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Abstract 

This review explores the complex interactions between sedation and invasive ventilation and examines the potential 
of volatile anesthetics for lung- and diaphragm-protective sedation. In the early stages of invasive ventilation, 
many critically ill patients experience insufficient respiratory drive and effort, leading to compromised diaphragm 
function. Compared with common intravenous agents, inhaled sedation with volatile anesthetics better preserves 
respiratory drive, potentially helping to maintain diaphragm function during prolonged periods of invasive 
ventilation. In turn, higher concentrations of volatile anesthetics reduce the size of spontaneously generated tidal 
volumes, potentially reducing lung stress and strain and with that the risk of self-inflicted lung injury. Taken together, 
inhaled sedation may allow titration of respiratory drive to maintain inspiratory efforts within lung- and diaphragm-
protective ranges. Particularly in patients who are expected to require prolonged invasive ventilation, in whom 
the restoration of adequate but safe inspiratory effort is crucial for successful weaning, inhaled sedation represents 
an attractive option for lung- and diaphragm-protective sedation. A technical limitation is ventilatory dead space 
introduced by volatile anesthetic reflectors, although this impact is minimal and comparable to ventilation with heat 
and moisture exchangers. Further studies are imperative for a comprehensive understanding of the specific effects 
of inhaled sedation on respiratory drive and effort and, ultimately, how this translates into patient-centered outcomes 
in critically ill patients.
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Introduction
An early return of spontaneous breathing in invasively 
ventilated critically ill patients may prevent diaphragm 
disuse atrophy and expedite liberation from the ventilator 
[1–3]. However, overly vigorous respiratory efforts may 
induce potentially injurious high lung stress and strain, 
referred to as patient self-inflicted lung injury (P-SILI) 
[4]. Sedation and analgesia have substantial effects on 
respiratory drive and effort, yet their effects on outcomes 
of ventilated critically ill patients remain relatively 
unexplored [5, 6].

Until recently, sedation in invasively ventilated 
critically ill patients was restricted to the administration 
of intravenous sedatives, such as benzodiazepines, 
dexmedetomidine, ketamine, or propofol, each of which 
has relevant side effects and contraindications. Inhaled 
sedation with volatile anesthetics has gained popularity 
as an alternative to intravenous sedatives in intensive 
care unit (ICU) patients. Inhaled sedation may be 
particularly helpful for achieving lung- and diaphragm-
protective ventilation or more specifically lung- and 
diaphragm-protective sedation [7, 8]. This concept 
aims to integrate the contributions of mechanical 
ventilation, spontaneous breathing effort, and patient–
ventilator interactions to protect against iatrogenic or 
self-inflicted injury to the respiratory system — both 
the lungs and respiratory muscles. Sedation strategies 

play a pivotal role in lung and diaphragm protection 
because of their effect on respiratory drive and effort.

In this review, we explore the potential benefits of 
inhaled sedation for achieving lung- and diaphragm-
protective sedation. We begin by introducing risks and 
benefits of spontaneous breathing and the relevance 
of sedation for lung and diaphragm protection in 
invasively ventilated patients. Next, we provide a 
synthesis of current evidence on how inhaled sedation 
with volatile anesthetics may help to protect the lungs 
and diaphragm through its effects on respiratory drive 
and effort. Finally, we address the technical limitations 
of inhaled sedation in the ICU setting.

Methods
This is an expert opinion-based narrative review. 
References were thus included based on the authors’ 
subjective judgement on relevance to the field of 
research. Before synthesizing current evidence, the 
authors’ literature fundus was updated by searching 
PubMed with combinations of the following terms: 
volatile, inhaled, sedation, spontaneous breathing, 
spontaneous ventilation, respiratory drive, and lung- 
and diaphragm-protective ventilation. We additionally 
screened forward and backward citations of high-
impact publications.

Graphical abstract
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Risks and benefits of spontaneous breathing
Vigorous respiratory efforts can worsen or may even 
induce lung injury, often referred to as ‘patient self-
inflicted lung injury’ (P-SILI) [4]. P-SILI may result from 
high tidal volumes and breath stacking dyssynchrony 
[9], although the latter has recently been challenged in 
a porcine model [10]. Forceful inspiratory effort may 
alter ventilation distribution and contribute to regional 
overdistension from pendelluft [11–13]. Forceful 
exhalation may lead to alveolar derecruitment below 
functional residual capacity, potentially predisposing 
patients to atelectrauma [14]. Consistently, high 
driving pressure, as a surrogate for increased lung 
strain, is associated with adverse outcomes in assisted 
spontaneously breathing critically ill patients [15, 16]. 
Although clinical evidence for the existence of P-SILI 
remains indirect, it seems prudent and highly biologically 
plausible to reduce excessive respiratory efforts, 
especially in patients with injured lung tissue.

On the other hand, complete cessation of spontaneous 
breathing in invasively ventilated patients is detrimental 
to the diaphragm. Only 18 to 69 h of diaphragm inactivity 
under controlled mechanical ventilation results in 
marked diaphragm atrophy [17]. More specifically, 
diaphragmatic inactivity induces contractile weakness, 
ultrastructural fiber injury, and proteolysis in diaphragm 
tissue [18, 19]. In turn, excessive inspiratory effort can 
cause load-induced diaphragmatic injury, as shown 
in ultrasound studies on diaphragm thickness during 
invasive ventilation [3]. Both disuse atrophy and load-
induced injury of the diaphragm are associated with 
prolonged ventilation time and ICU length of stay [20, 
21]. Consequently, inspiratory efforts equivalent to those 
in healthy subjects at rest promise the highest probability 
for ventilator liberation [20]. In addition, a greater 
proportion of time spent at spontaneous ventilation 
is associated with faster liberation from the ventilator, 
highlighting the importance of preserving spontaneous 
breathing efforts during invasive ventilation [1, 2].

In addition to the importance of spontaneous breath-
ing for maintaining diaphragm function, it reduces 
ventilation heterogeneity, thereby improving ventilation-
perfusion mismatch and reducing overdistension in non-
dependent lung regions [22, 23]. Lower intrathoracic 
pressures further improve hemodynamics, as evident 
from reduced utilization of vasopressors and better renal 
and hepatic perfusion during spontaneous breathing 
[23–25] (Fig. 1).

Monitoring of respiratory effort
Although extremes of respiratory effort, both high 
and low, may contribute to lung and diaphragm injury, 

inspiratory effort is rarely monitored in routine clinical 
care of ventilator-dependent patients. Insufficient effort 
is twice as common as excessive effort, with roughly half 
of invasively ventilated patients having insufficient effort 
needed to maintain diaphragm function, compared to 
one-fourth with excessive effort [3, 20, 26, 27]. Excessive 
effort can be a sign of inadequately low ventilatory 
assistance, sedation, or analgesia, while insufficient 
effort often indicates ventilatory overassistance or undue 
sedative/analgesic effects [8]. Sedation scales poorly 
correlate with inspiratory effort, as even unresponsive 
patients may exhibit high effort, while easily arousable 
patients may show low or no effort at all [26]. Thus, 
monitoring respiratory drive and effort is necessary to 
ensure that spontaneous breathing is safe.

Various measures of respiratory drive and effort have 
been proposed alongside traditional arousal scales as 
targets for lung- and diaphragm-protective ventilation 
and sedation [7, 8]. Occlusion pressures generated 
during the initial 100 ms of inspiration (P0.1) or during 
an end-expiratory hold (Pocc) are the most broadly 
applicable measures as required functions are integrated 
in most ventilators. P0.1 more closely relates to drive and 
Pocc to effort, while both have reasonable to excellent 
diagnostic accuracy for extremes of lung stress and 
diaphragmatic inspiratory effort [28–30]. Esophageal 
manometry remains the gold standard for evaluating 
respiratory effort but is not widely available [31]. Surface 
electromyography of respiratory muscles correlates 
reasonably well with esophageal pressure-derived 
measures but remains experimental [32].

In summary, the importance of restoring and 
preserving spontaneous breathing in invasively ventilated 
critically ill patients is increasingly recognized. Although 
monitoring of inspiratory efforts may help to increase 
the safety of spontaneous breathing, it is not routinely 
implemented.

The concept of lung‑ and diaphragm‑protective sedation
The ideal sedative agent would ensure patient comfort 
while normalizing respiratory drive and effort for 
maintaining diaphragm function. At the same time, 
it should be capable of avoiding high lung stress and 
strain or load-induced diaphragmatic injury. As shown 
in a recent physiological systematic review and in a 
vast number of preclinical and clinical investigations, 
the effects of sedatives on respiratory patterns vary 
substantially [5, 6]. Thus, there may not be one standard 
sedative that is suitable on its own to ensure adequate 
respiratory drive and effort for the full bandwidth of 
respiratory patterns in critically ill patients.

The core concept of lung- and diaphragm-protec-
tive sedation is that both respiratory drive and patient 
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comfort are considered when choosing the sedative 
agent and its dose. Particularly in patients with inap-
propriately low or high inspiratory effort after the opti-
mization of ventilatory assistance at the prescribed 
sedation depth, the sedation strategy, including agent 
and dose, should be reconsidered. In addition, multi-
modal analgesia should be leveraged to minimize the 
need for high doses of sedatives in line with current 
guidelines [33]. Opioids mostly reduce the respira-
tory rate with limited effects on inspiratory effort [5, 
6, 34]. Utilization of short-acting opioids (e.g., sufenta-
nil, remifentanil) in invasively ventilated patients thus 
improves control over respiratory rate in spontaneously 
breathing patients while allowing rapid correction of 
overdoses to restore spontaneous breathing (Fig. 2).

Although supported by indirect evidence, there are 
currently no clinical trial data supporting any particular 
sedative strategies targeting respiratory drive and 
effort to improve patient-centered clinical outcomes. 
Lung- and diaphragm-protective sedation emphasizes 
individualized sedation strategies targeting safe ranges 
for both sedation depth and respiratory effort, thus 

rejecting a “one-sedative-fits-all” approach and calling 
for further research in this area.

Inhaled sedation preserves respiratory drive
Several factors can modulate respiratory drive, 
broadly classified as biochemical inputs (pH, carbon 
dioxide, oxygen), mechanical inputs (lung and chest 
wall mechanoreceptors), suprapontine inputs (pain, 
discomfort, anxiety, wakefulness), and possibly 
inflammatory inputs [35]. Respiratory drive can be 
roughly divided based on the most important stimuli: 
wakefulness, hypoxic, and hypercapnic drive. While 
sedation suppresses all of these factors to some extent, 
wakefulness and hypoxic drive are largely eliminated 
by sedation and supplemental oxygen, leaving arterial 
pH and carbon dioxide as the major physiological 
determinants of respiratory drive in sedated 
spontaneously breathing patients [36]. Although the 
effects of anesthetics on ventilation may be extrapolated 
from perioperative clinical data, there is a scarcity of 
clinical investigations in critically ill patients [5].

Fig. 1  Pulmonary and hemodynamic effects of controlled ventilation and spontaneous breathing. During spontaneous breathing (lower left), 
contraction of the diaphragm will direct ventilation (blue arrows) to the dorsal lung regions where perfusion (orange arrows) is higher than in the 
ventral regions. This reduces the ventilation-perfusion mismatch which is more common in controlled ventilation (upper left). Controlled ventilation 
also increases intrathoracic pressures which will decrease venous return and cardiac output (upper right). Spontaneous breathing attenuates 
this deleterious hemodynamic effect by decreasing intrathoracic pressures during inspiration (lower right). PAW, airway pressure generated 
by the ventilator; PMUS, pressure generated by the respiratory muscles



Page 5 of 13Müller‑Wirtz et al. Critical Care  (2024) 28:269	

Volatile anesthetics reduce tidal volumes and simul-
taneously increase respiratory rate in a dose-dependent 
fashion [37–39], thus bearing the potential to reduce 
lung stress and strain in spontaneously breathing patients 
(Fig.  3). Notably, volatile anesthetics significantly sup-
press minute ventilation only at doses around and above 
1 MAC [6], which is higher than the approximate dose of 
0.5 MAC needed for intensive care sedation [40]. How-
ever, a pharmacodynamic study in 9 healthy volunteers 
demonstrated that sevoflurane and alfentanil synergisti-
cally decrease minute ventilation [41]. This suggests that 
the typical doses of volatile anesthetics used for sedation 
in intensive care settings are suitable to reduce excessive 
respiratory drive when opioids are co-administered.

On the other hand, volatile anesthetics better preserve 
respiratory drive than common intravenous alternatives. 
Proper functioning of chemosensitive brainstem 
neurons, particularly those in the retrotrapezoid 

nucleus expressing Phox2b, plays a vital role in 
maintaining spontaneous breathing during sedation [42]. 
Interestingly, preclinical experiments showed that the 
volatile anesthetics isoflurane and sevoflurane enhance, 
whereas propofol suppresses the excitability of these 
neurons [43, 44]. Consistently, both volatile anesthetics 
induce less respiratory depression than equipotent 
doses of propofol in animals and healthy human subjects 
[45–47]. Further studies with healthy volunteers showed 
that subanesthetic concentrations of isoflurane and 
sevoflurane (0.1 minimum alveolar concentration 
(MAC)) significantly inhibit hypoxic drive but leave 
hypercapnic drive largely unaffected [48–51].

To date, the largest randomized clinical trial compar-
ing isoflurane to propofol sedation in critically ill patients 
–– the Sedaconda trial –– found that 50% of patients 
sedated with isoflurane were spontaneously breathing 
on day one versus 37% with propofol sedation (isoflurane 

Fig. 2  Concept of lung- and diaphragm-protective sedation
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n = 150, propofol n = 151; odds ratio: 1.7 [95% CI: 1.1, 
2.6], p = 0·013) [40]. The corresponding subgroup analy-
sis including 66 patients from a center with standards 
aiming at facilitation of early spontaneous breathing 
reported twice the probability of assisted spontaneous 
breathing within the first 20 h after randomization to iso-
flurane versus propofol (risk ratio: 2.4 [95% CI: 1.5, 3.7], 
p < 0.001) [52] (Fig. 4). One may argue that higher arterial 
carbon dioxide pressures resulting from increased dead 
space ventilation with volatile anesthetic administration 
devices or opioid sparing effects have contributed [40, 
53–57]. However, a mediation analysis supported that 
better preservation of spontaneous breathing was a direct 
drug effect of isoflurane independent of indirect effects 
mediated through increases in arterial carbon dioxide or 
a reduction in opioid utilization (mediator-adjusted risk 
ratio: 2.2 [95% CI: 1.4, 3.3], p < 0.001) [52].

In addition, retrospective studies and case series 
showed that spontaneous breathing activity is well-
preserved under inhaled sedation. In a retrospective 
cohort study involving 38 patients who underwent 
continuous lateral rotational therapy, isoflurane sedation 
more often preserved spontaneous breathing efforts 
than did propofol or midazolam [58]. In a case series of 
62 patients with moderate to severe acute respiratory 
distress syndrome, spontaneous breathing efforts were 
preserved 91% of the time in prone position, despite 
deep sedation with sevoflurane [59]. Similarly, a high 
proportion of time spent at assisted spontaneous 
breathing (96%) was reported in 15 prone-positioned 
COVID-19 patients sedated with a combination of 
sevoflurane and ketamine [60]. A comprehensive list of 

clinical studies reporting data on the effects of inhaled 
sedation with volatile anesthetics on spontaneous 
breathing in critically ill patients is presented in Table 1.

In essence, the mechanistic understanding and 
clinical evidence suggest that inhaled sedatives better 
preserve respiratory drive than the common intravenous 
alternatives propofol and midazolam, even in a setting 
of moderate to deep sedation requirements. At the same 
time, higher doses of volatile anesthetics are capable of 
reducing tidal volumes with compensatory increases 
in respiratory rate. This suggests that inhaled sedation 
might facilitate the titration of respiratory drive to 
maintain sufficient inspiratory effort at lower doses 
while reducing lung stress and strain at higher doses 
when clinically indicated. However, it remains to be 
determined whether volatile anesthetics are suitable for 
adequately controlling respiratory drive in critically ill 
patients with extremes of inspiratory effort, particularly 
in patients with acute respiratory failure.

Inhaled sedation may facilitate ventilator liberation
Diaphragm function is fundamental for liberation from 
the ventilator. A single day of diaphragmatic inactiv-
ity under mechanical ventilation induces significant 
diaphragm atrophy with rapid progression throughout 
longer ventilation periods [17–19]. After the initiation of 
invasive ventilation, sedation impedes the return of spon-
taneous breathing, with diaphragm activity returning in 
only half of sedated critically ill patients within two days 
[61]. The WEAN SAFE study showed in 5869 patients 

Fig. 3  Effects of volatile anesthetics on spontaneous ventilation. All modern volatile anesthetics exert similar dose-dependent effects on respiratory 
parameters, with decreases in tidal volume and concurrent increases in respiratory rate. Mean values are presented. MAC, minimum alveolar 
concentration. The data were extracted from previous studies performed in healthy volunteers and patients scheduled for surgery [37–39]
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that deep sedation was independently associated with 
failure of liberation from the ventilator [62].

Of note, the association between deep sedation 
and delayed ventilator liberation was shown for the 
most widely used intravenous sedatives, propofol and 
midazolam, both of which typically suppress respiratory 
drive at deep sedation levels [5, 63]. Clinical trials have 
shown that sedatives with a low impact on respiratory 
drive, such as dexmedetomidine, may support liberation 
from the ventilator [64], presumably due to  improved 
patient-ventilator synchrony and better preservation of 
diaphragm activity with dexmedetomidine than with 
propofol [63, 65, 66]. Although other factors, such as 
wake-up times and neurocognitive recovery after the 
discontinuation of sedation surely contribute, evidence 
accumulates that sedation-induced impairment of 
spontaneous breathing efforts delays ventilator liberation. 
Better preservation of respiratory drive with volatile 

anesthetics than with propofol or midazolam sedation, 
as outlined in detail in the previous chapter, suggests 
that patients with marginal or no effort could benefit 
from sedation with volatile anesthetics [52]. However, 
those with excessive effort may benefit from the strong 
respiratory depressant effects of propofol [5, 63].

In addition to better control of respiratory drive and 
effort, volatile anesthetics are eliminated through exhala-
tion, independent of frequently impaired kidney and liver 
function in critically ill patients. The possibility of moni-
toring exhaled concentrations further allows for tight 
control of sedation depth and helps to predict awakening. 
Clinical trials confirmed that this translates into short 
wake-up times and early cognitive recovery upon ces-
sation, even after deep or prolonged periods of inhaled 
sedation [40, 67]. The Sedaconda trial revealed that the 
median wake-up was significantly faster after isoflurane 
than propofol sedation on day 2 (20 min [IQR 10–30] vs 

Fig. 4  Percentage of spontaneously breathing patients over the first 20 h after randomization to isoflurane or propofol in a substudy 
of the Sedaconda trial. Numbers at the bottom of the figure represent the total patients included at the respective time points on the x-axis. 
The given risk ratio (RR) describes the effect of isoflurane versus propofol sedation on spontaneous breathing and is adjusted for sufentanil dose 
and arterial carbon dioxide partial pressure. 95%CI, 95% confidence interval. Reprinted under the terms of the Creative Commons Attribution License 
from [52]
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30 min [11–120]; p = 0.001). Subgroup and post hoc anal-
yses revealed that isoflurane sedation increases the num-
ber of ICU- and delirium-free days, although a benefit for 
ventilator liberation remains unclear [68, 69].

Taken together, inhaled sedation with volatile 
anesthetics in combination with short-acting opioids may 
allow for more precise control of the respiratory pattern 
(i.e., effort and rate) and faster cognitive recovery upon 
discontinuation, with intriguing benefits for lung and 
diaphragm protection and early ventilator liberation.

Technical limitations of inhaled sedation
In the following, we focus on ventilation-related limita-
tions of inhaled sedation. A comprehensive list of advan-
tages and disadvantages, which were discussed in various 
recent review articles [70–74], are presented in Fig. 5.

Reflection systems allow the efficient administration 
of volatile anesthetics via open-circuit ventilators. The 
technical details of three available commercial systems 
have been described elsewhere (Sedaconda ACD-S and 
ACD-L by Sedana Medical, Danderyd, Sweden; and 
Mirus®, Medcaptain, Nijmegen, The Netherlands [75]). 
In short, volatile anesthetic is either directly injected 
into the inspired breathing gas or infused into a hollow 
rod called the evaporator [76, 77]. An anesthetic reflec-
tor, inserted between the Y-piece and the patient, adsorbs 
the expired anesthetic and releases it during subsequent 
inspiration in a process called reflection [78]. Approxi-
mately 90% of the volatile anesthetic is reflected under 
dry conditions [77], which is reduced to roughly 80% 
under the influences of humidity and carbon dioxide, 
meaning that approximately 20% is lost during exhala-
tion [79]. These losses are directly proportional to min-
ute ventilation, and large changes in minute ventilation 

Table 1  Clinical studies reporting effects of inhaled sedation on spontaneous breathing in critically ill patients

RCT​ Randomized Controlled Trial, ECMO Extra Corporal Membrane Oxygenation, ARDS Acute Respiratory Distress Syndrome, RR Risk Ratio

References Design Sedatives Duration N Percentage of 
spontaneously 
breathing patients

Specifics

Soukup [57] RCT​ Sevoflurane vs. propofol/
midazolam

 > 48 h
Max: 183 h

79 n/a Reduced time 
to spontaneous 
breathing 
after discontinuation: 
26 vs. 375 min, p < 0.001

Bansbach [60] Retrospective case 
series

Sevoflurane + esketamine Mean: 174 h 15 100% COVID-19 ARDS, 
spontaneous breathing 
during 96% of prone 
position time

Müller-Wirtz [88] Retrospective cohort 
study

Isoflurane vs. propofol  > 48 h
Max: 179 h

64 n/a Isoflurane tripled 
the probability 
of increased respiratory 
drive after discontinuing 
prolonged sedation:
31 vs. 12%; RR: 2.9 [95%CI 
1.3, 6.5], p = 0.010

Müller-Wirtz [52] Subgroup of RCT 
(Meiser 2021)

Isoflurane vs. propofol First 20 h 
after randomization

66 94 vs. 58% Isoflurane doubled 
the probability 
of spontaneous 
breathing:
RR: 2.2 [95%CI 1.4, 3.3], 
p < 0.001

Meiser [40] RCT​ Isoflurane vs. propofol Max: 54 h 301 50 vs. 37% Large RCT reporting 
differences 
in spontaneous breathing 
rates across multiple 
centers

Heider [59] Retrospective case 
series

Sevoflurane  > 24 h
Mean: 70 h

62 100% Severe ARDS, 
spontaneous breathing 
during 91% of prone 
position time

Meiser [58] Retrospective cohort 
study

Isoflurane vs. propofol/
midazolam

 > 24 h 38 90 vs. 16% Severe ARDS, continuous 
lateral rotation

Meiser [87] Retrospective case 
series

Isoflurane 24 h 6 100% Severe ARDS, ECMO 
therapy
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may require adjustments in the anesthetic infusion rate 
to keep the end-tidal concentration stable. As a rule of 
thumb, an isoflurane infusion rate of 3 mL/h with a min-
ute ventilation of 6 L/min will yield a concentration of 
0.5 Vol% in steady state (3 divided by 6 equals 0.5). One 
commercial device (Mirus) automatically adjusts the 
anesthetic infusion rate to maintain the end-tidal concen-
tration at a set target value [76], although the end-tidal 
concentration does not correlate well with the clinically 
assessed sedation depth.

All reflectors increase dead space ventilation, first 
because of their internal volume (50 mL for ACD-S, 100 
mL for ACD-L and Mirus) and second because of partial 
carbon dioxide reflection [80]. The additional increase 
in tidal volume needed to overcome this effect has been 
called reflective dead space and can reach 35–40 mL with 
a Sedaconda ACD-L [80–82] or 25 mL with Sedaconda 
ACD-S and Mirus devices [80, 81]. In laboratory stud-
ies, when using dry conditions without volatile anesthet-
ics, the extent of carbon dioxide reflection may be highly 
overestimated, which has led some researchers to caution 
against the use of these devices in ARDS patients [54, 83]. 
However, in a substudy of the SEDACONDA trial, the 
use of the larger Sedaconda ACD-L was only associated 
with slightly greater arterial carbon dioxide partial pres-
sures (3.4 mmHg), respiratory rates (1.2 bpm) and tidal 
volumes (44 mL) than ventilation with heat and mois-
ture exchangers with internal volumes of 35 mL, whereas 
no difference was detected between ventilation with 
the smaller Sedaconda ACD-S and heat and moisture 
exchangers [53] (Fig. 6).

According to their technical specifications, Sedaconda 
ACD-S and Mirus are limited to use with tidal volumes 
of at least 200  mL, and Sedaconda ACD-L with tidal 
volumes of at least 300  mL. All reflection systems 
comprise passive humidification with low moisture 

loss (approximately 5 mg of water per liter of breathing 
gas) [84]. They cannot be combined with active 
humidification. Nebulizers can be connected between 
the reflector and the patient; however, some medications 
may bind to the reflector and increase resistance, in 
which case the reflector needs to be exchanged.

The use of anesthetic reflectors in patients undergoing 
extracorporeal membrane oxygenation is possible under 
consideration of the technique’s inherent limitations [85, 
86]. With drastically reduced minute ventilation, volatile 
anesthetic administration rates must be similarly reduced 
to avoid overdosing [87]. If the tidal volume is less than 
100 mL, gas monitoring of the end-tidal concentration 
will be inaccurate, and the sedation depth can only be 
monitored clinically. Modern membrane oxygenators 
made of polymethyl-pentene are not permeable to 
volatile anesthetics. Thus, volatile anesthetics can 
currently only be administered and  eliminated  via the 
lung.

Conclusions
Safe spontaneous breathing efforts are crucial for 
preventing diaphragm disuse atrophy in invasively 
ventilated critically ill patients. Clearly, the approach to 
sedation in the ICU should move from a “one-sedative-
fits-all” model towards an individualized strategy that 
considers the patient’s respiratory drive and effort as a 
means for achieving lung- and diaphragm-protective 
sedation and ventilation.

Inhaled sedation with volatile anesthetics compared 
to common intravenous alternatives offers superior 
preservation of respiratory drive with the potential 
to prevent diaphragm disuse atrophy. Concurrently, 
higher doses of volatile anesthetics reduce  the size of 
spontaneously generated tidal volumes, presenting an 
opportunity to mitigate lung stress and strain. Inhaled 

Fig. 5  Advantages and disadvantages of inhaled sedation in the ICU. Graphic design by Marco Rosetti 
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sedation may thus allow for titrating respiratory drive to 
facilitate lung- and diaphragm-protective sedation and 
help to expedite liberation from the ventilator.

Further research is needed to understand the precise 
role of inhaled sedation with volatile anesthetics for 
modulation of respiratory drive and effort and how these 
effects translate into clinical outcomes.
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