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Abstract
Objective  Plastic pollution, particularly polystyrene, significantly threatens aquatic ecosystems worldwide. Furthermore, 
plastic leachates have been documented to be detrimental to some aquatic organisms; however, understanding the toxicity 
mechanism remains limited. This study aimed to investigate the ecotoxicological effects of polystyrene leachate on neonate 
and adult Daphnia magna, a keystone species in freshwater ecosystems.
Methods  The effects of the leachate were studied by employing the novel technique of separating daphnids from the polysty-
rene microplastic fragments via dialysis tubing, which was prepared 24 and 72 h before organism exposure. Acute toxicity was 
assessed as effects on organism mobility, oxidative stress (reactive oxygen species), antioxidative enzyme responses (super-
oxide dismutase and catalase), as well as the effects on the biotransformation enzyme glutathione S-transferase’s activity.
Results  Under the experimental conditions, the mobility and oxidative status of the daphnids were unaffected, irrespective 
of the organisms’ age or leaching time. In adults exposed for 24 h, the antioxidant defense enzyme activities were elevated, 
contributing to cellular homeostasis maintenance. However, the catalase activity was reduced for neonates and adults exposed 
to the prolonged pre-leached treatment, thus making them less capable of retaining homeostasis when exposed to toxicant 
mixtures.
Conclusion  This study highlights the vulnerability of D. magna to polystyrene leachate and underscores the need for con-
tinued research on the ecotoxicological effects of plastic pollution in aquatic ecosystems. Findings from this investigation 
contribute to understanding the ecological consequences of plastic pollution, which can inform mitigation strategies and 
policy decisions to preserve the health and integrity of freshwater ecosystems.
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Introduction

The production of plastic has increased exponentially over 
time [1], with the majority ultimately being discarded 
instead of recycled. Therefore, plastic pollution in terres-
trial and aquatic environments has become an escalating 
concern in recent decades, particularly as it poses threats 
to various organisms through multiple pathways, includ-
ing entanglement, ingestion, and bioaccumulation [2, 3].

Among the myriad of plastic pollution types, microplas-
tics (MPs) have garnered particular attention due to their 
ubiquitous global distribution [4–6] and potential environ-
mental impacts [7, 8]. MPs cause devastating effects due 
to intestinal blockage following ingestion and its overall 
toxicity [8, 9]. Furthermore, as these minuscule particles 
continue to accumulate in various ecosystems, they have 
the potential to leach harmful chemicals [10] and syner-
gistically interact with other pollutants [11], potentially 
leading to complex ecological and health ramifications; 
however, our current understanding is inadequate.

Leachates from MPs, containing inherent chemicals and 
absorbed environmental contaminants, have raised signifi-
cant concerns due to their potential to impact aquatic life, 
soil health, and human well-being. Various additives are 
incorporated into plastics intended for diverse applications 
[10, 12]. The additives generally applied include plasticiz-
ers, flame retardants, and thermal stabilizers, which can 
represent up to 70, 20, and 8% by weight of the plastic, 
respectively [13]. Other known additives include photosta-
bilizers, antioxidants, and pigments [14]. Additives enable 
and facilitate processing and impart desirable properties to 
the product or allow retaining the original plastic proper-
ties during molding [15, 16]. However, some of the used 
additives are known carcinogens, mutagens, and endocrine 
disruptors and, thus, are potentially hazardous to many 
organisms [17–20]. Moreover, residual additive monomers 
may migrate into the environment because they are not 
covalently bound to the plastic matrix [21–24]. Leaching 
has been shown to occur in various media, including sea- 
and freshwater, digestive fluid, and stomach oil [25–27], 
with the detection of plastic additives in aquatic systems 
reported by several studies (as reviewed by Gunaalan et al. 
[28]).

The processes involved in the liberation of additives 
from plastics were studied by Do et al. [10]. The leaching 
process has been shown to be influenced by factors such 
as the type of plastic, surface characteristics, the environ-
ment, and time. Thermal and photodegradation, as well 
as biodegradation, play significant roles. Thus, the spe-
cific types and amounts of chemicals leached from MPs 
likely depend on the plastic’s composition, size, and envi-
ronmental conditions. Furthermore, the media in which 

plastics leach could contribute to toxicity as their proper-
ties could facilitate the liberation of more toxicants [29].

Knowledge of the potential toxic impacts of chemicals 
leaching from plastic into the environment is currently 
limited [30]. Nevertheless, due to the potential impact of 
plastic leachate on aquatic organisms, it is an area of active 
research, and our understanding of its effects is still evolv-
ing. Some studies have provided valuable insights into the 
potential impacts of plastic leachate on various aquatic 
organisms [28]. Despite several studies reporting on the tox-
icity of plastic leachates on daphnids, especially regarding 
reproduction [31], understanding of the physiological effects 
of these leachates on the primary consumer and keystone 
species Daphnia magna is lacking [8]. Daphnids filter feeds 
small, suspended particles, such as unicellular algae, and 
serves as prey for diverse invertebrates, playing a signifi-
cant role in aquatic food chains transferring energy to higher 
trophic levels and thus deemed an invaluable study organism 
along with its recognized role as model bioindicator organ-
ism in ecotoxicology [32]. Given the prevalent detection of 
polystyrene (PS) MPs [4], this study focuses on the effects 
of PS leachates on D. magna.

Differentiating adverse effects caused by MPs and those 
by leached substances is challenging, with factors such as 
photodegradation and biodegradation potentially influenc-
ing the mixture of leached chemicals. Thus, our study aims 
to control these variables by exposing D. magna to PS lea-
chates and isolating them from the MPs using dialysis tub-
ing. All leaching prior to exposure would be conducted in 
the dark, at four degrees Celsius, with pristine PS fragments 
to eliminate the effects of photodegradation, thermal degra-
dation, and biodegradation. To evaluate the toxic effects of 
the leachate, immobilization/survival, oxidative stress status, 
and antioxidant defense responses, as well as the response 
of the biotransformation enzyme glutathione S-transferase 
(GST) were used as biomarkers in both neonates and adults, 
considering sensitivity at various life stages.

This investigation pioneers a novel approach to evaluat-
ing the impacts of plastic leachates on living organisms. A 
recent review by Yin et al. [33] highlighted the need for 
studies and methods distinguishing whether observed effects 
are due to MP particles or leachate. Furthermore, this study 
provides compelling evidence that chemicals released from 
polystyrene within 24–72 h can induce physiological effects, 
especially regarding oxidative stress and biotransformation 
enzymes. The insights garnered from this research could 
significantly advance our understanding of the environmen-
tal hazards associated with plastic pollution, particularly in 
the context of MP leachates’ impact on aquatic ecosystems.
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Materials and methods

Daphnia magna cultivation

D. magna ephippia were purchased from Aboatox Oy 
(Masku, Finland) and hatched under a 16:8 h light–dark 
cycle (8500  lx) at 22.0 ± 1.0  °C in ISO medium [34]. 
The daphnids were fed daily with Chlorella vulgaris 
(~ 1.5 × 108 cells/mL) for seven days, followed by a combina-
tion of C. vulgaris and TetraMin® Baby afterward. Neonates 
(newly hatched daphnids) were removed daily, and culture 
media were renewed weekly. The pH and dissolved oxy-
gen content were monitored and maintained according to 
the OECD guidelines [35]. For the present study, neonates 
used for experimentation were ≤ 24 h old, and adult daphnids 
were at least 10 days old and fully developed.

Consumables

Polystyrene beads (LS555533; batch C3586; Goodfellow, 
Huntingdon, UK) were ground into smaller fragments 
employing low-temperature ball milling on a Retsch Cry-
omill (Haan, Germany) maintained between −196 and 
−100 °C using liquid nitrogen. A 50-mL cell and a 2-cm-
diameter steel ball were used for mechanical cryogenic 
grinding. A third of the cells were filled with the plastic 
material and ground for approximately 30 min, with 5 min 
of pre-cooling. The plastic fragments were separated using 
a Vibratory Sieve shaker (AS 300 Control; Retsch GmbH, 
Haan, Germany) via four sieves with mesh sizes of 100, 63, 
45, and 25 µm according to ISO 3310–01 [36]. The size frac-
tion containing fragments with diameters between 45 and 
63 µm was used for exposure via dialysis tubing.

All other consumables were purchased from Sigma-
Aldrich (St. Louis, Missouri, USA) unless stated otherwise 
and were of analytical grade.

Exposure to PS leachates

Dialysis tubing was used to separate the daphnids from the 
PS MP fragments to exclude the effect of direct contact with 
the fragments and only assess toxic effects associated with 
leached chemicals during acute exposure. For the treat-
ments, 5 mg of 45 to 63 µm PS fragments was placed in 
15 kD Spectra/Por® 6 dialysis tubing (2 cm length), tied 
off with twine at both ends. The dialysis tubing contain-
ing the PS was placed in 100 mL ISO media [34] in glass 
beakers (n = 3). The control (n = 3) consisted of the same 
setup without PS fragments in the dialysis tubing. The 
control and exposure sets were prepared in duplicate sets, 
one for exposing adult daphnia and the other for neonates. 

Prior to adding the daphnids, these treatments were kept at 
4 °C in the dark for 24 h to facilitate leaching but excluding 
photodegradation and thermal degradation of the plastics 
to aid leaching. A third exposure set (treatments and con-
trol, n = 3) was prepared and leached at 4 °C for 72 h before 
adding the daphnids (adult daphnids only). After allowing 
the treatments to return to room temperature (21 ± 1 °C), 20 
adult daphnids and 45 neonates were added per replicate per 
respective exposure set. The daphnids were well fed before 
experimentation, with no additional feeding over the expo-
sure period, and the media was not changed during this time. 
After 24 h, immobile daphnids were counted [35] to assess 
whether the daphnids were physically affected by exposure 
to PS leachates over 24 h. Mobile daphnids were collected, 
using one-third for reactive oxygen species (ROS) analysis 
(oxidative stress status marker) and the other two-thirds for 
assessing the activities of the antioxidative enzymes, super-
oxide dismutase (SOD), and catalase (CAT) (antioxidant 
defense response marker), as well as evaluate the enzymatic 
response of glutathione S-transferase (GST) as a measure of 
the activation of the biotransformation system.

Oxidative stress status and enzymatic activity 
assays

For the ROS determination, as a measure of the oxidative 
stress status, one-third of the mobile daphnids were snap-
frozen and thoroughly homogenized in 200 µL of 20 mM 
sodium phosphate buffer, followed by centrifugation at 
5,000 × g at 4 °C for 3 min. Then, 4 μL of supernatant was 
used to determine the protein content using Bradford solu-
tion [37]. The ROS levels were assessed by measuring the 
excitation and emission spectra at 540 and 570 nm, respec-
tively, using the ROS Assay (Kit MAK 144-1KT; Sigma-
Aldrich, St. Louis, Missouri, USA) as per the manufacturer’s 
instructions on a Tecan Infinite 200 Pro M Nano + reader 
(Spark, Tecan, Switzerland) using 50 μL of supernatant from 
each sample. The fluorescence intensities were normalized 
by the protein content (mg/mL) of each specimen.

For extracting the S9 enzyme fraction, the other two-
thirds of the mobile daphnids were frozen and homogenized 
with a micro-pestle in 20 mM potassium phosphate buffer 
(pH 7) on ice. Cell debris was removed by centrifugation 
at 13,000 × g for 10 min, and the supernatant was used to 
assess the enzyme activities [38]. The SOD activity was 
evaluated using the SOD Assay Kit (19,160-1KT-F; Sigma-
Aldrich, St. Louis, Missouri, USA). CAT (E.C. 1.11.1.6) 
activity was assayed using hydrogen peroxide as substrate 
as per Claiborne [39] on a Tecan Infinite 200 Pro Infinite M 
Nano + (Tecan GmbH, Grödig, Austria). GST (EC 2.5.1.18) 
activity was assessed by photometrically measuring the con-
jugation rate of 1-chloro-2,4-dinitrobenzene (CDNB) with 
GSH at 340 nm (extinction coefficient Ɛ = 9.6 L/mmol/cm) 
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according to Habig et al. [40]. CAT and GST activities were 
normalized against the protein content, determined as per 
Bradford [37], i.e., enzyme activity was calculated as katal 
per milligram protein (kat/mg).

Statistical analysis

Statistical analysis was performed using IBM® SPSS® 
Statistics 28.0.0.0 (190) (2021). Descriptive analysis was 
performed on all data sets, followed by normality, sphericity, 
and homogeneity analysis. For data sets meeting the require-
ments of homogeneity and normality, a one-way analysis of 
variance (ANOVA) was performed. Tukey post hoc tests 
were performed. The nonparametric Kruskal–Wallis test 
with pairwise comparisons was used for data sets that did not 
meet the requirements. An alpha value of 0.05 was observed 
for all data sets, with p < 0.050 indicating significance [41]. 
Figures were prepared using Microsoft® Excel® for Micro-
soft 365 MSO (version 2308 Build 16.0.16731.20496).

Results

Daphnia magna immobilization

Using immobilization as an end-point marker for acute tox-
icity, it can be seen from Fig. 1 that with exposure to all 
treatments, compared to their respective controls, the lea-
chate did not significantly affect the mobility of D. magna 
(p > 0.05). After the 24 h exposure, 98.5 ± 0.6% of both neo-
nates (p = 0.3) and adults (p = 1) remained mobile regardless 

of the presence (treatment) or absence (control) of PS in the 
dialysis tubing. However, following 48 h of exposure to the 
72 h pre-leached treatment and its corresponding control, 
significantly fewer adults exhibited activity (p < 0.05), with 
a 23.3% decrease in the control group and a 26.7% decrease 
in the treatment. Nonetheless, the difference in the number 
of mobile adult daphnids in the treatment compared to the 
control after 48 h was not statistically significant (p = 0.8).

Oxidative stress status and enzymatic antioxidative 
response

Irrespective of the treatments, organism age, or exposure 
time (Fig. 2), none of the relative cellular ROS levels dif-
fered from their corresponding controls (p > 0.05). Notably, 
the neonates generally exhibited significantly higher ROS 
levels than adults (p > 0.05). The ROS levels for all adults 
in all treatments and controls were statistically the same 
(p > 0.05).

The SOD activities in neonates exposed to the PS lea-
chate for 24 h (Fig. 3A) and the adults exposed for 48 h 
(Fig. 3C) were not statistically different from those in the 
control (p > 0.05). However, in adults exposed for 24 h to 
PS leachate (Fig. 3B), the SOD activity increased by 35.8% 
(p = 0.003). In general, the basal SOD activity in neonates 
was lower than that in adults.

The CAT activity in neonates exposed for 24  h was 
inhibited by 39.5% (p = 0.007; Fig. 4A) and 23.3% in adults 
exposed for 48 h (p = 0.04; Fig. 4C). However, in adults 
exposed to PS leachate for 24 h, the CAT activity increased 
37.6% (p = 0.05).

For the neonates, exposure did not affect GST activ-
ity (p = 0.6; Fig. 5A). However, the adults had diverg-
ing responses. In those exposed for 24 h (Fig. 5B), the 

Fig. 1   Percentage of mobile neonate and adult Daphnia magna 
exposed for 24  h to PS MP leachate placed in dialysis tubing 24  h 
before the introduction of the daphnids. The percentage survival after 
48  h of exposure of adult daphnids exposed to PS MP leachate via 
dialysis tubing prepared 72  h prior to the introduction of daphnids. 
Bars denote the average survival of mobile daphnids ± standard devia-
tion (n = 3)

Fig. 2   Relative cellular reactive oxygen species (ROS) in neonate and 
adult Daphnia magna exposed for 24 h to PS MP leachate placed in 
dialysis tubing 24 h before the introduction of the daphnids and after 
48 h of exposing adult daphnids PS MP leachate via dialysis tubing 
prepared 72 h prior to the exposure. Bars denote the average relative 
cellular ROS ± standard deviation (n = 3)
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GST activities increased by 42.2% (p = 0.004), whereas 
in adults exposed for 48 h (Fig. 5C), GST activities were 
inhibited by 27.6% (p = 0.02).

Fig. 3   Superoxide dismutase (SOD) activity in A neonate and B adult 
Daphnia magna exposed for 24 h to PS MP leachate placed in dialy-
sis tubing 24  h before the introduction of the daphnids and C after 
48 h of exposing adult daphnids PS MP leachate via dialysis tubing 

prepared 72  h prior to the exposure. Bars denote the average SOD 
activity ± standard deviation (n = 3). Statistical significance compared 
to the corresponding control is indicated as an asterisk (*) when 
p < 0.050

Fig. 4   Catalase (CAT) activity in A neonate and B adult Daphnia 
magna exposed for 24  h to PS MP leachate placed in dialysis tub-
ing 24  h before the introduction of the daphnids and C after 48  h 
of exposing adult daphnids PS MP leachate via dialysis tubing pre-

pared 72 h prior to the exposure. Bars denote the average CAT activ-
ity ± standard deviation (n = 3). Statistical significance compared 
to the corresponding control is indicated as an asterisk (*) when 
p < 0.050

Fig. 5   Glutathione S-transferase (GST) activity in A neonate and B 
adult Daphnia magna exposed for 24  h to PS MP leachate placed 
in dialysis tubing 24  h before the introduction of the daphnids and 
C after 48  h of exposing adult daphnids PS MP leachate via dialy-

sis tubing prepared 72 h prior to the exposure. Bars denote the aver-
age GST activity ± standard deviation (n = 3). Statistical significance 
compared to the corresponding control is indicated as an asterisk (*) 
when p < 0.05
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Discussion

Daphnia magna immobility

In the present study, exposure to PS leachate did not affect 
either the neonate or the adult D. magna, irrespective of 
the time the plastics leached prior to exposure or contact 
time. Lithner et al. [42] leached plastics from old elec-
tronic products (100.0 g/L) in water for three days and 
exposed D. magna for 24 and 48 h. They found that it 
was non-toxic to the test organisms; however, the specific 
types of plastics were not reported. A previous study by 
Kim et al. [43] investigated the effect of plastic (synthetic 
rubber) shoe sole leachate on the immobility of neonate 
D. magna. Using dilutions of the leachate prepared by an 
accelerated artificial leaching protocol using 2.0 g/L mate-
rial, immobility significantly increased from 24 to 48 h. 
Compared to the current study, this higher immobilization 
rate might be attributed to the release of more toxicants 
through thermal and photodegradation processes facilitat-
ing artificial leaching. In addition, the concentration of 
0.05 g/L PS used in the present study, given the 50.0% 
dilution of the leachate used by Kim et al. [43], is 20-fold 
lower.

For the leaching of waste materials with particles 
smaller than 4 mm, a liquid-to-solid ratio of 10:1 has been 
suggested [44] and used to test plastic leachate toxicity 
[45, 46]. However, in freshwater aquatics in Europe and 
Asia, up to 2561 MP particles/m3 have been detected [47]. 
Using the conversion presented by Besseling et al. [48], 
i.e., supposing a weight of 5.0 µg per particle, this con-
verts to 12.8 µg/L. Specifically for PS, concentrations up 
to 13.0 ng/L have been reported in the environment [49]. 
Thus, the concentrations used thus far to evaluate the tox-
icity of MP leachates greatly exceed the environmental 
concentrations.

Nevertheless, Li et al. [30] reported low toxicities for 
leachate from PS compared to other plastic types concern-
ing Amphibalanus amphitrite as a bioindicator organism. 
Similarly, Lithner et al. [50] reported no immobility of 
daphnids with exposure to leachate from PS plastic prod-
ucts (100.0 g/L).

Oxidative status and antioxidative response

Physiological parameters often serve as more sensi-
tive indicators of toxicological effects. The antioxidant 
response system is essential in maintaining homeostasis, 
i.e., the balance of reactive oxygen species (ROS), a natu-
ral by-product of cellular processes, to minimize biomol-
ecule damage. SOD initiates the detoxification process by 

transforming superoxide radicals to hydrogen peroxide, 
which, in turn, is converted by enzymes, such as CAT, 
among others, to water and oxygen. Elevated ROS levels 
are a well-known consequence of toxicant exposure and 
indicative of oxidative stress [51]. However, considering 
the ROS levels in Fig. 2, oxidative stress was not promoted 
in any organisms in the present study. This might be attrib-
uted to the possibility that ROS levels, which could have 
initially increased at the onset of exposure, were either 
neutralized by the enzymatic or non-enzymatic antioxida-
tive system or that exposure to the leachate did not lead to 
an elevation in ROS. Nevertheless, the activities of anti-
oxidative enzymes such as SOD (Fig. 3B), CAT (Fig. 4B), 
and the biotransformation enzyme GST (Fig. 5B) were 
only elevated in adults exposed for 24 h. Furthermore, 
the enzyme activities of these enzymes likely returned 
to their baseline levels after 48 h of exposure. It is well 
documented that CAT expression can be upregulated by 
ROS [52]. However, CAT activities in neonates (Fig. 4A) 
and adults exposed for 48 h (Fig. 4C) were significantly 
reduced. This observation aligns with the theory proposed 
by Liu et al. [53], which stated that continued exposure to 
MPs could potentially result in amplified ROS, leading 
to the indiscriminate oxidation of proteins and causing 
downregulation of CAT [54]. Similarly, the neonates could 
have been overwhelmed by the ROS level at the start of the 
exposure, suggesting that the non-enzymatic antioxidant 
system aided in neutralizing the ROS (Fig. 2). Schiavo 
et al. [55] reported elevated ROS in Dunaliella tertiolecta 
exposed to PS leachate for 72 h (100.0 g/L); however, the 
PS concentration the leachate was produced from was 
2000-fold higher than in the present study.

Remarkably, SOD activity was affected only in adult 
daphnids exposed for 24 h in the present study (Fig. 3B). 
Sunil et al. [56] reported increased SOD activity in Donax 
faba with exposure to a 25.0% dilution of leachate derived 
from PET bottles (100.0 g/L) after 72 h but inhibition with 
higher concentrations of the leachate. However, the inhi-
bition coincided with substantially elevated ROS levels. 
Another possibility is that the concentration of toxicants in 
the leachate used in the current study was not sufficiently 
high to induce an increase in ROS levels and, consequently, 
did not continuously stimulate SOD activity. Nevertheless, 
CAT was inhibited in neonates and adults exposed for 48 h 
despite no corresponding elevated ROS concentration. CAT 
activity was unchanged in Mytilus galloprovincialis, exposed 
to PET, PS, PP, PVC, and car tire leachate (80.0 g/L) [57]. 
Sunil et al. [56] reported considerable inhibition of CAT 
activity in D. faba exposed to PET leachate. Some plastic 
additives, such as hydroxylamine, used as a UV stabilizer, 
and resorcinol, as a flame retardant, are potent catalase 
inhibitors [14, 58, 59]. Potentially, in the more sensitive neo-
nates and with more prolonged exposure, these compounds 
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were responsible for the observed reduction in CAT activity 
and should be tested for in future studies.

In the present study, GST in adults was elevated after 
24 h of exposure to 24 h leachate but inhibited after 48 h 
of exposure to 72 h leachate. In M. galloprovincialis, lea-
chates from polypropylene and polyethylene terephthalate 
increased GST activity in digestive glands, while polypro-
pylene leachate was the only treatment to enhance GST in 
the gills. PS, however, did not affect GST activity in either 
tissue [57], demonstrating the variable sensitives of bioindi-
cator organisms to different toxicants. Glutathione protects 
against trace metal toxicity and is involved in enzymatic 
antioxidant defense reactions as well as the biotransforma-
tion of toxic compounds [60]. However, toxic metals can 
directly bind to glutathione, resulting in decreased availabil-
ity and thus affecting GST activities [61]. Therefore, leached 
heavy metals [62, 63] may be responsible for the decreased 
GST activity observed after 48 h of exposure to the PS pre-
leachate for 72 h.

One of the limitations of this study is that the chemi-
cal compounds in the leachate were neither identified nor 
quantified; thus, speculations must be made based on stud-
ies that previously characterized leachates. Furthermore, the 
concentration of PS used is higher than environmentally rel-
evant but significantly lower than in previous literature. This 
study did not account for plastic surface alterations due to 
weathering or biofilms, factors that can substantially impact 
equilibrium, kinetics, and the transformation of additives 
[10]. Hence, the results may underestimate the environmen-
tal effect of leachate despite the higher PS concentration 
used in this study.

Conclusion

The study pioneers a novel approach to evaluate the impacts 
of plastic leachates on living organisms via dialysis mem-
branes. This method could greatly aid in elucidating the tox-
icity mechanism of leachates from plastics. Furthermore, 
this study found that acute exposure to PS leachate did not 
result in reduced mobility in D. magna, suggesting that, 
under short-term exposure, the leachate did not have a sig-
nificant immediate toxic impact on the organisms. Nonethe-
less, even without elevated ROS levels, certain antioxidative 
response enzymes were found to be inhibited with prolonged 
exposure. This inhibition could increase the vulnerability of 
D. magna to additional risks when concurrently exposed to 
other toxicants due to the synergistic effects of mixture tox-
icity. The resulting compromised antioxidant defense system 
might be unable to effectively regulate ROS levels under 
stress from other environmental pollutants, rendering the 
organisms vulnerable. Our findings extend beyond labora-
tory conditions and have significant ecological ramifications. 

Thus, D. magna, a key organism in freshwater food webs, 
has life stages with differential sensitivities to oxidative 
stress, which may be exacerbated by continuous exposure 
to pollutants like PS leachate. This research data enriches the 
scientific community’s understanding of the consequences 
of plastic pollution, serving as a crucial reference for envi-
ronmental risk assessment. Moreover, the data extend the 
reach of this research by underpinning the need for policies 
aimed at reducing plastic waste and by informing conserva-
tion strategies that consider the cumulative impacts of mul-
tiple stressors on aquatic ecosystems, potentially affecting 
biodiversity and ecological function on a broader scale.
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