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Abstract

The model of the X-ray transform from computed tomography can be transferred
to numerous applications, for example by increasing the dimension of the problem.
There are already many publications in which generalizations of this transformation
are investigated. For example, instead of scalar functions, vector or tensor fields
are reconstructed. In addition, there are also treatments of time-varying quantities,
intensity losses due to absorption, or deviations of ray trajectories from exact straight
lines. However, these phenomena have so far been discussed only individually or in
pairs, not all simultaneously.

In the first part of this work, a holistic model of tensor tomographic applications
of any rank and dimension is developed. For this purpose, a generalized beam
transformation is derived that considers absorption and refraction effects as well
as temporal variability. By reformulating the integral equation into a transport
equation, the adjoint problem can be derived. Through the approximation of this
parabolic equation by elliptic equations, its unambiguous solvability is shown. This
makes it possible to develop an efficient algorithm for the reconstruction of tensor
fields, which is then applied to synthetic data generated using the model from the
first part. It turns out that the modified model leads to a significant improvement in
the reconstructions.

vi





Zusammenfassung

Das Modell der Röntgen-Transformation aus der Computertomographie kann auf
zahlreiche Anwendungen übertragen werden, indem beispielsweise die Dimension des
Problems erhöht wird. Es gibt bereits viele Veröffentlichungen, bei denen Verallge-
meinerungen dieser Transformation untersucht werden. Dabei werden zum Beispiel
statt skalaren Funktionen Vektor- oder Tensorfelder rekonstruiert. Hinzu kommen
auch die Behandlungen von zeitlich variierenden Größen, Intensitätsverlusten durch
Absorption, beziehungsweise Abweichungen der Strahlverläufe von exakten Geraden.
Allerdings wurden diese Phänomene bisher nur einzeln oder paarweise diskutiert,
nicht aber alle zur selben Zeit.

In dieser Arbeit wird im ersten Teil ein ganzheitliches Modell tensortomographi-
scher Anwendungen beliebigen Ranges und Dimension ausgearbeitet. Dazu wird
eine verallgemeinerte Strahltransformation hergeleitet, die sowohl Absorptions- und
Brechungseffekte als auch zeitliche Veränderlichkeit berücksichtigt. Durch Umfor-
mulierung der Integralgleichung zu einer Transportgleichung kann das adjungierte
Problem hergeleitet werden. Für die Approximation dieser parabolischen Gleichung
durch elliptische Gleichungen wird dessen eindeutige Lösbarkeit gezeigt. Dadurch ist
es möglich einen effizienten Algorithmus zur Rekonstruktion von Tensorfeldern zu
entwickeln. Dieser wird auf synthetische Daten angewendet, die mithilfe des Modells
aus dem ersten Teil generiert werden. Es stellt sich heraus, dass das modifizierte
Modell zu einer deutlichen Verbesserung der Rekonstruktionen führt.
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Introduction

Inverse problems are a very large part of numerical mathematics. The aim is to
deduce the underlying cause of a system from an observed effect. The direct problem
is often easier to solve because a physical model is known. In the case of inverse
problems, this model has to be inverted to determine the cause of the effect, as in
the case described below. This is not possible without further effort, as the following
two examples show.

Figure 0.1: Sketch of direct/forward and inverse problem

A good example of an inverse problem is the reconstruction of an accident. In this
context, one typically observes the consequences of an accident, such as marks on the
road, damage to vehicles, or injuries to people. The aim could be to retrospectively
determine the exact circumstances and parameters of the accident from these visible
indications of how it happened. This inverse problem often requires complex analysis,
as several factors can influence the accident. These include the speeds of the vehicles,
their positions before and after the collision, the frictional properties of the road and
many other parameters. The physical representation of the course of the accident
therefore corresponds to the model. The cause would be the actual course of the
accident, including the specific actions of the drivers involved, road conditions and
other relevant factors. We take the observable results of the accident, such as marks
on the road, damage to vehicles, and injuries to people, as the effect. The following
problems arise: It could be, for example, that two different accident sequences lead
to identical lanes on the road or the same damage to the vehicles. If no further
information is available, there would be no clear explanation for the accident. Another
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aspect could be that the tracks were falsified due to other external circumstances,
so without this knowledge, there is no logical hypothesis. It could also happen that
tracks that cannot be measured exactly lead to a completely different conclusion. Let
us assume, for example, that the exact position of the tire tracks on the road cannot
be precisely determined due to measurement inaccuracies or other uncertainties. A
minimal deviation in the interpretation of the tracks could lead investigators to
conclude that the vehicle involved was braking when it was accelerating, or that it
was swerving to the left when it was instead swerving to the right.
In mathematical applications, too, it quickly becomes clear that the inverse problem
is often much more difficult to solve. Let us take the simplified approach that the
population of some bacteria behaves according to the following function: At time t
the function

f(t) = 108te−t, t ∈ [0,∞)

gives the number of bacteria present in an observed area.

Figure 0.2: Plot of bacteria population

The function f therefore corresponds to the model with which the number of
bacteria can easily be determined for a specific point in time by simply inserting the
respective value into the function and evaluating everything. Conversely, if you want
to determine the possible point in time for a given number, another problem arises:
No explicit inverse function can be written for this function. If you have enough data
points, the function f can be plotted and you can find an approximation for the
value you are looking for by reading it off. However, the exact time cannot usually
be determined in this way. To obtain the best possible approximation in this case,
you can use the Newton method, for example. This is an iterative procedure which,
under certain conditions, converges at least locally to the required solution. As a
result, a decision must be made at a certain point as to which sequence element you
are satisfied with. For example, as a rule, this happens when the distance between
successive iterations falls below a predetermined value. In the case of a non-injective
function such as f , where there is no unique preimage for certain function values. In
such cases, a selection for the physically most sensible solution must be made based
on a priori information.
These two examples show that even for supposedly simple forward problems, the
corresponding inverse problems can present some difficulties. As mentioned above,
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one of the biggest challenges is dealing with inverse mappings which, if they exist,
are not bijective and continuous. Things become much more complicated when
considering mappings between higher or even infinite-dimensional spaces. Especially
in the latter case, exact inversion formulas can rarely be given. However, if this is
the case, they are usually not continuous. This means that even small measurement
inaccuracies of the effect lead to large differences in the possible cause. In addition,
there may also be several causes that lead to the same result. In the previous example,
this would correspond to the case where the number of bacteria is the same at several
points in time. For complex inverse problems, it, therefore, takes a large number of
theoretical considerations to develop a method that decides in favor of the physically
most sensible solution when several solutions exist and does not react too sensitively
to possible inaccuracies.
In this thesis, we only refer to linear inverse problems, i.e., the effect depends linearly
on the cause. Tomographic problems are a large area of such problems. This involves
sending signals of an acoustic, mechanical, or electromagnetic nature through an
object that cannot be seen from the outside to obtain and visualize information
about its interior. In this work, we deal with the tomography of tensors. In general,
tensors are multi-linear mappings. Tensor tomography refers to the reconstruction of
matrices as representatives of bilinear mappings, i.e., second-rank tensors. However,
vector-valued functions can also be understood as tensors, more precisely as 1st-rank
tensors. This is because vectors v can be interpreted as a linear mapping by ⟨v, ·⟩.
Analogously, scalar functions describe a 0th-rank tensor. It therefore makes sense to
investigate the theory for tensors with maximum degree that appear in applications
and then to obtain information about the treatment of lower rank tensors as simplified
special cases.

Computerized Tomography (CT), often regarded as one of the most classical appli-
cations of the 2D X-ray transform, revolutionized medical diagnostics by enabling
non-invasive visualization of internal anatomical structures. By collecting X-ray
data from various angles and employing mathematical algorithms, CT scanners
reconstruct detailed cross-sectional images, offering clinicians unprecedented insights
into tissues, organs and abnormalities. The inverse problem mathematically involves
determining the absorption coefficient f based on integral data If , given by

If(x, ξ) =
∫
R
f(x+ τξ)dτ, (1)

providing information about the intensity of an outcoming ray at x in direction ξ, cf.
[64].
There are plenty of inverse problems that exhibit a similar integral model to (1). For
example, in Single Photon Emission Computed Tomography (SPECT), the same
formula but with an additional damping term is used but f describes a radioactive
source that is to be determined, c.f. [18] and [37]. But also reconstructions of
higher-dimensional quantities are encountered in certain applications. The field of
vector tomography has evolved from various sources and applications that cover a
wide range of topics and challenges. A pioneering work in this field was done by
Norton in 1988, which stands as a precursor to two-dimensional vector tomography
and is documented in [66]. The image of the vectorial beam transformation is a scalar
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function. This is because instead of the vector field, only projections on the ray’s
direction vector of the propagation are considered. Consequently, all parts of a vector
field that are orthogonal to this direction are ignored. Therefore, this transformation
is only injective for divergence-free vector fields. More detailed information can be
found in [28], [70], [95] and [99]. This theory can be used to visualize blood flows
in human bodies, see [48]. Another major application is the detection of velocity
anomalies of seismic wave propagation in the Earth’s interior, which can be used
to predict earthquakes, see [5], [7] and [17]. In some cases, the consideration of
absorption effects is also important. These then appear as an additional weighting
factor in the integral transformation. This problem, among others, was dealt with
in [15], [44], [63] and [82].[24] and [30] show that this concept can also be applied
to tensor fields. Here, too, analytical results such as injectivity or results regarding
the stability or range of the transformation can be proven, see [3], [8], [21], [72], [73],
[90], [96], [97] and [98]. It is noteworthy that this problem can be reformulated as a
boundary value problem, see [27]. In [25], the unambiguous solvability of the partial
differential equation under certain conditions on the absorption coefficient is shown.
The applications of tensor fields are far-reaching. They can be found, for example, in
the calculation of internal stresses in optic fibers, c.f. [76] and [77], strain tensors in
polycrystalline materials [56], diffusion tensors [71] and in the field of photoelasticity,
see [1],[2],[49] and [55].
In all the sources mentioned so far, it is assumed that the signals move in a straight
line through the object under investigation. In practice, however, there are always
deviations from these lines, although to a small extent in certain cases. This
is particularly the case if the object is inhomogeneous, i.e., consists of several
materials. To take these deviations into account, Riemannian manifolds must be
considered. Their comprehensive theory is for example dealt with in sources [6],
[47] and [88]. In [86] it is explained how time-of-flight measurements can be used
to approximately determine the refractive index inside an object. This also leads
to a better approximation of the signal propagation although there are no more
inversion formulas as in the Euclidean case, see [52]. Here, too, it can be seen that
only the divergence-free components of a field can be reconstructed without taking
absorption into account. There is a large number of numerical results that include
refraction effects, limited to the vector undamped case, c.f. [61], [75], or the scalar
damped case, c.f. [26], [29]. Another aspect that is dealt with in the context of
beam transformations is the time dependence of a field. Sources like [50] and [51] on
theory and [83] and [84] on numerical analysis provide theory on general dynamic
inverse problems. Specifically, e.g. [32], [39], [40], [41] deal with dynamic computed
tomography. The aim is to deal with possible artifacts caused by any movement of
the patient during the scan.
In summary, the above sources have generalized the model of the original X-ray
transformation from (1) by extending the dimension from static scalar to dynamic
tensor fields to be reconstructed and by including both absorption and refraction
effects. This work aims to develop a holistic approach that unifies all these aspects.
In the first chapter, all mathematical theories are introduced, which are necessary
for the modeling of the problem and the numerical implementation. This includes
the theory of inverse problems as operator equations. In particular, it describes how,
at least in theory, reasonable solutions can be computed by iterative methods, even
if the available measured data are subject to errors. After that, some important
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definitions and properties of tensors are given, to be able to describe tensor tomogra-
phy mathematically precisely. The third aspect is an introduction to Riemannian
geometry. This is needed to be able to describe the exact course of the rays in a
medium. In the second chapter, some examples of physical problems in different
dimensions are investigated, which can be modeled with a ray transformation. It
is shown that the transformations can all be brought to a similar form. However,
it also becomes clear that some things such as absorption, time dependence and
refraction effects are not taken into account. All these phenomena are embedded in
the model one after the other. Finally, a closed integral transformation is obtained
again. Although continuity can be proved for this one, unfortunately, the formula
is too complex to give direct inversion formulas. Instead, one derives an equivalent
formulation via a transport equation with appropriate initial and boundary condi-
tions. For this problem, with the help of a perturbation term, we show the existence
of a unique weak solution and thus the well-definiteness of the problem. For the
numerical implementation, using the transport equation, we compute the adjoint
operator, which again consists of the solution of a differential equation. From the
derivation, we also see what the adjoint integral operator looks like. In the last
chapter, we then perform some numerical experiments with both forward and adjoint
operators. For simplicity, we restrict ourselves to the time-independent setting and
concentrate on the reconstruction of vector fields because of better visualization. For
reasons of symmetry, it makes sense to choose a polar grid for the reconstruction of
the fields on an area M . For this purpose, we test which combination of radii and
angles leads to the best results. For certain simple vector fields and an Euclidean
metric (propagation of the waves along straight lines), the forward operator can also
be determined analytically. We use these examples to test the quality of the forward
integral operator. As it turns out, it can be approximated very efficiently with
appropriate quadrature formulas. Then we test the quality of the adjoint operator
by determining the absolute error for different numbers of propagation directions.
After careful analysis, we have identified the most effective grid dimensions. We
generate synthetic data with refraction effects calculated into varying degrees and
then apply noise of varying magnitudes to these data. With these data, we check the
above-mentioned constraint from the derivation of the problem, which only allows
certain relations from refraction and absorption.
Finally, there is given a brief outlook on future research.
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1 Mathematical preliminaries

In the first chapter we provide the basics for our work. Here we first deal with linear
inverse problems. In the second part, definitions and notations from tensor analysis
and Riemannian geometry are given.

1.1 Inverse Problems
In this subsection, we deal with some useful tools from the theory of inverse problems.
These include regularization methods in the form of iterative procedures as well as
the possible acceleration of these calculations. This section is mainly based on the
monographs from [54], [58] and [79]. All other sources are listed as usual.
Inverse problems usually consist of reconstructing causes from observed effects. The
connection between cause and effect can be expressed by the following equation

Af = g. (1.1)

The mathematical model, expressed by a mapping A : X → Y , maps the set of causes
X to the set of effects Y . Almost all inverse problems that are of practical relevance
are ill-posed in the sense of Hadamard [38]. This is the case if at least one of the
following conditions does not apply.

Definition 1.1. Let X and Y be Hilbert spaces, A : X → Y a linear mapping. The
equation Af = g is called properly-posed or well-posed if the following holds:

a) Existence: For every g ∈ Y there is (at least one) f ∈ X such that Af = g.

b) Uniqueness: For every g ∈ Y there is at most one f ∈ X with Af = g.

c) Stability: The inverse mapping A−1 : Y → X is continuous, i.e., the solution f
depends continuously on the data g.

Equations for which (at least) one of these properties does not hold are called ill-posed.

We first need some notations. In the following, we focus on continuous linear
mappings between Hilbert spaces X and Y and define

L(X, Y ) := {B : X → Y |B is linear and ||B|| := sup
||x||X=1

||Bx||Y < ∞}.
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Further, we set

N (A) = {f ∈ X|Af = 0} and R(A) = {Af |f ∈ X}

as the null space and range of A. For a closed subspace U ⊂ X we denote by
PU : X → X the orthogonal projection from X on U . For A ∈ L(X, Y ) there exists
a unique operator A∗ ∈ L(Y,X) which is called the adjoint operator of A satisfying

⟨Ax, y⟩Y = ⟨x,A∗y⟩X for all x ∈ X, y ∈ Y. (1.2)

where ⟨·, ·⟩Y and ⟨·, ·⟩X denote the scalar product in Y , respectively in X.
We will now extend the solution concept for non-bijective operators A. Therefore,
we consider elements f ∈ X that are characterized in the following way:

Theorem 1.2. Let g ∈ Y and A ∈ L(X, Y ). Then the following are equivalent.

a) f ∈ X satisfies Af = PR(A)g.

b) f ∈ X minimizes the functional

J0 = 1
2∥Af − g∥2

Y . (1.3)

c) f ∈ X satiesfies the normal equation

A∗Af = A∗g. (1.4)

Proof. See [79].

This theorem provides a way to cope with operators that are not surjective: If there
is no solution of the operator equation Af = g we seek for one that at least minimizes
the residual ∥Af − g∥Y . For non-injective operators, we make use of the following
statement:

Lemma 1.3. Let g ∈ Y . Then:

a) The set of solutions of the normal equation L(g) = {φ ∈ X|A∗Aφ = A∗g} is
non-empty if and only if g ∈ R(A) ⊕ R(A)⊥.

b) For g ∈ R(A) ⊕ R(A)⊥ there is exactly one element f † on L(g) with a minimal
norm, i.e., ∥f †∥X < ∥φ∥X for all φ ∈ L(g)\{f †}.

Proof. See [79].
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Definition 1.4. The operator A† : D(A†) = R(A) ⊕ R(A)⊥ ⊂ Y → X that maps
any g ∈ D(A†) to the uniquely determined element f † ∈ L(g) with minimal norm,
is called generalized inverse of A ∈ L(X, Y ). We call f † = A†g the minimum-norm
solution of Af = g.

It can easily be verified that f † ∈ N (A)⊥. We arbitrarily selected the element with
the smallest norm from the set L(g). It would also be conceivable to minimize the
distance to a certain element f0 ∈ X. In that case, it is possible to insert some prior
information about the solution as we will see later. The corresponding solution is
also clearly determined. We call it the f0-minimum norm solution and also denote it
by f †. For the f0-minimum norm solution, it holds that

f † = A†g + PN (A)f0. (1.5)

Compact operators are a class of operators that typically lead to ill-posed problems.
If their range is not finite-dimensional their generalized inverse cannot be continuous.

Definition 1.5. Let X and Y be normed spaces. The linear operator A : X → Y is
called compact if one of the following equivalent properties applies:

a) Each bounded set U ⊂ X has a relatively compact image, i.e., A(U) is compact
in Y .

b) Is {φn}n∈N ⊂ X a bounded sequence then the sequence of images {Aφn}n∈N ⊂ Y
has a convergent subsequence.

We set

K(X, Y ) := {A : X → Y |A is linear and compact}.

Theorem 1.6. Let X, Y be Hilbert spaces and A ∈ K(X, Y ). There are a monotonic
decreasing sequence {σj}j∈N ⊂ R+ that is finite or converges to 0, and complete
orthonormal bases {uj}j∈N ⊂ Y of R(A) and {vj}j∈N ⊂ X of N (A)⊥ such that

Avj = σjuj, A∗uj = σjvj for all j ∈ N. (1.6)

Given x ∈ X, Ax can be written as a series expansion as

Ax =
∞∑
j=1

σj⟨x, vj⟩Xuj. (1.7)

Consequently, compact operators can be seen as a generalization of finite dimensional
linear operators (matrices) to infinite dimensional spaces.
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Note that A† is not continuous if dim(R(A)) = ∞ because the (σj)j∈N in (1.7) must
have an accumulation point in 0. This brings us to the discussion of the third bullet
of Definition 1.1:
So far, we know how to treat the first two points of Theorem 1.2. If the operator A
is not surjective, we are satisfied with an appropriate projection, which hopefully
is close enough to a physically meaningful solution. If the operator is not injective,
i.e., there are several solutions to the inverse problem, we consider the one with the
minimum norm or the one that has the smallest distance to another element f0 ∈ X.
What remains is the problem of the discontinuity of the inverse A−1. In reality, we
want to solve a linear operator equation

Af = g, g ∈ R(A),

where we are only given some noisy data gδ with

∥g − gδ∥Y ≤ δ.

We call δ > 0 the noise level. With the definition of a generalized inverse, it was
possible to manage the operator not being bijective. The problem of inverting the
operator continuously remains. In fact, if R(A) ̸= R(A) then the generalized inverse
A† is discontinuous (c.f. [79]). As a remedy, one has to regularize and stabilize the
inverse problem. This can be done by approximating A† by a family of continuous
operators {Rt}t>0 that is defined on Y . From that we need to choose a proper
element from the family {Rtg

δ}t>0 ⊂ X which approximates A†g the best. One may
think of the element Rtoptg

δ that minimizes the error ∥A†g −Rtg
δ∥X but this fails

with the missing knowledge of A†g. All this can be summarized in the following
definition.

Definition 1.7. Let A ∈ L(X, Y ) and {Rt}t>0 be a family of continuous operators
from Y to X with Rt0 = 0. If there is a mapping γ : (0,∞) × Y → (0,∞) such that
for each g ∈ R(A)

sup{∥A†g −Rγ(δ,gδ)g
δ∥X | gδ ∈ Y, ∥g − gδ∥Y ≤ δ} → 0 for δ → 0, (1.8)

then ({Rt}t>0, γ) is called a regularization for A†. The mapping γ is called parameter
choice and satisfies

lim
δ→0

sup{γ(δ, gδ)|gδ ∈ Y, ∥g − gδ∥Y ≤ δ} = 0. (1.9)

There is

a) a priori choices only depending on δ,

b) a posteriori choices depending on δ and gδ.
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Equation (1.8) yields

lim
δ→0

∥Rγ(δ,gδ)g − A†g∥X = 0 for all g ∈ R(A).

From (1.9) it is clear that Γ := {γ(δ, g)|δ > 0, g ∈ R(A)} has an accumulation point
at 0 and hence,

lim
Γ∋λ→0

∥Rλg − A†g∥X = 0 for all g ∈ R(A). (1.10)

We obtain the following lemma.

Lemma 1.8. Let A ∈ L(X, Y ) and ({Rt}t>0, γ) be a regularization for A†. Then,
{Rλ}λ∈Γ converges pointwise to A† on R(A) as λ → 0.

The reconstruction error ∥A†g − Rtg
δ∥X of regularization can be divided into an

approximation error and a data error:

∥A† −Rtg
δ∥X ≤ ∥A†g −Rtg∥X︸ ︷︷ ︸

approximation error

+ ∥Rt(g − gδ)∥X︸ ︷︷ ︸
data error

.

Figure 1.1: Behavior of approximation and data error

Figure 1.1 is a sketch of the typical behavior of the reconstruction error and its
components. For t → 0, the approximation error tends to 0 while the data error
diverges. For t → ∞ it is the opposite way. Therefore, the reconstruction error tends
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to infinity as t → 0 and t → ∞. The important question is how to choose an optimal
regularization parameter topt that minimizes that error.
Some regularization procedures are now presented: The first method is the so-called
Landweber Method. It is based on transforming the normal equation from (1.4) into
a fixed point equation and then solving it iteratively. The regularized solution is
then obtained as the m∗-th iterated of

fm+1 = fm − ωA∗(Afm − gδ), f0 = 0,

where m∗ is the stopping index of the iteration. The relaxation parameter ω > 0
must be chosen to be smaller than 2

∥A∥2 so that the iteration converges according to
Banach’s theorem. Thus γ = 1

m∗ is the regularization parameter. It works similarly
to the iterative Tikhonov regularization, see [11], [42] or [62]. Here, however, instead
of (1.3), the modified functional

Jβ(f) = 1
2∥Af − gδ∥2

Y + β

2 ∥f∥2
X

is considered. The difference is that not only the defect ∥Af − gδ∥Y is minimized but
also the norm of f . Depending on how large β is, the first or the second summand is
weighted more. The larger β is chosen, the smoother the solution becomes. However,
for β → ∞ we naturally move further and further away from the actual physical
solution. It holds for any f ≠ 0 that ⟨J ′′

β (f), f⟩X > 0. Hence, Jβ is positive definite
for any β > 0 and the minimum is guaranteed and unique. The minimizer fβ of Jβ

can be characterized as the solution of the shifted normal equation

(A∗A+ β1)fβ = A∗gδ. (1.11)

It can also be given explicitly for this equation, namely

fβ =
∞∑
j=1

σj
σ2
j + β

⟨gδ, uj⟩Y vj.

This can be verified easily by using (1.6) and (1.7) and plugging fβ into (1.11). Here,
one can see how small singular values are shifted away from 0 which means that the
solution gets smoother for increasing β. In case the singular values are not easy to
compute, one can solve (1.11) iteratively as in Landweber’s method. We obtain the
iteration rule

fm+1 = fm − ω
(
A∗(Afm − gδ) + βfm

)
, f0 = 0.

Let us now return to the question of regularization: How long do we have to iterate
until we have found an optimal solution? In Figure 1.1 we have seen that it makes
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no sense to calculate infinitely many sequence elements. There is a point from which
the defect function increases again. Therefore, we follow the discrepancy principle of
Morozov, which says that we choose the regularization parameters γ = γ(δ) = 1

m∗

for some stopping index m∗ such that

∥Af δm∗ − gδ∥Y ≈ δ.

Definition 1.9. (Morozov’s discrepancy principle) Let τ > 1 be fixed. Choose
m∗ = m∗(δ, gδ) as the well-defined number such that for all m = 1, . . . ,m∗ − 1,

1
2∥Af δm∗ − gδ∥2

Y ≤ τδ <
1
2∥Af δm − gδ∥2

Y .

In [33] and [34] it is proven that for both methods the stopping index m∗(δ, gδ) ∈
O(δ−2). For better results, one has to require some smoothness condition on A†g.
We define

Xν = R(A∗A) ν
2 = {(A∗A) ν

2 z | z ∈ N (A)⊥}, ν ≥ 0.

Therefore, Xν ⊂ Xµ for ν > µ. If g ∈ R(A) and A†g ∈ Xν with ν > 0 then the
stopping index m∗(δ, gδ) obtained by Morozov’s discrepancy principle satisfies

m∗(δ, gδ) = O(δ− 2
2ν+1 ).

But still, especially for small δ > 0 the two methods may converge very slowly.
A faster way to achieve convergence of Landweber’s or Tikhonov’s iteration is the
Nesterov acceleration that was first introduced by Y. Nesterov in his seminal paper
[65]. The basic idea is to add a correction term to the iterative sequence generated
by the iterative algorithm. This correction term is designed to compensate for the
error in the previous iteration and is computed using a linear combination of the
previous two iterations.
Specifically, let fk be the iterative sequence generated by the iterative algorithm, and
let zk be the accelerated sequence generated by a linear combination of the last two
iterates. Then the Nesterov acceleration can be defined by the following update rule:

zm+1 = fm + λkm(fm − fm−1)
fm+1 = zm+1 − ωA∗(Azm+1 − gδ)

where

λkm = m− 1
m+ k − 1

is a weight parameter that depends on the iteration number m. The value of k is
chosen in such a way that the accelerated sequence converges faster than the original
one. For example, [9] and [45] suggest that k = 3 is an appropriate choice.

13



1.2 Riemannian geometry
This section is about the comprehension of curves and tensors on Riemannian
manifolds. Riemannian manifolds are manifolds with a corresponding metric. Their
benefit becomes illustrative when we look at distances on Earth, for example. For two
points on the surface, we can define a distance that is different from the Euclidean
distance. Instead of determining the length of the Euclidean direct line running
through the Earth’s interior, in practice, we measure the length of the shortest curve
on the Earth’s surface that connects the two points. We proceed similarly with
diffractive media: We want to define distances between two points by the course of
the rays in a medium that passes through both points.
We therefore need an alternative concept of distance. This works with Riemannian
manifolds. After we have defined these and understood operators and mappings on
such objects, we will explain how the course of the rays can be calculated given a
metric.
For this chapter, we mainly refer to [36], [74], [87], [94] and [103].

1.2.1 Tensor analysis and Riemannian manifolds
A N -dimensional differentiable manifold or N -manifold is a set M equipped with a
family (Mi)i∈I of subsets such that the following conditions are satisfied:

• M = ⋃
i∈IMi,

• for each i ∈ I there is an injective mapping (a so-called chart) φi : Mi → RN

such that φi(Mi) ⊂ RN is open,

• for Mi ∩Mj ̸= ∅ is φi(Mi ∩Mj) ⊂ RN open, and the composition

φj ◦ φ−1
i : φi(Mi ∩Mj) → φj(Mi ∩Mj)

is differentiable for all i, j = 1, . . . , N .

We call the mappings φ−1
i parameterizations. The definition of a N -dimensional

differentiable manifold is illustrated in Figure 1.2.
Next, we want to consider vector fields on such a manifold. In the N -dimensional
real space, one can define them easily by mapping each point p to a N -dimensional
vector v(p). Such a vector points in a direction and has a specific length. In that way,
we can describe, for example, velocity fields of fluids. The reason for generalizing
this definition is that we want to describe refractional media.
For a better understanding, we first assume that the manifold M is a two-dimensional
spherical surface embedded in three-dimensional space. At every point p on this
spherical surface, we can imagine a flat two-dimensional plane that touches the
sphere at p. We call this plane tangent space. It contains all the velocity vectors that
can be used to walk through p on the surface. Let γ : R → R3 be a differentiable
curve on the attached surface with γ(0) = p. Then,
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Figure 1.2: Illustration of a manifold

d
dτ γ(τ)

∣∣∣∣
τ=0

= lim
τ→0

γ(τ) − γ(0)
τ

is a tangent vector in p. But on a manifold, the difference γ(τ) − γ(0) is not defined
at all. We can only define the tangent space here by embedding the vectors γ(τ)
and γ(0) into R3 and also obtain the difference as a 3-dimensional vector. We now
want to understand how the tangent space can also be defined without a surrounding
space. For this, we need the notion of a directional derivative. Let ϕ : M → R be
a scalar function. The directional derivative is used to indicate with which rate ϕ
in p ∈ M changes in direction ξ. To do this, we choose a curve γ : R → M on the
surface such that γ(0) = p and γ̇(0) = ξ. Then, the directional derivative is given by

d
dτ ϕ(γ(τ))

∣∣∣∣
τ=0

.

Thus, we have a one-to-one mapping of the directional derivative to the tangential
vector ξ. Since ξ = d

dτ γ(τ)
∣∣∣∣
τ=0

can not be defined without the embedding, we define
for arbitrary N -manifolds M the tangential vector ξ(p) as an operator as follows

ξ(p)ϕ = d
dτ ϕ(γ(τ))

∣∣∣∣
τ=0

, (1.12)
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which thus assigns a real number to a scalar function in p. Next, assuming that one
chart φ covers M completely, we use (1.12) to compute

ξ(p)ϕ = d
dτ (ϕ ◦ φ−1 ◦ φ ◦ γ)(τ)

∣∣∣∣
τ=0

=
N∑
i=1

∂(ϕ ◦ φ−1)
∂xi

∣∣∣∣
φ(p)

· d
dτ (φ ◦ γ)i(τ)

∣∣∣∣
τ=0

. (1.13)

Setting

ξi(p) := d
dτ (φ ◦ γ)i(τ)

∣∣∣∣
τ=0

and defining

∂

∂xi

∣∣∣∣
p
ϕ := ∂(ϕ ◦ φ−1)

∂xi

∣∣∣∣
φ
(φ(p))

we obtain a shorter representation for ξ(p):

ξ(p) =
N∑
i=1

ξi
∂

∂xi

∣∣∣∣
p
.

The operators

∂

∂x1

∣∣∣∣
p
, . . . ,

∂

∂xN

∣∣∣∣
p

form a basis of the tangent space TpM , each of them pointing in the direction of one
changing coordinate while all others are constant. Consequently, vector fields ξ on
M can be expressed by

ξ =
N∑
i=1

ξi
∂

∂xi
. (1.14)

Note that we used subindices for the basis vectors and superindices for the components
to avoid future confusion. While the definition of the tangent vectors is independent
of φ, the representation in the basis, however, obviously depends on the respective
coordinate system. Let us now look at how the representation behaves after a change
of coordinates. Let ψ be another chart with coordinates x̂i(p). Then the components
ξi(p) can be written as
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ξi(p) = d
dτ (φ ◦ γ)i(τ)

∣∣∣∣
τ=0

= d
dτ (φ ◦ ψ−1 ◦ ψ ◦ γ)i(τ)

∣∣∣∣
τ=0

=
N∑
i=1

(φ ◦ ψ−1)i
∂x̂j

∣∣∣∣
ψ(p)

d
dτ (ψ ◦ γ)j(τ)

∣∣∣∣
τ=0

=
N∑
j=1

∂xi
∂x̂j

∣∣∣∣
ψ(p)

ξ̂j(p) (1.15)

where ξ̂j(p) are the components in the new coordinates. Hence, we also have

ξ̂j(p) =
N∑
i=1

∂x̂j
∂xi

ξi(p). (1.16)

We call such a transformation behavior like that of the components of the tangential
vectors in (1.16) contravariant and in the following, we continue to characterize it
with the superindex. The reason for this notation is that there are also quantities
which are opposite. We now want to define the cotangent space T ′

pM , i.e., the dual
space to the tangent space TpM . This space contains all linear mappings from TpM
into the real numbers. To do this, let ϕ again be a scalar function on M defined in a
neighborhood of p, and let ξ(p) be a tangent vector in p. Then the cotangent vector
dϕ(p) is given by

dϕ(p)ξ(p) := ξ(p)ϕ.

In the definition of the tangent vector, the function ϕ is arbitrary and the uniqueness
of the directional derivative depends on the curve γ. Here, γ and, therefore, ξ(p)
are arbitrary and the function ϕ defines the cotangent vector. In order to find a
representation of dϕ(p) in a proper basis, we compute

dϕ(p)ξ(p) = ξ(p)ϕ =
(

N∑
i=1

ξi(p) ∂

∂xi

∣∣∣∣
p

)
ϕ.

Defining the basis dx1, . . . , dxN of the cotangent space by

dxi|pξ(p) := ξi(p),

we conclude that

dxj|p
(
∂

∂xi

∣∣∣∣
p

)
= δji . (1.17)

17



Using (1.13), we can write

dϕ(p) =
N∑
i=1

∂(ϕ ◦ φ−1)
∂xi

∣∣∣∣
φ(p)

dxi|p.

Note that for any cotangential vector

ω(p) =
N∑
i=1

ωidxi|p (1.18)

and fixed p we find a scalar function ϕ such that

ω(p) = dϕ(p)

by demanding that

ωi(p) = ∂(ϕ ◦ φ−1)
∂xi

∣∣∣∣
ψ(p)

.

In contrast to (1.14), we use superindices for the cotangent basis vectors and
subindices for the components. Since the right-hand side of (1.17) is constant
and does not depend on the choice of variables, the components ωi(p) must transform
in the opposite direction, i.e., using the same chart and local variables as in (1.15),
we get the new components

ω̂i(p) =
N∑
j=1

∂xi
∂x̂j

ωj(p). (1.19)

We call such behavior of transforming components as in (1.19) covariant.
Let us introduce Einstein’s convention which means that any unrepeated suffix in a
term is understood to take all the values 1, 2, . . . , N whereas in the repeated case
the suffix leads to a summation over 1, 2, . . . , N . Hence, (1.19) can be expressed by

ω̂i(p) = ∂xi
∂x̂j

ωj(p).

The understanding of how tangent and cotangent vectors behave, leads to the
definition of tensors, i.e., multilinear mappings, acting on tangent and cotangent
spaces. A s-fold covariant and r-fold contravariant tensor or (r, s)-tensor for short,
defined at point p of a differentiable manifold M is a multilinear mapping
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Tp : (T ′
pM) × · · · × (T ′

pM)︸ ︷︷ ︸
r times

× (TpM) × · · · × (TpM)︸ ︷︷ ︸
s times

→ R.

The space of all these (r, s)-tensors has the canonical basis

(
∂

∂xi1

∣∣∣∣
p

⊗ · · · ⊗ ∂

∂xir

∣∣∣∣
p

⊗ dxj1|p ⊗ · · · ⊗ dxjs |p
)
i1,...,ir,j1,...,js=1,...,N

such that

(
∂

∂xi1

∣∣∣∣
p

⊗ · · · ⊗ dxjs
)(

dxk1 , . . . , dxkr ,
∂

∂xl1
, . . . ,

∂

∂xls

)
:= δk1

i1 · · · · · δkr
ir · δj1l1 · · · · · δjsls .

This means that

Tp = T i1,...,ir
j1,...,js ·

(
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

)

has the coefficients

T i1,...,ir
j1,...,js = Tp

(
dxi1 , . . . , dxir , ∂

∂xj1
, . . . ,

∂

∂xjs

)
.

Due to (1.16) and (1.19), these coefficients transform as follows after changing
variables:

T̂ i1,...,ir
j1,...,js = ∂xk1

∂x̂i1
· · · ∂xkr

∂x̂ir

∂x̂j1
∂xl1

· · · ∂x̂js
∂xls

T k1,...,kr

l1,...,ls .

This transformation leads to the fact that for a (0,m)-tensor A and a (m, 0)-tensor
B the expression Ai1,...,imBi1,...,im is invariant, i.e., it does not depend on the choice
of variables. We verify that by the following computation

Âi1,...,imB̂i1,...,im =
(

Ap1,...,pm

∂xp1

∂x̂i1
· · · ∂xpm

∂x̂im

)(
Bq1,...,qm

∂x̂i1
∂xq1

· · · ∂x̂im
∂xqm

)
= Ap1,...,imBq1,...,qmδp1

q1 · · · δpm
qm

= Ap1,...,imBp1,...,pm .
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To shorten longer expressions somewhat, we also sometimes use the notation of the
inner product, i.e.,

⟨A,B⟩ := Ai1,...,imBi1,...,im .

It will always be clear from the context whether the pairing meant by ⟨·, ·⟩ is this
pairing or a scalar product.

Next, we summarize the tangent and cotangent spaces for all p ∈ M in the following
way:

TM = {(p, ξ)|p ∈ M, ξ ∈ TpM},
T ′M = {(p, ξ)|p ∈ M, ξ ∈ T ′

pM}.

Based on this one can define τM = (TM, π,M) as the tangent bundle and τ ′
M =

(T ′M,π′,M) as the cotangent bundle on M , where

π : TM → M,

π′ : T ′M → M

are corresponding projections to M . For integers r, s ≥ 0 we set τ rsM as the product

τ rsM = τ ′
M ⊗ · · · ⊗ τ ′

M ⊗ τM ⊗ · · · ⊗ τM ,

where the factor τM is repeated r times and τ ′
M is repeated s times. On this occasion,

we set the space of all symmetric covariant tensors of rank m as Smτ ′
M . The symmetry

here means that the tensor is invariant under the interchange of two indices and thus
invariant under all arbitrary permutations. We will use this set in the next chapter.

In the following, we will give an example of a (0, 2)-tensor, the so-called metric tensor,
which will give us a tool for computing distances on the manifold. Let {x1, . . . , xN}
be Cartesian coordinate system and {x̂1, . . . , x̂N} some local coordinate system at a
point p on a manifold M . Writing (e1, . . . , eN) for the canonical orthonormal basis
of TpM embedded into RN , we get the tangent vectors ∂1, . . . , ∂N by

∂i = ∂xk
∂x̂i

ek.

The Euclidean product

⟨∂i, ∂j⟩ =
〈
∂xk
∂x̂i

ek,
∂xl
∂x̂j

el

〉
= ∂xk
∂x̂i

∂xk
∂x̂j

= gij (1.20)
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yields the components of the metric (0, 2)-tensor

gp =
N∑

i,j=1
gij(p)dxi ⊗ dxj, (1.21)

where gij has the matrix representation

(gij(p)) =



〈
∂x
∂x̂1
, ∂x
∂x̂1

〉
· · ·

〈
∂x
∂x̂1
, ∂x
∂x̂N

〉
... . . . ...〈

∂x
∂x̂N

, ∂x
∂x̂1

〉
· · ·

〈
∂x
∂x̂N

, ∂x
∂x̂N

〉
 .

Analogously, for the contravariant basis {∂k}, we compute for each of the x̂i(x1, . . . , xN )
the gradient

x̂i(x1, . . . , xN) = ∂x̂i
∂xk

ek = ∂i.

Hence,

∂i = ∂x̂i
∂xk

ek = ∂x̂i
∂xk

ek.

Thus, we obtain the components gij of the contravariant metric tensor by

⟨∂i, ∂j⟩ = ∂x̂i
∂xk

∂x̂j
∂xk

= gij. (1.22)

Using (1.20) and (1.22), we observe that

gijg
jk = ∂xm

∂x̂i

∂xm
∂x̂j

∂x̂j
∂xl

∂x̂k
∂xl

= δki . (1.23)

This equation will be a useful tool for later calculations.
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Finally, it is possible to define a Riemannian manifold:

Let M be a N -dimensional differentiable manifold. A Riemannian metric g on M is
a mapping p 7→ gp where each gp is an element of C∞

0 (S2τ ′
M), i.e., each

gp : TpM × TpM → R

fulfills the following three conditions:

• gp(X, Y ) = gp(Y,X) for all X, Y ∈ TpM

• gp(X,X) > 0 for all X ̸= 0

• the coefficients gij are differentiable functions for any local representation (i.e.,
in every chart)

gp =
N∑

i,j=1
gij(p) · dxi|p ⊗ dxj|p. (1.24)

Note that the metric tensor defined in (1.21) satisfies all the conditions of a Rieman-
nian metric since the matrix (gij) = ∂i ⊗ ∂j is positive definite. The pair (M, g) is
called Riemannian manifold.

On a Riemannian manifold, the metric tensor defines for any p ∈ M a scalar product
on TpM . Therefore, it is possible to calculate the length of a tangent vector and the
angle between two elements of (TpM).

1.2.2 Differential operators on Riemannian manifolds
This subsection is about computing differential operators of a Riemannian manifold
(M, g). We refer to [46] and [59]. Let V = vi∂i be a vector field on M . We write the
gradient of a scalar function u on M at p as ∇u(p) = ai∂i for some coefficients ai.
For a given curve γ : (−ε, ε) → M with γ(0) = p and γ̇(0) = ξ we write

dup(ξ) = d
dτ u(γ(τ))

∣∣∣∣
τ=0

for the directional derivative of u in direction ξ. Choosing any local chart φ going
through p we can define ũ := u ◦ φ−1 and, by the chain rule, it holds

∂ũ

∂xi
= ∂(u ◦ φ−1)

∂xi
= du

(
∂φ−1

∂xi

)
= du(∂i)

and
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dup(v) = vidup(∂i) = vi
∂ũ

∂xi
= gijv

iaj.

It follows with (1.23) that

∂ũ

∂xi
= gija

j ⇒ ai = gij
∂ũ

∂xj
.

and therefore,

∇u = gij
∂ũ

∂xj
∂i. (1.25)

The next step is to find a formula for the divergence of a vector field. For this
purpose, we use the product rule for a scalar function u and vector field f

div(u · f) = ⟨∇u, f⟩ + u · divf

and find by Gauss’s theorem that

∫
RN
u · divfdx = −

∫
RN

⟨∇u, f⟩dx

for any u ∈ C∞
0 (RN ). This can be transferred to Riemannian manifolds: Considering

a manifold M , we have

∫
M
udivfdV = −

∫
M
g(∇u, f)dV

with the volume element dV =
√

detg dx. We obtain

∫
M
ũdivf

√
detg dx = −

∫
M

∂ũ

∂xi
f i
√

detg dx

=
∫
M
ũ
∂

∂xi

(
f i
√

detg
)

dx.

Since u is chosen arbitrarily, we conclude

divf = 1√
detg

∂

∂xi

(
f i
√

detg
)
.
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Knowing how to compute the gradient and the divergence yields the so-called
Laplace-Beltrami operator applied on a scalar function u:

∆u = div∇u = div
(
gij

∂ũ

∂xj
∂i

)
= 1√

detg
∂

∂xi

(
gij
√

detg ∂u
∂xj

)
(1.26)

which coincides with the well-known Laplacian for g in the Euclidean case.

1.2.3 Covariant derivative and geodesic equation
In the previous subsection, we discussed how to compute tangent vectors via di-
rectional derivatives on a Riemannian manifold. We want to extend this theory to
calculate directional derivatives of vector fields. Using this we will be able to find a
condition for curves on such a manifold to have a constant velocity.
Let Y be a differentiable tangential vector field defined on an N -dimensional Rie-
mannian manifold (M, g) and let ξ ∈ TpM for fixed p. We define the directional
derivative DξY |p of Y in direction ξ by

DξY |p := d
dτ Y (γ(τ))

∣∣∣∣
τ=0

(1.27)

where γ : (−ϵ, ϵ) → M is a curve with tangent vector ξ in γ(0) = p. As discussed
before, the vector DξY |p is not necessarily in TpM . That is why we consider the
covariant derivative ∇ξY which is the projection of DξY |p on TpM :

∇ξY :=
N∑
m=1

⟨DξY, em⟩em,

where e1, . . . , eN form an orthonormal basis of TpM .
Let f : RN → M be a local parameterization of the N -dimensional manifold M .
Then, we can identify the basis vectors {∂i} by

∂i=̂
∂f

∂xi
.

Therefore, we obtain for p = f(u)

DXY |p = DY |u((Df)−1(X))

and, in particular,

D ∂f
∂xi

∂f

∂xj
= ∂2f

∂xi∂xj
. (1.28)
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Evaluating this projection for two tangent basis vectors X = ∂i and Y = ∂j, we
obtain with (1.20)

∇∂i
∂j = ⟨D∂i

∂j, em⟩em

= ⟨D∂i
∂j,

∂x̂l
∂xm

∂l⟩
∂x̂k
∂xm

∂k

= gkl⟨D∂i
∂j, ∂l⟩∂k. (1.29)

We introduce the Christoffel symbols Γkij as the components of the upper derivative
with respect to the basis ∂1, . . . , ∂N , i.e.,

∇∂i
∂j = Γkij∂k. (1.30)

Consequently,

Γkij = gkl⟨D∂i
∂j, ∂l⟩.

We verify that in local coordinates this can be written as

Γkij = 1
2

N∑
l=1

gkl
(
∂gjl
∂xi

+ ∂gli
∂xj

− ∂gij
∂xl

)
for 1 ≤ i, j, k ≤ N. (1.31)

To prove this, we compute the terms on the right side:

∂gjl
∂xi

= ⟨D∂i
∂j, ∂l⟩ + ⟨∂j, D∂i

∂l⟩

∂gli
∂xj

= ⟨D∂j
∂l, ∂i⟩ + ⟨∂l, D∂j

∂i⟩

−∂gij
∂xl

= −⟨D∂l
∂i, ∂j⟩ − ⟨∂i, D∂l

∂j⟩.

Using (1.28), we obtain

Γkij = 1
2

N∑
l=1

gkl
(
∂gjl
∂xi

+ ∂gli
∂xj

− ∂gij
∂xl

)
= gkl⟨D∂i

∂j, ∂l⟩

and thus, by (1.29),

Γkij∂k = gkl⟨D∂i
∂j, ∂l⟩∂k = ∇∂i

∂j.
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Let γ be a curve on M . Then, in the Euclidean setting, Dγ̇ γ̇ = γ̈ is the accelaration
vector of γ within a manifold. We want to consider curves on the manifold for which
the tangential component of the acceleration vector, and thus the acceleration within
the manifold, vanishes. Thus, we demand that

Dγ̇ γ̇ = ∇γ̇ γ̇ = 0. (1.32)

Let γ̇ = γ̇i∂i be written in local coordinates. Then,

∇γ̇ γ̇ = ∇γ̇i∂i
(γ̇j∂j)

= γ̇i∇∂i
(γ̇j∂j)

= γ̇i
(
∂γ̇j

∂γi
∂j + γ̇j∇∂i

∂j

)
.

Using (1.30) we obtain

∇γ̇ γ̇ = γ̇i
(
∂γ̇j

∂γi
∂j + γ̇jΓkij∂k

)

= γ̇i
(
∂γ̇k

∂γi
+ γ̇jΓkij

)
∂k

=
(
γ̈k + Γkij γ̇iγ̇j

)
∂k.

Extracting the coefficients results in the following system of differential equation, we
get the so-called geodesic equation:

γ̈k + Γkij(γ)γ̇iγ̇j = 0, k = 1, . . . , N.

We note that if ∇γ̇ γ̇ = 0, then

∇γ̇⟨γ̇, γ̇⟩ = 2⟨∇γ̇ γ̇, γ̇⟩ = 0

and therefore, ∥γ̇∥ must be constant with respect to the metric g. The reason why
we consider geodesic curves is that all shortest connections between two points in
the manifold are geodesics. The opposite is not necessarily true. To explain this
statement, the next section is about the fact that a curve satisfies the geodesic
equation if it is the shortest connection between two points. For this purpose, we
need to introduce the Lagrange formalism.
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1.2.4 Lagrange formalism and geodesic equation
This section aims to derive a condition for a curve on a Riemannian manifold being
the shortest connection between two points. The derivation is based on [10], [53] and
[102]. First, we need an expression for the length of the curve.
Let γ be a curve on a Riemannian manifold (M, g) that is parametrized by the arc
length. Let A = γ(s0) be the start point and B = γ(s1) be the end point. Then, the
time of propagation is given by

T [γ] =
∫
γ

ds =
∫ B

A
ds =

∫ s1

s0

∥∥∥∥dγ
ds

∥∥∥∥ds (1.33)

with the arc measure ds. Using (1.24), we get

T [γ] =
∫ s1

s0

∥∥∥∥dγ
ds

∥∥∥∥ds
=
∫ s1

s0

√√√√gγ(s)

(
dγ
ds ,

dγ
ds

)
ds

=
∫ s1

s0

√√√√gij(γ(s))dxi|γ(s)

(
dγ
ds

)
dxj|γ(s)

(
dγ
ds

)
ds

=
∫ s1

s0

√
gij(γ(s))dγi

ds
dγj
ds ds. (1.34)

For simplicity, we define

L

(
γ(s), dγ

ds

)
:=
√
gij(γ(s))dγi

ds
dγj
ds = 1.

The necessary condition for the existence of a local extremum of the functional T for
a curve γ can be interpreted as follows:

• The differential of the functional T at the point γ is zero.

• The functional T is stationary at the point γ, that is, it does not change for a
function that lies in the infinitesimal neighborhood of the curve γ and coincides
with γ at the points A and B.

As a symbol for the type of variation described above, we use δ and can write the
differential of L as

δL

(
γ(s), dγ

ds

)
=

N∑
l=1

∂L

∂γl
δγl +

N∑
l=1

∂L

∂
(

dγl

ds

)δ (dγl
ds

)
.
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We calculate the variation δT :

δT [γ] = δT

γ1(s), . . . , γN(s), dγ1

ds (s), . . . , dγN
ds (s)



=
∫ s1

s0

 N∑
l=1

∂L

∂γl
δγl +

N∑
l=1

∂L

∂
(

dγl

ds

)δ (dγl
ds

) ds

=
N∑
l=1

∂L

∂
(

dγl

ds

)δγl
∣∣∣∣∣∣
s1

s0

+
∫ s1

s0

 N∑
l=1

∂L

∂γl
δγl −

N∑
l=1

d
ds

∂L

∂
(

dγl

ds

)δγl
 ds.

The fact that δγ(s0) = δγ(s1) = 0 yields the condition

∫ s1

s0

 N∑
l=1

 ∂L
∂γl

− d
ds

∂L

∂
(

dγl

ds

)
 δγlds = 0.

Since the variations δγl for l = 1, . . . , N are arbitrary we obtain the Euler-Lagrange
equations

∂L

∂γl
− d

ds
∂L

∂
(

dγl

ds

) = 0, l = 1, . . . , N. (1.35)

To obtain an explicit equation for γ we compute

∂L

∂
(

dγl

ds

) = 1
2L

gij ∂
(

dγi

ds

)
∂
(

dγl

ds

) (dγj
ds

)
+ gij

(
dγi
ds

)
∂
(

dγj

ds

)
∂
(

dγl

ds

)


= 1
2L

(
gijδ

i
l

(
dγj
ds

)
+ gij

(
dγi
ds

)
δjl

)

= 1
2L

(
glj

(
dγj
ds

)
+ gil

(
dγi
ds

))

= 1
L
glj

(
dγj
ds

)
,

where we used the symmetry of g. Therefore,
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d
ds

 ∂L

∂
(

dγl

ds

)
 = − 1

L2
dL
ds glj

(
dγj
ds

)
+ 1
L

dglj
ds

(
dγj
ds

)
+ 1
L
glj

(
d2γj

ds2

)

= − 1
L2

dL
ds glj

(
dγj
ds

)
+ 1
L

∂glj
∂γi

γ̇i
(

dγj
ds

)
+ 1
L
glj

(
d2γj

ds2

)

= ∂glj
∂γi

(
dγi
ds

)(
dγj
ds

)
+ glj

(
d2γj

ds2

)

where, in the last step, we applied that L ≡ 1. Computing the derivatives of L with
respect to γl, we get

∂L

∂γl
= 1

2L
∂gij
∂γl

dγi
ds

(
dγj
ds

)
= 1

2
∂gij
∂γl

(
dγi
ds

)(
dγj
ds

)

and hence, (1.35) becomes

0 = ∂glj
∂γi

(
dγi
ds

)(
dγj
ds

)
+ glj

(
d2γj

ds2

)
− 1

2
∂gij
∂γl

(
dγi
ds

)(
dγj
ds

)

= glj

(
d2γj

ds2

)
+
(
∂glj
∂γi

− 1
2
∂gij
∂γl

)(
dγi
ds

)(
dγj
ds

)
. (1.36)

By using that

∂glj
∂γi

(
dγi
ds

)(
dγj
ds

)
= 1

2

(
∂glj
∂γi

+ ∂gjl
∂γi

)(
dγi
ds

)(
dγj
ds

)

= 1
2

(
∂glj
∂γi

+ ∂gil
∂γj

)(
dγi
ds

)(
dγj
ds

)

we can rewrite (1.36) as

glj

(
d2γj

ds2

)
+ 1

2

(
∂glj
∂γi

+ ∂gil
∂γj

− ∂gij
∂γl

)(
dγi
ds

)(
dγj
ds

)
= 0.

Multiplying both sides with gkl, and using that gklglj = δkj , we finally arrive at the
geodesic equation

d2γk

ds2 + Γkij
dγi
ds

dγj
ds = 0, (1.37)
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where

Γkij = 1
2g

kl

(
∂glj
∂γi

+ ∂gil
∂γj

− ∂gij
∂γl

)

are the Christoffel symbols from (1.31). From this, it follows that the shortest
connections between two points on a manifold correspond to the curves whose
acceleration vanishes along their direction.
Using the two preceding derivations of the geodesic differential equations, several
things can be established: First, they are solved by curves with a constant velocity
vector field along the curve. Thus, a particle moving along such a curve would not
experience any acceleration. Second, the equations are solved by curves which locally
give the shortest connection between points on the manifold. To speak globally of a
shortest connection, certain assumptions must be made on the metric. This is only
the case if the equation has exactly one solution, which in turn is directly linked to
the metric g by the Christoffel symbols. In the next section, we will see that the
metric underlying our applications satisfies the necessary properties.
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2 Inverse problem of dynamic ten-
sor tomography

This chapter deals with the inverse problem of dynamic tensor tomography. First,
the direct problem from a physical point of view is modeled. It will be shown that
there are two ways to describe this direct problem. In particular, we will address the
question which conditions must apply so that there is an unambiguous correlation
between the investigated quantity and the measurement data. Once this question
is clarified, we formulate the inverse problem as an operator equation. We derive
the adjoint operator, which, as seen in Chapter 1, is needed for the inversion of the
operator, i.e., the solution of the problem.

2.1 Modeling of the direct problem as a ray trans-
form

In this section, we are concerned with modeling the forward operator, i.e., the direct
problem. In general, the beam transformation is to be derived for tensors of arbitrary
ranks. In the first part, we give some examples of applications for ray transforms
for tensor fields of different ranks. Here, we assume that the rays are sent through
a homogeneous medium. This means that the propagation is always along straight
lines. Although the applications are very different in their dimension, the formulae
look quite similar. In the second section, the phenomena of the absorption of the
signals and the temporal change of the examined sizes are included. Then it is a
question of extending the model found in the first subsection to inhomogeneous
media. For this purpose, the theory of Riemannian manifolds and geodesics from
Section 1.2 is used.

2.1.1 Applications of ray transforms for different tensor
ranks

First, we begin with the simplest case: by the term "tensor" we also mean, in
particular, tensors of 0th degree and 1st degree, i.e., scalar functions and vector
fields, respectively. We will explain the former with the application example of
single photon emission computed tomography (SPECT). It will be shown that the
collected data are given as the output of a line integral. It is useful to already
include absorption effects here. This will be reflected in a corresponding factor in
the integrand. Subsequently, we extend this model to vector fields. As a classical
example of vector tomography, we consider tumor detection. By measuring the flow
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velocity of blood inside a human body, tumors can be identified. Again, we will
consider absorption phenomena. It will turn out that the integral formula obtained
here is very similar to that in the scalar case. Therefore, this model can be extended
to tensor fields of any level. Some tools from tensor analysis, which will be explained
in Chapter 2, will be used for this purpose.

One application of ray transforms, that is not the classical computerized tomography,
is SPECT (c.f.[18] and [37]). SPECT stands for single-photon emission computed
tomography and is a medical imaging technique used to create 3D images of internal
body structures. The idea is to inject a patient’s bloodstream with a tracer which
is a biochemical molecule that is labeled with radioactive gamma rays. These rays
make the body emit photons that propagate through the body until they can be
detected from outside the patient’s body. For the detection one uses a rotating
camera that is equipped with a parallel hole collimator (see Figure 2.1).

Figure 2.1: Collimator lets photons (red) pass that propagate perpendicular to the camera
and filters the others (black).

The reason for this collimator is to only measure photons that come from a specific
direction. The smaller the distance between the blue lines the smaller the interval of
tolerance gets. In an ideal setting, all the measurements taken for a specific position
of the camera are due to emissions from the same direction. Hence, only photons
that propagate perpendicular to the camera are recorded. For one detector point, the
appropriate emitters in the body are in a straight line. Therefore, the measurement
can be seen as the accumulated quantity of photons that move on that line toward
the detector. Setting f(x) as the unknown radioactive source at position x and ξ as
the directional vector of propagation, the intensity or energy transport at x is given
by
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If(x, ξ) =
∫ ∞

−∞
f(x+ τξ)dτ.

Here, we took into account that, theoretically, every particle in the human body can
emit such a photon. To cope with the huge quantity of particles and the very small
distances between any two of them, we treat f as a continuous function. The integral
limits are due to the assumption that there is no radioactivity outside the body. To
be more precise, these limits can be written explicitly as entry time τ−(x, ξ) and exit
time τ+(x, ξ). Hence, the inverse problem consists of recovering the scalar function
f from the output of the integral equation

If(x, ξ) =
∫ τ+(x,ξ)

τ−(x,ξ)
f(x+ τξ)dτ. (2.1)

In Section 2.2 we will see that in contrast to CT, this application requires further
modeling of other physical phenomena.
A similar integral transform as (2.1) can be defined for vector fields as well. As it will
be shown in this subsection the so-called Doppler transform computes line integrals
of projections of vector fields on the direction of propagation. One application of this
transformation is to detect malign tumors in the human body by reconstructing the
blood flow in the surroundings. Other applications are, for example, the estimation of
gas flows in furnaces (see [93]) or the reconstruction of flow velocities in oceanography
(see [81]). In Doppler tomography one uses the Doppler effect describing that a
moving fluid or gas in the interior of a medium changes the frequency of an incoming
wave. The Doppler transform calculates the total change of frequency along the
whole path of propagation inside the medium. This can be seen as follows (see [23]):
During a period a signal with velocity c and frequency ν0 travels the distance λ0 = c

ν0
.

If the source of the wave moves with the velocity vs toward the receiver, the distance
between two wavefronts after one period is given by

λ = c

ν0
− vs
ν0
.

Since λ is the wavelength, the receiver measures the frequency

ν = c

λ
= ν0

1 − vs

c

> ν0. (2.2)

Analogously, if the receiver moves in positive x-direction with velocity vr, it travels
the distance vr

ν0
during one period. Therefore, the measured frequency is given by

ν = ν0

(
1 + vr

c

)
< ν0. (2.3)
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Putting (2.2) and (2.3) together, we obtain

ν =
1 + vr

c

1 − vs

c

ν0.

Since vs ≪ c we can approximate the denominator by a Taylor expansion and obtain

ν = ν0c
(

1 + vr
c

)(
1 − vs

c

)
≈ ν0

(
1 + ∆v

c

)
,

where ∆v = vs − vr. Consequently, there is a shift in the frequency of

∆ν = ν − ν0 = ∆v
c
.

In our setting, there is a source sending the signal. At some point, the fluid or gas
acts like a receiver and changes the frequency once. Afterwards, the signal propagates
further to the backside of the object. Hence, the particle of the fluid or gas that
caused the first shift can be seen as a new source of a signal with another frequency.
Since the source is moving, there is again a Doppler shift. In both processes ∆v is
the same. That is why the receiver measures a shift of 2∆v

c
.

Let us consider the change of velocity in an infinitely small time interval [τ, τ + ∆τ ].
We assume the velocity changes linearly in this interval, i.e., ∆v is proportional to
∆τ . Only the length of the projection of f(x) on the integration line has an impact
on the frequency. We write

∆v = P̃γ̇(τ)[f(γ(τ))]∆τ,

where P̃γ̇(τ)[f(γ(τ))] is the acceleration factor given by the projection of f at γ(τ)
on the line of propagation with directional vector γ̇(τ). The tilde above P indicates
that we only want information about the length of the projection vector and its
sign. Therefore, this term can either increase or decrease the change of velocity.
The reason why we keep writing γ̇(τ) instead of a constant vector ξ is that in the
next section, these vectors will not be constant anymore. In the following, we want
to compute P̃ . Note that the projection vector Pγ̇(τ)[f(γ(τ))] is a multiple of the
direction γ̇(τ), i.e., there is a κ > 0 such that

Pγ̇(τ)[f(γ(τ))] = κγ̇(τ). (2.4)
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Figure 2.2: Projection Pγ̇f (blue) of vector field f (gray) on the line of integration with
direction γ̇ (blue arrow).

Secondly, the red dashed vector in Figure 2.2 is perpendicular to γ̇(τ). Therefore,
we have

Pγ̇(τ)[f(γ(τ))] = ⟨f(γ(τ)), γ̇(τ)⟩
∥γ̇(τ)∥2 γ̇(τ)

= ⟨f(γ(τ)), γ̇0(τ)⟩γ̇0(τ)

with unit vectors γ̇0(τ). Thus,

P̃γ̇(τ)[f(γ(τ))] = ⟨f(γ(τ)), γ̇0(τ)⟩. (2.5)

Since f(γ(τ)) and γ̇(τ) are velocity vectors, they have the SI-unit m
s

, the normalized
vector γ̇0(τ) has the unit 1

s
, and therefore,

⟨f(γ(τ)), γ̇0(τ)⟩

describes an acceleration with unit m
s2 and ∆v a velocity with unit m

s
. To compute

the total shift, we need to split the whole path of propagation into infinitely many
intervals as we used here and end up with an integral as a limit. We obtain

∆vtotal =
∫ τ+

τ−
⟨f(γ(τ)), γ̇0(τ)⟩dτ.

To make the concept more consistent, we scale the parameterization without loss of
generality such that γ̇(τ) = γ̇0(τ). By doing so, the integral only changes by a known
constant. In the following, we will only speak of normalized vectors. Therefore, we
omit the index 0. This results in the following definition:
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Let f ∈ C(M,RN). Then, the Doppler transform [I0f ](x, ξ) of a signal that prop-
agates through M with end point x ∈ M and end direction ξ ∈ SN−1, is given
by

[I0f ](x, ξ) =
∫ τ+(x,ξ)

τ−(x,ξ)
⟨f(x+ τξ), ξ⟩dτ (2.6)

=
〈 ∫ τ+(x,ξ)

τ−(x,ξ)
f(x+ τξ)dτ, ξ

〉
(2.7)

where τ−(x, ξ) and τ+(x, ξ) are the time points of entering and exiting the observed
object.

Figure 2.3: 2D-Illustration of data acquisition of vector tomography

We observe that the transform (2.6) is just a special case of the scalar ray transform
(2.1), i.e.,

[I0f ](x, ξ) = If̃(x, ξ)

where f̃(x, ξ) = ⟨f(x), ξ⟩. There is even a more general case of ray transforms. In
fact, (2.6) can be generalized for tensor fields of rank 2 as they occur for example in
polarization tomography. Polarization tomography attempts to determine the stress
tensor of a material by measuring the polarization, i.e., the direction of transversal
oscillation of outgoing light (c.f. [67, 87, 91]). In contrast to the previous application,
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the measurements are obtained by integrals along a ray, using the component of the
medium that is orthogonal to the ray. Assuming the absence of charges and currents,
Maxwell’s equations are given by

∇ ×B − 1
c
∂D
∂t

= 0, divD = 0

∇ × E + 1
c
∂B
∂t

= 0, divB = 0

where B is the magnetic field, E the electric field and Dj = ϵijE
i. We assume that

the material is quasi-isotropic, i.e., the tensor ϵij can be presented as

ϵij = n2δij + 1
k
χij

where k is the wave number, c the light velocity and n the refractive index. The
tensor χij describes the anisotropy and has to be reconstructed. By Rytov’s law, the
polarization vector η = n−1A−1E satisfies

∇γ̇η = πγ̇fη (2.8)

where A is the amplitude of the ray and

f = i

2n2χ.

Here, γ denotes again the curve of linear propagation with direction γ̇ = ξ and πγ̇ is
the projection operator on the plane γ̇⊥. The inverse problem consists of recovering
the anisotropic part of χ, or equivalently, recovering the tensor f . In the literature it
is assumed that χ is skew-symmetric and therefore, f is symmetric. The tomographic
measurements are of the following type: Given a curve γ : [τ−, τ+] → M between two
boundary points, we choose an initial value η0 = η(τ−) of the polarization vector and
measure the final value η1 = η(τ+). We rewrite (2.8) as an operator equation

dŨ
dτ = fξ⊥Ũ(τ)

where fξ⊥ : ξ⊥ → ξ⊥ is the restriction of πξ⊥f(γ(τ)) to the plane ξ⊥ and Ũ(τ) is a
linear operator satisfying Ũ(τ−) = 1. Hence, the measurement data are given by

Φ̃[f ](γ) = Ũ(τ+).
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Defining U(τ) such that

U(τ)|ξ⊥ = Ũ(τ), U(τ)ξ = ξ

we obtain the initial value problem

dU
dτ = (πξ⊥fπξ⊥)U, U(τ−) = 1.

Setting w = ln detU(τ) we get

dw
dτ = tr(πξ⊥fπξ⊥)

where the trace tr(A) of an operator A is defined for an orthonormal basis e1, . . . , eN
by

tr(A) =
N∑
i=1

⟨Aei, ei⟩.

Hence, one ends up with the fact that the accumulated change w of polarization
along the path is an integral over this tensor field f :

w[f ](x, ξ) =
∫ τ+

τ−
tr(πξf(x+ τξ)πξ)dτ.

Splitting f into

f = f̃ + λ1, trf̃ = 0,

where 1 is defined by

(1u)i1,...,im = δj1i1 · · · δjmimuj1,...,jm ,

is the identity mapping. We complete {ξ} to an orthonormal basis by adding basis
vectors ζ1, . . . , ζN−1 we have that
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w[λ1](x, ξ) =
∫ ∞

−∞
tr(πξ(λ(x+ τξ)1)πξ)dτ

=
∫ ∞

−∞
λ(x+ τξ)tr(π2

ξ )dτ

=
∫ ∞

−∞
λ(x+ τξ)tr(πξ)dτ

=
∫ ∞

−∞
λ(x+ τξ)tr(1 − Pξ)dτ

=
∫ ∞

−∞
λ(x+ τξ)(tr(1) − tr(Pξ))dτ

=
∫ ∞

−∞
λ(x+ τξ)

(
N − ⟨Pξξ, ξ⟩ −

N−1∑
k=1

⟨Pξζk, ζk⟩
)

dτ

=
∫ ∞

−∞
λ(x+ τξ)(N − 1)dτ

= (N − 1)I[λ1](x, ξ).

Since

tr(πξf̃πξ) =
N−1∑
k=1

⟨πξf̃πξζk, ζk⟩ + ⟨πξf̃πξξ, ξ⟩

=
N−1∑
i=1

⟨f̃ ζk, ζk⟩

= −⟨f̃ ξ, ξ⟩,

it holds that w[f̃ ] = −I[f̃ ] and, hence,

w[f ] = I[(N − 1)λ1 − f̃ ],

where

[If ](x, ξ) =
∫ τ+(x,ξ)

τ−(x,ξ)
fij(x+ τξ)ξiξjdt. (2.9)

It can easily be shown that f can be determined by knowing (N − 1)λ1 − f̃ .
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In the last examples, it became clear that the integral transformation, known from
computerized tomography, can be extended to vector fields and tensor fields of rank
2. The only difference is the degree of multilinear dependence on the direction of
propagation of the integrating function. However, it finds a lot of different practical
applications. Therefore, we now want to define the generalized ray transform for
tensors of any arbitrary rank.
One thing that has been neglected in the application of SPECT is the fact that
the material under examination also partially absorbs the energy of tracers and
transforms it into heat, for example. Thus, a kind of attenuation of the radiation
takes place. This can be compensated by a corresponding exponential term in
the integrand. The second problem is that both SPECT and vector tomography
take images of the inside of the human body. This means that there can also be
slight movements during the measurement, which can of course greatly distort the
measurement data. So we also have to look at some kind of temporal dependence
of the tensors. The third point is that waves, particularly in the last two examples,
do not propagate in a straight line. In the polarization tomography example, the
refractive index appears in the formulae. This means that there are places where
light propagates faster or slower than in the surrounding material. There are also
strong effects on the course when two different media meet. In this case, there is no
longer any straight-line propagation.
All these points should be sufficient motivation to derive a general ray transformation
that takes these problems into account. These will be modeled step by step in
the next subsection. It will be shown that all the points just mentioned can be
summarized in one formula.

2.1.2 Attenuated ray transform of dynamic tensor fields in
inhomogeneous media

In (2.7) the consequence becomes clear that only the projections on the direction of
the wave were measured. This means that all vectors that were perpendicular to the
direction of the wave contributed nothing to the integral. Additionally, in this case,
only scalar data can be measured. Consequently, a complete reconstruction of any
vector field is not possible. This phenomenen can also be observed for tensor fields of
any other rank. For this general case one can accurately determine the kernel of I0.
Considering the Euclidean setting, by Sm(Ω) we denote the symmetric m-tensor
fields on Ω. We define the divergence operator s : C∞(Sm+1(Ω)) → C∞(Sm(Ω)) in
coordinate form by

(sf)i1...im := ∂fi1...imj
∂xj

.

Moreover, we define the inner differentiation p : C∞(Sm(Ω)) → C∞(Sm+1(Ω)) by

ui1...imj := (pw)i1...imj = 1
m+ 1

(
∂wi1...im
∂xj

+
m∑
k=1

∂wi1...ik−1jik+1...im

∂xik

)
.
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Given these definitions, we call a tensor field f solenoidal if sf = 0 and we call it
potential field if there exists a v such that f = pv. The next theorem is about the
decomposition of tensor fields into solenoidal and potential parts.

Theorem 2.1. Let Ω be a bounded domain and m ≥ 0. A tensor field f ∈ C∞(Sm(Ω))
can be uniquely decomposed into a solenoidal and a potential field, i.e., there exist
uniquely determined fsol, fpot ∈ C∞(Sm(Ω)) such that

f = fsol + fpot,

where sfsol = 0 and fpot = pv for a v satisfying v|∂Ω = 0.

Proof. See Theorem 2.4.2 in [89].

Using Theorem 2.1, we obtain

[I0f ](x, ξ) = [I0fsol](x, ξ) + [I0fpot](x, ξ)

= [I0fsol](x, ξ) +
∫ τ+(x,ξ)

τ−(x,ξ)
⟨pv(x+ τξ), ξm⟩dτ

= [I0fsol](x, ξ) + [v(x+ τξ)]τ+(x,ξ)
τ−(x,ξ)

= [I0fsol](x, ξ).

Consequently, there is only a chance to reconstruct the solenoidal part of a vector
field. This changes if the phenomenon of absorption is taken into account. Absorption
generally means that part of the energy of a wave is converted into another form
of energy. For example, thermal energy loss occurs in sound waves. According to
the Lambert-Beer absorption law (see e.g. [22]), the intensity of a wave decreases
exponentially with the depth of penetration into a material. More precisely, the
following applies to the intensity I after traveling a distance ∆z within a medium

I = I0 · exp−α∆z,

where I0 is the initial intensity and α denotes the so-called absorption coefficient.
If we assume that the radiation passes through J different areas of the length ∆zj,
j = 1, . . . , J , each with an absorption coefficient αj, the final intensity results in

I = I0 ·
J∏
j=1

exp−αj∆zj = I0 · exp
−

J∑
j=1

αj∆zj

 . (2.10)

Letting the distances ∆zi tend to 0, the sum in (2.10) can be approximated by an
integral of α over a line segment. Therefore, we define the attenuated ray transform
for tensor fields as follows:
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For a given bounded domain Ω ⊂ RN with strictly convex boundary and α ∈
C(Ω × SN−1) with α ≥ α0 > 0 for some α0 ∈ R, the attenuated ray transform

Iα : C(Sm(Ω)) → C(∂Ω × SN−1)

of a symmetric m-tensor field f = (fi1,...,im) is given by

[Iαf ](x, ξ) =
∫ 0

τ−(x,ξ)
⟨f(x+ τξ), ξm⟩ exp

(
−
∫ 0

τ
α(x+ σξ, ξ)dσ

)
dτ. (2.11)

By ξm we denote the m-fold tensor product, i.e., ξm = ξ ⊗ · · · ⊗ ξ. The fact that
we only allow symmetric tensor fields is that symmetric fields are investigated in all
tensor tomographic applications. For a rank less than or equal to 1 this makes no
difference anyway. We are demanding a lower bound to α. This leads to the fact that
the exponential in the integral takes values between 0 and 1 and thus has the impact
of an attenuation. Since even atmospheric air has slightly absorbing properties, this
is not a constraint. Any positive attenuation coefficient makes the ray transform
injective as first has been shown in [35]. One could perhaps get the idea to interpret
the exponential term in (2.11) as a new function but we will see in Subsection 2.2
that this form of representation is advantageous.
There have been many achievements in describing the range of the attenuated ray
transform in the scalar case in [69]. An explicit inversion formula is derived in [68]
and [16] presents numerical results. In [78] it is even shown how to compute f and
α simultaneously.
The next goal is to adapt (2.11) for time-dependent fields. Especially in the two
examples of SPECT and Doppler-tomography, it is obvious that the examined object
and thus also the size to be reconstructed can change over time. If we assume that
the object is not compressed or stretched, we can take the change as a rigid-body
deformation. This would mean that we would only include rotations and translations
in our model. Accordingly, there exist suitable rotation matrices At and translation
vectors bt, so that the model for the function to be reconstructed could be

f(t, x) = f ref(Atx+ bt), t ∈ [0, T ].

Another point would be that f varies in time even without external action. For
example, the blood flow in (2.3) could change simply due to blood circulation to
the extent that measurement inaccuracies occur. Thus, to keep the formulation as
general as possible, we allow arbitrary temporal changes. This leads to the definition
of the dynamic attenuated ray transform of time-dependent tensor fields.
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For a given bounded domain Ω ⊂ RN with strictly convex boundary and α ∈
C(Ω × SN−1) with α ≥ α0 > 0 for some α0 ∈ R, the dynamic attenuated ray
transform

Idα : C(0, T ;Sm(Ω)) → C(0, T ; ∂Ω × SN−1)

of a symmetric m-tensor field f = (fi1,...,im) is given by

[Idαf ](t, x, ξ) =
∫ 0

τ−(x,ξ)
⟨f(t+ τ, x+ τξ), ξm⟩ exp

(
−
∫ 0

τ
α(x+ σξ, ξ)dσ

)
dτ. (2.12)

A more complex phenomenon that should not be neglected is the directional deflection
of signals in inhomogeneous media. These deviations from straight lines occur
when the signal does not propagate at the same speed everywhere in the object of
consideration. This can be because the object does not have the same temperature
everywhere or is exposed to the same pressure. Here, even small deviations can lead
to measurable changes in velocity. Above all, however, the deflections occur when
the signal passes through more than one medium. To stay with the example of vector
tomography from the last section, the sound waves do not only hit blood but also
other substances such as tissue, muscles, etc. For all these, one can give a typical
range for the so-called refractive index. This number denoted by n gives the ratio of
the speed of propagation v0 of the wave in a reference medium and the speed vmedium
in the observed medium, i.e.,

n = v0

vmedium
. (2.13)

For mechanical waves such as ultrasound waves, one uses v0 for the velocity in air,
and for electromagnetic waves, one uses the velocity in vacuum. Note, that for a
fixed frequency the refractive index is a positive number greater than or equal to
1. Now what happens when a wave hits the interface between two media, is that it
splits into two partial waves.

As seen in Figure (2.4) one part of the wave is reflected at the interface, i.e., it
changes its direction and propagates further in the first medium. The second part,
the so-called transmitted wave, penetrates the second medium and is deflected in the
process. Depending on the ratio of the two refractive indices, a larger part can be
reflected or transmitted.
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Figure 2.4: Incoming wave (red) hits boundary with incident angle φ, gets split into
reflected part with angle φ′ and refracted/transmitted part with an angle θ.

In the following, we will now examine how exactly this refraction is to be understood.
The refraction of the transmitted wave is not random but can be specified explicitly
for given refractive indices. This requires the principle of Pierre de Fermat:

Fermat’s principle states that an optical or mechanical signal in a medium takes paths
between two points on which its travel time does not change with small variations
of the path. In particular, the optical path length is extremal, i.e., the longest or
shortest.

This therefore means that the acceleration of the path curve along the path vanishes
(c.f. (1.32)), which means that these curves are the minimizers of (1.34).
As discussed in Chapter 1, it is necessary to define an appropriate metric on M
which describes the phenomenon of refraction. The metric tensor is defined via
the tangent basis vectors ∂1, . . . , ∂N at each point x ∈ M . Since cotangent vectors
describe the derivative into some direction which is nothing else than the velocity of
a curve passing through x ∈ M , we rewrite (2.13) as

v(x) = v0

n(x)

and therefore, define the local coordinate system by
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x̂i = xi
n(x) , i = 1, . . . , N.

Hence,

∂i = ∂xk
∂x̂i

ek = n(x)ei

and the metric tensor is given by

gij(x) = ⟨∂i, ∂j⟩ = n2(x)δij. (2.14)

We observe that g is a diagonal matrix with positive entries that satisfies the
conditions of a Riemannian metric for a smooth enough n. In particular, in the
homogeneous case of the previous section, this metric becomes a multiple of the
identity matrix. As a simple example, we consider what happens if M = M1 ∪M2
consists of only two different media M1 and M2 separated by a straight boundary
between them. Let A ∈ M1 with n = n1 and B ∈ M2 with n = n2. To find the path
that a signal takes from A to B we minimize the optical arc length.

Figure 2.5: Sketch for proving Snellius’ law
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Let A and B be the starting and ending points of the wave. By construction, the
angle φ appears again in the red triangle of Figure (2.5). Let h1 and h2 be the
distances the wave travels perpendicular to the plane of refraction in each medium.
We split the distance L parallel to this plane into the part l in medium 1 and the
part L − l in medium 2. By (1.34), the length of propagation with respect to the
metric g becomes:

T (l) = n1

√
h2

1 + l2 + n2

√
h2

2 + (L− l)2. (2.15)

Minimizing this function means to choose l such that T ′(l) = 0. Differentiating yields

T ′(l) = n1
l√

h2
1 + l2

− n2
L− l√

h2
2 + (L− l)2

= n1 sinφ− n2 sin θ.

Hence, we obtain the following condition which is called Snellius’ law:

sinφ
sin θ = n2

n1
.

The second part of his law states that the angle of incidence φ and the angle of
reflection φ′ are equal. This can be derived similarly by using Fermat’s principle.
So you can see that for n1 ≈ n2 the angle barely changes. The transmitted wave
has a different wavelength, but still the same frequency. We do not consider the
propagation of the reflected wave any further in the following. We include the loss of
energy in the absorption coefficient from (2.11).
At the moment, we know how to calculate the paths for piecewise constant refractive
indices. It is different if we assume that the refractive index changes continuously
or is differentiable. We justify this assumption by the fact that we can numerically
approximate any discontinuity arbitrarily well by continuous functions. The advan-
tage now is that we can use the geodesic equation from (1.37) instead of many small
minimization problems. Analogous to the homogeneous case, we define a curve

γx,ξ : R → M

as a solution to the initial value problem

d2γk

ds2 + Γkij
dγi
ds

dγj
ds = 0

with γ(0) = x and γ̇(0) = ξ.
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Thus, the illustration from Figure 2.3 is no longer correct but looks as in Figure 2.6.
It is noticeable that the same wave that was sent through the object in Figure 2.3
with the same direction of propagation now emerges at a completely different location.
Due to the changed propagation, other projections of the field also contribute to the
integral.

Figure 2.6: 2D-Illustration of the principle of RTT

In contrast to the modeling in the homogeneous case, this curve is parameterized
with respect to time instead of arc length. Keeping in mind that one goal of this
modeling is to reconstruct fields that change by time, we are interested in a geodesic
equation that is parameterized by time instead of the arc length. Unfortunately,
(1.37) does not necessarily remain correct if we choose any arbitrary parameterization.
To see this, let γ̃(τ) = γ(s(τ)) be any other parameterization of a geodesic curve.
Then, it holds for k = 1, . . . , N that

dγ̃k(τ)
dτ = dγk(s)

ds · ds
dτ

d2γ̃k(τ)
dτ 2 = d2γk(s)

ds2 ·
(

ds
dτ

)2

+ dγk(s)
ds · d2s

dτ 2 .

The Christoffel symbols depend only on the partial derivatives of the metric and not
on the parameter representation of the curve. Therefore, they remain unchanged.
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Hence,

d2γ̃k(τ)
dτ 2 + Γkij(γ̃)dγ̃i(τ)

dτ
dγ̃j(τ)

dτ = dγk(s)
ds

d2s

dτ 2 .

The last expression vanishes only if s depends linearly on τ . In the case that we
parameterize by time, this is true. Observing that (1.34) can be derived similarly for
the time variable τ , we obtain for gij(x) = n2(x)δij

ds = n(γ(τ))
∥∥∥∥dγ

dτ

∥∥∥∥
euclid

dτ

and thus

ds
dτ = n(γ(τ))

∥∥∥∥dγ
dτ

∥∥∥∥
euclid

= c0,

where c0 is the vacuum velocity of the propagating signal. Hence, the second
derivative is zero as required and we obtain

γ̈k(τ) + Γkij(γ(τ))γ̇i(τ)γ̇j(τ) = 0 (2.16)

with initial conditions γ(0) = x and γ̇(0) = ξ. This leads us finally to the definition
of the stationary and dynamic ray transform taking refraction into account:
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Let (M, g) be a Riemannian manifold where M is a N -dimensional manifold with
strictly convex boundary and gij(x) = n2(x)δij. Given the tangent bundle

TM = {(x, ξ)|x ∈ M, ξ ∈ TxM},

we define the following submanifold:

ΩM := {(x, ξ) ∈ TM | ∥ξ∥ = 1}.

Its boundary can be splitted into an inflow boundary and an outflow boundary:

∂−ΩM := {(x, ξ) ∈ ΩM |x ∈ ∂M, ⟨ν(x), ξ⟩ ≤ 0},
∂+ΩM := {(x, ξ) ∈ ΩM |x ∈ ∂M, ⟨ν(x), ξ⟩ > 0}.

Since the measurement data is taken when a signal exits the object M , we restrict
the set of possible pairs (x, ξ) to ∂+ΩM . Therefore, we substitute the integral limit
τ+(x, ξ) by 0. For a given α ∈ C(ΩM) with α ≥ α0 > 0 for some α0 ∈ R, we define

• the stationary attenuated ray transform of a m-tensor field f = (fi1,...,im) by
the function Iαf : C(Smτ ′

M) → C(∂+ΩM) where

[Iαf ](x, ξ) =
∫ 0

τ−(x,ξ)
⟨f(γx,ξ(τ)), γ̇mx,ξ(τ)⟩ exp

(
−
∫ 0

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

)
dτ.

(2.17)

• the dynamic attenuated ray transform of a m-tensor field f = (fi1,...,im) by the
function Idαf : C(0, T ;C(Smτ ′

M)) → C(0, T ;C(∂+ΩM)) where

[Idαf ](t, x, ξ) =
∫ 0

τ−(x,ξ)
⟨f(t+ τ, γx,ξ(τ)), γ̇mx,ξ(τ)⟩ exp

(
−
∫ 0

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

)
dτ.

(2.18)

It is noteworthy that there exist similar decompositions of tensor fields on Rieman-
nian manifolds as in Theorem 2.1. Therefore, for α = 0, potential fields do not
contribute to the integrals in (2.17) and (2.18). For more details, we refer to [89].

The next question is whether this operator is well defined, i.e., the path of integration
is uniquely determined. Furthermore, we want to investigate if this transform is
continuous for appropriate spaces.
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2.1.3 Well-definedness and continuity of the ray transform
First, we investigate under which conditions this equation is uniquely solvable. For
this purpose, we compute the Christoffel symbols for the metric g from (2.14).

Lemma 2.2. Let (M, g) be a Riemannian manifold with M ⊂ R3 and gij(x) =
n2(x)δij the metric tensor. The Christoffel symbols are given by

(Γ1
ij(x))ij = n−1(x)

∂1n(x) ∂2n(x) ∂3n(x)
∂2n(x) −∂1n(x) 0
∂3n(x) 0 −∂1n(x)

 , (2.19)

(Γ2
ij(x))ij = n−1(x)

−∂2n(x) ∂1n(x) 0
∂1n(x) ∂2n(x) ∂3n(x)

0 ∂3n(x) −∂2n(x)

 (2.20)

and

(Γ3
ij(x))ij = n−1(x)

−∂3n(x) 0 ∂1n(x)
0 −∂3n(x) ∂2n(x)

∂1n(x) ∂2n(x) ∂3n(x)

 (2.21)

for all x ∈ M .

Proof. The Christoffel symbols are defined by

Γkij(x) = 1
2g

kl(x)
(
∂gjl(x)
∂xi

+ ∂gil
∂xj

(x) − ∂gij
∂xl

(x)
)

= 1
2g

kl(x)(∂igjl(x) + ∂jgil(x) − ∂lgij(x)),

where gij(x) are the entries of the inverse of gij(x) and given by

gij(x) = n−2(x)δij.

Using that

∂kgij(x) = ∂kn
2(x)δij = 2n(x)∂kn(x)δij

we obtain for k = 1
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Γ1
ij(x) = n(x)−1

(
∂jn(x)δik + ∂in(x)δjk − ∂kn(x)δij

)

and hence, by (2.19),

Γ1
11(x) = n(x)−1∂1n(x)

Γ1
22(x) = −n(x)−1∂1n(x)

Γ1
33(x) = n(x)−1∂1n(x)

Γ1
12(x) = Γ1

21(x) = n(x)−1∂1n(x)
Γ1

13(x) = Γ1
31(x) = n(x)−1∂3n(x)

Γ1
23(x) = Γ1

32(x) = 0.

In the same way, we get (2.20) and (2.21).

Corollary 2.3. Let (M, g) be a Riemannian manifold as in Lemma 2.2 but with
M ⊂ R2. Then, the Christoffel symbols are given by

(Γ1
ij(x))ij = n−1(x)

(
∂1n(x) ∂2n(x)
∂2n(x) −∂1n(x)

)
, (2.22)

and

(Γ2
ij(x))ij = n−1(x)

(
−∂2n(x) ∂1n(x)
∂1n(x) ∂2n(x)

)
. (2.23)

Proof. The equations (2.22) and (2.23) can be derived as in (2.19) and (2.20).

In the next theorem, we present the uniqueness result. To this end, it is necessary
to know how to compute the scalar product of two tangent vectors, the norm of a
tangent vector, and the gradient of a vector in M . By construction, gx defines a
scalar product on TxM for every point x ∈ M . Therefore, we define for ξ, η ∈ TxM

⟨ξ, η⟩ := gx(ξ, η) = gij(x)ξiηj = n2(x)ξiηj = n2(x)⟨ξ, η⟩euclid.

Accordingly, the norm of ξ ∈ TxM is defined as

∥ξ∥ :=
√
gx(ξ, ξ) = n(x)∥ξ∥euclid (2.24)

Using (1.25), the gradient of a given function u : M → R is given by
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∇u = gij∂iu∂j = n−2(x)∇euclid.

Hence, the following expression is independent of the refractive index:

⟨∇u, ξ⟩ = ⟨∇u, ξ⟩euclid.

We will use that to prove the next theorem.

Theorem 2.4. Let (M, g) be a compact Riemannian manifold in RN , N = 2, 3 and
n ∈ C2(M). Then, the following initial value system has a unique solution:

γ̈k + Γkij(n(γ))γ̇iγ̇j = 0, γ(0) = x, γ̇(0) = ξ. (2.25)

Proof. In [86] the proof has been done for two dimensions. For N = 3 we refer to
the proof in [101]. First, we write the second-order ordinary differential equation
into a system of first-order equations. Setting Γij(x) = (Γ1

ij(x), . . . ,ΓNij (x)) we obtain


d
dtγ(t) = γ̇(t)
d
dt γ̇(t) = −Γij(γ(t))γ̇i(t)γ̇j(t)
γ(0) = x
γ̇(0) = ξ

. (2.26)

According to Picard-Lindelöf’s theorem (c.f. [103]) it suffices to show that for

z(t) = (z(1)(t), z(2)(t)) := (γ(t), γ̇(t))

the function

f(z(t)) :=
(

z(2)(t)
−Γij(z(1)(t))zi(2)z

j
(2)

)

satisfies a Lipschitz condition

∥f(ζ1(t)) − f(ζ2(t))∥ ≤ L∥ζ1(t) − ζ2(t))∥,

where ζ1, ζ2 are in a small neighborhood of z and L > 0. Due to the mean value
theorem, it remains to show that the Jacobian ∇zf(z(t)) is bounded for all t.
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First, we remark that, in local coordinates, we have

∂γ̇k

∂γl
= 0, ∂γ̇k

∂γ̇l
= δkl , k, l = 1, . . . , N.

We obtain for k = 1, . . . , N

− Γkij(γ)γ̇iγ̇j

= −n−1(γ)
 ∂n

∂xk
(γ)(γ̇k)2 +

∑
i=k ̸=j

∂n

∂xj
(γ)γ̇iγ̇j +

∑
i ̸=k=j

(
− ∂n

∂xk
(γ)

)
(γ̇i)2 +

∑
i ̸=j=k

∂n

∂xi
(γ)γ̇iγ̇j


= −n−1(γ)

2 ∂n
∂xk

(γ)(γ̇k)2 + 2
∑
i=k ̸=j

∂n

∂xj
(γ)γ̇iγ̇j +

∑
i

(
− ∂n

∂xk
(γ)

)
(γ̇i)2


= n−1(γ)

n−2(x) ∂n
∂xk

(γ)∥γ̇∥2 − 2 ∂n
∂xk

(γ)(γ̇k)2 − 2
∑
j ̸=k

∂n

∂xj
(γ)γ̇j γ̇k


= n−1(γ)

n−2(x) ∂n
∂xk

(γ)∥γ̇∥2 − 2
∑
j

∂n

∂xj
(γ)γ̇j γ̇k


= n−1(γ)

(
n−2(γ) ∂n

∂xk
(γ)∥γ̇∥2 − 2γ̇k⟨∇n(γ), γ̇⟩

)
. (2.27)

Thus,

∂

∂γ̇l
(−Γkij(γ)γ̇iγ̇j) = n−1(γ)

(
2n−2(γ) ∂n

∂xk
(γ)γ̇l − 2γ̇k ∂n

∂xl
(γ) − 2δkl ⟨∇n(γ), γ̇⟩

)
∂

∂γl
(−Γkij(γ)γ̇iγ̇j) = − ∂n

∂xl
(γ)n−2(γ)

(
3n−2(x) ∂n

∂xk
(γ)∥γ̇∥2 − 2γ̇k⟨∇n(γ), γ̇⟩

)

+ n−1(γ)
(
n−2(x) ∂2n

∂xk∂xl
(γ)∥γ̇∥2 − 2γ̇k⟨∇

(
∂n

∂xl
(γ)

)
, γ̇⟩

)
.

Since n ∈ C2(M) and n > 0 by definition, all the derivatives are bounded and the
asserted statement follows.

In particular, the solution z depends continuously on the initial values according
to [103]. This means that (2.17) and (2.18) are well-defined operators. In the next
theorem, it will be shown that they are even continuous operators. We will mainly
focus on Sobolev spaces. That is why it is necessary to consider different volume
and angle measures.
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Let (V,A, µ) be a measure space, i.e., a non-empty set V , a σ-algebra A on V and a
measure µ on (V,A). For a real number 1 ≤ p < ∞ we define the following vector
space

Lp(V ) =
{
f : V → R

∣∣∣∣ ∫
V
fpdµ < ∞

}
.

On Lp(V ) we can define the norm

∥f∥Lp(V ) :=
(∫

V
|f |pdµ

) 1
p

.

We will only use the case where p = 2. Then, on L2(V ) we define a scalar product by

⟨f, g⟩L2(V ) =
∫
V
fgdµ.

for f, g ∈ L2(V ). To write these L2-spaces explicitly for some spaces V of interest
we need to find the corresponding volume forms. Keeping in mind that, for every
point x ∈ M , the tangent space TxM is equipped with the structure of an Euclidean
vector space induced by the Riemannian metric. As proven in [87], the Euclidean
volume form on TxM in a local coordinate system is expressed by

dV N
x (ξ) =

√
detg dξ1 ∧ · · · ∧ dξN =

√
detg dξ.

The angular measure dωx(ξ) on the unit sphere ΩxM := {ξ ∈ TxM | ∥ξ∥2 = 1} of the
tangent space TxM can be written as

dωNx (ξ) =
√

detg
N∑
i=1

(−1)i−1ξidξ1 ∧ · · · ∧ d̂ξi ∧ · · · ∧ dξN ,

where the d̂ξi means that this index will be skipped in the summation. Therefore,
the volume forms on ΩM and on ∂+ΩM (∂ΩM) are

dΣN = dωx(ξ) ∧ dV N(x),
dσN = (−1)Ndωx(ξ) ∧ dV N−1(x),

where dV N(x) =
√

detg dx = nN(x)dx is the Riemannian volume form on M and
dV N−1(x) is the one on ∂M .
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For N = 2 and N = 3 we want to compute dωNx (ξ) and dΣN . For N = 2, ξ reads in
polar coordinates as

ξ =
(
ξ1

ξ2

)
= n−1(x)

(
cosφ
sinφ

)
.

It holds that

dξ1 = −n−1(x) sinφdφ
dξ2 = n−1(x) cosφdφ.

Hence,

dω2
x(ξ) =

√
detg

2∑
i=1

(−1)i−1ξidξ1 ∧ · · · ∧ d̂ξi ∧ · · · ∧ dξ2

= n2(x)(ξ1dξ2 − ξ2dξ1)
= n2(x)(n−2(x) cos2 φdφ+ n−2(x) sin2 φdφ)
= dφ (2.28)

and

dΣ2 = dω2
x(ξ) ∧ dV 2(x) = n2(x)dφdx.

Analogously, for N = 3, we write ξ in spherical coordinates

ξ =

ξ
1

ξ2

ξ3

 = n−1(x)

cosφ sin θ
sinφ sin θ

cos θ

 .
Therefore,

dξ1 = n−1(x)(− sinφ sin θdφ+ cosφ cos θdθ)
dξ2 = n−1(x)(cosφ sin θdφ+ sinφ cos θdθ)
dξ3 = n−1(x)(− sin θdθ),

dω3
x(ξ) =

√
detg

3∑
i=1

(−1)i−1ξidξ1 ∧ · · · ∧ d̂ξi ∧ · · · ∧ dξ2

= n3(x)(ξ1dξ2 ∧ dξ3 − ξ2dξ1 ∧ dξ3 + ξ3dξ1 ∧ dξ2)
= cosφ sin θ(cosφ sin θdφ+ sinφ cos θdθ)(− sin θdθ)

− sinφ sin θ(− sinφ sin θdφ+ cosφ cos θdθ)(− sin θdθ)
+ cos θ(− sinφ sin θdφ+ cosφ cos θdθ)(cosφ sin θdφ+ sinφ cos θdθ)

= sin θdθdφ (2.29)
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and

dΣ3 = dω3
x(ξ) ∧ dV 3(x) = n3(x) sin θdθ ∧ dφ ∧ dx.

Given all these measures above leads to the following norms for scalar functions u
and tensor fields f of rank m:

∥u∥L2(M) =
(∫

M
u2dV

) 1
2

(2.30)

∥u∥L2(ΩM) =
(∫

ΩM
u2dΣ

) 1
2

(2.31)

∥u∥L2(∂+ΩM) =
(∫

∂+ΩM
u2dσ+

) 1
2

(2.32)

∥u∥L2(ΩxM) =
(∫

ΩxM
u2dωx(ξ)

) 1
2

(2.33)

∥f∥L2(Smτ ′
M ) =

(∫
M
fi1,...,imf

i1,...,imdV
) 1

2
. (2.34)

For V ⊂ RN , let L1
loc(V ) be the space of local integrable functions on V , i.e.,

L1
loc(V ) :=

{
f : V → R

∣∣∣∣ ∫
K

|f(x)|dx < ∞ ∀ compact K ⊂ V
}
.

Given that space, it is possible to define weak derivatives: Let f, g ∈ L1
loc(V ). We

call g the α-th weak derivative of f if for all test functions ϕ it holds

∫
V
g(x)ϕ(x)dx = (−1)|α|

∫
V
f(x)Dαϕ(x)dx

where α = (α1, . . . , αN) is a multi-index with αi ∈ N0 and

|α| =
N∑
i=1

αi and Dα = ∂|α|

∂α1x1 . . . ∂αNxN
.

All functions that are α-times strongly differentiable are also α-times weakly differ-
entiable. Generalizing the understanding of differentiability leads to the fact that
there are Hilbert spaces of weakly differentiable functions by demanding that the
weak derivatives are L2-integrable.
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The so-called Sobolev spaces Hk(V ) are defined by the norm

∥u∥Hk(V ) =
 ∑

|α|≤k
∥Dαu∥2

L2(V )

 1
2

being induced by the scalar product

⟨u, v⟩Hk(V ) =
∑

|α|≤k
⟨Dαu,Dαv⟩L2(V ).

In (2.18) we considered functions which are additionally time dependent. For this
class of functions, we introduce the so-called Bochner spaces, see [85]. Assuming that
a function is known on a finite interval [0, T ], we define

L2(0, T ;Hk(V )) =
{
u : [0, T ] × V → R

∣∣∣∣∥u∥L2(0,T ;Hk(V )) < ∞
}
,

where

∥u∥L2(0,T ;Hk(V )) =
(∫ T

0
∥u(t)∥2

Hk(V )dt
) 1

2

.

Similarly, we can define

H l(0, T ;Hk(V )) =
{
u : [0, T ] × V → R

∣∣∣∣∥u∥Hl(0,T ;Hk(V )) < ∞
}
,

where

∥u∥Hl(0,T ;Hk(V )) =
(

l∑
i=1

∥∂itu∥2
L2(0,T ;Hk(V ))

) 1
2

.

Given these norms, it is possible to prove a continuity estimate of (2.17) and (2.18)
for tensor fields that are weakly smooth in time and space.

Theorem 2.5. Let (M, g) be a Riemannian manifold with gij = n2(x)δij and n ≥ 1.
Further, let α ∈ Hk(ΩM) with α ≥ α0 > 0. Then, Idα from (2.18) is bounded, i.e.,
for all l ∈ N0 there is a constant C = C(T, α,ΩM) > 0, such that

∥Idαf∥Hl(0,T ;Hk(∂+ΩM)) ≤ C∥f∥Hl(0,T ;Hk(Smτ ′
M )). (2.35)
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Proof. In this proof, we follow Sharafutdinov’s approach as outlined in [87], which
provides the continuity for the stationary case with α = 0.
Let f ∈ C∞(0, T ;Smτ ′

M). For further simplifications we put

F (t, x, ξ) = fi1···im(t, x)ξi1 · · · ξim .

Using (2.24), we have that

|F (t, x, ξ)|2 = |⟨f(t, x), ξm⟩|2

≤ ⟨f(t, x), f(t, x)⟩ · ⟨ξm, ξm⟩

= ⟨f(t, x), f(t, x)⟩ ·
(

N∑
i=1

ξ2
i

)m
= ⟨f(t, x), f(t, x)⟩ · n−2m

≤ |f(t, x)|2.

Hence,

∥F∥Hl(0,T ;Hk(ΩM)) ≤ ∥f∥Hl(0,T ;Hk(Smτ ′
M )). (2.36)

We can rewrite Idαf as

Idαf(t, x, ξ) =
∫ 0

τ−(x,ξ)
F (t+ τ, γx,ξ(τ), γ̇x,ξ(τ)) exp

(
−
∫ 0

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

)
dτ.

(2.37)

By (2.36), it is sufficient to prove

∥Idαf∥Hl(0,T ;Hk(∂+ΩM)) ≤ C̃∥F∥Hl(0,T ;Hk(ΩM)). (2.38)

Let U ⊂ ΩM and V ⊂ ∂+ΩM be domains with local coordinates (y1, ..., y2N−1) and
(z1, . . . , z2N−2), respectively. If we take a smooth function φ with supp φ ⊂ V , the
linearity of the operator Idα implies the sufficiency of showing that

∥φ · Idαf∥Hl(0,T ;Hk(V )) ≤ C̃∥F∥Hl(0,T ;Hk(U)).

For |κ| ≤ k and fixed t we obtain by using the product rule
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∂κz
(
φ(x, ξ)Idαf(t, x, ξ)

)
=

∑
β+γ+δ=κ

(∂γzφ)(x, ξ)
∫ 0

τ−(x,ξ)
∂βz (F (t+ τ, γx,ξ(τ), γ̇x,ξ(τ))) ∂δz exp

(
−
∫ 0

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

)
dτ

+
∑

β+γ+δ=κ
δ<κ

Cκ
βγδ(∂βz φ)(x, ξ)(∂γz τ−)(x, ξ)×

× ∂δz

(
F (t+ τ−(x, ξ), γx,ξ(τ−(x, ξ)), γ̇x,ξ(τ−(x, ξ)) exp

(
−
∫ 0

τ−(x,ξ)
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

))
.

(2.39)

According to [89], the function τ− is smooth and thus all derivatives are locally
bounded. In particular, we can define a diffeomorphism p : ∂+ΩM → ∂−ΩM by

p(x, ξ) := (v, η) := (γx,ξ(τ−(x, ξ)), γ̇x,ξ(τ−(x, ξ))

Using this transformation, we have that τ−(p−1(v, η)) = 0. Therefore, we can write
for δ < κ

∫
V

∣∣∣∣∂δz
(
F (t+ τ−(x, ξ), γx,ξ(τ−(x, ξ)), γ̇x,ξ(τ−(x, ξ)) exp

(
−
∫ 0

τ−(x,ξ)
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

)) ∣∣∣∣2dσ+

=
∫
Ṽ

|∂δz̃F (t, γv,η(0), γ̇v,η(0))|2 |detDp(v, η)|−1dσ−

with local coordinates (z̃1, . . . , z̃2N−2) of Ṽ ⊂ ∂−ΩM and surface measure dσ− of Ṽ .
Considering the smoothness of p, the L2(V )-norm of the second sum in (2.39) can
be majorized by c̃∥F (t, ·, ·)∥Hk−1(∂−ΩM) for c̃ = c̃(ΩM) and all t ∈ [0, T ].
Since the trace operator

γ− : H l(0, T ;Hk(ΩM)) → H l(0, T ;Hk−1(∂−ΩM)), F 7→ F |∂−ΩM

is bounded, we can even estimate the second sum in (2.39) by c̃∥F (t, ·, ·)∥Hk(V ). The
integral on the right-hand side of (2.39) can be estimated using Cauchy-Schwarz:

∣∣∣∣ ∫ 0

τ−(x,ξ)
∂βz (F (t+ τ, γx,ξ(τ), γ̇x,ξ(τ))) ∂δz exp

(
−
∫ 0

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

)
dτ
∣∣∣∣2

≤
∫ 0

τ−(x,ξ)
1dτ ·

∫ 0

τ−(x,ξ)

∣∣∣∣∂βz (F (t+ τ, γx,ξ(τ), γ̇x,ξ(τ))) ∂δz exp
(

−
∫ 0

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

) ∣∣∣∣2dτ
= −τ−(x, ξ)

∫ 0

τ−(x,ξ)

∣∣∣∣∂βz (F (t+ τ, γx,ξ(τ), γ̇x,ξ(τ))) ∂δz exp
(

−
∫ 0

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

) ∣∣∣∣2dτ
= −τ−(x, ξ)

∫ 0

τ−(x,ξ)

∑
γ≤β

Cα
βγ(t, x, ξ)

∣∣∣∣∂γy (F (t+ τ, γx,ξ(τ), γ̇x,ξ(τ)))
∣∣∣∣2dτ.
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The factors Cα
βγ(t, x, ξ) are smooth functions. Integrating both sides of the last

inequality leads to

∣∣∣∣∣∣∣∣ ∫ 0

τ−(x,ξ)
∂βz (F (t+ τ, γx,ξ(τ), γ̇x,ξ(τ))) ∂δz exp

(
−
∫ 0

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

)
dτ
∣∣∣∣∣∣∣∣2
L2(V )

≤
∫
V

∑
γ≤β

Cα
βγ

∫ 0

τ−(x,ξ)
|τ−(x, ξ)| · |∂γz (F (t+ τ, γx,ξ(τ), γ̇x,ξ(τ))) |2dτdz.

We substitute all arguments of F by G(t, x, ξ; τ), i.e.,

G(t, x, ξ; τ) = (t+ τ, γx,ξ(τ), γ̇x,ξ(τ)),

similarly to the mapping constructed in Corollary 3.3.3 of [89]. Therefore, we can
adapt Santaló’s formula (c.f. Lemma 3.3.2 of [89]), which becomes

∫
ΩM

ψ(t, x, ξ)dΣ =
∫
∂+(ΩM)

∫ 0

τ−(x,ξ)
ψ(t+ τ, γx,ξ(τ), γ̇x,ξ(τ))⟨ν(x), ξ⟩dτdσ+

for any ψ ∈ C(ΩM), and obtain

∣∣∣∣∣∣∣∣ ∫ 0

τ−(x,ξ)
∂βz (F (t+ τ, γx,ξ(τ), γ̇x,ξ(τ))) ∂δz exp

(
−
∫ 0

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

)
dτ
∣∣∣∣∣∣∣∣2
L2(V )

≤
∫
U

∑
γ≤β

Cβ
γ

∣∣∣∣ τ−(x, ξ)
⟨ξ, ν(x)⟩

∣∣∣∣|∂γy (F (t, y)) |2dy.

By Lemma 4.1.1 in [87], the function τ− : ∂+ΩM → R is smooth. Since τ−(x, ξ) = 0
for (x, ξ) with ⟨ν(x), ξ⟩ = 0, the function τ−(x, ξ)/⟨ν(x), ξ⟩ is bounded. This leads
to the final estimation

∣∣∣∣∣∣∣∣ ∫ 0

τ−(x,ξ)
∂βz (F (t+ τ, γx,ξ(τ), γ̇x,ξ(τ))) ∂δz exp

(
−
∫ 0

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

)
dτ
∣∣∣∣∣∣∣∣2
L2(V )

≤ c̃t∥F (t, ·, ·)∥Hk(U).

Computing strong derivatives of F , we proved that for fixed t

∥Idαf(t, ·, ·)∥Hk(∂+ΩM) ≤ ct∥f(t, ·)∥Hk(Smτ ′
M ) (2.40)

for f(t, ·) ∈ Hk(Smτ ′
M), where ct depends continuously on t. Hence,
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∥Idαf∥2
L2(0,T ;Hk(∂+ΩM)) =

∫ T

0
∥Idαf(t, ·, ·)∥2

Hk(∂+ΩM)dt

≤
∫ T

0
c2
t∥f(t, ·, ·)∥2

Hk(Smτ ′
M )dt

≤ sup
t∈[0,T ]

c2
t ·
∫ T

0
∥f(t, ·, ·)∥2

Hk(Smτ ′
M )dt

= C2∥f∥2
L2(0,T ;Hk(Smτ ′

M ))

where C := supt∈[0,T ] ct < ∞. This proves (2.35) for arbitrary k ∈ N and l = 0.
Let now l ≥ 0. By Hölder’s inequality, the integrand of (2.18) is L1-integrable. Thus,
one can interchange the integration over τ and the differentiation concerning the
time variable t yielding

∥∂ltIdαf∥L2(0,T ;Hk(∂+(ΩM)) = ∥Idα∂ltf∥L2(0,T ;Hk(∂+(ΩM))

≤ C∥∂ltf∥L2(0,T ;Hk(Smτ ′
M ))

and therefore,

∥Idαf∥2
Hl(0,T ;Hk(∂+ΩM)) =

l∑
i=1

∥∂itIdαf∥2
L2(0,T ;Hk(∂+ΩM))

≤
l∑

i=1
C2∥∂itf∥2

L2(0,T ;Hk(Smτ ′
M ))

≤ C2∥f∥2
Hl(0,T ;Hk(Smτ ′

M )).

The proof now follows by a standard density argument.

The inverse problem consists of recovering f from given measurement data Iαf ,
respectively Idαf . Instead of inverting the integral transforms we can consider an
inverse source problem for a corresponding transport equation. This is subject of
the next section.
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2.2 Modelling of the direct problem as a solution
of a transport equation

This section consists of two parts. In the first part, it is demonstrated that the
extensions of Iαf and Idαf solve a boundary value problem on the entire domain
ΩM . Subsequently, the unique solvability of this problem is investigated. Without
loss of generality, we assume that M is the strictly convex N -dimensional unit ball.
This assumption enables the establishment of a unique outward normal on ∂M .
This assumption is justified by the practical application of M being a bounded N -
dimensional connected set, capable of being scaled and translated into a corresponding
unit ball.

2.2.1 Derivation of the transport equation
It suffices to derive the transport equation for the dynamic case which directly implies
the equation for static tensor fields. We primarily rely on the explanations of [101].
Let (M, g) be the Riemannian manifold with gij(x) = n2(x)δij and n ∈ C2(M),

T 0M := {(x, ξ) ∈ TM |ξ ̸= 0},

α ∈ L∞(ΩM), α ≥ 0, and f = (fi1,...,im) ∈ L2(0, T ;L2(Smτ ′
M)). As an extension of

Idαf to T 0M we define the function u : [0, T ] × T 0M → R by

u(t, x, ξ) =
∫ 0

τ−(x,ξ)
fi1,...,im(t+ τ, γx,ξ(τ))γ̇i1x,ξ(τ) · · · γ̇imx,ξ(τ)×

× exp
(

−
∫ 0

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

)
dτ. (2.41)

It can be observed that for (x, ξ) ∈ ∂+ΩM this integral coincides with Idαf and
for (x, ξ) ∈ ∂−ΩM that the integral vanishes since τ− is zero. Next, we show that
(2.41) is a solution of a transport equation. Similar results have been obtained in
[87] for static fields without absorption and constant refractive index n in [25]. Let
(x, ξ) ∈ T 0M\T (∂M) and γ = γx,ξ : [τ−(x, ξ), τ+(x, ξ)] → M be a geodesic uniqueley
determined by the initial conditions γx,ξ(0) = x, and γ̇x,ξ(0) = ξ. According to the
definition and the smoothness of γ, its length is finite. We assume that the interval
of definition cannot be further extended. Therefore, the interval boundaries can also
be characterized by

τ−(x, ξ) = max{τ ∈ (−∞, 0] : γx,ξ(t) ∩ ∂M ̸= ∅},
τ+(x, ξ) = min{τ ∈ [0,∞) : γx,ξ(t) ∩ ∂M ̸= ∅}.

Choosing a sufficiently small s ∈ R, we set ts = t+ s, xs = γ(s) and ξs = γ̇(s).
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Then, γxs,ξs(τ) = γ(τ + s) and τ−(xs, ξs) = τ−(x, ξ) − s yield

u(t+ s, xs, ξs) =
∫ 0

τ−(xs,ξs)
fi1,...,im(ts + τ, γxs,ξs(τ))γ̇i1xs,ξs

(τ) · · · γ̇imxs,ξs
(τ)×

× exp
(

−
∫ 0

τ
α(γxs,ξs(σ), γ̇xs,ξs(σ))dσ

)
dτ

=
∫ s

τ−(x,ξ)
fi1,...,im(t+ τ, γx,ξ(τ))γ̇x,ξ(τ)i1 · · · γ̇x,ξ(τ)im×

× exp
(

−
∫ s

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

)
dτ. (2.42)

The next step is to differentiate this equation with respect to s and to evaluate it at
s = 0. For the left-hand side, we get

∂u

∂t
+ γ̇k(0) ∂u

∂xk
+ γ̈k(0) ∂u

∂ξk
= ∂u

∂t
+ γ̇k(0) ∂u

∂xk
− Γkij(γ(0))γ̇i(0)γ̇j(0) ∂u

∂ξk

= ∂u

∂t
+ ⟨∇xu, ξ⟩ − Γkij(x)ξiξj ∂u

∂ξk

= ∂u

∂t
+ Hu,

where H denotes the geodesic vector field defined by

Hu := ⟨∇xu, ξ⟩ − Γkij(x)ξiξj ∂u
∂ξk

.

For brevity, we write

U(τ) = fi1,...,im(t+ τ, γx,ξ(τ))γ̇i1x,ξ(τ) · · · γ̇imx,ξ(τ),

V (τ, s) = exp
(

−
∫ s

τ
α(γx,ξ(σ), γ̇x,ξ(σ))dσ

)
.

Then, the right hand side of (2.42) reads as

∫ s

τ−(x,ξ)
U(τ)V (τ, s)dτ.

Let us define W (τ, s) as an antiderivative of U(τ)V (τ, s) with respect to t, i.e.,

W (τ, s) =
∫
U(τ)V (τ, s)dτ.

The function is only uniquely defined up to a constant, which can be neglected since
we are only interested in its derivatives. Note that [τ−(x, ξ), s] is bounded.

63



The fact that α ≥ 0 leads to the boundedness of the function V , i.e., V (τ, s) ≤ 1,
and we obtain

∂

∂s
W (τ, s) =

∫
U(τ)∂V

∂s
(τ, s)dτ.

Therefore,

d
ds

∫ s

τ−(x,ξ)
U(τ)V (τ, s)dτ = d

dsW (s, s) − ∂

∂s
W (τ, s)

= ∂W

∂τ
(τ, s)

∣∣∣∣
τ=s

+ ∂W

∂s
(τ, s)

∣∣∣∣
τ=s

− ∂

∂s
W (τ, s)

= U(s)V (s, s)︸ ︷︷ ︸
=1

+
∫ s

τ−(x,ξ)
U(τ)∂V

∂s
(τ, s)dτ

= U(s) +
∫ s

τ−(x,ξ)
U(τ)∂V

∂s
(τ, s)dτ.

Using that

∂V

∂s
(τ, s) = −α(γx,ξ(s), γ̇x,ξ(s))V (τ, s),

we obtain

lim
s→0

d
ds

∫ s

τ−(x,ξ)
U(τ)V (τ, s)dτ = fi1,...,im(t, γx,ξ(0))γ̇i1x,ξ(0) · · · γ̇imx,ξ(0)

− α(x, ξ)
∫ 0

τ−(x,ξ)
U(τ)V (τ, 0)dτ

= fi1,...,im(t, x)ξi1 · · · ξim − α(x, ξ)u(t, x, ξ).

Finally, we conclude that

(
∂

∂t
+ H + α(x, ξ)

)
u(t, x, ξ) = fi1,...,im(t, x)ξi1 · · · ξim . (2.43)

Note that furthermore, u satisfies the boundary conditions

u(t, x, ξ) =
 Idαf(t, x, ξ) =: ϕ(t, x, ξ), (x, ξ) ∈ ∂+ΩM, t ∈ [0, T ]

0, (x, ξ) ∈ ∂−ΩM, t ∈ [0, T ]
. (2.44)
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Because of (2.41) a natural initial value for u is given by

u(0, x, ξ) = 0, (2.45)

assuming that there is no flow f for t < 0. For static tensor fields f , (2.43) and
(2.44) turn into

(H + α(x, ξ))u(x, ξ) = fi1,...,im(x)ξi1 · · · ξim (2.46)

and

u(x, ξ) =
 ϕ(x, ξ), (x, ξ) ∈ ∂+ΩM

0, (x, ξ) ∈ ∂−ΩM
(2.47)

for given ϕ = Iαf , see [87]. Instead of computing f from Idαf , Iαf , respectively, the
inverse problem can now be re-formulated as inverse source problems for (2.43), (2.46):
Given the constraints (2.43) and (2.44), (2.46) and (2.47), respectively, compute f
from ϕ. Along with this, it is very important that the initial- and boundary-value
problems have unique solutions which leads to a well-defined parameter-to-solution
map f 7→ u. As it has been shown in [31] for the Euclidean case, it turns out that
indeed this is not satisfied in general. As a remedy, we consider viscosity solutions.
This is the subject of the following subsection.

2.2.2 Uniqueness of viscosity solutions

We focus on the existence and uniqueness of weak solutions for (2.43) given the
boundary conditions (2.44) and the initial condition (2.45). First, we consider static
fields f . To derive the weak formulation of (2.46) we multiply both sides by a test
function v ∈ H1

0 (ΩM) and integrate over ΩM . Let

γ+ : H1(ΩM) → L2(∂+ΩM)

be the trace operator restricting a function from ΩM to ∂+ΩM . This results in the
following weak formulation:
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Find u ∈ H1(ΩM) such that

a(u, v) = b(v), v ∈ H1
0 (ΩM)

where the bilinear form a : H1(ΩM) ×H1(ΩM) → R is given as

a(u, v) :=
∫

ΩM

(
⟨∇xu, ξ⟩v − Γkij(x)ξiξj ∂u

∂ξk
v + αuv

)
dΣ (2.48)

and the linear functional b : H1(ΩM) → R as

b(v) :=
∫

ΩM
fi1,...,imξ

i1 · · · ξimvdΣ.

According to standard results such as [57, Theorem 2.1], the bilinear form a must be
H1-coercive to prove the uniqueness of a weak solution, which is not fulfilled. As a
remedy, we turn over to viscosity solutions as investigated in [19]. By adding a small
multiple of the Laplace-Beltrami operator to the first-order differential operator of
the original equation we transform the transport equation into an elliptic equation.
For the arising elliptic problem, we want to prove the coercivity and thus the unique
solvability by using the Lax-Milgram Theorem.

Remark 2.6. One reason the term "viscosity solution" is used for perturbated PDEs,
despite it being a misuse of notation, is the convergence that these solutions exhibit.
As ε → 0, the solutions uε often converge to a viscosity solution of the unperturbed
equation.

To arrange the following computations more clearly, we split the Laplacian from
(A.11) into ∆ = ∆x + ∆ξ, where

∆x := n−2(x)
∑
i

∂2

∂x2
i

+ (N − 2)n−3(x)
∑
i

∂n

∂xi

∂

∂xi
,

∆ξ := n−2(x)
∑
i

∂2

∂(ξi)2 .

The following propositions are useful to prove the uniqueness of viscosity solutions.
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Lemma 2.7. Let u, v ∈ H1(ΩM). Then, we have

−
∫

ΩM
∆xuvdΣ =

∫
ΩM

⟨∇xu,∇xv⟩ dΣ −
∫
∂+ΩM

v∇νudσ+, (2.49)

as well as

−
∫

ΩM
∆ξuvdΣ =

∫
ΩM

⟨∇ξu,∇ξv⟩ dΣ. (2.50)

Particularly, we get for u ∈ H1
0 (ΩM)

−
∫

ΩM
∆xuudΣ =

∫
ΩM

⟨∇xu,∇xu⟩ dΣ. (2.51)

The two statements follow directly from Green’s formula. For the second part, one
uses that ∂(ΩxM) = ∅. The following lemma is useful to rewrite the bilinear form.

Lemma 2.8. Let N = 2, 3 and u, v ∈ H1(ΩM). Then, the following identities hold:

−
∫

ΩxM
Γkijξiξj

∂u

∂ξk
wdωx(ξ) =

∫
ΩxM

Γkijξiξj
∂w

∂ξk
u+ n−1(x)⟨∇n, ξ⟩uwdωx(ξ), N = 2,

(2.52)

−
∫

ΩxM
Γkijξiξj

∂u

∂ξk
wdωx(ξ) =

∫
ΩxM

Γkijξiξj
∂w

∂ξk
u+ 2n−1(x)⟨∇n, ξ⟩uwdωx(ξ), N = 3.

(2.53)

Proof. See Appendix (A.1).

From Lemma 2.8, one directly gets the following corollary.

Corollary 2.9. Let N = 2, 3 and u, v ∈ H1(ΩM). Then, the following identities
hold:

−
∫

ΩxM
Γkijξiξj

∂u

∂ξk
udωx(ξ) = 1

2

∫
ΩxM

n−1(x)⟨∇n, ξ⟩u2dωx(ξ), N = 2, (2.54)

−
∫

ΩxM
Γkijξiξj

∂u

∂ξk
udωx(ξ) =

∫
ΩxM

n−1(x)⟨∇n, ξ⟩u2dωx(ξ), N = 3. (2.55)

Proof. Set u = w in (2.52) and (2.53).

The next theorem is used for proving the uniqueness of solutions in general elliptic
PDEs.
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Theorem 2.10. (Lax-Milgram Theorem)
Let V be a Hilbert space, a(·, ·) : V × V → R a coercive and continuous coercive
bilinear form, i.e., there exist c1, c2 > 0 such that

a(u, u) ≥ c1∥u∥2
V ∀u ∈ V

|a(u, v)| ≤ c2∥u∥V ∥v∥V ∀u, v ∈ V,

and b ∈ V ′ be a linear bounded functional, i.e., there exists c3 > 0 such that

|b(v)| ≤ c3∥v∥.

Then, the solution u of the variational problem

a(u, v) = b(v) ∀v ∈ V

exists and is unique.

Proof. See Theorem 1.1 in [57].

By definition, a viscosity solution to (2.46) solves the equation

−ε∆u+ ⟨∇xu, ξ⟩ + αu− Γkijξiξj
∂u

∂ξk
= fi1,...,im(x)ξi1 · · · ξim , (2.56)

for ε > 0. Multiplying both sides with a test function v ∈ H1(ΩM) and integrating
over ΩM leads to

∫
ΩM

−ε∆uv + ⟨∇xu, ξ⟩v + αuv − Γkijξiξj
∂u

∂ξk
vdΣ =

∫
ΩM

fi1,...,im(x)ξi1 · · · ξimvdΣ.

We derive the variational formulation of the boundary value problem by setting

aε(u, v) =
∫

ΩM
−ε∆uvdΣ + a(u, v)

=
∫

ΩM
ε⟨∇u,∇v⟩dΣ −

∫
∂+ΩM

εv∇νudσ+ + a(u, v) (2.57)

bε(v) =
∫

ΩM
fi1,...,im(x)ξi1 · · · ξimvdΣ. (2.58)

Since u|∂+ΩM ̸= 0, to prove coercivity, we split u into two parts. We assume that
there is a H1(ΩM)-extension ϕ̂ of ϕ, i.e., ϕ̂|∂+ΩM = ϕ. Then, the function ũ = u− ϕ̂
lies in V = H1

0 (ΩM) and solves
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(−ε∆ + H + α)ũ = (−ε∆ + H + α)u− (−ε∆ + H + α)ϕ̂
= ⟨f, ξm⟩ − (−ε∆ + H + α)ϕ̂

and ũ = 0 on ∂+ΩM . Consequently, the final weak formulation of (2.56) along with
the boundary condition (2.47) is given by:

Find ϕ̂ ∈ H1(ΩM) such that γ+ϕ̂ = ϕ and uε ∈ H1
0 (ΩM) such that

aε(uε, v) = bεϕ(v), ∀v ∈ H1
0 (ΩM), (2.59)

where

aε(u, v) =
∫

ΩM
ε⟨∇u,∇v⟩dΣ −

∫
∂+ΩM

εv∇νudσ+ + a(u, v)

bεϕ(v) = bε(v) − aε(ϕ̂, v)

and set uϕ,ε = uε + ϕ̂ ∈ H1(ΩM).

The variational problem (2.59) has a unique solution under certain conditions.

Theorem 2.11. Let ε > 0, α ∈ L∞(ΩM) for N = 2, 3 with α(x, ξ) ≥ α0 > 0 for all
(x, ξ) ∈ ΩM , n ∈ C1(M) and f ∈ L2(Smτ ′

M) a m-tensor field. If

sup
x∈M

∥∇n(x)∥
2n(x) < α0, N = 2 (2.60)

sup
x∈M

∥∇n(x)∥
n(x) < α0, N = 3 (2.61)

then the solution uε ∈ H1(ΩM) of the variational problem (2.59) exists and is unique.

Proof. It is possible to prove this theorem for N = 2 and N = 3 simultaneously. The
only difference comes from the fact that the equations (2.54) and (2.55) differ by a
factor 1

2 . We define

Ξn(x, ξ) :=


1
2n

−1(x)⟨∇n(x), ξ⟩, N = 2

n−1(x)⟨∇n(x), ξ⟩, N = 3.
(2.62)
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The proof consists of an application of the Lax-Milgram Theorem. To this end, we
have to show

• the coercivity of aε,

• the continuity of aε and

• the continuity of bεϕ

on H1
0 (ΩM). Let 0 < δ < 1 be sufficiently small such that for N = 2,

sup
x∈M

∥∇n(x)∥
2n(x) ≤ (1 − δ)α0, (2.63)

and for N = 3

sup
x∈M

∥∇n(x)∥
n(x) ≤ (1 − δ)α0, (2.64)

is satisfied. Since v = 0 on ∂ΩM , the boundary integral in (2.57) vanishes. We split
aε = a(1)

ε + a(2)
ε , where

a(1)
ε (u, v) =

∫
ΩM

ε⟨∇xu,∇xv⟩ + ⟨∇xu, ξ⟩v + δαuvdΣ

a(2)
ε (u, v) =

∫
ΩM

ε⟨∇ξu,∇ξv⟩ − Γkij(x)ξiξj ∂u
∂ξk

v + (1 − δ)αuvdΣ.

One verifies that

∫
ΩM

⟨∇xu, ξ⟩udΣ =
∫
∂+ΩM

u2⟨ξ, ν⟩dσ −
∫

ΩM
⟨∇xu, ξ⟩udΣ,

= −
∫

ΩM
⟨∇xu, ξ⟩udΣ,

where dσ is the measure on ∂ΩM . Hence,

∫
ΩM

⟨∇xu, ξ⟩udΣ = 0, (2.65)

and, consequently,

a(1)
ε (u, u) =

∫
ΩM

ε∥∇xu∥2 + δαu2dΣ.
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Using equations (2.54)-(2.55) and (2.60)-(2.62) we estimate the second part by

a(2)
ε (u, u) =

∫
ΩM

ε∥∇ξu∥2 + ((1 − δ)α + Ξn(x, ξ))u2dΣ

≥
∫

ΩM
ε∥∇ξu∥2dΣ.

Adding both parts, we have the coercivity condition

aε(u, u) ≥
∫

ΩM
ε(∥∇xu∥2 + ∥∇ξu∥2) + δαu2dΣ

≥ min (ε, δα0) ∥u∥2
H1(ΩM). (2.66)

Next, we prove the continuity of a. Using the triangle inequality and (2.57), gives

|aε(u, v)| ≤
∣∣∣∣ ∫

ΩM
ε (⟨∇xu,∇xv⟩ + ⟨∇ξu,∇ξv⟩) dΣ

∣∣∣∣+ ∣∣∣∣ ∫
ΩM

ξk
∂u

∂xk
vdΣ

∣∣∣∣
+
∣∣∣∣ ∫

ΩM
αuvdΣ

∣∣∣∣+ ∣∣∣∣ ∫
ΩM

Γkijξiξj
∂u

∂ξk
vdΣ

∣∣∣∣. (2.67)

The first summand can be estimated by using the Cauchy-Schwarz inequality

∣∣∣∣ ∫
ΩM

ε (⟨∇xu,∇xv⟩ + ⟨∇ξu,∇ξv⟩) dΣ
∣∣∣∣ ≤ ε∥u∥H1(ΩM)∥v∥H1(ΩM). (2.68)

In the same manner, we obtain for the second summand

∣∣∣∣ ∫
ΩM

⟨∇x, ξ⟩vdΣ
∣∣∣∣ =

∣∣∣∣ ∫
ΩM

⟨∇xu, vξ⟩dΣ
∣∣∣∣

≤
(∫

ΩM
⟨∇xu,∇xu⟩dΣ

) 1
2

·
(∫

ΩM
v2dΣ

) 1
2

≤ ∥u∥H1(ΩM)∥v∥H1(ΩM). (2.69)

Moreover,

∣∣∣∣ ∫
ΩM

αuvdΣ
∣∣∣∣ ≤ ∥α∥L∞(ΩM)∥u∥L2(ΩM)∥v∥L2(ΩM) (2.70)

≤ ∥α∥L∞(ΩM)∥u∥H1(ΩM)∥v∥H1(ΩM). (2.71)

We use (2.27) for the last part in (2.67) and obtain
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∣∣∣∣ ∫
ΩM

−Γkij(x)ξiξj ∂u
∂ξk

vdΣ
∣∣∣∣ =

∣∣∣∣ ∫
ΩM

(
n−3(x)∂n(x)

∂xk
− 2n−1(x)ξk⟨∇n, ξ⟩

)
∂u

∂ξk
vdΣ

∣∣∣∣
=
∫

ΩM
n−1(x)⟨∇n,∇ξu⟩|v| − 2n−1(x)⟨∇n, ξ⟩⟨ξ,∇ξu⟩|v|dΣ

=
∫

ΩM
n−1(x) (⟨∇n,∇ξu⟩ − 2⟨∇n, ξ⟩⟨ξ,∇ξu⟩) |v|dΣ

≤
∫

ΩM
n−1(x) (∥∇n(x)∥∥∇ξu∥ + 2∥∇n(x)∥∥∇ξu∥) |v|dΣ

≤
∫

ΩM
3∥∇n(x)∥

n(x) ∥∇ξu∥|v|dΣ

≤ 6∥α∥L∞(ΩM)∥∇ξu∥L2(ΩM)∥v∥L2(ΩM)

≤ 6∥α∥L∞(ΩM)∥u∥H1(ΩM)∥v∥H1(ΩM). (2.72)

Finally, with (2.68) - (2.72) we arrive at

|aε(u, v)| ≤ (ε+ 1 + 7∥α∥L∞(ΩM))∥u∥H1(ΩM)∥v∥H1(ΩM).

The last step is to prove the continuity of bεϕ. We compute

∣∣∣∣ ∫
ΩM

fi1,...im(x)ξi1 · · · ξimvdΣ
∣∣∣∣ ≤

(∫
ΩM

⟨f(x), ξm⟩2dΣ
) 1

2
·
(∫

ΩM
v2dΣ

) 1
2

≤ c(n)∥f∥L2(Smτ ′
M )∥v∥H1(ΩM)

for a positive constant c(n) depending on the refractive index n. The continuity of bεϕ
then follows from this estimate and the continuity of aε. This completes the proof.

The continuity conditions for aε and bεϕ hold true also for ε = 0, whereas the coercivity
only holds for ε > 0. Theorem (2.11) guarantees that there exists a unique, weak
viscous solution if n varies only slowly. Especially in the Euclidean geometry (n = 1)
conditions (2.60) and (2.61) are valid for any positive α0. These results are in
accordance with those presented in [25]. It is consistent with the observation that in
the absence of absorption, the integral transform (2.17) exhibits a non-trivial kernel,
encompassing, at least, all potential fields.

Based on the results obtained for static fields, we will now proceed analogously for
the dynamic case. Let V be a reflexive and separable Banach space with norm ∥ · ∥V
and V ∗ its dual space with norm ∥ · ∥V ∗ . The dual pairing is denoted by ⟨·, ·⟩V×V ∗ .
Furthermore, let

W 1,1,2(V, V ∗) = {u ∈ L2(0, T ;V ) : dtu ∈ L2(0, T ;V ∗)},
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where dtu represents the distributional derivative of u. Throughout, we consistently
assume V = H1

0 (ΩM), yielding V ∗ = H−1(ΩM). We interpret (2.59) as an abstract
operator equation (c.f. [60],[92]) in which

Aε(u) = fi1,...,imξ
i1 · · · ξim in V ∗,

where Aε : V → V ∗ defined by Aε(u) = aε(u, ·) constitues a monotone operator. The
monotonicity is evident since for all u1, u2 ∈ V , we have

⟨Aε(u1) − Aε(u2), u1 − u2⟩ = ⟨Aε(u1 − u2), u1 − u2⟩
= aε(u1 − u2, u1 − u2)
≥ 0.

This finding is also applicable to the dynamic equation, as discussed in [80] and [105].
As illustrated in (2.43), the extension u of Idαf satisfies

∂u

∂t
+ (H + α)u = fi1,...,im(t, x)ξi1 · · · ξim .

The corresponding viscosity solution is characterized by

∂u

∂t
− ε∆u+ (H + α)u = fi1,...,im(t, x)ξi1 · · · ξim

and the associated variational formulation reads as:

Find uε ∈ W 1,1,2(0, T ;V, V ∗) such that

⟨dtuε(t), v⟩V ∗,V + aε(t;uε(t), v) = ⟨bεϕ(t), v⟩V ∗,V , (2.73)
uε(0) = 0,

for all v ∈ V and for a.e. t ∈ (0, T ) and set udϕ,ε = uε + ϕ̂.

Analogously to equation (2.57), the bilinear form aε is defined by

aε(t;u, v) =
∫

ΩM
ε⟨∇u(t),∇v(t)⟩ + ⟨∇xu(t), ξ⟩v(t) − Γkijξiξj

∂u(t)
∂ξk

v(t) + αu(t)v(t)dΣ

−
∫
∂+ΩM

ε∇νu(t)v(t)dσ+
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and the linear form bεϕ is specified by

⟨bεϕ(t), v⟩ =
∫

ΩM
fi1,...,im(t, x)ξi1 · · · ξimv(t)dΣ − aε(t, ϕ̂(t), v(t)).

Due to the Aubin-Lions Lemma, W 1,1,2(V, V ∗) ⊂ C(0, T ;L2(ΩM)) holds, ensuring
that the point evaluation uε(0) in (2.73) is well-defined. The subsequent theorem
represents a standard tool employed to ensure unique solutions of time-dependent
differential equations.

Theorem 2.12 (Theorem 3.6 in [4]). Let V be a reflexive Banach space. Assume
b ∈ V ∗ and that the bilinear form a(t; ·, ·) : V × V → R satisfies the following
properties:

• The mapping t 7→ a(t;u, v) is measurable for all u, v ∈ V .

• There exists a c1 > 0: a(t, u, v) ≥ c1∥u∥2
V for all t ∈ (0, T ).

• There exists a c2 > 0: |a(t, u, v)| ≤ c2∥u∥V ∥v∥V for all t ∈ (0, T ).

Then, the equation

⟨dtu(t), v⟩V ∗,V + a(t, u(t), v) = ⟨b, v⟩V ∗,V ∀v ∈ V

has a unique solution u ∈ W 1,1,2(0, T ;V, V ∗) satisfying

∥u∥W 1,1,2(V,V ∗) ≤ 1
c1

∥b∥V ∗ .

Using Theorem 2.12 we get:

Theorem 2.13. Let ε > 0, α ∈ L∞(ΩM) for N = 2, 3 with α(x, ξ) ≥ α0 > 0 for all
(x, ξ) ∈ ΩM , n ∈ C1(M) and f ∈ L2(0, T ;Smτ ′

M) a m-tensor field. If

sup
x∈M

∥∇n(x)∥
2n(x) < α0, N = 2

sup
x∈M

∥∇n(x)∥
n(x) < α0, N = 3

then the variational problem (2.73) has a unique solution uε.

Proof. The assumption follows directly from Theorem 2.11, Theorem 2.12 and the
fact that the bilinear form aε is continuous and hence measurable.
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In summary, based on Theorems 2.11 and 2.13, static and dynamic tensor field
tomography in a medium with absorption and refraction can be mathematically
represented by the linear equations

Sε
αf = ϕ, Sε,d

α f = ϕ

for given data ϕ, where

Sε
α : L2(Smτ ′

M) → L2(∂+ΩM),
Sε,d
α : W 1,1,2(0, T ;V, V ∗) → L2(0, T ; ∂+ΩM)

can be decomposed as

Sε
α = γ+ ◦ F ε

α,

Sε,d
α = γ+ ◦ F ε,d

α

with parameter-to-solution mappings

F ε
α : L2(Smτ ′

M) → L2(∂ΩM), f 7→ uϕ,ε,

F ε,d
α : W 1,1,2(0, T ;V, V ∗) → L2(0, T ; ∂ΩM), f 7→ udϕ,ε.

Theorems 2.11 and 2.13 then guarantee that all mappings are well-defined.
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2.3 The inverse problem of refractive dynamic
tensor tomography (RDTT)

There exist representations of the adjoint operator I∗
α of the integral transform in a

non-Euclidean static setting but only for α = 0. Using Santaló’s formula it is shown
in [20] that

[I∗
0ψ](x) =

∫
ΩxM

ψ#(x, ξ)ξiξj⟨νx, ξ⟩dσx(ξ), (2.74)

where ψ#(x, ξ) is defined as a function that equals ψ(x, ξ) on ∂+ΩM and that is
constant along γx,ξ. Note that (2.74) looks quite similar to the backprojection opera-
tor R∗ used in computerized tomography. In this section, the adjoint operator via
transport equations is derived for the attenuated and dynamic case.

Theorem 2.14. Let f ∈ L2(0, T ;L2(Smτ ′
M )) and ϕ = Sd

α(f). Assuming that for any
h ∈ L2(0, T ;L2(∂+ΩM)) there is a unique solution w ∈ H1(0, T ;H1(ΩM)) of the
adjoint problem

−∂w

∂t
− ⟨∇w, ξ⟩ + Γkijξiξj

∂w

∂ξk
+ (α + Ξn(x, ξ))w = 0, t ∈ [0, T ], (x, ξ) ∈ ΩM

(2.75)

with boundary and end conditions

w(T, x, ξ) = 0, (x, ξ) ∈ ΩM (2.76)

w(t, x, ξ) = h(t, x, ξ)
⟨νx, ξ⟩

, t ∈ [0, T ], (x, ξ) ∈ ∂+ΩM (2.77)

w(t, x, ξ) = kh(t, x, ξ) exp
(

−
∫ τ+(x,ξ)

0

(
α + Ξn

)
(γx,ξ(τ̃), γ̇x,ξ(τ̃))dτ̃

)
, (2.78)

t ∈ [0, T ], (x, ξ) ∈ ∂−ΩM

where

kh(t, x, ξ) = h(t, γx,ξ(τ+(x, ξ)), γ̇x,ξ(τ+(x, ξ)))
⟨νγx,ξ(τ+(x,ξ), γ̇x,ξ(τ+(x, ξ)⟩ , (2.79)

the adjoint operator can be computed explicitly by

[(Sd
α)∗h](t, x) =

∫
ΩxM

w(t, x, ξ)ξmdσx(ξ) ∈ L2(0, T ;L2(Smτ ′
M)).
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Proof. We consider (2.56) and multiply both sides by a test function w ∈ H1(ΩM)
and integrate over [0, T ] × ΩM . Then, the equation becomes

∫ T

0

∫
ΩM

∂u

∂t
w + ⟨∇xu, ξ⟩w − Γkijξiξj

∂u

∂ξk
+ αuw dΣdt

=
∫ T

0

∫
ΩM

fi1,...,im(t, x)ξi1 · · · ξimwdΣdt. (2.80)

To rewrite the left side of (2.80), we compute

∫ T

0

∂u

∂t
wdt = u(T )w(T ) − u(0)w(0) −

∫ T

0
u
∂w

∂t
dt

= u(T )w(T ) −
∫ T

0
u
∂w

∂t
dt. (2.81)

Next,

∫
ΩM

⟨∇xu, ξ⟩wdΣ =
∫
∂+ΩM

ϕw⟨ξ, νx⟩dσ −
∫

ΩM
⟨∇xw, ξ⟩udΣ, (2.82)

and by (2.52),

−
∫

ΩxM
Γkijξiξj

∂u

∂ξk
wdΣ =

∫
ΩxM

Γkijξiξj
∂w

∂ξk
u+ Ξn(x, ξ)uw dΣ. (2.83)

Inserting (2.81)-(2.83) into (2.80) yields

∫ T

0

∫
ΩM

u
(

− ∂w

∂t
− ⟨∇xw, ξ⟩ + Γkijξiξj

∂w

∂ξk
+ (α + Ξn(x, ξ))w

)
dΣ (2.84)

+
∫ T

0

∫
∂+ΩM

ϕ
(
w⟨νx, ξ⟩

)
dσdt (2.85)

+
∫

ΩM
u(T, x, ξ)w(T, x, ξ)dΣ (2.86)

=
∫ T

0

∫
ΩM

⟨f, wξm⟩dΣdt (2.87)

= ⟨f, (Sd
α)∗h⟩L2(0,T ;L2(Smτ ′

M )). (2.88)

If w solves (2.75)-(2.76), the integrals (2.84) and (2.86) vanish and (2.85) becomes

∫ T

0

∫
ΩM

ϕhdΣ = ⟨Sd
αf, h⟩L2(0,T ;L2(ΩM)).
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Since u vanishes on ∂−ΩM , there is so far no information about w on that part of
the boundary. To obtain them, we restrict w to a geodesic γx,ξ for some (x, ξ) ∈ ΩM .
Then, we get for w̃(τ) := w(t+ τ, γx,ξ(τ), γ̇x,ξ(τ)) that

dw̃(τ)
dτ = Hw̃(τ) = (α + Ξn)w(τ) (2.89)

and

w̃(τ+(x, ξ)) = h(t+ τ+(x, ξ), γx,ξ(τ+(x, ξ)), γ̇x,ξ(τ+(x, ξ)))
⟨νγx,ξ(τ+(x,ξ)), γ̇x,ξ(τ+(x, ξ))⟩ =: kh(t, x, ξ). (2.90)

Solving the first order ODE (2.89) for given final condition (2.90) by separation of
variables, results in

w̃(τ) = kh(t, x, ξ) exp
(

−
∫ τ+(x,ξ)

τ
(α + Ξn)(γx,ξ(τ̃), γ̇x,ξ(τ̃))dτ̃

)
.

Therefore,

w̃(0) = w(t, x, ξ) = kh(t, x, ξ) exp
(

−
∫ τ+(x,ξ)

0
(α + Ξn)(γx,ξ(τ̃), γ̇x,ξ(τ̃))dτ̃

)
(2.91)

on ΩM and, in particular, on ∂−ΩM . This shows the assertion.

Corollary 2.15. In the case of static tensor fields, i.e., f ∈ L2(Smτ ′
M) and ϕ =

Sα(f), the adjoint problem is to find the unique solution w ∈ H1(ΩM) of

−⟨∇w, ξ⟩ + Γkijξiξj
∂w

∂ξk
+
(
α + n−1(x)⟨∇n(x), ξ⟩

)
w = 0, (x, ξ) ∈ ΩM

(2.92)

with boundary conditions

w(x, ξ) = h(x, ξ)
⟨νx, ξ⟩

, (x, ξ) ∈ ∂+ΩM

(2.93)

w(x, ξ) = kh(x, ξ) exp
(

−
∫ τ+(x,ξ)

0

(
α + Ξn

)
(γx,ξ(σ), γ̇x,ξ(σ))dσ

)
, (x, ξ) ∈ ∂−ΩM

(2.94)
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where

kh(x, ξ) = h(γx,ξ(τ+(x, ξ)), γ̇x,ξ(τ+(x, ξ)))
⟨νγx,ξ(τ+(x,ξ)), γ̇x,ξ(τ+(x, ξ))⟩ (2.95)

for any h ∈ L2(∂ΩM). Then, the adjoint operator is given by

[S∗
αh](x) =

∫
ΩxM

w(x, ξ)ξmdσx(ξ) ∈ L2(Smτ ′
M). (2.96)

Remark 2.16. Note that w is well-definied on the boundary since h(x, ξ) = 0 for
⟨νx, ξ⟩ = 0. It can be observed that (2.96) coincides with (2.74) for α = 0.

Regarding the well-definedness of the adjoint operators, which is equivalent to the
unique solvability of the adjoint problem, the same approach as for the forward
problem can be used. Adding the viscosity term −ε∆w to the left side of (2.92),
deriving the variational formulation by identifying the bilinear form a∗ analogously
to (2.48)

a∗(w, v) =
∫

ΩM
−⟨∇xw, ξ⟩v + Γkij(x)ξiξj ∂w

∂ξk
v + αwvdΣ, w, v ∈ H1(ΩM)

(2.97)

and setting

a∗
ε(w, v) =

∫
ΩM

ε⟨∇w,∇v⟩dΣ −
∫
∂+ΩM

v∇νwdσ+ + a∗(w, v) (2.98)

b∗
h,ε(v) = −a∗(ĥ, v). (2.99)

we arrive at the following weak formulation:

Find wh,ε = wε + ĥ ∈ H1(ΩM) such that

a∗
ε(wε, v) = b∗

h,ε(v), ∀v ∈ H1
0 (ΩM), (2.100)

where wε ∈ H1
0 (ΩM) and γ+ĥ = h.

The variational problem (2.100) has a unique solution under certain conditions:
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Theorem 2.17. Let ε > 0, α ∈ L∞(ΩM) for N = 2, 3 with α(x, ξ) ≥ α0 > 0 for all
(x, ξ) ∈ ΩM and n ∈ C1(M). If

sup
x∈M

∥∇n(x)∥
2n(x) < α0, N = 2

sup
x∈M

∥∇n(x)∥
n(x) < α0, N = 3

then the solution wε ∈ H1(ΩM) of the variational problem (2.100) exists and is
unique.
Proof. The proof works similarly to the one of (2.11) by applying the Lax-Milgram
theorem.

We have observed that the adjoint operator can be represented using the solution of
a transport equation. However, an alternative approach exists for representing this
operator. To explore this, let us revisit equation (2.91). The introduction of w̃ was
intended to provide us with the complete boundary data of the function w. Notably,
we observe here that we can explicitly specify w along the entire geodesic γ as a
result of a curve integral. In the dynamic case, we derive the following alternative
representation:

For a given function h ∈ L2(0, T ;L2(∂+ΩM)) we define the adjoint operator

(Idα)∗ : L2(0, T ;L2(∂+ΩM)) → L2(0, T ;L2(Smτ ′
M))

of the generalized dynamic attenuated ray transform Idα by

[(Idα)∗h](t, x) =
∫

ΩxM
w(t, x, ξ)ξmdσx(ξ),

where

w(t, x, ξ) = kh(t, x, ξ) exp
(

−
∫ τ+(x,ξ)

0

(
α + Ξn

)
(γx,ξ(τ̃), γ̇x,ξ(τ̃))dτ̃

)
,

t ∈ [0, T ], (x, ξ) ∈ ΩM

and

kh(t, x, ξ) = h(t, γx,ξ(τ+(x, ξ)), γ̇x,ξ(τ+(x, ξ)))
⟨νγx,ξ(τ+(x,ξ)), γ̇x,ξ(τ+(x, ξ))⟩ .
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At this point, one might ask the reasons to study partial differential equations
when they can be equivalently understood as ordinary differential equations through
integral transformations or along geodesics. In the former scenario, involving the
forward operator, employing the integral formula is logical, as it necessitates solving
the geodesic differential equation once for each evaluation, followed by the application
of a quadrature formula. However, the advantage of partial differential equations
becomes apparent in the context of the adjoint operator: If one would solve these
equations using the characteristics method, determining S∗

αh(x) or (Sd
α)∗h(x) for

a point x would require solving an ordinary differential equation for all possible
directions ξ in the corresponding discretization to evaluate the integral over ΩxM .
Instead, solving one system of linear equations per iterate proves to be more efficient.
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3 Numerical results

In this Chapter, the theory of the previous ones is applied to some numerical experi-
ments. In all examples we let M be the 2-dimensional unit circle and m = 1. The
attenuation coefficient α is assumed to be constant equal to α0. First, we will restrict
ourselves to the Euclidean case and evaluate the accuracy of the two representations
of the adjoint operator for synthetic data. Afterward, we test different regularization
methods to reconstruct the vector fields. Once we find the optimal parameters of the
grid and the best type of regularization, we extend the examples to variable metrics.

All subsequent computations were implemented in Matlab. We utilized an Intel(R)
Core(TM) processor operating at 3.7 GHz with 64 GB of RAM. In cases where we
parallelized the code, we utilized ten cores.

3.1 Numerical results for the Euclidean case
First, we compute the line integrals of the forward operator. Because of the radial
symmetry, we choose polar coordinates for all variables. Since we only need to
consider vectors x on ∂M , it is sufficient to parameterize as follows:

xp =
(

cosµp
sinµp

)
, µp = 2πp

P
, p = 1, . . . , P.

For ξ we write this accordingly:

ξq =
(

cosφq
sinφq

)
, φq = 2πq

Q
, q = 1, . . . , Q.

For (x, ξ) ∈ ∂+ΩM , the integral limit τ−(x, ξ) of (2.17) can be computed explicitly
by

τ−(x, ξ) = min{τ ∈ R| ∥x+ τξ∥2
euclid = 1}

= −⟨x, ξ⟩ −
√

⟨x, ξ⟩2 + 1 − ⟨x, x⟩
= −2⟨x, ξ⟩.
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Hence, Iα0 becomes

[Iα0f ](x, ξ) =
∫ 0

−2⟨x,ξ⟩
⟨f(x+ τξ), ξ⟩ exp(−2α0⟨x, ξ⟩)dτ.

To approximate this integral numerically, we use the trapezoidal sum. That is why
we need an approximation for f on some points on the integration line. There we
have to distinguish two cases: The first one is that the point x̃ is located between
two concentric grid lines, see Figure 3.1.

Figure 3.1: Segment between two concentrical circles

Without loss of generality x̃ is in the mesh with grid points xr,p, xr+1,p, xr,p+1 and
xr+1,p+1. Let 0 ≤ ζr ≤ 1 be the radial difference to the inner circle and 0 ≤ ζp ≤ 1
the angular one of the lower index. Then,

f(xr+ζr,p) ≈ ζrf(xr,p) + (1 − ζr)f(xr+1,p)
f(xr+ζr,p+1) ≈ ζrf(xr,p+1) + (1 − ζr)f(xr+1,p+1).

Hence,

f(x̃) ≈ ζpf(xr+ζr,p) + (1 − ζp)f(xr+ζr,p+1)
= ζrζpf(xr,p) + (1 − ζr)ζpf(xr+1,p)
+ ζr(1 − ζp)f(xr,p+1) + (1 − ζr)(1 − ζp)f(xr+1,p+1).

The second case is where x̃ lies in the inside of the inner circle. As mentioned above,
0 is not part of the grid. We assign it a value by taking the average of all grid points
on the inner circle, i.e.

f(0) := 1
P

P∑
p=1

f(x1,p).
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Figure 3.2: Segment inside the inner circle

For any x̃ ̸= 0 there is a segment containing x̃ that is given by two grid points x1,p
and x1,p+1 and 0, see Figure 3.2.
Analogously, we define ζr and ζp and set

f(x̃) ≈ ζrf(0) + (1 − ζr)(ζpf(x1,P ) + (1 − ζp)f(x1,p+1)).

Since the line of integration is given analytically we can choose the grid points for the
integration equidistantly. Therefore, splitting [τ−(x, ξ), 0] into T intervals of length
∆τ = −τ−(x,ξ)

T
, we get the step sizes

τt = τ−(x, ξ) + t∆τ, t = 0, . . . , T

and set

Hp,q := [Iα0f ](xp, ξq) = 1
T + 1

T∑
t=0

⟨f(xp + τtξq), ξq⟩ exp(α0τt).

3.1.1 Implementation of the adjoint operator via integration
Next, we turn over to the adjoint operator. In the Euclidean case and with constant
absorption, this is given for h ∈ L2(∂+ΩM) by

[I∗
α0h](x) =

∫ 2π

0
w(x, ξ(φ))ξ(φ)dφ

where
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w(x, ξ) = h(γx,ξ(τ+(x, ξ)), γ̇x,ξ(τ+(x, ξ)))
⟨x+ τ+(x, ξ)ξ, ξ⟩ exp(−α0τ+(x, ξ))

= h(x+ τ+(x, ξ)ξ, ξ)
⟨x, ξ⟩ + τ+(x, ξ) exp(−α0τ+(x, ξ)). (3.1)

For (x, ξ) ∈ ΩM we can compute τ+(x, ξ) explicitly by

τ+(x, ξ) = max{τ ∈ R| ∥x+ τξ∥2
euclid = 1}

= −⟨x, ξ⟩ +
√

⟨x, ξ⟩2 + 1 − ⟨x, x⟩.

This means that a large part of (3.1) can be calculated analytically. Only the
evaluation of h requires interpolation. It is possible to precisely calculate the location
where h needs to be evaluated. We parameterize x ∈ M as follows:

xr,p = ρr

(
cosµp
sinµp

)
, ρr = r

R
, r = 1, . . . , R

Let xp and xp+1 be these points points with polar angles µp and µp+1 and let ξ = ξq
be constant. We write

x̃r,p,q := xr,p + τ+(xr,p, ξq)ξq ∈ ∂M

for the endpoint of the integration line. Then, there is exists a µ̃, such that

x̃r,p,q =
(

cos µ̃
sin µ̃

)
. (3.2)

This point in ∂M has the neighboring points

(⌊
µP

2π

⌋
, q
)

and
(⌊
µP

2π

⌋
+ 1, q

)
.

where the indices are taken modulo P . This results in linear interpolation

h(x̃r,p,q, ξq) ≈
(

1 −
(
µP

2π −
⌊
µP

2π

⌋))
H⌊µP

2π ⌋,q +
(
µP

2π −
⌊
µP

2π

⌋)
H⌊µP

2π ⌋+1,q.
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The total adjoint operator is then calculated using the trapezoidal sum as follows:

[I∗
α0h](xr,p) = 2π

Q

Q∑
q=1

w(xr,p, ξq)ξq.

Given the forward and adjoint operators, we can implement the Landweber iteration.
Let us discuss the ratio between the number of angles and radii. In the Cartesian
case, it is obvious that both grid sizes should be chosen equally. The resulting
squares correspond to the rectangles that minimize the area of the grid meshes with
a constant perimeter. We want to proceed similarly here: We want to select the grid
sizes in such a way that the straight side pieces for a grid segment are approximately
as long as the curved sections. Note that the length of the straight sides is the
same for all segments for a given number of radii, whereas the curved sides naturally
become larger towards the outside. We therefore consider how long the curved sides
are on average. If R is the number of concentric rings in the grid, these have the
radii

ri = i

R
, i = 0, . . . , R.

If you add up the outer and inner radii, you get an average of

1
2R

(
R−1∑
i=0

ri +
R∑
i=1

ri

)
= 1

2R

(1
2(R − 1) + 1

2(R + 1)
)

= 1
2 .

Thus, for a grid with P angles, the meshes have an average arc length of π
P

.
This should correspond to the lengths of the straight sides of a mesh, i.e.

π

P
= 1
R

and thus

P ≈ πR. (3.3)

We check this hypothesis using two examples for solenoidal vector fields. Setting
a fixed amount of R · P = 3600 grid points, we consider different combinations
of R and P = Q and compare the relative errors after reconstruction where we
used Landweber’s method with relaxation parameter 0.1. Additionally, we include
the pair (R,P ) = (34, 106) which is the closest combination for satisfying (3.3)
and having approximately 3600 grid points. For both vector fields, we choose
α ∈ {0, 0.1, 0.2, 0.3, 0.4}.
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α
(R, P) 0 0.1 0.2 0.3 0.4

(20, 180) 0.0579 0.1432 0.4580 0.9739 1.1155
(30, 120) 0.0637 0.1457 0.4599 0.9703 1.1156
(34, 106) 0.0233 0.1190 0.4403 0.9568 1.1094
(40, 90) 0.0313 0.1209 0.4407 0.9567 1.1108
(60, 60) 0.1190 0.1762 0.4672 0.9540 1.1371
(90, 40) 1.6989 1.7108 1.7675 1.9603 2.2919
(120, 30) 0.3920 0.4228 0.6306 1.0871 1.3950
(180, 20) 2.9775 3.0166 3.0895 3.2521 3.5495

Table 3.1: Relative L2-error (%) between reconstruction and true vector field f (1)(x) =
(x1 + x2, x1 − x2)⊤ for the same number of pixels but in different proportions of R and
P = Q.

α
(R, P) 0 0.1 0.2 0.3 0.4

(20, 180) 0.1323 0.1862 0.4330 0.8553 1.4147
(30, 120) 0.1401 0.1991 0.4437 0.8613 1.4173
(34, 106) 0.0549 0.1292 0.3951 0.8228 1.3827
(40, 90) 0.0715 0.1403 0.4012 0.8284 1.3871
(60, 60) 0.2635 0.3108 0.5226 0.9155 1.4462
(90, 40) 2.9140 2.9588 3.0184 3.1318 3.3409
(120, 30) 1.0319 1.0537 1.1794 1.4641 1.9150
(180, 20) 5.4409 5.5277 5.6187 5.7324 5.7936

Table 3.2: Relative L2-error (%) between reconstruction and true vector field f (2)(x) =
(x2

1 − 2x2
2, −2x1x2)⊤ for the same number of pixels but in different proportions R and

P = Q.

In both examples, we observe that, regardless of the choice of α, the combination
(R,P ) = (34, 106), c.f. Equation (3.3), consistently yields the smallest errors in
reconstruction. Therefore, this combination will be retained for the subsequent
numerical experiments.

Subsequently, we investigate the optimal number of directions Q. In the aforemen-
tioned tables, we maintained P = Q. Now, with R = 34 and P = 106 held constant,
we vary Q and present the results in the following two tables.
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α
Q 0 0.1 0.2 0.3 0.4
10 0.2330 0.2639 0.5030 0.9684 1.1268
20 1.1849 1.2326 1.3388 1.6129 2.1131
30 0.1741 0.2146 0.4851 0.9668 1.1090
40 0.5509 0.5682 0.7118 1.1090 1.5050
50 0.1260 0.1801 0.4745 0.9580 1.1090
60 0.3371 0.3585 0.5583 1.0103 1.1270
70 0.1514 0.1950 0.4713 0.9671 1.1090
80 0.1878 0.2229 0.4839 0.9720 1.1067
90 0.0506 0.1268 0.4415 0.9548 1.1056
100 0.1858 0.2202 0.4776 0.9714 1.1135
106 0.0233 0.1190 0.4403 0.9568 1.1094

Table 3.3: Relative error (%) between reconstruction and true vector field f (1) for (R, P ) =
(34, 106) and different number of directions Q.

α
Q 0 0.1 0.2 0.3 0.4
10 0.3445 0.3652 0.5251 0.8934 1.4230
20 0.2914 0.3122 0.4886 0.8723 1.4051
30 0.2390 0.2709 0.4749 0.8673 1.3937
40 0.2204 0.2479 0.4501 0.8480 1.3812
50 0.1459 0.1933 0.4346 0.8461 1.3880
60 0.1846 0.2206 0.4458 0.8490 1.3783
70 0.2201 0.2490 0.4515 0.8492 1.3910
80 0.1202 0.1611 0.4005 0.8190 1.3739
90 0.0850 0.1352 0.3877 0.8124 1.3716
100 0.0485 0.1175 0.3830 0.8116 1.3735
106 0.0549 0.1292 0.3951 0.8228 1.3827

Table 3.4: Relative error (%) between reconstruction and true vector field f (2) for (R, P ) =
(34, 106) and different number of directions Q.

According to Table 3.3 and 3.4 we have the best reconstruction for Q = 106 inde-
pendent of α. However, we also observe in both examples that for α = 0.2 the error
for Q = 106 is hardly better than for Q = 30. However, the first case mentioned is
significantly more complex, as the number of arithmetic operations is proportional
to Q in both the forward and the adjoint problem. For this reason, we decide the
following in favor of P = Q for small absorptions and then for a significantly smaller
number for larger ones.
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We test the optimal grid sizes on

f (2)(x) = (x2
1 − 2x2

2,−2x1x2)⊤

for noisy data, see Figure 3.3. We observe even for high noise levels very stable
reconstructions.

Figure 3.3: Reconstruction of f
(2)
1 for δ ∈ {0, 0.1, 0.15, 0.2}

An example will be used to demonstrate the influence of α on the quality of the re-
construction. For various noise levels δ, the forward operator with the corresponding
α will be initially applied. Subsequently, using the undamped integral transformation
model, a reconstruction will be performed using the Landweber method. In this
process, ω has been set to 0.1.
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Figure 3.4: Influence of α on the relative error in reconstruction

We see that, as expected, the relative error becomes greater as δ increases. Moreover,
it can be observed that for all choices δ, there is an asymptotical linear increasing
behavior.

3.1.2 Implementation of adjoint operator via PDE
In this subsection, we examine the alternative approach of solving the adjoint opera-
tor using S∗

α instead of I∗
α. We consider the Euclidean case and a constant damping

α0. In this case, we can evaluate the quality of the approximation using analytical
representations.

Let h ∈ L2(∂+ΩM). Then, S∗
α0 : L2(∂+ΩM) → L2(S1τ ′

M) is given by

[S∗
α0h](x) =

∫
ΩxM

w(x, ξ)ξdσx(ξ),

where w solves the following boundary value problem:

−⟨∇w(x, ξ), ξ⟩ + α0w = 0, (x, ξ) ∈ ΩM

w = h(x+ τ+(x, ξ)ξ, ξ)√
⟨x, ξ⟩2 + 1 − |x|2

, (x, ξ) ∈ ∂ΩM.
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For stabilization, we add the term −ε∆w for ε > 0 to the left-hand side of the PDE
and obtain

−ε∆w − ⟨∇w(x, ξ), ξ⟩ + α0w = 0, (x, ξ) ∈ ΩM

w = h(x+ τ+(x, ξ)ξ, ξ)√
⟨x, ξ⟩2 + 1 − |x|2

, (x, ξ) ∈ ∂ΩM.

We use again polar coordinates for parameterizing x and ξ. We calculate the boundary
values for r = R analytically via Iα0 . For the inner points, we first convert the PDE
into polar coordinates:

− ε∆w − ⟨∇w(x, ξ), ξ⟩ + α0w = 0

⇔ −ε
(

1
ρ

∂w

∂ρ
+ ∂2w

∂ρ2 + 1
ρ2
∂2w

∂µ2

)
− ∂w

∂ρ
cos(φ− µ) − 1

ρ

∂w

∂µ
sin(φ− µ) + α0w = 0

(3.4)

We use difference quotients for the approximations of the partial derivatives. In
the case of the radial derivative, we use the forward differences so that a derivative
can also be assigned to the points on the innermost ring. The second derivative is
approximated using central differential quotients. For the azimuthal derivative, we
use central differences, i.e.,

∂w

∂ρ
(xr,p, ξq) ≈ wr+1,p,q − wr,p,q

∆ρ , r = 1, . . . , R − 1

∂2w

∂ρ2 (xr,p, ξq) ≈ wr+1,p,q − 2wr,p,q + wr−1,p,q

(∆ρ)2 , r = 2, . . . , R − 1

∂w

∂µ
(xr,p, ξq) ≈ wr,p+1,q − wr,p−1,q

2∆µ , p = 1, . . . , P

∂2w

∂µ2 (xr,p, ξq) ≈ wr,p+1,q − 2wr,p,q + wr,p−1,q

(∆µ)2 , p = 1, . . . , P.

The indices for specifying the polar angle are again to be understood modulo P . For
r = 1 we have the special case that the second radial derivative cannot be calculated
in this way. To this end, we assume that P is even. Then the grid point x1,p+ P

2
lies at

a distance of 2∆ρ on the line through x1,p and x2,p beyond x1,p. We choose a linear
combination of these three points so that they approximate the second derivative in
x1,p. For simplicity, we write w(xr,p) := w(xr,p, ξq).
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A Taylor expansion leads to

∂2w

∂ρ2 (x1,p) = Aw(x2,p) +Bw(x1,p) + Cw(x1,p+ P
2
)

= A

(
w(x1,p) + ∆ρ∂w

∂ρ
(x1,p) + (∆ρ)2

2
∂2w

∂ρ2 (x1,p) + O((∆ρ)3)
)

+Bw(x1,p)

+ C

(
w(x1,p) − 2∆ρ∂w

∂ρ
(x1,p) + 2(∆ρ)2∂

2w

∂ρ2 (x1,p) + O((∆ρ)3)
)
.

Figure 3.5: Grid points for approximation of ∂2w
∂µ2 at p = 1

Comparing coefficients leads to

A+B + C = 0,
∆ρA− 2∆ρC = 0,

A
(∆ρ)2

2 + 2C(∆ρ)2 = 1.

This results in the solution (A,B,C) = 1
(∆ρ)2 (2

3 ,−1, 1
3). Thus,

∂2w

∂ρ2 (x1,p, ξq) ≈
2w2,p,q − 3w1,p,q + w1,p+ P

2 ,q

3(∆ρ)2 .

Note that there is no derivative concerning ξ here, as it is constant. This means
that the system of equations with (R − 1)PQ variables can be reduced to Q many
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systems of equations with (R−1)P many variables. These can therefore be calculated
independently and thus in parallel. For fixed q and r > 1, (3.4) can be written as

0 = wr,p,q

(
ε

ρr∆ρ
+ 2ε

(∆ρ)2 + 2ε
ρ2
r(∆µ)2 + cos(φ− µ)

∆ρ + α

)

+ wr+1,p,q

(
− ε

ρr∆ρ
− ε

(∆ρ)2 − cos(φ− µ)
∆ρ

)

+ wr−1,p,q

(
− ε

(∆ρ)2

)

+ wr,p+1,q

(
− ε

ρ2
r(∆µ)2 − sin(φ− µ)

2ρr∆µ

)

+ wr,p−1,q

(
− ε

ρ2
r(∆µ)2 + sin(φ− µ)

2ρr∆µ

)

and for r = 1 as

0 = w1,p,q

(
ε

ρ1∆ρ
+ ε

(∆ρ)2 + 2ε
ρ2

1(∆µ)2 + cos(φ− µ)
∆ρ + α

)

+ w2,p,q

(
− ε

ρ1∆ρ
− 2ε

3(∆ρ)2 − cos(φ− µ)
∆ρ

)

+ w1,p+ P
2 ,q

(
− ε

3(∆ρ)2

)

+ w1,p+1,q

(
− ε

ρ2
r(∆µ)2 − sin(φ− µ)

2ρr∆µ

)

+ w1,p−1,q

(
− ε

ρ2
r(∆µ)2 + sin(φ− µ)

2ρ1∆µ

)
.

The question remains on the accuracy of the reconstruction if S∗
α is used instead of

I∗
α. Unfortunately, no pattern for the optimal choice of the grid could be found here.

Generally, the method only seems effective for certain grid parameters. For many
combinations of radii and angles, the solution of the adjoint problem is so unstable that
no iteration takes place at all. For all grids, the matrix that arises in each iteration
of the finite differences appears to be nearly singular. To avoid this, the viscosity
solutions were calculated. But this has not led to any improvement. Therefore, we
calculate the minimum norm solution instead. To evaluate the quality of the adjoint
operator via the transport or viscosity solutions, we first consider examples of vector
fields f for which both I0f and I∗

0I0f can be calculated analytically. In (A.3.1)
these two operators were calculated for f(x) = (a, b)⊤, a, b ∈ R and it is verified that

⟨I0f, I0f⟩L2(∂+ΩM) = ⟨f, I∗
0I0f⟩L2(S1τ ′

M ) = 2π(a2 + b2). (3.5)

On the one hand, this confirms that the corresponding scalar products have been
correctly derived and implemented. On the other hand, (3.5) offers the possibility
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to test the adjoint operators I∗
0 or (Sε

0)∗ for exactness due to the very precise
computability of I0f and therefore, ⟨I0f, I0f⟩L2(∂+ΩM). That is the reason for
measuring the quality of the performance of the adjoint operators by introducing
the relative errors

err(I∗
α) := |⟨Iαf, Iαf⟩ − ⟨f, I∗

αIαf⟩|
⟨Iαf, Iαf⟩

(3.6)

and, respectively,

err((Sε
α)∗) := |⟨Iαf, Iαf⟩ − ⟨f, (Sε

α)∗Iαf⟩|
⟨Iαf, Iαf⟩

. (3.7)

For three distinct vector fields and various selections of ε, the errors are calculated, see
Figures 3.6 - 3.8. A consistent trend is noted across all three cases, wherein the error
exhibits similar behavior. As ε increases significantly, the error increases, while as ε
tends toward zero, it appears to approach the error associated with the unperturbed
transport equation. However, it is noteworthy that the observed errors are larger
than those acquired through I∗

0 . This discrepancy arises due to the necessity of
computing the minimum norm solution of the linear system when addressing the
original and perturbated transport equation.

Figure 3.6: Relative errors err((Sε0)∗) for ε > 0 (blue), err((S0
0 )∗) (red) and err(I∗

0 ) (green)
for f (1)(x) = (x1 + x2, x1 − x2)⊤
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Figure 3.7: Relative errors err((Sε0)∗) for ε > 0 (blue), err((S0
0 )∗) (red) and err(I∗

0 ) (green)
for f (2)(x) = (x2

1 − 2x2
2, −2x1x2)⊤

Figure 3.8: Relative errors err((Sε0)∗) for ε > 0 (blue), err((S0
0 )∗) (red) and err(I∗

0 ) (green)
for f (3)(x) = (x1, −x2)⊤

The next investigation is solely confined to the case of α = 0. The rationale behind
this choice lies in the fact that the performance of (Sε

α)∗ for ε ≥ 0 significantly
deteriorates with damping.
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Figure 3.9: Validation of (3.6) and (3.7) for I∗
α and (S0

α)∗

Several observations can be made from Figure 3.9: Firstly, it appears that the relative
error is linearly dependent on the choice of α for both types of adjoint operators and
across both vector fields. Secondly, the error associated with (S0

α)∗ is significantly
larger than that of (Iα)∗. Only for f1 and α = 0 do both operators yield results
within the same order of magnitude. This example emphazises that even (S0

0 )∗ can
lead to significant errors in certain fields.

Another drawback becomes evident when comparing the run time between the two
approaches. When utilizing noise levels of 3% and 10% for the same grid and f2, we
measure the time required for the reconstruction, see Table 3.5.

Choice of adjoint Noise level Relative error Run time

I∗
0

3% 1.30% 5 min 5 s
10% 3.39% 3 min 32 s

S∗
0

3% 1.27% 178 min 53 s
10% 3.34% 124 min 25 s

Table 3.5: Run time for reconstructing f2 and relative L2-error of Landweber iteration
without Nesterov acceleration for both representations of adjoint operators

It is remarkable that the error in the reconstruction remains almost unchanged, while
the run time for iterations using the PDE approach is significantly longer compared
to the alternative method. Hence, there is little merit in extending the slower method
to non-Euclidean metrics.
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3.2 Numerical results for the non-Euclidean case
In the following, we allow the refractive index and the absorption coefficent to be
variable. We will consider the following examples:

(a) n
(1)
λ (x) = 4

3 +λ(x2
1 +x2

2), λ = 1
2 (b) n(2)(x) = 1 + 1

2 exp(−x2
1 − x2

2)

(c) n(3)(x) = 2 − x1x2 (d) n(4)(x) = 1 + exp(x2
1 + x2

2 − 1)

Figure 3.10: Sketch of geodesics starting in x = (1, 0)⊤ for several n(i)

For i = 1, . . . , 4 it can be verified that

sup
x∈M

∥∇n(1)
1
2

(x)∥

n
(1)
1
2

(x)
≥ 0.162 sup

x∈M

∥∇n(2)(x)∥
n(2)(x) ≥ 0.109

sup
x∈M

∥∇n(3)(x)∥
n(3)(x) ≥ 0.296 sup

x∈M

∥∇n(4)(x)∥
n(4)(x) ≥ 0.091.
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Hence, for small α0 equation (2.60) is not necessarily satisfied. We will now determine
to what extent the approximation of the forward and adjoint operators will change.
Note that ξ depends on x if n(x) does, i.e. we parameterize for p = 1, . . . , P and
q = 1, . . . , Q

xp =
(

cosµp
sinµp

)
, µp = 2πp

P
,

and

ξp,q = n−1(xp)
(

cosφq
sinφq

)
, φq = 2πq

Q
.

The variable attenuation leads to the fact that the forward operator now consists of
two nested integrations. To be able to approximate this using quadrature formulas,
first the integration path γ = γxp,ξp,q must be calculated. Since a value ̸= 0 can
only be expected for (xp, ξp,q) from ∂+ΩM , we calculate the solution of the geodesic
equation (2.25) backwards from τ = 0 to τ = τ−(xp, ξp,q). This means that we have
to multiply by −1 later in the quadrature. For each pair (xp, ξp,q) we denote the grid
points by τs, s = 0, . . . , S = Sp,q, where τ0 = τ+(xp, ξp,q) and τS = τ−(xp, ξp,q). The
system of ordinary differential equations (2.26) is solved here using the Runge-Kutta
method of order 4 (see (A.4)) and a constant step size ∆τ . We calculate further
points γ(τs) of the geodesic until we obtain a point γ(τS) outside M . We now assume
that n(x) at ∂M deviates only slightly from 1. This is physically realistic. After
all, we have required in our model that the analyzed object is surrounded by air.
For correspondingly small ∆τ , we can therefore assume that γ(τS) does not deviate
significantly from the actual trajectory. Therefore, we determine the true entry point
γ(τ ∗

S) as the intersection of the Euclidean line segment of γ(τS−1) to γ̃(τS) and the
boundary ∂M . The spacing of the sampling points for the evaluation of the integrals
is therefore no longer constant. We approximate the increment ∆τ ∗ between the last
two points by scaling

∆τ ∗ = ∥γ(τS) − γ(τS−1)∥euclid
∥γ(τ ∗

S) − γ(τS−1)∥euclid
· ∆τ.

Using the trapezoidal sum, the approximation Ap,q,s of the inner integral in the
exponential is given for 0 < s < S = Sp,q by

−
∫ 0

τs

α(γxp,ξp,q(σ))dσ ≈ Ap,q,s := 1
2∆τ

(
s−1∑
s̃=1

α(γxp,ξp,q(τs̃)) +
s∑
s̃=2

α(γxp,ξp,q(τs̃))
)
.
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For s = 0 we obviously get Ap,q,0 = 0. Only for s = S do we specifically define

Ap,q,S = Ap,q,S−1 + 1
2∆τ ∗

(
α(γxp,ξp,q(τS−1)) + α(γxp,ξp,q(τS))

)
.

This yields

Iαf(xp, ξp,q) ≈ −∆τ
2

S−2∑
s=0

⟨f(γxp,ξp,q(τs)), γ̇xp,ξp,q(τs)⟩ exp(Ap,q,s)

− ∆τ
2

S−1∑
s=1

⟨f(γxp,ξp,q(τs)), γ̇xp,ξp,q(τs)⟩ exp(Ap,q,s)

− ∆τ ∗

2 ⟨f(γxp,ξp,q(τS−1)), γ̇xp,ξp,q(τS−1)⟩ exp(Ap,q,S−1)

− ∆τ ∗

2 ⟨f(γxp,ξp,q(τS)), γ̇xp,ξp,q(τS)⟩ exp(Ap,q,S).

Note that the above scalar products must all be considered in the corresponding
metric. The treatment of the adjoint operator must also be slightly modified. Since
now x ∈ M , we parameterize for r = 1, . . . , R, p = 1, . . . , P and q = 1, . . . , Q

xr,p = ρr

(
cosµp
sinµp

)
, ρr = r

R
, µp = 2πp

P
,

and

ξr,p,q = n−1(xr,p)
(

cosφq
sinφq

)
, φq = 2πq

Q
.

First, an integral must be approximated due to the variable assumed attenuation
α(x). To this end, the integration line must also be calculated first, but in contrast to
the forward operator, the geodesic equation is solved forward in time. Similarly, we
therefore calculate further points of the geodesics with a step size ∆τ starting from
τ = 0 until we leave the area M at τS. We determine the true exit point γ(τ ∗

S) as
the intersection of the Euclidean line segment of γ(τS−1) to γ̃(τS) and the boundary
∂M . Hence, the last step size ∆τ ∗ is defined as

∆τ ∗ = ∥γ(τS) − γ(τS−1)∥euclid
∥γ(τ ∗

S) − γ(τS−1)∥eucid
· ∆τ.
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For N = 2, Ξn is defined as

Ξn(x,ξ) = 1
2n

−1(x)⟨∇n(x), ξ⟩ = 1
2n

−1(x) (∂1n(x)ξ1 + ∂2n(x)ξ2) .

That is why the approximation of the exponent in the exponential for γxr,p,ξr,p,q is

−
∫ τS

0
(α + Ξn)(γxr,p,ξr,p,q(σ), γ̇xr,p,ξr,p,q(σ))dσ

≈ −1
2∆τ

(
S−2∑
s̃=1

(α + Ξn)(γxp,ξp,q(τs), γ̇xp,ξp,q(τs)) +
S−1∑
s̃=2

(α + Ξn)(γxp,ξp,q(τs), γ̇xp,ξp,q(τs))
)

− 1
2∆τ ∗

(
(α + Ξn)(γxp,ξp,q(τS−1), γ̇xp,ξp,q(τS−1)) + (α + Ξn)(γxp,ξp,q(τS), γ̇xp,ξp,q(τS))

)
.

We calculate the denominator of (2.95) by default as a scalar product over the metric
g, i.e.,

⟨νγxr,p,ξr,p,q (τS), γ̇xr,p,ξr,p,q(τS)⟩ = n−2(xr,p)⟨γxr,p,ξr,p,q(τS), γ̇xr,p,ξr,p,q(τS)⟩euclid.

The last step is to evaluate the function h at (x̃r,p, ξ̃r,p,q) ∈ ∂+ΩM . In contrast to
the Euclidean case, x̃r,p and ξ̃r,p,q are not necessarily located on a grid. Therefore, a
two-dimensional interpolation in the variables µ and φ is required. As in (3.2), µ̃
and φ̃ exist such that

x̃r,p,q =
(

cos µ̃
sin µ̃

)
, ξ̃r,p,q =

(
cos φ̃
sin φ̃

)
.

The point (x̃r,p,q, ξ̃r,p,q) has the four adjacent points

(⌊
µP

2π

⌋
,
⌊
φQ

2π

⌋)
,
(⌊
µP

2π

⌋
,
⌊
φQ

2π

⌋
+ 1

)
,(⌊

µP

2π

⌋
+ 1,

⌊
φQ

2π

⌋)
,
(⌊
µP

2π

⌋
+ 1,

⌊
φQ

2π

⌋
+ 1

)

where again the indices are taken modulo P and Q, respectively. This results in

h(x̃r,p,q, ξ̃r,p,q) ≈
(

1 −
(
µP

2π −
⌊
µP

2π

⌋))(
1 −

(
φQ

2π −
⌊
φQ

2π

⌋))
H⌊µP

2π ⌋,⌊φQ
2π ⌋

+
(
µP

2π −
⌊
µP

2π

⌋)(
1 −

(
φQ

2π −
⌊
φQ

2π

⌋))
H⌊µP

2π ⌋+1,⌊φQ
2π ⌋

+
(

1 −
(
µP

2π −
⌊
µP

2π

⌋))(
φQ

2π −
⌊
φQ

2π

⌋)
H⌊µP

2π ⌋,⌊φQ
2π ⌋+1

+
(
µP

2π −
⌊
µP

2π

⌋)(
φQ

2π −
⌊
φQ

2π

⌋)
H⌊µP

2π ⌋+1,⌊φQ
2π ⌋+1.
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Therefore, the approximation of the adjoint operator is given by

[I∗
αh](xr,p) =

∫
Ωxr,pM

w(xr,p, ξ)ξdωx(ξ)

=
∫

Ωxr,pM
w(xr,p, ξ(φ))ξ(φ)dφ

≈ 2π
Q

Q∑
q=1

w(xr,p, ξr,p,q)ξr,p,q.

We want to apply this approximation to some examples. First, we consider f (3)(x) =
(x1,−x2)⊤ but with α = 0 and very slowly varying refractive index

n
(1)
0.002(x) = 0.002|x|2 + 4

3 .

This refractive index could be found in a domain filled with water that has not the
same temperature everywhere. For a variety of noise levels, we get the following
absolute errors in the reconstruction:

Figure 3.11: Absolute error for (R, P, Q) = (34, 106, 106) and δ ∈ {0, 0.01, 0.02, 0.03} from
the left top to the bottom

Next, we examine the extent to which the model with the inclusion of refraction
effects also leads to an improvement in the reconstruction, when there is only a
slight deviation from straight lines. At the same time, we want to compare the run
times. For this purpose, we apply Iα to a vector field, add noise to the result, and
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then calculate the reconstruction once in the Euclidean (n = 1) and once within
non-Euclidean setting (n(1)

0.002(x) = 1 + 0.002(x2
1 + x2

2)). We use Landweber’s method
with a relaxation parameter of ω = 0.01 and accelerate this with Nesterov’s method
(k = 3). With different choices of noise level and damping, we obtain the following
data:

Noise level Attenuation Refraction (y/n) Relative L2-error Run time
0 0.01 n 0.0555 1281 s
0 0.01 y 0.0132 3122 s

0.01 0.01 n 0.0559 655 s
0.01 0.01 y 0.0144 4149 s

0 0.02 n 0.0556 1579 s
0 0.02 y 0.0134 8734 s

0.01 0.02 n 0.0557 880 s
0.01 0.02 y 0.0145 6421 s

Table 3.6: Comparison of relative error after reconstructing with Euclidean and non-
Euclidean model for (R, P, Q) = (34, 106, 106)

Table 3.6 clearly shows that, regardless of the choice of noise level or absorption
coefficient, the method with refraction taken into account reduces the relative error
by about 75%. On the other hand, we must accept a significantly higher run time
for this purpose.

Allowing for greater fluctuations in n(x) necessitates the use of the generalized model.
Otherwise, the solutions would deviate even more significantly. Hereafter, we employ
the refractive indices n(2), n(3), and n(4), combine them with various noise levels and
attenuations, and apply them to f (2).
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Figure 3.12: Quiver plot of reconstruction and difference to solution, and absolute error in
each pixel of f (2) for n(2), δ = 4%, α = 0.1; relative error is 3.26%

Figure 3.13: Quiver plot of reconstruction, difference to solution, and absolute error in
each pixel of f (2) for n(3), δ = 12%, α = 0; relative error is 5.03%
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Figure 3.14: Quiver plot of reconstruction, difference to solution, and absolute error in
each pixel of f (2) for n(4), δ = 20%, α = 0.1; relative error is 8.75%

In the Euclidean part, we have seen how time-consuming the execution of (Sε
α)∗ is

and that this does not improve the reconstructions. With a variable refractive index,
we would have to solve a much larger system of equations as described above, which
will therefore increase the calculation time considerably. Therefore, no examples are
given here for this case. We only show a numerical example of the solution of the
boundary value problem that is solved by Sε

α. Let

f (4)(x) =
(

1
x2

1 + x2
2 + 1 , x1 + x2

)⊤

.

We choose n(1)(x) and α = 1 such that (2.60) is satisfied:

sup
x∈M

∥∇n(1)
1 (x)∥

n
(1)
1 (x)

= sup
x∈M

2|x|
(|x|2 + 4

3)3 ≤ 2(
4
3

)3 ≈ 0.844.
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Figure 3.15: Solution of the transport equation, viscosity equation and the relative error
for (R, P, Q) = (30, 30, 10) and ε = 10−3

Figure 3.16: Solution of the transport equation, viscosity equation, and the relative error
for (R, P, Q) = (30, 30, 10) and ε = 10−6

Figure 3.17: Solution of the transport equation, viscosity equation and the relative error
for (R, P, Q) = (30, 30, 10) and ε = 10−9

The figures (3.15) - (3.17) are computed as described above. We see that the smaller
ε gets the smaller the relative error in each grid point. We assume that the viscosity
solution converges numerically to the transport solution as ε → 0 for other choices
of f, n, and α.
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4 Conclusion and outlook

In the first part of this thesis, we derived a generalized model for tensor tomography
that integrates both, absorption and refraction, and is also applicable to tensors that
change over time. Having proven the continuity of the integral transformation, we
have shown that it can also be interpreted as the boundary value of a transport
equation. It was possible to derive the conditions under which unique weak viscosity
solutions exist for the absorption coefficients and the refractive index. Based on
this, the adjoint operator could also be specified in the form of a transport equation,
with the difference that the solution of the actual PDE now takes place with full
information about the boundary conditions. Here, too, the unambiguous solvability
could be shown in the same sense as in the forward problem. An analytical solution
could be found for the unperturbed transport equation so that there are now two
possible representations of the adjoint problem.
We utilized this model to perform numerical experiments. Since the boundary values
must be fully known for the solvability of a PDE, the integral representation is the
suitable choice for the forward operator. Both variants can be implemented for the
adjoint operator. Using these operators, we implemented the damped Landweber
method. In the pursuit of optimal parameters for a polar grid, we identified a pattern
when applying the integral operators and consistently utilized the optimal values.
Beginning with a constant refractive index, excellent reconstructions of synthetic
data were achieved, even at high noise levels. When solving the adjoint problem via
the transport equation, very good results could be obtained for certain grids and in
the absence of absorption. Unlike the integral operator, no pattern could be identified
here. Furthermore, the computation time is significantly higher. However, it was
confirmed through several examples that the viscosity solutions wε of the perturbed
equation numerically converge towards the solution w of the transport equation. To
circumvent uncertainty with arbitrary grids and long computation times, preference
should be given to using the integral operator. This is why only this operator was
further investigated for the non-Euclidean case. Here, we initially allowed only small
fluctuations around the refractive index and observed a significant improvement
compared to the Euclidean model. However, the computational effort increased up to
10 times. Finally, we also examined significant deviations in the signal and obtained
very precise reconstructions for various absorption coefficients and high noise levels
in the data. We were able to reduce the computational effort with the help of
Nesterov acceleration. However, the method terminates when encountering large
reconstruction errors. It is practical to utilize this method to save iteration steps and
subsequently perform additional ordinary Landweber iterations with the solution that
is still unsatisfactory. This approach has allowed for a reduction of approximately
25% in the number of iterations while maintaining a consistent residue level in our
examples. The Landweber method demonstrated superior performance compared to
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Tikhonov regularization in our experiments. Consequently, we focused on presenting
the numerical results of the Landweber method, highlighting its effectiveness.

All necessary source code that is used for the numerical results is shared via GitHub
under https://github.com/tschus71/RDTT.git.

Future research
Although the theory of the model has been provided in this thesis, there is no
numerical example for tensor fields of rank greater than 1 and tensor fields that
change over time. For example, one could assume that the analyzed object performs
a rigid body motion, i.e., there is a time-dependent pair of a rotation matrix A(t) and
a transformation vector b(t) so that we obtain for a reference field f ref ∈ C(Smτ ′

M)

f(t, x) = f ref(A(t)x+ b(t)).

Furthermore, it can be investigated how the reconstruction works for fields on a
3-dimensional domain. All three aspects mentioned above increase the dimension of
the problem and thus the computational effort considerably.

Although all the generalizations mentioned so far are already very far-reaching, there
is another possibility of generalization about one phenomenon: In this work, it has
always been assumed that the studied material is isotropic. For isotropic materials,
the refraction does not depend on the direction, but for anisotropic ones, this is the
case. This means that for isotropic media the travel time from A to B is the same
as from B to A, but for anisotropic this is generally not the case. This property is
reflected in the metric tensor. For example, in [104] it is assumed that the metric
tensor is given by

gij =
[
QT

(
n2

1 0
0 n2

2

)
Q

]
ij

where Q denotes a rotation matrix. The question arises as to how this affects the
Γkij and, consequently, the solutions of the geodesic equation. Furthermore, it re-
mains unclear whether a similar uniqueness condition for weak viscosity solutions of
the transport equation exists in this case and what numerical results can be expected.

Finally, it remains an open question whether the solutions uε of the perturbed
transport equation (2.56) converge with respect to a specific topology. And if so, it
is also not clear whether the limit

lim
ε→0

uε
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solves the original transport equation. Under certain assumptions for the tensor field
f and the metric g one can show that

uεj
→ u as j → +∞ locally uniformly on [0, T ] × ΩM

for a subsequence {εj}j∈N and a viscosity solution u (c.f. [100]). Alternatively, one
can interpret Sε

α, Sε,d
α as inexact operators, i.e. there is a number η(ε) such that

∥Sε(,d)
α − S0(,d)

α ∥ ≤ η(ε)

measuring the model uncertainty due to the degree of perturbation ε. This inter-
pretation has for example been studied in [13],[14] and [100]. We define a family of
Tikhonov functionals {Jε}ε>0 by

Jε(f) := 1
2∥Sε(,d)

α f − ϕδ∥2 + β

2 ∥f∥2.

The idea is to prove that

Jε
Γ→ J0

in the sense of Γ-convergence which is a special type of convergence of functionals.
Given a Banach space X, a sequence Sn : X → [0,∞] is said to Γ-converge to a limit
F : X → [0,∞] if the following to conditions hold:

• For any converging sequence (fn) in X with limn→∞ fn = f ∈ X it holds that

S(f) ≤ lim inf
n→∞

Sn(fn).

• For any f ∈ X there is a sequence (fn) in X converging to f such that

S(f) ≥ lim sup
n→∞

Sn(fn).

Consequently, instead of proving the convergence of the forward operators directly,
one shows the convergence of the respecting Tikhonov functionals. This is a milder
condition because a converging sequence of forward operators leads to Γ-converging
Tikhonov functionals. The following result from [14] is implied:
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If the family of functionals {Jε}ε>0 is uniformly mildly coercive and

Jε
Γ→ J0,

then any accumulation point of a minimizing sequence {fε} of Jε is a minimizer of
J0.

As a consequence, this theorem guarantees that minimizers of Jε are ’close’ to those
of J0. Therefore, the convergence of

uε → u

is not necessarily demanded. Alternatively, one can use the criteria presented in [12]
guaranteeing Γ-convergence as well as the convergence of minimizing sequences.
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A Appendix

A.1 Proof of Theorem 2.8
First, we consider the case N = 2. Writing ξ in polar coordinates, we get

ξ =
(
ξ1

ξ2

)
= n−1(x)

(
cosφ
sinφ

)
.

Next, we need the derivatives ∂u
∂ξ1 and ∂u

∂ξ2 . We compute

∂u

∂ξ1 = ∂u

∂φ

∂φ

∂ξ1 (A.1)

= ∂u

∂φ
· ∂

∂ξ1 arctan
(
ξ2

ξ1

)

= ∂u

∂φ
·

− ξ2

(ξ1)2

1 + ( ξ2

ξ1 )2

= −∂u

∂φ
·
n(x) sinφ

cos2 φ
1

cos2 φ

= −n(x) sinφ∂u
∂φ

. (A.2)

Similarly,

∂u

∂ξ2 = ∂u

∂φ

∂φ

∂ξ2 (A.3)

= ∂u

∂φ
· ∂

∂ξ2 arctan
(
ξ2

ξ1

)

= ∂u

∂φ
·

1
ξ1

1 + ( ξ2

ξ1 )2

= ∂u

∂φ
·
n(x) 1

cosφ
1

cos2 φ

= n(x) cosφ∂u
∂φ

. (A.4)
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We use (2.27) and (2.28) and write the left-hand side of (2.51) as

−
∫

ΩxM
Γkijξiξj

∂u

∂ξk
wdωx(ξ)

=
∫ 2π

0
n−1(x)

(
n−2(x) ∂n

∂xk
(x) − 2ξk⟨ξ,∇n(x)⟩

)
∂u(x, ξ)
∂ξk

u(x, ξ)dφ.

Using (A.1) and (A.3), we obtain for k = 1, 2

(
n−2(x) ∂n

∂x1
(x) − 2ξ1⟨ξ,∇n(x)⟩

)
∂u(x, ξ)
∂ξ1

=
(
n−2(x) ∂n

∂x1
(x) − 2n−1(x) cosφ

(
n−1(x) ∂n

∂x1
(x) cosφ+ n−1(x) ∂n

∂x2
(x) sinφ

))
×

×
(

−n(x) sinφ∂u
∂φ

)

=
(

−n−1(x) ∂n
∂x1

(x) sinφ+ 2n−1(x) ∂n
∂x1

(x) cos2 φ sinφ+ 2n−1(x) ∂n
∂x2

(x) cosφ sin2 φ

)
∂u

∂φ

=
(
n−1(x) ∂n

∂x1
(x)(2 cos2 φ sinφ− sinφ) + 2n−1(x) ∂n

∂x2
(x) cosφ sin2 φ

)
∂u

∂φ

and

(
n−2(x) ∂n

∂x2
(x) − 2ξ2⟨ξ,∇n(x)⟩

)
∂u(x, ξ)
∂ξ2

=
(
n−2(x) ∂n

∂x2
(x) − 2n−1(x) sinφ

(
n−1(x) ∂n

∂x1
(x) cosφ+ n−1(x) ∂n

∂x2
(x) sinφ

))
×

×
(
n(x) cosφ∂u

∂φ

)

=
(
n−1(x) ∂n

∂x2
(x) cosφ− 2n−1(x) ∂n

∂x1
(x) cos2 φ sinφ− 2n−1(x) ∂n

∂x2
(x) cosφ sin2 φ

)
∂u

∂φ

=
(
n−1(x) ∂n

∂x1
(x)(−2 cos2 φ sinφ) + n−1(x) ∂n

∂x2
(x)(cosφ− 2 cosφ sin2 φ)

)
∂u

∂φ
.

Cancellation of terms yields

−
∫

ΩxM
Γkijξiξj

∂u

∂ξk
wdωx(ξ) =

∫ 2π

0
n−2(x)

(
− ∂n

∂x1
(x) sinφ+ ∂n

∂x2
(x) cosφ

)
∂u

∂φ
wdφ.
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Integration by parts leads to

∫ 2π

0
n−2(x)

(
− ∂n

∂x1
(x) sinφ+ ∂n

∂x2
(x) cosφ

)
∂u

∂φ
wdφ

= −
∫ 2π

0
n−2(x)

(
−∂n(x)

∂x1
sinφ+ ∂n(x)

∂x2
cosφ

)
∂w

∂φ
u

+ n−2(x)
(
∂n(x)
∂x1

cosφ+ ∂n(x)
∂x2

sinφ
)
uwdφ

=
∫

ΩxM
Γkijξiξj

∂w

∂ξk
udωx(ξ) +

∫
ΩxM

n−1(x)⟨∇n, ξ⟩ uwωx(ξ).

The analog can be done for N = 3. Writing ξ in spherical coordinates as

ξ =

ξ
1

ξ2

ξ3

 = n−1(x)

cosφ sin θ
sinφ sin θ

cos θ

 .

To obtain the derivatives ∂u
∂ξ1 , ∂u

∂ξ2 and ∂u
∂ξ3 we compute:

∂u

∂φ

∂φ

∂ξ1 = ∂u

∂φ
· ∂

∂ξ1 arctan
(
ξ2

ξ1

)

= ∂u

∂φ
·

− ξ2

(ξ1)2

1 + ( ξ2

ξ1 )2

= −∂u

∂φ
·
n(x) sinφ

cos2 φ sin θ
1

cos2 φ

= −n(x)sinφ
sin θ

∂u

∂φ
,

∂u

∂θ

∂θ

∂ξ1 = ∂u

∂θ

∂

∂ξ1 arctan

√

(ξ1)2 + (ξ2)2

ξ3



= ∂u

∂θ

ξ1

ξ3
√

(ξ1)2+(ξ2)2

1 + (ξ1)2+(ξ2)2

(ξ3)2

= n(x) cosφ cos θ∂u
∂θ
.

Hence,

∂u

∂ξ1 = ∂u

∂φ

∂φ

∂ξ1 + ∂u

∂θ

∂θ

∂ξ1 = −n(x)sinφ
sin θ

∂u

∂φ
+ n(x) cosφ cos θ∂u

∂θ
. (A.5)
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In the same way we get

∂u

∂φ

∂φ

∂ξ2 = ∂u

∂φ
· ∂

∂ξ2 arctan
(
ξ2

ξ1

)

= ∂u

∂φ
·

1
ξ1

1 + ( ξ2

ξ1 )2

= ∂u

∂φ
·
n(x) 1

cosφ sin θ
1

cos2 φ

= n(x)cosφ
sin θ

∂u

∂φ
,

∂u

∂θ

∂θ

∂ξ2 = ∂u

∂θ

∂

∂ξ2 arctan

√

(ξ1)2 + (ξ2)2

ξ3



= ∂u

∂θ

ξ2

ξ3
√

(ξ1)2+(ξ2)2

1 + (ξ1)2+(ξ2)2

(ξ3)2

= n(x) sinφ cos θ∂u
∂θ
,

and thus,

∂u

∂ξ2 = ∂u

∂φ

∂φ

∂ξ2 + ∂u

∂θ

∂θ

∂ξ2 = n(x)cosφ
sin θ

∂u

∂φ
+ n(x) sinφ cos θ∂u

∂θ
, (A.6)

as well as

∂u

∂ξ3 = ∂u

∂θ

∂θ

∂ξ3 = ∂u

∂θ
· ∂

∂ξ3 arctan
(
ξ2

ξ1

)

= ∂u

∂θ
·

−
√

(ξ1)2 + (ξ2)2/(ξ3)2

1
cos2 θ

= −n(x) sin θ∂u
∂θ
. (A.7)

Using (2.29) and (2.27) we write the left-hand side of (2.53) as

−
∫

ΩxM
Γkijξiξj

∂u

∂ξk
udωx(ξ)

=
∫ 2π

0

∫ π

0
n−1(x)

(
n−2(x)∂n(x)

∂xk
− 2ξk⟨ξ,∇n(x)⟩

)
∂u(x, ξ)
∂xk

w(x, ξ) sin θdθdφ.
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Next, we use (A.5), (A.6) and (A.7) to obtain separately for k = 1

(
n−2(x)∂n(x)

∂x1
− 2ξ1⟨ξ,∇n⟩

)
∂u

∂ξ1 sin θ

=
(
n−1(x)∂u

∂θ

)(
∂1n cosφ cos θ sin θ − 2∂1n cos3 φ cos θ sin3 θ

−2∂2n cos2 φ sinφ cos θ sin3 θ − 2∂3n cos2 φ cos2 θ sin2 θ
)

+
(
n−1(x)∂u

∂φ

)(
−∂1n sinφ+ 2∂1n cos2 φ sinφ sin2 θ

+2∂2n cosφ sin2 φ sin2 θ + 2∂3n cosφ sinφ cos θ sin θ
)
, (A.8)

for k = 2

(
n−2(x)∂n(x)

∂x2
− 2ξ2⟨ξ,∇n⟩

)
∂u

∂ξ2 sin θ

=
(
n−1(x)∂u

∂θ

)(
∂2n sinφ cos θ sin θ − 2∂1n cosφ sin2 φ cos θ sin3 θ

−2∂2n sin3 φ cos θ sin3 θ − 2∂3n sin2 φ cos2 θ sin2 θ
)

+
(
n−1(x)∂u

∂φ

)(
∂2n cosφ− 2∂1n cos2 φ sinφ sin2 θ

−2∂2n cosφ sin2 φ sin2 θ − 2∂3n cosφ sinφ cos θ sin θ
)
, (A.9)

and for k = 3

(
n−2(x)∂n(x)

∂x3
− 2ξ3⟨ξ,∇n⟩

)
∂u

∂ξ3 sin θ

=
(
n−1(x)∂u

∂θ

)
×

×
(
−∂3n sin2 θ + 2∂1n cosφ cos θ sin3 θ +2∂2n sinφ cos θ sin3 θ + 2∂3n cos2 θ sin2 θ

)
.

(A.10)

After some simplifications we get

(
n−2(x) ∂n

∂xk
(x) − 2ξk⟨ξ,∇n(x)⟩

)
∂u

∂ξk
sin θ

= n−1(x)(∂1n sin θ cos θ cosφ+ ∂2n sin θ cos θ sinφ− ∂3n sin2 θ)∂u
∂θ

+ n−1(x)(∂2n cosφ− ∂1n sinφ)∂u
∂φ
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and thus,

∫ 2π

0

∫ π

0
n−1(x)

(
n−2(x) ∂n

∂xi
(x) − 2ξk⟨ξ,∇n(x)⟩

)
∂u(x, ξ)
∂ξk

w(x, ξ) sin θdθdφ

=
∫ 2π

0

∫ π

0
n−2(x)(∂1n sin θ cos θ cosφ+ ∂2n sin θ cos θ sinφ− ∂3n sin2 θ)∂u

∂θ
wdθdφ

+
∫ 2π

0

∫ π

0
n−2(x)(∂2n cosφ− ∂1n sinφ)∂u

∂φ
wdθdφ.

An integration by parts with respect to θ in the first integral leads to

∫ 2π

0

∫ π

0
n−2(x)(∂1n sin θ cos θ cosφ+ ∂2n sin θ cos θ sinφ− ∂3n sin2 θ)∂u

∂θ
wdθdφ

=
∫ 2π

0

[
n−2(x)(∂1n sin θ cos θ cosφ+ ∂2n sin θ cos θ sinφ− ∂3n sin2 θ)u2

]π
0
dφ

−
∫ π

0

∫ 2π

0
n−2(x)(∂1n sin θ cos θ cosφ+ ∂2n sin θ cos θ sinφ− ∂3n sin2 θ)∂w

∂θ
udφdθ

−
∫ π

0

∫ 2π

0
n−2(x)∂1n cosφ(cos2 θ − sin2 θ)uwdφdθ

−
∫ π

0

∫ 2π

0
n−2(x)(∂2n sinφ(cos2 θ − sin2 θ) − 2∂3n sin θ cos θ)uwdφdθ.

An according integration by parts with respect to φ yields

∫ 2π

0

∫ π

0
n−2(x)(∂2n cosφ− ∂1n sinφ)∂u

∂φ
wdθdφ

=
∫ π

0

[
n−2(x) (∂2n(x) cosφ− ∂1n(x) sinφ)uw

]2π

0
dθ

−
∫ π

0

∫ 2π

0
u
∂w

∂φ
n−2(x) (∂2n(x) cosφ− ∂1n(x) sinφ) dφdθ

−
∫ π

0

∫ 2π

0
uwn−2(x) (−∂2n(x) sinφ− ∂1n(x) cosφ) dφdθ.

Because of the periodicity of the trigonometric functions, the first integral vanishes
in each case and we arrive at

116



∫
ΩxM

n−1(x)
(
n−2(x) ∂n

∂xk
(x) − 2ξk⟨ξ,∇n(x)⟩

)
∂u

∂ξk
udωx(ξ)

= −
∫ π

0

∫ 2π

0
n−2(x)(∂1n sin θ cos θ cosφ+ ∂2n sin θ cos θ sinφ− ∂3n sin2 θ)∂w

∂θ
udφdθ

−
∫ π

0

∫ 2π

0
u
∂w

∂φ
n−2(x) (∂2n(x) cosφ− ∂1n(x) sinφ) dφdθ

−
∫ π

0

∫ 2π

0
n−2(x)∂1n cosφ(cos2 θ − sin2 θ)uwdφdθ

−
∫ π

0

∫ 2π

0
n−2(x)(∂2n sinφ(cos2 θ − sin2 θ) − 2∂3n sin θ cos θ)uwdφdθ

−
∫ π

0

∫ 2π

0
n−2(x) (−∂2n(x) sinφ− ∂1n(x) cosφ)uwdφdθ

=
∫

ΩxM
Γkijξiξj

∂w

∂ξk
udωx(ξ) + 2

∫
ΩxM

n−1⟨∇n, ξ⟩uwdωx(ξ).
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A.2 Gradient and Laplacian in spherical coordi-
nates

In the Euclidean case, the Laplacian in spherical coordinates (c.f. [10]), applied to a
scalar function Φ, is given by

∆Φ = 1
r2

∂

∂r

(
r2∂Φ
∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂Φ

∂θ

)
+ 1
r2 sin θ2

∂2Φ
∂φ2 .

For N = 2 the angle θ can be set as a constant π
2 and therefore,

∆Φ = 1
r

∂

∂r

(
r
∂Φ
∂r

)
+ 1
r2
∂2Φ
∂φ2 .

On the Riemannian manifold (M, g) the Laplacian becomes the Laplace-Beltrami
operator ∆u of a scalar function u ∈ C2(ΩM). In cartesian coordinates we use (1.26)
to compute

∆u = 1√
detg

N∑
i,j=1

(
∂

∂xi

(√
detggij ∂u

∂xj

)
+ ∂

∂ξi

(√
detggij ∂u

∂ξj

))

= n−N(x)
N∑

i,j=1

(
∂

∂xi

(
nN−2(x) ∂u

∂xi

)
+ nN−2(x) ∂2u

∂(ξi)2

)

= n−2(x)
N∑
i=1

(
∂2u

∂x2
i

+ ∂2u

∂(ξi)2

)
+ (N − 2)n−3(x)

N∑
i=1

∂n

∂xi

∂u

∂xi
. (A.11)

In polar coordinates, we parameterize similarly to the proof of 2.8. For N = 2 we get

ξ =
(
ξ1

ξ2

)
= n−1(x)

(
cosφ
sinφ.

)
, x =

(
x1
x2

)
= r

(
cosµ
sinµ.

)

Hence, (A.11) becomes

∆u = n−2(x)
(

1
r2

∂

∂r

(
r2∂u

∂r

)
+ 1
r2
∂2u

∂µ2 + ∂2u

∂φ2

)
.

Accordingly for N = 3, we parametrize

x =

x1
x2
x3

 = r

cosµ sin η
sinµ sin η

cos η

 , ξ =

ξ
1

ξ2

ξ3

 = n−1(x)

cosφ sin θ
sinφ sin θ

cos θ

 .
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Observing that

N∑
i=1

∂n

∂xi

∂u

∂xi
= ⟨∇euclidn,∇euclidu⟩euclid

= ∂n

∂r

∂u

∂r
+ 1
r2 sin2 η

∂n

∂µ

∂u

∂µ
+ 1
r2
∂n

∂η

∂µ

∂η
.

we obtain

∆u = n−2(x)
(

1
r2

∂

∂r

(
r2∂Φ
∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂Φ

∂θ

)
+ 1
r2 sin θ2

∂2Φ
∂φ2

)
+ 1

sin2 θ

∂2u

∂φ2

+ n−3(x)
∂n
∂r

∂u

∂r
+ 1
r2 sin2 η

∂n

∂µ

∂u

∂µ
+ 1
r2
∂n

∂η

∂u

∂η

.
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A.3 Computation of integral transforms for some
examples

Chapter 2 introduced I(d)
α for tensor fields. For the numerical application and analysis

of the solution methods from Chapter 3, the transformations are calculated for some
examples where the integration is also possible analytically. For all examples, we
consider N = 2 and g as the Euclidean metric. We parametrize x by

x =
(
x1
x2

)
=
(
r cosµ
r sinµ

)
, r ∈ [0, 1], µ ∈ [0, 2π]

ξ =
(
ξ1

ξ2

)
=
(

cosφ
sinφ

)
, φ ∈ [0, 2π].

A.3.1 Constant vector field
For constants A and B let

f (0)(x1, x2) =
(
A
B

)
.

Then,

[Iα0f
(0)](x, ξ) =

∫ 0

τ−(x,ξ)
⟨f(x+ τξ), ξ⟩eα0τdτ

=
∫ 0

τ−(x,ξ)
(Aξ1 +Bξ2)eα0τdτ

= Aξ1 +Bξ2

α0

(
1 − eα0τ−(x,ξ)

)

and

[I0f
(0)](x, ξ) = −(Aξ1 +Bξ2)τ−(x, ξ).

We want to compute ||I0f
(0)||L2(∂+ΩM) for f(x) = (A,B)⊤.

I0f
(0)(x, ξ) = −(Aξ1 +Bξ2)τ−(x, ξ) = (Aξ1 +Bξ2)

(
⟨x, ξ⟩ +

√
⟨x, ξ⟩2 + 1 − ⟨x, x⟩

)
.

⟨I0f
(0), I0f

(0)⟩L2(∂+ΩM) =
∫
∂+ΩM

|I0f
(0)(x, ξ)|2dσ+(ξ)

=
∫
∂+ΩM

(Aξ1 +Bξ2)2 (⟨x, ξ⟩ + |⟨x, ξ⟩|)2 dσ+(ξ)
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Parametrizing x = (cosµ, sinµ)⊤, ξ = (cosφ, sinφ)⊤,

⟨I0f
(0), I0f

(0)⟩L2(∂+ΩM) =
∫ 2π

0
(A cosφ+B sinφ)2

∫ 2π

0
(cos(µ− φ) + | cos(µ− φ)|)2 dµdφ.

Since the integrand of the inner integral is 2π-periodic, we have

∫ 2π

0
(cos(µ− φ) + | cos(µ− φ)|)2 dµ

=
∫ π

2

0
(cos(µ) + | cos(µ)|)2 dµ+

∫ 3π
2

π
2

(cos(µ) + | cos(µ)|)2 dµ

+
∫ 2π

3π
2

(cos(µ) + | cos(µ)|)2 dµ

=
∫ π

2

0
4 cos2(µ)dµ+

∫ 2π

3π
2

4 cos2(µ)dµ

= [sin(2µ) + 2µ]
π
2
0 + [sin(2µ) + 2µ]2π3π

2

= 2π

and therefore,

⟨I0f
(0), I0f

(0)⟩L2(∂+ΩM) = 2π
∫ 2π

0
(A cosφ+B sinφ)2dφ

= 2π2(A2 +B2).

Hence,

∥I0f
(0)∥L2(∂+ΩM) =

√
2(A2 +B2)π.

For A,B ∈ R we want to verify that

⟨I0f
(0), I0f

(0)⟩L2(∂+ΩM) = ⟨f (0), I∗
0I0f

(0)⟩L2(S1τ ′
M ).

We have

I0f
(0)(x, ξ) = −(Aξ1 +Bξ2)τ−(x, ξ)

= (Aξ1 +Bξ2)
(

⟨x, ξ⟩ +
√

⟨x, ξ⟩2 + 1 − ⟨x, x⟩
)

=: h(x, ξ).

Thus, for (x̃, ξ̃) ∈ ΩM ,
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h(x̃+ τ+(x̃, ξ̃)ξ̃, ξ̃)

= (Aξ̃1 +Bξ̃2)

⟨x̃+ τ+(x̃, ξ̃)ξ̃, ξ̃⟩ +
√√√√⟨x̃+ τ+(x̃, ξ̃)ξ̃, ξ̃⟩2 + 1 − |x̃+ τ+(x̃, ξ̃)ξ̃|2︸ ︷︷ ︸

=1


= (Aξ̃1 +Bξ̃2)

(
⟨x̃, ξ̃⟩ + τ+(x̃, ξ̃) +

√
(⟨x̃, ξ̃⟩ + τ+(x̃, ξ̃))2

)
= 2(Aξ̃1 +Bξ̃2)

√
⟨x̃, ξ̃⟩2 + 1 − |x̃|2.

Consequently, we have

w(x̃, ξ̃) = h(x̃+ τ+(x̃, ξ̃)ξ̃, ξ̃)
⟨x̃, ξ̃⟩ + τ+(x̃, ξ̃)

= 2(Aξ̃1 +Bξ̃2)

and therefore,

I∗
0I0f

(0) =
∫ 2π

0
2(A cosφ+B sinφ)

(
cosφ
sinφ

)
dφ = 2π

(
A
B

)
.

Hence, we obtain as expected

⟨f (0), I∗
0I0f

(0)⟩L2(S1τ ′
M ) =

∫
M

2π(A2 +B2)dV

= 2π(A2 +B2)
∫ 1

0

∫ 2π

0
rdµdr

= 2π2(A2 +B2).

This example will be used to prove the accuracy of the implemented adjoint operator.

A.3.2 Variable vector field

Let c > 0 be constant. We define

f(x1, x2) =
(
x1
cx2

)
.

Then,
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[Iα0f ](x, ξ) =
∫ 0

τ−(x,ξ)

[
(x1 + τξ1)ξ1 + c(x2 + τξ2)ξ2

]
eα0τdτ

=
∫ 0

τ−(x,ξ)

[
(x1ξ

1 + cx2ξ
2) + τ((ξ1)2 + c(ξ2)2)

]
eα0τdτ

=
[
eα0τ

(
(ξ1)2 + c(ξ2)2

α
τ + x1ξ

1 + cx2ξ
2

α0
− (ξ1)2 + c(ξ2)2

α2
0

)]0

τ−(x,ξ)

= x1ξ
1 + cx2ξ

2

α0
− (ξ1)2 + c(ξ2)2

α2
0

− eα0τ−(x,ξ)
(

(ξ1)2 + c(ξ2)2

α
τ−(x, ξ) + x1ξ

1 + cx2ξ
2

α0
− (ξ1)2 + c(ξ2)2

α2
0

)

and

[I0f ](x, ξ) =
∫ 0

τ−(x,ξ)

[
(x1 + τξ1)ξ1 + c(x2 + τξ2)ξ2

]
dτ

=
∫ 0

τ−(x,ξ)

[
(x1ξ

1 + cx2ξ
2) + τ((ξ1)2 + c(ξ2)2)

]
dτ

= −(x1ξ
1 + cx2ξ

2)τ−(x, ξ) − 1
2((ξ1)2 + c(ξ2)2)τ 2

−(x, ξ).
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A.4 Runge-Kutta method
We consider the following first-order differential equation:

y′(t) = f(y(t)), y(t0) = y0.

The fourth-order Runge-Kutta method is given by

k1 = f(y(t0)) = f(y0)

k2 = f

(
y0 + k1

∆t
2

)

k3 = f

(
y0 + k2

∆t
2

)
k4 = f(y0 + k3∆t).

and

y(t0 + ∆t) ≈ y(t0) + k1 + 2k2 + 2k3 + k4

6 ∆t

=
(1

6k1 + 1
3k2 + 1

3k3 + 1
6k4

)
∆t.
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