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Abstract: The mechanical behaviour of polymer adhesives is influenced by the environmental
conditions leading to ageing and affecting the integrity of the material. The polymer adhesives have
hygroscopic behaviour and tend to absorb moisture from the environment, causing the material
to swell without applying external load. The focus of the work is to investigate the viscoelastic
material behaviour under ageing conditions. The constitutive equations and the governing equations
to numerically investigate the fracture in swollen viscoelastic material are discussed to describe the
numerical implementation. Phase-field damage modelling has been used in numerical studies of
ductile and brittle materials for a long time. The finite-strain phase-field damage model is used to
investigate the fracture behaviour in aged viscoelastic polymer adhesives. The finite-strain viscoelastic
model is formulated based on the continuum rheological model by combining spring and Maxwell
elements in parallel. Commercially available post-cured crosslinked polyurethane adhesives are
used in the current investigation. Post-cured samples of crosslinked polyurethane adhesives are
prepared for different humidity conditions under isothermal conditions. These aged samples are
used to perform tensile and tear tests and the test data are used to identify the material parameters
from the curve fitting process. The experiment and simulation are compared to relate the findings
and are the first step forward to improve the method to model crosslinked polymers.

Keywords: polyurethane adhesives; non-linearity; viscoelasticity; ageing; fracture; phase-field
method

1. Introduction

Adhesives are used to bond coated metal and fiber-reinforced plastics (FRPs) in
automotive engineering, aerospace applications, shipbuilding, wind energy, and rail vehicle
construction. The long-term durability of the bonded joints and the verification process are
decisive in manufacturing economically viable bonded structures. Crosslinked network
polymer adhesives are becoming increasingly dominant in bonding technology in the
manufacturing of lightweight materials. Epoxy and polyurethane adhesives are the most
popular chemically crosslinked network polymer adhesives. The present work focuses
on polyurethane structural adhesives that are used as structural adhesives in bonding
metals, concrete, or polymers in various industries [1]. The higher-stiffness PU adhesives
are based on an alcohol–isocyanate chemistry. The curing process forms polyurethane in a
primary reaction to produce final mechanical properties. Polyurethane adhesives are used
in manufacturing bonded joints, especially in the automotive industry (e.g., BMW I3 life
module, BMW M3 bumper beam, Audi, Toyota, Ford, etc.). The interlaminar strength of
these adhesives is similar to the FRP adherents, and thus the transfer of forces is optimally
utilised reducing frictional resistance at the interface.

These structural adhesives exhibit largely non-linear rate-dependent behaviour due
to simultaneous elastic and viscous behaviour. Additionally, polyurethane adhesives are
sensitive to the moisture of the environmental conditions due to hygroscopic properties.
Hygroscopic behaviour leads to the diffusion of moisture from the environment causing

Polymers 2024, 16, 2676. https://doi.org/10.3390/polym16182676 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym16182676
https://doi.org/10.3390/polym16182676
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-1642-9018
https://doi.org/10.3390/polym16182676
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym16182676?type=check_update&version=1


Polymers 2024, 16, 2676 2 of 22

material to age [2]. The ageing of material is classified into chemical and physical ageing.
Chemical ageing is an irreversible process due to the chemical interaction between moisture
and polymer network resulting in breakage of bonds and forming new bonds, whereas
physical ageing is reversible since there are no chemical interactions that influence the
physical properties of the material over time. The primary focus of the present work is to
formulate a material model to investigate the physical ageing of polyurethane adhesive
under the influence of moisture.

The moisture diffusion due to the hygroscopic behaviour leads to the swelling of the
polymer without the application of any external loads [3,4]. The swelling of the polymer is
purely volumetric leading to the swelling stresses [5,6]. Several theories were proposed and
widely investigated to model the swelling behaviour in polymer gels considering chemical
and mechanical interactions based on mixing theories [7–10]. Further, several researchers
proposed the modelling of the swelling behaviour under large deformation based on
the multiplicative split of the deformation gradient into the swelling and mechanical
components based on the finite-strain theory [11,12]. The mechanical deformation gradient
describes the viscoelastic behaviour of the material. Material models based on finite-
strain viscoelastic mechanical behaviour are modelled primarily for rubber materials [13].
These material models are classified into phenomenological and micro-mechanical models.
Phenomenological continuum mechanical models are formulated based on invariants or
principal strains [14–17]. Micro-mechanical models are modelled based on the statistical
polymer network theory [18–22]. This article utilises phenomenological formulations to
describe the finite-strain viscoelastic behaviour. Herein, a nearly incompressible behaviour
is assumed with large deformations, and therefore the deformation is decomposed into
volumetric and isochoric parts [23,24]. The decomposition provides a clear description of
the physical behaviour of volume and shape-changing parts. Further, the isochoric part is
decomposed into elastic and inelastic parts to describe rate-dependent behaviour using
continuum-based rheological models.

Modelling of crack propagation is an existing challenge in polymer materials [25,26].
In this context, the crack propagation is well understood within the framework of theoretical
continuum mechanics [27]. The energy balance at the crack propagation boundary is
described based on Griffith’s criterion. Griffith’s theory states that a crack propagates when
the energy release rate at the crack propagation zone is higher than the surface energy built
up. The conventional method in modelling cracks separates the material into a broken and
intact material by an interface. However, such a method requires a priori knowledge of
the exact position of the interface and is complex to model in three-dimensional systems.
Therefore, the phase-field method is developed to have a decisive advantage over sharp
interface models since the explicit interface tracking becomes redundant [28].

A distinction is made between physical and mechanical approaches in modelling the
phase-field material models. The physical model approaches are based on the Ginzburg–
Landau phase transformation. In contrast, the mechanical approaches are based on Griffith’s
failure theory. A review of the different approaches in modelling phase-field ductile fractures
is detailed by Ambati et al. [29]. These models use order parameters to distinguish broken
and intact material by minimising the system’s free energy [30]. Phase-field fracture models
describe crack propagation in homogeneous materials under different loads [31–33], including
plastic effects [29,34–36] and multi-physics problems [37–39]. Based on Griffith’s theory,
a model with position-dependent crack resistance was presented by Hossain et al. [40] for
studies of fracture strength in materials.

2. Material Model Formulation

The constitutive equation and the governing equation are derived within the frame-
work of micro-force balance [41] considering finite-strain theory. The kinematics involved
in the non-linearity due to large deformations considering the swelling and nearly incom-
pressible behaviour are discussed in detail. The constitutive and governing equations
are derived for the specific choice of free energy functions and discussed in detail within
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the framework of finite-strain theory. The thermodynamic consistency is discussed in the
Appendix A.

2.1. Finite-Strain Viscoelasticity

The swelling of the material due to moisture diffusion is incorporated into the mechan-
ical deformation process by multiplicative decomposition of the deformation gradient as

F̂ = Fs · F, (1)

where F̂, Fs, and F correspond to the total, swell, and mechanical deformation gradients.
The swell deformation gradient is calculated with swell stretch λs

Fs = λsI with λs = (1 + mC)1/3, (2)

where m is the slope of the swell stretch for the moisture concentration C distributed in the
material. The function for swell stretch is formulated to consider the polymer swell due to
inhomogeneous moisture distribution. The anomalous moisture diffusion behaviour and
the modelling of moisture diffusion are not discussed since the experimental investigations
are performed on the saturated samples. The Jacobian of the deformation gradient follows:

Ĵ = Js J; where


Ĵ = det F̂
Js = det Fs

J = det F.

(3)

A nearly incompressible material behaviour motivates the multiplicative decomposi-
tion of the deformation gradient tensor into its isochoric and volumetric components. This
decomposition of the deformation gradient F is

F = Fvol · F̄, (4)

where Fvol and F̄ are the volumetric and isochoric components, respectively. The defor-
mation tensor is decomposed into the elastic Fe and inelastic Fi parts [23,42–48]. The de-
composition introduces a fictitious intermediate configuration to represent rate-dependent
behaviour. Each Maxwell element is introduced with a fictitious intermediate configuration.
The decomposition of the deformation gradient is

F = Fe · Fi . (5)

The elastic and inelastic component deformation gradient in Equation (5) are enforced
on the isochoric component of the deformation gradient, thus leading to

F̄e = (det Fe)
1/3Fe, and F̄i = (det Fi)

1/3Fi. (6)

The associated unimodular Cauchy–Green deformation tensors are

C̄e = J−2/3(F̄e)
T · F̄e; C̄j

i = J−2/3
(

F̄j
i

)T
· F̄j

i

B̄e = J−2/3(F̄e)
−T · (F̄e)

−1; B̄j
i = J−2/3

(
F̄j

i

)−T
·
(

F̄j
i

)−1
.

(7)

The following relationship applies between the quantities:

B̄e = F̄ ·
(

C̄j
i

)−1
· F̄. (8)
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The time derivative of inelastic Cauchy–Green deformation yields the rate of the
inelastic right Cauchy–Green deformation tensor on the reference configuration as follows:

˙̄Cj
i = J−2/3

((
F̄j

i

)T
· F̄j

i

)·
. (9)

The inelastic right Cauchy–Green deformation tensor is regarded as an internal vari-
able in the subsequent continuum mechanical description of the material behaviour. Its
rate of inelastic right Cauchy–Green deformation tensor is described by evolution equa-
tion [49–51]

˙̄Cj
i =

4
rj

[
C̄ − 1

3
tr
(

C̄ ·
(

C̄j
i

)−1
)

C̄j
i

]
, (10)

where rj is the relaxation time associated with individual Maxwell elements. The evolu-
tion equation is an outcome of the dissipation inequality described in the Appendix A.
The equation is solved with an implicit Euler method in time in combination with a local
Newton method in space at each Gaussian point in the framework of the boundary value
problem. I1 and I3 are the first and third invariants of the Cauchy–Green deformation
tensor. These invariants are calculated as follows:

I1 = tr(B); I3 = det(C) = det(B) = J2, (11)

and the modified counterparts of the invariants are calculated as

Ī1 = J−2/3I1; Ī3 = det(C̄) = det(B̄). (12)

The viscoelastic material model is based on a continuum mechanical description moti-
vated by a rheological model. Rheological models are described by combining the spring
element with the Maxwell element in parallel to model relaxation behaviour. The discrete
spectrum of relaxation time is considered by combining the spring element with several
Maxwell elements as shown in Figure 1.

µ1

µ11 µ12 µ1n

η1 η2 ηn

Figure 1. Rheological model of the viscoelasticity with n Maxwell elements.

A nearly incompressible deformation is assumed in modelling the non-linear vis-
coelastic behaviour. Therefore, an uncoupled response of free energy [24,52] is used in the
formulation. Total mechanical energy of the rheological model consisting of j = 1, 2, . . . , n is

W0

(
Js, J, IB̄

1 , IB̄j
e

1

)
= Wvol(Js, J) + Weq

(
ĪB̄
1

)
+

n

∑
j=1

W j
neq

(
IB̄j

e
1

)
. (13)
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The equilibrium part of the free energy function is motivated by a polynomial function
of the isochoric first invariant of the left Cauchy–Green deformation tensor ĪB̄

1 using the
Yeoh model [53,54]

Weq

(
ĪB̄
1

)
= c10

(
ĪB̄
1 − 3

)
+ c20

(
ĪB̄
1 − 3

)2
+ c30

(
ĪB̄
1 − 3

)3
, (14)

where c10, c20 and c30 are the stiffness parameters. A general quadratic form is considered
in current formulation [16,55–58] of the volumetric part of free energy

Wvol(Js, J) =
1
G

Js(J − 1)2, (15)

where G is the compression modulus. The non-equilibrium free energy for j = 1, 2, . . . , n
Maxwell elements is computed as the sum of the individual energies of Maxwell elements:

n

∑
j=1

W j
neq

(
IBj

e
1

)
=

n

∑
j=1

W j
neq

(
ĪB̄j

e
1

)
=

n

∑
j=1

c10j

(
ĪB̄j

e
1 − 3

)
. (16)

The corresponding constitutive equation for stresses is calculated as the sum of volu-
metric, equilibrium, and j = 1, 2, . . . , n non-equilibrium stress components:

T
(

Js, J, IB̄
1 , IB̄j

e
1

)
= Tvol(Js, J) + Teq

(
ĪB̄
1

)
+

n

∑
j=1

Tj
neq

(
IB̄j

e
1

)
. (17)

2.2. Phase-Field Damage

This section describes the phase-field damage model used to investigate fracture in
the materials that exhibit rate-dependent behaviour due to viscoelastic properties with
large deformations. The basic idea behind the variational formulation of the phase-field
fracture model is to minimise the free energy by obeying a kinematically admissible
displacement field. The free energy W is based on Francfort–Marigo functional [59] to
describe cracks follows:

W
(

ĪB̄
1 , ĪB̄j

e
1 , J, Js, ϕ

)
= Wb

(
ĪB̄
1 , ĪB̄j

e
1 , J, Js, ϕ

)
+ Ws(ϕ), (18)

where Wb and Ws are the bulk and surface energies. The surface energy is given by Griffith’s
theory [60] to predict crack initiation and branching:

Ws(ϕ) =
∫
Γ

EcdΓ. (19)

Ec is the critical energy release rate to describe the crack resistance of the material.
The surface energy is regularised with the crack density functional γ [61] to obtain vol-
ume integral

Ws(ϕ) =
∫
Ω

Ecγ(ϕ, grad ϕ)dV. (20)

The crack energy density functional introduces phase-field variable ϕ(x) ∈ [0, 1] to
distinguish between intact ϕ(x) = 1 and cracked ϕ(x) = 0 material. The crack surface
density is introduced with a second-order regularised function as

γ(ϕ, grad ϕ) =

[
1

2ℓ f
(1 − ϕ)2 +

ℓ f

2
|grad ϕ|2

]
, (21)
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wherein ℓ f is the length scale parameter introduced to control the size of the crack zone.
The mechanical energy stored in the bulk degrades as the crack propagates with time.
A degradation function is introduced to consider the degradation of bulk energy Wb as:

Wb

(
ĪB̄
1 , ĪB̄j

e
1 , J, Js, ϕ

)
= g(ϕ)W0

(
ĪB̄
1 , ĪB̄j

e
1 , J, Js

)
, (22)

where g(ϕ) is the degradation function and W0 is the viscoelastic free energy defined
in Equation (13). The degradation function plays a vital role in interpolating stresses to
characterise the intact and broken state of the material. The degradation of bulk energy for
intact and broken state defined by phase-field variable ϕ ∈ [0, 1] have to satisfy conditions

Wb

(
ĪB̄
1 , ĪB̄j

e
1 , J, Js, ϕ = 1

)
= W0

(
ĪB̄
1 , ĪB̄j

e
1 , J, Js

)
, Wb

(
ĪB̄
1 , ĪB̄j

e
1 , J, Js, ϕ = 0

)
= 0 ,

∂Wb

(
ĪB̄
1 , ĪB̄j

e
1 , J, Js, ϕ

)
< 1 and ∂Wb

(
ĪB̄
1 , ĪB̄j

e
1 , J, Js, ϕ = 0

)
= 0.

(23)

Equations (20)–(22) are substituted in the Equation (18) and integrated over the volume
to derive the free energy density [31,59]

W
(

ĪB̄
1 , ĪB̄j

e
1 , J, Js, ϕ

)
=
∫
Ω

g(ϕ)W0

(
ĪB̄
1 , ĪB̄j

e
1 , J, Js

)
dV +

∫
Ω

Ec

[
1

2ℓ f
(1 − ϕ)2 +

ℓ f

2
|grad ϕ|2

]
dV.

(24)

In this article, a monotonically decreasing function is considered to describe the decay
of the bulk energy. A second-order degradation function is considered with an additional
regularisation parameter ζ [61–63] to interpolate the bulk energy

g(ϕ) = (1 − ζ)ϕ2 + ζ. (25)

The regularisation parameter ζ > 0 is employed to guarantee a converged solution.
A smaller value is selected to avoid overestimation of mechanical energy [61,64,65]. The en-
ergy degradation function satisfies the condition

g(ϕ = 0) = 0, g(ϕ = 1) = 1 and g′(ϕ = 0) = 0, (26)

where g(ϕ = 0) = 0 damaged material, g(ϕ = 1) = 1 describes the intact material and
g′(ϕ = 0) = 0 controls the stored mechanical energy in the phase-field evolution equation.

3. Governing Balance Equations

The weak form of the free energy function is derived by applying the variational
principle to the total potential energy with the field variables (u, ϕ)

δW =

(
∂W
∂u

)
: δu +

(
∂W
∂ϕ

)
: δϕ. (27)

Furthermore, the continuum domain Ω is integrated over the total volume dV leading
to the weak form for the admissible test functions of phase-field δϕ and displacement
field δu

δW =
∫
Ω

{
g(ϕ)T : gradsδu + g′(ϕ) δϕW0

}
dV+

∫
Ω

{
Ec

[
− 1
ℓ f

(1 − ϕ)δϕ + ℓ f grad ϕ gradδϕ

]}
dV,

(28)
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gradsδu = 1
2

[
gradδu + (gradδu)T

]
is involved due to symmetric stress tensor. After substi-

tuting the degradation function defined in Equation (25) and the derivative of degradation
function g′(ϕ) = ∂g(ϕ)/∂ϕ in the coupled form given in Equation (28) follows:

δW =
∫
Ω

{[
(1 − ζ)ϕ2 + ζ

]
T : gradsδu

}
dV+

∫
Ω

{
2(1 − ζ)ϕ δϕW0 + Ec

[
− 1
ℓ f

(1 − ϕ)δϕ + ℓ f grad ϕ gradδϕ

]}
dV.

(29)

The strong form of the coupled formulation gives the local statement for the phase-field
method and is derived by applying the divergence principle

div
([

(1 − ζ)ϕ2 + ζ
]
T
)
= 0

2(1 − ζ)ϕ W0︸ ︷︷ ︸
driving force

+ Ec

[
− 1
ℓ f

(1 − ϕ) + ℓ f divϕ

]
︸ ︷︷ ︸

resistance to crack

= 0. (30)

The first equation in (30) corresponds to the balance of momentum, while the latter
equation describes the phase-field evolution of the diffusive crack. The first term of the
phase-field evolution is responsible for driving the crack, and the second term refers to the
geometric resistance to the propagation of the crack. W0 is the energy stored in material
domain with W0 = max

0<ϕ<t
W0(x, ϕ) to avoid an irreversibility in the crack propagation [37].

3.1. Finite Element Implementation

It is convenient to express the partial differential Equations (30) in their weak forms to
develop a numerical solution scheme using finite element method:

ru
i =

∫
Ω

{[
(1 − ζ)ϕ2 + ζ

]
T : gradsδu

}
dV = 0

rϕ
i =

∫
Ω

{
2(1 − ζ)ϕ δϕW0+Ec

[
− 1
ℓ f

(1 − ϕ)δϕ+ℓ f gradϕ gradδϕ

]}
dV = 0.

(31)

In this context, the displacement u and phase-field variable ϕ are discretised in space as

u =
nele

∑
i=1

Nu
i ui ϕ =

nele

∑
i=1

Nϕ
i ϕi, (32)

where Nϕ
i is the shape function concerning the phase-field variable and Nu

i is the displace-
ment shape function used to interpolate between the quantities at the quadrature points.
The displacement shape function in three dimensions is given by:

Nu
i =

Ni 0 0
0 Ni 0
0 0 Ni

. (33)

In Equation (33), Ni is the value of the shape function of the displacement field
ui =

(
ux, uy, uz

)T at the quadrature points associated with the respective nodes. The gra-
dient of the phase-field variable ϕi follows:
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gradϕ =
nele

∑
i=1

Sϕ
i ϕi. (34)

Herein, the S matrix is introduced as

Su
i =



Ni,x 0 0
0 Ni,y 0
0 0 Ni,z

Ni,y Ni,x 0
0 Ni,z Ni,y

Ni,z 0 Ni,x

 Sϕ
i =

Ni,x
Ni,y
Ni,z

, (35)

where Ni,x, Ni,y and Ni,z are the derivatives of the shape functions evaluated as ∂Ni/∂x,
∂Ni/∂y and ∂Ni/∂z. In the same way, virtual quantities of the displacement and phase-field
variables are approximated as

δu =
nele

∑
i=1

Nu
i δui δϕ =

nele

∑
i=1

Nϕ
i δϕi

gradsδu =
nele

∑
i=1

Sδu
i ui grad δϕ =

nele

∑
i=1

Sϕ
i δϕi.

(36)

The coupled system of equations is non-linear, and therefore the coupled problem is
solved iteratively using the Newton–Raphson method. The finite element formulation to
solve the coupled system of equations with an incremental method follows:[

Kuu Kuϕ

Kϕu Kϕϕ

][
du
dϕ

]
=

[
−ru(ui)
−rϕ(ϕi)

]
. (37)

Since the primary variables defined in Equation (32) hold for the arbitrary values
δu and δϕ, the residuals of the coupled system of equations defined in Equation (31) are
expressed in term of the virtual quantities given with Equation (36) as

ru
i =

∫
Ω

{[
(1 − ζ)ϕ2 + ζ

]
T : (Su

i )
T
}

dV = 0,

rϕ
i =

∫
Ω

{
2(1 − ζ)ϕ NiW0 + Ec

[
− 1
ℓ f

(1 − ϕ)Ni + ℓ f (S
ϕ
i )

TSϕ
j

]}
dV = 0,

(38)

and the elements of the tangent matrix are

Kuu
i,j =

∂ru
i

∂uj
=
∫
Ω

(
(1 − ζ)ϕ2 + ζ

)(
Su

i :
4
κ : Su

j + Su
i :
[
T · Su

j

])
dV,

Kuϕ
i,j =

∂ru
i

∂ϕj
=
∫
Ω

2(1 − ζ) ϕ Su
i : TTNu

j dV,

Kϕu
i,j =

∂rϕ
i

∂uj
=
∫
Ω

2(1 − ζ) ϕ Nu
i TT : Su

j dV,

Kϕϕ
i,j =

∂rϕ
i

∂ϕj
=
∫
Ω

{
(1 − ζ)W0 Nϕ

i Nϕ
j + Ec

[
1
ℓ f

Nϕ
i Nϕ

j + ℓ f (S
ϕ
i )

T : Sϕ
j

]}
dV.

(39)

The coupled system of equations is solved simultaneously using a monolithic approach
with Newton’s iterative method.
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3.2. Boundary Conditions

The boundary conditions are postulated for the displacement field variable u and the
phase-field damage variable ϕ to solve the phase-field damage formulation. To this end,
the surface ∂Ω is decomposed to the primary fields, the displacement and damage fields

∂Ω = ∂ΩD
u ∪ ∂ΩN

t and ∂Ω = ∂ΩD
ϕ ∪ ∂ΩN

∇ϕ (40)

with ∂ΩD
u ∩ ∂ΩN

u = ∅ and ∂ΩD
ϕ ∩ ∂ΩN

∇ϕ = ∅. The prescribed displacement u and traction
t of the mechanical problem on the boundaries are postulated with the Dirichlet and
Neumann boundary conditions

u(x, t) = uD(x, t) on ∂ΩD
u and T · n = t on ∂ΩN

t . (41)

For the phase-field damage, the cracked region is constrained by the Dirichlet and the
Neumann boundary conditions on the crack surface with

ϕ(x, t) = 0 at x ∈ ∂ΩD
ϕ and ∇ϕ · n = 0 on ∂ΩN

∇ϕ. (42)

4. Results

In this work, the coupled material model is developed to investigate damage be-
haviour in crosslinked polyurethane adhesives. The chemical structure of basic crosslinked
polyurethane adhesive is manufactured by mixing two polyether alcohol components (resin)
and an isocyanate component (hardener) without additives [2,66]. The moisture influence
on the mechanical behaviour is investigated on the industrially available polyurethane ad-
hesive manufactured by Dupont under the trade name Betaforce 2850L. The experimental
investigation performed on the commercial polyurethane adhesive Betaforce 2850L, called
adhesive-A in project IGF-project 19730 N [67], is used in the present work for numerical
investigation. The tensile tests performed on the aged samples are used to identify the
viscoelastic parameters. The aged samples are prepared at four different relative humid-
ity conditions 0%r.H, 29%r.H, 67%r.H, and 100%r.H at an isothermal condition of 60 °C.
The material reaches to the saturation states in 1 hr as observed in the moisture diffusion
tests [67]. In the current study, the swelling stretch is assumed to be negligible as the
moisture diffusion time is small to reach the saturation state.

The viscoelastic model is formulated by using a spring element connected in parallel
to the four Maxwell elements. The relaxation times of the Maxwell elements are assumed
constant irrespective of ageing conditions. The assumption of constant relaxation time is
analogous to the viscoelastic behaviour proposed in [68,69] to fit the loading rates used in
the experimental investigation. The stiffness parameters of the polyurethane adhesive were
identified with the curve fitting process using Matlab optimisation toolbox. The optimisa-
tion algorithms are classified into gradient-free and gradient methods. The solution from
gradient methods may not be unique due to local minima and depends on the start value.
Therefore, a gradient-free algorithm proposed by Nelder and Mead [70] is used to identify
stiffness parameters by curve fitting. The identified parameters of the viscoelastic material
for all the investigated aged samples are listed in Table 1.

The aged samples are prepared for different humidity conditions. The aged samples
are investigated for tensile behaviour under 0.0005 s−1 strain rate at an isothermal condition
of 60 ◦C. The experimental and simulation data are compared in Figure 2. The deviation
between the simulation and test results is agreeably small to use in the further investigation
of damage behaviour.
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Table 1. Materialparameters of the finite-strain viscoelastic material model identified for the different
relative humidity atmospheres at 60 ◦C.

Material Parameters of Finite-Strain Viscoelastic Model

Relaxation Times [s] 0% r.H. 29% r.H. 67% r.H. 100% r.H.

Equilibrium

c10 [MPa] 9.886 7.886 7.196 7.072

c20 [MPa] −1.414 −1.357 −1.122 −1.128

c30 [MPa] 3.214 1.443 0.918 0.872

D [MPa] 0.306 0.244 0.241 0.314

Non-equilibrium

c101 [MPa] 0.5 4.886 2.886 2.296 2.172

c102 [MPa] 10 0.886 0.231 0.139 0.107

c103 [MPa] 100 0.055 0.017 0.014 0.011

c104 [MPa] 1000 0.005 0.003 0.002 0.001
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Figure 2. Tensile test and simulation data comparison of aged samples at smaller strain rate 0.0005 s−1.

Further, the experimental investigation is conducted on the post-curved aged sample
at a higher strain rate of 0.05 s−1. The viscoelastic parameters listed in Table 1 are used in the
numerical simulation with a higher strain rate. The numerical simulation and test results
are compared together to investigate the sensitivity of the identified material parameters.
Figure 3 shows the comparison of the simulation and test results. The simulation results
show a larger deviation for the maximum stretch due to the large influence of the negative
stiffness parameter defined for c20 to capture the S-structure.
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Figure 3. Tensile test and simulation data comparison of aged samples at larger strain rate 0.05 s−1.

The focus of this work is to understand the damage behaviour in the polyurethane
adhesive due to tensile load for samples aged under the influence of moisture. To this end,
the sample preparation and experimental investigation are carried out by following DIN
ISO 34-1. Angular specimens proposed in DIN ISO 34-1 (shown in Figure 4) are prepared
with a thickness of 2 mm to perform the tear test.

100

90◦ ± 0.5◦

≈ 22

R1
9
±

0.
05

19
±

0.
05

R12
.7
±

0.0
5 R25.4±

0.05

Figure 4. Geometry of the angle sample based on DIN ISO 34-1: all dimensions are in millimetres.

It is a well-established fact that the numerical solution obtained from the finite element
method depends on the size of the finite element mesh, especially in the case of damage
evolution. The crack initiates and propagates at the cross-section of the notch until failure.
The mesh at the region of crack is refined to resolve to capture steep gradients at the
region of crack propagation. The mesh is refined at the transition zone satisfying the mesh
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refinement condition proposed by Miehe et al. [33]. According to the proposed criteria,
the initial crack length ℓ f mm and the mesh size h mm follow:

h ≪
ℓ f

2
. (43)

The phase-field damage model requires a finite element mesh to resolve the damage
evolution and produce better numerical results; however, the solution with the refined
mesh is computationally expensive. Therefore, a mesh sensitivity study is performed
on the V-shaped notch specimen analogous to the angular specimen shown in Figure 4.
The V-shaped notch specimen is applied with the tensile load boundary conditions (see
Figure 5).

35 mm

66
m

m

20 mm

Figure 5. V-shaped notch sample of thickness 2 mm applied with tensile boundary conditions.

The mesh sensitivity study is performed on the dry sample viscoelastic parameters
listed in Table 1 and a critical energy release rate Ec = 4.18 N/mm. An initial crack of
9.31 mm is used in the experimental investigations of damage behaviour on the post-cured
polyurethane adhesives. Therefore, a length-scale parameter ℓ f = 9.31 mm is used in the
mesh sensitivity study in the damage investigation. The stress concentration is maximum
at the region of the notch. As a result, the crack initiates and propagates at the notch.
Therefore, the sample is discretised with a locally refined mesh in the region of the notch.
The mesh sensitivity study is investigated for six different mesh sizes h mm to understand
the sensitivity of the mesh in crack propagation.

The load-displacement curves of the different mesh sizes are shown in Figure 6.
The initial slope of the load-displacement curves is approximately the same in the mesh
sensitivity study comparison. However, these curves deviate to a maximum of ≤15% at
the peak force of failure due to the mesh size. The deviation is due to the approximation
of the steep gradients at the locally refined mesh. In the current investigation of failure in
polyurethane adhesive, a mesh size of h = 1.23 mm is adopted to compromise with the
accuracy of the numerical results and reduce computational effort.
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Figure 6. Computational results of single-edge V-shaped notch sample with different mesh length.

Aged samples are manufactured in different humidity conditions at an isothermal
condition of 60 ◦C to investigate the influence of moisture on tear strength. Similar to tensile
test samples, the angular specimens are aged under humid atmospheric conditions under
0%r.H, 29%r.H, 67%r.H, and 100%r.H conditions at 60 ◦C. To perform a tear test, an initial
crack of 9.13 mm is imposed on the samples at the notch. Material is clamped approximately
at 22 mm on both free ends, which are assumed to be rigid. Therefore, the clamped volume
of material is not considered in the numerical investigation; see Figure 7.

uy uy

Figure 7. Model is applied with the displacement boundary conditions as tensile loading until failure.

The crack length-scale parameter is set to the length of the crack imparted in the
sample as ℓ f = 9.31 mm and the length of mesh size of h = 1.23 mm is maintained to satisfy
the mesh refinement condition. Finally, displacement boundary condition uy = 0.011 mm
is applied to investigate the failure. The finite element model is solved monolithically
using Newton’s iterative method in a quasi-static process. The solution scheme is solved in
several time steps with a constant time increment until fracture. The spatially discretised
model is defined with the viscoelastic parameters listed in Table 1. The critical energy
release rate is an essential parameter required for the phase-field material model. This
parameter is identified from the fitting force-displacement curve from numerical analysis
with the tear test using Matlab optimization toolbox [70]. The optimal critical energy release
rates Ec listed in Table 2 are identified individually for the dry (0%r.H) and aged samples
(humidity conditions: 29% r.H., 67% r.H. and 100% r.H.) manufactured under the isothermal
condition of 60 °C.
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Table 2. Critical energy release rate identified for dry and aged samples prepared and tested at an
isothermal condition of 60 °C.

Identified Critical Energy Release Rate

ageing condition 0% r.H. 29% r.H. 67% r.H. 100% r.H.

Ec [N/mm] 4.18 N/mm 5.25 N/mm 4.82 N/mm 4.52 N/mm

The critical energy release rate of the aged samples shown in Figure 8 indicates that
the adhesive material becomes ductile under the influence of moisture, thus leading to an
increase in the critical energy release rate. The critical energy release rate is minimum for
the dry sample and reaches a maximum for the sample saturated at 29% relative humidity.
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Figure 8. Critical fracture energy release rate Ec of adhesive-A samples aged at different relative
humidities (r.H.) in the atmosphere at 60 ◦C.

The force-displacement data from the simulation are compared with the experimental
test data to validate the identified optimal material parameters. The test used in the
comparison is the mean value calculated from the series of three angular test samples
manufactured at the same atmospheric conditions [67].

Figure 9 compares the experimental and the simulation data, where the deviation
between the curves is calculated using the root-mean-square method (RMS) and plotted
with the error bars. The deviation in the form of small error bars indicates the problem is
well posed, thus validating the identified material parameters. The deviation between the
experimental and simulation is due to the compromise in the mesh refinement employed
to compromise with the simulation effort. The step gradients of the phase-field damage
variable ϕ at the region of crack propagation do not converge to the experimental data due
to a compromise in the mesh size. A higher-order phase-field damage model is needed for
accurate and faster numerical analysis, thus resolving the numerical deviation.
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Figure 9. Tear tests are performed on angular samples aged under different humidity conditions
at 60 ◦C.

5. Conclusions and Future Work

In this article, viscoelastic behaviour is modelled using on the rheological model based
on continuum mechanics by combining elastic spring and Maxwell elements. Four Maxwell
elements are used in combination with elastic spring elements in parallel and the energies
are defined using phenomenological models. The viscoelastic model is coupled with the
phase-field model to investigate the damage behaviour of the aged polyurethane adhesives
under the influence of moisture. The phase-field damage model is a promising damage
material model based on the Griffith fracture energy. These fracture models describe the
crack evolution with a continuous order variable differentiating the intact and damaged
material with diffusive cracks.

The experimental investigations performed on a commercial polyurethane adhesive
called adhesive-A in IGF-project 19730 N are used for numerical investigation. The fracture
behaviour of the material is investigated under the influence of moisture at an isothermal
condition. Aged samples are prepared for 29% r.H., 67% r.H. and 100% r.H. conditions at
60 °C. Viscoelastic material model parameters are identified from the tensile test performed
on the dry and aged samples. These viscoelastic parameters are used in the numerical
investigation of the damage behaviour in the aged samples using the phase-field damage
model. The tear strength on the samples is performed based on the DIN ISO 34-1 standard
using angular specimens. The critical energy release rate is identified using an optimization
algorithm with Matlab toolbox. The deviation between the experimental and simulation
results is negligible validating the material parameters.

The proposed material model considers the influence of the swelling due to mois-
ture diffusion on mechanical behaviour. In the present study, the swelling stretch due
to moisture diffusion is assumed to be negligible due to the fact that the cross-linked
polyurethane adhesives tend to reach the saturation state in a short period of time, as



Polymers 2024, 16, 2676 16 of 22

observed in the gravimetric tests to investigate diffusion behaviour in IGF-project 19730 N.
A sensitivity study is conducted to investigate the influence of the swelling stretch on the
fracture behaviour with 1 < λs < 1.7 for the sample saturated at the 100% r.H condition.
Swelling stretch shows a significant increase in the total stresses with an increase in the
swell stretch (see Figure 10). This consideration of the swell stretch leads to the decrease in
the viscoelastic stiffness parameters identified from fitting experimental results.
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Figure 10. Sensitivity study to investigate the influence of the swell stretch on the fracture behaviour.

The motivation of the current topic is to understand the influence of moisture on
the mechanical behaviour investigated on saturated samples. The finite-strain phase-field
damage model needs to be coupled with the diffusion model to understand mechanical
behaviour and swelling influence for the unsaturated materials with inhomogeneous
moisture distribution. The crosslinked polyurethane adhesives are formed by a network of
chains consisting of shorter and longer chain distribution. The chain distribution shows
softening behaviour under the loading conditions since the shorter chains become inactive
in sharing the load with longer chains with the increase in the loads. The proposed material
model based on the phenomenological approach does not consider the chain distribution,
and the stiffness parameters are identified from the curve fitting process with no explanation
of physical behaviour. Therefore, it is necessary to model the mechanical behaviour using a
micro-mechanical model based on the polymer chain statistics.

The present investigation is performed and investigated with aged samples under
an isothermal condition. Therefore, the coupled material model does not account for the
softening of material due to the temperature material parameters. The present work also
assumes the swelling stretch due to the ambient temperature is negligible in comparison to
the swell deformation due to moisture diffusion. The moisture diffusion is influenced by
the temperature; therefore, the ageing of the material has to be investigated for different
temperatures. Experimental investigations are needed to understand the swell stretch
due to moisture diffusion and ambient temperature. Further, the material parameters
required to investigate the swell behaviour must be identified and validated to numerically
investigate the mechanical behaviour with inhomogeneous moisture distribution.
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Appendix A. Thermodynamic Inequality

The principle virtual power satisfying the kinematic constraints is evaluated as the
sum of internal and external contributions due to mechanical and micro-force systems.
The principle of virtual power takes the form:

Ė = Pmech + Pmic, (A1)

where Ė , Pmech and Pmic are the total power, mechanical power and the power due to the
micro-force system. For generalised virtual velocity V = {u̇, ϕ̇}, the virtual power is∫

Ω

T : gradu̇ dV +
∫
Ω

ω · gradϕ̇ dV +
∫
Ω

ς ϕ̇ dV =

∫
∂Ω

t · u̇ dA +
∫
Ω

b · u̇ dV +
∫

∂Ω

χ ϕ̇ dA +
∫
Ω

Υ ϕ̇ dV,
(A2)

where T is the Cauchy stress tensor, t = T · n is traction, and b is the external body force.
ω, ς, χ and Υ are microscopic stress, microscopic internal force, external traction and
external microscopic force of the micro-force system [41]. Considering the virtual velocity
V = (u̇, 0) and V = (0, ϕ̇) results in local forms of balance equations after applying the
divergence theorem

div T + b = 0

div ω − ς + Υ = 0.
(A3)

The first equation in Equation (A3) represents the balance equations for momentum,
while the latter represents the phase-field equation for χ = ω · n.

Dissipation Inequality

The entropy inequality (Clausius–Duhem inequality) is required to formulate a ther-
modynamically consistent material law. The details of the thermodynamic evaluation of
phase-field damage are complex due to the many terms involved. However, constitutive
equations need to postulate to a material model and build relations between the kinematics
and the balance equations. By assuming the Clausius–Duhem inequality as a condition for
a non-negative entropy, the following inequality is obtained for an isothermal condition
based on the micro-force: system [41,71,72]

T : D + ω · gradϕ̇ + ς ϕ̇ − Ẇ ≥ 0, (A4)
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where Ẇ denotes the rate of the free energy function. The free energy density of the
phase-field damage model is given by the sum of the mechanical and the regularised
fracture energy

W
(

Js, J, ĪB̄
1 , ĪB̄j

e
1 , ϕ, gradϕ

)
= Wb

(
Js, J, ĪB̄

1 , ĪB̄j
e

1 , ϕ

)
+ Wϕ(ϕ, grad ϕ), (A5)

where the mechanical free energy function Wb corresponds to the nearly incompressible
viscoelasticity under large deformations. The free energy function of the finite-strain
viscoelasticity is formulated as the algebraic sum of the volume-changing part Wvol and
the isochoric parts consisting of the equilibrium Weq and the non-equilibrium W j

neq com-
ponents [24]. The non-equilibrium represents the overstresses due to rate-dependent
properties represented by j = 1, 2, . . . , n Maxwell elements. The mechanical free energy is a
function of the damage variable and is formulated as

Wb

(
Js, J, ĪB̄

1 , ĪB̄j
e

1 , ϕ

)
= Wvol(Js, J, ϕ) + Weq

(
ĪB̄
1 , ϕ

)
+

n

∑
j=1

W j
neq

(
ĪB̄j

e
1 , ϕ

)
. (A6)

After inserting the Equation (A6) in Equation (A5), the energy function is expressed as

W
(

Js, J, ĪB̄
1 , ĪB̄j

e
1 , ϕ, gradϕ

)
= Wvol(Js, J, ϕ) + Weq

(
ĪB̄
1 , ϕ

)
+

n

∑
j=1

W j
neq

(
ĪB̄j

e
1 , ϕ

)
+ Wϕ(ϕ, grad ϕ).

(A7)

The process variables to evaluate the inequality are (A4)

S =
{

B, Bj
e, ϕ, grad ϕ

}
. (A8)

The time derivative of the free energy function Ẇ derived with the process variables
to express Clausius–Duhem inequality yields

Ẇ =
∂Wvol(Js, J, ϕ)

∂B
: Ḃ +

∂Weq

(
IB̄
1 , ϕ

)
∂B

: Ḃ +
n

∑
j=1

∂W j
neq

(
IB̄j

e
1 , ϕ

)
∂Bj

e
: Ḃj

e

+
∂W
∂ϕ

: ϕ̇ +
∂W

∂gradϕ
: grad ϕ̇,

(A9)

and the Equation (A9) is applied to the inequality (A4) leading to the simplified form(
−2ρB · ∂Wvol

∂B
− 2ρB ·

∂Weq

∂B
−

n

∑
j=1

2ρB̄j
e ·

∂Wneq

∂B̄j
e

+ T

)
: D

+
n

∑
j=1

2ρ
∂Wneq

∂B̄j
e

:

(
Fj

e ·
△
Γ

j
i ·
(

Fj
e

)T
)
+

(
ς − ∂W

∂ϕ

)
· ϕ̇

+

(
ω − ∂W

∂ gradϕ

)
· grad ϕ̇ ≥ 0.

(A10)

where
△
Γ

j
i is the inelastic deformation rate of the intermediate configuration. Based on the

argumentation of Coleman and Noll, the first term of the inequality leads to the constitutive
equation for the stress tensor by introducing an assumption W(•) = ρW(•) [24] for the
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free energy of the volumetric part and the isochoric parts of the equilibrium and the
non-equilibrium parts:

T = 2B · ∂Wvol
∂B

+ 2B ·
∂Weq

∂B
+

n

∑
j=1

2B̄j
e ·

∂Wneq

∂B̄j
e

. (A11)

The remaining inequality function leads to the residual dissipation equations concern-
ing the evolution equations for the inelastic deformation rates of n Maxwell elements [50,51]

n

∑
j=1

2ρ
∂Wneq

∂B̄j
e

:

(
Fj

e ·
△
Γ

j
i ·
(

Fj
e

)T
)

≥ 0, (A12)

After some mathematical calculations and using the kinematic relations of finite
deformation discussed earlier regarding the Equation (A12) leads to the evolution equa-
tion [49–51]

˙̄Cj
i =

4
rj

[
C̄ − 1

3
tr
(

C̄ ·
(

C̄j
i

)−1
)

C̄j
i

]
, (A13)

further applying the inequality condition over the group of terms leads to(
ς − ∂W

∂ϕ

)
· ϕ̇ +

(
ω − ∂W

∂ gradϕ

)
· grad ϕ̇ ≥ 0 (A14)

and the consequent constitutive equations of the microscopic phase-field equation follows:

ω =
∂Wϕ(ϕ, grad ϕ)

∂ϕ
, ς =

∂Wϕ(ϕ, grad ϕ)

∂ gradϕ
. (A15)

Finally, the constitutive Equation (A15) is substituted in the micro-force balance
Equation (A3) to obtain the phase-field equation

div
(

∂Wϕ(ϕ, grad ϕ)

∂ gradϕ

)
−

∂Wϕ(ϕ, grad ϕ)

∂ϕ
= 0. (A16)

Based on the micro-force balance law, Gurtin [41] proposed the general form of evolu-
tion for the damage order parameter ϕ consistent with Equation (A15), taking the form

ϕ̇ = −M

(
W − Ec

(
ℓ f divϕ − 1

ℓ f
(1 − ϕ)

))
, (A17)

where M > 0 is a scalar mobility parameter.
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