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A B S T R A C T

The human motion capture (mocap) technology has wide applications,
especially in entertainment, sports analysis, and human-computer interac-
tions. Among the motion capture techniques, egocentric motion capture
provides a unique perspective from the individual’s point of view. Be-
ing able to capture human motion in an unconstrained environment,
egocentric motion capture is crucial for AR/VR applications.

This thesis focuses on the task of egocentric motion capture with a
single, head-mounted, downward-facing fisheye camera. This setup can
provide a broad field of view, which enables the capture of both body
movements and interactions within the environment.

Despite the advantages of egocentric cameras, this setup suffers from
several challenges, which are discussed in this thesis. These challenges
include global motion estimation, self-occlusion, fisheye lens distortion,
and the lack of large-scale training datasets. This thesis addresses these
challenges by introducing new datasets and technical contributions:

To address the lack of large-scale training datasets, the thesis presents
new datasets, including EgoPW, EgoGTA, and EgoWholeBody. These
datasets cover a wide range of motions and environments, containing
detailed annotations for human motion and scene geometry. By propos-
ing new datasets, this thesis also reduces the gap between synthetic and
real-world data. To capture global human motion, the thesis employs the
SLAM method to obtain the global camera poses. The camera poses and
the initial local human motion estimations are simultaneously optimized
with the motion prior. The thesis also presents methods to overcome the
issue of self-occlusion. These include leveraging temporal information,
applying human motion priors, and incorporating scene geometry in-
formation. To mitigate the fisheye distortion issue, this thesis introduces
FisheyeViT. It rectifies fisheye distortion with image patches and employs
a Vision Transformer (ViT) network for feature extraction.

All of the methods in this thesis provide new solutions to some of the
main challenges of egocentric motion capture with different technical
and dataset contributions. These contributions enhance the capability to
capture human motion under unconstrained scenarios, which offers new
possibilities for applications in VR, AR, interactive gaming, and more.
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Z U S A M M E N FA S S U N G

Technologien zur rechnergestützten Erfassung menschlicher Bewegun-
gen (Mocap) finden Anwendung in unterschiedlichen Bereichen, bei-
spielsweise in der Unterhaltungsbranche, der Sportanalyse oder der
Mensch-Computer-Interaktion. Die egozentrische Bewegungserfassung
sticht hierbei heraus und liefert dadurch einen entscheidenden Beitrag
für AR und VR-Anwendungen, dass sie die menschliche Bewegung und
Wahrnehmung aus Sicht des Trägers erfasst und somit die Nutzung in
uneingeschränkten Umgebungen ermöglicht.

Diese Arbeit befasst sich mit der Aufgabe der egozentrischen Bewe-
gungserfassung auf Basis einer einzelnen, am Kopf montierten, nach
unten gerichteten Fischaugenkamera. Das breite Sichtfeld dieses Systems
ermöglicht nicht nur die Erfassung von Körperbewegungen, sondern
auch von Interaktionen in der Umgebung.

Trotz der Vorteile egozentrischer Kameras geht die Verwendung dieses
Systems mit einigen Problemen einher, die in dieser Arbeit thematisiert
werden. Die vorgestellten Datensätze und technischen Methoden bear-
beiten unter anderem die Herausforderung der Schätzung der globalen
Bewegung, die erschwerte Schätzung der Bewegung durch starke ge-
genseitige Überdeckungen verschiedener Körperteile, die Verzerrung
der erfassten Bilder durch des Fischaugen-Objektivs und der Mangel an
großen Trainingsdatensätzen.

Um den Mangel an großen Trainingsdatensätzen zu beheben, stellt
die Arbeit die Datensätze EgoPW, EgoGTA und EgoWholeBody vor.
Diese Datensätze decken ein breites Spektrum an Bewegungen und
Umgebungen ab und enthalten detaillierte Annotationen für menschliche
Bewegungen sowie die Geometrie der Szene. Durch die Einführung
dieser Datensätze versucht diese Arbeit auch, die Unterschiede zwischen
synthetischen und realen Daten zu reduzieren.

Zur Erfassung der globalen menschlichen Bewegung wird in dieser
Arbeit die SLAM-Methode eingesetzt, um die globalen Kamerapositionen
zu ermitteln. Die Kameraposen und initialen lokalen Bewegungsschätzun-
gen des Menschen werden gemeinsam unter Betrachtung der Einhaltung
wahrscheinlicher menschlicher Bewegungen optimiert.

Die erschwerten Bedingungen durch gegenseitige Abdeckung verschie-
dener Körperteile wird durch die Nutzung zeitlicher Informationen, die
Integration der a-priori Verteilung menschlicher Bewegungen, sowie die
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Einbeziehung von Informationen über die Geometrie der Szene adres-
siert.

Um das Problem der Fischaugenverzerrung zu reduzieren, wird in
dieser Arbeit FisheyeViT vorgestellt. Es korrigiert die Verzerrungen
der Fischaugenkamera und verwendet ein Vision Transformer (ViT)-
Netzwerk zur Merkmalsextraktion.

Alle in dieser Arbeit vorgestellten Methoden bieten neue Lösungen für
einige der größten Herausforderungen der egozentrischen Bewegungs-
erfassung. Diese Beiträge erweiterten den Raum möglicher Szenarien
und Umgebungen zur Erfassung menschlicher Bewegungen, was neue
Möglichkeiten für Anwendungen in VR, AR, interaktiven Spielen und
mehr bietet.
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1
I N T R O D U C T I O N

1.1 motivation

The human motion capture (mocap) systems have been extensively re-
searched in recent years, enabling the capability to analyze, understand,
and leverage human motion. These systems can facilitate various ap-
plications including filmmaking, gaming, sports analysis, and human-
computer interactions.

One of the traditional and widely adopted motion capture methods
is marker-based motion capture (Park and Hodgins, 2006). This method
places reflective markers on anatomical landmarks of the human body
and leverages high-speed cameras to track the movements of the mark-
ers with the triangulation method. The human motion can be further
recovered from the location of landmarks in high precision. This method
can provide highly accurate human motion captures while requiring the
placement of markers on the body or wearing a special suit. This will
change the appearance of the human body and sometimes can be even
impractical.

Contrasting with marker-based systems, markerless multi-view motion
capture (Liu et al., 2011) tracks and reconstructs the human movement
without the need for physical markers. Multiple synchronized cameras
capture the person from different viewpoints, and multi-view mocap
algorithms are applied to create a 3D representation of the motion. Since
no markers are needed to be placed on the human body, this method
offers greater flexibility and can be applied in applications, such as
human performance capture and photorealistic telepresence.

Recent advancements in deep learning have spurred the development
of single-view motion capture systems (Mehta et al., 2020, 2017b). These
methods usually leverage neural networks trained on large-scale datasets
to predict 3D poses directly from 2D images or videos. Since this method
can operate with a single camera, it is portable and more accessible
than the aforementioned methods. This approach shows outstanding
advantages in applications requiring lightweight setup and real-time
motion capture, such as virtual reality applications and human-computer
interactions.

Though the aforementioned methods show compelling results in the
motion capture task, they still struggle with a common problem – they

1
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(a) marker-based mocap (b) marker-less mocap (c) single-view mocap

Figure 1.1: Different human motion capture methods, including (a) marker-
based mocap method (VICON), (b) markerless mocap method (Captury), and
(c) single-view mocap method (Mehta et al., 2017b).

can not capture human movement in large spaces since the current
equipment is designed for constrained areas, like studio rooms. On the
contrary, egocentric motion capture solves this by capturing movement
from an individual’s point of view. With wearable sensors, human motion
can be captured when people roam around in a large space, building the
foundation for immersive experiences in various applications.

Recent studies have proposed a variety of egocentric setups that uti-
lize diverse sensor configurations for the egocentric motion capture. As
illustrated in Fig. 1.2, these setups can be roughly classified into several
categories: the Inertial Measurement Unit (IMU) setup, third-person ego-
centric setup, inside-out vision setup, inside-in vision setup, and hybrid
approaches combining the setups mentioned above.

The Inertial Measurement Unit (IMU) setup (Guzov et al., 2021; Jiang
et al., 2022a; Mollyn et al., 2023; Yi et al., 2022b) uses the IMU sensors
consisting of accelerometers, gyroscopes, and magnetometers. These sen-
sors provide data on the acceleration, angular rate, and orientation of the
device. In this setup, IMUs are placed on the human body to detect limb
acceleration and orientation. The data from IMUs are then processed to re-
construct the full-body motion. With a similar idea, several methods (Du
et al., 2023; Jiang et al., 2022a; Winkler et al., 2022) also leverage the
head and hand tracking systems on VR/AR headsets to estimate human
motion. However, all of these setups need to place multiple sensors on the
human body, which is inconvenient. The natural human motion can also
be altered. Furthermore, the IMU-based setup suffers from the drifting
issue and it does not provide information about the spatial relationship
between the person and the surrounding environment.

The third-person setup (Khirodkar et al., 2023b; Zhang et al., 2023a,
2022) refers to motion capture techniques that involve a third person
wearing a camera observing the motion capture subject. However, having
a third person to hold the camera can be inconvenient and sometimes
impractical, especially when capturing human motion through a long
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(a) IMU-based (b) third-person egocentric (c) inside-out (d) inside-in

Figure 1.2: Different setups for egocentric human motion capture, including (a)
IMU-based setup (Yi et al., 2022b), (b) third-person setup (Zhang et al., 2022), (c)
inside-out vision setup (Hwang et al., 2020), and (d) inside-in vision setup.

sequence or in a small space. This setup is also cumbersome, which is
hard to implement in a confined space.

The inside-out vision setup (Hwang et al., 2020; Li et al., 2023; Luo
et al., 2021; Yuan and Kitani, 2019) captures human motion by employing
wearable cameras or sensors looking front, towards the environment. This
approach is commonly used in virtual reality (VR) and augmented reality
(AR) systems since cameras in the headset can capture the user’s sur-
rounding environment. It’s particularly effective for understanding the
individual’s locomotion within the environment. However, the outward-
facing cameras can not directly see the movements of human body.
Instead, the algorithms estimate the motion based on how the surround-
ings change. This can often lead to wrong motion estimations, especially
for complicated movements. This limitation significantly impacts the
ability to precisely capture a person’s motion, which is crucial for numer-
ous practical applications such as human telepresence and human-robot
interaction.

In contrast to the inside-out setup, the inside-in vision setup (Tomè
et al., 2019; Wang et al., 2024, 2022, 2021, 2023; Xu et al., 2019) mount the
cameras or sensors on the human body and direct the cameras toward the
person itself. By focusing inward, this inside-in setup has the potential
to achieve higher accuracy since this setup can obtain high-resolution
images of human motion. This setup also enables more applications,
including human performance capture and human telepresence, since
the human body can be directly observed.

Considering the strengths of the inside-in vision method, especially its
ability to precisely capture detailed movements, this thesis adopts the
inside-in setup. Following recent works Mo2Cap2 (Xu et al., 2019) and
xR-egopose (Tomè et al., 2019), this thesis captures egocentric human
motion by mounting a single downward-facing fisheye camera on the
head. This setup is lightweight and can be easily integrated with modern
VR/AR headsets. With the wide field-of-view (FOV) provided by the
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fisheye lens, most parts of the human body and a large portion of the
surrounding scene can be captured, enabling the awareness of the scene
and enhancing the accuracy of motion capture methods in this thesis.
While this setup has many advantages, it still poses several challenges
where new solutions need to be found: the lack of datasets, the self-
occlusion, and the fisheye distortion. This thesis aims to tackle these issues
and achieve accurate and reliable whole-body and global egocentric 3D
motion capture, aiming to contribute to the functionality and application
of body-mounted devices.

1.2 overview

This thesis proposes solutions that advance the research boundary of
egocentric human motion capture that captures 3D human motion from
a single head-mounted, downward-facing fisheye camera, as illustrated
under the label (d) in Fig. 1.2. Building on the down-facing egocentric
fisheye camera setup, as discussed above, several open challenges exist.
This section looks into these challenges and demonstrates how the pro-
posed solutions in this thesis can effectively address these challenges, and
further enhance the performance of egocentric human motion capture.

lack of datasets . A significant challenge is the lack of datasets
specifically tailored for training and validating models on egocentric mo-
tion capture with the egocentric capture setup. Most existing datasets are
designed for outside-in camera setups and may not represent the unique
perspectives captured by a fisheye lens mounted on the head. Some
research works, such as Mo2Cap2 (Xu et al., 2019) and xR-egopose (Tomè
et al., 2019) have introduced datasets for egocentric motion capture. How-
ever, the existing training datasets are predominantly synthetic, which
results in several limitations. Firstly, these datasets lack diversity in hu-
man motion and environments. Moreover, the synthetic to real-world
domain gap in these datasets presents significant challenges to real-world
applications. Furthermore, insufficient annotations for surrounding envi-
ronments and whole-body motions constrain the potential usage of these
datasets in various applications.

To address these issues, this thesis introduces several datasets as well as
new solutions: Chapter 5 presents an in-the-wild dataset named EgoPW,
annotated with weak supervision from the external view. It also proposes
an adversarial domain adaptation method to bridge the synthetic-to-
real-world domain gap and the egocentric-view-to-external-view domain
gap. Chapter 6 introduces a new synthetic dataset, EgoGTA, which
includes synthetic egocentric views and precise annotations of scene
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geometry. Chapter 6 also proposes EgoPW-Scene with pseudo-ground
truth annotations for the scene geometry in the EgoPW dataset. Chapter 7

introduces a high-quality synthetic dataset that encompasses a wide
variety of whole-body human motions, including detailed movements of
the human body and hands. These datasets collectively aim to enrich the
field of egocentric motion capture by providing diverse and large-scale
resources. By tackling the limitations of current datasets, this thesis pave
the way for robust and practical egocentric motion capture methods.

global motion. Another challenge is to estimate global human
motion from the egocentric camera. Prior works, such as Mo2Cap2 (Xu
et al., 2019) and xR-egopose (Tomè et al., 2019) only estimate the local
3D body pose in egocentric camera space, while not being able to obtain
the body pose with the global position and orientation in the world
coordinate system.

To address this challenge, in Chapter 4, this thesis first introduces
the Simultaneous Localization and Mapping (SLAM) method to obtain
egocentric camera poses in the global coordinate system. The estimated
human motion in the local space is projected into the global coordinate
system to get the global motion with the camera poses. The method
further refines the global motion using a learned global motion prior.
The ability to capture global motion builds the foundation for many
applications, such as human-scene interaction and navigation.

self-occlusion. Since the camera is mounted on the head, a con-
siderable portion of the lower body is occluded by the upper body. This
self-occlusion issue makes capturing complete and accurate data for the
entire body difficult.

This thesis introduces two strategies to mitigate this ill-posed problem.
The first involves utilizing temporal information and a human motion
prior, and the second employs scene geometry information to accurately
position the lower body.

Following the first strategy, in Chapter 4, the thesis describes the
learning of a Variational Autoencoder (VAE) based motion prior and
introduces a heatmap-based 2D reprojection loss to optimize motion
within the VAE latent space. In Chapter 7, a diffusion-based whole-
body motion prior is learned, and an uncertainty-aware guided diffusion
denoising process is implemented to refine the initial prediction of whole-
body human motion.

Utilizing a motion prior in egocentric pose estimation enables a context-
aware understanding of human movement, even under frequent self-
occlusions which are typical for the egocentric setting.
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Following the second strategy, in Chapter 6, the thesis proposes a scene-
aware pose estimation network that projects the 2D image features and
estimated depth map of the scene into a voxel space and regresses the 3D
pose with a Voxel-to-Voxel (V2V) network. In this way, this method can
learn the relative position and possible interactions between the human
body joints and the environment. The ambiguity caused by self-occlusion
can thus be reduced to give a better result.

fisheye distortion. Fisheye lenses are known for their wide-angle
view, which is beneficial for capturing a broad area. However, fisheye
images are strongly distorted which challenges many deep neural net-
work based estimation approaches. Simply undistorting the entire fisheye
image is impractical due to the fisheye lens’s large field of view (FOV).
To tackle this issue, Chapter 7 propose FisheyeViT. This method initially
divides the image into smaller patches, each aligned with a specific field
of view (FOV) range. This method then performs patch-level undistortion,
effectively rectifying the fisheye distortion while maintaining alignment
with the vision transformer architecture.

In conclusion, this thesis proposes a set of innovations for the advance-
ment of egocentric human motion capture. It addresses critical challenges
including dataset limitations, self-occlusion, global motion estimation,
and fisheye distortion by proposing new datasets and novel methods.
These advancements enhance the accuracy, reliability, and applicability of
egocentric motion capture, promising significant contributions to virtual
reality, augmented reality, and beyond.

1.3 structure

This thesis is structured as follows.

• Chapter 1 motivates the research task of egocentric human motion
capture from down-facing cameras. Furthermore, it describes the
structure and contributions of this thesis.

• Chapter 2 discusses the wider literature on capturing human mo-
tion from egocentric cameras mounted on the human body.

• Chapter 3 introduces the specific technical background of the mo-
tion capture and egocentric fisheye camera.

• Chapter 4 introduces a new method to accurately capture the ego-
centric human motion in the global coordinate system by intro-
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ducing a new approach that combines concepts from SLAM and a
human motion prior.

• Chapter 5 presents a new method to estimate egocentric human
pose with weak supervision from an external view and an in-
the-wild dataset with 3D joint pseudo-annotations obtained with
supervision from an external camera system.

• Chapter 6 proposes a scene-aware egocentric pose estimation method
that guides the prediction of the egocentric pose with scene con-
straints utilizing a joint voxel-based feature representation.

• Chapter 7 describes a new approach to capture egocentric whole-
body motion, including human body and hand motion. A new
version of a vision transformer, called FisheyeViT, is utilized in
combination with a diffusion-based whole body motion prior to
computer the final whole body motion.

• Chapter 8 concludes this thesis, summarizes the insights, and dis-
cusses possible steps of future work.

1.4 contributions

This thesis makes the following main contributions:

The contributions of Chapter 4 (published as Wang et al. (2021)) are:

• A novel framework for accurate and temporally stable global 3D
human pose estimation from a monocular egocentric video;

• A new optimization algorithm with the assistance of local and
global motion prior captured by an efficient convolutional network-
based VAE;

• An uncertainty-aware reprojection loss to alleviate the influence of
self-occlusions in egocentric settings.

The contributions of Chapter 5 (published as Wang et al. (2022)) are:

• A large in-the-wild egocentric dataset (EgoPW) captured with a
head-mounted fisheye camera and an external camera;

• A new optimization method to generating pseudo labels for the
in-the-wild egocentric dataset by incorporating the supervision
from an external view;
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• An adversarial method for training the network by learning the
feature representation of egocentric images with external feature
representation.

The contributions of Chapter 6 (published as Wang et al. (2023)) are:

• Synthetic and in-the-wild egocentric datasets containing egocentric
pose labels and scene geometry labels;

• A new depth estimation and inpainting networks to predict the
scene depth map also in regions behind the human body;

• A new egocentric pose estimation method leveraging a joint voxel-
based representation of body pose features and scene geometry.

The contributions of Chapter 7 (published as Wang et al. (2024)):

• FisheyeViT for alleviating fisheye camera distortion and pose re-
gressor using pixel-aligned 3D heatmaps for accurate egocentric
body pose estimation from a single image;

• Uncertainty-aware refinement method based on motion diffusion
models for correcting initial pose estimations and predicting plau-
sible motions even under occlusion;

• EgoWholeBody, a new high-quality synthetic dataset for egocentric
whole-body motion capture.

1.5 publications and preprints

The methods presented in this thesis are also publicly available in the
following self-contained works:

• Wang, Jian, Lingjie Liu, Weipeng Xu, Kripasindhu Sarkar, and
Christian Theobalt (2021). “Estimating egocentric 3d human pose in
global space.” In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 11500–11509

• Wang, Jian, Lingjie Liu, Weipeng Xu, Kripasindhu Sarkar, Diogo
Luvizon, and Christian Theobalt (2022). “Estimating egocentric
3d human pose in the wild with external weak supervision.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13157–13166

• Wang, Jian, Diogo Luvizon, Weipeng Xu, Lingjie Liu, Kripasindhu
Sarkar, and Christian Theobalt (2023). “Scene-aware Egocentric 3D
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Human Pose Estimation.” In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13031–13040

• Wang, Jian, Zhe Cao, Diogo Luvizon, Lingjie Liu, Kripasindhu
Sarkar, Danhang Tang, Thabo Beeler, and Christian Theobalt (2024).
“Egocentric Whole-Body Motion Capture with FisheyeViT and
Diffusion-Based Motion Refinement.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition

Further contributions were made to the following works, which are
not part of this thesis:

• Akada, Hiroyasu, Jian Wang, Soshi Shimada, Masaki Takahashi,
Christian Theobalt, and Vladislav Golyanik (2022). “UnrealEgo: A
new dataset for robust egocentric 3d human motion capture.” In:
European Conference on Computer Vision. Springer, pp. 1–17

• Akada, Hiroyasu, Jian Wang, Vladislav Golyanik, and Christian
Theobalt (2024). “3D Human Pose Perception from Egocentric
Stereo Videos.” In: Computer Vision and Pattern Recognition (CVPR)

• Millerdurai, Christen, Hiroyasu Akada, Jian Wang, Diogo Luvizon,
Christian Theobalt, and Vladislav Golyanik (2024). “EventEgo3D:
3D Human Motion Capture from Egocentric Event Streams.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition





2
R E L AT E D W O R K

This chapter covers the relevant background and related works on ego-
centric human motion capture. This chapter will discuss:

• Works related to egocentric human motion capture. (Sec. 2.1);

• Available datasets for training and evaluating egocentric human
motion capture methods. (Sec. 2.2)

• The related works of weakly-supervised/whole-body 3D human
pose estimation, which is related to Chapter 5 and Chapter 7.
(Sec. 2.3);

• Related works that utilize human motion priors in the context of
human motion capture, which is relevant for the works in Chapter 4

and Chapter 7. (Sec. 2.4);

• The related human motion capture works considering human-scene
interactions, which is related to Chapter 6. (Sec. 2.5)

2.1 egocentric human motion capture

As explained in Chapter 1, the works on egocentric human motion
capture can be split into several different categories according to different
devices for the task. This section delves into the recent advancements
in inside-in egocentric motion capture techniques in detail, given their
direct relevance to the configuration employed in this thesis. Additionally,
methods involving alternative setups are also explored.

2.1.1 Inside-In Egocentric Motion Capture

Inside-in egocentric motion capture involves mounting a camera on the
human body, oriented to capture the body itself. Typically, in order to
ensure full coverage of the body, a fisheye camera is utilized for its wide
field of view. Some studies employ stereo-fisheye cameras to enhance
pose estimation accuracy and obtain the geometry of the environment.
However, the use of stereo cameras adds additional challenges, including
increased weight and energy demands. In contrast, this thesis adopts
a single fisheye camera approach for body estimation, offering a more
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efficient solution. This section will cover related works of both monocular
and stereo configurations.

2.1.1.1 Egocentric Motion Capture with Monocular Fisheye Camera

First, the inside-in egocentric motion capture methods using a single
down-facing fisheye camera are discussed. Xu et al. (2019) first introduce
this setup for the egocentric 3D human pose estimation. This method
trains separate network modules for estimating 2D human poses and
joint distances. Then, the fisheye re-projection function is employed to get
the 3D human body pose. This method requires the calibration of fisheye
camera models in advance. To mitigate this limitation, Zhang et al. (2021b)
regressed fisheye camera parameters and 3D human pose simultaneously.
Following the egocentric camera setup, Tomè et al. (2019) generated a
high-quality synthetic dataset with realistic images rendered with game
engines. Then, this work proposed an encoder-decoder framework that
tries to recover the input image features and 3D human body pose. To
address the self-occlusion issue, Park et al. (2023) leveraged the temporal
information with the spatio-temporal self-attention network, and Liu
et al. (2023b) introduced diffusion model to generate 3D human pose
conditioned on egocentric image features. Liu et al. (2022) combined the
SLAM and egocentric pose estimation methods to estimate human body
poses in the world coordinate. Liu et al. (2023a) leverage the synchronized
egocentric camera and external cameras to collect large-scale egocentric
pose estimation datasets with pseudo-ground truth. In this work, the
same device setup is adopted as described in this section, and an attempt
is made to solve the challenges associated with this setup.

2.1.1.2 Egocentric Motion Capture with a Stereo Fisheye Camera

In this section, the setup leveraging egocentric fisheye cameras is dis-
cussed. Rhodin et al. (2016) is the first to propose the egocentric motion
capture method using a lightweight stereo pair of fisheye cameras at-
tached to a helmet or VR headset. This work combines a generative pose
estimation framework with a ConvNet-based body-part detector to cap-
ture full-body motion. Cha et al. (2018) mount eight cameras on the head
and leverage convolutional neural networks and a parametric-model-
based approach to capture egocentric body poses, facial expressions,
and scene geometry. Zhao et al. (2021) first propose a lightweight eye-
glass frame with two mounted cameras. This method leverages body
part information and introduces pseudo-limb masks to address self-
occlusions, achieving superior results on egocentric datasets. With a
similar lightweight setup, Akada et al. (2022) proposes UnrealEgo, a new
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large-scale synthetic dataset for egocentric 3D human pose estimation.
This paper also proposes a 2D pose estimation module leveraging the
stereo cameras and uses the 2D body poses to regress 3D poses. Fol-
lowing this work, Akada et al. (2024) propose a new transformer-based
framework for improving 3D human pose estimation by leveraging scene
information and temporal context. This work also extends the UnrealEgo
dataset. Yang et al. (2024a) propose a two-stage pose estimation paradigm
and Deformable Stereo Attention for enhancing stereo-based joint local-
ization. Kang et al. (2023) proposed a two-path network for independent
limb pose estimation using stereo heatmaps and a perspective-aware rep-
resentation to estimate 3D limb orientation for accurate egocentric pose
estimation. Luo et al. (2024) leverages the imitation learning to drive a
simulated avatar to match the full body pose of the camera wearer. Even
though the stereo camera can provide more information, this setup still
suffers from extra burdens of weight and energy consumption. In light
of this, this thesis focuses on the monocular egocentric motion capture
setup.

2.1.2 Egocentric Motion Capture with Other Setups

Apart from the setups using down-facing fisheye cameras, egocentric
motion capture methods using other setups are also discussed, includ-
ing body-worn IMUs, VR/AR headsets, third-person egocentric motion
capture, and inside-out devices like outward-facing cameras.

2.1.2.1 IMU-Based Egocentric Motion Capture

This section discusses the egocentric motion capture method employ-
ing body-worn inertial measurement units (IMUs). Earlier approaches
utilized 17 to 18 IMUs positioned on different human limbs to achieve
accurate motion capture results (Roetenberg et al., 2009; Vlasic et al.,
2007). Despite their accuracy, such setups can be expensive and intru-
sive. To address these issues, more recent studies (Schwarz et al., 2009;
Von Marcard et al., 2017) have adopted sparser IMU configurations. A
pioneering study by Von Marcard et al. (2017) introduced a configuration
with only six IMUs placed on the head, wrists, pelvis, and ankles, sig-
nificantly reducing equipment load while maintaining motion capture
fidelity. Based on this, subsequent research (Armani et al., 2024; Huang
et al., 2018; Kim and Lee, 2022; Lee and Joo, 2024; Liang et al., 2023; Yi
et al., 2021; Zhang et al., 2023b) has utilized deep learning to regress
human motion using neural networks, even with fewer sensors.
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HPS (Guzov et al., 2021) estimates the full 3D human pose and lo-
cation of the human within a large 3D scene, using sparse IMUs and
one extra body-mounted forward-facing camera. The initial location and
body pose estimation are further optimized considering the human-scene
interactions. With the same setup, Guzov et al. (2022)’s work focuses
more on human-scene interactions and dynamically tracks changes in
the scene made by the human. EgoLocate (Yi et al., 2023) proposes an op-
timization framework by incorporating the motion prior with the SLAM
modules in order to improve human localization accuracy. Approaches
such as TIP (Jiang et al., 2022b) and PIP (Yi et al., 2022b) make further
improvements by using transformers and neural kinematics estimators
to enhance motion tracking accuracy and ensure physical plausibility.
Moreover, IMUPoser (Mollyn et al., 2023) used the IMUs in everyday
devices like smartphones, Apple Watches, and AirPods. Lastly, Diffusion-
Poser (Van Wouwe et al., 2024) explores the use of diffusion models for
learning human motion priors, employing classifier-aware guidance to
align generated motions with IMU signals.

While recent IMU-based motion capture systems show significant im-
provements, wearing the sensors can still be inconvenient, uncomfortable,
and restrict natural movement.

2.1.2.2 Inside-Out Egocentric Motion Capture

Some research projects have experimented with mounting outward-facing
cameras on the body to estimate the motion of the wearer. Shiratori et
al. (2011) attached multiple cameras to all of a person’s joints, using
structure from motion (SfM) to localize the cameras and thus the joints.
However, this multi-camera setup is cumbersome for daily use and SfM
demands heavy computational resources. To address this issue, Jiang and
Grauman (2017) implemented a simple approach with a single forward-
facing camera mounted on the chest. This is used to directly regress the
3D positions of each body joint within the wearer’s local frame. Following
the same setup, Ng et al. (2020) estimated full body motions by capturing
the interaction poses of a second person within the camera’s view. Hwang
et al. (2020) utilized a wide-view fisheye camera to capture partial views
of human limbs, regressing the human body pose, body orientation,
and head orientation from these partial views. Yuan and Kitani (2018,
2019) placed a front-facing camera on the head, employing imitation
learning and PD control to derive a control policy that estimates current
poses and predicts future ones. Luo et al. (2021) also used a front-facing
camera setup, estimating physically plausible 3D motions and human-
scene interactions by training a general-purpose humanoid controller
that considers human kinematics, dynamics, and scene context. Li et al.
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(2023) proposed a head-pose estimation algorithm and a conditional
diffusion model to generate full-body motions based on the head pose
trajectory. However, the reliance on outward-facing cameras means that
when the human body is not in view, these methods will rely heavily on
assumptions, which may not reflect accurate movements.

2.1.2.3 Third-Person Egocentric Motion Capture

The third-person setup refers to motion capture methods that involve a
third person using cameras, typically mounted on a VR/AR headset, to
observe the motion capture subject. Zhang et al. (2022) first introduced
this approach, proposing a comprehensive egocentric dataset that cap-
tures high-quality 3D human motions during social interactions. They
also established a benchmark for 3D human pose and shape estimation
using the camera on a Hololens worn by the observer. Following this
setup, Zhang et al. (2023a) introduced a scene-aware diffusion model for
pose estimation in 3D environments from egocentric images and propose
the physics-based collision score to guide the diffusion denoising process.
Khirodkar et al. (2023a) developed an in-the-wild dataset that captures
multi-human activities in unconstrained settings using egocentric devices.
Their contribution also includes EgoFormer, a multi-stream transformer
designed to track multiple humans from an egocentric camera perspec-
tive.

2.1.2.4 Full-Body Pose Estimation from Head/Hand Tracking in VR/AR head-
sets.

Recently, several studies have explored the potential of utilizing the head
and hand tracking systems available on VR/AR headsets to estimate
human motion. These systems capture the location and orientation of the
head and hands to infer human motion. This setup is very similar to the
IMU-based motion capture setup. Since a lot of methods adopt this spe-
cific setup, this thesis discusses it separately in the related work section.
CoolMoves (Ahuja et al., 2021) pioneered this approach by employing
a K-nearest-neighbor-based method to interpolate poses from a motion
capture dataset. LoBSTr (Yang et al., 2021) utilized a gated recurrent unit
(GRU) network to predict the lower-body pose based on past tracking
signals, while the upper-body poses were determined using an inverse
kinematics (IK) solver. Dittadi et al. (2021) introduced a variational
autoencoder (VAE)-based optimization method designed to generate
plausible and diverse human motion from various types of sparse input
data. AvatarPoser (Jiang et al., 2022a) employed a transformer archi-
tecture to regress human motion, further refining predictions using an
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inverse kinematics (IK) solver to enhance accuracy. QuestSim (Winkler
et al., 2022) integrated a reinforcement learning-based method with a
physical simulator to ensure that predictions are physically plausible.
QuestEnvSim (Lee et al., 2023) also utilized a reinforcement learning
approach to develop a humanoid controlling strategy within a simulated
environment, incorporating the surrounding geometry as an additional
input signal to the control strategy. Recently, diffusion model-based meth-
ods AGRoL (Du et al., 2023) were proposed, which synthesized smooth
predictions from the head and hands tracking inputs with the classifier-
free guidance in the diffusion denoising model. EgoPoser (Jiang et al.,
2023a) focuses on head-mounted devices(HMD)-based egocentric motion
capture across large scenes. DivaTrack (Yang et al., 2024b) leverage track-
ers for improved foot-contact estimations and introduce a pose blending
strategy that integrates upper-body predictions with lower-body genera-
tion outcomes. Dai et al. (2024) combine the use of a transformer and an
LSTM to deliver a real-time pose estimation method, leveraging scalable
sparse observations from HMDs and optional wearable IMUs. These
methods integrate machine learning techniques with motion capture
technologies, enhancing the accuracy and applicability of human pose
estimation using head/hand trackers from VR/AR headsets.

2.2 dataset for egocentric human motion capture

Large-scale datasets are crucial for addressing deep learning challenges.
However, not many such datasets are available for developing methods
for egocentric pose estimation. This section summarizes the available
datasets for egocentric human motion capture, which can be divided into
two categories: those utilizing downward-facing cameras, as used in this
thesis, and those employing other egocentric configurations. Here, we will
provide a detailed introduction to the datasets using downward-facing
cameras and a brief overview of other relevant datasets.

2.2.1 Dataset with Down-facing Cameras

Table 2.1 summarizes the key features of available egocentric pose estima-
tion datasets, with more detailed information provided in the following
sections.

The Mo2Cap2 dataset (Xu et al., 2019) is designed for egocentric mo-
tion capture using a single fisheye camera. Due to the time-consuming
real-world data collection process, the Mo2Cap2 dataset is a synthetic
dataset generated by combining the SMPL human body model, SUR-
REAL textures (Doersch and Zisserman, 2019), and AMASS human
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Dataset Frames Subject Motion Number

Mo2Cap2 (Xu et al.,
2019)

530k 700 textures 3000 motions

xR-egopose (Tomè
et al., 2019)

383k 46 subjects 9 categories of
motions

ECHP (Liu et al.,
2023a)

75k 9 subjects in 20

clothes
10 categories of

motions

EgoCap (Rhodin
et al., 2016)

100k 8 subjects -

EgoGlass (Zhao
et al., 2021)

173k 10 subjects 6 motions

UnrealEgo (Akada
et al., 2022)

900k 17 subjects 30 categories
and 2.3k
motions

UnrealEgo2 (Akada
et al., 2024)

1250k 17 subjects 30 categories
and 15k motions

UnrealEgo-
RW (Akada et al.,
2024)

260k 16 subjects 547 motions

Table 2.1: Datasets for Egocentric 3D Pose Estimation. The upper part shows the
dataset collected with a monocular down-facing camera. The lower part shows
the dataset collected with stereo down-facing cameras.

motion data (Mahmood et al., 2019). This dataset includes 530k training
images with ground truth 3D joint positions.

xR-EgoPose (Tomè et al., 2019) is a synthetic dataset consisting of 383k
frames of high-quality rendered images. It offers a rich diversity of char-
acters, skin tones, clothing styles, backgrounds, and lighting scenarios.
Featuring realistic images, the dataset is generated using Maya animation
with motion capture data and V-Ray’s physically based rendering setup.

The ECHP dataset (Liu et al., 2023a) is a real-world dataset com-
prising 75k frames. It features nine different subjects with 20 unique
body textures performing ten daily actions. The authors employed two
external-view cameras to capture 3D pose pseudo-annotations, achieved
by triangulating the 2D pose detection results from OpenPose (Cao et al.,
2017).

The first egocentric motion capture dataset for stereo egocentric cam-
eras is EgoCap (Rhodin et al., 2016). This real-world dataset utilizes eight
fixed cameras to capture ground truth 3D human motion. The egocentric
images are further enhanced with background replacement and clothing
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color variations. The training set contains 75k fisheye images from six
subjects and 25k images from two subjects for evaluation.

The UnrealEgo dataset (Akada et al., 2022) introduces a large-scale
collection featuring 17 3D models and over 2,300 different actions across
14 environments. It comprises 900,000 stereo fisheye images rendered us-
ing the Unreal Engine, offering greater diversity than previous synthetic
datasets. Following this, the UnrealEgo2 dataset (Akada et al., 2024) was
released, providing even more diverse human motion and larger-scale
renderings.

The UnrealEgo-RW dataset (Akada et al., 2024) is a real-world dataset
recording a wide range of activities from 16 individuals in a multi-view
motion capture studio. The dataset captures challenging motions, such
as crawling and dancing. It includes 591 motion segments, resulting in
over 130k stereo views (260k images).

In this thesis, in order to tackle the remaining issues with available
egocentric motion capture datasets, several egocentric motion capture
datasets are proposed, including EgoPW, EgoGTA, and EgoWholeMocap.
The details of these datasets are introduced respectively in Chapter 5,
Chapter 6, and Chapter 7.

2.2.2 Dataset with other setups

egocentric datasets with imus The MPI08 dataset (Pons-Moll
et al., 2010) is the pioneering dataset for human motion capture using
IMU sensors. It features 5 IMUs attached to the human body, along
with synchronized video data. Building on this, the TNT15 dataset (Von
Marcard et al., 2016) includes synchronized data streams from 8 RGB
cameras and 10 IMUs. This dataset contains four subjects performing five
activities across 13k frames. TotalCapture (Trumble et al., 2017) represents
a large-scale dataset with approximately 179k frames. It includes fully
synchronized multi-view video, IMU data, and Vicon labeling. The DIP-
IMU dataset (Huang et al., 2018) is the largest dataset for IMU-based
human motion capture to date. It features 10 subjects equipped with 17

IMUs, yielding a total of 330k frames. The dense IMUs provide ground
truth human body poses. Lastly, IMUPoser (Mollyn et al., 2023) collected a
dataset using IMUs in iPhones, Apple Watches, and AirPods. This dataset
comprises approximately 114k frames, gathered from 10 participants.
Apart from datasets collected in the real-world environment, several
methods Mollyn et al., 2023; Yi et al., 2022b, 2021 also leverage the
synthetic IMU signals from the AMASS dataset (Mahmood et al., 2019).
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egocentric datasets with inside-out setup Yuan and Kitani
(2019) first collected a dataset with a head-mounted forward-facing cam-
era. This dataset lasts for 8 minutes and also contains the recording
from one external-view camera for evaluation. Kinpoly (Luo et al., 2021)
consists of egocentric videos captured using a head-mounted camera and
corresponding 3D motions captured with motion capture devices. The
total motion is about 80 minutes long. GIMO (Zheng et al., 2022) is a
real-world dataset consisting of egocentric video, eye gaze, 3D motions,
and scanned 3D scenes. This dataset is collected using Hololens, iPhone,
and motion capture suits in order to study motion prediction guided
by eye gaze. This dataset contains 129k egocentric images, 11 subjects,
and 217 motion trajectories in 19 different scenes. Ego-Exo4D (Grauman
et al., 2024) is a large multimodal dataset containing synchronized first-
and third-person videos recorded by 839 participants in 131 scenes. The
dataset includes 1,422 hours of video and provides pseudo-3D body pose
ground truth by using external sparse views.

egocentric datasets with third-person setup Zhang et al.
(2022) proposed a dataset for egocentric motion capture from a third-
person view by gathering 125 sequences from 36 subjects across 15 indoor
scenes. The dataset includes 219k external RGBD frames captured with
Azure Kinect and 199k egocentric frames captured with HoloLens2. It also
contains 3D human motion ground truth annotations obtained from four
external RGBD views, along with ground truth 3D scene scans using an
iPhone Pro Max. EgoHumans (Khirodkar et al., 2023b) collects a dataset
with egocentric views obtained from Aria glasses (Project Aria n.d.) and
external views from multi-view GoPro cameras. This dataset consists of
7 sequences from 20 subjects across 6 diverse locations, encompassing
125k RGB images, 250k greyscale images from the egocentric glasses, and
446k images from the external GoPros.

datasets for full-body pose estimation from head/hand

tracking A number of existing works (Dittadi et al., 2021; Du et al.,
2023; Jiang et al., 2022a) on egocentric motion capture from head and
hand tracking utilize the synthetic dataset from AMASS (Mahmood et
al., 2019). DivaTrack (Yang et al., 2024b) introduces a real-world dataset
featuring 6D head and hand tracking data obtained from the PICO VR
headset, along with ground truth body poses from the IMU-based motion
capture system. The dataset includes 772 motions and 16.5 hours of data
from 22 subjects. Nymeria (Ma et al., 2024) is a large multi-modal dataset
containing forward-facing camera views, 6D head/hand tracking signals,
and detailed text descriptions of human motion. This dataset contains
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300 hours of daily activities and 264 participants. The ground truth
annotation of human motion is obtained with the IMU-based motion
capture devices.

2.3 human motion capture with external cameras/sen-
sors

This section reviews related works in the area of human motion cap-
ture, a crucial area in computer vision with applications in animation,
augmented reality, and human-computer interaction. The focus will be
on monocular 3D human pose estimation, which is closely related to
this thesis. Additionally, this section covers weakly supervised 3D pose
estimation and whole-body 3D pose estimation, which is related to Sec. 5

and Sec. 7.

2.3.1 Monocular 3D Human Motion Capture

Monocular 3D pose estimation infers 3D positions of joints and body
parts from a single camera input. This is an ill-posed task due to the
monocular depth ambiguity and self-occlusion of the human body. This
thesis discusses here the human 3D pose estimation from a single image
and from a monocular video separately.

human 3d pose estimation from a single image Some meth-
ods (Bogo et al., 2016; Guan et al., 2009; Kolotouros et al., 2021; Lassner
et al., 2017; Pavlakos et al., 2019; Rempe et al., 2021; Tiwari et al., 2022;
Zanfir et al., 2018) predict 2D joints and estimate 3D human pose and
shape relying on iterative optimization methods.

More methods use the neural network to regress 3D poses directly.
Some of the methods leverage convolutional neural networks to infer
3D human poses from a single image (Georgakis et al., 2020; Guler and
Kokkinos, 2019; Kanazawa et al., 2018; Kocabas et al., 2021; Kolotouros
et al., 2019a; Li and Chan, 2015; Mehta et al., 2017a; Popa et al., 2017;
Rogez et al., 2017; Sun et al., 2017; Tekin et al., 2016, 2017; Tome et
al., 2017; Zhang et al., 2021a; Zhou et al., 2017). Some methods train a
network to perform 2D-to-3D lifting (Chen and Ramanan, 2017; Jahangiri
and Yuille, 2017; Martinez et al., 2017) to regress 3D poses from 2D
poses. Instead of estimating the parameters of the SMPL model, Some
related approaches (Cho et al., 2022; Kolotouros et al., 2019b; Lin et
al., 2021a,b) explicitly regress the vertices of the mesh with a graph
convolutional network or transformer. To tackle the issue of the lack
of large-scale datasets with ground truth 3D pose annotations, some
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works have proposed methods to generate pseudo-ground truth by using
temporal information (Arnab et al., 2019), or iterative optimization in the
training loop (Joo et al., 2021; Kolotouros et al., 2019a).

The proposed methods in the thesis can also fall into these categories.
In Chapter 4, the thesis proposes an optimization method to get 3D poses
from 2D observations. In Chapter 5, the thesis proposes a strategy to
generate pseudo labels with egocentric and external views. In Chapter 6

and Chapter 7, the 3D poses are directly regressed in an end-to-end
manner with deep neural networks.

human 3d pose estimation/motion capture from monocu-
lar video Some other methods exploit temporal information and try
to estimate human motion from the video. Zhou et al. (2016b) introduce
EM method to estimate 3D pose from 2D predictions over the entire
sequence. Mehta et al. (2017a) and Du et al. (2016) apply temporal filter-
ing across 2D and 3D poses. Lin et al. (2017), Hossain and Little (2018),
Kocabas et al. (2020), Choi et al. (2021) and Katircioglu et al. (2018) use
recurrent networks to predict 3D pose sequences by leveraging previously
predicted 2D and 3D poses. Pavllo et al. (2019) and Kanazawa et al. (2019)
generate 3D poses with temporal convolution, while Cai et al. (2019) and
Wang et al. (2020a) leverage graph convolutional networks to capture
the temporal information. Luo et al. (2020) first get coarse motion with a
GRU-based human motion VAE and then refine the motion with a resid-
ual estimation network. MAED (Wan et al., 2021), t-HMMR (Pavlakos
et al., 2022a), and PoseBERt (Baradel et al., 2022) employ the transformer
to encode the temporal information.

In this thesis, we leverage temporal information to refine human motion
estimated from single-frame methods. In Chapter 4, a convolutional
network-based VAE is employed to capture the motion prior and to
refine the human motion. In Chapter 7, a diffusion-based refinement
strategy leveraging the transformer network is introduced.

2.3.2 Weakly-Supervised 3D Human Pose Estimation

Recently, there has been a growing interest in developing weakly su-
pervised 3D pose estimation methods. Weakly-supervised methods do
not require datasets with paired images and 3D annotations. Some
works (Novotny et al., 2019; Wang et al., 2019) leverage the non-rigid SFM
to get 3D joint positions from 2D keypoint annotations in unconstrained
images. Some works (Chen et al., 2019a; Chen et al., 2019b; Drover et al.,
2018; Pavllo et al., 2019; Wandt and Rosenhahn, 2019) present an un-
supervised learning approach to train the 3D pose estimation network
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with the supervision from 2D reprojections. The closest to the works in
this thesis are the approaches of (Iqbal et al., 2020; Kocabas et al., 2019;
Rhodin et al., 2018; Wandt et al., 2021) in that they leverage the weak
supervision from multi-view images for training. Iqbal et al. (2020) and
Rhodin et al. (2018) supervise the network training process by calculating
the differences between Procrustes-aligned 3D poses from different views.
Wandt et al. (2021) predict the camera poses and 3D body poses in a
canonical form, and then supervise the training with the multi-view
consistency. Kocabas et al. (2019) obtain the pseudo labels with epipolar
geometry between different views and use the pseudo labels to train the
3D pose lifting network. Recently, Hua et al. (2022) propose a U-shaped
graph convolutional network that can leverage the spatial configurations
and cross-view correlations for 3D pose refinement. Kundu et al. (2020)
enable the unsupervised training by leveraging the prior knowledge
on human poses in the form of a single part-based 2D puppet model.
Different from previous works, the method proposed in Chapter 5 uses
a spatio-temporal optimization framework that takes egocentric and ex-
ternal views as input to obtain robust 3D pseudo labels for training the
network. This optimization method ensures the stability of the network
training process when the 2D pose estimations are inaccurate.

2.3.3 Whole-Body 3D Human Motion Capture

Whole-body 3D pose estimation aims to estimate the 3D human body,
face, and hands parameters from input images. This task is crucial for
many applications, e.g., modeling human activities and human-scene
interactions. Some methods (Pavlakos et al., 2019; Xiang et al., 2019) fit
the 2D body joints estimated from images with optimization algorithms,
while these methods suffer from high computation overhead and can
fall into local optima. Some other learning-based methods (Cai et al.,
2023; Choutas et al., 2020; Feng et al., 2021; Lin et al., 2023; Rong et al.,
2021; Sun et al., 2022; Zhou et al., 2021) use the neural network to regress
the SMPL-X (Pavlakos et al., 2019) parameters from input images. For
example, ExPose (Choutas et al., 2020) introduced body-driven attention
to extract face and hand crops and used a refinement module to regress
whole-body pose. OSX (Lin et al., 2023) proposes a one-stage pipeline
for whole-body mesh recovery without separate networks for each part.
SMPLer-X (Cai et al., 2023) proposes a foundation model for whole-body
pose estimation trained with the large model and big data. Motion-X (Lin
et al., 2024) proposes a large-scale dataset with precise 3D whole-body
motions and corresponding text descriptions, facilitating the regression
and generation of whole-body motions.
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Though much progress has been made on whole-body pose estimation
from an external view, the task from an egocentric view is still unex-
plored. Chapter 7 introduces the first whole-body 3D pose estimation
method from a single egocentric image and also incorporates temporal
information with diffusion-based motion refinement.

2.4 human motion priors for pose estimation

Estimating human motion, especially from a single viewpoint, is inher-
ently an ill-posed problem. Consequently, many studies utilize motion
priors to obtain plausible and most likely motions under given constraints.
The human motion prior can be learned using various generative mod-
els, including Gaussian Mixture Models (GMM) (Reynolds et al., 2009),
Variational Autoencoders (VAE) (Kingma and Welling, 2013), Genera-
tive Adversarial Networks (GAN) (Goodfellow et al., 2020), normalizing
flows (Papamakarios et al., 2021), neural distance fields (Tiwari et al.,
2022), and the recently popular diffusion denoising models (Ho et al.,
2020).

Bogo et al. (2016) and Arnab et al. (2019) capture the prior to optimize
the SMPL body model (Loper et al., 2015) by fitting a mixture of Gaus-
sians to CMU mocap dataset (CMU mocap dataset 2008). Pavlakos et al.
(2019) train a VAE to learn priors of SMPL (Loper et al., 2015) parameters
on the AMASS dataset, which contains richer varieties of human motions.
The motion prior is further applied to fit the SMPL parametric model
on the 2D image. Humor (Rempe et al., 2021) captures the motion prior
using a conditional Variational Autoencoder (VAE) trained to reconstruct
the current motion from the previous one. This motion prior can be
further utilized in a variety of tasks, including motion refinement, motion
prediction, and motion estimation for occluded human bodies. Zanfir
et al. (2020) use normalizing flow in order to avoid the compromise be-
tween KL divergence and reconstruction loss in VAE. Pose-NDF (Tiwari
et al., 2022) learns the motion prior by learning a neural unsigned dis-
tance field, which learns the manifold of plausible poses as zero level set.
Following a similar approach, NRDF (He et al., 2024b) proposes a novel
framework for learning Neural Distance Fields (NDFs) on Riemannian
manifolds. Additionally, they introduce an adaptive-step Riemannian
gradient descent algorithm to accelerate convergence when mapping
poses onto the manifold.

Some other methods incorporate the pose prior by training a generative
adversarial network (GAN). Yang et al. (2018) develop an adversarial
learning framework with a multi-source discriminator. Kanazawa et
al. (2018, 2019) and Zhang et al. (2019) train discriminators for each
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joint rotation parameter to tell if these parameters are realistic. Kocabas
et al. (2020) propose a temporal network architecture with an RNN-
based discriminator for the adversarial training on the sequence of SMPL
parameters.

Recently, diffusion models (Ho et al., 2020) have become popular
in the human motion generation area (Dabral et al., 2023; Tevet et al.,
2022; Zhang et al., 2024a) due to the high generation quality. Some
methods (Choi et al., 2022; Ci et al., 2023; Foo et al., 2023; Gong et
al., 2023; Holmquist and Wandt, 2023; Shan et al., 2023; Zhang et al.,
2024b) have effectively applied Denoising Diffusion Probabilistic Models
(DDPM) (Ho et al., 2020) as a motion prior for the human pose estimation
task. Building on the success of motion diffusion models in human pose
estimation, many methods have extended this approach to egocentric
pose estimation, where the human body is only partially visible from
RGB cameras or VR sensors. Zhang et al. (2023a) uses a diffusion model to
generate realistic human poses considering scene geometry. AGROL (Du
et al., 2023) generates body motion based on head and hand 6D pose
estimates from a VR headset. EgoEgo (Li et al., 2023) estimates head poses
from a head-mounted front-facing camera and uses them to generate
body poses. EgoHMR (Liu et al., 2023b) extracts image features and uses
them as a condition for the diffusion denoising process. However, the
aforementioned pose estimation methods train the conditioned diffusion
model with image features or IMU signals. This cannot be generalized
since the trained network only accepts one specific condition format and
is inclined to learn domain-specific distributions of condition features.
ZeDO (Jiang et al., 2023b) tackles this issue with a zero-shot diffusion-
based optimization approach that doesn’t require training with 2D-3D or
image-3D pairs.

Different from previous methods, the method proposed in Chapter 4

captures the global motion prior learned with a lightweight sequential
VAE, which enables direct optimization in the global coordinate system.
Chapter 7 proposes the training of the whole-body motion diffusion
model to construct the relationship between hand and body motion and
leverages the uncertainty value to refine the initial motion estimation.

2.5 scene-aware human pose estimation

In recent years, several approaches have been proposed to predict the
pose of humans considering environmental and physical constraints
from RGB (Pavlakos et al., 2022b; Shimada et al., 2020; Yi et al., 2022a)
and inertial measurement units (IMU) (Guzov et al., 2021; Yi et al., 2023,
2022b). Some methods assume a simplified environment, such as a planar
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ground floor, to enforce a temporal sequence that is physically consistent
with the universal law of gravity by assuming known camera poses (Shi-
mada et al., 2021, 2020) or by tracking an object in the scene following
a free flight trajectory (Dabral et al., 2021). Other approaches assume
that the scene is given as input, either as a 3D reconstruction (Guzov
et al., 2022, 2021; Shimada et al., 2022; Yi et al., 2023) or as geometric
primitives (Yu et al., 2021), whose human motion and global location can
be refined in the optimization process. Bhatnagar et al. (2022) proposed a
method and dataset for human-object interactions. Taking into account
the interaction between humans and furniture, holistic methods are able
to estimate the position of humans and specific objects in the scene under
the assumption of a planar floor (Chen et al., 2019c; Weng and Yeung,
2021; Yi et al., 2022a), or even to estimate deformations in known objects
based on human poses (Li et al., 2022b). Contrary to the previous work,
the method in Chapter 6 makes no strong assumptions about the objects
and ground floor in the scene but instead proposes a method that learns
to estimate the background scene geometry from a fisheye camera and
explores the correlation between the human body and scene directly from
egocentric data.





3
B A C K G R O U N D

After discussing the broader literature in the previous chapter, this chap-
ter focuses on the specific concepts needed for understanding the thesis.
The first section introduces the fisheye camera model used in all of
the following chapters. The second section introduces the way of track-
ing egocentric camera position, an important process when collecting
real-world datasets in Chapter 6 and Chapter 7.

3.1 fisheye camera model

This section provides an overview of fisheye camera models, which is a
mathematical model for the optics of fisheye cameras. The thesis employs
a fisheye camera to capture human motion, taking advantage of its
extensive field of view. However, this benefit comes with significant visual
distortions, requiring the use of specialized camera models different from
those used in perspective cameras.

This thesis employs Scaramuzza’s fisheye camera model (Scaramuzza
et al., 2006), chosen for its simplicity and universal applicability. The
projection and reprojection functions of this model are explained as
follows:

The projection function P(x, y, z) of a 3D point [x, y, z]T in the fisheye
camera space into a 2D point [u, v]T on the fisheye image space can be
written as:

[u, v]T = f (ρ)
[x, y]T√
x2 + y2

(3.1)

where ρ = arctan(z/
√

x2 + y2) and f (ρ) = k0 + k1ρ + k2ρ2 + k3ρ3 + . . .
is a polynomial obtained from camera calibration.

Given a 2D point [u, v]T on the fisheye images and the distance d
between the 3D point [x, y, z]T and the camera, the position of the 3D
point can be obtained with the fisheye reprojection function P−1(u, v, d):

[x, y, z]T = d
[u, v, f ′(ρ′)]T√

u2 + v2 + ( f ′(ρ′))2
(3.2)

where ρ′ =
√

u2 + v2 and f ′(ρ) = k′0 + k′1ρ + k′2ρ2 + k′3ρ3 + . . . is another
polynomial obtained from camera calibration. The calibration of the
fisheye camera and more details about the fisheye camera model can be
found in Scaramuzza et al. (Scaramuzza et al., 2006).
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Another important fisheye camera model is the Kannala-Brandt model (Kan-
nala and Brandt, 2006). The projection function of the Kannala-Brandt
model P(x, y, z) is:

[u, v]T = d(θ)[ fx
x
r

, fy
y
r
]T (3.3)

where r =
√

x2 + y2, θ = arctan(r/z) and d(θ) = θ + k1θ3 + k2θ5 +

k3θ7 + . . . is a polynomial function obtained from camera calibration.
This camera model is widely used and also implemented in OpenCV, but
it cannot model the fisheye cameras with a field of view larger than 180°.

Note that all of the methods in our thesis do not depend on one specific
fisheye camera model.

3.2 tracking egocentric camera

To estimate accurate egocentric camera poses and further obtain the
ground truth body poses under the egocentric camera perspective, a
calibration board is mounted on the head, rigidly attached to the egocen-
tric camera. The pose of the egocentric camera can be estimated with a
multi-view capturing system with the following approach.

First, the transformation matrix Mhead2ego between the calibration
board and the fisheye camera is estimated with hand-eye calibration (Tsai
and Lenz, 1988). A second calibration board is placed on the scene in
a place where it can be seen by both the egocentric camera and the
studio cameras. Then the relative pose Mego2calib between the egocentric
camera and the external calibration board, the relative pose between the
studio cameras and the external calibration board Mext2calib, and the rela-
tive pose between the studio cameras and the head-mounted calibration
board Mext2head are estimated. The transformation matrix Mhead2ego can
be finally obtained with:

Mhead2ego = M−1
ext2headMext2calibM−1

ego2calib (3.4)

During the data collection process, the pose of the calibration board
is estimated from each single view, and the averaged calibration board
poses Mext2head are obtained. The egocentric camera pose Mext2ego
can be obtained with:

Mext2ego = Mext2headMhead2ego (3.5)

The egocentric camera pose enables the transformation of the ground
truth pose from the studio camera coordinate system Pext to the egocentric
camera coordinate system Pego = PextMext2ego.



4
E S T I M AT I N G E G O C E N T R I C 3 D H U M A N P O S E I N
G L O B A L S PA C E

This chapter presents the first approach in the literature (published as
Wang et al., 2021) that estimates human motion in the global space
using a single egocentric camera. To achieve accurate and temporally
stable global poses, a spatio-temporal optimization is performed over
a sequence of frames by minimizing heatmap reprojection errors and
enforcing local and global body motion priors learned from a mocap
dataset. Experimental results show that this approach outperforms state-
of-the-art methods both quantitatively and qualitatively.

4.1 introduction

Traditional optical motion capture systems with external, outside-in-
facing cameras are restrictive for many pose estimation applications
that require the person to be able to roam around in a larger space,
beyond a fixed recording volume. Examples are mobile interaction ap-
plications, pose estimation in large-scale workplace environments, and
many AR/VR applications. To enable this, methods for egocentric 3D
human pose estimation using head- or body-mounted cameras were
researched. These methods are mobile, flexible, and have the potential
to capture a wide range of daily human activities even in large-scale
cluttered environments.

Some egocentric capture methods study the estimation of face (Elgharib
et al., 2019, 2020; Li et al., 2015) and hand motions (Ma et al., 2016; Singh
et al., 2016; Singh et al., 2017; Sridhar et al., 2015), while the estimation of
the global full body pose has been less explored. Mo2Cap2 (Xu et al., 2019)
and xR-egopose (Tomè et al., 2019) use a single head-mounted fisheye
camera to capture the 3D skeletal body pose in a marker-less way. Both
methods have demonstrated compelling 3D pose estimation results while
still suffering from an important limitation: They estimate the local 3D
body pose in egocentric camera space, while not being able to obtain the
body pose with global position and orientation in the world coordinate
system. Henceforth, the former will be referred to as the "local pose"
to distinguish it from the "global pose" defined in the world coordinate
system. Local pose capture alone is insufficient for many applications.
For example, captured local body poses are not enough to animate the
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Hardware Egocentric Images

Global 3D Pose

Figure 4.1: Given challenging egocentric videos, the proposed method produces
realistic and accurate 3D global pose sequences.

locomotion of a virtual avatar in xR environments, which requires global
poses.

A straightforward solution would be to simply project the local pose
into the world coordinate system with the egocentric camera pose esti-
mated by the SLAM. However, the obtained global poses exhibit signifi-
cant inaccuracies. First, they show notable temporal jitters as the video
frames are processed independently without taking temporal frame co-
herence into account. Second, they often show tracking failure due to
the self-occlusion in the distorted view of the fisheye camera. Third, the
obtained global poses often show unrealistic motions (such as foot sliding
and global jitters) due to the inconsistency between the local pose and
the estimated camera pose, which are independent of each other.

To tackle these challenges, this chapter proposes a novel approach for
accurate and temporally stable egocentric global 3D pose estimation with
a single head-mounted fisheye camera, as illustrated in Fig. 4.1. In order to
obtain temporally smooth pose sequences, the proposed method resorts
to a spatio-temporal optimization framework where we leverage the 2D
and 3D keypoints from CNN detection as well as VAE-based motion
priors learned from a large mocap dataset. The VAE-based motion priors
have been proven effective to produce realistic and smooth motions in
pose estimation methods like VIBE (Kocabas et al., 2020) and MEVA(Luo
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et al., 2020). However, the RNN-based VAEs in these works are less
efficient and unstable due to the vanishing and exploding gradients
during our optimization process. Therefore, a new convolutional VAE-
based motion prior is proposed, which enables faster optimization speed
and higher accuracy.

Furthermore, to reduce the error due to strong occlusion, a novel
uncertainty-aware reprojection energy term is proposed by summing
up the probability values at the pixels on the heatmap occupied by the
projection of the 3D estimated joints rather than comparing the projection
of 3D estimated joints against the predicted 2D joint position. Finally, a
global pose optimizer with a separate VAE is introduced to make the
local body poses consistent with the camera poses estimated by SLAM.

The method is evaluated on the dataset provided by Mo2Cap2 (Xu
et al., 2019) and also a new benchmark collected with 2 subjects per-
forming various motions. The method outperforms the state-of-the-art
methods both quantitatively and qualitatively. Ablative analysis confirms
the efficacy of our proposed optimization algorithm with learned mo-
tion prior and uncertainty-aware reprojection loss for improved local
and global accuracy and temporal stability. To summarize, the technical
contributions of this chapter are as follows:

• A novel framework for accurate and temporally stable global 3D
human pose estimation from a monocular egocentric video.

• A new optimization algorithm that utilizes a local and a global
motion prior encoded in an efficient convolutional network-based
VAE.

• An uncertainty-aware reprojection loss to alleviate the influence of
self-occlusions in egocentric settings.

The proposed method works for a wide range of motions in vari-
ous environments. This method also outperforms various baselines in
terms of the accuracy of the estimated global and local pose. We rec-
ommend watching the video in http://gvv.mpi-inf.mpg.de/projects/

globalegomocap for better visualization.

4.2 method

The goal of this method is to estimate the global body poses from a video
sequence captured by a head-mounted fisheye camera. An overview
of the pipeline is provided in Fig. 4.2. The video frames are split into
segments with B frames each (B = 10 in the experiments). The pipeline

http://gvv.mpi-inf.mpg.de/projects/globalegomocap
http://gvv.mpi-inf.mpg.de/projects/globalegomocap
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Egocentric Image
Sequence

Egocentric
Pose Estimation

3D Local Pose

Heatmap

Optimized 3D 
Local Pose

Local Pose 
Optimizer

Global 
Pose 

Optimizer

SLAM

Optimized 3D 
Global Pose

Figure 4.2: Overview of the method. This method takes an egocentric video
as input and processes it in segments. For each segment consisting of a fixed
number of consecutive frames, this method first applies an egocentric pose
estimation method to obtain initial 3D local poses and 2D heatmaps which
are then fed into the local pose optimization framework to get optimized local
poses. Next, combined with the camera poses estimated from ORB-SLAM2,
the optimized 3D local poses are transformed from the local egocentric camera
space to the world coordinate space and then optimized via the global pose
optimization to produce the final global poses.

takes one segment consisting of B consecutive frames, Iseq = {I1, . . . , IB},
as inputs and outputs the global poses of all the individual frames,
P g

seq = {P g
1 , . . . ,P g

B}. For each segment, this method first calculates the
3D local pose and 2D heatmap of each frame using an egocentric local
body pose estimation method (Sec. 4.2.1). Next, the local motion prior is
learned from local motion sequences of the AMASS dataset (Mahmood et
al., 2019) with a sequential VAE (Kingma and Welling, 2013) (Sec. 4.2.2.1),
and this method performs a spatio-temporal optimization with the local
motion prior by minimizing the heatmap reprojection term and several
regularization terms (Sec. 4.2.2.2). Given the optimized local poses, they
are transformed from local fisheye camera space to the world coordinate
system with camera poses estimated by a SLAM method to get initial
global poses (Sec. 4.2.3.1). To improve global poses, the global pose prior
is learned by training a second sequential VAE on the global motion
sequences of the AMASS dataset, and the global prior is imposed in
a spatio-temporal global pose optimization process(Sec. 4.2.3.2). Please
refer to the supplementary materials for implementation details.

4.2.1 Local Pose Estimation

Given a segment containing B consecutive frames Iseq, this method firstly
estimate local poses represented by 15 joint locations P̃seq = {P̃1, . . . , P̃B},
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P̃i ∈ R15×3, and 2D heatmaps Hseq = {H1, . . . ,HB} using an egocentric
local pose estimation method. Note that this approach can work with
any egocentric local pose estimation methods. In the experiments, the
approach is evaluated on the results of two state-of-the-art methods:
Mo2Cap2 (Xu et al., 2019) and xR-egopose (Tomè et al., 2019).

4.2.2 Local Pose Optimization

Although Mo2Cap2 and xR-egopose can produce compelling results,
both approaches suffer from limited accuracy and temporal instability,
which is mainly due to depth ambiguities caused by the monocular setup
and severe occlusions in a strongly distorted egocentric perspective. To
improve local poses, this chapter proposes an efficient spatio-temporal
optimization framework that first learns the local pose prior as a latent
space with a sequential VAE (Kingma and Welling, 2013) (Sec. 4.2.2.1) and
then searches for a latent vector in the learned latent space by minimizing
a reprojection term and some regularization terms (Sec. 4.2.2.2).

4.2.2.1 Learning Motion Prior

To construct a latent space encoding local motion prior, a sequential
VAE (Kingma and Welling, 2013) is trained on local motion sequences of
the AMASS dataset (Mahmood et al., 2019) which are split into segments
for training. A segment consisting of B consecutive poses is denoted as
Qseq = {Q1, . . . ,QB}(Qi ∈ R15×3). The sequential VAE consists of an
encoder fenc and a decoder fdec. The encoder is used to map an input
sequence of human local poses Qseq to a latent vector z, and the decoder is
used to reconstruct a pose sequence, Q̂seq = {Q̂1, . . . , Q̂B}(Q̂i ∈ R15×3),
from the latent vector. Following (Kingma and Welling, 2013), the training
loss of VAE is formulated as:

Ltotal = c1

∥∥∥Q̂seq −Qseq

∥∥∥2

2
+ c2KL[q(z|Qseq)∥N (0, I)] (4.1)

where z = fenc(Qseq), Q̂seq = fdec(z), q(z|Qseq) refers to the projected
distribution of Qseq in the latent space, N (0, I) refers to the standard
normal distribution, and KL(.) refers to the Kullback–Leibler divergence.

Different from previous pose estimation methods (Kocabas et al., 2020;
Luo et al., 2020) which leverage RNN-based VAEs to capture the motion
prior, both the encoder fenc and the decoder fdec of the sequential VAE
are designed as 5-layer 1D convolutional networks. Compared with RNN-
based VAEs, the convolutional networks in the sequential VAE are more
efficient in the optimization iterations since they can be parallelized
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over a time sequence. Moreover, the RNNs suffer from vanishing and
exploding gradients more easily, which makes the optimization process
less stable. The sequential VAE in the method has been compared with
RNN-based VAEs in VIBE (Kocabas et al., 2020) and MEVA (Luo et al.,
2020) in the ablation study. More details of sequential VAE are shown in
the supplementary materials.

4.2.2.2 Optimizing Local Poses with Local Motion Prior

With the learned latent space of local motion, the task of optimizing
local poses with the local motion prior can be formulated as the problem
of finding a latent vector z in the learned latent space such that the
reconstructed local pose sequence Pseq = fdec(z) minimizes the following
objective function:

E(Pseq) = λRER(Pseq) + λJEJ(Pseq, P̃seq)

+ λTET(Pseq) + λBEB(Pseq)
(4.2)

where ER(.), EJ(.), ET(.), EB(.) are the reprojection term, pose regular-
ization term, motion smoothness regularization term, and bone length
regularization term, respectively, which will be described in detail later.
In the experiment, we set the weights λR = 0.01, λJ = 0.01, λT = 1 and
λB = 0.01, respectively.

heatmap-based reprojection : Previous works (Arnab et al., 2019;
Bogo et al., 2016; Pavlakos et al., 2019; Zanfir et al., 2020) calculate the
reprojection term by summing up the Euclidean distance values between
the projection of estimated 3D joints and detected 2D joints. However,
this calculation is sensitive to 2D joint detection errors due to the strong
self-occlusions caused by the egocentric perspective. To tackle this issue,
this approach defines a heatmap-based reprojection error by leveraging
the uncertainty captured in the predicted 2D heatmaps, where the value
at each pixel describes the probability of this pixel being a 2D joint. This
new reprojection term is calculated by maximizing the summed heatmap
values at the reprojected 2D joint positions:

ER(Pseq) = −
B

∑
i=1

∥HMi(Π(Pi))∥2
2 (4.3)

where HMi(.) returns the value at a pixel on Hi, the heatmap of i-th frame.
Π(.) refers to the projection of a 3D point. Specifically, the projection of a
3D point [x, y, z]T can be written as:
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[u, v]T =
[x, y]T√
x2 + y2

× f (ρ) (4.4)

where ρ = arctan(z/
√

x2 + y2) and f (ρ) = α0 + α1ρ + α2ρ2 + α3ρ3 + . . .
is a polynomial obtained from camera calibration.

pose regularization : To constrain the optimized pose Pi to stay
close to the initial pose P̃i, the pose regularize is defined as:

EJ(Pseq, P̃seq) =
B

∑
i=1

∥∥∥Pi − P̃i

∥∥∥2

2
(4.5)

motion smoothness regularization : Same as Mehta et al.
(2020)’s work, the temporal smoothness regularizer (Eq. 4.6) is used to
improve the temporal stability of the estimated poses, which is calculated
based on the acceleration of each joint over the whole sequence:

ET(Pseq) =
B

∑
i=2

∥∇Pi −∇Pi−1∥2
2 (4.6)

where ∇Pi = Pi −Pi−1.

bone length regularization : To explicitly enforce the constraint
that each bone length stays fixed, we define the bone length regularizer
as the difference between the bone length and the average bone length
over the pose sequence.

EB(Pseq) =
B

∑
i=1

∥∥∥∥∥LPi −
1
B

B

∑
j=1

LPj

∥∥∥∥∥
2

2

(4.7)

where the LPi is a vector composed of the length of each bone of 3D pose
Pi.

4.2.3 Global Pose Estimation

Based on the pose optimized by the local pose optimizer, the goal is to
get the 3D pose in the global coordinate system. First, the monocular
SLAM is used to get the camera pose sequence and project the local pose
sequence to the global space (Sec. 4.2.3.1), then the initial global pose
sequence is optimized with the global pose optimizer (Sec. 4.2.3.2).
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Figure 4.3: Interpolation in the latent space. The leftmost and rightmost pose
sequences (waving hands and jumping) are reconstructed from two randomly
sampled latent vectors, and intermediate pose sequences are reconstructed from
linear interpolation between the left and right latent vectors.

4.2.3.1 Initialization

To obtain the initial global body poses, the camera poses are first esti-
mated using ORB-SLAM2 (Mur-Artal and Tardós, 2017). To avoid the
effects caused by the moving person in the egocentric view, a square-
shaped mask that roughly covers a large portion of the body is employed
to remove most of the feature points detected on the main body parts.
A fixed mask is used rather than estimating a silhouette mask for each
image for the sake of effectiveness and robustness.

With the estimated camera pose (Ri, ti) (i = 1, · · · , B), the local body
pose Pi can be transformed into the world coordinate space to obtain its
initial global body pose P̃g

i :

P̃ g
i = Ri · Pi + ti, P̃

g
i ∈ P̃ g

seq (4.8)

where P̃ g
seq is the corresponding inital global pose segment of Pseq.

4.2.3.2 Global Pose Optimizer

Simply combining local poses with camera poses would not achieve very
high-quality global poses because the optimized local body poses are not
constrained to be consistent with the corresponding camera poses. For
example, the initial global pose in the left part of Fig. 4.4 suffers from the
foot skate artifact, which means the foot moves when it should remain in
a fixed position on the ground. In order to alleviate such inconsistency
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Without Global Pose Optimizer With Global Pose Optimizer

Figure 4.4: The global pose with/without global pose optimizer. Here, we zoom
onto the left foot for better comparison.

errors, this method perform another spatio-temporal optimization on
the initial global pose. A sequential VAE is firstly trained on global
pose sequences from the AMASS dataset in the same way presented in
Sec. 4.2.2.1. To measure the smoothness of our learned latent space, an
experiment is conducted by interpolating two different body motions.
The results shown in Fig. 4.3 demonstrate that the learned latent space
is smooth, which is important for the subsequent optimization process.
With the learned latent space of global motion, the goal is to find a latent
vector zg such that the global pose sequence P g

seq = f g
dec(z

g) minimizes
the following objective function:

E(P g
seq) = λJEJ(P g

seq, P̃ g
seq) + λTET(P g

seq) + λBEB(P g
seq) (4.9)

where EJ(.), ET(.), EB(.) are the same as those in 4.2.2.2, and λJ , λT and
λB are set as 0.01, 1 and 0.01, respectively. The example of the optimized
result is illustrated in the right part of Fig. 4.4, where the footskate artifact
is alleviated due to our global optimizer.

4.3 experiments

4.3.1 Datasets

Following Xu et al. (2019)’s and Tomè et al. (2019)’s works, the local
egocentric pose estimators are trained on the synthetic dataset from
Mo2Cap2. The AMASS dataset (Mahmood et al., 2019) is used to train the
sequential VAEs. To make the distribution of joint position in the training
data consistent with that in the real-world data, a virtual fisheye camera
is attached to the forehead of the human mesh at a distance similar to
the capture settings.

The method is evaluated on both the real-world dataset from Mo2Cap2 (Xu
et al., 2019) and a new egocentric dataset. The new real-world egocentric
dataset was captured using a head-mounted fisheye camera with a simi-
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lar camera position as Mo2Cap2 (Xu et al., 2019) while the ground truth
3D poses were acquired using a multi-view motion capture system. This
dataset contains around 12k frames of 2 actors wearing different clothes
and performing 13 types of actions. This dataset has been made publicly
available.

Compared with the Mo2Cap2 test set and the xR-egopose test set
(unreleased), this new test set contains more types of actions and more
data with global motions. The Mo2Cap2 test set contains 5591 frames (2
actors performing 8 types of actions). The xR-egopose test set has 10k
frames (3 actors performing 6 types of actions).

4.3.2 Evaluation Metrics

The method is evaluated with three different metrics, namely PA-MPJPE,
the bone length aligned MPJPE (BA-MPJPE), and the global MPJPE. They
all calculate the Mean Per Joint Position Error (MPJPE) but use different
ways of alignment to the ground truth.

For PA-MPJPE, the estimated pose of each frame is rigidly aligned to
the ground truth pose Pseq using P̂seq with Procrustes analysis (Kendall,
1989). For BA-MPJPE, firstly the bone length of each frame in sequences
P̂seq and Pseq is resized to the bone length of a standard skeleton. Then,
the PA-MPJPE between the two resulting sequences is calculated. For
Global MPJPE, all the poses of each batch (100 frames) are globally
aligned to the ground truth using Procrustes analysis. Each metric has
its own focus. The PA-MPJPE measures the accuracy of a single pose
while BA-MPJPE eliminates the effects of body scale. The global MPJPE
calculates the accuracy of global joint positions, considering the global
translation and rotation.

4.3.3 Implementation Details

4.3.3.1 Sequential VAE

The input pose sequence with n frames is firstly reshaped to (3 × 15, n)
and fed into the encoder with 45 input channels. The encoder has five
1D conv blocks with 64, 64, 128, 256, and 512 output channels. Each conv
block contains one 1D conv layer (kernel size=3, stride=1 and padding=1),
one batch norm layer, and one leaky relu layer with negative slope=0.01.
The output of the encoder is sent into two linear layers giving µ, σ ∈ R2048.
The latent vector z is sampled with µ, σ with the reparameterization trick.

For the decoder, the sampled latent vector z is firstly fed into a linear
layer with output dimension n × 512, and five 1D de-conv blocks with
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256, 128, 64, 64, and 64 output channels. Each block contains one 1D de-
conv layer, one batch norm layer, and one leaky relu layer with the same
hyper-parameters as the encoder. The output vector with 45 channels is
obtained from a final conv layer (kernel size=3, stride=1 and padding=1).
The output vector is eventually reshaped to (n, 15, 3), representing a pose
sequence as the input.

During training, the weight of reconstruction loss and KL divergence
loss is set to 1 and 5 × 10−3 respectively.

4.3.3.2 Optimization Details

In local and global pose optimization frameworks, the latent vector z
is optimized using a PyTorch implementation and the Limited-memory
BFGS optimizer (L-BFGS) (Nocedal and Wright, 2006) with strong Wolfe
line search. A learning rate of 2.0 with 30 maximum iterations is used. z is
initialized using the results of the single-frame egocentric pose estimation
network z = fenc(Pseq). After optimization, the output pose sequence is
reconstructed from the optimized z with a VAE decoder fdec(z).

Each long sequence is firstly split into several overlapping segments
with length B and each segment is processed independently. After two
adjacent segments are processed, the overlapping parts between these
segments are merged in a linear combination way. For a segment with
length B = 10, the local pose optimizer, running on 10-frame segments,
takes 120.0 ms per segment while the global pose optimizer takes 75.7
ms per segment. The optimization process is time-efficient thanks to
the simple VAE network and GPU-based optimization algorithm. All
aforementioned time is measured on a computer with Xeon 6144 CPU
and Tesla V100 GPU.

4.3.4 Comparison with State-of-the-art Results

Table 4.1 compares the approach with previous state-of-the-art single-
frame-based methods on the proposed test dataset and the indoor se-
quences from the Mo2Cap2 dataset. Since the code or the predictions of
xR-egopose are not publicly available, this method is re-implemented
and used for comparison. In order to obtain the global pose for Mo2Cap2

and xR-egopose, the local predictions are rigidly transformed to the
world coordinate system with the camera pose estimated by SLAM. This
global pose is regarded as the main baseline and denoted as Mo2Cap2

(or xR-egopose) + SLAM. Since the camera poses from ORB-SLAM2 are
ambiguous with respect to the scene scale, the scale is further estimated
by calibrating the camera position with a checkerboard in the first few
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Input Image Mo2Cap2 + SLAM Mo2Cap2 + SLAM
+ Smooth

Proposed Method

Figure 4.5: Qualitative comparison on the accuracy of a single pose. From left
to right: input image, Mo2Cap2 result projected with SLAM (green), smoothed
Mo2Cap2 result projected with SLAM (green), and proposed method’s result
(green) overlaid on ground truth (red). Note that in order to better show the
result, the estimated pose is rigidly aligned to the ground truth.
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Method Global MPJPE PA-MPJPE BA-MPJPE

Mo2Cap2 test dataset

Mo2Cap2+SLAM 117.4 80.48 61.40

Mo2Cap2+SLAM+Smooth 113.0 76.92 58.25

Mo2Cap2+Proposed 110.5 69.87 52.90

xR-egopose+SLAM 114.0 71.33 55.43

xR-egopose+SLAM+Smooth 112.2 70.27 54.03

xR-egopose+Proposed 110.1 66.74 50.52

The new test dataset

Mo2Cap2+SLAM 141.8 102.3 74.46

Mo2Cap2+SLAM+Smooth 135.5 96.37 70.84

Mo2Cap2+Proposed 119.5 82.06 62.07

xR-egopose+SLAM 163.4 112.0 87.20

xR-egopose+SLAM+Smooth 158.1 109.6 84.70

xR-egopose+Proposed 134.1 84.97 64.31

Table 4.1: The experimental results on Mo2Cap2 test dataset (Xu et al., 2019)
and the new test dataset. Mo2Cap2 (or xR-egopose) + Proposed is the result of
the proposed method based on the predictions of Mo2Cap2 (or xR-egopose).
The proposed method outperforms previous state-of-the-art Mo2Cap2 (Xu et al.,
2019) and xR-egopose (Tomè et al., 2019) in all of the three metrics.

frames of the sequence. Note that since the Mo2Cap2 dataset does not
provide frames with a checkerboard, the Procrustes analysis is applied
to align the trajectory estimated by SLAM with the ground truth tra-
jectory to compute the scale. For a fair comparison, the global pose of
Mo2Cap2 and xR-egopose is also smoothed with a Gaussian filter and
the results are denoted as Mo2Cap2 (or xR-egopose) + SLAM + smooth.
The evaluation of different types of motion is shown in Sec. A.1 of the
Appendix.

From these comparisons, significant improvements are observed, prov-
ing that the method can improve the accuracy of pose estimation results
from egocentric videos.

For the qualitative evaluation, the comparison between Mo2Cap2 and
the proposed method (based on Mo2Cap2) is shown in Fig. 4.5. This
proposed method also has the ability to estimate the global body pose,
which is shown in Fig. 4.6. In Fig. 4.6, the accuracy of the global pose
estimation is demonstrated by projecting the predicted global pose to an
external camera.



42 estimating egocentric 3d human pose in global space

Figure 4.6: Global pose estimation results from a third-view camera. Top row:
the input egocentric images, bottom row: the estimated 3D pose projected on an
external camera.

4.3.5 Ablation Study

Further experiments are conducted to evaluate the effects of individual
components of the approach. Mo2Cap2 is used as the local pose estimator
for all ablation studies to ensure the results are comparable.

local/ global pose optimizer . In this experiment, to investigate
the efficacy of the local and global optimizer, the method is evaluated
after removing the local pose optimizer or the global pose optimizer
from the entire pipeline. The results are shown in the 2nd and 3rd row of
Table 4.2, demonstrating that both modules are important to the approach.
The heatmap reprojection error in the local pose optimizer ensures that
the optimized 3D pose conforms to the constraint of 2D predictions. The
VAE prior in the global pose optimizer keeps the movement of body
limbs in accordance with the global camera pose, thus improving both
the global MPJPE and the local MPJPEs.

motion priors . In order to validate the importance of motion priors,
the performance of the optimization framework is tested without the
motion priors by directly optimizing 3D pose Pseq with E(Pseq) rather than
optimizing the VAE’s latent vector z. The method is evaluated without
motion prior on the new test dataset and shows one of the results in
Fig. 4.7. In this figure, the human leg in the input image is severely
occluded. The ambiguity of the image significantly reduced the accuracy
of the single-frame pose estimation network. Without the motion prior,
the optimization framework cannot resolve the ambiguity and the error
is still large, while in the proposed method, the motion prior is able
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Method Global MPJPE PA-MPJPE BA-MPJPE

Mo2Cap2 + SLAM 141.8 102.3 74.46

w/o local optim. 134.7 96.33 70.77

w/o global optim. 123.1 84.99 64.10

w/o motion prior 128.1 92.31 68.10

w. GMM 125.0 90.12 67.50

w. single frame VAE 122.2 87.04 65.58

w. VAE in VIBE 126.7 86.48 66.46

w. VAE in MEVA 121.6 84.49 63.69

w. MLP based VAE 122.2 85.07 65.05

conventional reproj. 128.2 89.97 67.99

wvae=1e-3 154.0 109.9 83.91

wvae=5e-4 126.0 87.76 66.64

wvae=1e-4 118.0 80.97 62.43

wvae=1e-5 117.4 79.47 61.62

optimize Pseq 124.6 90.72 68.78

Mo2Cap2 + Proposed 119.5 82.06 62.07

Table 4.2: The quantitative results of ablation study.

to correct the estimated pose. The qualitative evaluation in the 4th row
of Table 4.2 also confirms the claim in this chapter. With the motion
prior, the spatio-temporal optimization framework is able to make pose
predictions smoother and less ambiguous.

The VAE-based motion prior is also compared with the gaussian mix-
ture model (GMM) prior used in Arnab et al. (2019), Bogo et al. (2016),
and Kolotouros et al. (2019a)’s works and the single-frame VAE prior
used in Pavlakos et al. (2019)’s work. When comparing with GMM prior,
the GMM model is first trained with 8 Gaussians on the local pose se-
quence (local GMM) and the global pose sequence (global GMM) from
the AMASS dataset. Then the local and global VAE in the method are
substituted with the local and global GMM, and three MPJPEs are evalu-
ated, as shown in the 5th row of Table 4.2. GMM prior performs worse
since the VAE uses the neural network as a feature extractor, making
it easier to capture priors. When comparing with single-frame-based
VAE prior, a VAE network taking a single input pose is trained on the
AMASS dataset, and the VAE in the local optimizer is substituted with
the single-frame VAE. The evaluation result is shown in the 6th row
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Input Image Mo2Cap2+ SLAM w/o motion prior Ours

Figure 4.7: Comparison between the proposed method with and without motion
prior. From left to right: input image, Mo2Cap2 + SLAM (green), the result
without motion prior (green) and the one with motion prior (the result of
proposed method) (green) overlaid on the ground truth (red).

of Table 4.2. The single-frame VAE cannot capture the prior over time,
making it less effective than the sequential VAE proposed in this chapter.

cnn-based sequential vae . This method uses the CNN-based
sequential VAE rather than RNN-based VAE for better efficiency and
optimization stability. To evaluate the advantage of the proposed method,
the CNN-based sequential VAE in both the local and global optimizer is
substituted with the VAEs in VIBE (Kocabas et al., 2020) or MEVA (Luo
et al., 2020). The results are reported in the 7th to 9th rows of Table 4.2.
The result proves that the CNN-based VAE outperforms others in terms
of optimization accuracy, which can be attributed to a more stable opti-
mization process. To demonstrate this, the E(Pseq)-iteration curve of the
local pose optimization process (Sec. 4.2.2.2) is shown in Fig. 4.8, where
RNN-based VAEs are less stable due to the gradient explosion issue. To
show the efficiency of CNN-based VAE, the time for the optimization
was evaluated. This method takes 195.7ms per 10-frame segment, while
RNN-based VAE in VIBE and MEVA takes 552.1ms and 1139.4ms per
segment respectively. The CNN-based VAE was also compared with
multilayer perceptron (MLP) based VAE. According to Fig. 4.8 and the
10th row of Table 4.2, the MLP-based VAE performs worse since it is not
designed to capture the temporal context of the pose sequence.

heatmap reprojection error . In this work the heatmap reprojec-
tion error is used during the optimization while a lot of previous works
get the reprojection error by calculating the distance between estimated
2D joints and corresponding projected 3D joints (Arnab et al., 2019; Bogo
et al., 2016; Pavlakos et al., 2019; Zanfir et al., 2020). To evaluate the advan-
tage of heatmap reprojection error, the heatmap reprojection error in the
pipeline is substituted with the conventional reprojection error in Bogo
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Figure 4.8: E(Pseq)-iteration curve of different VAEs. The proposed method
gives the lowest error while keeping stable during optimization.

et al. (2016)’s work. In the qualitative evaluation shown in Fig. 4.9, the 2D
pose estimation gives wrong results for the right-hand position while the
ground truth hand position is still covered by the heatmap. The heatmap
reprojection error can leverage such uncertainty in the heatmap and give
better results than the conventional reprojection error. The quantitative
results are also shown in the 10th row of Table 4.2. These results prove
the advantage of the heatmap reprojection error.

with vae prior loss Different from previous optimization methods
based on motion priors (Pavlakos et al., 2019; Zanfir et al., 2020), the prior
error Eprior = ∥z∥2 is not applied in this method. That is because the prior
error encourages the latent vector z closer to zero, which would make
the pose stay close to a single mean pose, thus resulting in unnecessary
bias. To prove this, the prior error is added with several different weights
wvae in the energy function, and the MPJPEs are shown in the 3rd to 6th
row of Table 4.2. From the experimental result, all three errors rise as
the prior weight increases. The errors converge to the proposed method
when the prior weight approaches zero. This verifies the claim that the
VAE prior error Eprior is harmful to the proposed optimization algorithm.

optimization of Pseq In the optimization algorithm, the latent vec-
tor of VAE z is optimized, and the final prediction Pseq is obtained with
the VAE decoder fdec. An alternative optimization strategy is to optimize
pose sequence Pseq directly, calculate the latent vector z with VAE encoder
fenc and incorporate prior term with Eprior = ∥z∥2. To compare these
approaches, the direct optimization result is reported in the 7th row of
Table 4.2. The result is better when the optimization is performed in the
latent space, consistent with the previous research (Zanfir et al., 2020).
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2D detections Right hand heatmap Comparison Zoomed Comparison

Figure 4.9: Comparison between heatmap reprojection error and conventional
reprojection error. The result of heatmap reprojection error is in a green skeleton,
and the result of conventional reprojection error is in a blue skeleton.

4.4 limitations

As a common limitation of monocular SLAM methods, global cam-
era pose estimation requires an environment with rich visual features.
Featureless scenes such as white walls and green screens can lead to
unreliable camera poses. This problem can be alleviated by using the
RGBD-based SLAM method. Furthermore, the accuracy of this method
remains sub-optimal, which is not comparable to methods based on
external views. This is mostly caused by the inaccurate single-frame pose
estimation method, which is used to provide the 2d heatmap supervision
and the initial pose for optimization.

4.5 conclusion

This chapter proposes a method for estimating global poses with a single
head-mounted fisheye camera. This is achieved by employing a novel
spatio-temporal optimization framework including: a sequential VAE
to effectively capture the body motion prior; a global motion prior to
ensure consistency between the local body motion and the camera poses;
and a heatmap-based reprojection error term to leverage the uncertainty
in predicted heatmaps. Experiments show that the proposed method
outperforms state-of-the-art methods. This work will be referred to as
“GlobalEgoMocap” in this thesis.

As mentioned in the limitation section, the performance of this method
is limited by the single-frame egocentric pose estimation method. To
solve this, the next chapter will present a new method for predicting
accurate poses from in-the-wild egocentric images.



5
E S T I M AT I N G E G O C E N T R I C 3 D H U M A N P O S E I N T H E
W I L D W I T H E X T E R N A L W E A K S U P E RV I S I O N

The last chapter presents GlobalEgoMocap, an optimization-based method
for capturing egocentric motion in the global space. However, the perfor-
mance of the GlobalEgoMocap is still constrained by the performance
of single-frame pose estimation methods, including Mo2Cap2 (Xu et al.,
2019) and xR-EgoPose (Tomè et al., 2019). These single-frame methods
struggle to estimate the pose, especially from in-the-wild egocentric
images, because they can only be trained on synthetic data due to the
unavailability of large-scale in-the-wild egocentric datasets. Furthermore,
these methods easily fail when the body parts are occluded by or inter-
acting with the surrounding scene. To address the shortage of in-the-wild
data, this Chapter proposes a large-scale in-the-wild egocentric dataset
called Egocentric Poses in the Wild Dataset (EgoPW dataset). This dataset
is captured by a head-mounted fisheye camera and an auxiliary exter-
nal camera, which provides an additional observation of the human
body from a third-person perspective during training. This Chapter also
presents a new egocentric pose estimation method, which can be trained
on the new dataset with weak external supervision. Specifically, pseudo
labels for the EgoPW dataset are first generated with a spatio-temporal
optimization method by incorporating the external-view supervision.
The pseudo labels are then used to train an egocentric pose estimation
network. To facilitate network training, this Chapter proposes a novel
learning strategy to supervise the egocentric features with the high-
quality features extracted by a pretrained external-view pose estimation
model. The experiments show that the EgoPW method predicts accurate
3D poses from a single in-the-wild egocentric image and outperforms
the state-of-the-art methods both quantitatively and qualitatively.

5.1 introduction

Egocentric motion capture using head- or body-mounted cameras has
recently become popular because traditional motion capture systems with
outside-in cameras have limitations when the person is moving around
in a large space and thus restrict the scope of applications. Different
from traditional systems, the egocentric motion capture system is mobile,
flexible, and has no requirements on recording space, which enables

47
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Input Image Mo2Cap2 Ours External Reference

Figure 5.1: Compared with Mo2Cap2, the proposed method gets a more accurate
egocentric pose from a single in-the-wild image, especially when the body parts
are occluded. Note that the external images are only used for visualization, not
the inputs to the method.

capturing a wide range of human activities for many applications, such
as wearable medical monitoring, sports analysis, and xR.

This Chapter focuses on estimating the full 3D body pose from a single
head-mounted fisheye camera. The most related works are Mo2Cap2 (Xu
et al., 2019) and xR-egopose (Tomè et al., 2019). While these methods
have produced compelling results, they are only trained on synthetic
images as limited real data exists and, therefore, suffer from significant
performance drops in real-world scenarios. Furthermore, these methods
often struggle with the cases when parts of the human body are occluded
by or interacting with the surrounding scene (see the Mo2Cap2 results in
Fig. 5.1). This is due to the domain gap between synthetic and real data,
but also due to their limited capability of handling occlusions.

To address the issue of the limited real egocentric data, a large-scale
in-the-wild egocentric dataset called Egocentric Poses in the Wild (EgoPW)
is captured. This is currently the largest egocentric in-the-wild dataset,
containing more than 312k frames and covering 20 different daily ac-
tivities in 8 everyday scenes. To obtain the supervision for the network
training, one possibility is using a multi-view camera setup to capture
training data with ground truth 3D body poses or apply multi-view weak
supervision. However, this setup is impractical for recording in an envi-
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ronment with limited space (e.g. in the small kitchen shown in Fig. 5.3),
which is a common recording scenario. Therefore, considering a trade-off
between flexibility and 3D accuracy, a new device setup is proposed
consisting of an egocentric camera and a single auxiliary external camera.
The external view can provide additional supervision during training,
especially for the highly occluded regions in the egocentric view (e.g. the
lower body part).

To handle occlusions and estimate accurate poses, a new egocentric
pose estimation method is proposed for training on the EgoPW dataset
in a weakly supervised way. Specifically, a spatio-temporal optimization
method is introduced to generate accurate 3D poses for each frame in the
EgoPW dataset. The generated poses are further used as pseudo labels
for training an egocentric pose estimation network (Xu et al., 2019). To
improve the network performance, the training of the egocentric pose
estimation network is facilitated with the extracted features from the
external pose estimation network which has been trained on a large in-
the-wild body pose dataset. Specifically, the feature extracted from these
two views is enforced to be similar by fooling a discriminator not being
able to detect which view the features are from. To further improve the
performance of the pose estimation network, besides the EgoPW dataset,
a synthetic dataset (Xu et al., 2019) is also leveraged to train the network
and adopt a domain adaptation strategy to minimize the domain gap
between synthetic and real data.

The proposed method is evaluated on the test data provided by Chap-
ter 4 and Xu et al. (2019). This method significantly outperforms the
state-of-the-art methods both quantitatively and qualitatively. Qualitative
results are also shown on various in-the-wild images, demonstrating that
this method can predict accurate 3D poses on very challenging scenes,
especially when the body joints are seriously occluded (see the results in
Fig. 5.1). To summarize, the contributions of this Chapter are presented
as follows:

• A new method to estimate egocentric human pose with weak su-
pervision from an external view, which significantly outperforms
existing methods on in-the-wild data, especially when severe occlu-
sions exist;

• A large in-the-wild egocentric dataset (EgoPW) captured with a
head-mounted fisheye camera and an external camera;

• A new optimization method to generating pseudo labels for the
in-the-wild egocentric dataset by incorporating the supervision
from an external view;
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• An adversarial method for training the network by learning the
feature representation of egocentric images with external feature
representation.

We recommend watching the video in https://people.mpi-inf.mpg.

de/~jianwang/projects/egopw for better visualization. The EgoPW dataset
is also available on the same webpage.

5.2 method
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Figure 5.2: Overview of our method. The new EgoPW dataset (Sec. 5.2.1) is
firstly collected, where pseudo labels are generated by a multi-view based
optimization method (Sec. 5.2.2). Then, the proposed framework (Sec. 5.2.3) is
trained, where the network is simultaneously trained with EgoPW datasets and
synthetic data from Mo2Cap2. The egocentric network is further enforced to
learn a better feature representation from the external view (Sec. 5.2.3.2) and
finally bridge the gap between synthetic and real data with a domain classifier
(Sec. 5.2.3.1).

https://people.mpi-inf.mpg.de/~jianwang/projects/egopw
https://people.mpi-inf.mpg.de/~jianwang/projects/egopw
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This section proposes a new approach to train a neural network on the
in-the-wild dataset with weak supervision from egocentric and external
views. The overview of the proposed approach is illustrated in Fig. 5.2.
A large-scale egocentric in-the-wild dataset is firstly captured, called
EgoPW, which contains synchronized egocentric and external image
sequences (Sec. 5.2.1). Next, the pseudo labels of the EgoPW dataset are
generated with an optimization-based framework. This framework takes
as input a sequence in a time window with B frames of egocentric images
I ego

seq = {I ego
1 , . . . , I ego

B } and external images I ext
seq = {I ext

1 , . . . , I ext
B } and

outputs egocentric 3D poses P ego
seq = {P ego

1 , . . . ,P ego
B } as the pseudo labels

(Sec. 5.2.2).
Next, the egocentric pose estimation network is trained on the synthetic

data from Mo2Cap2 (Xu et al., 2019) and on the EgoPW dataset with
pseudo labels P ego

seq . In the training process, the feature representation
from an on-the-shelf external pose estimation network (Xiao et al., 2018)
is leveraged to enforce our egocentric network to learn a better feature
representation in an adversarial way (Sec. 5.2.3.2). An adversarial domain
adaptation strategy is also used to mitigate the domain gap between
synthetic and real datasets (Sec. 5.2.3.1).

5.2.1 EgoPW Dataset

This section first describes the newly collected EgoPW dataset, which is
the first large-scale in-the-wild human performance dataset captured by
an egocentric camera and an external camera (Sony RX0), both synchro-
nized. EgoPW contains a total of 318k frames, which are divided into
97 sequences of 10 actors in 20 clothing styles performing 20 different
actions.

All personal data is collected with IRB approval. 3D poses are generated
as pseudo labels using the egocentric and external images, which will
be elaborated on later. In terms of size, the EgoPW dataset is larger
than existing in-the-wild 3D pose estimation datasets, like 3DPW (Von
Marcard et al., 2018), and has similar scale to the existing synthetic
egocentric datasets, including the Mo2Cap2 (Xu et al., 2019) and the
xR-egopose (Tomè et al., 2019) datasets.

5.2.2 Optimization for Generating Pseudo Labels

This section presents an optimization method based on Chapter 4 to
generate pseudo labels for EgoPW. An input sequence is split into seg-
ments containing B consecutive frames. For the egocentric frames Iego

seq ,
the 3D poses represented by 15 joint locations are estimated in the coordi-
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nate system of the egocentric camera (called “egocentric poses") P̃ ego
seq =

{P̃ ego
1 , . . . , P̃ ego

B }, P̃ ego
i ∈ R15×3, and 2D heatmaps Hego

seq = {Hego
1 , . . . , Hego

B }
using the Mo2Cap2 method (Xu et al., 2019). Aside from egocentric poses,
the transformation matrices between the egocentric camera poses of
two adjacent frames [RSLAM

seq | tSLAM
seq ] = {[R2

1 | t2
1], . . . , [RB

B−1 | tB
B−1]} are

also estimated using ORB-SLAM2 (Mur-Artal and Tardós, 2017). For
the external frames Iext

seq ,the 3D poses (called “external poses") P ext
seq =

{P ext
1 , . . . ,P ext

B }, P ext
i ∈ R15×3 are estimated using VIBE (Kocabas et al.,

2020) and 2D joints J ext
seq = {J ext

1 , . . . ,J ext
B }, J ext

i ∈ R15×2 are obtained
using openpose (Cao et al., 2017).

Next, following Chapter 4, a latent space is learned to encode an egocen-
tric motion prior with a sequential VAE which consists of a CNN-based
encoder fenc and decoder fdec. The egocentric pose is further optimized
by finding a latent vector z such that the corresponding pose sequence
Pego

seq = fdec(z) minimizes the objective function:

E(P ego
seq , Rseq, tseq) = λ

ego
R Eego

R + λext
R Eext

R + λ
ego
J Eego

J

+ λext
J Eext

J + λTET + λBEB

+ λCEC + λMEM.

(5.1)

In this objective function, Eego
R , Eego

J ,ET, and EB are egocentric reprojection
term, egocentric pose regularization term, motion smoothness regular-
ization term and bone length regularization term, which are the same
as those defined in Chapter 4. Eext

R , Eext
J , EC, and EM are the external

reprojection term, external 3D body pose regularization term, camera
pose consistency term, and camera matrix regularization term, which
will be described later. Please see the Sec. B.5 in the Appendix B for a
detailed definition of each term.

Note that since the relative pose between the external camera and
the egocentric camera is unknown, the relative egocentric camera pose
with respect to the external camera pose still needs to be optimized for
each frame, i.e. the rotations Rseq = R1, . . . , RB and translations tseq =

t1, . . . , tB.

external reprojection term . In order to supervise the optimiza-
tion process with the external 2D pose, the external reprojection term is
proposed to minimize the difference between the projected 3D pose with
the external 2D joints. The energy term is defined as:

Eext
R (P ego

seq , Rseq, tseq) =
B

∑
i=1

∥∥J ext
i − K [Ri | ti]P

ego
i

∥∥2
2 , (5.2)
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where K is the intrinsic matrix of the external camera; [Ri | ti] is the
pose of the egocentric camera in the i th frame w.r.t the external camera
position. In Eq. 5.2, the egocentric body pose P ego

i is first projected to
the 2D body pose in the external view with the egocentric camera pose
[Ri | ti] and the intrinsic matrix K. Then, the projected body poses are
compared with the 2D joints estimated by the openpose (Cao et al., 2017).
Since the relative pose between the external camera and the egocentric
camera is unknown at the beginning of the optimization, the egocentric
camera pose [Ri | ti] is simultaneously optimized when optimizing the
egocentric body pose P ego

seq . In order to make the optimization process
converge faster, the egocentric camera pose [Ri | ti] is initialized with the
Perspective-n-Point algorithm (Gao et al., 2003).

camera pose consistency. The accurate 3D pose cannot be ob-
tained only with the external reprojection term because the egocentric
camera pose and the optimized body pose can be arbitrarily changed
without violating the external reprojection constraint. To alleviate this
ambiguity, the camera consistency term EC is introduced as follows:

EC(Rseq, tseq) =
B−1

∑
i=1

∥∥∥∥∥
[

Ri ti

0 1

] [
Ri+1

i ti+1
i

0 1

]

−
[

Ri+1 ti+1

0 1

]∥∥∥∥∥
2

,

(5.3)

It enforces the egocentric camera pose at (i + 1) th frame [Ri+1 | ti+1]

to be consistent with the pose obtained by transforming the egocentric
camera pose at the i th frame [Ri | ti] with the relative pose between the i
th and (i + 1) th frame.

external 3d body pose regularization. Besides the external
reprojection term, the external 3D body poses are also leveraged to
supervise the optimization of the egocentric 3D body pose. the external
3D pose term which measures the difference between the external and
the egocentric body poses after a rigid alignment is defined as follow:

EJ(P ego
seq ,P ext

seq ) =
B

∑
i=1

∥∥P ext
i −

[
Rpa

i | tpa
i

]
P ego

i

∥∥2
2 , (5.4)

where
[
Rpa

i | tpa
i

]
is the transformation matrix calculated with Procrustes

analysis, which rigidly aligns the external 3D pose estimation P ext
i and

the egocentric 3D pose P ego
i .

By combining the body poses estimated from the egocentric view and
external view, accurate pseudo labels can be finally reconstructed. As
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(a) Egocentric Image (e) External Image(b) Only Egocentric (c) Our Pseudo Label (d) Only External

Figure 5.3: The pseudo label generation method combines the information from
both the egocentric view and external view, therefore leading to more accurate
pseudo labels (c). Only with the egocentric camera, the feet cannot be observed
and well-tracked (b). Only with the external camera, the hands are occluded
and result in the wrong result on the hand part (d).

shown in Fig. 5.3, the hands of the person are occluded in the external
view, resulting in the tracking of the hands failing in the external view
(Fig. 5.3, b), however, the hands can be clearly seen and tracked in
the egocentric view (Fig. 5.3, d); on the other hand, the feet cannot be
observed in the egocentric view and thus fail to be tracked in this view
(Fig. 5.3, b), but can be easily viewed and tracked in the external view
(Fig. 5.3, d). By joining the information from both views, accurate 3D
poses can be accurately predicted as the pseudo labels (Fig. 5.3, c). Note
that the external camera is only used for generating the pseudo labels.
At test time, only the egocentric camera is used.

camera matrix regularization. The camera rotation matrix Ri
is constrained to be orthogonal:

EJ(Rseq) =
B

∑
i=1

∥∥∥RT
i Ri − I

∥∥∥2

2
. (5.5)

Different from previous single-view pose estimation methods which
leverage the weak supervision from multiple views Iqbal et al., 2020;
Kocabas et al., 2019; Rhodin et al., 2018; Wandt et al., 2021, this spatio-
temporal optimization method generates the pseudo labels under the
guidance of learned motion prior, making it robust to noisy and inaccu-
rate 2D pose estimations which is common for the 2D pose estimation
results from the egocentric view.

5.2.3 Training Egocentric Pose Estimation Network

Through the optimization framework in Sec. 5.2.2, the accurate 3D pose
pseudo labels P ego

seq can be obtained for each egocentric frame in the
EgoPW dataset. The 3D pose pseudo labels are further processed into
the 2D heatmap HE and the distance between joints and egocentric
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camera DE with the fisheye camera model (Scaramuzza and Ikeuchi,
2014) described in Chapter 3.

Afterward, a single-image-based egocentric pose estimation network
is trained on both the synthetic dataset from Mo2Cap2 and the EgoPW
dataset, as shown in the right part of Fig. 5.2. The pose estimation net-
work contains a feature extractor Θ which encodes an image into a
feature vector and a pose estimator Ψ which decodes the feature vector
to 2D heatmaps and a distance vector. The 3D pose can be reconstructed
from them with the fisheye camera model. Here, the synthetic dataset
is noted as S = {IS, HS, DS} including synthetic images IS along with
their corresponding heatmaps HS and distance labels DS from Mo2Cap2

dataset. The EgoPW dataset is noted as E = {Iego
E , HE, DE, Iext

E } includ-
ing egocentric in-the-wild images Iego

E along with pseudo heatmaps HE,
distance labels DE and corresponding external images Iext

E . During the
training process, the egocentric pose estimation network is trained with
two reconstruction loss terms and two adversarial loss terms. The recon-
struction losses are defined as the mean squared error (MSE) between
the predicted heatmaps/distances and heatmaps/distances from labels:

LS = mse(ĤS, HS) + mse(D̂S, DS)

LE = mse(ĤE, HE) + mse(D̂E, DE),
(5.6)

where
ĤS, D̂S = Ψ(FS),FS = Θ(IS);

ĤE, D̂E = Ψ(Fego
E ),Fego

E = Θ(Iego
E ).

(5.7)

Two adversarial losses are separately designed for learning egocentric
feature representation and bridging the domain gap between synthetic
and real datasets. These two losses are described as follows.

5.2.3.1 Adversarial Domain Adaptation

To bridge the domain gap between the synthetic and real data domains,
following Tzeng et al. (2017), this chapter introduces an adversarial
discriminator Γ which takes as input the feature vectors extracted from a
synthetic image and an in-the-wild image, and determines if the feature
is extracted from an in-the-wild image. The adversarial discriminator Γ
is trained with a cross-entropy loss:

LD = −E[log(Γ(FS))]− E[log(1 − Γ(Fego
E ))]. (5.8)

Once the discriminator Γ has been trained, the feature extractor Θ
maps the images from different domains to the same feature space such
that the classifier Γ cannot tell if the features are extracted from synthetic
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images or real images. Therefore, the pose estimator Ψ can predict more
accurate poses for the in-the-wild data.

5.2.3.2 Supervising Egocentric Feature Representation with External View

Although the EgoPW training dataset is large, the variation of identities
in the dataset is still relatively limited (20 identities) compared with
the existing large-scale external-view human datasets (thousands of
identities). Generally speaking, the representations learned with these
external-view datasets are of higher quality due to the large diversity
of the datasets. To improve the generalizability of our network and
prevent overfitting to the training identities, the egocentric representation
in the proposed network is further supervised by leveraging the high-
quality third-person view features. From a transfer learning perspective,
although following Mo2Cap2 (Xu et al., 2019), the egocentric network is
pretrained on the third-person-view datasets, it can easily “forget” the
learned knowledge while being finetuned on the synthetic dataset. The
supervision from third-person-view features can prevent the egocentric
features from deviating too much from those learned from large-scale
real human images.

However, directly minimizing the distance between egocentric features
Fego

E and external features Fext
E will not enhance the performance since

the intermediate features of the egocentric and external view should be
different from each other due to significant difference on the view direc-
tion and camera distortions. To tackle this issue, the adversarial training
strategy is applied to align the feature representation from egocentric
and external networks. Specifically, an adversarial discriminator Λ is
introduced to take the feature vectors extracted from an egocentric image
and the corresponding in-the-wild images and predict if the feature is
from egocentric or external images. The adversarial discriminator Λ is
trained with a cross-entropy loss:

LV = −E[log(Λ(Fego
E ))]− E[log(1 − Λ(Fext

E ))], (5.9)

where Fext
E = Θext(Iext

E ) and Θext is the feature extractor of external
pose estimation network that shares exactly the same architecture as
the egocentric pose estimation network. The parameters of the features
extractor Θext and the pose estimator Ψext of the external pose estimation
network are obtained from the pretrained model in Xiao et al. (2018)’s
work and remain fixed during the training process.

Note that the deep layers of the pose estimation network usually rep-
resent the global semantic information of the human body (Chu et al.,
2017), the output feature of the 4th res-block of ResNet-50 network (He
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a) Input b) With external feature supervision c) Without external feature supervision

Figure 5.4: The visualization of features with (b) or without (c) the adversarial
supervision from external features. By supervising the training of the egocentric
network with the feature representation from an external view, the egocentric
network is able to focus on extracting the semantic features of the human body.

et al., 2016) is used as the input to the discriminator Λ. Furthermore,
the spatial position of the joints is quite different in the egocentric view
and the external view, which will make the discriminator Λ easily learn
the difference between egocentric and external features. To solve this, an
average pooling layer is introduced in the discriminator Λ to spatially
aggregate features, thus further eliminating the influence of spatial dis-
tribution between egocentric and external images. Please refer to the
Sec. B.4 in the Appendix B for further details.

During the training process, the egocentric pose estimation network is
trained to produce the features Fego

E to fool the domain classifier Λ such
that it cannot distinguish whether the feature is from an egocentric or
external image.

To achieve this, the egocentric network learns to pay more attention
to the relevant parts of the input image, i. e., the human body, which is
demonstrated in Fig. 5.4.

5.3 experiments

5.3.1 Datasets

The finetuned network is quantitatively evaluated on the real-world
datasets from Mo2Cap2 (Xu et al., 2019) and Chapter 4. The real-world
dataset in Mo2Cap2 (Xu et al., 2019) contains 2.7k frames of two people
captured in indoor and outdoor scenes, and that in Chapter 4 contains
12k frames of two people captured in the studio. To measure the accuracy
of the pseudo labels, the optimization method (Sec. 5.2.2) is evaluated
only on the dataset from Chapter 4 since the Mo2Cap2 dataset does not
include the external view.

To evaluate the proposed method on the in-the-wild data, a qualitative
evaluation is also conducted on the test set of the EgoPW dataset. The
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Method PA-
MPJPE

BA-
MPJPE

Mo2Cap2
102.3 74.46

xR-egopose 112.0 87.20

Method in Chapter 4 83.40 63.88

VIBE (Kocabas et al., 2020) 68.13 52.99

Proposed Optimizer 57.19 46.14

Table 5.1: The accuracy of pseudo labels on test dataset in Chapter 4. Utilizing
both egocentric and external views, the body poses from the proposed opti-
mization method (Sec. 5.2.2) are more accurate and can serve as better pseudo
labels.

EgoPW dataset has been made publicly available, and more details and
comparisons to other datasets are included in Sec. B.3 of Appendix B.

5.3.2 Evaluation Metrics

The results of the proposed method, as well as other baseline methods,
are measured using two metrics, PA-MPJPE and BA-MPJPE. For PA-
MPJPE, the estimated pose P̂ of each frame is rigidly aligned to the
ground truth pose P using Procrustes analysis (Kendall, 1989). In order
to eliminate the influence of the body scale, the BA-MPJPE scores are
also reported. In this metric, the bone lengths of each predicted body
pose P̂ and ground truth body pose P are first resized to the bone length
of a standard skeleton. Then, the PA-MPJPE is calculated between the
two resulting poses.

5.3.3 Pseudo Label Generation

In this paper, the pseudo labels are first generated with the optimiza-
tion framework (Sec. 5.2.2) and further leveraged to train the network
(Sec. 5.2.3). Thus, pseudo-labels with higher accuracy generally lead to
better network performance. In this experiment, the accuracy of pseudo
labels is evaluated on Wang et al.’s dataset and the results are shown in
Table 5.1. This table shows that the proposed method outperforms all the
baseline methods by leveraging both the egocentric view and external
view during optimization. Note that though compared in Table 5.1, it
is impossible to use any external-view-based pose estimation method,
e. g. VIBE (Kocabas et al., 2020) and 3DPW (Von Marcard et al., 2018),
for training the egocentric pose estimation network. This is because the
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Input Mo2Cap2 xR-egopose Proposed Method External Ref.

Figure 5.5: Qualitative comparison between the proposed method and the state-
of-the-art methods. From left to right: input image, Mo2Cap2 result, xR-egopose
result, the result of the proposed method, and external image. The ground
truth pose is shown in red. Note that the external images are not used during
inference. The input images on the top part are from the test dataset of Chapter 4,
while the images on the bottom part are from the EgoPW test sequences.
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Method PA-MPJPE BA-MPJPE

Chapter 4’s test dataset

Rhodin et al. (2018) 89.67 73.56

Mo2Cap2 (Xu et al.,
2019)

102.3 74.46

xR-egopose (Tomè
et al., 2019)

112.0 87.20

Ours 81.71 64.87

Mo2Cap2 test dataset

Rhodin et al. (2018) 97.69 76.92

Mo2Cap2 (Xu et al.,
2019)

91.16 70.75

xR-egopose (Tomè
et al., 2019)

86.85 66.54

Ours 83.17 64.33

Table 5.2: Performance of the egocentric pose estimation network (Sec. 5.2.3)
on Wang et al.’s test dataset and Mo2Cap2 test dataset (Xu et al., 2019). This
method outperforms the state-of-the-art methods, Mo2Cap2 (Xu et al., 2019) and
xR-egopose (Tomè et al., 2019), on both metrics.

relative pose between the external and egocentric camera is unknown,
making it impossible to obtain the egocentric body pose only from the
external view. Compared with the proposed optimization approach, the
method in Chapter 4 performs worse due to the lack of external-view
supervision.

5.3.4 Comparisons on 3D Pose Estimation

In this section, the egocentric pose estimation network trained in Sec. 5.2.3
is compared with previous single-frame-based methods on the test
dataset from Chapter 4 under the “Wang et al.’s test dataset” in Ta-
ble 5.2. Since the code or the predictions of xR-egopose are not publicly
available, the reimplementation of xR-egopose is used instead. On this
dataset, the proposed method outperforms Mo2Cap2 by 20.1% and xR-
egopose by 27.0% respectively. The proposed method is also compared
with previous methods on the Mo2Cap2 test dataset and the results are
shown under the “Mo2Cap2 test dataset” in Table 5.2. On the Mo2Cap2

test dataset, the proposed method performs better than Mo2Cap2 and
xR-egopose by 8.8% and 4.2%, respectively.
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Method PA-MPJPE BA-MPJPE

w/o external view 90.05 68.99

w/o learning representation 85.46 67.01

w/o domain adaptation 84.22 66.48

Unsupervised DA 91.56 69.17

Ours 81.71 64.87

Table 5.3: The quantitative results of ablation study.

The results in Table 5.2 show that our approach outperforms all previ-
ous methods on the single-frame egocentric pose estimation task. More
quantitative results on each type of motion are available in Sec. B.1 of
Appendix B. For the qualitative comparison, the results of our method
on the studio dataset and in-the-wild dataset are shown in Fig. 5.5. The
method performs much better compared with Mo2Cap2 and xR-egopose,
especially for the in-the-wild cases where the body parts are occluded.
Please refer to Sec. B.2 of Appendix B for more qualitative results.

The proposed method is also compared with Rhodin et al. (2018)’s
method, which uses weak supervision from multiple views to supervise
the training of a single view pose estimation network. In the EgoPW
dataset, there is only one egocentric and one external view. Thus, the
3D pose estimation network for the external view is fixed, and only
the egocentric pose estimation network is trained. Following Rhodin
et al. (2018), the predictions from the egocentric and external view are
aligned with Procrustes analysis, and the loss proposed by Rhodin et al.
(2018) is calculated. The results in Table 5.2 show the proposed method
performs better. This is mainly because the proposed spatio-temporal
optimization method predicts accurate and temporally stable 3D poses
as pseudo labels, while other methods suffer from inaccurate egocentric
pose estimations.

5.3.5 Ablation Study

supervision from the external view. In this work, the external
view is introduced as supervision for training the network. The exter-
nal view enables generating accurate pseudo labels, especially when
the human body parts are occluded in the egocentric view but can be
observed in the external view. Without the external view, the obtained
pseudo labels are less accurate and will further affect the network per-
formance. In order to demonstrate this, The 3D poses are first generated
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(a) Input Image (b) w/o external view (c) Ours (d) External Reference

Figure 5.6: The results of the proposed method with (c) and without external
view (b). The network cannot predict accurate poses for the occluded cases
without external view supervision. The external view is only for visualization
and not used for predicting the pose.

as pseudo labels with the method in Chapter 4, i. e.without any external
supervision, and then train the pose estimation network on these new
pseudo labels. The result is shown in the “w/o external view” row of
Table 5.3. The qualitative results with and without external-view super-
vision are also shown in Fig. 5.6. Both the qualitative and quantitative
results demonstrate that with external supervision, the performance of
the pose estimation network is significantly better, especially in occluded
cases.

learning egocentric feature representation and bridging

the domain gap with adversarial training . In this Chapter,
the pose estimation network is trained with two adversarial compo-
nents to learn the feature representation of the egocentric human body
(Sec. 5.2.3.2) and bridge the domain gap between synthetic and real im-
ages (Sec. 5.2.3.1). To demonstrate the effectiveness of both modules, the
domain classifier Λ is removed from our training process, and the results
are shown in the row of “w/o learning representation” in Table 5.3. The
domain classifier Γ was also removed, and the network was trained with-
out LD. The quantitative results are shown in the row of "w/o domain
adaptation" in Table 5.3. After moving any of the two components, the
proposed method suffers from a performance drop, which demonstrates
the effectiveness of both the feature representation learning module and
the domain adaptation module.

comparison with only using unsupervised domain adapta-
tion. In this experiment, our approach is compared with the unsu-
pervised adversarial domain adaptation method Tzeng et al., 2017 that
is commonly used for transfer learning tasks. The network is trained
only with the LS and LD in the adversarial domain adaptation module
(Sec. 5.2.3.1). The results are shown in the “Unsupervised DA” of Ta-
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ble 5.3. The proposed approach outperforms the unsupervised domain
adaptation method due to the high-quality pseudo labels.

5.4 limitations

The accuracy of pseudo labels in this method is constrained by the in-
the-wild capture system, which contains only one egocentric view and
one external view. The use of inaccurate pseudo labels also limits the
network’s performance. One future solution is to fuse different sensors,
including IMUs and external-view depth cameras, for capturing the
ground truth for the in-the-wild dataset.

Another limitation of this method is that the method is still trained on
the synthetic dataset from Mo2Cap2 (Xu et al., 2019). The images in this
dataset are far from realistic, suffering from a large domain gap with the
real-world egocentric human motion dataset. It is more challenging for
the domain adaptation strategy in the proposed method to bridge the
domain gap between synthetic and real-world datasets. Future methods
can synthesize realistic datasets with high-quality articulated human
models like renderpeople model (RenderPeople n.d.) or SMPL model Loper
et al., 2015 with clothing simulations Black et al., 2023.

The proposed method still suffers from the self-occlusion problem. To
solve this, future research can constrain the egocentric human motion
capture on the explicit scene geometry. The scene geometry will provide
rich clues by avoiding the human body penetrating the scene or floating
in the air.

5.5 conclusion

This paper proposes a new approach for egocentric human pose estima-
tion using a single head-mounted fisheye camera. A new in-the-wild ego-
centric dataset (EgoPW) was collected, and a new optimization method
was designed to generate accurate egocentric poses as pseudo labels. The
egocentric pose estimation network is then supervised with the pseudo
labels and the features from the external network. The experiments show
that this method outperforms all of the state-of-the-art methods both
qualitatively and quantitatively and it also works well under severe oc-
clusion. In the following chapters, we will refer to the work presented in
this chapter as “EgoPW”.

As mentioned in the limitation section, this proposed method still
suffers from the self-occlusion issue. The next chapter tries to solve this
by first estimating the scene geometry from a single egocentric frame
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and then predicting the egocentric pose by combining the image features
and scene geometry.



6
S C E N E - AWA R E E G O C E N T R I C 3 D H U M A N P O S E
E S T I M AT I O N

Egocentric 3D human pose estimation with a single head-mounted fisheye
camera has recently gained attention due to its numerous applications in
virtual and augmented reality. Existing methods, including the ones from
previous chapters, still struggle with challenging poses where the human
body is highly occluded or closely interacting with the scene. To address
this issue, a scene-aware egocentric pose estimation method is proposed,
guiding the prediction of the egocentric pose with scene constraints.

An egocentric depth estimation network is first introduced to predict
the scene depth map from a wide-view egocentric fisheye camera while
mitigating the occlusion of the human body with a depth-inpainting
network. Next, a scene-aware pose estimation network is proposed, pro-
jecting the 2D image features and estimated depth map of the scene
into a voxel space and regressing the 3D pose with a V2V network. The
voxel-based feature representation provides a direct geometric connection
between 2D image features and scene geometry, further facilitating the
V2V network to constrain the predicted pose based on the estimated
scene geometry.

To enable the training of these networks, a synthetic dataset called
EgoGTA and an in-the-wild dataset based on EgoPW, called EgoPW-
Scene, were generated. The experimental results of the new evaluation
sequences show that the predicted 3D egocentric poses are accurate and
physically plausible in terms of human-scene interaction, demonstrating
that this method outperforms state-of-the-art methods both quantitatively
and qualitatively.

6.1 introduction

Egocentric 3D human pose estimation with head- or body-mounted cam-
eras has been extensively researched recently because it allows capturing
the person moving around in a large space, while the traditional pose es-
timation methods can only record in a fixed volume. With this advantage,
the egocentric pose estimation methods show great potential in vari-
ous applications, including the xR technologies and mobile interaction
applications.

65
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Image EgoPW Proposed Method

Figure 6.1: Previous egocentric pose estimation methods like EgoPW (Chapter 5)
predict body poses that may suffer from body floating issues (the first row) or
body-environment penetration issues (the second row). This method predicts
accurate and plausible poses complying with the scene constraints. The red
skeletons are the ground truth poses and the green skeletons are the predicted
poses.

This Chapter proposes a method to estimate the full 3D body pose from
a single head-mounted fisheye camera. A number of works have been
proposed, including Mo2Cap2 Xu et al., 2019, xR-egopose Tomè et al.,
2019, the method in Chapter 4 and EgoPW in Chapter 5. These methods
have made significant progress in estimating egocentric poses. However,
when taking account of the interaction between the human body and the
surrounding environment, they still suffer from artifacts that contrast the
physics plausibility, including body-environment penetrations or body
floating (see the EgoPW results in Fig. 6.1), which is mostly ascribed
to the ambiguity caused by the self-occluded and highly distorted hu-
man body in the egocentric view. This problem will render restrictions
on subsequent applications including action recognition, human-object
interaction recognition, and motion forecasting.

To address this issue, this Chapter proposes a scene-aware pose es-
timation framework that leverages the scene context to constrain the
prediction of an egocentric pose. This framework produces accurate and
physically plausible 3D human body poses from a single egocentric im-
age, as illustrated in Fig. 5.1. Thanks to the wide-view fisheye camera
mounted on the head, the scene context can be easily obtained even with
only one egocentric image. To this end, an egocentric depth estimator is
trained to predict the depth map of the surrounding scene. To mitigate
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the occlusion caused by the human body, the depth map including the
visible human is predicted, and a depth-inpainting network is used to
recover the depth behind the human body.

Next, the projected 2D pose features and scene depth are combined in
a common voxel space, and the 3D pose heatmaps are regressed with a
V2V network Moon et al., 2018. The 3D voxel representation projects the
2D poses and depth information from the distorted fisheye camera space
to the canonical space, and further provides direct geometric connection
between 2D image features and 3D scene geometry. This aggregation of
2D image features and 3D scene geometry facilitates the V2V network to
learn the relative position and potential interactions between the human
body joints and the surrounding environment and further enables the
prediction of plausible poses under the scene constraints.

Since no available dataset can be used for train these networks, this
Chapter proposes EgoGTA, a synthetic dataset based on the motion
sequences of GTA-IM Cao et al., 2020, and EgoPW-Scene, an in-the-wild
dataset based on EgoPW (Chapter 5. Both of the datasets contain body
pose labels and scene depth map labels for each egocentric frame.

To better evaluate the relationship between the estimated egocentric
pose and scene geometry, a new test dataset containing ground truth
joint positions in the egocentric view was collected. The evaluation re-
sults on the new dataset, along with results on datasets in Chapter 4

and Mo2Cap2 Xu et al., 2019 demonstrate that the proposed method
significantly outperforms existing methods both quantitatively and quali-
tatively. The proposed method is also qualitatively evaluated on in-the-
wild images. The predicted 3D poses are accurate and plausible even in
challenging real-world scenes. To summarize, the contributions in this
Chapter are listed as follows:

• The first scene-aware egocentric human pose estimation frame-
work that predicts accurate and plausible egocentric pose with the
awareness of scene context;

• Synthetic and in-the-wild egocentric datasets containing egocentric
pose labels and scene geometry labels;1

• A new depth estimation and inpainting networks to predict the
scene depth map behind the human body;

• By leveraging a voxel-based representation of body pose features
and scene geometry jointly, the proposed method outperforms the

1 Datasets are released in the project page. Meta did not access or process the data and is
not involved in the dataset release.

https://people.mpi-inf.mpg.de/~jianwang/projects/sceneego/
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Figure 6.2: Overview of the proposed method. First, the synthetic training
dataset EgoGTA and the in-the-wild training dataset EgoPW-Scene are rendered.
Both datasets contain egocentric depth maps for subsequent training process
(Sec. 6.2.1). Next, an egocentric scene depth estimator is trained to predict a
depth map without the human body and a depth inpainting network (Sec. 6.2.2).
Finally, the 2D body pose features and scene depth map are combined into
a common voxel space. The 3D body pose heatmaps are regressed from the
voxel space with a V2V network and the final pose prediction is obtained with
soft-argmax (Sec. 6.2.3).

previous approaches and generates plausible poses considering the
scene context.

6.2 method

A new method is proposed for predicting accurate egocentric body pose
by leveraging the estimated scene geometry. An overview of this method
is shown in Fig. 6.2. To train the scene-aware network, a synthetic dataset
based on the GTA-IM dataset (Cao et al., 2020), called EgoGTA, and
an in-the-wild dataset based on the EgoPW dataset (Chapter 5), called
EgoPW-Scene (Sec. 6.2.1), are first generated. Next, a depth estimator
is trained to estimate the geometry of the surrounding scene and the
depth-inpainting network is introduced to estimate the depth behind the
human body (Sec. 6.2.2). Finally, the 2D features and scene geometry are
combined in a common voxel space and predict the egocentric pose with
a V2V network (Moon et al., 2018) (Sec. 6.2.3).
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6.2.1 Training Dataset

Although many training datasets for egocentric pose estimation (Tomè
et al., 2019; Xu et al., 2019) have been proposed, they cannot yet train the
scene-aware egocentric pose estimation network due to the lack of scene
geometry information. To address this, the EgoGTA dataset and EgoPW-
Scene dataset are introduced (both have been made publicly available).
These datasets contain pose labels and depth maps of the scene for each
egocentric frame, facilitating the training process. Examples from both
datasets are shown in Fig. 6.2.

6.2.1.1 EgoGTA Dataset

To obtain precise ground truth human pose and scene geometry for
training, a new synthetic egocentric dataset based on GTA-IM (Cao et al.,
2020), which contains various daily motions and ground truth scene
geometry, is devised. First, the SMPL-X model is fitted on the 3D joint
trajectories from GTA-IM. Next, a virtual fisheye camera is attached to
the forehead of the SMPL-X model, and images, semantic labels, and
depth maps of the scene with and without the human body are rendered.
In total, 320 K frames are obtained in 101 different sequences, each with
a different human body texture. Here, the EgoGTA dataset is denoted
as SG = {IG, SG, DB

G, DS
G, PG}, including synthetic images IG and their

corresponding human body segmentation maps SG, depth map with
human body DB

G, depth map of the scene without human body DS
G, and

egocentric pose labels PG.

6.2.1.2 EgoPW-Scene Dataset

To generalize the method to real-world data, the EgoPW dataset (Chap-
ter 5) is also extended as the training dataset. First, the scene geometry
is reconstructed from the egocentric image sequences of the EgoPW
training dataset using a Structure-from-Motion (SfM) algorithm (Hartley
and Zisserman, 2003). This step provides a dense reconstruction of the
background scene. The global scale of the reconstruction is recovered
from known objects present in the sequences, such as laptops and chairs.
The depth maps of the scene are further rendered in the egocentric per-
spective based on the reconstructed geometry. The EgoPW-Scene dataset
contains 92 K frames in total, which are distributed in 30 sequences per-
formed by 5 actors. The number of frames in the EgoPW-Scene dataset
is less than the frames of the EgoPW dataset since SfM fails on some se-
quences. Here, the EgoPW-Scene dataset is denoted as SE = {IE, DS

E, PE},
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including in-the-wild images IE and their corresponding depth map of
the scene without human body DS

E, and egocentric pose labels PE.

6.2.2 Scene Depth Estimator

This section proposes a depth estimation method to capture the scene
geometry information from an egocentric perspective. Available depth
estimation methods Fu et al. (2018), Hu et al. (2019), and Lee et al. (2019)
can only generate depth maps with the human body, but are not able to
infer the depth information behind the human, i. e., the background scene
depth. However, the area occluded by the human body, e. g. the areas of
foot contact, are crucial for generating plausible poses, as demonstrated
in Sec. 6.3.4. To predict the depth map of the scene behind the human
body, a two-step approach is adopted. First, the depth map, including the
human body, and the semantic segmentation of the human are estimated
using two separate models. Then, a depth inpainting network is used
to recover the depth behind the human body. This two-step strategy is
necessary because the visual evidence of the human in the RGB images
is too strong to be ignored by the depth estimator, making it easier to
train the scene depth estimation as separate tasks.

First, the depth estimator network D is trained. It takes as input a
single egocentric image I and predicts the depth map with human body
D̂B. The network architecture of D is the same as Hu et al. (2019)’s
work. To minimize the influence of the domain gap between synthetic
and real data, the network is initially trained on the NYU-Depth V2

dataset (Nathan Silberman and Fergus, 2012) following Hu et al. (2019)’s
work, and further fine-tuned on the EgoGTA dataset.

Next, the segmentation network S is trained for segmenting the human
body. The network takes the egocentric image I as input and predicts the
segmentation mask for the human body Ŝ as output. Following Yuan et al.
(2020a), HRNet is adopted as the segmentation network. Similarly, to re-
duce the domain gap, the network is pretrained on the LIP dataset (Gong
et al., 2017) and finetuned on the EgoGTA dataset. The networks D and
S are not trained on the EgoPW-Scene dataset since the dataset lacks the
ground truth segmentation maps and depth maps with the human body.

Finally, a depth inpainting network G is proposed for generating the
final depth map of the scene without a human body. The masked depth
map D̂M = (1 − Ŝ)⊙ D̂B is generated as a Hadamard product between
the background segmentation and the depth map with the human body.
Then, the masked depth map D̂M and the segmentation mask Ŝ are fed
into the inpainting network G, which predicts the final depth map D̂S.
The inpainting network G is trained and the depth estimation network
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D is finetuned on both the EgoGTA and EgoPW-Scene datasets. During
training, the differences between the predicted depth maps and the
ground truth depth of the background scene are penalized with LS,
and consistency of the depth map in the non-human body regions is
maintained with LC. Specifically, the loss function is defined as follows:

L = λSLS + λCLC, with

LS =
∥∥∥D̂S

G − DS
G

∥∥∥2

2
+

∥∥∥D̂S
E − DS

E

∥∥∥2

2
, and

LC =
∥∥∥(D̂S

G − D̂B
G)(1 − ŜG)

∥∥∥2

2

+
∥∥∥(D̂S

E − D̂B
E)(1 − ŜE)

∥∥∥2

2
,

(6.1)

where

D̂S
G = G(D̂M

G , ŜG); D̂S
E = G(D̂M

E , ŜE);

D̂B
G = D(IG); D̂B

E = D(IE);

ŜG = S(IG); ŜE = S(IE),

(6.2)

and λS and λC are the weights of the loss terms.

6.2.3 Scene-aware Egocentric Pose Estimator

This pose estimator relies on the prior knowledge that human bodies
are mostly in contact with the scene. However, explicitly estimating this
contact from a single egocentric image is very challenging. Therefore, a
data-driven approach is employed by learning a model that predicts a
plausible 3D pose based on the estimated scene geometry and features ex-
tracted from the input image. To achieve this goal, the EgoPW body joints
heatmap estimator is first leveraged to extract 2D body pose features F
and use the scene depth estimator from Sec. 6.2.2 to estimate the depth
map of the scene without human body D̂S. Afterward, the body pose
features and depth map are projected into a 3D volumetric space consid-
ering the fisheye camera projection model. After obtaining the volumetric
representation of human body features Vbody and scene depth Vscene, the
3D body pose P̂ is predicted from the volumetric representation with a
V2V network (Moon et al., 2018).

Lifting the image features and depth maps to a 3D representation
allows getting more plausible results, as inconsistent joint predictions
can be behind the volumetric scene Vscene (pose-scene penetration) or
spatially isolated from the voxelized scene geometry (pose floating), so
they can be easily identified and adjusted by the volumetric convolutional
network.
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6.2.3.1 Scene and Body Encoding as a 3D Volume

To create the volumetric space, a 3D bounding box is first created around
the person in the egocentric camera coordinate system with a size of
L × L × L, where L denotes the length of the side of the bounding
box in meters. The egocentric camera is placed at the center-top of
the 3D bounding box so that the vertices of the bounding boxes are:
(±L/2,±L/2, 0) and (±L/2,±L/2, L) under the egocentric camera co-
ordinate system. Next, the bounding box is discretized by a volumetric
cube V ∈ RN,N,N,3. Each voxel Vxyz ∈ R3 in position (x, y, z) is filled
with the coordinates of its center under the egocentric camera coordinate
system (xL/N − L/2, yL/N − L/2, zL/N).

The 3D coordinates in V are projected into the egocentric image space
with the fisheye camera model (Scaramuzza and Ikeuchi, 2014): Vproj =

P(V), where Vproj ∈ RN,N,N,2 and P is the fisheye camera projection
function. The volumetric representation Vbody of the human body is
obtained by filling a cube Vbody ∈ RN,N,N,K by bilinear sampling from
the feature maps F with K channels using 2D coordinates in Vproj:

Vbody = F{Vproj} (6.3)

where {·} denotes bilinear sampling.
Then, the depth map is projected into the 3D volumetric space. The

point cloud of the scene geometry C is first generated from the depth
map D̂S with the fisheye camera projection function C = P−1(D̂S). The
volumetric representation of scene depth map Vscene is obtained by filling
a binary cube Vscene ∈ RN,N,N by setting the voxel at (x, y, z) to 1 if there
exists one point (xp, yp, zp) in the point cloud C such that:∥∥∥∥( xL

N
− L

2
,

yL
N

− L
2

,
zL
N

)− (xp, yp, zp)

∥∥∥∥ < ϵ (6.4)

where ϵ is the threshold distance. In the experiment, L = 2.4 m, N = 64,
and ϵ = 0.04 m. This setting can cover most types of human motions and
allows high accuracy of the predicted body pose.

6.2.3.2 Predicting 3D Body Pose with V2V Network

The volumetric representation aggregated from Vbody and Vscene are fed
into the volumetric convolutional network N , which has a similar archi-
tecture as Moon et al. (2018). The V2V network produces the 3D heatmaps
of the body joints:

Vheatmap = N (Vbody, Vscene) (6.5)
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Following Iskakov et al. (2019), the soft-argmax of Vheatmap is computed
across the spatial axes to infer the body pose P̂. The predicted pose P̂
is finally compared with the ground truth pose PG from the EgoGTA
dataset and PE from the EgoPW-Scene dataset with the MSE loss.

6.3 experiments

In this section, the method is evaluated using both existing and new
datasets for egocentric monocular 3D human pose estimation. For imple-
mentation details, please refer to the Sec. C.2 of Appendix C.

6.3.1 Evaluation Datasets

Evaluating human-scene interaction requires precise annotations for
camera pose and scene geometry. However, such information is not
available in existing datasets for egocentric human pose estimation. To
address this issue, a new real-world dataset called the SceneEgo test
dataset was collected using a head-mounted fisheye camera combined
with a calibration board. The ground truth scene geometry is obtained
with SfM method (Hartley and Zisserman, 2003) from a multi-view
capture system with 120 synced 4K resolution cameras and the ground
truth egocentric camera pose is obtained by localizing a calibration board
rigidly attached to the egocentric camera. This dataset contains around
28K frames of two actors wearing 4 different clothes, performing various
human-scene interacting motions such as sitting, reading a newspaper,
and using a computer. This dataset is evenly split into training and
testing splits. The method was finetuned on the training split before the
evaluation. This dataset will be made publicly available and additional
details of it are shown in the supplementary materials.

Besides the new SceneEgo test dataset, the proposed methods are also
evaluated on the test datasets from Chapter 4 and Mo2Cap2 (Xu et al.,
2019). The real-world dataset in Mo2Cap2 (Xu et al., 2019) contains 2.7K
frames of two people captured in indoor and outdoor scenes, and the
dataset in Chapter 4 contains 12K frames of two people captured in the
studio.

6.3.2 Evaluation Metrics

The accuracy of the estimated body pose is measured using MPJPE and
PA-MPJPE. For the test dataset in Chapter 4 and Mo2Cap2 (Xu et al.,
2019), PA-MPJPE and BA-MPJPE (Xu et al., 2019) are evaluated since
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Image EgoPW Proposed MethodxR-egoposeMo2Cap2

Figure 6.3: Qualitative comparison between the proposed method and the state-
of-the-art egocentric pose estimation methods. From left to right: input image,
Mo2Cap2 result, xR-egopose result, EgoPW result, and the result of the proposed
method. The ground truth pose is shown in red. The input images from the first
three rows are from the SceneEgo test dataset, while those in the last three rows
come from the EgoPW in-the-wild test sequences (without ground-truth poses).
This figure also shows the gt scene geometry of the in-the-studio data and scene
geometry obtained by the SFM method for the in-the-wild data.
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Method MPJPE PA-MPJPE

SceneEgo test dataset

Mo2Cap2 (Xu et al.,
2019)

200.3 121.2

xR-egopose (Tomè
et al., 2019)

241.3 133.9

EgoPW (Chapter 5) 189.6 105.3

Proposed Method 118.5 92.75

Method PA-MPJPE BA-MPJPE

Test dataset in Chapter 4

Mo2Cap2 (Xu et al.,
2019)

102.3 74.46

xR-egopose (Tomè
et al., 2019)

112.0 87.20

EgoPW (Chapter 5) 81.71 64.87

Proposed Method 76.50 61.92

Mo2Cap2 test dataset (Xu et al., 2019)

Mo2Cap2 (Xu et al.,
2019)

91.16 70.75

xR-egopose (Tomè
et al., 2019)

86.85 66.54

EgoPW (Chapter 5) 83.17 64.33

Proposed Method 79.65 62.82

Table 6.1: Performance of the proposed method on SceneEgo test dataset, test
dataset in Chapter 4 and Mo2Cap2 test dataset (Xu et al., 2019). The proposed
method outperforms the state-of-the-art methods EgoPW, Mo2Cap2 (Xu et al.,
2019) and xR-egopose (Tomè et al., 2019).

the ground truth poses in the egocentric camera space are not provided.
Further details of the metrics are shown in the supplementary materials.

6.3.3 Comparisons on 3D Pose Estimation

This section compares the proposed method with previous single-frame-
based methods, including EgoPW, xR-egopose (Tomè et al., 2019) and
Mo2Cap2 (Xu et al., 2019) on SceneEgo test dataset under the “SceneEgo
test data” in Table 6.1. Since the code for xR-egopose has not been
released, a re-implemented version is used for the evaluation. In the
SceneEgo dataset, the proposed method outperforms the previous state-
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Method Non pene. Contact

Mo2Cap2 (Xu et al.,
2019)

69.6% 23.1%

xR-egopose (Tomè
et al., 2019)

64.5% 38.3%

EgoPW (Chapter 5) 71.7% 38.8%

Proposed Method 84.1% 89.4%

Table 6.2: Comparisons of physical plausibility on the SceneEgo test dataset.

of-the-art methods, EgoPW by 37.5% on MPJPE and 11.9% on PA-MPJPE.
The proposed method is also compared with previous methods on the
test dataset in Chapter 4 and Mo2Cap2 test dataset (Xu et al., 2019)
and show the results in Table 6.1. On the test dataset in Chapter 4, the
proposed method performs better than EgoPW by 6.4%. On the Mo2Cap2

test dataset, this method performs better than EgoPW by 7.8%.
The physical plausibility of the predictions is also evaluated by calcu-

lating the percentage of predicted poses that are in contact with the scene
and do not penetrate the scene, as shown in Table 6.2. A body pose is
defined as being in contact with the scene if any body joint is less than
5 cm from the scene mesh. A body pose suffers from the body floating
issue if it is not in contact with the scene. Compared with previous
approaches, the proposed method generates body poses that are more
physically plausible considering the constraints of the scene.

From the results in Table 6.1 and Table 6.2, the proposed approach
outperforms all previous methods on the single-frame egocentric pose
estimation task. For the qualitative comparison, the results of this method
on the studio dataset and in-the-wild sequences are shown in Fig. 6.3.
The predicted poses are physically plausible under the scene constraint,
whereas other methods generate poses suffering from body floating and
penetration issues.

To further demonstrate that this method can predict poses according
to the constraints of the scene geometry, the input image is fixed, and
the scene depth input is changed to the depth map corresponding to
the standing pose, squatting pose, and sitting pose. The results are pre-
sented in Fig. 6.4 and show that the predicted poses change to standing,
squatting, and sitting to better adapt to the input changes of the scene
geometry. This shows the method’s ability to disambiguate poses under
different scene constraints.
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Input Image Standing Squatting Sitting

Input Depth Maps

Figure 6.4: Predicted pose with different scene depth map input. The proposed
network can generate different poses under different depth inputs and further
disambiguate body poses under scene constraints.

6.3.4 Ablation Study

simple combination of 2d features and depth maps . In
Sec. 6.2.3, the volumetric representation of egocentric 2D features and
scene depth map is claimed to be important for understanding the inter-
action between the human body and the surrounding scene. To provide
evidence for this claim, an experiment is conducted comparing the pro-
posed method with baseline methods that simply combine the 2D image
features and scene depth map. Two baseline methods are used since
there are two types of egocentric pose estimation methods, i. e.direct
regression of 3D poses (xR-egopose (Tomè et al., 2019)) and prediction
of 2D position and depth for each joint (Mo2Cap2 (Xu et al., 2019) and
EgoPW). In the baseline method “xR-egopose + Depth”, 2D heatmaps
and scene depth maps are concatenated as the input to the 3D pose
regression network in xR-egopose. In the baseline “EgoPW + Depth”, 2D
features and the scene depth map are concatenated and input into the
joint depth prediction network.

From the evaluation results shown in Table 6.3, both of the baseline
methods perform worse than the proposed method. In “xR-egopose +
Depth”, simply combining the scene depth and 2D heatmaps cannot pro-
vide direct geometric supervision for the 3D pose regression network. In
“EgoPW + Depth”, though the joint depth estimation network performs
better with the help of scene depth information, the 2D pose estimation
network does not benefit from it. Both of the experiments demonstrate
the effectiveness of the volumetric representation of 2D features and scene
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Method MPJPE PA-MPJPE

EgoPW+Optimizer 187.1 103.2

EgoPW+Depth 149.6 98.15

xR-egopose+Depth 180.5 103.7

w/o Depth 188.1 105.1

w/ Depth with Body 167.3 103.3

w/ Depth w/o Body 135.7 95.84

w/ Depth w/o Inpainting 124.2 95.00

w/ GT Depth 109.9 88.80

Proposed Method 118.5 92.75

Table 6.3: Results from the proposed method compared to different baselines.

geometry, which provides direct geometry supervision for the physical
plausibility of predicted egocentric poses.

optimization. This experiment compares the proposed method with
an optimization baseline that refines a 3D pose considering the scene
constraint. Similar to the method in Chapter 4 and EgoPW method, a VAE
consisting of a CNN-based encoder fenc and decoder fdec is first trained to
learn an egocentric motion prior. Then, the egocentric pose P is optimized
by finding a latent vector z such that the corresponding pose P = fdec(z)
minimizes the objective function E(P) = λRER + λJEJ + λCEC, where ER

is the egocentric reprojection term, EJ is the egocentric pose regularization
term, and EC is the contact term. The latent vector z is initialized with
the estimated pose from the EgoPW method. The ER and EJ are the same
as those defined in Chapter 4. Denote the nth joint in egocentric pose P
as Pn, n ∈ [0, N], where N is the number of joints, and the mth point in
scene point cloud C as Cm, m ∈ [0, M], where M is the number of points
in the point cloud. The contact term EC is defined as:

EC = ∑
n∈[0,N]

d2
n, if dn ≤ ϵ, otherwise 0, and

dn = min
m∈[0,M]

∥Pn − Cm∥2.
(6.6)

First, the nearest distance dn between each body joint and the projected
point cloud C from the scene depth map is calculated. If the distance dn

of the nth joint is less than a margin ϵ, it is defined as in contact with the
scene and minimized with the optimization framework.

The result of the optimization method is shown as “EgoPW+Optimizer”
in Table 6.3, which demonstrates that the optimization framework is less
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effective than the proposed method. This is because the accuracy of the
optimization method relies heavily on the initial pose. If the initial pose
is not accurate, it will be difficult to determine the contact labels for each
joint with the fixed distance margin. Without accurate contact labels, the
optimization framework might force the joint that does not contact the
scene to keep in contact, eventually resulting in wrong poses.

scene depth estimator . The proposed estimates the depth of the
surrounding scene and infers the depth behind the human body with
a depth inpainting network. To validate the effectiveness of the scene
depth map, the input depth map is removed from the V2V network
and the results are shown as “w/o Depth” in Table 6.3. This baseline
increases the MPJPE by about 70 mm, which is evidence of the relevant
extra information provided by the scene depth.

To demonstrate the benefits of recovering the scene depth behind the
human body, the proposed model is evaluated using the estimated depth,
including the human body, as input to the V2V network. The human
body area is also removed from the depth maps and the resulting depth
maps are used as input to the V2V network. The results are shown in
“w/ Depth with Body” and “w/ Depth w/o Body” in Table 6.3. Both of
the baseline methods perform worse than the proposed method because
the area in the scene occluded by the human body can provide clues for
generating plausible poses.

The proposed method with ground truth depth maps is also evaluated
in “w/ GT Depth” in Table 6.3, which further improves over the estimated
depth by 7.2% in terms of MPJPE and 4.2% in terms of PA-MPJPE. This
demonstrates that the accuracy of the predicted pose benefits from better
depth maps, but still the estimated scene depth already provides a
significant improvement over the baselines.

Finally, the proposed method is compared with a baseline method
without depth inpainting, i.e., the human body is removed from the input
image, and the scene depth map is predicted directly with the network D
in Sec. 6.2.2. The pose estimation accuracy is shown in “w/ Depth w/o
Inpainting” of Table 6.3 and the depth accuracy is shown in Table 6.4.
The proposed method outperforms the baseline as it is more challenging
to simultaneously estimate and inpaint the depth. Moreover, the network
can be influenced by the segmented part in the input image as some
extinct object, as shown in Fig 6.5.
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Method Abs-Rel RMSE(m)

w/o Inpainting Network 0.3834 0.7856

Proposed Method 0.1069 0.3365

Table 6.4: The quantitative results of depth estimator. The Abs-Rel and RMSE
are evaluated on the SceneEgo test dataset following Hu et al. (2019).

Input Image w/o Inpainting Network w. Inpainting Network GT Depth

Figure 6.5: The qualitative depth estimation results with or without the inpaint-
ing network. The depth map estimated without an inpainting network shows
artifacts in the human body region (see the red box).

6.4 limitation

The accuracy of voxel-based pose estimation network is constrained by
the accuracy of estimated depth, especially where the scene is occluded
by the human body. In the future, one solution is to leverage the temporal
information to get a full view of the surrounding environment by using
SLAM or SFM method. Another possible solution is to leverage the stereo
SLAM or RGBD SLAM to obtain accurate scene geometry information.

Furthermore, the efficiency of the network inference is also influenced
by the slow inference speed of the V2V network. In order to accelerate
the speed, the tri-plane representation can be used instead to encode the
image features and scene geometry in the 3D space.

6.5 conclusions

In this paper, a new approach to estimate egocentric human pose under
scene constraints is proposed. First, a depth inpainting network is trained
to estimate the depth map of the scene without the human body. Next, the
egocentric 2D features and scene depth map are combined in a volumetric
space, and the egocentric pose is predicted with a V2V network. The
experiments demonstrate that the proposed method outperforms all
baseline methods both qualitatively and quantitatively, and it can predict
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physically plausible poses in terms of human-scene interaction. In the
following chapters, this work will be referred to as “SceneEgo”.

Though hands can be observed in the egocentric view, existing ego-
centric human motion capture models cannot track the hand motion
simultaneously with the human body motion. To solve this issue, the
next chapter introduces a novel method for egocentric whole-body mo-
tion capture, which simultaneously captures both human body and hand
movements.





7
E G O C E N T R I C W H O L E - B O D Y M O T I O N C A P T U R E
W I T H F I S H E Y E V I T A N D D I F F U S I O N - B A S E D M O T I O N
R E F I N E M E N T

The existing egocentric motion capture methods in the literature, as
well as those discussed in previous chapters, focus only on human
body motion rather than hand motion. This limitation restricts a wide
range of applications, including human-object interactions, photorealistic
telepresence, and so on. This Chapter explores egocentric whole-body
motion capture using a single fisheye camera, which simultaneously
estimates human body and hand motion. This task presents significant
challenges due to three factors: the lack of high-quality datasets, fisheye
camera distortion, and human body self-occlusion. To address these
challenges, a novel approach, is proposed that leverages FisheyeViT to
extract fisheye image features, which are subsequently converted into
pixel-aligned 3D heatmap representations for 3D human body pose
prediction. For hand tracking, dedicated hand detection and hand pose
estimation networks are incorporated to regress 3D hand poses. Finally, a
diffusion-based whole-body motion prior model is developed to refine the
estimated whole-body motion while accounting for joint uncertainties.

To train these networks, a large synthetic dataset, EgoWholeBody,
comprising 840,000 high-quality egocentric images captured across a
diverse range of whole-body motion sequences, is collected. Quantitative
and qualitative evaluations demonstrate the effectiveness of the method
in producing high-quality whole-body motion estimates from a single
egocentric camera.

7.1 introduction

Egocentric 3D human motion estimation using head-mounted devices (Tomè
et al., 2019; Xu et al., 2019) has garnered significant traction in recent
years, driven by its diverse applications in VR/AR. Immersed in a vir-
tual world, users can traverse virtual environments, interact with virtual
objects, and even simulate real-world interactions. To fully capture the
intricacies of human motion during such interaction, understanding both
body and hand movements is essential. While existing egocentric motion
capture methods (Liu et al., 2023b; Tomè et al., 2019; Xu et al., 2019) focus
solely on body motion, neglecting the hands, this work proposes the task

83
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Figure 7.1: From an image sequence captured by a single head-mounted fisheye
camera, the proposed method can predict accurate and temporally coherent
whole-body motion, including the human body and hand poses. The SMPL-X
parameters are obtained using inverse kinematics.

of egocentric whole-body motion capture, i. e.simultaneous estimation of
the body motion and hand motion from a single head-mounted fisheye
camera (shown in Fig. 5.1). This task is extremely challenging due to three
factors: First, the fisheye image introduces significant distortion, making
it difficult for existing networks, which are designed for non-distorted
images, to extract features. Second, the egocentric camera perspective fre-
quently leads to the occlusion of body parts, such as the feet and hands,
further complicating the task of whole-body motion capture. Lastly, large-
scale training data with ground truth annotations for both body and
hand poses is absent in existing datasets including UnrealEgo (Akada
et al., 2022), Mo2Cap2 (Xu et al., 2019),xR-Egopose (Tomè et al., 2019),
EgoFish3D (Liu et al., 2023a) and EgoPW (Chapter 5).

This Chapter proposes a novel egocentric whole-body motion cap-
ture method to address the aforementioned challenges. To effectively
address fisheye distortion, FisheyeViT is proposed for extracting image
features, along with a joint regressor employing pixel-aligned 3D heatmap
for predicting 3D body poses. Instead of attempting to undistort the
entire fisheye image, which is impractical due to the fisheye lens’s large
field of view (FOV), the image is partitioned into smaller patches aligned
with a specific FOV range. This approach enables individual patch-level



7.1 introduction 85

undistortion and seamlessly aligns with the vision transformer architec-
ture that is employed for extracting the complete image feature map.
An egocentric 3D pose regressor utilizing 3D heatmap representations is
further proposed. Unlike the existing approach in Chapter 6 that projects
image features into 3D space through fisheye reprojection functions and
regresses 3D heatmaps with V2V networks (Moon et al., 2018)–leading to
intricate network learning and high computational complexity–the pro-
posed egocentric pose regressor adopts a simpler approach. It employs
deconvolutional layers to obtain pixel-aligned 3D heatmaps. Notably, the
voxels in the 3D heatmap directly correspond to pixels in 2D features,
subsequently linking to image patches in FisheyeViT. This streamlined
approach significantly simplifies network training. Joint locations from
the pixel-aligned 3D heatmap are finally transformed with the fisheye
camera model to obtain the 3D human body poses. Due to the large size
difference between the body and hands, a hand detection network and a
hand pose estimation network are trained to accurately regress 3D hand
poses.

To overcome the challenges posed by self-occlusion and improve the
accuracy of pose estimation, a novel method is proposed for refining
the whole-body motion predictions by incorporating temporal context
and a motion prior. The proposed method learns a whole-body motion
prior with the diffusion model (Ho et al., 2020) from a collection of di-
verse human motion sequences, capturing intrinsic correlations between
hand and body movements. Following this, the joint uncertainties are
extracted from the pixel-aligned 3D heatmap and utilize them to guide
the refinement of the whole-body motion. The joint uncertainties act as
indicators of the trustworthiness of the pose regressor’s predictions. By
conditioning on joints with low uncertainty, the whole-body motion dif-
fusion model selectively refines joints with high uncertainty. This strategy
substantially improves the quality of whole-body pose estimations and
effectively mitigates the effects of self-occlusion.

In response to the absence of the egocentric whole-body motion cap-
ture datasets, the Chapter presents EgoWholeBody, a new large-scale
high-quality synthetic dataset. This dataset encompasses a wide range
of whole-body motions, comprising over 870k frames, which signifi-
cantly surpasses the size of previous egocentric training datasets. EgoW-
holeBody could serve as a valuable resource for advancing research in
egocentric whole-body motion capture.

A thorough evaluation across a range of datasets, including Sce-
neEgo (Chaper 6), GlobalEgoMocap (Chapter A) and Mo2Cap2 (Xu et al.,
2019), has demonstrated the remarkable improvements of the proposed
method in estimating egocentric whole-body motion compared to pre-
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Figure 7.2: Overview of the whole-body motion capture pipeline. First, Fisheye-
ViT is used to undistort the input image and generate image feature tokens
(7.2.1.1). Next, a convolutional network is used to convert the image features to a
pixel-aligned 3D heatmap and use soft-argmax and fisheye camera undistortion
function to obtain the 3D body joins positions and uncertainty (7.2.1.2). The
hand location is further detected, and the 3D hand poses are further regressed
from the input image (7.2.1.3). Finally, the estimated hand motion and human
body motion are combined and the uncertainty-aware diffusion model is applied
to refine the estimated whole-body motion (7.2.2).

vious approaches. This substantiates the effectiveness of the proposed
approach in addressing the special challenges encountered in egocentric
views, including fisheye distortion and self-occlusion.
In summary, the key contributions of this Chapter are the following:

• The first egocentric whole-body motion capture method that pre-
dicts accurate and temporarily coherent egocentric body and hand
motion;

• FisheyeViT for alleviating fisheye camera distortion and pose re-
gressor using pixel-aligned 3D heatmaps for accurate egocentric
body pose estimation from a single image;

• Uncertainty-aware refinement method based on motion diffusion
models for correcting initial pose estimations and predicting plau-
sible motions even under occlusion;

• EgoWholeBody, a new high-quality synthetic dataset for egocentric
whole-body motion capture.

7.2 method

This section proposes a new method for predicting accurate egocentric
whole-body poses from egocentric image sequences. An overview of the
proposed approach is shown in Fig. 7.2.
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7.2.1 Single Image Based Egocentric Pose Estimation

7.2.1.1 FisheyeViT

In this section, FisheyeViT is introduced, which is specially designed to
alleviate the fisheye distortion issue. Instead of undistorting the entire
fisheye image, undistorted image patches are extracted from the fisheye
image and then used as tokens in the transformer network (Dosovitskiy
et al., 2020). To obtain the undistorted patches, the fisheye image is first
warped to a unit semi-sphere. Then, the patches are obtained using the
gnomonic projection (see Fig.7.2).

The FisheyeViT can be split into five steps, the first four of which are
illustrated in Fig. 7.3.

Step 1. Given an input image I with size H × W, N × N patch center
points are first evenly sampled: {Cij = (ui, vj) =

(H
N (i + 1

2 ),
W
N (j + 1

2 )
)
|i, j ∈

0, ..., N − 1}. Then, the patch center points Cij are projected onto a
unit sphere with the fisheye reprojection function: Pc

ij = (xc
ij, yc

ij, zc
ij) =

P−1(ui, vj, 1). The fisheye camera model is described in Chapter 3. Given
a point Pc

ij on the unit sphere, the tangent plane Tij that passes through
the point is defined by the normal vector vc

ij = (xc
ij, yc

ij, zc
ij). In the fol-

lowing steps, the gnomonic projection is implemented by sampling grid
points in the plane and projecting them back onto the fisheye image.

Step 2. In this step, the orientation of the grid points in the tangent
plane is determined, ensuring that the grid points from different tangent
planes Tij have the same orientation when projected back onto the fisheye
image. To achieve this, this method selects a 2D point Uij = (ui + d, vj)

in the fisheye image space that is d pixels to the right of the patch center
point and project it to the unit sphere using the fisheye reprojection
function: Pu

ij = (xu
ij, yu

ij, zu
ij) = P−1(ui + d, vj, 1). The intersection point Px

ij
is then calculated between the vector vu

ij = (xu
ij, yu

ij, zu
ij) that is passing the

origin and the tangent plane Tij:

Px
ij =

〈
Pc

ij, vc
ij

〉
〈

vu
ij, vc

ij

〉vu
ij =

1〈
vu

ij, vc
ij

〉vu
ij, (7.1)

where ⟨·, ·⟩ denotes the inner product.
Step 3. Based on the center point Pc

ij and intersection point Px
ij on the

tangent plane Tij, a coordinate system is built with the x axis: vx
ij =

Norm(Px
ij − Pc

ij), the z axis: vz
ij = Norm(vc

ij) and the y axis: vy
ij = vz

ij × vx
ij,

where Norm denotes the normalize operation. M × M points are grid-
sampled in a l × l square on the x-y plane:

{Pmn
ij = Pc

ij + (l
m
M

vx
ij, l

n
M

vy
ij)} (7.2)
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Figure 7.3: The detailed illustration of FisheyeViT (Sec. 7.2.1.1).

where m, n ∈ − 1
2 (M − 1), ...,− 3

2 ,− 1
2 , 1

2 , 3
2 , ... 1

2 (M − 1).
Step 4. The points Pmn

ij are projected back to the fisheye image with the
fisheye projection function: Cmn

ij = P(Pmn
ij ). The bilinear sampling is then

applied to obtain the colors at points Cmn
ij of the input image I, yielding

the undistorted image patch Iundis
ij . Please also see the supplementary

video for a visual demonstration of undistorted image patches and their
movement on the fisheye image.

Step 5. The image patches {Iundis
ij } are sent to a ViT transformer net-

work (Dosovitskiy et al., 2020) to obtain the feature tokens {Fij}. The
feature token is further reshaped in i × j matrix and obtain the image
feature F. In the FisheyeViT, N = 16; M = 16; d = 8; l = 0.2m is chosen
given the image size H = W = 256.

Note that Cmn
ij is independent of the image I. This means that, given

a fixed fisheye camera model, Cmn
ij can be pre-computed for all com-

binations of m, n and i, j in advance. This significantly speeds up both
the training and evaluation processes. Furthermore, the number and
dimensions of image patches {Iundis

ij } match exactly with those in the
traditional ViT network. This compatibility allows us to finetune existing
ViT networks on the egocentric datasets. The sampling strategy ensures
that each image patch Iundis

ij corresponds to the same FOV range in the
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fisheye camera. The ablation study in Sec. 7.4.3 shows that FisheyeViT
enhances the performance of the pose estimation network when applied
to egocentric fisheye images.

7.2.1.2 Pose Regressor with Pixel-Aligned 3D Heatmap

After collecting image features with FisheyeViT, a 3D heatmap-based
network is utilized to estimate the body poses. The existing 3D heatmap-
based pose regressors (Moon et al., 2022; Sun et al., 2018) are designed
for the weak-perspective cameras and predict the 3D heatmap in xyz
space. Directly applying these regressors will result in misalignment
between 3D heatmap features in xyz space and 2D image features in the
fisheye image space. Therefore, the proposed method introduces a novel
egocentric pose regressor that relies on the pixel-aligned 3D heatmap,
tailored to address the needs of fisheye cameras. The idea is to regress
the 3D heatmap in uvd space rather than traditional xyz space, where uv
corresponds to the fisheye image uv space. Specifically, given a feature
map F ∈ RC×N×N , where C is the channel number, N is feature map
height and width, two deconvolutional layers are firstly used to convert
the feature map F into shape (Dh × J, Hh, Wh), and further reshape it
to pixel-aligned 3D heatmap H ∈ RJ×Dh×Hh×Wh , where J is the joint
number and Dh, Hh, Wh is the 3D heatmap depth, height and width. The
illustration of pixel-aligned 3D heatmap is shown in Fig. 7.2. Next, the
max-value positions J̃b = {(ui, vi, di) | i ∈ 0, 1, 2, ..., J} is obtained from
H by the differentiable soft-argmax operation (Sun et al., 2018). Here,
it is worthy to note that ui and vi correspond to the uv-coordinate of
the 3D body joint projected in the fisheye image space, and di denotes
the distance of the joint to the fisheye camera. Finally, the 3D body
joints Ĵb = {(xi, yi, zi) | i ∈ 0, 1, 2, ..., J} are recovered with the fisheye
reprojection function: (xi, yi, zi) = P−1(ui, vi, di). The predicted body
pose Ĵb is finally compared with the ground truth body pose Jb with
the MSE loss. By first regressing 3D body poses in uvd space and then
reprojecting it, the proposed method ensures that the 3D heatmap is
pixel-aligned with the end-to-end training.

With the pixel-aligned heatmap, the proposed 3D pose regressor solves
problems in all three types of previous egocentric joint regressors. First,
Mo2Cap2 (Xu et al., 2019) employs separate networks to predict 2D joint
positions and joint distances. However, this method can yield unrealistic
joint estimations because small errors in 2D joints can result in large errors
in 3D joints due to the projection effect. Second, xR-egopose (Tomè et al.,
2019) and EgoHMR (Liu et al., 2023b) directly regress the 3D joint posi-
tions. However, this method is agnostic to the fisheye camera parameters,
making it suitable only for a specific camera configuration (e.g., camera
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parameters, head-mounted position, and so on). Third, SceneEgo (Chap-
ter 6) projects 2D features into 3D voxel space and uses a V2V network
to regress 3D poses. Because of these, the SceneEgo method suffers from
low accuracy and large computation overhead. Different from previous
methods, the pose regressor with pixel-aligned 3D heatmap is versatile
and efficient since it directly estimates 3D joints while also incorporat-
ing an explicitly parametrized fisheye camera model. Moreover, it can
preserve the uncertainty of the estimated joints, which will be used in
the uncertainty-aware motion refinement method (Sec. 7.2.2.2). Detailed
comparison with other pose prediction heads is shown in Table 7.3.

7.2.1.3 Egocentric Hand Pose Estimation

In this section, a network is first trained to detect hand pose locations,
followed by training a 3D hand pose estimation network to regress 3D
hand poses. Then, the process of integrating the estimated hand and
body poses is described.

hand detection. Given an input image I, the HRNet (Wang et al.,
2020b) network is first finetuned to regress the 2D hand poses of left hand
J2d

lh and right hand J2d
rh . Next, the center point of left hand Clh and right

hand Crh, along with the bounding box sizes, dlh and drh are obtained
from the hand poses. Given the center points and bounding boxes, the
approach described in Sec. 7.2.1.1 is further used to compute undistorted
image patches of left Ilh and right hands Irh.

hand pose estimation. Given the cropped image Ilh or Irh, the 3D
hand poses Ĵloc

lh and Ĵloc
rh can be regressed with the Hand4Whole (Moon

et al., 2022) network, which is fine-tuned on the EgoFullBody dataset.

integration of body and hand poses . It is not straightforward
to integrate the hand poses with the body pose in the egocentric camera
view primarily due to the fisheye camera’s perspective effects. Take the
left hand as an example. Following Step 3 in Sec. 7.2.1.1, a local coordinate
system is established on the tangent plane of the left-hand image with
XYZ axes as follows: x : vx

lh; y : vy
lh; z : vz

lh. A rotation matrix R is defined
to represent the transformation between the root coordinate system
and the local coordinate system on the tangent plane. The estimated
hand pose is first rotated with the rotation matrix Ĵlh = RĴloc

lh and then
translated to align the wrist location of the human body. This same
process is also applied to the right hand to get the right hand pose Ĵrh.
The whole-body joints Ĵ are obtained by combining Ĵb, Ĵlh, and Ĵrh. The
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uncertainty of whole-body joints Û is also obtained from the maximal
value of the 3D heatmap in pose estimation modules.

7.2.2 Diffusion-Based Motion Refinement

The single-frame estimations in Sec. 7.2.1 suffer from inaccuracies and
temporal instabilities. This section proposes a diffusion-based motion
refinement method to tackle this problem. The whole-body motion prior
is first learned with the motion diffusion model in Sec. 7.2.2.1. Then, an
uncertainty-aware zero-shot motion refinement method is introduced in
Sec. 7.2.2.2 to refine the initial whole-body motion estimations.

7.2.2.1 Whole-Body Motion Diffusion Model

The DDPM (Ho et al., 2020) is used as the diffusion approach to capture
the whole-body motion prior q(x). DDPM learns a distribution of whole-
body motion x through a forward diffusion process and an inverse
denoising process. The forward diffusion process is a Markov process of
adding Gaussian noise over t ∈ {0, 1, ..., T − 1} steps:

q(xt|xt−1) = N (
√

αtxt−1, (1 − αt)I) (7.3)

where xt denotes the whole-body motion sequence at step t, the variance
(1 − αt) ∈ (0, 1] denotes a constant hyperparameter increases with t.

The inverse process uses a denoising network D(·) to remove the added
Gaussian noise at each time step t. Here, the transformer-based frame-
work in EDGE (Tseng et al., 2023) is adopted as the motion-denoising
network D(·). This method follows Ramesh et al. (2022) to make the
network predict the original signal itself, i. e.x̂0 = D(xt, t) and train it
with the simple objective (Ho et al., 2020):

Lsimple = Ex0∼q(x0),t∼[1,T]
[
||x0 − D(xt, t)||22

]
(7.4)

7.2.2.2 Uncertainty-Aware Motion Refinement

Given the learned whole-body motion prior, the uncertainty value for
each pose is leveraged to guide the diffusion denoising process using the
classifier-guided diffusion sampling (Dhariwal and Nichol, 2021). Given
an initial sequence of whole-body pose estimation xe = {Ĵi} and the
uncertainty value for each pose u = {Ûi}, where i denotes the ith pose
in the sequence, the joints with low uncertainty are kept but the diffusion
model is applied to generate joints with high uncertainty conditioned
on the low-uncertainty joints. Specifically, in the tth sampling step of the
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diffusion process, the denoising network predicts x̂0 = D(xt, t), which is
noised back to xt−1 by sampling from the Gaussian distribution:

xt−1 ∼ N (x̂0 + w(xe − x̂0), Σt) (7.5)

where Σt is a scheduled Gaussian distribution in DDPM (Ho et al., 2020)
and w controls the weight of a specific joint between the predicted
motion x̂0 and the estimated motion xe. Generally, w → −→

0 is expected
when t → 0 such that the temporal stability is guaranteed through
the generation of the denoising process, and w → −→

1 when t → T
such that the denoising process is initialized by the estimated motion
xe. wij = w[i][j], which is the weight of jth joints in the ith pose, is also
expected to be smaller when the uncertainty value uij = u[i][j] of the jth
joints in the ith pose is large. Based on this requirement, w is designed
as:

w = 1/
(

1 + e−k(t−Tu)
)

(7.6)

where T is the overall diffusion steps, k is a hyperparameter which is
empirically set to 0.1. The experimental results in Sec. 7.4 demonstrate the
effectiveness of uncertain-aware motion refinement and the uncertainty-
guided diffusion sampling strategy.

7.3 egowholebody dataset

This section introduces EgoWholeBody, a large-scale high-quality syn-
thetic dataset built for the task of egocentric whole-body motion capture.
The EgoWholeBody dataset is organized into two sections. The first part,
containing over 700k frames, is rendered with 14 different rigged Render-
people (RenderPeople n.d.) models driven by 2367 Mixamo (Mixamo n.d.)
motion sequences. The second part focuses on hand motions and contains
170k frames with the SMPL-X model. This data is constructed from 24

different shapes and textures, driven by 262 motion sequences selected
from the GRAB (Taheri et al., 2020) and TCDHandMocap dataset (Hoyet
et al., 2012). Synthetic test sequences have also been generated, compris-
ing 133k images rendered using 3 Renderpeople models and Mixamo
motions.

During the rendering process, a virtual fisheye camera is initially
attached to the forehead of the human body models. Blender (Blender
n.d.) is then used to render the images, semantic labels, and depth maps.
The EgoWholeMocap dataset is larger and more diverse than previous
egocentric training datasets–see Sec. D.3 in the Appendix D for a detailed
comparison.
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Input EgoPW SceneEgo Proposed-Single Proposed-Refined

Figure 7.4: Qualitative comparison on human body pose estimations between the
proposed method and the state-of-the-art egocentric pose estimation methods
on in-the-studio (two rows from the top) and in-the-wild scenes (two rows from
the bottom). The red skeleton is the ground truth while the green skeleton is
the predicted pose. The proposed methods predict more accurate body poses
compared with EgoPW (Chaper 5) and SceneEgo (Chaper 6).

7.4 experiments

7.4.1 Datasets and Evaluation Metrics

training datasets . To train the body pose estimation module
(Sec. 7.2.1.1 and Sec. 7.2.1.2), the EgoWholeBody dataset and the EgoPW
dataset (Chaper 5) are used. Additionally, the EgoWholeBody dataset
is used to train the hand pose estimation module in Sec. 7.2.1.3. For
training the whole-body diffusion model (Sec. 7.2.2), a combined motion
capture dataset is utilized, which includes EgoBody (Zhang et al., 2022),
Mixamo (Mixamo n.d.), TCDHandMocap dataset (Hoyet et al., 2012) and
GRAB dataset (Taheri et al., 2020).

evaluation datasets . The experiments in this chapter evaluate the
proposed methods on four datasets: the GlobalEgoMocap test datasets (Chap-
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Figure 7.5: Qualitative comparison on human hand pose estimations between the
proposed method and the state-of-the-art third-view pose estimation methods.
The single-view and refined hand poses from the proposed method are more
accurate than the poses from Hand4Whole (Moon et al., 2022) method. The red
skeleton is the ground truth while the green skeleton is the predicted pose.

ter 4), the Mo2Cap2 test dataset (Xu et al., 2019), the SceneEgo test
dataset (Chaper 6) and out EgoWholeBody test dataset. The details of
the datasets are shown in Sec. D.5 of supplementary materials. Note that
evaluating whole-body poses requires accurate annotations for human
hands, which is absent in real-world datasets. To resolve the issue, a
multi-view motion capture system is used to obtain the hand motion
from the multi-view videos of the SceneEgo test dataset (Chaper 6). The
hand pose annotations will be made publicly available.

evaluation metrics . MPJPE and PA-MPJPE are adopted to evalu-
ate the precision of human body poses on the SceneEgo test dataset (Chap-
ter 6). PA-MPJPE and BA-MPJPE are evaluated for the GlobalEgoMocap
test dataset (Chapter 4) and Mo2Cap2 test dataset (Xu et al., 2019), where
egocentric camera poses are unavailable. For hand pose accuracy, the
predicted and ground truth hand poses are aligned at the root position,
followed by computing MPJPE and PA-MPJPE. Detailed explanations of
these metrics are in Sec. D.4 of the supplementary materials. All reported
metrics are in millimeters.
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Method MPJPE PA-MPJPE

SceneEgo test dataset (Chaper 6)

EgoPW (Chaper 5) 189.6 105.3

SceneEgo (Chaper 6) 118.5 92.75

EgoPW* (Chaper 5) 90.96 64.33

SceneEgo* (Chaper 6) 89.06 70.10

Proposed Method-Single 64.19 50.06

Proposed Method-Refined 57.59 46.55

EgoWholeBody test dataset

EgoPW* (Chaper 5) 84.21 63.02

SceneEgo* (Chaper 6) 87.57 69.46

Proposed Method-Single 66.28 43.14

Proposed Method-Refined 60.32 40.35

Table 7.1: Egocentric body pose accuracy of the proposed method on SceneEgo
test datasets and EgoWholeBody test dataset. The proposed method outperforms
all previous state-of-the-art methods. * denotes the method trained with the
datasets in Sec. 7.4.1.

7.4.2 Comparisons on Whole-Body Pose Estimation

For a fair comparison with existing methods focusing solely on body or
hand pose, the evaluation is split into two parts, reporting results of body
poses in Table 7.1 and hand pose in Table 7.2. First, the accuracy of the
human body poses from the proposed method is compared with state-of-
the-art methods, including EgoPW (Chapter 5) and SceneEgo (Chapter 6),
on the EgoWholeBody and SceneEgo test datasets. The comparison with
more previous methods and on more evaluation datasets are shown
in Sec. D.1 of the Appendix D. Since the motion refinement method
incorporates random Gaussian noise, five samples are generated, and
the average MPJPE values are calculated. The standard deviation is low
(< 0.01mm) and is discussed in Sec. D.6 of supplementary materials.
Results are presented in Table 7.1, where the single-frame results are
labeled as “Proposed Method-Single” and the refinement results are
labeled as “Proposed Method-Refined”. The single-frame body pose
estimation method outperforms all previous methods by a large margin.
The diffusion-based motion refinement method can further improve the
accuracy of body poses estimated by the single-frame methods.

Note that previous methods in this thesis and literature (Tomè et al.,
2019; Xu et al., 2019) use training datasets different from each other.



96 egowholemocap : egocentric whole-body motion capture

Method MPJPE PA-MPJPE

SceneEgo test dataset (Chaper 6)

Hand4Whole (Moon et al., 2022) 49.66 13.85

Proposed Method-Single 23.63 9.59

Proposed Method-Refined 19.37 9.05

EgoWholeBody test dataset

Hand4Whole (Moon et al., 2022) 52.85 35.04

Proposed Method-Single 33.10 19.68

Proposed Method-Refined 28.29 14.51

Table 7.2: Egocentric hand pose accuracy of the proposed method. The proposed
method outperforms the Hand4Whole (Moon et al., 2022) on both datasets.

For a fair comparison, previous methods are re-trained with the EgoW-
holeBody training datasets in Sec. 7.4.1 and show the results with “*”
in Table 7.1. This retraining led to significant improvements across all
previous methods, demonstrating the EgoWholeBody dataset’s broad
applicability. However, these methods still underperformed compared to
the proposed method, highlighting its superiority.

To evaluate the accuracy of the hand pose estimation method, the hand
images are first cropped with the hand detection method in Sec. 7.2.1.3.
Then Table 7.2 shows the results of the single-frame hand pose estimation
(labeled as “Proposed Method-Single”) and whole-body motion refine-
ment methods (labeled as “Proposed Method-Refined”). The single-frame
hand pose estimation method outperforms the state-of-the-art method
Hands4Whole (Moon et al., 2022), demonstrating the effectiveness of
training the network on the EgoWholeBody dataset. The whole-body
motion refinement method can also enhance the accuracy of hand motion.

For a qualitative comparison, the body and hand poses of the proposed
method are compared with existing methods on the SceneEgo dataset
and the in-the-wild EgoPW (Chaper 5) evaluation sequences. The results
are shown in Fig. 7.4 and Fig. 7.5, showing that the proposed method
can predict high-quality whole-body poses from an egocentric camera.

7.4.3 Ablation Study

egowholebody dataset. Compared to existing egocentric datasets,
the EgoWholeBody dataset contains diverse body and hand motions,
larger quantity of images, and higher image quality. This is demonstrated
by training the body pose estimation network without the EgoWholeBody
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Method MPJPE PA-MPJPE

Body Pose Results

w/o EgoWholeBody 75.10 58.62

w/o FisheyeViT 67.36 53.44

w/ Mo2Cap2 (Xu et al., 2019) head 87.47 65.10

w/ xR-egopose (Tomè et al., 2019)
head

116.5 95.78

w/ SceneEgo (Chaper 6) head 77.73 62.69

Proposed Method-Single 64.19 50.06

w/ GlobalEgoMocap (Chapter 4)†
69.83 56.73

w/o uncert. guidance†
62.16 48.40

Only body diffusion 58.95 47.03

Proposed Method-Refined† 57.59 46.55

Hand Pose Results

Only hand diffusion 21.69 9.24

Proposed Method-Refined 19.37 9.05

Table 7.3: Ablation Study on SceneEgo test dataset (Chaper 6). † denotes the
temporal-based method.

dataset, using the Mo2Cap2 (Xu et al., 2019) and EgoPW (Chaper 5)train-
ing dataset. The results, labeled as "w/o EgoWholeBody" in Table 7.3,
show that performance without the EgoWholeBody dataset is inferior to
the proposed method. This highlights that training with the EgoWhole-
Body dataset enhances the performance of the pose estimation method.
This result can also be compared with the evaluation results of existing
methods on the SceneEgo test set (Table 7.1). Trained without EgoW-
holeBody, the proposed approach still outperforms previous methods,
showing the effectiveness of the proposed method.

fisheyevit and pose regressor with pixel-aligned 3d heatmap.
To assess the individual contributions of FisheyeViT and the pixel-aligned
3D heatmap in the single-frame pose estimation pipeline, experiments
are conducted to measure their impact on the overall performance. First,
the FisheyeViT module in the single-frame pose estimation method is
substituted to ViT (Dosovitskiy et al., 2020). The result is shown in “w/o
FisheyeViT” in Table 7.3 and it is worse than the proposed full method.
This demonstrates the effectiveness of FisheyeViT in addressing fisheye
distortion and feature extraction.
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Next, the performance of the single-frame pose estimation network is
analyzed when substituting the pose regressor based on the pixel-aligned
3D heatmap with the pose estimation heads from previous works (Tomè
et al., 2019; Xu et al., 2019) and SceneEgo (Chaper 6). The results of the
three experiments, labeled as “w/ Mo2Cap2 head”, “w/ xR-egopose
head” and “w/ SceneEgo head”, show a performance drop compared
to the proposed full method. This emphasizes the crucial role of the
pixel-aligned 3D heatmap in accurately estimating egocentric 3D body
joint positions.

diffusion-based motion refinement. The effectiveness of the
diffusion-based motion refinement is assessed through the following
experiments: First, the performance of the diffusion-based motion refine-
ment is compared with GlobalEgoMocap (Chapter 4) by applying the
GlobalEgoMocap optimizer on the single-frame body pose estimation
results. The result, labeled as “w GlobalEgoMocap” in Table 7.3, indicates
that the refinement method outperforms GlobalEgoMocap.

Second, the uncertainty-aware guidance in the motion refinement is
removed. Instead, fixed Gaussian denoising steps are used to refine the
motion. The result “w/o uncert. guidance” in Table 3, shows that the
uncertainty-aware refinement method performs better. The proposed
approach relies on the uncertainty values for each joint, using low-
uncertainty joints to guide the generation of high-uncertainty joints.
This helps reduce errors in joint predictions caused by egocentric self-
occlusion, leading to improved results.

Third, the whole-body motion diffusion model is replaced with the
separate human body and left/right-hand diffusion models. The accuracy
of the refined body and hand motion is shown in “Only body diffusion”
and “Only hand diffusion” in Table 7.3. The results show improvements
in the accuracy of motion refined by the whole-body diffusion method,
proving that learning the whole-body motion prior can help both the
refinement of the body and hand motion by learning the correlation
between them.

7.5 limitation

Due to serious self-occlusion issues, the proposed method may still pre-
dict poses suffering from physical implausibility. This can be solved by
introducing the physics-aware motion diffusion models or motion refine-
ment models, such as PhysDiff Yuan et al., 2023 and PhysCap Shimada
et al., 2020.
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This chapter has demonstrated that FisheyeViT can enhance the perfor-
mance of egocentric human motion capture using a single fisheye camera.
However, the generalization of FisheyeViT remains limited. For instance,
the network cannot generalize to fisheye cameras with significantly dif-
ferent model parameters or to those mounted at different locations on
the head. This limitation restricts the application of fisheye cameras in
many computer vision areas.

Furthermore, the diffusion-based human motion capture shows promis-
ing results in refining the initial human pose estimations. However, the
inference speed is slow (around 10 seconds per sequence of 196 frames)
since multiple diffusion-denoising steps have to be carried out during the
inference. To solve this, one possible solution is to use the DDIM (Song
et al., 2020) to reduce the diffusion step or use the DDIM inversion to
optimize the initial human pose estimations.

7.6 conclusions

This work introduces an innovative approach to capturing egocentric
whole-body human motion. The proposed method comprises a single-
frame-based whole-body pose estimation process, which includes Fisheye-
ViT and pixel-aligned 3D heatmap representations. To enhance the initial
whole-body pose estimates, an uncertainty-aware diffusion-based motion
refinement technique is integrated. The experimental results demonstrate
that both the single-frame method and the temporal-based method sur-
pass all existing state-of-the-art techniques in terms of both quality and
accuracy. Looking ahead, there exists the potential for extending the
applications of FisheyeViT to other vision tasks using fisheye cameras.
Future work could also involve incorporating facial expressions in whole-
body motion capture. In the following chapters, this work will be referred
to as “EgoWholeMocap”.

The next chapter summarizes all the contributions presented in this
thesis, offering several insights and discussing potential future directions.





8
C O N C L U S I O N

This thesis explores human motion capture using a down-facing ego-
centric fisheye camera mounted in front of the head. It introduces sev-
eral novel methods. Chapter 4 features an optimization framework that
leverages both global and local human motion priors to derive global
human motion from the video sequence of a single egocentric camera.
Chapter 5 presents a new large-scale in-the-wild dataset, EgoPW, with
pseudo-ground truth obtained from an egocentric and an external camera.
An adversarial domain adaptation strategy is also employed to bridge
the domain gap between synthetic and real data, as well as between
egocentric and external views. Chapter 6 presents a novel single-frame
egocentric pose estimation method that incorporates scene constraints.
Chapter 7 proposes a new method for whole-body egocentric motion
capture. It introduces FisheyeViT to address fisheye distortion issues
and a diffusion-based refinement strategy to enhance initial human pose
estimations.

While each chapter provides its own conclusions, this final chapter
draws insights across different chapters and discusses future directions
for egocentric motion capture research.

8.1 insights

This section discusses insights about motion prior, egocentric datasets
and scene-aware egocentric motion capture. These insights are across
chapters and go beyond individual contributions.

8.1.1 Motion Prior

Chapter 4 and Chapter 7 show that the human motion prior plays an
important role in the egocentric human motion capture. First, egocentric
motion capture is an ill-posed problem due to severe self-occlusion. By
leveraging the human motion prior, the method can reliably infer the
plausible location of joints under occlusion. Second, the size of individual
egocentric human motion datasets is still far from sufficient. The human
motion prior can be built from large-scale human motion datasets and
can enable accurate human motion capture in an analysis-by-synthesis
manner. Therefore, a human motion prior can deal with the aforemen-
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tioned challenges and is particularly useful for egocentric motion capture.
The application of the motion prior in egocentric motion capture tasks
is demonstrated not only in previous chapters of this thesis but also in
numerous related works Du et al., 2023; Li et al., 2023; Luo et al., 2024;
Van Wouwe et al., 2024; Zhang et al., 2023a.

To apply the motion prior, the common practice is to first capture the
motion prior using a generative model. With such a model available,
there are multiple options. One option can involve optimizing the initial
pose estimations within the latent space of the generative models by
considering different constraints, such as 2D poses, scene geometry, and
more. Alternatively, a neural network can be applied to project input
features onto the latent space of the motion prior.

8.1.2 Egocentric Dataset

This thesis presents several egocentric datasets, including synthetic
datasets such as EgoGTA in Chapter 6, EgoWholeBody in Chapter 7, and
the real-world dataset EgoPW Chapter 5. Several small-scale real-world
datasets are also introduced for evaluation in Chapter 4 and Chapter 6.
Each type of dataset has its own limitations and advantages. Synthetic
datasets are easy to obtain on a large scale but suffer from the synthetic-
to-real domain gap. In contrast, real-world datasets are difficult to collect
and are constrained by scale and diversity, but they do not suffer from
the domain gap between training and evaluation inputs.

To address the issue of different types of datasets and leverage their
respective advantages, Chapter 6 and Chapter 7 adopt the strategy of
pre-training the egocentric motion capture model on synthetic datasets
followed by fine-tuning on real-world datasets using domain adaptation
techniques. These chapters demonstrate that employing both synthetic
and real-world datasets can combine their strengths and compensate
for the disadvantages. This training strategy significantly enhances the
generalizability of the egocentric motion capture network.

8.1.3 Scene-aware Egocentric Motion Capture

The fisheye camera can capture a large portion of the surrounding scene.
The scene information can be utilized to enhance the motion capture
performance. Chapter 4 leverages the scene information by applying the
SLAM method to obtain the egocentric camera pose in the global space,
thereby enhancing the accuracy of egocentric human motion. Chapter 6

employs single-frame depth estimation to obtain the scene geometry and
uses the geometry to constrain the egocentric pose, making it plausible
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under occlusion. These chapters show that the egocentric camera poses
and the geometry of the surrounding scene provide valuable information
about human movement and interaction with the environment, thereby
further enhancing motion capture accuracy.

By analyzing egocentric camera poses, the locomotion of the human
body can be inferred and the human poses can be further obtained. For
instance, if the human body is moving forward, the movement of legs
and feet can be predicted even if they are occluded.

Considering scene context can also significantly alleviate occlusion
issues and improve pose estimation accuracy. For example, when a person
is sitting at a desk, their feet may be occluded. However, by understanding
the semantics of desks and chairs, the sitting pose can be inferred. If
the scene geometry is also known, the human pose can be determined
accurately.

Utilizing state-of-the-art SLAM methods such as DROID-SLAM (Teed
and Deng, 2021), publicly available VR headsets like the Quest3, and
scene understanding methods, future research can achieve a precise un-
derstanding of human locomotion, scene geometry, and scene semantics.
These advancements will further enhance the accuracy of egocentric
human motion capture methods.

8.2 challenges and future directions

Humans have long dreamed of the next evolution in mobile technology:
wearable computing. In this context, the human body, particularly human
motion, plays a pivotal role in the interaction process between humans
and wearable devices. This section explores the challenges and future
developments in egocentric human motion capture. It also discusses the
possible integration with large language models, robotics, the creation of
photorealistic avatars, and human-object/scene interactions.

8.2.1 Egocentric Human Motion Capture

Though many technical innovations have been presented in this thesis,
the egocentric human motion capture remains unsolved. This section
demonstrates the challenges and possible future direction of egocentric
motion capture.

generalization to a variety of hardware Egocentric motion
capture setups can vary significantly, from simple head-mounted cameras
to complex multi-sensor rigs. The method that works on one specific setup
usually cannot be directly used in other setups. Each configuration may
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require unique calibration procedures and tailored algorithms to handle
specific problems. Consequently, developing a universally applicable
solution is exceptionally challenging. In the future, researchers can design
flexible frameworks and algorithms that can fit in or be easily customized
for different setups. This adaptability is crucial for making egocentric
motion capture more practical in real-world scenarios.

fisheye camera Though Chapter 7 introduces FisheyeViT to address
the distortion issues of fisheye cameras, this problem is still not com-
pletely solved. The proposed undistortion methods can not generalize
perfectly across different fisheye camera setups. They often require extra
finetuning to enhance performance on cameras with different param-
eters. Other types of parameters, such as the position and orientation
of the fisheye camera, also significantly hinder generalizability. Future
research could focus on ways to encode fisheye camera parameters into
the method to create a camera-agnostic network. Alternatively, develop-
ing fast or weakly-supervised fine-tuning methods could enable easier
adaptation across different fisheye cameras.

egocentric dataset This thesis presents several synthetic and real-
world datasets for the egocentric motion capture task. However, the
current datasets are far from sufficient to train and evaluate an egocentric
motion capture network. The scale and diversity of the datasets need
to be significantly enhanced to meet the demand. For example, the
available egocentric motion capture datasets typically contain 100k to 1M
images and several subjects (see Chapter 2). In contrast, external-view
human motion capture datasets, such as Motion-X (Lin et al., 2024), can
include up to 15 million images and feature thousands of different human
appearances, as seen in BEDLAM (Black et al., 2023).

Collecting egocentric data in the real world remains challenging since
it is still difficult to obtain accurate in-the-wild 3D human motion anno-
tations. Another common method is to synthesize high-quality synthetic
datasets, as demonstrated in Chapter 7, UnrealEgo2 (Akada et al., 2024)
and BEDLAM (Black et al., 2023). However, these synthetic datasets lack
the diversity of human motion and human-scene interactions.

Future work can address the data collection challenges by proposing
simple methods to collect 3D in-the-wild ground truth. For the syn-
thetic dataset, generating realistic human-scene interactions in synthetic
environment (Li et al., 2024) will also be a promising solution.

self-occlusion Self-occlusion, where parts of the body obstruct
other parts, poses significant challenges to egocentric motion capture.
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Chapter 6 in this thesis aims at tackling this issue by understanding the
surrounding scene geometry. However, the resulting human motion still
suffers from inconsistencies and physical errors. To mitigate self-occlusion
issues as much as possible, future work need to combine human motion
priors, efficient temporal-based methods, physics-aware techniques, and
simultaneous scene understanding.

real-time and on-device processing Real-time processing is a
significant challenge in egocentric motion capture. The ability to capture
and process motion data in real-time is crucial for applications such
as virtual reality and interactive gaming. Additionally, these motion
capture algorithms often need to be deployed on VR headsets and AR
glasses, which severely limit the computational resources available to the
algorithms.

The challenge of real-time and on-device processing often involves
a trade-off between accuracy and speed. Future research should focus
not only on enhancing pose estimation accuracy but also on exploring
parallel processing methods, hardware acceleration techniques, and re-
designing algorithms to be compatible with resource-constrained mobile
hardware architectures.

8.2.2 Egocentric Motion Capture + Large Language Models

The combination of egocentric human motion capture with large lan-
guage models (LLMs) is promising. By integrating with LLMs, Google’s
Project Astra and Meta’s Ray-Ban glasses are all claimed to enable the
“copilot” capability for everyday life by leveraging LLMs in the back-
ground. Integrating multi-modal inputs like text, vision, and motion
data can exploit LLMs’ general reasoning ability to interpret and predict
human actions from a first-person perspective. Future research can de-
velop unified models that are capable of handling multiple modalities,
including IMU data, text, images, and the context of surrounding scenes.

8.2.3 Egocentric Photorealistic Avatar

Combining egocentric human motion capture with photorealistic avatars
can create high-quality telepresence with VR/AR devices. Capturing
accurate human motion from egocentric devices enables the avatars to
exhibit accurate movements and expressions reflecting realistic human
motion, which will further enhance immersion in VR applications.

Future research can focus on generating relightable and animatable
full-body avatars from a single egocentric video. Recent methods like
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Gaussian Codec Avatars (Saito et al., 2024) can drive relightable head
avatars from VR headsets. However, full-body avatars from the egocentric
perspective are absent, despite being necessary to achieve realistic inter-
actions in the virtual world. Integrating egocentric views into full-body
avatars can enable the driving of the human body avatars with natural
full-body motion. It can also accurately capture the appearance of the
human body, including clothing wrinkles and illumination details.

Another promising research direction is to enable the personaliza-
tion of avatars based on real-time capture from egocentric devices. This
will allow the online reconstruction of clothing based on the egocentric
capture.

8.2.4 Egocentric Motion Capture + Robotics

One research direction is to drive the motion of robots using human
motion captured by egocentric devices. Stereo cameras mounted on the
robots can provide input to the screen of a VR headset, while pressure
sensors on the robots can deliver human haptic feedback. This allows ego-
centric wearable devices to be seamlessly applied for robot teleoperation
tasks. By utilizing egocentric sensors on VR/AR headsets, researchers
can obtain accurate human motion, which can be projected into physics-
based simulators or real-world robots for teleoperation and long-range
manipulation (Ding et al., 2024; He et al., 2024a). Future research may
focus on motion retargeting and collision avoidance. Motion retarget-
ing requires the human motion captured by egocentric devices to be
teleported faithfully. Collision avoidance aims at the operation safety
concerns. These will enable robots to perform delicate tasks that require
high precision and safety, such as manufacturing or surgery.

Egocentric data will enhance the robot’s capability of interaction and
navigation through the environment. This can be achieved by asking the
robots to mimic human activities from large-scale egocentric datasets.
By leveraging the egocentric motion capture method, the captures of
egocentric sensors can be used to simulate the sensors on the robots and
the human motion in the egocentric view serves as a guidance or ground
truth.

8.2.5 Egocentric Motion Capture + Human-Object/Scene Interactions

The combination of egocentric motion capture and large-scale hand-
object/scene interaction datasets opens up a promising research avenue.
Projects like the Epic-Kitchens dataset (Damen et al., 2018) and the Ego4D
dataset (Grauman et al., 2022) collect extensive egocentric video footage
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of everyday activities. By leveraging human motion information obtained
by egocentric motion capture, future researchers can learn how humans
interact with objects on these large-scale datasets.

8.3 final conclusion

Capturing human motion from wearable egocentric devices unlocks
numerous applications, including VR/AR, gaming, robotics teleoperation,
healthcare, sports, and movie/animation production. Accurate egocentric
human motion capture will also set the foundation for realistic virtual
humans. These virtual humans, captured by egocentric devices, will be
able to interact with 3D scenes, move naturally, communicate with each
other in the virtual world, and further pave the way for the metaverse.

In order to achieve accurate and fast egocentric human motion capture,
a great number of challenges are waiting to be solved. Among these chal-
lenges, this thesis focuses on a specific egocentric motion capture setup:
a single downward-facing camera mounted in front of the head. New
datasets and novel methods have been introduced, aimed at enhancing
the accuracy and the range of applicability of egocentric motion capture.
This thesis further discusses future research directions, not only to im-
prove accuracy and efficiency but also for diverse application scenarios
like egocentric avatars. With the fast development of VR headsets and AR
glasses, the applications leveraging egocentric motion capture technology
will be eventually democratized.
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a.1 comparisons on different types of motions

Method Mo2Cap2 +SLAM Mo2Cap2+SLAM
+Smooth

Mo2Cap2

+Proposed

walking 38.41 37.35 35.39

sitting 70.94 64.45 60.83

crawling 94.31 87.41 75.45

crouching 81.90 69.68 63.15

boxing 48.55 45.19 40.14

dancing 55.19 54.76 53.05

stretching 99.34 90.89 84.96

waving 60.92 49.41 44.10

total (mm) 61.40 58.25 52.90

Table A.1: The BA-MPJPE of different types of motions on the indoor sequence
of Mo2Cap2 dataset (Xu et al., 2019). When based on the local poses estimated
by Mo2Cap2, the proposed approach improves the Mo2Cap2 (Xu et al., 2019)
results by 13.8% (8.5 mm).

In Table 4.1 of Chapter 4, The quantitative comparison is shown be-
tween the proposed method and the state-of-the-art methods: Mo2Cap2

and xR-egopose. In order to further compare the performance on differ-
ent types of motions, the quantitative comparison on Mo2Cap2 (Xu et al.,
2019) is shown in Table A.1 and Table A.2. The comparisons on different
motions of the test dataset is shown in Table A.3 and Table A.4. In these
tables, the BA-MPJPE results of the smoothed global pose of Mo2Cap2

and xR-egopose are also demonstrated to give a fair comparison. In the
aforementioned results, the proposed method outperforms all of the
baselines on every type of motion.

a.2 the structure of rnn-based vaes

In the Sec. 4.3.5 of the main paper, the performance of the proposed
CNN-based sequential VAE is compared with the MLP-based VAE and
RNN-based VAEs in VIBE (Kocabas et al., 2020) and MEVA (Luo et al.,
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Method Mo2Cap2 +SLAM Mo2Cap2+SLAM
+Smooth

Mo2Cap2

+Proposed

walking 39.69 38.68 33.66

sitting 63.64 63.20 60.34

crawling 64.90 63.84 62.33

crouching 61.22 60.49 55.67

boxing 47.87 46.53 44.24

dancing 58.37 57.20 51.29

stretching 84.64 84.19 82.63

waving 53.99 52.58 46.81

total (mm) 55.43 54.03 50.52

Table A.2: The BA-MPJPE of different types of motions on the indoor sequence
of Mo2Cap2 dataset (Xu et al., 2019). When based on the local poses estimated by
xR-egopose (Tomè et al., 2019), the proposed method improves the xR-egopose
results by 8.9% (4.9 mm).

2020). The implementation details of the aforementioned VAEs will be
described in this section.

rnn-based vae in vibe The VIBE (Kocabas et al., 2020) explored
the performance of RNN-based VAE as a loss term in the training of the
VIBE network. At time step t, the body pose Pt with shape (15, 3) is firstly
flattened and put in the encoder. The encoder gives the µt, σt ∈ R2048 and
the latent vector zt is sampled from them. The latent vector zt is put into
the decoder and reconstructs the body pose Pt at time step t. The encoder
and decoder are two-layer GRU networks with 512 hidden dimensions.

rnn-based vae in meva The structure of RNN-based VAE is shown
in MEVA (Luo et al., 2020) and the code is released in https://github.

com/ZhengyiLuo/MEVA. Their implementation is directly used in the ex-
periment.

Note that the structure of RNN-based VAE in MEVA is different from
the VAE in VIBE. The VAE in VIBE gets different µ and σ for each time
step and uses the different latent vector z as the decoder input for each
time step. In the VAE of MEVA, the latent vector is obtained with a
pooling layer and works as the first input of the RNN-based decoder.

https://github.com/ZhengyiLuo/MEVA
https://github.com/ZhengyiLuo/MEVA
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Method Mo2Cap2

+SLAM
Mo2Cap2+SLAM

+Smooth
Mo2Cap2

+Proposed

walking 69.68 66.68 57.30

running 77.88 74.14 66.78

crouching 63.28 60.76 56.05

boxing 79.37 75.59 67.57

dancing 82.65 76.88 61.43

stretching 117.7 114.9 107.5

waving 53.14 49.31 42.77

playing balls 60.95 57.69 53.30

open door 55.88 53.33 46.27

play golf 113.8 104.4 94.17

talking 53.93 50.65 48.16

shooting arrow 67.07 62.82 57.58

sitting 83.24 78.70 50.89

total (mm) 74.46 70.84 62.07

Table A.3: The BA-MPJPE of different types of motions on the test set. When
based on Mo2Cap2 (Xu et al., 2019), the proposed approach outperforms
Mo2Cap2 results by 16.6% (12.4 mm).

Method xR-egopose
+SLAM

xR-egopose
+SLAM +Smooth

xR-egopose
+Proposed

walking 84.20 82.96 60.72

running 76.78 74.43 64.92

crouching 96.86 96.53 75.11

boxing 85.74 83.67 63.45

dancing 94.23 92.42 64.78

stretching 119.9 119.7 116.3

waving 72.66 71.83 46.38

playing balls 95.30 93.94 58.49

open door 71.70 70.80 45.86

play golf 94.41 92.58 83.25

talking 78.10 75.84 46.90

shooting arrow 76.75 74.82 57.86

sitting 69.10 63.89 55.97

total (mm) 87.20 84.70 64.31

Table A.4: The BA-MPJPE of different types of motions on the test set. When
based on xR-egopose (Tomè et al., 2019), the proposed method outperforms
xR-egopose results by 26.2% (22.9 mm).
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mlp-based vae The input pose sequence with n frames is firstly
reshaped to a vector with length n × 15× 3 and fed into the encoder with
n × 15 × 3 input dimensions. The encoder has five 1D fully connected
blocks with 512, 512, 1024, 2048 and 2048 output dimensions. Each fully
connected block contains one fully connected layer, one batch norm layer
and one leaky relu layer with negative slope=0.01. The output of the
encoder is sent into two linear layers giving µ, σ ∈ R2048. The latent vector
z is sampled with µ, σ with the reparameterization trick.

For the decoder, the sampled latent vector z is firstly fed into a linear
layer with 2048 output dimension, and five 1D fully connected blocks
with 2048, 2048, 1024, 512 and 512 output channels. Each block contains
one fully connected layer, one batch norm layer and one leaky relu layer
with the same hyper-parameters as the encoder. The output vector is
obtained from a final fully connected layer. The output vector is eventually
reshaped to (n, 15, 3), representing a pose sequence as the input.
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b.1 quantitative results on different motions

In Chapter 5, the proposed method is proved to outperform the state-
of-the-art methods: Mo2Cap2 and xR-egopose. To further compare the
performance on different types of motions, the quantitative comparisons
on the test dataset of Chapter 4 are shown in Table B.1. The results on
Mo2Cap2 dataset (Xu et al., 2019) are shown in Table B.2. The proposed
method outperforms all of the baselines on most types of motion in these
results. Note that this method is trained on the EgoPW dataset while the
focal length and distortion of the fisheye camera in the EgoPW dataset
is different from the fisheye camera used in Mo2Cap2, which affects the
performance of the proposed method on the Mo2Cap2 test dataset.

b.2 qualitative results

This section shows more qualitative results for the in-the-wild images
from the test sequence of either EgoPW in Figure B.1 or Mo2Cap2 in
Figure B.2. These results show that the proposed method significantly
outperforms the state-of-the-art methods especially when the body parts
are occluded.

b.3 details and comparisons of egopw dataset

The details of the EgoPW dataset and comparisons between EgoPW and
other 3D pose estimation datasets are shown in Table B.3. This dataset
contains 97 sequences and 318k frames in total, which is performed by 10

actors in 20 clothing styles. The actions in the EgoPW dataset include read-
ing magazine/newspaper, playing board games, doing a presentation, walking,
sitting down, using a computer, calling on the phone, drinking water, writing
on the paper, writing on the whiteboard, making tea, cutting vegetables, stretch-
ing, running, playing table tennis, playing baseball, climbing floors, dancing,
opening the door, and waving hands.

To synchronize the egocentric and external camera setup, a mobile
phone screen is used to play a video of mostly black frames with a single
white frame every 10 seconds, observed by both cameras. Recording is
started on both cameras, and synchronization is achieved when the white

113



114 appendix for chapter 5

Method Mo2Cap2 xR-egopose Ours

walking 69.68 84.20 59.65

running 77.88 76.78 63.84

crouching 63.28 96.86 68.87

boxing 79.37 85.74 72.91

dancing 82.65 94.23 65.21

stretching 117.7 119.9 108.8

waving 53.14 72.66 44.57

playing balls 60.95 95.30 56.54

open door 55.88 71.70 49.06

play golf 113.8 94.41 94.29

talking 53.93 78.10 51.82

shooting arrow 67.07 76.75 60.71

sitting 83.24 69.10 65.06

total (mm) 74.46 87.20 64.87

Table B.1: The BA-MPJPE of different types of motions on the test set of Chap-
ter 4. The proposed approach outperforms Mo2Cap2 results by 9.59 mm and
outperforms xR-egopose results by 22.33 mm.

frame is observed. This white frame is used to temporally synchronize
the egocentric and external recordings, and further verification is done
through hand-clapping movements. Calibration is performed only once
at the start of data recording.

In Table B.3, the EgoPW dataset is further compared with other datasets
for external-view 3D pose estimation and egocentric view 3D pose estima-
tion. Mo2Cap2 Xu et al., 2019 and xR-egopose Tomè et al., 2019 provide
large synthetic datasets for training the egocentric pose estimation net-
works. However, these datasets are synthesized and thus suffer from the
domain gap with the real images. Mo2Cap2, xR-egopose, and Chapter 4

also provide small test sequences with ground truth labels obtained with
the mocap system. However, these datasets are not sufficient for training
an egocentric pose estimation network. The EgoPW dataset contains a
large amount of in-the-wild images with accurate pseudo labels gener-
ated with an optimization framework, which facilitates training the pose
estimation network with in-the-wild images.

The publicly available large datasets for 3D pose estimation from an
external view, like Human 3.6M (Ionescu et al., 2013) and MPI-INF-
3DHP (Mehta et al., 2017a), are all collected in the studio with a multi-
view mocap system. This capturing method is not able to obtain in-
the-wild images and the interactions between the human body and the
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Indoor walking sitting crawling crouching boxing dancing

Mo2Cap2
38.41 70.94 94.31 81.90 48.55 55.19

xR-egopose 37.35 64.45 87.41 69.68 45.19 54.76

Proposed 40.23 60.22 70.88 62.40 49.89 52.41

Indoor stretching waving total (mm)

Mo2Cap2
99.34 60.92 61.40

xR-egopose 90.89 49.41 55.43

Proposed 82.48 59.60 54.78

Outdoor walking sitting crawling crouching boxing dancing

Mo2Cap2
63.10 85.48 96.63 92.88 96.01 68.35

xR-egopose 62.01 103.45 86.53 80.43 90.48 66.06

Proposed 58.06 94.19 85.50 77.61 83.91 62.56

Outdoor stretching waving total (mm)

Mo2Cap2
123.56 61.42 80.64

xR-egopose 117.55 67.49 78.30

Proposed 111.9 65.37 74.55

Table B.2: The BA-MPJPE of different types of motions on the indoor and
outdoor sequence of Mo2Cap2 dataset (Xu et al., 2019). In the indoor sequence,
the proposed method improves the Mo2Cap2 results by 6.62 mm and xR-egopose
results by 0.65 mm; In the outdoor sequence, the proposed method improves
the Mo2Cap2 results by 6.09 mm and xR-egopose results by 3.75 mm.

environment. 3DPW (Von Marcard et al., 2018) is a dataset collected
in the in-the-wild scenes with pseudo labels obtained from a moving
camera and an IMU system. This capturing method provides accurate
pseudo labels for body pose with various interactions between the human
body and the environment. However, this dataset only contains 51k
frames, which is less than the frames in the EgoPW dataset. All of the
aforementioned datasets do not contain any egocentric images and thus
cannot be used for training the egocentric pose estimation networks.

b.4 network architecture

This section describes the architecture of the pose estimation network
and the domain classifier network used in the method.
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Input Mo2Cap2 xR-egopose Proposed Method External Ref.

Figure B.1: Qualitative comparison between the proposed method and the
state-of-the-art methods on the test images of the EgoPW dataset. From left
to right: input image, Mo2Cap2 result, xR-egopose result, the result of the
proposed method, and external image. Note that the external images are only
for visualization and they are not used for predicting the pose.

b.4.1 Pose Estimation Network

The architecture in Mo2Cap2 Xu et al., 2019 is used for obtaining the
3D poses and 2D heatmaps. The pose estimation network contains a
2D module for the full-body heatmap, a 2D module for the zoomed-in
body heatmap, and a 3D module. The 2D module for full-body pose
can be represented as an encoder-decoder network, which first gets
the features FFull2D with a Resnet-50 network He et al., 2016 as the
encoder and uses the features FFull2D to predict the full-body heatmap
with convolutional layers. The 2D module for zoomed-in body heatmaps
has the same architecture as the former one. It takes the zoomed-in
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Input Mo2Cap2 xR-egopose Proposed Method

Figure B.2: Qualitative comparison between the proposed method and the state-
of-the-art methods on the test images of Mo2Cap2 work. From left to right:
input image, Mo2Cap2 result, xR-egopose result, and the result of the proposed
method.
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Dataset
Name

Frames Sequences Subjects Context Action
Types

Ionescu et al.
(2013)

3.6M 1376 11 Studio 17

Mehta et al.
(2017a)

1.3M 64 16 Studio 8

Von Marcard
et al. (2018)

51k 60 18 In the
wild

8

Xu et al.
(2019)

530k - 700 Synthetic 3000

Mo2Cap2-
test

5591 2 2 Studio &
in the
wild

8

Tomè et al.
(2019)

383k - - Synthetic 9

xR-egopose-
test

10k - 3 Studio 6

Chapter 4 47k 19 9 Studio 13

EgoPW 318k 97 10 In the
wild

20

Table B.3: Comparison between the EgoPW dataset and publicly available 3D
pose estimation datasets.

egocentric images as input and first generates features FZoom2D and
predicts zoomed-in heatmaps from the intermediate features. The full-
body heatmaps and zoomed-in heatmaps are finally averaged to get the
final prediction of heatmaps Ĥ. The distance module takes the features
from both the aforementioned 2D modules as input and predicts the
distances D̂ between body joints and the camera. More details about the
pose estimation network can be found in Mo2Cap2 Xu et al., 2019.

b.4.2 Domain Classifier

The domain classifier takes the intermediate features FFull2D with shape
2048 × 8 × 8 or FZoom2D with shape 2048 × 8 × 8 as input and predicts
whether the input feature is from synthetic or real image. The network
contains two Resnet “bottleneck” blocks He et al., 2016 with 1024 and
256 output channels and one final classification block. The classification
block contains two convolutional blocks and a linear layer for the domain
classification task. The first convolutional block contains one 2D convo-
lutional layer (kernel size=4, stride=2, and padding=1), one batch norm
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layer, and one relu layer. The second convolutional block contains one 2D
convolutional layer (kernel size=3, stride=2, and padding=1), one batch
norm layer, and one relu layer. The output features of the convolutional
blocks are sent to the linear layer giving the domain label prediction.

b.4.3 Egocentric-external View Classifier

Similar to the domain classifier for distinguishing synthetic and real
images, the egocentric-external view classifier also takes the interme-
diate features FFull2D with shape 2048 × 8 × 8 or FZoom2D with shape
2048 × 8 × 8 as input and predicts whether the input feature is from
the egocentric view or the external view. The network contains two
convolutional blocks, one global average pooling layer, and one final
classification block. The intermediate features are firstly sent to the con-
volutional blocks and then the generated features with shape 1024× 8× 8.
The spatial dimension of the features is eliminated with a global average
pooling layer (Zhou et al., 2016a) to generate a feature vector with length
1024. Next, the feature vector is sent to the final classification block to pre-
dict whether the input feature is from the egocentric view or the external
view. Each of the convolutional blocks consists of one 2D convolutional
layer (output channel=1024, kernel size=3, stride=2, and padding=1), one
batch norm layer, and one relu layer. The classification block includes
one fully connected layer (output dimension=256), one batch norm layer,
one relu layer, and one final fully connected layer (output dimension=2)
which predicts the labels of egocentric/external views.

b.5 energy function

This section describes some of the terms in the objective function (Eq. B.1).

E(P ego
seq , Rseq, tseq) = λ

ego
R Eego

R + λext
R Eext

R + λ
ego
J Eego

J

+ λext
J Eext

J + λTET + λBEB

+ λCEC + λMEM

(B.1)

In this function, Eext
R , Eext

J , EC, and EM are the external reprojection term,
external 3D pose regularization term, camera pose consistency term, and
camera matrix regularization term respectively which have already been
described in the paper. Eego

R , Eego
J ,ET, and EB are the egocentric repro-

jection term, egocentric pose regularization term, motion smoothness
regularization term and bone length regularization term, which are the
same as the corresponding terms in Chapter 4. These terms are also
depicted here:
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heatmap-based reprojection : This term maximizes the summed
heatmap values at the reprojected 2D joint positions:

ER(P ego
seq ) = −

B

∑
i=1

∥∥HMi(Π(P ego
i ))

∥∥2
2 (B.2)

where HMi(.) returns the value at a pixel on Hego
i , the heatmap of i-th

frame. Π(.) refers to the projection of a 3D point with the fisheye camera
model.

pose regularization : The pose regularizer is defined to constrain
the optimized pose P ego

i to stay close to the initial pose P̃ ego
i .

EJ(P ego
seq , P̃ ego

seq ) =
B

∑
i=1

∥∥∥P ego
i − P̃ ego

i

∥∥∥2

2
(B.3)

motion smoothness regularization : This term constrains the
acceleration of each joint over the whole sequence to improve the tempo-
ral stability of the estimated poses:

ET(P ego
seq ) =

B

∑
i=2

∥∥∇P ego
i −∇P ego

i−1

∥∥2
2 (B.4)

where ∇P ego
i = P ego

i −P ego
i−1.

bone length regularization : This term calculates the difference
between the bone length and the average bone length to enforce the
length of each bone to be consistent.

EB(P ego
seq ) =

B

∑
i=1

∥∥∥∥∥LP ego
i

− 1
B

B

∑
j=1

LP ego
j

∥∥∥∥∥
2

2

(B.5)

where the LP ego
i

is the length of each bone of 3D pose P ego
i .
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c.1 datasets

c.1.1 SceneEgo Test Dataset

This section introduces the data collection process for the SceneEgo test
dataset. All personal data in the SceneEgo test dataset is collected with
IRB approval. To estimate accurate egocentric camera poses and further
obtain the ground truth human body poses under the egocentric camera
perspective, a calibration board is mounted on the head, rigidly attached
to the egocentric camera, and estimate the pose of the egocentric camera
with a multi-view capturing system, as shown in Fig. C.1.

Before the data collection process, the transformation matrix Mhead2ego
is first estimated between the calibration board and the fisheye camera
with hand-eye calibration (Tsai and Lenz, 1988). A second calibration
board is placed on the scene in a place where it can be seen by both the
egocentric camera and the studio cameras. Then this method estimates the
relative pose Mego2calib between the egocentric camera and the external
calibration board, the relative pose between the studio cameras and
the external calibration board Mext2calib, and the relative pose between
the studio cameras and the head-mounted calibration board Mext2head.
Finally, the transformation matrix Mhead2ego can be obtained with:

Mhead2ego = M−1
ext2headMext2calibM−1

ego2calib (C.1)

During the data collection process, the pose of the calibration board is
estimated from every single view, and the estimated calibration board
poses are further averaged to get the result Mext2head (see Fig. C.1). The
egocentric camera pose Mext2ego can be obtained with:

Mext2ego = Mext2headMhead2ego (C.2)

With the egocentric camera pose, the ground truth pose under the
studio camera coordinate system Pext can be transformed to the egocentric
camera coordinate system Pego:

Pego = PextMext2ego (C.3)

121
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Figure C.1: Visualization of the data collection process for the SceneEgo test
dataset. The pose of the head-mounted calibration board, rigidly attached to the
egocentric camera, is detected from multiple views in the studio.

Image Body Seg. Depth w. Body Depth w/o Body

Figure C.2: Example of the EgoGTA dataset.

c.1.2 EgoGTA Dataset

Based on the GTA-IM dataset (Cao et al., 2020), the synthetic EgoGTA
dataset is generated with ground truth labels for human body segmenta-
tion masks, scene depth maps, and human body poses. First, the SMPL-X
model is registered on the 3D poses from GTA-IM following HULC (Shi-
mada et al., 2022). Then, the TSDF fusion (Curless and Levoy, 1996) is
used to reconstruct the mesh of the scene from the depth map sequences
in GTA-IM. Finally, images, semantic labels, and depth maps of the scene
with and without the human body are rendered using Blender (Blender
n.d.). More examples of the EgoGTA dataset are shown in Fig. C.2
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Image Depth w/o Body Image Depth w/o Body

Figure C.3: Example of the EgoPW-Scene dataset.

c.1.3 EgoPW-Scene Dataset

The EgoPW-Scene dataset is generated by rendering the scene depth map
for each image in the EgoPW dataset (Chapter 5). Since the scan of the
background scene is not available for the EgoPW dataset, the mesh of
the scene is generated from the EgoPW image sequences with SfM. More
examples of the EgoPW-Scene dataset are shown in Fig. C.3.

c.2 implementation details

This section describes the implementation details of the scene-aware ego-
centric pose estimation framework, including the network architectures
and training procedure. Details of the scene depth estimator are pro-
vided in Sec. C.2.1, which includes a human body segmentation network
(Sec. C.2.1.2), a depth estimation network (Sec. C.2.1.1) and a depth in-
painting network (Sec. C.2.1.3). The details of the scene-aware egocentric
pose estimator are shown in Sec. C.2.2.

c.2.1 Scene Depth Estimator

c.2.1.1 Depth Estimation Network with Human Body

The same network architecture from Hu et al. (2019)’s work is used as
the depth estimation network D. The network D is trained on the NYU-
Depth V2 dataset (Nathan Silberman and Fergus, 2012) following the
training procedure from Hu et al. (2019). Next, the network is finetuned
on the EgoGTA dataset using the Adam optimizer (Kingma and Ba, 2014)
for 40K iterations with the learning rate set to 1 · 10−4, the weight decay
set to 1 · 10−4, the image size as 256 × 256, and the batch size as 16.
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c.2.1.2 Human Body Segmentation Network

The HRNetV2-W48 network from Yuan et al. (2020b)’s work is adopted
as the human body segmentation network S . The network S is trained
on the LIP dataset (Gong et al., 2017) following the procedure from Yuan
et al. (2020b). Next, the network is finetuned on the EgoGTA dataset for
2000 steps with the weight decay as 1 · 10−3, the image size as 473 × 473,
and the batch size as 32. During the finetuning step, the Adadelta (Zeiler,
2012) optimizer is used. The learning rate of the first 3 stages in HRNet
is set to 1 · 10−6 and the learning rate of the fourth stage is set to 0.001.

c.2.1.3 Depth Inpainting Network

The depth inpainting network G takes the segmented depth map D̂M

with shape 256 × 256 and the human body segmentation mask Ŝ with
shape 256 × 256 as the input and predicts the scene depth map without
human body D̂S. The UNet (Ronneberger et al., 2015) is adopted for
the depth inpainting task. The encoder of the UNet contains one input
convolutional layer with 64 output channels and 4 downsampling layers,
each with 128, 256, 512, 512 output channels. Each downsampling layer
consists of one 2D-maxpooling layer (kernel size 2) and two convolutional
blocks. The decoder contains 4 upsampling layers, each with 256, 128, 64,
64 output channels, and one output convolutional layer with 1 output
channel. Each upsampling layer consists of one 2D-bilinear interpolation
layer and two convolutional blocks. Each aforementioned convolutional
block contains one 2D convolutional layer (kernel size 3, stride 1, and
padding 1), one batch norm layer, and one relu layer. The 1st, 2nd, 3rd
and 4th input of the downsampling layers is also fed into the 4th, 3rd,
2nd and 1st input of the upsampling layer to form the skip connections
in UNet.

The depth inpainting network is trained on the EgoGTA and the
EgoPW-Scene datasets simultaneously using the Adam optimizer (Kingma
and Ba, 2014) for 28K iterations with the learning rate as 1 · 10−4, the
weight decay as 1 · 10−4 and batch size as 16.

c.2.2 V2V Network

The V2V network has the same architecture as the network in Moon et al.
(2018)’s work. During training, the input image is converted to 2D body
pose features and further projected into a 3D volumetric space Vbody with
32 channels. Next, the network concatenates the volumetric body feature,
the volumetric representation of ground truth scene geometry Vscene, and
their intersection Vinter and feeds them to the V2V network. The network
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Method PA-MPJPE BA-MPJPE

EgoPW+Optimizer 79.06 63.56

EgoPW+Depth 78.41 63.75

xR-egopose+Depth 109.7 85.74

w/o Depth 81.04 64.18

+Depth with Body 82.98 65.09

+Depth w/o Body 78.95 64.83

+Depth w/o Inpainting 82.39 66.43

Proposed Method 76.50 61.92

Table C.1: Results from the proposed method compared to different baselines.

is trained using the Adam optimizer for 24K iterations with the learning
rate as 1 · 10−3 and the batch size as 64.

c.3 evaluation metrics

This section gives a detailed explanation of the evaluation metrics used
in the proposed method. MPJPE is the mean of Euclidean distances
for each joint in the predicted and ground truth poses. For PA-MPJPE,
the estimated pose is rigidly aligned to the ground truth pose using
Procrustes analysis before calculating MPJPE. For BA-MPJPE, the bone
lengths of predicted poses and ground truth poses are first resized to
match the bone length of a standard human skeleton. Then, the PA-
MPJPE is calculated between the two resulting poses.

c.4 ablation study on test dataset in chapter 4

In this section, the ablation study in Sec. 6.3.4 in the main paper is re-
evaluated on the test dataset in Chapter 4. The results are shown in
Table C.1. Since this dataset does not provide the ground truth scene
geometry and ground truth pose annotations in the egocentric camera
coordinate system, the experiments only evaluate PA-MPJPE and BA-
MPJPE metrics.

The ablation study shows similar results on Wang et al.’s dataset as on
the SceneEgo test dataset, which demonstrates similar conclusions in Sec.
4.4 in the main paper.
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d.1 full comparison with existing egocentric pose estima-
tion methods

The comparison results between the proposed method and all previous
methods (Liu et al., 2023b; Park et al., 2023; Tomè et al., 2019; Xu et al.,
2019) and Chapters 4, 5, 6 are shown in Table D.1, Table D.2, Table D.3
and Table D.4. “*” indicates that the methods are re-trained with the
EgoWholeBody training dataset. Since the GlobalEgoMocap (Chapter 4)
can be applied to refine the egocentric human body motion predicted
from any egocentric pose estimation method, this experiment bases the
method on Mo2Cap2 (Xu et al., 2019) following the original setting in
GlobalEgoMocap (Chapter 4). The GlobalEgoMocap results in Mo2Cap2

test dataset (Xu et al., 2019) are also not shown since it does not provide
egocentric camera poses for all of the sequences. Note that the EgoWhole-
Body dataset does not contain ground truth scene geometry annotations.
Therefore, Therefore, the weights of the depth estimation module in
SceneEgo (Chapter 6) are frozen, and only the human pose estimation
part is trained.

The results in Table D.1, Table D.2, and Table D.3 show the single-frame
method and the refinement method consistently outperforms all of the
previous methods, even if they are trained on the new EgoWholeBody
dataset, which further strengthens the claim in the experiment section
(Sec. 7.4.2).

d.2 implementation details

In this section, the implementation details of the methods are described.
NVIDIA RTX8000 GPUs are used for all experiments.

d.2.1 FisheyeViT and Pose Regressor with Pixel-Aligned 3D Heatmap

d.2.1.1 Network Structure

fisheyevit In FisheyeViT, the image patches are first undistorted with
the method in Sec. 7.2.1.1, then the patches are fed into a ViT transformer.
In the ViT transformer, the embedding dimension is 768, the network

127
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Method MPJPE PA-MPJPE

SceneEgo test dataset (Chapter 6)

Mo2Cap2 (Xu et al., 2019) 200.3 121.2

GlobalEgoMocap†
183.0 106.2

xR-egopose (Tomè et al., 2019) 241.3 133.9

EgoPW 189.6 105.3

SceneEgo 118.5 92.75

Mo2Cap2* (Xu et al., 2019) 92.20 66.01

GlobalEgoMocap*†
89.35 63.03

xR-egopose* (Tomè et al., 2019) 121.5 98.84

EgoPW* 90.96 64.33

SceneEgo* 89.06 70.10

Proposed Method-Single 64.19 50.06

Proposed Method-Refined† 57.59 46.55

Table D.1: Performance of the proposed method on SceneEgo test datasets (Chap-
ter 6). The proposed method outperforms all previous state-of-the-art methods.
∗ denotes the method trained with the datasets in Sec. 7.4.1. † denotes the
temporal-based methods.

depth is 12, the attention head number is 12, the expansion ratio of the
MLP module is 4, and the drop path rate is 0.3. The output sequence
from the transformer (with a length equal to 256) is reshaped to a 2D
feature map with size 16 × 16.

pose regressor with pixel-aligned 3d heatmap The regressor
of the pixel-aligned heatmap first uses two deconvolutional modules
to up-sample the feature map from the FisheyeViT. The first deconv
module contains one deconv layer with 768 input channels and 1024

output channels, one batch normalization layer, and one ReLU activation
function. The deconv layer’s kernel size is 4, the stride is 2, the padding
is 1, and the output padding is 0. The second deconv module contains
one deconv layer with 1024 input channels and 15×64 output channels,
one batch normalization layer, and one ReLU activation function. The
hyper-parameters of the deconv layer in the second module are the same
as that in the first one.

These deconvolutional modules converts the features from shape (C ×
N × N) = (768 × 16 × 16) to shape (J × Dh × Hh × Wh) = (15 × 64 ×
64 × 64). Then the soft-argmax function and fisheye reprojection function
are applied to get the final body pose prediction.
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Method PA-MPJPE BA-MPJPE

GlobalEgoMocap test dataset (Chapter 4)

Mo2Cap2 (Xu et al., 2019) 102.3 74.46

xR-egopose (Tomè et al., 2019) 112.0 87.20

GlobalEgoMocap†
82.06 62.07

EgoPW 81.71 64.87

EgoHMR (Liu et al., 2023b) 85.80 –

SceneEgo 76.50 61.92

Mo2Cap2* (Xu et al., 2019) 78.39 63.48

GlobalEgoMocap*†
75.62 61.06

xR-egopose* (Tomè et al., 2019) 106.3 79.56

EgoPW* 77.95 62.36

SceneEgo* 76.51 61.74

Proposed Method-Single 68.59 55.92

Proposed Method-Refined† 65.83 53.47

Table D.2: Performance of the proposed method on GlobalEgoMocap test
dataset (Chapter 4). The proposed method outperforms all previous state-of-
the-art methods. ∗ denotes the method trained with the datasets in Sec. 7.4.1. †

denotes the temporal-based methods.

Mo2Cap2 test dataset (Xu et al., 2019)

Mo2Cap2 (Xu et al., 2019) 91.16 70.75

xR-egopose (Tomè et al., 2019) 86.85 66.54

EgoPW 83.17 64.33

Ego-STAN† (Park et al., 2023) 102.4 –

SceneEgo 79.65 62.82

Mo2Cap2* (Xu et al., 2019) 79.76 63.53

xR-egopose* (Tomè et al., 2019) 84.92 65.39

EgoPW* 78.01 62.37

SceneEgo* 79.32 62.77

Proposed Method-Single 74.66 59.26

Proposed Method-Refined† 72.63 57.12

Table D.3: Performance of the proposed method on Mo2Cap2 test dataset (Xu
et al., 2019). The proposed method outperforms all previous state-of-the-art
methods. ∗ denotes the method trained with the datasets in Sec. 7.4.1. † denotes
the temporal-based methods.
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Method MPJPE PA-MPJPE

Mo2Cap2* (Xu et al., 2019) 89.75 74.32

GlobalEgoMocap*†
86.44 66.76

xR-egopose* (Tomè et al., 2019) 118.2 94.33

EgoPW* 84.21 63.02

SceneEgo* 87.57 69.46

Proposed Method-Single 66.28 43.14

Proposed Method-Refined 60.32 40.35

Table D.4: Performance of the proposed method on the EgoWholeBody test
datasets. This method outperforms all previous state-of-the-art methods. ∗
denotes the method trained with the datasets in Sec. 7.4.1. † denotes the temporal-
based methods.

d.2.1.2 Training Details

This section introduces the training of the single-frame human body pose
estimation network, i. e.the FisheyeViT and pose regressor with pixel-
aligned 3D heatmap. The ViT network in FisheyeViT is initialized with
the training weight from ViTPose (Xu et al., 2022) and the pose regressor
is initialized with normal distribution, whose mean is 0 and standard
deviation is 1. The network is trained on the combination dataset of
EgoWholeBody and EgoPW. The ratio between the EgoWholeBody and
EgoPW datasets is 9:1. The network is trained for 10 epochs with a batch
size of 128, a learning rate of 1e−4 with the Adam optimizer.

d.2.2 Hand Detection Network

As described in Sec. 7.2.1.3, the EgoWholeBody dataset is used for train-
ing the ViTPose network to regress the heatmap of 2D hand joints. Based
on the 2D hand joint predictions, the center Clh, Crh, and the size dlh,
drh of the square hand bounding boxes can be obtained. The ViTPose
network is used for simplicity of implementation. Other detection meth-
ods can also be used for training the hand detection network. Taking the
left hand as an example, the bounding center Clh is used as the image
patch center in Step 1 of FisheyeViT (Sec. 7.2.1.1) and use the half of
the bounding box size dlh/2 as the offset d in Step 2. After obtaining
the projected points of bounding box center Pc

lh and the bounding box
edge Px

lh on the tangent plane Tlh, the l in Step 3 is setted as two times
of the Euclidean distance between Px

lh and Pc
lh. Following Step 4, the

undistorted hand image crop of the left hand Ilh can be finally obtained.
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The hand detection network is trained for ten epochs with a batch size
of 128 and a learning rate of 1e−4 with the Adam optimizer.

d.2.3 Hand Pose Estimation Network

As described in Sec. 7.2.1.3, the hand-only Pose2Pose network in Hand4Whole
method (Moon et al., 2022) is trained with EgoWholeBody training
dataset to regress the 3D hand pose from hand image crops. During
training, the ground truth 3D hand joint positions are only used as su-
pervision to fine-tune the Pose2Pose network that has been pretrained
on the FreiHAND dataset (Zimmermann et al., 2019). The hand pose
estimation network is fine-tuned for ten epochs with a batch size of 128

and an initial learning rate of 1e−5 with the Adam optimizer.

d.2.4 Diffusion-Based Motion Refinement

In Sec. 7.2.2, the transformer decoder in EDGE (Tseng et al., 2023) is used
as the diffusion denoising network. The music condition in EDGE (Tseng
et al., 2023) is disabled by replacing the music features with a learnable
feature vector that is agnostic to input. The following describes the
training and refinement details of the diffusion model

d.2.4.1 Training Details

This section describes the details of training the DDPM model (Ho et al.,
2020) for learning the whole-body motion prior. Given a whole-body
motion sequence with 196 frames from training datasets (Sec. 7.4.1)
represented with joint locations of the human body (with shape 15 × 3)
and hands (with shape 21 × 3), all poses are transformed to the pelvis-
related coordinate system and align them to make the human body poses
facing forward, obtaining the aligned whole-body motion sequence x.
The motion sequence x is normalized and sent to the DDPM model for
training. During training, a diffusion step t ∈ {0, 1, ..., T − 1} is randomly
sampled, and the diffusion forward process is applied to generate the
noisy motion xt. Here the T is the maximal diffusion step and T is setted
as 1000. Finally, the denoising network is run to obtain the original
motion x̂. The reconstructed human motion x̂ and the original human
motion xt are compared with Eq. 7.4. The network is trained for thirty
epochs with a batch size of 256 and an initial learning rate of 2e−4 with
the Adam optimizer.
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d.2.4.2 Refinement Details

After obtaining the trained diffusion model, Sec. 7.2.2.2 is followed to
refine the input whole-body motion. The following describes how to
obtain the uncertainty values for each joint in the human body and hands.
The 3D heatmap predictions are smoothed using Gaussian smoothing
with a standard deviation of 1. The 3D heatmap values HM at the
predicted joint locations are then obtained using bilinear interpolation.
The heatmap values HM are firstly normalized to range [0, 1] by making
the maximal value of HM equal to 1. The uncertainty values u is obtained
with:

u = 0.05 × (1 − HM) (D.1)

In this case, the maximal uncertainty value is 0.05. This value is empir-
ically defined to limit the effect of the stochastic diffusion process in
motion refinement.

d.3 synthetic dataset comparisons

Compared to other egocentric motion capture training datasets, the EgoW-
holeBody dataset offers several notable advantages (also see Table D.5):
Larger Amount of Frames: EgoWholeBody contains a substantially larger
quantity of frames, providing an extensive and diverse dataset for train-
ing.
Inclusion of Hand Poses: Unlike other datasets, EgoWholeBody includes
hand motion data, making it suitable for egocentric whole-body motion
capture.
High Diversity in Motions and Backgrounds: The dataset captures a
wide range of human motions and diverse background settings, reflecting
real-world scenarios.
Publicly Available Models, Motions, and Backgrounds: The models,
motions, and backgrounds are all publicly available. Additionally, the
data generation pipeline will be made public, enabling researchers to
reproduce or modify the dataset for various different tasks.

These advantages position EgoWholeBody as a valuable resource for
advancing research in egocentric whole-body motion capture.

To show the quality of the synthetic dataset, some examples of the
synthetic EgoWholeMocap dataset are also visualized in Fig. D.1.

d.4 details of evaluation metrics

This section gives a detailed explanation of the evaluation metrics used
in this chapter. Mean Per Joint Position Error (MPJPE) is the mean of
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Training
Dataset

Motion
Diversity

Frame
Numbers

Motion Type Image
Quality

Annotation
Type

EgoPW low 318 k body motion real-
world

pseudo
ground

truth

ECHP (Liu
et al.,
2023a)

low 75 k body motion real-
world

pseudo
ground

truth

Mo2Cap2 (Xu
et al.,
2019)

middle 530 k body motion low ground
truth

xR-
EgoPose (Tomè
et al.,
2019)

middle 380 k body motion realistic ground
truth

EgoGTA low 320 k body motion low ground
truth

EgoWholeBody high 870 k body + hands
motion

realistic ground
truth

Table D.5: Comparison between different training datasets for egocentric body
pose estimation.

Figure D.1: Examples of the synthetic dataset EgoWholeMocap. The upper row
shows the data rendered with Renderpeople models (RenderPeople n.d.), and the
lower row shows the data rendered with SMPL-X models (Pavlakos et al., 2019).
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Euclidean distances for each joint in the predicted and ground truth
poses.

For the Mean Per Joint Position Error with Procrustes Analysis (PA-
MPJPE), the estimated poses are rigidly aligned to the ground truth poses
with Procrustes analysis (Kendall, 1989) and then calculate MPJPE.

The BA-MPJPE, i.e., the MPJPE with aligned bone length, is also
evaluated. For BA-MPJPE, the bone lengths of the predicted poses and
ground truth poses are first resized to match the bone length of a standard
human skeleton. Then, the PA-MPJPE between the two resulting poses is
calculated.

d.5 details of evaluation datasets

Experiments in Sec. 7.4.2 use three evaluation datasets including Sce-
neEgo test dataset (Chapter 6), GlobalEgoMocap test dataset (Chapter 4)
and Mo2Cap2 test dataset (Xu et al., 2019). Here these three datasets are
introduced in detail.

The SceneEgo test dataset contains around 28K frames of 2 persons
performing various motions such as sitting, walking, exercising, reading
a newspaper, and using a computer. This dataset provides ground truth
egocentric camera pose, allowing for the evaluation of MPJPE. It is evenly
divided into training and testing splits. The proposed method is fine-
tuned on the training split before evaluation.

The GlobalEgoMocap test dataset contains 12K frames of two people
captured in the studio. The Mo2Cap2 test dataset (Xu et al., 2019) con-
tains 2.7K frames of two people captured in indoor and outdoor scenes.
These two datasets do not provide ground truth egocentric camera poses.
Therefore, the predicted body poses and ground truth body poses are
first rigidly aligned, and then PA-MPJPE and BA-MPJPE are evaluated.

d.6 the standard deviation of refinement method

As described in Sec. 7.4.2, five samples are generated and the mean and
standard deviations of the MPJPE values are calculated. The results are
shown in Table D.6. The results show that the standard deviations of
the results are all around 0.003 mm, which is quite small. The standard
deviations of the results are assumed to be small for two reasons:

First, the diffusion process is guided by the low-uncertainty joints.
The low-uncertainty joints are more likely to follow the initial motion
estimations xe and guide the diffusion denoising process of other joints
to obtain similar values.
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Dataset MPJPE PA-MPJPE

SceneEgo-Body 57.59±0.003 46.55±0.003

SceneEgo-Hands 19.37±0.002 9.05±0.002

Dataset PA-MPJPE BA-MPJPE

GlobalEgoMocap 65.83±0.003 53.47±0.002

Mo2Cap2
72.63±0.003 57.12±0.003

Table D.6: The mean and standard deviations of the proposed refinement method.
“SceneEgo-Body” and “SceneEgo-Hands” show the body and hand results on
the SceneEgo dataset. “GlobalEgoMocap” and “Mo2Cap2” shows the human
body results on the GlobalEgoMocap and Mo2Cap2 datasets.

Second, according to Eq. D.1, the maximal uncertainty value is 0.05

(the actual uncertainty value can be even smaller), which means that
when k = 0.1 in Eq. 7.6, the w ∼ 1 when t = 100 for all joints:

w = 1/
(

1 + e−0.1(100−1000×0.05)
)
= 0.9933 (D.2)

This shows that when t is large enough, the denoising process is always
initialized by the estimated motion xe and the refinement starts when
t < 100. When t < 100, the Gaussian noise added in Eq. 7.5 is relatively
small. This also means that starting from the diffusion step t = 200 can
accelerate the diffusion refinement process.

d.7 different parameters in weight function

This section analyzes the effectiveness of parameter k in the weight
function Eq. 7.6. If the uncertainty value of one specific joint is 0.02, the
w-t figure is drawn in Fig. D.2. It can be observed that when t → 0,
the weight w is still large when k = 0.01. In this case, the initial pose
predictions xe will significantly affect the final refinement result. When
the k = 1, the weight w ∼ 0 when t < 15, which makes the diffusion
model generate freely without any guidance of the initial joint estimations.
This will make the refined motion largely deviate from the initial joint
estimations. In the proposed method, a moderate k = 0.1 is chosen so
that the diffusion refinement process can be initially guided by the whole-
body pose estimations xe and finally refined through the generation of
diffusion denoising process.

The results under different k values are also shown in Table D.7. The
results show that the accuracy of human body poses is the best when
k = 0.1. It is also observed that the standard deviations become larger
when k is larger. This also demonstrates the above analysis.
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k = 0.01

k = 0.1

k = 1

Figure D.2: The weight function with different hyper-parameters k. The x-axis is
the diffusion time step t and the y-axis is the weight w.

Method MPJPE PA-MPJPE

k=0.01 58.41±0.001 46.92±0.001

k=0.1 57.59±0.003 46.55±0.003

k=1 59.90±0.006 48.57±0.006

Table D.7: Comparison with different k values.

d.8 more visualization results

This section shows more results of the proposed methods in Fig. D.3 and
Fig. D.4.

d.9 comparision with networks for panorama images

Recent studies Coors et al., 2018; Li et al., 2022a; Yang et al., 2023a;
Yang et al., 2023b; Yu et al., 2023 have adopted various approaches to
address fisheye image distortion within deep learning frameworks. Yet,
these strategies are tailored to tasks distinctly different from 3D human
pose estimation, such as object detection Coors et al., 2018 and depth
estimation Li et al., 2022a.

Nevertheless, the FisheyeViT network is compared with two other
methods dealing with camera distortions, the SphereNet Coors et al., 2018

and the OmniFusion Li et al., 2022a. In this experiment, the FisheyeViT is
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Input SceneEgo Proposed-Single Proposed-Refined

Figure D.3: Qualitative comparison on human body pose estimations between
the proposed method and the state-of-the-art SceneEgo (Chapter 6) method. The
red skeleton is the ground truth while the green skeleton is the predicted pose.
The proposed methods predict more accurate body poses.

replaced with the SphereNet and OmniFusion networks. In SphereNet,
the sampling range is limited to the semi-sphere. In OmniFusion, the
output of the transformer network is used as the image features, which
are then fed into the pose regressor. The accuracy of the estimated
human body pose is evaluated on the SceneEgo dataset. The results are
shown in Table D.8, which demonstrates that the FisheyeViT performs
better than the previous methods for the distorted images. This might
caused by the different patch sampling strategies: the proposed method
samples the image patches on the fisheye image uv space, while previous
methods sample the patches on the rθϕ sphere coordinate system. The
proposed method can generate patches that align well with the layout of
egocentric fisheye images and match the design of the pixel-aligned 3D
heatmap as mentioned in the introduction: “the voxels in the 3D heatmap
directly correspond to pixels in 2D features, subsequently linking to
image patches in FisheyeViT”. However, sampling in the rθϕ sphere
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Input Left Hand Hand4Whole Proposed-Single Proposed-Refined
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Figure D.4: Qualitative comparison on hand pose estimation results. The pro-
posed single-view and refined hand poses are more accurate than the poses from
the Hand4Whole (Moon et al., 2022) method. The red skeleton is the ground
truth while the green skeleton is the predicted pose.

Method MPJPE PA-MPJPE

SphereNet (Coors et al., 2018) 90.72 75.07

OmniFusion (Li et al., 2022a) 86.58 70.69

Ours-Single 64.19 50.06

Table D.8: Comparison with Spherenet and Panoformer.

coordinate system will cause discontinuity due to the coordinate singularity
of the sphere coordinate system. For example, the neighboring pixels on
the fisheye image can be assigned to two patches far away from each
other.

d.10 replacing the pixel-aligned 3d heatmap to mlp

In this section, the pose regressor is replaced with the pixel-aligned
3D heatmap with a simple MLP network. The features extracted with
FisheyeViT, with shape (768 × 16 × 16) are firstly flattened and two MLP
layers are further adopted to regress the 3D human body poses. The first
layer contains one fully connected layer with an output dimension of
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1024, one batch normalization layer, and one ReLU activation layer. The
second layer contains one fully connected layer with an output dimension
of 15 × 3. The MPJPE and the PA-MPJPE on the SceneEgo dataset are
130.7 mm and 73.91 mm respectively. This demonstrates the effectiveness
of the egocentric pose regressor with pixel-aligned 3D heatmap.

d.11 compare with gaussian smooth

In this section, the diffusion-based motion refinement method is com-
pared with simple Gaussian smoothing. The MPJPE and the PA-MPJPE
on the SceneEgo dataset are 62.68 mm and 48.87 mm respectively. This
demonstrates that the refinement method performs better than the Gaus-
sian smooth approach. This shows that the proposed method relies on
motion priors to guide the refinement of human motion, making it more
effective than the simple smoothing techniques.
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tical motion capture in everyday surroundings.” In: ACM transactions
on graphics (TOG) 26.3, 35–es.

https://doi.org/10.1109/ICCV.2019.00782
https://doi.org/10.1109/ICCV.2019.00782
https://doi.org/10.1109/ICCV.2019.00782


158 bibliography

Von Marcard, Timo, Roberto Henschel, Michael J Black, Bodo Rosenhahn,
and Gerard Pons-Moll (2018). “Recovering accurate 3d human pose
in the wild using imus and a moving camera.” In: Proceedings of the
European conference on computer vision (ECCV), pp. 601–617.

Von Marcard, Timo, Gerard Pons-Moll, and Bodo Rosenhahn (2016).
“Human pose estimation from video and imus.” In: IEEE transactions
on pattern analysis and machine intelligence 38.8, pp. 1533–1547.

Von Marcard, Timo, Bodo Rosenhahn, Michael J Black, and Gerard Pons-
Moll (2017). “Sparse inertial poser: Automatic 3d human pose estima-
tion from sparse imus.” In: Computer graphics forum. Vol. 36. 2. Wiley
Online Library, pp. 349–360.

Wan, Ziniu, Zhengjia Li, Maoqing Tian, Jianbo Liu, Shuai Yi, and Hong-
sheng Li (2021). “Encoder-decoder with multi-level attention for 3d
human shape and pose estimation.” In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 13033–13042.

Wandt, Bastian and Bodo Rosenhahn (2019). “Repnet: Weakly supervised
training of an adversarial reprojection network for 3d human pose
estimation.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7782–7791.

Wandt, Bastian, Marco Rudolph, Petrissa Zell, Helge Rhodin, and Bodo
Rosenhahn (2021). “CanonPose: Self-supervised monocular 3D human
pose estimation in the wild.” In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13294–13304.

Wang, Chaoyang, Chen Kong, and Simon Lucey (2019). “Distill knowl-
edge from nrsfm for weakly supervised 3d pose learning.” In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 743–752.

Wang, Jian, Zhe Cao, Diogo Luvizon, Lingjie Liu, Kripasindhu Sarkar,
Danhang Tang, Thabo Beeler, and Christian Theobalt (2024). “Egocen-
tric Whole-Body Motion Capture with FisheyeViT and Diffusion-Based
Motion Refinement.” In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition.

Wang, Jian, Lingjie Liu, Weipeng Xu, Kripasindhu Sarkar, Diogo Luvi-
zon, and Christian Theobalt (2022). “Estimating egocentric 3d human
pose in the wild with external weak supervision.” In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 13157–13166.

Wang, Jian, Lingjie Liu, Weipeng Xu, Kripasindhu Sarkar, and Chris-
tian Theobalt (2021). “Estimating egocentric 3d human pose in global
space.” In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 11500–11509.



bibliography 159

Wang, Jian, Diogo Luvizon, Weipeng Xu, Lingjie Liu, Kripasindhu Sarkar,
and Christian Theobalt (2023). “Scene-aware Egocentric 3D Human
Pose Estimation.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13031–13040.

Wang, Jingbo, Sijie Yan, Yuanjun Xiong, and Dahua Lin (2020a). “Motion
guided 3d pose estimation from videos.” In: European conference on
computer vision. Springer, pp. 764–780.

Wang, Jingdong, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng,
Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, et al.
(2020b). “Deep high-resolution representation learning for visual recog-
nition.” In: IEEE transactions on pattern analysis and machine intelligence
43.10, pp. 3349–3364.

Weng, Zhenzhen and Serena Yeung (2021). “Holistic 3d human and
scene mesh estimation from single view images.” In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 334–343.

Winkler, Alexander, Jungdam Won, and Yuting Ye (2022). “Questsim:
Human motion tracking from sparse sensors with simulated avatars.”
In: SIGGRAPH Asia 2022 Conference Papers, pp. 1–8.

Xiang, Donglai, Hanbyul Joo, and Yaser Sheikh (2019). “Monocular total
capture: Posing face, body, and hands in the wild.” In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10965–10974.

Xiao, Bin, Haiping Wu, and Yichen Wei (2018). “Simple Baselines for
Human Pose Estimation and Tracking.” In: European Conference on
Computer Vision (ECCV).

Xu, Weipeng, Avishek Chatterjee, Michael Zollhöfer, Helge Rhodin, Pas-
cal Fua, Hans-Peter Seidel, and Christian Theobalt (2019). “Mo2Cap2:
Real-time Mobile 3D Motion Capture with a Cap-mounted Fisheye
Camera.” In: IEEE Trans. Vis. Comput. Graph. 25.5, pp. 2093–2101. doi:
10.1109/TVCG.2019.2898650. url: https://doi.org/10.1109/TVCG.
2019.2898650.

Xu, Yufei, Jing Zhang, Qiming Zhang, and Dacheng Tao (2022). “Vitpose:
Simple vision transformer baselines for human pose estimation.” In:
Advances in Neural Information Processing Systems 35, pp. 38571–38584.

Yang, Chenhongyi, Anastasia Tkach, Shreyas Hampali, Linguang Zhang,
Elliot J Crowley, and Cem Keskin (2024a). “EgoPoseFormer: A Simple
Baseline for Egocentric 3D Human Pose Estimation.” In: arXiv preprint
arXiv:2403.18080.

Yang, Dianyi, Jiadong Tang, Yu Gao, Yi Yang, and Mengyin Fu (2023a).
“Sector Patch Embedding: An Embedding Module Conforming to The
Distortion Pattern of Fisheye Image.” In: arXiv preprint arXiv:2303.14645.

https://doi.org/10.1109/TVCG.2019.2898650
https://doi.org/10.1109/TVCG.2019.2898650
https://doi.org/10.1109/TVCG.2019.2898650


160 bibliography

Yang, Dongseok, Jiho Kang, Lingni Ma, Joseph Greer, Yuting Ye, and
Sung-Hee Lee (2024b). “DivaTrack: Diverse Bodies and Motions from
Acceleration-Enhanced Three-Point Trackers.” In: Computer Graphics
Forum. Wiley Online Library, e15057.

Yang, Dongseok, Doyeon Kim, and Sung-Hee Lee (2021). “Lobstr: Real-
time lower-body pose prediction from sparse upper-body tracking
signals.” In: Computer Graphics Forum. Vol. 40. 2. Wiley Online Library,
pp. 265–275.

Yang, Shangrong, Chunyu Lin, Kang Liao, and Yao Zhao (2023b). “Dual
diffusion architecture for fisheye image rectification: Synthetic-to-real
generalization.” In: arXiv preprint arXiv:2301.11785.

Yang, Wei, Wanli Ouyang, Xiaolong Wang, Jimmy Ren, Hongsheng Li,
and Xiaogang Wang (2018). “3d human pose estimation in the wild by
adversarial learning.” In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 5255–5264.

Yi, Hongwei, Chun-Hao P Huang, Dimitrios Tzionas, Muhammed Ko-
cabas, Mohamed Hassan, Siyu Tang, Justus Thies, and Michael J Black
(2022a). “Human-aware object placement for visual environment re-
construction.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3959–3970.

Yi, Xinyu, Yuxiao Zhou, Marc Habermann, Vladislav Golyanik, Shaohua
Pan, Christian Theobalt, and Feng Xu (2023). “EgoLocate: Real-time
motion capture, localization, and mapping with sparse body-mounted
sensors.” In: ACM Transactions on Graphics (TOG) 42.4, pp. 1–17.

Yi, Xinyu, Yuxiao Zhou, Marc Habermann, Soshi Shimada, Vladislav
Golyanik, Christian Theobalt, and Feng Xu (2022b). “Physical inertial
poser (pip): Physics-aware real-time human motion tracking from
sparse inertial sensors.” In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13167–13178.

Yi, Xinyu, Yuxiao Zhou, and Feng Xu (2021). “Transpose: Real-time 3d
human translation and pose estimation with six inertial sensors.” In:
ACM Transactions on Graphics (TOG) 40.4, pp. 1–13.

Yu, Fanghua, Xintao Wang, Mingdeng Cao, Gen Li, Ying Shan, and
Chao Dong (2023). “Osrt: Omnidirectional image super-resolution
with distortion-aware transformer.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13283–13292.

Yu, Ri, Hwangpil Park, and Jehee Lee (2021). “Human dynamics from
monocular video with dynamic camera movements.” In: ACM Transac-
tions on Graphics (TOG) 40.6, pp. 1–14.

Yuan, Ye and Kris Kitani (2018). “3d ego-pose estimation via imitation
learning.” In: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 735–750.



bibliography 161

– (2019). “Ego-pose estimation and forecasting as real-time pd control.”
In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 10082–10092.

Yuan, Ye, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan Kautz (2023).
“Physdiff: Physics-guided human motion diffusion model.” In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 16010–16021.

Yuan, Yuhui, Xilin Chen, and Jingdong Wang (2020a). “Object-Contextual
Representations for Semantic Segmentation.” In.

– (2020b). “Object-contextual representations for semantic segmenta-
tion.” In: European conference on computer vision. Springer, pp. 173–190.

Zanfir, Andrei, Eduard Gabriel Bazavan, Hongyi Xu, William T Free-
man, Rahul Sukthankar, and Cristian Sminchisescu (2020). “Weakly
supervised 3d human pose and shape reconstruction with normalizing
flows.” In: Computer Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part VI 16. Springer, pp. 465–
481.

Zanfir, Andrei, Elisabeta Marinoiu, and Cristian Sminchisescu (2018).
“Monocular 3d pose and shape estimation of multiple people in natural
scenes-the importance of multiple scene constraints.” In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 2148–
2157.

Zeiler, Matthew D (2012). “Adadelta: an adaptive learning rate method.”
In: arXiv preprint arXiv:1212.5701.

Zhang, Hongwen, Yating Tian, Xinchi Zhou, Wanli Ouyang, Yebin Liu,
Limin Wang, and Zhenan Sun (2021a). “Pymaf: 3d human pose and
shape regression with pyramidal mesh alignment feedback loop.” In:
Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11446–11456.

Zhang, Jason Y, Panna Felsen, Angjoo Kanazawa, and Jitendra Malik
(2019). “Predicting 3d human dynamics from video.” In: Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 7114–7123.

Zhang, Mingyuan, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying
Guo, Lei Yang, and Ziwei Liu (2024a). “Motiondiffuse: Text-driven
human motion generation with diffusion model.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence.

Zhang, Siwei, Bharat Lal Bhatnagar, Yuanlu Xu, Alexander Winkler,
Petr Kadlecek, Siyu Tang, and Federica Bogo (2024b). “RoHM: Robust
Human Motion Reconstruction via Diffusion.” In: CVPR.

Zhang, Siwei, Qianli Ma, Yan Zhang, Sadegh Aliakbarian, Darren Cosker,
and Siyu Tang (2023a). “Probabilistic Human Mesh Recovery in 3D
Scenes from Egocentric Views.” In: arXiv preprint arXiv:2304.06024.



162 bibliography

Zhang, Siwei, Qianli Ma, Yan Zhang, Zhiyin Qian, Taein Kwon, Marc
Pollefeys, Federica Bogo, and Siyu Tang (2022). “Egobody: Human
body shape and motion of interacting people from head-mounted
devices.” In: European Conference on Computer Vision. Springer, pp. 180–
200.

Zhang, Yahui, Shaodi You, and Theo Gevers (2021b). “Automatic calibra-
tion of the fisheye camera for egocentric 3d human pose estimation
from a single image.” In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 1772–1781.

Zhang, Yu, Songpengcheng Xia, Lei Chu, Jiarui Yang, Qi Wu, and Ling
Pei (2023b). “Dynamic Inertial Poser (DynaIP): Part-Based Motion
Dynamics Learning for Enhanced Human Pose Estimation with Sparse
Inertial Sensors.” In: arXiv preprint arXiv:2312.02196.

Zhao, Dongxu, Zhen Wei, Jisan Mahmud, and Jan-Michael Frahm (2021).
“EgoGlass: Egocentric-View Human Pose Estimation From an Eyeglass
Frame.” In: International Conference on 3D Vision (3DV).

Zheng, Yang, Yanchao Yang, Kaichun Mo, Jiaman Li, Tao Yu, Yebin Liu,
C Karen Liu, and Leonidas J Guibas (2022). “Gimo: Gaze-informed hu-
man motion prediction in context.” In: European Conference on Computer
Vision. Springer, pp. 676–694.

Zhou, B., A. Khosla, Lapedriza. A., A. Oliva, and A. Torralba (2016a).
“Learning Deep Features for Discriminative Localization.” In: CVPR.

Zhou, Xiaowei, Menglong Zhu, Spyridon Leonardos, Konstantinos G
Derpanis, and Kostas Daniilidis (2016b). “Sparseness meets deepness:
3d human pose estimation from monocular video.” In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 4966–4975.

Zhou, Xingyi, Qixing Huang, Xiao Sun, Xiangyang Xue, and Yichen Wei
(2017). “Towards 3d human pose estimation in the wild: a weakly-
supervised approach.” In: Proceedings of the IEEE international conference
on computer vision, pp. 398–407.

Zhou, Yuxiao, Marc Habermann, Ikhsanul Habibie, Ayush Tewari, Chris-
tian Theobalt, and Feng Xu (2021). “Monocular real-time full body
capture with inter-part correlations.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4811–4822.

Zimmermann, Christian, Duygu Ceylan, Jimei Yang, Bryan Russell, Max
Argus, and Thomas Brox (2019). “Freihand: A dataset for markerless
capture of hand pose and shape from single rgb images.” In: Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 813–822.


	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Overview
	1.3 Structure
	1.4 Contributions
	1.5 Publications and Preprints

	2 Related Work
	2.1 Egocentric Human Motion Capture
	2.1.1 Inside-In Egocentric Motion Capture
	2.1.2 Egocentric Motion Capture with Other Setups

	2.2 Dataset for Egocentric Human Motion Capture
	2.2.1 Dataset with Down-facing Cameras
	2.2.2 Dataset with other setups

	2.3 Human Motion Capture with External Cameras/Sensors
	2.3.1 Monocular 3D Human Motion Capture
	2.3.2 Weakly-Supervised 3D Human Pose Estimation
	2.3.3 Whole-Body 3D Human Motion Capture

	2.4 Human Motion Priors for Pose Estimation
	2.5 Scene-aware Human Pose Estimation

	3 Background
	3.1 Fisheye Camera Model
	3.2 Tracking Egocentric Camera

	4 Estimating Egocentric 3D Human Pose in Global Space
	4.1 Introduction
	4.2 Method
	4.2.1 Local Pose Estimation
	4.2.2 Local Pose Optimization
	4.2.3 Global Pose Estimation

	4.3 Experiments
	4.3.1 Datasets
	4.3.2 Evaluation Metrics
	4.3.3 Implementation Details
	4.3.4 Comparison with State-of-the-art Results
	4.3.5 Ablation Study

	4.4 Limitations
	4.5 Conclusion

	5 EgoPW: Estimating Egocentric 3D Human Pose in the Wild
	5.1 Introduction
	5.2 Method
	5.2.1 EgoPW Dataset
	5.2.2 Optimization for Generating Pseudo Labels
	5.2.3 Training Egocentric Pose Estimation Network

	5.3 Experiments
	5.3.1 Datasets
	5.3.2 Evaluation Metrics
	5.3.3 Pseudo Label Generation
	5.3.4 Comparisons on 3D Pose Estimation
	5.3.5 Ablation Study

	5.4 Limitations
	5.5 Conclusion

	6 Scene-aware Egocentric 3D Human Pose Estimation
	6.1 Introduction
	6.2 Method
	6.2.1 Training Dataset
	6.2.2 Scene Depth Estimator
	6.2.3 Scene-aware Egocentric Pose Estimator

	6.3 Experiments
	6.3.1 Evaluation Datasets
	6.3.2 Evaluation Metrics
	6.3.3 Comparisons on 3D Pose Estimation
	6.3.4 Ablation Study

	6.4 Limitation
	6.5 Conclusions

	7 EgoWholeMocap: Egocentric Whole-Body Motion Capture
	7.1 Introduction
	7.2 Method
	7.2.1 Single Image Based Egocentric Pose Estimation
	7.2.2 Diffusion-Based Motion Refinement

	7.3 EgoWholeBody Dataset
	7.4 Experiments
	7.4.1 Datasets and Evaluation Metrics
	7.4.2 Comparisons on Whole-Body Pose Estimation
	7.4.3 Ablation Study

	7.5 Limitation
	7.6 Conclusions

	8 Conclusion
	8.1 Insights
	8.1.1 Motion Prior
	8.1.2 Egocentric Dataset
	8.1.3 Scene-aware Egocentric Motion Capture

	8.2 Challenges and Future Directions
	8.2.1 Egocentric Human Motion Capture
	8.2.2 Egocentric Motion Capture + Large Language Models
	8.2.3 Egocentric Photorealistic Avatar
	8.2.4 Egocentric Motion Capture + Robotics
	8.2.5 Egocentric Motion Capture + Human-Object/Scene Interactions

	8.3 Final Conclusion

	A Appendix for Chapter 4
	A.1 Comparisons on Different Types of Motions
	A.2 The Structure of RNN-based VAEs

	B Appendix for Chapter 5
	B.1 Quantitative Results on Different Motions
	B.2 Qualitative Results
	B.3 Details and Comparisons of EgoPW dataset
	B.4 Network Architecture
	B.4.1 Pose Estimation Network
	B.4.2 Domain Classifier
	B.4.3 Egocentric-external View Classifier

	B.5 Energy Function

	C Appendix for Chapter 6
	C.1 Datasets
	C.1.1 SceneEgo Test Dataset
	C.1.2 EgoGTA Dataset
	C.1.3 EgoPW-Scene Dataset

	C.2 Implementation Details
	C.2.1 Scene Depth Estimator
	C.2.2 V2V Network

	C.3 Evaluation Metrics
	C.4 Ablation Study on test Dataset in Chapter 4

	D Appendix for Chapter 7
	D.1 Full Comparison with Existing Egocentric Pose Estimation Methods
	D.2 Implementation Details
	D.2.1 FisheyeViT and Pose Regressor with Pixel-Aligned 3D Heatmap
	D.2.2 Hand Detection Network
	D.2.3 Hand Pose Estimation Network
	D.2.4 Diffusion-Based Motion Refinement

	D.3 Synthetic Dataset Comparisons
	D.4 Details of Evaluation Metrics
	D.5 Details of Evaluation Datasets
	D.6 The Standard Deviation of Refinement Method
	D.7 Different Parameters in Weight Function
	D.8 More Visualization Results
	D.9 Comparision with networks for panorama images
	D.10 Replacing the Pixel-Aligned 3D Heatmap to MLP
	D.11 Compare with Gaussian Smooth

	 Bibliography

