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ABSTRACT

Electromagnetic applications of composites often impose constraints on the internal electric fields, such as an upper limit on the field
strength to prevent local heating or dielectric breakthrough. However, owing to heterogeneity, the local fields in a composite differ from
those in a homogeneous material. Moreover, they are accessible neither by experiment nor by effective medium theories, at least for arbitrary
microstructures. In this work, we use numerical simulations to evaluate the electric field distribution and the effective permittivity for 3D
systems of monodisperse impenetrable spheres dispersed in a continuous matrix phase. We restrict ourselves to loss-free dielectric materials
and to a random spatial distribution of particles. Samples are placed in a parallel plate waveguide and exposed to a transverse electromag-
netic wave. The local field amplitudes are calculated via the finite element method and are normalized to those of a homogeneous sample
exhibiting the same effective permittivity and geometry. We analyze the distribution of the local electric field strength in both constituents,
namely, particles and matrix. Thus, we evaluate mean values and standard deviations as well as the field strengths characterizing the highest
and lowest percentiles. Increasing particle concentration or permittivity enhances heterogeneity, and so the local electric field strength in
some domains can become much higher than its average value. The methods we apply here can also be used in further investigations of
more complex systems, including lossy materials and agglomerating particles.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0217298

I. INTRODUCTION

Composites consisting of nanosized particles embedded in a
host matrix are of great interest for the development of new electro-
magnetic materials with tailored properties. Their fields of applica-
tion include, for example, shielding or absorption of electromagnetic
waves, cloaking, antennas, and sensors for structural health monitor-
ing.1 For example, the ferromagnetic resonance of a material can
shift significantly when it is embedded in the form of inclusions in a
nonmagnetic environment,2 and such materials can serve as absorb-
ers over a wide frequency range.3 Moreover, with regard to electrical
energy storage, composites with enhanced permittivity due to the
presence of embedded dielectric particles may be superior to homo-
geneous dielectrics.4 However, in electromagnetic applications, het-
erogeneity also leads to spatial fluctuations of internal fields.

“High-field spots” or “hot spots,” i.e., areas of very high electric field
strength or high generation of Joule heat, represent a possible draw-
back.5,6 To cite an example, for moderate thermal heating of a bio-
logical system via high-frequency radiation—as in diathermy in
medicine—damage due to excessively elevated local temperatures
must be avoided.7 An example of a numerical analysis of the field
distribution in conducting tissue is given in Ref. 8. It is also impor-
tant to take the field distribution into account when composite mate-
rials are used to construct electronic devices such as capacitors,
where the need to prevent electrical breakdown imposes an upper
limit on the electric field strength.9 Field distributions and corre-
sponding probability density functions can be evaluated numerically:
examples in the case of 2D systems can be found in Ref. 10
(randomly dispersed disks, squares, or needles) and in Ref. 11
(periodic and random arrays of cylinders). Analytical bounds on
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field fluctuations in 2D and 3D systems, i.e., on the variance of the
electric field strength, have been derived in Refs. 12 and 13.

In the present work, we evaluate and analyze the electric field
distributions in both constituents of 3D binary composites. For this
purpose, we use finite element simulations and consider monodis-
perse spherical inclusions in a continuous matrix (the so-called
cermet topology). We restrict ourselves to a model system of dielec-
tric materials with no losses and to spatially random distributions
of non-overlapping particles. To understand and to quantify the
effects of heterogeneity, we investigate the influence of increasing
dielectric contrast and particle concentration on the field
distribution.

II. FUNDAMENTALS: EFFECTIVE PERMITTIVITY AND
MEAN VALUES OF THE ELECTRIC FIELD AMPLITUDE

The effective permittivity of a heterogeneous material is
related to the spatially averaged mean values of the field distribu-
tions in its constituents (in our case, matrix and particles). This
holds not only in static fields but also for the propagation of elec-
tromagnetic waves, as long as the wavelength λ is large compared
with the length scale of the inhomogeneities. In our case, this effec-
tive medium condition is λ � rinc, where rinc denotes the radius of
the dispersed spheres. In the following, we recall the relevant theo-
retical foundations, which can be found in many textbooks (see,
e.g., Refs. 14–17). For this purpose, we consider a time-harmonic
electromagnetic wave traveling in the z direction. This may be a
transverse electromagnetic wave (TEM mode or plane wave) or a
transverse electric wave (TE mode) in a rectangular waveguide. For
propagation in a homogeneous (nonmagnetic) dielectric medium
extending infinitely in the z direction, the electric field at the posi-
tion vector r can be written as

Ehom(r, t) ¼ E0,hom(r)e
�i(k0z�ωtþf), (1)

where ω is the angular frequency, c is the speed of light, t is
the time, and f is a phase shift. The complex wavenumber
k ¼ k0 � ik00 ¼ (ω=c)

ffiffiffiffiffiffiffiffiffi
εhom

p
depends on the relative permittivity

εhom ¼ ε0hom � iε00hom of the medium (k0, k00, ε0hom, ε00hom � 0).
Equivalently, an alternative time-harmonic convention can be
adopted with the opposite sign of the argument in the exponential
function.18 For an oscillation in the y–z plane (see the blue curve
in Fig. 1), the field amplitude is given by

E0,hom(r) ¼
0

A0,hom(r)
0

0
@

1
Ae�k00z [ R3: (2)

For a TEM mode in a loss-free medium, i.e., for ε00hom ¼ 0 and,
thus, k00 ¼ 0, E0,hom,y is spatially constant, and the same holds when
the material is placed in a parallel plate capacitor and exposed to a
static field [the real part of Eq. (1) with ω ¼ 0 and f ¼ 0]. In con-
trast, a wave propagating in a lossy medium dissipates energy and
is attenuated, and so E0,hom,y / exp(�k00z) decreases as a function
of z, but it is independent of x and y in the case of a TEM mode.

In a heterogeneous system (in which the effective medium
condition holds), wave propagation is similar, i.e.,

Ehet(r, t) ¼ E0(r)e
�i(k0eff z�ωtþf) (3)

holds, where keff ¼ (ω=c)
ffiffiffiffiffiffiffi
εeff

p
denotes the effective wavenumber,

with εeff ¼ ε0eff � iε00eff being the relative effective permittivity of the
composite. But here, the modulus and the orientation of the field
amplitude,

E0(r) ¼
A0,x(r)
A0,y(r)
A0,z(r)

0
@

1
Ae�k00eff z [ C3, (4)

exhibit spatial fluctuations on the length scale of the inhomogenei-
ties. Apart from these local fluctuations, wave propagation in the
heterogeneous material corresponds to that in a homogeneous
material of permittivity εhom ¼ εeff , i.e., on average, the field ampli-
tudes are equal (compare the red and blue curves in Fig. 1). This
can be put into a mathematical form defining the normalized field
amplitude in the heterogeneous composite,

Enorm(r) ¼ E0(r)

E0,hom,y(r)
� �

εhom¼εeff

, (5)

with a spatially averaged mean value,

hEnormi ¼
0
1
0

0
@

1
A, (6)

where the brackets h� � �i denote the volume average V�1
Ð � � � dV .

Although heterogeneities in the composite can induce components
of E0(r) in the x and z directions [see Eq. (4)], these vanish on
average. However, they do contribute to the mean field strength,
i.e., to the average modulus of the field amplitude, and so
hjEnormji � 1 holds. The above procedure also applies in the case of

FIG. 1. Electric field of a TEM mode propagating in the z direction for a loss-
free composite of permittivity εeff [red curve, real part of Eq. (3) for t ¼ 0 and
f ¼ π=4] compared with that in a homogeneous medium of the same permit-
tivity [blue curve; see Eq. (1)]. The wavevectors are identical and, thus, also the
wavelengths. In the composite, however, local inhomogeneities perturb the
sinusoidal shape, i.e., the modulus and orientation of the local field amplitude
E0(r) fluctuate around those for the effective homogeneous medium [see
Eqs. (2) and (4)–(6)].
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magnetic composites, where the wave vector additionally depends
on the effective permeability.19

Next, we relate the effective permittivity εeff to the normalized
average fields in the constituents of the composite, in our case
matrix and particles.20,21 This line of reasoning is not restricted to
wave propagation in infinite media. It also applies to a superposi-
tion of waves, which may occur owing to multiple reflections
between the front and the back side of a finite sample, or to static
fields. The local field amplitude of the dielectric displacement in a
composite is given by

D0(r) ¼ ε0ε(r)E0(r), (7)

with ε0 being the permittivity of the vacuum and ε(r) being the
local permittivity [ε(r) ¼ εp in particles and ε(r) ¼ εm in the
matrix]. On the other hand, its spatial average

hD0i ¼ ε0εeff hE0(r)i (8)

is related to the effective permittivity. Rewriting Eqs. (7) and (8) for
the normalized fields [see Eqs. (5) and (6)] and combining the
right-hand sides yield

0

εeff

0

0
B@

1
CA ¼ hε(r)Enorm(r)i

¼ f εphEnorm(r)ip þ (1� f )εmhEnorm(r)im:

(9)

The brackets h� � �ii ¼ V�1
i

Ð � � � dVi denote the spatial mean value
in the corresponding constituent of volume Vi, with i ¼ m, p (the
total volume of the composite, V ¼ Vp þ Vm, is the sum of the
volume of the particles, Vp, and that of the matrix, Vm). f ¼ Vp=V
denotes the volume filling factor of the particles (f [ [0, 1]), and
accordingly, 1� f ¼ Vm=V is the volume fraction of the matrix.
Likewise, the mean normalized field amplitude hEnormi [see Eq. (6)]
can be written in terms of the mean values in its constituents,

0
1
0

0
@

1
A ¼ f hEnorm(r)ip þ (1� f )hEnorm(r)im: (10)

Equation (10) can be used inter alia for a consistency check of
field distributions obtained via numerical simulations (see below).
In addition, it illustrates the interdependence of the mean values of
the field distribution in particles and matrix. Therefore, it allows us
to eliminate either hEnorm(r)ip or hEnorm(r)im in Eq. (9). In doing
so, we obtain for the y component,

hEnorm,yip ¼
1
f
εeff=εm � 1
ε p=εm � 1

, (11)

hEnorm,yim ¼ 1
1� f

ε p=εm � εeff=εm
ε p=εm � 1

(12)

(see also Refs. 12, 22, and 23), while the x and z components

vanish. In the case of lossy materials, the permittivities and, thus,
the mean values of the field amplitudes in particles and matrix [cf.
Eq. (4)] are complex quantities, i.e., there is a phase shift
hEnorm,yii ¼ jhEnorm,yiijexp(� iΔfi), although the weighted sum
equals unity [see Eq. (10)]. A value jhEnorm,yipj . 1 or
jhEnorm,yipj , 1 indicates that the average field amplitude in the
particles is higher or lower than that in a homogeneous material of
permittivity εeff . An analogous relation holds for hEnorm,yim. Thus,
we can experimentally evaluate the normalized mean field ampli-
tude in particles and matrix by measuring εeff , provided that the
material parameters εm and εp as well as the filling factor f are
known. However, in the majority of cases, we will have no access to
the local field amplitudes Enorm(r) and local field strengths
jEnorm(r)j (those are only known a priori for very simple micro-
structures such as a stack of material sheets oriented parallel or per-
pendicular to the applied field).

On the other hand, numerical simulations of the local field
amplitudes allow us to evaluate the effective permittivity.
Rearranging Eq. (11) yields

εeff
εm

¼ 1þ f
ε p

εm
� 1

� �
hEnorm,yip: (13)

Note that the value of εeff=εm depends not only on the dielectric
ratio ε p=εm and the filling factor f but also on the geometrical
arrangement of the constituents, i.e., in our case on the spatial dis-
tribution of the particles: a change in microstructure affects the
average field amplitude hEnormip and, thus, results in an altered
effective permittivity. The spectral representation of the effective
permittivity developed by Bergman, Fuchs, and Milton (for a
review, see Ref. 24) manifests this dependence on microstructure
explicitly. It can be illustrated, for example, via simulations of com-
posites in which the dielectric ratio and filling factor are kept cons-
tant while the microstructure is varied25 or in experiments on
ferrofluids (colloidal dispersions of magnetic nanoparticles), where
the formation and orientation of particle clusters can be tuned via
an external static magnetic field.26 As a consequence, the depen-
dence of εeff on microstructure needs to be taken into account
when experimental data are analyzed (see, e.g., Refs. 27– 29). For
an example of a numerical study of effective permittivity of simple
2D and 3D composite materials considering averaged fields, we
refer to Ref. 30. Of course, apart from field simulations, the effec-
tive permittivity can be computed via other methods. For example,
there are analytical formulas for monodisperse spheres on a cubic
lattice31,32 and an analytical exact solution for an arbitrary spatial
configuration of spherical inclusions.33,34

In summary, the effective permittivity of a composite is
related to the mean field amplitude in its constituents, and we shall
come back to the fundamental Eqs. (10)–(13) when we discuss the
results of our numerical simulations.

III. SIMULATION METHOD

We start with an outline of the procedure and give further
details subsequently. First, we generate a composite with a given
number Ninc of inclusions with permittivity εp that we insert ran-
domly into a matrix (using uniformly distributed random numbers
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to assign coordinates), respecting the exclusion principle (no
overlap is allowed). Without loss of generality, we chose a matrix
permittivity of εm ¼ 1 (it is sufficient to vary εp and, thus, the
dielectric ratio εp=εm; see Sec. II). As sketched in Fig. 2, the sample
is placed in a parallel plate waveguide and exposed to an incident
transverse electromagnetic wave (TEM mode). The numerical sim-
ulation is based on an H(curl) conforming finite element method35

and yields the field amplitudes E0(ri) at position vectors ri inside
the composite as well as the transmitted and reflected waves. The
latter information is used to calculate the effective permittivity εeff
of the composite. Subsequently, we repeat the simulation with a
homogeneous sample of permittivity εeff having the same geomet-
ric extensions as the composite. In doing so, we determine the field
amplitudes E0,hom(ri) of the corresponding homogeneous effective
medium. Note that these values are not constant but vary along the
z axis owing to multiple reflections between the front and back
sides. The data from both simulation runs allow us to calculate the
normalized field amplitudes Enorm(ri) [see Eq. (5)].

We use the finite element method solver Electronics Desktop
2019 R2 from Ansys36 to model our composites and the experimen-
tal setup in silico and to calculate the electromagnetic fields.
Figure 3 presents an example of an implementation showing the
parallel plate waveguide with a composite sample. To obtain the
propagation conditions for a TEM mode within a necessarily finite
simulation volume, the left and right sidewalls, which are parallel
to the z–y plane, are defined as perfect magnetic conductors, with
the tangential magnetic field set to zero. The same boundary condi-
tions may be realized by repeatedly adding images37 of the

randomly distributed particles to the sidewalls. Hence, in the
model, the original particle configuration becomes the unit cell of a
structure that is periodic along the x direction (perpendicular to
the direction of propagation) on a length scale b that is a multiple
of the mean distance between particles (see Fig. 3).38 In the empty
waveguide as well as in the waveguide filled with a homogeneous
and loss-free sample, this leads to a constant field amplitude
E0,hom / ey (in contrast, electrically conductive sidewalls would
impose field amplitudes that vanished for x ! 0 and x ! b). We
choose a frequency ν ¼ 1 GHz corresponding to a wavelength
λ0 ¼ 30 cm in the empty waveguide, changing to λ ¼ λ0=

ffiffiffiffiffiffiffi
εeff

p
inside the sample. Therefore, the effective medium condition
λ � rinc is fulfilled in our simulations, where particle radii are
limited to rinc � 0:0682 cm, and εeff , 1:25 holds (see below,
where we restrict ourselves to filling factors f � 0:1 and to dielec-
tric ratios εp=εm � 8).

The software generates a network of tetrahedra on which the
Maxwell equations are discretized and solved. To enhance the accu-
racy, this first finite element mesh is further refined, i.e., locally
adapted where a higher resolution is required (so-called refinement
passes). The final mesh is not homogeneous, but we can extract the
electric field amplitudes E0 or E0,hom inside the sample at positions
ri on a simple cubic lattice of lattice constant alat. In this way, every
field value is representative of a subvolume a3lat, i.e., the field ampli-
tudes are equally weighted in the distributions that we evaluate. In
Sec. IV, we determine the simulation parameters that are required
to ensure a sufficient level of accuracy: the number of mesh passes
(first discretization plus refinement passes), the number of particles
Ninc, and the number of field amplitudes that we extract,
Npoints / 1=a3lat.

The effective permittivity εeff of a composite is determined by
the transmission–reflection method (see Fig. 4). An incident wave,

FIG. 2. Sketch of an ideal parallel plate waveguide with a sample (composite or
the corresponding homogeneous effective medium). The upper and lower metal-
lic plates extend infinitely in the x–z plane, and the extent of the sample is finite
in the z direction but infinite in the x direction. An incident TEM wave with wave-
length λ0 and constant field amplitude propagates in the z direction through the
empty waveguide before it reaches the sample. Inside the medium, its wave-
length changes to λ ¼ λ0=

ffiffiffiffiffiffi
εeff

p
. The discontinuities at the front and back

sides lead to multiple partial reflections, and, therefore, even in the homoge-
neous case, the field amplitude in the sample varies as a function of z. Part of
the incident wave is reflected and part is transmitted (see Fig. 4).

FIG. 3. Waveguide model as implemented in the simulation software.
Geometric extensions of the waveguide and the device are chosen as
l ¼ 2:5 cm, d ¼ 1:1 cm, h ¼ 1:1 cm, and b ¼ 2:2 cm. The upper and lower
plates are defined as perfect electric conductors and the left and right sidewalls
are defined as perfect magnetic conductors so that a TEM mode can propagate
(cf. Fig. 2). In the configuration displayed, the composite contains Ninc ¼ 200
spherical inclusions with a volume fraction f ¼ 0:01, implying a radius
rinc ≃ 0:0317 cm.
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Einc / ey at port 1, travels a distance l along the empty waveguide
in the z direction. Part is reflected and travels back to port 1, and
another part is transmitted and travels a distance l forward to port
2. The so-called scattering parameters S11 and S21 relate the
reflected wave at port 1 and the transmitted wave at port 2 to the
incident wave at port 1,40

S11 ¼
Erefl,y
Einc,y

¼ (1� a2)r
1� r2a2

e�ik02l , (14)

S21 ¼ Etrans,y
Einc,y

¼ (1� r2)a
1� r2a2

e�ik02l: (15)

Here, k0 ¼ 2π=λ0 ¼ ω=c denotes the wavenumber of the empty
waveguide, and so, k02l is the corresponding phase shift along a
distance 2l. For a nonmagnetic sample, the reflection coefficient at
the interface between the empty and the filled waveguide,

r ¼ 1� ffiffiffiffiffiffiffi
εeff

p
1þ ffiffiffiffiffiffiffi

εeff
p , (16)

depends only on the effective permittivity.39 The same holds for
the propagation factor in the sample of length d, which is given by

a ¼ exp(�ikeffd): (17)

Equations (14) and (15) take multiple reflections of the TEM wave

between the front and the back face of the sample into account.
The simulation gives us access to the electric fields at both ports
and, thus, to the respective scattering parameters. The effective per-
mittivity of nonmagnetic composites can be determined numeri-
cally by solving Eq. (14) or Eq. (15). We use the analytical method
developed by Nicholson and Ross,40 and Weir,40,41 combining
Eqs. (14) and (15). Since the wavelength in the sample, λ0=

ffiffiffiffiffiffiffi
εeff

p
, is

at least 24 times higher than the sample length d, which, in turn, is
much higher than the interparticle distances, there are no reso-
nance effects due to multiple reflections that might distort the
retrieval of the effective permittivity.42

IV. ACCURACY ANALYSIS

In this section, we shall assess the accuracy of our simulations.
For this purpose, we shall determine the number of particles Ninc,
the number of mesh passes, and the number of field amplitudes
Npoints needed to obtain statistically reliable information about the
variation of the local field strength jEnorm(r)j in a composite. To
determine the frequency of occurrence of field values, we choose a
high number nþ 1 of equidistant sampling points jEnorm,kj
(k ¼ 1, . . . , nþ 1) defining sufficiently small intervals of width
ΔjEnormj and evaluate for both the particle and matrix phases the
number of field points Nk,i (i ¼ p, m) with a field strength jEnorm,ij
in each of the n intervals ]jEnorm,kj, jEnorm,kj þ ΔjEnormj] (with
k ¼ 1, . . . , n). Normalizing to the total number of field points
Npoints,i in the respective phase (Npoints ¼ Npoints,m þ Npoints,p holds)
yields the histograms displayed in Figs. 5–7,

gp(jEnorm,kj) ¼ Nk,p

Npoints,p
, (18)

gm(jEnorm,kj) ¼ Nk,m

Npoints,m
: (19)

In the following, we shall refer to gp and gm as distributions of local
electric field strengths. Note that the integrals

Ð
gi djEnormj are not

normalized to one, i.e., gp and gm are proportional to but not equal
to probability densities.

We start with a variation in the number of particles Ninc,
keeping the other parameters fixed (see Fig. 5). More precisely, we
use three mesh refinement passes and evaluate the field amplitudes
at Npoints ¼ 28 224 points on a simple cubic lattice with lattice
constant alat ¼ 0:044 cm, i.e., 24� 24� 49 positions in a sample
volume V ¼ dhb ¼ 1:1� 1:1� 2:2 cm3 (see Fig. 3). In addition,
we choose a dielectric ratio εp=εm ¼ 5 and a volume filling factor
of f ¼ 0:1. Since

f ¼ Vp

V
¼ Ninc

4π
3V

r3inc, (20)

the particle radius rinc has to be adapted when we vary the number
of inclusions Ninc keeping f constant. In Fig. 5, we display the dis-
tribution of local field strengths jEnorm(r)j in particles and matrix
for values from Ninc ¼ 10 to Ninc ¼ 200 with radii ranging from
rinc ≃ 0:185 cm down to rinc ≃ 0:068 cm. The distributions for
Ninc ¼ 10 differ markedly from those at higher particle numbers.

FIG. 4. Experimental setup for determining the permittivity of a sample using
the transmission–reflection method (side view and perspective view). The inci-
dent wave propagates from left to right. Measuring the reflected and the trans-
mitted waves at ports 1 and 2, respectively, allows us to determine the
scattering parameters S11(ω) and S21(ω) and, thus, the permittivity.
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In the matrix phase, the distributions show only marginal differ-
ences for Ninc � 100. The distributions also converge in the particle
phase, but the data are still noisy. However, owing to a limited
computing capacity, we are not able to further increase the number
of inclusions. Thus, we shall use Ninc ¼ 200 in the following and
reduce statistical errors by averaging results over ten composites
with different random spatial distributions of particles.
Corresponding data will be marked with error bars indicating the
standard deviation of the averaged data.

Next, we examine the influence of the number of mesh refine-
ment passes. Figure 6 displays the corresponding distributions of
field strengths. For the matrix, the distributions gm obtained with

one to three mesh passes are indistinguishable. In contrast, for the
particle phase, the distribution gp obtained with the first pass
clearly differs from those obtained after one or two additional
refinement passes. Since the particles constitute only 10% of the
sample volume, the first finite element mesh is too coarse: the field
strength jEnorm(r)j at positions close to the particle surface is
obtained via an interpolation of the field strength at mesh points
inside (lower field strength) and outside (higher field strength) the
particles and, thus, is enhanced [cf. Figs. 6(a) and 6(b)].

Finally, we turn to the number Npoints of field amplitudes on a
simple cubic lattice required to obtain statistically reliable distribu-
tions of local field strengths jEnorm(r)j in the composite volume
V ¼ dhb ¼ 1:1� 1:1� 2:2 cm3 (see Fig. 3). The results are
displayed in Fig. 7. We observe that the distributions for
Npoints ¼ 5� 5� 10 ¼ 250 (lattice constant alat ¼ 0:2 cm) are very
blurred and deviate strongly from those for Npoints ¼ 12� 12
�24¼ 3456 (alat ¼ 0:088 cm) and Npoints ¼ 24�24�49¼ 28224
(alat ¼ 0:044 cm). The higher the value of Npoints, the smoother is
the distribution, but the shapes of the distributions converge for
Npoints ¼ 28 224.

In summary, we have shown empirically that the choice of
Ninc ¼ 200, three mesh passes, and Npoints ¼ 28 224 ensures suffi-
cient numerical convergence in our simulations.

In addition to convergence, we also want to assess the accu-
racy of our results. For this purpose, we compare the simulated
effective permittivities with those from an analytically exact solu-
tion. For an arbitrary spatial configuration of spherical inclusions,
Fu et al.33 derived an equation for εeff that can be evaluated numer-
ically, with the positions and sizes of all particles specified. In
Ref. 43, it was shown that in the case of monodisperse spheres and
for filling factors below the percolation threshold, the result corre-
sponds to the analytical Maxwell–Garnett formula,44–47

εeff
εm

¼ 1þ f
εp=εm � 1

1þ (1� f )(εp=εm � 1)=3
: (21)

This result is exact only for spheres of identical size, and it is other-
wise just a dilute limit approximation. In the case of polydisperse
particles, higher permittivities are obtained, and for sufficiently
broad particle size distributions, the effective permittivity
approaches values corresponding to the Hanai–Bruggeman
formula.43 However, since the composites that we simulate consist
of monodisperse spheres randomly dispersed in a continuous
matrix, Eq. (21) does apply, and we shall use it as an analytical ref-
erence. We display this analytical prediction as a function of the
dielectric contrast for different filling factors [curves in Fig. 8(a)] as
well as a function of the filling factor for different dielectric ratios
[curves in Fig. 8(b)]. The εeff values that we obtain numerically
from the S parameters (see Sec. III) are very close to this reference.
The accuracy decreases with increasing dielectric ratio or filling
factor, and we observe a maximum deviation of 0.5% at εp=εm ¼ 8
and f ¼ 0:1.

FIG. 5. Distributions of local electric field strengths jEnorm(r)j [cf. Eq. (5)] in
matrix (a) and particles (b) for different inclusion numbers Ninc. The simulation’s
mesh generator performed three passes and we evaluated Npoints ¼ 28 224
field points (lattice constant alat ¼ 0:044 cm). The dielectric ratio was fixed at
εp=εm ¼ 5 and the volume filling factor at f ¼ 0:1. According to Eq. (20), the
particle radius changes with Ninc: rinc ¼ 0:185 cm for Ninc ¼ 10,
rinc ¼ 0:086 cm for Ninc ¼ 100, rinc ¼ 0:075 cm for Ninc ¼ 150, and
rinc ¼ 0:068 cm for Ninc ¼ 200.

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 136, 075103 (2024); doi: 10.1063/5.0217298 136, 075103-6

© Author(s) 2024

 19 N
ovem

ber 2024 08:21:57

https://pubs.aip.org/aip/jap


V. ANALYZING THE DISTRIBUTIONS OF LOCAL
ELECTRIC FIELD STRENGTHS

As already mentioned, the modulus and orientation of the
normalized field amplitude Enorm(r) both fluctuate [see Eq. (4)]. In
the following, we turn to the main topic of this paper, namely, the
analysis of the distribution of local electric field strengths jEnorm(r)j
in matrix and particles. First, we shall vary the dielectric ratio for
given filling factors, and then we keep the dielectric ratio constant
and vary the filling factor.

A. Variation of dielectric ratio

In Figs. 9(a) and 9(b), we display the distributions of local
electric field strengths jEnorm(r)j in the particles and matrix, respec-
tively, as well as the corresponding average values (vertical lines)
for three composites with a particle volume fraction of f ¼ 0:1.
The dielectric ratio was varied, resulting in different effective
permittivities (determined via the simulated S-parameters; see
Sec. III): εeff=εm ¼ 1:079 for εp=εm ¼ 2, εeff=εm ¼ 1:183 for
εp=εm ¼ 5, and εeff=εm ¼ 1:228 for εp=εm ¼ 8.

FIG. 6. Distributions of the local field strengths jEnorm(r)j in matrix (a) and particles (b) for increasing number of mesh passes yielding a refinement (increasing discretiza-
tion levels of the software’s default settings). Parameters were chosen as f ¼ 0:1, εp=εm ¼ 5, Ninc ¼ 200 (r ¼ 0:068 cm), and Npoints ¼ 28 224 (alat ¼ 0:044 cm).

FIG. 7. Distributions of jEnorm(r)j in matrix (a) and particles (b) for different numbers of field amplitudes, Npoints. Parameters were chosen as εp=εm ¼ 5, Ninc ¼ 200
(r ¼ 0:068 cm), f ¼ 0:1, and three mesh refinement passes.
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While the peaks in the particle phase clearly shift toward
weaker fields with increasing εp=εm [see Fig. 9(a)], they move
slightly toward higher fields in the matrix phase [see Fig. 9(b)]. The
dependence on the dielectric ratio is displayed in Figs. 9(c) and
9(d). The curves are the analytical solutions for the average field
amplitudes hEnorm,y(r)ip and hEnorm,y(r)im, respectively, calculated
from Eqs. (11) and (12) using εeff values according to the
Maxwell–Garnett formula (21) [remember that these values are
correlated according to Eq. (10)]. They are in good agreement with
those calculated by inserting the simulated effective permittivities
into Eqs. (11) and (12) (green symbols). We also show the average
values of the field strength hjEnorm(r)jip and hjEnorm(r)jim obtained

from an analysis of the simulated distributions of electric field
strengths [see Eqs. (18) and 19]. These are slightly higher than the
values specified above, in agreement with what we can expect:
hjEnorm(r)jii � jhEnorm(r)iij ¼ hEnorm,y(r)ii holds for both constitu-
ents (i ¼ p, m).48 For example, at εp=εm ¼ 8 and f ¼ 0:1, our sim-
ulations yield a value for hjEnorm(r)jip that is about 10% higher
than the value for hEnorm,y(r)ip, while the value for hjEnorm(r)jim is
about 2.3% higher than the value for hEnorm,y(r)im. Apart from
these small differences, the average values of both distributions, i.e.,
of jEnorm(r)j and of Enorm,y(r), follow the same trend: the higher the
dielectric ratio, the lower is the average field strength in the parti-
cles and the higher is the average field strength in the matrix. For
εp=εm . 1, the average normalized field strength in the particles is
smaller than 1, while it is larger than 1 in the matrix. In other
words, compared with a homogeneous material of permittivity εeff ,
the particles exhibit on average a lower field strength, while the
matrix exhibits on average a higher one.

To elucidate the above behavior, we consider a simplified sit-
uation where a single dielectric sphere of permittivity εp . 1 in
vacuum is exposed to a uniform external field E0. The material is
polarized, and so, the resulting surface charges give rise to a depo-
larization field inside the sphere and a dipolar field outside it. The
depolarization field weakens the applied field, i.e., the field Ein

inside the sphere is reduced,49

Ein ¼ 3
εp þ 2

E0, (22)

while the dipolar field outside the sphere enhances the field
strength in its vicinity.

Next, we analyze the width of the distributions. For this
purpose, we evaluate the standard deviations σ p and σm of the dis-
tributions of the local field strengths jEnorm(r)j in the particles and
in the matrix. The variance σ2

i is the mean of all squared deviations
from hjEnormjii, and so

σ i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(jEnormji � hjEnormjii)2i

q
(i ¼ p, m) (23)

holds. An alternative way to present the data would be to normalize
the standard deviations with respect to the mean values in the par-
ticular phase,12,13 dividing the above expression by hjEnormjii. We
make use of Eq. (23), allowing us a direct comparison of the field
distributions on the same scale.

The result is displayed in Figs. 9(e) and 9(f). Obviously, the
distributions in both phases broaden with increasing dielectric
ratio, and the values for σp and σm are quite similar. Thus, at high
dielectric contrast, σp=hjEnormjip becomes many times higher than
σm=hjEnormjim. As already mentioned in Sec. IV, the number of
particles in our simulations is limited to Ninc ¼ 200, and so espe-
cially the distributions of local field strengths in the particle phase
can be noisy at high dielectric contrast (cf. Fig. 5). To check
whether this statistical error has any influence on the standard
deviations that we evaluate, we simulated ten different microstruc-
tures with f ¼ 0:1 and ε p=εm ¼ 8. The average mean values of σ p

and σm as well as the corresponding fluctuations (standard devia-
tions of the mean values) are also shown in Figs. 9(e) and 9(f ). As

FIG. 8. Ratio of effective permittivity to matrix permittivity for composites as a
function of the dielectric ratio (a) and of the filling factor (b). The analytical solu-
tion for a random dispersion of monodisperse spheres, i.e., the Maxwell–
Garnett formula (21) (curves), is compared with simulated data (symbols), i.e.,
with εeff=εm values obtained via the S-parameters (see Sec. III). The simulated
εeff=εm data exhibit a maximum deviation of 0:5% at εp=εm ¼ 8 and f ¼ 0:1.
For the latter parameters, we display both the result of a single simulation run
and the average value for ten different particle configurations.

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 136, 075103 (2024); doi: 10.1063/5.0217298 136, 075103-8

© Author(s) 2024

 19 N
ovem

ber 2024 08:21:57

https://pubs.aip.org/aip/jap


FIG. 9. (a) and (b) Simulated distributions of jEnorm(r)j in particles (left) and matrix (right) of composites with filling factor f ¼ 0:1 but different dielectric ratios εp=εm ¼ 2
(black), 5 (red), and 8 (blue). The vertical lines indicate the respective mean values. (c) and (d) Values of average field amplitudes hEnorm,y (r)ip and hEnorm,y (r)im in parti-
cles (left) and matrix (right) vs dielectric ratio calculated from Eqs. (11) and (12): the curves are the analytical solution using εeff values according to the Maxwell–Garnett
formula (21), while the green diamonds correspond to values calculated using simulated effective permittivities. As expected, the average values of the field strengths
hjEnorm(r)jip and hjEnorm(r)jim (purple triangles) are higher. These are obtained by analyzing the simulated distributions [see (a) and (b)]. (e) and (f ) Standard deviations
σ p and σm in particles and matrix (red spheres) characterizing the width of the distributions of jEnorm(r)j. At εp=εm ¼ 8, we also display the mean values obtained by
averaging the results of ten different random particle configurations as well as the corresponding standard deviations (red triangles with error bars).
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expected, statistical fluctuations are much higher in the particles
than in the matrix.

A closer look at Figs. 9(a) and 9(b) reveals that the distribu-
tions of local field strengths become asymmetric, with a preference
for higher field strengths, when εp=εm increases. For this reason,
the respective mean values are located at the right side of the most
frequent field strength (the maximum of the distribution). In
Fig. 10, we display the distributions of jEnorm(r)j in particles and
matrix for a composite with f ¼ 0:1 and εp=εm ¼ 8. Zooming in

reveals the contributions at high field strengths, i.e., far above the
respective average values. To quantify this observation, we calculate
the first (Enorm1) and 99th (Enorm99) percentiles of the distributions,
i.e., the field strengths separating the lowest and highest percent of
the distribution (see the vertical dashed lines in Fig. 10): 1% of the
jEnorm(r)j values in the particles are higher than Enorm99,p and 1%
are lower than Enorm1,p. Analogous definitions hold for the matrix.
The results are shown in Fig. 11. For both the particles and the
matrix, Enorm99 increases with increasing dielectric ratio, while

FIG. 10. (a) Distributions gp and gm of local field strengths in both the particle (red) and matrix (black) phases of a composite with εp=εm ¼ 8 and f ¼ 0:1.
(b) Enlargement at high field strengths.

FIG. 11. Field strengths corresponding to the highest and lowest percentiles of the distributions of jEnorm(r)j in particles (a) and matrix (b) vs dielectric contrast. At
εp=εm ¼ 8, we also display the mean values obtained by averaging the results of ten different random particle configurations as well as the corresponding standard devia-
tions (symbols with error bars).
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FIG. 12. (a) and (b) Simulated distributions of local field strengths jEnorm(r)j in particles and matrix, respectively, of composites with a dielectric ratio εp=εm ¼ 8 but differ-
ent volume filling factors f ¼ 0:03 (black), 0:06 (red), and 0:09 (blue). The vertical lines indicate the respective mean values. (c) and (d) Values of the average field ampli-
tudes hEnorm,y (r)ip and hEnorm,y (r)im in particles and matrix, respectively, vs the volume filling factor, calculated from Eqs. (11) and (12). The curves are the analytical
solution using εeff values according to the Maxwell–Garnett formula (21), while the green diamonds correspond to values calculated using simulated effective permittivities.
As expected, the average values of the field strength hjEnorm(r)jip and hjEnorm(r)jim (purple triangles) are higher. These are obtained by analyzing the simulated distribu-
tions [see (a) and (b)]. (e) and (f ) Standard deviations σ p and σm characterizing the widths of the jEnorm(r)j distributions in particles and matrix, respectively. At f ¼ 0:01
and f ¼ 0:1, we also display the mean values obtained by averaging the results of ten different random particle configurations as well as the corresponding standard devi-
ations (red triangles with error bars). The straight line in (e) is a linear fit of the simulated data.
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Enorm1 decreases. This behavior reflects the broadening of the distri-
butions. The arithmetical mean of Enorm1,m and Enorm99,m is rather
close to the average value hjEnorm(r)jim [cf. Figs. 9(d) and 11(b)].
In contrast, the distributions in the particles [see Fig. 9(a)] are
more asymmetric, i.e., both the average value hjEnorm(r)jip and
Enorm1,p decrease with increasing dielectric ratio, while Enorm99,p

increases [cf. Figs. 9(c) and 11(a)]. To illustrate the enhancement of
the local electric field strength in some domains of the sample, we
choose as an example a dielectric ratio εp=εm ¼ 8 at a filling factor
of f ¼ 0:1. The highest percentile of field strengths in the particles
exhibits values that are more than 1.6 times higher than the field
strength in a homogeneous material of permittivity εeff . For the
matrix, even Enorm99,m ≃ 1:9 holds. Nevertheless, compared with
the respective average field strengths in particles and matrix [cf.
Figs. 9(c) and 9(d)], the relative change is much stronger in the
particles. We obtain Enorm99,p=hjEnorm(r)jip ≃ 1:6=0:356 ≃ 4:5,
compared with Enorm99,m=hjEnorm(r)jim ≃ 1:9=1:1 ≃ 1:7.

B. Variation of filling factor

As in Sec. V A, we start with three examples of composites
[see Figs. 12(a) and 12(b)], i.e., we display the distributions of local
field strengths jEnorm(r)j in inclusions and matrix, respectively, as
well as the corresponding average values (vertical lines). But now
the dielectric ratio εp=εm ¼ 8 is kept constant while the particle
concentration is varied. To realize different volume fractions of par-
ticles while preserving their number Ninc ¼ 200 as well as the geo-
metric dimensions of the samples, we have adapted the particle
radii according to Eq. (20). Evaluating the S parameters of the sim-
ulations (see Sec. III), we obtain the following effective permittivi-
ties: εeff=εm ¼ 1:069 for f ¼ 0:03 (r ¼ 0:046 cm), εeff=εm ¼ 1:137

for f ¼ 0:06 (r ¼ 0:058 cm), and εeff=εm ¼ 1:207 for f ¼ 0:09
(r ¼ 0:066 cm).

With increasing f , the average field strength in the matrix
phase, hjEnorm(r)jim, shifts toward higher field strengths, while no
clear trend is observed in the particle phase, i.e., for hjEnorm(r)jip
[see the vertical lines in Figs. 12(a) and 12(b)]. All these values lie
above the most frequent field strength (position of the peak),
reflecting an asymmetric broadening of the distributions, especially
in the particle phase.

In Figs. 12(c) and 12(d), we display the dependence of the
various mean field amplitudes and field strengths on the filling
factor. As in Sec. V A [cf. Figs. 9(c) and 9(d)], the curves corre-
spond to the analytical solutions for the field amplitudes
hEnorm,y(r)ip and hEnorm,y(r)im calculated from Eqs. (11) and (12)
using εeff values according to the Maxwell–Garnett formula (21).
Compared with a homogeneous material of permittivity εeff , the
particles exhibit on average a lower field amplitude,
hEnorm,y(r)ip , 1, while the matrix exhibits on average a higher
one, hEnorm,y(r)im . 1. But both mean values increase linearly by
7.5% when the filling factor is enhanced to f ¼ 0:1. As before, the
shift can be explained phenomenologically by the accumulation of
charges on the surfaces of the particles. These enforce the electric
fields outside the particles on which they are located and thereby
create an environment of higher field values for all surrounding
particles. Of course, the influence of this effect grows as more
dielectric material is included. Consequently, both particles and
matrix are affected by higher electric fields. There is good agree-
ment with the values calculated inserting the simulated effective
permittivities (obtained via the S-parameters) in Eqs. (11) and (12)
(green symbols), at least for the matrix phase. However, for the
particle phase, the numerical error increases in the limit f ! 0
[then εeff=εm approaches one, but small deviations in the

FIG. 13. Field strengths corresponding to the highest and lowest percentiles of the distributions of local field strengths jEnorm(r)j in particles (a) and matrix (b) vs volume
filling factor. At f ¼ 0:01 and f ¼ 0:1, we also display the mean values obtained by averaging the results of ten different random particle configurations as well as the cor-
responding standard deviations (symbols with error bars). The straight line in (a) is a linear fit of the simulated data.
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S-parameters induce errors in εeff=εm and, thus, in hEnorm,y(r)ip;
see Eq. (11)]. We also show the average field strengths hjEnorm(r)jip
and hjEnorm(r)jim obtained from an analysis of the simulated field
distributions [see Eqs. (18) and (19)]. As expected, these are slightly
higher than the values for the amplitudes specified above.

Next, we turn to the widths of the distributions of jEnorm(r)j
in the particles and in the matrix, i.e., to the standard deviations
σ p and σm [see Figs. 12(e) and 12(f )]. In the particle phase, the σp

values suffer from strong perturbations, and so the plot does not
reveal a clear dependence on particle concentration (remember that
the number of particles in our simulations is limited to Ninc ¼ 200,
and therefore, the distributions, especially in the particle phase, can

be noisy; cf. Fig. 5). But a linear fit seems to indicate a weak growth
of σp with increasing volume filling factor. This observation is con-
firmed by averaging the data for ten different microstructures at
f ¼ 0:01 and f ¼ 0:1 (the error bars indicate the standard devia-
tion of the corresponding mean values). With regard to the matrix
phase, the standard deviation σm increases markedly with increas-
ing filling factor, similar to what we have observed for increasing
dielectric ratio [cf. Fig. 9(f )].

Finally, we analyze field strengths below and above the average
value, i.e., those separating the lowest and highest percentiles of a
distribution, Enorm1 and Enorm99. The results are shown in Fig. 13.
In the particle phase, the values of Enorm1,p are almost independent

FIG. 14. Characteristic properties of the field distribution in the matrix phase as a function of the normalized effective permittivity εeff=εm for composites with filling factors
ranging from f ¼ 0:01 to 0:1 and dielectric ratios from εp ¼ 2 to 8. (a) Mean field strength hjEnorm(r)jim. The dashed line represents the lower bound given by Eq. (24).
(b) Standard deviation σm. (c) and (d) Field strengths corresponding to the lowest and highest percentiles, respectively, of the distributions of local electric field strengths
jEnorm(r)j. The curves in (b)–(d) are guides for the eye.
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of the filling factor and rather close to the average values
hjEnorm(r)jip [cf. Fig. 12(c)]. In contrast, Enorm99,p shows a per-
turbed but slightly growing behavior. Considering the matrix
phase, we obtain growing values for Enorm99,m characterizing the
highest percentile and decreasing values for Enorm1,m characterizing
the lowest percentile, and their arithmetical mean is rather close to
the average value hjEnorm(r)jim [cf. Figs. 13(b) and 12(d)]. For both
phases, higher volume fractions of inclusions lead to a spreading of

the difference between Enorm1 and Enorm99, in accordance with the
previously discussed broadening of the distributions.

C. Identification of common features

In Secs. V A and V B, we have shown how the distributions of
local electric field strengths change when the dielectric ratio εp=εm
or the volume filling factor f of the particles is increased. Since

FIG. 15. Characteristic properties of the distribution of local electric field strengths in the particles as a function of the normalized effective permittivity εeff=εm for compos-
ites with filling factors ranging from f ¼ 0:01 to 0:1 and dielectric ratios from εp ¼ 2 to 8. The solid lines are guides for the eye. (a) Mean field strength hjEnorm(r)ji p. The
dashed lines represent the lower bound given by Eq. (25) for f ¼ const. (b) Standard deviation σp. (c) and (d) Field strengths corresponding to the lowest and highest per-
centiles, respectively, of the distribution of jEnorm(r)j.
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both variations go along with an increase in the normalized effec-
tive permittivity εeff=εm (see Fig. 8), we can recapitulate our results,
condensing the data in common diagrams (and adding data from
simulation runs not shown previously).

With regard to the matrix, increases in the dielectric ratio
εp=εm and in the volume filling factor f have similar impacts on
the characteristics of the distribution (see Fig. 14). The mean field
strength hjEnorm(r)jim increases linearly as a function of εeff=εm
[see Fig. 14(a)]. This behavior is characteristic of a composite with
a random spatial distribution of monodisperse spheres, where the
effective permittivity is given by the Maxwell–Garnett formula
(21). Solving this equation for ε p=εm and inserting the result into
Eq. (12) yield

hEnorm,yim ¼ 1þ 1
3

εeff
εm

� 1

� �
(24)

for the field amplitude. Since hjEnorm(r)jim � hEnorm,yim holds, the
above equation is a lower bound on the simulated values of the
field strength displayed in Fig. 14(a). In fact, these lie on a straight
line, the slope of which is higher than the value of 1=3 predicted
for hEnorm,yim. The inequality hjEnorm(r)jim � 1 holds, i.e., com-
pared with a homogeneous material of permittivity εeff , the matrix
material is on average exposed to a slightly higher field strength
[up to 10% for the data displayed in Fig. 14(a)]. The higher the
effective permittivity, the broader is the distribution: the standard
deviation σm as well as the field strength Enorm99,m of the highest
percentile increase [note the similar dependences on εeff=εm in
Figs. 14(b) and 14(d)], while the field strength Enorm1,m of the
lowest percentile decreases [Fig. 14(c)]. For the range of data dis-
played, we obtain values up to Enorm99,m ≃ 1:9, i.e., a field strength
about twice that in a homogeneous material of permittivity εeff .

The characteristics of the distribution of local electric field
strengths in the particles are shown in Fig. 15. For the mean field
strength in the particles, hjEnorm(r)ji p � 1 holds [see Fig. 15(a)],
i.e., the particles exhibit on average a field strength that is lower
than that of a homogeneous material of permittivity εeff by a factor
1=hjEnorm(r)ji p ≃ 1:3�2:9 for the data shown (εp=εm [ [2, 8] and
f [ [0, 0:1]). The higher the dielectric ratio of the constituents,
εp=εm, the lower is the mean field strength in the particles.
Inserting Eq. (24) into Eq. (10) yields for the field amplitude,

hEnorm,yip ¼ 1� 1� f
3f

εeff
εm

� 1

� �
, (25)

in accordance with the linear decrease in hjEnorm(r)ji p � hEnorm,yip
with increasing εeff=εm observed in Fig. 15(a) for constant f and
increasing εp=εm. For a constant dielectric ratio, the increases in f
and εeff=εm nearly compensate, and so the field amplitude
hEnorm,yip increases only slightly and the field strength hjEnorm(r)ji p
is nearly constant [cf. Figs. 12(c) (curve) and 15(a)]. Analogously,
an increase of εp=εm results in a marked enhancement of the stan-
dard deviation σp, i.e., in a strong broadening of the distribution of
local field strengths, while the effect of a variation in f is hardly
noticeable [see Fig. 15(b)]. The field strength Enorm1,p of the lowest
percentile follows the trends observed for the mean value

hjEnorm(r)jim [cf. Figs. 15(a) and 15(c)]: it decreases when the
dielectric ratio is increased but remains approximately constant
when only the filling factor is varied. The field strength Enorm99,p of
the highest percentile in the particle phase [Fig. 15(d)] increases
when the dielectric ratio or the filling factor is enhanced.
The data exhibit strong scatter, but we obtain values of Enorm99,p

that are more than 1.6 times higher than the field strength in a
homogeneous material of permittivity εeff . Compared with the
average field strength in the particles [see Figs. 15(a) and 15(d)],
the maximum relative change is even higher:
Enorm99,p=hjEnorm(r)jip ≃ 1:6=0:356 ≃ 4:5.

VI. SUMMARY AND CONCLUSIONS

The effective permittivity of a composite is related to the
mean field amplitudes in its constituents, and, thus, the latter
values can be determined either by experiment or by numerical
simulations. However, in the majority of cases, the variations of the
field values, i.e., width and form of the distribution, are only acces-
sible via simulations. In this work, we have used numerical tech-
niques to investigate the distribution of local electric field strengths
in composites of dielectric spheres randomly dispersed in a homo-
geneous matrix (εp=εm � 1). We have assessed the accuracy of our
results by reproducing analytical relations for the effective permit-
tivity and the mean values of the normalized field amplitudes [see
Eqs. (10)–(13)]. Our main results can be summarized as follows.

FIG. 16. The color map at the top shows the spatial distribution of electric field
strengths in a composite consisting of 30 dielectric spheres located in one plane
and exposed to an applied electric field in the y direction. The range of electric
field strengths is coded from blue (low) to green (average) to red (high). The
enlarged sections at the bottom show (from left to right) spatial field distributions
for an isolated sphere, a parallel orientated pair of spheres, and a perpendicular
agglomeration of two inclusions. Note that the color range in these sections has
been changed to highlight field fluctuations in the matrix and in the particles:
areas of low field strength are still colored blue, but now areas of average field
strength are colored red.
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A composite of high effective permittivity can be obtained by
increasing the particle concentration, the dielectric ratio of its con-
stituents, or both. For the parameters chosen (εp=εm [ [2, 8] and
f [ [0, 0:1]), the average normalized field strength in the matrix
remains close to 1, but the higher the dielectric ratio, the lower is
the average field strength in the particles and the broader is the dis-
tribution. At the highest filling factor and dielectric ratio, the field
strengths of the highest percentile in matrix and particles can reach
values about twice the average field strength in the composite. In
other words, in this case, 1% of the jE(r)j values in the composite
are at least twice the field strength in a homogeneous material with
the same permittivity εeff . As a consequence, local field strengths
can exceed the mean values by far, even for random spatial distri-
butions of particles.

Finally, we would like to give an idea of where such “high-field
spots” are mainly located. We might visualize the electric field
strength in a cross section of our 3D composites or even a plane of
arbitrary orientation. But particles located outside such a 2D plane
also influence the field distribution, and the resulting complex
images are difficult to interpret. For ease of visualization and to
highlight the essentials, we have generated an example of an “artifi-
cial” composite consisting of 30 monodisperse spheres, the centers
of which are randomly dispersed in a 2D plane (more precisely in a
cross section of the waveguide shown in Figs. 2 and 3). Once again,
the electromagnetic fields have been calculated using a finite
element solver as described in Sec. III. In Fig. 16, we display a color
map of the spatial distribution of electric field strengths in the 2D
plane, where the centers of the spheres are located. The lowest
values of the field strength in the matrix occur between spheres
that are perpendicularly orientated with respect to the external elec-
tric field (see the blue ellipse), while the highest values are found
between spheres that are aligned parallel to the applied external
field (see the red ellipse and compare with similar configurations:
the closer the particles, the higher is the field strength).
Analogously, high field strengths in the particles appear at the cor-
responding front surfaces of these configurations. Thus, even at a
given filling factor f , the local interparticle spacing has an impact
on the field strength. Here, we have generated our dielectric com-
posites by sequential addition of hard spheres at random positions
in the matrix, excluding overlap. Disordered systems with a higher
portion of closely spaced particles can be generated by enhancing
the probability that newly inserted particles are positioned in the
vicinity of those inserted previously. Particle agglomeration might
enforce the occurrence of “high-field spots”, a conjecture that is to
be checked and quantified by further simulations.
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