupferman, while for general LAs minimization has been shown to be NP-
complete [HK15]. General LAs allow for a more succinct representation than simple
LAs explaining the complexity difference for their minimization.

3.3 Observation Models
With VTSs, we introduced a formal representation of verdictors (recall Figure 1.1). We
will now introduce observation models as a formalization of how system runs give rise
to observation sequences, which can then be fed into a verdictor to obtain a verdict.
Given a setObs of observables and a TS𝔖, the idea is that each run 𝜌 ∈ Runs(𝔖) gives

3.3. OBSERVATION MODELS 61

rise to some observation sequence in a set Ω(𝜌) ⊆ Obs⋆, i.e., Ω(𝜌) is the non-empty
set of observation sequences that a given run may generate. Having a set for each run
enables us to have multiple possible observation sequences per run, e.g., as the result
of non-deterministic losses of observations. If a run 𝜌 generates some observation
sequence 𝜔 ∈ Ω(𝜌), then the observation sequence should be a continuation of some
earlier observation sequence generated by some prefix of the run. The intuition
behind this continuity criterion is that observations are assumed to arrive one at
a time. Thus, there must not be any gaps or jumps from one observation sequence
to a completely different one. Formally, these considerations give then rise to the
following definition of observation models.

Definition 3.3.1 Given a transition system 𝔖 and a set Obs of observables, an
observation model is a function Ω∶ Runs(𝔖) → ℘(Obs⋆) ∖ {∅} mapping each
run 𝜌 ∈ Runs(𝔖) of 𝔖 to a non-empty set of observation sequences Ω(𝜌) ⊆ Obs⋆

such that the following condition is met for each 𝜔 ∈ Ω(𝜌):

∃0 ≤ 𝑚 ≤ |𝜌| ∶ Tail(𝜔) ∈ Ω(𝜌[1..𝑚]) ∧ ∀𝑚 < 𝑘 ≤ |𝜌| ∶ 𝜔 ∈ Ω(𝜌[1..𝑘]) (3.3)

Runs(𝔖) ∋ 𝜌

Ω(𝜌) ∋ 𝜔

∃𝑚

Tail(𝜔)

∀𝑚 < 𝑘 ≤ |𝜌|

Figure 3.5: Visual representation of condition (3.3) of Definition 3.3.1.

Figure 3.5 visualizes the condition (3.3) of Definition 3.3.1. The dashed lines represents
themapping from prefixes of the run to observation sequences. The definition requires
that some prefix of length 𝑚 generates the tail of the observation sequence and that
all longer prefixes generate the entire observation sequence. As any prefix of a run
is itself a run, the definition then also applies to the prefixes and the observation
sequences they generate, in particular, to the prefix of length 𝑚 that generates
Tail(𝜔). Hence, all prefixes of the run must be mapped to corresponding prefixes
of the observation sequence while adhering to Definition 3.3.1. Figure 3.6 shows a
possible mapping by some observation model. While any transition of a run may
give rise to none, a single, or multiple new observations, Definition 3.3.1 effectively
ensures that observation sequences can always be extended one observation at a
time.

62 CHAPTER 3. THEORETICAL FRAMEWORK

Runs(𝔖) ∋ 𝜌

Ω(𝜌) ∋ 𝜔

Figure 3.6: Possible mapping from a run’s prefixes to observation sequences.

We call an observation model deterministic iff it assigns a unique observation
sequence to each run, i.e., iff |Ω(𝜌)| = 1 for all 𝜌 ∈ Runs(𝔖). Otherwise, it is non-
deterministic. Non-deterministic observation models will become key when we model
observational imperfections, such as non-deterministic losses, where there simply is
no uniquely determined observation sequence per system run.

Example 3.3 Recall Example 3.1 where we gave a VTS indicating faults which cer-
tainly occurred only by observing the non-fault actions of the system in Figure 2.1.
Formally, the observations fed to the VTS are obtained through the model

Ω(𝜌) ≔ {Trace(𝜌)⇂Act∖Faults}

where Faults ≔ {short_circuit, pump_fault} is the set of fault actions. For each
run 𝜌, Ω takes the trace Trace(𝜌) and then projects onto the non-fault actions. Hence,
Ω is deterministic as each run maps to exactly one projected trace.

Possible Runs. While the observation model maps runs to sets of possible obser-
vations sequences, we can also consider the opposite direction in order to obtain a
set Runs(𝜔) of possible runs for each observation sequence 𝜔 ∈ Obs⋆:

Runs(𝜔) ≔ { 𝜌 ∈ Runs(𝔖) | 𝜔 ∈ Ω(𝜌) } (3.4)

Having observed 𝜔, we know that the potentially ongoing run of the system must
be in the set Runs(𝜔) as only those runs can give rise to the observation sequence 𝜔
through the observation modelΩ. Having observed 𝜔, we are then usually interested
in properties of the set Runs(𝜔) of possible runs.

Example 3.4 In case of diagnosis, having observed some sequence 𝜔 of observable
actions, a fault certainly occurred iff it occurred on all runs Runs(𝜔) possible given
𝜔: If a fault occurred on all runs possible given 𝜔, then there exists no run that may
generate the observation sequence 𝜔 and where the fault did not occur. Hence, the
fault certainly occured. Recall the VTS for diagnosing the coffee machine (Figure 3.4).
Indeed, assuming that the coffee machine (Figure 2.1) is observed through the model
defined previously in Example 3.3, this VTS produces the largest set of fault classes of
which faults occurred on all possible runs for an observation sequence, i.e., of which
faults certainly occurred. Phrased differently, it produces most specific verdicts that
accurately capture which faults certainly occurred.

3.3. OBSERVATION MODELS 63

Observable Language. When viewed through an observation model, the runs of
a system give rise to an observable language ℒ⇂Ω(𝔖) ⊆ Obs⋆. That is, the set of all
observation sequences that may be generated by some run of the system. It captures
which observations a verdictor may possible make when observing the system.

Definition 3.3.2 Given a transition system 𝔖, a set Obs of observables, and an
observation model Ω∶ Runs(𝔖) → ℘(Obs⋆) ∖ {∅}, we define the observable
language ℒ⇂Ω(𝔖) of 𝔖 with respect to Ω as follows:

ℒ⇂Ω(𝔖) ≔⋃{Ω(𝜌) | 𝜌 ∈ Runs(𝔖) }

Intuitively, all the observation sequences in ℒ⇂Ω(𝔖) may be observed by a verdictor
at some point. Note that ℒ⇂Ω(𝔖) is prefix-closed due to the properties of observation
models, hence, if 𝜔 may be observed, then all prefixes of it may be observed. This
does not come as a surprise as we defined observation models in a way such that
they can be continued one observation at a time (cf. Definition 3.3.1).

Lemma 3.3.1 Given a transition system 𝔖, a set Obs of observables, and an
observation model Ω∶ Runs(𝔖) → ℘(Obs⋆) ∖ {∅}, the observable language
ℒ⇂Ω(𝔖) of 𝔖 with respect to Ω is prefix-closed. Formally, that is:

∀𝜔′ ∈ ℒ⇂Ω(𝔖) ∶ Tail(𝜔′) ∈ ℒ⇂Ω(𝔖)

Proof. Lemma 3.3.1 follows from Definition 3.3.1 and the fact that Runs(𝔖) is prefix-
closed. Let 𝜔′ ∈ ℒ⇂Ω (𝔖). As 𝜔′ ∈ ℒ⇂Ω (𝔖), there must exist a run 𝜌′ ∈ Runs(𝔖)
such that 𝜔′ ∈ Ω(𝜌′). We have to show that Tail(𝜔′) ∈ ℒ⇂Ω (𝔖). In case 𝜔′ = 𝜖,
we have Tail(𝜔′) ∈ ℒ⇂Ω (𝔖) since Tail(𝜔′) = 𝜖, 𝜖 ∈ Ω(𝜖) as per Definition 3.3.1,
and 𝜖 ∈ Runs(𝔖) as Runs(𝔖) is prefix-closed. Otherwise, if 𝜔′ = 𝜔 ⋄ o, we have
Tail(𝜔′) ∈ ℒ⇂Ω (𝔖) since there exists a prefix 𝜌 ∈ Pref(𝜌′) such that 𝜔 ∈ Ω(𝜌) by
condition (3.3) of Definition 3.3.1.

As any observable language is prefix-closed (Lemma 3.3.1), each observation
sequence can indeed be continued one observation at a time. To this end, we define a
set Next(𝜔) of possible next observables and a set Cont(𝜔) of possible continuations of
an observation sequence 𝜔 ∈ ℒ⇂Ω(𝔖). Given 𝜔 ∈ ℒ⇂Ω(𝔖), we define:

Next(𝜔) ≔ { o ∈ Obs | 𝜔 ⋄ o ∈ ℒ⇂Ω(𝔖) } (3.5)

Cont(𝜔) ≔ {𝜔′ ∈ ℒ⇂Ω(𝔖) | 𝜔 ∈ Pref(𝜔′) } (3.6)

Trace Observation Model. It is a common assumption that the actions, or a
subset of them, of a TS can be observed. This is the case for traditional model-based
diagnosis (cf. Section 2.6) and the atomic propositions of our LTL runtime verification

64 CHAPTER 3. THEORETICAL FRAMEWORK

example were also based on the actions of the coffee machine model (cf. Section 2.5.1).
Capturing this assumption with an observation model is straightforward:

Definition 3.3.3 For a TS 𝔖, we define the trace observation model ΩTrace by:

ΩTrace(𝜌) ≔ {Trace(𝜌)}

The trace observation model is deterministic as there is a unique trace for any given
run of a TS. Furthermore, the observable language of a TS according to the trace
observation model is exactly the language of the TS.

Proposition 3.3.1 Let 𝔖 be a TS. The observable language ℒ⇂ΩTrace
(𝔖) induced

by the trace observation model ΩTrace is the language of 𝔖. Formally, that is:

ℒ⇂ΩTrace
(𝔖) = ℒ(𝔖)

Proof. Follows trivially from the respective definitions.

Observation models are a very general modeling formalism for capturing which
runs of a system may generate which observation sequences. For the purposes
of this thesis, we mostly consider observation models that are derived from the
trace observation model. In general, however, different models are conceivable, for
instance, models that extract variables from states, or even combine state and action
information. While we will usually take the trace observation model as a basis, some
of our results, in particular the VTS transformations developed as part of Contribution
TT, also work for arbitrary other observation models. This is enabled by the concept
of observation model transformers that we discuss next.

3.3.1 Observation Model Transformers

Technically, we could describe different observational imperfections by spelling out
observation models for each of them individually, as we have done in Example 3.3.
Instead, we aim to make observational imperfections composable such that multiple
orthogonal imperfections can be layered on-top of existing observation models. To
this end, we introduce observation model transformers as a central instrument for
modeling observational imperfections in a composable way.

Approaching observational imperfections in a composable way has two main
advantages: First, it makes it easier to specify specific observation models, as they
can be obtained by taking a base model and transforming it appropriately, thereby
allowing reusability. Second, it enables us to take a modular approach towards VTS
synthesis. In particular, the correctness of the VTS transformations developed as part

3.3. OBSERVATION MODELS 65

of Contribution TT will be proven relative to observation model transformers and,
thus, also work for arbitrary base models.

An observation model transformer Θ transforms one observation model into
another. Formally, an observation model transformer is a partial function Θ∶ 𝑋⇀ 𝑋
where 𝑋 is the set of all observation models for all transition systems and sets of
observables. They are partial functions as they may require certain preconditions on
the observation models to which they apply. To avoid unnecessary formal overhead,
we omit a detailed formal exposition of this general concept. The value lies primarily
in the concept itself. We are going to define concrete instances throughout this thesis
to handle limited observability and network-induced delays and losses (cf. Chapter 1).
The observation model transformers for delays and losses will be introduced later
in Section 4.3, where we also present the corresponding VTS transformations. The
transformer for limited observability is introduced here.

LimitedObservability. In practice, there are always limits towhat can be observed.
For instance, network bandwidth, the cost of deploying sensors, and the performance
penalty for instrumenting software with logging, limit the observations that can be
made about a system in practice. Formally, we capture this by assuming that only
a certain subset OAct ⊆ Act of actions Act of a system model can be observed. In
case of fault diagnosis of the coffee machine (Example 3.3), we already saw such an
example where only non-fault actions can be observed.

In general, given an observation model Ω∶ Runs(𝔖) → ℘(Obs⋆) ∖ {∅} over a
set Obs of observables, limited observability restricts the observables to a subset
O ⊆ Obs, i.e., starting with an observation model where Obs are the observables,
we end up with an observation model where the set of observables is limited to O.
Formally, this transformation is defined as follows:

Definition 3.3.4 Given an observation model Ω∶ Runs(𝔖) → ℘(Obs⋆) ∖ {∅}
over a set Obs, we define the O-restriction of Ω for O ⊆ Obs as:

Ω⇂O (𝜌) ≔ {𝜔⇂O | 𝜔 ∈ Ω(𝜌) }

Recall that 𝜔⇂O removes all the symbols from 𝜔 that are not in O (see Section 2.1).
The observation model transformer ⋅⇂O preserves determinism.

Proposition 3.3.2 If Ω is deterministic, then Ω⇂O is deterministic.

Proof. Trivially follows from Definition 3.3.4.

Example 3.5 The observation model defined in Example 3.3 for diagnosis of the coffee
machine can now simply be composed from ΩTrace and ⋅⇂O. It is ΩTrace⇂Act∖Faults. That

66 CHAPTER 3. THEORETICAL FRAMEWORK

is, all actions except the fault actions are observable. In general, the observation
model implicitly assumed for traditional model-based fault diagnosis is ΩTrace⇂OAct,
where OAct is the set of observable actions (cf. Section 2.6). The existing work does,
however, not define this observation model compositionally.

Observability limits as described above have been discussed in the literature
under the term “partial observability” before [RW89]. They are also central to model-
based diagnosis where faults are assumed unobservable [Sam+95] (recall Section 2.6).
We reframed those ideas in the broader theoretical framework introduced thus far.
Importantly, while being able to capture observability limitations, the framework
we present here is more general and powerful. We will demonstrate and exploit
this expressive power later when modeling network-induced delays and losses as
well as clock drift and offsets within the framework. Related to limited observability
is “partial observability” as it appears in the literature on decision making under
uncertainty [Åst65]. In contrast to the notion of partial observability in the works
mentioned before [RW89; Sam+95], here observations are subject to probabilistic
noise, i.e., whenever an event occurs observations are made according to some proba-
bility distribution. Observation models as we introduced them can over-approximate
this notion of partial observability by considering all observables possible which do
have a non-zero probability. We leave it to future work to investigate the extension of
observation models to the probabilistic setting. For the observational imperfections
we consider in this thesis, such an extension is not required.

3.3.2 Applicability and Tightness
Verdictors should be able to account for any observation sequences that a system
may generate according to an observation model. Otherwise, we may end up in
an undefined situation where we have observed something but the verdictor will
not provide any verdict for it. Recall that a system may generate any observation
sequence of its observable language (recall Definition 3.3.2). Thus, we require that
the VTS representing a verdictor provides a verdict for all these words. We call this
requirement applicability and formally define it as follows.

Definition 3.3.5 Let 𝔖 be a TS and Ω∶ Runs(𝔖) → ℘(Obs⋆) ∖ {∅} be an
observation model. A VTS 𝔙 is applicable with respect to 𝔖 andΩ iff the language
ℒ(𝔙) of 𝔙 is a superset of the observational language ℒ⇂Ω(𝔖) of 𝔖 with respect
to Ω, i.e., 𝔙 is applicable iff ℒ(𝔙) ⊇ ℒ⇂Ω(𝔖).

If a VTS 𝔙 is applicable, then it produces a verdict 𝜈(𝜔) for each observation sequence
that may be generated by the system through the observation model. Otherwise,
if a VTS is not applicable, then there exist observation sequences which may be
generated by the system but for which the VTS does not produce a verdict. We

3.3. OBSERVATION MODELS 67

always require applicability as it guarantees that we never end up in an undefined
situation at runtime where no verdict would be provided.

From a language-theoretic perspective, the question whether a VTS is applicable
with respect to a given system and observationmodel constitutes a language inclusion
problem. Language inclusion has been studied in the literature for various classes of
languages. In case the language of the VTS and the observable language of the TS
system model with respect to an observation model fall into a certain class, those
results naturally carry over to deciding applicability. For instance, if the respective
languages are regular then applicability is decidable [HMU01]. Notably, this is the
case if both the VTS the and system model are finite and the observation model
preserves regularity. An example of an observation model preserving regularity is the
trace model combined with limited observability. This is the case because projection is
known to preserve regularity [JM11]. In general, neither VTSs nor TSs nor observation
models pose any restrictions on the respective languages (except being prefix-closed).
Without any restrictions, language inclusion is known to be undecidable [HMU07].
This result carries over to general VTSs and TSs which can be infinite and, therefore,
can model the execution of an arbitrary Turing Machine. Furthermore, observation
models may not be computable. The particular VTS constructions presented in this
thesis guarantee applicability for the resulting VTSs.

Tightness. A VTS that is applicable may produce verdicts for observation se-
quences that are never actually generated by a given system. As such, it represents
and accounts for behavior that cannot actually be realized by a given system. The
VTS transformations presented later, in particular, for predictions, will require a VTS
to tightly capture the behavior of a given system. To this end, we introduce a stronger
variant of applicability, which we call tightness.

Definition 3.3.6 Let 𝔖 be a TS and Ω∶ Runs(𝔖) → ℘(Obs⋆) ∖ {∅} be an
observation model. A VTS 𝔙 is tight with respect to 𝔖 and Ω iff the language
ℒ(𝔙) of 𝔙 is the same as the observational language ℒ⇂Ω(𝔖) of 𝔖 with respect to
Ω, i.e., 𝔙 is tight iff ℒ(𝔙) = ℒ⇂Ω(𝔖).

If a VTS 𝔙 is tight, then it produces a verdict 𝜈(𝜔) for all and only those observation
sequences that may be generated by the system through the observation model. It is
easy to see that any tight VTS is also applicable.

From a language-theoretic perspective, the question whether a VTS is tight with
respect to a given system and observation model constitutes a language equivalence
problem. Language equivalence has been studied in the literature for various classes
of languages and is known to be undecidable in general [HMU07]. As for deciding
applicability, those results carry over to tightness if the languages fall into the

68 CHAPTER 3. THEORETICAL FRAMEWORK

respective classes. For the VTS constructions and transformations presented in this
thesis, we show tightness and its preservation, respectively.

Example 3.6 The VTS for diagnosing the coffee machine shown in Figure 3.4 is tight
with respect to the system model shown in Figure 2.1 and the observation model as
defined in Example 3.3. It accepts exactly the traces of the original model with the
fault actions being removed by projection.

If a given finite VTS 𝔙 is not tight with respect to a given finite system model
𝔖 = ⟨𝒮, 𝐼,Act,↠⟩ and the observation model ΩTrace⇂OAct where OAct ⊆ Act is an
observable subset of the actions of 𝔖, we can transform 𝔙 such that it becomes tight
by building the synchronized product of the VTS 𝔙 and system model 𝔖. Formally,
this transformation, coined tightening, is the product of the VTS 𝔙 and the system
model 𝔖 obtained by synchronizing over the observable actions OAct:

Definition 3.3.7 Let 𝔖 = ⟨𝒮, 𝐼,Act,↠⟩ be a TS and 𝔙 = ⟨𝒬, 𝐽,OAct,⇾, 𝒱,⊑, 𝜈⟩
be an applicable VTS with OAct ⊆ Act. Let 𝔙′ ∶= ⟨𝒮 × 𝒬,Act, 𝐼 × 𝐽, 𝑇 ′, 𝒱, 𝜈′⟩ be
a VTS with 𝜈′(⟨𝑠, 𝑞⟩) = 𝜈(𝑞), and where ⟨⟨𝑠, 𝑞⟩ , 𝛼, ⟨𝑠′, 𝑞′⟩⟩ ∈ 𝑇 ′ iff (1) 𝛼 ∈ OAct,
⟨𝑠, 𝑠′⟩ ∈ ↠, and ⟨𝑞, 𝑞′⟩ ∈ ↠′, or (2) 𝛼 ∉ OAct, ⟨𝑠, 𝑠′⟩ ∈ ↠, and 𝑞 = 𝑞′.

The VTS 𝔙′ specializes 𝔙 for the system model𝔖. As 𝔙 is applicable, the language of
the product becomes the language of the TS, i.e., ℒ(𝔙′) = ℒ(𝔖). Further, the verdicts
produced by 𝔙′ are carried over from the original VTS 𝔙, i.e., 𝜈′(𝜔) = 𝜈(𝜔⇂OAct) for
each 𝜔 ∈ ℒ(𝔙′). The worst-case time complexity for this tightening construction is
𝒪(|𝒬| ⋅ |𝒮| ⋅ |↠| ⋅ |↠′|).

3.4 Provably Accurate Verdicts
Recall that it is an express purpose of the theoretical framework to provide rigorous
criteria for what it means for a verdictor to produce accurate verdicts with respect to
a given system and observation model (FT1). We assumed that verdicts come with
an inherent notion of specificity, partially ordering them from least specific to most
specific. We want verdicts to at least correctly reflect the state of the system at all
times. For instance, a runtime monitor should only indicate that a property is satisfied,
if the property is indeed satisfied. If a runtime monitor, however, cannot determine
whether a property is satisfied or violated, it may also provide the unknown verdict
? (cf. Section 3.1). The challenge lies in producing verdicts that are as specific as
possible, i.e., without sacrificing correctness. If we can tell that a property is satisfied
or violated, that a fault occurred, or that the system is in a certain configuration,
then we should indicate so. Otherwise, we still want to be as specific as possible, as a
safely approximating answer is always better than none. In the following, we refer
to these verdicts as being most specific, also implying correctness.

3.4. PROVABLY ACCURATE VERDICTS 69

With VTSs as a representation of verdictors and observation models as a tool
for describing which runs of a system may generate which observation sequences,
we now have everything we need to define what it takes for a verdictor to produce
correct verdicts and most specific verdicts. We define both notations with respect to
a verdict oracle which provides a ground truth for verdicts.

Definition 3.4.1 Given a verdict domain ⟨𝒱, ⊑⟩ and a transition system 𝔖, a
verdict oracle is a function V∶ Runs(𝔖) → 𝒱 assigning a verdict to each run.

A verdict oracle is omniscient in the sense that it has access to the entire run, including
the states which have been visited and the transitions which have been taken. Based
on all this information, it then assigns a verdict to a given run.

Verdict oracles must be defined according to the intended purpose of a verdictor.
For instance, fault diagnosis requires a different verdict oracle than configuration
monitoring: Given a run, the former needs to look at occurred faults while the latter
needs to look at a system’s configuration.

Analogously to VTSs, we call a verdict oracle monotonic iff the verdicts it ascribes
to runs only ever get more specific as a run progresses.

Definition 3.4.2 A verdict oracle V∶ Runs(𝔖) → 𝒱 is monotonic iff V(𝜌′) ⊑
V(𝜌) for all 𝜌′ ∈ Runs(𝔖) and 𝜌 ∈ Pref(𝜌′).

Example 3.7 For an example, recall the VTS for diagnosis of the coffee machine
(Example 3.1). In this case, we are interested in faults that certainly occurred. Here,
the verdict oracle must collect all the faults that occurred on a given run:

V(𝜖) ≔ ∅ V(𝜌 ⋄ ⟨𝑠, 𝛼, 𝑠⟩) ≔ {
{𝛼} ∪ V(𝜌) if 𝛼 ∈ Faults

V(𝜌) otherwise

Given a run, this verdict oracle provides a ground truth regarding the faults that
occurred on that run. This verdict oracle is also monotonic. In itself, a verdict oracle
does not yet provide a specification for a verdictor. Such a specification is obtained
when instantiating the subsequent definitions with a verdict oracle.

Most Specific Verdicts. Given an observation sequence 𝜔, we know that any of
the runs in Runs(𝜔) may be the current ongoing run which generated 𝜔. If we join
the verdicts assigned to these runs by the verdict oracle, then we obtain the most
specific verdict, denoted by V(𝜔), for any given observation sequence 𝜔:

V(𝜔) ≔ ⨆{V(𝜌) | 𝜌 ∈ Runs(𝜔) } (3.7)

Note that the join exists for any observation sequence in the observable language
because the verdict domain is a complete join-semilattice and there is at least one
run generating each observation sequence in the observable language.

70 CHAPTER 3. THEORETICAL FRAMEWORK

3.4.1 Sound, Complete, and Robust VTSs

With soundness and completeness we now define two criteria for VTSs that together
guarantee that a VTS produces the most specific verdict. A VTS is called provably
accurate iff it has been proven to be sound and complete. A verdictor is provably
accurate iff its VTS model has been proven sound and complete.

Soundness. A verdict produced by a VTS for an observation sequence is correct
iff it is at most as specific as the verdict produced by the verdict oracle for a run
that may generate the observation sequence. That is, a correct verdict is a safe
over-approximation of each verdict ascribed by the verdict oracle to a run that may
generate the sequence. We also call such verdicts sound.

Formally, soundness of a VTS is defined as follows:

Definition 3.4.3 Let𝔖 be a TS, Ω∶ Runs(𝔖) → ℘(Obs⋆)∖{∅} be an observation
model, V∶ Runs(𝔖) → 𝒱 be a verdict oracle, and 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ be
an applicable VTS over the verdict domain ⟨𝒱, ⊑⟩. We call 𝔙 sound with respect
to 𝔖, V, and Ω iff V(𝜌) ⊑ 𝜈(𝜔) for all 𝜔 ∈ ℒ⇂Ω(𝔖) and 𝜌 ∈ Runs(𝜔).

Recall that any run in Runs(𝜔) may generate an observation sequence 𝜔.

Example 3.8 The VTS for diagnosing the coffee machine as shown in Figure 3.4 (see
Example 3.1) is indeed sound with respect to the system model shown in Figure 2.1
(see Example 2.1), the observation model as defined in Example 3.3, and the verdict
oracle as defined above in Example 3.7. In this case, soundness means that a verdict
produced by the VTS only contains faults that actually occurred on all runs that may
induce an observation sequence, i.e., that certainly occurred.

A verdictor is sound iff it produces a verdict that is not more specific than the
most specific verdict. Formally, we obtain the following proposition:

Proposition 3.4.1 A VTS 𝔙 is sound with respect to𝔖, V, andΩ, iff V(𝜔) ⊑ 𝜈(𝜔)
for all 𝜔 ∈ ℒ⇂Ω(𝔖).

Proof Sketch. Follows from the join-semilattice properties.

Verdict domains have a least specific top element ⊤. A VTS always producing
this top element is guaranteed to be sound but is not practically useful. For instance,
in the case of diagnosis of certain faults, it would always be sound to simply indicate
that no faults certainly occurred, as this is the top element of the verdict domain as
per Definition 3.1.4. Hence, to arrive at a comprehensive specification, we need to
complement soundness with one of the completeness criteria presented next.

3.4. PROVABLY ACCURATE VERDICTS 71

Completeness. Based on the most specific verdict as per (3.7), we define a notion
of completeness complementing soundness. While soundness requires the verdict to
be at most as specific as the most specific verdict, completeness generally requires
the verdict to be at least as specific as the most specific verdict.

Definition 3.4.4 Let𝔖 be a TS, Ω∶ Runs(𝔖) → ℘(Obs⋆)∖{∅} be an observation
model, V∶ Runs(𝔖) → 𝒱 be a verdict oracle, and 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ be
an applicable VTS over the verdict domain ⟨𝒱, ⊑⟩. We call 𝔙 complete with respect
to 𝔖, V, and Ω iff 𝜈(𝜔) ⊑ ⨆ {V(𝜌) | 𝜌 ∈ Runs(𝜔) } for all 𝜔 ∈ ℒ⇂Ω(𝔖).

It is easy to see that a sound and complete VTS produces exactly the most specific
verdict for a given observation sequence. Formally, that is:

Lemma 3.4.1 A VTS 𝔙 is sound and complete with respect to 𝔖, V, and Ω, iff
𝜈(𝜔) = V(𝜔) for all 𝜔 ∈ ℒ⇂Ω(𝔖).

Proof Sketch. Follows from the antisymmetry of ⊑.

Example 3.9 The VTS for diagnosing the coffee machine as shown in Figure 3.4 (see
Example 3.1) is sound and complete with respect to the system model shown in
Figure 2.1 (see Example 2.1), the observation model as defined in Example 3.3, and
the verdict oracle as defined in Example 3.7. Hence, it identifies all and only those
faults that certainly occurred. In the corresponding verdict domain, the join ⊔ is set
intersection ∩. The verdict oracle (see Example 3.7) collects all faults that did occur on
a single run in a set. These sets are then intersected to obtain the most specific verdict
as per (3.7). Adding a fault to that set would render the verdict unsound as it means
that there exists a run where the fault did not occur, i.e., it did not certainly occur.
Analogously, removing a fault from the set would render the verdict incomplete, as
the fault occurred on all runs, i.e., it did certainly occur.

In terms of the refinement relation (see Section 3.2), a VTS produces most specific
verdicts iff it cannot be further refined without becoming unsound.

A significant part of this thesis is devoted to algorithms for implementing or
synthesizing verdictors such that the VTSs that represent them are sound and com-
plete for a given system and observation model. To this end, the definitions we just
provided serve as the specification and constitute proof obligations.

Δ-Completeness. In case observations are delayed, completeness requires us to
speculate about potential missing observations which the ongoing run will inevitably
generate. In particular, in the continuous-time setting, such speculation becomes
expensive and complicated. Instead of speculating, a verdictor may delay the most
specific verdict by some verdict offset Δ ∈ ℝ. We call this criterion Δ-completeness

72 CHAPTER 3. THEORETICAL FRAMEWORK

and formally define it with respect to a distance metric 𝑑∶ Obs⋆ × Obs⋆ → ℝ on
observation sequences. For instance, 𝑑(𝜔, 𝜔′) may be the (discrete) time difference of
two observation sequences 𝜔 and 𝜔′, i.e., 𝑑(𝜔, 𝜔′) ≔ |𝜔| − |𝜔′|.

Definition 3.4.5 Let𝔖 be a TS, Ω∶ Runs(𝔖) → ℘(Obs⋆)∖{∅} be an observation
model, V∶ Runs(𝔖) → 𝒱 be a verdict oracle, and 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ be
an applicable VTS over the verdict domain ⟨𝒱, ⊑⟩. Given a verdict offset Δ ∈ ℝ
and a distance metric 𝑑∶ Obs⋆ × Obs⋆ → ℝ, we call 𝔙 Δ-complete with respect
to 𝔖, V, andΩ iff 𝜈(𝜔′) ⊑ V(𝜔) for all 𝜔′ ∈ Cont(𝜔) as per (3.6) and 𝜔 ∈ ℒ⇂Ω(𝔖)
such that 𝑑(𝜔, 𝜔′) ≥ Δ.

Figure 3.7 visualizes Definition 3.4.5 for some continuation 𝜔′ ∈ Cont(𝜔) of an
observation sequence 𝜔. V(𝜔) is the most specific verdict as per (3.7) for the observa-
tion sequence 𝜔. 𝜈(𝜔′) is the verdict produced by the VTS for the continuation 𝜔′ of
𝜔. The definition requires that for all continuations 𝜔′ of an observation sequence 𝜔
with a distance of at least Δ (i.e., after a delay of at most Δ) the produced verdict 𝜈(𝜔′)
is at least as specific as the most specific verdict V(𝜔). Thus, instead of speculating
about potentially missing observations arriving later, a Δ-complete verdictor may
wait for future observations and only produce the most specific verdict after they
arrived. The verdict offset Δ serves as a statically known upper bound on the delay
with which the most specific verdict is produced. That is, in the worst case, the
production of the most specific verdict may be delayed by up to Δ.

Cont(𝜔) ∋ 𝜔′
𝜔

𝑑(𝜔, 𝜔′) ≥ Δ

𝜈(𝜔′) ⊑ V(𝜔)

Figure 3.7: Visualization of Definition 3.4.5 for some continuation 𝜔′ ∈ Cont(𝜔).

Definition 3.4.5 is a generalization of Δ-completeness as defined in the paper
on robust diagnosis of real-time systems by the author of this thesis [KH23]. The
original definition is specific to diagnosis of certain faults whereas the definition
presented here is generic over arbitrary verdict domains.

Note that Δ-completeness is limited to monotonic VTSs and verdict oracles, as it
concerns all possible continuations with a distance of at least Δ. Monotonic VTSs
occur for configuration monitoring and certain instances of fault diagnosis and
runtime verification.

Robustness. We say that a verdictor is robust against certain observational imper-
fections, if it is sound and complete or Δ-complete with respect to a given system
model, verdict oracle, and observation model where the observation model models

3.4. PROVABLY ACCURATE VERDICTS 73

the respective observational imperfections. That is, the verdictor produces most
specific verdicts despite being fed imperfect observations. For instance, we say that a
verdictor is robust against losses, if it produces most specific verdicts despite being fed
with observations that are subject to losses. We also apply this notion of robustness
to the algorithms we develop in Chapter 4 and Chapter 5. Those algorithms enable
the synthesis or implementation of robust verdictors given a system model.

3.4.2 VTS Synthesis Problem
Soundness and completeness provide a formal basis for the specification of verdictors.
The algorithms contributed in this thesis (Contribution TT) enable the synthesis
and implementation of verdictors that are indeed sound and complete—and, we will
prove that they do. Conceptually, these algorithms solve various instances of the
VTS Synthesis Problem, i.e., the problem of finding a VTS that produces most specific
verdicts for a given system with respect to an observation model:

VTS Synthesis Problem. Given a system model 𝔖, an observation model
Ω, and a verdict oracle V, find a VTS 𝔙 that produces sound and complete or
Δ-complete verdicts with respect to 𝔖, Ω, and V.

In the discrete-time setting and given a finite system model 𝔖, the synthesis algo-
rithms presented in Chapter 4 solve certain instances of the VTS Synthesis Problem
by explicitly synthesizing VTSs. The algorithms for the continuous-time setting
construct and explore a VTS on-the-fly at runtime. They solve the problem on a
conceptual level by providing an algorithm implementing a verdictor for a given
system and observation model. The VTS Synthesis Problem is meant to provide an
abstract description of the problems we are trying to solve. Verdictors and their VTS
models solving the VTS Synthesis Problem produce provably accurate verdicts with
respect to the involved models and verdict oracle.

Note that the objects appearing in the VTS Synthesis Problem may not be finitely
representable and that it is therefore easy to come up with verdict oracles or observa-
tion models that are not computable. In this general version, the problem statement
does not directly aim at algorithmic solutions. With a few assumptions on these
objects we will, however, be able to provide a general solution that applies to all
system models, observation models, and verdict oracles satisfying them.

A Naive Solution. Mathematically defining some VTS that produces most specific
verdicts is indeed straightforward. A VTS can simply track all observations in its
state and then produce the most specific verdict V(𝜔) as per (3.7):

74 CHAPTER 3. THEORETICAL FRAMEWORK

Proposition 3.4.2 Given a system model 𝔖, an observation model Ω, and a
verdict oracle V, a VTS 𝔙 producing most specific verdicts is given by

⟨Obs⋆, {𝜖} ,Obs,⇾, 𝒱,⊑, 𝜈⟩

where ⟨𝜔, o, 𝜔′⟩ ∈ ⇾ iff 𝜔′ = 𝜔 ⋄ o and 𝜈(𝜔) ≔ V(𝜔).

This definition works regardless of the system model, observation model, and verdict
oracle. As tracking all observations is trivially implemented, the crux of whether we
can actually implement this VTS hinges on whether V(𝜔) is computable. Algorithm 1
shows an algorithm for computing V(𝜔). It requires the following assumptions:
A1 The setΩ(𝜌) of observations generated by a run 𝜌 according to the observation

model must be finite and computable, as it is used in lines 8 and 12.
A2 The set of a one-step continuations of a run 𝜌, denoted by Next (𝜌) must be

finite and computable. A one-step continuation continues a run by exactly one
transition. It is used in line 7.

A3 The verdict oracle V must be computable. It is used in line 14.
A4 The join of two verdicts must be computable. It is used in line 14.
A5 In addition, the observation model must be such that always eventually a

new observation is generated, i.e., it should be impossible to continue a run
indefinitely without eventually getting a new observation. This property is
required to ensure termination of the algorithm.

The algorithm works by first computing the set 𝑅 of runs that may generate the
observation 𝜔, i.e., 𝑅 = Runs(𝜔). To this end, it explores all the runs of the system
model𝔖 that generate at least one observation sequence that is a prefix of 𝜔 (checked
in line 9). If a run only generates observation sequences that are not a prefix of 𝜔,
then no continuation of this run will generate 𝜔 since the observation sequences
generated by a run’s continuation must extend the observation sequences of the run.
This is guaranteed by the definition of observation models (Definition 3.3.1). Hence,
a run can be discarded in that case. Together with the assumption A5 that always
eventually a new observation will be generated, this exploration will eventually
terminate. While all the runs in the set 𝑅 do generate a prefix of 𝜔, they are not
guaranteed to generate 𝜔 itself. Hence, we need to filter that set to obtain Runs(𝜔)
(line 12). At this point, it remains to compute the most specific verdict for this set of
runs, exploiting the fact that V and ⊔ are computable as per A3 and A4.

While Algorithm 1 applies, if all the assumptions are satisfied, it is not practical.
To use it, a verdictor needs to keep track of all the observations that ever occurred.
This results in an unbounded memory consumption as the system keeps running
and new observations arrive. Furthermore, the computation of V(𝜔) itself is very
inefficient, requiring an exploration of runs with every new observation. While this
inefficiency can be resolved with clever caching to some degree, fundamentally,

3.4. PROVABLY ACCURATE VERDICTS 75

Algorithm 1: Computing the most specific verdict V(𝜔) for 𝜔 ∈ Obs⋆.
Data: an observation sequence 𝜔 ∈ Obs⋆

Result: the most specific verdict V(𝜔) for 𝜔, if it is defined

1 function ComputeV(𝜔)
2 𝑅 ≔ ∅
3 𝑊 ≔ {𝜖}
4 while |𝑊| > 0 do
5 𝜌 ≔ choose an arbitrary run out of𝑊
6 𝑅,𝑊 ≔ 𝑅 ∪{𝜌} ,𝑊 ∖{𝜌}
7 for 𝜌′ ∈ Next (𝜌) do
8 for 𝜔′ ∈ Ω(𝜌′) ∖ 𝑅 do
9 if 𝜔′ ∈ Pref(𝜔) then

10 𝑊 ≔ 𝑊 ∪ {𝜌′}
11 break
12 𝑅 ≔ { 𝜌 ∈ 𝑅 | 𝜔 ∈ Ω(𝜌) } // = Runs(𝜔)
13 if |𝑅| > 0 then
14 return⨆{V(𝜌) | 𝜌 ∈ 𝑅 }
15 else
16 return undefined // 𝜔 ∉ ℒ⇂Ω(𝔖)

without additional assumptions, the memory consumption will still grow without
bounds with every new observation. For instance, when caching the set of runs, such
that we do not need to recompute it all the time, the size of the cache grows without
bounds because the size of the runs increases with every new observation. In general,
we need to store runs in their entirety as the verdict oracle may depend on all the
information of a run.

Another shortcoming of Algorithm 1 is that it does not apply to continuous-time
systems, e.g., modeled by a timed automaton, as those do not satisfy assumption
A2. If time can pass in arbitrary increments, then there is an uncountably infinite
number of one-step continuations of a given run. Further, if timing imprecisions, as
we consider them in Chapter 5, are involved, then an observation model may produce
an uncountably infinite number of observation sequences, where observations are
made at slightly different points in time. As a result, in that case, assumption A1 is
also violated rendering the algorithm infeasible.

Therefore, in the remainder of this thesis, we develop algorithms that allow the
effective implementation or synthesis of verdictors, whose memory consumption
does not grow out of bounds and that can handle continuous-time systems as well
as timing imprecisions and other observational imperfections. Naturally, these will
require different assumptions than Algorithm 1.

76 CHAPTER 3. THEORETICAL FRAMEWORK

3.5 A Unifying Foundation
The theoretical framework we presented is abstract and general. Showcasing its
versatility, we now discuss how it generalizes and unifies existing work in the spec-
trum of automata- and stream-based runtime verification and model-based diagnosis
(FT3). To this end, we consider several paradigmatic examples from the relevant
literature [BLS07; BLS06b; BLS11; Pin+17a; Sam+95; Sam+96; DAn+05].

3.5.1 Traditional Model-Based Fault Diagnosis
Recall Section 2.6, where we introduced traditional model-based diagnosis [Sam+95;
Sam+96]. In Section 3.1, we defined the verdict domain ⟨℘(℘(ℱ)) , ⊆⟩ for traditional
diagnosis (see Definition 3.1.2), where ℱ is the set of fault classes according to
traditional model-based diagnosis. Recall that a diagnoser is a deterministic TS

𝒟 = ⟨℘(𝒮 ×℘(ℱ)) , 𝐼𝒟,OAct,↠𝒟⟩

synthesized from a systemmodel ⟨𝒮, 𝐼,Act,↠⟩whereOAct ⊆ Act is a set of observable
actions. Using the diagnosis function d as per (2.5) mapping states of the diagnoser
to diagnoses, we can easily cast the diagnoser into a VTS:

𝔙𝒟 ≔ ⟨℘(𝒮 ×℘(ℱ)) , 𝐼𝒟,OAct,↠𝒟, ℘(℘(ℱ)) , ⊆, d⟩

The resulting VTS 𝔙𝒟 may be non-monotonic (e.g., see Figure 2.8). Furthermore,
diagnosers are constructed such that ℒ(𝒟) = ℒ(𝔖)⇂OAct [cf. Sam+95]. As a result, the
VTS 𝔙𝒟 is tight with respect to 𝔖. For each trace 𝜎 ∈ ℒ(𝔖) of the diagnosed system,
the VTS 𝔙𝒟 obtained from 𝒟 produces as verdict a diagnosis 𝜈(𝜎⇂OAct) indicating
which faults occurred, taking only observable actions into account. In terms of the
concepts we introduced, the observation model here is ΩTrace⇂OAct.

Soundness and Completeness of Diagnosers. The soundness and completeness
criteria we developed also apply to traditional diagnosers. To apply them, we first
need to define a verdict oracle. For traditional diagnosis this verdict oracle collects
the fault classes of those faults that occurred on a run:

V(𝜖) ≔ {∅} V(𝜌 ⋄ ⟨𝑠, 𝛼, 𝑠′⟩) ≔ {
{∇V(𝜌) ∪ {𝑓}} if 𝛼 ∈ 𝑓 for 𝑓 ∈ ℱ
V(𝜌) otherwise

According to this verdict oracle, a run is mapped to a singleton set containing a set
of those fault classes that correspond to the occurred faults. Recall that ℱ partitions
the set of fault actions, hence, there exists at most one fault class 𝑓 ∈ ℱ such that
𝛼 ∈ 𝑓, which is required for the verdict oracle to be well-defined.

Diagnosers obtained with the traditional construction introduced by Sampath
et al. [Sam+95] turn out to be indeed sound and complete with respect to this verdict

3.5. A UNIFYING FOUNDATION 77

oracle, i.e., they produce most specific verdicts. To see why this is the case, recall that
as per (3.7) the most specific verdict is the verdict obtained by joining the verdicts of
the verdict oracle. The join operation ⊔ of the verdict domain of traditional model-
based diagnosis (see Definition 3.1.2) is set union ∪. Hence, for the verdict oracle
defined above, this means that we get the set of sets of fault classes that occurred on
all the runs that may induce a given observation sequence:

V(𝜔) =⋃{V(𝜌) | 𝜌 ∈ Runs(𝜔) }

Now, some fault of a fault class 𝑓 certainly occurred iff it occurred on all those runs,
i.e., iff 𝑓 ∈ 𝐹 for all 𝐹 ∈ V(𝜔). Some fault of a fault class 𝑓 possibly occurred iff it
occurred on some of those runs, i.e., iff 𝑓 ∈ 𝐹 for some 𝐹 ∈ V(𝜔). This is exactly in
line with the traditional definitions [cf. Sam+95]. Thus, the theoretical framework
presented in this chapter provides a conservative generalization of the core concepts
of traditional model-based diagnosis.

3.5.2 LTL Runtime Verification
Recall Section 2.5.1, where we recapitulated LTL runtime monitoring [BLS07; BLS06b;
BLS11]. An LTL3 monitor for an LTL formula 𝜑 is a deterministic finite input-enabled
transition system ⟨𝒮, 𝐼,℘(AP) ,↠⟩ together with a state labeling ⟨𝔹3, 𝜆⟩. As for diag-
nosers, we can easily cast an LTL3 runtime monitor into a VTS

⟨𝒮, 𝐼,℘(AP) ,↠, 𝔹3, ⊑, 𝜆⟩

where ⊑ is the specificity order on 𝔹3 (see Figure 3.1b). The VTS constructed from
an LTL3 monitor is deterministic and monotonic.

In the context of online LTL runtime monitoring, an observation sequence 𝜔 ∈
℘(AP) ⋆ is extended incrementally with new observations from the running system.
To this end, a system is usually instrumented in some way to generate observations
over the set of atomic propositions AP. In terms of the introduced concepts, such in-
strumentation may correspond to an observation model which translates the ongoing
run of a system to an observation sequence over ℘(AP).

Soundness and Completeness of Runtime Monitors. Traditional LTL runtime
verification does not aim to account for the actual future behavior of a concrete
system because the correct verdict only depends on the observation sequence and
the LTL formula 𝜑. Assuming that the transitions of a system model are labeled with
sets of atomic propositions, we may define the following verdict oracle

V(𝜌) ≔ [Trace(𝜌) ⊨ 𝜑]3LTL (3.8)

based on the LTL3 semantics as per (2.3). According to this verdict oracle, a run 𝜌 is
ascribed a truth verdict depending on whether all infinite continuations of its trace
Trace(𝜌) fulfill or violate the given LTL formula 𝜑.

78 CHAPTER 3. THEORETICAL FRAMEWORK

Bauer, Leucker, and Schallhart introduce two maxims for runtime verification:
impartiality and anticipation [BLS07; DLS08]. “Impartiality requires that a finite
trace is not evaluated to true or false, if there still exists an (infinite) continuation
leading to another [truth] verdict. Anticipation requires that once every (infinite)
continuation of a finite trace leads to the same [truth] verdict, then the finite trace
evaluates to this [truth] verdict” [DLS08, p. 387]. Note that the LTL3 semantics as
per (2.3) adheres to both maxims. Impartiality and anticipation are closely related
to soundness and completeness as per Definition 3.4.3 and Definition 3.4.4. With
respect to the trace observation model and the verdict oracle as per (3.8), a monitor
fulfilling the impartiality maxim is sound and a monitor fulfilling the anticipation
maxim is complete for any system model. Thus, a monitor fulfilling both maxims
indeed produces most specific truth verdicts and it does so independently of the
system model. The algorithms presented by Bauer, Leucker, and Schallhart [BLS06b]
construct such monitors.

These considerations show that the theoretical framework presented in this
chapter also provides a conservative generalization of core concepts found in runtime
verification, in particular, LTL runtime verification.

The assumptions made above are typical for LTL runtime verification where it is
assumed that sets of atomic propositions can be observed and that the properties
are directly expressed over the actually observed sets of atomic propositions. The
framework presented here also allows relaxing these assumptions by using different
observation models. In case the transitions of a system model are not labeled with
sets of atomic propositions, the verdict oracle can also be defined via an additional
function that transforms runs to sequences of sets of atomic propositions. Of course,
while the theoretical framework allows modeling such scenarios, it does not provide
any algorithms to actually construct monitors for them.

RV-LTL Monitoring. Recall that Bauer, Leucker, and Schallhart also introduce
RV-LTL monitoring using the truth domain 𝔹4 = {t, tp, fp, f} instead of 𝔹3 to deal
with properties like � (request→ ♦response) [BLS07]. To accommodate RV-LTL
monitoring within the introduced framework, we need to introduce a fifth verdict ?
to obtain the verdict domain 𝔹5 depicted in Figure 3.8.

?

tp fp

t f

Figure 3.8: Verdict domain 𝔹5 = {t, tp, fp, f, ?} for RV-LTL runtime monitoring.

3.5. A UNIFYING FOUNDATION 79

Without the ? verdict, tp and f
p would not have a least upper bound, which

is required to form a verdict domain. Analogously to LTL3, every RV-LTL monitor
can be cast into a deterministic input-enabled VTS over the verdict domain 𝔹5. In
contrast to LTL3, this VTS may be non-monotonic since RV-LTL monitors may toggle
between the verdicts tp and fp. While adding ? is required to obtain a verdict domain,
RV-LTL monitors constructed with the traditional techniques [BLS07] will never
actually produce this verdict. The verdict ? does, however, become relevant when
considering existing work on predictive monitoring.

In predictive monitoring, knowledge about a concrete system is exploited to pro-
duce truth verdicts that take a system’s possible future behavior into account [ZLD12;
Leu12; Pin+17a; Fer+21]. In particular, Pinisetty et al. consider predictive monitoring
for regular timed properties expressible as deterministic timed automata [Pin+17a].
To this end, they also extend the RV-LTL domain with a fifth verdict ?. Here, the
verdict ? indicates that the current observation sequence still lacks observations that
are required to reach a more specific verdict [Pin+17a, p. 358]. This interpretation
fits the specificity ordering on 𝔹5, where ? is the least specific verdict. The online
monitoring algorithm developed by Pinisetty et al. implements a verdictor that can
be modeled as a VTS observing timed events and producing 𝔹5 verdicts.

3.5.3 Stream-Based Runtime Monitoring

While traditional model-based fault diagnosis and LTL runtime monitoring are both
automata-based approaches, stream-based monitoring [DAn+05; Con+18; Bau+20;
GS18], is usually not based on automata theory. At least conceptually, we can still
make sense of stream-based monitoring within the presented framework. To illus-
trate how stream-based monitoring fits into the picture, we use the stream-based
specification language Lola as an example (recall Section 2.5). To other stream-based
runtime verification techniques, similiar considerations apply.

Recall that stream-based monitoring is about computing output streams from
input streams. Given a Lola specification L, we will now work towards the definition
of a VTS ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ that does exactly that.

Let us start with the set Obs of observables. Lola is a synchronous stream-based
specification language. This means, that the new values for the input streams arrive
all at the same time, i.e., synchronously. Let {𝑠𝑖}𝑛𝑖=1 be the family of independent
stream variables (inputs) of the Lola specification L and {𝑇𝑖}𝑛𝑖=1 be the family of their
types. As values arrive synchronously, the set of observables is the Cartesian product
of the types Obs = ×𝑛

𝑖=1𝑇𝑖, assuming that a type is nothing more than the set of
values that inhabit it. Thus, an observable ⟨𝑣1,… , 𝑣𝑛⟩ contains a new value for all
the input streams. The states 𝒬 of the VTS and its initial state is whatever the Lola
online runtime monitoring algorithm requires. The transition relation is given by
the algorithm itself that takes the new values for the input streams and extends

80 CHAPTER 3. THEORETICAL FRAMEWORK

the output streams as necessary. It is not surprising that the algorithm can just be
captured by a VTS as VTSs pose no restrictions on states or transitions, so we can
simply use any algorithm to instantiate them. The interesting part is how we model
the outputs of a Lola runtime monitor as verdicts.

Recall that output streams can have arbitrary data types and we may be interested
in the values of those streams. If we are interested in the value of a single output
stream of some type 𝑇, then we could use the verdict domain ⟨℘(𝑇) ∖ {∅} , ⊆⟩. Here,
we may interpret each verdict 𝑣 ∈ ℘(𝑇) ∖ {∅} as a set of possible values the stream
may have. Clearly, a verdict of that kind is less specific than another, if it considers
less values possible. Another option could be to use the verdict domain ⟨𝑇 ⊍ {?}⟩
where ? ∉ 𝑇 is a top verdict introduced to form a join-semilattice. If we are interested
in values of multiple streams, then we can either use the product verdict domain
or, if the streams share a verdict domain, join the individual verdicts. Recall that
the product of complete join-semilattices is again a complete join-semilattice (see
Chapter 2). This leaves us with some options to model stream values as verdicts.

It remains to define the verdict function 𝜈 of the VTS. The definition of the
verdict function is complicated by the fact that output streams may lag behind. For
an example, recall Example 2.7, where the current acceleration is computed based
on the velocity one step into the future. Here, the acceleration stream is bound to
lag one step behind the velocity stream. Thus, in general, we cannot simply produce
the verdict corresponding to the current value of a stream as this value may still
be unknown. A possible solution to this problem is to produce verdicts that lag
similarly behind, i.e., always produce a verdict corresponding to the most-recent
known value, and, if such a value does not exist, produce the top element of the
verdict domain—which is always a safe over-approximation.

Boolean Lola Specifications. Bozzelli and Sánchez study Boolean stream-based
monitoring from a language-theoretic perspective [BS14; BS16]. Their results show
that the expressiveness of Boolean Lola specifications precisely coincides with the
class of regular languages [BS14, p. 66]. In a Boolean Lola specification, all streams
are defined over 𝔹2 = {t, f}, significantly reducing expressiveness.

While producing verdicts that lag behind (as discussed above) may be suitable
for some applications, for others it is desirable to try to give a most specific over-
approximation of the values a stream may have at the current instant in time. In the
Boolean case, this means producing t or f as soon as they are inevitable as per the
anticipation maxim of runtime verification [BLS07]. The original Lola monitoring
algorithm does not do that, however, for Boolean Lola specifications Kallwies, Leucker,
and Sánchez recently introduced general anticipatory monitoring [KLS23]. Their
construction yields a Moore machine that produces a 𝔹3 verdict for each output
stream such that ? is indicated iff the current value of a Boolean output stream could
be t or f depending on future inputs. Otherwise, t or f is indicated depending on

3.6. DISCUSSION 81

whether the current value will inevitably be t or f. While Kallwies, Leucker, and
Sánchez model the outputs of the Moore machine as functions from stream variables
to 𝔹3 truth verdicts, casting the Moore machine into a VTS is straightforward using
a product verdict domain for multiple streams as explained above. Extending their
approach to general Lola specifications is an interesting avenue for future work on
stream-based runtime verification [cf. KLS23]. Verdict domains as a generalization of
the Boolean setting and VTSs, may serve as a foundation for such work. Generalizing
the anticipation maxim beyond the Boolean setting, would require that a most specific
over-approximation of a stream’s value is produced.

Soundness and Completeness. As for LTL runtime verification, for stream-based
runtime verification, the correct verdict for a given sequence of observations depends
only on that sequence and the used specification. It is independent of the system
model and the concrete behavior of a system. Still, a verdict oracle can be defined
analogously to (3.8) ascribing the correct verdict (with full anticipation) to a given run.
Soundness and completeness then apply analogously and correspond to impartiality
and anticipation, possibly generalized beyond the Boolean setting.

3.6 Discussion

In this chapter, we established an overarching theoretical framework upon which the
subsequent contributions of this thesis built. With verdict domains, verdict transition
systems, observation models, and verdict oracles, we introduced all the formal tools
to precisely capture what it takes for a verdictor to produce accurate verdicts (FT1):
Verdicts should at least be correct and preferably most specific. Technically, this
requires verdictors to be sound and complete or Δ-complete.

The verdict domains introduced in Section 3.1 cover the broad range of operational
questions discussed in Chapter 1. Verdicts can indicate the satisfaction or violation of
properties (Q1), they can indicate the presence of faults (Q2), and they can indicate
which configurations a system may have (Q3).

We have also shown that this framework can serve as a unifying foundation
for existing work in the spectrum of runtime verification and model-based fault
diagnosis (FT3). In general, runtime monitors or fault diagnosers can be cast into the
framework if their outputs can be made to form a verdict domain, which should be
possible for other approaches [e.g. MB06; AS15; CPS08; Bar+04; Car+13; Mha+17] as
well, given the general nature of the theoretical framework and especially verdict
domains. As such, the theoretical framework also serves to elucidate the connections
between existing work and the contributions made by this thesis.

The benefit of the presented framework lies in the general concepts and the
specifications it provides for the subsequent chapters. What it provides, is a frame-

82 CHAPTER 3. THEORETICAL FRAMEWORK

work for modeling verdictors, the observations that are fed to them, as well as the
verdicts that they should produce. Following the model-based methodology, we need
these models in order to get provable guarantees about the verdicts produced by
verdictors regarding a given system and its execution. Practical algorithms exploiting
this foundation will be developed in the next two chapters. To this end, VTSs will
also serve as a target representation for verdictor synthesis (FT2).

Part II

Generic Verdictor Algorithms

83

Chapter 4

Modular Discrete-Time
Verdictor Synthesis

Enabled by the theoretical framework established in the previous chapter, we now
present a generic and modular synthesis approach that solves several significant
instances of the VTS Synthesis Problem in the discrete-time setting.

The approach takes the form of a pipeline synthesizing VTSs from system models
whose states and transitions have been annotated with verdicts. As we will later show
in Chapter 7 and Chapter 8, the pipeline is generic in the sense that it can be used for
runtime verification, fault diagnosis, and configuration monitoring alike by choosing
appropriate annotations. For presentation purposes, we focus on fault diagnosis in
this chapter. The pipeline is also modular in the sense that its building blocks can
be combined to synthesize VTSs tailored to the specific needs of an application, e.g.,
to account for different and orthogonal observational imperfections or to provide
predictions based on a system’s possible future behavior.

The techniques presented here constitute the first part of Contribution TT.

Synthesis Pipeline. Figure 4.1 depicts the synthesis pipeline. The pipeline takes a
verdict-annotated finite TS 𝔖 as input and synthesizes an optimized (deterministic
and minimal) verdictor implementation I from it. It consists of four stages: annotation
tracking, lookahead refinement, observability adjustment, and finalization.

For the first stage of the pipeline, coined annotation tracking, we make the ideal-
ized assumption that all actions of the input model 𝔖 are observable. Consequently,
this stage constructs a VTS that produces a verdict for each trace of the system model.
This verdict tracks the annotations of the transitions which may have been taken to
produce the respective trace and of the states the system may be in afterwards. As we
will show, by choosing appropriate verdict annotations, this technique can be used to

85

86 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

Annotation
Tracking

Lookahead
Refinement

Observability
Adjustment

Finalization

Section 4.1 Section 4.3Section 4.2 Section 4.4

𝔖 I

Figure 4.1: Generic and modular model-based VTS synthesis pipeline.

construct VTSs for runtime verification, fault diagnosis, and configurationmonitoring
alike. After annotation tracking, the lookahead refinement stage can be used to trans-
form the VTS to produce most specific predictions concerning the inevitable future.
This transformation is entirely optional and requires the additional assumption that
the system indeed keeps running. Otherwise, there is no future to obtain predictions
for. Note that this assumption is very natural for reactive systems. After annotation
tracking and potentially lookahead refinement, the idealized assumption that every
action is observable is lifted in the observability adjustment stage. This stage consists
of VTS transformations accounting for limited observability, delays, losses, and out-
of-order arrivals—as they are often unavoidable in practice (recall Chapter 1). Each
transformation is optional and may be omitted in case the respective imperfection
is not relevant for a certain application. Finally, in the finalization stage, our earlier
determinization and minimization results (recall Section 3.2) are exploited to obtain
a minimal and deterministic VTS optimized towards an efficient implementation in
software or hardware. In addition, we also present a language-relaxing minimization
algorithm which can further reduce the size of a VTS by over-approximating the
language of the original VTS.

Notably, the individual algorithmic building blocks of the stages can also be used
independently of the pipeline. For instance, a VTS synthesized with some third-party
technique can be transformed to provide most specific predictions or to take into
account certain observational imperfections. To facilitate such usage, we establish
general theorems for the transformations we develop.

Relevant Publications. This chapter is primarily based on the following paper:

[KDH24]: Maximilian A. Köhl, Clemens Dubslaff, and Holger Hermanns.
“Configuration Monitor Synthesis”. In: Automated Technology for Verifi-
cation and Analysis, ATVA 2024.

While VTSs have also been part of that work, the greater theoretical framework with
observation models and verdict oracles is a novel contribution of this thesis (see
Chapter 3). The framing of the contributions in this chapter with these concepts is an
unpublished contribution. Furthermore, the transformation for out-of-order arrivals
extends the published work.

4.1. MODEL-BASED CONSTRUCTION 87

Chapter Structure. This chapter’s structure mirrors the synthesis pipeline. Sec-
tion 4.1, Section 4.2, and Section 4.3, develop the annotation tracking, lookahead
refinement, and observability adjustment stage, respectively (see also Figure 4.1).
Section 4.4 discusses the finalization stage and possible implementation techniques
for the resulting verdictors. Section 4.5 concludes this chapter by summarizing its
contributions and highlighting their wide range of applicability.

4.1 Model-Based Construction
We have previously seen that existing constructions for runtime verification and fault
diagnosis can be cast into VTSs (recall Section 3.5). While those constructions are
specific to their respective applications, we here present a fully generic construction,
coined annotation tracking, based on verdict-annotated system models. Annotation
tracking can be used for runtime verification, fault diagnosis, and configuration
monitoring alike. An in-depth exploration of concrete applications will follow later in
Chapter 7 and Chapter 8. Importantly, annotation tracking is not meant to supersede
any of the existing techniques. Instead, it complements and extends them by providing
a new and generic way to construct VTSs.

4.1.1 Verdict-Annotated System Models
Annotation tracking is based on system models whose transitions and states have
been annotated with verdicts—we call such models verdict-annotated. Formally, a
verdict annotation is a triple of functions assigning verdicts to the initial states, states,
and transitions of a transition system modeling a system.

Definition 4.1.1 Given a TS 𝔖 = ⟨𝒮, 𝐼,Act,↠⟩ and a verdict domain ⟨𝒱, ⊑⟩,
a verdict annotation is a triple ⟨𝜅, 𝜆, 𝛾⟩ of functions 𝜅∶ 𝐼 → 𝒱, 𝜆∶ 𝒮 → 𝒱, and
𝛾∶ ↠ → 𝒱 assigning verdicts to the initial states, states, and transitions of 𝔖,
respectively.

Verdict annotations allow us to provide verdicts for when a system starts in a
given state (function 𝜅), for when it resides in a given state (function 𝜆), and for
when it takes a given transition (function 𝛾). Based on these verdicts, we next define
a generic verdict oracle and introduce two examples.

Verdict Oracle. We start with the definition of a generic verdict oracle for verdict-
annotated models. Recall that verdict oracles serve as the ground truth for most
specific verdicts (Section 3.4). A verdict oracle assigns a verdict to each run of a
system. Given a verdict-annotated system model, we now define a verdict oracle
that takes into account the annotations of all transitions that have been taken, the

88 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

final state the system is in, as well as the state the system started in. This definition
will rely on the meet of all these annotations, combining the annotations into the
least specific verdict that is at least as specific as the individual verdicts. As verdict
domains are join-semilattices, the meet of arbitrary sets of verdicts may be undefined.
We will deal with those cases separately later and assume for the following definition
that the verdict domain has been extended with a sentinel bottom verdict #.

Definition 4.1.2 Given a TS 𝔖 = ⟨𝒮, 𝐼,Act,↠⟩, a verdict domain ⟨𝒱, ⊑⟩, and a
verdict annotation ⟨𝜅, 𝜆, 𝛾⟩, we define the annotation verdict oracle

V𝜅,𝜆,𝛾∶ Runs(𝔖) → 𝒱 ⊍ {#}

over the verdict domain ⟨𝒱, ⊑⟩ extended with the sentinel bottom verdict # ∉ 𝒱
such that for all 𝜌 = (⟨𝑠𝑖, 𝛼𝑖, 𝑠′𝑖⟩)

𝑛
𝑖=1 ∈ Runs(𝔖):

V𝜅,𝜆,𝛾(𝜌) ≔ {
⨆ { 𝜅(𝑠) ⊓ 𝜆(𝑠) | 𝑠 ∈ 𝐼 } if 𝑛 = 0
𝜅(𝑠0) ⊓ (⨅ { 𝛾(t) | ⟨⋅, t⟩ ∈ 𝜌 }) ⊓ 𝜆(𝑠′𝑛) otherwise

For the empty run, the verdict oracle V𝜅,𝜆,𝛾 returns the most specific verdict
subsuming all verdicts of the initial states, i.e., the join of these verdicts. For non-
empty runs, it returns the least specific verdict that is at least as specific as the
verdicts of all the transitions, the verdict of the initial state, and the verdict of the last
state, i.e., the meet of these verdicts. Intuitively, the join combines possibilities, i.e., if
multiple verdicts are possible, then their join is the most specific verdict subsuming
those possibilities (cf. Section 3.2). In Boolean terms, it corresponds to a disjunction.
In contrast, the meet can be seen as combining necessities, i.e., if multiple verdicts
are necessary, then their meet is the least specific verdict combining those necessities.
In Boolean terms, it corresponds to a conjunction. For concrete examples, we refer
the reader to the upcoming examples and Chapter 7 as well as Chapter 8.

As a verdict domain is merely a complete join-semilattice, not a complete lattice,
the meet of arbitrary sets of verdicts may not be defined. Hence, we need to introduce
the sentinel bottom verdict # thereby completing the lattice. The sentinel verdict
is mostly a technical trick as it can or even has to be ignored for all the practical
applications we consider in this thesis. Either the meet is in fact guaranteed to be
defined for all verdict sets that may appear due to other structural properties of the
annotations, or any run with the sentinel verdict can be disregarded as unrealistic.
Note that this does not mean that the verdict domains are complete lattices already.
In fact, the only application where this is the case is fault diagnosis.

Verdict-annotated system models and their corresponding verdict oracles are
highly expressive, since the verdict oracle as per Definition 4.1.2 can incorporate
both, information from the present state but also information from the entire history

4.1. MODEL-BASED CONSTRUCTION 89

of the run and the initial state. From a verdict-annotated system model, annotation
tracking, explained below, will construct a VTS that is sound and complete with
respect to the verdict orale V𝜅,𝜆,𝛾.

Example: State Belief Sets. In planning, it is common to base decisions on beliefs
regarding the present state of a system [RN10]. For instance, for the standard model of
planning under uncertainty, partially-observable Markov decision processes (POMDPs),
a distribution over states may be tracked [KLC98; Thr02] to inform an agent aiming
to maximize a reward [MHC99]. While verdict domains are not quantitative, the
support of these distributions, i.e., the set of states that have a non-zero probability,
can be seen as an element of the verdict domain ⟨℘(𝒮) ∖ {∅} , ⊆⟩. Here, each verdict
indicates in which states the system may possibly be in. Hence, a verdict 𝑣1 is more
specific than a verdict 𝑣2 iff 𝑣1 considers less states possible than 𝑣2, i.e., iff 𝑣1 ⊊ 𝑣2.
In the literature, such sets of states are also referred to as belief states [RN10] or state
belief sets [JJS21]. They are known to be sufficient for some applications, e.g., for
ensuring almost-sure reachability objectives [JJS21].

Remark. The empty set is indeed not a sensible verdict as the system has to be in some
state. This coincides with the fact that the support of any probability distribution
over a non-empty set cannot be empty. As a result, the meet of non-overlapping sets
is undefined and the verdict domain is not a lattice.

Given that it is useful for planning purposes to know in which states the system
may be in, we want to synthesize a VTS over the aforementioned verdict domain,
producing verdicts that indicate exactly the states the system may be in. To this end,
consider the following verdict annotation over ⟨℘(𝒮) ∖ {∅} , ⊆⟩:

𝜅(𝑠) ≔ 𝒮 𝜆(𝑠) ≔ {𝑠} 𝛾(t) ≔ 𝒮 (4.1)

Given this verdict annotation, the verdict oracle as per Definition 4.1.2 assigns the
set of initial states to the empty run and the singleton set with the last state of the
run to each run, respectively. For the empty run, we have:

V𝜅,𝜆,𝛾(𝜖)
= ⨆ { 𝜅(𝑠) ⊓ 𝜆(𝑠) | 𝑠 ∈ 𝐼 }
= ⋃ { 𝒮 ∩ {𝑠} | 𝑠 ∈ 𝐼 }
= 𝐼

90 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

For non-empty runs 𝜌 = (⟨𝑠𝑖, 𝛼𝑖, 𝑠′𝑖⟩)
𝑛
𝑖=1, we have:

V𝜅,𝜆,𝛾((⟨𝑠𝑖, 𝛼𝑖, 𝑠′𝑖⟩)
𝑛
𝑖=1)

= 𝜅(𝑠0) ⊓ (⨅ { 𝛾(⟨𝑠𝑖, 𝛼, 𝑠′𝑖⟩) || 1 ≤ 𝑖 ≤ 𝑛 }) ⊓ 𝜆(𝑠′𝑛)
= 𝒮 ∩ (⋂ { 𝒮 | 1 ≤ 𝑖 ≤ 𝑛 }) ∩ {𝑠′𝑛}
= {𝑠′𝑛}

Thus, the verdict assigned by the verdict oracle is the set of states the system may
currently be in, assuming that the system can be in any of the initial states initially.
As the join on the verdict domain ⟨℘(𝒮) ∖ {∅} , ⊆⟩ is set union ∪, the most specific
verdict as per (3.7) for a given observation sequence is simply the set of all states the
system may be in after generating the respective observation sequence:

V(𝜔) = ⋃{V𝜅,𝜆,𝛾(𝜌) || 𝜌 ∈ Runs(𝜔) }

Therefore, a sound and complete VTS for the verdict oracle as per Definition 4.1.2
based on the verdict annotation as per (4.1) produces most specific verdicts regarding
the present state of the system. As we have shown above, the verdict oracle also
never returns the sentinel verdict as the system must be in some state.

Example: Fault Diagnosis. We have previously seen that diagnosers constructed
with traditional model-based fault diagnosis techniques [Sam+95; Sam+96] can be
cast into our theoretical framework (recall Section 3.5.1). Furthermore, we will show
in Section 7.2 that traditional diagnosers can also be obtained as a special case with
our synthesis pipeline starting with a verdict-annotated model.

For now, let us continue based on Example 3.1: Given the set Faults of fault actions
partitioned into a set ℱ of fault classes, we may annotate the states and transitions of
a system model with sets of fault classes that are present in those states or that need
to be present in order to take a certain transition. These annotations are elements
of the verdict domain ⟨℘(ℱ) , ⊇⟩ (recall Definition 3.1.3). This verdict domain is a
complete lattice and its meet operation ⊓ is set union ∪. Hence, with such annotations
in place, the verdict oracle as per Definition 4.1.2 collects all the faults that occurred
on any of the taken transitions, those of the initial state, and those present in the
last state of the system. The resulting verdict oracle is a more general and powerful
variant of the verdict oracle defined in Example 3.7 for diagnosis of certain faults, as
the annotations allow modeling different kinds of faults:

– The function 𝜅 models faults that are already present when the system starts
in a certain state and the system cannot recover from them. We call such faults
primordial faults.

– The function 𝜆 models transient faults that are only present when the system
is in certain states and that go away when the system leaves those states.

4.1. MODEL-BASED CONSTRUCTION 91

– The function 𝛾 models irrecoverable faults that occur when a certain transition
is taken and the system cannot recover from them.

Irrecoverable faults are also called permanent in the literature. For a taxonomy of
different kinds of faults, we refer to Avizienis et al. [Avi+04]. Avizienis et al. also
consider faults that occur as part of the development or deployment process. While
they do not call them primordial, primordial faults may correspond to manufacturing
errors or occur when a system is deployed, leaving it in a faulty initial state.

In contrast to annotations as just discussed, traditional model-based diagnosis
can only handle irrevocable faults [Sam+95]. Models as they are used for traditional
model-based diagnosis can be easily transformed into verdict-annotated models. To
this end, states are annotated with the empty set and transitions are annotated with
the empty set or a singleton set with the respective fault class, depending on whether
a transition has been labeled with a fault action or not. Formally, that is:

𝜅(𝑠) ≔ ∅ 𝜆(𝑠) ≔ ∅ 𝛾(⟨𝑠, 𝛼, 𝑠′⟩) ≔ {
{𝑓} if 𝛼 ∈ 𝑓
∅ otherwise

Hence, verdict annotations generalize the fault model of traditional model-based
diagnosis.

Example 4.1 Figure 4.2 depicts a verdict-annotated variant of the original model of
the coffee machine (recall Figure 2.1). The respective verdict domain is depicted in
Figure 3.2. Both fault transitions are annotated with respective singleton sets. All
other transitions and the states themselves are annotated with the empty set. The
state annotations have been omitted in the graphical representation. A sound and
complete VTS for the verdict oracle as per Definition 4.1.2 and this verdict annotation
allows diagnosing faults that certainly occurred.

i d

p

s

{𝑓𝑝} ∶ pu
mp_fa

ult

{𝑓𝑠} ∶ short_circuit

∅ ∶ request

∅ ∶ blink

∅ ∶ request

∅ ∶ dispense

Figure 4.2: Verdict-annotated model of the coffee machine (cf. Figure 2.1).

Relation to Lattice Automata. The careful reader may have noticed that verdict-
annotated system models closely resemble lattice automata (see Section 2.2.3). Like
lattice automata, they require three functions, two of them assigning verdicts to
states and a third assigning verdicts to transitions. Indeed, lattice automata and

92 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

their wide range of applications [cf. KL07] serve as the inspiration here. There are,
however, two technical differences: First, verdict annotations assign verdicts that are
not necessarily elements of a lattice. Second, in contrast to the functions 𝑄0 and 𝛿
as they appear in the definition of lattice automata, 𝜅 and 𝛾 do not assign verdicts
to all states and all state-action-state triples, but instead only to initial states and
transitions, respectively. They annotate an existing transition system encoding some
behavior with initial states and transitions. In contrast, lattice automata focus on
𝐿-languages necessitating a lattice element for each word (see Section 2.2.3). So, the
primary reason to deviate from lattice automata here is that we aim at an annotative
approach where a transition system independently models the behavior of a system
and is then annotated with additional information in the form of verdicts. This
annotative approach is commonly pursued for configurable systems [KAK08; Cla+10;
Dub19].

4.1.2 Annotation Tracking
With annotation tracking, we now present a construction to obtain a sound and com-
plete VTSs from a verdict-annotated system model under the idealized assumption
that all actions can be observed. In technical terms, this assumption entails that the
observation model is ΩTrace. This assumption will later be lifted in Section 4.3.

To construct such a VTS from a verdict-annotated model, we exploit results from
lattice automata. Given the verdict domain ⟨𝒱, ⊑⟩, let ⟨𝒱#, ⊑#⟩ denote its extension
with the bottom sentinel verdict #. The construction proceeds by first constructing
a lattice automaton over ⟨𝒱#, ⊑#⟩, then applying simplification to obtain a simple
lattice automaton [KL07, Theorem 6], and finally converting the simple lattice au-
tomaton to a VTS according to Lemma 3.2.1. We amalgamate those steps into a single
construction:

Definition 4.1.3 Given a TS 𝔖 = ⟨𝒮, 𝐼,Act,↠⟩, the verdict domain ⟨𝒱, ⊑⟩, and
verdict annotation ⟨𝜅, 𝜆, 𝛾⟩, we define

𝔙#
𝔖,𝜅,𝜆,𝛾 = ⟨𝒮 × 𝒱,Act, { ⟨𝑠, 𝜅(𝑠)⟩ | 𝑠 ∈ 𝐼 } ,⇾, 𝒱#, ⊑#, 𝜈⟩

where 𝜈(⟨𝑠, 𝑣⟩) ≔ 𝑣 ⊓ 𝜆(𝑠) and ⟨⟨𝑠, 𝑣⟩ , 𝛼, ⟨𝑠′, 𝑣′⟩⟩ ∈ ⇾ iff there exists a transition
⟨𝑠, 𝛼, 𝑠′⟩ ∈ ↠ and 𝑣′ = 𝑣 ⊓ 𝛾(⟨𝑠, 𝛼, 𝑠′⟩).

Like simplification of lattice automata [KL07], the underlying principle here is
to push the meet over the verdicts of the taken transitions into the state space. To
be able to carry out this construction explicitly and use it as part of our synthesis
pipeline, the system model needs to be finite.

We will now establish results regarding the tightness of the resulting VTS with
respect to the system model, and, most importantly, the soundness and completeness

4.1. MODEL-BASED CONSTRUCTION 93

of the VTS with respect to the verdict oracle as per Definition 4.1.2. Furthermore, we
discuss the complexity of the construction. This is followed by an example of the
construction for fault diagnosis.

Tightness. The following VTS transformations for observational imperfections
and predictions require that VTSs are tight, i.e., capture exactly the possible behavior
of the system (recall Definition 3.3.6). Indeed, the VTS 𝔙#

𝔖,𝜅,𝜆,𝛾 is tight.

Proposition 4.1.1 The VTS 𝔙#
𝔖,𝜅,𝜆,𝛾 is tight with respect to 𝔖 and ΩTrace.

Proof. The observable language of 𝔖 with respect to ΩTrace is its set of traces, i.e.,
ℒ⇂ΩTrace

(𝔖) = ℒ(𝔖). The languages of 𝔙#
𝔖,𝜅,𝜆,𝛾 and 𝔖 are identical, as the transition

structure is inherited. Hence, 𝔙#
𝔖,𝜅,𝜆,𝛾 is tight with respect to 𝔖 and ΩTrace.

As a result of Proposition 4.1.1, the VTS 𝔙#
𝔖,𝜅,𝜆,𝛾 produces a verdict for every trace

𝜎 ∈ ℒ(𝔖) while not accepting words that are not traces of 𝔖.

Soundness and Completeness. While tightness is an important property, the
whole point of annotation tracking is that it produces a sound and complete VTS based
on the verdict annotations and with respect to the verdict oracle as per Definition 4.1.2
under the idealized assumption that all actions can be observed.

Theorem 4.1.1 The VTS 𝔙#
𝔖,𝜅,𝜆,𝛾 is sound and complete with respect to the system

model 𝔖, the observation model ΩTrace, and the verdict oracle V𝜅,𝜆,𝛾.

Proof Sketch. Theorem 4.1.1 is proven based on the fact that the states reached after
some trace 𝜎 in 𝔙#

𝔖,𝜅,𝜆,𝛾 correspond to the following set:

{⟨𝑠′,⨅ { 𝛾(t) | t ∈ 𝜌 }⟩ for some 𝜌 ∈ Runs(𝔖) s.t. Trace(𝜌) = 𝜎}

The proof proceeds by proving this correspondence by induction on the length of
the trace. For a detailed proof of Theorem 4.1.1, see Appendix A.1.1.

As annotation tracking gives us a tight, sound, and complete VTS for the verdict
oracle as per Definition 4.1.2 and the observation model ΩTrace, we can, e.g., use it to
construct a diagnoser based on fault annotations as discussed previously and under
the idealized assumption that all actions can be observed.

Complexity. Annotation tracking inherits its complexity from lattice automata
simplification [KL07]. The construction leads to a size increase over the system
model that is linear in the size of the lattice, i.e., the size increase of the reachable
fragment of the resulting VTS lies in 𝒪(|𝒬| ⋅ |𝒱|). The worst-case time complexity of

94 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

the construction is 𝒪(|𝒬| ⋅ |𝒱| ⋅ 𝐷 ⋅ LOpCost(𝐷)) where 𝐷 is the maximal outdegree
of 𝔖, i.e., the maximal number of transitions leaving a state. Recall that LOpCost(𝐷)
is the complexity of computing the join/meet over 𝐷 verdicts.

Example: Fault Diagnosis. In the case of fault diagnosis, the states and transitions
of a model are annotated with sets of fault classes (cf. Section 4.1.1). For such models, a
VTS constructed by annotation tracking produces most specific diagnoses indicating
classes of which faults certainly occurred as per Definition 3.1.3.

⟨i, ∅⟩ ⟨d, ∅⟩

⟨p, {𝑓𝑝}⟩

⟨s, {𝑓𝑠}⟩
∅ ∅

{𝑓𝑝}

{𝑓𝑠}

pump_
fault

short_circuit

request

blink

request

dispense

Figure 4.3: VTS constructed from the fault-annotated model of the coffee machine
(see Figure 4.2) by annotation tracking.

Example 4.2 Recall Figure 4.2 which depicts a verdict-annotated variant of the coffee
machine model (cf. Figure 2.1) for diagnosis purposes. Taking this model with the
verdict annotations as a basis, annotation tracking constructs the VTS depicted in
Figure 4.3. The verdict assigned to each state is shown next to the state, respectively.
This VTS produces diagnoses under the idealized assumption that every action can be
observed. Of course, traditionally fault actions are considered unobservable [Sam+95].
We address observational imperfections, such as limited observability, by transform-
ing the VTS in later stages of the pipeline (cf. Figure 4.1).

Sentinel Pruning. As a post-processing step after annotation tracking, we intro-
duce sentinel pruning. Recall that the sentinel verdict has been introduced such that
the verdict oracle as per Definition 4.1.2 is well-defined. For fault diagnosis, a VTS
constructed with annotation tracking actually never produces the sentinel verdict as
both diagnosis verdict domains (see Definition 3.1.2 and Definition 3.1.3) are lattices.
In general, however, annotation tracking may produce states with the sentinel verdict.
For all the applications we consider in this thesis, the sentinel verdict will either
not be produced or the states producing it must be discarded as they correspond to
unrealistic runs—after all, there is a reason why the verdict domain is not a lattice.
For instance, the verdict domain for configuration monitoring as per Definition 3.1.4
is not a lattice as it lacks the empty set. The empty set is not included, as the system
is assumed to have some configuration that is among the valid configurations. Now,

4.2. MOST SPECIFIC PREDICTIONS 95

to adjust a VTS constructed with annotation tracking in that regard, we remove the
states of 𝔙#

𝔖,𝜅,𝜆,𝛾 that have the sentinel verdict and all transitions that involve such
states. We refer to this removal as sentinel pruning. The resulting sentinel pruned
VTS, denoted by 𝔙𝔖,𝜅,𝜆,𝛾, still produces most specific verdicts for all realistic traces
while not accepting unrealistic traces. We omit the formal exposition of this, as it is
straightforward.

4.2 Most Specific Predictions
Being able to identify potential issues early can be highly valuable. For instance, in
the case of industrial automation (recall Chapter 1), it is critical to identify potential
issues before they escalate to severe problems and bring down production. To identify
potential issues early, we develop a VTS transformation that refines verdicts of
monotonic states by taking into account future system behaviors starting in each
state, respectively. This transformation, coined lookahead refinement, transforms a
VTS such that it produces most specific predictions.

For optimal results, lookahead refinement requires the input VTS to be tight.
Furthermore, it comes with the additional assumption that the system indeed keeps
running, as otherwise there is no future to obtain predictions for.

At the core of lookahead refinement is a fixpoint construction looking ahead as
far as possible. To this end, given a finite input VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩, we
define a lookahead-refined verdict function 𝜈𝑖 recursively for all 𝑖 ∈ ℕ:

𝜈0(𝑞) ≔ 𝜈(𝑞) 𝜈𝑖+1(𝑞) ∶= {
⨆𝑞′∈Post(𝑞) 𝜈𝑖(𝑞

′) if 𝑞 is monotonic

𝜈(𝑞) otherwise
(4.2)

That is, 𝜈𝑖+1 refines the verdict of each monotonic state 𝑞 by joining the verdicts of
𝑞’s successors from the previous iteration 𝜈𝑖. Note that 𝜈𝑖 reaches a fixpoint after
at most |𝒬| iterations, ensuring that verdicts have propagated from a state to all its
monotonic predecessors. In essence, potential future verdicts are pushed forward
to their predecessors as far as possible, i.e., until a fixpoint is reached. Using this
fixpoint, we obtain the lookahead refined VTS ⌊𝔙⌋.

Definition 4.2.1 Given a finite input VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩, we define
its lookahead refined transformation ⌊𝔙⌋ by

⌊𝔙⌋ ≔ ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈|𝒬|⟩

where 𝜈|𝒬| is the fixpoint of 𝜈𝑖 as per (4.2).

It is easy to see that ⌊𝔙⌋ indeed refines 𝔙.

96 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

Lemma 4.2.1 For any finite VTS 𝔙, we have ⌊𝔙⌋ ⦤ 𝔙.

Proof. Recall from Definition 3.2.3 that a state 𝑞 is monotonic iff 𝜈(𝑞′) ⊑ 𝜈(𝑞) for
all its successors 𝑞′ ∈ Post ({𝑞},Obs). Observe that 𝜈𝑖+1(𝑞) ⊑ 𝜈𝑖(𝑞) for all states
𝑞 ∈ 𝒬 since iterating 𝜈𝑖 only refines monotonic states. Hence, 𝜈⌊𝔙⌋(𝜔) ⊑ 𝜈𝔙(𝜔) for all
𝜔 ∈ ℒ(𝔙) satisfying condition (RE2) of Definition 3.2.5. Furthermore, ℒ(𝔙) = ℒ(⌊𝔙⌋)
as the transitions remain the same satisfying condition (RE1). Therefore, ⌊𝔙⌋ ⦤ 𝔙.

For the same reasons as to why Lemma 4.2.1 holds, lookahead refinement also
preserves monotonicity, i.e., ⌊𝔙⌋ is monotonic iff 𝔙 is monotonic.

Example 4.3 Figure 4.4 shows an example of lookahead refinement for a diagnoser
over the verdict domain as per Definition 3.1.3, with a fragment of the input VTS on
the left and its refined version on the right. Here, ∅ is refined to {𝑓2}. Assuming that
the system continues running, we know that either faults of the classes {𝑓1, 𝑓2} or
{𝑓2, 𝑓3} will be diagnosed since 𝛼 or 𝛽 will inevitably be observed, producing verdicts
{𝑓1, 𝑓2} or {𝑓2, 𝑓3}, respectively. This leads to a refinement of the verdict ∅ to {𝑓2}.

∅

{𝑓1, 𝑓2}

{𝑓2, 𝑓3}

𝛼

𝛽

Lookahead
Refinement

{𝑓2}

{𝑓1, 𝑓2}

{𝑓2, 𝑓3}

𝛼

𝛽

Figure 4.4: An example of lookahead refinement of certain fault class verdicts.

Complexity. Lookahead refinement iterates 𝜈𝑖 at most |𝒬| times towards a fixpoint
and computes the join over at most𝐷 verdicts for each state in each iteration, where𝐷
is the maximal outdegree of 𝔙. Checking monotonicity can be done in𝒪(𝐷⋅ |𝒬|)with
𝐷 ≤ |𝒬|. As monotonicity is preserved in each iteration, it suffices to check it once in
the beginning. Hence, the worst-case time complexity lies in 𝒪(LOpCost(𝐷) ⋅ |𝒬|2).
Recall that LOpCost(𝐷) is the complexity of computing the join of 𝐷 verdicts.

Specificity of Predictions. Modifying verdicts only along monotonic states guar-
antees that verdicts only get more specific. This is the reason behind Lemma 4.2.1
and also allows us to obtain the following corollary for completeness:

4.2. MOST SPECIFIC PREDICTIONS 97

Corollary 4.2.1 If 𝔙 is complete with respect to a system model 𝔖, a verdict
oracle V, and an observation model Ω, then ⌊𝔙⌋ is also complete with respect to the
same system model, verdict oracle, and observation model.

While lookahead refinement preserves completeness, it does not preserve sound-
ness with respect to the original verdict oracle. This is rooted in the very nature of
how we defined soundness: Soundness requires that the verdict produced by a VTS
is at most as specific as the verdict ascribed by the verdict oracle to each possible run,
respectively. Hence, non-trivial predictions that are more specific than the original
verdict may not be sound. This does, however, not mean that they are incorrect.
If 𝔙 is sound, then ⌊𝔙⌋ produces verdicts that are eventually correct, i.e., they are
correct with respect to some point in time in the future, as expected for predictions.
To restore soundness for predictions, a different verdict oracle is required that takes
the future into account. We have already seen an example of such a verdict oracle
for LTL runtime verification with perfect anticipation (see Section 3.5.2).

For most specific predictions, it is required that the input VTS is tight with respect
to the systemmodel. A VTS that is not tight accounts for behavior that cannot actually
be realized by a given system. While this is irrelevant for producing verdicts, this
spurious behavior may lead to less specific predictions. Furthermore, it is important
that lookahead refinement is performed before accounting for any observational
imperfections to make sure that it has as much information as possible.

Lookahead refinement is related to the anticipation maxim of runtime verifica-
tion [BLS07; DLS08]: Lookahead refinement refines verdicts by anticipating possible
future observations. In fact, in the Boolean case, lookahead refinement will prop-
agate inevitable t and f verdicts along monotonic states. Furthermore, lookahead
refinement generalizes beyond the Boolean case and truth verdicts. For instance, it
can also be used for diagnosis, as we have seen in Example 4.3. Note that lookahead
refinement does, however, restrict anticipation to information that is already encoded
in the input VTS. As such, it cannot replace specialized construction techniques for
anticipatory monitors that do exploit information encoded in some other form, e.g.,
a Lola specification [KLS23] or an LTL property [BLS07].

To summarize, given a sound, complete, and tight input VTS 𝔙, the lookahead
refined VTS ⌊𝔙⌋ is complete, as verdicts only get more specific, and tight, as the
transition structure does not change. It also produces most specific verdicts that are
guaranteed to be eventually correct, i.e., it will produce most specific predictions
based on the information about possible future observations and verdicts encoded in
the input VTS 𝔙.

98 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

4.3 Imperfect Observations

Hitherto, we made the idealized assumption that all actions of the system model
are observable, and that they are observed exactly once in the order they occurred.
However, as already established in the introduction of this thesis, observational
imperfections are usually unavoidable. Naturally, when observations are subject to
such imperfections, we still want most specific verdicts. In other words, we want
verdictors to be robust with respect to these imperfections as much as possible.
To this end, we present modular VTS transformations for making VTSs robust to
four important and typically unavoidable of observational imperfections: limited
observability, delays, losses, and out-of-order arrivals.

Recall that limited observability concerns inherent limitations as to what can
be observed. Limited observability is often rooted in resource constraints. More
observations require more bandwidth in shared networks, deploying additional
sensors in a physical system can be expensive, and additional logging to a software
system usually harms performance. Delays and losses are necessarily introduced
by shared networks between components, e.g., on a manufacturing floor. In the
context of industrial automation, the deployed network stacks usually still give some
guarantees in terms of bounds on the delay with which a message may arrive and on
the number of consecutive messages that may get lost [Fel05; TV99; Di +12; THW94].
In the following, we exploit such guarantees by considering bounded delays and
losses, in addition to unbounded delays and losses. If delays are bounded, then so
are possible out-of-order arrivals of observations. Hence, these guarantees can often
also be exploited to obtain bounds on possible out-of-order arrivals.

Modular Transformations. Different observational imperfections are usually
orthogonal. That is, there can be any combination of limited observability, delays, and
losses. Furthermore, it is desirable to be able to flexibly integrate other imperfections
in the future. Hence, we take a modular approach to accommodate observational
imperfections by VTS transformations. The approach is as follows: Observational im-
perfections can be characterized by observation model transformers (cf. Section 3.3.1).
Now, given an observation model transformer Θ characterizing an observational
imperfection and a finite VTS 𝔙 that is sound, complete, and tight with respect
to a given system model 𝔖, verdict oracle V, and observation model Ω, we aim to
transform 𝔙 such that the transformation is sound, complete, and tight with respect
to the same system model 𝔖, the same verdict oracle V, and transformed observation
model Θ(Ω). Figure 4.5 visualizes the relation between the respective objects. Here,
Ξ denotes a VTS transformer accounting for the observational imperfections charac-
terized by Θ. This approach allows us to chain the different transformations in order
to account for multiple observational imperfections. The correctness of the whole
chain then simply follows from the correctness of the individual transformations.

4.3. IMPERFECT OBSERVATIONS 99

Ω Ω′

𝔙 𝔙′

sound, complete, tight

Θ

Ξ

Figure 4.5: VTS transformations accounting for observational imperfections.

Notably, we also want the transformations to be applicable to predictions and
to third-party techniques, which do not necessarily produce sound, complete, and
tight VTSs. To this end, we prove more general correspondence theorems for the
VTS transformations we present in the following. As corollaries of these theorems,
we then also obtain that they allow the described modular approach.

In the following, we assume the finite input VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ to
be implicitly given, unless otherwise indicated.

4.3.1 Limited Observability

Asmotivated above and in the introduction, in real-world scenarios, there are inherent
observability limits. Formally, we can capture those limits by restricting the set of
observables Obs of the input VTS 𝔙 to a subset O ⊆ Obs. We already introduced the
respective observation model transformer in Definition 3.3.4. We now present a VTS
transformation, coined observability projection, that constructs a new VTS such that
the set of observables is restricted from Obs to O.

Remark. Conceptually, observability projection shares similarities with hiding or
restriction operators found in typical process calculi [e.g. Mil80; Hoa78]. However, as
VTSs have no concept of internal 𝜏-transitions, i.e., every transition must correspond
to an observable, we have to directly remove transitions with unobservable actions
instead of replacing them with 𝜏-transitions.

The idea behind observability projection is as follows: If certain events become
unobservable, then we may take the respective transitions in the VTS without an
observation. Hence, similarly to lookahead refinement, we must look an unbounded
number of transitions in the future. However, unlike lookahead refinement, we must
now consider only transitions that became unobservable. To this end, we again use a
fixpoint construction. Let 𝑋𝑖(𝑞) be the set of states reachable from 𝑞 ∈ 𝒬 by taking
at most 𝑖 ∈ ℕ unobservable transitions:

𝑋0(𝑞) ≔ {𝑞} 𝑋𝑖+1(𝑞) ≔ 𝑋𝑖(𝑞) ∪ Post(𝑋𝑖(𝑞),Obs∖O) (4.3)

It is easy to see that 𝑋𝑖 reaches a fixpoint after at most |𝒬| iterations.
When the input VTS is in a given state 𝑞 but events outside of O became unob-

servable, then any of the states in 𝑋|𝒬|(𝑞) must be considered possible as one can get

100 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

there without making any observations. Observability projection then updates the
transitions and verdict function accordingly.

Definition 4.3.1 Given a VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ and a set O ⊆ Obs of
observable actions, we define the observability projection of 𝔙 by

𝔙⇂O ≔ ⟨𝒬, 𝐽,O,⇾′, 𝒱, ⊑, 𝜈′⟩ with 𝜈′(𝑞) ≔ ⨆𝑞′∈𝑋|𝒬|(𝑞)
𝜈(𝑞′) (4.4)

and ⟨𝑞, o, 𝑞″⟩ ∈ ⇾′ iff ⟨𝑞′, o, 𝑞″⟩ ∈ ⇾ for some state 𝑞′ ∈ 𝑋|𝒬|(𝑞). Here, 𝑋|𝒬| is
the fixpoint of 𝑋𝑖 as per (4.3).

⟨i, ∅⟩ ⟨d, ∅⟩

⟨p, {𝑓𝑝}⟩

⟨s, {𝑓𝑠}⟩
∅ ∅

= ∅ ⊔ {𝑓𝑝} ⊔ {𝑓𝑠}
= ∅ ∩ {𝑓𝑝} ∩ {𝑓𝑠}

{𝑓𝑝}

{𝑓𝑠}

reque
st

blink

request

blink

request

dispense

Figure 4.6: Observability projection of the VTS constructed by annotation tracking
from the model of the coffee machine (see Figure 4.3).

Example 4.4 Figure 4.6 depicts the observability projection of the VTS constructed
by annotation tracking from the verdict-annotated model of the coffee machine (see
Figure 4.3). Here, we assumed that all actions except the fault actions are observable,
i.e., O = {request, dispense, blink}. The resulting VTS allows diagnosing faults
of the coffee machine. It is equivalent to the VTS depicted in Figure 3.4, which we
presented as an example for a VTS for diagnosis purposes. It is also structurally iden-
tical to the diagnoser constructed with traditional techniques depicted in Figure 2.8.
However, it does not yet produce the same verdicts as the diagnoser. Note that the
verdict assigned to the state ⟨d, ∅⟩ has been updated with the join as per (4.4). As
the join is the set intersection, the verdict remains unchanged.

Correctness Theorem. When the observables are restricted to O, then two obser-
vation sequences 𝜔1, 𝜔2 ∈ ℒ(𝔙) of the input VTS become observationally indistin-
guishable iff they share the same O-projection, i.e., iff 𝜔1⇂O = 𝜔2⇂O. The VTS 𝔙⇂O
produces most specific verdicts subsuming the verdicts produced for observation
sequences with the sameO-projection by the input VTS 𝔙, i.e., observation sequences
that are indistinguishable when only observing observables in O. In more technical
terms, for any observation sequence 𝜔′ ∈ ℒ(𝔙⇂O) the verdict 𝜈𝔙⇂O(𝜔′) produced by

4.3. IMPERFECT OBSERVATIONS 101

𝔙⇂O is the most specific verdict subsuming all verdicts produced by 𝔙 for observation
sequences whose O-projection is 𝜔′.

Theorem 4.3.1 Given a VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ and a set O ⊆ Obs, we
have (i) ℒ(𝔙⇂O) = ℒ(𝔙)⇂O and (ii) for all 𝜔′ ∈ ℒ(𝔙⇂O):

𝜈𝔙⇂O(𝜔′) = ⨆{𝜈(𝜔) || 𝜔 ∈ ℒ(𝔙) s.t. 𝜔′ = 𝜔⇂O }

Proof Sketch. Theorem 4.3.1 is proven by induction on the length of 𝜔′, similar to the
proof of Theorem 4.1.1 (see Appendix A.1.1) and exploiting the fact that:

⋃{𝑋|𝒬|(𝑞) || 𝑞 ∈ After𝔙⇂O(𝜔′) } = ⋃{After𝔙(𝜔) | 𝜔 ∈ ℒ(𝔙) ∧ 𝜔′ = 𝜔⇂O }

Theorem 4.3.1 establishes a general relation between the input VTS 𝔙 and its
projection 𝔙⇂O. We also obtain the following corollary if the input VTS is sound,
complete, and tight, e.g., when it has been constructed with annotation tracking.

Corollary 4.3.1 If 𝔙 is sound, complete, and tight with respect to a system model
𝔖, a verdict oracle V, and an observation modelΩ, then 𝔙⇂O is also sound, complete,
and tight with respect to the same system model, the same verdict oracle, and the
transformed observation model Ω⇂O as per Definition 3.3.4.

As the input VTS is sound and complete, the verdict 𝜈(𝜔) it produces for a given
observation sequence 𝜔 is the most specific verdict VΩ(𝜔), i.e., 𝜈(𝜔) = VΩ(𝜔) (recall
Lemma 3.4.1). As it is tight, there is no spurious behavior that cannot actually be
realized by the given system model. Hence, the fixpoint as per (4.3) only takes into
account unobservable behaviors that may actually be realized by the system. As a
result, Theorem 4.3.1 carries through to the most specific verdicts VΩ⇂O(𝜔′) according
to the transformed observation model.

Complexity. For constructing 𝔙⇂O, the fixpoint computation as per (4.3) has to be
carried out for each of the |𝒬| states before at most |𝒬| verdicts are joined as per (4.4).
Hence, the worst-case time complexity lies in 𝒪(LOpCost(|𝒬|) ⋅ |𝒬| + |𝒬|2).

Relation to Belief State Constructions. In planning, it is common to ask for the
set of possible states a systemmay be in under the assumption of partial observability,
which we call limited observability here [Rin04; RN10]. Using appropriate verdict
annotations, the techniques developed here can also be used to obtain such sets of
possible system states (cf. discussion in Section 4.1.1). Observability projection as per
Definition 4.3.1 is closely related to standard belief state constructions for tracking

102 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

possible states of a system after producing some observations [Rin04; RN10]. We defer
the usual exponential blowup to the finalization stage of the pipeline (cf. Figure 4.1)
by introducing non-determinism in the construction. The primary innovation over
standard constructions lies in a general exploitation of the join-semilattice properties
of verdict domains, of which state belief sets are a specialized instance. At its very
core, observability projection tracks the possible states a VTS may be in. So, we
can indeed reframe observability projection as a belief state construction about VTS
states where a verdict for a state belief set is obtained by joining the verdicts assigned
to the individual states. The constructions we present in the following for delays,
losses, and out-of-order arrivals can be framed in a similar way.

4.3.2 Delays

When observations are made over a shared network, delays are typically unavoidable.
If observations are delayed, then verdictors run the risk of producing outdated verdicts
that are neither sound nor complete.

Example 4.5 Consider the VTS depicted in Figure 4.7. This VTS diagnoses faults based
on the traditional diagnosis verdict domain (see Definition 3.1.2). So, after observing
𝛼, it produces {{𝑓}}, indicating that a fault of fault class 𝑓 certainly occurred. Before
observing 𝛼, it produces {∅}, indicating that no fault occurred. In case observations
are delayed, it may be that 𝛼 did occur, however, it has not been observed yet. As it
has not been observed yet, the VTS still produces {∅}, which is unsound. It indicates
that the system functions nominally, when, in fact, a fault of fault class 𝑓 may have
occurred. The transformation we present in the following, allows transforming a
VTS in order to account for such delays.

A B
{∅} {{𝑓}}

𝛼 𝛽

Figure 4.7: A VTS for fault diagnosis based on the traditional diagnosis verdict domain.

Unbounded Delays. Let us consider unbounded delays first. If observations can
be delayed by an unbounded time, then instead of observing an observation sequence
𝜔, a verdictor may observe any prefix of it. Any observations not on the specific
prefix will then need to be considered delayed and only arrive eventually. Formally,
this corresponds to the following observation model transformer Delay∞:

Delay∞(Ω)(𝜌) ≔⋃{ Pref(𝜔) | 𝜔 ∈ Ω(𝜌) }

4.3. IMPERFECT OBSERVATIONS 103

For instance, in case of Example 4.5, the actual observation sequence may be 𝛼𝛽𝛽,
however, with unbounded delays it is possible that the verdictor observed nothing
yet, just 𝛼, the full sequence, or anything in between.

Now, to account for such delays with a VTS transformation, we use a similar fix-
point construction to limited observability and lookahead refinement. If observations
can be arbitrarily delayed, then we must look into the indefinite future and consider
all verdicts that may eventually be produced possible. To this end, let 𝑌𝑖(𝑞) be the set
of states reachable from 𝑞 ∈ 𝒬 by taking at most 𝑖 ∈ ℕ transitions:

𝑌0(𝑞) ≔ {𝑞} 𝑌𝑖+1(𝑞) ≔ 𝑌𝑖(𝑞) ∪ Post(𝑌𝑖(𝑞),Obs) (4.5)

Again, it is clear that 𝑌 reaches a fixpoint after |𝒬| iterations. The only difference to
(4.3) is that any transitions may be taken and not just unobservable ones. Intuitively,
if observations are delayed by an unbounded time, then the verdicts of any of the
states in 𝑌|𝒬|(𝑞) may be the correct verdict for the current state of the system. This
insight gives rise to the following VTS transformation for unbounded delays.

Definition 4.3.2 Given a VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩, we define the un-
bounded delay transformation Delay∞(𝔙) of 𝔙 by

Delay∞(𝔙) ≔ ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈′⟩ (4.6)

with 𝜈′(𝑞) ≔ ⨆𝑞′∈𝑌|𝒬|(𝑞)
𝜈(𝑞′) and 𝑌|𝒬| as per (4.5).

We omit any further formal exposition of the unbounded case, as it is simpler but
analogous to the bounded case which we consider next.

Bounded Delays. In case we can justify a bound on the possible delay, we can
afford a construction that leads to more specific verdicts than for the unbounded case.
Such bounds can often be justified by guarantees provided by networks, e.g., those
typically used to connect manufacturing equipment [Fel05; TV99; Di +12; THW94].
Let us again first define an observation model transformer introducing a delay of up
to 𝐵 ∈ ℕ observations:

Delay𝐵(Ω)(𝜌) ≔ {𝜔[1 .. |𝜔| −D] | 𝜔 ∈ Ω(𝜌) ∧ 0 ≤ D ≤ 𝐵 } (4.7)

For 𝐵 = 0, there is no delay and the transformed model is identical to the original.
For 𝐵 > 0, the observation model transformer introduces nondeterminism as a run
may give rise to different observation sequences depending on the actual delay D.
Note that the delay is considered to be discrete, as we are in the discrete-time setting.
Continuous-time delays will be a topic of the next chapter.

Intuitively, if observations are delayed by up to 𝐵, then the verdict of any of the
states in𝑌𝐵(𝑞) as pre (4.5) may be the correct verdict for the current state of the system.

104 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

This is analogous to the unbounded case, however, instead of using the fixpoint of 𝑌,
we just look 𝐵 observations ahead. This is also exactly how many observations we
need to look ahead, as observations may be delayed by at most 𝐵. The transformation
of the input VTS then also proceeds analogously to Definition 4.3.2:

Definition 4.3.3 Given a VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ and a delay bound 𝐵,
we define the 𝐵-delay transformation Delay𝐵(𝔙) of 𝔙 by

Delay𝐵(𝔙) ≔ ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈′⟩ (4.8)

with 𝜈′(𝑞) ≔ ⨆𝑞′∈𝑌𝐵(𝑞)
𝜈(𝑞′) and 𝑌𝐵 as per (4.5).

Example 4.6 Figure 4.8 shows the VTS obtained by the delay transformation from the
VTS depicted in Figure 4.7 for a delay bound of 𝐵 = 1. Recall that the VTS is supposed
to detect the occurrence of faults using the traditional fault diagnosis domain. Con-
sidering that observations may be delayed by up to one step, the transformed VTS
now produces {∅, {𝑓}} instead of {∅} in the state A, as the action 𝛼 may have already
occurred but not been observed yet. This verdict now indicates that it is possible that
a fault of class 𝑓 occurred and that it is also possible that no fault occurred, which
is indeed correct. In contrast, the original VTS produced incorrect verdicts when
faced with delayed observations (cf. Example 4.5). When the observation of 𝛼 finally
arrives, we still transition to the right state and indicate that now a fault of class 𝑓
certainly occurred, which is also correct.

A B
{∅, {𝑓}}

= {∅} ⊔ {{𝑓}}
= {∅} ∪ {{𝑓}}

{{𝑓}}

𝛼 𝛽

Figure 4.8: VTS obtained from the VTS shown in Figure 4.7 by the transformation
for bounded delays with a bound of 𝐵 = 1.

4.3. IMPERFECT OBSERVATIONS 105

Correctness Theorem. The verdict produced for some observation sequence 𝜔′

by the transformed VTSDelay𝐵(𝔙) is the most specific verdict subsuming the verdicts
produced by 𝔙 for those observation sequences out of which 𝜔′ may arise by a delay
of up to 𝐵 steps. Formally, we obtain the following correspondence theorem:

Theorem 4.3.2 For a VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ and delay bound 𝐵:

(i) ℒ(Delay𝐵(𝔙)) = { 𝜔[1 .. |𝜔| −D] | 𝜔 ∈ ℒ(𝔙) ∧ 0 ≤ D ≤ 𝐵 }

(ii) For all observation sequences 𝜔′ ∈ ℒ(Delay𝐵(𝔙)), we have:
𝜈Delay𝐵(𝔙)(𝜔

′)

= ⨆{𝜈(𝜔) || for 𝜔 ∈ ℒ(𝔙) s.t. ∃ ∧ 0 ≤ D ≤ 𝐵 ∶ 𝜔′ = 𝜔[1.. |𝜔| −D] }

Proof Sketch. Theorem 4.3.2 is proven by induction on the length of 𝜔′, similar to the
proof of Theorem 4.1.1 (see Appendix A.1.1) and exploiting the fact that:

⋃{𝑌𝐵(𝑞) | 𝑞 ∈ After𝔙(𝜔′) }

= ⋃{After𝔙(𝜔) | 𝜔 ∈ ℒ(𝔙) ∧ ∃0 ≤ D ≤ 𝐵 ∶ 𝜔′ = 𝜔[1.. |𝜔| −D] }
(4.9)

From Theorem 4.3.2, we obtain the following corollary by a similar reasoning as
for Corollary 4.3.1 based on the fact that 𝜈(𝜔) = V(𝜔).

Corollary 4.3.2 If 𝔙 is sound, complete, and tight with respect to a system model
𝔖, a verdict oracle V, and an observation model Ω, then Delay𝐵(𝔙) is also sound,
complete, and tight with respect to the same system model, the same verdict oracle,
and the transformed observation model Delay𝐵(Ω) for any 𝐵.

For the unbounded case a theorem analogously to Theorem 4.3.2 applies where 𝐷
is considered unbounded. Since 𝑌𝑖 as per (4.5) reaches a fixpoint after |𝒬| iterations,
the transformation as per Definition 4.3.3 yields the same VTS for all bounds 𝐵 ≥ |𝒬|
and collapses to Definition 4.3.2, i.e., when the bound exceeds |𝒬| it does no longer
matter and we obtain a VTS for the unbounded case.

4.3.3 Losses
When observations are made over a shared network, they may not only be delayed
but they can also get lost. For instance, there may be transmission errors or messages
may be overwritten by higher priority messages [THW94]. If observations are lost,
then verdictors run the risk of producing incorrect verdicts or getting stuck.

Example 4.7 Consider the VTS depicted in Figure 4.7 again. If, instead of being merely
delayed, the observation of 𝛼 gets lost while the VTS is in the state A, then analogously

106 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

to Example 4.5, the VTS does produce an incorrect verdict. It will still indicate {∅},
despite the occurrence of 𝛼. Furthermore, when a subsequent observation of 𝛽 is
made, this observation cannot be fed into the VTS, i.e., the VTS is no longer applicable
with respect to an observation model with losses.

Unbounded Losses. Like for delays, let us consider the unbounded case first
and define an observation model transformer for it. If an unbounded number of
observationsmay be lost, then any observationmight be removed from an observation
sequence that is generated for a given run:

Loss∞(Ω)(𝜌) ≔ {Word(𝜔′) | 𝜔 ∈ Ω(𝜌) ∧ 𝜔′ ⊆ 𝜔 } (4.10)

Recall that Word takes a semiword that may contain gaps and transforms it into a
proper word by removing any gaps (recall Section 2.1).

The difference between losses and delays is that when observations are lost, then
they will never arrive. To accommodate losses, we follow a similar strategy as for
delays. However, this time, it is not sufficient to simply look at possible future verdicts.
We also must adapt the transition relation as observations may never arrive and we
may thus need to skip them. These considerations give rise to the following VTS
transformation to account for unbounded losses:

Definition 4.3.4 Given a VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩, we define the un-
bounded loss transformation Loss∞(𝔙) of 𝔙 by

Loss∞(𝔙) ≔ ⟨𝒬, 𝐽,Obs,⇾′, 𝒱, ⊑, 𝜈′⟩ (4.11)

with ⟨𝑞, o, 𝑞″⟩ ∈ ⇾′ iff ⟨𝑞′, o, 𝑞″⟩ ∈ ⇾ for some 𝑞′ ∈ 𝑌|𝒬|(𝑞),

𝜈′(𝑞) ≔ ⨆𝑞′∈𝑌|𝒬|(𝑞)
𝜈(𝑞′) ,

and 𝑌|𝒬| as per (4.5).

The difference to Definition 4.3.2 lies in the fact that the transition relation is also
changed allowing observations to be skipped. As for unbounded delays, we omit a
further formal exposition as it is simpler but analogous to the bounded case which
we consider next.

Bounded Losses. As for delays, we may assume that there is an upper bound
𝐵 ∈ ℕ on the number of observations that may get lost consecutively. Such a bound
can often be derived from the guarantees of the network.

For instance, it is well-known that in communication networks packets get lost
in bursts. This insight lead to the established Gilbert-Elliott channel model [Gil60;

4.3. IMPERFECT OBSERVATIONS 107

Ell63]. Following the Gilbert-Elliott model, one can compute a probability that not
more than 𝐵 packets are lost consecutively. A bound 𝐵 on consecutive losses can
then be chosen such that this probability is sufficiently low. For further details on
the Gilbert-Elliott channel model and the computation of the revelant probabilities,
we refer to the existing literature [Gil60; Ell63].

To formally model such bounded losses in terms of an observation model trans-
former, we follow a model established in the literature on weakly-hard real-time
systems for consecutive deadline misses [BBL01; PM22]:

Definition 4.3.5 Let 𝜛 ∈ {L,A} ⋆ be a finite sequence over the set {L,A} where L
indicates that an observation gets lost and A indicates that it arrives. The word 𝜛
satisfies the constraint of at most 𝐵 ∈ ℕ consecutive losses iff:

∀1 ≤ 𝑖 ≤ 𝑗 ≤ |𝜛| ∶ 𝜛 (𝑖) = 𝜛 (𝑗) = L ∧ 𝑗 − 𝑖 > 𝐵⟹∃𝑖 ≤ 𝑘 ≤ 𝑗 ∶ 𝜛 (𝑘) = A

For 𝐵 ∈ ℕ, we denote the set of such words by LA𝐵.

That is, between any two losses that are more than 𝐵 apart, at least one observation
arrives. For a given observation sequence 𝜔 and a word𝜛 ∈ LA𝐵 such that |𝜔| = |𝜛|,
we define a loss projection that removes all lost observations:

𝜔⇂𝜛 ≔ Word({ ⟨𝑖, o⟩ ∈ 𝜔 | 𝜛(𝑖) = A })

Using LA𝐵 and the loss projection, we then define an observation model transformer:

Loss𝐵(Ω)(𝜌) ≔ {𝜔′ | ∃𝜔 ∈ Ω(𝜌),𝜛 ∈ LA𝐵 s.t. |𝜔| = |𝜛| ∶ 𝜔⇂𝜛 = 𝜔′ } (4.12)

The resulting observation model may induce up to 𝐵 consecutive losses in the orig-
inal observation sequences. As in the unbounded case, a VTS robust to at most 𝐵
consecutive losses is synthesized in a similar way as for bounded delays with the
addition that observations may be skipped.

Definition 4.3.6 Given a VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ and a loss bound 𝐵,
we define the 𝐵-loss transformation Loss𝐵(𝔙) of 𝔙 by

Loss𝐵(𝔙) ≔ ⟨𝒬, 𝐽,Obs,⇾′, 𝒱, ⊑, 𝜈′⟩ (4.13)

with ⟨𝑞, o, 𝑞″⟩ ∈ ⇾′ iff ⟨𝑞′, o, 𝑞″⟩ ∈ ⇾ for some 𝑞′ ∈ 𝑌𝐵(𝑞),

𝜈′(𝑞) ≔ ⨆𝑞′∈𝑌𝐵(𝑞)
𝜈(𝑞′) ,

and 𝑌𝐵 as per (4.5).

108 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

Remark. The observation model for up to 𝐵 bounded losses implicitly also accounts
for up to 𝐵 bounded delays. Formally, we have:

∀𝜌 ∈ Runs(𝔖) ∶ Delay𝐵(Ω)(𝜌) ⊆ Loss𝐵(Ω)(𝜌) (4.14)

Assume given an observation sequence 𝜔 ∈ Ω(𝜌) of the original observation model,
i.e., without any losses or delays. Now, a delay of up to 𝐵may cut up to 𝐵 observations
off of 𝜔 as per (4.7). The resulting observation sequence 𝜔[1.. |𝜔| −D] for 0 ≤ D ≤ 𝐵
is identical to the sequence obtained when the lastD observations are lost as per (4.12).
Hence, we have (4.14). As a result, if there are bounded losses and delays, it suffices to
apply the transformation for bounded losses, which then transparently also handles
bounded delays. An analogous argument can be made for the respective unbounded
cases. These considerations are also reflected in the fact that Definition 4.3.2 and
Definition 4.3.4, as well as Definition 4.3.3 and Definition 4.3.6 share the definition of
the transformed verdict function 𝜈′, respectively.

Example 4.8 Figure 4.9 shows the VTS obtained by the loss transformation from the
VTS depicted in Figure 4.7 for a loss bound of 𝐵 = 1. The transformation fixes both
issues described in Example 4.7. First of all, similar to Example 4.6, the left state is
now {∅, {𝑓}}, indicating that it is possible that a fault of class 𝑓 occurred and that it
is possible that the system functions nominally. This is correct as the observation 𝛼
may have been lost. In addition, in cases where 𝛼 is lost, and 𝛽 is observed next, the
added transition to the right state can be taken thereby preventing the verdictor from
getting stuck. Taking this transition, then also correctly leads to a state indicating
that a fault of class 𝑓 certainly occurred.

A B
{∅, {𝑓}}

= {∅} ⊔ {{𝑓}}
= {∅} ∪ {{𝑓}}

{{𝑓}}

𝛼

𝛽
𝛽

Figure 4.9: VTS obtained from the VTS shown in Figure 4.7 by the transformation
for losses with a bound of 𝐵 = 1.

Correctness Theorem. The verdict produced for some observation sequence 𝜔′

by the transformed VTS Loss𝐵(𝔙) is the most specific verdict subsuming the verdicts
produced by 𝔙 for those observation sequences out of which 𝜔′ may arise by up to
𝐵 consecutive losses. Formally, we establish the following general theorem:

4.3. IMPERFECT OBSERVATIONS 109

Theorem 4.3.3 For a VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ and loss bound 𝐵:

(i) ℒ(Loss𝐵(𝔙)) = { 𝜔⇂𝜛 | 𝜔 ∈ ℒ(𝔙),𝜛 ∈ LA𝐵, |𝜛| = |𝜔| }

(ii) For all observation sequences 𝜔′ ∈ ℒ(Loss𝐵(𝔙)), we have:

𝜈Loss𝐵(𝔙)(𝜔
′)

= ⨆{𝜈(𝜔) || for 𝜔 ∈ ℒ(𝔙) s.t. ∃𝜛 ∈ LA𝐵, |𝜛| = |𝜔| ∶ 𝜔′ = 𝜔⇂𝜛 }

Proof Sketch. Theorem 4.3.3 is proven by induction on the length of 𝜔′, similar to the
proof of Theorem 4.1.1 (see Appendix A.1.1) and exploiting the fact that:

⋃{𝑌𝐵(𝑞) || 𝑞 ∈ AfterLoss𝐵(𝔙)(𝜔
′) }

= ⋃{After𝔙(𝜔) | 𝜔 ∈ ℒ(𝔙) ∧ ∃𝜛 ∈ LA𝐵, |𝜛| = |𝜔| ∶ 𝜔′ = 𝜔⇂𝜛 }
(4.15)

From Theorem 4.3.3, we obtain the following corollary by a similar reasoning as
for Corollary 4.3.1 based on the fact that 𝜈(𝜔) = V(𝜔).

Corollary 4.3.3 If 𝔙 is sound, complete, and tight with respect to a system model
𝔖, a verdict oracle V, and an observation model Ω, then Loss𝐵(𝔙) is also sound,
complete, and tight with respect to the same system model, the same verdict oracle,
and the transformed observation model Loss𝐵(Ω) for any 𝐵.

For the unbounded case a theorem analogously to Theorem 4.3.3 applies where
losses are now unbounded. Since 𝑌𝑖 as per (4.5) reaches a fixpoint after |𝒬| iterations,
the transformation as per Definition 4.3.6 yields the same VTS for all bounds 𝐵 ≥ |𝒬|
and collapses to Definition 4.3.4, i.e., when the bound exceeds |𝒬| it does no longer
matter and we obtain a VTS for the unbounded case.

4.3.4 Bounded Out-of-Order Arrivals
For delays, as previously introduced, we assumed that observations are delayed en
block, i.e., without changing their order. This assumption can be justified, e.g., if all
observations originate from a single sender on a shared network. For instance, the
single sender may assign sequence numbers to observations such that they can be
ordered, even if the underlying packets on the network carrying the observations
may arrive out-of-order. For distributed systems where observations may originate
from multiple senders, however, this assumption is no longer justified. Here, obser-
vations may be delayed individually and there may be no way to totally order them
upon arrival. In such a case, verdictors have to account for out-of-order arrivals of

110 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

observations. In the following, we restrict our considerations to bounded out-of-order
arrivals.9

Technically, out-of-order arrivals lead to permuted observation sequences. As for
bounded delays and losses, we assume that there is an upper bound 𝐵 constraining
possible permutations. Formally, we define bounded permutations as follows:

Definition 4.3.7 For a bound 𝐵 ∈ ℕ and 𝑁 ∈ ℕ, a bounded permutation
𝜉∶ {1 .. 𝑁} → {1 .. 𝑁} is a bijection such that |𝑛 − 𝜉(𝑛)| ≤ 𝐵 for all 1 ≤ 𝑛 ≤ 𝑁.
Let Ξ⟨𝐵,𝑁⟩ be the set of bounded permutations for bound 𝐵 and 𝑁.

For a given observation sequence 𝜔 and bounded permutation 𝜉 ∈ Ξ⟨𝐵,|𝜔|⟩, we denote
the corresponding permutation of 𝜔 by 𝜔⇂𝜉. Formally, we define:

(𝜔⇂𝜉)(𝑖) ≔ 𝜔(𝜉(𝑖))

Based on these definitions, we define the following observation model transformer
Reord𝐵 for bounded out-of-order arrivals of observations:

Reord𝐵(Ω)(𝜌)

≔ {𝜔′ || ∃𝜔 ∈ Ω(𝜌), 𝜉 ∈ Ξ⟨𝐵,|𝜔|⟩, 0 ≤ D ≤ 𝐵 + 1 ∶ (𝜔⇂𝜉)[0.. |𝜔| − D] = 𝜔′ }
(4.16)

Notably, the resulting observation models also include a delay of up to 𝐵 + 1 ob-
servations. As discussed above, out-of-order arrivals are fundamentally caused by
observations that are delayed individually. This delay is inherent to out-of-order
arrivals. Without the delay, an observation needs to be directly observed preventing
any permutations. From a technical perspective, dropping the delay from (4.16) would
violate the condition for observation models as per Definition 3.3.1. Take Example 4.5
as an example again and assume that 𝛼 occurs and is required to be observed immedi-
ately, i.e., without a delay. Then, 𝛼 would be the only possible observation sequence.
Now, if 𝛽 occurs next, it cannot be made to arrive before 𝛼 as this would not continue
the previous observation sequence 𝛼. Recall that it is a fundamental requirement
of observation models that future observation sequences continue previous ones.
Hence, the delay in (4.16) is justified from a practical perspective and this practical
perspective is also reflected in the technical definition of observation models.10

9 While bounded and unbounded delays and losses can be handled similarly, unbounded out-of-order
arrivals are more complex to handle than bounded out-of-order arrivals. In particular, the construction
we present in the following only works for the bounded case.

10 A delay of 𝐵 instead of 𝐵 + 1 would be sufficient. However, this would complicate the VTS transfor-
mation we present in the following. This transformation is based on speculating about the next 𝐵 + 1
observations in order to account for any permutations. The transformation is straightforwardly adapted
to account for a delay of just 𝐵 by tracking a history of 𝐵 + 1 states and using the last state of the
history (if it exists) instead of the speculated state to determine the verdict.

4.3. IMPERFECT OBSERVATIONS 111

VTS Transformation. The VTS transformation for out-of-order arrivals is based
on the idea to first speculate about future observations (which may be delayed) and
then handle them in which ever order they are made, when they are made. The states
of the transformed VTS will be pairs ⟨𝑞, ℵ⟩ where 𝑞 is a state of the input VTS and ℵ
is a sequence of speculative observations. Formally, we have

⟨𝑞, ℵ⟩ ∈ 𝒬 × (Obs ⊍ {#})𝐵+1

where (Obs ⊍ {#})𝐵+1 is the set of finite sequences of length 𝐵 + 1 over Obs ⊍ {#}
and # ∉ Obs is a marker used to indicate the absence of a specific observable. The
sequence ℵ contains speculative observations which have not been made yet. For
instance, ⟨B, 𝛼 𝛽⟩ encodes that the state B has been reached by speculating about
future observations of 𝛼 and 𝛽. When 𝛽 is observed, then it is set to #, leading to the
state ⟨B, 𝛼#⟩. Likewise, when 𝛼 is observed, then it is set to #, leading to the state
⟨B, # 𝛽⟩. As out-of-order arrivals are bounded, it suffices to speculate about at most
𝐵 + 1 observations. When a speculative observation sequence ℵ starts with #, this
means that the first speculative observation has been made and we can thus continue
speculating. To this end, we define a function Shift as follows:

Shift(⟨𝑞, ℵ⟩) ≔ { ⟨𝑞′, ℵ[2..] ⋄ o⟩ | ⟨𝑞, o, 𝑞′⟩ ∈ ⇾ }

This function discards the first element of ℵ and extends ℵ with an observation that
may be made in state 𝑞 and lead to state 𝑞′. In case of Example 4.5, we may speculate
that first 𝛼 and then 𝛽 occurs, resulting in the state ⟨B, 𝛼 𝛽⟩. Now, if 𝛼 is observed,
we end up in ⟨B, # 𝛽⟩ and can speculate further resulting in ⟨B, 𝛽 𝛽⟩.

To account for observations that we have speculated about, we define

Apply(⟨𝑞, ℵ⟩ , o) ≔ { ⟨𝑞, ℵ′⟩ | ∃1 ≤ 𝑖 ≤ |ℵ| ∶ ℵ(𝑖) = o ∧ ℵ′ = Mark(ℵ, 𝑖) }

where Mark replaces a speculative observation with #:

Mark(ℵ, 𝑖)(𝑗) ≔ {
ℵ(𝑗) if 𝑗 ≠ 𝑖
otherwise

The set Apply(⟨𝑞, ℵ⟩ , o) contains possible states that may result from observing o. In
general, there may be multiple speculative observations of o and we cannot know to
which thereof a particular observation of o corresponds. Hence, we must consider the
entire set Apply(⟨𝑞, ℵ⟩ , o). This set contains all states that may result from replacing
a speculative observation of o at some position 𝑖 with #.

As a final building block for the VTS transformation, we need a way to speculate
about as much observations as required for the bound 𝐵. We achieve this by yet
another fixpoint construction. To this end, given a set 𝑋 ⊆ 𝒬 × (Obs ⊍ {#})𝐵+1 of
states as discussed above, let S𝑖 be inductively defined as follows:

S0(𝑋) ≔ 𝑋

112 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

S𝑖+1(𝑋) ≔ S𝑖(𝑋) ∪⋃{ Shift(⟨𝑞, ℵ⟩) | ⟨𝑞, ℵ⟩ ∈ S𝑖(𝑋) s.t. ℵ(1) = # }

It is easy to see that S𝑖 reaches a fixpoint after at most 𝐵 + 1 iterations as Shift only
adds concrete observables and we only apply it to those states ⟨𝑞, ℵ⟩ where ℵ(1) is
not yet a concrete observable. Based on this fixpoint, we define the following VTS
transformation for bounded out-of-order arrivals of observations:

Definition 4.3.8 Given a VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ and a recording bound
𝐵, we define the 𝐵-reordering transformation Reord𝐵(𝔙) of 𝔙 by

Reord𝐵(𝔙) ≔ ⟨𝒬 × (Obs ⊍ {#})𝐵+1, 𝐽′,Obs,⇾′, 𝒱, ⊑, 𝜈′⟩ (4.17)

where
𝐽′ ≔ S𝐵+1 ({ ⟨𝑞, ℵ⟩ || 𝑞 ∈ 𝐽 ∧ ℵ ∈ {#}𝐵+1 })

𝜈′(⟨𝑞, ⋅⟩) ≔ 𝜈(𝑞)

and with ⟨⟨𝑞, ℵ⟩ , o, ⟨𝑞′, ℵ′⟩⟩ ∈ ⇾′ iff:

⟨𝑞′, ℵ′⟩ ∈ S𝐵+1(Apply(⟨𝑞, ℵ⟩ , o))

The initial states 𝐽′ are defined by speculating about observations starting in the
initial states of the input VTS. The transitions ⇾′ are defined by first accounting
for an observation based on the speculations and then speculating further. Notably,
this VTS transformation exploits non-determinism to handle all possible speculative
observations, relying on Definition 3.2.2 to join their verdicts.

Example 4.9 Figure 4.10 shows the VTS obtained by the out-of-order transformation
from the VTS depicted in Figure 4.7 for a bound of 𝐵 = 1. Figure 4.11 shows the
determinization of this VTS as per Definition 3.2.7. As for the transformations for
delays and losses (see Figure 4.8 and Figure 4.9, respectively), the verdict of the initial
state is {∅, {𝑓}}, indicating that the system may function nominally or that a fault of
class 𝑓 occurred. As in the case of losses, 𝛽 is a valid observation in the initial state.
In contrast to the transformation for losses, however, this observation must then be
followed by 𝛼. Still, a fault of class 𝑓 is diagnosed as soon as 𝛽 is observed, as this
indicates that we should already be in state B of the original VTS.

Correctness Theorem. The verdict produced for some observation sequence
𝜔′ by the transformed VTS Reord𝐵(𝔙) is the most specific verdict subsuming the
verdicts produced by 𝔙 for those observation sequences out of which 𝜔′ may arise by
out-of-order arrivals bounded by 𝐵 as per (4.16). Formally, we establish the following
general theorem about the transformation:

4.3. IMPERFECT OBSERVATIONS 113

⟨A, ##⟩

⟨B, # 𝛼⟩

⟨B, 𝛼 𝛽⟩

⟨B, ##⟩

⟨B, 𝛽 𝛽⟩

⟨B, 𝛼#⟩

⟨B, # 𝛽⟩ 𝛼

𝛽

𝛼

𝛼

𝛽

𝛽

𝛽

𝛼

𝛼

𝛼
𝛼

𝛼

Figure 4.10: VTS obtained from the VTS shown in Figure 4.7 by the transformation
for out-of-order-arrivals with a bound of 𝐵 = 1. Verdicts have been omitted from the
presentation. They are inherited from the original VTS.

⟨A, ##⟩ , ⟨B, # 𝛼⟩ , ⟨B, 𝛼 𝛽⟩

{∅, {𝑓}}
= {∅} ⊔ {{𝑓}}
= {∅} ∪ {{𝑓}}

⟨B, ##⟩ , ⟨B, # 𝛽⟩ , ⟨B, 𝛽 𝛽⟩

⟨B, 𝛼#⟩
{{𝑓}}

{{𝑓}}
𝛼

𝛽

𝛽

𝛼

Figure 4.11: Determinization of the VTS shown in Figure 4.10.

Theorem 4.3.4 For a VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ and reorder bound 𝐵:

(i) ℒ(Reord𝐵(𝔙)) = { (𝜔⇂𝜉)[0.. |𝜔| − D] || 𝜔 ∈ Ω(𝜌), 𝜉 ∈ Ξ⟨𝐵,|𝜔|⟩, 0 ≤ D ≤ 𝐵 + 1 }

(ii) For all observation sequences 𝜔′ ∈ ℒ(Reord𝐵(𝔙)), we have:

𝜈Reord𝐵(𝔙)(𝜔
′)

= ⨆{ 𝜈(𝜔) || 𝜔 ∈ ℒ(𝔙) ∧ ∃𝜉 ∈ Ξ⟨𝐵,|𝜔|⟩, 0 ≤ D ≤ 𝐵 + 1 ∶ (𝜔⇂𝜉)[0.. |𝜔| − D] = 𝜔′ }

Proof Sketch. Theorem 4.3.3 is proven by induction on the length of 𝜔′, similar to the

114 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

proof of Theorem 4.1.1 (see Appendix A.1.1) and exploiting the fact that:

⋃{𝑞 || ⟨𝑞, ⋅⟩ ∈ AfterReord𝐵(𝔙)(𝜔
′) }

= ⋃{After𝔙(𝜔)
|
|
|
𝜔 ∈ ℒ(𝔙) ∧ ∃𝜉 ∈ Ξ⟨𝐵,|𝜔|⟩, 0 ≤ D ≤ 𝐵 + 1 ∶
(𝜔⇂𝜉)[0.. |𝜔| − D] = 𝜔′ }

From Theorem 4.3.3, we obtain the following corollary by a similar reasoning as
for Corollary 4.3.1 based on the fact that 𝜈(𝜔) = V(𝜔).

Corollary 4.3.4 If 𝔙 is sound, complete, and tight with respect to a system model
𝔖, a verdict oracle V, and an observation model Ω, then Reord𝐵(𝔙) is also sound,
complete, and tight with respect to the same system model, the same verdict oracle,
and the transformed observation model Reord𝐵(Ω) for any 𝐵.

4.3.5 Possibility Lifting
As a common theme of the introduced transformations, when faced with observa-
tional imperfections, certain verdicts become indistinguishable. We deal with those
indistinguishable verdicts by subsuming them into a most specific verdict (cf. join
in Definition 4.3.1, Definition 4.3.3, Definition 4.3.6, and Definition 4.3.8). For in-
stance, in case of Example 4.4, we combined multiple sets of fault classes by joining
them, which corresponds to the intersection in case of the verdict domain as per
Definition 3.1.3. As a result, we obtained a diagnoser that is simplified and lacks in
capabilities compared to the traditional construction shown in Figure 2.8. Instead
of combining the verdicts by joining them, we can also retain them as individual
possibilities. To this end, we introduce possibility lifting. Possibility lifting replaces
the verdict domain ⟨𝒱, ⊑⟩ of a VTS with ⟨℘(𝒱) , ⊆⟩, where the individual verdicts
in V ∈ ℘(𝒱) represent possible verdicts. As the join now is set union, the individ-
ual verdicts are collected in a set. Possibility lifting is applied before applying the
transformations for observational imperfections. Formally, it is defined as follows:

Definition 4.3.9 Let 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ be a VTS. The possibility lifting
⌈𝔙⌉ of 𝔙 is defined as follows:

⌈𝔙⌉ ≔ ⟨𝒬, 𝐽,Obs,⇾,℘(𝒱) , ⊆, 𝜈′⟩ with 𝜈′(𝑞) ≔ {𝜈(𝑞)}

Example 4.10 Figure 4.12 shows the result of possibility lifting applied to the VTS
constructed by annotation tracking (see Figure 4.3) from the coffee machine model
(see Figure 4.2). Recall that without possibility lifting, the VTS constructed from
this VTS by observability projection did not yet produce the same verdicts as the

4.4. FINALIZATION 115

diagnoser constructed with traditional techniques (cf. Example 4.4). If we apply
possibility lifting before the observability projection, we actually obtain a VTS that
produces exactly the same verdicts as the diagnoser constructed with traditional
techniques. To this end, compare the VTS depicted in Figure 4.13 with the traditional
diagnoser depicted in Figure 2.8. In general, we obtain the traditional construction
as a special case of our synthesis pipeline by annotation tracking, possibility lifting,
and subsequent observability projection.

⟨i, ∅⟩ ⟨d, ∅⟩

⟨p, {𝑓𝑝}⟩

⟨s, {𝑓𝑠}⟩
{∅} {∅}

{{𝑓𝑝}}

{{𝑓𝑠}}

pump_
fault

short_circuit

request

blink

request

dispense

Figure 4.12: VTS obtained by observability lifting from the VTS constructed by
annotation tracking (see Figure 4.3) from the coffee machine model (see Figure 4.2).

⟨i, ∅⟩ ⟨d, ∅⟩

⟨p, {𝑓𝑝}⟩

⟨s, {𝑓𝑠}⟩
{∅}

{∅, {𝑓𝑝} , {𝑓𝑠}}
= {∅} ⊔ {{𝑓𝑝}} ⊔ {{𝑓𝑠}}
= {∅} ∪ {{𝑓𝑝}} ∪ {{𝑓𝑠}}

{{𝑓𝑝}}

{{𝑓𝑠}}

reque
st

blink

request

blink

request

dispense

Figure 4.13: VTS obtained from the verdict-annotatedmodel of the coffeemachine (see
Figure 4.2) by applying annotation tracking (see Figure 4.3) followed by possibility
lifting (see Figure 4.12), and observability projection.

4.4 Finalization
Using the presented stages of the pipeline enables the synthesis of a VTS, starting from
a verdict-annotated system model. The VTS serves as an explicit representation of a
verdictor and can be transformed to produce predictions and to account for various
observation imperfections. To efficiently implement a VTS, whether in software or
hardware, it is desirable for it to be deterministic and minimal (cf. Section 3.2.2). If it
is deterministic, then we only need to keep track of a single state at runtime and can

116 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

use an efficient lookup table to implement the transition relation. If it is minimal, then
we require the least amount of space for storing its state and its implementation, e.g.,
in the form of a transition lookup table. Note that the presented VTS transformations,
e.g., for limited observability and losses, potentially introduce nondeterminism, even
if the input VTS was deterministic, as they modify the transition relation. Having a
deterministic andminimal VTS representation is particularly crucial for environments
with space limitations, like embedded devices or FPGAs [Bod+04; Zha+22]. While
determinization generally increases the size, minimization may reduce it.

Our earlier determinization and minimization results for VTSs (see Section 3.2.2)
can be directly exploited to obtain deterministic and minimal VTSs. In addition, we
present an additional technique called language-relaxing minimization. VTSs can
then be finalized towards an efficient implementation by determinization followed
by either classical minimization or language-relaxing minimization.

4.4.1 Language-Relaxing Minimization

While traditional minimization preserves the language of a VTS, i.e., the observation
sequences it accepts, language-relaxing minimization is more liberal and allows the
VTS to accept additional observation sequences. At runtime, we may not care about
detecting observation sequences that are not possible according to a VTS, e.g., as
we may assume that the system may indeed only generate observation sequences
that the VTS accepts. In those cases, only the verdicts produced by a VTS matter
but not its language. Given a VTS 𝔙, language-relaxing minimization constructs
a 𝔙′ with 𝜈′(𝜎) = 𝜈(𝜎) for all 𝜎 ∈ ℒ(𝔙) and where 𝔙′ may also accept additional
observation sequences and produce arbitrary verdicts for them, i.e., ℒ(𝔙′) ⊇ ℒ(𝔙).
The VTS 𝔙′ can be even smaller than the minimization of 𝔙. Finding the smallest
such 𝔙′ is an interesting challenge on its own, which we leave for future work. As
a first step towards language-relaxing minimization, we adapt the minimization
algorithm developed by Valmari and Lehtinen [VL08], which itself is an adaptation
of Hopcroft’s original minimization algorithm [Hop71].

Algorithm. At its core, Hopcroft’s original minimization algorithm maintains a
partition of the states of an automaton. This partition is then successively refined
until no further refinement is necessary to obtain Myhill-Nerode equivalence classes
of states, i.e., sets of states fromwhich the same language is accepted [Hop71; Myh57].
To refine an equivalence class, the algorithm considers so called splitters. We will
illustrate the idea on a high-level using VTS terminology. Given a deterministic and
finite input VTS 𝔙 = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈⟩ and a partition 𝒰 = {𝒞𝑖}𝑛𝑖=1 of its states
𝒬, a splitter is a pair ⟨𝒞, o⟩ where 𝒞 ∈ 𝒰 is a class of the partition 𝒰 and o ∈ Obs
is an observable. A splitter is used to refine the partition 𝒰. Traditionally, a class

4.4. FINALIZATION 117

𝒞′ ∈ 𝒰 is split by a splitter into two sets of states:

𝑄in ≔ { 𝑞 ∈ 𝒞′ | ∃𝑞′ ∈ 𝒞 ∶ ⟨𝑞, o, 𝑞′⟩ ∈ ⇾ }
𝑄miss ≔ 𝒞′ ∖ 𝑄in

The set 𝑄in contains all states of 𝒞′ from which an observation of o leads to a state in
𝒞. Recall that the input VTS is deterministic, hence, if such a transition exists, then
there is no other transition that would lead to some other state not in 𝒞. We say that
those states hit inside the splitter. Now, the remaining states of 𝒞′ are collected in
𝑄miss, those do not hit inside the splitter, i.e., they miss. If both sets are non-empty,
then we would need to refine the class 𝒞′ into states that hit and states that miss the
splitter. Clearly, those states should not belong to the same equivalence class of states,
as an observation of o leads to states in different classes. Traditional automata are
input-enabled, i.e., in each state there exists a transition for each symbol. In contrast,
VTSs are not input-enabled. As a result, we may consider a third set of states:

𝑄out ≔ { 𝑞 ∈ 𝒞′ | ∃𝑞′ ∈ 𝒬 ∖ 𝒞 ∶ ⟨𝑞, o, 𝑞′⟩ ∈ ⇾ }

The states in 𝑄out are those states that hit outside of the splitter. From those states
an observation of o will actually lead to a state that is not in 𝒞. For 𝑄miss this is not
generally the case, as for those states there may also not exist a transition for the
observable o at all. If the set 𝑄out is empty, then all the states in 𝑄miss just lack a
transition for o. In this case and if we do not care about the language, we may thus
just add transitions that lead to 𝒞. As a result, we do avoid the need to split 𝒞′ by
accepting additional observation sequences.

In a nutshell, for language-relaxing minimization, we modify the minimization
algorithm by Valmari and Lehtinen such that classes are only split by a splitter if
states hit inside and outside of the splitter. To this end, their algorithm is modified to
check this condition before splitting. Note that the resulting algorithm, in contrast
to the original, is non-deterministic: The outcome depends on the order in which
splitters are considered, which is left unspecified. For a detailed exposition of their
algorithm and our modifications to it, we refer to the original paper [VL08] and our
implementation (AT1), which also concretizes all data structures.

a
b

c𝑣
𝑣

𝑣

𝛼

𝛽

𝛼

𝛽

Language-Relaxing
Minimization

𝑣

𝛼

𝛽

Figure 4.14: An example of language-relaxing minimization.

Example 4.11 Figure 4.14 shows an example of language-relaxing minimization.
Assume that all the states of the VTS on the left produce the same verdict 𝑣, i.e., they

118 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

initially belong to the same class. Traditionally, this class would need to be split into
three, as the first state allows us to decide between sequences of just 𝛼 and sequences
of just 𝛽. Let’s call this class of states 𝒞. For the splitter ⟨𝒞, 𝛼⟩, we obtain:

𝑄in ≔ {a, b}
𝑄miss ≔ {c}
𝑄out ≔ ∅

Thus, following the traditional algorithm, wewould have to split𝒞, however, as𝑄out is
empty, we can avoid splitting. For the splitter ⟨𝒞, 𝛽⟩, the argument applies analogously.
Hence, we do not need to split 𝒞 leading to the language-relaxed minimization on
the right. Now, this VTS accepts additional observation sequences, namely any
combinations of 𝛼 and 𝛽, however, it will still produce the same verdicts for the
original sequences of just 𝛼 or of just 𝛽.

Impact on Applicability and Tightness. Language-relaxing minimization may
enlarge but will never shrink the language accepted by a VTS, i.e., every observation
sequence accepted by the original VTS will also be accepted after language-relaxing
minimization. Therefore, a VTS applicable with respect to a given system and obser-
vation model will stay applicable. However, a VTS which has been tight with respect
to a given system and observation model, may no longer be tight after language-
relaxing minimization due to it accepting additional observation sequences which
have not been accepted by the original VTS and are not in the observable language
of the system model with respect to the given observation model.

Impact on Soundness and Completeness. Language-relaxing minimization has
no impact on the soundness or completeness of a VTS with respect to a given system
model and observation model. This is the case since soundness and completeness
are defined over the observable language of the system model, which is completely
independent of the VTS and its language, and the verdict generated for a particular
observation sequence is not changed.

4.5 Discussion
We now have all the building blocks of the generic synthesis pipeline for VTS syn-
thesis (see Figure 4.1). In the first step, a VTS is constructed based on a system model,
either by annotation tracking or by some other means. Annotation tracking takes a
systemmodel annotated with verdicts, e.g., a featured transition system, and produces
a VTS tracking these annotations. Optionally, lookahead refinement can be applied
to enable most specific predictions. Then, to account for limited observability, delays,
losses, and out-of-order arrivals, the presented transformations can be applied to

4.5. DISCUSSION 119

obtain a VTS robust against these imperfections. Note that the transformations can
trivially be cascaded to obtain a VTS that accounts for multiple imperfections in a
most specific manner. Soundness, completeness, and tightness is preserved along any
such cascade independently of the verdict oracle. Lastly, the VTS can be determinized
and minimized towards an efficient implementation. We have exemplified how the
techniques can be used to synthesize traditional diagnosers (recall Section 4.3.5). We
will explore further concrete use cases in Chapter 7 and Chapter 8 and evaluate the
techniques empirically as part of Chapter 8 on configuration monitoring.

Composing Transformations. The presented VTS transformations are, in gen-
eral, neither associative nor commutative, i.e., the order in which they are applied
matters. As observational imperfections typically require concessions with respect
to the specificity of verdicts, lookahead refinement should always be applied before
applying any of the transformations for observational imperfections. That way, as
much information as possible is exploited for predictions before it is watered down
by observational imperfections. As the transformations for losses and out-of-order
arrivals also account for delays, it typically makes no sense to cascade them with
the transformation for delays. When composing the transformations for losses and
out-of-order arrivals, it typically makes sense to first account for out-of-order ar-
rivals and then for losses. This corresponds to a lossy channel, e.g., a shared network
between components, over which observations are sent and where reordering occurs
due to multiple senders being connected to the verdictor via a shared medium.

Timed Automata. The generic synthesis pipeline also applies to timed automata
by first constructing their region graph or abstracting it with a zone graph [AD91].
Both the region and zone graph are finite transition systems, thus the pipeline can
be directly applied to those. Notably, this will not take into account explicit timing
information that may be attached to observations. In the next chapter, we deal with
timed observations and imprecisions on the timing of observations explicitly. In
addition to timed automata, the synthesis pipeline also generalizes to other infinite
state systems of which finite abstractions exist in the form of transition systems.

Third-Party Techniques. Facilitated by the general theorems shown for the VTS
transformations, the presented techniques can be used in tandem with third-party
techniques, for instance, runtime monitors constructed with traditional runtime
verification techniques [BLS06b]. Note that our techniques require the VTS to be
tight, as otherwise the transformations would take spurious behavior into account
and the resulting verdicts may not be as specific as possible. Should a third-party
technique not synthesize a tight VTS, the VTS can be tightened before applying the
respective transformations (see Definition 3.3.7).

120 CHAPTER 4. MODULAR DISCRETE-TIME VERDICTOR SYNTHESIS

Comparison to the Naive Algorithm. Compared to the naive algorithm (recall
Section 3.4.2), the synthesis pipeline yields VTSs that can be efficiently implemented
and only require bounded resources. Concretely, only a single state of the VTS needs
to be stored at runtime and a lookup table can be used to implement transitions in
constant time. Furthermore, synthesized VTSs are finite and can thus be analyzed ef-
fectively, e.g., to answer the question whether a certain verdict may ever be generated
(which is an example of a simple VTS reachability property).

Chapter 5

Robust Continuous Time
Verdictor Algorithm

Real-time systems are characterized by the fact that the timing of events plays a
central role in their behavior. For instance, a prolonged or shortened delay between
two events may be indicative of a fault in such a system, thus, requiring timing
information to diagnose the fault. As an example, consider the timed model of the
coffee machine (cf. Figure 2.2). Here, the timing of events is decisive to determine
that the pump is faulty. So far, we considered observations without an explicit time
component. Complementing the previous chapter, we now turn to observations with
an explicit time component. By giving verdictors access to timing information, this
information can be exploited for verdict generation. As in the previous chapter, the
approach is generic and we focus on diagnosis for our examples.

While the timing of events plays a central role for real-time systems, its accurate
assessment is usually hindered by timing imprecisions such as varying latency be-
tween events and their observation. We here consider varying latency, varying clock
drift, and unknown clock offsets as well as thereby induced out-of-order observations.
Those timing imprecisions are typically unavoidable when multiple components are
connected over a shared network. For instance, imagine multiple controllers that
make up a complex machine on a manufacturing floor. For such cases, we develop a
verdictor algorithm conceptually solving significant instances of the VTS Synthesis
Problem in the continuous-time setting. Verdicts obtained with this algorithm are
robust against the aforementioned timing imprecisions, i.e., they are guaranteed to
be correct and most specific despite those timing imprecisions. As for the discrete-
time case, the algorithm can be used for runtime verification, fault diagnosis, and
configuration monitoring alike by using different verdict domains.

The continuous-time setting is particularly challenging as we have to deal with a

121

122 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

continuum of possible observation times, rendering the explicit techniques taken pre-
viously infeasible. For this reason, and in contrast to the synthesis pipeline presented
in the last chapter, we will not construct or transform VTSs explicitly. The approach
taken here is monolithic, providing a single algorithm to handle all the involved
imprecisions. The algorithm is still model-based and will take a system model in
terms of a timed automaton (TA) as input. In addition, it requires a specification of
the involved timing imprecisions. Conceptually, the algorithm gives rise to an infinite
state VTS and we will prove it correct with respect to the theoretical framework. To
this end, we will also develop an observation model.

The techniques presented here constitute the second part of Contribution FT.

Motivating Example: Industrial Automation. To concretize the intricacies
that make up the problem domain, we consider a small excerpt of a manufacturing
plant: Imagine a system where individual items are placed on a conveyor belt over
which they are to be sorted into different processing stations. Variants of this sorting
example have already been studied in a multitude of different settings ranging from
real-time requirements specification [Buc+10] to formal verification [Ive+00] to
teaching manufacturing systems [LFM20]. The setup we consider comprises two
sensors and two grippers for identifying and then physically moving items to their
respective stations. Figure 5.1 depicts such a sorting system. Here, the sensors are
used to determine the size of each item on the belt.

Figure 5.1: Schematic drawing of a system sorting items by size.

The conveyor belt and grippers are mechanically moving. They are therefore
prone to faults caused by wear. For instance, a breakage of a ball bearing may lead to a
sudden increase in friction and reduced velocity of the conveyor belt thereby slowing
down production. Detecting such a fault before it results in a complete system failure
is crucial to avoid unscheduled and costly downtime of production. The reduced
velocity of the belt also has an impact on the timing of various events, e.g., the time
difference between the first and second sensor detecting an item on the belt, and this
phenomenon is intertwined with clock imprecisions and communication delays.

As an instance of the VTS Synthesis Problem, consider the problem of diagnos-
ing faults within such kinds of systems by passively and centrally observing their
behavior, e.g., by listening to messages exchanged on a shared network. The advan-
tage of this passive approach is that it does not require any special instrumentation

123

and thereby is guaranteed to not adversely interfere with the system in any way.
Active techniques would otherwise come, for instance, with additional load on the
shared network, changing the timing of events (cf. Chapter 1). This advantage is
inherited from traditional works on diagnosis following the same approach [e.g.
Tri02; Sam+95; BCD05; Car+13; ALH06; TYG08]. Clearly, the observations obtained
by passive observation are subject to timing imprecisions.

Technical Basis. For the purposes of this chapter, we assume:

(A1) The system is modeled as a timed automaton

𝔗 = ⟨𝐿, 𝐼,Act, ℂ, 𝐸, Inv⟩

annotated with verdicts 𝜆𝐸∶ 𝐸 → 𝒱 of a verdict domain ⟨𝒱, ⊑⟩.

(A2) A subset OAct ⊆ Act of the actions Act is observable.

(A3) Observation times are rationals as they are discretized by the verdictor.

(A4) Every occurrence of an observable action within the system constitutes an
event and causes exactly one corresponding observation.

(A5) As long as the system keeps running, always eventually an observable
action will occur. Formally, the region graph [see AD91] of 𝔗 must not
contain any cycles that are free of observable actions.

As in the discrete-time case, we start with an annotated system model. Here, this
model is a timed automaton instead of a transition system (TS). Just annotating tran-
sitions ensures monotonicity and suffices for fault diagnosis, without transient faults,
and for configuration monitoring. We later discuss how the assumption (A1) can be
relaxed and how state labels can be handled at the price of weakened guarantees.

Assumption (A2) is again motivated by observability limitations inherent to
most systems. Assumption (A3) is rooted in the fact that the resolution of hardware
clocks is limited and, within a verdictor, we always need to represent timestamps in
some discretized manner. Assumption (A4) means that no observations are lost and
also no spurious observations are produced. We make this assumption because the
continuous-time setting is already challenging even if lost or spurious observations
cannot occur. Assumption (A5) is required to guarantee termination of the presented
algorithm—it is also a realistic assumption in practice.

As for the discrete-time case, we define a verdict oracle based on the annotations
of the system model. Note that the theoretical framework is defined in terms of
a TS system model, not a TA. Therefore, we define the verdict oracle for the TS
semantics ⟦𝔗⟧ of the TA 𝔗. To this end, we can then reuse the definition for the

124 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

verdict annotations in the discrete-time setting (recall Definition 4.1.1), by defining
the three functions 𝜅, 𝜆, and 𝛾, as follows:

𝜅(𝑠) ≔ ⊤ 𝜆(𝑠) ≔ ⊤ 𝛾(⟨⟨𝑙, 𝜂⟩ , 𝑎, ⟨𝑙′, 𝜂′⟩⟩) ≔ 𝜆𝐸(𝑙, 𝑎, 𝑙′) (5.1)

The transitions ⟨⟨𝑙, 𝜂⟩ , 𝑎, ⟨𝑙′, 𝜂′⟩⟩ of the transition system semantics of the TA system
model are annotated based on the annotations of the corresponding edges as per
assumption (A1). For now, states are simply annotated with the least specific verdict
⊤ of 𝒱, as we restrict annotations to edges. As already hinted at above, this restriction
to edge verdict labels will later be lifted. For now, the verdict oracle for the continuous-
time case is given by V𝜅,𝜆,𝛾 as per Definition 4.1.2. It is easy to see that this verdict
oracle is monotonic—which will become important later.

Proposition 5.0.1 The verdict oracle V𝜅,𝜆,𝛾 based on (5.1) is monotonic.

Proof Sketch. Proven by induction on the run.

Note that the verdict oracle is defined over the verdict domain extended with the
sentinel bottom verdict #. As in the discrete-time case, the sentinel verdict is either
not produced or it corresponds to observation sequences considered unrealistic.

Example 5.1 For the industrial automation example discussed above, wemay consider
two observable actions, trigger_0, trigger_1 ∈ OAct, indicating when an item
entered the field of view of the first and second sensor respectively, and an action
fault_bearing ∉ OAct corresponding to a bearing fault whereafter the conveyor
belt experiences increased friction. Figure 5.2 shows a timed automaton modeling
the system in question. Here, a fault of the ball bearings may happen at any time and
influence the time between trigger_0 and trigger_1 events (normally: 3ms to
6ms; faulty: 6ms to 12ms). In both cases, items enter the field of view of the first
sensor 10ms to 200ms after the previous item entered the field of view of the second
sensor. For the purposes of diagnosis, we annotate edges with sets of fault classes as
per Definition 3.1.3. Following traditional model-based diagnosis, these annotations
are analogous to the discrete-time setting (recall Section 4.1.1): Edges that do not
correspond to a fault are annotated with the empty set and edges that do correspond
to a fault are annotated with the respective singleton set of the fault’s class. For the
example, we denote the fault class of a bearing fault by 𝑓𝐵.

Relevant Publications. This chapter generalizes work done by the author of this
thesis specifically for diagnosis. It is largely based on the following paper:

[KH23]: Köhl and Hermanns (2023), Model-Based Diagnosis of Real-Time
Systems: Robustness Against Varying Latency, Clock Drift, and Out-of-Order
Observations

125

Normal Operation

Faulty Bearing

𝑙𝑁1[𝑥 ≤ 200] 𝑙𝑁2[𝑥 ≤ 6]

𝑙𝐹1[𝑥 ≤ 200] 𝑙𝐹2[𝑥 ≤ 12]

trigger_0

[𝑥 ≥ 10]; reset {𝑥}
𝜆𝐸 = ∅

trigger_1

[𝑥 ≥ 3]; reset {𝑥}
𝜆𝐸 = ∅

trigger_0

[𝑥 ≥ 10]; reset {𝑥}
𝜆𝐸 = ∅

trigger_1

[𝑥 ≥ 6]; reset {𝑥}
𝜆𝐸 = ∅

fault_bearing
𝜆𝐸 = {𝑓𝐵}

fault_bearing
𝜆𝐸 = {𝑓𝐵}

Figure 5.2: Example for a timed automaton model of the excerpt of the industrial
automation systemwith a bearing fault as described in Example 5.1, one clock variable
𝑥, and edge clock guards and invariants in brackets. Time is given in ms. Verdict
annotations as per 𝜆𝐸 are indicated with 𝜆𝐸 = 𝑣 as part of the edges.

Exceeding the contributions of the original paper, this thesis generalizes the ideas
and concepts to harvest them within the more general theoretical framework under-
lying this thesis. In particular, this opens up the usage of the techniques for other
applications than diagnosis such as runtime verification or configuration monitoring.

Chapter Structure. Section 5.1 formalizes the timing imprecisions mentioned
above. Section 5.2 presents an observation model for the continuous-time case with
timing imprecisions. Section 5.3 then develops basic building blocks towards the
verdictor algorithm. Finally, Section 5.4 presents the verdictor algorithm as well as an
approximation that only requires a bounded amount of memory and discusses how
the algorithm can be generalized beyond edge annotations. Section 5.5 concludes
this chapter and summarizes its contributions.

126 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

5.1 Timing Imprecisions

For real-time systems, the accurate assessment of the timing of events within a
system is usually hindered by three well-known and orthogonal phenomena: varying
latency, varying clock drift, and unknown clock offsets.

Latency is the time it takes after an event occurs until it is observed. The variability
of latency is called jitter. In our industrial automation example, the shared network
introduces a varying latency between events and their observation. Figure 5.3a
visualizes the time interval (shaded rectangle) for making an observation, relative to
the system’s clock. It is the result of accounting for any possible but bounded latency
within the interval [lmin, lmax]. The interval captures possible bounded jitter. Such
latency bounds are justified by the hard timing guarantees of the shared network and
can be obtained via standard timing analyses [e.g. THW94; Pop+06; SCT10].

Clock drift refers to the unavoidable imprecisions concerning the speed of hard-
ware clocks. For instance, quartz-based hardware clocks suffer from inaccuracies due
to temperature variations.11 Usually, manufacturers guarantee a certain upper bound
on inaccuracy for their products. As a result, starting with some initial offset, the
clocks of the verdictor and the system may drift apart up to some specified bound as
indicated by the shaded cone in Figure 5.3b. Note that while from the initial offset
any point in the cone can be reached, this does not mean that from any point in the
cone all future points in the cone can be reached. Instead, every point in the cone
represents an offset of both clocks from which a new cone emerges. The dashed line
represents perfect but unrealistic clock synchronicity.

System

Event

Observation

Latency lmin lmax

(a) Delayed observation of events.

Verdictor

Sy
st
em

𝑡

𝑟(𝑡)

(b) Drifting clocks.

Figure 5.3: Timing imprecisions when observing real-time systems.

Model-based diagnosis in the real-time setting based on timed automata has been
addressed in the existing literature before [Tri02; BCD05; Mha+17]. By considering
the aforementioned timing imprecisions, we relax the strict assumption that the
occurrence times of events within the system can be precisely observed. For a realistic

11 https://web.archive.org/web/20240226014014/https://blog.bliley.com/crystal-oscillator-stability

https://web.archive.org/web/20240226014014/https://blog.bliley.com/crystal-oscillator-stability

5.1. TIMING IMPRECISIONS 127

observation model, we consider the superimposition of all these phenomena just
discussed. To this end, we first model them formally in isolation.

Varying Latency. We assume events to be observed with varying latency, as in
Figure 5.3a. For the set OAct of observable actions, we assume given a minimal
latency function lmin∶ OAct → ℚ and a maximal latency function lmax∶ OAct → ℚ
such that the minimal latencies are less than the corresponding maximal latencies,
respectively, i.e., lmin(𝑎) < lmax(𝑎) for all 𝑎 ∈ OAct. These functions capture varying
but bounded latency per observable action relative to the system’s clock. Hence, it
takes at least lmin(𝑎) and at most lmax(𝑎) time units after an occurrence of 𝑎 ∈ OAct
until it is observed. Note that latencies are rationals. This is justified as observation
times themselves are also rationals (cf. assumption (A3)).

ClockDrift andOffsets. In addition to varying latency, we also consider clock drift
and offsets. Clock drift has already been extensively studied in the timed automata
literature [Pur98; SFK08; Wul+08]. We follow the established model and capture the
accuracy guarantee provided by manufacturers of hardware clocks as a parameter
𝛿 ≥ 0 bounding the amount a clock may run faster or slower than the actual time,
in our case the system’s clock [SFK08]. We encapsulate the clock drift and initial
offset of both clocks in an unknown time-remapping function 𝑟 ∶ ℝ → ℝ mapping
verdictor time 𝑡 to system time 𝑟(𝑡) (see Figure 5.3b). That is, at a given time 𝑡 of
the verdictor’s clock, the value of the system’s clock is 𝑟(𝑡). As the speed deviation
between the clocks is bounded by 𝛿, the slope of the function 𝑟 must be restricted.
Formally, these considerations give rise to the following definition:

Definition 5.1.1 Given a drift parameter 𝛿 ∈ ℚ≥0, a time-remapping function
𝑟 ∶ ℝ → ℝ is a strictly monotone continuous bijection with a slope bounded by:

∀𝑡′ > 𝑡 ∶ 𝑟(𝑡′) − 𝑟(𝑡)
𝑡′ − 𝑡 ∈ [1

1 + 𝛿, 1 + 𝛿] (5.2)

Timed automata with drifting clocks have been introduced by Puri [Pur98] whose
general model of slope restriction we follow here. Instead of restricting the slope
to [1 − 𝜖, 1 + 𝜖], we follow Swaminathan et al. [SFK08] and restrict it according
to (5.2). Note that we do not require 𝑟 to be differentiable, hence, the amount of clock
drift can change discretely at any point in time. We furthermore only restrict the
speed deviation of the system’s clock by (5.2) but not it’s absolute difference to the
verdictor’s clock. In addition, we also make no assumption about the initial offset of
both clocks as any such assumption would be ad-hoc.

Note that events occurring at well-definedmoments in time, e.g., at system startup,
can be used for synchronization of both clocks up to the actual latency of the event

128 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

and its observation. The to-be-developed techniques will transparently take into
account the timing information carried by observations of such synchronization
events. Active synchronization, on the other hand, would violate our goal that a
verdictor shall be completely passive, an assumption made to avoid any adverse
interferences with the system (cf. Chapter 1).

In the following, we will use ↑𝑡 to denote the time an event occurred relative
to the system’s clock and ↓𝑡 to denote the time an event is observed relative to the
verdictor’s clock.

Example 5.2 Recall Example 5.1 and imagine that the sensors are connected to
a shared CAN bus. A shared CAN bus with a background load may realistically
introduce a latency between 1ms and 3ms [BBR02]. Hence, it takes between 1ms and
3ms fromwhen an item enters the field of view until the respective action is observed
on the bus. Formally, let lmin(trigger_i) ≔ 1ms and lmax(trigger_i) ≔ 3ms for
i ∈ {0, 1}. Now, consider that a trigger_0 and a trigger_1 event take place
precisely 5ms apart at time ↑𝑡0 = 12ms and ↑𝑡1 = 17ms relative to the system’s
clock, respectively. As these events occurred 5ms apart, a verdictor with precise
access to this timing information may correctly conclude that the conveyor belt
functions nominally (at least up to the point of the trigger_1 event).

Now, consider that the times a verdictor observes are subject to the timing
imprecisions discussed previously. As a result, the events may be observed, e.g., at
time ↓𝑡0 = 212ms and ↓𝑡1 = 219ms relative to the verdictor’s own clock, respectively.
Recall that we make no assumptions about the initial offset of the system’s and the
verdictor’s clock. The time ↓𝑡0 = 212ms, at which the first event is observed, is the
result of the initial offset of both clocks, the drift which has occurred since then, and
the latency. For instance, disregarding drift and assuming that the actual latency has
been 1ms, the initial offset must have been 199ms because 12ms+1ms+199ms =
212ms.12 While the events are observed 7ms apart, which is more than the 6ms for
a normally-functioning conveyor belt, the verdictor must not conclude that there
has been a fault because the additional delay between both observations can be
accounted for by considering the latency of observations in the system and, indeed,
the system is not faulty: The first event may have been observed with a latency of
1ms and the second with a latency of 3ms explaining the additional 2ms.

In contrast, imagine a trigger_0 and a trigger_1 event that take place pre-
cisely 12ms apart13 at time ↑𝑡′0 = 12ms and ↑𝑡′1 = 24ms, respectively, i.e., the

12 We assume that neither the initial offset nor the actual drift nor the actual latency is directly known to
the verdictor. The verdictor can only indirectly infer information about them from the observations
made. The theory and verdictor algorithm we present enable precisely that.

13 The reader is invited to play through other cases where the time difference is not as extreme. The
theory we present here will enable us to understand precisely when a verdictor can and must conclude
from observations that a fault occurred and when this is not the case. For simplicity, this example also
disregards clock drift and out-of-order observations which we address subsequently.

5.2. OBSERVATION MODEL 129

conveyor belt must be experiencing increased friction caused by a faulty bearing.
In this case, even if both events are observed with the minimal latency of 1ms at
↓𝑡′0 = 212ms and ↓𝑡′1 = 224ms, respectively, the verdictor should be able to con-
clude that the bearings failed after observing trigger_1. In this case, the large time
difference between both observations cannot be accounted for by considering the
latency of observations. The observations can only be explained (based on the timing
imprecisions and system model) with faulty bearings.

Example 5.2 shows that timing imprecisions must be taken into account by a ver-
dictor to produce correct (and most specific) verdicts, e.g., not indicating a fault even
though the time difference between the observations of trigger_0 and trigger_1
is above 6ms. Instantiating the theoretical framework established in Chapter 3, it
remains to define an observation model based on the presented timing imprecisions.
In the example, we already considered an intuitive correspondence between the
timing of events and their observations. The observation model established in the
following, will capture such a correspondence formally.

5.2 Observation Model
To obtain guarantees according to our model-based methodology with respect to
the theoretical framework, we need to define an observation model capturing the
introduced timing imprecisions. At their core, observationmodels relate events within
the system with possible observations. As observation times are discretized (A3) and
observations are occurrences of observable actions (A4), observables naturally are
pairs ⟨↓𝑡, 𝑎⟩ where ↓𝑡 ∈ ℚ is the observation time and 𝑎 ∈ OAct is an observable
action. We call such pairs timed observables. A timed observation sequence is a finite
sequence of timed observables being observed one after the other.

Definition 5.2.1 A timed observation sequence over a set OAct of observable
actions is a finite sequence 𝜔 = (⟨↓𝑡𝑖, 𝑎𝑖⟩) 𝑛𝑖=1 ∈ (ℚ × OAct) ⋆ such that ↓𝑡𝑖 ≤ ↓𝑡𝑖+1
for all 1 ≤ 𝑖 < 𝑛.

A timed observation is a tuple 𝜃 = ⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩ ∈ 𝜔 in a timed observation sequence 𝜔,
where 𝑗 is the position of the timed observable ⟨↓𝑡, 𝑎⟩ in 𝜔. Recall that sequences are
partial functions which are sets of pairs (cf. Section 2.1).

Traditionally, timed words have been defined as sequences over ℝ+
0 × Act [AD91].

For timed observation sequences, we follow the definition of Tripakis [Tri02] and
use rationals instead of reals. This is rooted in the fact that the resolution of any
hardware clock is limited and the clock will thus tick in discrete time steps, leading
to the assignment of discrete timestamps to observations (A3). Notably, within the
system, events may still happen at non-rational points in time. For instance, if a

130 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

timed automaton is used to model physical processes, then the occurrence times of
events are not bound to the discrete nature of hardware clocks.

As a counterpart to timed observation sequences, we further define timed event
sequences as follows:

Definition 5.2.2 A timed event sequence over a set OAct of observable actions
is a finite sequence 𝜚 = (⟨↑𝑡𝑖, 𝑎𝑖⟩) 𝑛𝑖=1 ∈ (ℝ+

0 × OAct) ⋆ such that ↑𝑡𝑖 ≤ ↑𝑡𝑖+1 for all
1 ≤ 𝑖 < 𝑛.

Each run 𝜌 = (⟨𝑠𝑖, a𝑖, 𝑠′𝑖⟩)
𝑛
𝑖=1 of the TS semantics ⟦𝔗⟧ of the system model 𝔗 induces

a timed event sequence 𝜚(𝜌), inductively defined as follows:

𝜚(𝜌) ≔ 𝜖 𝜚(𝜌 ⋄ ⟨𝑠, a, 𝑠′⟩) ≔ {
𝜚(𝜌) ⋄ ⟨Dur(𝜌), a⟩ if a ∈ OAct

𝜚(𝜌) otherwise
(5.3)

That is, whenever an observable action occurs, the time associated with the respective
event is the time that has passed so far on the run. Analogously to timed observations,
a timed event is a tuple 𝑒 = ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝜚 in a timed event sequence 𝜚, where 𝑖 is the
position of ⟨↑𝑡, 𝑎⟩ in 𝜚 and ↑𝑡 is the event’s occurrence time.

Example 5.3 Coming back to Example 5.2, we are now in a position to formally de-
scribe the first situation as follows: Two trigger events, 𝑒0 = ⟨0, ⟨12ms, trigger_0⟩⟩
and 𝑒1 = ⟨1, ⟨17ms, trigger_1⟩⟩, took place precisely 5ms apart. Each event led to
an observation, 𝜃0 = ⟨0, ⟨212ms, trigger_0⟩⟩ and 𝜃1 = ⟨1, ⟨219ms, trigger_1⟩⟩,
respectively. The observations are 7ms apart and give rise to a timed observation
sequence 𝜔 which has been observed by the verdictor. Analogously, the events are
part of a timed event sequence 𝜚. We are aiming for the technical tools to answer the
following question with mathematical rigor: Can the verdictor conclude only from
the observation sequence 𝜔, i.e., without having any additional information about the
actual events, that a bearing fault fault_bearing has occurred? While we already
know intuitively that the observations in 𝜔 may be caused by two events, namely 𝑒0
and 𝑒1, which are not indicative for a fault when accounting for latency as specified
in Example 5.2, a mathematical correspondence capturing this is needed. The sec-
ond situation where events take place precisely 12ms apart is captured analogously.
However, in this case, the verdictor can conclude only from the set of observations
that a bearing fault fault_bearing must have occurred.

5.2.1 Occurrence and Observation Times

As the first step towards an observation model, we need to relate observation times
with the occurrence times of events. As per assumption (A4), each timed observation
𝜃 = ⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩ ∈ 𝜔 is caused by a corresponding occurrence of a timed event 𝑒 =

5.2. OBSERVATION MODEL 131

⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝜚 in the system. In the previous section, we introduced the unavoidable
timing imprecisions consisting of (a) the clock drift and offset of the verdictor’s clock
relative to the system’s clock according to some unknown time-remapping function
𝑟 satisfying (5.2), and (b) the maximal and minimal latency functions lmax and lmin

assigning a varying latency to each observable action. Combining these imprecisions
and assuming 𝑟 to be given, a timed event ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ may cause a timed observation
⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩ at any time ↓𝑡 in the observation time interval:

↓𝑇𝑟(⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩) ≔ [𝑟−1(↑𝑡 + lmin(𝑎)), 𝑟−1(↑𝑡 + lmax(𝑎))] (5.4)

This is because for an event ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ occurring at time ↑𝑡 it takes between lmin(𝑎)
and lmax(𝑎) relative to the system’s clock until it is observed. Thus it will be observed
at some time in the interval [↑𝑡 + lmin(𝑎), ↑𝑡 + lmax(𝑎)]. This interval is relative to the
system’s clock and does not yet account for clock drift and offsets. Assuming that we
know the time-remapping function 𝑟, we can convert system time to verdictor time
by applying its inverse 𝑟−1. As 𝑟 is a bijection, its inverse 𝑟−1 must exist. Thereby, we
obtain the interval as defined in (5.4). Figure 5.4 visualizes this definition.

↓𝑇𝑟(⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩)

System

Events

Verdictor
Observations

𝑟

⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩ lmin lmax

Figure 5.4: The observation time interval ↓𝑇𝑟(⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩) of an event ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ is the
time interval in which the event must be observed when accounting for unknown
varying latency together with known clock drift and offset as given by the function 𝑟.

Analogously to (5.4), we also obtain an occurrence time interval for each timed
observation ⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩, capturing the time interval in which the event causing the
observation may have occurred:

↑𝑇𝑟(⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩) ≔ [𝑟(↓𝑡) − lmax(𝑎), 𝑟(↓𝑡) − lmin(𝑎)] (5.5)

The definition (5.5) is essentially the inverse of (5.4). Figure 5.5 visualizes the idea
behind it. While (5.4) takes the perspective of the system and asks when a certain
event may be observed, (5.5) takes the perspective of the verdictor and asks when an
event causing a certain observation may have occurred.

Given that observation and occurrence times are different sides of the same coin,
we establish the following relation between them:

132 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

↑𝑇𝑟(⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩)

System

Events

Verdictor
Observations

𝑟

⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩

𝑟(↓𝑡)lminlmax

Figure 5.5: The occurrence time interval ↑𝑇𝑟(⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩) of an observation ⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩
is the time interval in which the event causing the observation must have occurred
when accounting for unknown varying latency together with known clock drift and
offset as given by the function 𝑟.

Lemma 5.2.1 For all observable actions 𝑎 ∈ OAct, observation times ↓𝑡 ∈ ℚ,
occurrence times ↑𝑡 ∈ ℝ, indices 𝑗, 𝑖 ∈ ℕ, and time-remapping functions 𝑟 as per
Definition 5.1.1, the following condition holds:

↑𝑡 ∈ ↑𝑇𝑟(⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩)⟺ ↓𝑡 ∈ ↓𝑇𝑟(⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩) (5.6)

For a detailed proof, see Appendix A.2.1.

Difference Bound. The intervals we introduced capture how occurrence and
observation times relate to each other. In the following, we will also need two further
technical notations, difference bounds and a partial order ≺ on observations.

Using the occurrence time interval, we obtain an upper bound on the time differ-
ence between the events causing two timed observations 𝜃 and 𝜃′:

MaxD(𝜃, 𝜃′) ≔ max
𝑟
(max ↑𝑇𝑟(𝜃) −min ↑𝑇𝑟(𝜃′)) (5.7)

Here, max𝑟 ranges over all time-remapping functions as per Definition 5.1.1. By
maximizing over all time remapping functions, an upper bound independent of any
specific 𝑟 is obtained, reflecting that we cannot assume to know the actual function
𝑟. For any two timed observations 𝜃 and 𝜃′, the difference bound MaxD(𝜃, 𝜃′) is an
upper bound on the difference ↑𝑡 − ↑𝑡′ between (i) the occurrence time ↑𝑡 of an event
⟨↑𝑡, 𝑎⟩ causing 𝜃 and (ii) the occurrence time ↑𝑡′ of an event ⟨↑𝑡′, 𝑏⟩ causing 𝜃′. Despite
the fact that there are uncountably many time-remapping functions, we can still
compute MaxD due to the slope restriction (5.2). The difference bound MaxD(𝜃, 𝜃′)
can be computed for any pair ⟨𝜃, 𝜃′⟩ of observations:

5.2. OBSERVATION MODEL 133

Lemma 5.2.2 Given the drift parameter 𝛿 (recall Definition 5.1.1), the following
equation holds for any two timed observations ⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩ and ⟨𝑗′, ⟨↓𝑡′, 𝑎′⟩⟩:

MaxD(⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩ , ⟨𝑗′, ⟨↓𝑡′, 𝑎′⟩⟩)

= lmax(𝑎′) − lmin(𝑎) + {
(1 + 𝛿)(↓𝑡 − ↓𝑡′) if ↓𝑡 ≥ ↓𝑡′

(1 + 𝛿)−1(↓𝑡 − ↓𝑡′) otherwise

Proof Sketch. The proof of Lemma 5.2.2 relies on the slope restriction (5.2) which
enables the computation of extrema, in particular, the maximum over all time remap-
ping functions as in (5.7), by considering the drift bounds. For a detailed proof see
Appendix A.2.2.

Using MaxD, we further define a partial order ≺ on observations:

𝜃 ≺ 𝜃′ if and only if MaxD(𝜃, 𝜃′) < 0 (5.8)

For any two observations 𝜃 and 𝜃′, we have 𝜃 ≺ 𝜃′ if and only if the event 𝑒′ causing
𝜃′ must have occurred after the event 𝑒 causing 𝜃. Recall thatMaxD(𝜃, 𝜃′) is an upper
bound on the difference ↑𝑡 − ↑𝑡′ of the occurrence times of the events causing 𝜃 and
𝜃′, respectively. Now, if MaxD(𝜃, 𝜃′) < 0, then ↑𝑡 − ↑𝑡′ < 0 and, thus, ↑𝑡 < ↑𝑡′, i.e., the
event 𝑒′ causing 𝜃′ must have occurred after the event 𝑒 causing 𝜃.

Example 5.4 Consider the observations 𝜃0 = ⟨0, ⟨212ms, trigger_0⟩⟩ and 𝜃1 =
⟨1, ⟨219ms, trigger_1⟩⟩ as defined in Example 5.3. Further, recall from Example 5.2
that lmin(trigger_i) = 1ms and lmax(trigger_i) = 3ms for 𝑖 ∈ {0, 1}. Assume
that the clock accuracy is ±3%, i.e., 𝛿 = 0.03. Applying Lemma 5.2.2, we obtain:

MaxD(𝜃0, 𝜃1)
= lmax(trigger_1) − lmin(trigger_0) + (1 + 𝛿)−1 ⋅ (212ms − 219ms)
≈ 3ms − 1ms − 6.796ms

= − 4.796ms

Hence, the difference ↑𝑡0−↑𝑡1 of the occurrence times ↑𝑡0 and ↑𝑡1 of the events causing
𝜃0 and 𝜃1, respectively, is less than −4.796ms. In other words, the event 𝑒0 causing
𝜃0 occurred at least 4.796ms before the event 𝑒1 causing 𝜃1. Indeed, in Example 5.3,
the event 𝑒0 occurred 5ms ≥ 4.796ms before the event 𝑒1.

5.2.2 Consistency of Events and Observations
The intervals introduced previously relate occurrence times of events with possible
observation times of the observations they cause. If we look at a system run, then it
induces multiple timed events and each of these events must cause an observation

134 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

such that the time of the observation is in the respective interval (recall assumption
(A4)). Note that the actual latency may vary independently for each observation,
however, the time-remapping function should be the same for all observations, as all
observations are timestamped with the verdictor’s clock.

These considerations give rise to a notion of consistency between timed obser-
vation sequences and timed event sequences. Consistency requires that events and
observations must match up one-to-one such that their times align according to the
intervals we introduced with respect to some common time-remapping function.
Formally, we define consistency as follows:

Definition 5.2.3 A timed event sequence 𝜚 = (⟨↑𝑡𝑖, 𝑎𝑖⟩) 𝑛𝑖=1 and a timed observa-
tion sequence 𝜔 = (⟨↓𝑡𝑗, 𝑏𝑗⟩) 𝑛𝑗=1 are consistent iff there exists a time-remapping
function 𝑟 and a bijectionℛ∶ 𝜚 → 𝜔mapping events to observations such that 𝑎 =
𝑏 and ↓𝑡 ∈ ↓𝑇𝑟(⟨↑𝑡, 𝑎⟩) for all ⟨⋅, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝜚 where ⟨⋅, ⟨↓𝑡, 𝑏⟩⟩ = ℛ(⟨⋅, ⟨↑𝑡, 𝑎⟩⟩).

In the following, we denote consistency of 𝜚 with 𝜔 by 𝜚 ▻ 𝜔.
Note that Definition 5.2.3 rests on the core assumption (A4) that every event

will eventually cause exactly one observation. This assumption is enshrined in the
bijection ℛ which maps each event to the observation it causes.

In words, consistency requires that there exists a single time-remapping function
capturing clock drift and offsets of the system’s and verdictor’s clock over time such
that the observation times of all observations are within the observation time interval
of the events causing the respective observations.

Leveraging (5.3), it is easy to lift Definition 5.2.3 to runs of the TS semantics ⟦𝔗⟧
of the timed automaton system model 𝔗. A run 𝜌 is then consistent with a timed
observation sequence 𝜔 iff 𝜚(𝜌) ▻ 𝜔.

Example 5.5 Recall Example 5.3, and consider the following timed event sequence
induced by the earlier discussed run containing the two events 𝑒0 and 𝑒1:

𝜚 = ⟨12ms, trigger_0⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝑒0

⋄ ⟨17ms, trigger_1⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝑒1

Recall that those events gave rise to the following observation sequence:

𝜔 = ⟨212ms, trigger_0⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝜃0

⋄ ⟨219ms, trigger_1⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝜃1

In this case, the bijection mapping 𝑒0 to 𝜃0 and 𝑒1 to 𝜃1 together with the time-
remapping function 𝑟(𝑡) = 0.99𝑡 − 196.81ms witnesses consistency between 𝜚 and
𝜔. To see that this is the case, let us first map the observation times to the system
time: 𝑟(212ms) = 13.07ms and 𝑟(219ms) = 20ms. Based on this, we now compute

5.2. OBSERVATION MODEL 135

the occurrence time intervals as per (5.5):

↑𝑇𝑟(𝜃0) = [𝑟(212ms) − 3ms, 𝑟(212ms) − 1ms] = [10.07ms, 12.07ms] ∋ 12ms
↑𝑇𝑟(𝜃1) = [𝑟(219ms) − 3ms, 𝑟(219ms) − 1ms] = [17ms, 19ms] ∋ 17ms

Consistency of 𝜔 and 𝜚 tells us that the observations 𝜔 may indeed have been caused
by the events 𝜚. In contrast, 𝜚 is not consistent with the second example where there
have been 12ms between the two trigger observations, i.e., where:

𝜔′ = ⟨212ms, trigger_0⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝜃′0

⋄ ⟨224ms, trigger_1⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝜃′1

This is because there exists no bijectionℛ and time-remapping function instantiating
Definition 5.2.3: The large delay between the observations does not allow for a match
with the events on 𝜚, even when taking the timing imprecisions into account.

Naive Observation Model. A naive definition of an observation model may now
simply define the set of timed observation sequences induced by a given run 𝜌 as
those timed observation sequences that are consistent with 𝜌:

Ω(𝜌) ≔ {𝜔 ∈ (ℚ × OAct)⋆ || 𝜚(𝜌) ▻ 𝜔 } (5.9)

Unfortunately, (5.9) has several problems. First of all, it is not very realistic as it
assumes that all events of a run have been observed, when in fact, there may still be
observations missing due to latency. For instance, consider a run where first 𝑎 occurs
and then, after 5 s, 𝑏 occurs. Now, according to (5.9), both events, 𝑎 and 𝑏, must have
been observed, when in fact, 𝑏 may only arrive later due to its latency.

Related to this problem is the fact that the observation model as per (5.9) does
not satisfy the condition required as per Definition 3.3.1. Take the same example as
before and assume that the run continues such that 𝑐 happens immediately after 𝑏.
Assume further that 𝑐 has a maximal latency of 3ms while 𝑏 has a minimal latency
of 6ms. Now, we cannot continue the original observation sequence which required
us to observe 𝑎 and 𝑏 because 𝑐 needs to be observed before 𝑏.

We encountered a similar problem in the discrete-time setting when considering
out-of-order observations (see Section 4.3.4) caused by observations that are delayed
individually. In contrast to the discrete-time setting, we now have concrete possible
latencies. To tackle these problems, the observation model must capture all possible
out-of-order observations induced by such latencies. In the discrete-time setting, we
simply handled out-of-order observations by bounded permutations and delays, im-
plicitly assuming that the possible (discrete) latencies of all observables are identical.
Handling the varying, individual latencies in the continuous-time setting is more
challenging and, thus, requires a more complex formal machinery.

136 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

5.2.3 Out-of-Order Observations
As the result of varying latency, observations may be made in a different order than
the events causing them ocurred in. Figure 5.6 visualizes this phenomenon. Here, the
event 𝑒1 ocurred before the event 𝑒2, however, at time 𝑡 of the verdictor’s clock, the
verdictor made the observations 𝜔, including the observation of 𝑒2 but lacking the
observation of 𝑒1. Only later will the verdictor observe 𝑒1, thereby extending 𝜔 to
𝜔′. Thus, in this example, 𝜔 is an incomplete prefix in the sense that it lacks certain
observations of events which occurred before already observed events. Due to this
incompleteness, it is also not consistent with the ongoing run. It may not even be
consistent with any run, e.g., when 𝑒1 must always happen before 𝑒2.

System

Events

Verdictor
Observations

𝑡

𝑒1 𝑒2

𝜔
𝜔′

Figure 5.6: Latency induced out-of-order observations leading to an incomplete prefix.

Example 5.6 Assume for the sake of this example, that the latency of trigger actions
in the industrial automation example varies between 1ms and 50ms (instead of 1ms
and 3ms). Now, take the event sequence as introduced in Example 5.3:

𝜚 = ⟨12ms, trigger_0⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝑒0

⋄ ⟨17ms, trigger_1⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝑒1

The ongoing run 𝜌 inducing these events as per (5.3) may start as follows and continue
in some arbitrary way:

𝜌 = ⟨𝑠1, 12ms, 𝑠2⟩ ⟨𝑠2, trigger_0, 𝑠3⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝑒0

⟨𝑠3, 5ms, 𝑠4⟩ ⟨𝑠3, trigger_1, 𝑠4⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝑒1

⋯ (5.10)

Due to the highly varying latency, it is possible that 𝑒1 is observed with a latency
of only 1ms at time ↓𝑡1 = 25ms, while the observation of 𝑒0 is made much later
with a latency of 40ms at time ↓𝑡0 = 59ms.14 This leads to the following observation
sequence:

𝜔′ = ⟨25ms, trigger_1⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝜃′1

⋄ ⟨59ms, trigger_0⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝜃′0

14 For instance, the time-remapping function 𝑟(𝑡) = 𝑡−7 witnesses consistency because ↓𝑡0 = 12+40+
7 = 59 and ↓𝑡1 = 17 + 1 + 7 = 25. Hence, assuming an initial clock offset of 7ms and no clock drift,
the observation and occurrence times are indeed consistent.

5.2. OBSERVATION MODEL 137

Therefore, between 25ms and 59ms the observations made by the diagnoser contain
only an observation of trigger_1 but none of trigger_0, i.e., for any 25ms < 𝑡 <
59ms, the observation sequence is just:

𝜔 = ⟨25ms, trigger_1⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝜃′1

However, no timed event sequence induced by a run is consistent with this obser-
vation sequence because any run inducing a trigger_1 event must also induce a
trigger_0 event occurring before (see the timed automaton in Example 5.1).

Necessary Observations. To tackle out-of-order observations, we define an obser-
vation model according to which all events which must have been observed will have
been observed. A timed event ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ must have been observed iff more than the
maximal latency lmax(𝑎) of the observable action has passed since the event occurred,
i.e., iff Dur(𝜌) > ↑𝑡 + lmax(𝑎). Let MustObs(𝜌) be the set containing all events of a run
𝜌 that must have been observed:

MustObs(𝜌) ≔ { ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝜚(𝜌) || Dur(𝜌) > ↑𝑡 + lmax(𝑎) } (5.11)

Using (5.11), we further define a set Π(𝜌) that contains all sets of events such that
the respective sets contain all events that must have been observed and may or may
not contain all other events that may or may not have been observed:

Π(𝜌) ≔ { 𝜍 ⊆ 𝜚(𝜌) |MustObs(𝜌) ⊆ 𝜍 } (5.12)

Each set 𝜍 ∈ Π(𝜌) corresponds to a timed event sequence Word(𝜍). With that, we
define a second candidate for an observation model, requiring that there exists some
set 𝜍 ∈ Π(𝜌), which by definition contains all the observations that must have
been made, such that the timed event sequence Word(𝜍) corresponding to this set is
consistent with the observations that have been made:

Ω(𝜌) ≔ {𝜔 ∈ (ℚ × OAct)⋆ || ∃𝜍 ∈ Π(𝜌) ∶ Word(𝜍) ▻ 𝜔 } (5.13)

Now, (5.13) fixes the problems of the naive model (5.9). In particular, it allows for
incomplete prefixes by requiring events that must have been observed to actually be
observed while not mandating the remaining events to be observed.

Unfortunately, (5.13) is unrealistic as it does not guarantee that 𝜔 ∈ Ω(𝜌) can be
continued to be consistent with the run 𝜌. It should be possible to extend an obser-
vation sequences such that it becomes consistent with the run as the observations
missing due to latency will eventually be made. Adding this condition, we obtain our
final observation model.

138 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

Definition 5.2.4 We define the continuous-time observation model by:

Ω(𝜌) ≔ {𝜔 ∈ (ℚ × OAct)⋆ || ∃𝜍 ∈ Π(𝜌), 𝜔′ ≥ 𝜔 ∶ Word(𝜍) ▻ 𝜔 ∧ 𝜚(𝜌) ▻ 𝜔′ }

According to Definition 5.2.4, a run may induce an observation sequence which (a)
accounts for all events that must have been observed and optionally events that
may or may not have been observed, and (b) can be continued such that it becomes
consistent with the run.

Terminated Runs. Consider that a run 𝜌 does not progress any further because the
system terminated. Realistically, time cannot actually halt, so we must assume that it
keeps progressing even though the run does not continue. Thus, delayed observations
will still eventually arrive (after their minimal latency) at the verdictor regardless
of the fact that the run does not continue. In particular, an observation sequence
𝜔 ∈ 𝜔(𝜌) induced by the run 𝜌 as per Definition 5.2.4 may include observations of
events ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ with ↑𝑡 + lmin(𝑎) > Dur(𝜌). That is, for these events, the minimal
latency has not passed relative to the duration of the run, yet they may have been
observed because the time kept progressing after the system terminated. If those
observation sequences are observed at runtime, then they may allow a verdictor to
detect termination.

Observation Prefixes. We will now establish a relation between consistency as
per Definition 5.2.3 and the observation model. This relation will play a pivotal role
for the correctness of the verdictor algorithm.

Lemma 5.2.3 Assume given an observation sequence 𝜔′ consistent with some run
𝜌′, i.e., 𝜚(𝜌′) ▻ 𝜔′. For all prefixes 𝜔 ∈ Pref(𝜔′) of the observation sequence 𝜔′

there exists a prefix 𝜌 ∈ Pref(𝜌′) of the run 𝜌′ such that 𝜔 ∈ Ω(𝜌) where Ω is the
observation model as per Definition 5.2.4.

For a detailed proof see Appendix A.2.3.

5.3 Verdictor Building Blocks

The verdictor algorithm for continuous-time systems will be based on two central
building blocks, active prefixes and bound consistency, that we are going to introduce
in the following. Together these render the problem algorithmically tractable.

The correctness proof of the verdictor algorithm will at its core also rely on
theorems that we prove for active prefixes and bound consistency. The algorithm we

5.3. VERDICTOR BUILDING BLOCKS 139

present here is Δ-complete (recall Definition 3.4.5) for

Δ ≔ (1 + 𝛿) ⋅ (max𝑎∈OAct lmax(𝑎) −min𝑎∈OAct lmin(𝑎)) (5.14)

with respect to the following distance function that returns the time difference of
two non-empty timed observation sequences and 0 if either sequence is empty:

𝑑(𝜖, ⋅) ≔ 0 𝑑(⋅, 𝜖) ≔ 0 𝑑(𝜔 ⋄ ⟨↓𝑡, 𝑎⟩ , 𝜔 ⋄ ⟨↓𝑡′, 𝑎′⟩) ≔ ↓𝑡′ − ↓𝑡 (5.15)

The choice of Δ is such that if more than Δ time passed after a timed observation
𝜃, then any observations being made will be caused by events that occurred after
the event causing the observation 𝜃. This property is exploited by the subsequent
definitions and the verdictor algorithm.

By delaying the verdict by an offset of Δ, we can avoid speculating about missing
observations. Recall that in the discrete-time setting, we accounted for out-of-order
observations by speculation (see Section 4.3.4). In the continuous-time setting, specu-
lating about concrete possible future observations is not feasible, as there are infinitely
many possible observation times.

5.3.1 Active Prefix Verdictor
The verdictor algorithmwill be based on the concept of active prefixes. An active prefix
is a certain subset of the observations that have been made. These subsets are chosen
such that they contain all observations for which it is guaranteed that observations
arriving in the future are caused by events that occurred after the events causing
the observations. We call observations with that property settled. At any given time
𝑡, observations made at time 𝑡 or later cannot be caused by events that occurred
arbitrarily in the past because the latency of observations is bounded. Intuitively, it
must be possible to account for all settled observations without speculating about
future observations, as any future observations are guaranteed to be caused by events
that happened later. Observations become settled if more than Δ time as per (5.14)
has passed after they have been made:

Settled(𝜔) ≔ { ⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩ ∈ 𝜔 || ↓𝑡 + Δ < Dur(𝜔) } (5.16)

Here, Dur(𝜔) is the time of the last observation in 𝜔.

Active Subset Verdictor. A verdictor should account for at least all settled obser-
vations because observations made in the future must correspond to events that have
occurred or will occur after the events causing the settled observations. We call those
subsets of an observation sequence 𝜔 that contain at least all settled observations
active subsets. The set of active subsets is defined as follows:

𝐴(𝜔) ≔ { 𝜍 ⊆ 𝜔 | Settled(𝜔) ⊆ 𝜍 } (5.17)

140 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

We prove that a VTS based on active subsets is sound and Δ-complete for Δ as per
(5.14). To this end, let 𝔙 be a VTS maintaining the active subsets and then producing
a verdict by considering all runs that are consistent with some active subset:

𝜈(𝜔) = ⨆{V(𝜌) | ∃𝜍 ∈ 𝐴(𝜔) ∶ 𝜚(𝜌) ▻ Word(𝜍) } (5.18)

Here, V is the verdict oracle defined in the introduction of this chapter based on the
verdict annotations of the edges of the timed automaton as per (5.1).

Considering active subsets avoids the need for speculation, because we simply
look at the active subsets instead of any possible continuations as would be required
by the observation model defined in Definition 5.2.4. We establish soundness and
Δ-completeness for every VTS satisfying (5.18).

Theorem 5.3.1 Every VTS 𝔙 satisfying (5.18) is sound.

Proof Sketch. According to Definition 3.4.3, we must prove that V(𝜌′) ⊑ 𝜈(𝜔′) for all
𝜔′ ∈ ℒ⇂Ω(⟦𝔗⟧) and 𝜌′ ∈ Runs(𝜔′). The proof rests on the fact that there exists a prefix
𝜌 ∈ Pref(𝜌′) and an active subset 𝜍 ∈ 𝐴(𝜔) such that 𝜌 is consistent withWord(𝜍), i.e.,
𝜌 ▻ Word(𝜍). As this prefix exists, we have V(𝜌) ⊑ 𝜈(𝜔). Further, due to monotonicity
of V (see Proposition 5.0.1), we have V(𝜌′) ⊑ V(𝜌). Therefore, V(𝜌′) ⊑ 𝜈(𝜔). For a
detailed proof, including the existence of the prefix, see Appendix A.2.4.

Theorem 5.3.2 Every VTS 𝔙 satisfying (5.18) is Δ-complete for Δ as per (5.14).

Proof Sketch. According to Definition 3.4.5, we must prove that 𝜈(𝜔′) ⊑ V(𝜔) for all
𝜔 ∈ ℒ⇂Ω(⟦𝔗⟧) and 𝜔′ ∈ Cont(𝜔) such that 𝑑(𝜔′, 𝜔) > Δ. The proof rests on the fact
that after Δ time passed, all observations in 𝜔 become settled, i.e., 𝜔 ⊆ Settled(𝜔′).
The crux of the proof then lies in Lemma 5.2.3, which implies that there exists a prefix
𝜌 ∈ Pref(𝜌″) such that 𝜔 ∈ Ω(𝜌) for all runs 𝜌″ consistent with Word(𝜍) where 𝜍 is
some active subset of 𝜔′, i.e., 𝜍 ∈ 𝐴(𝜔′) and 𝜌″ ▻ Word(𝜍). Analogously to the proof
of Theorem 5.3.1, the proof exploits the fact that such a prefix exists and that V is
monotonic (see Proposition 5.0.1). For a detailed proof, see Appendix A.2.6.

Active Prefix Verdictor. While a VTS satisfying (5.18) is already sound and Δ-
complete, we can refine the set 𝐴(𝜔), for the sake of further reducing the number
of sets to be considered by the verdictor. An active prefix of a timed observation
sequence 𝜔 is an active subset such that if it contains an observation 𝜃, then it also
contains all observations that are guaranteed to be caused by events that occurred
before the event causing the observation 𝜃. Formally, an active prefix is an active
subset that is downward-closed with respect to ≺. The set of downward-closed
subsets of 𝜔 with respect to ≺ is defined as follows:

Pref≺(𝜔) ≔ { 𝜍 ⊆ 𝜔 | ∀𝜃 ∈ 𝜍 ∶ ∀𝜃′ ∈ 𝜔 ∶ 𝜃′ ≺ 𝜃⟹𝜃′ ∈ 𝜍 } (5.19)

5.3. VERDICTOR BUILDING BLOCKS 141

In the following, we refer to members of the set Pref≺(𝜔) as ≺-prefixes of 𝜔. The set
of active prefixes is then given by:

Pref𝐴(𝜔) ≔ Pref≺(𝜔) ∩ 𝐴(𝜔) (5.20)

If 𝜃 ≺ 𝜃′ then a verdictor taking 𝜃′ into account should also take 𝜃 into account
because the event causing 𝜃 must have occurred before the event causing 𝜃′ (cf. the
discussion around (5.8)). A ≺-prefix has precisely the property that if it contains an
observation 𝜃′, then it also contains all observations 𝜃 caused by events that must
have occurred before the event causing 𝜃′. This idea is formally captured by (5.20).
Analogously to (5.18), let 𝔙 be a VTS such that:

𝜈(𝜔) = ⨆{V(𝜌) | ∃𝜍 ∈ Pref𝐴(𝜔) ∶ 𝜚(𝜌) ▻ Word(𝜍) } (5.21)

A VTS satisfying (5.21) is sound and Δ-complete.

Theorem 5.3.3 Every VTS 𝔙 satisfying (5.21) is sound.

For a detailed proof see Appendix A.2.5.

Corollary 5.3.1 Every VTS 𝔙 satisfying (5.21) is Δ-complete for Δ as per (5.14).

Proof. As Pref𝐴(𝜔) ⊆ 𝐴(𝜔), we have:

(⨆{V(𝜌) | ∃𝜎 ∈ Pref𝐴(𝜔) ∶ 𝜚(𝜌) ▻ Word(𝜎) }) ⊑ (⨆{V(𝜌) | ∃𝜎 ∈ 𝐴(𝜔) ∶ 𝜚(𝜌) ▻ Word(𝜎) })

Thus, Theorem 5.3.2 directly implies Corollary 5.3.1.

The verdictor algorithmwill be based on maintaining the set of active prefixes and
then producing a verdict as per (5.21). For this, we need a way to decide 𝜌 ▻ Word(𝜍)
for a given active prefix 𝜍. To this end, we introduce bound consistency.

5.3.2 Bound Consistency
In addition to active prefixes, the second concept necessary for algorithmic tractability
is called bound consistency. Bound consistency is equivalent to consistency, but does
not refer to an unknown time-remapping function, of which there are uncountably
many. Instead, it requires that events and observations can be matched such that the
time difference between the occurrence times of any two events is bounded by the
difference bound as per (5.7) between the observations that caused them. Formally,
we define bound consistency as follows:

142 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

Definition 5.3.1 A timed event sequence 𝜚 = (⟨↑𝑡𝑖, 𝑎𝑖⟩) 𝑛𝑖=1 and a timed observa-
tion sequence 𝜔 = (⟨↓𝑡𝑗, 𝑏𝑗⟩) 𝑛𝑗=1 are bound-consistent iff there exists a bijection
ℛ∶ 𝜚 → 𝜔 mapping events to observations such that

(i) 𝑎 = 𝑏 for all ⟨⋅, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝜚 where ⟨⋅, ⟨↓𝑡, 𝑏⟩⟩ = ℛ(⟨⋅, ⟨↑𝑡, 𝑎⟩⟩), and
(ii) ↑𝑡 − ↑𝑡′ ≤ MaxD(ℛ(𝑒),ℛ(𝑒′)) for all 𝑒, 𝑒′ ∈ 𝜚.

Bound consistency and consistency are equivalent:

Theorem 5.3.4 A timed event sequence 𝜚 and a timed observation sequence 𝜔
are consistent iff they are bound-consistent.

Proof Sketch. To prove Theorem 5.3.4, one chooses the same bijection ℛ for both
consistency and bound consistency. It is then rather easy to see that if 𝜚 is consistent
with 𝜔, then it is also bound-consistent with 𝜔 because MaxD is an upper bound on
the difference of the occurrence times. The proof of the other direction, however, is
quite involved and rests on the construction of a piecewise-linear time-remapping
function from the fact that the differences of the occurrence times between any two
events is bounded by MaxD. For a detailed proof, we refer to Appendix A.2.7.

5.4 Verdictor Algorithm

Having established its basic building blocks, we now present the verdictor algorithm
for the continuous-time setting with timing imprecisions. The algorithm is based on
active prefixes and produces a verdict as per (5.21), which we have already shown to
be sound and Δ-complete for Δ as per (5.14) (see Theorem 5.3.3 and Corollary 5.3.1).
To reason and track the verdicts of the individual runs that are consistent with
the active prefixes, the algorithm relies on bound consistency and exploits abstrac-
tion techniques from timed automata reachability analysis, in particular the zone
abstraction to represent sets of system states [AD91; BY03].

Conceptually, the algorithm implements an infinite state and deterministic VTS.
The states of this VTS are pairs ⟨𝜔, 𝕍⟩ where 𝜔 is the sequence of observations made
so far and 𝕍 is a set of verdict states representing the states the system may be in, the
observations the system has generated to get there, and the verdicts collected to get
there. Formally, a verdict state is a triple ⟨𝑠#, 𝜍, 𝑣⟩ where 𝑠# is an abstract system state,
𝜍 ⊆ 𝜔 is a set of matched observations, and 𝑣 is a verdict. An abstract system state 𝑠#

is a pair ⟨𝑙, 𝜂#⟩ where 𝑙 is a location of the timed automaton and 𝜂# is a set of clock
constraints. An abstract system state represents a set of system states:

⟦⟨𝑙, 𝜂#⟩⟧ ≔ { ⟨𝑙, 𝜂⇂ℂ⟩ | 𝜂 ⊨ 𝜂#}

5.4. VERDICTOR ALGORITHM 143

In response to new observations, the algorithm updates the set of verdict states such
that each verdict state ⟨𝑠#, 𝜍, 𝑣⟩ ∈ 𝕍 abstractly represents a set of runs that generate
the observations 𝜍, that end up in some state represented by 𝑠#, and that are assigned
the verdict 𝑣 by the verdict oracle. Thereby the algorithm enables computing the
verdict as per (5.21) by joining the verdicts of all verdict states whose set of matched
observations is an active prefix and whose set of states is non-empty:

𝜈(⟨𝜔, 𝕍⟩) ≔ ⨆{𝑣 | ∃ ⟨𝑠#, 𝜍, 𝑣⟩ ∈ 𝕍 ∶ 𝜍 ∈ Pref𝐴(𝜔) ∧ ⟦𝑠#⟧ ≠ ∅ } (5.22)

In the following, we will state the exact invariants required for correctness formally,
present the core algorithm for updating verdict states, and describe how the invariants
are initially established and maintained by using this algorithm.

Correctness Invariants. To inherit soundness and Δ-completeness from the ver-
dict defined via the active prefixes, we must ensure that the verdict as per (5.22) is
identical to the verdict as per (5.21). To this end, the following correctness invariants
are required for the states ⟨𝜔, 𝕍⟩:

(IV1) For each verdict state ⟨𝑠#, 𝜍, 𝑣⟩ ∈ 𝕍, 𝜍 is a downward closed subset of 𝜔with
respect to ≺, i.e., 𝜍 is a ≺-prefix as per (5.19).

(IV2) For all ≺-prefixes 𝜍 ∈ Pref≺(𝜔) and verdicts 𝑣 ∈ 𝒱, it holds that:

⋃{⟦𝑠#⟧ | ⟨𝑠#, 𝜍, 𝑣⟩ ∈ 𝕍 }

= ⋃{After(𝜌) | 𝜌 ∈ Runs(⟦𝔗⟧) s.t. V(𝜌) = 𝑣 ∧ 𝜚(𝜌) ▻ Word(𝜍) }

In particular invariant (IV2) ensures that the verdict states 𝕍 cover all the states
the system may be in after generating the respective observations. Based on these
invariants, it is easy to see that the verdict as per (5.22) is indeed the verdict produced
by an active prefix verdictor as per (5.21).

Clock Zones. To canonically and efficiently represent verdict states, the verdictor
algorithm relies on clock zones. Clock zones are typically used for reachability analysis
of timed automata [BY03; AD91; BLR05]. Mathematically, a clock zone is a set of
clock valuations that can be represented by a set 𝜂# of clock constraints. Given a set
of clock constraints 𝜂#, we will denote the zone it represents by ⟦𝜂#⟧. Formally:

⟦𝜂#⟧ ≔ { 𝜂 ∈ ℂ → ℝ+
0 || 𝜂 ⊨ 𝜂#}

It is well-known that clock zones can be canonically represented by Difference Bound
Matrices (DBMs), a matrix data structure that stores a bound for each pair ⟨𝑥, 𝑦⟩
with 𝑥, 𝑦 ∈ ℂ ⊍ {0}. A bound constrains the difference 𝑥 − 𝑦 and can be either ∞
or ∼ 𝑐 where ∼ ∈ {<,≤} and 𝑐 ∈ ℚ [BY03]. A DBM corresponds to a canonical

144 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

set of clock constraints 𝑥 − 𝑦 ∼ 𝑐 for each pair ⟨𝑥, 𝑦⟩ and bound of the form ∼ 𝑐.
Notably, any set of clock constraints can be represented canonically like that. For the
verdictor algorithm, we assume that sets of clock constraints are always represented
canonically, e.g., in the form of a DBM. In addition to canonicity, DBMs also enable
efficient operations on clock zones. The verdictor algorithm will make use of standard
operations15 on clock zones, namely (i) Reset(𝜂#,R) which resets the clocks R in 𝜂#

to zero and (ii) Future(𝜂#), which drops the upper bounds on all clock variables but
retains the clock differences. Formally, they have the following semantics:

⟦Reset(𝜂#,R)⟧ = { 𝜂 ↓ R | 𝜂 ∈ ⟦𝜂#⟧ }

⟦Future(𝜂#)⟧ = { 𝜂 ⊕ Δ𝑡 || 𝜂 ∈ ⟦𝜂#⟧ , Δ𝑡 ∈ ℝ+
0 }

For the implementation of these operations using DBMs, we refer to Bengtsson and
Yi [BY03]. To combine multiple sets of clock constraints, we use ∪ and implicitly
assume that the result is made canonical.

UpdatingVerdict States. Tomaintain the invariants, the verdictor algorithmneeds
to update the set of verdict states when new observations arrive. At the heart of the
algorithm is an exploration procedure explore taking a verdict state v = ⟨𝑠#, 𝜍, 𝑣⟩
and an observation 𝜃 ∈ 𝜔 ∖ 𝜍. It then extends v with 𝜃 to produce successor verdict
states ⟨𝑠#′, 𝜍 ∪ {𝜃} , 𝑣′⟩. This procedure is displayed in Algorithm 2 . Algorithm 2 is a
variation of the reachability analysis algorithm for zone graphs of timed automata
[BY03; AD91; BLR05] extended by adding clocks for observations and constraining
their difference according to Definition 5.3.1 (see line 11 and 12), and combining the
verdict annotations as per (5.1) and Definition 4.1.2 (line 16).

Invariant (IV2) implies that a verdict state ⟨𝑠#, 𝜍, 𝑣⟩ ∈ 𝕍 represents a set of states
⟦𝑠#⟧ of the LTS semantics of the system model and that those states are reached
after runs consistent with 𝜍 and which induce the verdict 𝑣. Now, the exploration
procedure computes all the successor verdict states ⟨𝑠#′, 𝜍 ∪ {𝜃} , 𝑣′⟩ such that the
states ⟦𝑠#′⟧ are reachable from some state in ⟦𝑠#⟧ after runs consistent with 𝜍 ∪ {𝜃}
and which induce the verdict 𝑣′.

In Algorithm 2, the input observation 𝜃𝑥 is optional. If not present, it is denoted
by ⊥. The latter case occurs as a result of a recursive step, where the observation
provided initially has already been matched with an event (in line 13, 𝜃′𝑥 is set to ⊥).
This is handled (line 3-4) by adding the verdict state to the set 𝑆 to be returned as
result (line 17). Regardless of the provision of an observation, the algorithm explores
possible successor states by iterating over those edges of the system model whose
action is either unobservable or may be matched with the observation if provided
(line 5). Here, Action(𝜃𝑥) denotes the action associated with 𝜃𝑥 if provided, and

15 Note that Future is sometimes called up in the literature.

5.4. VERDICTOR ALGORITHM 145

Algorithm 2: Recursive procedure for exploring verdict states (Explore).
Data: a verdict state ⟨𝑠#, 𝜍, 𝑣⟩ and an optional observation 𝜃𝑥 = ⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩
Result: a set of verdict states

1 function Explore(⟨⟨𝑙, 𝜂#⟩ , 𝜍, 𝑣⟩ , 𝜃𝑥)
2 S ≔ ∅
3 if 𝜃𝑥 = ⊥ then
4 S ≔ {⟨⟨𝑙, 𝜂#⟩ , 𝜍, 𝑣⟩}
5 for ⟨𝑙, 𝐺, 𝛼,R, 𝑙′⟩ ∈ 𝐸 where 𝛼 ∉ OAct ∨ 𝛼 = Action(𝜃𝑥) do
6 𝜂#

𝑠′ ≔ 𝜂#∪ 𝐺
7 if ⟦𝜂#

𝑠′⟧ ≠ ∅ then
8 𝜍′, 𝜃′𝑥 ≔ 𝜍, 𝜃𝑥
9 if 𝛼 = Action(𝜃𝑥) then

10 𝜂#
𝑠′ ≔ Reset(𝜂#

𝑠′, {𝜃𝑥})
11 for 𝜃𝑦 ∈ 𝜍 do
12 𝜂#

𝑠′ ≔ 𝜂#
𝑠′ ∪ {𝜃𝑥 − 𝜃𝑦 ≤ MaxD(𝜃𝑦, 𝜃𝑥), 𝜃𝑦 − 𝜃𝑥 ≤ MaxD(𝜃𝑥, 𝜃𝑦)}

13 𝜍′, 𝜃′𝑥 ≔ 𝜍 ∪ {𝜃𝑥} , ⊥
14 𝜂#

𝑠′ ≔ Future(Reset(𝜂#
𝑠′,R)) ∪ Inv(𝑙′)

15 if ⟦𝜂#
𝑠′⟧ ≠ ∅ then

16 𝑣′ ≔ 𝑣 ⊓ 𝑇(𝑙, 𝛼, 𝑙′)
17 S ≔ S ∪ Explore(⟨⟨𝑙′, 𝜂#

𝑠′⟩ , 𝜍′, 𝑣′⟩ , 𝜃′𝑥)
18 return S

⊥ ∉ Act otherwise. For each edge, the following is executed: First, the zone of the
verdict state is constrained by the guard to check whether the edge is enabled (line
6-7). If so, and if the action agrees with the observation (line 9), a clock for the
observation is introduced and initialized to zero (line 10). Subsequently, the definition
of bound consistency (recall Definition 5.3.1) is echoed by constraining the difference
between clock 𝜃𝑥 and the clocks recording the time passed since already matched
observations (line 11-12). The observation has thus been matched and is added to
the set of matched observations. For subsequent recursive calls, the observation is
then set to ⊥ (line 13). The next step computes the successor zone (line 14) in the
usual manner, resetting the clocks as specified by the edge, then applying the Future
operator, and finally constraining the obtained zone by the invariant of the successor
location. If the successor zone is non-empty (line 15), then the set 𝑆 is extended by
calling the exploration procedure recursively using the obtained successor location,
zone, matched observations, verdict, and observation (line 17). To this end, the verdict
has been updated with the annotation of the taken edge (line 16). The procedure
terminates because we assumed that there can be no cycles free of observables (A5)
and Algorithm 2 allows only one observable corresponding to 𝜃𝑥 to occur.

146 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

Establishing the Invariants. The set of verdict states 𝕍 is initialized with

𝕍0 ≔⋃{ Explore (⟨⟨𝑙, 𝜂#
0,𝑙⟩ , ∅,⊤⟩ , ⊥) || 𝑙 ∈ 𝐼 } (5.23)

where 𝜂#
0,𝑙 is the initial clock zone obtained by initializing all clocks to zero, then

applying Future, and finally constraining the result with the zone Inv(𝑙). Initially,
there are no observations, i.e., 𝜔 = 𝜖, hence, ∅ is its only ≺-prefix. The set 𝕍0
obtained by the initial invocation of Explore contains only states with an empty set
of matched observations, thereby satisfying invariant (IV1). Furthermore, invariant
(IV2) is also satisfied because Explore explores all runs consistent with the empty
set of observations and records the induced verdicts respectively, i.e., for each 𝑣 ∈ 𝒱:

⋃{⟦𝑠#⟧ | ⟨𝑠#, 𝜍, 𝑣⟩ ∈ 𝕍0 } = ⋃{After(𝜌) | 𝜌 ∈ ⟦𝔗⟧ s.t. V(𝜌) = 𝑣 ∧ 𝜚(𝜌) ▻ 𝜖 }

Therefore, initially both invariants are satisfied.

Maintaining the Invariants. Recall that the invariant (IV1) requires that the set
of matched observations of any verdict state is a ≺-prefix of 𝜔. To maintain this
invariant, the exploration procedure must only ever be used to extend a verdict state
with an observation such that 𝜍 ∪ {𝜃} is again a ≺-prefix of 𝜔. To this end, we define
the frontier Frontier𝜔(𝜍) ⊆ 𝜔 ∖ 𝜍 of a ≺-prefix 𝜍 of 𝜔 to be the set of all observations
𝜃 ∈ 𝜔 ∖ 𝜍 such that 𝜍 ∪ {𝜃}, coined the 𝜃-extension of 𝜍, is also a ≺-prefix of 𝜔. For
each of the observations in the frontier of a given state’s matched observations, we
maintain a flag indicating whether we already extended the state with the respective
observation. After making a new observation, we first remove those verdict states
⟨⟨𝑙, 𝜂#⟩ , 𝜍, 𝑣⟩ ∈ 𝕍 from 𝕍 that are no longer ≺-prefixes of the new 𝜔. This restores the
invariant (IV1), i.e., that for each ⟨𝑠#, 𝜍, 𝑣⟩ ∈ 𝕍, 𝜍 is a ≺-prefix of 𝜔.

Subsequently, to maintain both invariants, the exploration procedure is called
iteratively to update the set 𝕍. After making a new observation and while there is a
verdict state v = ⟨⟨𝑙, 𝜂#⟩ , 𝜍, 𝑣⟩ ∈ 𝕍 where the frontier of 𝜍 contains observations with
which v has not already been extended (determined using the flag), we proceed as
follows: For each such observation 𝜃 ∈ Frontier𝜔(𝜍) in the frontier of 𝜍, extend 𝕍with
Explore(v, 𝜃) and flag 𝜃 for v indicating that v has already been extended with 𝜃. By
only ever extending verdict states with observations in the frontier, invariant (IV1)
is clearly maintained by this approach. Invariant (IV2) is also maintained because
explore is exhaustively used to explore all possible runs to obtain successor states
and the verdicts they induce.

Example 5.7 Let us come back to the running example (Example 5.1). We assumed
that the verdict domain is the simplified diagnosis domain (Definition 3.1.3) over a
single fault class 𝑓𝐵 indicating a faulty bearing. With a clock accuracy of ±3% and a
minimal and maximal latency between 1ms and 3ms, respectively, as defined in the
previous examples, the verdict offset Δ is:

Δ = (1 + 0.03) ⋅ (3ms − 1ms) = 2.06ms (5.24)

5.4. VERDICTOR ALGORITHM 147

For the timed automaton as introduced in Example 5.1, the initial verdict states are:

⟨⟨𝑙𝑁1, {0 ≤ 𝑥 ≤ 200}⟩ , ∅,∅⟩⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
(a)

⟨⟨𝑙𝐹1, {0 ≤ 𝑥 ≤ 200}⟩ , ∅, {𝑓𝐵}⟩⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
(b)

(5.25)

Assuming that no observable events occurred yet, the system is either in location
𝑙𝑁1 (a) or location 𝑙𝐹1 (b). In both cases, the value of the clock 𝑥 is somewhere in
the interval [0, 200]ms. To get to location 𝑙𝐹1, a bearing fault fault_bearing must
have occurred which is tracked by the verdict state (b). Now, for the sake of the
example, assume that an observation 𝜃0 = ⟨0, ⟨212ms, trigger_0⟩⟩ as defined in
Example 5.3 is made. Applying Algorithm 2, the states (5.25) and the observation 𝜃0
are used to compute successor verdict states:

⟨⟨𝑙𝑁2, {0 ≤ 𝑥 ≤ 6, 𝜃0 = 𝑥}⟩ , {𝜃0} , ∅⟩⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
(a′)

⟨⟨𝑙𝐹2, {0 ≤ 𝑥 ≤ 12, 𝜃0 = 𝑥}⟩ , {𝜃0} , {𝑓𝐵}⟩⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
(b′)

(5.26)

The state (a′) is a successor of (a) and the state (b′) is a successor of (b) reached
after the observable trigger_0 action observed as 𝜃0, respectively. These states
capture that, after the occurrence of trigger_0, the system is either in location
𝑙𝑁2 (a′) or 𝑙𝐹2 (b′). The Reset operation in line 10 of Algorithm 2 resets the clock,
denoted by 𝜃0, which has been introduced for observation 𝜃0. At the same time, the
Reset operation in line 14 resets the clock 𝑥 as modeled by the timed automaton
(cf. Example 5.1). As a result, both clocks start at zero when the Future operation is
applied in line 14 and have the same value. The fact that both clocks continue to have
the same value is captured by the constraint 0 ≤ 𝜃0 − 𝑥 ≤ 0 which we abbreviate
as 𝜃0 = 𝑥 (highlighted in green in (5.26)). The clock for 𝜃0 tracks the time since the
corresponding event occurred and this time coincides with the resetting of 𝑥.

Recall that all verdict states where 𝜍 is an active prefix of the set of observations
made until time 𝑡 need to be considered when computing the verdict (cf. (5.21)). At
time 𝑡 = 212ms, when the observation 𝜃0 is made, the empty set ∅ is still an active
prefix because 𝜃0 is not settled yet. Hence, after observing 𝜃0, the states in (5.25) and
(5.26) have to be considered for computing the verdict as per (5.22). The resulting
verdict is the empty set, no fault certainly occurred.

Clearly, the observation of just 𝜃0 alone is not indicative for a fault. To diagnose
something, we need more observations. To this end, imagine that after 𝜃0 the ob-
servation 𝜃′1 = ⟨1, ⟨224ms, trigger_1⟩⟩ as considered in Example 5.1 is made. Both
observations together are indicative for a fault of the bearings because the large
time difference between them can only be explained with increased friction. The

148 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

difference bounds between these observations are:

MaxD(𝜃0, 𝜃′1) = 3ms − 1ms + 1.03−1 ⋅ (212ms − 224ms) ≈ −9.65ms (5.27)

MaxD(𝜃′1, 𝜃0) = 3ms − 1ms + 1.03 ⋅ (224ms − 212ms) = 14.36ms (5.28)

To account for the new observation 𝜃′1, the diagnosis algorithm proceeds as follows:

– Starting with state (a′), the trigger_1 transition from 𝑙𝑁2 to 𝑙𝑁1 must be
taken. To this end, first, line 6 of Algorithm 2 takes into account the guard of
the transition leading to the following zone:

{3 ≤ 𝑥 ≤ 6, 𝜃0 = 𝑥}

This zone is not empty (checked in line 7). Hence, the clock for the new obser-
vation is introduced and subsequently reset to zero (line 10) giving rise to the
following zone:

{3 ≤ 𝑥 ≤ 6, 𝜃0 = 𝑥, 𝜃′1 = 0}
In the next step (line 11-12), the constraints based on the bounds (5.27) and
(5.28) are added (highlighted in green):

{3 ≤ 𝑥 ≤ 6, 𝜃0 = 𝑥, 𝜃′1 = 0, 9.65 ≤ 𝜃0 − 𝜃′1 ≤ 14.36} (5.29)

The resulting zone, however, is empty because the existing constraints imply
3 ≤ 𝜃0−𝜃′1 ≤ 6while the constraints based on the bounds require 9.65 ≤ 𝜃0−𝜃′1.
The application of the Reset and Future operator in line 14 does not change
the fact that the zone is empty, and, hence, the exploration procedure does not
recurse (due to the check in line 15). Therefore, with the observation 𝜃′1, the
state (a′) has no successors.

– Now, for state (b′) the outcome is different. Analogously to the state (a′), the
trigger_1 transition from 𝑙𝐹2 to 𝑙𝐹1 must be taken which gives rise to the
following zone:

{6 ≤ 𝑥 ≤ 12, 𝜃0 = 𝑥, 𝜃′1 = 0}
Again, the constraints for the bounds are added:

{6 ≤ 𝑥 ≤ 12, 𝜃0 = 𝑥, 𝜃′1 = 0, 9.65 ≤ 𝜃0 − 𝜃′1 ≤ 14.36}

This time, the resulting zone is not empty. The application of the Reset and
Future operator in line 14 subsequently yield the following non-empty zone:

{0 ≤ 𝑥 ≤ 200, 206 ≤ 𝜃0 ≤ 212, 𝜃′1 = 𝑥, 9.65 ≤ 𝜃0 − 𝜃′1 ≤ 14.36}

So, the following successor state of (b′) is obtained:

⟨𝑙𝐹1,
⎧⎪
⎨⎪
⎩

0 ≤ 𝑥 ≤ 200,
206 ≤ 𝜃0 ≤ 212,

𝜃′1 = 𝑥,
9.65 ≤ 𝜃0 − 𝜃′1 ≤ 14.36

⎫⎪
⎬⎪
⎭

, {𝜃0, 𝜃′1} , {𝑓𝐵}⟩ (5.30)

5.4. VERDICTOR ALGORITHM 149

After an additional delay of Δ = 2.06ms, at time 𝑡 = 226.06ms, the observation
𝜃′1 becomes settled and {𝜃0} stops being an active prefix. As a result, when the
next observation arrives, the verdictor now only considers the state in (5.30) which
contains the fault class 𝑓𝐵. Therefore, the fault fault_bearing is diagnosed after
time 𝑡 = 226.06ms, i.e., 2.06ms after the observation 𝜃′1.

Robustness Theorem. Combining the considerations above, we obtain the fol-
lowing theorem for the continuous time verdictor algorithm:

Theorem 5.4.1 The verdictor algorithm for the continuous-time case described
above produces sound and Δ-complete verdicts for

Δ = (1 + 𝛿) ⋅ (max𝑎∈OAct lmax(𝑎) −min𝑎∈OAct lmin(𝑎)) (5.14)

and with respect to the TS semantics ⟦𝔗⟧ of the timed automaton system model
𝔗, the continuous time observation model as per Definition 5.2.4, and the verdict
oracle as per (5.1) based on the verdict annotations of the timed automaton 𝔗.

Proof Sketch. The proof rests on the already established theorems Theorem 5.3.3 and
Corollary 5.3.1, and the invariants of the algorithm. As argued above, the algorithm
establishes the invariants initially and then maintains them. Furthermore, the invari-
ants together ensure that the verdict produced for an observation sequence is indeed
the verdict as per the definition of the active prefix verdictor (5.21).

As the continuous time observational model includes timing imperfections, The-
orem 5.4.1 establishes that the verdictor algorithm is indeed robust as characterized
in Section 3.4.

Optimizations. For exposition purposes, the presented algorithm keeps verdict
states indefinitely even if they are no longer relevant. All diagnosis states ⟨𝑠#, 𝜍, 𝑣⟩
whose frontier Frontier𝜔(𝜍) is non-empty and contains only settled observations can
instead be discarded. Certainly, for those states, 𝜍 is not an active prefix and we have
already obtained all possible successor states because new observations cannot be
added to the frontier. Analogously, we can discard parts of 𝜔. As a result of these
optimizations, the size of the set 𝕍 and 𝜔 is reduced while retaining soundness and
Δ-completeness. Furthermore, instead of implementing explore recursively, any
practical implementation should deploy either breadth- or depth-first search in an
iterative fashion and use memoization, again reducing cost.

Sentinel Pruning. Note that the algorithm might produce the sentinel bottom
verdict, as it tracks the verdicts of the taken edges by computing their meet. Analo-
gously to the discrete-time case, the sentinel verdict is either not produced, or, if it is,

150 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

the states that do produce it can be dismissed as unrealistic. Changing the algorithm
to discard verdict states with the sentinel verdict and stop the exploration of their
successors is straightforward.

5.4.1 Bounded History Approximation

A major challenge remaining to be tackled is reducing the computational cost of
the verdictor algorithm. While the presented verdictor algorithm processes obser-
vations incrementally, it introduces a fresh clock (with constraints according to
Definition 5.3.1) for each new observation (line 10-12 in Algorithm 2). As a result,
the memory consumption and time for inserting a new observation grows with each
new observation. This renders the algorithm practically infeasible.

The crux of practical feasibility lies in adapting Algorithm 2 to consider the
difference bounds only for a bounded history of observations so that the algorithm
is still able to provide verdicts with an acceptable offset Δ while bounding its space
and time requirements by the size of the system model.

As an extreme case, let us first look at a variant of Algorithm 2 where no difference
bounds are considered at all. We obtain this variant by simply dropping lines 10-12
of Algorithm 2 but keeping everything else the same. The resulting algorithm only
considers the order of events according to ≺ but not their precise timing. As a result,
more verdict states are considered possible andwe obtain we obtain over-approximate
verdicts. This variant of the algorithm is still sound but not generally Δ-complete. So,
while this reduces the computational costs, it also means that verdicts are becoming
less specific as they do not take timing information into account.

Instead of considering no difference bounds at all, we now adapt the algorithm to
take the difference bounds into account for a history of at most 𝐵𝐻 ∈ ℕ0 observations.
In the following, we call 𝐵𝐻 a history bound. We separatemaintaining the≺-prefixes of
𝜔 and a history 𝐻 ⊆ 𝜔 considered for each verdict state when considering difference
bounds such that |𝐻| ≤ 𝐵𝐻. Technically, we augment verdict states with𝐻 by turning
them into quadruples ⟨𝑠#, 𝜍, 𝑣, 𝐻⟩ and we modify the lines 10-12 of Algorithm 2
accordingly to manage the history 𝐻 and to reuse clocks of discarded observations.
That is, at most 𝐵𝐻 additional clocks are introduced. Instead of adding a clock for
every observation (line 10), a clock may be reused by discarding an observation from
the history and using its clock again. Furthermore, the difference bounds are now
only applied for the observations in the history.

Concerning the choice which observations to discard and which to keep in the
history, there is a realm of possibilities whose investigation we leave for future
work. For now, we treat 𝐻 as a circular buffer such that the least recently inserted
observation gets discarded when a new observation is added to the history once the
bound 𝐵𝐻 is reached. As a result, we obtain a family of algorithms (one for each history
bound 𝐵𝐻) constituting sound but not generally Δ-complete verdictors. Combined

5.4. VERDICTOR ALGORITHM 151

with the earlier discussed optimizations, the space and time requirements for inserting
new observation is then bounded by the size of the model and independent of the
number of observations—a property paramount for practical feasibility. Recall that
the time complexity of the reachability problem for timed automata is exponential in
the number of clocks [AD91]. With a history bound of 𝐵𝐻, the algorithm requires at
most 𝐵𝐻 additional clocks for keeping track when observable events occur. These
additional clocks thus cause the time complexity to grow polynomially (with a
polynomial rank of 𝐵𝐻) in the size of the original model.

Example 5.8 Let us revisit Example 5.7 with a history bound. Choosing 𝐵𝐻 = 0would
have the effect that the difference bound constraints in (5.29) (in green) would be
missing from the constructed zone. As a result, the zone would not be empty and
(a′) would have a successor diagnosis state (without any faults) thereby preventing
the diagnosis of the fault. So, with a history bound of 𝐵𝐻 = 0, the fault is no longer
diagnosable demonstrating the potentially incomplete nature of diagnosis with a
history bound. However, with a history bound of 𝐵𝐻 = 2 the fault is still diagnosed
without any additional delay because with 𝐵𝐻 = 2 the difference bound constraints
in (5.29) (in green) will still be added by the modified algorithm thereby leading to
an empty zone and subsequent diagnosis of the fault.

Correctness Theorem. We obtain the following correctness theorem for the
continuous time verdictor algorithm with a bounded history:

Theorem 5.4.2 The verdictor algorithm with a bounded history as described
above produces sound verdicts with respect to the TS semantics ⟦𝔗⟧ of the timed
automaton system model 𝔗, the continuous time observation model as per Defini-
tion 5.2.4, and the verdict oracle as per (5.1) based on the verdict annotations of
the timed automaton 𝔗.

Proof Sketch. The original algorithm without a bounded history produces sound
verdicts as per Theorem 5.4.1 by joining the verdicts associated with the verdict
states as per (5.22). As argued above, by not considering certain difference bounds,
a superset 𝕍′ ⊇ 𝕍 of the verdict states compared to the original algorithm are
considered for each observation sequence. Hence, the verdict produced by joining
the verdicts associated with 𝕍′ is at most as specific as the known-sound verdict
produced by joining the verdicts associated with 𝕍. Therefore, the verdict produced
by joining the verdicts associated with 𝕍′ is also sound.

5.4.2 Non-Monotonic Verdicts
So far, we considered only timed automata with edge annotations, resulting in a
monotonic verdict oracle. In general, with a non-monotonic verdict oracle, a verdictor

152 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

cannot be Δ-complete as the definition of Δ-completeness requires that the verdict is
more specific for all future continuations after at most Δ time has passed, i.e., verdicts
can only get more specific. We will now discuss how the algorithm can be adapted
to the non-monotonic case. To this end, in addition to the edge annotations 𝜆𝐸, we
consider two functions 𝜅𝐿∶ 𝐼 → 𝑣 and 𝜆𝐿∶ 𝐿 → 𝑣 assigning verdicts to locations
analogously to 𝜅 and 𝜆 for the discrete-time case (recall Definition 4.1.1). Using these,
we then define a verdict oracle for the transition system semantics ⟦𝔗⟧ of the timed
automaton 𝔗 by instantiating Definition 4.1.1 with:

𝜅(⟨𝑙, 𝜂⟩) ≔ 𝜅𝐿(𝑙) 𝜆(⟨𝑙, 𝜂⟩) ≔ 𝜆𝐿(𝑙) 𝛾(⟨⟨𝑙, 𝜂⟩ , 𝑎, ⟨𝑙′, 𝜂′⟩⟩) ≔ 𝜆𝐸(𝑙, 𝑎, 𝑙′) (5.31)

We then adapt the algorithm as follows. Instead of initializing the initial verdict states
with the top verdict ⊤ as per (5.23), we initialize them with the verdict assigned to
the respective initial location as per 𝜅𝐿:

𝕍0 ≔⋃{ Explore (⟨⟨𝑙, 𝜂#
0,𝑙⟩ , ∅, 𝜅𝐿(𝑙)⟩ , ⊥) || 𝑙 ∈ 𝐼 }

Furthermore, we adapt the computation of verdicts from verdict states as per (5.22)
by also taking the location of the abstract state into account:

𝜈(⟨𝜔, 𝕍⟩) ≔ ⨆{𝑣 ⊓ 𝜆𝐿(𝑙) | ∃ ⟨⟨𝑙, 𝜂#⟩ , 𝜍, 𝑣⟩ ∈ 𝕍 ∶ 𝜍 ∈ Pref𝐴(𝜔) ∧ ⟦⟨𝑙, 𝜂#⟩⟧ ≠ ∅ }

Due to the resulting possibly non-monotonic verdicts produced by the verdictor
algorithm, it is, in general, no longer sound. Soundness requires the verdicts to be at
most as specific as the verdict of the oracle, which allows lagging behind iff the oracle
is monotonic. The just defined oracle is no longer monotonic and hence, the verdictor
must not lag behind to be sound. However, as the algorithm does not speculate about
possible future observations, it can lag behind and is thus no longer sound. For similar
reasons, it is also not complete.

While the algorithm adapted for the non-monotonic case is generally neither
sound nor complete for the general case, the verdicts it produces still bear a relation to
the system model. If the verdict oracle is monotonic for a sufficiently long segment of
at least Δ time, then the verdict oracle becomes sound after Δ. While it still potentially
lags Δ behind, after Δ time has passed in a monotonic segment, the algorithm starts
producing a sound verdict. An analogous argument for completeness can be made.

5.5 Discussion
In this chapter, we introduced a verdictor algorithm for the continuous-time setting.
The algorithm effectively handles the superimposition of variable latencies and clock
drift as well as inherent observability limitations with respect to the actions that can
be observed. It produces verdicts that are robust with respect to timing imprecisions.

5.5. DISCUSSION 153

For the monotonic case, we indeed proved that the algorithm produces sound and
Δ-complete verdicts with respect to a given system model. Moreover, we discussed
the extension of the algorithm to the non-monotonic settings.

As the cost of a precise analysis grows exponentially with the number of obser-
vations, we parametrized the algorithm with a history bound. By considering only
a bounded history, the space and time requirements become bounded by the size
of the model and thereby independent of the number of observations—a property
paramount for practical feasibility. This advantage, however, comes at the expense
of producing over-approximate verdicts that are still sound but, in general, no longer
Δ-complete. We will discuss the impacts of history bounds later in Section 7.3.

We will explore further concrete use cases beyond diagnosis in Chapter 7 and
Chapter 8 and evaluate the algorithm empirically in Section 7.3 on a case study based
on the industrial automation example.

154 CHAPTER 5. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM

Part III

From Theory to Practice

155

Chapter 6

Formal Modeling Toolbox
Momba

The model-based methodology adopted by this thesis requires the creation of verdict-
annotated formal models that accurately describe the possible behaviors of a system.
Creating formal models for complex systems and validating that they indeed faith-
fully describe the system can be a challenge. Yet, it is required to apply the techniques
presented in this thesis and to obtain provable guarantees. To ease the process of
model creation, validation, and analysis, the author of this thesis developed Momba, a
flexible Python framework for dealing with formal models. The techniques presented
in this thesis have been implemented by the author within Momba around its ex-
tensible core and using its APIs. This implementation will be the basis for empirical
evaluations in the subsequent chapters. Crucially, Momba goes beyond verdictors—it
aims to be a general platform for model-based design and analysis workflows. In this
chapter, we present Momba and discuss its architecture, use cases, the interfaces it
provides, and empirically evaluate parts of its implementation.

Motivation and Requirements. Dealing with formal models encompasses a
variety of taskswhich can be challenging from time to time—especially for newcomers.
Everything starts with the construction of a model or a family thereof. Often a textual
or other, more formal, description of the scenario to be modeled is already existing.
For instance, a rough sketch of the desired behavior or a circuit diagram. Then, after
a formal model has finally been conceived, one has to validate that the model actually
adequately models what should be modeled. In this regard models are just like any
other human artifact, inadequate initially but getting better over time. Only after
confidence in the model has been established, one is able to harvest the benefits of
formal modeling by handing the model over to analysis tools, e.g., a model checker,

157

158 CHAPTER 6. FORMAL MODELING TOOLBOX MOMBA

or leveraging the techniques developed in this thesis. Momba strives to deliver
an integrated and intuitive experience to aid the process of model construction,
validation, and analysis thereby making formal methods more accessible. Starting
with this motivation, we elicit the following high-level requirements:

(HLR1) Ease of Use. Momba should be easily approachable by newcomers and
experts alike. This includes a simple installation process and proper
documentation of the APIs and other functionality.

(HLR2) Model Construction. Momba should enable the programmatic construc-
tion of formal models from preexisting scenario descriptions in a mod-
ular fashion while catching modeling errors early.

(HLR3) Model Validation.Momba should be able to serve as a platform for model
validation by simulation. For instance, by enabling rapid prototyping
of interactive model exploration and visualization tools which can be
used to gain confidence into the accuracy of the model.

(HLR4) Model Analysis. Momba should provide unified interfaces for model
analysis tools and make them readily available.

(HLR5) Ecosystem Compatibility.Momba should be compatible with the existing
ecosystem surrounding formal models. In particular, it should be able
to read existing models, interface with existing state-of-the-art tools,
and produce models for these tools.

In addition to these original requirements, the usage of Momba as part of this thesis
and in other work [Gro+22] also lead to the following requirement:

(HLR6) Performance. The performance of Momba’s simulation and state space
exploration engine should be state-of-the-art.

As we show in this chapter, Momba meets all these requirements.

Relevant Publications. Momba has first been presented at TACAS:

[KKH21]: Maximilian A. Köhl, Michaela Klauck, and Holger Hermanns.
“Momba: JANI Meets Python”. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems, TACAS 2021.

After its initial inception, Momba has been used and significantly extended for the
work on robust diagnosis by the author of this thesis (cf. Chapter 5):

[KH23]: Maximilian A. Köhl and Holger Hermanns. “Model-Based Diag-
nosis of Real-Time Systems: Robustness Against Varying Latency, Clock
Drift, andOut-of-Order Observations”. In:ACMTransactions on Embedded
Computing Systems, TECS 2023.

6.1. ARCHITECTURE AND DESIGN 159

Furthermore, Momba has also been used and extended for the following work on
training and verifying decision-making agents based on formal models:

[Gro+22]: Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela
Klauck, Maximilian A. Köhl, and Verena Wolf. “MoGym: Using Formal
Models for Training and Verifying Decision-making Agents”. In: Com-
puter Aided Verification, CAV 2022.

Besides these works, Momba’s simulation and state space exploration engine has
been empirically evaluated and compared to other state-of-the-art tools as part of the
Quantitative Verification Competition (QComp) [And+24]. The author of this thesis
coordinated16 the respective category of QComp 2023.

To foster adoption within the community, the author of this thesis also held a
tutorial on Momba as part of FM’21. The tutorial walks participants throughMomba’s
model construction, simulation, and analysis capabilities using a platform game as an
example. This tutorial is available online17 and presents a further learning resource
towards making Momba more accessible and satisfying (HLR1).

Availability Statement. The full source code and documentation of Momba is
available as part of artifact (AT5). This artifact also includes the source code of the
implementations developed for this thesis. This chapter is primarily based on the
Momba TACAS paper [KKH21] whose respective artifact is (AT3).

Chapter Structure. Section 6.1 discusses the high-level architecture and design
decisions behind Momba against the backdrop of the requirements presented above.
Section 6.2 takes on the perspective of a user and showcases how Momba can be
used for the construction, validation, and analysis of quantitative models. Section 6.3
empirically evaluates Momba’s simulation and state space exploration engine and
compares it to other state-of-the-art tools. Section 6.4 concludes this chapter by
discussing and summarizing our findings and prospects for future work.

6.1 Architecture and Design
Momba is centered around the Python programming language and the JANI-model
interchange format [Bud+17], which have been instrumental ingredients to meet
the requirements (HLR1) and (HLR5), respectively. The performance critical parts of
Momba have been written in Rust in order to meet (HLR6).

16 This involved agreeing with the authors of the other tools on a methodology for the competition and
then carrying out the competition in the way agreed upon by the authors of all participating tools.

17 https://web.archive.org/web/20220124234200/https://fm21.momba.dev/

https://web.archive.org/web/20220124234200/https://fm21.momba.dev/

160 CHAPTER 6. FORMAL MODELING TOOLBOX MOMBA

The idea to harvest a general purpose programming environment for formal
modelling is not new at all. For instance, the SVL language combines the power of
process algebraic modelling with the power of the bourne shell. As part of many
CADP installations [Gar+13; GLM18], it is in daily use since its inception [Fer+96].
Some formal modeling tools also already provide Python bindings [Hen+22; Dur+16].
Momba strives to be not yet another incarnation of these ideas.

While the construction of formal models clearly is an integral part of Momba,
Momba aims to be more than just a framework for constructing models with the
help of Python. Most importantly, as stated above, it should also provide features to
work with these models such as a simulator or interfaces to model checking tools. At
the same time, it should also not just be a binding to an API developed for another
language, say C++. Momba is tool-agnostic and aims to provide a pythonic interface
for dealing with formal models while leveraging existing tools. Momba covers the
whole process from model creation through validation to analysis.

Why Python? Python is a popular high-level programming language, preferred
by many for its ease of use and vast ecosystem. Especially within the data science
community, Python is the go-to language for data analysis and machine learning
leveraging libraries such as TensorFlow [Aba+16] and scikit-learn [Ped+11]. Around
these libraries, scientific general purpose tools such as Jupyter [Klu+16] have emerged.
Jupyter provides a platform for documenting scientific experiments and their results
in a reproducible way combining code, data, and documentation.

By basing our efforts on a popular language that is already appreciated by scien-
tists and established in the scientific community, we hope to lower the entry barrier,
especially for those outside the formal methods community. We believe that most
individuals of Momba’s target audience are already familiar with Python. In case
someone is not, Python is also known for being easy to learn.

In addition to being already widely established and easily accessible, our vision
further is to leverage Python’s ecosystem and the excellent tools developed by the
scientific community for dealing with formal models. Imagine, a Jupyter notebook
documenting a model, including the code to construct it, with interactive visualiza-
tions of the model itself and various analysis results.

Why JANI? Traditionally, most analysis tools for formal models came with their
own modeling languages and formats. The resulting fragmentation hindered inter-
operability between and comparability across different tools. JANI (cf. Section 2.2)
[Bud+17] has been conceived with the vision to put an end to this fragmentation. It
provides a solid, well-established, and powerful compositional modeling formalism
for a variety of different kinds of systems involving concurrency, probabilistic and
real-time aspects, as well as continuous dynamics.

6.1. ARCHITECTURE AND DESIGN 161

A JANI model is composed of multiple automata interacting with each other
through synchronization. In the context of JANI, an automaton is essentially a
transition system enriched with quantitative capabilities (e.g., time and probabilities)
and programming concepts (e.g., variables and conditionals).

Since its inception, JANI has been adopted by many quantitative model checkers
[Hah+14; HH14; Hen+22] while for others translators have been developed [Hah+14;
Hen+22]. This broad tool support enabled cross-tool comparability and fostered com-
petitive evaluations among tools [Har+19; Hah+19; Bud+20]. Beyond the quantitative
verification community, JANI has also been discovered by the planning community
[Hof+20; Kla+20] for modeling planning problems. Given its adoption by the com-
munity, JANI is the natural foundation for a project like Momba. Momba supports
all features of the JANI-model specification and some of its optional extensions. The
vast tool support for JANI models enables Momba to build upon existing research
and to outsource computation-intensive tasks via unified interfaces.

Why Rust? While performance was not one of Momba’s original design goals,
further work building upon Momba [i.e. KH23; Gro+22] made it a priority. In partic-
ular, the implementation of the continuous time verdictor algorithm (cf. Chapter 5)
required a high-performance model exploration engine supporting timed automata.
While Python is known for its ease of use and great scientific ecosystem, raw perfor-
mance is not one of its strength. To achieve a performance competitive with other
state-of-the-art tools, a different language became necessary.

Rust18 is a relatively new language offering performance comparable to C and C++.
In contrast to C and C++, it comes with powerful static analysis tools guaranteeing
memory- and thread-safety [Jun+21]. In particular, this means that the Rust compiler
is able to guarantee that a given program written in Safe Rust, does not exhibit any
undefined behavior (UB). Undefined behavior, caused by bugs in a program, means
that a program’s behavior is unpredictable as per the language’s specification, i.e.,
a program with UB can behave in any way including but not limited to crashing
and producing subtlety wrong results. Most Rust programs are written entirely in
Safe Rust. For some low-level algorithms and data structures, however, Unsafe Rust
is required. In Unsafe Rust, the programmer is responsible for upholding certain
invariants that the compiler cannot statically verify, like in C or C++.

By using Rust for the implementation of the simulation and state space exploration
engine, Momba is able to achieve state-of-the-art performance. In addition, the results
produced by Momba can be considered more trustworthy as Momba is mostly written
in Safe Rust, thereby limiting the potential for UB to small, well-audited parts of
Momba’s implementation. An additional advantage of using Rust is that it is easy

18 https://web.archive.org/web/20240725190358/https://www.rust-lang.org/

https://web.archive.org/web/20240725190358/https://www.rust-lang.org/

162 CHAPTER 6. FORMAL MODELING TOOLBOX MOMBA

to develop modules for Python interoperability thanks to PyO319 and Maturin20.
PyO3 is a Rust library providing types and interfaces to develop Python modules in
Rust and Maturin is a tool to build Python packages from Rust code that uses PyO3.
Together, they enable building Python packages in Rust that can be easily distributed
and readily imported into Python projects.

Architecture. Figure 6.1 depicts the high-level architecture of Momba. Momba
is split into three core Python modules providing (i) an object-oriented API to in-
spect, create, and modify JANI models, (ii) a state space exploration engine which
can be used for simulation, and (iii) unified interfaces to external model analy-
sis tools [KKH21]. As Momba is extensible, we also developed a Python module
implementing the well-established OpenAI Gym API21 for training and verifying
decision-making agents (iv) [Gro+22]. All Python modules are inter-compatible. For
instance, the state space exploration and analysis modules take objects of the model-
ing module as input. The implementations of the techniques for verdictors developed
in this thesis are also part of the broader Momba ecosystem (v). For performance
reasons, they have been implemented in Rust and directly interface with Momba’s
state space exploration engine (vi), where applicable.

Momba

Core Python Modules

model (i) engine (ii) analysis (iii)

Rust Engine (vi)

External Tools

verdictor (v)

gym (iv)

⋯

Figure 6.1: Momba’s architecture comprises three core Python modules, a state space
exploration engine written in Rust, and additional tools and modules implementing
the techniques developed in this thesis and providing training and verification capa-
bilities for decision-making agents.

19 https://web.archive.org/web/20240714004505/https://pyo3.rs/v0.22.1/
20 https://web.archive.org/web/20240523200025/https://www.maturin.rs/
21 https://web.archive.org/web/20240622014439/https://gymnasium.farama.org/index.html

https://web.archive.org/web/20240714004505/https://pyo3.rs/v0.22.1/
https://web.archive.org/web/20240523200025/https://www.maturin.rs/
https://web.archive.org/web/20240622014439/https://gymnasium.farama.org/index.html

6.2. MOMBA: USER PERSPECTIVE 163

6.2 Momba: User Perspective
We now take on a user perspective and showcase the usage of the various features
provided by Momba. Note that this thesis does not aim to be a comprehensive manual
or documentation for Momba. Momba’s documentation, including a user guide in
the style of a tutorial and a comprehensive API reference, are available online22 and
as part of Momba’s artifact (AT5). While not exhibited in detail here, the guide and
the API reference are key for fulfilling the requirement (HLR1).

Installation. Momba can be installed via the Python Package Index23 (PyPI), the
standard way to distribute Python packages. To install Momba, including all modules,
users can use the usual Python package management tools, e.g., pip. For instance, to
install Momba with all of its optional components, run:

pip install "momba[all]"

We provide precompiled packages forWindows, Linux, andMacOS for the x86_64 and
ARM64 architectures. Hence, Momba is straightforward to install on any operating
system and architecture popular at the time of writing.

Example: Racetrack. In what follows, we demonstrate multiple facets of Momba
using a variant of Racetrack, a well-known benchmark in autonomous AI decision
making [BBS95; PZ14] which has also found its use in several model checking contexts
[Gro+20b; Gro+20a; Bai+20; Gro+22]. In two of these works, the author of this thesis
was also involved in [Bai+20; Gro+22]. Using the example of Racetrack, we go through
the entire process from the programmatic construction of a family of models through
their validation to their analysis. For each step, we highlight what Momba has to
offer in terms of effectively supporting the process.

Originally Racetrack has been a pen-and-paper game [Gar73]. A track is a two-
dimensional grid comprising start, goal, wall, and blank cells (see Figure 6.2, next
page) [BBS95]. A car starts off with some initial velocity from a start cell, with
the objective to reach a goal cell as fast as possible without crashing into a wall.
The car is controlled by nine possible actions modifying the current velocity vector.
Racetrack naturally lends itself as a benchmark for sequential decision making in
risky scenarios, in particular, when extended with probabilistic noise. In a variety of
such noisy forms, it has been adopted as a benchmark for Markov Decision Process
(MDP) algorithms in the AI community [BBS95; BG03; MG05; Pin+13; PZ14].

For our demonstration, we consider multiple variants of Racetrack giving rise
to a family of MDPs, which have already been studied [Bai+20] from a feature-
oriented perspective [Chr+18]. For example, there are different tank options and fuel

22 https://web.archive.org/web/20240519104251/https://momba.dev/
23 https://web.archive.org/web/20240724073857/https://pypi.org/

https://web.archive.org/web/20240519104251/https://momba.dev/
https://web.archive.org/web/20240724073857/https://pypi.org/

164 CHAPTER 6. FORMAL MODELING TOOLBOX MOMBA

dim: 12 35

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxggg

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...

s..................................

s..................................

s..................................

s..................................

xxxx...............................

xxxxxxxx...........................

xxxxxxxxxxxx.......................

Figure 6.2: Textual representation (left) and picture of a track (right): Start cells in
blue (s), goal cells in green (g), and wall cells marked with x.

is consumed according to various consumption models. In addition, there are different
undergrounds inducing probabilistic noise modeling slippery road conditions. Clearly,
this modeling scenario is beyond what is possible with mere model parametrization,
especially so because we are interested in the car’s performance on different tracks
each inducing its own MDP [BBS95].

6.2.1 Scenario-Based Model Construction

Typically, formal models are not constructed out of thin air but based on some
kind of scenario description existing upfront. Such descriptions usually comprise an
operational characterization of the behavior to model together with additional and
sometimes more formal information about the specific case. The Racetrack use case
is no exemption: Here, a textual description of the behavior of the car is provided
together with a specific track and a specification of the variant.

Naturally, Python can be used to nicely capture the formal parts of a scenario
description in various data structures. Combined with a domain-specific parser for
configuration files, scenario descriptions are interchangeable and easy to interface
with the code for model construction. In our case, a textual representation of the track
(cf. Figure 6.2) [BBS95] is provided and parsed together with additional parameters,
like the size of the tank and the type of the underground, into a data structure tailored
to that purpose. Figure 6.3 shows an excerpt of this data structure for the track. It
consists of two classes, Coordinate and Track, capturing coordinates of cells and
entire tracks, respectively. A track has a height and a width, and consists of sets of
coordinates for the respective types of cells. For further details, we refer the interested
reader to the racetrack Python package, which has been developed by the author
of this thesis and is available online24 and as part of Momba’s artifact (AT5).

Now, how does Momba support the construction of models from such data struc-
tures? Momba provides an object-oriented modeling API together with convenience

24 https://web.archive.org/web/20230926041226/https://pypi.org/project/racetrack/

https://web.archive.org/web/20230926041226/https://pypi.org/project/racetrack/

6.2. MOMBA: USER PERSPECTIVE 165

@dataclass(frozen=True, order=True)

class Coordinate:

x: int

y: int

@dataclass(frozen=True)

class Track:

width: int

height: int

blank_cells: FrozenSet[Coordinate]

blocked_cells: FrozenSet[Coordinate]

start_cells: FrozenSet[Coordinate]

goal_cells: FrozenSet[Coordinate]

...

Figure 6.3: Excerpt of the data structure for the track of a Racetrack model.

functions effectively turning Python into a syntax-aware macro language for the
programmatic construction of models in a modular fashion. The provided APIs and
convenience functions also enable the early catching of modeling errors. For instance,
based on an instance track of the Track class, Momba can be used to declare JANI
constants for the track’s width and height:
ctx.global_scope.declare_constant("WIDTH", INT, value=track.width)

ctx.global_scope.declare_constant("HEIGHT", INT, value=track.height)

Here, global_scope is an object representing the global scope for declaring con-
stants and variables within a JANI model represented by ctx. Every JANI model has
a global scope as well as local scopes for each automaton, respectively. Variables are
declared analogously to constants providing an initial value instead of a constant
value. Figure 6.4 (next page) shows a variable declaration encoding the cells of a track,
again given by a Track object, as a two-dimensional array in JANI. Each type of cell
is represented by an integer between zero and three. By indexing the array with the
coordinates of a cell, one obtains the type of the cell. Note that we cannot use a JANI
constant here, as constants are not allowed to be arrays in JANI. Furthermore, we
make the variable transient, which means that it only has a value when a transition
is taken, i.e., the variable does not end up in the states of the resulting model, thereby
reducing their size. We use the ArrayValue class provided by Momba to construct
the two-dimensional array based on the Track object. Clearly, such constructions
go beyond what is possible with mere model parametrization.

In the case of Racetrack, we also declare variables car_x and car_y for the 𝑥
and 𝑦 position of the car. To determine whether the car is outside the track, we
then use the declared constants and variables. Momba provides a function expr for

166 CHAPTER 6. FORMAL MODELING TOOLBOX MOMBA

value = ArrayValue(

ArrayValue(

ensure_expr(track.get_cell_type(Coordinate(x, y)).number)

for x in range(track.width)

)

for y in range(track.height)

)

ctx.global_scope.declare_variable(

"map",

typ=array_of(array_of(types.INT.bound(0, 3))),

is_transient=True,

initial_value=value,

)

Figure 6.4: Variable declaration encoding a track as a two-dimensional array.

constructing JANI expressions. To construct a JANI expression indicating whether
the car is outside of the track, we can use the following code:

expr("car_x >= WIDTH or car_x < 0 or car_y >= HEIGHT or car_y < 0")

While JANI does specify the structure of expressions in terms of abstract syntax trees,
it does not specify a concrete syntax. To feel familiar to users of Python, Momba’s
expr function adopts a syntax that resembles Python expressions.

Expressions constructed with expr can then be used in a property, e.g., to indicate
a crash when the car is outside of the track, or in guards of the edges of the automata
to prevent the car from going outside of the track in the first place.

Syntax-Aware Macros. A distinguishing feature of Momba is that it allows the
interpolation of expressions in a syntax-aware fashion. For our Racetrack use case,
we want to be able to use different fuel consumption models. We capture them in
terms of macros mapping JANI expressions to JANI expressions:

linear = lambda dx, dy: expr("abs($dx) + abs($dy)", dx=dx, dy=dy)

quadratic = lambda dx, dy: expr("$linear ** 2", linear=linear(dx, dy))

A macro is simply a Python function leveraging Momba’s functionality for con-
structing JANI expressions. In this case, both macros take JANI expressions for the
current velocity of the car in 𝑥 and 𝑦 dimension and return a JANI expression for the
resulting fuel consumption, which is either linear or quadratic in the velocity.

In contrast to how macros work in languages like C, syntax-aware macros us-
ing Momba’s expr function prevent surprises from mere text-based expansion. For
instance, in case of the quadratic fuel model, naive text-based expansion or inter-
polation would lead the last summand to being squared instead of the whole sum.
Using Momba’s expr function prevents that as it understands the structure of the

6.2. MOMBA: USER PERSPECTIVE 167

individual expressions and combines them on the syntax tree level.

def construct_tank(ctx, tick_action, fuel_model):

automaton = ctx.create_automaton(name="tank")

initial = automaton.create_location(initial=True)

consumption = fuel_model(expr("car_dx"), expr("car_dy"))

fuel = expr(

"min(TANK_SIZE, max(0, fuel - floor($consumption)))",

consumption=consumption,

)

automaton.create_edge(

source=initial,

destinations=[

create_destination(

initial,

assignments={"fuel": fuel},

)

],

action_pattern=tick_action,

guard=expr(

"fuel >= $consumption",

consumption=consumption,

),

)

return automaton

Figure 6.5: Simplified version of the code for constructing the tank automaton.

Example: Tank Automaton. Figure 6.5 shows an example for constructing an
entire automaton within a JANI model.25 Again, ctx represents the model. The au-
tomaton constructed here models the tank of the car in the Racetrack use case. To this
end, the function takes a tick action and a fuel model as input. Here, tick_action
is an action object which is used elsewhere to synchronize with the tank automaton.
Whenever a tick happens, fuel is consumed. The parameter fuel_model is one of
the earlier defined macros for the different fuel consumption models. Being Python
functions, macros can be easily passed around. To create the automaton, the method

25 For a comprehensive documentation of all the capabilities of the modeling API, we refer the reader to
Momba’s documentation: https://momba.dev/reference/model/. This documentation is also included in
(AT5) and generated directly from the Python source code.

https://momba.dev/reference/model/

168 CHAPTER 6. FORMAL MODELING TOOLBOX MOMBA

create_automaton on ctx is used. Afterwards, an initial location for the automa-
ton is created using create_location. Based on the provided fuel consumption
model, an expression for the fuel consumption is constructed taking the current ve-
locity of the car into account. The expression for the fuel consumption is then used to
update the fuel stored in the fuel variable whenever the tick action occurs and there
is still sufficient fuel left. This is achieved by constructing an assignment. To create
this assignment, again Momba’s expr function is used to construct an expression
for the updated fuel level, that is, the current fuel minus the fuel consumption lower
bounded to zero and upper bounded to the tank size. Note that the fuel consumption
is also used as a guard for the constructed edge. As a result, the tank automaton may
block transitions within the model in case the fuel is empty.

Model Construction API. As demonstrated by the examples, Momba provides an
object-oriented API for the programmatic construction of models going well beyond
what is possible with model parametrization. In particular, it enables the construction
of models from preexisting scenario descriptions. Most of these functions provide all
kinds of comforts, for instance, directly checking the types of the involved expressions.
For example, adding an edge to an automatonwhose guard is not a Boolean expression
will result in an immediate error. Hence, Momba fulfills the requirement (HLR2).
There is no conversion step necessary to turn the constructed model into JANI besides
executing the Python code. Momba’s internal model representation is based on the
JANI specification and so is the provided API to construct models. Hence, every JANI
model can be specified programmatically with Momba. This is a great benefit because
JANI does not offer any features for building models programmatically while Momba
offers the whole range of possibilities of Python.

For Racetrack, using syntax-aware macros and Momba’s model construction API,
we arrive at a Python script for generating a collection of JANI models from scenario
descriptions comprising a track and specifying a variant. Again, the script is part of
the racetrack Python package, which can also be found in artifact (AT5). Iterating
over possible scenario descriptions, hundreds of JANI models can be generated fully
automatically and then be analyzed.

Related Work. With Stormpy, the model checker Storm also provides Python
bindings [Hen+22]. While Strom does support JANI models, the Python bindings do
not provide an API to construct them. Furthermore, unlike Momba, Storm does not
support timed automata. Support for timed automata is required to implement the
continuous time verdictor algorithm presented in Chapter 5.

With the PRISM preprocessor26, the popular PRISM model checker comes with a
text-based preprocessor for the PRISM modeling language [KNP11]. Using Storm,

26 https://web.archive.org/web/20240430102538/https://www.PRISMmodelchecker.org/PRISMpp/

https://web.archive.org/web/20240430102538/https://www.PRISMmodelchecker.org/PRISMpp/

6.2. MOMBA: USER PERSPECTIVE 169

PRISM models can be translated to JANI and vice versa. While supporting some
programming constructs, the PRISM preprocessor is more limited than Python. For in-
stance, it does not support reading and processing external files, e.g., as we have done
with Racetrack track files. In contrast, with Momba, the full capabilities of Python
can be used. Furthermore, Momba does not require users to learn a domain-specific
preprocessing language and existing tools from the Python ecosystem (editor inte-
grations with autocompletion, type checking, etc.) can be used. Another advantage
of Momba over text-based preprocessing are Momba’s syntax-aware interpolations
that preserve the syntactical structure of expressions which may be lost by mere
text-based substitutions (recall discussions in Section 6.2.1).

ProFeat [Chr+18] is another tool for generating PRISM models centered around
family-based compositional modeling, while also enhancing the PRISM-inspired
input language by loops, arrays, and macro-like functions. ProFeat is tailored towards
modeling configurable systems. In comparison to Momba, similar considerations as
for the PRISM preprocessor apply. Momba offers the full power of Python, with which
most users are probably already familiar and which allows existing tooling to be
reused. Still, for a family-basedmodel, a more tailored approach as pursued by ProFeat
can be more feasible. In particular, ProFeat allows the direct and explicit modeling
of features and other aspects of configurable systems. In comparison, Momba is not
tailored to this use case and requires a more manual and less explicit approach.

6.2.2 Validation by Simulation

Having our models ready, we have to somehow gain confidence that they actually
model what we want them to, before handing them over to analysis tools or applying
the techniques presented in this thesis. One way of gaining confidence into a model is
by simulating its behavior and manually checking it for consistency with one’s own
understanding of what the model should do. Just like any kind of debugging, this
can be a tedious and frustrating process, especially with text-based traces generated
by some generic simulator. Momba instead comprises a built-in simulation engine,
enabling rapid development of interactive visualizations.

Interactive Racetrack Game. In the case of Racetrack, we developed an inter-
active implementation of the game by visualizing the current state of the model
and mapping user input to its transitions. This effectively allows a user to steer the
car through a track thereby exploring a model’s behavior, testing edge cases as in a
racing game, and ultimately gaining confidence in the model. Figure 6.6 (next page)
shows the interactive visualization. Here, the car is indicated by a yellow asterisk and
the user can steer by entering acceleration values. Certainly, there is ample room for
beautification of this simulator (see TraceVis [Gro+20a] for example) but for rapid
model development and testing this is not needed. After playing around with the

170 CHAPTER 6. FORMAL MODELING TOOLBOX MOMBA

interactive simulation for a while and testing various edge cases, we gained further
confidence that the models we built are indeed adequate. The game is also available
as part of the racetrack Python package for the reader to play around with.

Figure 6.6: Interactive visualization using Momba’s simulation engine.

Remark. Using the simulator essentially amounts to manual testing of the model.
Unless testing is exhaustive, it cannot provide any strict guarantees as it may miss
certain cases where the model does not behave as intended. Still, testing allows
gathering evidence that the model faithfully represents the intended behaviors of
the game. The simulation engine of Momba can also be used for more systematic
and automated testing. Ultimately, these measures are meant to provide convincing
evidence corroborating a model’s adequacy.

State Space Exploration Engine. Momba’s built-in state space exploration engine
supports a variety of different JANI models, including timed models. It has been
written from scratch in Rust with easy accessibility from Python in mind.

Figure 6.7 shows an example of using the state space exploration engine for the
Racetrack model, which is a discrete-time model.27 After creating an instance of
the Explorer class, the initial states of the model can be queried. In this case, the
model simply has a single initial state. The state object then exposes the global and
local environments binding values to variables. In addition, it can be used to query
the locations of the individual automata and the outgoing transitions of a state. In

27 For a comprehensive documentation of all the capabilities of the state space exploration API, we refer
the reader to Momba’s documentation: https://momba.dev/reference/engine/. This documentation is
also included in (AT5) and generated directly from the Python source code.

https://momba.dev/reference/engine/

6.2. MOMBA: USER PERSPECTIVE 171

explorer = engine.Explorer.new_discrete_time(network)

(state,) = explorer.initial_states

print("x:", state.global_env["car_x"].as_int)

print("y:", state.global_env["car_y"].as_int)

state = random.choice(state.transitions).destinations.pick().state

print("x:", state.global_env["car_x"].as_int)

print("y:", state.global_env["car_y"].as_int)

Figure 6.7: A simple state space exploration example.

Figure 6.7, a successor state is chosen by selecting a transition uniformly at random
and then picking one of its destinations according to the probability distribution of
the transition. Recall that in the case of Racetrack the underlying model is an MDP,
so we have nondeterminism and in addition each transition comes with a probability
distribution over potentially multiple successor states. In principle, nondeterminism
can be resolved by uniform random sampling or by querying an external oracle
such as, in the case of our interactive visualization, the user, a testing framework,
or even a neural network as done for DSMC [Gro+20b; Gro+22]. For each step, the
engine provides all the necessary information about the current state and possible
transitions, including actions, probability distributions, and, in the case of timed
models, possible time delays. This information can then be extracted and used to
display whatever is of interest for understanding and investigating the behavior of
the model under scrutiny. We conclude that Momba’s state space exploration engine
can indeed serve as a platform for model validation by simulation. In particular, we
have demonstrated how it can be used to prototype a tool for interactive model
exploration and visualization. Hence, Momba fulfills requirement (HLR3).

6.2.3 Invoking Analysis Tools

We have seen howMomba can be used to construct models and explore their behavior
by simulation. After having gained confidence through simulation that a model is
adequate, we are now ready to harvest the benefits of formal modeling. To this end,
we demonstrate how Momba’s uniform APIs can be used to apply state-of-the-art
analysis tools. Under the hood, this leverages the JANI-model interchange format.
Momba provides the necessary functions to define properties and hand our models,
with the respective properties attached to them, over to analysis tools.

For the Racetrack use case, imagine that we are interested in the maximal proba-
bility of reaching a goal cell with a non-empty tank from a given start cell: Using

172 CHAPTER 6. FORMAL MODELING TOOLBOX MOMBA

Momba’s prop function, we can express this property as follows:
goal_property = (

prop("min({Pmax(F(map[car_y][car_x] == 3 and fuel > 0)) | initial})")

)

Note that we use the earlier declared variable map here to determine the type of cell
the car is currently on. The number 3 indicates that the cell is a goal cell.28 We can
now pass this property together with the model to a model checker. For instance, to
invoke mcsta of the Modest Toolset [HH14], we can use:
modest_checker = tools.modest.get_checker(accept_license=True)

results = checker.check(model, properties={"goal": goal_property})

print("Probability:", results["goal"])

After generating a model with the car starting from position (0, 7) on the track
depicted in Figure 6.2 and with sand as underground, mcsta calculates a probability
of 87.5% when invoked by Momba with the model. The model checker Storm can be
invoked analogously. Furthermore, Momba provides an interface for cross-checking
results by invoking multiple tools and comparing their results.

Momba also exposes the deep statistical model checking (DSMC) capabilities of the
Modest Toolset [Gro+20b; Gro+22]. This allows the application of DSMC to neural
networks as well as arbitrary Python functions [Gro+22].

Note that Momba automatically takes care of downloading the necessary tool
or invoking it within Docker. For end users, this translates to a fully integrated
experience, where they do not have to worry about downloading and installing the
right tools—Momba simply does that for them. Thanks to the JANI-model interchange
format, Momba connects well to the established tools of the ecosystem, thereby
fulfilling requirement (HLR4) and requirement (HLR5).

6.3 Evaluation: State Space Exploration
We implemented the techniques presented in this thesis using explicit state techniques
within Momba. More concretely, Momba’s state space exploration engine is used to
(partially) construct the state spaces of models towards an implementation of the
techniques presented in the previous two chapters.

Beyond the techniques presented in this thesis, state space exploration engines
form the foundation of numerous quantitative modeling tools, playing a pivotal
role in their functionality. Explicit state model checkers, such as Storm with its
sparse engine [Hen+22] and mcsta, the explicit state model checker of the Modest
Toolset [HH14], rely on exploration engines to exhaustively construct the complete
state space of a model before applying model checking algorithms. Additionally,

28 JANI has no enums and we decided against using Python’s enums here as they would require additional
definitions complicating the presentation of the example.

6.3. EVALUATION: STATE SPACE EXPLORATION 173

statistical model checkers, such as modes [BHH12; Bud+18], leverage exploration
engines to generate large amounts of traces for statistical analysis. Furthermore, the
author of this thesis contributed to work using Momba’s state space exploration
engine for training and verifying decision-making agents [Gro+22].

In an effort to better understand the performance characteristics and features of
the exploration engines utilized in different tools, we systematically compare and
benchmark them. This evaluation has been carried out by the author of this thesis as
part of QComp 2023 [And+24] in accordance with a methodology agreed upon by
authors of all participating tools. For evaluation purposes, we consider the time and
space needed for building an explicit representation of the complete state space of a
model. Additionally, we compare the engines based on qualitative criteria such as
the types of models they can handle and the interfaces they provide.

6.3.1 Tools and Engines

For the evaluation, we consider three tools and their respective engines: The Modest
Toolset [HH14], Storm [Hen+22], and Momba [KKH21]. While Momba is a relatively
new tool, both the Modest Toolset and Storm are well-established tools representing
the state of the art when it comes to state space exploration of JANI models and
quantitative model checking. Since all three tools support JANI, we will employ it as
a foundation for comparing and contrasting their capabilities.

Besides the major differences discussed in the following, there are also some
minor differences that do not directly map onto JANI model types and extensions,
e.g., support for multi-dimensional arrays and complex specifications for initial states.
For our comparison, we will leave those details aside and focus on major differences
which concern supported JANI model types and extensions.

The Modest Toolset. The Modest Toolset [HH14] is a collection of tools designed
to facilitate the modelling and analysis of a wide range of systems, encompassing
hybrid, real-time, stochastic, and distributed systems. The tools of the Modest Toolset
share a common state space exploration engine written in C#.

The engine of the Modest Toolset supports all types of models specified by JANI,
including all JANI extensions.29 In that regard, it stands out as the most versatile
among those engines we consider here. For (probabilistic) timed automata, the engine
supports digital clock semantics, explicit valuations, clock regions, as well as clock
zones. In addition, it supports a symbolic treatment of continuous variables for hybrid
models, further enhancing its capabilities.

29 The nondet-selection JANI extension is only supported for simulation but not for exhaustive state
space construction.

174 CHAPTER 6. FORMAL MODELING TOOLBOX MOMBA

In contrast to both Storm and Momba, which both provide public interfaces
to their engines, the Modest Toolset’s engine is intended for internal use within
the Modest Toolset only and does not provide a public interface. Nevertheless, it is
noteworthy that the Modest Toolset supports the transpilation of models to Python
code which can then be used to explore the state space of a model.

Storm. Storm [Hen+22] is a state-of-the-art model checker with a modular core
putting an emphasis on time and memory efficiency. Written in C++, Storm’s modular
design enables the utilization of different model checking engines catering to the
characteristics of different models. Notably, Storm excels in efficient symbolic model
checking through its dd engine, leveraging (MT)BDDs [FMY97; Bry86].

For the QComp 2023 competition, Storm participated with its sparse and dd-
to-sparse engines. While Storm’s sparse engine, like the engines of the Modest
Toolset and Momba, adopts a conventional explicit approach to construct the state
space of a model, the dd-to-sparse engine is based on first constructing a symbolic
BDD representation of the state space and subsequently translating this symbolic
representation to a traditional explicit representation.

Storm supports all discrete and continuous-time model types specified by JANI,
except timed and hybrid automata. The supported JANI extensions are arrays,
derived-operators, functions, and state-exit-rewards.

Storm provides a C++ and a Python interface, as part of Stormpy, to its state space
exploration engine. While the C++ API is fully featured, the Python API only supports
the exploration of the entire state space of JANI models but not the simulation of
individual traces. For PRISM models, however, there is no such limitation.

In contrast to the Modest Toolset and Momba, Storm offers support for arbi-
trary precision arithmetic. This feature enables precise calculations and analysis,
particularly when dealing with models that require high precision.

Momba. While Momba itself supports all of JANI, Momba’s state space exploration
engine is more limited. The exploration engine supports all discrete-time model
types and flavors of timed automata specified by JANI, except stochastic timed au-
tomata. The supported JANI extensions are arrays, derived-operators, named-
expressions, and trigonometric-functions. In particular, the functions ex-
tension is not supported yet. For timed automata, it supports explicit valuations as
well as clock zones. The Python API also provides functionality that goes beyond
mere exploration, for instance, arbitrary JANI expressions can be evaluated in a given
state. In addition to Momba’s traditional state space exploration engine, Momba also
participated in QComp 2023 with an alternative new engine supporting a parallelized
exploration mode, harnessing the potential of multi-core systems. However, it is
important to note that this alternative engine does not currently support timed
automata and is not exposed via the Python API.

6.3. EVALUATION: STATE SPACE EXPLORATION 175

In addition to the aforementioned JANI extensions, Momba also implements
support for an inofficial JANI extension for value passing via actions. This extension
has been implemented as actions also serve the purpose of observables for the
techniques developed in this thesis. By using this extension, values of variables and
arbitrary expressions can be made observable via actions.

Qualitative Comparison: Summary. While the features offered by all three tools
and engines overlap, neither is a subset of the other. Overall, the Modest Toolset’s
engine is most complete when it comes to JANI support in terms of model types
and extensions. However, it lacks an accessible API. Storm on the other hand, does
not support timed automata, while providing both a C++ and Python API. Momba’s
engine supports timed automata and provides a Rust and Python API, however, it
lacks support for some of themodel types and optional JANI extensions. In conclusion,
the tools and engines are qualitatively incomparable and users must decide which
tool or engine to choose based on their specific requirements.

6.3.2 Benchmark Setup and Results
Having presented and compared the tools and engines qualitatively, we now turn to
quantitative benchmarks. In what follows, we describe the benchmarking methodol-
ogy, including the selection of benchmark models, the metrics used for evaluation,
and the experiment environment. Furthermore, we present and discuss the results
obtained by running all tools on the selected benchmarks.

The tools, source code, benchmarks, and raw data required to reproduce the
experiments is provided as part of the artifact (AT4).

Benchmarks and Methodology. For our evaluation, we utilize the quantitative
verification benchmark set (QVBS) provided by QComp as the foundation for bench-
marking the tools. To ensure a meaningful comparison, we focus exclusively on
discrete-time models, as these are supported by all the participating tools. Out of the
initial 229 benchmarks, 25 benchmarks resulted in timeouts after 30 minutes or were
unsupported by all tools. Hence, the following analysis focuses on the remaining
204 benchmarks. For each benchmark, we measure the time required by each state
space exploration engine to construct the entire state space of the respective model.
Additionally, we track the number of states counted by the engines and assess the
memory consumption associated with each state, whenever applicable. All bench-
marks have been executed on Linux and a computer equipped with 128 GB RAM and
a 16-core AMD EPYC-Milan Processor running at 3.4 GHz.

Benchmark Overview. Table 6.1 (next page) shows the number of benchmarks
per tool and outcome. The table displays the number of benchmarks categorized into

176 CHAPTER 6. FORMAL MODELING TOOLBOX MOMBA

four different outcomes: solved, unsupported, timeout, and error. Momba (v2,seq) is
Momba’s alternative engine ran in sequential mode and Momba (v2,par) is Momba’s
alternative engine ran in parallel mode, i.e., exploiting multiple CPU cores.

Engine Solved Unsupported Timeout Error

The Modest Toolset 194 9 1 0

Momba (v1) 159 45 0 0

Momba (v2,seq) 159 45 0 0

Momba (v2,par) 154 45 5 0

Storm (dd-to-sparse) 195 3 2 4

Storm (sparse) 202 0 2 0

Table 6.1: Number of benchmarks per outcome and tool.

The nine benchmarks not supported by theModest Toolset’s engine use a complex
specification for the initial states. While the Modest Toolset does overall support the
greatest number of JANI models, its support of complex specifications of initial states
is limited. The 45 benchmarks not supported by Momba use the functions JANI
extension and are a superset of the nine benchmarks not supported by the Modest
Toolset. Like theModest Toolset, Momba also lacks support for complex specifications
of initial states. The three benchmarks not supported by Storm’s dd-to-sparse
engine use assignment indices30 and for four benchmarks the same engine returned
an error due to the BDD implementation running out of memory. The timeouts
ocurred all for different benchmarks, respectively.

While the number of states reported by Storm and Momba is the same for all
benchmarks and engines, the Modest Toolset sometimes reports less states which
presumably is due to some state space reduction optimizations.

Running Time. Figure 6.8 depicts the running time for each benchmark in relation
to the total number of states of the respective benchmark. Figure 6.9 (p. 178) presents
the cumulative number of benchmarks solved within a certain time. For presentation
purposes, we chose to cramp the running times at 0.1 𝑠 and restrict the plots to
benchmarks with more than 105 states. For smaller benchmarks, the differences in
running times are practically insignificant. Additionally, Figure 6.9 is restricted to

30 Normally, all assignments are executed simultaneously, i.e., the expressions of all assignments are
evaluated before any changes to variables take effect. Assignment indices enable the specification of an
order in which assignments are executed, thereby allowing the expressions of some assignments to see
changes made by previous assignments within a transition between states.

6.3. EVALUATION: STATE SPACE EXPLORATION 177

benchmarks supported by all engines to prevent skewing of the plot.

X
T

105 106 107 108

0.1

1

10

100

1000

Number of States

Se
co
nd

s

Momba (v1) Momba (v2,seq) Momba (v2,par)
Storm (sparse) Storm (dd-to-sparse) Modest Toolset

Figure 6.8: Running times in seconds (on the y-axis) in relation to the total number
of states (on the x-axis). The marks at the top indicate timeouts (T), and unsupported
benchmarks and benchmarks returning an error (X).

From these results it is evident, that the approach taken by the dd-to-sparse
engine of Storm only pays off for larger models. And still, it is rarely faster than the
conventional explicit engine of the Modest Toolset. In fact, among those engines
exclusively using a single core, the Modest Toolset’s engine is almost always the
fastest although it has a larger startup overhead. This does not come as a surprise
because the Modest Toolset’s engine is based on compiling JANI models to C#
bytecode which has to go through .NET’s JIT,31 enabling near-native performance
but also coming with some initial overhead until the JIT is properly warmed up.
Notably, Storm’s dd-to-sparse engine uses multiple cores as the underlying BDD
implementation, Sylvan [DP17], is parallelized. Momba’s alternative parallel engine
(v2,par) is the only other engine leveraging multiple cores. It is always faster (except
for the five timeouts) for benchmarks of a significant size than any other engine. The
average speedup when compared to its own sequential version is a factor of 9.1. In
general, though, the running times of all engines are often quite similar.

Note that, as Storm and the Modest Toolset are primarily model checkers, they
do a bit more work than Momba by creating a sparse matrix representation of the

31 A just-in-time compiler (JIT) compiles bytecode to native machine code at runtime.

178 CHAPTER 6. FORMAL MODELING TOOLBOX MOMBA

0 10 20 30 40 50 60 70

10−1

100

101

102

103

Number of Solved Benchmarks

Se
co
nd

s

Momba (v1) Momba (v2,seq) Momba (v2,par)
Storm (sparse) Storm (dd-to-sparse) Modest Toolset

Figure 6.9: Running time in seconds (on the y-axis) in relation to the number of
benchmarks solved in that time (on the x-axis).

transitions and computing atomic propositions. We expect the performance impact
of this to be minor, however, we were unable to measure it directly.

Memory Consumption. Another interesting dimension when it comes to explicit
state space construction is the required memory. State spaces can be quite huge
and thus it is important to store them efficiently. For the traditional explicit state
engines, the size of the state space is the product of the number of states and the
size of each state. Figure 6.10 shows the size of the state spaces in relation to the
number of states computed based on the number of states and the size of each state.
Note that the sequential and parallel variant of Momba’s alternative engine use the
same representation. In contrast to the Modest Toolset, Storm’s sparse engine and
Momba’s alternative engine use a more space efficient bit-packing representation of
states thereby reducing the amount of required memory. Momba’s original engine
uses the worst representation and always requires at least 16 bytes per variable
independent of the actual domain of the variable.

Conclusion. The presented results show that all engines are roughly comparable
with respect to the time it takes to construct the entire state space of a model. In
particular, the results show that both of Momba’s engines can compete with the state
of the art. Hence, Momba satisfies requirement (HLR6).

Storm’s dd-to-sparse engine may only be advantageous for some large models
while incurring a high overhead for small models. Among single-core engines, the
engine of the Modest Toolset is almost always the fastest, especially for large models,

6.4. DISCUSSION 179

101 102 103 104 105 106 107 108 109

kB

MB

GB

Number of States

M
em

or
y
C
on

su
m
pt
io
n

Momba (v1) Momba (v2) Storm (sparse) Modest Toolset

Figure 6.10: Memory consumption of the entire constructed state spaces in relation
to the number of states of the respective models.

while being the most versatile at the same time. The alternative parallel engine
of Momba demonstrates that parallel state space exploration is well worth it by
outperforming all other engines for larger models. Momba’s original engine usually
requires more memory than the other engines. In contrast, Momba’s new alternative
engine requires the least amount of memory among all engines.

While being the fastest (almost always on a single core) and most versatile engine,
the Modest Toolset’s engine, unfortunately, does not provide a public API yet. Thus,
if integration into another tool is a concern, Storm and, in particular, Momba have
an advantage as they both provide a Python API in addition to APIs in C++ and Rust,
respectively.

Limitations of the Evaluation. One of the original motivations of the competi-
tion was to also assess the engines with respect to their simulation capabilities for
individual traces. However, the performance characteristics displayed here may not
carry over to simulation of individual traces as there is a difference between always
computing all successor states, as required for exhaustive exploration, and selectively
computing only individual successor states which is, for instance, explicitly supported
by Momba. Additionally, an exhaustive exploration requires maintaining a (hash)
set of all visited states. To facilitate a fair comparison of simulation capabilities, a
common simulation API should be developed.

6.4 Discussion

In this chapter, we discussed the architecture and functionality of Momba, a Python
framework designed to enhance the accessibility and usability of formal modeling in

180 CHAPTER 6. FORMAL MODELING TOOLBOX MOMBA

general, and the techniques contributed by this thesis in particular.
Momba was initially developed to simplify the creation, validation, and analysis

of formal models—activities often perceived as daunting, particularly by those new
to the field. By offering a pythonic and tool-agnostic interface, Momba has effectively
lowered the barrier to entry. This makes the techniques developed in this thesis
more approachable and widely applicable, which is pivotal for translating them into
practical, real-world applications. Moreover, this accessibility extends to the powerful
techniques developed by the quantitative verification community, which are made
available through Momba via JANI and unified interfaces.

Based on the example of Racetrack, we demonstrated how Momba’s APIs can
be used to programmatically generate a family of models, to empirically validate
those models by quickly prototyping an interactive visualization, and to analyze the
resulting models for various properties. We furthermore discussed how Momba’s
model construction capabilities differentiate themselves from other approaches such
as text-based preprocessing (recall Section 6.2.1).

Through an empirical evaluation and comparison with well-established state-
of-the-art tools, we demonstrated that Momba’s state space exploration engine
offers competitive features and performance. Furthermore, due to its competitive
performance, Momba’s state space exploration engine has also been proven effective
for training decision-making agents [Gro+22]. The performance of Momba’s state
space exploration engine will be critical in the following as it ensures that the
empirical evaluations of the techniques presented in this thesis are representative
and not compromised by inefficiencies in the underlying engine.

Chapter 7

Runtime Verification and
Fault Diagnosis

In this chapter, we discuss how the generic framework we presented thus far can be
instantiated towards concrete runtime verification and fault diagnosis techniques,
enabling novel applications and broadening their area of use. Following our model-
based methodology (cf. Chapter 1), the techniques we developed all require a system
model and exploit the information regarding a system’s behavior it contains.

Traditionally, runtime verification techniques do not take into account a model of
the monitored system—they are purely based on a specification of a property. While
this is an advantage, in case no accurate model of the system is available, taking a
system model into account provides more information which, as we will discuss,
can be used to make runtime verification techniques robust against observational
imperfections or to produce predictions. Concretely, we discuss how robust and pre-
dictive automata-based runtime monitors can be obtained with the synthesis pipeline
presented in Chapter 4 and how the same pipeline can be used for model-based CTL
runtime monitoring. For diagnosis, we discuss how the presented techniques can
be used to synthesize traditional model-based diagnosers and how they enable a
more flexible diagnosis paradigm based on modal logic. Moreover, we evaluate the
continuous time verdictor algorithm for diagnosis on a case study inspired by the
industrial automation example presented in Chapter 5.

Chapter Structure. Section 7.1 instantiates the framework towards model-based
runtime verification techniques with a particular focus on robust, predictive, and CTL
runtime verification. Section 7.2 instantiates the framework towards fault diagnosis
techniques enabling greater flexibility in how faults are modeled, how they are
queried, and also with a particular focus on robust diagnosis. Section 7.3 presents a

181

182 CHAPTER 7. RUNTIME VERIFICATION AND FAULT DIAGNOSIS

case study around our industrial automation example on which we then evaluate the
continuous time verdictor algorithm (recall Chapter 5).

7.1 Model-Based Runtime Verification
To make predictions about inevitable property violations, knowledge about possible
future system behaviors is a prerequisite. Furthermore, knowing possible system
behaviors is advantageous when accounting for observational imperfections, as it
narrows down what could have happened within a system. The techniques developed
in Part II of this thesis allow formodel-based runtime verification, where an operational
model of a system in terms of a transition system is assumed to be given and exploited
to obtain predictions or account for observational imperfections.

The idea to use information about a system’s possible behaviors for runtime
verification is not new. Zhang, Leucker, and Dong [ZLD12] use finite predictive words
to obtain possible continuations towards predictive verdicts regarding LTL properties.
Such words can be obtained via static analysis of a monitored program. The work
by Pinisetty et al. [Pin+17a] and Ferrando et al. [Fer+21] incorporates assumptions
about a system in terms of properties the system fulfills. Cimatti, Tian, and Tonetta
[CTT19] leverage fair Kripke structures [KPR98], a kind of transition system model,
to incorporate assumptions about a system into LTL runtime monitoring. Their
approach can deal with partial observability and produce predictions.

While these existing works are specific to runtime verification and truth verdicts,
the algorithms contributed by this thesis are generic. We now discuss how they
can be used for runtime verification. Due to the generality of the VTS framework,
our algorithms are also suitable to be applied on future automata-based monitoring
techniques, provided that they give rise to VTSs.

7.1.1 Robust and Predictive Runtime Verification
We have seen that traditional automata-based runtime monitors can be cast into VTSs
(recall Section 3.5). To harvest the techniques presented in Chapter 4, we require a
VTS that is tight with respect to a given system model. Runtime monitors constructed
with traditional techniques are not tight, as they are only based on a property and do
not take a system model into account. Using tightening (recall Definition 3.3.7), we
can tighten a runtime monitor constructed with third-party techniques for a given
system model. The resulting VTS is a runtime monitor that has been specialized
for a given system model. Using this specialization, it becomes possible to apply
the techniques for imperfect observations and predictions developed in Chapter 4
towards robust and predictive runtime monitors. In the following, we exemplify
this approach for LTL runtime verification. Traditional LTL runtime verification
techniques [BLS06b] assume that events within a system correspond to sets of atomic

7.1. MODEL-BASED RUNTIME VERIFICATION 183

propositions and are observed exactly once in the order they occurred. Further, they
make no predictions about inevitable property satisfactions or violations based on a
system’s future behavior that is actually possible.

Example: Coffee Machine. Recall our earlier example of the coffee machine (see
Example 2.1). For the model of the coffee machine (see Figure 2.1), assume that we
want to monitor for the LTL property �¬short_circuit, i.e., the short circuit
should never happen. Synthesizing a monitor for this property over the set

AP = {short_circuit}

produces the VTS depicted in Figure 7.1. While the monitor assumes that the atomic
proposition short_circuit can actually be observed, faults can usually not be
directly observed (recall Section 2.6). To account for partial observability of the
system, we now aim to use the synthesis techniques developed in Chapter 4. To this
end, we first need to tighten the monitor for the given system model.

? f∅
{short_circuit}

∅
{short_circuit}

Figure 7.1: LTL runtime monitor for �¬short_circuit.

Recall that tightening requires a shared alphabet of observables between the
system model and the VTS (cf. Definition 3.3.7). This can be achieved by just slightly
modifying the system model and labeling all transitions which are relevant by sets
of atomic propositions. In this case, short_circuit is the only atomic proposition,
so we obtain the model depicted in Figure 7.2.

i d

p

s

pump_
fault

{short_circuit}

request

blink

request

dispense

Figure 7.2: System model of the coffee machine adjusted for tightening the LTL
runtime monitor for �¬short_circuit.

Tightening the monitor for this model gives us the VTS shown in Figure 7.3 (next
page). This VTS is the synchronized product of the original monitor (see Figure 7.1)
and the system model (see Figure 7.2). It tracks the state of the system and the state

184 CHAPTER 7. RUNTIME VERIFICATION AND FAULT DIAGNOSIS

of the monitor. It produces a verdict based on the monitor under the assumption that
all actions of the system model can be observed. As it is tight with respect to the
system model, we can now apply the algorithms for predictions and observational
imperfections developed in Chapter 4.

⟨i, ?⟩ ⟨d, ?⟩

⟨p, ?⟩

⟨s, f⟩
? ?

?

f

pump_
fault

{short_circuit}

request

blink

request

dispense

Figure 7.3: Tightening of the LTL runtime monitor for �¬short_circuit for the
coffee machine system model as shown in Figure 7.2.

Assume that wewant to adjust the VTS for the fact that we cannot directly observe
faults, as discussed before. Applying observability projection (recall Section 4.3.1), we
obtain the VTS shown in Figure 7.4. It observes the actions of the system and produces
f iff short_circuit did occur, despite it being unobservable. That is, we obtained
a runtime monitor for the coffee machine that monitors for �¬short_circuit
without requiring short_circuit to be directly observable.

? ?

?

f

reque
st

blink

request

blink

request

dispense

Figure 7.4: VTS for monitoring �¬short_circuit on the coffee machine without
being able to observe short_circuit directly.

In this simple illustrative example, applying lookahead refinement (recall Sec-
tion 4.2) before observability projection (i.e., to the VTS shown in Figure 7.3) would
not actually change anything. This is because the system model does not allow the
inevitability of the short circuit fault to be observed before it occurs, which would
be required for predictions. In contrast, consider the alternative system model of
the coffee machine shown in Figure 7.5. Here, a short circuit occurs as a result of a
pipe bursting under pressure (burst) while the machine is dispensing a coffee. The
resulting fluid leakage is then assumed to inevitably cause a short circuit.

7.1. MODEL-BASED RUNTIME VERIFICATION 185

i d p

b s

pump_fault

{short_circuit}

request

blink

burst

request
dispense

Figure 7.5: Alternative system model of the coffee machine where an inevitable short
circuit can be observed before it occurred.

Tightening the monitor for this alternative model gives us the VTS shown in
Figure 7.6. Again, the resulting VTS tracks the state of the monitor and the system,
producing a verdict based on the monitor’s state.

⟨i, ?⟩ ⟨d, ?⟩ ⟨p, ?⟩

⟨b, ?⟩ ⟨s, f⟩

?

?

?

? f

pump_fault

{short_circuit}

request

blink

burst

request
dispense

Figure 7.6: Tightening of the LTL runtime monitor for �¬short_circuit for the
alternative coffee machine system model as shown in Figure 7.5.

Notably, now the verdict f is inevitable as soon as burst has been observed.
Therefore, by applying lookahead refinement, we obtain the VTS shown in Figure 7.7.
Here, the verdict f is propagated along monotonic states. As a result, it is produced
right after observing burst, as the property will inevitably be violated by the system.
Observability projection can then be used as before to account for the faults being
unobservable, leading to a VTS for predictions under partial observability.

⟨i, ?⟩ ⟨d, ?⟩ ⟨p, ?⟩

⟨b, ?⟩ ⟨s, f⟩

?

?

?

f f

pump_fault

{short_circuit}

request

blink

burst

request
dispense

Figure 7.7: VTS obtained by lookahead refinement from the VTS shown in Figure 7.6
producing predictions regarding inevitable short circuits.

186 CHAPTER 7. RUNTIME VERIFICATION AND FAULT DIAGNOSIS

Aswe have seen, by tightening a VTS, in this case for LTL runtimemonitoring, the
generic techniques developed in Chapter 4 become applicable. They can then be used
to make a monitor synthesized with existing techniques robust against observational
imperfections, such as limited observability, but also against delays, losses, and out-
of-order observations. Furthermore, by applying lookahead refinement, a monitor
producing predictions can be obtained.

Note that predictions generated by lookahead refinement are based solely on
the information and verdicts encoded in the input VTS. For instance, for the coffee
machine the VTS shown in Figure 7.7 produces most specific predictions with respect
to the system model (see Figure 7.5) and LTL runtime monitor (see Figure 7.1). It
does, however, not produce most specific predictions with respect to the original
LTL formula �¬short_circuit. According to the model, a short circuit becomes
impossible after the pump broke.32 Hence, a VTS producing most specific predictions
for �¬short_circuit with respect to the system model would in fact produce t
after the pump broke. The VTSwe constructed with lookahead refinement does not do
that as the information regarding infinite behavior is already lost when constructing
the initial LTL monitor. The initial LTL monitor (see Figure 7.1) has no way of
detecting an infinite run without a short circuit and therefore also lacks a state with
the t verdict. So, while lookahead refinement does produce most specific predictions
with respect to its input VTS and is fully generic, techniques specially targeted at
LTL [ZLD12; Pin+17a; Fer+21; CTT19] may allow for more specific predictions, as
they can take the infinite nature of LTL into account. Nevertheless, runtime monitors
taking the infinite nature of systems and properties into account can be constructed
with the techniques developed in this thesis. As an instantiation of this idea, we next
look at CTL runtime verification.

7.1.2 CTL Runtime Verification

In the literature, runtime verification of LTL has been extensively studied [BLS06b;
BLS11; FFM12]. While there is a host of other runtime verification techniques, most
of them, including stream-based approaches [e.g. DAn+05; Con+18; Bau+20; GS18],
have in common that they rely on a linear notion of time. This is rooted in the
fact that, at runtime, a single linear execution is observed. Notable exceptions to
this commonality are approaches for monitoring hyperproperties [Fin+19] and past-
time CTL [Aud+22]. In case of hyperproperties, the monitor has access to multiple
linear executions recorded in the past in addition to the ongoing execution. In case
of past-time CTL, the monitor actually uses a tree of events which is based on a
distributed or concurrent execution of a system where events cannot be ordered

32 This is indeed the case for the model of the coffee machine (see Figure 2.1 and Figure 7.5) presented for
illustration purposes. Of course, in practice, this is not a realistic assumption.

7.1. MODEL-BASED RUNTIME VERIFICATION 187

linearly. Monitoring for branching-time logics has been studied by Francalanza, Aceto,
and Ingólfsdóttir for Hennessy-Milner Logic with recursion (μHML), a reformulation
of the modal μ-calculus [FAI15]. They introduce MHML (monitorable HML) as the
maximally monitorable subset of μHML under the assumption that only a single
execution is given. Perhaps unsurprisingly, this also shows that full branching-time
logics are not monitorable when given only a single execution as this would require
a computation tree, which cannot be directly observed at runtime. This insight also
applies to CTL, which can express non-monitorable properties.

In the following, we will investigate monitoring under the assumption that ob-
servations of a single execution and in addition a system model is given. We then
show how a runtime monitor for a given CTL formula can be constructed with the
algorithms presented in Chapter 4. The resulting monitor produces verdicts based
on the computation trees implied by the system model. In contrast to traditional
runtime verification constructions, the resulting monitors are specific to the given
system models and do not rely on observing atomic propositions. As an instance of
the VTS Synthesis Problem, we solve the CTL Monitoring Problem:

CTL Monitoring Problem. Given a CTL formula Ψ and a finite model 𝔖 of a
system where states are labeled with sets of atomic propositions, synthesize a
monitor for Ψ that indicates whether the formula is satisfied or violated based
on imperfect observations of a single execution.

The basis for solving the CTL Monitoring Problem will be a VTS constructed with
annotation tracking. Recall that the semantics of CTL assigns a set of states ⟦Ψ⟧CTL
to each formula Ψ (Section 2.3.2). Using the CTL semantics, we define the following
verdict annotation over the three-valued verdict domain 𝔹3 (recall Figure 3.1b):

𝜅(𝑠) ≔ ? 𝜆(𝑠) ≔ {
true if 𝑠 ∈ ⟦Ψ⟧CTL
false otherwise

𝛾(t) ≔ ?

Now, taking this verdict annotation as a basis, a sound and complete VTS for the
verdict oracle as per Definition 4.1.2 and a given observation model produces correct
and most specific verdicts regarding the satisfaction or violation of the formula Ψ

in the states the system may be in. That is, such a VTS constitutes a CTL runtime
monitor and a solution to the CTLMonitoring Problem. Given this verdict annotation,
we construct such a VTS with the synthesis pipeline presented in Chapter 4, option-
ally taking observational imperfections into account and transforming the VTS for
predictions. This approach also generalizes to any logic and specification mechanism
for which state satisfaction sets can be computed. In particular, it generalizes to
arbitrary μ-calculus properties and therefore also to LTL properties.

Note that the verdict oracle for these annotations never assigns the sentinel
verdict # to any run. The underlying reason for this is that we label all transitions

188 CHAPTER 7. RUNTIME VERIFICATION AND FAULT DIAGNOSIS

with the top element of the verdict domain, ? in this case.

Example 7.1 Take the CTL property Ψ = EF i from Example 2.4 for the coffee machine
as an example. This property is only satisfied in states where there exists a path
back to the idle state in which the coffee machine accepts requests and may dispense
coffee. If it is not satisfied, then the machine got stuck and will not dispense coffee
anymore. A sound and complete VTS for the verdict oracle as per Definition 4.1.2
and the CTL verdict annotation allows detecting violations of the property.

Remark. Runtime verification techniques are often regarded as lightweight alterna-
tives to design time verification where an entire system is verified [LS09]. For such
use cases, the presented approach for CTL runtime monitoring is clearly infeasible,
as it requires the computation of state satisfaction sets—which amounts to design
time verification. The intended use cases are cases where it is known that a property
may be satisfied or violated at runtime and one wants to detect when that is the case.
For instance, we may know that due to physical failures some conditions could be
violated and we may want to respond to such cases appropriately.

7.2 Fault Diagnosis
In the discrete-time setting, the contributions of this thesis enable (a) the synthesis
of traditional diagnosers, (b) the synthesis of diagnosers for transient faults, (c) the
synthesis of diagnosers robust to certain observation imperfections, (d) the synthesis
of predictive diagnosers, and (e) the synthesis of diagnosers capable of answering
powerful modal logic queries. We now discuss those concrete contributions.

7.2.1 Traditional Diagnosers

Throughout Chapter 4, we have already seen that the modular synthesis building
blocks can be combined to synthesize a VTS equivalent to the traditional construction
by Sampath et al. [Sam+95] for the coffeemachine example. To this end, a TSwith fault
actions, as described in Section 3.5.1, is first annotated with verdicts from ⟨℘(ℱ) , ⊇⟩
(e.g., Figure 4.2). Transitions with fault actions f are annotated with singleton sets {𝑓}
of the respective fault class 𝑓 ∋ f. All other transitions (and states) are annotated
with the empty set ∅ (recall Figure 4.2 for an example). Thus, for each run 𝜌, the
verdict oracle as per Definition 4.1.2 gives us a set of fault classes, corresponding to
the faults that occurred on 𝜌 since ⊓ = ∪. Using this annotated TS, we obtain a VTS
equivalent to a traditional diagnoser by annotation tracking, followed by possibility
lifting, observability projection onto OAct, determinization, and then minimization.
Here, possibility lifting changes the verdict domain from ⟨℘(ℱ) , ⊇⟩ to the usual
diagnosis domain ⟨℘(℘(ℱ)) , ⊆⟩. The correctness of the construction follows by
combining the theorems of the individual algorithms, as discussed.

7.2. FAULT DIAGNOSIS 189

Transient Faults. As discussed in Section 4.1.1, fault annotations are more flexible
than the fault actions and classes used by the traditional techniques. In particular,
such annotations also allow the consideration of transient faults, i.e., faults that may
later be repaired or go away on their own.We already saw this in Chapter 4. Modeling
transient faults is achieved by labeling states with non-empty sets of faults. This has
the desired effect because only the verdict from the last state goes into the verdict
returned by the oracle (cf. Definition 4.1.2). This demonstrates the flexibility and
expressive power of verdict-annotated models.

Predictive and Robust Diagnosis. Traditional diagnosis does not allow pre-
dictions. By incorporating lookahead refinement before possibility lifting, in the
algorithm described above, we obtain predictive diagnosers. A predictive diagnoser in-
dicates inevitable faults no later than the traditional techniques. Furthermore, we can
obtain robust diagnosers taking into account any combination of limited observability,
delays, losses, and out-of-order observations.

7.2.2 Modal Logic Fault Queries

Traditional model-based diagnosis assumes that each transition corresponds to at
most one fault class (cf. Section 2.6): Each transition with a fault action has exactly one
fault class associated to it. All other transitions have no fault class associated to them.
Moving further beyond the traditional construction, we can also annotate transitions
and states with Boolean expressions over some set Faults of basic fault events (inde-
pendent of the actions). For instance, 𝑒1 ∨ 𝑒2 or 𝑒1 ∧ ¬𝑒2 with 𝑒1, 𝑒2 ∈ Faults. Recall
that the usual semantics of Boolean expressions induce a lattice ⟨℘(℘(Faults)) , ⊆⟩
where each expression 𝜙 corresponds to a set ⟦𝜙⟧𝔹 ⊆ ℘(Faults) of its satisfying
assignments. Naturally, a Boolean expression 𝜙1 is more specific than another 𝜙2 iff
𝜙1 implies 𝜙2, which is the case iff all assignments satisfying 𝜙1 also satisfy 𝜙2, i.e.,
iff ⟦𝜙1⟧𝔹 ⊆ ⟦𝜙2⟧𝔹. Hence, the lattice ⟨℘(℘(Faults)) , ⊆⟩ is a verdict domain.

By annotating the transitions of a TS with Boolean expressions indicating whether
or not they are enabled in the presence of certain combinations of basic fault events
and annotating the states of the TS with Boolean expressions indicating whether
they can be entered when certain faults are present, we obtain an annotated TS
over the verdict domain ⟨℘(℘(Faults)) , ⊆⟩. Notably, fault trees (cf. Section 2.7) may
serve as a basis for such annotations as they are commonly used to model how
top-level faults are caused by lower-level faults, and have a natural interpretation
as Boolean expressions over a set of basic fault events [RS15]. By applying the
instance of the VTS synthesis pipeline with possibility lifting as described above
to such a TS, we obtain a diagnoser over the verdict domain ⟨℘(℘(℘(Faults))) , ⊆⟩.
Here, each verdict can be interpreted as a set of sets of possible worlds in terms
of modal logic [Che80]. Given a verdict 𝑣 ∈ ℘(℘(℘(Faults))) and a modal logic

190 CHAPTER 7. RUNTIME VERIFICATION AND FAULT DIAGNOSIS

formula Ψ ∈ MO[Faults] (cf. Section 2.3.3), we can check whether 𝑣 satisfies Ψ, i.e.,
whether 𝑣 ⊆ ⟦Ψ⟧MO. For instance, it is necessary that fault 𝑒1 or fault 𝑒2 occurred iff
𝑣 ⊆ ⟦N (𝑒1 ∨ 𝑒2)⟧MO and it is possible that fault 𝑒1 occurred and fault 𝑒2 did not occur
iff 𝑣 ⊆ ⟦P (𝑒1 ∨ ¬𝑒2)⟧MO. Hence, the diagnoser constructed as described above goes
well beyond what is traditionally possible and allows answering powerful modal
logic queries. Towards practical implementations, symbolic representations such as
BDDs [Bry86] are favorable to succinctly represent sets of faults.

Note that the underlying fault model is different from traditional diagnosis. While
traditionally, it is assumed that faults occur when transitions are taken, we now
assume that faults may occur at any time and that we can only take certain transitions
if they did occur.

Example 7.2 Figure 7.8 shows a system model for the coffee machine (recall Ex-
ample 2.1) with fault annotations as described above obtained from the fault tree
presented as part of Example 2.9. Here, the state i can only be entered when the
pump’s inlet is not clogged (¬ci), when the pump’s shaft is not broken (¬bs), when
there are no exposed wires (¬ew), and when there is fluid leakage (¬fl).

i d

p

s

[¬ci ∧ ¬bs ∧ ¬ew ∧ ¬fl]

pump
_fau

lt

[ci ∨ bs]
short_circuit[ew ∧ fl]

request

blink

request

dispense

Figure 7.8: System model annotated with Boolean expressions over basic fault events
according to the fault tree shown in Figure 2.10.

{⟦¬ci ∧ ¬bs ∧ ¬ew ∧ ¬fl⟧𝔹} {⟦true⟧𝔹, ⟦ci ∨ bs⟧𝔹, ⟦ew ∧ fl⟧𝔹}

{⟦ew ∧ fl⟧𝔹}

{⟦ci ∨ bs⟧𝔹}

request

dispense

request

request

blink

blink

Figure 7.9: Diagnoser synthesized from the model depicted in Figure 7.8.

7.3. CASE STUDY: ROBUST REAL-TIME DIAGNOSIS 191

Applying the synthesis pipeline to this system model, we obtain the VTS shown
in Figure 7.9. In the left state, no fault is possible, i.e., we have:

N (¬ci ∧ ¬bs ∧ ¬ew ∧ ¬fl)

Note that this is the case due to the state annotation of the initial state of the model. As
discussed above, without this annotation, every fault would always be possible. When
observing a request, now all faults are possible but no fault necessarily occurred. For
the state where we traditionally diagnosed a faulty pump, we now have

N (ci ∨ bs)

indicating that either the inlet got clogged or the shaft broke. Each of the faults is
also individually possible but not necessary. Analogously, for the state where we
traditionally diagnosed a short circuit, we now have

N (ew ∧ fl)

indicating that wires are exposed and there has been fluid leakage. Here, both faults
are also individually necessary.

7.3 Case Study: Robust Real-Time Diagnosis
A completely novel application enabled by the contributions of this thesis is diagnosis
of continuous-time systems where observations are subject to timing imprecisions
as discussed in Section 5.1. An extension of the traditional model-based diagnosis
problem to the real-time setting has been pioneered by Tripakis [Tri02] and later been
picked up by Bouyer et al. [BCD05]. However, both works require strict assumptions
on the order of events and assume that timing can be assumed with absolute precision
(up to discretization). While timing imprecisions are unavoidable for embedded
systems consisting of distributed components, they have, to our best knowledge,
received no attention in the model-based diagnosis literature so far.

We now study the scalability of the verdictor algorithm presented in Chapter 5 for
the diagnosis of faults in real-time systems. Furthermore, we investigate the impact
of various timing imprecisions on the quality of the produced verdicts. To this end,
we use a case study based on the industrial automation example.

The source code, Momba models, and data used for the experiments presented
here is available as part of artifact (AT2).

AFamily of SystemModels. For the case study, we return to our running example
(cf. Figure 5.1) of the sorting system. Instead of the illustrative timed automaton
shown in Figure 5.2, we devise a family of systemmodels with a configurable conveyor

192 CHAPTER 7. RUNTIME VERIFICATION AND FAULT DIAGNOSIS

belt length. These models also explicitly model a discrete position of a single item.
We assume that the conveyor moves with a velocity varying between 18 cm s−1 and
20 cm s−1 which introduces uncertainty with regard to the discrete position of the
item at any point in time. As a result, the state space to be considered for diagnosis
grows with the length of the belt enabling us to study the impact of its size by varying
the length of the belt.33 The grippers are not modelled explicitly. Whenever an item
reaches the end of the conveyor, a new item is assumed to appear at the other end.
The two sensors are placed at the center of the conveyor and are 10 cm apart. Both
sensors operate at a fixed sampling rate of 10Hz. Once an item enters the respective
field of view, an observable trigger_𝑖 event is generated where 𝑖 ∈ {0, 1} is the
number of the sensor. Unless explicitly stated otherwise, we assume that these events
are observed with a latency between 1ms and 3ms. With regard to clock drift we
assume 𝛿 = 0.01. Hence, the verdict offset as per (5.14) is:

Δ = (1 + 0.01) ⋅ (3ms − 1ms) = 2.02ms

At any time, a ball bearing fault (fault_bearing) may happen which sud-
denly causes the conveyor to slow down to a varying speed between 13 cm s−1 and
16 cm s−1. In addition to the bearing fault, each sensor can fail and begin to trigger
spuriously, i.e., despite no item entering its field of view.

Experiment Setup. As part of Momba, we developed an implementation of the
continuous time verdictor algorithm presented in Chapter 5 instantiated for diagnosis.
The implementation takes as input a specification of the timing imprecisions involved,
of the faults and observables, and of the system as a timed automata network in the
JANI-model format [Bud+17]. The models for the experiments have been constructed
directly with Momba using the approach showcased in Section 6.2.1. While running,
the partial order ≺ on the observations is kept as a transitivity reduced Directed
Acyclic Graph (DAG) in which observations are inserted upon arrival. Abstract
states are represented using Difference Bound Matrices (DBMs) [Dil89; Lar+97]. For
representing abstract system states and exploring the zone graph, the state space
exploration engine of Momba is used.

The implementation supports generating observations by random simulation of
the model together with fault injection capabilities according to a given time-to-fault
distribution or after a specific amount of observations have been generated. These
observations (or observations made from a real system) are then fed into the verdictor
algorithm instantiated for diagnosis. We implemented the optimizations and the over

33 In practice, a model more akin to Figure 5.2 would be preferable as it leads to a much smaller state
space to be considered for diagnosis. However, for the purpose of evaluation, we actually want a model
where the amount of diagnosis states to be considered is configurable.

7.3. CASE STUDY: ROBUST REAL-TIME DIAGNOSIS 193

approximation described in Chapter 5 with a configurable history bound. In addition,
we use a Depth-First Search (DFS) optimized variant of Algorithm 2.

All experiments have been conducted within a Linux VM on an Intel Xeon
processor at 2.2GHz. Each diagnosis job has been allocated a single core and 4GB of
RAM. The implementation itself has not been parallelized, i.e., the reported running
times are single core times.

Research Questions. In this setting, we aim to address the following research
questions based on the industrial automation case study:

(RDRQ1) How does the approach with a bounded history scale in terms of the
model size? (Section 7.3.1)

(RDRQ2) How does the history bound impact the running time of the algorithm?
(Section 7.3.2)

(RDRQ3) How does the history bound impact diagnosability? (Section 7.3.2)

(RDRQ4) How do latency and jitter guarantees impact the running time of the
algorithm? (Section 7.3.3)

(RDRQ5) How do latency and jitter guarantees impact diagnosability? (Sec-
tion 7.3.3)

7.3.1 Scalability of the Verdictor Algorithm

5 10 15 20 25 30
0

2

4
⋅104

Belt Length [dm]

N
um

be
r
of

Z
on

es

Figure 7.10: Size of the zone graph with bearing and sporadic sensor faults () and
with bearing but without sporadic sensor faults () as a function of the conveyor
belt length in decimeter (dm).

Figure 7.10 shows the number of zones in the zone graphs of our models as a function
of the length of the conveyor belt with and without sporadic sensor faults enabled
for the two sensors. As depicted, the size of the zone graphs of the models scales

194 CHAPTER 7. RUNTIME VERIFICATION AND FAULT DIAGNOSIS

linearly with the length of the conveyor belt independent on whether there may be
sporadic sensor faults. As expected, models with sporadic sensor faults enabled have
significantly more zones, since sensors may trigger spuriously at any time.

(RDRQ1): How does the approach with a bounded history scale in terms of the
model size? To assess the scalability of the approach, we randomly simulated 1 000
runs34 of 120 s simulation time for each configuration injecting a ball bearing fault
after an average of 200 s, determined according to an exponential distribution. As a
result, roughly 45% of all runs contain a bearing fault, resulting in a roughly equal
distribution of runs with and without faults. Of course, the fault rate of the ball
bearings will be much lower in practice. For each run, we then randomly generated
a set of observations by applying a varying latency between 1ms and 3ms and a
clock drift sampled uniformly at random. We then fed those observations according
to their observation time to the verdictor algorithm for diagnosis and recorded the
wall-clock time required to process each observation.

Note that within the 120 s simulation time, more observations will be made on the
shorter belts than on the longer ones as an item needs less time to run through and
thusmore items are considered.Within 120 s eight items can be expected to run by the
sensors on the largest belt (2.9m with a speed of approximately 20 cm s−1) yielding
16 observations. For the shortest belt (4 dm), however, 60 items can be expected to
run by the sensor yielding 120 observations. For comparison, we consider the average
time in seconds of wall-clock time required to process a single observation.

Figure 7.11 shows the results of this experiment as a function of conveyor belt
length with a history bound of 𝐵𝐻 = 2 which is, as we will see in Section 7.3.2, a
good choice for the given model family. As expected, the time to process a single
observation grows non-linearly (according to the theory the growth should be poly-
nomial, see Section 5.4.1) in the size of the original model which grows linearly with
the belt length (cf. Figure 7.10). Without the runs on which faults occur (solid lines),
the time required to process a single observation increases. This effect is explained
as follows: Whenever a fault occurs and has been diagnosed, the verdictor algorithm
can ignore those parts of the state space where the fault has not occurred, reducing
the number of verdict states and thus the running time of processing observations
made after the fault has been diagnosed.

Answering (RDRQ1), the empirical results with a fixed history bound reconfirm
our theoretical findings. The running time of the approach scales polynomially with
the size of the model, while the time required to process a single observation is not
affected by the number of observations. In absolute terms, the running times for
the model family without sporadic sensor faults could be acceptable for real-time
applications. To keep up, the algorithm has one second to process an observation for

34 See Figure 7.12 for the variance of the observation processing times in a similar setting. Simulating
1000 runs provided a good tradeoff between noise and performance of conducting the experiments.

7.3. CASE STUDY: ROBUST REAL-TIME DIAGNOSIS 195

0

5

10

15

5 10 15 20 25 30
0

0.2

0.4

0.6

Belt Length [dm]

Se
co
nd

s
pe
r
O
bs
er
va
tio

n

Figure 7.11: Average time in seconds of wall-clock time required to process a single
observation with bearing and sporadic sensor faults (, top) and with bearing
but without sporadic sensor faults (, bottom) as a function of the conveyor belt
length in decimeter. The dashed lines are with and the solid lines are without runs
containing faults. For the case with sporadic sensor faults (top), the red line ()
indicates the time available to process a single observation to keep up with the rate
of observations.

the shortest belt and 7.5 s for the longest belt. For the case without sporadic sensor
faults, the time required to process a single observation is below the respective
thresholds for all conveyor belt lengths we consider here. In contrast, the model
with sporadic sensor faults has a much larger state space (cf. Figure 7.10). For this
model, at around a belt length of 15 dm, the algorithm is no longer able to keep
up with the rate of observations (red line in Figure 7.11). Indeed, multiple seconds
per observation is likely too much for any practical application. It should be noted,
however, that the case study with sporadic sensor faults has been designed to be
particularly challenging for the algorithm as the complete state space has to be
considered at each point in time due to the unreliable nature of the sensors.

7.3.2 Impact of the History Bound

For the previous experiment, we chose a history bound of 𝐵𝐻 = 2. We now investigate
the impact of this choice both, on the running time of the algorithm as well as on
the quality of the produced verdicts.

196 CHAPTER 7. RUNTIME VERIFICATION AND FAULT DIAGNOSIS

(RDRQ2):How does the history bound impact the running time of the algorithm? We
have already established that by considering only a bounded history (a) the space and
time requirements of the algorithm become bounded by the size of the system model,
and (b) this bound is polynomial (with the polynomial rank being the history bound)
in the original size of the model. To further study these effects, we consider a model
with a conveyor belt length of 5 dm without sporadic sensor faults. As before, we
randomly generated 1 000 runs and corresponding sets of observations by simulation
and fed those observations to the verdictor algorithm.

0 2 3 4 5 ∞
0

1

2

3
⋅10−2

Se
co
nd

s
pe
r
O
bs
er
va
tio

n

0 2 3 4 5 ∞
0

1

2

3
⋅10−2

0 2 3 4 5 ∞
0

1

2

Se
co
nd

s
pe
r

O
bs
er
va
tio

n

Second Quarter

0 2 3 4 5 ∞
0

1

2

Se
co
nd

s
pe
r

O
bs
er
va
tio

n

Second Quarter
⋅100 ⋅100

History Bound (∞ = Unbounded)

Second Quarter Last Quarter

Figure 7.12: Time in seconds of wall-clock time required to process a single obser-
vation for the second (left) and last (right) quarter of observations with different
history bounds and without any history bound (indicated by∞). The scale on the
y-axis with and without history bound differs by two orders of magnitude. In the
case of no history bound, the median is 0.05 s for the second quarter (left) and 1.87 s
for the last quarter (right). With a history bound of 𝐵 = 5, the median is 0.027 s for
both the second quarter (left) and the last quarter (right) showing the huge impact of
the history bound on the running times.

Figure 7.12 shows how much time it takes to process a single observation for the
second (left) and last (right) quarter of observations with different history bounds
𝐵𝐻 ∈ {0, 2, 3, 4, 5} and without any history bound (indicated by ∞). Considering
the second and last quarter allows us to see differences based on the amount of
observations already processed. As one can see, there is no significant difference
between the second and last quarter when the history is bounded because the space
and time requirements do not grow with the number of observations in this case.
However, as expected, in the unbounded case, there is a significant increase between
the second (left) and last (right) quarter of observations because ever more clocks and
constraints are introduced. This effect can also be seen when comparing the number
of diagnosis states required and is explained by the introduction of ever more clocks
causing the running time to grow exponentially.

7.3. CASE STUDY: ROBUST REAL-TIME DIAGNOSIS 197

Note that the scale on the y-axis with and without history bound differs by two
orders of magnitude. It is clearly evident that a history bound significantly reduces
the cost. The huge jump from 0.05 s for the second (left) to 1.87 s for the last (right)
quarter without any history bound is explained by the exponential nature of the
underlying reachability problem—the cost grows exponentially with the number of
clocks, i.e., the number of observations.

The boxplots have been chosen to also display the variance of observation pro-
cessing times. The boxes represent 50% of all values with the median being marked
within the box. The whiskers represent the extrem values.

(RDRQ3): How does the history bound impact diagnosability? As we have seen, a
lower history bound allows processing much more observations per second. However,
this comes at the expense of imprecision of the analysis. We now discuss a number
of high-level insights about those imprecisions gained from individual experiments
with our models.

For our example, it turns out that a ball bearing fault becomes undiagnosable
with a history bound of 𝐵𝐻 = 0, i.e., it is impossible to diagnose this fault on runs
where it occurred. Intuitively, a bearing fault surfaces only in the timing difference
of consecutive trigger_i events. However, with a history bound of 0, the precise
timing of observations is ignored and only the possible orderings of their corre-
sponding events can serve as basis for diagnosis. This makes diagnosis impossible for
𝐵𝐻 = 0 and this insight generalizes to other models and history bounds. In general,
if the timing between any two observations is deemed decisive and there may be
at most 𝑁 observations between them, then a history bound of 𝑁 + 2 is enough.
Indeed, assuming that the sensors are not triggering spuriously, i.e., there are no
other observations between two consecutive trigger observations, a bearing fault is
always diagnosable with 𝐵𝐻 = 2. This is the reason why we have chosen 𝐵𝐻 = 2 for
our scalability study.

In contrast, sporadic sensor faults always surface (with the given timing impreci-
sions) in the order and actions of observations, if they surface at all. As the sensors
trigger only when an item enters their field of view, as long as there is no fault, it is,
for instance, impossible that the second sensor triggers twice without the first sensor
triggering in-between. Hence, this fault mode can oftentimes be diagnosed even with
a history bound of 𝐵𝐻 = 0. Interestingly, sporadic sensor faults are not always diag-
nosable even with an unbounded history. This is because, although highly unlikely
in practice, a faulty sensor’s spurious triggering may, by pure chance, coincide with
the time of an item entering its field of view. Note that this does not contradict
Δ-completeness of the algorithm because Δ-completeness is about diagnosing a
fault with a worst-case delay of Δ if it surfaces in the observations. The latter is not
the case for such pathologic runs. The observable behavior of a faulty sensor that
notoriously triggers whenever a part enters its field of view is undistinguishable

198 CHAPTER 7. RUNTIME VERIFICATION AND FAULT DIAGNOSIS

(a)
[1, 3]ms

(b)
[2999, 3001]ms

(c)
[1000, 3000]ms

0.00

0.05

0.10

Se
co
nd

s
pe
r
O
bs
er
va
tio

n

Figure 7.13: Time in seconds of wall-clock time required to process a single observa-
tion with a latency varying between (a) 1ms and 3ms, (b) 2999ms and 3001ms, and
(c) 1000ms and 3000ms.

from the observable behavior of a correctly functioning sensor. Hence, any diagnosis
technique based on passive observation cannot detect such faults.

With a history bound of 𝐵𝐻 = 2 it is possible to diagnose sporadic faults earlier.
Consider a case where the first sensor is faulty and produces a sporadic trigger_0
event right after a trigger_1 event. Now, if we do not take the timing into account,
we have to wait until the next item enters the field of view of the first sensor leading
to yet another trigger_0 event thereby enabling a diagnosis with a history bound
of 0. However, with a history bound of 2, we will be able to diagnose the fault right
when we observe the first trigger_0 event as the corresponding observation is
made too early in relation to the observation of the trigger_1 event.

These considerations exemplify the over-approximative nature of the history
bound. Considering only a bounded history may (a) render certain faults undiagnos-
able and (b) prolong the time until a fault is diagnosed. This tradeoff needs further
investigation in future work. In practice, it is of course desirable, to always be able to
diagnose faults after a bounded amount of time. Ideally, with an analysis of the model
and timing imprecisions, one should be able to determine whether a fault can always
be diagnosed in time when using a specific history bound. We consider this question
of in-time diagnosability with a history bound an important focus for future work.

7.3.3 Impact of Latency and Jitter

So far our focus has been on a realistic varying latency between 1ms and 3ms. We
now study the effect of different latency guarantees for our example.

(RDRQ4): How do latency guarantees impact the running time of the algorithm?
To empirically study the effect of different latency guarantees, we generated 1 000
sets of observations as described in Section 7.3.2 for each of three different latency

7.4. DISCUSSION 199

configurations. Figure 7.13 shows how much time it takes to process a single ob-
servation for the different latency configurations (a) with a latency between 1ms
and 3ms, (b) with a latency between 2999ms and 3001ms, and (c) with a latency
between 1000ms and 3000ms. These experiments demonstrate that high latency
(Figure 7.13, b) per se is no problem and mostly pertains the verdict offset Δ, i.e.,
the time it takes until an observation becomes settled and thus has to be taken into
account by the verdictor algorithm. High jitter, i.e., variation in latency, however, has
the effect that the verdictor algorithm needs to consider many different orderings of
observations (recall Section 5.2.3) thereby blowing up its running time. This becomes
evident when comparing (a) and (b) with (c) in Figure 7.13. Here, (c) has a very high
variation of 2000ms in contrast to (a) and (b) where the variation is only 2ms.

(RDRQ5): How do latency and jitter guarantees impact diagnosability? If the shared
network is underdimensioned35 and thus induces a highly varying latency between
1000 s and 3000ms (Figure 7.13, c), faults of the ball bearings become undiagnosable
because the timing difference between two consecutive trigger_i events is blan-
keted by the timing imprecisions. In contrast, a mere high latency between 2999ms
and 3001ms (Figure 7.13, b) still allows diagnosing such faults. Future work should
tackle how to (i) verify that a fault is diagnosable given some timing imprecisions
and (ii) obtain upper bounds for the allowed latency variation.

7.4 Discussion

In this chapter, we explored various concrete applications instantiating the generic
verdictor algorithms developed earlier. We discussed how the contributions advance
the state of the art in runtime verification and fault diagnosis, focusing on robustness
and predictive capabilities enabled by the techniques developed in this thesis.

In addition to the related work discussed in Section 7.1, robustness and predic-
tions have also been studied from a stream-based runtime verification perspective.
Leucker et al. utilize abstraction techniques to deal with partial information [Leu+19].
They integrated and evaluated their techniques within the stream-based runtime
verification framework TeSSLa [Leu+18]. Kallwies, Leucker, and Sánchez utilize sym-
bolic techniques to deal with uncertainties and assumptions about a system [KLS22].
This approach has been evaluated on Lola using exhaust emission monitoring data
and a Lola specification originally developed by the author of this thesis [KHB18].
Again, we view our contributions as complementary to these works. They provide
robustness and predictions based on a formal system model.

35 For instance, in the case of CAN, insufficient bandwidth may lead to congestion resulting in a high
(variation in) latency for low-priority messages which may be non-critical for the functioning of the
system but highly indicative of faults.

200 CHAPTER 7. RUNTIME VERIFICATION AND FAULT DIAGNOSIS

Through a case study centered around the industrial automation example, we
demonstrated that the verdictor algorithm for the continuous-time case scales effec-
tively and we investigated the impact of timing imprecisions and a history bound on
the verdicts it produces. Our experiments demonstrated that for our case study, an
appropriate history bound can be chosen such that faults remain diagnosable. The
experiments also revealed an interesting tradeoff between the delay with which a
fault is detected and the history bound used, the latter translating directly into the
information the diagnoser needs to keep track of and the time required to account for
new observations. A particular focus of future work should be on the investigation of
in-time diagnosability with a bounded history. It should investigate how to determine
best and worst case delays for diagnosing a given fault in the presence of a bounded
history while also considering more advanced and effective strategies of dropping
observations, instead of just cutting the history (recall Section 5.4.1). Combining
such an analysis with the presented techniques helps to ensure that faults are always
diagnosed timely. To this end, the theory and algorithm put forward in this thesis
unlock a rigorous treatment and understanding of the tradeoffs, by establishing
the needed formal grounds. Use cases beyond diagnosis, as they are enabled by the
generic treatment in this thesis, may also be a particular focus of future work.

The applications presented here leverage the developed techniques for answering
operational questions regarding the satisfaction and violation of properties (Q1)
as well as the presence of faults (Q2). The remaining questions regarding possible
systems configurations (Q3), will be addressed next.

Chapter 8

Variability-Aware Monitoring

This chapter showcases what the contributions of this thesis enable beyond the
existing application areas of runtime verification and fault diagnosis. With variability-
aware monitoring we introduce an entirely novel application domain.

Most modern systems are highly configurable based on customer needs or through
their inherent adaptivity to the environments in which they operate. For instance, cars
may come with a diverse set of driver assistance or infotainment systems, depending
on what the customer payed for, or robots may adapt their behaviors depending
on whether they operate in a machine-only or human-machine co-adaptive setting.
Within software systems we also encounter configurability, e.g., in software product
lines that can be configured through features as incremental or optional functionali-
ties [Zav00; Ape+13]. Often the configuration spaces are exponentially large in the
number of configuration options or features, which renders the development and
analysis of such systems particularly challenging.

The manifold possibilities to configure such systems also raise further challenges
in the runtime monitoring setting that have been barely addressed in the existing
literature. Tackling this gap, we identify two challenges towards variability-aware
monitoring and show how they can be addressed by exploiting and expanding upon
the techniques developed in the preceding chapters.

The Configurable Monitors Challenge. As modern systems are highly config-
urable, runtime monitors may need to adapt to them. For instance, depending on a
system’s configuration different properties may be of interest or must be monitored
based on different data. To accommodate this variability in a system being monitored,
monitors must be configurable themselves. In the context of configurable systems,
naive solutions typically suffer from an exponential blowup of configurations in the
number of features. So, the first challenge is to develop techniques for the effective
specification, synthesis, and implementation of configurable monitors that do not

201

202 CHAPTER 8. VARIABILITY-AWARE MONITORING

incur an exponential blowup in the number of features. In particular, considering
separate monitors for each configuration individually will typically not be feasible.
Notably, configurable monitors have applications beyond configurable systems and
can also be used in cases where the properties of interest may depend on other
external factors, e.g., different use cases of a monitor.

The Configuration Monitoring Challenge. While a system’s configuration may
be known at time of deployment, this can no longer be assumed at runtime where
configurations often are not readily exposed [AFW18]. For example, configurations
of legacy or physical components might be unknown to the running system—imagine
a factory worker who physically configures a machine (cf. Chapter 1). Furthermore,
configurations may be disguised to enhance security and privacy [CCM08], or they
may change after deployment, rendering them unknown at runtime. Yet, knowing a
system’s configuration at runtime is often beneficial, e.g., to check whether a system is
correctly configured for the next step of a production process or to configure external
monitoring and diagnostics equipment [Kim+10], like a configurable monitor. Also to
detect configuration vulnerabilities [RS02], to determine information leakages [PSJ18],
or to reason about possible configuration-based attacks that compromise system
security, information about the system configuration is very valuable. Therefore, the
second challenge we address is determining an a-priori unknown configuration of a
system at runtime solely by observing its behavior.

Overview. To address the first challenge, we introduce a featured variant of verdict
transition systems which can serve as a the basis for configurable monitors and their
synthesis. We show how such featured VTSs can be synthesized from properties
specified in a featured variant of linear temporal logic (LTL) [Cla+13]. Furthermore,
we introduce a configurable variant of the stream-based specification language Lola
[DAn+05] together with a family-based analysis for well-formedness and efficient
monitorability that exploits commonalities across specification variants.

To address the second challenge, we instantiate the generic VTS synthesis pipeline
developed in Chapter 4 for the synthesis of configuration monitors from FTS system
models. The resulting monitors produce most specific configuration verdicts, i.e., sets
of configurations the system may be in according to the observations it generated
(cf. Section 3.1). We validate this approach through an empirical evaluation on
established configurable systems community benchmarks. This evaluation will also
demonstrate the effectiveness of the VTS synthesis pipeline.

Relevant Publications. The two challenges surrounding variability-aware run-
time monitoring and the techniques for configurable monitors, which we present in
the following, have first been introduced in:

8.1. EXAMPLE: REAL DRIVING EMISSIONS 203

[DK22]: Clemens Dubslaff and Maximilian A. Köhl. “Configurable-by-
Construction Runtime Monitoring”. In: Leveraging Applications of Formal
Methods, Verification and Validation, ISoLA 2022.

Configuration monitoring has been introduced in:

[KDH24]: Maximilian A. Köhl, Clemens Dubslaff, and Holger Hermanns.
“Configuration Monitor Synthesis”. In: Automated Technology for Verifi-
cation and Analysis, ATVA 2024.

As a running example, we will use runtime monitoring of real driving emissions,
which has first been introduced in:

[KHB18]: Maximilian A. Köhl, Holger Hermanns, and Sebastian Biewer.
“Efficient Monitoring of Real Driving Emissions”. In: Runtime Verification,
RV 2018.

With involvement of the author of this thesis, the work on monitoring real driving
emissions has been expanded in subsequent work [Her+18; Bie+21; Bie+23].

Exceeding these published works, the featured variant of VTSs is an unpublished
contribution enabled by the theoretical framework presented in Chapter 3. Featured
VTSs generalize configurable LTL3 monitors as they have been introduced in the
original work on configurable monitors [DK22].

Chapter Structure. Section 8.1 introduces monitoring of real driving emissions
as our running example. Section 8.2 approaches the challenge of configurable mon-
itors and their specification from the automata-based perspective, introducing a
featured variant of VTSs and a synthesis approach from featured LTL properties.
Section 8.3 presents a configurable variant of the stream-based specification lan-
guage Lola together with family-based analysis techniques for well-formedness and
efficient monitorability. Section 8.4 tackles the problem of determining a system’s
configuration solely by observing its behavior. To this end, we harvest the generic
synthesis techniques developed earlier in Chapter 4.

8.1 Example: Real Driving Emissions
In response to the massive revelation of fraudulent behavior programmed inside
diesel cars across Europe in 2015, the European Union has defined a procedure to test
for Real Driving Emissions (RDE) [Eur16; Eur17]. This procedure has been gradually
put into force since September 2017. An RDE test is meant to evaluate the emissions
of a vehicle under realistic conditions.36 To this end, the RDE regulation comes with

36 Similar test procedures exist for characteristics of electric vehicles, for instance, those issued by the
United States Environmental Protection Agency [Uni].

204 CHAPTER 8. VARIABILITY-AWARE MONITORING

an informal but relatively precise specification that spells out in how far a real trip,
i.e., a trajectory driven with a car on public roads, constitutes a valid RDE test, or not.
The regulation then stipulates emission limits for such valid RDE tests. The author of
this thesis developed a formalization of the RDE test procedure in the stream-based
specification language Lola [KHB18]. As part of this work, a low-cost variant of the
RDE test procedure was developed, which can be conducted without expensive test
equipment but solely with on-board sensors.

In subsequent work, the low-cost variant of the RDE test procedure has been used
to gather evidence that the exhaust emission cleaning system of an Audi A7 indeed
behaves differently under certain conditions that do not occur during traditional
exhaust emission tests [Her+18]. Furthermore, the original Lola specification has been
translated to RTLola, an extension of Lola for real-time systems [Fay+19; Bau+20],
for usage in an Android application enabling laypersons to conduct exhaust emission
tests [Bie+21; Bie+23].

In the following, we use the low-cost variant of the RDE test procedure as an
example for variability-aware runtime monitoring. To this end, we focus on certain
parts of the Lola specification of the RDE test procedure, which have been stream-
lined for presentation purposes as part of the work on configurable-by-construction
runtime monitoring [DK22]. For the full details regarding RDE testing with Lola and
RTLola, we refer to the original papers [KHB18; Her+18; Bie+21; Bie+23].

Low-Cost RDE Testing. At the core of low-cost RDE testing is the idea to use the
on-board sensors of a car to compute exhaust emissions and other values relevant
for RDE testing. The types of on-board sensors as well as their values can be queried
via the standardized On-Board Diagnostic (OBD) interface. By law, any modern car is
required to be equipped with an OBD interface [Eur98]. In contrast, for actual RDE
tests, an expensive Portable Emissions Measurement System (PEMS) is required and
must be attached to the exhaust pipe of the car while driving a test.

As different cars come with different on-board sensors, the concrete instantiation
of their OBD interface differs. Hence, a runtime monitor for RDE testing must be
configurable with respect to the sensors of each particular car. For example, to
compute the amount of emitted pollutants, such as nitrous oxide (NOx), the exhaust
mass flow (EMF), i.e., the mass of exhaust emitted per time unit, and the relative
concentration in parts per million (ppm) of the pollutant in the exhaust gas must be
known. While many modern diesel cars come equipped with sensors providing the
relative concentration of nitrous oxide, the EMF is rarely provided directly via OBD
due to the car not having an EMF sensor. Fortunately, the EMF can be computed based
on various other values such as the mass air flow (MAF) in combination with the
fuel rate (FR) or the fuel-air equivalence (FAE) ratio. So, depending on the on-board
sensors of the concrete car in question and the values it exposes via OBD, the Lola
specification for the low-cost RDE test must be adapted to that car following its

8.2. CONFIGURABLE LTL₃ MONITORING 205

configuration. This is a prime practical example of the need for configurability in
runtime monitoring.

Low-Cost RDE Variability Modeling. Using feature diagrams (recall Section 2.4),
we can model the different configurations for a low-cost RDE test of the NOx emis-
sions of a car. To conduct such a test, the car needs to be equipped with an NOx
sensor and there must be a way to obtain the EMF. The EMF can be obtained via an
EMF sensor (EMFs) or via computation (EMFc) based on other values. To compute
the EMF, an MAF sensor and an FR or FAE sensor are required. Hence, the feature
diagram depicted in Figure 8.1 describes all the valid sensor combinations that allow
us to conduct a low-cost RDE test of the NOx emissions of a car.

low-cost RDE (NOx)

EMF NOx sensor

EMF computation EMF sensor

MAF sensor FR

FR sensor FAE sensor

Figure 8.1: Feature diagram describing the different sensor configurations that allow
us to conduct a low-cost RDE test of the NOx emissions.

8.2 Configurable LTL₃ Monitoring
Tackling the configurable monitors challenge, we now introduce a featured variant
of VTSs. Similar to featured transition systems (recall Section 2.4), featured VTSs can
avoid an exponential blowup by succinctly representing monitor families.37 After
introducing featured VTSs, we present a product construction which can be leveraged
for the effective compositional synthesis of featured VTSs. As an explicit instance,
we develop a synthesis technique for featured LTL specifications. To this end, we

37 More generally, they represent verdictor families but our focus here is on monitoring.

206 CHAPTER 8. VARIABILITY-AWARE MONITORING

utilize featured VTSs as a target representation and employ the product construction
to combine monitors for individual featured LTL formulas that have been derived
with LTL₃ runtime monitoring techniques [BLS06b].

8.2.1 Featured VTSs
We introduce a featured variant of VTSs combining the orthogonal ideas of FTSs and
VTSs. The resulting featured verdict transition systems (FVTSs) represent families of
verdict transition systems. Analogously to how TSs are obtained from FTSs, VTSs
are obtained from FVTSs by instantiating them for a given configuration.

Definition 8.2.1 Given a set of observablesObs and a set of features 𝐹, a featured
verdict transition system (FVTS) ℱ is a tuple

⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈, 𝐹,Conf, 𝑔, 𝜄⟩

where
– ⟨𝒬, 𝐽,Obs,⇾⟩ is a TS,
– ⟨𝒱, ⊑, 𝜈⟩ is a verdict extension (recall Section 3.2), and
– ⟨𝐹,Conf, 𝑔, 𝜄⟩ is a feature extension (recall Section 2.4).

We define the projection of an FVTS ℱ onto a configuration 𝑐 analogously to the
projection for FTSs (recall Definition 2.4.2):

Definition 8.2.2 For a given FVTS

ℱ = ⟨𝒬, 𝐽,Obs,⇾, 𝒱,⊑, 𝜈, 𝐹,Conf, 𝑔, 𝜄⟩

and valid configuration 𝑐 ∈ Conf, the 𝑐-projection of ℱ, denoted by ℱ⇂𝑐 is a VTS

⟨𝒬, 𝐽⇂𝑐,Obs,⇾⇂𝑐, 𝒱, ⊑, 𝜈⟩

where 𝐽⇂𝑐 ≔ { 𝑠 ∈ 𝐽 | 𝑐 ∈ ⟦𝜄(𝑠)⟧𝔹 } and ⇾⇂𝑐 ≔ { t ∈ ⇾ | 𝑐 ∈ ⟦𝑔(t)⟧𝔹 }.

So, for each configuration 𝑐 ∈ Conf of an FVTS ℱ, we obtain a VTS ℱ⇂𝑐. We also
refer to the projection ℱ⇂𝑐 as the instantiation of ℱ for 𝑐.

An FVTS can succinctly represent a family of verdictors exploiting structural
sharing between the different configurations. As such, they are a foundational build-
ing block for addressing the configurable monitors challenge: By exploiting structural
sharing, they can avoid the combinatorial blowup that would otherwise result from
considering each configuration as a VTS individually. When defined over a truth
domain for monitoring, e.g., the three valued truth domain 𝔹3, an FVTS represents a
configurable monitor that can be instantiated for its configurations.

8.2. CONFIGURABLE LTL₃ MONITORING 207

Composition. For the synthesis of FVTSs from featured specifications, we will
exploit the synchronized product of multiple FVTSs, corresponding to a concurrent
lockstep execution of those FVTSs. The result is an FVTS over the product verdict
domain of the verdict domains of the individual FVTSs. We define the composition
for a pair ⟨ℱ1, ℱ2⟩ of FVTSs as follows:

Definition 8.2.3 Given a pair ⟨ℱ1, ℱ2⟩ of FVTSs

ℱ𝑖 = ⟨𝒬𝑖, 𝐽𝑖,Obs,⇾𝑖, 𝒱𝑖, ⊑𝑖, 𝜈𝑖, 𝐹,Conf, 𝑔𝑖, 𝜄𝑖⟩

with the same feature domain 𝐹, valid configurations Conf, and observables Obs,
we define the composition of ℱ1 and ℱ2, denoted by ℱ1 ∥ ℱ2, as

ℱ1 ∥ ℱ2 = ⟨𝒬1 × 𝒬2, 𝐽1 × 𝐽2,Obs,⇾, 𝒱1 × 𝒱2, ⊑1 × ⊑2, 𝜈, 𝐹,Conf, 𝑔, 𝜄⟩

such that ⇾ is the smallest relation satisfying

⟨𝑞1, o, 𝑞′1⟩ ∈ ⇾1 ⟨𝑞2, o, 𝑞′2⟩ ∈ ⇾2 o ∈ Obs

⟨⟨𝑞1, 𝑞2⟩ , o, ⟨𝑞′1, 𝑞′2⟩⟩ ∈ ⇾

and with 𝜈, 𝑔, and 𝜄 being defined as follows

𝜈(⟨𝑞1, 𝑞2⟩) ≔ ⟨𝜈1(𝑞1), 𝜈2(𝑞2)⟩
𝑔(⟨⟨𝑞1, 𝑞2⟩ , o, ⟨𝑞′1, 𝑞′2⟩⟩) ≔ 𝜒(𝑔1(⟨𝑞1, o, 𝑞′1⟩) ∧ 𝑔2(⟨𝑞2, o, 𝑞′2⟩))

𝜄(⟨𝑞1, 𝑞2⟩) ≔ 𝜒(𝜄1(𝑞1) ∧ 𝜄2(𝑞2))

where 𝜒(𝜙) denotes a canonical characteristic representation of the Boolean expres-
sion 𝜙, e.g., in disjunctive normal form.

Remark. A similar product construction can be defined for VTSs corresponding to
their concurrent lockstep execution and producing verdicts of the respective product
verdict domain.

8.2.2 Featured LTL₃ Monitoring
To specify variability-aware properties, e.g., for FTSs, featured linear temporal logic
(FLTL) has been introduced by Classen et al. [Cla+13] as a featured extension of LTL.
Formulas in FLTL over a set of features 𝐹 and of atomic propositions AP are of the
form [𝜙] 𝜑 where 𝜙 ∈ 𝔹[𝐹] is a Boolean expression over 𝐹, referred to as guard,
and 𝜑 is an LTL formula over AP. For a non-empty set Φ of FLTL formulas and a
configuration 𝑐 ⊆ 𝐹, the 𝑐-projection of Φ is the conjunction of all the formulas of Φ
whose guard is satisfied by 𝑐. Formally, we define the 𝑐-projection of Φ, as follows:

Φ⇂𝑐 ≔ ⋀{𝜑 | [𝜙] 𝜑 ∈ Φ s.t. 𝑐 ∈ ⟦𝜙⟧𝔹 } (8.1)

208 CHAPTER 8. VARIABILITY-AWARE MONITORING

We aim to synthesize a configurable monitor from a set of FLTL formulas such that
this monitor can be instantiated to monitor for the formula corresponding to each
configuration, respectively. Formally, we aim to solve the following problem:

Featured LTL₃ Monitor Synthesis Problem. Given a non-empty set Φ of
FLTL formulas, synthesize an FVTS ℱ such that ℱ⇂𝑐 is an LTL3 monitor for Φ⇂𝑐
for each configuration 𝑐 ⊆ 𝐹, respectively.

Example 8.1 Let us specify FLTL properties for the RDE example (recall Section 8.1).
In case the EMF sensor is present (EMFs), we want the EMF to be measured directly
instead of computing it (comp-EMF) from other values such as the MAF and fuel
sensors. This requirement can be expressed by an FLTL formula:

𝜓0 = [EMFs] �¬comp-EMF

Another example would be the property that if the EMF computation feature (EMFc)
is enabled and no EMF sensor is present, then after the MAF sensor has been read
(read-MAF-sensor), in the next step the EMF must be computed. This is expressed by
the following FLTL formula:

𝜓1 = [EMFc ∧ ¬EMFs] �(read-MAF-sensor→○comp-EMF)

Given the setΦ = {𝜓0, 𝜓1}, we aim to construct a matching configurable LTL₃ monitor.

Synthesizing Featured LTL₃ Monitors. To synthesize a featured LTL₃ monitor
for a non-empty set Φ of FLTL formulas, we first construct an LTL3 monitorℳ𝜑𝑖

LTL for
each FLTL formula [𝜙𝑖] 𝜑𝑖 ∈ Φwith 𝑖 ∈ {1 .. 𝑛} and 𝑛 = |Φ|. To this end, we utilize the
techniques developed by Bauer, Leucker, and Schallhart for LTL₃ monitoring [BLS06b].
We then transform each of these monitorsℳ𝜑𝑖

LTL into an FVTS ℱ𝜑𝑖 with two initial
states, one for when 𝜙𝑖 is satisfied and one for when it is not. Finally, we compose all
the individual FVTSs using Definition 8.2.3 and then transform the verdicts of the
resulting FVTS to be the conjunction over the individual verdicts.

Definition 8.2.4 For each 𝑖 ∈ {1 .. 𝑛}, letℳ𝜑𝑖
LTL = ⟨𝒬𝑖, {𝑞𝑖} ,℘(AP) ,⇾𝑖, 𝔹3, ⊑, 𝜈𝑖⟩

be the VTS obtained from the LTL3 monitor for [𝜙𝑖] 𝜑𝑖 ∈ Φ. Further, for each of
these VTSs, let ℱ𝜑𝑖 be an FVTS such that

ℱ𝜑𝑖 = ⟨𝒬𝑖 ⊍ {t} , {𝑞𝑖, t} ,℘(AP) ,⇾𝑖, 𝔹3, ⊑, 𝜈′𝑖, 𝐹,Conf, 𝑔𝑖, 𝜄𝑖⟩

with 𝜄𝑖(𝑞𝑖) ≔ 𝜙𝑖, 𝜄𝑖(t) ≔ ¬𝜙𝑖, 𝑔′𝑖(t) = true for t ∈ ⇾𝑖, 𝜈′𝑖(𝑞) = 𝜈𝑖(𝑞) for 𝑞 ∈ 𝒬𝑖,
and 𝜈′𝑖(t) = t. We obtain an FVTS ℱ×

Φ = ℱ𝜑1 ∥ ⋯ ∥ ℱ𝜑𝑛 by composition.

8.2. CONFIGURABLE LTL₃ MONITORING 209

The FVTS ℱ×
Φ produces verdicts of the product domain, i.e., it retains the verdicts of

the individual formulas. To get an FVTS ℱΦ for the conjunction, wemust thus redefine
the verdict function 𝜈 of ℱ×

Φ by combining the individual verdicts by conjunction.
For two formulas, we may redefine 𝜈 as follows:

𝜈′(⟨𝑞1, 𝑞2⟩) ≔
⎧

⎨
⎩

t iff 𝜈(⟨𝑞1, 𝑞2⟩) = ⟨t, t⟩
f iff 𝜈(⟨𝑞1, 𝑞2⟩) = ⟨f, ⋅⟩ or 𝜈(⟨𝑞1, 𝑞2⟩) = ⟨⋅, f⟩
? otherwise

That is, for |Φ| = 2, the FVTS ℱΦ is obtained by replacing the verdict function 𝜈 of
ℱ×
Φ with 𝜈′ as just defined. This definition naturally extends to multiple formulas,

leading to a featured LTL₃ monitor ℱΦ for Φ.

Theorem 8.2.1 Given a non-empty set Φ of FLTL formulas, the FVTS ℱΦ is a
solution to the featured LTL₃ monitor synthesis problem, i.e., for each configuration
𝑐 ⊆ 𝐹, we have that ℱΦ⇂𝑐 is an LTL₃ monitor for Φ⇂𝑐.

Proof Sketch. Proven by induction on the number of FLTL formulas [cf. DK22].

The resulting featured LTL₃ monitors are instances of configurable monitors.
They can be instantiated for a given configuration and they can avoid an exponential
blowup by structural sharing. Therefore, we have addressed the configurable monitor
challenge for featured LTL successively.

EMFs ? AP∖{comp-EMF }

f

{comp-EMF }

AP

EMFc∧¬EMFs ? AP∖{read-MAF-sensor }

?

{read-MAF-sensor }{comp-EMF }

AP∖{comp-EMF }
¬EMFc∧¬EMFs

t AP

Figure 8.2: Featured LTL₃ monitor for the set of formulas defined in Example 8.1. For
presentation purposes, the observables have been simplified to AP instead of ℘(AP),
i.e., it is assumed that individual atomic propositions are observed.

Example 8.2 Figure 8.2 shows the featured LTL₃ monitor constructed for the set
Φ of FLTL formulas as defined in Example 8.1 for the RDE use case. It has been
constructed by composition from the FVTSs shown in Figure 8.3. According to the

210 CHAPTER 8. VARIABILITY-AWARE MONITORING

RDE feature model (cf. Figure 8.1), the EMF computation feature (EMFc) or the EMF
sensor feature (EMFs) is required. If the EMF sensor feature is enabled, then the EMF
should not be computed according to 𝜓0. If the EMF sensor feature is not enabled and
the EMF computation feature is, then the EMF should be computed after reading the
MAF sensor according to 𝜓1. Depending on the configuration, the combined monitor
starts in one of three states. In case neither the EMF computation nor the EMF sensor
feature is enabled, none of the properties apply and the monitor thus yields t. If
the EMF sensor feature is enabled, then the monitor produces ? until it observes
the computation of the EMF at which point it produces f. If the EMF sensor feature
is not enabled but the EMF computation feature is, then it waits for the reading of
the MAF sensor and requires the computation of the EMF in the next step. If this
computation does not happen, it produces f. Otherwise, it produces ?.

ℱ𝜑0 ∶
EMFs ? AP∖{comp-EMF }

f

{comp-EMF }

AP

¬EMFs
t AP

ℱ𝜑1 ∶
EMFc∧¬EMFs ? AP∖{read-MAF-sensor }

?

{read-MAF-sensor }{comp-EMF }

f

AP∖{comp-EMF }

AP
¬EMFc∨EMFs

t AP

Figure 8.3: FVTSs constructed from the LTL₃ monitors for the FLTL formulas as
defined in Example 8.1. As for Figure 8.2, the observables have been simplified.

Concise Featured LTL₃ Monitors. The feasibility of the approach can be further
enhanced towards more concise featured LTL₃ monitors. The presented definitions
consider the entire set of configurations instead of just the valid configurations ac-
cording to some feature model. Constraining the construction to valid configurations
can reduce the size of the resulting monitors. To this end, initial states with invalid
configurations must be disregarded together with any fragments that may become
unreachable as a result. Furthermore, results from bisimulation minimization for
FTSs [BBV15] can be exploited towards minimal featured LTL₃ monitors. To this end,
bisimulation minimization must be performed with respect to state classes preserving
verdicts, analogously to the minimization of VTSs (cf. Section 3.2.2).

8.3. CONFIGURABLE MONITORING WITH LOLA 211

8.3 Configurable Monitoring with Lola

With featured VTSs and featured LTL₃ monitors, we addressed the configurable
monitors challenge with an automaton-based approach. Addressing the challenge
also from the stream-based perspective, we now present a configurable variant of the
stream-based specification language Lola [DAn+05] (see Section 2.5.2).We refer to this
variant as configurable Lola. Towards configurable Lola, we first introduce a notion of
composability for sets of Lola specifications. After introducing configurable Lola, we
then present a family-based analysis for checking whether all valid configurations of
a configurable Lola specification are well-formed and efficiently monitorable. Recall
that well-formedness is required for the Lola monitoring algorithm to be applicable
and that efficient monitorability does guarantee that the memory requirements for
monitoring do not grow without bounds (see Section 2.5).

Example 8.3 Let us return to the example of RDEmonitoring. In the original works on
RDE monitoring, multiple Lola specification fragments are pieced together in an ad-
hoc text-based fashion to account for the different sensors a car may provide [KHB18;
Bie+21; Bie+23]. Figure 8.4 (next page) shows excerpts of the different fragments.
We see two fragments for obtaining the EMF (emf) and the fuel rate (fuel_rate),
respectively. Consider the case where a car has an FAE and a MAF sensor. In this case,
the fragments FRc1 and EMFc must be combined to compute the fuel rate based on
the FAE and MAF sensor, and the EMF based on the computed fuel rate and the MAF
sensor. Instead of piecing those fragments together in a mere text-based fashion, we
will introduce a more systematic approach also amenable to analyses.

Composition of Specifications. We say that two Lola specifications are compos-
able iff their dependent stream variables do not overlap, i.e., iff there exists no stream
variable for which both specifications define an expression. For instance, in case of
the fragments shown in Figure 8.4, EMFs and EMFc both define an expression for the
variable emf, i.e., they are not composable. In contrast, the fragments EMFc and FRc1
are composable, as their dependent stream variables do not overlap. This definition
of composability is naturally lifted to families of Lola specifications:

Definition 8.3.1 A family {L𝑖}𝑛𝑖=1 of Lola specifications, all over the same set
𝕊 of typed stream variables, is composable iff their dependent stream variables
(recall Section 2.5.2) are disjoint. Formally, that is Dom(L𝑖) ∩Dom(L𝑘) = ∅ for all
1 ≤ 𝑖 < 𝑘 ≤ 𝑛. Their composition is given by ⋃𝑛

𝑖=1 L𝑖.

Notably,⋃𝑛
𝑖=1 L𝑖 is a Lola specification, as the union of a family of partial functions

with non-overlapping domains is a partial function (cf. Section 2.1). As discussed, the
restriction to composable specifications ensures that the domains are non-overlapping.

212 CHAPTER 8. VARIABILITY-AWARE MONITORING

EMF sensor fragment (EMFs):

input emf_sensor: Float64; // g/s

output emf = emf_sensor;

EMF computation fragment (EMFc):

input maf_sensor: Float64; // g/s

input fuel_rate: Float64; // g/s

output emf = maf_sensor + fuel_rate;

FR sensor fragment (FRs):

input fuel_rate_sensor: Float64; // g/s

output fuel_rate = fuel_rate_sensor;

FR computation fragment (FRc1):

input maf_sensor: Float64; // g/s

input fae_sensor: Float64; // ratio

output fuel_rate = maf_sensor / (14.5 * fae_sensor)

Figure 8.4: Lola specification fragments for the different variants of computing the
EMF and fuel rate for low-cost RDE testing [KHB18; Bie+21; Bie+23].

Thereby, the composition also does not have any ambiguity with respect to the
stream expressions assigned to dependent stream variables. We call a family of Lola
specifications incompatible iff they share dependent stream variables. Incompatible
Lola specifications cannot be composed.

Configurable Lola Specifications. Leveraging this notion of composability, we
now define configurable Lola specifications as follows:

Definition 8.3.2 A configurable Lola specification is a family Ξ = {L𝑖}𝑛𝑖=1 of
Lola specifications over the same set 𝕊 of typed stream variables. We call the
individual specifications L𝑖 features of Ξ. A configuration 𝐶 of Ξ is a subset of Ξ.
A valid configuration 𝐶 of Ξ is a configuration that is composable.

Configurable Lola specifications make variability a first-class concept, enabling
the specification of configurable monitors. Each valid configuration corresponds to a
unique Lola specification as per Definition 8.3.1. In the following, we make use of
this fact and simply treat valid configurations as if they are Lola specifications. In
particular, we apply the concepts of well-formedness and efficient monitorability
(see Section 2.5.2) directly to them. Notably, all incompatible pairs of features can

8.3. CONFIGURABLE MONITORING WITH LOLA 213

also be efficiently enumerated in 𝒪(|Ξ|2 ⋅ |𝕊|) time, by going through all pairs and
checking whether they have overlapping dependent variables.

Given a configurable Lola specification, we aim to check whether all its valid
configurations are (a) well-formed and (b) efficiently-monitorable.

Configurable LolaAnalysis Problem. Given a configurable Lola specification
Ξ, determine wether all valid configurations of Ξ are (a) well-formed and (b)
efficiently-monitorable.

A naive solution to the Configurable Lola Analysis Problem would simply enu-
merate all configurations, check whether they are valid, and then apply the normal
algorithms for checking well-formedness and efficient-monitorability. In practice, this
approach quickly gets infeasible as the number of configurations grows exponentially
in the number of features of the specification. Therefore, a more efficient family-
based analysis is needed that can avoid the combinatorial blowup by exploiting
commonalities between (valid) configurations. Such all-in-one family-based analyses
are commonplace in feature-oriented system design [Thü+14].

Example 8.4 The Lola specification fragments shown in Figure 8.4 together form a
configurable Lola speciation Ξ = {EMFs, EMFc, FRs, FRc1}. In this case, there are 16
configurations, nine of which are valid. The valid configurations are:

{} {EMFs} {EMFc} {FRs} {FRc1}
{EMFs, FRs} {EMFs, FRc1} {EMFc, FRs} {EMFc, FRc1}

By checking each valid configuration individually, we can see that they are indeed
all well-formed and efficiently monitorable.

8.3.1 Family-Based Specification Analysis

For checking well-formedness and efficient-monitorability for all valid configurations
without an exponential blowup, we present a family-based analysis that exploits
commonalities between configurations. Instead of using a dependency graph for each
configuration in isolation, we construct a family dependency graph:

Definition 8.3.3 Let Ξ = {L1,… , L𝑚} be a configurable Lola specification with
𝑚 features over the stream variables 𝕊. The family dependency graph for Ξ is a
directed, weighted, and feature-labeled multi-graph𝐺 = ⟨𝕊, 𝐸⟩where 𝐸 is the set of
edges. An edge is a quadruple ⟨𝑠𝑥𝑠𝑦, 𝑧, 𝑖⟩ where 𝑠𝑥, 𝑠𝑦 ∈ 𝕊, 𝑧 ∈ ℤ, and 1 ≤ 𝑖 ≤ 𝑚.
The set 𝐸 of edges contains an edge ⟨𝑠𝑥𝑠𝑦, 𝑧, 𝑖⟩ if and only if 𝑠𝑥 ∈ Dom(L𝑖) and the
expression L𝑖(𝑠𝑥) contains an expression 𝑠𝑦[𝑧, 𝑐] for some constant 𝑐.

214 CHAPTER 8. VARIABILITY-AWARE MONITORING

According to Definition 8.3.3, the existence of an edge ⟨𝑠𝑥, 𝑠𝑦, 𝑧, 𝑖⟩ in 𝐸 records the
fact that the stream for 𝑠𝑥 depends on the stream for 𝑠𝑦 with an offset of 𝑧 when
activating the feature L𝑖. The family dependency graph is a superimposition of the
dependency graphs of each individual feature with additional edge labels for the
features they belong to. Hence, the following criterion is easily established:

Lemma 8.3.1 If the family dependency graph of a configurable Lola specification
does not contain a zero-weight cycle, then every valid configuration is well-formed.

Proof Sketch. Clearly, the dependency graph of every valid configuration is a subgraph
of the family dependency graph. Therefore, if the family dependency graph does
not contain a zero-weight cycle then the dependency graphs of any individual valid
configuration cannot contain such a cycle either.

Figure 8.5 shows the family dependency graph (without the dashed lines) for
the configurable Lola specification based on the fragments in Figure 8.4. It does not
contain any zero-weight cycles, in fact, it does not contain any cycles at all. Hence,
all valid configurations for the configurable Lola specification are well-formed.

fuel_rate

fuel_air_equivalence_sensor

fuel_rate_sensor
⟨0, FRs⟩

maf_sensor

⟨0, FRc⟩

⟨0, FRc2⟩

⟨0, FRc⟩

emfemf_sensor
⟨0, EMFs⟩

⟨0, FRc2⟩⟨0, EMFc⟩

⟨0, EMFc⟩

Figure 8.5: Family dependency graph for the configurable Lola specification based
on Figure 8.4. The arrows are to be read as “depends on” with the given offset and
feature. The dashed lines are introduced by the FRc2 feature (see Figure 8.6).

Lemma 8.3.1 gives us a sufficient criterion for well-formedness of every valid
configuration. This criterion can be checked with the same algorithms and techniques
as checking well-formedness of an individual specification. In contrast to the naive
approach, which would consider each configuration individually, these algorithms
can now exploit commonalities between the dependency graphs of the different con-
figurations thereby mitigating the exponential blowup due to the often exponential

8.3. CONFIGURABLE MONITORING WITH LOLA 215

number of configurations. While the criterion is sufficient for well-formedness, it
is more strict than required. We now relax the criterion towards a necessary and
sufficient criterion for well-formedness.

Family-Based Well-Formedness. Intuitively, only those zero-weight cycles pose
a problem that can actually arise from a valid configuration, i.e., a set of pairwise
composable features. By adding this additional condition for cycles, we obtain the
following theorem for family-based well-formedness:

Theorem 8.3.1 All valid configurations of a configurable Lola specification Ξ
are well-formed iff each zero-weight cycle in the family dependency graph of Ξ
contains at least two edges labeled with features which are not composable.

Proof Sketch. The dependency graph of an individual valid configuration can be
obtained from the family dependency graph by removing all edges corresponding to
features which are not enabled. Now, if a zero-weight cycle in the family dependency
graph contains at least two edges labeled with features which are not composable, this
cycle will not be included in a dependency graph of any of the valid configurations
as a valid configuration can only contain features which are pairwise composable.
If this is the case for all zero-weight cycles in the family dependency graph, then
none of these cycles will be included in the dependency graph of any of the valid
configurations. As a result, all valid configurations are well-formed. Conversely, if
a zero-weight cycle exists which does not contain two edges that are labeled with
non-composable features, then the respective features on this cycle can be composed
to form a valid configuration which is not well-formed.

FR computation fragment (FRc2)

input maf_sensor: Float64; // g/s

input emf: Float64; // g/s

output fuel_rate = emf - maf_sensor;

Figure 8.6: Additional feature for computing the fuel rate from the EMF and MAF.

Example 8.5 As an example, consider the feature FRc2 as shown in Figure 8.6 to be
added to the configurable Lola specification based on Figure 8.4. This introduces
additional edges in the dependency graph (dashed edges in Figure 8.5). With this
feature, the family dependency graph now contains one elementary zero-weight
cycle between fuel_rate and emf. Indeed, the valid configuration with both the
FRc2 and EMFc feature is not well-formed. Enabling both features would mean that
the fuel_rate should be computed based on the emf but at the same time the emf

216 CHAPTER 8. VARIABILITY-AWARE MONITORING

should be computed based on the fuel_rate. This cycle means that the monitor
for this configuration is not well-defined. Note that FRc2 and EMFc are composable
because they contain no overlapping definitions. With the family-based analysis
this can be detected solely relying on the family dependency graph and without
considering all 25 = 32 configurations one-by-one.

Complexity. As the zero-weight cycle problem, the problem of finding a zero-
weight cycle not containing two edges that are labeled with incompatible features is
also NP-complete. It is more general than the zero-weight cycle problem because it
contains an additional condition on cycles: Instances of the traditional zero-weight
cycle problem can be encoded by having a specific feature for each edge. Nevertheless,
the problem still lies in NP because it is easy to verify in polynomial time that a cycle
is zero-weight and does not contain two edges that are labeled with non-composable
features. Hence, the complexity class of the problem remains unchanged.

Notably, the family dependency graph is typically larger than the graphs for the
individual configurations. To reduce its size, one can collapse all edges ⟨𝑠𝑥, 𝑠𝑦, 𝑧, 𝑖⟩
between the same vertices 𝑠𝑥 and 𝑠𝑦 that have the same weight 𝑧 into a single edge
⟨𝑠𝑥, 𝑠𝑦, 𝑧, 𝐼⟩ where 𝐼 is the set of all feature labels found on any of these edges. This
can drastically reduce the number of edges and thereby the number of potential
zero-weight cycles to be considered by the analysis.

Efficient Monitorability. Besides well-formedness, efficient monitorability is
a property that is of particular interest for Lola specifications. Efficiently moni-
torable specifications are guaranteed to be monitorable with a bounded amount of
memory independent of the length of the involved streams. A Lola specification is
efficiently monitorable if and only if its dependency graph does not have positive
cycles [DAn+05]. Our family-based analysis and Theorem 8.3.1 is easily extended to
the question whether all configurations are efficiently monitorable:

Theorem 8.3.2 All valid configurations of a configurable Lola specification Ξ
are efficiently monitorable iff every positive-weight cycle in its feature dependency
graph contains at least two edges labeled with features which are not composable.

Proof Sketch. The reasoning for Theorem 8.3.2 is analogous to Theorem 8.3.1.

Practical Impact. Taken together Theorem 8.3.1 and Theorem 8.3.2 provide an
effective solution for the Configurable Lola Analysis Problem. Checking the family
dependency graph instead of the dependency graph of each valid configuration in iso-
lation canmitigate the exponential blowup in the number of features. It allowsmaking
sure that all valid configurations indeed give rise to a well-formed and efficiently
monitorable specification. This, in turn, means that a monitor can be synthesized

8.4. CONFIGURATION MONITORING 217

and that its memory consumption will be bounded. Based on found zero-weight
cycles, valid configurations that would not lead to a well-formed specification can be
identified ahead-of-time, providing a static guarantee for configurations at runtime.
If the valid configurations are further restricted, e.g., by a feature diagram, then
zero-weight (or positive-weight) cycles not corresponding to a valid configuration
according to the additional restrictions can be ignored. Thereby, the presented analy-
ses extend to cases where not all valid configurations according to Definition 8.3.2
may be relevant in practice but only a subset of them.

We also like to mention that Lola specifications can be parametrized and that
parametrization can be used for configurable monitors. However, while emulating fea-
tures as we considered them with parameters and ite expressions (see Section 2.5.2) is
possible to some extent, the traditional well-formedness analysis will not understand
that the different cases of ite expressions are mutually exclusive. Thus, it would essen-
tially correspond to a coarse-grained analysis according to Lemma 8.3.1. Instead, the
analysis we propose here is more fine-grained. In addition, when emulating features
using parameters, the independent variables of all features would be merged with no
explicit distinction about which actually have to be provided and which are merely
an encoding artifact. Thus, our contributions complement parameters offering a more
fine-grained analysis and explicit treatment of features and independent variables.
Together, parameters and features as we considered them make Lola a perfect fit for
runtime verification of configurable systems.

8.4 Configuration Monitoring
Having addressed the configurable monitors challenge from an automaton- and
stream-based perspective, it remains to tackle the configuration monitoring challenge.
To this end, we instantiate the generic synthesis pipeline developed in Chapter 4 for
configuration monitor synthesis. A configuration monitor determines an a-priori
unknown static configuration of a running system.

8.4.1 Configuration Monitor Synthesis
Recall that configurable systems are commonly modeled as featured transition sys-
tems (FTSs) (see Section 2.4). Given an FTS 𝔉 = ⟨𝒮, 𝐼,Act,↠, 𝐹,Conf, 𝑔, 𝜄⟩ modeling
a system, we aim to synthesize a configuration monitor that takes observations
generated by the system and that produces configuration verdicts indicating which
configurations the system may have (cf. Definition 3.1.4).

Leveraging the techniques developed in Chapter 4, configuration monitors are
straightforward to synthesize given an FTS systemmodel. To this end, we first need to
define a verdict annotation as per Definition 4.1.1. Recall that the configuration verdict
domain is ⟨℘(Conf) ∖ {∅} , ⊆⟩ (see Definition 3.1.4), where Conf is the set of valid

218 CHAPTER 8. VARIABILITY-AWARE MONITORING

system configurations. Each configuration verdict 𝑣 ∈ ℘(Conf)∖{∅} corresponds to a
set of valid configurations the systemmay have. For purpose of configuration monitor
synthesis, we define the following verdict annotation over this verdict domain on
the underlying transition system ⟨𝒮, 𝐼,Act,↠⟩ of the FTS 𝔉:

𝜄(𝑠) ≔ ⟦𝜄(𝑠)⟧𝔹 ∩ Conf 𝜆(𝑠) ≔ Conf 𝛾(t) ≔ ⟦𝑔(t)⟧𝔹 ∩ Conf (8.2)

The resulting verdict oracle as per Definition 4.1.2 essentially combines the feature
guards of all taken transitions by conjunction. As a result, a VTS that is sound and
complete with respect to this verdict oracle and a given observation model produces
most specific configuration verdicts indicating which configurations the system
may have. Thus, a sound and complete VTS with respect to this verdict oracle is a
configuration monitor. It can be synthesized with the synthesis pipeline by applying
annotation tracking followed by sentinel pruning (recall Section 4.1.2).

Recall that in this case the sentinel verdict indicates that a certain run does not
actually exist in any valid configuration (see Section 4.1.2). The empty set is not a
part of the verdict domain, so if the conjunction of the guards is empty, the sentinel
verdict will be returned. If we can assume that the system can only be configured
towards valid configurations, which is the usual assumption, we can prune those
states from a VTS that have the sentinel verdict #. Otherwise, we may as well add
the empty set to the verdict domain to detect observations that do not conform to
any of the configurations of the FTS.

Conf

{𝑐s∧e, 𝑐s}

{𝑐s} {𝑐s}

{𝑐s∧e} {𝑐s∧e} {𝑐s∧e}

{𝑐e} {𝑐e}

si
gn

enc

enc

sen
d

sign

send

send sign

enc

send

enc

Figure 8.7: VTS constructed from the FTS model of the email system (see Figure 2.5)
by annotation tracking with sentinel pruning.

Example 8.6 Figure 8.7 depicts the VTS constructed by annotation tracking with
sentinel pruning (see Section 4.1.2) from the email system model depicted in Fig-
ure 2.5. Notably, due to sentinel pruning, the VTS does not accept traces that do not

8.4. CONFIGURATION MONITORING 219

correspond to any valid configuration. For instance, while possible in the underlying
transition system, the trace

sign ⋄ send ⋄ enc

does not actually correspond to any valid configuration. If sign is directly followed
by send, then the email system has been configured with the sign feature but not
with the encryption feature, otherwise, the email would have to be encrypted before
it is sent. Hence, such a sequence cannot be followed by enc. The VTS correctly
recognizes this and produces the verdict {𝑐s}, when fed with the trace sign ⋄ send,
indicating that only the sign feature is enabled. It also correctly recognizes the other
configurations as soon as possible, i.e., the verdicts are indeed factually correct and
most specific. For instance, when fed the trace sign ⋄ enc, it will indicate that both,
the signing and the encryption feature must be enabled.

To check whether a system has been configured correctly, the verdict function of
a configuration monitor can be redefined after synthesis to produce truth verdicts.
Given a configuration monitor ⟨𝒬, 𝐽,Obs,⇾,℘(Conf) , ⊆, 𝜈⟩ over some set Conf of
valid configurations and a non-empty set 𝐶 ⊆ Conf of correct configurations, we
define the following alternative verdict function 𝜈′∶ 𝒬 → 𝔹3:

𝜈′(𝑞) ≔
⎧

⎨
⎩

t if 𝜈(𝑞) ⊆ 𝐶
f if 𝜈(𝑞) ∩ 𝐶 = ∅
? otherwise

Substituting this function into the original configuration monitor, we obtain a VTS
⟨𝒬, 𝐽,Obs,⇾, 𝔹3, ⊑, 𝜈′⟩. This VTS produces t if the configuration of the system is
certainly correct, i.e., all possible configurations are correct. In case all possible
configurations are not correct, it produces f. Otherwise, it produces ?, indicating
that there is not sufficient information to conclude whether the configuration of the
system is correct. With this transformation, configuration monitors can be used to
answer operational questions regarding the correct configuration of a system, e.g.,
whether manufacturing or medical equipment has been correctly configured to safely
proceed to the next step (recall (Q3) from Chapter 1).

Online Reconfiguration. Analogously to fault diagnosis (recall discussion in
Section 4.1.1 and Section 7.2), extending configuration monitors to settings with
online reconfiguration is straightforward by annotating states of the system model
with sets of configurations a system may have in each state, respectively. That is,
instead of annotating states with the set of all valid configurations Conf as per (8.2),
the annotation is restricted to those configurations a system may have when being
in a given state. The synthesis pipeline can then used as is.

220 CHAPTER 8. VARIABILITY-AWARE MONITORING

Furthermore, without sentinel pruning, one would also get the sentinel verdict #
in cases where the system has been reconfigured at runtime leading to observations
that do not belong to any single valid configuration. So, configuration monitors can
also be used to detect online reconfigurations.

8.4.2 Evaluation on Community Benchmarks

To demonstrate the efficacy of the developed synthesis techniques, we consider con-
figuration monitors synthesized from established FTS benchmarks of the configurable
systems community: Svm and Minepump [Cla10], and Aerouc5, Cpterminal, and
Claroline [Dev17]. Table 8.1 (next page) shows an overview of these benchmarks
and their important characteristics.

Svm Minepump Aerouc5 Cpterminal Claroline

|Conf| 24 32 256 4 774 820 193 280

|Act| 12 23 11 15 106

FTS 9/13 25/41 25/46 11/17 106/11 236

monitor 87/120 560/992 94/178 102/161 5 431 296/575 717 376

minimized 87/120 496/928 56/156 93/152 65 536/6 946 816

relaxed 17/26 103/337 4/4 11/26 65 536/1 515 520

Table 8.1: For each model, the rows show (1) the number of valid configurations, (2)
the number of actions, (3) the size of the FTS (states/transitions), (4) the size of the
monitor constructed from the FTS, and the size of the monitor after (5) language-
preserving and (6) language-relaxing minimization.

As part of Momba, we developed an implementation of the synthesis pipeline
instantiated for configuration monitors where we use BDDs [Bry86] to succinctly
represent and operate on sets of configurations. The implementation uses the well-
established CUDD library [Som15].38 The implementation first applies annotation
tracking with sentinel pruning to the FTSs (as discussed above), followed by observ-
ability projection, determinization, and minimization. This leads to deterministic,
minimal, sound, and complete configuration monitors.

The following experiments have been conducted on a 16 core AMD Ryzen 9 5950X
CPU with 128GiB of RAM running Ubuntu 22.04. The source code, models, and data
used for the experiments presented here is available as part of artifact (AT1). In our

38 OxiDD [Hus+24] has not yet been released at the time of development. In future versions, we plan to
switch from CUDD to OxiDD, towards a state-of-the-art symbolic integration.

8.4. CONFIGURATION MONITORING 221

evaluation, we aim to answer the following research questions concerning our novel
contribution of configuration monitors:

(CMRQ1) How do monitor sizes scale with the number of configurations?

(CMRQ2) What are the potential space savings of minimization?

(CMRQ3) How does partial observability impact the specificity of verdicts?

(CMRQ1): How do monitor sizes scale with the number of configurations? Except
for Claroline, the size of the FTSs and the number of configurations is comparably
small. Note that a configuration monitor may need to distinguish all possible configu-
rations, potentially leading to an exponential blowup. Table 8.1 shows the size of the
configuration monitors prior to minimization (4) and after minimization (5,6). We ob-
serve across all benchmarks that configuration monitors can be significantly smaller
than the number of configurations would suggest. Claroline shows the greatest
divergence with roughly 8 ⋅ 108 configurations while the monitor has about 5 ⋅ 106

states. A similar but not as extreme observation can be made about Aerouc5 and
Cpterminal. Monitor sizes also influence the construction timings. The Claroline
monitor synthesis took around seven minutes, while for all other benchmarks the
synthesis (including determinization and minimization) took only a few milliseconds.
Reachability analysis on Claroline was already shown to be challenging [Bee+19;
Bee+22]). While known to be challenging, even for Claroline, our techniques allow
for fast and effective configuration monitor synthesis.

(CMRQ2): What are the potential space savings of minimization? Table 8.1 shows
the size of the monitors after normal (5) and language-relaxing (6) minimization,
respectively (see Section 4.4). For the latter, we also removed self loops, i.e., the
monitor stays in its state if a non-enabled action is observed. In particular, language-
relaxing minimization reduces the number of states significantly, leading to very
small monitors. For Aerouc5, Cpterminal, and Claroline, we discover that the
number of states is even further reduced. So, we conclude that minimization can
indeed significantly reduce VTS sizes. Noteworthily, the number of states provides
an upper bound on the number of configurations which can be distinguished by
observation. In the extreme case, Claroline, this number is four orders of magnitude
lower than the number of configurations. Thus, most configurations are indistin-
guishable by an observer, even under full-observability. So, as a byproduct, our work
on configuration monitoring has revealed an explanation for successes reported in
family-based analysis [Cla+13]. Family-based analyses are effective precisely because
most configurations share behavior. The same property is also what enables the
effective synthesis of configuration monitors.

222 CHAPTER 8. VARIABILITY-AWARE MONITORING

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = |Act|

Svm 26% (0%) 61% (23%) 79% (26%) 83% (33%) 83%

Minepump 26% (0%) 45% (0%) 60% (0%) 71% (0%) 79%
Aerouc5 25% (0%) 44% (0%) 44% (0%) 44% (0%) 44%

Cpterminal 24% (0%) 37% (0%) 40% (0%) 40% (8%) 40%

Table 8.2: Maximal (minimal) expected percentage of ruled-out configurations after
1 000 steps over all combinations of 𝑘 observable actions.

(CMRQ3): How does partial observability impact the specificity of verdicts? To
answer this question, we employ the following methodology: We construct monitors
where only a limited number of 𝑘 actions of Act are considered to be observable. For
this, we range over all subsets of Act with 𝑘 elements, for 1 ≤ 𝑘 ≤ 4 and 𝑘 = |Act|,
and employ Monte Carlo simulation to compute the expected percentage of ruled-out
configurations after 1 000 steps. To this end, 160 ⋅ 103 runs, each of length 1 000, are
simulated through the system models and observations are fed to the synthesized
monitor.39 For each of these runs, we uniformly sample a configuration and choose
actions uniformly at random. This gives us a set of expected percentages for each 𝑘
of which we report the maximum and minimum in Table 8.2. In total, for Table 8.2,
we synthesized 14 200 different monitors and conducted approximately 2 272 ⋅ 106

simulation runs. Exploiting parallelization, this took 2.5 hours on our benchmark
machine. Note that this approach based on Monte Carlo simulation is unsuitable for
Claroline as the huge number of valid configurations would require many more
runs to obtain statistically significant results. Hence, we omit it here.

Looking at the results in Table 8.2, we see that for Aerouc5 and Cpterminal,
on average only around 42% of configurations can be ruled out after 1 000 steps
(which is sufficient for the monitor to converge on a verdict). In contrast, for Svm and
Minepump, on average 81% of configurations can be ruled out. This fits our earlier
observation that the monitors for the latter benchmarks have a higher number of
states compared to the number of valid configurations than Aerouc5, Cpterminal,
and Claroline. Thus, they can distinguish more configurations.

The results also show that the precise set of actions is crucial, as otherwise the
specificity of the verdicts may not improve at all. For instance, for Aerouc5, with
𝑘 = 2 observable actions, we already can obtain optimal verdicts, while even with
𝑘 = 4, there are sets of observable actionswherewe cannot discern any configurations
at all. For Svm 𝑘 = 4 and for Cpterminal 𝑘 = 3 actions can be sufficient. For
Minepump, no 𝑘-combination for 𝑘 ≤ 4 is sufficient. Note that the number of possible

39 These numbers provide a good tradeoff between noise and experiment running time.

8.5. DISCUSSION 223

subsets of Act is 2|Act|, hence, we did not investigate anything beyond 𝑘 = 4, except
𝑘 = |Act|, which represents full observability. For our benchmarks, we conclude that
is often suffices to observe just a small set of decisive actions.

8.5 Discussion

In this chapter, we tackled two significant challenges that arise for runtimemonitoring
in the context of configurable systems.

Towards addressing the configurable monitors challenge, we extended the theory
around VTSs developed in this thesis with features. The resulting notion of FVTSs
provides a solid foundation for configurable monitors. We demonstrated the practical
utility of this approach by showing how to synthesize FVTSs from sets of FLTL
formulas building upon existing LTL monitoring techniques [BLS06b]. Furthermore,
we introduced a configurable variant of the stream-based specification language Lola,
together with family-based algorithms for effectively determining well-formedness
and efficient-monitorability for all possible valid configurations. We presented a use
case for configurable Lola centered around exhaust emission monitoring. Our family-
based analysis presents a substantial improvement over existing work where multiple
parts of a specification are pieced together in an ad-hoc text-based fashion [Bie+21;
Bie+23], without any guarantees on the well-formedness and efficient-monitorability
of the resulting composite specifications.

As a system’s configuration may be unknown at runtime and not readily exposed,
we further presented configuration monitoring. Tackling the configuration moni-
toring challenge, we showed how the techniques developed in Chapter 4 can be
leveraged for configuration monitor synthesis from FTSs. Conceptually, synthesizing
configuration monitors has then been straightforward due to the flexibility of the
generic verdictor algorithms we developed earlier in this thesis. Within the broader
aim of this thesis, we have established that configuration monitors can be used to
answer operational questions regarding the correctness of a system’s configuration
(recall (Q3) from Chapter 1). We further validated this synthesis approach on FTSs
benchmarks from the configurable systems community. Our results show that con-
figuration monitors can be effectively synthesized, demonstrating the feasibility of
the verdictor synthesis pipeline. Furthermore, the results provide a new explanation
for successes seen in family-based system analysis.

Other Runtime Verification Techniques. We have introduced featured LTL₃
runtime verification as well as configurable Lola. For presentational simplicity, we
considered the original variant of Lola [DAn+05]. Our extension towards config-
urable Lola is orthogonal to the extensions introduced by Lola 2.0 [Fay+16] and
RTLola [Fay+19; Bau+20]. It appears straightforward to extend our family-based

224 CHAPTER 8. VARIABILITY-AWARE MONITORING

analysis approach to these extensions. Besides LTL₃ runtime verification and Lola,
the huge body of research on runtime verification has developed many more highly
valuable techniques (see Chapter 1 for some examples). With regard to configurable
monitors, it remains an open challenge to explore how those can be made variability-
aware and harvested for configurable monitoring.

Continuous Time Configuration Monitoring. While we discussed configura-
tion monitoring in the discrete-time setting, an extension to the continuous-time
setting is straightforward. To this end, a systemmodel in terms of a featured timed au-
tomaton [Cor+12] may be given. Analogously to the verdict annotation derived from
an FTS system model for configuration monitoring, a featured timed automaton can
be used to derive verdict annotations as required for the continuous time verdictor
algorithm developed in Chapter 5. This algorithm can than be used for configuration
monitoring in the continuous time setting with timing imprecisions. The ease of
this extension really highlights the power of the generic approach presented in this
thesis, demonstrating its adaptability across different settings.

Self-Adaptive Monitoring. With configurable monitors and configuration moni-
tors, we have developed solid foundations for further advances in variability-aware
monitoring. In particular, by combining configurable monitors with configuration
monitors, the techniques contributed by this thesis enable a powerful self-adaptive
monitoring paradigm where a configurable monitor is configured based on the config-
uration determined by a configuration monitor. Related to this idea is the integration
and combination of verdictors for different domains. For instance, observations in-
dicative of a fault may vary with the configuration of a system and thus require
the combination of a configuration monitor with a fault diagnoser. We believe that
exploring such combinations in future work will enable many more applications
beyond what seems obvious now.

Chapter 9

Conclusion and Outlook

Maintaining a consistently safe and functional state amid complex operational de-
mands, potential technical failures, and human errors is paramount for safety- and
mission-critical systems. This is particularly evident in domains like aviation, manu-
facturing, and healthcare, where any failures can directly impact human lives and lead
to significant financial losses. For instance, accurate system diagnostics in aviation
can be life-saving, while in manufacturing, ensuring correct configurations is crucial
to avoid costly downtimes and ensure worker safety. Addressing these challenges
requires not only rigorous design-time strategies but also robust techniques that
provide timely and accurate information about a system’s operational state at run-
time. These techniques must be capable of answering critical operational questions,
such as whether a system is operating within its safe limits (Q1), whether any vital
components have failed (Q2), or whether the system is correctly configured (Q3).

In practice, obtaining accurate information about a system’s operational state is
complicated by observational imperfections, such as limited observability, delays,
losses, and out-of-order observations. These imperfections introduce uncertainties
that can obscure the true state of a system, hampering its accurate assessment. Yet,
accurate information is often a prerequisite for effective interventions and safeguard-
ing, as it ensures that a system can be reliably steered back to a safe and functional
state when anomalies or failures occur. Conversely, inaccurate information can lead
to misguided interventions, potentially exacerbating the situation, causing system
failures, or leading to other issues which put the system at risk.

Against this backdrop, the central challenge addressed in this thesis is the de-
velopment of techniques to obtain provably accurate information about a system’s
operational state. Following a model-based methodology, the aim has been to develop
techniques that not only produce provably accurate information with respect to a
given formal model of a system while considering potential observational imperfec-
tions, but also are sufficiently generic to enable novel applications.

225

226 CHAPTER 9. CONCLUSION AND OUTLOOK

Addressing this challenge, this thesis presents a range of contributions, from
theoretical foundations to generic algorithms and concrete applications. We demon-
strated that the developed techniques are broadly applicable across diverse domains,
including runtime verification, fault diagnosis, and configurable systems. A partic-
ularly novel area opened up by the contributions of this thesis is variability-aware
monitoring, tackling significant challenges when it comes to monitoring configurable
systems. The practical applicability of the developed techniques is further enhanced
by ensuring that they can be robust against a variety of observational imperfections
typically unavoidable in practice.

Retrospective. As a starting point and rigorous foundation for the contributions of
this thesis, we have presented a theoretical framework in Chapter 3. This framework
comprises formalizations of key concepts underpinning this thesis, including verdict
domains, verdict transition systems, observation models, and verdict oracles. The
theoretical framework has culminated in a precise formal characterization for what
it means to produce accurate information about a system’s operational state. Within
this framework, such information takes the form of verdicts produced based on
observations by a verdict transition system modeling a verdictor.

To produce provably accurate verdicts, a verdictor must be proven to be sound
and complete with respect to a given system model, observation model, and verdict
oracle. Such a verdictor produces verdicts that are as specific as possible without
sacrificing correctness. Besides playing a pivotal role for the generic verdictor algo-
rithms presented in Chapter 4 and Chapter 5, we have showcased and discussed how
the theoretical framework can serve as a unifying common ground for previously
independent research strands on runtime verification and fault diagnosis. While their
commonalities had been discussed before [Hav+10], we are not aware of any work
explicitly providing a unifying formal foundation as we have done.

Facilitated by the theoretical framework, we have then developed several generic
algorithms for verdictors in Chapter 4 and Chapter 5. These algorithms allow the
synthesis and implementation of provably accurate verdictors across a variety of
different applications in both discrete- and continuous-time settings.

For the discrete-time setting, we have presented a modular verdictor synthesis
pipeline that follows an annotative approach resting on verdict-annotated system
models. Through versatile transformations, the pipeline can be instantiated to syn-
thesize verdictors that produce most specific predictions and that account for limited
observability, unbounded and bounded losses, unbounded and bounded delays, as
well as out-of-order observations. Since we established general theorems regard-
ing these transformations, they can also be applied to verdictors synthesized with
third-party techniques, as exemplified in Section 7.1.1. With language-relaxing mini-
mization we furthermore have presented an algorithm for obtaining even smaller
verdictors, at the cost of tolerating additional observation sequences.

227

For the continuous-time setting, we have presented a verdictor algorithm ca-
pable of processing observations with explicit timing information that are subject
to timing imprecisions. As for the discrete-time setting, this algorithm is based on
verdict annotations, allowing for a broad range of applications. A verdictor based on
this algorithm produces accurate verdicts that are robust against varying latencies,
varying clock drift, and unknown clock offsets, while also being capable of handling
limited observability. While the algorithm’s running time grows exponentially in
the number of observations, we also introduced an over-approximative variant that
mitigates this issue at the cost of producing potentially less specific verdicts. This
over-approximative variant bounds the considered history and thereby achieves
space and time complexity bounded by the size of the model.

All constructions, transformations, and algorithms have been proven correct with
respect to the theoretical framework. By choosing appropriate verdict annotations,
we have demonstrated that they can indeed be used across diverse domains, including
runtime verification, fault diagnosis, and configurable systems.

As the contributions of this thesis are centered around formal models, we have
developed Momba to make formal modeling more accessible. In Chapter 6, we have
discussed Momba from a user perspective and have demonstrated its model construc-
tion, simulation, and analysis capabilities. Additionally, Momba has also served as
the core for the implementation and evaluation of the techniques presented in this
thesis. We evaluated Momba’s performance by comparing it to other state-of-the-art
tools. The results show that Momba can compete with state-of-the-art tools and even
outperform them with its alternative engine on multi-core systems. So, with Momba,
we contributed a tool that does implement the algorithms developed in this thesis
and is not only easy to use and straightforward to install but is also state-of-the-art
when it comes to the performance of its engine.

We have explored concrete applications of the developed techniques for run-
time verification and fault diagnosis in Chapter 7. We have demonstrated how these
techniques can be used to obtain robust and predictive runtime monitors and fault
diagnosers, generalizing and complementing existing constructions. We have instan-
tiated the techniques for full CTL runtime verification, and have introduced a new
diagnosis approach based on Boolean fault annotations and modal logic. Furthermore,
we have empirically validated the effectiveness of the verdictor algorithm for the
continuations-time setting with a case study on diagnosis in a real-time industrial
automation scenario. While not a comprehensive study on multiple real-world appli-
cations, our results are encouraging and show that the proposed over-approximative
algorithm scales well while still producing sufficiently specific verdicts. The appli-
cation for diagnosis of real-time systems relaxes the strict assumptions about the
observation of event timings inherent to previous works [Tri02; BCD05]. The appli-
cations considered in Chapter 7 demonstrate that the techniques developed in this
thesis can be used to answer pressing operational questions regarding the satisfaction

228 CHAPTER 9. CONCLUSION AND OUTLOOK

or violation of properties (Q1) and the presence of faults (Q2).
With variability-aware monitoring, we have introduced an entirely novel appli-

cation area in Chapter 8, addressing key challenges for monitoring of configurable
systems. Here, configurability of the system and its monitor are a concern and must
be matched. We have presented a featured variant of verdict transition systems and
leveraged it for the compositional synthesis of configurable monitors for sets of fea-
tured LTL formulas. With configurable Lola, we have also introduced an approach for
configurable stream-based monitoring. To this end, we have developed a family-based
analysis to determine well-formedness and efficient monitorability for all configura-
tions of a specification while avoiding an exponential blowup that would occur with
a naive consideration of each configuration individually. Finally, we have introduced
configuration monitors, which determine an a-priori unknown configuration of the
system, and have instantiated the techniques developed in Chapter 4 to synthesize
them. We have evaluated the techniques for the discrete-time setting on configu-
ration monitors. In addition to demonstrating practical effectiveness, our results
also provide an explanation for the successes seen in family-based model analysis.
Together these contributions enable adaptive monitoring, where a monitor is adapted
to an a-priori unknown configuration of a system based on the verdicts produced by
a configuration monitor. With configuration monitoring, the techniques developed in
this thesis can be used to anwser pressing operational questions regarding possible
system configurations and whether a system is configured correctly (Q3).

Conclusion. This thesis presents a host of cross-cutting contributions across
runtime verification, fault diagnosis, and configurable systems. It advances the state
of the art on a foundational level through the development of a theoretical framework
(Contribution FT). Building upon this framework, it introduces concrete algorithms
(Contribution TT) that have been proven correct and demonstrated to be practically
applicable across various applications and domains (Contribution TP). Additionally,
by providing state-of-the-art tooling with Momba (Contribution FP), this work also
ensures that these innovations are accessible and usable.

Through the comprehensive exploration and development of various techniques,
this thesis has made significant strides to address the central challenge of obtaining
provably accurate information about a system’s operational state. By combining
theoretical rigor with practical applicability, the work presented here not only pro-
vides robust solutions to the challenges posed by observational imperfections but
also introduces versatile tools that extend the reach of runtime verification and
fault diagnosis, while enabling variability-aware monitoring as a completely novel
application. The contributions made represent a meaningful advancement in the
capability to monitor, diagnose, and ensure the safety of complex systems in dynamic
and uncertain environments. This thesis has therefore laid a strong foundation for
future research and applications in these critical areas.

229

Prospects. While we have discussed concrete future work as part of the individual
chapters, we would like to emphasize here the broader potential of our contribu-
tions. First and foremost, the foundational and algorithmic building blocks we have
developed can be combined freely towards novel applications. Although, we have
showcased this potential on runtime verification, fault diagnosis, and variability-
aware monitoring, we believe that there is ample room for further exploration and
innovation. We envision such work to be complemented by comprehensive empirical
evaluations on multiple real-world case studies. With Momba and the tool support it
provides, we have already layed the foundations for such studies.

We view our work as a foundational starting point, and we anticipate that future
research can build upon this foundation to develop further versatile and powerful
verdictor algorithms, e.g., to account for other observational imperfections such as
noise or spurious observations which we did not consider here.

An especially promising direction for future research is the exploration of verdic-
tors in the context of explainability. Verdicts generated by the techniques developed
in this thesis have the potential to serve as explanations for system behavior. For
instance, identifying the occurrence of a fault or the presence of a certain feature can
explain why a system behaves in a particular way when considered in conjunction
with the system’s model. Furthermore, accurate verdicts bear a causal relation to
observations in line with established counterfactual theories of causation and explana-
tion [Lew73; HP01]. For instance, if a fault had not occurred, then some observations
would not have been made. Hence, having made said observations, one must conclude
that the fault indeed occurred. In other words, the observations are explained by a
verdict and in combination with the system’s model, the observation model, and the
verdict oracle. Causal explanations based on formal models and for configurable sys-
tems have recently also found some attention in recent literature [Bai+21; Dub+24].
Future research could further explore how verdicts can be systematically leveraged
as explanations, enhancing the interpretability and transparency of system behavior
for various stakeholders [Köh+19].

230 CHAPTER 9. CONCLUSION AND OUTLOOK

Appendix

231

Appendix A

Detailed Proofs

A.1 Modular Discrete-Time Verdictor Synthesis

A.1.1 Proof of Theorem 4.1.1
We restate Theorem 4.1.1 from the body of this thesis (p. 93).

Theorem 4.1.1 The VTS 𝔙#
𝔖,𝜅,𝜆,𝛾 is sound and complete with respect to the system

model 𝔖, the observation model ΩTrace, and the verdict oracle V𝜅,𝜆,𝛾.

For notational clarity, we simplify the notation as follows:

Ω ≔ ΩTrace 𝔙 ≔ 𝔙#
𝔖,𝜅,𝜆,𝛾 V ≔ V𝜅,𝜆,𝛾

Proof. As per Lemma 3.4.1, 𝔙 = ⟨𝒬, 𝐽,Act,⇾, 𝒱,⊑, 𝜈⟩ is sound and complete with
respect to 𝔖 = ⟨𝒮, 𝐼,Act,↠⟩, Ω, and V, iff it produces the most specific verdict V(𝜔)
as per (3.7) for every observation sequence 𝜔 ∈ ℒ⇂Ω(𝔖) in the observable language
of 𝔖. As per Definition 3.2.2, the verdict 𝜈(𝜔) produced by 𝔙 for a given observation
sequence 𝜔 is the join of the verdicts of the states reached after 𝜔.

Thus, we obtain the following proof goal:

∀𝜔 ∈ ℒ⇂Ω(𝔖) ∶ ⨆{ 𝜈(𝑞) | 𝑞 ∈ After𝔙(𝜔) }⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
𝜈(𝜔) as per Definition 3.2.2

= ⨆{V(𝜌) | 𝜌 ∈ Runs(𝜔) }⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
V(𝜔) as per (3.7)

(G1)

Here, Runs(𝜔) is the set of runs of the system as per (3.4) that may generate 𝜔. As Ω
is the trace observation model (see Definition 3.3.3) we have:

Runs(𝜔) = { 𝜌 ∈ Runs(𝔖) | Trace(𝜌) = 𝜔 } (P1)

To prove (G1), let us distinguish the cases 𝜔 = 𝜖 and 𝜔 ≠ 𝜖.

233

234 APPENDIX A. DETAILED PROOFS

Case 𝜔 = 𝜖. If 𝜔 is empty, then the following transformations apply:

𝜈(𝜖) as per Definition 3.2.2

⏞⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⏞
⨆{𝜈(𝑞) | 𝑞 ∈ After𝔙(𝜖) }

per (2.2)

= ⨆{𝜈(𝑞) | 𝑞 ∈ 𝐽 }

per Definition 4.1.3

= ⨆{𝜅(𝑠) ⊓ 𝜆(𝑠) | 𝑠 ∈ 𝐼 }

per Definition 4.1.2

= ⨆{V(𝜌) | 𝜌 ∈ Runs(𝜖) }⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
V(𝜖) as per (3.7)

This concludes the proof for the case 𝜔 = 𝜖.

Case 𝜔 ≠ 𝜖. For the case 𝜔 ≠ 𝜖, we show (G1) by structural induction on 𝜔. To
this end, we first need to strengthen (G1) as follows:

𝑋(𝜔)

⏞⎴⎴⏞⎴⎴⏞After𝔙(𝜔)
= { ⟨𝑠′𝑛, 𝜅(𝑠1) ⊓ ⨅ { 𝛾(t) | ⟨⋅, t⟩ ∈ 𝜌 }⟩ || 𝜌 = (⟨𝑠𝑖, 𝛼𝑖, 𝑠′𝑖⟩)

𝑛
𝑖=1 ∈ Runs(𝜔) }⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝑌(𝜔)

(G2)

In the following, we refer to the constituents of (G2) by 𝑋(𝜔) and 𝑌(𝜔) as indicated
above. Now, if (G2), then the following transformations apply:

𝜈(𝜔) as per Definition 3.2.2

⏞⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⏞
⨆{𝜈(𝑞) | 𝑞 ∈ After𝔙(𝜔) }

per (G2) and Definition 4.1.3

= ⨆{𝜅(𝑠1) ⊓ (⨅{ 𝛾(t) | ⟨⋅, t⟩ ∈ 𝜌 }) ⊓ 𝜆(𝑠′𝑛) || 𝜌 = (⟨𝑠𝑖, 𝛼𝑖, 𝑠′𝑖⟩)
𝑛
𝑖=1 ∈ Runs(𝜔) }

per Definition 4.1.2

= ⨆{V(𝜌) | 𝜌 ∈ Runs(𝜖) }⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
V(𝜖) as per (3.7)

Thus, (G2) strengthens (G1) and it remains to show (G2). We proceed by structural
induction. The base case is 𝜔 = 𝑎 for some 𝑎 ∈ Act as 𝜔 ≠ 𝜖.

Base Case 𝜔 = 𝑎. The following transformations apply:

𝑋(𝑎)

⏞⎴⎴⏞⎴⎴⏞After𝔙(𝑎)

A.2. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM 235

per (2.2) and (2.1)

= { ⟨𝑠′, 𝑣′⟩ ∈ 𝒬 | ∃ ⟨⟨𝑠, 𝑣⟩ , 𝑎, ⟨𝑠′, 𝑣′⟩⟩ ∈ ⇾, ⟨𝑠, 𝑣⟩ ∈ 𝐽 }
per Definition 4.1.3

= { ⟨𝑠′, 𝑣′⟩ ∈ 𝒬 | ∃ ⟨𝑠, 𝑎, 𝑠′⟩ ∈ ↠, 𝑠 ∈ 𝐼, 𝑣′ = 𝜅(𝑠) ⊓ 𝛾(⟨𝑠, 𝑎, 𝑠′⟩) }
per (P1)

= { ⟨𝑠′, 𝜅(𝑠) ⊓⨅{ 𝛾(t) | ⟨⋅, t⟩ ∈ 𝜌 }⟩ || 𝜌 = ⟨𝑠, 𝑎, 𝑠′⟩ ∈ Runs(𝑎) }⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝑌(𝑎)

This concludes the base case of the induction.
Induction Step 𝜔′ = 𝜔 ⋄ 𝑎. The following transformations apply:

𝑋(𝜔⋄𝑎)

⏞⎴⎴⎴⏞⎴⎴⎴⏞After𝔙(𝜔 ⋄ 𝑎)
per (2.2) and (2.1)

= { ⟨𝑠′, 𝑣′⟩ ∈ 𝒬 | ∃ ⟨⟨𝑠, 𝑣⟩ , 𝑎, ⟨𝑠′, 𝑣′⟩⟩ ∈ ⇾, ⟨𝑠, 𝑣⟩ ∈ After𝔙(𝜔) }
per the induction hypothesis

= { ⟨𝑠′, 𝑣′⟩ ∈ 𝒬 | ∃ ⟨⟨𝑠, 𝑣⟩ , 𝑎, ⟨𝑠′, 𝑣′⟩⟩ ∈ ⇾, ⟨𝑠, 𝑣⟩ ∈ 𝑌(𝜔) }
per Definition 4.1.3

= { ⟨𝑠′, 𝑣 ⊓ 𝛾(⟨𝑠, 𝑎, 𝑠′⟩)⟩ ∈ 𝒬 | ∃ ⟨𝑠, 𝑎, 𝑠′⟩ ∈ ↠, ⟨𝑠, 𝑣⟩ ∈ 𝑌(𝜔) }
per (P1) and definition of 𝑌

= { ⟨𝑠′𝑛, 𝜅(𝑠1) ⊓⨅{ 𝛾(t) | ⟨⋅, t⟩ ∈ 𝜌 }⟩ || 𝜌 = (⟨𝑠𝑖, 𝛼𝑖, 𝑠′𝑖⟩)
𝑛
𝑖=1 ∈ Runs(𝜔 ⋄ 𝑎) }⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝑌(𝜔⋄𝑎)

This concludes the structural induction and with it the proof of Theorem 4.1.1.

A.2 Robust Continuous Time Verdictor Algorithm

A.2.1 Proof of Lemma 5.2.1
We restate Lemma 5.2.1 from the body of this thesis (p. 132).

Lemma 5.2.1 For all observable actions 𝑎 ∈ OAct, observation times ↓𝑡 ∈ ℚ,
occurrence times ↑𝑡 ∈ ℝ, indices 𝑗, 𝑖 ∈ ℕ, and time-remapping functions 𝑟 as per
Definition 5.1.1, the following condition holds:

↑𝑡 ∈ ↑𝑇𝑟(⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩)⟺ ↓𝑡 ∈ ↓𝑇𝑟(⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩) (5.6)

Proof. Lemma 5.2.1 is established by the following transformations:

↑𝑡 ∈ ↑𝑇𝑟(⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩)

236 APPENDIX A. DETAILED PROOFS

per (5.5)

⟺ 𝑟−1(↓𝑡) − lmax(𝑎) ≤ ↑𝑡 ∧ ↑𝑡 ≤ 𝑟−1(↓𝑡) − lmin(𝑎)
per elementary arithmetic

⟺ 𝑟−1(↓𝑡) ≤ ↑𝑡 + lmax(𝑎) ∧ ↑𝑡 + lmin(𝑎) ≤ 𝑟−1(↓𝑡)
per Definition 5.1.1, 𝑟 is a bijection

⟺ ↓𝑡 ≤ 𝑟(↑𝑡 + lmax(𝑎)) ∧ 𝑟(↑𝑡 + lmin(𝑎)) ≤ ↓𝑡
per (5.4)

⟺ ↓𝑡 ∈ ↓𝑇𝑟(⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩)

This concludes the proof of Lemma 5.2.1.

A.2.2 Proof of Lemma 5.2.2

We restate Lemma 5.2.2 from the body of this thesis (p. 133).

Lemma 5.2.2 Given the drift parameter 𝛿 (recall Definition 5.1.1), the following
equation holds for any two timed observations ⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩ and ⟨𝑗′, ⟨↓𝑡′, 𝑎′⟩⟩:

MaxD(⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩ , ⟨𝑗′, ⟨↓𝑡′, 𝑎′⟩⟩)

= lmax(𝑎′) − lmin(𝑎) + {
(1 + 𝛿)(↓𝑡 − ↓𝑡′) if ↓𝑡 ≥ ↓𝑡′

(1 + 𝛿)−1(↓𝑡 − ↓𝑡′) otherwise

Proof. Let 𝜃 = ⟨𝑗, ⟨↓𝑡, 𝑎⟩⟩ and 𝜃′ = ⟨𝑗′, ⟨↓𝑡′, 𝑎′⟩⟩ be two timed observations. We start
by establishing the following transformations:

MaxD(𝜃, 𝜃′)
per (5.7)

= max
𝑟
(max ↑𝑇𝑟(𝜃) −min ↑𝑇𝑟(𝜃′))

per (5.5)

= max
𝑟
(𝑟(↓𝑡) − lmin(𝑎) − (𝑟(↓𝑡′) − lmax(𝑎′)))

per elementary arithmetic

= lmax(𝑎′) − lmin(𝑎) +max
𝑟
(𝑟(↓𝑡) − 𝑟(↓𝑡′))

Thus, it remains to show that:

max
𝑟
(𝑟(↓𝑡) − 𝑟(↓𝑡′)) = {

(1 + 𝛿)(↓𝑡 − ↓𝑡′) if ↓𝑡 ≥ ↓𝑡′

(1 + 𝛿)−1(↓𝑡 − ↓𝑡′) otherwise
(G1)

A.2. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM 237

To show (G1), let us distinguish the cases ↓𝑡 ≥ ↓𝑡′ and ↓𝑡 < ↓𝑡′.

Case ↓𝑡 ≥ ↓𝑡′. We also have 𝑟(↓𝑡) ≥ 𝑟(↓𝑡′) for all 𝑟 since time-remapping functions
are strictly monotone (see Definition 5.1.1). Hence, 𝑟(↓𝑡) − 𝑟(↓𝑡′) ≥ 0 for all 𝑟. Now, it
follows from the slope restriction (5.2) that max𝑟 (𝑟(↓𝑡) − 𝑟(↓𝑡′)) = (1 + 𝛿)(↓𝑡 − ↓𝑡′)
concluding the proof for the case ↓𝑡 ≥ ↓𝑡′.

Case ↓𝑡 < ↓𝑡′. We also have 𝑟(↓𝑡) < 𝑟(↓𝑡′) for all 𝑟 since time-remapping functions
are strictly monotone (see Definition 5.1.1). Hence, 𝑟(↓𝑡) − 𝑟(↓𝑡′) < 0 for all 𝑟. Now, it
follows from the slope restriction (5.2) that max𝑟 (𝑟(↓𝑡) − 𝑟(↓𝑡′)) = (1 + 𝛿)−1(↓𝑡 − ↓𝑡′)
concluding the proof for the case ↓𝑡 < ↓𝑡′.

A.2.3 Proof of Lemma 5.2.3
We restate Lemma 5.2.3 from the body of this thesis (p. 138).

Lemma 5.2.3 Assume given an observation sequence 𝜔′ consistent with some run
𝜌′, i.e., 𝜚(𝜌′) ▻ 𝜔′. For all prefixes 𝜔 ∈ Pref(𝜔′) of the observation sequence 𝜔′

there exists a prefix 𝜌 ∈ Pref(𝜌′) of the run 𝜌′ such that 𝜔 ∈ Ω(𝜌) where Ω is the
observation model as per Definition 5.2.4.

Proof. Let 𝜔′ be an observation sequence, 𝜌′ be a run consistent with 𝜔′, and 𝜔 ∈
Pref(𝜔′) be a prefix of 𝜔′. We prove Lemma 5.2.3 constructively by defining the prefix
𝜌 ∈ Pref(𝜌′). To this end, let 𝜌 be the minimal prefix of 𝜌′ such that

𝜚(𝜌) ⊇ { 𝑒 ∈ 𝜚(𝜌′) | ℛ(𝑒) ∈ 𝜔 } (P1)

where ℛ is the bijection witnessing 𝜚(𝜌′) ▻ 𝜔′. Condition (P1) requires that 𝜌
contains all events that have been observed on 𝜔. Note that such a prefix must exist
as 𝜌′ is a prefix of itself and it fulfills condition (P1). Hence, it remains to show that the
prefix 𝜌 indeed satisfies 𝜔 ∈ Ω(𝜌). Applying the definition of Ω (see Definition 5.2.4),
we obtain the following remaining proof goals:

∃𝜔″ ≥ 𝜔 ∶ 𝜚(𝜌) ▻ 𝜔″ (G1)

∃𝜍 ∈ Π(𝜌) ∶ Word(𝜍) ▻ 𝜔 (G2)

We prove both goals separately.

Goal (G1). Let 𝜔″ ≔ Word({ℛ(𝑒) | 𝑒 ∈ 𝜌 }). We have 𝜔′ ≥ 𝜔″ ≥ 𝜔 as 𝜌 contains
all events corresponding to the observations in 𝜔 according to (P1). Furthermore, we
have 𝜌 ▻ 𝜔″ as 𝜔″ contains exactly the observations corresponding to the events
that ocurred on 𝜌 and the same time-remapping function 𝑟 witnessing 𝜚(𝜌′) ▻ 𝜔′

also witnesses 𝜌 ▻ 𝜔″. This concludes the proof of (G1).

238 APPENDIX A. DETAILED PROOFS

Goal (G2). To prove (G2), we choose 𝜍 ≔ { 𝑒 ∈ 𝜚(𝜌) | ℛ(𝑒) ∈ 𝜔 }, i.e., 𝜍 must
contain exactly the events that have been observed on 𝜔. Again, it is easy to see that
Word(𝜍) ▻ 𝜔 because 𝜍 contains exactly the events which have been observed on
𝜔 and the same time-remapping function 𝑟 witnessing 𝜚(𝜌′) ▻ 𝜔′ also witnesses
Word(𝜍) ▻ 𝜔. Thus, it remains to show that 𝜍 ∈ Π(𝜌), i.e.:

{ 𝑒 ∈ 𝜚(𝜌) | ℛ(𝑒) ∈ 𝜔 } ∈ Π(𝜌) (P2)

To this end, we must show:

∀ ⟨⋅, ⟨↑𝑡, 𝑎⟩⟩ ∈ { 𝑒 ∈ 𝜚(𝜌) | ℛ(𝑒) ∉ 𝜔 } ∶ Dur(𝜌) ≤ ↑𝑡 + lmax(𝑎) (G3)

Condition (G3) requires that all events which have not been observed on 𝜔 also do
not need to be observed according to the definition of Π(𝜌), see (5.12). Towards a
proof of (G3) by contradiction, let us first establish:

Dur(𝜌) ≤ max { ↑𝑡 || ℛ(⟨⋅, ⟨↑𝑡, ⋅⟩⟩) ∈ 𝜔 } (P3)

Note that (P3) follows from the fact that 𝜌 is minimal. If (P3) were not to hold, then
we could remove the last element of the run and still satisfy condition (P1), i.e., in
this case 𝜌 would not be the minimal prefix satisfying (P1). This is the case because
if (P3) is not the case, then additional time passed after the events corresponding to
𝜔 occurred, which makes the prefix non-minimal.

Now, assume for the sake of contradiction that (G3) does not hold. Hence, there
exists an event 𝑒 = ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝜚(𝜌) such that 𝜃 = ℛ(𝑒) ∉ 𝜔 butDur(𝜌) > ↑𝑡+lmax(𝑎).
Applying (P3), we further obtain the following inequalities:

↑𝑡 + lmax(𝑎) < Dur(𝜌) ≤ max { ↑𝑡 || ℛ(⟨⋅, ⟨↑𝑡, ⋅⟩⟩) ∈ 𝜔 }

Hence, we in particular obtain the following inequality:

↑𝑡 + lmax(𝑎) < max { ↑𝑡 | ℛ(⟨⋅, ⟨↑𝑡, ⋅⟩⟩) ∈ 𝜔 }⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
(∗)

Let 𝑒′ = ⟨⋅, ⟨↑𝑡′, 𝑎′⟩⟩ with ⟨⋅, ⟨↓𝑡′, 𝑎′⟩⟩ = ℛ(𝑒′) ∈ 𝜔 be the event corresponding to the
maximum of the occurrence times in the set marked with (∗) in the inequality above.
For the occurrence time ↑𝑡′ of this event, we have:

↑𝑡 + lmax(𝑎) < ↑𝑡′ (P4)

The contradiction proving (G3) is obtained by establishing that ↓𝑡 < ↓𝑡′. Thus, 𝜃 ∈ 𝜔
but 𝜃 ∉ 𝜔. Recall that 𝜚(𝜌′) ▻ 𝜔′, hence, we have:

↓𝑡 ∈ ↓𝑇𝑟(𝑒) ∧ ↓𝑡′ ∈ ↓𝑇𝑟(𝑒′)
per (5.4)

A.2. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM 239

⟹ ↓𝑡 ≤ 𝑟−1(↑𝑡 + lmax(𝑎)) ∧ 𝑟−1(↑𝑡′ + lmin(𝑎′)) ≤ ↓𝑡′

per (P4) and monotonicity of 𝑟

⟹ ↓𝑡 ≤ 𝑟−1(↑𝑡 + lmax(𝑎)) < 𝑟−1(↑𝑡′ + lmin(𝑎′)) ≤ ↓𝑡′

per elementary arithmetic

⟹ ↓𝑡 < ↓𝑡′

Here, 𝑟 is the time-remapping function witnessing 𝜚(𝜌′) ▻ 𝜔′. This concludes the
proof of (G3) by contradiction and thus the proof of Lemma 5.2.3.

A.2.4 Proof of Theorem 5.3.1
We restate Theorem 5.3.1 from the body of this thesis (p. 140).

Theorem 5.3.1 Every VTS 𝔙 satisfying (5.18) is sound.

Proof. Theorem 5.3.1 states that V(𝜌′) ⊑ 𝜈(𝜔′) for all 𝜔′ ∈ ℒ⇂Ω (⟦𝔗⟧) and 𝜌′ ∈
Runs(𝜔′). Let 𝜔′ ∈ ℒ⇂Ω(⟦𝔗⟧) and 𝜌′ ∈ Runs(𝜔′). The proof goal is:

V(𝜌′) ⊑ 𝜈(𝜔′) (G1)

Instead of proving (G1) directly, we will prove the following proposition

∃𝜌 ∈ Pref(𝜌′) ∶ ∃𝜍 ∈ 𝐴(𝜔′) ∶ 𝜚(𝜌) ▻ Word(𝜍) (G2)

echoing (5.18) where 𝐴(𝜔′) is the set of active subsets of 𝜔′ as per (5.17). The proof
obligation (G2) implies the proof obligation (G1):

(G2)

⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞∃𝜌 ∈ Pref(𝜌′) ∶ ∃𝜍 ∈ 𝐴(𝜔′) ∶ 𝜚(𝜌) ▻ Word(𝜍)
per (5.18)

⟹ ∃𝜌 ∈ Pref(𝜌′) ∶ V(𝜌) ⊑ 𝜈(𝜔′)
per Proposition 5.0.1

⟹ V(𝜌′) ⊑ 𝜈(𝜔′)⏟⎵⎵⎵⏟⎵⎵⎵⏟
(G1)

The last step uses the fact that ∀𝜌 ∈ Pref(𝜌′) ∶ V(𝜌′) ⊑ V(𝜌), since the verdict oracle
is monotonic (see Definition 3.4.2 and Proposition 5.0.1).

It remains to show (G2). Given that 𝜌′ ∈ Runs(𝜔′), we have 𝜔′ ∈ Ω(𝜌′) which
according to Definition 5.2.4 means that there exists a 𝜔″ ≥ 𝜔′ such that 𝜚(𝜌′) ▻
𝜔″, i.e., 𝜔′ can be continued such that 𝜚(𝜌′) is consistent with the continuation.
From 𝜚(𝜌′) ▻ 𝜔″, we obtain witnesses ℛ′ and 𝑟 according to Definition 5.2.3, i.e.,
ℛ′∶ 𝜚(𝜌′) → 𝜔″ is the bijection and 𝑟 is the time-remapping function witnessing

240 APPENDIX A. DETAILED PROOFS

consistency of 𝜚(𝜌′) and 𝜔″. We establish (G2) by first constructing a prefix 𝜌 of 𝜌′

and then showing that 𝜚(𝜌) ▻ Word(𝜍) for some 𝜍 ∈ 𝐴(𝜔′) thereby instantiating the
existential quantification in (G2). Let 𝜌 be the maximal prefix of 𝜌′ such that:

{ℛ′(𝑒) | 𝑒 ∈ 𝜚(𝜌) } ⊆ 𝜔′

That is, 𝜌 is the maximal prefix that contains only events observed on 𝜔′. To show
the existential quantification in (G2), let 𝜍 be defined as follows:

𝜍 ≔ {ℛ′(𝑒) | 𝑒 ∈ 𝜚(𝜌) } (P1)

That is, 𝜍 contains exactly the observations of the events induced by 𝜌.
This leaves us with the following remaining proof goals:

𝜚(𝜌) ▻ Word(𝜍) (G3)

𝜍 ∈ 𝐴(𝜔′) (G4)

We prove both goals separately.

Goal (G3). Consistency of 𝜚(𝜌) and Word(𝜍) is witnessed by the functions 𝑟 and
ℛ∶ 𝜚(𝜌) → 𝜔 with ℛ(𝑒) ≔ ℛ′(𝑒), where 𝑟 and ℛ′ are the witnesses of 𝜚(𝜌′) ▻ 𝜔″

as described above. This establishes 𝜚(𝜌) ▻ Word(𝜍) for the prefix 𝜌.

Goal (G4). Applying (5.17), the proof goal becomes:

Settled(𝜔′) ⊆ 𝜍 ⊆ 𝜔′

By definition (P1) we have 𝜍 ⊆ 𝜔′. Thus, it remains to show that:

Settled(𝜔′) ⊆ 𝜍

Suppose for the sake of contradiction that Settled(𝜔′) ⊈ 𝜍, i.e., there exists an observa-
tion 𝜃 ∈ Settled(𝜔′) but 𝜃 ∉ 𝜍. We derive a contradiction by showing that under this
assumption 𝜌 is not maximal: Let 𝑒 be the event corresponding to 𝜃 according to ℛ′,
i.e., 𝜃 = ℛ′(𝑒). Note that this event is indeed uniquely defined since ℛ′ is a bijection.
Recall that 𝜃 ∈ Settled(𝜔′) means that the event 𝑒 corresponding to 𝜃 must have
occurred before any event observed in the future (cf. Section 5.3.1). Hence, all events
𝑒′ ∈ 𝜚(𝜌′) occurring before 𝑒 on 𝜌′ must have already been observed. Formally, that
is ℛ′(𝑒′) ∈ 𝜔′ for all those events 𝑒′. Hence, 𝜌 can be extended to contain the already
observed events occurring before 𝑒 on 𝜌′ as well as 𝑒 itself, i.e., 𝜌 is not maximal. This
concludes the contradiction and the proof of Theorem 5.3.1.

A.2.5 Proof of Theorem 5.3.3
We restate Theorem 5.3.3 from the body of this thesis (p. 141).

A.2. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM 241

Theorem 5.3.3 Every VTS 𝔙 satisfying (5.21) is sound.

Proof. The proof proceeds completely analogously to the proof of Theorem 5.3.1
with Pref𝐴(𝜔′) in place of 𝐴(𝜔′) until the proof of the goal (G4). Instead of proving
𝜍 ∈ 𝐴(𝜔′) we must now prove:

𝜍 ∈ Pref𝐴(𝜔′)

Applying the definition (5.20) of Pref𝐴, we obtain two proof goals:

𝜍 ∈ 𝐴(𝜔′) (G1)

𝜍 ∈ Pref≺(𝜔′) (G2)

Recall, that (G1) has already been established as part of the proof of Theorem 5.3.1.
Hence, it remains to prove (G2), i.e., 𝜍 ∈ Pref≺(𝜔′). Applying the definition (5.19) of
Pref≺, the proof goal (G2) becomes:

∀𝜃 ∈ 𝜍 ∶ ∀𝜃′ ∈ 𝜔′ ∶ 𝜃′ ≺ 𝜃⟹𝜃′ ∈ 𝜍

Let 𝜃 ∈ 𝜍 and 𝜃′ ∈ 𝜔′ such that 𝜃′ ≺ 𝜃. Thereby, the proof obligation becomes 𝜃′ ∈ 𝜍.
Let 𝑒 and 𝑒′ be the events corresponding to the observations 𝜃 and 𝜃′, i.e., 𝜃 = ℛ′(𝑒)
and 𝜃′ = ℛ′(𝑒′).40 As 𝜚(𝜌′) is consistent with 𝜔″ and 𝜃′ ≺ 𝜃, the event 𝑒′ must occur
before the event 𝑒 on 𝜌′. Hence, the prefix 𝜌 of 𝜌′ must contain the event 𝑒′ because it
contains the event 𝑒. By definition (P1) from the inherited proof context of the proof
of Theorem 5.3.1, 𝜍 contains all the observations corresponding to the events on 𝜌.
Therefore, 𝜍 also contains the observation 𝜃′. This concludes the proof of (G2) and
with it the proof of Theorem 5.3.3.

A.2.6 Proof of Theorem 5.3.2
We restate Theorem 5.3.2 from the body of this thesis (p. 140).

Theorem 5.3.2 Every VTS 𝔙 satisfying (5.18) is Δ-complete for Δ as per (5.14).

Proof. According to the definition of Δ-completeness (see Definition 3.4.5), given
an observation sequence 𝜔, we must show 𝜈(𝜔′) ⊑ V(𝜔) for all continuations 𝜔′ ∈
Cont(𝜔), for which 𝑑(𝜔′, 𝜔) > Δ where 𝑑 is the time difference between 𝜔′ and 𝜔
according to (5.15). Therefore, for an observation sequence 𝜔 ∈ ℒ⇂Ω (⟦𝔗⟧) and a
continuation 𝜔′ ∈ Cont(𝜔) such that 𝑑(𝜔′, 𝜔) > Δ, the proof goal is:

𝜈(𝜔′) ⊑ V(𝜔) (G1)

40 By starting the proof analogously to the proof of Theorem 5.3.1, we inherit its proof context. Here,ℛ′

is the bijection witnessing 𝜚(𝜌′) ▻ 𝜔″ as introduced in the proof of Theorem 5.3.1.

242 APPENDIX A. DETAILED PROOFS

Instead of proving (G1) directly, we will prove the following proposition

∀𝜍 ∈ 𝐴(𝜔′) ∶ ∀𝜌″ ∈ Runs(⟦𝔗⟧) s.t. 𝜚(𝜌″) ▻ Word(𝜍) ∶
∃𝜌 ∈ Pref(𝜌″) ∶ 𝜌 ∈ Runs(𝜔) (G2)

echoing (5.18) where 𝐴(𝜔′) is the set of active subsets of 𝜔′ as per (5.17). The proof
obligation (G2) implies the proof obligation (G1):

(G2)

⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞∀𝜍 ∈ 𝐴(𝜔′) ∶ ∀𝜌″ ∈ Runs(⟦𝔗⟧) s.t. 𝜚(𝜌″) ▻ Word(𝜍) ∶
∃𝜌 ∈ Pref(𝜌″) ∶ 𝜌 ∈ Runs(𝜔)

per elementary first-order logic and set theory

⟺ ∀𝜌″ ∈ { 𝜌″ ∈ Runs(⟦𝔗⟧) | 𝜍 ∈ 𝐴(𝜔′) ∧ 𝜚(𝜌″) ▻ Word(𝜍) } ∶
∃𝜌 ∈ Pref(𝜌″) ∶ 𝜌 ∈ Runs(𝜔)

per Proposition 5.0.1

⟹ (⨆{V(𝜌″) | 𝜌″ ∈ Runs(⟦𝔗⟧) ∧ 𝜍 ∈ 𝐴(𝜔′) ∧ 𝜚(𝜌″) ▻ Word(𝜍) })
⊑ (⨆ {V(𝜌) | 𝜌 ∈ Runs(𝜔) })

per (5.18) and (3.7)

⟺ 𝜈(𝜔′) ⊑ V(𝜔)⏟⎵⎵⎵⏟⎵⎵⎵⏟
(G1)

The last step uses the fact that ∀𝜌 ∈ Pref(𝜌″) ∶ V(𝜌″) ⊑ V(𝜌), since the verdict oracle
is monotonic (see Definition 3.4.2 and Proposition 5.0.1).

Hence, it remains to show (G2). To this end, let 𝜍 ∈ 𝐴(𝜔′) and 𝜌″ ∈ Runs(⟦𝔗⟧)
such that 𝜚(𝜌″) ▻ Word(𝜍). The proof goal becomes:

∃𝜌 ∈ Pref(𝜌″) ∶ 𝜌 ∈ Runs(𝜔) (G3)

Since 𝜔′ ∈ Cont(𝜔), we have 𝜔′ ≥ 𝜔. Since 𝜔′ ≥ 𝜔, 𝜍 ∈ 𝐴(𝜔′), and 𝑑(𝜔′, 𝜔) > Δ, we
have Word(𝜍) ≥ 𝜔, i.e., 𝜍 contains all observations of 𝜔 as they are settled by now.
The following deduction completes the proof:

𝜌″ ▻ Word(𝜍) ∧ 𝜔 ≤ Word(𝜍)
per Lemma 5.2.3

⟹ ∃𝜌 ∈ Pref(𝜌″) ∶ 𝜔 ∈ Ω(𝜌)
per prefix-closure of runs

⟹ ∃𝜌 ∈ Pref(𝜌″) ∶ 𝜌 ∈ Runs(𝜔)⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
(G3)

Hence, we established Theorem 5.3.2.

A.2. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM 243

A.2.7 Proof of Theorem 5.3.4
We restate Theorem 5.3.4 from the body of this thesis (p. 142).

Theorem 5.3.4 A timed event sequence 𝜚 and a timed observation sequence 𝜔
are consistent iff they are bound-consistent.

Proof. For a timed event sequence 𝜚 = (⟨↑𝑡𝑖, 𝑎𝑖⟩) 𝑛𝑖=1 and a timed observation sequence
𝜔 = (⟨↓𝑡𝑗, 𝑏𝑗⟩) 𝑛𝑗=1 the proof goal of Theorem 5.3.4 is:

𝜚 is consistent with 𝜔 ⟺ 𝜚 is bound-consistent with 𝜔 (G1)

We prove both directions of the equivalence separately.

𝜚 is consistent with 𝜔 ⟹ 𝜚 is bound-consistent with 𝜔
Let ℛ∶ 𝜚 → 𝜔 be the bijection and 𝑟 be the time-remapping function witnessing

consistency of 𝜚 and 𝜔. For each 𝑒 = ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝜚, we know ↑𝑡 ∈ ↑𝑇𝑟(ℛ(𝑒)) because
𝜚 and 𝜔 are consistent (cf. Definition 5.2.3). We choose the same bijection ℛ to prove
bound consistency. Recall that the definition of bound consistency comprises two
conditions (i) and (ii) (see Definition 5.3.1). Condition (i) requires that 𝑎 = 𝑏 for all
⟨⋅, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝜚 where ⟨⋅, ⟨↓𝑡, 𝑏⟩⟩ = ℛ(⟨⋅, ⟨↑𝑡, 𝑎⟩⟩). It is trivially satisfied by ℛ as it
directly follows from the conditions required by consistency (see Definition 5.2.3).
Therefore, condition (ii) remains as proof obligation:

∀ ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ , ⟨𝑖′, ⟨↑𝑡′, 𝑎′⟩⟩ ∈ 𝜚 ∶
↑𝑡 − ↑𝑡′ ≤ MaxD(ℛ(⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩) , ℛ(⟨𝑖′, ⟨↑𝑡′, 𝑎′⟩⟩))

(G2)

For proving (G2), let 𝑒 = ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝜚 and 𝑒′ = ⟨𝑖′, ⟨↑𝑡′, 𝑎′⟩⟩ ∈ 𝜚. We already es-
tablished that ↑𝑡 ∈ ↑𝑇𝑟(ℛ(𝑒)) and ↑𝑡′ ∈ ↑𝑇𝑟(ℛ(𝑒′)), hence, ↑𝑡 − ↑𝑡′ ∈ ↑𝑇𝑟(ℛ(𝑒)) ⊟
↑𝑇𝑟(ℛ(𝑒′)). Therefore, by elementary interval arithmetic (cf. Chapter 2) and maxi-
mization over all time-remapping functions we establish:

↑𝑡 − ↑𝑡′ ∈ ↑𝑇𝑟(ℛ(𝑒)) ⊟ ↑𝑇𝑟(ℛ(𝑒′))
⟹ ↑𝑡 − ↑𝑡′ ≤ max (↑𝑇𝑟(ℛ(𝑒)) ⊟ ↑𝑇𝑟(ℛ(𝑒′)))
⟹ ↑𝑡 − ↑𝑡′ ≤ max ↑𝑇𝑟(ℛ(𝑒)) −min ↑𝑇𝑟(ℛ(𝑒′))
⟹ ↑𝑡 − ↑𝑡′ ≤ max

𝑟′
(max ↑𝑇𝑟′(ℛ(𝑒)) −min ↑𝑇𝑟′(ℛ(𝑒′)))⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

= MaxD(ℛ(𝑒),ℛ(𝑒′)) as per (5.7)

(P1)

The crux here is that the specific 𝑟 witnessing consistency can only lead to a bound
tighter than (P1) because (P1) maximizes over all time-remapping functions. This
concludes the proof of the⟹ direction of (G1).

𝜚 is consistent with 𝜔⟸ 𝜚 is bound-consistent with 𝜔

244 APPENDIX A. DETAILED PROOFS

The proof of the other direction is much more involved, as we have to show that
there always exists a time-remapping function 𝑟 satisfying the required constraints, if
𝜚 and 𝜔 are bound-consistent. To this end, let ℛ∶ 𝜚 → 𝜔 be the bijection witnessing
bound consistency. We choose the same bijection ℛ to prove consistency. Condition
(i) of bound consistency (cf. Definition 5.3.1) ensures that the actions of events and
corresponding observations match. Therefore, it remains to show that there exists a
time-remapping function 𝑟 such that:

∀ ⟨↑𝑡, 𝑖, 𝛼⟩ ∈ 𝜚 ∶ ↑𝑡 ∈ ↑𝑇𝑟 (ℛ(⟨↑𝑡, 𝑖, 𝛼⟩)) (G3)

We prove the existence of 𝑟 constructively. That is, we provide an explicit construction
of such a time-remapping function 𝑟. The time-remapping function we construct is
piecewise linear as schematically shown in Figure A.1. To this end, we proceed as
follows: For each observation time ↓𝑡 of an observation to be found in 𝜔, we construct
a value for 𝑟(↓𝑡) such that (G3) and the slope restriction (5.2) are satisfied. Between
the observation times (yellow in Figure A.1) and before the first (respectively after
the last) observation time (green in Figure A.1), the values are linearly interpolated,
thereby providing a time-remapping function. Figure A.1 depicts the general idea
ignoring that observations may be made at the same time.

↓𝑡1 ↓𝑡2 ↓𝑡𝑁

𝑟(↓𝑡1)

𝑟(↓𝑡2)

𝑟(↓𝑡𝑁)

⋯

Verdictor

Sy
st
em

𝑡

𝑟(𝑡)

before 𝜃1

between 𝜃1 and 𝜃2

after 𝜃𝑁

Figure A.1: Schematic depiction of the piecewise-linear time-remapping function 𝑟
that we construct in the following.

The construction of 𝑟 proceeds in three steps: (A) We construct an interval 𝐼 (↓𝑡)
for each observation time ↓𝑡 such that 𝑟(↓𝑡) ∈ 𝐼 (↓𝑡) is sufficient for satisfying (G3).
(B) We narrow 𝐼 (↓𝑡), to a certain degree which is necessary for the proof to work,
by taking into account the slope restriction (5.2). This results in yet another interval

A.2. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM 245

̄𝑟 (↓𝑡) for each observation time. (C) Finally, we construct a family of concrete time-
remapping functions 𝑟 (as described above) and prove that each posses the necessary
properties, that is, it satisfies (G3) as well as Definition 5.1.1. Along the way, we
always prove that the constructed intervals are non-empty as this is crucial for the
existence of the final time-remapping function.

(A) Constructing 𝐼 (↓𝑡) for each observation time ↓𝑡.
For the purpose of constructing 𝐼 (↓𝑡), let 𝐸(↓𝑡) ⊆ 𝜚 be the set of all events whose

observations are made at time ↓𝑡. Formally, that is:

𝐸(↓𝑡) ≔ { 𝑒 ∈ 𝜚 || ℛ(𝑒) = ⟨↓𝑡, ⋅⟩ } (P2)

Further, let 𝑇𝑜 ⊆ ℚ+
0 be the set of all observation times. Formally:

𝑇𝑜 ≔ { ↓𝑡 ∈ ℚ+
0 || 𝐸(↓𝑡) ≠ ∅ } (P3)

That is, 𝑇𝑜 contains the observation times for which the set of events observed at
these times is non-empty. The time-remapping function we construct is piecewise-
linear between these times (cf. Figure A.1). For each observation time ↓𝑡 ∈ 𝑇𝑜 we
define the interval 𝐼 (↓𝑡) ⊆ ℝ as follows:

𝐼(↓𝑡) ≔ ⋂
⟨𝑖,⟨↑𝑡,𝑎⟩⟩∈𝐸(↓𝑡)

[↑𝑡 + lmin(𝑎), ↑𝑡 + lmax(𝑎)] (P4)

The same observation times must be mapped to the same system time by 𝑟, hence, we
define the interval 𝐼 (↓𝑡) for each observation time ↓𝑡 ∈ 𝑇𝑜 by intersecting the possible
times at which the observations for the corresponding eventsmay be observed relative
to the systems clock by intersecting the respective intervals.

Now, ∀↓𝑡 ∈ 𝑇𝑜 ∶ 𝑟(↓𝑡) ∈ 𝐼 (↓𝑡) is sufficient for satisfying (G3):

∀↓𝑡 ∈ 𝑇𝑜 ∶ 𝑟(↓𝑡) ∈ 𝐼(↓𝑡)
per (P4)

⟺ ∀↓𝑡 ∈ 𝑇𝑜 ∶ 𝑟(↓𝑡) ∈ ⋂
⟨𝑖,⟨↑𝑡,𝑎⟩⟩∈𝐸(↓𝑡)

[↑𝑡 + lmin(𝑎), ↑𝑡 + lmax(𝑎)]

per elementary arithmetic

⟹ ∀↓𝑡 ∈ 𝑇𝑜 ∶ ∀ ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝐸(↓𝑡) ∶ ↑𝑡 ∈ [𝑟(↓𝑡) − lmax(𝑎), 𝑟(↓𝑡) − lmin(𝑎)]
per (5.5), (P2), and (P3)

⟹ ∀⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝜚 ∶ ↑𝑡 ∈ ↑𝑇𝑟(ℛ(⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩))⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
(G3)

Next, we need to show that 𝐼 (↓𝑡) is non-empty for all ↓𝑡 ∈ 𝑇𝑜 . Otherwise, there is no
𝑟 such that ∀↓𝑡 ∈ 𝑇𝑜 ∶ 𝑟(↓𝑡) ∈ 𝐼 (↓𝑡) and the construction would fail. This leaves us
with the following intermediate proof obligation:

∀↓𝑡 ∈ 𝑇𝑜 ∶ 𝐼(↓𝑡) ≠ ∅ (G4)

246 APPENDIX A. DETAILED PROOFS

Let ↓𝑡 ∈ 𝑇𝑜 . There exist ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ , ⟨𝑖′, ⟨↑𝑡′, 𝑎′⟩⟩ ∈ 𝐸(↓𝑡) such that:

[↑𝑡 + lmin(𝑎), ↑𝑡′ + lmax(𝑎′)] = 𝐼(↓𝑡) (P5)

This is the case because the lower and upper bounds of 𝐼 (↓𝑡) are the maximum and
minimum of ↑𝑡 + lmin(𝑎) and ↑𝑡 + lmax(𝑎) over ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝐸(↓𝑡), respectively. Hence,
𝐼 (↓𝑡) ≠ ∅ if and only if ↑𝑡 + lmin(𝑎) ≤ ↑𝑡′ + lmax(𝑎′) for the events ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ and
⟨𝑖′, ⟨↑𝑡′, 𝑎′⟩⟩. Thereby, the intermediate proof obligation (G4) becomes:

↑𝑡 + lmin(𝑎) ≤ ↑𝑡′ + lmax(𝑎′) (G5)

We show (G5) by exploiting the fact that 𝜚 and 𝜔 are bound-consistent:

per bound consistency of 𝜚 and 𝜔
↑𝑡 − ↑𝑡′ ≤ MaxD(ℛ(⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩) , ℛ(⟨𝑖′, ⟨↑𝑡′, 𝑎′⟩⟩))
per Lemma 5.2.2

⟹ ↑𝑡 − ↑𝑡′ ≤ lmax(𝑎′) − lmin(𝑎)
per elementary arithmetic

⟺ ↑𝑡 + lmin(𝑎) ≤ ↑𝑡′ + lmax(𝑎′)⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
(G5)

Note that the application of Lemma 5.2.2 above rests on the fact that the observation
times, ↓𝑡 and ↓𝑡′, of the observations corresponding to the two events ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ and
⟨𝑖′, ⟨↑𝑡′, 𝑎′⟩⟩ are identical, hence, (1 + 𝛿)(↓𝑡 − ↓𝑡′) = 0.

This leaves us with a non-empty interval 𝐼 (↓𝑡) for each observation time ↓𝑡 such
that 𝑟(↓𝑡) ∈ 𝐼 (↓𝑡) is sufficient for (G3). However, for constructing 𝑟 one cannot just
choose arbitrary values from these intervals since the slope restriction (5.2) must
also be satisfied for a time-remapping function witnessing consistency.

(2.) Constructing ̄𝑟 (↓𝑡) for each observation time by narrowing 𝐼 (↓𝑡).
In the next step, we narrow 𝐼 (↓𝑡) by taking into account the slope restriction (5.2).

To this end, let ⃗𝑡 = 𝑡1⋯𝑡|𝑇𝑜| be the permutation of 𝑇𝑜 such that 𝑡𝑘 < 𝑡𝑘+1 for all
1 ≤ 𝑘 < |𝑇𝑜|. We construct an interval ̄𝑟 (𝑡𝑘) ⊆ ℝ for each observation time 𝑡𝑘 ∈ 𝑇𝑜
such that ̄𝑟 (𝑡𝑘) ⊆ 𝐼 (𝑡𝑘) is inductively defined as follows:

̄𝑟(𝑡1) ≔ 𝐼(𝑡1) ̄𝑟(𝑡𝑘+1) ≔ 𝐼(𝑡𝑘+1) ∩ (̄𝑟(𝑡𝑘) ⊞ [
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿 , (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)]

⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
(*)

) (P6)

Here, (*) is based on the slope restriction (5.2) and projects a cone (cf. Figure 5.3b)
from the predecessor interval ̄𝑟 (𝑡𝑘). It is easy to see that ̄𝑟 (𝑡𝑘) ⊆ 𝐼 (𝑡𝑘) for all 𝑡𝑘 as it
is ensured by the intersection in (P6). We again proceed by showing that ̄𝑟 (𝑡𝑘) ≠ ∅

A.2. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM 247

for all 𝑡𝑘. For 𝑘 = 1 this is trivial because ̄𝑟 (𝑡1) = 𝐼 (𝑡1) and we already established
𝐼 (𝑡1) ≠ ∅ previously. Thus, for 𝑘 > 1, it remains to show:

̄𝑟(𝑡𝑘) ≠ ∅ (G6)

Let us start with the following observations for 1 ≤ 𝑘 < |𝑇𝑜| leveraging elementary
interval arithmetic and set theory:

min ̄𝑟(𝑡𝑘+1) = max{
min 𝐼 (𝑡𝑘+1) ,

min ̄𝑟 (𝑡𝑘) +
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿

} (P7)

max ̄𝑟(𝑡𝑘+1) = min {
max 𝐼 (𝑡𝑘+1) ,

max ̄𝑟 (𝑡𝑘) + (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑖)
} (P8)

Exploiting the recursion in (P7) and (P8) we conclude:

∀1 ≤ 𝑘 ≤ |𝑇𝑜| ∶ ∃𝑘′ ≤ 𝑘 ∶ min ̄𝑟(𝑡𝑘) = min 𝐼(𝑡𝑘′) +
𝑡𝑘 − 𝑡𝑘′
1 + 𝛿 (P9)

∀1 ≤ 𝑘 ≤ |𝑇𝑜| ∶ ∃𝑘″ ≤ 𝑘 ∶ max ̄𝑟(𝑡𝑘) = max 𝐼(𝑡𝑘″) + (1 + 𝛿)(𝑡𝑘 − 𝑡𝑘″) (P10)

Notably, (P9) and (P10) also include the case 𝑘 = 1. For 𝑘 = 1, one simply chooses
𝑘′ = 1 and 𝑘″ = 1. We now prove (G6) analogously to 𝐼 (↓𝑡) ≠ ∅, by establishing for
each 1 ≤ 𝑘 ≤ |𝑇𝑜|:

min ̄𝑟(𝑡𝑘) ≤ max ̄𝑟(𝑡𝑘) (G7)

Let 1 ≤ 𝑘 ≤ |𝑇𝑜|. Further, let 𝑘′ ≤ 𝑘 and 𝑘″ ≤ 𝑘 be the witnesses which exist
according to (P9) and (P10), respectively. Now, by (P4), there exist ⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩ ∈ 𝐸(𝑡𝑘′)
and ⟨𝑖′, ⟨↑𝑡′, 𝑎′⟩⟩ ∈ 𝐸(𝑡𝑘″) such that:

min 𝐼(𝑡𝑘′) = ↑𝑡 + lmin(𝑎) max 𝐼(𝑡𝑘″) = ↑𝑡′ + lmax(𝑎′) (P11)

Based on these insights, we establish the following equivalences:

(G7)

⏞⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏞min ̄𝑟(𝑡𝑘) ≤ max ̄𝑟(𝑡𝑘)
per (P9) and (P10)

⟺ min 𝐼(𝑡𝑘′) +
𝑡𝑘 − 𝑡𝑘′
1 + 𝛿 ≤ max 𝐼(𝑡𝑘″) + (1 + 𝛿)(𝑡𝑘 − 𝑡𝑘″)

per (P11)

⟺ ↑𝑡 + lmin(𝑎) +
𝑡𝑘 − 𝑡𝑘′
1 + 𝛿 ≤ ↑𝑡′ + lmax(𝑎′) + (1 + 𝛿)(𝑡𝑘 − 𝑡𝑘″)

per elementary arithmetic

248 APPENDIX A. DETAILED PROOFS

⟺ ↑𝑡 − ↑𝑡′ + lmin(𝑎) +
𝑡𝑘 − 𝑡𝑘′
1 + 𝛿 ≤ lmax(𝑎′) + (1 + 𝛿)(𝑡𝑘 − 𝑡𝑘″)⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

(G8)

Therefore, the intermediate proof obligation (G7) becomes:

↑𝑡 − ↑𝑡′ + lmin(𝛼) +
𝑡𝑘 − 𝑡𝑘′
1 + 𝛿⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

(G8a)

≤ lmax(𝛽) + (1 + 𝛿)(𝑡𝑘 − 𝑡𝑘″)⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
(G8b)

(G8)

Recall that ↑𝑡 − ↑𝑡′ is bounded by MaxD because 𝜚 and 𝜔 are bound-consistent:

↑𝑡 − ↑𝑡′ ≤ MaxD(ℛ(⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩) , ℛ(⟨𝑖′, ⟨↑𝑡′, 𝑎′⟩⟩)) (P12)

To prove (G8), we now need to distinguish two cases 𝑘′ < 𝑘″ and 𝑘′ ≥ 𝑘″. These
cases correspond to the cases of the formula (5.7) for MaxD because 𝑘′ < 𝑘″ implies
𝑡𝑘′ < 𝑡𝑘″ and 𝑘′ ≥ 𝑘″ implies 𝑡𝑘′ ≥ 𝑡𝑘″ .

Case 𝑘′ < 𝑘″. We have 𝑡𝑘′ < 𝑡𝑘″ and establish (G8) as follows:

(G8a)

⏞⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⏞
↑𝑡 − ↑𝑡′ + lmin(𝑎) +

𝑡𝑘 − 𝑡𝑘′
1 + 𝛿

per (P12)

≤ MaxD(ℛ(⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩) , ℛ(⟨𝑖′, ⟨↑𝑡′, 𝑎′⟩⟩)) + lmin(𝑎) +
𝑡𝑘 − 𝑡𝑘′
1 + 𝛿

per Lemma 5.2.2 and 𝑡𝑘′ < 𝑡𝑘″

=
𝑡𝑘′ − 𝑡𝑘″
1 + 𝛿 − lmin(𝑎) + lmax(𝑎′) + lmin(𝑎) +

𝑡𝑘 − 𝑡𝑘′
1 + 𝛿

=
𝑡𝑘′ − 𝑡𝑘″
1 + 𝛿 + lmax(𝑎′) +

𝑡𝑘 − 𝑡𝑘′
1 + 𝛿

=
𝑡𝑘′ − 𝑡𝑘″ + 𝑡𝑘 − 𝑡𝑘′

1 + 𝛿 + lmax(𝑎′)

=
𝑡𝑘 − 𝑡𝑘″
1 + 𝛿 + lmax(𝑎′)

≤ lmax(𝑎′) + (1 + 𝛿)(𝑡𝑘 − 𝑡𝑘″)⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
(G8b)

Case 𝑘′ ≥ 𝑘″. We have 𝑡𝑘′ ≥ 𝑡𝑘″ and establish (G8) as follows:

(G8a)

⏞⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⏞
↑𝑡 − ↑𝑡′ + lmin(𝛼) +

𝑡𝑘 − 𝑡𝑘′
1 + 𝛿

A.2. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM 249

per (P12)

≤ MaxD(ℛ(⟨𝑖, ⟨↑𝑡, 𝑎⟩⟩) , ℛ(⟨𝑖′, ⟨↑𝑡′, 𝑎′⟩⟩)) + lmin(𝛼) +
𝑡𝑘 − 𝑡𝑘′
1 + 𝛿

per Lemma 5.2.2 and 𝑡𝑘′ ≥ 𝑡𝑘″

= (1 + 𝛿)(𝑡𝑘′ − 𝑡𝑘″) − lmin(𝛼) + lmax(𝛽) + lmin(𝛼) +
𝑡𝑘 − 𝑡𝑘′
1 + 𝛿

= (1 + 𝛿)(𝑡𝑘′ − 𝑡𝑘″) + lmax(𝛽) +
𝑡𝑘 − 𝑡𝑘′
1 + 𝛿

≤ (1 + 𝛿)(𝑡𝑘′ − 𝑡𝑘″) + lmax(𝛽) + (𝑡𝑘 − 𝑡𝑘′)(1 + 𝛿)
= (1 + 𝛿)(𝑡𝑘′ − 𝑡𝑘″ + 𝑡𝑘 − 𝑡𝑘′) + lmax(𝛽)
= (1 + 𝛿)(𝑡𝑘 − 𝑡𝑘″) + lmax(𝛽)
= lmax(𝛽) + (1 + 𝛿)(𝑡𝑘 − 𝑡𝑘″)⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

(G8b)

Therefore, we conclude ̄𝑟 (𝑡𝑘) ≠ ∅ for all 𝑡𝑘.

(3.) Constructing a family of time-remapping functions.
Hitherto, we have defined a non-empty interval ̄𝑟 (𝑡𝑘) for each observation time

𝑡𝑘 found in 𝜔 taking into account (G3) and, to a degree, also the slope restriction (5.2).
It remains to define a concrete time-remapping function 𝑟. We instead define a family
of concrete time-remapping functions. Each of those time-remapping functions will
establish consistency together with the bijection ℛ.

The family is defined such that for each member 𝑟:

𝑟(𝑡|𝑇𝑜|) ∈ ̄𝑟(𝑡|𝑇𝑜|) (P13)

𝑟(𝑡𝑘) ∈ ̄𝑟(𝑡𝑘) ∩ (𝑟(𝑡𝑘+1) ⊟ [
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿 , (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)]) for 𝑘 < |𝑇𝑜| (P14)

𝑟(𝑡) = 𝑟(𝑡𝑘) +
𝑡𝑘+1 − 𝑡𝑘

𝑟(𝑡𝑘+1) − 𝑟(𝑡𝑘)
(𝑡 − 𝑡𝑘) for 𝑡𝑘 < 𝑡 < 𝑡𝑘+1 (P15)

𝑟(𝑡) = {
𝑟(𝑡|𝑇𝑜|) + 𝑡 − 𝑡|𝑇𝑜| if 𝑡 > 𝑡|𝑇𝑜|
𝑟(𝑡1) − 𝑡 + 𝑡1 if 𝑡 < 𝑡1

(P16)

Note that the conditions for (P13), (P14), (P15), and (P16) are mutually exclusive, i.e.,
for each 𝑡 ∈ ℝ only one of them applies. For each 𝑡𝑘 ∈ 𝑇𝑜 , (P13) applies if 𝑘 = |𝑇𝑜|,
otherwise, (P14) applies. Between the observation times, (P15) applies. Before the
first (respectively after the last) observation time, (P16) applies. Concrete values can

250 APPENDIX A. DETAILED PROOFS

be obtained by first fixing 𝑟(𝑡|𝑇𝑜|) for the last observation time 𝑡|𝑇𝑜| according to (P13).
Based on this decision, values for the remaining observation times can be obtained
by iterating over them in decreasing order, applying (P14), and then choosing a value
from the interval. Although, for this to work, we have to prove yet again that the
interval in (P14) is non-empty. Before we do that as part of the last step of this proof,
we show that every function indeed satisfies (G3) and Definition 5.1.1.

By construction, ∀↓𝑡 ∈ 𝑇𝑜 ∶ 𝑟(↓𝑡) ∈ 𝐼 (↓𝑡) since ∀↓𝑡 ∈ 𝑇𝑜 ∶ 𝑟(↓𝑡) ∈ ̄𝑟(↓𝑡) and
̄𝑟 (↓𝑡) ⊆ 𝐼 (↓𝑡) which is sufficient for (G3), as we have shown before. The function 𝑟 is

also a strictly monotone continuous bijection because the slope in all its segments
is strictly positive (cf. (P15) and (P16)) and it approaches the values 𝑟(↓𝑡) for all
observation times ↓𝑡 in the limit from both sides (cf. (P15) and (P16)) by construction.
The slope before the first and after the last observation time is 1 respectively (cf. (P16))
which trivially fulfills the slope restriction (5.2). For the slope between observation
times, we show that the slope restriction applies as follows:

(P15)

⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞
𝑟(𝑡𝑘) ∈ ̄𝑟(𝑡𝑘) ∩ (𝑟(𝑡𝑘+1) ⊟ [

𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿 , (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)])

⟹ 𝑟(𝑡𝑘) ∈ 𝑟(𝑡𝑘+1) ⊟ [
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿 , (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)]

⟹ 𝑟(𝑡𝑘) ∈ [𝑟(𝑡𝑘+1) − (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘), 𝑟(𝑡𝑘+1) −
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿]

⟹ (𝑟(𝑡𝑘+1) − (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)) ≤ 𝑟(𝑡𝑘) ≤ (𝑟(𝑡𝑘+1) −
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿)

⟹ − (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘) ≤ (𝑟(𝑡𝑘) − 𝑟(𝑡𝑘+1)) ≤ −
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿

⟹ (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘) ≥ (𝑟(𝑡𝑘+1) − 𝑟(𝑡𝑘)) ≥
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿

⟹
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿 ≤ (𝑟(𝑡𝑘+1) − 𝑟(𝑡𝑘)) ≤ (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)

per 𝑡𝑘+1 − 𝑡𝑘 > 0

⟹ 1
1+ 𝛿 ≤

𝑟(𝑡𝑘+1) − 𝑟(𝑡𝑘)
𝑡𝑘+1 − 𝑡𝑘

≤ (1 + 𝛿)

⟹
𝑟(𝑡𝑘+1) − 𝑟(𝑡𝑘)
𝑡𝑘+1 − 𝑡𝑘

∈ [1
1 + 𝛿, 1 + 𝛿]

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
slope restriction (5.2)

Hence, every 𝑟 as defined above satisfies (G3) as well as Definition 5.1.1, i.e., is a
time-remapping function witnessing consistency of 𝜚 with 𝜔. It remains to show,

A.2. ROBUST CONTINUOUS TIME VERDICTOR ALGORITHM 251

that indeed there are 𝑟 satisfying the conditions given above. That is, the interval in
(P14) is non-empty such that a value can be chosen for each 1 ≤ 𝑘 < |𝑇𝑜|:

(̄𝑟(𝑡𝑘) ∩ (𝑟(𝑡𝑘+1) ⊟ [
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿 , (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)])) ≠ ∅ (G9)

Let 1 ≤ 𝑘 < |𝑇𝑜|. As values are chosen in descending order starting from a non-empty
interval (cf. (P13)) we can assume that a value for 𝑟(𝑡𝑘+1) has already been chosen
and that 𝑟(𝑡𝑘+1) ∈ ̄𝑟(𝑡𝑘+1). Therefore, the following transformations apply:

𝑟(𝑡𝑘+1) ∈ ̄𝑟(𝑡𝑘+1)
per (P6)

⟺ 𝑟(𝑡𝑘+1) ∈ 𝐼(𝑡𝑘+1) ∩ (̄𝑟(𝑡𝑘) ⊞ [
𝑡𝑘+1 − 𝑡𝑘
1 + 𝜖 , (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)])

⟹ 𝑟(𝑡𝑘+1) ∈ (̄𝑟(𝑡𝑘) ⊞ [
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿 , (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)])

⟹ ∃𝑥 ∈ ̄𝑟(𝑡𝑘) , 𝑦 ∈ [
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿 , (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)] ∶ 𝑟(𝑡𝑘+1) = 𝑥 + 𝑦

⟹ ∃𝑥 ∈ ̄𝑟(𝑡𝑘) , 𝑦 ∈ [
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿 , (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)] ∶ 𝑟(𝑡𝑘+1) − 𝑦 = 𝑥

⟹ ∃𝑥 ∈ ̄𝑟(𝑡𝑘) ∶ 𝑥 ∈ (𝑟(𝑡𝑘+1) ⊟ [
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿 , (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)])

⟹ (̄𝑟(𝑡𝑘) ∩ (𝑟(𝑡𝑘+1) ⊟ [
𝑡𝑘+1 − 𝑡𝑘
1 + 𝛿 , (1 + 𝛿)(𝑡𝑘+1 − 𝑡𝑘)])) ≠ ∅

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
(G9)

Therefore, we obtain a non-empty family of time-remapping functions 𝑟 witnessing
consistency. This concludes the proof of Theorem 5.3.4.

252 APPENDIX A. DETAILED PROOFS

Bibliography

[Aba+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. “Tensor-
Flow: A System for Large-Scale Machine Learning”. In: Proceedings of
the 12th USENIX Conference on Operating Systems Design and Imple-
mentation. OSDI’16. Savannah, GA, USA: USENIX Association, 2016,
pp. 265–283. isbn: 9781931971331.

[AD91] Rajeev Alur and David L. Dill. “The Theory of Timed Automata”. In:
Real-Time: Theory in Practice, REX Workshop, Mook, The Netherlands,
June 3-7, 1991, Proceedings. Ed. by J. W. de Bakker, Cornelis Huizing,
Willem P. de Roever, and Grzegorz Rozenberg. Vol. 600. Lecture Notes in
Computer Science. Springer, 1991, pp. 45–73. doi: 10.1007/BFB0031987.

[AFR16] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. “Regular Pro-
gramming for Quantitative Properties of Data Streams”. In: Programming
Languages and Systems - 25th European Symposium on Programming,
ESOP 2016, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings. Ed. by Peter Thiemann. Vol. 9632. Lecture Notes in
Computer Science. Springer, 2016, pp. 15–40. doi: 10.1007/978-3-662-
49498-1_2.

[AFW18] Artur Andrzejak, Gerhard Friedrich, and Franz Wotawa. “Software Con-
figuration Diagnosis - A Survey of Existing Methods and Open Chal-
lenges”. In: Proceedings of the 20th Configuration Workshop, Graz, Austria,
September 27-28, 2018. Ed. by Alexander Felfernig, Juha Tiihonen, Lothar
Hotz, and Martin Stettinger. Vol. 2220. CEUR Workshop Proceedings.
CEUR-WS.org, 2018, pp. 85–92.

253

https://doi.org/10.1007/BFB0031987
https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.1007/978-3-662-49498-1_2

254 BIBLIOGRAPHY

[AH90] Rajeev Alur and Thomas A. Henzinger. “Real-time Logics: Complexity
and Expressiveness”. In: Proceedings of the Fifth Annual Symposium on
Logic in Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA,
June 4-7, 1990. IEEE Computer Society, 1990, pp. 390–401. doi: 10.1109/
LICS.1990.113764.

[AK14] Shaull Almagor and Orna Kupferman. “Latticed-LTL Synthesis in the
Presence of Noisy Inputs”. In: Foundations of Software Science and Com-
putation Structures. Ed. by Anca Muscholl. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 226–241. isbn: 978-3-642-54830-7.

[ALH06] E. Athanasopoulou, Lingxi Li, and C.N. Hadjicostis. “Probabilistic failure
diagnosis in finite state machines under unreliable observations”. In:
2006 8th International Workshop on Discrete Event Systems. 2006, pp. 301–
306. doi: 10.1109/WODES.2006.1678446.

[And+24] Roman Andriushchenko, Alexander Bork, Carlos E. Budde, Milan Ceska,
KushGrover, ErnstMoritz Hahn, ArndHartmanns, Bryant Israelsen, Nils
Jansen, Joshua Jeppson, Sebastian Junges, Maximilian A. Köhl, Bettina
Könighofer, Jan Kretínský, Tobias Meggendorfer, David Parker, Stefan
Pranger, Tim Quatmann, Enno Ruijters, Landon Taylor, Matthias Volk,
Maximilian Weininger, and Zhen Zhang. “Tools at the Frontiers of Quan-
titative Verification: QComp 2023 Competition Report”. In: TOOLympics
2023. 2024.

[Ape+13] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. Feature-
Oriented Software Product Lines - Concepts and Implementation. Springer,
2013. isbn: 978-3-642-37520-0. doi: 10.1007/978-3-642-37521-7.

[AS15] Ayse Nur Acar and Klaus Werner Schmidt. “Discrete event supervisor
design and application for manufacturing systems with arbitrary faults
and repairs”. In: IEEE International Conference on Automation Science
and Engineering, CASE 2015, Gothenburg, Sweden, August 24-28, 2015.
IEEE, 2015, pp. 825–830. doi: 10.1109/CoASE.2015.7294183.

[Åst65] K.J Åström. “Optimal control of Markov processes with incomplete state
information”. In: Journal of Mathematical Analysis and Applications 10.1
(1965), pp. 174–205. issn: 0022-247X. doi: https://doi.org/10.1016/0022-
247X(65)90154-X.

[Aud+22] Giorgio Audrito, Ferruccio Damiani, Volker Stolz, Gianluca Torta, and
Mirko Viroli. “Distributed runtime verification by past-CTL and the field
calculus”. In: J. Syst. Softw. 187 (2022), p. 111251. doi: 10.1016/J.JSS.2022.
111251.

https://doi.org/10.1109/LICS.1990.113764
https://doi.org/10.1109/LICS.1990.113764
https://doi.org/10.1109/WODES.2006.1678446
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1109/CoASE.2015.7294183
https://doi.org/https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/10.1016/J.JSS.2022.111251
https://doi.org/10.1016/J.JSS.2022.111251

BIBLIOGRAPHY 255

[Avi+04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E.
Landwehr. “Basic Concepts and Taxonomy of Dependable and Secure
Computing”. In: IEEE Trans. Dependable Secur. Comput. 1.1 (2004),
pp. 11–33. doi: 10.1109/TDSC.2004.2.

[Bai+18] Christel Baier, Nathalie Bertrand, Clemens Dubslaff, Daniel Gburek, and
Ocan Sankur. “Stochastic Shortest Paths and Weight-Bounded Proper-
ties in Markov Decision Processes”. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford,
UK, July 09-12, 2018. Ed. by Anuj Dawar and Erich Grädel. ACM, 2018,
pp. 86–94. doi: 10.1145/3209108.3209184.

[Bai+20] Christel Baier, Clemens Dubslaff, Holger Hermanns, Michaela Klauck,
Sascha Klüppelholz, and Maximilian A. Köhl. “Components in Proba-
bilistic Systems: Suitable by Construction”. In: Leveraging Applications of
Formal Methods, Verification and Validation: Verification Principles - 9th
International Symposium on Leveraging Applications of Formal Methods,
ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part I. Ed. by
Tiziana Margaria and Bernhard Steffen. Vol. 12476. Lecture Notes in
Computer Science. Springer, 2020, pp. 240–261. doi: 10.1007/978-3-030-
61362-4_13.

[Bai+21] Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak
Majumdar, Jakob Piribauer, and Robin Ziemek. “From Verification to
Causality-Based Explications (Invited Talk)”. In: 48th International Col-
loquium on Automata, Languages, and Programming, ICALP 2021, July
12-16, 2021, Glasgow, Scotland (Virtual Conference). Ed. by Nikhil Bansal,
Emanuela Merelli, and James Worrell. Vol. 198. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021, 1:1–1:20. doi: 10.4230/LIPICS.
ICALP.2021.1.

[Bar+04] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen.
“Rule-Based Runtime Verification”. In: Verification, Model Checking, and
Abstract Interpretation, 5th International Conference, VMCAI 2004, Venice,
Italy, January 11-13, 2004, Proceedings. Ed. by Bernhard Steffen and
Giorgio Levi. Vol. 2937. Lecture Notes in Computer Science. Springer,
2004, pp. 44–57. doi: 10.1007/978-3-540-24622-0_5.

[Bau+20] Jan Baumeister, Bernd Finkbeiner, Sebastian Schirmer, Maximilian
Schwenger, and Christoph Torens. “RTLola Cleared for Take-Off: Mon-
itoring Autonomous Aircraft”. In: Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part II. Ed. by Shuvendu K. Lahiri and Chao Wang.
Vol. 12225. Lecture Notes in Computer Science. Springer, 2020, pp. 28–39.
doi: 10.1007/978-3-030-53291-8_3.

https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1145/3209108.3209184
https://doi.org/10.1007/978-3-030-61362-4_13
https://doi.org/10.1007/978-3-030-61362-4_13
https://doi.org/10.4230/LIPICS.ICALP.2021.1
https://doi.org/10.4230/LIPICS.ICALP.2021.1
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-030-53291-8_3

256 BIBLIOGRAPHY

[BB87] Tommaso Bolognesi and Ed Brinksma. “Introduction to the ISO Speci-
fication Language LOTOS”. In: Comput. Networks 14 (1987), pp. 25–59.
doi: 10.1016/0169-7552(87)90085-7.

[BBL01] Guillem Bernat, Alan Burns, and Albert Llamosí. “Weakly Hard Real-
Time Systems”. In: IEEE Trans. Computers 50.4 (2001), pp. 308–321. doi:
10.1109/12.919277.

[BBR02] I. Broster, A. Burns, and G. Rodriguez-Navas. “Probabilistic analysis
of CAN with faults”. In: 23rd IEEE Real-Time Systems Symposium, 2002.
RTSS 2002. 2002, pp. 269–278. doi: 10.1109/REAL.2002.1181581.

[BBS95] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. “Learning to
act using real-time dynamic programming”. In: Artificial Intelligence 72.1
(1995), pp. 81–138. issn: 0004-3702. doi: 10.1016/0004-3702(94)00011-O.

[BBV15] Tessa Belder, Maurice H. ter Beek, and Erik P. de Vink. “Coherent branch-
ing feature bisimulation”. In: Proceedings 6th Workshop on Formal Meth-
ods and Analysis in SPL Engineering, FMSPLE@ETAPS 2015, London, UK,
11 April 2015. Ed. by Joanne M. Atlee and Stefania Gnesi. Vol. 182. EPTCS.
2015, pp. 14–30. doi: 10.4204/EPTCS.182.2.

[BCD05] Patricia Bouyer, Fabrice Chevalier, and Deepak D’Souza. “Fault Diag-
nosis Using Timed Automata”. In: Foundations of Software Science and
Computational Structures, 8th International Conference, FOSSACS 2005,
Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings. Ed.
by Vladimiro Sassone. Vol. 3441. Lecture Notes in Computer Science.
Springer, 2005, pp. 219–233. doi: 10.1007/978-3-540-31982-5_14.

[Bee+16] Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco
Mazzanti. “Modelling and analysing variability in product families:
Model checking of modal transition systemswith variability constraints”.
In: J. Log. Algebraic Methods Program. 85.2 (2016), pp. 287–315. doi:
10.1016/J.JLAMP.2015.11.006.

[Bee+19] Maurice H. ter Beek, Ferruccio Damiani, Michael Lienhardt, Franco Maz-
zanti, and Luca Paolini. “Static analysis of featured transition systems”.
In: Proceedings of the 23rd International Systems and Software Product
Line Conference, SPLC 2019, Volume A, Paris, France, September 9-13, 2019.
Ed. by Thorsten Berger, Philippe Collet, Laurence Duchien, Thomas Fog-
dal, Patrick Heymans, Timo Kehrer, Jabier Martinez, Raúl Mazo, Leticia
Montalvillo, Camille Salinesi, Xhevahire Tërnava, Thomas Thüm, and
Tewfik Ziadi. ACM, 2019, 9:1–9:13. doi: 10.1145/3336294.3336295.

https://doi.org/10.1016/0169-7552(87)90085-7
https://doi.org/10.1109/12.919277
https://doi.org/10.1109/REAL.2002.1181581
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.4204/EPTCS.182.2
https://doi.org/10.1007/978-3-540-31982-5_14
https://doi.org/10.1016/J.JLAMP.2015.11.006
https://doi.org/10.1145/3336294.3336295

BIBLIOGRAPHY 257

[Bee+22] Maurice H. ter Beek, Ferruccio Damiani, Michael Lienhardt, Franco
Mazzanti, and Luca Paolini. “Efficient static analysis and verification of
featured transition systems”. In: Empir. Softw. Eng. 27.1 (2022), p. 10. doi:
10.1007/S10664-020-09930-8.

[BG03] Blai Bonet and Hector Geffner. “Labeled RTDP: Improving the Conver-
gence of Real-Time Dynamic Programming”. In: ICAPS. 2003, pp. 12–
21.

[BG04] Glenn Bruns and Patrice Godefroid. “Model Checking with Multi-valued
Logics”. In: Automata, Languages and Programming. Ed. by Josep Díaz,
Juhani Karhumäki, Arto Lepistö, and Donald Sannella. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2004, pp. 281–293. isbn: 978-3-540-
27836-8.

[BG99] Glenn Bruns and Patrice Godefroid. “Model Checking Partial State
Spaces with 3-Valued Temporal Logics”. In: Computer Aided Verification.
Ed. by Nicolas Halbwachs and Doron Peled. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 274–287. isbn: 978-3-540-48683-1.

[BHH12] Jonathan Bogdoll, Arnd Hartmanns, and Holger Hermanns. “Simulation
and Statistical Model Checking for Modestly Nondeterministic Mod-
els”. In: Measurement, Modelling, and Evaluation of Computing Systems
and Dependability and Fault Tolerance - 16th International GI/ITG Con-
ference, MMB & DFT 2012, Kaiserslautern, Germany, March 19-21, 2012.
Proceedings. Ed. by Jens B. Schmitt. Vol. 7201. Lecture Notes in Computer
Science. Springer, 2012, pp. 249–252. doi: 10.1007/978-3-642-28540-0_20.

[Bie+21] Sebastian Biewer, Bernd Finkbeiner, Holger Hermanns, Maximilian A.
Köhl, Yannik Schnitzer, and Maximilian Schwenger. “RTLola on Board:
Testing Real Driving Emissions on your Phone”. In: Tools and Algorithms
for the Construction and Analysis of Systems - 27th International Confer-
ence, TACAS 2021, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg,
March 27 - April 1, 2021, Proceedings, Part II. Ed. by Jan Friso Groote and
Kim Guldstrand Larsen. Vol. 12652. Lecture Notes in Computer Science.
Springer, 2021, pp. 365–372. doi: 10.1007/978-3-030-72013-1_20.

[Bie+23] Sebastian Biewer, Bernd Finkbeiner, Holger Hermanns, Maximilian A.
Köhl, Yannik Schnitzer, and Maximilian Schwenger. “On the road with
RTLola”. In: International Journal on Software Tools for Technology Trans-
fer (STTT) 25.2 (2023), pp. 205–218. doi: 10.1007/s10009-022-00689-5.

[Bir40] Garrett Birkhoff. “Lattice Theory”. In: Journal of Symbolic Logic 5.4
(1940), pp. 155–157. doi: 10.2307/2268183.

https://doi.org/10.1007/S10664-020-09930-8
https://doi.org/10.1007/978-3-642-28540-0_20
https://doi.org/10.1007/978-3-030-72013-1_20
https://doi.org/10.1007/s10009-022-00689-5
https://doi.org/10.2307/2268183

258 BIBLIOGRAPHY

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008. isbn: 978-0-262-02649-9.

[BKS17] Kevin Baum, Maximilian A. Köhl, and Eva Schmidt. “Two Challenges
for CI Trustworthiness and How to Address Them”. In: Proceedings of
the 1st Workshop on Explainable Computational Intelligence (XCI 2017).
Dundee, United Kingdom: Association for Computational Linguistics,
Sept. 2017. doi: 10.18653/v1/W17-3701.

[Blo+15] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and ChaoWang.
“Shield Synthesis: - Runtime Enforcement for Reactive Systems”. In:
Tools and Algorithms for the Construction and Analysis of Systems - 21st
International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings. Ed. by Christel Baier and Cesare Tinelli.
Vol. 9035. Lecture Notes in Computer Science. Springer, 2015, pp. 533–
548. doi: 10.1007/978-3-662-46681-0_51.

[BLR05] Patricia Bouyer, François Laroussinie, and Pierre-Alain Reynier. “Di-
agonal Constraints in Timed Automata: Forward Analysis of Timed
Systems”. In: Formal Modeling and Analysis of Timed Systems, Third
International Conference, FORMATS 2005, Uppsala, Sweden, September
26-28, 2005, Proceedings. Ed. by Paul Pettersson and Wang Yi. Vol. 3829.
Lecture Notes in Computer Science. Springer, 2005, pp. 112–126. doi:
10.1007/11603009_10.

[BLS06a] Andreas Bauer, Martin Leucker, and Christian Schallhart. “Model-based
runtime analysis of distributed reactive systems”. In: 17th Australian
Software Engineering Conference (ASWEC 2006), 18-21 April 2006, Sydney,
Australia. IEEE Computer Society, 2006, pp. 243–252. doi: 10 . 1109 /
ASWEC.2006.36.

[BLS06b] Andreas Bauer, Martin Leucker, and Christian Schallhart. “Monitor-
ing of Real-Time Properties”. In: FSTTCS 2006: Foundations of Software
Technology and Theoretical Computer Science, 26th International Confer-
ence, Kolkata, India, December 13-15, 2006, Proceedings. Ed. by S. Arun-
Kumar and Naveen Garg. Vol. 4337. Lecture Notes in Computer Science.
Springer, 2006, pp. 260–272. doi: 10.1007/11944836_25.

[BLS07] Andreas Bauer, Martin Leucker, and Christian Schallhart. “The Good, the
Bad, and the Ugly, But How Ugly Is Ugly?” In: Runtime Verification, 7th
International Workshop, RV 2007, Vancouver, Canada, March 13, 2007, Re-
vised Selected Papers. Ed. by Oleg Sokolsky and Serdar Tasiran. Vol. 4839.
Lecture Notes in Computer Science. Springer, 2007, pp. 126–138. doi:
10.1007/978-3-540-77395-5_11.

https://doi.org/10.18653/v1/W17-3701
https://doi.org/10.1007/978-3-662-46681-0_51
https://doi.org/10.1007/11603009_10
https://doi.org/10.1109/ASWEC.2006.36
https://doi.org/10.1109/ASWEC.2006.36
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/978-3-540-77395-5_11

BIBLIOGRAPHY 259

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. “Runtime
Verification for LTL and TLTL”. In: ACM Trans. Softw. Eng. Methodol.
20.4 (2011), 14:1–14:64. doi: 10.1145/2000799.2000800.

[Bod+04] Maik Boden, Manfred Koegst, José Luis Tiburcio Badía, and Steffen Rülke.
“Cost-Efficient Implementation of Adaptive Finite State Machines”. In:
2004 Euromicro Symposium on Digital Systems Design (DSD 2004), Ar-
chitectures, Methods and Tools, 31 August - 3 September 2004, Rennes,
France. IEEE Computer Society, 2004, pp. 144–151. doi: 10.1109/DSD.
2004.1333270.

[Bou07] Patricia Bouyer. “Model-checking Timed Temporal Logics”. In: Proceed-
ings of the 5th Workshop on Methods for Modalities, M4M 2007, Cachan,
France, November 29-30, 2007. Ed. by Carlos Areces and Stéphane Demri.
Vol. 231. Electronic Notes in Theoretical Computer Science. Elsevier,
2007, pp. 323–341. doi: 10.1016/J.ENTCS.2009.02.044.

[BRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic.
Vol. 53. Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 2001. isbn: 978-1-10705088-4. doi: 10 .1017/
CBO9781107050884.

[Bry86] Randal E. Bryant. “Graph-Based Algorithms for Boolean Function Ma-
nipulation”. In: IEEE Trans. Computers 35.8 (1986), pp. 677–691. doi:
10.1109/TC.1986.1676819.

[BS14] Laura Bozzelli and César Sánchez. “Foundations of Boolean Stream Run-
time Verification”. In: Runtime Verification - 5th International Conference,
RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings. Ed. by
Borzoo Bonakdarpour and Scott A. Smolka. Vol. 8734. Lecture Notes in
Computer Science. Springer, 2014, pp. 64–79. doi: 10.1007/978-3-319-
11164-3_6.

[BS16] Laura Bozzelli and César Sánchez. “Foundations of Boolean stream
runtime verification”. In: Theor. Comput. Sci. 631 (2016), pp. 118–138.
doi: 10.1016/J.TCS.2016.04.019.

[BS69] Jacobus W de Bakker and Dana Scott. “A theory of programs”. In: IBM
seminar, Vienna. 1969.

[Buc+10] Christian Buckl, Irina Gaponova, Michael Geisinger, Alois Knoll, and
Edward A Lee. “Model-based specification of timing requirements”. In:
Proceedings of the tenth ACM international conference on Embedded soft-
ware. 2010, pp. 239–248.

https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1109/DSD.2004.1333270
https://doi.org/10.1109/DSD.2004.1333270
https://doi.org/10.1016/J.ENTCS.2009.02.044
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-319-11164-3_6
https://doi.org/10.1007/978-3-319-11164-3_6
https://doi.org/10.1016/J.TCS.2016.04.019

260 BIBLIOGRAPHY

[Bud+17] Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hart-
manns, Sebastian Junges, and Andrea Turrini. “JANI: Quantitative Model
and Tool Interaction”. In: Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS 2017, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part
II. Ed. by Axel Legay and Tiziana Margaria. Vol. 10206. Lecture Notes
in Computer Science. 2017, pp. 151–168. isbn: 978-3-662-54579-9. doi:
10.1007/978-3-662-54580-5_9.

[Bud+18] Carlos E. Budde, Pedro R. D’Argenio, Arnd Hartmanns, and Sean Sed-
wards. “A Statistical Model Checker for Nondeterminism and Rare
Events”. In: Tools and Algorithms for the Construction and Analysis of
Systems - 24th International Conference, TACAS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II. Ed. by
Dirk Beyer and Marieke Huisman. Vol. 10806. Lecture Notes in Com-
puter Science. Springer, 2018, pp. 340–358. isbn: 978-3-319-89962-6. doi:
10.1007/978-3-319-89963-3_20.

[Bud+20] Carlos E. Budde, Arnd Hartmanns, Michaela Klauck, Jan Kretinsky,
David Parker, Tim Quatmann, Andrea Turrini, and Zhen Zhang. “On
Correctness, Precision, and Performance in Quantitative Verification
(QComp 2020 Competition Report)”. In: Proceedings of the 9th Interna-
tional Symposium On Leveraging Applications of Formal Methods, Verifi-
cation and Validation. Software Verification Tools. 2020.

[BY03] Johan Bengtsson andWang Yi. “Timed Automata: Semantics, Algorithms
and Tools”. In: Lectures on Concurrency and Petri Nets, Advances in Petri
Nets [This tutorial volume originates from the 4th Advanced Course on
Petri Nets, ACPN 2003, held in Eichstätt, Germany in September 2003. In
addition to lectures given at ACPN 2003, additional chapters have been com-
missioned]. Ed. by Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg.
Vol. 3098. Lecture Notes in Computer Science. Springer, 2003, pp. 87–124.
doi: 10.1007/978-3-540-27755-2_3.

[Car+13] Lilian K. Carvalho, Marcos Vicente Moreira, João Carlos Basilio, and
Stéphane Lafortune. “Robust diagnosis of discrete-event systems against
permanent loss of observations”. In: Autom. 49.1 (2013), pp. 223–231.
doi: 10.1016/j.automatica.2012.09.017.

[Car+19] Thyago Peres Carvalho, Fabrízzio Alphonsus A. M. N. Soares, Roberto
Vita, Roberto da Piedade Francisco, João Pedro Tavares Vieira Basto,
and Symone G. S. Alcalá. “A systematic literature review of machine

https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1016/j.automatica.2012.09.017

BIBLIOGRAPHY 261

learning methods applied to predictive maintenance”. In: Comput. Ind.
Eng. 137 (2019). doi: 10.1016/J.CIE.2019.106024.

[CCM08] Miguel Castro, Manuel Costa, and Jean-Philippe Martin. “Better bug
reporting with better privacy”. In: Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2008, Seattle, WA, USA, March 1-5, 2008. Ed.
by Susan J. Eggers and James R. Larus. ACM, 2008, pp. 319–328. doi:
10.1145/1346281.1346322.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming
- methods, tools and applications. Addison-Wesley, 2000. isbn: 978-0-201-
30977-5.

[CE81] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic”. In:
Logics of Programs, Workshop, Yorktown Heights, New York, USA, May
1981. Ed. by Dexter Kozen. Vol. 131. Lecture Notes in Computer Science.
Springer, 1981, pp. 52–71. doi: 10.1007/BFB0025774.

[Cev+14] Kristína Cevorová, Galina Jirásková, Peter Mlynárcik, Matús Palmovský,
and Juraj Sebej. “Operations on Automata with All States Final”. In:
Proceedings 14th International Conference on Automata and Formal Lan-
guages, AFL 2014, Szeged, Hungary, May 27-29, 2014. Ed. by Zoltán Ésik
and Zoltán Fülöp. Vol. 151. EPTCS. 2014, pp. 201–215. doi: 10.4204/
EPTCS.151.14.

[Che+06] Jingdong Chen, Jacob Benesty, Yiteng Arden Huang, and Simon Doclo.
“New insights into the noise reduction Wiener filter”. In: IEEE Trans.
Speech Audio Process. 14.4 (2006), pp. 1218–1234. doi: 10.1109/TSA.2005.
860851.

[Che80] Brian F. Chellas. Modal Logic - An Introduction. Cambridge University
Press, 1980. isbn: 978-0-51162119-2. doi: 10.1017/CBO9780511621192.

[Chr+18] Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, and Christel
Baier. “ProFeat: feature-oriented engineering for family-based proba-
bilistic model checking”. In: Formal Aspects Comput. 30.1 (2018), pp. 45–
75. doi: 10.1007/S00165-017-0432-4.

[Cla+10] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay,
and Jean-François Raskin. “Model checking lots of systems: efficient veri-
fication of temporal properties in software product lines”. In: Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010. Ed. by Jeff
Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel.
ACM, 2010, pp. 335–344. doi: 10.1145/1806799.1806850.

https://doi.org/10.1016/J.CIE.2019.106024
https://doi.org/10.1145/1346281.1346322
https://doi.org/10.1007/BFB0025774
https://doi.org/10.4204/EPTCS.151.14
https://doi.org/10.4204/EPTCS.151.14
https://doi.org/10.1109/TSA.2005.860851
https://doi.org/10.1109/TSA.2005.860851
https://doi.org/10.1017/CBO9780511621192
https://doi.org/10.1007/S00165-017-0432-4
https://doi.org/10.1145/1806799.1806850

262 BIBLIOGRAPHY

[Cla+13] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Hey-
mans, Axel Legay, and Jean-François Raskin. “Featured Transition Sys-
tems: Foundations for Verifying Variability-Intensive Systems and Their
Application to LTL Model Checking”. In: IEEE Trans. Software Eng. 39.8
(2013), pp. 1069–1089. doi: 10.1109/TSE.2012.86.

[Cla10] Andreas Classen. Modelling with FTS: a Collection of Illustrative Exam-
ples. Tech. rep. P-CS-TR SPLMC-00000001. Namur, Belgium: PReCISE
Research Center, University of Namur, 2010.

[CN02] Paul Clements and Linda M. Northrop. Software product lines - practices
and patterns. SEI series in software engineering. Addison-Wesley, 2002.
isbn: 978-0-201-70332-0.

[Con+18] Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Scheffel,
Malte Schmitz, and Daniel Thoma. “TeSSLa: Temporal Stream-Based
Specification Language”. In: Formal Methods: Foundations and Applica-
tions - 21st Brazilian Symposium, SBMF 2018, Salvador, Brazil, November
26-30, 2018, Proceedings. Ed. by Tiago Massoni and Mohammad Reza
Mousavi. Vol. 11254. Lecture Notes in Computer Science. Springer, 2018,
pp. 144–162. doi: 10.1007/978-3-030-03044-5_10.

[Cor+12] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel
Legay. “Behavioural modelling and verification of real-time software
product lines”. In: 16th International Software Product Line Conference,
SPLC ’12, Salvador, Brazil - September 2-7, 2012, Volume 1. Ed. by Eduardo
Santana de Almeida, Christa Schwanninger, and David Benavides. ACM,
2012, pp. 66–75. doi: 10.1145/2362536.2362549.

[CPS08] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. “Dynamic
Event-Based Runtime Monitoring of Real-Time and Contextual Proper-
ties”. In: Formal Methods for Industrial Critical Systems, 13th International
Workshop, FMICS 2008, L’Aquila, Italy, September 15-16, 2008, Revised Se-
lected Papers. Ed. by Darren D. Cofer and Alessandro Fantechi. Vol. 5596.
Lecture Notes in Computer Science. Springer, 2008, pp. 135–149. doi:
10.1007/978-3-642-03240-0_13.

[CTT19] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. “Assumption-
Based Runtime Verification with Partial Observability and Resets”. In:
Runtime Verification - 19th International Conference, RV 2019, Porto,
Portugal, October 8-11, 2019, Proceedings. Ed. by Bernd Finkbeiner and
Leonardo Mariani. Vol. 11757. Lecture Notes in Computer Science.
Springer, 2019, pp. 165–184. doi: 10.1007/978-3-030-32079-9_10.

https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1145/2362536.2362549
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-030-32079-9_10

BIBLIOGRAPHY 263

[CW96] Edmund M. Clarke and Jeannette M. Wing. “Formal Methods: State
of the Art and Future Directions”. In: ACM Comput. Surv. 28.4 (1996),
pp. 626–643. doi: 10.1145/242223.242257.

[DAn+05] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson,
Bernd Finkbeiner, Henny B. Sipma, SandeepMehrotra, and ZoharManna.
“LOLA: Runtime Monitoring of Synchronous Systems”. In: 12th Inter-
national Symposium on Temporal Representation and Reasoning (TIME
2005), 23-25 June 2005, Burlington, Vermont, USA. IEEE Computer Society,
2005, pp. 166–174. doi: 10.1109/TIME.2005.26.

[Deu23] Präsidium der Deutschen Forschungsgemeinschaft (DFG). “Stellung-
nahme des Präsidiums der Deutschen Forschungsgemeinschaft (DFG)
zum Einfluss generativer Modelle für die Text- und Bilderstellung auf
die Wissenschaftenund das Förderhandeln der DFG”. In: (Sept. 2023).

[Dev+14] Xavier Devroey, Gilles Perrouin, Maxime Cordy, Pierre-Yves Schobbens,
Axel Legay, and Patrick Heymans. “Towards statistical prioritization for
software product lines testing”. In: The Eighth International Workshop
on Variability Modelling of Software-intensive Systems, VaMoS ’14, Sophia
Antipolis, France, January 22-24, 2014. Ed. by Philippe Collet, Andrzej
Wasowski, and Thorsten Weyer. ACM, 2014, 10:1–10:7. doi: 10.1145/
2556624.2556635.

[Dev17] Xavier Devroey. “Behavioural model-based testing of software product
lines”. PhD thesis. University of Namur, 2017. doi: 10 . 5281 / zenodo .
4105899.

[Di +12] Marco Di Natale, Haibo Zeng, Paolo Giusto, and Arkadeb Ghosal. Under-
standing and using the controller area network communication protocol:
theory and practice. Springer Science & Business Media, 2012.

[Dil89] David L. Dill. “Timing Assumptions and Verification of Finite-State
Concurrent Systems”. In: Automatic Verification Methods for Finite State
Systems, International Workshop, Grenoble, France, June 12-14, 1989, Pro-
ceedings. Ed. by Joseph Sifakis. Vol. 407. Lecture Notes in Computer
Science. Springer, 1989, pp. 197–212. doi: 10.1007/3-540-52148-8_17.

[DK22] ClemensDubslaff andMaximilianA. Köhl. “Configurable-by-Construction
Runtime Monitoring”. In: Leveraging Applications of Formal Methods,
Verification and Validation. Verification Principles - 11th International
Symposium, ISoLA 2022, Rhodes, Greece, October 22-30, 2022, Proceed-
ings, Part I. Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 13701.
Lecture Notes in Computer Science. Springer, 2022, pp. 220–241. doi:
10.1007/978-3-031-19849-6_14.

https://doi.org/10.1145/242223.242257
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1145/2556624.2556635
https://doi.org/10.1145/2556624.2556635
https://doi.org/10.5281/zenodo.4105899
https://doi.org/10.5281/zenodo.4105899
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-031-19849-6_14

264 BIBLIOGRAPHY

[DLS08] Wei Dong, Martin Leucker, and Christian Schallhart. “Impartial An-
ticipation in Runtime-Verification”. In: Automated Technology for Ver-
ification and Analysis, 6th International Symposium, ATVA 2008, Seoul,
Korea, October 20-23, 2008. Proceedings. Ed. by Sung Deok Cha, Jin-Young
Choi, Moonzoo Kim, Insup Lee, and Mahesh Viswanathan. Vol. 5311.
Lecture Notes in Computer Science. Springer, 2008, pp. 386–396. doi:
10.1007/978-3-540-88387-6_33.

[DP17] Tom van Dijk and Jaco van de Pol. “Sylvan: multi-core framework for
decision diagrams”. In: Int. J. Softw. Tools Technol. Transf. 19.6 (2017),
pp. 675–696. doi: 10.1007/S10009-016-0433-2.

[Dub+24] Clemens Dubslaff, KallistosWeis, Christel Baier, and Sven Apel. “Feature
causality”. In: J. Syst. Softw. 209 (2024), p. 111915. doi: 10.1016/J.JSS.2023.
111915.

[Dub19] Clemens Dubslaff. “Compositional Feature-Oriented Systems”. In: Soft-
ware Engineering and Formal Methods - 17th International Conference,
SEFM 2019, Oslo, Norway, September 18-20, 2019, Proceedings. Ed. by
Peter Csaba Ölveczky and Gwen Salaün. Vol. 11724. Lecture Notes in
Computer Science. Springer, 2019, pp. 162–180. doi: 10.1007/978-3-030-
30446-1_9.

[Dub22] Clemens Dubslaff. “Quantitative Analysis of Configurable and Recon-
figurable Systems”. PhD thesis. Dresden University of Technology, Ger-
many, 2022.

[Duf+06] Marie Duflot, Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
“A formal analysis of bluetooth device discovery”. In: Int. J. Softw. Tools
Technol. Transf. 8.6 (2006), pp. 621–632. doi: 10.1007/S10009-006-0014-X.

[Dur+16] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille,
Thibaud Michaud, Etienne Renault, and Laurent Xu. “Spot 2.0—A
Framework for LTL and 𝜔-Automata Manipulation”. In: International
Symposium on Automated Technology for Verification and Analysis.
Springer. 2016, pp. 122–129.

[Ell63] E. O. Elliott. “Estimates of error rates for codes on burst-noise channels”.
In: The Bell System Technical Journal 42.5 (1963), pp. 1977–1997. doi:
10.1002/j.1538-7305.1963.tb00955.x.

[Eri99] Clifton A. Ericson. “Fault Tree Analysis — A History”. In: Proceedings of
the 17th International Systems Safety Conference. 1999.

[Eur16] European Parliament and Council of the European Union. Commission
Regulation (EU) 2016/427. Mar. 2016. url: http://data.europa.eu/eli/reg/
2016/427/oj (visited on 06/18/2018).

https://doi.org/10.1007/978-3-540-88387-6_33
https://doi.org/10.1007/S10009-016-0433-2
https://doi.org/10.1016/J.JSS.2023.111915
https://doi.org/10.1016/J.JSS.2023.111915
https://doi.org/10.1007/978-3-030-30446-1_9
https://doi.org/10.1007/978-3-030-30446-1_9
https://doi.org/10.1007/S10009-006-0014-X
https://doi.org/10.1002/j.1538-7305.1963.tb00955.x
http://data.europa.eu/eli/reg/2016/427/oj
http://data.europa.eu/eli/reg/2016/427/oj

BIBLIOGRAPHY 265

[Eur17] European Parliament and Council of the European Union. Commission
Regulation (EU) 2017/1151. June 2017. url: http://data.europa.eu/eli/reg/
2017/1151/oj (visited on 06/18/2018).

[Eur98] European Parliament and Council of the European Union. “Directive
98/69/EC of the European Parliament and of the Council”. In: Official
Journal of the European Communities (1998).

[FAI15] Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. “On Verifying
Hennessy-Milner Logic with Recursion at Runtime”. In: Runtime Verifi-
cation - 6th International Conference, RV 2015 Vienna, Austria, September
22-25, 2015. Proceedings. Ed. by Ezio Bartocci and Rupak Majumdar.
Vol. 9333. Lecture Notes in Computer Science. Springer, 2015, pp. 71–86.
doi: 10.1007/978-3-319-23820-3_5.

[Fal+11] Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc
Richier. “Runtime enforcement monitors: composition, synthesis, and
enforcement abilities”. In: Formal Methods Syst. Des. 38.3 (2011), pp. 223–
262. doi: 10.1007/S10703-011-0114-4.

[Faq+20] Rasha Faqeh, Christof Fetzer, Holger Hermanns, Jörg Hoffmann,
Michaela Klauck, Maximilian A. Köhl, Marcel Steinmetz, and Christoph
Weidenbach. “TowardsDynamicDependable Systems Through Evidence-
Based Continuous Certification”. In: Leveraging Applications of Formal
Methods, Verification and Validation: Engineering Principles - 9th Interna-
tional Symposium on Leveraging Applications of Formal Methods, ISoLA
2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part II. Ed. by
Tiziana Margaria and Bernhard Steffen. Vol. 12477. Lecture Notes in
Computer Science. Springer, 2020, pp. 416–439. doi: 10.1007/978-3-030-
61470-6_25.

[Fay+16] Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem
Torfah. “A Stream-Based Specification Language for Network Monitor-
ing”. In: Runtime Verification - 16th International Conference, RV 2016,
Madrid, Spain, September 23-30, 2016, Proceedings. Ed. by Yliès Falcone
and César Sánchez. Vol. 10012. Lecture Notes in Computer Science.
Springer, 2016, pp. 152–168. doi: 10.1007/978-3-319-46982-9_10.

[Fay+19] Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximil-
ian Schwenger, Marvin Stenger, Leander Tentrup, and Hazem Torfah.
“StreamLAB: Stream-based Monitoring of Cyber-Physical Systems”. In:
Proceedings of the 31st International Conference on Computer Aided Veri-
fication (CAV’19). Vol. 11561. LNCS. Springer, 2019, pp. 421–431.

[Fel05] Max Felser. “Real-time ethernet-industry prospective”. In: Proceedings of
the IEEE 93.6 (2005), pp. 1118–1129.

http://data.europa.eu/eli/reg/2017/1151/oj
http://data.europa.eu/eli/reg/2017/1151/oj
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/S10703-011-0114-4
https://doi.org/10.1007/978-3-030-61470-6_25
https://doi.org/10.1007/978-3-030-61470-6_25
https://doi.org/10.1007/978-3-319-46982-9_10

266 BIBLIOGRAPHY

[Fer+21] Angelo Ferrando, Rafael C. Cardoso, Marie Farrell, Matt Luckcuck, Fabio
Papacchini, Michael Fisher, and Viviana Mascardi. “Bridging the gap
between single- and multi-model predictive runtime verification”. In:
Formal Methods Syst. Des. 59.1 (2021), pp. 44–76. doi: 10.1007/s10703-022-
00395-7.

[Fer+96] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, LaurentMounier,
Radu Mateescu, and Mihaela Sighireanu. “CADP - A Protocol Validation
and Verification Toolbox”. In: Computer Aided Verification, 8th Interna-
tional Conference, CAV ’96, New Brunswick, NJ, USA, July 31 - August 3,
1996, Proceedings. Ed. by Rajeev Alur and Thomas A. Henzinger. Vol. 1102.
Lecture Notes in Computer Science. Springer, 1996, pp. 437–440. isbn:
3-540-61474-5. doi: 10.1007/3-540-61474-5_97.

[FFM12] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. “What can
you verify and enforce at runtime?” In: Int. J. Softw. Tools Technol. Transf.
14.3 (2012), pp. 349–382. doi: 10.1007/s10009-011-0196-8.

[Fin+19] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Ten-
trup. “Monitoring hyperproperties”. In: Formal Methods Syst. Des. 54.3
(2019), pp. 336–363. doi: 10.1007/S10703-019-00334-Z.

[FMY97] Masahiro Fujita, Patrick C. McGeer, and Jerry Chih-Yuan Yang. “Multi-
Terminal Binary Decision Diagrams: An Efficient Data Structure for Ma-
trix Representation”. In: Formal Methods Syst. Des. 10.2/3 (1997), pp. 149–
169. doi: 10.1023/A:1008647823331.

[Fra90] Paul Martin Frank. “Fault diagnosis in dynamic systems using analytical
and knowledge-based redundancy: A survey and some new results”. In:
Autom. 26.3 (1990), pp. 459–474. doi: 10.1016/0005-1098(90)90018-D.

[Gar+13] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
“CADP 2011: a toolbox for the construction and analysis of distributed
processes”. In: Int. J. Softw. Tools Technol. Transf. 15.2 (2013), pp. 89–107.
doi: 10.1007/s10009-012-0244-z.

[Gar73] Martin Gardner. “Mathematical games”. In: Scientific American 229 (1973),
pp. 118–121.

[Gil60] E. N. Gilbert. “Capacity of a burst-noise channel”. In: The Bell System
Technical Journal 39.5 (1960), pp. 1253–1265. doi: 10.1002/j.1538-7305.
1960.tb03959.x.

[GK15] Hila Gonen and Orna Kupferman. “Inherent Vacuity in Lattice Au-
tomata”. In: Fields of Logic and Computation II - Essays Dedicated to
Yuri Gurevich on the Occasion of His 75th Birthday. Ed. by Lev D. Bek-
lemishev, Andreas Blass, Nachum Dershowitz, Bernd Finkbeiner, and

https://doi.org/10.1007/s10703-022-00395-7
https://doi.org/10.1007/s10703-022-00395-7
https://doi.org/10.1007/3-540-61474-5_97
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/S10703-019-00334-Z
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1016/0005-1098(90)90018-D
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1002/j.1538-7305.1960.tb03959.x
https://doi.org/10.1002/j.1538-7305.1960.tb03959.x

BIBLIOGRAPHY 267

Wolfram Schulte. Vol. 9300. Lecture Notes in Computer Science. Springer,
2015, pp. 174–192. doi: 10.1007/978-3-319-23534-9_10.

[GLM18] Hubert Garavel, Frédéric Lang, and Laurent Mounier. “Compositional
Verification in Action”. In: Formal Methods for Industrial Critical Systems
- 23rd International Conference, FMICS 2018, Maynooth, Ireland, September
3-4, 2018, Proceedings. Ed. by Falk Howar and Jiri Barnat. Vol. 11119.
Lecture Notes in Computer Science. Springer, 2018, pp. 189–210. isbn:
978-3-030-00243-5. doi: 10.1007/978-3-030-00244-2_13.

[GLS08] Alexander Gruler, Martin Leucker, and Kathrin Danielle Scheidemann.
“Modeling and Model Checking Software Product Lines”. In: Formal
Methods for Open Object-Based Distributed Systems, 10th IFIP WG 6.1
International Conference, FMOODS 2008, Oslo, Norway, June 4-6, 2008,
Proceedings. Ed. by Gilles Barthe and Frank S. de Boer. Vol. 5051. Lecture
Notes in Computer Science. Springer, 2008, pp. 113–131. doi: 10.1007/978-
3-540-68863-1_8.

[GN92] Naresh Gupta and Dana S. Nau. “On the Complexity of Blocks-World
Planning”. In: Artif. Intell. 56.2-3 (1992), pp. 223–254. doi: 10.1016/0004-
3702(92)90028-V.

[Gro+20a] Timo P. Gros, David Großand Stefan Gumhold, Jörg Hoffmann, Michaela
Klauck, and Marcel Steinmetz. “TraceVis: Towards Visualization for
Deep Statistical Model Checking”. In: Proceedings of the 9th International
Symposium On Leveraging Applications of Formal Methods, Verification
and Validation. From Verification to Explanation. 2020.

[Gro+20b] Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, and
Marcel Steinmetz. “Deep Statistical Model Checking”. In: Formal Tech-
niques for Distributed Objects, Components, and Systems - 40th IFIP WG
6.1 International Conference, FORTE 2020, Held as Part of the 15th In-
ternational Federated Conference on Distributed Computing Techniques,
DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings. Ed. by
Alexey Gotsman and Ana Sokolova. Vol. 12136. Lecture Notes in Com-
puter Science. Springer, 2020, pp. 96–114. isbn: 978-3-030-50085-6. doi:
10.1007/978-3-030-50086-3_6.

[Gro+22] Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, Max-
imilian A. Köhl, and Verena Wolf. “MoGym: Using Formal Models for
Training and Verifying Decision-making Agents”. In: Computer Aided
Verification - 34th International Conference, CAV 2022, Haifa, Israel, Au-
gust 7-10, 2022, Proceedings, Part II. Ed. by Sharon Shoham and Yakir
Vizel. Vol. 13372. Lecture Notes in Computer Science. Springer, 2022,
pp. 430–443. doi: 10.1007/978-3-031-13188-2_21.

https://doi.org/10.1007/978-3-319-23534-9_10
https://doi.org/10.1007/978-3-030-00244-2_13
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1016/0004-3702(92)90028-V
https://doi.org/10.1016/0004-3702(92)90028-V
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1007/978-3-031-13188-2_21

268 BIBLIOGRAPHY

[GS18] Felipe Gorostiaga and César Sánchez. “Striver: Stream Runtime Veri-
fication for Real-Time Event-Streams”. In: Runtime Verification - 18th
International Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018,
Proceedings. Ed. by Christian Colombo and Martin Leucker. Vol. 11237.
Lecture Notes in Computer Science. Springer, 2018, pp. 282–298. doi:
10.1007/978-3-030-03769-7_16.

[Hah+13] Ernst Moritz Hahn, Arnd Hartmanns, Holger Hermanns, and Joost-
Pieter Katoen. “A compositional modelling and analysis framework for
stochastic hybrid systems”. In: Formal Methods Syst. Des. 43.2 (2013),
pp. 191–232. doi: 10.1007/s10703-012-0167-z.

[Hah+14] Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and Lijun Zhang.
“iscasMc: AWeb-Based ProbabilisticModel Checker”. In: FM 2014: Formal
Methods - 19th International Symposium, Singapore, May 12-16, 2014. Pro-
ceedings. Ed. by Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun. Vol. 8442.
Lecture Notes in Computer Science. Springer, 2014, pp. 312–317. isbn:
978-3-319-06409-3. doi: 10.1007/978-3-319-06410-9_22.

[Hah+19] ErnstMoritz Hahn, ArndHartmanns, Christian Hensel, Michaela Klauck,
Joachim Klein, Jan Kretínský, David Parker, Tim Quatmann, Enno Rui-
jters, and Marcel Steinmetz. “The 2019 Comparison of Tools for the
Analysis of Quantitative Formal Models - (QComp 2019 Competition
Report)”. In: Tools and Algorithms for the Construction and Analysis of
Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part III. Ed. by
Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen.
Vol. 11429. Lecture Notes in Computer Science. Springer, 2019, pp. 69–92.
isbn: 978-3-030-17501-6. doi: 10.1007/978-3-030-17502-3_5.

[Har+19] Arnd Hartmanns, Michaela Klauck, David Parker, Tim Quatmann, and
Enno Ruijters. “The Quantitative Verification Benchmark Set”. In: Tools
and Algorithms for the Construction and Analysis of Systems - 25th In-
ternational Conference, TACAS 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, Part I. Ed. by Tomás Vojnar and
Lijun Zhang. Vol. 11427. Lecture Notes in Computer Science. Springer,
2019, pp. 344–350. isbn: 978-3-030-17461-3. doi: 10.1007/978-3-030-17462-
0_20.

[Hav+10] Klaus Havelund, Martin Leucker, Martin Sachenbacher, Oleg Sokolsky,
and Brian C. Williams, eds. Runtime Verification, Diagnosis, Planning and
Control for Autonomous Systems, 07.11. - 12.11.2010. Vol. 10451. Dagstuhl
Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, Germany, 2010.

https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20

BIBLIOGRAPHY 269

[Hen+22] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann,
and Matthias Volk. “The probabilistic model checker Storm”. In: Int. J.
Softw. Tools Technol. Transf. 24.4 (2022), pp. 589–610. doi: 10.1007/S10009-
021-00633-Z.

[Hen98] Thomas A. Henzinger. “It’s About Time: Real-Time Logics Reviewed”.
In: CONCUR ’98: Concurrency Theory, 9th International Conference,
Nice, France, September 8-11, 1998, Proceedings. Ed. by Davide Sangiorgi
and Robert de Simone. Vol. 1466. Lecture Notes in Computer Science.
Springer, 1998, pp. 439–454. doi: 10.1007/BFB0055640.

[Her+18] Holger Hermanns, Sebastian Biewer, Pedro R. D’Argenio, and Maxim-
ilian A. Köhl. “Verification, Testing, and Runtime Monitoring of Auto-
motive Exhaust Emissions”. In: LPAR-22. 22nd International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, Awassa,
Ethiopia, 16-21 November 2018. Ed. by Gilles Barthe, Geoff Sutcliffe, and
Margus Veanes. Vol. 57. EPiC Series in Computing. EasyChair, 2018,
pp. 1–17. doi: 10.29007/6zxt.

[HG05] Klaus Havelund and Allen Goldberg. “Verify Your Runs”. In: Verified
Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference,
VSTTE 2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected Pa-
pers and Discussions. Ed. by BertrandMeyer and JimWoodcock. Vol. 4171.
Lecture Notes in Computer Science. Springer, 2005, pp. 374–383. doi:
10.1007/978-3-540-69149-5_40.

[HH14] Arnd Hartmanns and Holger Hermanns. “The Modest Toolset: An In-
tegrated Environment for Quantitative Modelling and Verification”. In:
Tools and Algorithms for the Construction and Analysis of Systems - 20th
International Conference, TACAS 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014. Proceedings. Ed. by Erika Ábrahám and Klaus
Havelund. Vol. 8413. Lecture Notes in Computer Science. Springer, 2014,
pp. 593–598. doi: 10.1007/978-3-642-54862-8_51.

[HK11] Shulamit Halamish and Orna Kupferman. “Minimizing Deterministic
Lattice Automata”. In: Foundations of Software Science and Computational
Structures - 14th International Conference, FOSSACS 2011, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings.
Ed. by Martin Hofmann. Vol. 6604. Lecture Notes in Computer Science.
Springer, 2011, pp. 199–213. doi: 10.1007/978-3-642-19805-2_14.

https://doi.org/10.1007/S10009-021-00633-Z
https://doi.org/10.1007/S10009-021-00633-Z
https://doi.org/10.1007/BFB0055640
https://doi.org/10.29007/6zxt
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-19805-2_14

270 BIBLIOGRAPHY

[HK12] Shulamit Halamish and Orna Kupferman. “Approximating Determin-
istic Lattice Automata”. In: Automated Technology for Verification and
Analysis - 10th International Symposium, ATVA 2012, Thiruvananthapu-
ram, India, October 3-6, 2012. Proceedings. Ed. by Supratik Chakraborty
and Madhavan Mukund. Vol. 7561. Lecture Notes in Computer Science.
Springer, 2012, pp. 27–41. doi: 10.1007/978-3-642-33386-6_4.

[HK15] Shulamit Halamish and Orna Kupferman. “Minimizing Deterministic
Lattice Automata”. In: ACM Trans. Comput. Log. 16.1 (2015), 1:1–1:21.
doi: 10.1145/2631915.

[HLP01] Klaus Havelund, Michael R. Lowry, and John Penix. “Formal Analysis
of a Space-Craft Controller Using SPIN”. In: IEEE Trans. Software Eng.
27.8 (2001), pp. 749–765. doi: 10.1109/32.940728.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to automata theory, languages, and computation, 2nd Edition. Addison-
Wesley series in computer science. Addison-Wesley-Longman, 2001.
isbn: 978-0-201-44124-6.

[HMU07] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to automata theory, languages, and computation, 3rd Edition. Pearson
international edition. Addison-Wesley, 2007. isbn: 978-0-321-47617-3.

[Hoa78] C. A. R. Hoare. “Communicating Sequential Processes”. In: Commun.
ACM 21.8 (1978), pp. 666–677. doi: 10.1145/359576.359585.

[Hof+20] Jörg Hoffmann, Holger Hermanns, Michaela Klauck, Marcel Steinmetz,
Erez Karpas, and Daniele Magazzeni. “Let’s Learn Their Language?
A Case for Planning with Automata-Network Languages from Model
Checking”. In: The Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020. AAAI Press, 2020, pp. 13569–13575. isbn: 978-
1-57735-823-7.

[Hol97] Gerard J. Holzmann. “The Model Checker SPIN”. In: IEEE Trans. Software
Eng. 23.5 (1997), pp. 279–295. doi: 10.1109/32.588521.

[Hop71] John Hopcroft. “AN n log n ALGORITHM FOR MINIMIZING STATES
IN A FINITE AUTOMATON”. In: Theory of Machines and Computations.
Ed. by Zvi Kohavi and Azaria Paz. Academic Press, 1971, pp. 189–196.
isbn: 978-0-12-417750-5. doi: https://doi.org/10.1016/B978-0-12-417750-
5.50022-1.

https://doi.org/10.1007/978-3-642-33386-6_4
https://doi.org/10.1145/2631915
https://doi.org/10.1109/32.940728
https://doi.org/10.1145/359576.359585
https://doi.org/10.1109/32.588521
https://doi.org/https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/https://doi.org/10.1016/B978-0-12-417750-5.50022-1

BIBLIOGRAPHY 271

[HP01] Joseph Y. Halpern and Judea Pearl. “Causes and Explanations: A
Structural-Model Approach - Part II: Explanations”. In: Proceedings of
the Seventeenth International Joint Conference on Artificial Intelligence,
IJCAI 2001, Seattle, Washington, USA, August 4-10, 2001. Ed. by Bernhard
Nebel. Morgan Kaufmann, 2001, pp. 27–34.

[Hus+24] Nils Husung, Clemens Dubslaff, Holger Hermanns, and Maximilian
A. Köhl. “OxiDD - A Safe, Concurrent, Modular, and Performant De-
cision Diagram Framework in Rust”. In: Tools and Algorithms for the
Construction and Analysis of Systems - 30th International Conference,
TACAS 2024, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg,
April 6-11, 2024, Proceedings, Part III. Ed. by Bernd Finkbeiner and Laura
Kovács. Vol. 14572. Lecture Notes in Computer Science. Springer, 2024,
pp. 255–275. doi: 10.1007/978-3-031-57256-2_13.

[Ise05] Rolf Isermann. “Model-based fault-detection and diagnosis - status and
applications”. In: Annu. Rev. Control. 29.1 (2005), pp. 71–85. doi: 10.1016/
J.ARCONTROL.2004.12.002.

[Ive+00] Torsten K. Iversen, Kåre J. Kristoffersen, Kim Guldstrand Larsen, Morten
Laursen, Rune G. Madsen, Steffen K. Mortensen, Paul Pettersson, and
Chris B. Thomasen. “Model-checking real-time control programs: verify-
ing Lego(R) MindstormsTM systems using UPPAAL”. In: 12th Euromicro
Conference on Real-Time Systems (ECRTS 2000), 19-21 June 2000, Stock-
holm, Sweden, Proceedings. IEEE Computer Society, 2000, pp. 147–155.
doi: 10.1109/EMRTS.2000.854002.

[Jan+20] Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Rod-
erick Bloem. “Safe Reinforcement Learning Using Probabilistic Shields
(Invited Paper)”. In: 31st International Conference on Concurrency Theory,
CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference).
Ed. by Igor Konnov and Laura Kovács. Vol. 171. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020, 3:1–3:16. doi: 10.4230/LIPICS.
CONCUR.2020.3.

[JJS21] Sebastian Junges, Nils Jansen, and Sanjit A. Seshia. “Enforcing Almost-
Sure Reachability in POMDPs”. In: Computer Aided Verification - 33rd In-
ternational Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceed-
ings, Part II. Ed. by Alexandra Silva and K. Rustan M. Leino. Vol. 12760.
Lecture Notes in Computer Science. Springer, 2021, pp. 602–625. doi:
10.1007/978-3-030-81688-9_28.

https://doi.org/10.1007/978-3-031-57256-2_13
https://doi.org/10.1016/J.ARCONTROL.2004.12.002
https://doi.org/10.1016/J.ARCONTROL.2004.12.002
https://doi.org/10.1109/EMRTS.2000.854002
https://doi.org/10.4230/LIPICS.CONCUR.2020.3
https://doi.org/10.4230/LIPICS.CONCUR.2020.3
https://doi.org/10.1007/978-3-030-81688-9_28

272 BIBLIOGRAPHY

[JM11] Galina Jirásková and Tomás Masopust. “State Complexity of Projected
Languages”. In: Descriptional Complexity of Formal Systems - 13th Inter-
national Workshop, DCFS 2011, Gießen/Limburg, Germany, July 25-27,
2011. Proceedings. Ed. by Markus Holzer, Martin Kutrib, and Giovanni
Pighizzini. Vol. 6808. Lecture Notes in Computer Science. Springer, 2011,
pp. 198–211. doi: 10.1007/978-3-642-22600-7_16.

[Jun+21] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
“Safe systems programming in Rust”. In: Commun. ACM 64.4 (2021),
pp. 144–152. doi: 10.1145/3418295.

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. “Granularity in
software product lines”. In: 30th International Conference on Software En-
gineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008. Ed. by Wilhelm
Schäfer, Matthew B. Dwyer, and Volker Gruhn. ACM, 2008, pp. 311–320.
doi: 10.1145/1368088.1368131.

[Kan+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasibil-
ity Study. Tech. rep. Carnegie-Mellon University Software Engineering
Institute, 1990.

[KDH24] Maximilian A. Köhl, Clemens Dubslaff, and Holger Hermanns. “Config-
uration Monitor Synthesis”. In: Automated Technology for Verification
and Analysis, ATVA 2024. Lecture Notes in Computer Science. Accepted
for publication. 2024.

[Kel76] Robert M. Keller. “Formal Verification of Parallel Programs”. In: Commun.
ACM 19.7 (1976), pp. 371–384. doi: 10.1145/360248.360251.

[KH23] Maximilian A. Köhl and Holger Hermanns. “Model-Based Diagnosis of
Real-Time Systems: Robustness Against Varying Latency, Clock Drift,
and Out-of-Order Observations”. In: ACM Transactions on Embedded
Computing Systems 22.4 (2023), 68:1–68:48. doi: 10.1145/3597209.

[KHB18] Maximilian A. Köhl, Holger Hermanns, and Sebastian Biewer. “Efficient
Monitoring of Real Driving Emissions”. In: Runtime Verification - 18th
International Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018,
Proceedings. Ed. by Christian Colombo and Martin Leucker. Vol. 11237.
Lecture Notes in Computer Science. Springer, 2018, pp. 299–315. doi:
10.1007/978-3-030-03769-7_17.

[Kim+10] Chang Hwan Peter Kim, Eric Bodden, Don Batory, and Sarfraz Khurshid.
“Reducing Configurations to Monitor in a Software Product Line”. In:
Proceedings of the 10th International Conference on Runtime Verification
(RV’10). Berlin, Heidelberg: Springer, 2010, pp. 285–299.

https://doi.org/10.1007/978-3-642-22600-7_16
https://doi.org/10.1145/3418295
https://doi.org/10.1145/1368088.1368131
https://doi.org/10.1145/360248.360251
https://doi.org/10.1145/3597209
https://doi.org/10.1007/978-3-030-03769-7_17

BIBLIOGRAPHY 273

[KKH21] Maximilian A. Köhl, Michaela Klauck, and Holger Hermanns. “Momba:
JANI Meets Python”. In: Tools and Algorithms for the Construction and
Analysis of Systems - 27th International Conference, TACAS 2021, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, Part II. Ed. by Jan Friso Groote and Kim Guldstrand Larsen.
Vol. 12652. Lecture Notes in Computer Science. Springer, 2021, pp. 389–
398. doi: 10.1007/978-3-030-72013-1_23.

[KL07] Orna Kupferman and Yoad Lustig. “Lattice Automata”. In: Verification,
Model Checking, and Abstract Interpretation, 8th International Conference,
VMCAI 2007, Nice, France, January 14-16, 2007, Proceedings. Ed. by By-
ron Cook and Andreas Podelski. Vol. 4349. Lecture Notes in Computer
Science. Springer, 2007, pp. 199–213. doi: 10.1007/978-3-540-69738-1_14.

[Kla+20] Michaela Klauck, Marcel Steinmetz, Jörg Hoffmann, and Holger Her-
manns. “Bridging the Gap Between Probabilistic Model Checking and
Probabilistic Planning: Survey, Compilations, and Empirical Compar-
ison”. In: J. Artif. Intell. Res. 68 (2020), pp. 247–310. doi: 10.1613/jair.1.
11595.

[KLC98] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
“Planning and Acting in Partially Observable Stochastic Domains”. In:
Artif. Intell. 101.1-2 (1998), pp. 99–134. doi: 10.1016/S0004-3702(98)00023-
X.

[Kle38] Stephen Cole Kleene. “On Notation for Ordinal Numbers”. In: J. Symb.
Log. 3.4 (1938), pp. 150–155. doi: 10.2307/2267778.

[KLS22] Hannes Kallwies, Martin Leucker, and César Sánchez. “Symbolic Run-
time Verification for Monitoring Under Uncertainties and Assumptions”.
In: Automated Technology for Verification and Analysis - 20th Interna-
tional Symposium, ATVA 2022, Virtual Event, October 25-28, 2022, Proceed-
ings. Ed. by Ahmed Bouajjani, Lukás Holík, and Zhilin Wu. Vol. 13505.
Lecture Notes in Computer Science. Springer, 2022, pp. 117–134. doi:
10.1007/978-3-031-19992-9_8.

[KLS23] Hannes Kallwies, Martin Leucker, and César Sánchez. “General Antici-
patory Monitoring for Temporal Logics on Finite Traces”. In: Runtime
Verification - 23rd International Conference, RV 2023, Thessaloniki, Greece,
October 3-6, 2023, Proceedings. Ed. by Panagiotis Katsaros and Laura
Nenzi. Vol. 14245. Lecture Notes in Computer Science. Springer, 2023,
pp. 106–125. doi: 10.1007/978-3-031-44267-4_6.

https://doi.org/10.1007/978-3-030-72013-1_23
https://doi.org/10.1007/978-3-540-69738-1_14
https://doi.org/10.1613/jair.1.11595
https://doi.org/10.1613/jair.1.11595
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.2307/2267778
https://doi.org/10.1007/978-3-031-19992-9_8
https://doi.org/10.1007/978-3-031-44267-4_6

274 BIBLIOGRAPHY

[Klu+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B
Hamrick, Jason Grout, Sylvain Corlay, et al. “Jupyter Notebooks-a pub-
lishing format for reproducible computational workflows.” In: ELPUB.
2016, pp. 87–90.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “PRISM 4.0:
Verification of Probabilistic Real-Time Systems”. In: Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz
Qadeer. Vol. 6806. Lecture Notes in Computer Science. Springer, 2011,
pp. 585–591. doi: 10.1007/978-3-642-22110-1_47.

[KNP12] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “The PRISM
Benchmark Suite”. In: Ninth International Conference on Quantitative
Evaluation of Systems, QEST 2012, London, United Kingdom, September
17-20, 2012. IEEE Computer Society, 2012, pp. 203–204. doi: 10.1109/
QEST.2012.14.

[Köh+19] Maximilian A. Köhl, Kevin Baum, Markus Langer, Daniel Oster, Timo
Speith, and Dimitri Bohlender. “Explainability as a Non-Functional Re-
quirement”. In: 27th IEEE International Requirements Engineering Confer-
ence, RE 2019, Jeju Island, Korea (South), September 23-27, 2019. Ed. by
Daniela E. Damian, Anna Perini, and Seok-Won Lee. IEEE, 2019, pp. 363–
368. doi: 10.1109/RE.2019.00046.

[Koz82] Dexter Kozen. “Results on the Propositional -Calculus”. In: Automata,
Languages and Programming, 9th Colloquium, Aarhus, Denmark, July 12-
16, 1982, Proceedings. Ed. by Mogens Nielsen and Erik Meineche Schmidt.
Vol. 140. Lecture Notes in Computer Science. Springer, 1982, pp. 348–359.
doi: 10.1007/BFB0012782.

[KPR98] Yonit Kesten, Amir Pnueli, and Li-on Raviv. “Algorithmic Verification
of Linear Temporal Logic Specifications”. In: Automata, Languages and
Programming, 25th International Colloquium, ICALP’98, Aalborg, Den-
mark, July 13-17, 1998, Proceedings. Ed. by Kim Guldstrand Larsen, Sven
Skyum, and Glynn Winskel. Vol. 1443. Lecture Notes in Computer Sci-
ence. Springer, 1998, pp. 1–16. doi: 10.1007/BFB0055036.

[Kri63] Saul Kripke. “Semantical Considerations on Modal Logic”. In: Acta Philo-
sophica Fennica 16 (1963), pp. 83–94.

[KRS09] Jui-Yi Kao, Narad Rampersad, and Jeffrey O. Shallit. “On NFAs where all
states are final, initial, or both”. In: Theor. Comput. Sci. 410.47-49 (2009),
pp. 5010–5021. doi: 10.1016/J.TCS.2009.07.049.

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1109/RE.2019.00046
https://doi.org/10.1007/BFB0012782
https://doi.org/10.1007/BFB0055036
https://doi.org/10.1016/J.TCS.2009.07.049

BIBLIOGRAPHY 275

[Kup22] Orna Kupferman. “Multi-Valued Reasoning about Reactive Systems”. In:
Found. Trends Theor. Comput. Sci. 15.2 (2022), pp. 126–228. doi: 10.1561/
0400000083.

[KV01] Orna Kupferman and Moshe Y. Vardi. “Model Checking of Safety Proper-
ties”. In: FormalMethods Syst. Des. 19.3 (2001), pp. 291–314. doi: 10.1023/A:
1011254632723.

[KW87] Johan de Kleer and Brian C. Williams. “Diagnosing Multiple Faults”. In:
Artif. Intell. 32.1 (1987), pp. 97–130. doi: 10.1016/0004-3702(87)90063-4.

[Lar+97] K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. “Efficient verification
of real-time systems: compact data structure and state-space reduction”.
In: Proceedings Real-Time Systems Symposium. 1997, pp. 14–24. doi:
10.1109/REAL.1997.641265.

[LBW09] Jay Ligatti, Lujo Bauer, and David Walker. “Run-Time Enforcement of
Nonsafety Policies”. In: ACM Trans. Inf. Syst. Secur. 12.3 (2009), 19:1–
19:41. doi: 10.1145/1455526.1455532.

[Leu+18] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and
Alexander Schramm. “TeSSLa: runtime verification of non-synchronized
real-time streams”. In: Proceedings of the 33rd Annual ACM Symposium
on Applied Computing, SAC 2018, Pau, France, April 09-13, 2018. Ed. by
Hisham M. Haddad, Roger L. Wainwright, and Richard Chbeir. ACM,
2018, pp. 1925–1933. doi: 10.1145/3167132.3167338.

[Leu+19] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and
Daniel Thoma. “Runtime Verification for Timed Event Streams with Par-
tial Information”. In: Runtime Verification - 19th International Conference,
RV 2019, Porto, Portugal, October 8-11, 2019, Proceedings. Ed. by Bernd
Finkbeiner and LeonardoMariani. Vol. 11757. Lecture Notes in Computer
Science. Springer, 2019, pp. 273–291. doi: 10.1007/978-3-030-32079-9_16.

[Leu12] Martin Leucker. “Sliding between Model Checking and Runtime Verifi-
cation”. In: Runtime Verification, Third International Conference, RV 2012,
Istanbul, Turkey, September 25-28, 2012, Revised Selected Papers. Ed. by
Shaz Qadeer and Serdar Tasiran. Vol. 7687. Lecture Notes in Computer
Science. Springer, 2012, pp. 82–87. doi: 10.1007/978-3-642-35632-2_10.

[Lew73] David Lewis. “Causation”. In: Journal of Philosophy 70.17 (1973), pp. 556–
567. doi: 10.2307/2025310.

[LFM20] Giovanni Lugaresi, Nicla Frigerio, and Andrea Matta. “A New Learn-
ing Factory Experience Exploiting LEGO For Teaching Manufacturing
Systems Integration”. In: Procedia Manufacturing 45 (2020). Learning
Factories across the value chain – from innovation to service – The 10th

https://doi.org/10.1561/0400000083
https://doi.org/10.1561/0400000083
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1016/0004-3702(87)90063-4
https://doi.org/10.1109/REAL.1997.641265
https://doi.org/10.1145/1455526.1455532
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1007/978-3-030-32079-9_16
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.2307/2025310

276 BIBLIOGRAPHY

Conference on Learning Factories 2020, pp. 271–276. issn: 2351-9789.
doi: https://doi.org/10.1016/j.promfg.2020.04.106.

[LS09] Martin Leucker and Christian Schallhart. “A brief account of runtime
verification”. In: J. Log. Algebraic Methods Program. 78.5 (2009), pp. 293–
303. doi: 10.1016/j.jlap.2008.08.004.

[MB06] Katell Morin-Allory and Dominique Borrione. “On-line Monitoring of
Properties Built on Regular Expressions”. In: Forum on specification and
Design Languages, FDL 2006, September 19-22, 2006, Darmstadt, Germany,
Proceedings. ECSI, 2006, pp. 249–255.

[MG05] H. Brendan McMahan and Geoffrey J. Gordon. “Fast Exact Planning in
Markov Decision Processes”. In: ICAPS. 2005, pp. 151–160.

[Mha+17] Lotfi Mhamdi, Chakib Ben Njima, Hedi Dhouibi, and Hassani Messaoud.
“Using timed automata and fuzzy logic for diagnosis of multiple faults
in DES”. In: International Conference on Control, Automation and Diagno-
sis, ICCAD 2017, Hammamet, Tunisia, January 19-21, 2017. IEEE, 2017,
pp. 457–463. doi: 10.1109/CADIAG.2017.8075702.

[MHC99] Omid Madani, Steve Hanks, and Anne Condon. “On the Undecidabil-
ity of Probabilistic Planning and Infinite-Horizon Partially Observable
Markov Decision Problems”. In: Proceedings of the Sixteenth National
Conference on Artificial Intelligence and Eleventh Conference on Innovative
Applications of Artificial Intelligence, July 18-22, 1999, Orlando, Florida,
USA. Ed. by Jim Hendler and Devika Subramanian. AAAI Press / The
MIT Press, 1999, pp. 541–548.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Vol. 92. Lecture
Notes in Computer Science. Springer, 1980. isbn: 3-540-10235-3. doi:
10.1007/3-540-10235-3.

[Moo56] Edward F. Moore. “Gedanken-Experiments on Sequential Machines”.
In: Automata Studies. (AM-34), Volume 34. Ed. by C. E. Shannon and
J. McCarthy. Princeton: Princeton University Press, 1956, pp. 129–154.
isbn: 9781400882618. doi: doi:10.1515/9781400882618-006.

[Myh57] John Myhill. “Finite automata and the representation of events”. In:
WADD Technical Report 57 (1957), pp. 112–137.

[Ner58] A. Nerode. “Linear Automaton Transformations”. In: Proceedings of the
American Mathematical Society 9.4 (1958), pp. 541–544. issn: 00029939,
10886826.

[Orf95] Sophocles J Orfanidis. Introduction to signal processing. Prentice-Hall,
Inc., 1995.

https://doi.org/https://doi.org/10.1016/j.promfg.2020.04.106
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1109/CADIAG.2017.8075702
https://doi.org/10.1007/3-540-10235-3
https://doi.org/doi:10.1515/9781400882618-006

BIBLIOGRAPHY 277

[Ped+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, et al. “Scikit-learn: Machine learning in
Python”. In: the Journal of machine Learning research 12 (2011), pp. 2825–
2830.

[Pin+13] Luis Enrique Pineda, Yi Lu, Shlomo Zilberstein, and Claudia V. Goldman.
“Fault-Tolerant Planning under Uncertainty”. In: IJCAI. 2013, pp. 2350–
2356.

[Pin+16] Srinivas Pinisetty, Viorel Preoteasa, Stavros Tripakis, Thierry Jéron, Yliès
Falcone, and Hervé Marchand. “Predictive runtime enforcement”. In:
Proceedings of the 31st Annual ACM Symposium on Applied Computing,
Pisa, Italy, April 4-8, 2016. Ed. by Sascha Ossowski. ACM, 2016, pp. 1628–
1633. doi: 10.1145/2851613.2851827.

[Pin+17a] Srinivas Pinisetty, Thierry Jéron, Stavros Tripakis, Yliès Falcone, Hervé
Marchand, and Viorel Preoteasa. “Predictive runtime verification of
timed properties”. In: J. Syst. Softw. 132 (2017), pp. 353–365. doi: 10.1016/
j.jss.2017.06.060.

[Pin+17b] Srinivas Pinisetty, Partha S. Roop, Steven Smyth, Nathan Allen, Stavros
Tripakis, and Reinhard von Hanxleden. “Runtime Enforcement of Cyber-
Physical Systems”. In: ACM Trans. Embed. Comput. Syst. 16.5s (2017),
178:1–178:25. doi: 10.1145/3126500.

[PM22] Paolo Pazzaglia and Martina Maggio. “Characterizing the Effect of Dead-
line Misses on Time-Triggered Task Chains”. In: IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 41.11 (2022), pp. 3957–3968. doi: 10.1109/
TCAD.2022.3199146.

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Sympo-
sium on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977. IEEE Computer Society, 1977, pp. 46–57.
doi: 10.1109/SFCS.1977.32.

[Pop+06] Traian Pop, Paul Pop, Petru Eles, Zebo Peng, and Alexandru Andrei.
“Timing Analysis of the FlexRay Communication Protocol”. In: 18th
Euromicro Conference on Real-Time Systems, ECRTS’06, 5-7 July 2006,
Dresden, Germany, Proceedings. IEEE Computer Society, 2006, pp. 203–
216. doi: 10.1109/ECRTS.2006.31.

[PSJ18] Sven Peldszus, Daniel Strüber, and Jan Jürjens. “Model-based security
analysis of feature-oriented software product lines”. In: Proceedings of the
17th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences. GPCE 2018. Boston, MA, USA: Association

https://doi.org/10.1145/2851613.2851827
https://doi.org/10.1016/j.jss.2017.06.060
https://doi.org/10.1016/j.jss.2017.06.060
https://doi.org/10.1145/3126500
https://doi.org/10.1109/TCAD.2022.3199146
https://doi.org/10.1109/TCAD.2022.3199146
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/ECRTS.2006.31

278 BIBLIOGRAPHY

for Computing Machinery, 2018, pp. 93–106. isbn: 9781450360456. doi:
10.1145/3278122.3278126.

[Pur98] Anuj Puri. “Dynamical Properties of Timed Automata”. In: Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, 5th International Sympo-
sium, FTRTFT’98, Lyngby, Denmark, September 14-18, 1998, Proceedings.
Ed. by Anders P. Ravn and Hans Rischel. Vol. 1486. Lecture Notes in
Computer Science. Springer, 1998, pp. 210–227. doi: 10.1007/BFB0055349.

[PZ14] Luis Enrique Pineda and Shlomo Zilberstein. “Planning Under Uncer-
tainty Using Reduced Models: Revisiting Determinization”. In: Proceed-
ings of the Twenty-Fourth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2014, Portsmouth, New Hampshire, USA, June
21-26, 2014. Ed. by Steve A. Chien, Minh BinhDo, Alan Fern, andWheeler
Ruml. AAAI, 2014. isbn: 978-1-57735-660-8.

[QS82] Jean-Pierre Queille and Joseph Sifakis. “Specification and verification
of concurrent systems in CESAR”. In: International Symposium on Pro-
gramming, 5th Colloquium, Torino, Italy, April 6-8, 1982, Proceedings.
Ed. by Mariangiola Dezani-Ciancaglini and Ugo Montanari. Vol. 137.
Lecture Notes in Computer Science. Springer, 1982, pp. 337–351. doi:
10.1007/3-540-11494-7_22.

[Rei87] Raymond Reiter. “A Theory of Diagnosis from First Principles”. In: Artif.
Intell. 32.1 (1987), pp. 57–95. doi: 10.1016/0004-3702(87)90062-2.

[Rin04] Jussi Rintanen. “Complexity of Planning with Partial Observability”.
In: Proceedings of the Fourteenth International Conference on Automated
Planning and Scheduling (ICAPS 2004), June 3-7 2004, Whistler, British
Columbia, Canada. Ed. by Shlomo Zilberstein, Jana Koehler, and Sven
Koenig. AAAI, 2004, pp. 345–354.

[RM87] Richard A Roberts and Clifford T Mullis. Digital signal processing.
Addison-Wesley Longman Publishing Co., Inc., 1987.

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern
Approach, Third International Edition. Pearson Education, 2010. isbn:
978-0-13-207148-2.

[RS02] C. R. Ramakrishnan and R. Sekar. “Model-based analysis of configuration
vulnerabilities”. In: Journal of Computer Security 10.1-2 (2002), pp. 189–
209. doi: 10.3233/JCS-2002-101-209.

[RS15] Enno Ruijters and Mariëlle Stoelinga. “Fault tree analysis: A survey of
the state-of-the-art in modeling, analysis and tools”. In: Comput. Sci. Rev.
15 (2015), pp. 29–62. doi: 10.1016/j.cosrev.2015.03.001.

https://doi.org/10.1145/3278122.3278126
https://doi.org/10.1007/BFB0055349
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.3233/JCS-2002-101-209
https://doi.org/10.1016/j.cosrev.2015.03.001

BIBLIOGRAPHY 279

[RS59] Michael O. Rabin and Dana S. Scott. “Finite Automata and Their Decision
Problems”. In: IBM J. Res. Dev. 3.2 (1959), pp. 114–125. doi: 10.1147/rd.32.
0114.

[RW89] Peter J. Ramadge and Walter Murray Wonham. “The control of discrete
event systems”. In: Proc. IEEE 77.1 (1989), pp. 81–98. doi: 10.1109/5.21072.

[Sam+95] Meera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sinnamo-
hideen, and Demosthenis Teneketzis. “Diagnosability of discrete-event
systems”. In: IEEE Trans. Autom. Control. 40.9 (1995), pp. 1555–1575. doi:
10.1109/9.412626.

[Sam+96] Meera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sinnamo-
hideen, and Demosthenis Teneketzis. “Failure diagnosis using discrete-
event models”. In: IEEE Trans. Control. Syst. Technol. 4.2 (1996), pp. 105–
124. doi: 10.1109/87.486338.

[Sco82] Dana S. Scott. “Domains for Denotational Semantics”. In: Automata,
Languages and Programming, 9th Colloquium, Aarhus, Denmark, July 12-
16, 1982, Proceedings. Ed. by Mogens Nielsen and Erik Meineche Schmidt.
Vol. 140. Lecture Notes in Computer Science. Springer, 1982, pp. 577–613.
doi: 10.1007/BFB0012801.

[SCT10] Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele. “Timing Anal-
ysis for TDMA Arbitration in Resource Sharing Systems”. In: 16th IEEE
Real-Time and Embedded Technology and Applications Symposium, RTAS
2010, Stockholm, Sweden, April 12-15, 2010. Ed. by Marco Caccamo. IEEE
Computer Society, 2010, pp. 215–224. doi: 10.1109/RTAS.2010.24.

[SFK08] Mani Swaminathan, Martin Fränzle, and Joost-Pieter Katoen. “The Sur-
prising Robustness of (Closed) Timed Automata against Clock-Drift”.
In: Fifth IFIP International Conference On Theoretical Computer Science -
TCS 2008, IFIP 20th World Computer Congress, TC 1, Foundations of Com-
puter Science, September 7-10, 2008, Milano, Italy. Ed. by Giorgio Ausiello,
Juhani Karhumäki, Giancarlo Mauri, and C.-H. Luke Ong. Vol. 273. IFIP.
Springer, 2008, pp. 537–553. doi: 10.1007/978-0-387-09680-3_36.

[SHT06] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux.
“Feature Diagrams: A Survey and a Formal Semantics”. In: 14th IEEE
International Conference on Requirements Engineering (RE 2006), 11-15
September 2006, Minneapolis/St.Paul, Minnesota, USA. IEEE Computer
Society, 2006, pp. 136–145. doi: 10.1109/RE.2006.23.

[SKY] SKYbrary. Electronic Centralized Aircraft Monitor (ECAM). url: https:
//web.archive.org/web/20240421150245/https://skybrary.aero/articles/
electronic-centralized-aircraft-monitor-ecam.

https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1109/5.21072
https://doi.org/10.1109/9.412626
https://doi.org/10.1109/87.486338
https://doi.org/10.1007/BFB0012801
https://doi.org/10.1109/RTAS.2010.24
https://doi.org/10.1007/978-0-387-09680-3_36
https://doi.org/10.1109/RE.2006.23
https://web.archive.org/web/20240421150245/https://skybrary.aero/articles/electronic-centralized-aircraft-monitor-ecam
https://web.archive.org/web/20240421150245/https://skybrary.aero/articles/electronic-centralized-aircraft-monitor-ecam
https://web.archive.org/web/20240421150245/https://skybrary.aero/articles/electronic-centralized-aircraft-monitor-ecam

280 BIBLIOGRAPHY

[Som15] Fabio Somenzi. CUDD: CU Decision Diagram Package. Tech. rep. Univer-
sity of Colorado at Boulder, 2015.

[TFC90] Jeffrey J. P. Tsai, Kwang-Ya Fang, and Horng-Yuan Chen. “A Noninvasive
Architecture to Monitor Real-Time Distributed Systems”. In: Computer
23.3 (1990), pp. 11–23. doi: 10.1109/2.50269.

[THE93] THE COUNCIL OF THE EUROPEAN COMMUNITIES. Council Directive
93/42/EECof 14 June 1993 concerning medical devices. June 1993. url:
http://data.europa.eu/eli/dir/1993/42/oj (visited on 04/24/2024).

[Thr02] Sebastian Thrun. “Probabilistic robotics”. In: Commun. ACM 45.3 (2002),
pp. 52–57. doi: 10.1145/504729.504754.

[Thü+14] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter
Saake. “A Classification and Survey of Analysis Strategies for Software
Product Lines”. In: ACM Comput. Surv. 47.1 (2014), 6:1–6:45. doi: 10.1145/
2580950.

[THW94] Ken Tindell, H. Hanssmon, and Andy J. Wellings. “Analysing Real-Time
Communications: Controller Area Network (CAN)”. In: Proceedings of
the 15th IEEE Real-Time Systems Symposium (RTSS ’94), San Juan, Puerto
Rico, December 7-9, 1994. IEEE Computer Society, 1994, pp. 259–263. doi:
10.1109/REAL.1994.342710.

[Tri02] Stavros Tripakis. “Fault Diagnosis for Timed Automata”. In: Formal
Techniques in Real-Time and Fault-Tolerant Systems, 7th International
Symposium, FTRTFT 2002, Co-sponsored by IFIP WG 2.2, Oldenburg, Ger-
many, September 9-12, 2002, Proceedings. Ed. by Werner Damm and
Ernst-Rüdiger Olderog. Vol. 2469. Lecture Notes in Computer Science.
Springer, 2002, pp. 205–224. doi: 10.1007/3-540-45739-9_14.

[Tsa+90] Jeffrey J. P. Tsai, Kwang-Ya Fang, Horng-Yuan Chen, and Yao-Dong Bi.
“A Noninterference Monitoring and Replay Mechanism for Real-Time
Software Testing and Debugging”. In: IEEE Trans. Software Eng. 16.8
(1990), pp. 897–916. doi: 10.1109/32.57626.

[TV99] Eduardo Tovar and Francisco Vasques. “Real-time fieldbus communica-
tions using Profibus networks”. In: IEEE Trans. Ind. Electron. 46.6 (1999),
pp. 1241–1251. doi: 10.1109/41.808018.

[TYG08] David Thorsley, Tae-Sic Yoo, and Humberto E. Garcia. “Diagnosability
of stochastic discrete-event systems under unreliable observations”. In:
2008 American Control Conference. 2008, pp. 1158–1165. doi: 10.1109/
ACC.2008.4586649.

[Uni] United States Environmental Protection Agency. url: https://web.archive.
org/web/20240718170737/https://www.epa.gov/greenvehicles/electric-
plug-hybrid-electric-vehicles.

https://doi.org/10.1109/2.50269
http://data.europa.eu/eli/dir/1993/42/oj
https://doi.org/10.1145/504729.504754
https://doi.org/10.1145/2580950
https://doi.org/10.1145/2580950
https://doi.org/10.1109/REAL.1994.342710
https://doi.org/10.1007/3-540-45739-9_14
https://doi.org/10.1109/32.57626
https://doi.org/10.1109/41.808018
https://doi.org/10.1109/ACC.2008.4586649
https://doi.org/10.1109/ACC.2008.4586649
https://web.archive.org/web/20240718170737/https://www.epa.gov/greenvehicles/electric-plug-hybrid-electric-vehicles
https://web.archive.org/web/20240718170737/https://www.epa.gov/greenvehicles/electric-plug-hybrid-electric-vehicles
https://web.archive.org/web/20240718170737/https://www.epa.gov/greenvehicles/electric-plug-hybrid-electric-vehicles

BIBLIOGRAPHY 281

[VL08] Antti Valmari and Petri Lehtinen. “Efficient Minimization of DFAs with
Partial Transition”. In: 25th International Symposium on Theoretical As-
pects of Computer Science. Ed. by Susanne Albers and Pascal Weil. Vol. 1.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2008,
pp. 645–656. isbn: 978-3-939897-06-4. doi: 10.4230/LIPIcs.STACS.2008.
1328.

[WB95] Greg Welch and Gary Bishop. An introduction to the Kalman filter. 1995.

[Wul+08] Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François
Raskin. “Robust safety of timed automata”. In: Formal Methods Syst. Des.
33.1-3 (2008), pp. 45–84. doi: 10.1007/S10703-008-0056-7.

[Yan96] Steve Jennhwa Yang. “Debugging for Timing-Constraint Violations”. In:
IEEE Softw. 13.2 (1996), pp. 89–99. doi: 10.1109/52.506465.

[Zav00] Pamela Zave. “Feature-Oriented Description, Formal Methods, and DFC”.
In: Language Constructs for Describing Features, Proceedings of the FIRE-
works Workshop, Glasgow, UK, May 2000. Ed. by Stephen Gilmore and
Mark Ryan. Springer, 2000, pp. 11–26. doi: 10.1007/978-1-4471-0287-8_2.

[Zha+22] Peng Zhang, Shijun Zhang, Shang Li, Jin Zhang, Shaoxun Liu, and
Youjun Bu. “FRA-FPGA: Fast Reconfigurable Automata Processing on
FPGAs”. In: 32nd International Conference on Field-Programmable Logic
and Applications, FPL 2022, Belfast, United Kingdom, August 29 - Sept. 2,
2022. IEEE, 2022, pp. 313–321. doi: 10.1109/FPL57034.2022.00055.

[ZLD12] Xian Zhang, Martin Leucker, and Wei Dong. “Runtime Verification with
Predictive Semantics”. In: NASA Formal Methods - 4th International
Symposium, NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Proceedings.
Ed. by Alwyn Goodloe and Suzette Person. Vol. 7226. Lecture Notes in
Computer Science. Springer, 2012, pp. 418–432. doi: 10.1007/978-3-642-
28891-3_37.

[Zon+20] Tiago Zonta, Cristiano André da Costa, Rodrigo da Rosa Righi, Miromar
José de Lima, Eduardo Silveira da Trindade, and Guann-Pyng Li. “Predic-
tive maintenance in the Industry 4.0: A systematic literature review”. In:
Comput. Ind. Eng. 150 (2020), p. 106889. doi: 10.1016/J.CIE.2020.106889.

https://doi.org/10.4230/LIPIcs.STACS.2008.1328
https://doi.org/10.4230/LIPIcs.STACS.2008.1328
https://doi.org/10.1007/S10703-008-0056-7
https://doi.org/10.1109/52.506465
https://doi.org/10.1007/978-1-4471-0287-8_2
https://doi.org/10.1109/FPL57034.2022.00055
https://doi.org/10.1007/978-3-642-28891-3_37
https://doi.org/10.1007/978-3-642-28891-3_37
https://doi.org/10.1016/J.CIE.2020.106889

	General Remarks
	Mathematical Notations
	Introduction
	Contributions
	Theoretical Framework
	Generic Verdictor Algorithms
	Formal Modeling Toolbox
	Applications and Evaluation

	Relevant Publications and Artifacts
	Outline

	I Theoretical Foundation
	Foundations
	Mathematical Basics
	Formal Models
	Transition Systems
	Continuous-Time Models
	Lattice Automata

	Temporal and Modal Logics
	Linear Temporal Logic (LTL)
	Computation Tree Logic (CTL)
	Basic Modal Logic

	Configurable Systems
	Runtime Verification
	LTL Runtime Verification
	Stream-Based Monitoring with Lola

	Model-Based Fault Diagnosis
	Fault Trees

	Theoretical Framework
	Verdict Domains
	Verdict Transition Systems
	Monotonicity, Refinement, and Equivalence
	Determinization and Minimization

	Observation Models
	Observation Model Transformers
	Applicability and Tightness

	Provably Accurate Verdicts
	Sound, Complete, and Robust VTSs
	VTS Synthesis Problem

	A Unifying Foundation
	Traditional Model-Based Fault Diagnosis
	LTL Runtime Verification
	Stream-Based Runtime Monitoring

	Discussion

	II Generic Verdictor Algorithms
	Modular Discrete-Time Verdictor Synthesis
	Model-Based Construction
	Verdict-Annotated System Models
	Annotation Tracking

	Most Specific Predictions
	Imperfect Observations
	Limited Observability
	Delays
	Losses
	Bounded Out-of-Order Arrivals
	Possibility Lifting

	Finalization
	Language-Relaxing Minimization

	Discussion

	Robust Continuous Time Verdictor Algorithm
	Timing Imprecisions
	Observation Model
	Occurrence and Observation Times
	Consistency of Events and Observations
	Out-of-Order Observations

	Verdictor Building Blocks
	Active Prefix Verdictor
	Bound Consistency

	Verdictor Algorithm
	Bounded History Approximation
	Non-Monotonic Verdicts

	Discussion

	III From Theory to Practice
	Formal Modeling Toolbox Momba
	Architecture and Design
	Momba: User Perspective
	Scenario-Based Model Construction
	Validation by Simulation
	Invoking Analysis Tools

	Evaluation: State Space Exploration
	Tools and Engines
	Benchmark Setup and Results

	Discussion

	Runtime Verification and Fault Diagnosis
	Model-Based Runtime Verification
	Robust and Predictive Runtime Verification
	CTL Runtime Verification

	Fault Diagnosis
	Traditional Diagnosers
	Modal Logic Fault Queries

	Case Study: Robust Real-Time Diagnosis
	Scalability of the Verdictor Algorithm
	Impact of the History Bound
	Impact of Latency and Jitter

	Discussion

	Variability-Aware Monitoring
	Example: Real Driving Emissions
	Configurable LTL₃ Monitoring
	Featured VTSs
	Featured LTL₃ Monitoring

	Configurable Monitoring with Lola
	Family-Based Specification Analysis

	Configuration Monitoring
	Configuration Monitor Synthesis
	Evaluation on Community Benchmarks

	Discussion

	Conclusion and Outlook
	Appendix
	Detailed Proofs
	Modular Discrete-Time Verdictor Synthesis
	Proof of *thm:tracking-accuracy

	Robust Continuous Time Verdictor Algorithm
	Proof of *th:interval-rel
	Proof of *th:comp-diff-b
	Proof of *th:timed-exists-prefix
	Proof of *th:active-subset-soundness
	Proof of *th:active-prefix-soundness
	Proof of *th:active-subset-completeness
	Proof of *th:consistency-equivalence

	Bibliography

