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Abstract:

Inheritance hierarchies are employed in knowledge representation and
object-oriented programming in the sense of representing taxonomic in-
formation. Feature ProlLog provides a wuseful tool to represent
taxonomic information in Logic in a simple and natural way. In our
approach, inheritance hierarchies are built-up from feature types,
that are record-Like structures, ordered by subtyping. The presence of
feature types reduces the deduction tree and avoids unnecessary
backtracking. In Feature Prolog there are feature terms besides ?he
common ProlLog terms — used to denote subsets of feature types: The in-
tegration of feature terms into the Prolog inference mechanism needs
an extension .of SLD-resolution with feature unification, that is uni-
fication respecting the taxonomic information of the feature types. We
describe an extension of the abstract ProlLog instruction set, known as
WARREN Abstract Machine, for inheritance hierarchies.






1.Introduction and Motivation

What d1is the intention to deal with inheritance hierarchies in Prolog
or more generally in deduction systems? Ait=Kaci /Ait=-Kaci 85/ writes:
“Since the earlLy days of research in Automated Deduction, inheritance
has been proposed as a means to capture a special kind of information,
viz., taxonomic information. For example, when it is asserted that
whales are mammals, we understand that whatever properties mammals
possess should also hold for whales.™

Naturally, this meaning of inheritance can be expressed in predica-
te Logic by the implication.

VYx. Whale(x) => Mammal (x)

It is semantically correct to solve this in first order Logic by a
deduction step, but is this pragmatically useful? Isn't it possible to
find the information that whales are mammals without a deduction step
to reduce the search space? 1Is it possible to integrate this kind of
taxonomic information directlLy in deduction systems, namelLy Prolog?
Feature Prolog is an approach to achieve that.
In the following we give an extension of Prolog with inheritance hier-
archies, as a system of record-lLike structures, called feature types,
ordered by subtyping /Smolka Ait-Kaci 87/. Feature types are similiar
to frames, 1in the sense that every feature type has a set of features
(slots); and each feature 1is an access function to one slot of the
feature type. Sometimes we use the notion class in this paper as a
synonym for feature type = being more meaningful from the history in
connection with object orientated programming. An instance is an
object, that belongs to a class. In Feature Prolog we also call an

instance feature constant.
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Now we can describe Whale as a subclass of the class Mammal. Whale in-
herites all features of the class Mammal. For example the inherite
feature biotope is constrained to ocean. This kind of taxonomic infor-
mation could be represented in first order Logic by deduction, but in
the following examples we will see that this 1is a very inefficient
method. A better way is, to built this taxonomic information directlLy
into deduction systems.
Many proposals have been offered to deal with taxonomic information.
/DeKo 79/ und /ALFr 82/ transform the taxonomic information directlLy
into first order LlLogic, but then we have the disadvantages pointed out
above. /BriFi 83/ und /SkiMi 79/ interprete taxonomic information as
semantic nets, but the corresponding implementation doesn't have the
power of a ProlLog Like description Language. Feature ProlLog is simiLar
to Ait-Kaci and Nasr's Prolog dialect LOGIN, but there are two diffe-
rences. First, LOGIN has only feature types (called ¥Y=-types in LOGIN),
while Feature Prolog accommodates both feature and constructor types.
Consequently, Feature Prolog's unification, called feature unification
/Smolka Ait-Kaci 87/, combines LOGIN's Y=unification with order=-sorted
unification /Sch 85/, /Wal 87/. Furthermore, while Y-unification
admits cyclic structures, feature unification disallows them. Second,
LOGIN does not force the programmer to declare which features are
possible for a feature type and thus has a weaker type checking dis-
cipline.

The computational power of Prolog and Feature Prolog is the same,
but with the integration of taxonomic information and a modified uni-
fication algorithm - using the taxonomic information effectively, un-
necessary backtracking is avoided and therefore the search space will

be reduced.
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We give an example to show how Laboriously and inefficient
taxonomic information is represented in common Prolog.
We want to know if the sign_of_zodiac of Peter's grandfather is
pisces. We have some rules for grandfather and sign_of_zodiac.
KnowlLedge about Peter, Mary, ... to be persons and january, february,
... to be months is stored explicitely as facts.

The relations has_father and month_of_birth are also defined as facts.

Example 1a

Z is grandfather of Y, if X,Y, and Z are persons and the father of Y
is Z. Y has to be the father of X or Y is the mother of X. The Prolog
system achieves allL informations by searching in the database. E.g.
the information that the father of Peter is Bill gets the Prolog sy-
stem after searching in the database of has_father(...,...).

%Z THE RULES FOR grandfather X
grandfather(X,Z): - person(X) , person(Y), person(2Z),
has_father(X,Y) , has_father(Y,2Z).
grandfather(X, Z) : = person(X) ,person(Y) person(Z),
has_mother(X,Y) has_father(Y,Z).

Y is sign of zodiac of X, if X is a person and X is born in a special
month Z. The whole information about X achieves the Prolog system by
searching in the database of person(...) and month_of_birth(...,...).

% THE RULES FOR sign_of_zodiac %
sign-of=zodiac(X,capricorn):-
person(X) ,month_of_birth(X, january).
sign-of-zodiac(X,aquarius):-
person(X) ,month_of_birth(X, february).
sign=of=-zodiac(X,pisces): -
person(X) ,month_of_birth(X,march).

X THE DATABASE %
person(anne).
person(mary).
person{(peter).
person(bill).
person(john).

month_of_birth(peter,august).






month_of_birth(john,march).
month_of_birth(bill, january).
month_of_birth(mary, february).
month_of_birth(cristine, december).

has_father(christine, john).
has_father(mary,bill).
has_father(bill, john).
has_father(peter, bill).

% THE QUERY: %
?=- grandfather(peter,X),sign_of_zodiac(X, pisces).

Have a Lot of fun and time to get the correct solution for this query.
The two main disadvantages of this Prolog program are:

- A Lot of unnecessary backtracking has to be executed in order
to instantiate the variable X of the query with the grandfather
of peter, whose sign of zodiac is pisces.

- A naive reader may have difficulties to understand the semantic
of the clauses defining grandfather(X,Y).

Example 1b presents a more natural representation of the above infor-
mation in a ProlLog Like syntax, with the meaning that Peter, Mary, ...
are individuals (constants) of type person. January, february, march,

... are constants of type month.






Example 1b

% THE DECLARATION PART: X
csort(peter,person).
csort(bill, person).
csort(john,person).

csort(gjanuary,month).
csort(february,month).
csort(march,month).

Each person has a person as mother and another person as father. Each

person is born in a special month.

% THE FEATURES OF THE FEATURE TYPE person %
has-feature(person,mother,person).
has-feature(person,father,person).
has-=feature(person,month_of_birth,month).

The father of Peter is Bill and Bill's father is John. BilLl is born in
January and John in march.
X THE FEATURES OF THE FEATURE CONSTANTS X%
has—-feature(peter,father, bill).
has-feature(bill,father, john).

has—=feature(bill,month_of_birth, january).
has=feature(john,month_of_birth,march).

Z is the grandfather of a person X, whose father or mother is a person
Y, whose father is the person Z. The Feature ProlLog system achieves
aLlL idinformation by the features father and mother, that compute the
value of someones father or mother. Grandfather(X,Z) gets the informa-
tion that Z is the grandfather of X by this computation instead of
searching.
%Z THE RULE BASE X%
% THE RULES FOR grandfather 2
grandfather(X: person{father =>Y:person{father =>Z:person}},
grandfather(igéerson(mother =>Y:person{father =>Z:person}},
Z).

The information about someones sign of zodiac is achieved by the

feature month_of_birth.






% THE RULES FOR sign of zodiac %
sign-of-zodiac(X: person{month_of_birth->january},capricorn}.
sign-of-zodiac(X:person{month_of_birth=>february},aquarius}.

%2 THE QUERY: %
?-grandfather(peter, X: person) ,sign_of_zodiac(X,pisces).

The relation that a feature type is a subtype of another feature type
is expressed with the built-in predicate subsort. The semantic of
csort(const,type) 1is that the constant const is an individual of the
feature type type. Notice, that constants can also be considered as
feature types, consisting of exactly this constant only.
has-feature(tn,F,tm) assigns the type tn a feature F with type tm. No-
te that all subtypes of tn and hence all individuals of type tn, in-
herite the feature F with type tm or if the feature F is defined in a
subtype of tn then the type of F has to be a subtype of tnm.

The relation that Peter's father is bill, is implicitly given by
has-feature(peter,father,bill). AlLso the knowlLedge that Peter, Mary,
... are persons and that january,february, ... are month. It is not
necessary to define it in the database. If the goal grandfather with
the constant peter as first argument and the variable X of type person
as second argument is executed, the feature father selects Bill as
Peter's father. This kind of dealing with implicite knowledge replLaces

searching by effective computation, hence we reduce the deduction tree

and avoid unnecessary backtracking. The following figures 1 and 2

shows the type information given in the above program and the solLution

of the query one more graphically.






anton
month_of_birth->august
father->person
mother->person

peter
month_af_b1rth—>name_of_month
father->bill
mother->anne

person bill
month_of_birth->name_of _month month_of_birth->march
father->person father->john
mother->person mother->person
john

month_of_birth->march
father->person
mother->person

anne
month_of_birth->april
father->anton
mother->person

Fig.1
The ordering of the feature types and the set of features for the

feature type person.

month_of_birth --> march

fconstant: john father -->sortvariable: person

mother -->sortvariable: person

Fig.2
The solution of the query. The variable X is instantiated with
John, because John is the grandfather of Peter and John is born

in the month march so that his sign of zodiac is pisces.






2.Feature Unification in Prolog

We give a short outline of the computational part of inheritance hier-
archies called feature unification, that extends common Prolog uni-
fication for feature terms. A formal definition and investigation of
feature unification is given in /Smolka Ait—-Kaci 87/.
A term is a variable, a constant or a structure. If a variable has no
reference to a term we call this variable an unbound variable.
In common Prolog two terms are unifyable if one of the following
conditions succeeds:
(1) If one term is an unbound variable, then the other term is
bound to this unbound variable.
(2) If both terms are constants, then they have to be identical.
(3) If both terms are structures, the two functors have to be
identical and the arguments of the structures have to be
unifyable.
For a more formal approach we assume 2 pairwise disjoint, countably
infinite sets of symbols:

- Functions Symbols: (f,g,h)

Every function symbol f has an arity, which is an nonnegative in-

teger; function symbols with arity zero are called constant sym=-
bols.
- Variables: (X,Y,2Z).
A term is a variable or has the form f(s,, ...s,), where s;, ...s, are
terms and f is a function symbol. The Letters s, t and u will always
denote terms. The size |s| of a term s is 1 if s is a variable and 1 +
|s,]| + ... + |s,| if s = f(sy,..., s.).
An equation has the form s=t. The Letter P will always range over
equations.

An equation system is either the empty equation system 0 or has the
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form P , &...& P ,, where P ,, e--, P , are equations. The Letter E
will always range over equation systems.
A transformation rule for equation systems has the form E => E', where
E and E' are equation systems, meaning the system E is replaced with
E'.

The unifications rulLes:

Tautology
(T X=X & E => E

Binding
(B) X=t & E => X=t & [X=t] E

Decomposition
(D) f(s3,...,5,0=F(ty,...,t,) & E => s,=t, &...&s,=t, & E

Orientation
(qe)] s=X & E => X=s & E

In Feature Prolog we distinguish between unbound, bound and type

variables. A type variable is a variable whose domain is not the whole
universe, but only a subset of it.

A feature term is a common Prolog term or a type variable with a
set of features:
<feature term> ::= <common-term> { <list=-of=-features> };
<common-term> is a Prolog term or a type variable, <list-of-features>
is a List of feature declarations. A feature declaration is:
<feature=declaration> ::= <ident> => <term>;
<ident> is the name of the feature and <term> denotes a ProlLog term or
a feature term.
In the following we often use the notion of to unify features, when we
unify the records described by the features; feature value is also a
synonym for the record referenced by a feature.
The deduction of Feature ProlLog will be done by SLD-resolution, but

unification will be changed in the following way:
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(1) A variable and a non-variable are unifyable, if the type of
the non-variable is a subtype of the variablLe. Additionally
the features of the variable and non-variable have to be
unifyable. The variable is bound to the non variable.

(2) Two variables are unifyable, if there is a greatest common
subtype of their types and their features are unifyable. The
unifier is a new variable, the olLd variables are bound to.

(3) To decide if a feature Fi of two feature terms is unifyable
we distinguish two cases:

If the feature Fi occurs onLy in one of the two feature
terms, then Fi is added with the referenced record to
the other feature term.

If the feature Fi occurs in both feature terms, then
the features Fi will be unified. If they have a uni-
fier, Fi is copied with the referenced unifier into the
instance feature term.

Here is the formal specification for the feature unification rules:
We assume 3 pairwise disjoint, countably infinite sets of symbols:
- Type Symbols: (¢,p,8)

There is a subclass of type symbols called featuretype symbols.

- Functions Symbols:
There are two disjoint subclasses of functions symbols: construc-=

tor and feature symbols. ALL feature symbols are unary functions

symbols. The Letters 1, &k will always range over feature type
symbols.
There are two disjoint subclasses of constructor symbols:
Implicit constructor symbols und explicit constructor symbols.
E.g. 1in the signature of Fig.3 con_person 1is an implicit
constructor for person. Implicite constructors have the prefix
con_.

- Variables: (X,Y,Z). Each variable has a type PX, which is
a type symbol; for each type symbol ¢ exists an infinite set of
variables with type ¢. In our examples each item built-up with
capitals are variables.

A subtype declaration has the form: ¢ < pm.
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A function declaration has the form:
f: & ... ©, => ¢, where n is the arity of f.
To be able to relate features to implicit constructors, we assume a
total order ® 1 < k " on the set of all feature symbols.
A signature I is a set of subtype and function declLarations. We say f
is a constructor of ¢, if f is a constructor and the declarations f:
€1...0, => pand p £ ¢ occur in . 1 is a feature of ¢, if 1 is a
feature symbol and the declarations I: B => ¢ and ¢ £ M occur in X. A
I-term of type m is either a variable X with PX £ p, or has the form
f(s;, ...s,), and there are declLarations f:¢;...¢, => ¢ and ¢ £ p in X
and s; are I-terms of type ¢; for aLl i.
A term of the form 1(X) is called a quasi-variable.
A term is called canonicalL, if it is built onLy from variablLes and
constructors (explicit or implicit).
For each implLicite constructor f with arity n exists n features L,,
...L,, such that L;(f(s;, ...s,))=s; holds. Hence the implicit
constructors are only a syntactically auxiliary to improve the com-
prehension of the feature unification.
Let con_person be an implicit constructor of type person, with
the argument types age, status, first_name, person.
con_person: age, status, first_name, person, person => person
The features of type person are unary functions refering to the
argument positions of con_person, i.e. we have the equations:
period_of_Life(con_person(Xi, X2, X3, X4, X5)) = X1
social_status(con_person(Xli, X2, X3, X4, XS5)) = X2
first_id(con_person(Xl1, X2, X3, X4, X5)) = X3

mother(con_person(Xi, X2, X3, X4, X5)) X4
father(con_person(Xl, X2, X3, X4, X5)) X5

Then an element X of type person has to be of the form

con_person(Xi,...,X5) and is denoted by the feature term
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X:person{period_of_Life =>X1:age,...,mother =>X4:person}
Let [X=t] be a substitution and E an equation system containing the
variable X. Then we say that E & X=s can be obtained from [X=s] E by
unfolding.
An equation s=t is trimmed if it contains no implicit constructors, t
is a canonical term and s is a variable or a quasi variable. A trimmed
equation system is a equation system whose equations are all trimmed.
By unfolding we can obtain a trimmed equation system.
Have a glance again to the signature in Fig.3 and consider the
equation:
S=E where S and E are the feature terms
S:student{first_id =>NAME,
mother =>{age =->0:old},
major =>BIO:biology}
and
E:emplLoyee{position => JOB: jobtitle,
period_of_Life -> AGE:age,
salary => INCOME:income}
S is a variable of type student with the features first_id, mot-
her and major. Hence S can be represented with dimpLicite
constructors as:
S = con_student(X1,
X2,
NAME,
con_person (0, X3, X4, X5, X6),
X7,
BIO)
SimiLar for the variable E of type employee
E = con_employee(AGE, X8, X9, X10, X11, JOB, INCOME)
To get a trimmed equation system we unfold the implicit construc-
tor con_student, that is we replace the substructure

con_person(0,...) by a new variable FOLDING of type person.

S = con_student(X1, X2, NAME, FOLDING, X7, BIO)
FOLDING = con_person (0, X3, X4, X5, XB6)
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As mentioned before, implicit constructors are only syntactical
sugar for feature terms, all feature terms can be represented
with unary functions. We get the trimmed equation system I'_examp-
Le, consisting of common terms onlLy.
S=E & first_id(S)=NAME & major(S)=BIO0 & mother(S)=FOLDING &

period_of_Life(FOLDING)=0 & period_of_Life(E)=AGE &
position(E)=JOB & salary(E)=INCOME

The feature unifications rules:

Tautoloqgy
(T) X=X &I =>TrT

Binding
(B) X=t & I' => X=t & [X=t]r
If X is a variable occurring in ' but not in t and
if Pt<PX is.

(B') X=Y & I' => X=Z & Y=Z &[X=Z, y=z]r
: If not PY<PX and Z is a new variable. PZ is the
greatest common subtype of PX, PY.

(B*'*) I1(X)=Y & T => Y=Z & 1(X)=Z &[ 1(X)=2, y=z]r
If not PY £ PL(X) and Z is a new variable. #PZ is
the greatest common subtype of P 1(X) und PY.

Decomposition
(D) f(sy,...,8,)=F(ty,...,t,) &TI" => s, =t; &...&S,=t, & T

Orientation
(0) s=X &I => X=s5 &I

Merging
(M) 1(X)=s & 1(X)=t & "' => 1(X)=5 & s=t & X

ApplLying the rules to the equation system TI'_example transforms
I'_example to I'_example'.

1) Rule B' to S=E
S=E & I'_example => S=W & E=W & [ S=W, E=W]I'_example
W 1is a new variable of type workstudy and is bound on S and
E. In I'_example the variables S, W are substituted with E.

2) RuLe M to period_of_Life(W)=MIDDLE and period_of_Life(W)=AGE
period_of_Life(W)=MIDDLE & period_of_Life(W)=AGE & I'_example
-> period_of_Life(W)=AGE & AGE=MIDDLE & I'_example

3) Rule 0 and B to AGE=MIDDLE
MIDDLE substitutes AGE.
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4) Rule B'' to salery(W)=INCOME
salary(W)=INCOME & I'_example =>
INCOME=LOW_INCOME & salery(W)=LOW_INCOME &
[salery(W)=LOW_INCOME, INCOME=LOW_INCOME]T_example
LOW_INCOME is a new variable of type low_income , the
variable LOW_INCOME substitudes the variable INCOME in
I'_example.
After applying the rulLes 0 and B to I'_example we get the solved equa-
tion system I'_example':
S=W & E=W & INCOME=LOW_INCOME
with W:workstudy{period_of_Life =-> MIDDLE,
first_id => NAME,
mother => FOLDING,
major => BIO,
position -> JOB,
salary =-> LOW_INCOME}

The examplLe above is simple in the sense that it does not illustrate
the use of inheritance among complLex feature terms. In the next examp-
Le the type person has the features id-first, period_of_Life (see the
has-feature declarations). Now Let us suppose that we also want to
specify that a student is of subtype person, i.e. that it inherits
whatever attributes are imposed on person. Additional student can
achieve some new attributes, e.g. every student has a major which must
be a subject, and further constrains the value of feature
period_of_life with middle_age. This is achieved by:
has-feature(student, major,course).

has_feature(student,period_of_Life,middlLe_age).

For the ordering of the feature types see Fig3.
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Example 2

% THE DECLARATION PART: X%
subsort(..,..) see FIG.3
csort(..,..) see FIG.3
has—-feature(person,period_of_Life,age).
has-feature(person,social-status,status).
has-feature(person,first_id,first_name).
has—-feature(person,mother,person).
has-feature(person,father,person).
has=feature(student,major,subject).
has-feature(student,period_of_Life,middlLe).
has-feature(emplLoyee,position, jobtitLe).
has-feature(emplLoyee,salary,income).
has-feature(workstudy,salary, Low_income).
has-feature(sl,social_status,local).
has-feature(s2,social_status,eg_member).
has_feature(wl,social_status,local).
has_feature(w2,social_status,no_eg_member).
has-feature(sl,major, biology).
has=feature(s2,major,chemestry).
has-feature(wl, major,physical_education).
has-feature(w2,major,computer_science).
has-feature(sl,first_id,peter).
has-feature(s2,first_id,peter).
has_feature(wl, first_id, mary).
has_feature(w2,first_id,abdulLa).

To express that a foreign person has the social_status no_eg_member.

%X THE FACT FOR foreign X
foreign(X:person {social_status =>Y:no_eg_member}).

To formulate that Less than 4 Lectures are onLy a few, we define it by
the Length of the course_enrollment_list.

%Z THE FACTS FOR few_course_enrollment %
few_courses_enroLlment(no_Lecture).
few_courses_enrollment([X: Lecture,no_Lecture]).
few_courses_enrollment([X: Lecture,Y:lecture,no_curricutum]).
few_courses_enrollment

([X:Lecture,Y:Lecture,Z: Lecture,no_Lecture]).
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The relation of a student and his course enrollment is given in the
facts for takes.
X THE FACTS FOR takes %
takes(sl, [cheml,chem2,bio2,ma3,no_Lecture]).
takes(s2, [chemi,chem2,bio3,ma3,no_Lecture]).
takes(wl,[mail,ma2,ma3,pe2,no_Lecture]).
takes(w2,[mal,comp2,no_Lecture]).
Finally we define that all students taking Less than 3 Lectures are
considered parttime students. ”
%X THE RULE FOR partime: X%
part_time(X:student):-
takes(X:student,CL:course_List)
few_courses_enrollment(CL:course_List).
X THE QUERY: %
?= foreign(Y:workstudy{salary => Z:Low_income,
first_id =-> X:first_name}),
part_time(Y).
The answer of the query will be abdula, because he is a foreign

employee, who is also parttime student and his salary class is in the

Low income class.

period_of_life --> middle

social_status --> no_eg_member

first_id --> abdula

mother -->sortvariable: person
fconstant: w2

father -->sortvariable: person

major --> computer_science

position -->sortvariable: jobtitle

salary -->sortvariable: low_income

Fig.4 The object w2
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Constraint Propagation with Feature Prolog

In Feature Prolog constraint propagation supports the reduction of the
search space.
Example:
The signature is the same as in Fig.3 but the feature type person
is extended with the feature room-mate. Room-mate of person is of
type person, room-mate for student is constrained to student or a
subtype of student. The equation system is:
S=E with
E:emplLoyee{room—-mate->
person{room-mate->
person{room-mate=>person}}}
and S is of type student.
During unification the constraint room-mate -> student is pro-
pagated to alLl room—-mates of E. After applying rulLe B' to S=E the
new variable W of type workstudy is bound to S and E. The solved
equation system:
S=W & E=W with
W: workstudy{room-mate->

student{room-mate->
student{room=-mate=>student}}}






is

3.An Instruction Set for Feature Prolog

In this section we define the feature unification instructions, exten-
ding the WARREN Abstract Machine (WAM) to features. We use the same
notion as in /Be 85/.

The WAM is defined by an abstract instruction set for the compila-
tion of Prolog programs. One idea behind it is to transform the uni-
fication procedure for two unknown terms into several special unifica-
tion procedures determined by the structures of the clause headers.
Those structures are completely specified when the program is created.
Hence they can be compiled into special unification code, that can
onLy unify the headers with terms with analoguous structure, but can
do this very efficiently.

The architecture of the WAM is very similar to the architecture of
a conventional computer. The WAM has two different memories, one for
the program and one for the data. The data are stored onto the GLOBAL
STACK.

If we compilLe ProlLog in a virtuell code then we are confronted with

three problems:

1) Each goal in Prolog is considered as a procedure call, therefore
an activation record is pushed onto the runtime stack. The task
of the compiler is to compute the size of the activation record
and to generate the according code. The management of the runtime
system of the WAM is very similar to conventional runtime sy-
stems. Warren calls the runtime stack LOCAL STACK.

2) New in Prolog is the TRAIL STACK, where the old bindings of
variables have to be stored. During backtracking the variables

get the bindings they had until the old choice point.
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If Prolog is interpreted, a complete unification is executed for
each argument of the clause head at a call of this clause. The
ProlLog compiler generates special code before runtime in order to
substitute complete unification with the really necessary part of
the unification. E.g. if the first argument of a clause head is a
variable, an instruction is generated, that binds the variable of
the clause head to the first argument of the calling goal. That
means that there is executed onlLy a write operation - no read
operation in contrast to the complete unification. The class of
instructions operating on clLause headers are called
GET_INSTRUCTIONS. ALL Warren instructions operating on clause
head arguments start with the prefix GET_. For the arguments of a
goal the compiler generates code to built-up these arguments very
efficiently during runtime. Each instruction of this class has
the prefix PUT_. If structures occur in a Literal, the compiler
generates code to require a special access mechanism for the
arguments. The instructions belonging to this class start with
the prefix UNIFY_.
A clause with the head h and the two goals gl and g2:
h(...) == gi(...), g2(...) is transformated into code doing the
following operations:
allocate environment
unify h(...) with the calling goal
initialize argument registers for gl
call g1
initialize argument registers for g2
calLl g2

deallocate environment
return from clause

ONOUAP~UWUNP

The first step is to allocate an activation record onto the LOCAL

STACK. 1In step 2 the arguments of h(...) have to be unified with
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the arguments of the calling clause - the compiler generates code

consisting of GET_... and UNIFY_ instructions. In step 3 the
arguments for the first goal (gl) are built-up with PUT_... and
UNIFY_... dnstructions. In the next step a jump instruction is

executed for calling gl. After gl succeeds, the code builts-up
the arguments for g2 (step 6). After calling g2 and a successful
execution of g2 the activation record is deallocated (step 7) and
control is given back to the calling clause (step 8).
The reader 1is referred to /War 77/, /War 83/ and the WAM tutorial
/GLLO 84/ for a more detailled description. In respect of inherited
hierarchies we need some new GET, PUT and UNIFY instructions. We use a
similar pseudo code as /Be 85/, for our following definitions of these
new instructions. A first step to implement the feature instructions
was the implLementation of sort instructions, described in /Bue 85/,
/Hub 85/, /Var 87/. This approach extends Prolog with types ordered by
subtyping, but still not structured by features. In the following we
often use the synonym sort for type - the reason is that the feature
instructions are built-up from the sort instructions. The information
about the types is stored in a type table, the information about
feature constants is stored in a constant table. If we need the value
of a feature Fi of a constant C, we can get it very fast wusing the
constant table, which gives us the reference of the feature value on
the GLOBAL STACK. To be able to relate features to dimplicit
constructors, we assume a total order of alLl features. During compila-
tion the features are converted into integers. The total order rela-
tion is given with the less_than relation for the internal representa-
tion of the features.

In the following we use the notion feature constant, feature variable,
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feature structure for terms corresponding with a set of features.

PUT_Y_FVARIABLE Yn,Ai,S,Arity

This instruction represents a goal argument that is an unbound,
permanent, feature variable. It puts the adress of variable Yn
into register Ai. An entry of 'REF GP0OS' is made in the LOCAL
STACK. 1In the GLOBAL STACK at position GPOS the variable is
determined by an offset, containing the tag FEATURE_VARIABLE and
the type S. Arity represents the number of features for the
variable, 1t is used to compute the next free memory cell in the
GLOBAL STACK.

Tag.MEM(Ai) <-- REF

MEM(Ai) <--= GPOS

Tag.MEM(Currenv + n) <== REF

MEM(Currenv + n) <== GPOS

TAG.MEM(GPOS) <-- FEATURE_VARIABLE

MEM(GPOS) <-=-= GPOS + n

GPOS <== GPOS + 1

TAG.MEM(GPOS) <-- S

GPOS <=- GPOS + 1

Next=free-memory-cell <-- Arity + GPOS

Current-sort <-- S

MODE <--= WRITE

PUT_FCONSTANT C,Ai
This instruction represents a goal argument that 1is a feature
constant. As briefly described before, feature constants are
stored permanently in the GLOBAL STACK, this 1is done before
runtime. With +the fast access function Get_Const_Ref we get the
reference of the constant and put it into register Ai.
ATTENTION! The mode will be switched from WRITE to CMERGE,
since all features of the feature constant have to be uni-
fied with the stored features of the constant. The advantage
of this modification is that the search space will be re-
duced (see INSTANT_INSTRUCTIONS).
TAG.Ai1 <-- REF
Ai <-- Get-Const-Ref(C)
MODE <=-= CMERGE
Nextarg <-- C

PUT_FSTRUCTURE An,Ai,S,Arity
This dinstruction represents a goal argument that is a feature
structure. The structure itself was created on the GLOBAL STACK
before runtime.
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Ai <-- GPOS

Tag.Ali <-- REF

Tag.MEM(GPOS) <== FEATURE_STRUCTURE

MEM(GPOS) <-- GPOS +1

GPOS <-= GPOS + 1

Tag.MEM(GPOS) <=- REF

MEM(GPOS) <== An

GPOS <--= GPOS + 1

Next=free—memory-cell <-- GPOS + Arity

Current-sort <--= S

MODE <-- WRITE
If we deal with feature terms occurring in the clause head we have the
problem to allocate the GLOBAL STACK with the number of all features
belongs to the corresponding feature type. Therefore the function Get-
nr-of-features with the argument Sort computes the number of aLl
features for the feature type Sort. If unification of a feature term
with an unbound - or sort variable is done, we can optimize the
allocation process. Hence we allocate the GLOBAL STACK only with the
number of the features occurring in the feature term. In our instruc-
tion extension the argument 'Arity gets the information about the num-
ber of features of a feature term.
We have two additional MODES: VMERGE and CMERGE.
CMERGE is used during unification of feature constants, VMERGE is used
during unification of feature variables and feature structures. For a
detailed explanation see the UNIFY_FEATURE... instruction section. Be-
cause of the feature extension we need the new registers Current-sort
and Next-free-memory—-cell.
Current-sort stores the current sort of a feature term. We need
Current-sort to compute the constraints of the features during uni-
fication. Next-free—-memory-cell 1is a second stack pointer to the
GLOBAL STACK. After the allocation of the GLOBAL STACK with the number

of features of a feature term the stackpointer GPOS refers to the

first memory cell for the feature of a feature term. The terms denoted
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by the features are stored in the memory cells referred by Next-free-
memory-cell.

GET_Y_FVARIABLE Yn,Ai,S,Arity
This instruction marks the beginning of a feature variable
occurring as a head argument. The instruction gets the value of
register Ai and dereferences it. If the result is a reference to
an unbound variable or sort variable the variable is bound to the
feature variable. If the result 1is a feature variable a new
feature variable is created onto the GLOBAL STACK with the common
subsort of both sorts and execution proceeds in VMERGE mode. If
the result 1is a feature constant then the sort of the feature
constant has to be a subsort of the feature variable and execu-
tion proceeds in CMERGE mode. The common subsort of both sorts is
written in register Current-subsort. Register Next-free-memory-
cell refers to the next free memory cell after the allocation of
the GLOBAL STACK with the number of features of the feature term.
While Tag.Ai = REF DO Ai <-- MEM(Ai)
CASE Tag.Ai
UNBOUND:
Current-sort <-- S
TRAILCAIL)
Tag.MEM(GPOS) <== FEATURE_VARIABLE
MEM(GPOS) <-=- GPOS + 1
Tag.MEM(Currenv + n) <-- REF
MEM(Currenv + n) <--= GPOS
Tag.MEM(Ai) <=--REF
MEM(A1) <-- GPOS
GPOS <== GPOS + 1
Tag.MEM(GPOS) <=- Current-sort
GPOS <== GPOS + 1
MODE <--= WRITE
Next=free—-memory-cell <-- GPOS + Arity
F_VARIABLE:
Current=sort ==
Get—-common-subsort (S, Tag.MEM(MEM(Ai)))
Current-sort <--
Get=-common-subsort(S, Tag.MEM(MEM(Ai)))
IF Current-sort THEN
TRAIL(AIL)
MEM(Ai) <== GPOS
MEM(Currenv + n) <-- GPOS
Tag.MEM(Currenv + n) <-- REF
Tag.MEM(GPOS) <=- Current-sort
Nextarg <-- Ai + 1
MEM(GPQOS) <-- GPOS
GP0OS <=-= GPOS + 1
MODE <-- VMERGE
Next=free-memory-cell <=- GPOS +
(Get—-nr-of-features Current-sort)
ELSE FAIL
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FEATURE_CONSTANT:

IF Is-subsort (Tag.MEM(MEM(Ai)),S) THEN
MEM(Currenv + n) <-- MEM(A1L)
Tag.MEM(Currenv + n) <--= REF
Nextarg <-- Tag.MEM(MEM(Ai))

MODE <== CMERGE

ELSE FAIL

S_STRUCTURE:

If Is-subsort (Tag.MEM(MEM(Ai)),S) THEN
Current=-sort <-- Tag.MEM(MEM(Ai))
MEM(Currenv + n) <-— MEM(Ai)
Tag.MEM(Currenv + n) <--= REF
MODE <== VMERGE

ELSE FAIL

FEATURE_STRUCTURE:

If Is=-subsort (Tag.MEM(MEM(Ai)),S) THEN
Current=sort <-=- Tag.MEM(MEM(Ai))
MEM(Currenv + n) <-- MEM(Ai)
Tag.MEM(Currenv + n) <-- REF
Nextarg <-- Tag.MEM(MEM(Ai))

MODE <--= VMERGE

ELSE FAIL

OTHERWISE:

IF Is-sort-tag(Tag.MEM(Ai)) THEN

Current—-sort <--
Get-common-subsort(S, Tag.MEM(Ai))
IF Current=sort THEN
TRAILC(CAIL)
Tag.MEM(GPOS) <-- FEATURE_VARIABLE
MEM(GPOS) <-- GPOS + 1
MEM(Ai) <=- GPOS
Tag.MEM(Ai) <-- REF
MEM(Currenv + n) <-=--= GPOS
Tag.MEM(Currenv + n) <== REF
GPOS <== GPOS + 1
Tag.MEM(GP0OS) <=-= Current-sort
GPOS <== GPOS + 1
MODE <== WRITE
Next=-free-memory—-cell <-- GPOS + Arity
ELSE FAIL
ELSE FAIL

The GET_X_FVARIABLE and GET_FVARIABLE_VOID instructions are the
same as GET_Y_FVARIABLE, but (Currenv + n) is replaced by Ai or

is needless.






26

GET_FCONSTANT C, Ai
This instruction represents a feature constant occurring as
a head argument. The instruction gets the value of register
Al and dereferences it. If the resulLt is a reference to an
unbound variable or sort variable the variable is bound to
the feature constant. Is the result a feature variable a
sort check is executed and all features of the variable will
be unified with the features of the constant. Remember that
a feature constant is stored permanently onto the GLOBAL
STACK. Therefore we get the reference to the feature value
with 'Get-feature-of—-constant C Fi'.
While Tag.Ai = REF DO Ai <-- MEM(A1)
CASE Tag.Ail
UNBOUND:
TRAIL(AI)
MEM(Ai) <=-- Get-const-ref(C)
Tag.MEM(Ai) <=- REF
F_VARIABLE:
IF Is-subsort(C,Tag.MEM(MEM(Ai))) THEN
TRAIL(AI)
Tag.MEM(Ai) <=-- REF
MEM(A1i) <-==- Get=-const-ref(C)
repeat
Al <== A1 + 1
UNIFY(MEM(MEM(A1)),
Get—-feature—-of—-constant(
C,
Tag.MEM(MEM(AL)))
UNTIL Tag.MEM(AI)=END_OF_FEATURE_TERM
ELSE FAIL
FEATURE_CONSTANT:
IF S<>Tag.MEM(MEM(Ai)) THEN
FAIL
OTHERWISE:
IF Is-sort-tag(Tag.MEM(Ai) THEN
Sort <-- Is-subsort(C,Tag.MEM(Ai))
IF Sort THEN
TRAIL(AIL)
MEM(Ai) <-=- Get-const-ref(C)
Tag.MEM(Ai) <-- REF
ELSE FAIL
ELSE FAIL

GET_FSTRUCTURE An,Ai,S,Arity
This instruction marks the beginning of a feature structure
occurring as a head argument. The instruction gets the value of
register Ai and dereferences it. If the result is a reference to
an unbound variable or sort variable, this variable is bound to
the feature structure. If the result is a feature variable, sort
structure or a feature structure then a new feature structure is
created onto the GLOBAL STACK and execution proceeds 1in VMERGE
mode. The sort of the structure is written in register Current-
subsort. Register Next-free—memory-cell refers to the next free
memory cell after the allocation of the GLOBAL STACK with the
number of features of the feature term. Note that the unification
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of a feature structure is executed in two steps (it is the unfol-
ding technique described before). The first step is to unify all
features of the feature structure. The second step is to unify
the structure themselve. The GET_FSTRUCTURE instruction prepares
the register An and a memory cell for the second step. We will
demonstrate it through the following example:

p(foo(a,b){Fi => A:s1, FJ => B:s2}) :- ...
The compiler generates (in the next version) the following code:
GET_FSTRUCTURE(10, 0O, sort_of_foo, 2)
UNIFY_FEATURE_Y_SVARIABLE (Fi, 11, s1)
UNIFY_LAST_FEATURE_Y_VARIABLE (F3j, 12, s2)
GET_S_STRUCTURE (foo, sort_of_foo, 10)
UNIFY_CONSTANT (a)
UNIFY_CONSTANT (b)
While Tag.Ai = REF DO Ai <-- MEM(A1)
CASE Tag.Ai
UNBOUND:
Current=sort <-- S
TRAIL(AIL)
Tag.MEM(GPOS) <-- FEATURE_STRUCTURE
MEM(GPOS) <-- GPOS + 1
Tag.MEM(ANn) <-- REF
MEM(AN) <== GPOS + 1
Tag.MEM(Ai1) <--REF
MEM(Ai) <=-=- GPOS
GPOS <== GPOS + 1
Tag.MEM(GPOS) <-- Current-sort
MEM(GPOS) <-- GPOS
GPOS <== GPOS + 1
MODE <--= WRITE
Next=free-memory-cell <-- GPOS + Arity
F_VARIABLE:
Current-sort <-- Is-subsort(S,Tag.MEM(MEM(Ai)))
IF Current-sort THEN
TRAILCAIL)
Tag.MEM(GPOS) <== FEATURE_STRUCTURE
MEM(GPOS) <-- GPOS + 1
Tag.MEM(ANn) <-- REF
MEM(AN) <-=- GPOS + 1
Tag.MEM(AL) <-- REF
MEM(Ai1i) <--= GPOS
GPOS <==- GPOS + 1
Tag.MEM(GP0OS) <=- Current=sort
MEM(GPOS) <-- GPOS + 1
Nextarg <-- A1l + 1
GPOS <== GPOS + 1
MODE <--= VMERGE
Next=free—-memory-cell <-- GPOS +
(Get-nr-of-features Current-sort)
ELSE FAIL






S_STRUCTURE:
Current-sort <-- Is-subsort(S,Tag.MEM(MEM(Ai)))
If Current-sort THEN
TRAIL(AI)
Tag.MEM(GP0OS) <-- FEATURE_STRUCTURE
MEM(GPOS) <-- GPOS + 1
Tag.MEM(AN) <-- REF
MEM(AN) <-- GPOS + 1
GPOS <== GPOS + 1
Tag.MEM(GPOS) <-- REF
MEM(GPOS) <-- MEM(MEM(AI))
Tag.MEM(Ai) <-- REF
MEM(Ai1) <-- GPOS - 1
GPOS <=- GPOS + 1
MODE <-- WRITE
Next-free—-memory-cell <--= GPOS +
(Get-nr-of-features Current-sort)
ELSE FAIL
FEATURE_STRUCTURE:
Current=sort <-- Is-subsort(S,Tag.MEM(MEM(Ai)))
If Current=-sort THEN
TRAILC(CAIL)
Tag.MEM(GPOS) <-- FEATURE_STRUCTURE
MEM(GPOS) <--= GPOS + 1
Tag.MEM(AN) <=- REF
MEM(AN) <--= GPOS + 1
GP0OS <== GPOS + 1
Tag.MEM(GPOS) <=- REF
MEM(GPOS) <-- MEM(MEM(AIL))
Tag.MEM(AL) <-- REF
MEM(Ai) <== GPOS - 1
Nextarg <-- A1 + 1
GP0OS <-= GPOS + 1
MODE <-- VMERGE
Next=free-memory=-cell <== GPOS +
(Get—nr—-of-features Current-sort)
ELSE FAIL
OTHERWISE:
IF Is-sort-tag(Tag.MEM(Ai)) THEN
Current-sort <-- Is-subsort(S,Tag.MEM(A1))
IF Current-sort THEN
TRAIL(AI)
Tag.MEM(GPOS) <-- FEATURE_STRUCTURE
MEM(GPOS) <--= GPOS + 1
MEM(Ai) <=- GPOS
Tag.MEM(A1) <-- REF
MEM(AN) <-- GPOS + 1
Tag.MEM(ANn) <=-- REF
GPOS <== GPOS + 1
Tag.MEM(GPOS) <-=- UNBOUND
MEM(GPOS) <-- GPOS
GPOS <-~= GPOS + 1
MODE <=- WRITE
Next=free—memory-cell <=-= GPOS + Arity
ELSE FAIL
ELSE FAIL
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The following instructions are the instructions for the feature term
arguments. We can split them into two disjoint classes:
Instructions for feature variables and feature structures begin
with the prefix °'UNIFY_FEATURE'.
Instructions for feature constants begin with the prefix

"INIT_CONST'.

We use a different instruction set for feature constants as for featu-
re structures and variables because feature constants have a fixed
storage in the memory. If we define a term referenced by a feature of
a constant we have to unify it with the feature value in the fixed
storage.
Example:
Assume we have the feature constant peter with the feature mother
that 1is bound to a sort variable of type person before runtime.
During runtime anne is bound to peter's mother. If we have a rule
Like
p(X) := g(peter {mother =-> mary}).
and call p then a failure has to occur, while binding mary to
peter's mother.
The subroutine 'Copy-features Nextarg Fi' copies allL features Less
than Fi onto the GLOBAL STACK. Before the features are copied a sort
check 1is executed and if necessary the sort is altered. The value of
Copy-features is the first feature > Fi, if the sort check succeeds.
The subroutine 'Get-sort—-of-feature Current-sort Fi®' computes the
sort of the feature Fi of feature type Current-sort. The reference to
the feature value of a feature of a constant is obtained by the sub-

routine ‘'Get-feature-of-constant Nextarg Fi'.
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The next problem is to generate the end mark of a feature term. We
introduce so-called UNIFY_FEATURE_..._LAST instructions. They do the
same as the UNIFY_FEATURE_... instructions but after the Last feature
the flag 'END_OF_FEATURE_TERM is pushed onto the GLOBAL STACK.
'*Is-sort—-compatibel Fi Sort' dereferences the feature Fi of a feature
term and executes a sort check with the reference adress. If necessary
the sort will be alLtered. the value of 'Is-sort-compatibel is true if
the sorts are compatibel else nil.

UNIFY_FEATURE_Y_VARIABLE Fi,Yn

This instruction represents a feature term argument that is a
permanent, unbound variable. If the instruction is in WRITE mode,
it pushes a new variable onto the GLOBAL STACK, and Links the
feature Fi with that variable. The reference to the variable is
stored onto the LOCAL STACK at position (Currenv + n). The sort
of the variable computes the function Get-sort-of-feature with
the arguments Current-sort and Fi. If the instruction is in VMER-
GE mode, it simply gets the next feature from Nextarg. If the in-
tern feature name is LlLess than Fi (note: we have a '<' order onto
the features) then we copy the feature, referenced by Nextarg
onto the GLOBAL STACK and increment Nextarg. The same operation
is repeated until one of the following termination conditions
succeeds:

If the feature referenced by Nextarg is greater than Fi we do
the same as in WRITE mode. If the intern feature name is equal to
Fi, we copy the feature onto the GLOBAL STACK and puts 1in
MEM(Currenv + n) the reference GPOS.

Is the instruction in CMERGE mode, we get the reference to the
feature Fi in the constant with the subroutine ‘Get-feature=-of-
constant Nextarg Fi' and store the reference of Fi in the LOCAL
STACK at position: (Currenv + n)

CASE MODE
WRITE:

Tag.MEM(GPOS) <=-=- Fi

MEM(GPOS) <--= Next-free—memory-cell

GPOS <== GPOS + 1

Tag.MEM(Currenv + n) <-- REF

MEM(Currenv + n) <-- Next-free-memory-cell

MEM(Next—-free-memory-cell) <--
Next=free-memory-cell

Tag.MEM(Next-=free-memory-cell) <--
Get-sort-of-feature(Current-sort, Fi)

Next=-free-memory=-cell <--
Next=free-memory=-cell + 1
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VMERGE:
WHILE (< Tag.MEM(Nextarg) Fi)
Copy—-feature(Nextarg, Fi)
IF Tag.MEM(Nextarg) = Fi THEN
Tag.MEM(GPOS) <-- Fi
MEM(GPOS) <-- MEM(MEM(Nextarg))
GPOS <-- GPOS + 1
Tag.MEM(Currenv + n) <-=-= REF
MEM(Currenv + n) <-- MEM(MEM(Nextarg))
Nextarg <-- Nextarg + 1
ELSE
Tag.MEM(GPOS) <-- Fi
MEM(GPOS) <-- Next-free-memory-cell
GPOS <=-- GPOS + 1
Tag.MEM(Currenv + n) <=-= REF
MEM(Currenv + n) <-- Next-free-memory-cell
MEM(Next=free—memory=cell) <--
Next=free-memory=-cell
Tag.MEM(Next=-free—memory=-cell) <--
Get-sort-of-feature(Current-sort, Fi)
Next=free-memory-cell <--
Next=free-memory=-cell + 1
CMERGE:
Tag.MEM(Currenv + n) <--— REF
MEM(Currenv + n) <=-
MEM(Get-feature-of—-constant(Nextarg,Fi))

UNIFY_FEATURE_Y_SVARIABLE Fi,Yn,S

This dinstruction represents a feature term argument that is a
permanent, sort variable. If the instruction is in WRITE mode, it
pushes a new sort variable onto the GLOBAL STACK, and Links the
feature Fi with that sort variable. The reference is stored onto
the LOCAL STACK at position (Currenv + n). If S is a subsort of
'Get-sort-of-feature Current=-sort Fi' then the new variable has
the sort S else the sort of the variable is the sort of the
feature Fi of Current-sort. If the instruction is in VMERGE mode
it simply gets the next feature from Nextarg. If the intern
feature name is Less than (note: we have a '<' order onto the
features) we copy the content of Fi onto the GLOBAL STACK and in-
crement Nextarg. The same operation is repeated until one of the
following termination conditions succeeds:

If the feature referenced by Nextarg is greater than Fi we do
the same as in WRITE mode. If the features are equal, a sort
check will be executed and if the sorts are compatibel, we copy
the value referenced by Nextarg onto the GLOBAL STACK and incre-
ment Nextarg. Otherwise FAIL is executed.

Is the instruction in CMERGE mode, we get the reference to the
feature Fi in the constant with ‘'Get-feature-of-constant Nextarg
Fi', executes a sort check and stores the reference in the LOCAL
STACK at position: (Currenv + n).
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If Is-subsort(S, Get-sort-of-feature(Current-sort, Fi)) THEN
S
ELSE
S <=- Get=-sort-of-feature(Current-sort, Fi))
CASE MODE
WRITE:
Tag.MEM(GPOS) <-- Fi
MEM(GPOS) <--= Next-=free—-memory-cell
GPOS <=- GPOS + 1
Tag.MEM(Currenv + n) <-- REF
MEM(Currenv + n) <-- Next—-free-memory-cell
MEM(Next-free-memory-cell) <--
Next=free=-memory-cell
Tag.MEM(Next—-free—-memory-cell) <-- S
Next=free-memory-cell <--
Next=free-memory-cell + 1
VMERGE:
WHILE (< Tag.MEM(Nextarg) Fi)
Copy-feature(Nextarg,Fi)
IF Tag.MEM(Nextarg) = Fi THEN
If Is-sort-compatibel (MEM(Nextarg),S) THEN
Tag.MEM(Currenv + n) <-- REF
MEM(Currenv + n) <== MEM(Nextarg)
Tag.MEM(GPOS) <-- Fi
Tag.MEM(GPOS) <-- MEM(Nextarg)
GPOS <--= GPOS + 1
ELSE FAIL
ELSE
Tag.MEM(GPOS) <-- Fi
MEM(GPOS) <-- Next-free—memory-cell
GPOS <-- GPOS + 1
Tag.MEM(Currenv + n) <--= REF
MEM(Currenv + n) <=-= Next-=free—memory=-cell
MEM(Next=free=memory=cell) <==
Next=free—-memory-cell
Tag.MEM(Next-free—-memory-cell) <-== S
Next-free—-memory-cell <--
Next-=free-memory-cell + 1
CMERGE:
Feature—arg <--Get-feature-of-constant(Nextarg,Fi)
IF Is-sort—-compatibel (MEM(Featurearg),S) THEN
Tag.MEM(Currenv + n) <-- REF
MEM(Currenv + n) <-- MEM(Featurearg)
ELSE FAIL
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INIT_CONST_FCONST Fi,C,Ci
This instruction represents a feature constant argument that is a
constant. Since the feature constants are defined before runtime,
every feature of C defined in a rule has to be unified with the
stored feature value of C. If the feature argument Fi of C is an
unbound variable the unbound variable is bound to the constant
Ci. If the feature argument is a sort variable, the constant Ci
has to be a subsort of the sort variable and the sort variable is
bound to Ci. 1In the case that the feature argument Fi is a
constant the name of the constant must be identical to Ci. If the
feature argument is a feature variable, then the feature variable
is bound to Ci. Ci has to be a subsort of the sort of the feature
variable and all feature arguments of the variable have to be
unifyable with the feature arguments of Ci.
Featurearg <—-- Get-feature-of-constant(C,Fi)
CASE Tag.Featurearg
UNBOUND:
TRAIL(Featurearg)
Tag.MEM(Featurearg) <--= FEATURE_CONSTANT
MEM(Featurearg) <-- Get-const-ref(C)
F_VARIABLE:
IF Is-subsort(Ci, Tag.MEM(MEM(featurearg))) THEN
Ref-copy <{—- MEM(Featurearg)
TRAIL(MEM(Featurearq))
Tag.MEM(MEM(Featurearg)) <-=-= FEATURE_CONSTANT
MEM(MEM(Featurearg)) <-- Get-const-ref(Ci)
REPEAT
Ref-copy <-- Ref-copy + 1
UNIFY(MEM(MEM(Feature-arg)),
MEM(Get-feature-of-constant
Ci
Tag.MEM(Featurearg)))
UNTIL Tag.MEM(Ref-copy) = END_OF_FEATURE_TERM
ELSE FAIL
FEATURE_CONSTANT:
IF Cci <> Tag.(MEM(MEM(Featurearg))) THEN
FAIL
OTHERWISE:
IF Is-sort-tag(Tag.MEM(MEM(Featurearg)) THEN
sort <-—-= .,
Is-subsort(Ci, Tag.MEM(MEM(Featurearg)))
IF sort THEN
TRAIL(MEM(Featurearg))
MEM(MEM(Featureargqg)) <-- .
Get=const=-ref(Ci)
Tag.MEM(MEM(Featurearg)) <--— .
FEATURE_CONSTANT
ELSE FAIL
ELSE FAIL
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INIT_FCONST_Y_SVARIABLE Fi,C,S,Yn
This instruction represents a feature constant argument of a
feature constant that is a sort variable. We distinguish between

5 possibilities.

If the feature argument Fi of C is an wunbound variable, the
unbound variable is bound to the sort variable.
If the feature argument is a sort variable, a sort check is
executed and if necessary the sort of the variable is altered.
If the feature argument is a constant, the constant has to be
a subsort of S.
If the feature argument 1is a feature variable, the sort
variable is bound to the feature variable - if there exists a
greatest common subsort.
If the feature argument 1is a structure, the sort of the
structure has to be a subsort of S.
Featurearg <-- Get-feature-of-constant(C,Fi)
CASE Tag.MEM(Featurearg)
UNBOUND:
TRAIL(MEM(Featurearg))
Tag.MEM(MEM(Featurearg)) <-- S
F_VARIABLE:
Sort <==
Get-common-subsort(
S,
Tag.MEM(MEM(Featurearg)))
IF Sort THEN
TRAIL(MEM(MEM(Featurearg)))
Tag.MEM(MEM(Featurearg)) <-=-= Sort
ELSE FAIL
S_STRUCTURE:
IF (not(Is-subsort(Tag. (MEM(MEM(Featurearg))),S))
THEN
FAIL
FEATURE_CONSTANT:
IF (not(Is-subsort(Tag. (MEM(MEM(Featurearg))),S))
THEN
FAIL
FEATURE_STRUCTURE:
IF (not(Is=-subsort(Tag.(MEM(MEM(Featurearg))),S))
THEN
FAIL
OTHERWISE:
IF Is-sort-tag(Tag.MEM(MEM(Featurearg)) THEN
Sort <-—-
Get-common-subsort(
S,
Tag.MEM(MEM(Featurearg)))
IF Sort THEN
TRAIL(MEM(Featurearg))
Tag.MEM(MEM(Featurearg)) <-- Sort
ELSE FAIL
ELSE FAIL
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The INIT_CONST_X_VARIABLE and INIT_CONST_Y_VARIABLE instructions put
the address of the feature argument Fi of the constant C onto the

LOCAL STACK (currenv + n) or in Register Ai.

INIT_CONST_Y_VALUE Fi,C,Yn
This instruction represents a feature constant argument that is a
variable bound to some global value. It gets the argument of the
constant with 'Get-feature-of-constant C,Fi' and unifies it with
the valLue of the variable Yn.
(UNIFY
MEM(Currenv + n),
MEM(Get-feature-of-constant C,Fi))

The INIT_CONST_X_VALUE instruction is the same as the
INIT_CONST_Y_VALUE instruction, but (Currenv + n) is replaced by regi-

ster Ai.
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Conclusion

Feature unification is an elegant method to solve constraints with an
efficient inheritance method without the use of formal deduction steps

- computation instead of searching. We have shown that it is possible

to extend the WARREN Abstract Machine to feature unification. We have
implemented this extended Prolog machine prototypically, however there
will be a Lot of improvements of runtime behavior.

Feature Prolog has applications in computational Linguistic and
knowlLedge representation. E.g. with Feature Prolog we can represent
Functional Unifications Grammars (FUG) /Per 87/ very efficient and
natural. The burden of representation falls in Feature Prolog much mo-

re heavily on descriptions than on rulLes.
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Appendix

In the following we give the compiled code of the entrance examplLe in
the Feature Prolog version. The generated code is modified in that
sense that all dinternal symbols are converted into the user defined
symbols.

The Warren Code of example 1b:

grandfather/2 try_me_else grandfather/2-1
get_fvariable_void 0 person 1
unify_Last_feature_x_variable mother 10
get_fvariable_void 10 person 1
unify_Llast_feature_x_svariable father person 11
get_X_value 11 1

grandfather/2-1 trust_me_else
get_fvariable_void 0 person 1
unify_Last_feature_x_variablLe father 10
get_fvariable_void 10 person 1
unify_Llast_feature_x_svariable father person 11
get_X_value 11 1
proceed

sign_of_zodiac/2 try_me_else sign_of_zodiac/2-1
get_fvariable_void O person 1
unify_Last_feature_x_var month_of_birth 10
s_get_constant january 10
s_get_constant capricorn 1
proceed

sign_of_zodiacrs/2-1 try_me_else sign_of_zodiacr/2-2
get_fvariable_void 0 person 1
unify_Llast_feature_x_var month_of_birth 10
s_get_constant february 10
s_get_constant aquarius 1

proceed
sign_of_zodiac/2-... try_me_else sign_of_zodiac/2-...
QUERYO allocate 3

put_fconstant peter O
s_put_Y_variable 0 1 person
put_Y_Local_valLue O

call grandfather/2 3
put_unsafe_value 0 O
s_put_constant pisces 1
deallocate

execute sign_of_zodiac/2






38
The next compiled code is from the source code given in Example2. It's

the original code of the implemented machine.

e ettt THE IDENT-TABLE-------=——--—-—-— ;
(73 (73 . |course_list|) (48 . |no_curriculum|) (47 . Iteacher|) (72 . |jobtitlel|) (46 . Iprofessor|) (45
lcomp3() (44 . |comp2|) (43 . |compl|) (42 . |ma3|) (41 . Ima2l) (40 . Imall) (39 . [pe3|) (38 . |pe2
) (37 . Ipell) (36 . |cs3|) (35 . [cs2|), (34 . |esl|) (33 . lchem2|) (32 . |cheml|) (31 . |bio3|) (71
curriculum|) (30 . |bio2|) (29 . |abdulal) (28 . Imaryl) (70 . Ifirst namel|) (27 . Ipeter|) (26 . |high i
ncome?2|) (25 . lhigh_incomel]|) (24 . Imiddle_income3|) (23 . Imiddle income2|) (22 . Imiddle incomel|) (2
1 . |low_income3|) (20 . |low_income2|) (19 . |low incomel|) (18 . F£21) (17 . 1£f1]) (16 . |e2|) (15 . |e
11) (14 . |w2]) (13 . |wl|) (12 . |s2]) (11 . lsd[) (10 . Ino_eg_member|) (9 . |locall) (69 . |status|) {
8 . |eg member|) (68 . |physical_ education|) (67 . |computer science|) (66 . |chemestryl) (65 . |subject
) (64 . |biologyl|) (63 . |old|) (62 . |middlel|) (61 . lagel) (60 . |youngl) (59 . |high income|) (58 . Imx
iddle_income|) (57 . |incomel|) (56 . |low _incomel|) (55 . Iworkstudy|) (54 . | faculityl|) (53 . |staffl|) (5
2 . |employeel|) (51 . |person|) (50 . |student|) (49 . lany|))

((48- . 73) (47 . 72) (46 . 72) (45 . 1) (44 . 71) (43 . 71) (42 . 71) (41 . 71) (40 . 71) (39 . 71) (38
71) (37 . 71) (36 . 71) (35 . 71) (34 . 71) (33 . 71) (32 . 71) (31 . 71) (30 . 71) (29 . 70) (28 . 70)
(27 . 70) (26 . 59) (26 . 59) (25 . 59) (24 . 58) (23 . 58) (22 . 58) (21 . 56) (20 . 56) (19 . 56) (18
54) (17 . 54) (16 . 53) (15 . 53) (14 . 55) (13 . 55) (12 . 50) (11 . 50) (10 . 69) (9 . 69) (8 . €9) (
68 . 65) (67 . 65) (66 . 65) (64 . 65) (63 . 61) (62 . 61) (60 . 61) (59 . 57) (58 . 57) (56 . 57) (55
53) (55 . 50) (54 . 52) (53 . 52) (52 . 51) (50 . 51) (51 . 49) (57 . 49) (61 . 49) (65 . 49) (69 . 49)
70 . 49) (71 . 49) (72 . 49) (73 . 49))

((Isalary| . 8) (lposition| . 7) (|Imajor| . 6) (|father| . 5) (Imother| . 4) (ifirst_idt . 3) (Isccial st
atus| . 2) (IperiodAof_life\ .1))
P THE CONSTANT PROPERTY LIST--——-----— 7

(49 9 (48) (47) (46) (45) (44) (43) (42) (41) (40) (39) (38) (37) (36) (35) (34) (33) (32) (31) (30) (29
(28) (27) (26) (26) (25) (24) (23) (22) (21) (20) (19) (18 (1 . 61) (2 . 69) (3 . 70) (4 5 (
(7.72) (8 . 57)) (17 (1 . 61) (2 . 69) (3 . 70) (4 . 51) (5 . 51) (7 . 72) (8 . 57)) (16 (1 . 6
69) (3 . 70) (4 . 51) (5 . 51) (7 . 72) (8 . 57)) (15 (1 . 61) (2 . 69) (3 . 70) (4 51 1
2) (8 . 57)) (14 (1 . 62) (2 . 10) (3 . 29) (4 . 51) (5 . 51) (6 . 67) (7 . 72) (8 . 57)
9) (3 . 28) (4 . 51) (5 . 51) (6 . 68) (7 . 72) (8 . 57)) (12 (1 . 62) (2 . 8) (3 . 27) (4 . 51
51) (6 . 66)) (11 (1 . 62) (2 . 9) (3 . 27) (4 . 51) (5 . 51) (6 . 64)) (10) (9) (8))

S THE (SORT - NR. OF PROPERTIES) LIST----;

((13 . 8) (14 . 8) (17 . 7) (18 . 7) (55 . 8) (15 . 7) (16 . 7) (53 . 7) (54 . 7) (11 . 6) (12 . 6) (50
6) (52 . 7) (51 . 95))

| foreign/1|

(WPM-GET_FVAR _VOID 0 51 1)
(WPM-UNTFY_LAST_FEATURE X VAR 2 10)
(WPM-S_GET_CONSTANT 10 10)

(WPM-PROCEED)

| few courses/1

(WPM-TRY_ ME_ELSE i few courses/1-1| 1)
(WPM-S_GET CONSTANT 48 0)

(WPM-PROCEED)

| few_courses/1-1|

(WPM-RETRY_ME_ELSE | few_courses/1-21)
(WPM-S_GET_ STRUCTURE (QUOTE (lconsi 2)) 0 73
(WPM-S_UNIFY X VARIABLE 10 71)

(WPM-S_UNIFY CONSTANT 48)

(WPM-PROCEED)

| few_courses/1-2]

(WPM-RETRY_ME ELSE |few courses/1-3]|
(WPM-S_GET STRUCTURE (QUOTE (|cons| 2)) 0 73)
(WPM-5_UNIFY X VARIABLE 10 71)

(WPM-UNIFY_X VARIABLE 11)

(WPM-5_ GET_STRUCTURE (QUOTE (|cons| 2)) 11 73)
(WPM-S_UNIFY X VARIABLE 12 71)






(WPM-S_UNIFY_ CONSTANT 48)
(WPM-PROCEED)

| few_courses/1-3|
(WPM-TRUST_ ME ELSE)
(WPM-S_GET_STRUCTURE (QUOTE (|cons
(WPM-S_UNIFY X VARTABLE 10 71)
(WPM-UNIFY_ X VARIABLE 11)
(WPM-S_GET_STRUCTURE (QUOTE (|cons|
(WPM-S_UNIFY X VARIABLE 12 71)
(WPM-UNIFY_ X VARIABLE 13)
(WPM-S_GET_STRUCTURE (QUOTE (|cons|
(WPM-S_UNIFY X VARIABLE 14 71)
(WPM-S_UNIFY_CONSTANT 48)
(WPM-PROCEED)

|takes/2|

(WPM-TRY_ME_ELSE |takes/2-1| 2)
(WPM-GET_FCONST 11 0)
(WPM-S_GET_STRUCTURE (QUOTE (|cons]|
(WPM-S_UNIFY CONSTANT 40)
(WPM-UNIFY_X VARIABLE 10)
(WPM-S_GET_STRUCTURE (QUOTE (|cons
(WPM-S_UNIFY_CONSTANT 33)
(WPM-UNIFY X VARIABLE 11)
(WPM-S_GET_STRUCTURE (QUOTE (]|cons]|
(WPM-S_UNIFY CONSTANT 30)
(WPM-UNIFY X VARIABLE 12)
(WPM-S_GET STRUCTURE (QUOTE (|cons]|
(WPM-S_UNIFY CONSTANT 31)
(WPM-S_UNIFY CONSTANT 48)
(WPM-PROCEED)

|takes/2-1|

(WPM-RETRY_ME_ELSE |takes/2-2])
(WPM-GET_FCONST 12 0)
(WPM-S_GET_STRUCTURE (QUOTE (|cons|
(WPM-S_UNIFY CONSTANT 32)
(WPM-UNIFY X VARIABLE 10)
(WPM-S_GET_STRUCTURE (QUOTE (|cons
(WPM-S_UNIFY CONSTANT 33)
(WPM-UNIFY X VARIABLE 11)
(WPM-S_GET_STRUCTURE (QUOTE (|cons]|
(WPM-S_UNIFY CONSTANT 30)
(WPM-UNIFY X VARIABLE 12)
(WPM-S_GET STRUCTURE (QUOTE (|cons|
(WPM-S_UNIFY CONSTANT 42)
(WPM-S5_UNIFY CONSTANT 48)
(WPM-PROCEED)

|takes/2-2|

(WPM-RETRY ME ELSE |takes/2-3]
(WPM-GET_FCONST 13 0)

(WPM-S5_GET_ STRUCTURE (QUOTE (|cons]|
(WPM-S_UNIFY CONSTANT 40
(WPM-UNIFY X VARIABLE 10)
(WPM-S5_GET_STRUCTURE (QUOTE (|cons
(WPM-S_UNIFY_ CONSTANT 41)
(WPM-UNIFY_X VARIABLE 11)
(WPM-S_GET_STRUCTURE (QUOTE (l|cons
(WPM-S_UNIFY CONSTANT 42)
(WPM-UNIFY_ X VARIABLE 12)
(WPM-S_GET_STRUCTURE (QUOTE (|cons]|
(WPM—S‘UNIFYhCONSTANT 38)
(WPM—S_UNIFY_CONSTANT 48
(WPM-PROCEED)

|takes/2-3|

(WPM-TRUST_ME_ELSE)

(WPM-GET_FCONST 14 0)
(WPM-S_GET_STRUCTURE (QUOTE (|cons]|
(WPM-S_UNIFY_CONSTANT 40)
(WPM-UNIFY X VARIABLE 10)
(WPM-5_GET_STRUCTURE (QUOTE (!cons
(WPM-S_UNIFY_CONSTANT 44)
(WPM-S5_UNIFY CONSTANT 48)
(WPM-PROCEED)

|part time/1|

(WPM-ALLOCATE 3)
(WPM-S_GET X _VARIABLE 10 0 50)
(WPM-PUT_X VALUE 10 0)

2))

2))

2))

0 73)

11 73)

13 73)

1 73)

10 73)

11 73)

12 73)

1 73)

10 73)

12 73)

L 73)

10 73)

11 73)

12 73)

39






(WPM-5_PUT_VARIABLE VOID 1 73)
(WPM-CALL |takes/2| 3)
(WPM-S5_PUT_VARIABLE VOID 0 73
(WPM-DEALLOCATE)

(WPM-EXECUTE |few_courses/1])
|query/1|

(WPM-ALLOCATE 2)
(WPM-S_GET_X_VARIABLE 10 0 70)
(WPM-PUT_Y_FVAR 0 0 55 2)
(WPM—UNIFY_FBATUREMX_VALUE 3 10)
(WPM-UNIFY_ LAST_ FEATURE_SVAR VOID 8 56)
(WPM-CALL | foreign/1| 2)
(WPM-PUT_UNSAFE_VALUE 0 0)
(WPM-DEALLOCATE)

(WPM-EXECUTE |part time/1])
QUERYO

(WPM-VAR-MEM "X")
(WPM-S_PUT_VARIABLE_VOID 0 70)
(WPM-EXECUTE |query/1])

"end"

((lquery/1| . 1) (lpart time/l| . 1) (ltakes/2}|

"oand"

2)

(I few courses/1|

L)

(| foreign/1|

1))

40
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