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Fig. 1. Our method AvatarStudio takes as input a 3D NeRF volume of a dynamic head (top) and produces visual edits that correspond to a target text prompt
(second and third rows). Our method is the first designed specifically to handle text-based editing of 3D dynamic head avatars. It also produces 3D-consistent
results that can be viewed from an arbitrary camera viewpoint.
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Capturing and editing full-head performances enables the creation of virtual
characters with various applications such as extended reality and media
production. The past few years witnessed a steep rise in the photorealism
of human head avatars. Such avatars can be controlled through different
input data modalities, including RGB, audio, depth, IMUs, and others. While
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these data modalities provide effective means of control, they mostly fo-
cus on editing the head movements such as the facial expressions, head
pose, and/or camera viewpoint. In this paper, we propose AvatarStudio, a
text-based method for editing the appearance of a dynamic full head avatar.
Our approach builds on existing work to capture dynamic performances of
human heads using Neural Radiance Field (NeRF) and edits this represen-
tation with a text-to-image diffusion model. Specifically, we introduce an
optimization strategy for incorporating multiple keyframes representing
different camera viewpoints and time stamps of a video performance into a
single diffusion model. Using this personalized diffusion model, we edit the
dynamic NeRF by introducing view-and-time-aware Score Distillation Sam-
pling (VT-SDS) following a model-based guidance approach. Our method
edits the full head in a canonical space and then propagates these edits to the
remaining time steps via a pre-trained deformation network. We evaluate
our method visually and numerically via a user study, and results show
that our method outperforms existing approaches. Our experiments validate
the design choices of our method and highlight that our edits are genuine,
personalized, as well as 3D- and time-consistent.

CCS Concepts: • Computing methodologies→ Computer vision; Image
manipulation.
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1 INTRODUCTION
The human face is at the center of our visual communications and
hence its digitization is of utmost importance. The past few years
have witnessed a sharp rise in the photorealism of digital faces [Gao
et al. 2022; Karras et al. 2018; Lombardi et al. 2018, 2021]. This
includes methods that can digitize the face using either monocu-
lar [Gao et al. 2022; Karras et al. 2018] or multi-view images [Lom-
bardi et al. 2018, 2021; Teotia et al. 2023]. Furthermore, several input
data modalities for controlling digital faces were investigated. Here,
the most commonly used data modalities are RGB images [Bansal
et al. 2018; Lombardi et al. 2021; Siarohin et al. 2019] and a latent
representation of a 3D face morphable model (3DMM) [Kim et al.
2018; Zheng et al. 2022]. These approaches usually control the mo-
tion of the face. While other data modalities were also investigated
for controlling digital faces such as audio and IMUs [Li et al. 2015;
Suwajanakorn et al. 2017], one modality that has not been fully
explored yet for video face editing is text.

Text is one of the most user-friendly data modalities that can be
easily defined without any expert knowledge. In the past few years,
text-driven image synthesis attracted the attention of the research
community. Thanks to the wide development and adaptation of
transformers [Radford and Narasimhan 2018; Vaswani et al. 2017]
and diffusion models [Rombach et al. 2022], several works have
shown the ability to edit images in 2D [Brooks et al. 2023; Ruiz et al.
2022] and 3D [Haque et al. 2023; Jain et al. 2022; Poole et al. 2022],
given text prompt as input. While 2D-based methods produce in-
teresting results, they can not produce edits that are 3D-consistent.
In contrast, 3D-based methods [Haque et al. 2023; Jain et al. 2022;

Poole et al. 2022] show results on a 3D volume that can be rendered
faithfully from an arbitrary camera viewpoint. However, even such
methods are lacking in several ways. First, many of them [Aneja
et al. 2022; Jain et al. 2022; Wang et al. 2021b, 2022] optimize their
solution in a joint image-text embedding known as CLIP [Radford
and Narasimhan 2018]. While such a CLIP-based objective function
leads to interesting results, it usually tends to generate limited edits.
Second, none of the existing methods are designed to handle dy-
namic scenes and hence cannot process image sequences properly.
This usually leads to clear artifacts and limited edibility (as shown
in our experiments).

In this paper, we propose AvatarStudio, a text-based method for
editing the appearance of a dynamic full-head avatar. Our approach
assumes a digital head avatar as input, that can be trained from a
multi-view performance capture of a human head. In particular, we
follow the approach presented in HQ3DAvatar[Teotia et al. 2023]
to learn a volumetric head avatar as is one of the latest in litera-
ture. Here, the head is represented as a canonical neural radiance
field (NeRF) [Mildenhall et al. 2021] and a deformation network
propagates the canonical representation across time. Our approach
enables the text-based editing of such dynamic volumetric avatars in
a view- and time-coherent manner. Specifically, we perform editing
through text-based conditional image generation with a diffusion
model. We make several technical contributions to ensure that the
editing of AvatarStudio is genuine, personalized, as well as 3D-
and time-consistent. First, we sample several keyframes from the
multi-view video that represent different camera viewpoints and
time stamps of the performance capture. We introduce an optimiza-
tion strategy to incorporate these keyframes into a single diffusion
model, by fine-tuning a pre-trained model with a unique text iden-
tifier as proposed in [Ruiz et al. 2022]. Importantly, to prevent the
leakage of information between keyframes we keep the sampled
noise constant for every batch during each fine-tuning iteration.

Based on this personalized diffusion model we can generate and
edit each keyframe individually. We leverage this property to edit
the dynamic NeRF by introducing a novel view- and time-aware
Score Distillation Sampling (VT-SDS) approach, that iteratively edits
the dynamic NeRF by sampling a random set of keyframes across the
view and time domain. VT-SDS follows a model-based classifier-free
guidance approach [Zhang et al. 2022], where we take advantage
of the step-by-step generation process in diffusion models to guide
the early stages of the image generation towards the content of
the respective keyframe while performing the editing throughout
the later stages of the generation process with a large-scale pre-
trained diffusion model. To ensure that the edited dynamic Neural
Radiance Field remains faithful and free from overfitting artifacts
we use an annealing strategy that gradually lowers the effect of
the personalized diffusion model to enable high-frequency edits.
Aspects of novelty of this work include:

• We present the first method for text-driven editing of dy-
namic 3D human head avatars. Our approach leverages the
state-of-the-art in neural volumetric scene representations
together with recent advances in text-driven diffusion models
to achieve high-quality editing of dynamic digital avatars.
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• Anewoptimization strategy for incorporatingmultiple keyframes
that represent different camera viewpoints and different time
stamps, into a single diffusion model.

• A view- and time-aware Score Distillation Sampling (VT-SDS)
that coherently enables high-quality personalized editing
across the view and time domain.

We evaluate our method subjectively and numerically through a
user study and compare it against related methods. Results show
that our approach produces a wide variety of text-based edits while
maintaining the integrity of the input identity (see Fig. 1). It gener-
ates temporally coherent results and outperforms related methods.

2 RELATED WORK
This section aims to discuss methods related to text-driven editing
of the human face using diffusion models. To this end, we first
present a quick overview of methods for creating and editing digital
human faces. We then introduce diffusion models and how they
started to get used with text-driven inputs. Next, we discuss in
detail text-driven methods for image editing and synthesis. Here,
methods are divided into two main categories; 2D [Brooks et al.
2023; Ruiz et al. 2022] and 3D [Haque et al. 2023; Jain et al. 2022;
Poole et al. 2022; Wang et al. 2021b, 2022]. One main difference
between both approaches is that 3D methods can produce edits
that are multi-view consistent, while 2D methods do not focus on
changing the camera viewpoint. We outline important milestones in
text-driven diffusion models for image synthesis and editing. This
includes enabling object-specific edits as in DreamBooth [Ruiz et al.
2022], and the introduction of the probability density distillation in
DreamFusion [Poole et al. 2022]. We also discuss the CLIP image-
text embedding [Radford et al. 2021], and how it is commonly used
in the literature in formulating the objective function [Aneja et al.
2022; Jain et al. 2022; Wang et al. 2021b, 2022]. Our work differs
from related works in several ways. To start with, it is the first
that enables text-driven editing of dynamic NeRF using diffusion
models. This is done by the introduction of a novel optimization
that allows incorporating temporal frames in a pre-trained diffusion
model. Second, our method is 3D by design, thus enabling edits that
are multi-view consistent. Last by not least, we do not use the CLIP
embedding and thus enable stronger and more faithful edits. We
now discuss related methods in more detail.

2.1 Avatar Creation and Editing
In the past few years, photorealistic digitization of the human face
received increasing attention from the research community. This led
to the development of several face digitization methods, including
ones that require multi-view data [Lombardi et al. 2018, 2021; Teotia
et al. 2023]. Other methods exist that require only a monocular RGB
video sequence [Bai et al. 2023; Gao et al. 2022; Thies et al. 2019;
Zheng et al. 2022].While earlier methods rely on explicit scene repre-
sentations such as meshes coupled with 2D generative models [Kim
et al. 2018; Nagano et al. 2018; Thies et al. 2019], more recent works
utilize neural implicit 3D representations such as NeRF [Bai et al.
2023; Gafni et al. 2021; Gao et al. 2022]. In general, the latter class of
methods show better 3D understanding and thus better robustness
to head movements. In addition to photorealism, controlling and

rigging digital faces received a lot of attention. This includes for
instance methods [Athar et al. 2022; Gao et al. 2022; Grassal et al.
2021] that utilize a low-dimensional parametric representation in
form of 3D morphable model [Blanz and Vetter 1999; Egger et al.
2020] or some other latent space [Abdal et al. 2019; Teotia et al. 2023;
Wang et al. 2021a]. Moreover, several data modalities have been
explored as a control signal, such as RGB images [Bansal et al. 2018;
Lombardi et al. 2021; Siarohin et al. 2019], audio [Suwajanakorn
et al. 2017; Thies et al. 2020], sparse image representations such as
contours and keypoints [Mihajlovic et al. 2022; Zakharov et al. 2019]
and even input from sensors such as IMUs and IR cameras [Li et al.
2015; Wei et al. 2019].
The vast majority of existing methods for controlling digital

faces, however, focus on editing the motion of the face. That is,
controlling the facial expressions, head pose, and/or the camera
viewpoint [Kirschstein et al. 2023; Raj et al. 2021]. Controlling the
facial appearance has been mostly studied in the context of facial
relighting [Ranjan et al. 2023; Rao et al. 2022; Tan et al. 2022]. Here,
methods were developed that edit the facial appearance as a func-
tion of the scene illumination. For this, the target illumination is
commonly described via HDRI maps [Mallikarjun et al. 2021; Sun
et al. 2019] or via a low dimensional representation such as spherical
harmonics [Ranjan et al. 2023; Tewari et al. 2020; Zhou et al. 2019].
There are also methods for editing the facial appearance in a non-
photorealistic manner [Fišer et al. 2017; Selim et al. 2016; Yang et al.
2022]. These methods usually take a target painting as input and
can handle moving heads. However, there is currently no method
for text-driven editing of a 3D dynamic human face. A primary aim
of such a method would be to generate edits that are multi-view
and temporally consistent.

2.2 Introducing Diffusion Models
Diffusion models recently found their way into image synthesis. To
this end, Ho et al. [Ho et al. 2020] have shown that diffusion proba-
bilistic models (DPM) can be represented as a Markov Chain process
using autoencoders. Briefly, in Dhariwal et al. [Dhariwal and Nichol
2021], it was shown that diffusion models can beat GANs in image
synthesis quality. However, one main concern remained; the compu-
tational complexity of such models. Rombach et al. [Rombach et al.
2022] addressed this concern by training diffusion models on latent
spaces of autoencoders. Furthermore, several means of condition-
ing the diffusion model were shown, including text. This sparked a
greater interest in text-driven image synthesis, especially with the
rising popularity of transformers [Radford and Narasimhan 2018;
Vaswani et al. 2017]. While earlier works of text-driven synthesis
such as DALL-E [Ramesh et al. 2021] relied primarily on trans-
formers for language modeling and image synthesis, the follow-up
version DALL-E 2 [Ramesh et al. 2022] utilized diffusion models.
Other text-driven synthesis methods were also proposed using other
generative models such as StyleGAN [Ramesh et al. 2021]. However,
with the availability of public implementations of diffusion models
such as Stable Diffusion [CompVis 2022; Rombach et al. 2022], text-
driven image synthesis with diffusion models have witnessed great
progress in the past couple of years.
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2.3 Text-driven Diffusion Models for Image Synthesis and
Editing

Current methods for text-driven image synthesis using diffusion
models can be classified into 2D [Brooks et al. 2023; Ruiz et al. 2022]
and 3D [Aneja et al. 2022; Haque et al. 2023; Jain et al. 2022; Lin et al.
2022; Poole et al. 2022; Wang et al. 2021b, 2022] approaches. While
the former produces a wide range of visual edits in terms of content
and style, the latter produces results that are 3D-consistent and thus
can be viewed from an arbitrary camera angle. DreamBooth [Ruiz
et al. 2022] is a 2D-based approach that handles the problem of fine-
tuning large text-to-image diffusion models to a specific examined
object. Here, multiple images (typically 3-5) of the same object are
provided as input, while DreamBooth learns to associate a unique
identifier to this object. This embeds the examined object in the
output domain of the text-to-image diffusion model, thus allowing
a wide variety of text-driven edits. Instruct-Pix2Pix [Brooks et al.
2023] takes a different approach to the same problem of text-driven
image synthesis. Their idea is to generate paired synthetic data by
utilizing the large language model of GPT-3 [Brown et al. 2020]
together with the text-to-image model of Stable Diffusion. This
strategy generalizes well to real user-instructions and real input
images during test. Unlike our method, none of these 2D-based
methods can generate results that are multi-view consistent [Brooks
et al. 2023; Ruiz et al. 2022].

3D text-driven image synthesis methods can be categorized into
editing approaches [Aneja et al. 2022; Jain et al. 2022; Wang et al.
2021b, 2022] and synthesis approaches [Haque et al. 2023; Lin et al.
2022; Poole et al. 2022]. Synthesis approaches build a 3D model and
generate the output for each new text prompt. Editing approaches,
however, usually modify an already existing NeRF model to ac-
commodate a new text prompt. To enable this, CLIP embedding is
commonly used. CLIP [Radford et al. 2021], short for "Contrastive
Language-Image Pre-Training", is a joint text and image embedding
trained in a way to predict the correct (text, image) pairing. Using
CLIP and a Neural Radiance Field (NeRF) [Mildenhall et al. 2021]
formulation, Dream Fields [Jain et al. 2022] extended 2D text-to-
diffusion models to 3D. Along similar lines, DreamFusion [Poole
et al. 2022] also extended 2D models to 3D, however not using CLIP
embedding. Instead, a new loss is proposed based on probability den-
sity distillation. Here, a solution is initializedwith a random 3DNeRF
model, which is then optimized in a way so that 2D renderings from
an arbitrary viewpoint minimize the loss. Magic3D [Lin et al. 2022]
improves upon the computational efficiency of DreamFusion using
a coarse-to-fine manner. Following the 2D text-to-image model of
Instruct-Pix2Pix [Brooks et al. 2023], Instruct-NeRF2NeRF [Haque
et al. 2023] proposes a 3D text-to-image solution. Here, 2D images
are iteratively edited using Instruct-Pix2Pix, and the resulting 3D
NeRF model is iteratively optimized. Results show 3D-consistent
edits of various forms without the need for any additional training
data.

ClipFace [Aneja et al. 2022] is a self-supervised approach for text-
driven editing of human faces. Here, the face is modeled through
a 3D morphable model (3DMM), where each facial component is
trained separately. The solution uses a combination of a CLIP-based
loss together with adversarial training. While CLIP-based methods

achieve good results, they still can be limited in terms of their edi-
bility. In addition, using a 3DMM cannot edit the full head [Aneja
et al. 2022], and thus discard important regions such as the mouth
interior. Finally, none of the remaining 3D-based methods are de-
signed to handle image sequences and thus generate clear artifacts
with limited editing, in contrast to our approach.

3 METHOD
Our objective is to edit dynamic 3D full human heads using a text
prompt expressing the desired edit (see Fig. 2).We assume the human
heads are represented by dynamic NeRF-basedmodels reconstructed
with an existing method. In this work, we use HQ3DAvatar [Teotia
et al. 2023] to obtain the dynamic human heads due to its high qual-
ity. The editing is achieved by leveraging the prior knowledge of a
large text-guided latent diffusionmodel (LDM) [CompVis 2022; Rom-
bach et al. 2022]. We first describe preliminaries on HQ3DAvatar
and LDM (Sec. 3.1). We then introduce a new optimization strategy
that adapts the LDM to capture the identity of the given head from
different viewpoints and time stamps (Sec. 2.3). In this context, we
loosely use time stamps to indicate key facial expressions, as elabo-
rated in Sec. 3.2.2. This optimization step is essential for preserving
the original head identity and details during editing, as we will show
in experiments. Next, we discuss how we use the adapted LDM to
edit the dynamic head with a text prompt (Sec. 3.3). Our approach
enables personalized and targeted edits from textual inputs while
maintaining the examined identity. It also allows a wide range of
text-driven edits of dynamic full heads and produces temporally
consistent results. For example, given a dynamic head and an ex-
emplary textual input “Turn her into a zombie” or “Make him look
like Van Gogh”, our model can produce multi-view consistent NeRF
edits that transfer the zombie or van Gogh styles to the target iden-
tity. We evaluate our approach visually and numerically through
a user study, and results show that we clearly outperform existing
methods.

3.1 Preliminaries
3.1.1 Neural Radiance Fields. The Neural Radiance Fields (NeRF)
algorithm, as described in the paper by Mildenhall et al. [Milden-
hall et al. 2021], employs a fully connected deep neural network to
represent a scene. The network is fed a continuous 5D coordinate
that comprises a spatial location p with coordinates (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧)
and a viewing direction v (𝑣𝜃 , 𝑣𝜙 ). The output of the network is
the volume density 𝜎 and the view-dependent emitted radiance
at that location. By utilizing classic volume rendering techniques
and querying 5D coordinates along camera rays, NeRF can project
output colors and densities onto novel views to synthesize images.
The volume rendering process is differentiable, which allows for the
optimization of the representation using a set of input images with
known camera parameters (extrinsic and intrinsic). These camera
parameters are used to extract a per-pixel world-space ray param-
eterization that describes the 3D center o and direction d of the
camera ray r(𝜏) = o + 𝜏d corresponding to each pixel in each image.
The expected color 𝐶 (r) of camera ray r(𝜏) = o + 𝜏d with near and
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Fig. 2. An overview of the method of our approach for text-driven editing of dynamic head avatars. Our method takes as input a reconstructed
dynamic NeRF volume (left) and a text prompt S, and produces corresponding visual edits (right). These edits can be viewed from an arbitrary camera
viewpoint in a 3D-consistent manner. To this end, we propose a novel optimization that fine-tunes pre-trained latent diffusion models on multiple keyframes
representing different viewpoints and time stamps (see Sec. 3.2). Furthermore, we employ a new view- and time-aware Score Distillation Sampling (VT-SDS)
that combines a pre-trained latent diffusion model with our fine-tuned model (see Sec. 3.3 and Eq. 10).

Fig. 3. Sample viewpoints and time stamps used in our diffusion model
fine-tuning (see Sec. 3.2.1)

.

far bounds 𝜏𝑛 and 𝜏𝑓 can be calculated as follows:

𝐶 (r) =
∫ 𝜏𝑓

𝜏𝑛

𝑇 (𝜏)𝜎 (r(𝜏))c(r(𝜏), d)𝑑𝜏 , (1)

where 𝑇 (𝜏) = exp
(
−
∫ 𝜏

𝜏𝑛

𝜎 (r(𝑠))𝑑𝑠
)
. (2)

3.1.2 Scene Representation. To capture complete head performances,
wemake use of the dynamic volumetric representation of HQ3DAvatar
[Teotia et al. 2023], which learns a volumetric representation of the
human head using multi-view RGB videos. We use this represen-
tation due to its high-quality video results. While our method in
principle could work with other dynamic NeRF models, examining
this is outside the scope of this work.
HQ3DAvatar consists of two main stages. The first contains a

deformation network 𝐷 that maps the input coordinates p of the
world space to deformed positions in the canonical space as follows

p𝑐 = 𝐷 (p, e) + p. (3)

Here, p𝑐 denotes the deformed coordinates in the canonical space,
while e is a time embedding of the input RGB frames. This embed-
ding is extracted using a pre-trained VGG-Face encoder [Parkhi
et al. 2015]. The second stage contains an appearance network 𝐴
that predicts the radiance c and volume density 𝜎 for each deformed
coordinate. This is written as:

𝐴 : (p𝑐 , v, e) → (c, 𝜎) , (4)

where v is the viewing direction. To make the method computation-
ally efficient, a multi-resolution hash-grid-based representation is
used along the lines of Mueller et al. [Müller et al. 2022]. To this
end, the appearance network 𝐴 consists of two main parts. The first
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is the multi-resolution hash grid, while the second is an MLP-based
network that outputs the radiance c and volume density 𝜎 . This
MLP is conditioned on the time embedding e as well as the viewing
direction d. Once we have the radiance field representation of the
scene, we use standard volumetric integration to synthesize color
C for each ray 𝒓 (𝜏) using Eq. (1). For more details on the method
including the network design and the efficient rendering, please
refer to the manuscript of [Teotia et al. 2023].

3.1.3 Latent DiffusionModels. Latent diffusionmodels (LDMs) [Rom-
bach et al. 2022] are a class of Denoising Diffusion Probabilistic
Models (DDPMs) [Ho et al. 2020] that use a vector-quantized auto-
encoder [Van Den Oord et al. 2017] to translate an input image
into a latent space in which a text-conditioned DDPM is trained.
The encoder E processes a given image I ∈ R𝐻×𝑊 ×3 to a latent
representation z, such that z = E(I). The decoder D reconstructs
the estimated image Ĩ from the latent, such that Ĩ = D(z) and
Ĩ ≈ I. The diffusion model is trained to generate images in the
latent space of the encoder. Similar to other types of generative
models [Mirza and Osindero 2014], diffusion models are in principle
capable of modeling conditional distributions of the form 𝑝 (𝑥 |𝑠),
where 𝑠 is the conditioning variable. Conditional latent diffusion
models are learned to optimize the following loss:

EE(I),𝑠,𝝐∼N(0,1),𝑡
[
∥𝝐 − 𝝐𝜃 (z𝑡 , 𝑡, 𝑠)∥22

]
, (5)

where 𝑡 is the diffusion time step and z𝑡 is the noisy latent code
at time 𝑡 . 𝝐 is the noise sample, 𝝐𝜃 is the denoising model with
parameters 𝜃 and 𝑠 is the conditioning input. During training, 𝝐𝜃
is optimized. At inference, a latent code is generated by randomly
sampling a noise tensor and denoising it iteratively based on a
conditioning input.

3.2 Fine-Tuning Text-to-Image Latent Diffusion Model
A key challenge in dynamic full-head editing is to preserve the orig-
inal characteristics of the head (e.g. , its identity, details, motions,
etc) rather than creating a completely different head. Editing using
the original LDM would soon lead to drifts of these characteris-
tics due to information leakage. A potential way to alleviate this
problem is to fine-tune the LDM on images of the given head using
DreamBooth [Ruiz et al. 2022]. However, unlike DreamBooth which
aims to sample new 2D images and thus only needs to capture the
object identity, we want to edit a 3D head across different view-
points and time stamps. Thus, ideally, the LDM should not only
be identity-aware but also viewpoint-aware and time-aware. Our
investigations revealed that implementing DreamBooth for multiple
concepts (i.e. , multiple viewpoints and time stamps) is also prone to
concept leakages, producing suboptimal editing. Hence, below we
detail our new optimization strategy which is designed specifically
for associating multiple concepts for different viewpoints and time
stamps.

3.2.1 Optimization. In our work, we fine-tune the LDM of Stable
Diffsion [CompVis 2022; Rombach et al. 2022]. To this end, we use
images of the given dynamic 3D head from different viewpoints
and time stamps (see Fig. 3), denoted as {x𝑖 ; 𝑖 ∈ {1, ..., 𝑛}}. How
we select the images will be discussed in Sec. 3.2.2. We then assign
a label P𝑖 to each of these images, using the format ‘photo of a

[identifier] [class noun]’. The identifier is a one-of-a-kind code of 10
characters, unique for each image, while the class noun is ‘man’ or
‘woman’ depending on the gender of the given head. Each identifier
is initialized via a random word generator. Our aim is to fine-tune
a pre-trained text-to-image LDM 𝜁𝜃 so that, given an initial noise
map 𝝐 ∼ N(0, I) and a conditioning vector s𝑖 = Γ(P𝑖 ) produced
using a text encoder Γ, the fine-tuned LDM 𝜁𝜃 will reconstruct the
image x𝑖 . The model is fine-tuned using a squared error loss to
denoise a variably-noised image or latent code z𝑡,𝑖 B 𝛼𝑡E(x𝑖 ) + 𝛽𝑡𝝐
as follows:

Ex𝑖 ,s𝑖 ,𝝐,𝑡
[
𝑤𝑡 ∥𝜁𝜃 (z𝑡,𝑖 , s𝑖 ) − E(x𝑖 )∥22

]
(6)

where𝛼𝑡 , 𝛽𝑡 ,𝑤𝑡 are terms that control the noise schedule and sample
quality. These terms are a function of the diffusion process time
𝑡 ∼ U([0, 1]) [Ruiz et al. 2022]. To overcome potential language drift
of language models [Lee et al. 2019; Lu et al. 2020], we incorporate
Class-specific Prior Preservation Loss [Ruiz et al. 2022]. In practice,
we use a batch size of 3 during fine-tuning, which corresponds to
three randomly sampled x𝑖 with different viewpoints or time stamps.
We observe that using different noise 𝝐 within each batch may lead
to concept leakage between different identifiers. Thus, we use a
shared noise 𝝐 within each batch, which helps the identifiers to
capture the variations in the image avoiding any leakage.

3.2.2 Time Embedding Sampling. We next describe how we select
the images {x𝑖 } used to fine-tune the LDM. As discussed above,
{x𝑖 } should include multiple viewpoints and time stamps. Thus, we
use all camera views of the first frame as the multiview images. In
our experiments, we use a multiview camera rig equipped with 24
RGB cameras around the head (see Sec. 4.2). Hence, we use all these
24 camera viewpoints. We also include six other frames from the
frontal camera view, aiming for maximum diversity. We generate
embeddings e𝑗 in HQ3DAvatar (see Eq. (3)) for each of the𝑚 frames
in a given dynamic head, and we observe a substantial correlation
between the 𝐿2 norm of these embeddings and the dynamic NeRF
deformations. Therefore, we devise a strategy to select frames based
on this correlation. We calculate the mean of these𝑚 embeddings
and then select six embeddings and their corresponding frames that
exhibit the greatest variation from the mean based on their absolute
difference. We make sure to discard similar neighbouring frames
with similar deformations to avoid redundancy.

3.3 Text-guided Dynamic NeRF Editing
With a pre-trained HQ3DAvatar on a specific identity, we perform
text-driven editing by optimizing the appearance network 𝐴 (see
Eq. 4), while keeping the deformation network 𝐷 fixed. In other
words, we edit the appearance in HQ3DAvatar’s canonical space.
Please refer to Fig. 2 for an overview of this editing process. Our text-
driven editing is developed based on Score Distillation Sampling
(SDS) loss [Poole et al. 2022], which supervises an image to follow the
text prompt using a text-to-image LDM. Here, we render an image
x at each optimization step by randomly sampling from the camera
viewpoints and time stamps corresponding to {x𝑖 } (Sec. 3.2.2).

At every step of the optimization process, a random diffusion
time instant 𝑡 is sampled and noise is injected into the rendered
image x:

x𝑡 = x + 𝝐𝑡 , (7)
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where 𝝐𝑡 is the noise map generated via a noising function 𝑄 (𝑡).
With our modified Score Distillation Sampling loss (see Sec. 3.3.1),

the gradients for score distillation are calculated on a per-pixel basis
as follows:

∇𝜃L𝑆𝐷𝑆 = 𝜇 (𝑡) (𝝐𝑡 − Ψ(x𝑡 , 𝑡, s, s𝑖 )) . (8)

Here, 𝜇 (𝑡) is a weighting function following [Poole et al. 2022],
𝜃 are the trainable parameters of the dynamic NeRF, s is the text
embedding of the user-input text for editing the dynamic NeRF,
and s𝑖 is the same as in Eq. (6). Furthermore, Ψ(x𝑡 , 𝑡, s, s𝑖 ) is the
noise predicted by a combination of our fine-tuned and a pre-trained
diffusionmodel given x𝑡 , 𝑡 , s and s𝑖 as wewill introduce later (Eq. 10).

Moreover, we utilize a regularizer for the density field generated
by [Jain et al. 2022] as follows:

Lentropy = 𝜔 · log2 (𝜔) − (1 − 𝜔) · log2 (1 − 𝜔). (9)

Here, 𝜔 is the cumulative sum of density weights computed along
each ray in the scene. This regularizer is an entropy loss that pro-
motes the points to be either completely transparent or completely
opaque.

3.3.1 Modified Score Distillation Sampling. Inspired by recent work
[Zhang et al. 2022] on reducing overfitting and severe language drift
in fine-tuned text-driven diffusion models, we utilize our fine-tuned
model to provide content features. These features are combined with
scores from the pre-trained model in a manner similar to classifier-
free guidance [Ho and Salimans 2022].
To this end, we use the notation 𝜻𝜃 to refer to the fine-tuned

denoising model, and 𝜻𝜃 to refer to the pre-trained text-to-image
model. During Score Distillation Sampling (SDS), we guide the pre-
trained model with our fine-tuned model by using a linear combina-
tion of the noise estimated from each model, for a specified range
of optimization steps. Thus, the noise estimation in an SDS step can
be defined as:

𝚿 (x𝑡 , 𝑡, s, s𝑖 ) =𝑤
(
𝑣𝜻𝜃 (x𝑡 , s) + (1 − 𝑣)𝜻𝜃 (x𝑡 , s𝑖 )

)
+ (1 − 𝑤 )𝜻𝜃 (x𝑡 ) ,

(10)

where𝑤 is the overall guidance weight and 𝑣 stands for the model
guidance weight, which depends on 𝑡 as we will discuss later. ŝ𝑖
is the same as in Eq. (6) and s is the target language conditioning
obtained from the target prompt (see Sec. (3.2.1)).

To ensure that the edited dynamic neural radiance field remains
faithful and free from overfitting artifacts, we use Eq. (10) with
0.5 ≤ 𝑣 ≤ 0.7 for samplingwhen 𝑡 > 𝐾 , and 𝑣 = 1 for samplingwhen
𝑡 ≤ 𝐾 . Unless stated otherwise, we use 𝐾 = 600. We follow [Lin
et al. 2022] and use an annealed SDS loss function that gradually
lowers the maximum time-step used to sample 𝑡 . This enables SDS
to emphasize high-frequency information once the edit’s outline
has been established. In the ablation study of Sec. 4.6, we show
that using Eq. (10) for Score Distillation Sampling is essential for
generating photorealistic and genuine edits in both the spatial and
temporal domains.

4 EXPERIMENTS
In this section, we evaluate the performance of our method subjec-
tively and numerically.

4.0.1 Performance measures. We assess three main aspects of the
generated results. First, their ability to respect the target text prompt.
Here, it is important to maintain the integrity of the input identity.
Second, we asses the ability to generate edits that are 3D-consistent
and thus can be rendered from an arbitrary camera viewpoint. Third,
we assess the temporal coherency of the generated edits. Visual
results are shown throughout the figures and the supplemental
video. Numerical results are extracted from a user study. Results
show that our method is capable of producing a wide variety of
text-driven edits that are 3D-consistent and temporally coherent.

4.0.2 Baselines. We compare against two text-driven image synthe-
sis baselines: Dream Fields [Jain et al. 2022] and Instruct-NeRF2NeRF
[Haque et al. 2023]. We also compare against an implementation
that combines the diffusion model fine-tuning method of Dream-
Booth [Ruiz et al. 2022] together with the 3D text-based editing
method of DreamFusion [Poole et al. 2022]. Results show that our
method clearly outperforms the state of the art visually and numer-
ically.
In the next two sections, we discuss implementation details and

the multi-view data that is used in our experiments. Subsequently,
we discuss the user study that we perform in assessing our exper-
iments (Sec. 4.3). We show in Sec. 4.4 an extensive evaluation of
our method using varying prompts. In Sec. 4.5, we compare against
related methods subjectively and objectively. Finally, we investi-
gate the various design choices of our method in an ablation study
(Sec. 4.6). Here we investigate our two main contributions. First,
we investigate the importance of our fine-tuning strategy (Sec. 3.2)
which incorporates multiple camera viewpoints and different time
stamps. We also investigate the importance of incorporating Eq. 10
in the Score Distillation Sampling as discussed in Sec. 3.3. Results
show that all our design choices contribute positively to the final
output.

4.1 Implementation Details
We employ a consistent set of parameters for all experiments, with-
out optimizing them specifically for each scenario. We utilize the
open-source Stable Diffusion model [Rombach et al. 2022] as our
prior for the diffusion model. This model was trained on the LAION
dataset [Schuhmann et al. 2022], which consists of pairs of text and
images. We render our images at a resolution of 256px. Since the
Stable Diffusion model is specifically designed for images with a
resolution of 512px, we first upsample our renders to 512px before
passing them to the Stable Diffusion’s latent space encoder, which
is a Variational Autoencoder (VAE). We use classifier-free guidance
of strength 10. Additionally, we set the VT SDS ratio to v=0.6 and
K=600. We optimize the head avatar for a single prompt using the
Adam [Kingma and Ba 2014] optimizer with learning rate 1e-3 for
10000 iterations. The optimization process takes approximately 60
minutes on a single A100 GPU and requires 32GB VRAM. When
comparing the optimization process, we find that InstructNerf2Nerf
undergoes training for 6,000 steps, demanding 24GB VRAM and
taking approximately 40 minutes on an A100-GPU. On the other
hand, Dreamfields++ completes 6,000 steps with 18GB VRAM in
just 15 minutes using the same A100 GPU.
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For our fine-tuning step, we optimize the diffusion model for a
total of 28000 steps using the Adam optimizer [Kingma and Ba 2014]
with image size 512px, batch size 3, and a learning rate 5e-5.

4.2 Data Capture
Our method is trained on multi-view data. We use a 360-degree cam-
era rig equipped with 24 Sony RXO II cameras that are hardware-
synced and capable of recording 25 frames per second at a 4K reso-
lution. These cameras are positioned in a way to capture the entire
human head, including the scalp’s hair. They are also accompanied
by LED strips to provide uniform illumination. The cameras are cali-
brated using a static structure with distinctive features. The intrinsic
and extrinsic parameters are estimated using Metashape [Agisoft
2020]. Background subtraction is carried out using the matting ap-
proach of Lin et al. [Lin et al. 2021] to eliminate static elements like
wires, cameras, and other objects. To simplify the process of back-
ground subtraction, a diffused white sheet is placed inside the rig,
which contains holes for each camera lens. Please refer to Fig. 4 for
an overview of data captured and used in our experiments. We use
data collected by this camera rig for all our experiments, including
evaluating related methods. We show results on 5 identities per-
forming a variety of expressions. Some identities are also reading a
set of sentences known as Pangrams 1. Here, each sentence contains
all the 26 Latin letters. Our videos are recorded at 25 frames per
second and are between 300-500 frames long.

4.3 User Study
It is challenging to evaluate text-driven visual edits numerically
due to the absence of ground-truth data. In fact, one text prompt
could have several different possible visual edits. Current methods
use two main strategies for numerical evaluations. One approach
is to measure the alignment of the produced edits with the input
text prompt using the CLIP space [Haque et al. 2023; Jain et al.
2022; Poole et al. 2022]. This method, however, does not evaluate
the temporal coherency of the solution. In addition, it is expected
to favour methods that optimize their solution in the CLIP space.
Another strategy for numerical evaluation is to perform a user
study, as adapted by [Lin et al. 2022; Wang et al. 2022]. We believe
this strategy is more suitable as it is not tied to a specific text-
image embedding, and due to the subjective nature of the examined
problem.

Motivated by this, we designed a user study that assesses several
important aspects of text-driven video edits. For a given identity and
a given text prompt, our user study shows four videos side-by-side.
The first is the original input as produced by HQ3DAvatar [Teotia
et al. 2023], while the remaining videos are the output of three dif-
ferent text-driven editing methods. The order of these three videos
is randomly shuffled. Each video is around 19 seconds, featuring
either a talking person or different facial expressions captured by
a rotating camera. Participants were asked to watch the video and
were given the option to replay it as desired. They were then asked
to answer the following set of questions.

• Q1: Which method better retains the identity of the input
sequence (identity preservation)?

1https://callibeth.com/downloads/pangrams111.pdf

• Q2: Which method better follows the given input textual
prompt (prompt preservation)?

• Q3: Which method better maintains temporal consistency
(temporal consistency)?

• Q4: Which method is better overall considering the above 3
aspects (identity preservation, textual preservation, temporal
consistency)?

As shown, the first three questions are designed to assess (from
the top) the identity preservation, the prompt preservation, and the
temporal consistency of the output. The user gives an answer to each
of these three questions, and hence a specific method output could
be chosen as the best one in just a subset of these questions. Finally,
the fourth question is a measure of the overall quality considering
all these three aspects (identity preservation, textual preservation,
temporal consistency).

4.4 Text-driven Full Head Editing
Fig. 5-8 show various edits generated by our method. Here, we
show results for several identities with various input text prompts.
Subjects are talking and performing various expressions while we
show results from different camera viewpoints. Results show that
our method can handle a wide variety of text-driven visual edits.
This includes both photorealistic (e.g. Fig. 5 and Fig. 6 "Photo of
an old person"), and non-photorealistic (Fig. 5 and Fig. 9 "Photo of
a Panda") edits. We can edit specific regions of the face according
to the input text prompt. For instance, Fig 6 (second column) and
Fig. 8 (fourth column) show that we can edit the color of hair in
isolation, which respects the text prompt of "Photo of a face with
blue hair". Our method can also edit the geometry so that it is in
line with the text prompt. For instance, see "Photo of the Grinch"
(Fig. 6 and Fig. 9) and "Photo of panda" (Fig. 9). Our method handles
a variety of facial expressions and head movements. This includes
normal speech (Fig. 6), smiling (Fig. 7, middle row), and extreme
expressions (Fig. 7, last row). Results also show that our method
produces edits that are 3D consistent as well as temporally coherent.
This is best observed in the supplemental video. Last but not least,
our method achieves this wide range of edits while maintaining
the integrity of the input identity. Please refer to the supplemental
video for more results.

4.5 Comparison Against Related Methods
We compare against two recent 3D text-based editing methods. That
is InstructNeRF2NeRF [Haque et al. 2023] and Dream Fields [Jain
et al. 2022]. In both methods, we edit only the reconstructed HQ3D-
Avatar’s appearance in the canonical space, while keeping the de-
formation network fixed. We then use the deformation network to
warp the edited appearance to the remaining time stamps. Since the
original Dream Fields method [Jain et al. 2022] generates the entire
image purely from text, we implemented a version that is initialized
by our reconstructed HQ3DAvatar model. This is done by optimiz-
ing the HQ3DAvatar’s appearance via the CLIP loss [Radford et al.
2021]. We call this implementation Dream Fields++ in the rest of the
paper. We also call InstructNeRF2NeRF in our figures InstructN2N
for brevity.
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Fig. 4. We trained our method using data captured from a multi-view video camera rig. The rig contains 24 video cameras positioned around the head. The
figure shows an example capture from each camera viewpoint

Fig. 5. Our method produces compelling text-driven visual edits for different text prompts. Note the good sharp edits in the eyes (see the second column) and
how the fourth column shows edits in the facial geometry. Our results are 3D- and temporally consistent as can be seen in the supplemental video.
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Fig. 6. Our method produces pleasing text-driven visual edits for different prompts. Note for instance the geometrical edits in the fourth column and how our
method can handle interesting prompts such as "photo of an old person" as shown in the last column. Our method can also edit specific regions as instructed
by the prompt (see blue hair, second column). Our results are 3D- and temporally consistent and maintain the original identity.

Fig. 10-11 show results of different methods for different text
prompts. Results show that Dream Fields++ generates significant
artifacts that destroy the integrity of the input image. These edits
are also clearly not in line with the target text prompt. Furthermore,
Fig. 10 (third column) shows that Dream Fields++ generates edits in
unwanted regions. Here, despite the text prompt saying "Photo of a
face with blue hair", Dream Fields++ turns the lips blue. Similarly,
InstructNeRF2NeRF generates edits that are not well aligned with
the target text prompts. For instance, see Fig. 10 and Fig. 11 with
the prompt "Photo of an old person". InstructNeRF2NeRF could also
destroy the original identity (see Fig. 11, last column) and sometimes
it generates edits in the wrong regions (see Fig. 10, last column, lips).
In contrast, our method generates edits that are more in line with
the target text prompt. In addition, it maintains the integrity of
the input image and produces clearly more temporally consistent
results. For this, please refer to the supplemental video and the user
study (discussed next).
Following Sec. 4.3, we perform a user study to compare our

method against Dream Fields++ and InstructNeRF2NeRF. Here,

we examine a total of 3 identities, each processed with 3 differ-
ent prompts. Thus, the users were presented with a total of 9 videos,
each consisting of four videos playing side-by-side as discussed in
Sec. 4.3. Each time, the users were asked to asses various spatial
and temporal aspects of the different methods by answering the
four questions listed in Sec. 4.3. Hence, in total, they were asked
to answer these questions 9 times, where each time the order of
different methods was randomly shuffled. Tab. 1 summarizes the
findings of this user study. In total, 48 users participated in the study.
Our technique is rated clearly the best in all questions. For instance,
users rated our method the best in the overall quality 85.4% of the
time. This compares favorably to 3.9% and 10.6% for Dream Fields++
and InstructeNeRF2NeRF respectively.

One can create another straightforward baseline by combining the
fine-tuning approach of DreamBooth [Ruiz et al. 2022] together with
the 3D text-based editing method of DreamFusion [Poole et al. 2022].
We noticed, however, that this approach suffers from overfitting
and usually gives poor edits that do not follow the prompt well, as
shown in Fig. 12.
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Fig. 7. Our method produces compelling text-driven visual edits for different text prompts. Note how the bronze bust editing prompt introduces the effects
specific to metals and makes the facial texture more uniform. Note the sharp transition between the edited red eyes and the skin in the third column. All
results preserve the original identity and are 3D- and temporally consistent, which can be observed in our supplemental video.

Table 1. Reporting the results of our user study which included responses from 48 participants. Each participant was presented with the outputs of different
methods and was asked to pick his/her preference with respect to the four questions listed in Sec. 4.3. The table reports the percentages at which a method
was rated the best with respect to a specific question. Hence the sum of each row should add up to 100. Our method was rated the best in overall quality (Q4)
85.4% of the time. This compares favorably to 3.9% and 10.6% for Dream Fields++ and InstructeNeRF2NeRF respectively. Our method was also clearly rated
the best in the remaining questions.

Dream Fields++ InstructNeRF2NeRF StudioAvatar
Q1: Identity preservation 4.6 7.2 88.2
Q2: Prompt preservation 4.4 22.2 74.4
Q3: Temporal consistency 6 8.3 85.6
Q4: Overall 3.9 10.6 85.4

4.6 Ablation Study
We evaluate the various design choices of our method in an ablation
study. First, we investigate the importance of our optimization strat-
egy which accounts for multiple camera viewpoints and different
time stamps during model fine-tuning (Sec. 3.2), To achieve this,
we performed two experiments. First, we replace our optimization
strategy with DreamBooth’s [Ruiz et al. 2022]. While we still embed
multiple camera viewpoints and different time stamps, however,

DreamBooth’s fine-tuning strategy only estimates one token for
all images. Fig. 13 shows the output of this process. It is clear that
this strategy leads to significant artifacts. However, since our ap-
proach estimates multiple tokens for each of the embedded frames,
we can generate significantly better results (see top row). We also
investigate the impact of not incorporating any time stamps in
our fine-tuning. To achieve this, we used the same optimization
discussed in Sec. 3.2, however, we incorporated just the different
camera viewpoints at time 0. Fig. 14-15 shows that this strategy
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Fig. 8. Our method produces compelling text-driven visual edits for different text prompts. Our results maintain the original identity and are 3D- and
temporally consistent as shown in the supplemental video.

leads to clear temporal inconsistencies in the output. Please see the
supplemental video. This is a critical problem, especially during
video edits. Incorporating different time stamps, however, clearly
produces better results with temporally coherent output.
The second part of our ablation study investigates the impor-

tance of our modified Score Distillation Sampling of Sec. 3.3. More
specifically, we investigate the importance of using Eq. 10 during
Score Distillation Sampling. To this end, we performed two main
experiments. In the first experiment, we set v and K of Eq. 10 to 0.
This examines the importance of the pre-trained model during Score
Distillation Sampling. Here, Fig. 17 shows that by removing the pre-
trained model, results undergo a significant drop in performance.
In the second experiment, we attempted to use the original SDS
loss of DreamFusion [Poole et al. 2022]. This approach, however,
did not converge to any useful output. These experiments show the
importance of our modified Score Distillation Sampling.
Furthermore, we conducted a more in-depth analysis of the im-

pact of the model guidance weight 𝑣 (see Eq. 10) as depicted in
Fig. 16. For our experiments, we kept the value of 𝐾 fixed at 600,
and the resolution was maintained at 256px for each editing task.

Additionally, we ensured consistency of the experiments by employ-
ing the same random seed for generating results across all tests.
Our investigation unveiled a noteworthy relationship between the
value of 𝑣 and the quality of the editing outcome. Notably, when 𝑣
approaches a value of 1, the fidelity of the edited output diminishes,
with a decrease in the overall quality of the edit. On the other hand,
as 𝑣 approaches 0, the model places more reliance on the fine-tuned
model for generating outputs when the iteration count exceeds 𝐾 .
Last but not least, Fig. 18 shows that using the SDS annealing of
Lin et al. [Lin et al. 2022] leads to better details in the final results.

5 DISCUSSION, LIMITATIONS AND FUTURE WORK
We presented the first method for text-driven edits of dynamic head
avatars. Our method utilizes a state-of-the-art NeRF-based repre-
sentation for dynamic heads and produces edits that are temporally
coherent. Our results can be viewed from an arbitrary camera view-
point in a 3D-consistent manner. At the heart of our method is
a novel optimization strategy that incorporates multiple camera
viewpoints, and multiple frames taken at different time stamps, in
a pre-trained latent diffusion model. In addition, we proposed a
new view-and-time-aware Score Distillation Sampling approach
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Fig. 9. Our method produces compelling text-driven visual edits for different text prompts. Note how our method can change the appearance (all columns)
and the geometry (last two columns). Our results are 3D- and temporally consistent.

that combines knowledge from the pre-trained model, as well as our
fine-tuned model. Our method enables a wide variety of text-driven
edits and can produce both photorealistic and non-photorealistic
edits. We compared against related methods and the results show
that our approach produces better edits that are more temporally
stable and more in line with the text prompts. This is confirmed
visually, as well as numerically via a user study. Moreover, the im-
pact of fine-tuning the diffusion model for a particular identity is
noteworthy. This process aims to ensure that the sampled images
closely resemble the original identity, thereby enabling high-quality
outcomes through SDS at a reduced guidance scale while effectively
avoiding saturation issues.

Our work pushes the boundaries of text-driven visual edits. Nev-
ertheless, several interesting avenues are still open for future work.
While our method can produce a wide variety of edits, it requires
multi-view data captured in a uniform illumination. Thus a very
interesting research direction will be to handle just a monocular
video as input, shot with in-the-wild conditions. This could be fol-
lowed up, for instance, with a method that takes just a single image
as input and rigs the output according to a target motion. While
some of our results show geometrical edits (see Fig. 19), future work
could look into producing edits that change the head geometry more

drastically. Currently, our method is computationally expensive, re-
quiring around 60 minutes of training using a single A100 GPU.
Future work could look into reducing this computational cost. We
hope that our work in text-driven visual editing encourages further
research into this interesting problem.
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Fig. 10. Our approach outperforms Dream Fields++ [Jain et al. 2022] and InstructeNeRF2NeRF [Haque et al. 2023] spatially and temporally. It maintains the
original identity and generates edits that are in line with the target prompts. Please see the supplemental video and the user study (Tab. 1) for video coherency.

Fig. 11. Our approach outperforms Dream Fields++ [Jain et al. 2022] and InstructeNeRF2NeRF [Haque et al. 2023] spatially and temporally. It maintains the
original identity and generates edits that are in line with the target prompts. Please see the supplemental video and the user study (Tab. 1) for video coherency.
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Fig. 12. An implementation that combines DreamBooth [Ruiz et al. 2022] with DreamFusion [Poole et al. 2022] has limited edibility (see top row). This is in
contrast to our method which produces edits that are clearly more in line with the target prompts.

Fig. 13. Comparison between our viewpoint-and-time-specific fine-tuning
(Sec. 3.2.1) and DreamBooth fine-tuning. Ours has fewer artifacts and bet-
ter preserves the identity, showing the importance of viewpoint-and-time-
specific fine-tuning.
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Fig. 14. Fine-tuning LDM (Sec. 3.2) without any temporal information leads
to clear temporal inconsistencies. Notice the sharp temporal transition in
the overall color.

http://arxiv.org/abs/1812.04948
Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng Xu, Justus Thies, Matthias

Nießner, Patrick Pérez, Christian Richardt, Michael Zollöfer, and Christian Theobalt.
2018. Deep Video Portraits. ACM Transactions on Graphics (TOG) 37, 4 (2018), 163.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Tobias Kirschstein, ShenhanQian, SimonGiebenhain, TimWalter, andMatthias Nießner.
2023. NeRSemble: Multi-view Radiance Field Reconstruction of Human Heads.
https://doi.org/10.48550/arXiv.2305.03027 arXiv:2305.03027 [cs.CV]

Jason Lee, Kyunghyun Cho, and Douwe Kiela. 2019. Countering language drift via
visual grounding. arXiv preprint arXiv:1909.04499 (2019).

Hao Li, Laura Trutoiu, Kyle Olszewski, Lingyu Wei, Tristan Trutna, Pei-Lun Hsieh,
Aaron Nicholls, and Chongyang Ma. 2015. Facial Performance Sensing Head-
Mounted Display. ACM Transactions on Graphics (Proceedings SIGGRAPH 2015)
34, 4 (July 2015).

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang,
Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2022. Magic3D: High-
Resolution Text-to-3D Content Creation. arXiv preprint arXiv:2211.10440 (2022).

Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta, Brian L Curless, Steven M
Seitz, and Ira Kemelmacher-Shlizerman. 2021. Real-time high-resolution background
matting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 8762–8771.

Fig. 15. Fine-tuning LDM (Sec. 3.2) without any temporal information leads
to clear temporal inconsistencies (e.g. see mouth region).

Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. 2018. Deep Appear-
ance Models for Face Rendering. ACM Trans. Graph. 37, 4, Article 68 (July 2018),
13 pages.

Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh,
and Jason Saragih. 2021. Mixture of Volumetric Primitives for Efficient Neural
Rendering. ACM Trans. Graph. 40, 4, Article 59 (jul 2021), 13 pages. https://doi.org/
10.1145/3450626.3459863

Yuchen Lu, Soumye Singhal, Florian Strub, Aaron Courville, and Olivier Pietquin. 2020.
Countering language drift with seeded iterated learning. In International Conference
on Machine Learning. PMLR, 6437–6447.

B R Mallikarjun, Ayush Tewari, Abdallah Dib, Tim Weyrich, Bernd Bickel, Hans-Peter
Seidel, Hanspeter Pfister, Wojciech Matusik, Louis Chevallier, Mohamed Elgharib,
et al. 2021. PhotoApp: Photorealistic Appearance Editing of Head Portraits. ACM
Transactions on Graphics 40, 4 (2021), 1–16.

Marko Mihajlovic, Aayush Bansal, Michael Zollhoefer, Siyu Tang, and Shunsuke Saito.
2022. KeypointNeRF: Generalizing Image-based Volumetric Avatars using Relative
Spatial Encoding of Keypoints. In European conference on computer vision.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance fields
for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784 (2014).

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Transactions

ACM Trans. Graph., Vol. 42, No. 6, Article 226. Publication date: December 2023.

http://arxiv.org/abs/1812.04948
https://doi.org/10.48550/arXiv.2305.03027
https://arxiv.org/abs/2305.03027
https://doi.org/10.1145/3450626.3459863
https://doi.org/10.1145/3450626.3459863


AvatarStudio: Text-driven Editing of 3D Dynamic Human Head Avatars • 226:17

Fig. 16. Modulating the parameter 𝑣 while keeping the random seed constant yields a spectrum of editing outcomes distinguished by their diverse qualities.
As 𝑣 approaches 1, edited output fidelity diminishes, reducing overall quality.

Fig. 17. Removing the pre-trained model during Score Distillation Sampling lead to a significant drop in performance.

Fig. 18. Using annealing during Score Distillation Sampling leads to better capturing of details.
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Fig. 19. We show visualizations to depict the modifications to the geometry achieved by our method, utilizing both normals and RGB images.
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