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Simple Summary: Augmentation of prostate-specific membrane antigen (PSMA)-targeted radioligand
therapy (RLT) by alpha emitting 225Ac, known as the tandem therapy concept, is a promising escalating
treatment option in patients with advanced metastatic castration-resistant prostate cancer (mCRPC).
The aim of this study was to analyze the value of imaging parameters in baseline [18F]FDG PET/CT
for predicting response and outcome to PSMA tandem RLT in patients with insufficient response
to the initial [177Lu]Lu-PSMA-617 monotherapy. The quantitative whole-body imaging biomarker
total lesion glycolysis (TLG) was identified as a prognostic biomarker for overall survival (OS), while
response could not be predicted by any of the tested parameters. Using [18F]FDG PET/CT in clinical
practice could help predict outcomes and may provide more personalized care for mCRPC patients.

Abstract: Background/Objectives: The augmentation of [177Lu]Lu-PSMA-617 radioligand therapy by
alpha emitting [225Ac]Ac-PSMA-617, known as the tandem therapy concept, is a promising escalating
treatment option in advanced mCRPC. In this study, we evaluated the value of [18F]FDG PET/CT-
derived molecular imaging biomarkers for predicting response and outcome to PSMA tandem RLT in
n = 33 patients with insufficient response on [177Lu]Lu-PSMA-617 monotherapy. Methods: Six different
molecular imaging parameters at baseline, i.e., before initiation of PSMA tandem RLT with respect to
SUVmax, SUVpeak, SUV5, SUVmean, metabolic tumor volume (MTV), and total lesion glycolysis (TLG)
were tested for association with response and overall survival (OS). Results: After the initiation of
augmentation, 24.2% of patients with a previously insufficient response experienced partial remission,
and 39.4% experienced stable disease. The median OS was 7 months (95% CI: 4–11 months). None of
the tested parameters were able to predict the response (all p > 0.529). In contrast, the [18F]FDG PET/CT-
derived whole-body molecular imaging parameter TLG was significantly (p = 0.029) associated with OS
of patients undergoing [225Ac]Ac-PSMA-617 augmented [177Lu]Lu-PSMA-617 RLT after insufficient
response to [177Lu]Lu-PSMA-617 monotherapy. Conclusion: Implementing [18F]FDG PET/CT in the
management of PSMA-RLT in clinical practice may contribute to outcome prediction and provide a
route to more individualized management in mCRPC.

Keywords: FDG; total lesion glycolysis; TLG; biomarker; mCRPC; PSMA; radioligand therapy; 225Ac;
tandem RLT
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1. Introduction

Currently, prostate cancer (PC) is listed among the most abundant forms of tumor
disease worldwide [1]. While in early-stage PC, the survival probability is still comparably
high, the prognosis worsens with progression into the condition of metastatic castration-
resistant prostate cancer (mCRPC), which presents resistance to castration by, e.g., androgen
deprivation therapy or prostatectomy (ADT) [2–5]. Nonetheless, there are different therapy
options for patients diagnosed with mCRPC, including treatment with novel androgen
axis drugs (NAAD) [6,7], taxane-based chemotherapy [8,9], bone-seeking 223Ra [10], and
PARP inhibitors [11]. However, a considerable share of patients show a progressive disease
despite intensive treatment efforts.

In this scenario, radioligand therapy (RLT), targeting the prostate-specific membrane
antigen (PSMA) is a favorable option for treatment. PSMA-RLT, using the beta emitter
177Lu in the form of [177Lu]Lu-PSMA-617, was recently approved by the Food and Drug
Administration (FDA) and the European Medicines Agency (EMA) [12,13] and has proved
to be effective and well tolerated in prospective and retrospective studies [14–20]. For
patients who present or develop resistance to this form of PSMA-RLT, further treatment
options are very limited. In this setting, the use of an alpha emitter, e.g., in the form of
[225Ac]Ac-PSMA-617, may serve as a therapy-escalating option to intensify the anti-tumor
effect. Alpha emitters such as 225Ac induce a higher rate of double-strand breaks in the
DNA of target cells, which are less likely to be repaired by the cell’s DNA-repair system
than the single-strand breaks, which are commonly induced by 177Lu [21]. Besides the
increased anti-tumor effect, increased side effects, especially therapy limiting xerostomia,
are observed when applying [225Ac]Ac-PSMA-617 as a monotherapy [22,23].

One approach to balance adverse events and the anti-tumor effect is the combined ap-
plication of [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 with adjusted doses, known as
the ‘PSMA tandem RLT’, which has been shown to be effective, especially in this challenging
patient cohort [24–28]. This form of therapy has recently been introduced and has so far only
been studied clinically in small cohorts of patients. There is limited research on this topic
and, to our knowledge, only two studies have investigated potential biomarkers associated
with this treatment [25,28]. However, the utilization of biomarkers is crucial for assessing
the expected therapeutic benefit for the individual patient and for objective monitoring
during treatment. While for [177Lu]Lu-PSMA-617 monotherapy, 18F-Flurodeoxyglucose
([18F]FDG) positron emission tomography (PET)/computed tomography (CT) has been
shown to be an additional valuable tool for predicting response to treatment [29,30], such
reports are still missing in the context of [225Ac]Ac-PSMA-617/[177Lu]Lu-PSMA-617 tan-
dem therapy. In this study, we evaluated the utility of [18F]FDG PET/CT derived molecular
imaging biomarkers for predicting response and outcome to PSMA tandem RLT in patients
with insufficient response on [177Lu]Lu-PSMA-617 monotherapy.

2. Materials and Methods
2.1. Patient Population and Study Design

This study retrospectively analyzed a cohort of n = 33 mCRPC patients who received
[177Lu]Lu-PSMA-617 RLT, augmented by at least one cycle of [225Ac]Ac-PSMA-617. Prior
to this 225Ac augmented PSMA-RLT, patients had received up to eight cycles of [177Lu]Lu-
PSMA-617 monotherapy (range: 1–8 cycles). All of the patients enrolled showed insufficient
response on [177Lu]Lu-PSMA-617 monotherapy, defined as any increase in prostate-specific
antigen (PSA) or a decrease < 50%. In an attempt to analyze molecular imaging biomarkers
in [18F]FDG PET/CT, the inclusion criteria required that all included patients had received
[18F]FDG PET/CT scans within one month prior to the first cycle of [225Ac]Ac-PSMA-
617/[177Lu]Lu-PSMA-617 tandem RLT. A visual representation of the study design is
shown in Figure 1. All patients received intensive pretreatment prior to any RLT and
intense PSMA expression was verified by [68Ga]Ga-PSMA-11 PET/CT. Details of patient
pretreatment and characteristics are given in Table 1. Informed consent was obtained
from all patients included in this study in accordance with the Declaration of Helsinki.
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PSMA-RLT was applied on a compassionate use basis, following the regulations of the
German Pharmaceutical Act §13 (2b). The analysis was approved by the local institutional
review board (ethics committee approval number 140/17).
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Table 1. Patient characteristics.

Age Median [years] (range) 71 (58–85)
ECOG performance score

category
% (n)≤1 76 (25)

2 21 (7)
3 3 (1)

PSA Median [ng/mL] (range) 98 (8–2307)
ALP Median [U/L] (range) 127 (48–421)

Hemoglobin Median [g/dL] (range) 11 (7–14)
Prior therapies

% (n)

Prostatectomy 39 (13)
Radiation 52 (17)

Abiraterone 79 (26)
Enzalutamide 82 (27)

Abiraterone or Enzalutamide 100 (33)
Abiraterone and

Enzalutamide 61 (20)

Docetaxel 91 (30)
Cabazitaxel 36 (12)

Docetaxel + Cabazitaxel 36 (12)
223Ra 15 (5)

Prior 177Lu-PSMA-617 RLT % (n) 100 (33)
cycles Median (range) 4 (1–8)

cumulative activity Median [GBq] (range) 26.4 (7.4–60.4)
Site of metastases

% (n)
Bone 91 (31)

Lymph node 56 (19)
Liver 26 (9)
Lung 9 (3)

Alkaline phosphatase (ALP); Eastern Cooperative Oncology Group (ECOG); prostate-specific antigen (PSA);
radioligand therapy (RLT).

2.2. Details of PSMA-RLT

The mean time interval between discontinuation of [177Lu]Lu-PSMA-617 monother-
apy and initiation of [225Ac]Ac-PSMA-617 augmented [177Lu]Lu-PSMA-617 RLT was
2 ± 2 months. During the tandem PSMA-RLT, patients received a mean of 2 ± 1 cy-
cles of [177Lu]Lu-PSMA-617 and a mean of 2 ± 1 augmentations with [225Ac]Ac-PSMA-
617. The mean administered activity per cycle was 5.4 ± 1.7 GBq for [177Lu]Lu-PSMA-
617 and 3.8 ± 1.7 MBq for [225Ac]Ac-PSMA-617. The mean cumulative activity was
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9.4 ± 6.4 GBq for [177Lu]Lu-PSMA-617 and 7.3 ± 6.7 MBq for [225Ac]Ac-PSMA-617. The
administered [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 were synthesized according
to the published procedures of Kratochwil et al. [31,32]. The PSMA-617 was provided
by ABX Advanced Biochemical Compounds GmbH (Radeberg, Germany). 177Lu was
provided by Eczacıbaşı-Monrol Nuclear Products Co. (Istanbul, Turkey), while 225Ac was
obtained from Van Overeem Nuclear b.v. (Breda, The Netherlands). For 6 GBq of 177Lu,
150 µg of PSMA-617 was used for labeling, while for 10 MBq of 225Ac, 300 µg of PSMA-617
was applied. The injected activities were adapted for each individual patient, depending on
the characteristics of body surface area, the assessed tumor burden (in [18F]FDG PET/CT
and [68Ga]Ga-PSMA-11 PET/CT), the presence of metastases located in the bone marrow,
the grade of renal impairment, and the course of disease. In agreement with the German
Radiation Protection Act, all patients were treated under the conditions of an inpatient
stay. Intravenous hydration (500 mL 0.9% NaCl solution) was given to all patients, starting
30 min prior to injection of the radiopharmaceutical. In addition, salivary gland cooling
was administered to the patients.

2.3. [18F]FDG PET/CT Image Acquisition

Patients underwent [18F]FDG PET/CT scans within one month prior to the initiation
of tandem RLT. The mean cumulative administered activity was 264 ± 42 MBq. Following
tracer injection, patients received an infusion of 500 mL of 0.9% NaCl. [18F]FDG was
provided by ZAG (Karlsruhe, Germany). In accordance with the current imaging guide-
lines [33], the interval between tracer injection and imaging was 60 min. The PET/CT
scans were performed in 3D-ToF mode, utilizing a Biograph 40 mCT PET/CT scanner
(Siemens Medical Solutions, Knoxville, TN, USA), applying an extended field of view of
21.4 cm (TrueV). The acquisition of PET images was performed between vertex and mid-
femur with a 2 min/bed position. The slice thickness was 3.00 mm and a pixel matrix of
200 × 200 was applied. Attenuation-corrected PET reconstruction was performed using a
three-dimensional OSEM algorithm with Gaussian filtering, 3 iterations, 21 subsets, and a
reconstructed slice thickness of 5.0 mm. Additionally, scatter correction, decay correction,
and random correction were applied. For attenuation correction and anatomic localization,
low-dose CT was performed, using an X-ray tube voltage of 120 keV and a modulation of
the tube current using CARE Dose4D with a reference tube current of 30 mAs. All CT scans
were reconstructed within a 200 × 200 matrix, employing a slice thickness of 5.0 mm and
an increment of 2.0–4.0 mm.

2.4. Evaluation of Predictive Biomarkers

[18F]FDG PET/CT images were analyzed using the Syngo.Via software (Enterprise,
software version number VB 60, Siemens, Erlangen, Germany) and the following param-
eters were calculated: (i) SUVmax, (ii) SUVpeak, (iii) SUVmean of the five most intense
lesions (SUV5), (iv) SUVmean of all lesions, (v) the whole-body metabolic tumor volume
(MTV), and (vi) the total lesion glycolysis (TLG) [33,34]. MTV and TLG were evaluated
by applying a semi-automatic tumor segmentation algorithm using 41% SUVmax as the
threshold [35]. Figure 2 exemplifies the derived parameters. All parameters were tested
for their association with patients’ biochemical response and overall survival (OS). Follow-
ing the recommendations of the ‘prostate cancer clinical trials working group 3′ (PCWG
3) [36], progressive disease (PD) was defined as a serum PSA increase of ≥25%, while a
partial remission (PR) was defined as a serum PSA decrease of ≥50%. Patients with an
increase in serum PSA level of <25% or a decrease of <50% were considered to have stable
disease (SD). Patients with PR were categorized as responders and patients with SD or PD
as non-responders.
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Figure 2. Maximum intensity projection of [18F]FDG PET/CT with illustration of PET-derived
parameters. (A) SUVmax (red), SUVpeak (red), SUV5 (gold). (B) SUVmean (blue), MTV (blue),
TLG (blue).

2.5. Statistical Analysis

PRISM 10 software (GraphPad Software, San Diego, CA, USA) was used for statistical
analysis. The threshold for statistical significance was set at p < 0.05. OS was defined as the
time interval between the start of [225Ac]Ac-PSMA-617-augmented [177Lu]Lu-PSMA-617
RLT and either the occurrence of death from any cause or the last contact with the patient.
The Mann–Whitney U test was used to determine the association between each biomarker
and response. The Kaplan–Meier method was used to test for association with OS, with
groups stratified by the respective median value.

3. Results

The analysis of biochemical response to [225Ac]Ac-PSMA-617-augmented [177Lu]Lu-
PSMA-617 RLT revealed a median pre-therapeutic PSA value of 98 ng/mL (range:
8–2307 ng/mL) and a median post-therapeutic value of 188 ng/mL (range: 2–1865 ng/mL).
In total, eight patients (24.2%) were categorized as PR and were consequently assessed
as responders to the therapy. In total, 13 patients (39.4%) presented SD and 12 patients
(36.4%) PD, summing up to 25 cases (75.8%) of non-responders. Based on this catego-
rization we analyzed six different molecular imaging baseline parameters, derived from
[18F]FDG PET/CT performed prior to initiation of tandem PSMA-RLT, revealing that none
of them showed significant differences between responders and non-responders (SUVmax:
p = 0.995; SUVpeak: p = 0.795; SUV5: p = 0.529; SUVmean: p = 0.892; MTV: p = 0.555; TLG:
p = 0.732). Figure 3 shows boxplots depicting the distribution of data regarding all analyzed
parameters, split by responders (PR) and non-responders (SD or PD), respectively.

The median OS of the entire cohort was 7 months (95% CI: 4–11 months). The sub-
sequent Kaplan–Meier analysis showed no significant association with OS for five out of
six analyzed parameters. Stratified by the respective median, neither SUVmax (p = 0.114),
SUVpeak (p = 0.188), SUV5 (p = 0.097), SUVmean (p = 0.312), nor MTV (p = 0.139) reached
a level of significance. In contrast, TLG achieved a level of significance in Kaplan–Meier
analysis (p = 0.029). Patients with a TLG ≤ 453.62 SUV x mL (median value) experienced
a median of 11 months (95% CI: 7–15 months), a significantly longer OS than patients
with TLG > 453.62 SUV x mL surviving a median of 5 months (95% CI: 3–7 months). The
corresponding Kaplan–Meier graphs are presented in Figure 4.
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Figure 3. Boxplots presenting the analyzed parameters derived from [18F]FDG PET/CT prior to
the initiation of tandem PSMA-RLT (A) SUVmax, (B) SUVpeak, (C) SUV5, (D) SUVmean, (E) MTV,
and (F) TLG. None of the parameters showed a significant difference between responders (patients
showing partial remission, PR) and non-responders (patients showing stable disease, SD or progres-
sive disease, PD).

In Figure 5, two exemplary patients are shown, representing the association between
baseline TLG value and OS. The patient shown in Figure 5A presents a relatively low
baseline TLG value, corresponding with a high OS. In contrast, Figure 5B presents a patient
with a comparably high baseline TLG value and a notably shorter OS.
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Figure 4. Kaplan–Meier analyses of the [18F]FDG PET/CT-derived parameters (A) SUVmax,
(B) SUVpeak, (C) SUV5, (D) SUVmean, (E) MTV, and (F) TLG. All values are stratified by their
respective median. * This p-value reached statistical significance.
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Figure 5. Maximum intensity projections of [18F]FDG PET/CT, showing two exemplary mCRPC
patients before initiation of PSMA tandem RLT. The first patient showed a relatively low baseline TLG
value of 287.55 SUV x mL and experienced an overall survival (OS) of 22 months (A). In comparison,
the second patient presented a comparably high baseline TLG value of 1039.52 SUV x mL and
exhibited an OS of 2 months (B).

4. Discussion

[225Ac]Ac-PSMA-617-augmented [177Lu]Lu-PSMA-617 RLT is a promising therapy
option in the treatment of mCRPC [24–28]. This bimodular form of PSMA-RLT, known as
the tandem approach, was shown to be effective for patients, who experience progression
of disease or insufficient response under [177Lu]Lu-PSMA-617 monotherapy [24,25]. This
study identified baseline total lesion glycolysis (TLG) as a whole-body quantitative imaging
marker predicting OS in this setting.

The here-reported pilot study including n = 33 mCRPC patients is, to the best of
our knowledge, the first study investigating molecular imaging biomarkers derived from
[18F]FDG PET/CT in patients receiving PSMA tandem RLT after insufficient response to
conventional PSMA-RLT. As reported in prior studies on tandem RLT, the data confirm
the effectiveness of this approach in patients with insufficient response under [177Lu]Lu-
PSMA-617 monotherapy (PR in 24.2% of patients). However, none of the tested parameters
(SUVmax, SUVpeak, SUV5, SUVmean, MTV, and TLG) were able to predict the response. This
observation was somewhat expected and is in line with our clinical experience. In contrast
to the prediction of response, one of the analyzed parameters, TLG, was able to predict
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overall survival (OS) in our cohort (p = 0.029). The whole-body parameter TLG, including
total tumor volume and uptake, i.e., glucometabolic activity, represents a molecular imaging
parameter that indicates total tumor burden and aggressiveness simultaneously, which
may account for its superiority in predicting OS over other variables tested.

The suitability of TLG as a predictive imaging biomarker in prostate cancer is also
broadly supported by previously published studies. Our results are in line with the work
published by Ferdinandus et al., stating that [18F]FDG-positive tumor volume is predictive
for OS in mCRPC patients undergoing conventional PSMA-RLT with [177Lu]Lu-PSMA-
617 [37]. The finding that TLG predicts OS in mCRPC is also supported by several other
studies involving different mCRPC treatments: Wibmer et al. demonstrated, in univariate
and multivariable analysis, that whole-body TLG was significantly associated with OS in
the context of first-line abiraterone and enzalutamide treatment [38]. Similarly, Güzel et al.
have shown that TLG (labeled TTL-G in this publication) is predictive of OS for mCRPC
patients undergoing taxane-based therapy [39]. Bauckneht et al. also highlighted the role
of [18F]FDG PET as a tool for patient selection and response assessment in mCRPC patients
undergoing bone-seeking 223Ra irradiation [40] and in another study, demonstrated that a
lower TLG value was associated with higher response rates to androgen-receptor targeted
agents (enzalutamide and abiraterone) [34]. It should also be noted that TLG has been
identified as a predictive biomarker not only in mCRPC but also in other tumor entities,
mainly lymphoma and various solid tumors [41–43]. Further studies are needed to deter-
mine the relevance of these FDG-derived parameters in mCPRC. Considering the results
presented here, we suggest that [18F]FDG PET/CT should be established in the manage-
ment of PSMA-RLT in clinical practice, not only to detect mismatch metastases (intense
glucometabolic lesions with no or only faint PSMA expression) [44,45] but also to improve
outcome prediction by assessing the whole-body molecular imaging parameter TLG. The
identification and implementation of prognostic biomarkers may optimize treatment and
provide a route to more individualized management in mCRPC. The implementation of
TLG determination may be hampered by the time-consuming segmentation process, which
can take up to half an hour per patient. However, in the future, artificial intelligence-based
algorithms will certainly be able to perform TLG segmentation more efficiently, allowing
for practical implementation in clinical routines.

The study is subject to certain limitations, including its retrospective monocentric char-
acter, the limited sample size, and patient selection, which may confine the interpretation
and generalization of the results. Subsequent studies are necessary to confirm and extend
our findings, ideally in a prospective manner and additionally across other patient cohorts
in different clinical settings. While this study focused exclusively on the described tandem-
RLT approach, an evaluation of FDG-derived parameters in the context of 225Ac-PSMA
monotherapy, which was also shown to be a viable therapy option [46], is still pending.
It should also be mentioned that in this investigation, we concentrated only on [18F]FDG
PET/CT-derived parameters. Combined FDG/PSMA parameters or the impact of the
presence of, for example, small-volume mismatch lesions (intense glucometabolic lesions
with no or only faint PSMA expression) are certainly worth evaluating in future studies.

5. Conclusions

The [18F]FDG PET/CT-derived molecular imaging parameter of total lesion glycol-
ysis is significantly associated with the overall survival of mCRPC patients undergoing
[225Ac]Ac-PSMA-617-augmented [177Lu]Lu-PSMA-617 radioligand therapy after insuffi-
cient response to [177Lu]Lu-PSMA-617 monotherapy. Implementing [18F]FDG PET/CT in
the management of PSMA-RLT in clinical practice may provide a prognostic tool and a
route to more individualized management in mCRPC.
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ADT Androgen deprivation therapy
ALP Alkaline phosphatase
CI Confidence interval
CT Computed tomography
ECOG Eastern Cooperative Oncology Group
Hb Hemoglobin
mCRPC Metastatic castration-resistant prostate cancer
MTV Metabolic tumor volume
OS Overall survival
PET Positron emission tomography
PSA Prostate-specific antigen
PSMA Prostate-specific membrane antigen
PFS Progression-free survival
RLT Radioligand therapy
SUV Standardized uptake value
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