
ÄU
BW

J3E) ’M
 ‘L uiaine|siasiey 0

6
/9

-0
|

6Vv0€g. YIEH
SO

d
W

8IN
EISJASIEM

 ZEN
SI3AIU

N
M

HEW
JO

JU| yolaseqyoe4

AU,
&
©

vr~—

668
006

>=Sa8>S=a»

Goal: Backward-with -Forward
Chaining in LISPLOG

SEKI WORKING PAPER SWP-87-04

1a0ed BuUIMJSOM 1436

GOAL: BACKWARD-WITH-FORWARD CHAINING IN LISPLOG

Harold Boley, FB Informatik, Univ. 675 Kaisers lautern, Box 3049, W. Germany

; SEKI Working Paper SWP-87-04, June 1987

; Abst ract : A t iny extension fo r perfoming forward chaining t o prove goals
set up by L ISPLOG's backward-chaining mechanism i s introduced.

This extension of LISPLOG real izes forward 'goal statements' derived
f rom the fone (forward one) construct i n [Boley 1987] : While fone pauses
after each forward step t o let the user decide (v ia the more command)
whether enough asse r t i ons have been derived, goal cal ls an extra goal

; parameter for the same purpose. More precisely, goal proves a goal by
f i rs t cal l ing i t as an ordinary LISPLOG goal (thus allowing arbitrary
backward cha in ing) , but on fa i lure performs one step in the deduction
cycle of a given forward production system, and then t r ies again.
A product ion system i s represented by LISPLOG ru les with heads used
for ident i fy ing the system and bodies whose con junc t ions are divided

; i n a (p roduc t ion-)p remises part and a (product ion-)conc lus ion pa r t .
; This representat ion i s exact ly the same as in [Boley 1987] , which i s
; similar to that in [Lee 1986] ; but we describe only a special case:
; Here , we wi l l use productions o f the form (ass (s) p l . . . pN (nap ¢)) ,
; with p I as premises and c as conc lus ion; nap [r ead "no t? asse r t ! pp ! "]
; asse r t s and pretty p r i n t s i ts argument i f f i t i s not yet asser ted no r
; provable. The sample systems a-e o f [Boley 1987] can a l l be used v ia
; goal ca l l s . Fo r instance, system a below may be used by the goal ca l l
; (goal (r i sky vinegar) (a)) , which cannot prove (r i sky vinegar) in a
; purely backward manner, thus activates forward chaining by (a) , unt i l
; (r i s ky vinegar) has become a (permanently available) f ac t . Of course,
; some backward s teps us ing ru les l ike (ass (avold jane x) (r i sky _x))
; may be required t o access the resu l t s o f forward steps activated by
; goals l ike (goal (avoid jane vinegar) (a)) . Note that backward ru les
; with goal premises l ike (ass (avoid john x) (goa l (r i s ky x) (a)))
; called by (avoid john vinegar) combine the chaining direct ions in a
; more eff ic ient manner. F inal ly , the forward chaining activated by goal
; ca l ls such as (goal (l i kes john p) (b))) i n the backward ru le below
; may again employ some backward chaining for verifying a premise of a
; product ion such as (l i kes _x food) i n sys tem b , and so on:
(ass (warn john _Pp _o) (goa l (r i s ky _o) (a)) (goa l (l i kes john p) (b)))

; References (order [Bo ley 1987] and more LISPLOG papers : l i sp l og@uk l i r b .UUCP) :
; [Boley 1986] H. Boley (Ed .) : A B i r d ' s -Eye View o f L ISPLOG: The LISP/PROLOG
; Integration with Ini t ia l-Cut Too l s . Universitaet Kaiserslautern,
; FB Informatik, SEKI Working Paper SWP-86-08, Dec. 1986
; [Boley 1987] H. Boley: Fone and Fa l l : Forward-with-Backward Chaining in
; LISPLOG. Universitaet Kaiserslautern, FB Informatik, SEKI Working Paper
; SWP-87 -03 , June 1987
; [Lee 1986] N. S. Lee : Programming with P -She l l . IEEE Expert 1 (2) , Summer 1986

The backward-with-forward implementation:
(ass (goa l _go _sy) _go) ; go a l l backward
(ass (goa l go sy) (n -so lu t i ons _sy 1) (goal _go _sy)) 7; sy step forward
(ass (nap _x) (no t _x) (ass _x) (pp-external- form _x)) 7; note 'dynamic ass ’

; System a shows a depth-2 forward chaining acid->corrodent->r isky:
(ass (a) (corrodent x) (nap (r i s ky _x))) ; N=1
(ass (a) (ac i d Xx) (nap (corrodent _x))) ; N=1
(ass (a) (ac i d _x) (nap (piquant _x))) ; N=1
(ass (ac id v inegar)) ; 'working memory' fact

; System b exempli f ies a backward rule for verifying food l ik ing:
(ass (b) (l i kes _x wine) (l i kes _x food) (nap (l i kes john _x))) ; N=2
(ass (l i kes mary w ine)) ; 'working memory ' fact 1
(ass (l i kes _y food) (corpulent _y)) ; 'working memory' rule
(ass (corpulent ma ry)) ; ‘work ing memory' fact 2

Goal: Backward-with -Forward
Chaining in LISPLOG

Harold Boley

SEKI WORKING PAPER SWP-87-04

; GOAL: BACKWARD-WITH-FORWARD CHAINING IN LISPLOG

; Harold Boley, FB Informatik, Univ. 675 Kaiserslautern, Box 3049 , W. Germany

; SEKI Working Paper SWP-87-04, June 1987

; Abstract: A t iny extension for perfoming forward chaining to prove goals
; set up by LISPLOG's backward-chaining mechanism is introduced.

This extension of LISPLOG realizes forward 'goal statements' derived
from the fone (forward one) construct in [Boley 1987] : While fone pauses
after each forward step t o let the user decide (via the more command)
whether enough assertions have been derived, goal calls an extra goal
parameter for the same purpose. More precisely, goal proves a goal by
f irst calling i t as an ordinary LISPLOG goal (thus allowing arbitrary
backward chaining), but on failure performs one step in the deduction
cycle of a given forward production system, and then tr ies again.
A production system is represented by LISPLOG rules with heads used
for identifying the system and bodies whose conjunctions are divided
i n a (product ion-)premises part and a (product ion-)conclusion part .
This representation i s exactly the same as i n [Boley 1987] , which i s
similar t o that i n [Lee 1986] ; but we describe only a special case :
Here, we wi l l use productions o f the form (ass (8) p l . . . pN (nap c)) ,
with p I as premises and c as conclusion; nap (read "no t? asser t ! pp ! "]
asserts and pretty prints i ts argument i f f i t 1s not yet asserted nor
provable. The sample systems a-e of [Boley 1987] can al l be used via
goal ca l ls . For instance, system a below may be used by the goal call
(goal (r i sky vinegar) (a)) , which cannot prove (r i sky vinegar) i n a

purely backward manner, thus activates forward chaining by (a) , unti l
(r isky vinegar) has become a (permanently available) fac t . Of course,
some backward steps using rules l ike (ass (avoid jane _x) (r isky _x))
may be required to access the resul ts of forward steps activated by
goals l ike (goal (avoid jane vinegar) (a)) . Note that backward rules
with goal premises l ike (ass (avoid john _x) (goal (r i sky _x) (a)))
called by (avoid john vinegar) combine the chaining directions in a
more efficient manner. Finally, the forward chaining activated by goal
calls such as (goal (l ikes john _p) (b))) in the backward rule below
may again employ some backward chaining for verifying a premise of a
production such as (l ikes _x food) in system b, and so on:

ass (warn john _P _0) (goal (r i sky _o) (a)) (goal (l ikes john _p) (b)))

W
e

3
2

N

a

N
E

M

a
M

g

N
N

,
o

m
y,

W

a
N

ap

M
a

N

s
w

s
M

a
M

E

M
e

M
e

W
e

M
e

M

e

W
y

M
p

M

y
M

y
M

g

M
e

M
y

W
e

W
s

W
a

w
g

References (order [Boley 1987] and more LISPLOG papers: l isp log@ukl i rb.UUCP):
[Boley 1986] H. Boley (Ed .) : A Bi rd 's-Eye View of LISPLOG: The LISP/PROLOG
Integration with Initial-Cut Tools . Universitaet Kaiserslautern,
FB Informatik, SEKI Working Paper SWP-86 -08 , Dec . 1986
[Boley 1987] H. Boley: Fone and Fa l l : Forward-with-Backward Chaining in
LISPLOG. Universitaet Kaiserslautern, FB Informatik, SEKI Working Paper
SWP-87-03, June 1987
[Lee 1986] N. S. Lee: Programming with P-Shel l . IEEE Expert 1 (2) , Summer 1986

M
e

M

g

N
R

W

E

W
e

W
g

W
g

M
e

The backward-with-forward implementation:
(ass (goal go _8y) _go) ; go al l backward
(ass (goal _go _sy) (n-solut ions _sy 1) (goal go _sy)) :; sy step forward
(ass (nap _x) (not _x) (ass _x) (pp-external-form Xx)) ; note 'dynamic ass ’

; System a shows a depth-2 forward chaining acid->corrodent->risky:
(ass (a) (corrodent _x) (nap (r i sky _x))) ; N=1
(ass (a) (acid x) (nap (corrodent _x))) ; Neal
(ass (a) (acid _x) (nap (piquant _x))) ; N=1
(ass (acid v inegar)) ; 'working memory' fact

; System b exemplifies a backward rule for verifying food liking:
(ass (b) (l ikes _x wine) (l ikes _x food) (nap (l ikes john _x))) ; N=2
(ass (l ikes mary w ine)) ; 'working memory' fact 1
(ass (l ikes _y food) (corpulent _y)) ; 'working memory' rule
(ass (corpulent mary)) ; 'working memory' fact 2

