Aueunan ‘M ‘| ulsine|siasie)| 05/9-a
6v0€_Uoe}ISOd

uJaIne|sIasiey| JelsIaAIuN

yiewsou| yolaiaquoey

~
()
—
o
M
o
p—
@)
S
5
aw

Goal: Backward-with -Forward
Chaining in LISPLOG
SEKI WORKING PAPER SWP-87-04

1aded buvIom-143sg

GOAL: BACKWARD-WITH-FORWARD CHAINING IN LISPLOG
Harold Boley, FB Informatik, Univ. 675 Kaiserslautern, Box 3049, W. Germany

; SEKI Working Paper SWP-87-04, June 1987

Abstract: A tiny extension for perfoming forward chaining to prove goals
set up by LISPLOG's backward-chaining mechanism is introduced.

This extension of LISPLOG realizes forward 'goal statements' derived
from the fone (forward one) construct in [Boley 1987]: While fone pauses
after each forward step to let the user decide (via the more command)
whether enough assertions have been derived, goal calls an extra goal
; parameter for the same purpose. More precisely, goal proves a goal by
first calling it as an ordinary LISPLOG goal (thus allowing arbitrary
backward chaining), but on failure performs one step in the deduction
cycle of a given forward production system, and then tries again.

A production system is represented by LISPLOG rules with heads used
for identifying the system and bodies whose conjunctions are divided
in a (production-)premises part and a (production-)conclusion part.
This representation is exactly the same as in [Boley 1987], which is
similar to that in [Lee 1986]; but we describe only a special case:

; Here, we will use productions of the form (ass (s) pl ... pN (nap c)),
with pI as premises and c as conclusion; nap [read "not? assert! pp!"]
asserts and pretty prints its argument iff it is not yet asserted nor
provable. The sample systems a-e of [Boley 1987] can all be used via
goal calls. For instance, system a below may be used by the goal call
; (goal (risky vinegar) (a)), which cannot prove (risky vinegar) in a
purely backward manner, thus activates forward chaining by (a), until
(risky vinegar) has become a (permanently available) fact. Of course,
some backward steps using rules like (ass (avoid jane _x) (risky _x))
may be required to access the results of forward steps activated by

; goals like (goal (avoid jane vinegar) (a)). Note that backward rules

; with goal premises like (ass (avoid john _x) (goal (risky _x) (a)))
called by (avoid john vinegar) combine the chaining directions in a

; more efficient manner. Finally, the forward chaining activated by goal
; calls such as (goal (likes john _p) (b))) in the backward rule below
may again employ some backward chaining for verifying a premise of a

; production such as (likes _x food) in system b, and so on:

(ass (warn john _p _o) (goal (risky _o) (a)) (goal (likes john _p) (b)))

References (order [Boley 1987] and more LISPLOG papers: lisplog@uklirb.UUCP):
[Boley 1986] H. Boley (Ed.): A Bird's-Eye View of LISPLOG: The LISP/PROLOG
Integration with Initial-Cut Tools. Universitaet Kaiserslautern,

; FB Informatik, SEKI Working Paper SWP-86-08, Dec. 1986

[Boley 1987] H. Boley: Fone and Fall: Forward-with-Backward Chaining in
LISPLOG. Universitaet Kaiserslautern, FB Informatik, SEKI Working Paper

; SWP-87-03, June 1987

[Lee 1986] N. S. Lee: Programming with P-Shell. IEEE Expert 1(2), Summer 1986

; The backward-with-forward implementation:

(ass (goal _go _sy) _go) ; go all backward
(ass (goal _go _sy) (n-solutions _sy 1) (goal _go _sy)) ; sy step forward
(ass (nap _x) (not _x) (ass _x) (pp-external-form _x)) ; note 'dynamic ass'

System a shows a depth-2 forward chaining acid->corrodent->risky:

’

(ass (a) (corrodent _x) (nap (risky _x))) ; N=1
(ass (a) (acid _x) (nap (corrodent _x))) ; N=1
(ass (a) (acid _x) (nap (piquant _x))) ; N=1
(ass (acid vinegar)) ; 'working memory' fact

; System b exemplifies a backward rule for verifying food liking:

(ass (b) (likes _x wine) (likes _x food) (nap (likes john _x))) ; N=2
(ass (likes mary wine)) ; 'working memory' fact 1
(ass (likes _y food) (corpulent _y)) ; 'working memory' rule

(ass (corpulent mary)) ; 'working memory' fact 2

Goal: Backward-with -Forward
Chaining in LISPLOG

Harold Boley

SEKI WORKING PAPER SWP-87-04

; GOAL: BACKWARD-WITH-FORWARD CHAINING IN LISPLOG
; Harold Boley, FB Informatik, Univ. 675 Kaiserslautern, Box 3049, W. Germany

; SEKI Working Paper SWP-87-04, June 1987

Abstract: A tiny extension for perfoming forward chaining to prove goals
set up by LISPLOG's backward-chaining mechanism is introduced.

; This extension of LISPLOG realizes forward 'goal statements' derived

; from the fone (forward one) construct in [Boley 1987]: While fone pauses
after each forward step to let the user decide (via the more command)
whether enough assertions have been derived, goal calls an extra goal
; parameter for the same purpose. More precisely, goal proves a goal by
first calling it as an ordinary LISPLOG goal (thus allowing arbitrary
backward chaining), but on failure performs one step in the deduction
; cycle of a given forward production system, and then tries again.

; A production system is represented by LISPLOG rules with heads used
for identifying the system and bodies whose conjunctions are divided
in a (production-)premises part and a (production-)conclusion part.

; This representation is exactly the same as in [Boley 1987], which is
similar to that in [Lee 1986]; but we describe only a special case:

; Here, we will use productions of the form (ass (s) pl ... pN (nap ¢)),
with pI as premises and c as conclusion; nap [read "not? assert! pp!"]
; asserts and pretty prints its argument iff it is not yet asserted nor
provable. The sample systems a-e of [Boley 1987] can all be used via

; goal calls. For instance, system a below may be used by the goal call
; (goal (risky vinegar) (a)), which cannot prove (risky vinegar) in a

; purely backward manner, thus activates forward chaining by (a), until
; (risky vinegar) has become a (permanently available) fact. Of course,
; some backward steps using rules like (ass (avoid jane _x) (risky _x))
; may be required to access the results of forward steps activated by

; goals like (goal (avoid jane vinegar) (a)). Note that backward rules

; with goal premises like (ass (avoid john _x) (goal (risky _x) (a)))

; called by (avoid john vinegar) combine the chaining directions in a

; more efficient manner. Finally, the forward chaining activated by goal
; calls such as (goal (likes john _p) (b))) in the backward rule below

; may again employ some backward chaining for verifying a premise of a

; production such as (likes _x food) in system b, and so on:

(ass (warn john _P _o) (goal (risky _o) (a)) (goal (likes john _p) (b)))

; References (order [Boley 1987] and more LISPLOG papers: lisplog@uklirb.UUCP):
; [Boley 1986] H. Boley (Ed.): A Bird's-Eye View of LISPLOG: The LISP/PROLOG
Integration with Initial-Cut Tools. Universitaet Kaiserslautern,

; FB Informatik, SEKI Working Paper SWP-86-08, Dec. 1986

; [Boley 1987] H. Boley: Fone and Fall: Forward-with-Backward Chaining in

; LISPLOG. Universitaet Kaiserslautern, FB Informatik, SEKI Working Paper

; SWP-87-03, June 1987

[Lee 1986] N. S. Lee: Programming with P-Shell. IEEE Expert 1(2), Summer 1986

; The backward-with-forward implementation:

(ass (goal _go _sy) _go) ; go all backward
(ass (goal _go _sy) (n-solutions _sy 1) (goal _go _sy)) ; sy step forward
(ass (nap _x) (not _x) (ass _x) (pp-external-form _x)) ; note 'dynamic ass'

; System a shows a depth-2 forward chaining acid->corrodent->risky:

(ass (a) (corrodent _x) (nap (risky _x))) ; N=1
(ass (a) (acid _x) (nap (corrodent _x))) ; N=1
(ass (a) (acid _x) (nap (piquant _x))) ; N=1
(ass (acid vinegar)) ; 'working memory' fact

; System b exemplifies a backward rule for verifying food liking:

(ass (b) (likes _x wine) (likes _x food) (nap (likes john _x))) ; N=
(ass (likes mary wine)) ; 'working memory' fact 1
(ass (likes _y food) (corpulent _y)) ; 'working memory' rule

(ass (corpulent mary)) ; 'working memory' fact 2

