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Abstract

Neural population responses in sensory systems are driven by external physical stimuli.

This stimulus-response relationship is typically characterized by receptive fields, which

have been estimated by neural system identification approaches. Such models usually

require a large amount of training data, yet, the recording time for animal experiments is lim-

ited, giving rise to epistemic uncertainty for the learned neural transfer functions. While deep

neural network models have demonstrated excellent power on neural prediction, they usu-

ally do not provide the uncertainty of the resulting neural representations and derived statis-

tics, such as most exciting inputs (MEIs), from in silico experiments. Here, we present a

Bayesian system identification approach to predict neural responses to visual stimuli, and

explore whether explicitly modeling network weight variability can be beneficial for identify-

ing neural response properties. To this end, we use variational inference to estimate the

posterior distribution of each model weight given the training data. Tests with different neural

datasets demonstrate that this method can achieve higher or comparable performance on

neural prediction, with a much higher data efficiency compared to Monte Carlo dropout

methods and traditional models using point estimates of the model parameters. At the same

time, our variational method provides us with an effectively infinite ensemble, avoiding the

idiosyncrasy of any single model, to generate MEIs. This allows us to estimate the uncer-

tainty of stimulus-response function, which we have found to be negatively correlated with

the predictive performance at model level and may serve to evaluate models. Furthermore,

our approach enables us to identify response properties with credible intervals and to deter-

mine whether the inferred features are meaningful by performing statistical tests on MEIs.

Finally, in silico experiments show that our model generates stimuli driving neuronal activity

significantly better than traditional models in the limited-data regime.
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Author summary

Neural system identification methods learn stimulus-response functions using experi-

mental data to predict responses. These neuronal prediction models demand large

amounts of training data, however, the recording time for each experiment is restricted,

introducing the uncertainty about the neural features derived from trained models. Here,

we present a Bayesian approach incorporating weight uncertainty to identify response

functions and show that our method has higher or comparable predictive performance

with a higher data efficiency compared to traditional methods using point estimates of

model parameters. Additionally, our model provides an effective infinite ensemble to

derive neural features, which avoid the idiosyncrasy of a single model. In this way, our

method also allows us to estimate the uncertainty of the derived features and to conduct

statistical tests on them. Generally, our Bayesian approach enables us to generate many

similar stimuli to investigate biological information processing.

Introduction

Current neural interfaces allow to simultaneously record large populations of neural activity.

In sensory neuroscience, such ensemble responses are driven by external physical stimuli (e.g.,

natural images), and their relation has been characterized by tuning curves or receptive fields

(RFs; [1]). Such stimulus-response functions have been estimated by neural system identifica-
tion methods (reviewed in [2]). Classically, these approaches used a linear-nonlinear-Poisson

(LNP) model or variants of it [3–6] to predict responses to unseen stimuli such as white noise

and natural images [7, 8]. More recently, deep neural networks (DNNs) with multiple layers of

non-linear processing have shown great success for learning neural transfer functions along

the ventral visual stages from retina [9–11] and primary visual cortex [12–15] to higher visual

areas [16, 17]. Moreover, through in silico experiments, these models are able to generate spe-

cific stimuli to control neural activity and identify novel neuronal properties from a high-

dimensional space [18–22]. For example, closed-loop paradigms show that performing gradi-

ent ascent on a deep model can yield most exciting inputs (MEIs) to drive a neuron’s activity

optimally [18–20, 23].

Yet, these system identification approaches demand significant amounts of stimulus-

response pair data for the model training, given the high dimensional stimulus space and the

non-linear neural transformations [9, 15, 24, 25]. Due to limited recording time for each

experiment, the amount of data for fitting these models is restricted introducing epistemic

uncertainty about the learned stimulus-response function. To estimate this uncertainty, tradi-

tional LNP methods obtain full posterior distribution of model parameters by leveraging a

Bayesian framework to provide confidence intervals for the estimated RFs [5, 24, 26–28]. How-

ever, DNN models rarely consider the uncertainty of the neuronal properties that are recov-

ered from in silico experiments. Typically, MEIs are computed on an ensemble of models to

avoid the idiosyncrasy of a single model. Utilizing a full posterior provides us with an effec-

tively infinite ensemble through sampling. Additionally, it is important to quantify the uncer-

tainty of derived features as we are interested in whether they are biologically meaningful.

Consider a scenario: we observe elements in the surround, but they are faint. This prompts the

question: Are they real? With a single MEI, we cannot answer that; however, using a model

equipped with uncertainty, we can assess whether the posterior significantly deviates from

zero.
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Here, we propose a Bayesian system identification approach to estimate response features

of neurons with uncertainties (Fig 1). We test whether incorporating uncertainties by learning

the full distribution of model parameters is beneficial for learning neural representations. To

this end, we build a DNN model to predict responses to unseen visual stimuli by using varia-

tional inference to estimate the distribution of network weights, i.e., Bayes by Backprop [29–

32].

Our contributions are: (1) We incorporate weight variability in deep neural networks for

identifying neural response functions with uncertainty and extend the Bayes by Backprop with

a hyperparameter which effectively adjusts the sparsity of model parameters. (2) We apply our

Bayesian models on different experimental datasets and find that our method can achieve

higher or comparable performance on neural prediction, with a much better data efficiency,

compared to Monte Carlo dropout methods and traditional models using point estimates of

the model parameters. (3) Our approach with full posterior allows to estimate neural features

with credible intervals and run statistical test for the derived MEIs, bypassing the idiosyncrasy

of a single model. (4) Finally, simulation experiments demonstrate that the variational model

yields stimuli that drive neuronal activation better than the traditional models in the condition

of limited training data. This supports that weight uncertainty, as implemented in our model,

may contribute to a more efficient identification of non-linear neuronal response functions.

Materials and methods

Dataset

We tested our method on two publicly available datasets.

The first dataset contains calcium signals driven by static natural gray-scale images for neu-

rons in primary visual cortex (V1) of mice [12]. We used 103 neurons from the first scan field,

whose single-trial responses to 1,600 images for training models and 200 for tuning hyperpara-

meters. Then we used the mean of response repeats to 50 test images for evaluating models.

The second dataset comprises Ca2+ responses to natural green/UV images (36x64 pixels)

for neurons in mouse V1 [21]. We selected the natural stimuli that were presented in both UV

and green channels and used the neurons whose quality index (QI = Var[E[C]r]t/E[Var[C]t]r,

Fig 1. Schematic of neural system identification for predicting responses. Biological neurons (top row; second

column) respond to visual stimuli (first column) distinctly (third column), with an unknown MEI (fourth column)

driving a cell with optimal activation (sixth column). Traditional system identification methods (center row) learn

stimulus-response function and yield a MEI with unknown statistics (fifth column). Bayesian approaches (bottom

row) learn distributions of model parameters to predict neuronal responses, yielding infinite MEIs, whose significance

map can be computed by sampling from posterior, to drive a neuron with credible intervals.

https://doi.org/10.1371/journal.pcbi.1012354.g001
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time samples t and repetitions r, a response matrix C with a shape of t × r, E[X]d and Var[X]d

denoting the mean and variance along the dimension d of X, respectively) of 10-repeat test

responses were larger than 0.3. In this way, we obtained 161 neurons from one scan field,

whose single-trial responses to 4,000 images for training and 400 for validation. Then we used

mean of response repeats to 79 test images for evaluation.

Models

Variational model. DNN for system identification can be seen as a probabilistic model:

given the training data D ¼ ðxi; yiÞi where xi is an input (such as natural images) and yi is the

output (such as neural responses), we aim to learn the weights w of a network which can pre-

dict the output for the unseen stimuli (Fig 1). Compared to a traditional method using point

estimates of the weights, Bayesian approaches learn full distributions of these w. Estimating

the full posterior distribution of the weights PðwjDÞ given the training data is usually not feasi-

ble. An alternative is to approximate PðwjDÞ by a new distribution q(w|θ) whose parameters θ
are trained to minimize the distance between the proxy and the true posterior, which is called

variational inference [29–32]. Usually we use Kullback-Leibler (KL) divergence as a measure

of distance between two distributions:

y
∗
¼ arg min

y

KL½qðwjyÞjjPðwjDÞ� ð1Þ

¼ arg min
y

KL½qðwjyÞjjPðwÞ� � EqðwjyÞ½log PðDjwÞ� ð2Þ

The optimization function can be viewed as a trade-off between the distance between the

variational posterior and the selected prior and the likelihood cost. We can view it as a con-

strained optimization problem as [33]:

arg min
y

EqðwjyÞ½log PðDjwÞ� subject to KL½qðwjyÞjjPðwÞ� < � ð3Þ

Here � represents the specific distance between the variational posterior and the prior.

According to KKT conditions [34] and non-negative properties of KL divergence, we get:

F ¼ EqðwjyÞ½log PðDjwÞ� � bvðKL½qðwjyÞjjPðwÞ� � �Þ ð4Þ

� EqðwjyÞ½log PðDjwÞ� � bvKL½qðwjyÞjjPðwÞ� ð5Þ

where βv is non-negative and represents a Lagrangian multiplier. So the final loss function for

the model is:

L ¼ bvKL½qðwjyÞjjPðwÞ� � EqðwjyÞ½log PðDjwÞ� ð6Þ

�
Xn

i¼1

bvðlog qðw
ðiÞjyÞ � log PðwðiÞÞÞ � log PðDjwðiÞÞ ð7Þ

Eq (7) is a result of Monte Carlo sampling n instances w(i) from q(w|θ) because we can not cal-

culate (6) directly. Note that the use of βv is equivalent to a common operation of tempering

likelihood in KL-weighted evidence lower bound [35–37].

Here, we implemented convolutional neural networks (CNNs) for all experiments. For a

CNN using variational inference on model weights (variational model), we picked indepen-

dent Gaussian distributions for the variational posterior and a scale mixture of two Gaussians
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for the prior [32]. The log posterior was defined as

log qðwjyÞ ¼
X

k¼1
logN ðwkjm

k; ðskÞ
2
Þ

where wk denotes kth weight of the neural network and (μk, σk) are the posterior parameters

θk. We omitted the superscript k for μ and σ in other formulas to maintain simplicity when

there is no ambiguity. To keep σ non-negative, we parameterised it using σ = log(1 + exp(ρ)).

We selected the log prior

log PðwÞ ¼
X

k¼1
log ðpN ðwkj0; s

2

1
Þ þ ð1 � pÞN ðwkj0; s

2

2
ÞÞ

where π is a mixture component weight (0� π� 1) [32, 38]. This prior, compared to a single

Gaussian distribution, encourages sparseness in learned kernels, reminiscent of neural repre-

sentations in visual systems [39–42]. The likelihood loss depends on the specific task of the net-

work. For neural system identification, we use Poisson loss � log PðDjwÞ ¼
P

l r̂ l � rl log r̂ l,
where l, r̂ l and rl denote neuronal index, prediction responses and true responses, respectively.

Baseline and control models. We used a CNN without any regularization as a baseline

model and used a CNN with L2 regularization in each convolutional layer and L1 regulariza-

tion in fully connected layer (L2+L1) as a control model. We adopted an ensemble of L2+L1

models with different initialization seeds as a second control model, whose predicted

responses are the average of five model outputs. To examine the contribution from weight

uncertainties, we built a maximum a posteriori (MAP) model which contains prior and likeli-

hood terms in Eq (7) as loss functions. Additionally, as a fourth control, we adopted a CNN

with Monte Carlo dropout for probabilistic prediction; it used the same dropout rate for each

model layer and in both training and test stages [43, 44].

Model details. The CNN model for the first dataset shared by Antolik and colleagues con-

sisted of a convolutional layer (24x1x9x9, output channels x input channels x image width x

image height), a rectified linear unit (ReLU) function, another convolutional layer (48x24x7x7,

output channels x input channels x image width x image height), another ReLU function, and

—after flattening all dimensions—one fully connected (FC) layer (103x13872, output channels

x input channels), followed by an exponential function (S1 Appendix). We used stride = 1 and

no padding for both convolutional layers. We trained the six models and tuned their respective

hyperparameters. For the variational one, we tested different parameters for prior distribution

on validation data, such as π = 0 or π = 0.5, σ1 = 1 or σ1 = 100, σ2 = exp(−3) or σ2 = exp(−6),

and found that a scale mixture of two Gaussians had similar predictive performance, higher

than one Gaussian distribution. As the predictive performance was similar for distinct priors

on model layers, we used the same prior distribution with parameters π = 0.5, σ1 = 1, σ2 = exp

(−6) for all layers. We also examined the number of Monte Carlo sampling times for model

training and found that the predictive performance was similar for different numbers. There-

fore, we used 1 or 2 sampling times for all model training.

The CNN model for the second dataset shared by Franke and colleagus contained a convo-

lutional layer (48x2x9x9), a ReLU function, another convolutional layer (48x48x7x7), another

ReLU function, and one FC layer (161x52800), followed by an exponential function. We used

stride = 1 and no padding for both convolutional layers.

Training and evaluation

We trained all models with a learning rate of 0.0003 for a maximum of 200 epochs using the

Adam optimizer [45]. We computed linear correlation (correlation coefficient, CC) between

predicted and recorded responses, which was used to evaluate models on validation or test
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data. We tuned model hyperparameters and selected the ones as well as the respective epoch

number with the best predictive performance on validation data. We also evaluated models on

test data using root mean square error (RMSE) and log likelihood, however, similar to other

studies on neural prediction [9, 10, 12, 15], we primarily used CC for analysis. To keep the

comparison fair, the test models shared similar network architecture for each dataset, except

that the dropout model featured dropout layers.

For each trained model, we estimated MEIs of all neurons by running gradient ascent on a

random input image for 100 steps with a learning rate of 10 and we picked the stimulus with

the highest activity [20, 46]. All generated MEIs had the same mean and standard deviations as

the training images. For the two probabilistic (variational and dropout) models, we ran the

estimation for 100 times with Monte Carlo sampling, hence, we got 100 MEIs (matrix C) for

each recorded neuron. Note that we fixed the random seed/state for each sampling, in this

way, model weights did not change stochastically during the iterative generation of each MEI.

We defined MEI variance of one neuron as MEI variance = E[Var[C]s]hw (sampling times s,
stimulus height h, stimulus width w, and C with a shape of s × h × w). The overall MEI variance

for a model was an average of MEI variances for the recorded neurons.

In in silico experiments, to measure the activation distribution of MEIs yielded from varia-

tional models for a neuron, we estimated 100 MEIs by sampling and one mean MEI by using

the weight mean μ from each seed. So we had 505 MEIs for five random seeds with one addi-

tional MEI which was the mean of the five mean MEIs, in total 506 MEIs. For L2+L1 models,

we estimated five MEIs from different random seeds and also got one by averaging across

these MEIs, in total 6 MEIs.

Results

βv balances model capacity and data likelihood

Compared to a conventional evidence lower bound in Eq (2), we used a Lagrangian multiplier

βv in (7) by borrowing the idea of constrained optimization from [33]. In this way, Blundell

and colleagues’ work can be seen as a special case of βv = 1.0 [32]. We first analyzed the possible

roles of βv. We investigated it from the perspective of information theory, given that Eq (7) has

a similar form to the objective functions in deep variational information bottleneck [47, 48]

and β-VAE [33, 49].

The training objective jointly minimizes the KL divergence between the posterior q(w|θ)

and the prior P(w) and maximizes the data likelihood under the distribution q(w|θ). The distri-

bution distance becomes zero when q(w|θ) = P(w). The prior comprises a mixture of two

Gaussian distributions centered at zero, with one exhibiting a relatively small standard devia-

tion (e.g., a distribution with π = 0.5, σ1 = 1, σ2 = exp(−6)). Large βv downweighs the log likeli-

hood EqðwjyÞ½log PðDjwÞ�. In the extreme case of very large βv, the variational posterior q(w|θ)

converges towards the prior distribution P(w). However, given that the posterior is restricted

to a single Gaussian and that minimizing the reverse KL results in mode-seeking and zero-

forcing, the weights w of the posterior will largely be forced to zeros. In such a case, the model

has very sparse parameters but very limited expressive power. Therefore, βv can be interpreted

as a coefficient to adjust the sparsity of model parameters for fitting the data.

Empirically, we measured the sparsity of the model weight means (μ) for different βv values

on the dataset 1 shared by Antolik and colleagues [12]. We computed the proportion of mass

volume near zero, e.g., within a certain threshold, for the weight means. We used thresholds of

±2 * σ2, ±3 * σ2 and ±4 * σ2, and observed an increase of the ratio with the rise of βv for the

three conditions, indicating an increase of sparsity of model weights (Fig 2). Therefore, the

hyperparameter βv served to tune the model capacity via weight sparseness for data prediction.
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System identification incorporates model uncertainty to predict neural

responses

We trained the six models on the dataset 1 (Fig 3a) and tuned their respective hyperparameters

using validation data. For the variational model, we found the one with βv = 0.1 had best pre-

dictive performance with a sharp decrease when increasing βv till 1.0 or 3.0 (S1 Fig). We also

observed that at training stage, the variational model presented a more stable performance on

validation data compared to the baseline CNN, confirming the regularization effect of prior to

prevent overfitting.

Next, we selected the hyperparameters achieving the best performance on validation data

for each model. To examine the feature properties learned by these models, we estimated the

MEIs of recorded neurons and found that these models yielded antagonistic center-surround

and Gabor filters in a local region, reminiscent of neural representations in early visual pro-

cessing ([1, 3]; Fig 3a and S2). To compare the performance of neural prediction, we then eval-

uated all models using test data. For a probabilistic model, we ran model predictions for 100

sampling times and computed the mean and the standard deviation of neuronal responses.

We used a significance level of 0.01 after applying a Bonferroni correction. When using

RMSE as a metric and 50% of the training data (Fig 3b), we observed that the variational

model had similar prediction accuracy with the MAP and MC dropout, and outperformed

other methods. When using RMSE and full data, our Bayesian one had higher predictive per-

formance than others. When using log likelihood (Fig 3c), our Bayesian method had signifi-

cantly higher prediction accuracy than others for both training data sizes. When using linear

correlation and half of the data (Fig 3d), the variational one had similar prediction accuracy

with MC dropout, the baseline, and MAP, but outperformed the L2+L1 and the ensemble.

When using CC as a metric and full training data, our method had similar prediction perfor-

mance with MC dropout and the ensemble, but outperformed other test models and Klindt’s

model [13]. In summary, our results suggested that the variational method had better/compa-

rable predictive performance compared to other models.

We also reanalyzed the influence of βv on prediction using linear correlation with test data

(Fig 3e). Similar to the case with validation data, we noticed a rather steady predictive perfor-

mance with increasing βv until a sudden drop at βv = 1.0 or 3.0, implying that a large Lagrang-

ian multiplier imposing excessive sparsity on weights yields model underfitting. Note that we

Fig 2. Hyperparameter βv for regulating weight sparseness. (a) Distribution of the means (μ) of model weights for different βv
values. Dotted lines indicate distribution means. (b) Ratio of mass volume near zero for the distributions in (a). Note that with our

setup, if we use a mixture of two Gaussians for the posterior, we would not observe a higher weight sparseness with a larger βv; rather,

we would observe a wider distribution of model parameters.

https://doi.org/10.1371/journal.pcbi.1012354.g002
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got best predictive performance when using βv< 1.0, which is referred to as the cold posterior

effect and is consistent with previous results [35–37, 50].

Together, the superior/equivalent performance of our variational approach suggests that

incorporating weight uncertainty is beneficial for predicting neural responses.

Probabilistic models learn variance of neural transfer functions

Probabilistic models predict neuronal responses to test stimuli with uncertainty. We first

assessed such uncertainty by conducting standard calibration analysis (Fig 4a). In this way, we

can address questions such as whether the predicted 90% credible interval contains the

recorded responses 90% of the time. We did calibration analysis on the test data for credible

intervals from 0% to 100%, and found that the predicted confidence was higher than the

observed confidence for both the variational and MC dropout models. This suggested that

both models were overconfident on their predictions, which might be caused by inappropriate

prior, suboptimal likelihood function, etc.

Next, we investigated the relationship between predictive performance and response uncer-

tainty using test data (S3 Fig). We did not observe a significant correlation for the variational

model (CC = 0.24, p = 0.05), the MC dropout model (CC = 0.18, p = 0.07) and the ensemble

Fig 3. Neural prediction with weight uncertainty. (a) Mean recorded responses (gray) and predictive responses to natural stimuli(black, baseline; red,

L2+L1; green, variational one with βv = 0.1; blue, MC dropout with dropout rate 70%; shaded green and blue representing standard deviation for the

variational and the dropout methods, respectively), estimated MEIs, as well as standard deviation of MEI (MEI_std; only for two probabilistic models),

for two exemplary neurons. MEI and MEI_std use different color scales with red and blue indicating positive and negative values, respectively. Note

that MEI has much larger absolute values than MEI_std. (b) Predictive performance (RMSE) based on test data with different amounts of training data

(left, 50% of training data, p = 0.004 for variational vs. baseline, p = 0.0024 for variational vs. ensemble, p = 0.0006 for variational vs. L2+L1, p = 0.0186

for variational vs. MC dropout, p = 0.549 for variational vs. MAP, two-sided permutation test with n = 10,000 repeats; right, 100% of data, p = 0.0001 for

variational vs. baseline, p< 0.0001 for variational vs. ensemble, p = 0.0001 for variational vs. L2+L1, p< 0.0001 for variational vs. MC dropout,

p = 0.0001 for variational vs. MAP) for 6 models (red dash, ensemble; cyan, MAP; 10 seeds per model). (c) Same with (b), but using log likelihood to

evaluate models (left, p< 0.0001 for variational vs. baseline, p< 0.0001 for variational vs. ensemble, p< 0.0001 for variational vs. L2+L1, p< 0.0001 for

variational vs. MC dropout, p = 0.0001 for variational vs. MAP; right, p = 0.0001 for variational vs. baseline, p = 0.0001 for variational vs. ensemble,

p = 0.0001 for variational vs. L2+L1, p = 0.0001 for variational vs. MC dropout, p = 0.0001 for variational vs. MAP). (d) Same with (b), but using CC to

evaluate models (left, p = 0.028 for variational vs. baseline, p = 0.0043 for variational vs. ensemble, p = 0.0009 for variational vs. L2+L1, p = 0.082 for

variational vs. MC dropout, p = 0.2526 for variational vs. MAP; right, p = 0.0001 for variational vs. baseline, p = 0.013 for variational vs. ensemble,

p = 0.0007 for variational vs. L2+L1, p = 0.6159 for variational vs. MC dropout, p = 0.0001 for variational vs. MAP), with another model used by [13]

(red triangle). (e) Predictive model performance (CC) for different βv values. Error bars in (b)—(e) represent standard deviation of n = 10 random seeds

for each model.

https://doi.org/10.1371/journal.pcbi.1012354.g003
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model (CC = 0.19, p = 0.06), suggesting no relation between predictive performance and

response uncertainty at neuronal level. This might be related to the differential response vari-

ability driven by distinct stimuli [51, 52]. Therefore, our results suggest no exact linear correla-

tion between the response uncertainty and predictive performance.

Furthermore, we tested whether the variability of the learned transfer function was related

to the predictive performance. At model level, we found a sudden increase of overall MEI vari-

ance at βv = 1.0 or 3.0 (Fig 4b), where an abrupt drop of model performance was present (cf.

Fig 3e). This opposite change between MEI variability and predictive performance was con-

firmed by the negative correlations between overall MEI variance and overall response CC

(CC = −0.95, p< 0.0001; Fig 4c), suggesting a model with higher predictive performance have

higher confidence on the learned transfer function. At neuronal level (S3 Fig), we computed

the partial correlation between response CC and MEI variance by removing the effect from the

mean firing rate. We observed significant correlation for the ensemble model (CC = −0.63,

p< 0.0001), but not for the variational model (CC = −0.17, p = 0.09) and the MC dropout

model (CC = −0.07, p = 0.50). The inconsistency between these three models suggest no exact

linear relationship between prediction accuracy and MEI uncertainty at neuronal level.

In summary, these results demonstrate that, at model level, a probabilistic model with

smaller uncertainty on the learned stimulus-response function yields higher predictive

performance.

Variational model features high data efficiency on neural prediction

Here we applied our method on the second dataset shared by Franke and colleagues ([21]).

After hyperparameter tuning, we selected βv = 0.3 for the variational network and evaluated

the five models on test data.

We observed that our Bayesian method had better/comparable prediction accuracy com-

pared to other models when using linear correlation, RMSE and log likelihood as evaluation

metrics (Fig 5a and S4). We then examined the relationship between the uncertainty of the

learned stimulus-response function and the predictive performance measured with CC at

model level. We expect that, with more data used for training, the model yields better predic-

tion along with smaller variance for the learned MEIs. We focused on the variational method.

Indeed, when more training data was used, the predictive model performance increased (Fig

5a) while the overall MEI variance decreased (Fig 5b), with a negative correlation between

Fig 4. Neural transfer functions with variability. (a) Calibration analysis for the variational model and the MC

dropout model. The dashed line indicates a perfect calibration curve. (b) Overall MEI variance for different βv values

(10 seeds per model). (c) Scatter plot of overall response CC and overall MEI variance for 6 βv values and 10 seeds

(each dot representing one model at each βv and each seed). Error bars in (b) represent standard deviation of n = 10

random seeds for each model.

https://doi.org/10.1371/journal.pcbi.1012354.g004
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them at model level (CC = −0.73, p< 0.0001; Fig 5c). Note that we did not observe a steady

decrease of the overall response variance (S5 Fig).

Next, we investigated whether the performance difference between the variational and the

L2+L1 model was sensitive to the training data size (Fig 5d). We observed that the variational

method had higher correlations except for the case of extremely little data (20%). The differ-

ence peaked at 40% with an increase of 9% (p< 0.0001, two-sided permutation test with

n = 10,000 repeats) and gradually decreased with more training data, indicating the benefit of

variational inference for system identification. We note that such improvement in model per-

formance might vanish in the scenario of unlimited data. We also compared the predictive

performance on individual neurons at one random seed and observed that, the Bayesian

model outperformed the L2+L1 one for the condition of 40% of training data (p< 0.0001; Fig

5e) and two methods had comparable performance for the condition of full data (p = 0.0927;

Fig 5f).

Together, compared to a traditional method, our Bayesian approach with weight uncer-

tainty yielded higher predictive performance with a higher data efficiency.

Variational model yields stimuli driving high neuronal activation

Bayesian methods with full posterior provide an infinite ensemble of models for computing

MEIs and allow to perform statistical tests for the derived features. Before using the variational

Fig 5. Variational models on the second dataset. (a) Model performance based on test data of the second dataset with

different amounts of training data for five models (n = 10 random seeds per model). p = 0.0238 for variational vs. L2+L1

at 20% of training data, p< 0.0001 at 40%, p = 0.0001 at 60%, p = 0.0042 at 80%, p = 0.1096 at 100%. (b) Overall MEI

variance for different amounts of training data for variational models (10 seeds per model). (c) Scatter plot for overall

response CC and overall MEI variance for different amounts of training data and at 10 seeds. Each dot representing one

model. (d) Performance difference between the variational and the L2+L1 models. (e) Scatter plot of model predictions

for the variational model and the L2+L1 model at one random seed when using 40% training data. Each dot

representing one neuron. (f) Like (e) but using 100% training data. Error bars in (a), (b) and (d) represent standard

deviation of n = 10 random seeds for each model.

https://doi.org/10.1371/journal.pcbi.1012354.g005
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model to yield MEIs, we evaluated the effectiveness of our method. We fed the verified MEIs

from [21] into the model trained by full data and estimated the neuronal activation driven by

distinct stimuli. We assumed that, if a model was well trained, each verified MEI would drive

higher activity for the corresponding neuron compared to other stimuli. Firstly, we selected

randomly 6 neurons with their MEIs and got 6 activation distributions by sampling the model

for 100 times for each neuron (Fig 6a; S7 Fig). We observed that each neuron was activated

most by its respective MEI. Furthermore, we used the neurons (n = 40) with available verified

MEIs and prediction correlation values exceeding 0.5, and fed these preferred stimuli into our

Fig 6. In silico experiments of neuronal activity with derived MEIs. (a) Activation distributions of 6 exemplary neurons driven by the 6 verified MEIs

(green and gray representing the respective MEI and remaining MEIs, respectively). (b) Response matrix of each neuron activated by the verified MEIs

of all neurons. Scaling was applied to each row to ensure that the maximum of the responses to all stimuli is equal to one. (c) Estimated MEIs for L2+L1

(first row) and variational (second row) models, MEI_std (third row), as well as significance map (fourth row; white, p< 0.01, one-sample two-sided

permutation test against zero for 10,000 repeats), for three exemplary neurons when using 40% of training data. MEI and MEI_std in the UV channel,

with different color scales. Note that MEI has much larger absolute values than MEI_std. (d) 1D histogram of neuronal activity driven by the generated

MEIs from the variational model for Neuron 1 when using 40% of training data. Insets: example MEIs with corresponding activation indicated by

dotted lines (red, maximum of L2+L1; green, variational). (e) Scatter plot of activation driven by MEIs yielded from variational (using the weight mean

μ) and L2+L1 models at one random seed when using 40% of training data. Each dot representing one cell. (f,g,h) Same with (c), (d) and (e), but using

100% of training data.

https://doi.org/10.1371/journal.pcbi.1012354.g006
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trained model. We observed that 92.5% of neurons were elicited by the respective MEI with

more than 80% of highest activity (Fig 6b), suggesting that our Bayesian method works effec-

tively well.

To further assess which method generates the more exciting stimuli for each cell, we con-

ducted in silico experiments using a held-out L2+L1 model trained by full data as a digital

testbed. We used a CNN model with regularization instead of other models as previous studies

have demonstrated its feasibility on yielding cells’ preferred stimuli [20–23]. We fed the MEIs

generated by other models to the testbed and compared the neural activity. Specifically, we

tested the model using variational inference and the one using L2 and L1 regularization with

40% and 100% of training data.

We found that these learned filters resembled neural features in the early visual system [1,

3] and localized more in the visual field with more training data (Fig 6c and 6f; S8 Fig). Like

for the first dataset (Fig 3a), MEI_std was not uniform across visual space, e.g., some presented

Gaussian or bar shapes. Additionally, we examined whether the posterior of each pixel differs

significantly from zero for the 100 sampled MEIs and found that the significance map may

indicate zero-crossings in visual representations. For an example neuron, we measured the

responses for all the 506 MEIs yielded from five variational models, and observed that these sti-

muli drove this neuron with quite different activity, with the maximum response larger than

the maximum one yielded (from 6 MEIs) by the traditional models (Fig 6d and 6g). With

more training data, the activation distribution shifted towards higher mean with smaller vari-

ance. Additionally, we compared the activation on individual neurons for two methods (Fig 6e

and 6h), and observed that the Bayesian approach yielded significantly higher responses for

the condition using 40% (p = 0.0473, two-sided permutation test with n = 10,000 repeats) of

training data and comparable responses for the condition using full data (p = 0.2114).

In summary, our variational model allowed statistical test for the derived response func-

tions and yielded the stimuli driving neurons better than traditional methods in the limited

data regime, suggesting that weight uncertainty benefits the learning of neural representations.

Discussion

We presented a Bayesian approach for identification of neural properties by incorporating

model uncertainty through learning the distribution of model weights, aiming to estimate neu-

ral features with credible intervals. Our empirical results on different datasets show that the

variational method had higher or comparable predictive performance, especially in the limited

data regime, compared to methods using dropout or traditional methods learning point esti-

mates of model parameters. Moreover, by sampling from posterior distribution of model

weights, our approach enabled to provide credible intervals and test statistics for the learned

MEIs, avoiding the idiosyncrasy of a single model. Finally, in silico experiments show that the

variational model yielded the MEIs driving neurons with higher activity compared to the tradi-

tional model when limited data were used for training. This suggests that model uncertainty

contributes to learning neural transfer functions with a high data efficiency.

Variational models with cold posterior effects

Our Bayesian method had best prediction accuracy when using log likelihood as an evaluation

metric. The results with three metrics demonstrated that the variational model had higher/

comparable predictive performance compared to others. We noticed that the improvement

was marginal for many conditions, primarily occuring in a limited data regime. Such improve-

ment was sensitive to the data size and might disappear with the increase of training data.

However, high data efficiency is of great importance given the high cost of data collection and
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the limited recording time in neuroscience. A common scenario is that non-linear response

functions, with a high-dimensional stimulus space, are learned from limited amounts of

recorded data.

Compared to a standard objective function, we used βv to adjust the weighting between the

prior and the likelihood and achieved the best predictive performance with βv< 1.0. Wenzel

et al. [35] did many hypothesis tests to study the origin of this cold posterior effect, including

minibatch noise, bias-variance tradeoff, dirty likelihood, prior variance, training set size,

model capacity and initialization. They showed that the inappropriate prior was related to the

predictive performance improvement for βv< 1.0 and claimed that this was probably not the

only cause. Therefore, we should be more careful when interpreting the inferred posterior. In

fact, we did observe that the variational method and the MC dropout method underestimated

the uncertainty of model parameters, suggesting future work on calibrating these models [53,

54]. Additionally, such calibration analysis could be used in future studies to evaluate model

reliability, compare model assumptions and guide model selections. Furthermore, it might be

interesting to use proper scoring rules, e.g., Continuous Ranked Probability Score, to evaluate

the accuracy of probabilistic predictions for the variational method [55, 56].

Relation to trial-to-trial variability

Neural information process is probabilistic, i.e., neurons respond with trial-to-trial fluctua-

tions to a repeated presentation of a stimulus [57, 58]. Response variability is found across neu-

ral systems, originating from diverse factors, such as synapse variation, channel noise, brain

state, and attention [52, 59–63]. Additionally, the variability between populations of neurons

are correlated. In a simplified case, a pair of neurons may present correlations for the single-

trial responses, i.e., pairwise noise correlation, which also contributes to neural coding ([64];

reviewed in [65–68]). Such response variability is inherent in neural data itself and is a kind of

aleatoric but not epistemic uncertainty. We note that the standard deviations of the estimated

MEIs from our models decreased with the increasing amounts of training data, suggesting that

the variability of the sampled predicted responses may not be related to the response uncer-

tainty in biological neurons or our models may predict a mix of both uncertainties (S6 Fig).

Additionally, the uncertainty in q(w|θ) should be primarily related to the epistemic uncer-

tainty, it could converge to zero in the unlimited-data regime. Still, it may be related to alea-

toric uncertainty too, as we may use suboptimal loss functions and model architectures, both

of which may also reflect a model’s inability to capture the inherent noise in data.

Necessity of uncertainty quantification for yielded preferred stimuli

Though DNN approaches have demonstrated remarkable power in predicting neural

responses to diverse stimuli and generating novel hypothesis about neuronal features, they

require significant amounts of stimulus-response pair data for the training. Besides the episte-

mic uncertainty introduced by limited data, such hypothesis also entails further closed-loop

animal experiments to verify the derived properties, which consumes much experimental time

[20, 23]. Still, it is impossible to confirm the yielded preferred stimuli for all neurons across the

high-dimensional stimulus space with experiments. Practically, only a subset of cells are

selected for verification. Probabilistic MEIs allow us to pinpoint those neurons with interesting

but subtle/uncertain derived features. Therefore, it is critical to quantify the uncertainty of the

yielded representations for all recorded neurons [69, 70]. Additionally, the credible interval of

the derived features offers an opportunity to generate an ensemble of infinite preferred stimuli.

An interesting study would be to compare the neuronal activity driven by these similar MEIs

in animal experiments, which may allow to test the robustness of the biological system.
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We note that, even for a model using point estimate of parameters (such as L2+L1), it may

yield different preferred stimuli by initializing the MEI generation randomly. Yet, this uncer-

tainty depends on the starting points of non-convex optimizations, rather than the training

data. Empirically, we found that such variance was quite stable when using L2+L1 models with

different amounts of training data and was also much smaller than the MEI variance we com-

puted (cf. Fig 5b). Therefore, the measure of epistemic uncertainty calls for a Bayesian frame-

work or an ensemble of many models.

Bayesian models, unlike traditional ‘point-estimation’ approaches, offer the advantage of

quantifying the uncertainty of inferred neural features. Nevertheless, in seeking to capture the

full distribution of weights, they entail increased complexity including model parameters and

hyperparameters, which in turn necessitate higher computational demands and may pose

challenges for interpretation.

Future work & general impact

Incorporating uncertainty to DNNs have flourished in recent years [reviewed in 53, 54], includ-

ing Bayesian methods which specify a prior distribution for network weights and approximate

the full posterior given the training data using different tricks such as variational inference [32,

71], Laplace approximation [72, 73] and expectation propagation [74]. Non-Bayesian methods

include applying MC dropout in the network [44] or training an ensemble of models that are

initialized by different seeds [75]. In the future, our variational approach could be extended by

more advanced methods such as incorporating correlated model parameters [71] or jointly con-

sidering model and parameter uncertainty [76]. Additionally, other uncertainty representation

methods such as Stochastic Weight Averaging-Gaussian [77] are interesting and promising

directions, especially for large-scale model architectures and datasets. While these methods are

powerful to predict uncertainty, it would be interesting to investigate biologically inspired

methods such as adding noise to network parameters/activation in the future.

We used a Poisson loss function to train our model, which may not be optimal considering

that neuronal responses may present non-exact Poisson behavior [51]. In this case, our model

may capture only a part of trial-to-trial variability in neural data. Such response fluctuation

depends on many conditions, including biochemical process, internal brain states and engaged

behavioral tasks [51, 52, 59, 60]. These factors have been described by a low-dimensional latent

state models [52, 78, 79]. Therefore, a potential extension of our method could be a variational

network incorporated with latent state variables.

Bayesian frameworks could potentially advance neural prediction in multiple ways. One

promising direction is Bayesian model comparison. It enables us to select model hyperpara-

meters and network architectures with promising out-of-distribution detection performance

by computing marginal likelihood. However, it is challenging in deep neural networks and

requires additional estimation methods such as Gauss-Newton approximations to the Hessian

[80–82]. A starting point could be to try stochastic variational inference which estimates both

model and weight uncertainty [76]. Another interesting research is to estimate the amount of

data for achieving performance saturation for specific animal-electrode noise-recording

method combinations. This may involve leveraging techniques such as Bayesian optimization

[83, 84] and Bayesian experimental design [85, 86]. However, it may pose a considerable chal-

lenge. Notably, neurons at different brain regions may feature different levels of nonlinear pro-

cessing. As a result, cells at higher visual areas probably demand more training data compared

to at the retina. Additionally, it is important to calibrate a probabilistic model, which could

overestimate/underestimate the uncertainty of the posterior. Furthermore, trial-to-trial vari-

ability inherent in neural data varies across brain regions [51], potentially influencing
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predictive performance as well. Considering our model may not capture such aleatoric uncer-

tainty well, alternative probabilistic methods may be demanded. A promising start may be to

use Bayesian experimental design to actively select the informative stimuli during closed-loop

experiments to fit response functions and distinguish between models [24].

Our in silico experiments indicate that the stimuli generated by the variational model driv-

ing higher neuronal activation than the CNN with regularization, which requires future animal

experiments to test. Additionally, we noticed that the MEI_std was not uniform in the visual

field for each neuron and its location was not overlaid with the central MEI, for example, it

seems to sit on the surround of the corresponding MEI. It would be interesting to examine

and quantify the MEI uncertainty in regard of visual space, which might be related to contex-

tual sensory processing [87–89].

More generally, why do we care about the uncertainty of the estimated neural representa-

tions? Even with closed-loop experiments, it is impossible for us to test all potential (preferred)

inputs for the recorded neurons [20, 21, 23]. Therefore, we always expect to have a confidence

interval for the test statistics. Besides, a Bayesian model offers a manner to generate many stim-

ulus candidates by sampling for stimulating neural systems, which may offer new insights for

understanding the biological computation.

Supporting information

S1 Appendix. Additional model details.

(PDF)

S1 Fig. Neural prediction for first dataset. (a,b) Predictive performance (correlation coeffi-

cient, CC) based on validation data during training for variational models (βv = 0.1) with dif-

ferent prior distributions. All layers adopted the same σ2 = exp(−6) with different π and

σ1 values (a), or with the same parameters of prior distribution (b). We picked π = 0.5, σ1 = 1,

σ2 = exp(−6) for subsequent model training. (c) Predictive performance based on validation

data during model training for different numbers of Monte Carlo sampling. We picked num-

ber = 1 or 2 to save training time. (d) Model performance based on validation data during

training for the baseline and variatonal models with different βv values. (e) Overall variance of

predicted responses to test stimuli for different βv values. (f) Histogram of response variance

(top) and MEI (RF) variance (bottom) for the variational and the MC dropout models. Dotted

line represents the mean of histogram. (g) Model performance (left) based on test data and RF

overall variance (right) for two probabilistic models with different amounts of training data.

Error bars in (e) and (g) represent standard deviation of n = 10 random seeds for each model.

(TIF)

S2 Fig. Estimated MEIs for first dataset. (a,b) MEIs of 30 exemplary neurons for the first

dataset generated by the L2+L1 model (a) and the variational one (b).

(TIF)

S3 Fig. Uncertainty analysis for first dataset. (a) Scatter plot of response CC and response

variance for variational model at one random seed (each dot representing one neuron;

CC = 0.24, p = 0.05). (b) Scatter plot of response CC and MEI variance for variational model at

one random seed (each dot representing one neuron; CC = −0.37, p = 0.0001). (c) Scatter plot

of mean firing rate and MEI variance for variational model at one random seed (each dot rep-

resenting one neuron; CC = −0.47, p< 0.0001). (d) Same with (a), but for MC dropout model

(CC = 0.18, p = 0.07). (e) Same with (b), but for MC dropout model (CC = −0.23, p = 0.02). (f)

Same with (c), but for MC dropout model (CC = −0.33, p = 0.006). (g) Same with (a), but for

ensemble model (CC = 0.19, p = 0.06). (h) Same with (b), but for ensemble model (CC = −0.34,
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p = 0.0004). (i) Same with (c), but for ensemble model (CC = −0.35, p = 0.0003).

(TIF)

S4 Fig. Model evaluation using RMSE and log likelihood for second dataset. (a,b) Like Fig

5a but using RMSE (a) and log likelihood (b) to compare models. When using RMSE, we

found our variational method had equivalent prediction accuracy to the MC dropout model in

the condition of full data (p = 0.1709), and the Bayesian one outperformed the MC dropout

one in conditions of less data (p = 0.0001 at 20% of data, p< 0.0001 at 40%, p = 0.0001 at 60%,

p = 0.0021 at 80%). When using log likelihood, the variational model had significantly higher

predictive performance than the MC dropout method (p = 0.0002 at 20%, p< 0.0001 at 40%,

p< 0.0001 at 60%, p< 0.0001 at 80%, p< 0.0001 at 100%).

(TIF)

S5 Fig. Neural prediction for second dataset. (a) Model performance based on validation

data during training for the baseline and the variational models with different βv values. (b,c)

Scatter plot of response CC and MEI (RF) variance for MC dropout (b) and variational (c)

models for 10 seeds (CC = −0.25, p = 0.001 and CC = −0.34, p< 0.0001 for dropout and varia-

tional one, each dot representing one neuron at one random seed). (d) Predictive perfor-

mance, overall RF variance and overall response variance for variational models with different

βv values. (c) Predictive performance based on validation data during model training for differ-

ent numbers of Monte Carlo sampling. We picked number = 1 or 2 to save training time. (d)

Model performance based on validation data during training for the baseline and the varia-

tional ones with different βv values. (e) Scatter plot for overall response CC and overall RF vari-

ance for the variational methods with different βv values (d) and at 10 seeds (CC = −0.82,

p< 0.0001). Each dot represents one model. (f) Overall response variance for different

amounts of training data for the variational models (10 seeds per model). (g) Scatter plot for

overall response CC and overall RF variance for the dropout model with different amounts of

training data and at 10 seeds (CC = −0.17, p = 0.24). Each dot represents one model. Error bars

in (d) and (f) represent standard deviation of n = 10 random seeds for each model.

(TIF)

S6 Fig. Variance of predicted vs. recorded responses for second dataset. Using the trained

models, we tested whether the variance of predicted responses was related to the variance of

recorded responses for each neuron. We first estimated the predicted response variance to a

stimulus. For the L2+L1 model, as the mean of neural responses is proportional to the vari-

ance, we used the model output (a single predicted value) as a substitute. For the variational

one, we either used the mean of predicted responses (multiple sampling times) as a substitute

or calculated the response variance explicitly. (a) Scatter plot (axes in log scale) of predicted

response variance (using response mean as a substitute) and recorded response variance for

one neuron for a variational model. Each dot representing one stimulus. (b) Distribution of

correlations between recorded and predicted response variance for all neurons for the L2+L1,

variational-mean (using response mean as a substitute) and variational-variance (calculating

response variance), at one random seed. Horizontal lines representing distribution means. (c)

Mean correlations between two response variances (10 seeds per model). Note that varia-

tional-variance had lower correlation than the L2+L1. Error bars represent standard deviation

of n = 10 random seeds for each model. We computed the correlation using the predicted and

recorded response variances of the test stimuli for each neuron (CC = 0.34, p = 0.002, Spear-

man correlation for an exemplary neuron; a). We found that the variational one using

response mean as a substitute of variance had a slightly higher mean correlation across neu-

rons compared to the L2+L1 (p = 0.0368, two-sided permutation tests on 10 random seeds for
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10,000 times; b,c).

(TIF)

S7 Fig. Neural activation test with verified MEIs for second dataset. Instead of performing

closed-loop experiments to examine the effectiveness of our veriational model, we used the

verified MEIs from previous study to compare the neuronal activities driven by different sti-

muli [21]. We plotted 1D histograms of activation of 6 exemplary cells (from left to right)

driven by the verified MEIs (from top to bottom). We used green color instead of gray to high-

light the highest neuronal activation on the diagonal (driven by the respective verified MEI).

(TIF)

S8 Fig. Estimated MEIs for second dataset when using full training data. (a,b) MEIs in the

UV channel of 30 exemplary neurons generated by L2+L1 model (a) and variational one (b).

(TIF)
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