
>c
©
£
|

©
0)

- 3
5A=5 £

Eg ®
re]

55 =
CL
= 695
eX 3d ©%
S=8 'g
5950
8583
£ SEN

gcd?wan

Aa
(= IM

)
2

x) 0 I NDS

@ ee

J
A

A Decision Procedure for
Presburger Arithmetic with

Functions and Equality

F.-J. Krämer
SEKI Working Paper SWP-89-4a

th

-W
or

ki
ng

 P
ap

er

A Decision Procedure for Presburger Arithmetic
with Functions and Equality

F.-J. Krämer
FachbereichInformatik, Universität Kaiserslautern

Postfach 3049, D-6750 Kaiserslautern, W.-Germany

TABLEOF CONTENTS

PREFACE

1. INTRODUCTION
1.1. LANGUAGE CLASSES: A SURVEY
1.2. MOTIVATION

2. QUANTIFIER-FREE PRESBURGER ARITHMETIC
2.1. THE THEORY
2.2. THE LOOP_RESIDUE METHOD

2.2.1. REQUIREMENTS
2.2.2. THE MAIN THEOREM FOR THE UNEXTENDED CLASS
2.2.3. THE LOOP_RESIDUE PROCEDURE
2.2.4. GENERALIZATIONS

2.2.4.1 STRICT LEQUALITIES
2.2.4.2 LINEAR LEQUALITIES WITH AN ARBITRARY

NUMBER OF VARIABLES

3. QUANTIFIER-FREE THEORY OF EQUALITY
3.1. THE THEORY
3.2. CONGRUENCE CLOSURE
3.3. EXAMPLES
3.4. CONGRUENCE CLOSURE AND THE QUANTIFIER-FREE

THEORY OF EQUALITY
3.5. AN ALGORITHM FOR THE CONGRUENCE CLOSURE

4. QUANTIFIER-FREE PRESBURGER ARITHMETIC EXTENDED
BY PREDICATE AND FUNCTION SYMBOLS

4.1. DECIDABILITY
4.2. A PRACTICAL DECISION PROCEDURE

4.2.1. THE DOMAIN
4.2.2. SEMANTIC NOTATIONS
4.2.3. THE BASIC PROBLEM
4.2.4. THE PROCEDURE

4.3. NEW CONCEPTS

J
O

w

©

©

©

10
14
15
16

16

18
18
19
19

21
21

24
25
27
27
27
28
30
33

4.4. REWRITING 36
4.4.1. NOTATIONS 36
4.4.2. CANONICAL GROUND REWRITING SYSTEMS 38
4.4.3. QUANTIFIER-FREE PRESBURGER THEORY AND

REWRITING 39
4 .4 .4 . PRESBURGER TERMS 40

4.5. THE MAIN THEOREM FOR THE EXTENDED CLASS 41
4.6. THE EQUALITY_LOOP_RESIDUE PROCEDURE 53
4.7. GENERALIZATIONS 59
4.8. EXAMPLES AND OBSERVATIONS 60

4.8.1. EXAMPLES 60
4.8.2. OBSERVATIONS 83

4.9. FURTHER ASPECTS AND IMPROVEMENTS 85

5. CONCLUSION 90

APPENDIX A:
PROOF OF THE MAIN THEOREM FOR THE UNEXTENDED CLASS 92

REFERENCES 104

Preface

Many of the formulas one tends to encounter in program verification are
contained in the quantif ier-free Presburger Ari thmetic and its extension by
predicate and function symbols.
Remarkable work for both the unextended and the extended class has been
done by Robert Shostak. Particularly for the quantif ier-free Presburger
Arithmetic, he developed a very elegant algorithm based on the computation
of loop residues in a graph. The algorithm decides the satisfiabil ity of of a
conjunction of atomic formulas of this theory.
This diploma thesis presents the development of a decision procedure for
the satisfiability of a conjunction of atomic formulas of the quantif ier-free
Presburger Arithmetic extended by predicate and function symbols:
The EQUALITY_LOOP_RESIDUE procedure.
This procedure combines both the concept of the LOOP_RESIDUE method
in a refined version adjusted to the specific problems of the extended class
and the concept of rewri t ing.
The connection of this decision problem to ground terms is pointed out and
a polynomial time algorithm for computing a canonical rewrit ing system
equivalent to a f inite set of ground equations recently (1988) presented by
Gallier, Narendran, Plaisted, Raatz, and Snyder can be used as subpro-
cedure in the newly developed decision procedure.
The EQUALITY_LOOP_RESIDUE procedure does not only improve the deci-
sion process of the satisfiability of a conjunction of atomic formulas, but
also the determination of the validity of a quantif ier-free Presburger for-
mula including predicate and function symbols.

1. Introduction

This diploma thesis deals with the problem of deciding the validity of a
formula out of a certain language class and of an extension of this class.
It is the language of quant i f ier- f ree Presburger Arithmetic: it contains all
Presburger formulas without quantif iers. The extended class! includes in
addition formulas with (uninterpreted) predicate and function symbols. The
interpreted predicate and function symbols of the Presburger Arithmetic
are <, and 0, 1, and +, respectively.

Array bound checks and tests on index variables, for example, give rise to
formulas of PA during program verification. And programs that operate on
arrays and other data st ructures that can be modeled as uninterpreted
functions are prone to produce formulas of DA during the verification
process of the program.

Therefore, many formulas occurring during program verification and in
theorem provers belong to the unextended class DA and even more belong
to the extended class PAs. And since the decision of such formulas con-
st i tutes the main issue in such programs, this straightforwardly indicates
the motivation for the development of eff ic ient decision procedures.

It is evident by negation and expansion into disjunctive normal form that it
suff ices to provide a decision procedure for the satisfiability of a conjunc-
tion of atomic formulas in order to decide the validity of a quanti f ier-free
formula. |

Robert Shostak [271 has observed that the formulas occurring in program
verif ication have in many cases a simple form, and has developed an ele-
gant method for deciding the satisfiability of a (quantif ier-free) con-
junction of atomic Presburger formulas where each formula can be written
in the form ax + by s ¢ in which a, b, and ¢ are constants, and x, and y are
variables. |

The underlying data s t ructure of this method is a graph which is con-
structed in such a way that each variable x labels a vertex and each atomic
formula ax + by < ¢ labels an edge incidenting with those vertices labeled
by x and y.
The LOOP_RESIDUE method has basically two concepts:
The computation of loop residues and the notion of a closure of a graph.

1: For conven ience and abb rev ia t i on , we re fe r to the quan t i f i e r - f r ee P res -
burger A r i t hme t i c by PA or unextended class and to its ex tens ion in-
c lud ing p red i ca te and f unc t i on symbo l s by PA or ex tended c l ass .

For example, a loop labeled by x-wys0,44-25s0,andz- x se has
residue x - x < ¢ . The atomic formula x - x < ¢ is unsatisfiable for c<O. The
notion of a closure of such a graph is essential for the completeness of
the method.
The treatment of atomic formulas with relation < and of atomic formulas
with an arb i t rary number of var iab les has for s impl ic i ty in p resen t ing the
method been postponed as generalization. The generalized procedure can
determine the satisfiability of any conjunction of atomic formulas and
therefore provides a decision procedure for the quant i f ier- f ree Presburger
Arithmetic. It combines generality as well as suitability for simply s t ruc-
tured formulas and is described in the second chapter.

Another method for determining the satisfiabil ity of a (quantif ier-free)
conjunction of atomic formulas is the SUP-INF method. Shostak attr ibutes
the method to Bledsoe [3] and presents a ref ined version in [28] .
At the core of the method are two procedures SUP and INF which compute
the maximum and minimum real value that a variable can have subject to a
set of linear constraints.
Shostak's basic version of the SUP-INF method is complete for the real
domain, and incomplete for the integer domain. But, "the incompleteness of
the basic method is of so l i t t le practical consequence, however, that
schemes for augmenting the method in order to obtain completeness are
largely a matter of theoretical interest . ” [28]

The method can easily be applied to linear maximization problems with a
linear objective function M and a set £ of linear constraints by adding 2s M
as a constraint where 2 is a new variable and computing the maximal (real)

value of 2 subject to A U {25M} with the procedure SUP. Similiarly, if M
is to be minimized, M <2 is added and the procedure INF determines the
minimal real value of 2 subject to the set A U { M s2 } of constraints.
In order to compare the SUP-INF method with well-known real and integer
linear programming algorithms, Shostak implemented “both the Simplex
algorithm for real linear programming and the Gomory cutt ing plane algo-
rithm for integer linear programming. Surprisingly, neither of these im-
plementations performed more efficiently than the SUP-INF implementation
on naturally arising formulas. The rather poor relative performance of the
well-known algorithms stems from the fact that typical problems tend to
be small (thus emphasizing the overhead necessary to convert the problem
to matrix form) and structured in such a way as to produce sparse mat-
r ices. The Gomory algorithm, moreover, could not be t rusted to terminate
on unbounded problems.” [28]

Related to the decision problem of the extended class is the decision
problem of the quantifier-free theory of equality. The atomic formulas of
this language are equalities of the form t= t ’ where t and t ’ are terms.
The problem of verifying that an equality is a consequence of several other
equalities is a decision problem of the quantifier-free theory of equality.
For example, §(§(a,b),b)=a is a consequence of $(a,b)=a, or, less obvious-
ly, §a=a is a consequence of §ffa=a and f f f f fa=a.
Again, since we have no quantif iers, it su f f i ces to p rov ide a decis ion pro-
cedure for the satisfiabil ity of a conjunction of atomic formulas in order to
decide the validity of formulas of this theory.
"A practical algorithm for this problem is essential to mechanical program
ver i f icat ion (or to any other kind of mechanical reasoning), since almost all
proofs require reasoning about equalities.” [171]
The decision problem for the quant i f ier- f ree theory of equality with un-
interpreted function symbols has been attacked from quite di f ferent points
of view: As a variation of the common subexpression problem by Downey,
Sethi, and Tarjan [61], and as the word problem in finitely presented al-
gebras by Kozen [13].
Nelson and Oppen reduce all those problems “to the problem of construc-
ting the ‘congruence closure’ of a relation on a graph.” [17]

The construction of the congruence closure of a relation on a graph is
described in the third chapter.

An approach for the extended class for the integer domain was given by
Shostak in [25] and is presented in the forth chapter. It introduces to the
main problem that arises from the extension by function-symbols: The
well-definedness of functions: A function is well defined if it assigns to
every argumentof its domain a uniquely defined value of its range. ?

Given a conjunction C of atomic formulas, Shostak obtains an associated
integer linear programming problem (ILP) by replacing the terms occurring
in the conjunction by new variables. An ILP-solver then determines the
satisfiability of the associated problem. Obviously, if the associated prob-
lem has no solution, then the given conjunction C is unsatisfiable.
Otherwise, the ILP-solver constructs a solution for the associated prob-
lem and another procedure then examines this solution for violations of
well definedness, or, in Shostak's words, for violations of the substitutivity
of equality subject to the conjunction € . An appropr iate formula that

2: Shos tak deno tes the wel l de f i nedness as the proper ty of subs t i t u t i v i t y

of equality: i f two t e rms are equa l , they can r ep lace each o the r mutually

as a rgumen ts of a f unc t i on w i t hou t chang ing i ts value.

summarizes the violation is generated, added to the conjunction C, and the
process is reapp l ied for each con junct ion of the now resu l t i ng d is junct ive
normal form. | |

The proof of the decidability of the extended class in chapter four provides
itself a decision procedure, but Shostak’'s suggested procedure reduces
the combinator ia l explos ion substant ial ly. Never the less , there is still
enough opportunity for fur ther improvement.

The objective of this diploma thesis is the design of a method for the ex-
tended class which is similiarly suitable to simply structured formulas like
the LOOP_RESIDUE method for the unextended class. This procedure
should play a central part in the extended procedure.
As noted above, the main problem here is the well definedness of function
symbols. We basically succeeded in the design of such an algorithm by
means both of compactness in representing information and of incor-
poration of other concepts, especially rewriting:
A set & of equalities which are implied by a conjunction C of atomic for-
mulas is computed such that any equality implied by C is implied by &. A
canonical rewri t ing system R equivalent to & is computed and the conjunc-
tion € is reduced wrt the system X . The LOOP_RESIDUE method can now
immediately be applied to the resulting conjunction.
Briefly spoken, this is the basic idea of the presented procedure which is
named EQUAL ITY_LOOP_RESIDUE procedure.

And this procedure seems to improve the decision process not only for
large, but also for small problems. Violations of well definedness are
prevented implicitely while Shostak has done this explicitely.

1.1. Language classes: a survey

Figure 1.1 shows the location of the quant i f ier- f ree Presburger Arithmetic
and its extension in the hierarchy of language classes.
The language of second order predicate logic is neither recursively deci-
dable nor recursively enumerable. The one of f i rs t order is also not recur -
sively decidable, but recursively enumerable.
A subset of this language is the Presburger Arithmetic which has the in ter -
preted function symbols 0, 7, and + and the interpreted predicate symbol <.
This class was f i rs t shown to be decidable by Presburger in 1929 [22] .

A well known decision procedure, described by Kreisel and Krevine [141], is
based on a method of quantif ier-elimination and prone to combinatorial
explosion. A more eff icient procedure has been given by Cooper [41] in

1972. It is probably the best one in the worst case, and has deterministic
time complexity 0 (222 ") where n is the length of the formula. This was
shown by Oppen [19] in 1975.

QUANTIFIER-FREE
PRESBURGER ARITHMETIC

EXTENDED By

PREDICATE AND FUNCTION SYMBOLS

QUANTIF IER-FREE

PRESBURGER ARITHMETIC

PRESBURGER ARITHMETIC

FIRST ORDER PREDICATE LOGIC

SECOND ORDER PREDICATE LOGIC

Figure 1.1: Survey on language classes

Those Presburger formulas without quantif iers define the quanti f ier-free
Presburger Ari thmetic. As a subclass of the Presburger Arithmetic, it
surely is decidable. This is also true for the extension by predicate and
function symbols: Any formula of the extended language can be t rans-
formed into an equivalent formula of the unextended language. For both
language classes PA and PA, the decision problem can deterministically
be solved in worst case exponential time.

Please note that the Presburger Arithmetic does not include the extension
of the quant i f ier- free Presburger Arithmetic because it does not include
formulas with function symbols. But it includes for every such formula an
equivalent formula.

1.2. Motivation

Consider that you want to write a program and prove its correctness wrt
certain input and output specifications. Briefly spoken, one way to achieve
this is to state a precondition for the input data and a postcondition which
connects the input data with the output data and finally to prove the vali-
dity of an appropriate formula which includes those conditions and the
semantics of the program.3
So the task of program verification splits up into generating the cor res-
ponding formula and checking its validity.
For example, consider the PASCAL-like program that t ransforms a bit
string into a decimal number which is shown in figure 1.2.

|

{ PRECONDITION: neN ; ae (N—N) }
Di= 0

i ¢==n+1

WHILE 0 < i Do
BEGIN

D ı= 2*D + a l i -1)
iE = i -1

END

{ POSTCONDIT ION: D = SZ peo??ra l)) }

Figure 1.2.: Program with Pre- and Postcondition

In order to prove the correctness of the program in figure 1.2. wrt the pre-
and postcondition, it is necessary to construct an appropriate formula and
to prove its validity. As a part of this process, it is important to find a
(WHILE) loop invariant formula. Loop invariant formula means that if it
holds before entrance into the loop then it holds after exit of the loop.

3 : The p i onee r i ng pape r is w r i t t en by Hoa re [10] t i t l ed "An ax ioma t i c bas i s

fo r compu te r p rog ramming ’ . De ta i l ed i n fo rma t i on is f ound in "Founda t i -

ons of P rog ram Ve r i f i ca t i on ” p resen ted by Loeckx and S iebe r [15] .

For example, define a formula SF by

F=F la , i , n ,D) 2(D=Y "27a LEN) .

Since the formula “A given by

Fa (F la , i , n, D) A0O«< — Fla, i - 1 , n, 2¢D + a l i - 1))) .

or, equivalently, by replacing the occurences of F in “Fo,

For LUD=D, , 22aA LEN) A oa)

sD + a l i -1) = 3 0 , 22 ag) A (0-4) en

is valid, the formula SF is an invariant formula of the WHILE loop.
Observe that this formula contains, in addition to the function symbols 0,
41, and + of the Presburger theory, the function symbol a.
Since mu l t ip l i ca t ion by cons tan ts is used in abbrev iat ion for repeated
addition, the formula °F is contained in the language class PDAs of quan-
tifier-free Presburger formulas extended by predicate and function sym-
bols.
An array is one example of data structures that can be modeled by uninter-
preted function symbols. All such data structures that can be modeled by
uninterpreted function symbols give rise to formulas of the quanti f ier-free
Presburger Ari thmetic extended by predicate and function symbols in the
process of program verif ication.

2, Quantifier-free Presburger Arithmetic

As a subclass of the Presburger Ari thmetic, the quant i f ier- f ree Presburger
Arithmetic surely is decidable. It 's decision complexity is no worse than
exponential and is therefore substantially easier to decide than full Pres-
burger Ari thmetic, which is decidable in 0 (222 ") ,

A commonly used techn iqueto prove the validity of a quant i f ier- f ree for-
mu laSF is to prove the unsatisfiability of each (quanti f ier-free) conjunction
in the disjunctive normal form of the negation of °F where each such con-
junction consists of atomic formulas.
The atomic formulas of the quant i f ier- f ree Presburger Arithmetic can be
written in the form a404+az02 + . . . +a ,0 , tel ao where tel e {s, <, =, #},
the o;'s are variables, and the a;'s are constants.
A decision procedure for the satisfiabil ity of conjunctions of linear lequal-
ities 4 with at most two variables (ax+by<c) is presented in section 2.2
and is generalized to decide the satisfiability of terms of the form aqo4+
az02* . . . +a ,0 , tel ap where te l € {s, <, =, +}.

2.1. The Theory

We f i rst give a definition of the Presburger Arithmetic according to
Harrison [91].

The set PA of Presburger Formulas wrt the domain D is the least class
satisfying the following conditions:

a) For every m20 and n ; , n ; ’ €eD, Osism,
no + Nyxyq + . . . + NmXm = no’ + ng’ xq + 00 + Ay X m

is a formula in DA with free variables x4, . . . , Xm-

b) If Fy , Fa €e PA, then so is Fy A Fa .
c) If F4 , F2 € PA, then so is Fy V Fa .
d) If F « PA , then so is =F .
e) If Flxgyeeesx,) € PA and 1sisn, then (Vx)F l xq , . . . , x ,) € PA.
f) If F l xg , . . . , x ,) € PA and 1sisn, then (I x ;)F (xq, . . . ,%,) € PA.

A formula with no free variable is called a sentence.
Presburger defined the Presburger Formulas wrt the domain of the non-
negative integers, the natural numbers N, and f i rs t proved the decidability
of this class in 1929 [22] . But instead of using a multiplication symbol, he
rep laced the multiplication with cons tan t na tu ra l numbers by repeated

4 : S ince equa l i t y and i nequa l i t y re fer to t he r e l a t i ons = and +%*, r espec t i ve l y ,

we refer to s by l equa l i t y (l ess or equal).

addition. A later proof of the decidability of the Presburger theory can be
found in Yasuhara's monograph of 1971 [321].
Formulas of the Presburger Ari thmetic like x+x+x+x+x are conveniently
abbreviated by 5*x or 5x, for example, though the multiplication symbol *
is not contained in the original definition of the Presburger Arithmetic.

Not only for the initial domain of the Presburger theory, the quanti f ier-
free Presburger Theory (conditions a), b), ¢), and d)) is also decidable wrt
the domain of the integer numbers Z, the rational numbers Q, and the real
numbers R.>
And for the domain of the rational numbers, a formula °F can equivalently
be transferred into one where the coefficients are all integers. This is
simply done by multiplying each atomic formula occurring in °F with the
main denominator of the rational constants occurring in the atomic for-
mula. This indicates that the multiplication symbol can also be replaced for
this domain.

The natural, integer, rat ional, and real numbers are all inf inite linearly
ordered domains. The notion of a linearly ordered domain is given in [32]
by the following conditions for a predicate <:

(Va) (Vy) (xy V x=y V yex)
(Ve) (Vy) (Va) (xy A yea D x<a)
(Vx)a (xcx)

A domain is dense if the following condition is satisfied:

(Vx)(Va) l3 Iy) (x<a DO x<y A y<a)

The rational and real numbers are dense, while the natural and integer
numbers are not dense. The LOOP_RESIDUE procedure presented in the
following section is complete only for dense domains like Q or R. For
domains which are not dense like the integer numbers, the procedure may
return satisfiable for an unsatisfiable set wrt this domain. Therefore, the
density of the domain is a necessary condition for the completeness.

2.2. The Loop-Residue Method

2.2.1. Requirements

The springs for the development of another method, generality and simpli-
city, are neatly expressed in the following quotation:
“A number of approaches have been used to decide the feasibility of sets of
inequalities, ranging from goal-driven rewr i t ing mechanisms to the power-

5: Shos tak g ives dec i s i on p rocedures for t hese p rob lems in [27] and [25].

- 10 -

ful simplex techniques of linear programming. Some simple methods are
well suited to the small, tr ivial problems that most often arise, but are
insufficiently general. Fuli-scale simplex techniques, on the other hand, are
general and fast for medium to large scale problems, but do not take
advantage of the tr ivial s t ructure of the small problems (involving only a
few variables and equations) encountered most frequently in program
verification and related applications.” [2716

2.2.2. The main theorem for the unextended class

Denote by £, or £_, a set of linear lequalities” each of whose elements (,
or l , , can be written in the form ax+by<c, where x and y are variables and
a,b, and ¢ are constants.
Obtain £., £=, £, , L , , and £ ; from £ and { , l=, [, , > , and l ; from L by
replacing < by <, =, >, 2, and #, respectively.
We choose as domain D the dense linearly ordered s t ructure of the
rational numbers Q.8
For convenience, a special variable vg is introduced as zero variable: it is
assumed that it appears only with coefficient zero, while the other variab-
les require - without loss of generality - nonzero coefficients.

Define (4) as the graph for a set £ of linear lequalities in the following
way:

For each variable occurring in £ give U(£) a vertex labeled with this varia-
ble and for each linear lequality in £ give (4) an edge labeled with this
lequality such that this edge connects the corresponding vert ices of the
occurring variables.

Denote, in addition, for a graph & whose edges are labeled by lequalities
the set of those lequalities by Ag, or Ags-
A path D through 4 is uniquely described by a sequence v4, v2, ... Das Dn+4

of vertices and a sequence eq, €2, ..., e, of edges (n21).

6: A tom ic f o rmu las of the fo rm ax+by<ec are deno ted as l equa l i t i e s in th is
diploma thes i s In o rde r t o d i s t i ngu i sh f r om i nequa l i t i e s ax+béy%c. Bu t

Shos tak deno tes a tomic f o rmu las of the f o rm ax+by<c a lso as inequali-
t i es . |

7 : The number o f va r i ab les pe r i nequa l i t y is r es t r i ced to two f o r con -

ven ience . As an ex tens ion o f t he p rocedu re , t h i s r es t r i c t i on is d ropped .

8: I t wi l l become ev iden t t ha t the dens i t y of the doma in is necessary fo r the
comp le teness o f t he p rocedu re . The Loop -Res idue p rocedu re i s t hus i n -

comp le te for the integers.

- 11 -

Denote by the triple sequence for P the sequence <ay ,b4 ,c4) , az ,bz . c2 ” ,

coo @p,bp.cn” Where ao. +b,0,.,5¢; is the lequality I; labeling edge ¢ ; for
each i , 1sisn, and by £9, or £9, the set of linear lequalites labeling P.
A path P is admissible if for all 1<sisn-1, b; and a; . , of its triple sequence
have opposite signs, i.e., sgn(b;*a;.,)=-1.2

Define the binary operator * on tr iples as fol lows:
For two triples ay4.,b4,c4” and Caz,ba.c2” where bs and a2 have opposite
signs, define ay4 ,b4 ,¢4” *<az,b2.¢2”7 := <kaqaz , - kb4bz , k (cqaz -c3b4)>

(or, in abbreviation, (k<asaz2, -b4b2, c4a2 -c2b4>)) where k=sgn(ay).®

Lemma 2.1.
The binary operator * on t r i p l es is associative.
Proof.

(<ag rb4 r64) * <az,ba,c2?) * Laz,bz.c3”

= kpaqaz, —kzbsba, kolcqazr-ca2by)> * ag,bz.e3”
= Kkylkzaqaz)az, -kal-kzb4bz)bzy, kylkalcqaz-c2bg)ag - ezl-kzb4bz)?

= Ckaaq lkzazaz) , -kab4(-k3bobs) , kaleslbkzazas) - ky lczaz-c3b2)b4)>

= <aqgsb4re4) * <Shkzazaz, ~k3babz, kylczaz-c3bz)>

= agobgrcq? * (Laz,ba,c2) * az,bz.cs”)
where ka=sgnlaz) and k3=sgnl{as). []

The residue t p = < ap, bp, ep>, or e(P)=<alP),b(P),ec(P)>, of an admis-
sible path P with triple sequence <ayj,b4,c4> , <az ,b2 ,62> , ... <an.by,cn>
is defined by

ap, bp, cp> i = {ag b4.04> * {az ba,ca>* ... <a, b,,c,> .
The residue of an admissible path is uniquely defined since * is associative.

The residue leguality lp, LP) , or lpg, of an admissible path P is given by
alP)x+b(P)y s e(P), where <alP),b(P),elP) > is the residue of P and
x and y are the first and last vertices, respectively, of P.

Lemma 2.2.
For an admissible path P,

i) Lp and Lp U{ lp } are equivalid,
ii) Lp. and Lp, U { l p } are equivalid, and
i i i) Lp= and Lp=-U{lp=} are equivalid,

9 : The f unc t i on sgn re tu rns t he s i gn o f a number and is de f i ned by sgn (0)=0 ,

sgn l x)=1 for x>0 , and sgn (x)= -4 for x<O.

- 12 -

i) This is done by induction on the length n of path P .

Basis: n=2.
Let x, y, and 2 be the f i rs t , second, and last vertex of P , respectively.

Lp = { ax +byysey azy+ base) is valid

iff (observe that 6,40 and a,%0)
{ sgnlaz)aqazx + sgnlaz)bsazy s sgnlaz) cqaz,

sgnlby) byazy + sgnl(by) bybaa < sgn(b4)b4c2 } is valid

iff (since by admissibility of P, sgnlbsaz)=-1)

{ sgnlaz)aqazx + sgnlaz)bsazy <= sgnlaz) cqaz,
-sgnlaz)bgazy - sgnlaz) bsbaz s - sgnlaz) bye, } is valid

iff

Lp U { i p } is valid.

where lp is the residue lequality of P, a lPlx+b(Plas<elP), or, equi-
valently, sgnlaz)asazx - sgnlaz)b4bzz s sgnlaz) (cqaz-c2by).

Induction Step. n>2. Let Q and R paths such that P=QR. Then,

Lp = Ra U Lp is valid
iff (by the induction hypothesis for Q and R)

LqU { l g U L r U { l r } is valid

iff (s ince { lq , IR} is valid if and only if { lq , Ir, Ip} is
valid by the same arguments as in the basis)

Lo U L r U { l o l r , Ip} is valid
iff

Lp U { ip} | is valid
completing the proof of i) .

ii, iil) The same proof as for i) wi th < and = ins tead of the re la t ion <.[]

A path with identical f i rst and last vertex is called a Joop. A loop is simple
if its intermediate vertices are distinct.
An admissible loop P is called an eguality loop if and only if ap+bp=0 and
¢p=0 and an infeasible loop if and only if ap+bp=0 and cp<O, where
<ap,bp,cp> is the loop residue of P.
The residue lequality a lP)x+b (P)x s e(P) of an infeasible (simple) loop
with initial and final vertex x is unsatisfiable. It follows that the set £ of
linear lequalities is unsatisfiable if the graph GL) has an infeasible
simple loop.

- 13 -

The converse does not hold as the following example demonstrates:

Consider the set £ = {x22, x<y, x+ys2} which is unsatisfiable. The only ad-

missible loop in GL) is labeled with xsy and x+y<2 and has the residue

{ 1 ,4 ,2> = <1 , -1 ,0>%<1 ,1 ,2> which represen ts the res idue lequality

x+x<2.
We observe that although £ is unsatisfiable, (4) has no infeasible simple
loop! This motivates the following notation:

Define a closure GL) of the graph G(L) of a set £ of linear lequalities
in a constructive way: For each admissible simple loop P (modulo cyclic
permutation and reversal) of (£4) add a new edge labeled with the residue
lequality L (P) .
The graph G(L) is also called a closed graph for 4.
If the graph G(£) of a set £ of linear lequalities is closed, £ is called a
closed set. If fur thermore the graph GL) does not contain a simple
equality loop, £ is called a strictly closed set.

The reverse of an admissible (simple) loop is always admissible, and the

cyclic permutations of an admissible (simple) loop are admissible if and
only if a4 and b, have opposite signs where <ay . , by . c4> , <aa,bz.c2>, ...
{a , .b , .c .> is the triple sequence of this path.
Furthermore, all cyclic permutations of an infeasible permutable (simple)
loop are infeasible and the reverse of an infeasible (simple) loop is in-

feasible.’® This justifies the restriction modulo cyclic permutation and re-
versal in the previous definition.
Note that the closure is not uniquely defined because the simple admissible
loops are chosen modulo cyclic permutation and reversal.
In the example, a graph Ye {x22, xsy, x+ys2}) is obtained by adding to
G(L) an edge labeled with Oog+2x<2 or, equivalently, x<1. This results
with lequality -x+pg<-2 (or x22) in an in feas ib le s imple loop labeled with

the lequalities 00g+2x<2 and -x+v4<-2 and with residue <0 ,0 , -2) .

Theorem 2.3.
If / is a closed graph for a set £ of linear equalities, then the following
statements are equivalent:

i) £& is satisfiable
ii) 4 has no infeasible simple loop

Proof.
Because of its length, the proof is omitted here. But since this main

theorem is fundamental for the new procedure of the extended class, it
is given in appendix A.]

10: These s ta temen ts are proved in append ix A.

- 14 -

2.2.3. The Loop-Residue Procedure

Based on Theorem 2.3, we now present a decision procedure in figure 2.1,
the LOOP_.RESIDUE procedure, for the satisfiabil ity of a set £ of linear
lequalities of the unextended class by computing loop residues. Such a set
£ represents a conjunction of atomic formulas.
Since there are finitely many admissible simple loops both in the graph
G(L) and in a closed graph GA) , the procedure terminates. Its sound-
ness and completeness straightforwardly follow from Theorem 2.3.
Observe that this procedure only decides the satisfiability of a set of
linear lequalities. It does not construct a solution for a satisfiable set.
This can be done according to the proof of the main theorem in appendix
A by constructing a solution for a set A from a closure Ac(£) without an
infeasible simple loop. But for applications such as program verification,
one is interested only in satisfiabil i ty; knowledge of an explicit solution is
not required in this case.

(0) For a set £ of linear lequalities, construct the graph G=G(£)
(1) Enumerate the simple admissible loops of §

modulo cyclic permutation and reversal,
and compute their residues;
IF any infeasible simple loop is enumerated

THEN RETURN (£ is unsat is f iab le)

ELSE (2)
(2) Form a closure of

by adding a new edge for each residue lequality;
Compute the residues

of all newly formed admissible simple loops!
IF any loop is infeasible

THEN RETURN (£ is unsa t i s f i ab le)

ELSE RETURN (£ is sa t i s f i ab le)

Figure 2.1: LOOP_RESIDUE procedure deciding the satisfiability
of a set £ of linear lequalities

11: Note a lso tha t the new adm iss ib l e l oops fo rmed in (2) mus t have i n i t i a l

vertex vg.

- 15 -

The implementation of the procedure requires some means of enumerating
the simple loops of a graph. There are several algorithms (by Johnson 1975
[12] , Read and Tarjan 1973 [231], and Szwarcf i ter and Lauer 1974 [291])
which operate in time order I[*(IVI+IEIl), and space order (IVI+IEl), where 7
is the number of simple loops, IVI is the number of vert ices, and IE! is the
number of edges. A graph may have exponentially many simple loops (in IEI)
and therefore the decision procedure shows worst-case exponential be-
haviour.
Though the worst case complexity is exponential, the average case seems
to have a pleasant complexity:
"In pract ise, however, one does not encounter such behavior. The sets of
inequalities that arise from verif ication conditions usually have the form of
transit ivity chains. The corresponding graphs are treelike, seldom having
more that a few loops. Most of the loops that do occur are 2-loops, which
are easi ly tested at the t ime the graph is cons tuc ted . ” (Shos tak , 27]
So the run time behaviour can be compared with algorithms such as the
Simplex-Algorithm which also has worst case exponential time complexity,
but is widely used in pract ise.

2.2.4. Generalizations

Recall that the skolemization of the disjunctive normal form of a negated
formula of the quant i f ier- f ree Presburger Arithmetic consists of con-
junctions of atomic formulas which are either lequalities (g), s t r ic t lequali-
ties (<), equalities (=), or inequalities (#) each of which can be written in
the form aq4xs+azxa+ . . . +a , x , te l ap where te l e {s, <, =, %}.
While asx +azxa+. . .+a ,x . = ao can be replaced by the conjunction of
AgXg + A2%X2+00 *AXn S Ap ANd -AyX4 - A2X27 040 -7 AnKXn S —Ap, Ne i t he r a
str ic t lequality nor an inequality of the form asxs+a2x2 +. . . +a ,x , tel ao
where te l « {<, +} can be expressed by lequalities. We therefore require
the extension of the LOOP_RESIDUE procedure to s t r ic t lequalities. With
str ic t lequalities, aysxytazxz t+... t a , x , * ap can be replaced by the dis-
j unc t ion of ayxy+azxa + . . . +ta,%, < Ap ANA —AYXg~ A2X2 7 0007 AnXn < —QAp.

So far, we have restr ic ted the LOOP_RESIDUE procedure to decide the
satisfiabil ity of a set with at most two variables per lequality. A gener-
alized version of the LOOP_RESIDUE procedure for lequalities and st r ic t
lequalities with an arbi t rary number of variables is presented in figure 2.3.
These two generalizations were proposed by Shostak in [271].

- 16 -

2.2.4.1. Strict Jequalities

The version of the LOOP_RESIDUE procedure presented in figure 2.1 is
restricted to conjunctions of lequalities, i.e. atomic formulas with the
relation <. Lemma 2.2 indicates how the procedure is generalized to handle
strict lequalities of the form ax +by«<e: |

Let us denote by a strict path D such a path with at least one strict lequa-
lity and by Lp the set of the lequalities and s t r ic t lequalities labeling D.
Then, for an admissible simple strict path D, the sets £p and Lp are
equivalid. This can similiarly be proved as in Lemma 4.2.
By Lemma 2.2 ii), we have that Lp, and Lp U {{p.} are equivalid where
Ip. is the s t r ic t lequality a (D)x+6(D)4< c(P).
Therefore, £p and Lp U {lp} are equivalid for a strict path P.

An admissible s t r ic t loop P is infeasible if and only if a(D) + b(P) = 0 and
e(P)so . The residue strict lequality lp of an admissible strict path P
is the strict lequality a(P)x+b(P)y< cP) where x and y are the first
and last vertices, respectively, of D.
Including this extension to s t r ic t lequalities, Theorem 2.3 still holds for a
set £ of linear lequalities and s t r ic t lequalities, as noted by Shostak [27].

2.2.4.2. Linear lequalities with an arbitrary number of variables

The LOOP_RESIDUE procedure in figure 2.1 is for convenience designed to
decide the satisfiability of a set of linear lequalities with at most two var-
iables per lequality.
A fur ther generalization includes linear (s t r i c t) lequalities with an arbi t -
rary number of variables. This can be done by symbolic computation as il-
lustrated in the following example:
Consider the set £ = { xsy , asy -x+1 , x22 } .

asy-x+1

2sx xsy TN

oo x A

Figure 2.2: Graph & for £ = { xsy , asy-x+1, x22 }

- 17 -

One lequality (2sy-x+19) of the set £ has three variables two of which (4,2)
are chosen as endpoints of the corresponding edge in the graph g=G(4) .
Symbolic computation in the only admissible simple loop (yay) yields the
res idue < -1 ,7 ,~ - x+1>*< -1 ,4 ,0> = <-1 ,1 , - x+4> with res idue lequality
-w+ys -x+1 or xs1.
Adding this lequality to the graph resul ts with the lequality xz2 in an in-
feasible simple loop (vgxvo), thus showing the unsatisfiability of 4 .
The procedure in figure 2.3 assumes an ordering of the variables other
than vo. The two lowest ranked variables of a (s t r ic t) lequality are called
primary variables. A (s t r i c t) lequal i ty wi th more than two var iab les labels
an edge which is attached to the two nodes corresponding to the primary
variables of the (s t r ic t) lequality. The other lequalities are treated as usual.
The procedure for deciding the satisfiability of a set of (s t r ic t) lequalities
with an arbi trary number of variables is given in figure 2.3.
Since the number of nonprimary variables decreases in each i terat ion, the
procedure must terminate.
As noted by Shostak [271, the generalized procedure is complete as well
as sound which can be proved as an extension of the main theorem.

RESET(tepeats top)
REPEAT

Compute a closure G=(L) for the set A
using symbolic evaluation for the residues
IF Ac(£) has an infeasible loop

THEN RETURN (A is unsatisfiable)
ELSIF not all the variables of & are primary

THEN A := residue (s t r ic t) lequalities (G (£))
ELSE SET(tepeatstop)

UNTIL tepeatstop
RETURN (£ is satisfiable)

Figure 2.3: LOOP_RESIDUE procedure for a set £ of linear
(s t r ic t) lequalities with an arbitrary number of
of variables per (s t r ic t) lequality.

- 18 -

3. Quantifier-free theory of equality

The language of the quant i f ier- f ree theory of equality is a subclass of the
first-order predicate logic. The only predicate symbol is the equality sym-
bol =. Unlike the quant i f ier- f ree Presburger Ari thmetic, the quant i f ier- f ree
theory of equality contains uninterpreted function symbols.
The quanti f ier- free theory of equality is described in section 3.1. Given a
graph and a relation on its vert ices, we then define the notion of the con-
gruence closure and give examples in sections 3.2 and 3.3, respectively.
Section 3.4 points out the relation of the congruence closure to the deci-
sion problem of the quant i f ier- f ree theory of equality and section 3.5 pre-
sents a procedure for computing the congruence closure.
This procedure was presented in the paper "Fast Decision Procedures
Based on Congruence Closure” of Nelson and Oppen [17]. The basic
theorem is given in Shostak's paper "An Algorithm for Reasoning About
Equality” [24] .

3.1. The theory

We f i r s t i n t roduce the not ion of a t e rm :

Given a set U of variables and a family (“F;);,0 of function symbols where
each function symbol §eF , has arity n, we define the set “°C, of terms by
the smallest set which satisf ies
VO < Tp, and

ii) for any number n20, any function symbol §<“F,, and any terms €; eT ,
1<sisn, 6 l t 4 , t n) € “To.

The set *T of ground terms is defined by the smallest set such that for any
number n20, any function symbol §e%F,, and any terms ¢; <°T, 1sisn,

6 l t 4 , t ,) € ‘T.

The function symbols with arity O are also called constants.

The set of formulas of the quant i f ier- f ree theory of equality is the smal-
lest set satisfying the following conditions:
i) any equation ¢=¢’ is an (atomic) fo rmula of this set where ¢, ¢’ € 7 ,

ii) for any two formulas °F and °F” of the quantifier-free theory of equality,
the formulas 1%, FVF ’ , FAF ’ , and SFDOF’ are also formulas of
the quant i f ier- free theory of equality.

A formula of the quant i f ier- f ree theory of equality can be transformed into

- 19 -

a formula of the quant i f ier- f ree theory of equality without function symbols
by a procedure which is given in figure 4.1. The result ing formula is also
contained in the quant i f ier- f ree Presburger Ari thmetic. The quanti f ier-
free theory of equality is thus decidable.

3.2. Congruence closure

Let §=(1,&) be a directed graph with labeling function { which assigns a
function symbol to each vertex. For a directed edge from u to vo, u is called
predecessor of v, and o is called successor of u. Let the edges leaving a
vertex o be ordered and denote by ol i] , 1sisn(ov), the i - th successor of o
wrt the i - th edge leaving vo, where n{o) denotes the outdegree of vertex o,
i.e., the number of edges leaving o. Multiple edges are allowed, i.e., oL[i]=
ol§] is possible for i# j .
Let R = Ux be a binary relation on V . Define the relation Ce < VxV
by (4 ,0) e Cx if and only if l (u)= l (v) , n(u)=n(v), and (uli l, oli]) eR for
all 1<isn(u).
The pairs of vertices in Cx are said to be congruent under R. R is closed
under congruences if and only if Ce & R.
Define the congruence closure R of R as the minimal extension of X
such that R is an equivalence relation and closed under congruences.
One can prove that the congruence closure of a relation is uniquely defined.

3.3. Examples

Before the connection of the decision problem of the quant i f ier- free theory
of equality with the notion of the congruence closure of a relation on a
graph is pointed out in section 3.4 and an algorithm for computing the
congruence closure is given in section 3.5, let us f i rs t consider the fol-
lowing two examples:

Let (4 be the graph shown in figure 3.1, and let R = {(v2,03)} .
Since the congruence c losu re R¢ of a relation X is an equivalence re-
lation, we can represent R by its corresponding partion [[.
The partition [lo ={{o4}, { 02 , 03}, {04)} is too fine, since we have (04,02) €
Cr. So we must merge the equivalence classes of the vertices v4 and o, .
We obtain the part i t ion [I ;={{o4, 02, 03}, {04}} . This part i t ion represents
an equivalence relat ion which is closed under congruences. It thus repre-
sents the congruence closure of the relation R .

- 20 -

Figure 3.1: Graph (4

As another example, consider the graph &j, in figure 3.2 and the relation
R={(01,06) , (03,06)} .
Starting with the partition [Io ={ { vy , 05 , 0g } , {02}, {v4}, {05}} which
corresponds to the smallest equivalence relation containing A , we con-
struct a sequence of part i t ions by merging the equivalence classes of
congruent12 vertices in order to obtain the congruence closure of R.
Since (03 ,05) e R(Ils), the vertices v2 and os are congruent under R([lo).
So we merge the equivalence classes of v2 and vg and obtain [I,= {{04, 03 ,

06 } , (02 , 0s}, {04}} . Now, since (v ; , 05) ce R(Il,4), the vertices ov, and 0 ,

are congruent under R(Il4). And, finally, for II, = {{04, 03 , 04 , 0s},
{02, vs } } , the vertices vy; and os are congruen t under R(Il2), since

(04 ,06) : R(M2). So JI; consists of one equivalence class. The con-
g ruence c l osu re of R is thus R~= {o4 , 02 , 03 , 04 , 0s , 051° .

h

01 02 03

6 A$ of =
o4 os ob

Figure 3.2: Graph 4 ;

12: Congruent wr t the (equivalence) r e l a t i on A I) which is assoc ia ted

wi th the pa r t i t i on II.

- 21 -

3.4. Congruence closure and the guantifier-free theory of equality

In order to point out the connection between the notion of the congruence
c losure of a b inary re la t ion represented by a graph and the dec is ion prob-

lem of the quant i f ier- f ree theory of equality, we assign a term t (o) to
each vertex o recursively in the following way:
For a vertex vo without successor let t(o)=L(o) and for a vertex o with
outdegree n=n(v) let t (o)=[l (v) (t (o [1]) , ..., t{oln])).
Denote in addition for a relation X by ‘Tx the set ‘Tm = { t (v)=t(o ’) |

(o ,0°) «€ R }. It now can be proved that for a relation X and its closure
Rc. T r and “T r are equivalid.
For the first example, ‘Tm = { §(a,b)=a } and §(§(a,b),b) = a € Tr
One could prove, for example, the validity of the formula ‘F=§(a,b)za DO

$($(a,b),b) = a in the following way:
Negate the formula and place it into disjunctive normal form. We obtain for
the negation of °F the two disjunctions §(a,b)=a and §(§(a,b),b) + a. The
congruence closure is now computed for the equalities and finally for each
inequality ¢#¢’, it is tested if the two terms ¢ and €’ belong to the same
equivalence class. If one such inequality exists, then the negation of the
formula SF is unsatisfiable and thus °F is valid. Otherwise, <F is not valid.
Since in our example the terms §(§(a,b),6) and a are contained in the
same equivalence class of the congruence closure, “F=z§(a,b)=a D
$($(a,b) ,b) = a is a valid formula.

And for the second example, Tz = { §§$ffa = a, §ffa=a } and fa=a € Tr
Similiarly, the formula §§fffa = a A §ffa=a D §a=a can be proved as a
valid formula.

These examples indicate that the concepts of rewri t ing might provide use-
ful support for such decision procedures. The concepts are introduced in
section 4.4 and it indeed turns out that they are very useful.

3.5. An algorithm for the congruence closure

We give an algorithm for computing the congruence closure according to
the paper of Nelson and Oppen [17] which is shown in figure 3.3.
As in the examples, an equivalence relation is represented by its corres-
ponding part i t ion.

We now argue that the procedure MERGE is correct in the following sense:

- 22 -

CONGRUENCE_CLOSURE (R):
E = {E l &p={o } for all v<U }
FOR ALL (4,0)JeR DO MERGE (u ,0)

MERGE(4, 0):
IF E420

THEN

BEGIN

Du 1= {up | 3 ue. up is predecessor of ug
and ug is equivalent to u (i.e., upe& ,) }

Po 1= {op | 3 ve. vy is predecessor of ve
and oo is equivalent to vo (i.e., decEg) }

E = (E -{&y,&p)) UE UER}
FOR ALL (x , y) € DuxDo DO

IF £x#&, AND CONGRUENT(x, y)
THEN MERGE(x ,y)

END

CONGRUENT(x, y) :

IF Lx)= l (y) AND nlx)=nly)
THEN BEGIN

FOR i:=1 TO n(x) DO
IF Exri1#&yrid

THEN RETURN FALSE
RETURN TRUE

END
ELSE RETURN FALSE

Figure 3.3: Procedure CONGRUENCE_ CLOSURE
with subprocedures MERGE and CONGRUENT

If a part i t ion & represents the congruence closure of a relation X , then
MERGE (u, 9) constructs the congruence closure of the relation R U { (u ,0) } :
Since the equivalence classes of vert ices u and o are only merged for pairs
(u,0) of the relation X by external calls of the procedure MERGE or for

congruent pairs by internal calls, the resulting equivalence relation is not
too coarse.
Suppose it is too fine. Then there are vert ices x and w, such that they are
congruent but not equivalent. Since R was closed under congruences, x
and y were not congruent initially. Then there must have been some call of
the procedure MERGE for some vertices a and 6 such that either (x,y) or
(y,x) Is in PaxPp . In accordance to the algorithm, either MERGE(x , y) or
MERGE (y,x) is called which merges the equivalence classes of x and y and
thus makes x and y equivalent contrary to the assumption that the equi-
valence relation is too fine.
Therefore, if the relation represented by & is closed under congruences
before calling the procedure MERGE, thenit is also closed under congruen-
ces af terwards. The procedure CONGRUENCE._CLOSURE thus computes
the congruence closure of a relation R.
In their paper, Nelson and Oppen show furthermore that the algorithm for
computing the congruence closure can be implemented in O(m®) worst case
time behaviour and a sophisticated version in O(m#log(m)) where m is the
number of edges in the graph. It is assumed that there are no isolated ver-
t ices, i.e., n=0(m) where n is the number of vertices.

- 24 -

4. Quantifier-free Presburger Arithmetic extended by predicate and
function symbols

The quanti f ier-free Presburger Arithmetic extended by predicate and func-
tion symbols includes, in addition to the quant i f ier- f ree Presburger Ar i th-
metic, formulas with predicate and function symbols.
The atomic formulas of the unextended class PA are linear in variables.
But the atomic formulas of the extended class PAg are linear in terms
that have an outermost uninterpreted function symbol. The atomic formulas
are furthermore augmented by such formulas as D(t4, ta, . . . , t ,) where D
is an uninterpreted predicate symbol and ¢4, £2, . . . , £, are terms.
The decidability of PA is established in section 4.1 and a decision proce-
dure for the domain of integer numbers, designed by Shostak [251], is pre-
sented in section 4.2.
Based on the given procedure, we look out for new concepts in order to
improve the decision process proposed by Shostak in section 4.3. For
example, separation of atomic formulas of the form at + bt’ tel ¢ where tel
e {s, =, +} subject to the predicate te l serves for compactness in the
representation of the information.
Extracting information, for example by inferr ing equalities, is an often
stated goal. Very helpful is the notion of an equality loop. Equality loops
are used to generate equalities from a set of lequalities. This and some
more very interesting resul ts are proved in section 4.5.
Considering the connection to rewr i t ing on ground terms, we are able to
incorporate recent (1988) results on ground rewri t ing, presented in sec-
tion 4.4, in the newly developed decision procedure of this diploma thesis,
the EQUALITY_LOOP_RESIDUE procedure, given in section 4.6.
Examples indicate how this procedure improves the decision process and in
another sec t ion , fu r the r suggest ions are made how the presented method

can serve for even more advantageous computation:
The LoorP_RESIDUE procedure in section 2.2 for the unextended class and
the EQUALITY_LOOP_RESIDUE procedure in section 4.6 for the extended
class were originally designed to be applied to the conjunctions in the dis-
junctive normal form of the negation of a formula as last step in the deci-
sion process of the validity of a formula. But furthermore, they can advan-
tageously be applied to formulas before they are negated and expanded into
disjunctive normal form. This holds particularly for the EQUALITY_LOOP..
RESIDUE procedure.

- 925 -

An example demonstrates that the application of this procedure to sub-
conjunctions of a given formula °£ can substantially reduce the number of
conjunctions in the disjunctive normal form of the negation by censtructing
a formula FF” which Is equivalent to the formula <F and has much less con-
junctions in the disjunctive normal form of its negation than ‘F. Again, an
important aspect is the compactness of the formula °F’. Especially this is
supported by the procedure.

4.1. Decidability

We now prove the decidability of the extended class PA by reducing the
problem to the decidability of the unextended class PA:
The procedure in figure 4.1 reduces a formula Fp in PA to a formula
°F in DA. The reduction is carried out in two steps:
First , the predicate symbols are eliminated by introducing new function

(1) For each n-ary predicate symbol P12 occurring in Fe
let §p be a new n-ary function symbol.
Obtain Fg from Fep by replacing each atomic
formula Plty, . . . , t ,) by the formula §p l ts , . . . , t .)=0 .

(2) For each pair §(tgs...st,), § (tq , . . . , u ,) of distinct terms
or subterms of terms in Fg with the same outermost
function-symbol §13, construct the following axiom:

ty=uqg/\ ta=uz A taza , > G (Eqg ro0os ta) - $ l agec . csu ,) .

Let F ag be the formula

Fag ge (ANA. . . NA) > Fs
where the A; ‘s are the axioms so constructed.

(3) For each term t occurring in Frag that has an outermost
function symbol, let x, be a new variable.
Obtain F from F ag by replacing each such term t by x,
(In case where one such term is nested within another,
the larger term is replaced).

Figure 4.1: Reduction of a formula Fp
of the extended class

13 : Un in te rp re ted p red i ca te and f unc t i on symbo l s o f t he P resbu rge r A r i t h -

met i c ; i . e . , the pred icate symbo l < and the func t ion symbo l s 0 , 7, and

+ a re exc luded .

- 26 -

symbols and second, the function symbols are eliminated by adding axioms
to the formula and finally replacing the terms by new variables.

Consider, for example, the valid formula

Fsp ®t L[Plx) > x=2 A § (2xa)=§ (2) Ag l y)=x+7]
=

[§lgly))=§(8+2%x) V P(x)]

(either holds +P(x) or P(x) implying %=2 and g ly) =x+7 = 5+2*x) .
Substituting the predicate symbol D by 77) we obtain the formula

Fs = C $p l x)=0 5 x=2 A § (2 *a)=§ (a) Ng l y)=x+7 J
>

[§ lg ly))=§(5+22x) V (fp (x)=0) 1.

The formula Ag contains Six pairs of distinct terms with the same outer-
most function LA - (3) pairs among the terms §(2*a), §(3), §(g(y)) ,
and §(5+2+x). Therefore, the formula Fag is given by

Fag ® { 2%3=2 5 f§l2*a) = §(a)
A 2rxaz=gly) 5 §(2+a) = §(gly))
A 2%2=5+2xx 5 f(2%2) = {(5+2xx)
A azgly) > fl2) = §(gly))
A 2=5+2#*x D §(2) = §(5+2%x)
A gly)=8+2xx > (g ly) = §(5+2xx) }

2
{ r §pl(x)=0 > x=2 A §(2*a)=§(a) Ngly)=x+7]

>
[§ lg l y))=§ (5+2%x) V (§p (x)=0)1 }.

We obtain % by replacing the terms p(x) , §(222), (a) , g (y) . § (g(y))
and §(5+2+%x) by the variables 04 , 02, 03s 04s Us, and 06 :

F = { 2a=2 D 02 = 03
A 22=04 5 D2 = Ds
A 22=5+2*xD 02 = Og

A 2 -04 5 D3 = Us
A 2=5+2#*x D D3 = Og

A 04=5+2%x D Ds = Ug }
2

{ [0420 OD x22 A 22:03A 04=x47 1]
>

[os=0g V 2 (v4=0) 1] } .

- 27 -

The formula “F is contained in the unextended class, and therefore its
validity can be decided.
"The reduction just described is quite similiar to Ackermann's [1] method
for eliminating function symbols from universally quantified equality for-
mulas in predicate calculus with function symbols and identity. The correct-
ness of the reduction can be proved straightforwardly; given a model for.
+F ¢p. one can construct a model for °F , and conversely. The details are
easily gleaned from Ackermann’'s proof, and so are omitted here.” [25]
Now since 1F sp is unsatisfiable if and only if +°£ is unsatisfiable, the
formulas Fp and F are equivalid proving the decidablility of the extended
class.
Observe that not only the two formulas gm and F are equivalid, but also
Fep Fo Fag and F are all equivalid formulas.

4.2. A practical decision procedure

This section presents a decision procedure for the extended class with
integer domain which has been designed by Shostak [25] . It introduces to
the main problem of the extension by function symbols and shows by an
example that the difference between the number of conjunctions generated
in the reduction process and the number of conjunctions necessary to de-
cide the validity of a formula tends to grow enormously.

4.2.1. The domain

Shostak has chosen as domain the set of integer numbers.
The formula SF to be decided is reduced to a set of integer linear pro-
gramming problems (ILP 's) C; such that 7% and C , VC , V ... VC ,
are equivalid for the integer domain. This is done by negating <F and ex-
panding the negation into disjunctive normal form such that each C; is a
conjunction of linear lequalities of the form A<B. This is achieved by re-
placing formulas of the form A=B, A>B, AB, and 7(A<B) by the for-
mulas (AsB A BsA), BsA, A+1<B, and B+1sA, respectively, during the
reduction process. Note that this replacement is correct since the domain
is the set of integer numbers.

4.2.2. Semantic notations

We now need some def in i t ions that refer to the semantic:
Given a set VD of variables, a family (F ;) ; ,o of function symbols, and a

- 28 -

family (P :) : .0 of predicate symbols, an interpretation ¢ wrt a domain D is
an assignment such that ¢(v) is an element of D for a variable vo, ¢(§) is a
function D"—D for a function symbol § in accordance to its arity, and
¢(P) is a subset of D " for an n-ary predicate symbol PD.
An in te rp re ta t i on is ex tended to te rms in a na tu ra l way as a homomor -
phism: to each term t = § (t 4 , . . . , ¢ ,) , it assigns ¢ (§) (@l (t 4) , . . . , 0 (t ,)) .
Analogously, the atomic formulas P (t 4 , tz, . . . , tn) are interpreted in such
a way that @(P l ty , ta, « . . o En)) if and only if (p (t 4) , (£2) , 0 . . . P(E,))€
(PD).
The ex tens ion to all quan t i f i e r - f ree f o rmu las is done by i n te rp re t i ng the
boolean connect ives Ä, V, A , and D as usual.

An in te rp re ta t ion ¢ of a f o rmu la of the P resbu rge r A r i t hme t i c addit ionally
sat is f ies p(<) = ¢ for the in terpreted pred ica te symbol <, p (0) = 0, ¢(1) =
1, and ¢(+) = + for the in te rp re ted funct ion symbols, and the axioms of the
Presburger theory.

We now introduce a notation for modifying an interpretation ¢ :

Given a variable vo and an element 3 of the domain D , we denote by
[v— 3d] that interpretation obtained from ¢ by assigning the element 9 to
the variable vo.

The not ion of well def inedness which normally re fers to a func t i on , is now
for convenience extended to function symbols, formulas, and sets:
A function symbol § is said to be well defined wrt an interpretation ¢ , if
¢ (§) is a well defined function.
A formula °F is said to be well defined wrt an interpretation ¢ , if ¢(§) is a
well defined function wrt ¢ for any function symbol § occurring in SF.
A set £ is said to be well defined wrt an interpretation ¢ , if ¢ (§) is a well
defined function wrt ¢ for any function symbol § occurring in 4 .

A solution ¢ for a set £ of formulas wrt the domain D is an interpre-
ta t ion which sa t i s f i es all f o rmu las of £ .
A set £ of formulas is satisfiable wrt a domain D if and only if there
exists a solut ion ¢ for the system S wrt the domain D .
Two sets £4, and £ , are said to be equisatisfiable if and only the following
condition holds:
The set £ , is satisfiable if and only if the set £ , is satisfiable.

4.2.3. The basic problem

The reduction described in figure 4.1 does not of i tself provide an eff icient
decision procedure. The example in section 4.1 gives us the intuition that

- 29 -

the reduction is prone to combinatorial explosion. Let us now investigate
the reason. Since a predicate symbol may be considered as a special function
symbol, it suffices to observe the extension of the language class by
introduction of function symbols.
Note that an axiom is constructed for each pair of terms with the same
outermost function symbol. The axioms state that the function symbols
have to be interpreted by well defined functions: A function assigns a uni-
quely defined value to every argument of its domain. The axioms, which are
added as hypotheses to the formula, just i fy the substitution of terms with
an outermost (uninterpreted) function symbol by new variables in the last
step of the reduction.
For a function symbol that occurs m t imes, there are (X) axioms, so the
number of axioms is in the worst case proportional to the square of the
length of the formula. And in the expansion to disjunctive normal form, an
axiom for a n-ary function symbol contributes at least the factor (n+1) to
the number of conjunctions, since tg&=us At=usA... AtnzUn > §(tq,...,t0)
= §(uqgy...,u,) is equivalent to the formula t;tu4 V tatu V . . .V tntunV
$(ty,...ots) = § (uq , . . . ,u ,) which is the disjunction of (n+1) formulas.
To illustrate the combinatorial explosion, consider the formula FF = (xsgx
A gxsx > x=gggggx) ' * . There are ten (= (3)) pairs of terms among the
five subterms gx , ggx , gggx . gggg* ‚and gggggx . An axiom is construc-
ted for each pair and thus 219-1024 conjunctions'® are in the disjunctive
normal form of the reduced formula. It is even worse (319=59049) if
(ach V a>b) is used instead of ath.
So, obviously, the construction of axioms is responsible for the com-
binatorial explosion. At this point the question arises how this can be ob-
viated.
Let us look at the formula °F = (x<sgx A gxsx > x=gggggx). Out of the ten
axioms, only the four axioms for the pairs {gx, ggx}, {ggx. gggx}. {gggx.
ggggx), and {ggggx. gggggx} are relevant. More important, these axioms
can be replaced by the single formula x=gx D x=gggggx.
So one aspect of improvement accounts for distinguishing relevant from
irrelevant information and, indeed, in most cases only a few axioms are of
relevance. Another aspect is that the relevant information is frequently
determinable in advance of its application as shown by the procedure
EQPAIRS in the next section.

14 : Fo r conven ien t r ead ing , t he pa ran theses a re om i t t ed in t h i s examp le .

15 : The base is 2 , because the imp l i ca t i ons a re assumed to be w r i t t en in

the fo l lowing d is junc t ive fo rm: (atgstatgs VV glargys)=glarga)) which
uses the re la t ion # to abbrev iate fatgscatgas V atgsratga) .

- 30 -

4.2.4. The Procedure

The following approach greatly reduces the number of constructed axioms
for the decision of a formula compared with the number of axioms gene-
rated in the reduction process.
For a set & of linear lequalities associate an ILP obtained by replacing
each term t with an uninterpreted outermost function symbol by a new

~ variable x,. The associated ILP thus simply omits the axioms for the func-
tion symbols occurring in 4 which are constructed in the reduction pro-
cess given in figure 4.1.
The steps (4.1) and (4.2) of the procedure in figure 4.2 refer to the easier
of the cases: no additional formula needs to be constructed and the result
for the associated ILP can be transferred to the set 4 ; itself.
Now, if a function symbol § in § ; is not well defined wrt the solution ¢ for
the associated ILP, a formula # is constructed which summarizes the vio-
lation such that § and +H A § are equisatisfiable. Step (4) of the proce-
dure is now applied to each conjunction in the disjunctive expansion of
HAG.
As an illustration, let us consider, for example, the formula F = (x<gx A
gxsx D x=gggggx). The negation expanded into the disjunctive normal form
(+F = G4 G2) is associated with the following two ILP’s:

Aq = {xsgx, gxsx, x+1<gggggx} and Ga = { xsgx, gxs<x, gggggx+1sx)

Step (4.1) obtains a solution for the ILP associated with (44. For example,
x=0, gx=0, and gggggx=1. In this solution, the function symbol g is not
interpreted by a well defined function. The violation is expressed by the
formula # = x=gx D gx=gggggx = H4V H2V HH; where H sz x+1<gx ,
Hos gx+1sx, and Hl ;32gx=gggggx. This formula is now added as an axiom
to F to obtain the formula H > . If this formula is negated - (HOF) =
(HAF) = HAG)V (HAG) and expanded into disjunctive normal

form (H4 Ag) V (Ha NAG) V (Hi AG0V (4 AG) V (Ha NG VV
(+1 ;A G2), the resulting six ILP's are found not to have any solutions.
Therefore, the original formula ©“ must be valid.
Note that in this case only seven ILP's (the one associated with (4 and six
to decide the augmented formula HH DF) are required to be solved, where
in the reduced formula at least 1024 had to be solved. Analyzing this enor-
mous gap, we observe that the reduction process constructs ten axioms six
of which are irrelevant and that the four relevant axioms x=gx > gx = ggx,

gx = ggx > ggx = gggx. ggx = gggx > gggx = ggggx. and gggx = gdggx >

- 31 -

Ggggx=gggggx can be replaced by the single formula x = gx DO x = gggggx
which is done by the procedure EQPAIRS presented in figure 4.3.

(1) Elimination of predicate symbols:
For each n-ary predicate symbol P occurring in GF, let f p
be a new n-ary function symbol; replace each atomic for-
mula P l t y , . . . , t ,) in F by the formula §p(ty , . . . , t ,)=0.

(2) Elimination of addition in arguments:
Eliminate addition and multiplication by constants 1®
in arguments by introducing new variables
(i .e., replace x<§ (2y+3) by y ' =2y+3D x< f (y ’)) .

(3) Negation and construction of a disjunctive normal form:
G:VG2V . . .VG , is obtained, where each § ; is
a conjunction of linear lequalities of the form A<B

(4) All G;'s are unsatisfiable if and only if F is valid.
Each such Gi; is now tested for satisfiability
in the following way:

(4.1.) Solve the ILP associated with Q;
IF there is no solution for the associated ILP

THEN &j; is unsatisfiable
ELSE (4.2.)

(4.2.) IF Gj; is well defined wrt the found solution 17

THEN &); is satisfiable
ELSE (4 .3)

(4.3.) Summarize the violation in a formula H ,
and reapply step (4) to each conjunction in
the disjunctive expansion of HAG;

Figure 4.2: Decision procedure for the extended theory

The completeness of the procedure for the extended class wrt the integer
domain depends on the completeness of the ILP solver in step (4.1).
As noted in the second chapter, the LOOP_RESIDUE procedure for deciding
the satisfiabil ity of a set of linear lequalities in variables is not of itself
integer-complete®.

16: Reca l l tha t mu l t i p l i ca t i on by cons tan t s is an abbrev ia t i on for add i t i on .

17: The so lu t i on for the ILP is then also a so lu t i on for & ; .
18 : For examp le , a c l osed g raph for { 7s2x , 2x57 } has ne i the r an i n fea -

s ib le s imp le loop nor an in teger so lu t i on .

- 32 -

On the other hand, incorporating integer concepts to obtain an integer-
complete version of the LOOP_RESIDUE method may result in too inef-
f icient procedures.
We have not yet shown how to examine the well definedness of a set of
fo rmu las wrt an in terpretat ion and how to cons t ruc t a f o rmu la that sum-
marizes the violation. For these tasks, Shostak [25] has presented an ap-
propriate recursive procedure, the procedure EQPAIRS given in figure 4.3.

EQPAIRS (ty, t2, alreadytried) =

IF < t4 , t2> € alreadytried
THEN RETURN ®

ELSIF €, € Et,

THEN RETURN { <t4 , £22}
ELSIF for some function symbol§ and terms uy, uz:

(i) f(u4) € Eg, and
(ii) §(uz) € Eg,, and
(ii) EQPAIRS (uq4,uz,alreadytried U {< t4 , t 2> })20

THEN RETURN Py UU Po U Pa, where
P; = IF t y=§ (ug) THEN @ ELSE {< tq ,$ (uqg)> }
Po = IF t 2=§ (uz) THEN @ ELSE {< t2 ‚ f (u2)> }

EQPAIRS (u4,u2,alreadytried U {< ty, t2>}
ELSE RETURN §.

AL w N

Figure 4.3: Procedure EQPAIRS

Let ¢ be the discovered integer solution for the (4; whose satisfiability is
to be determined, and 7 the set of terms to which ¢ assigns values. Denote
by U the set of all subterms of terms in 7. Finally, for each term ¢ U,
define the set Ez by Eg = {¢ t ' eT I p (t)=p (t ’) } for teT and Eg = {¢} other-
wise. |

The third argument is empty on external calls and is used in internal calls
to prevent inf inite recursion. EQPAIRS re turns a set of pairs in 7xT.

- 33 -

Shostak states that ¢ has no violations of substitutivity if and only if for
all ¢, £* € T, e i t he r @ (¢)=9 (t ’) or EQPAIRS (¢ ,¢ ° ,0)=0 .

Furthermore, if for some terms ¢,¢" « T, ¢(¢t) +9 (t ’) and EQPAIRS (¢t,t°,{)
= {CC4g954) 9 000 , <EnsSn>) , n21, then the formula

H = Cey=s,A\...AN2tp=s, ODO ¢t=¢")

follows from substitutivity but is not satisfied by ¢ .

To check ¢ for violations of substitut ivity, it thus suff ices to compute
EQPAIRS (£,£”,®) for such pairs ¢, ¢* of terms in T to which dif ferent
values are assigned by ¢ . A violation exists if and only if EQPAIRS (¢,¢°,0)
+ @ for some such pair. In such a case, the formula + summarizes the
violation [251].
Note that the procedure is called for terms ¢ and t ’ with same outermost
uninterpreted function symbol, but di f ferent assigned values. It tests
whether terms are congruent using the notation of the previous chapter.
The congruence is based on a relation which is induced by the solution ¢ of
the associated ILP and on the well-definedness of the functions symbols
wrt to the in te rpre ta t ion ¢.
This shows the connection between the quant i f ier- f ree theory of equality
and the well-definedness. For fur ther information and for the termination
of the procedure in figure 4.2, the interested reader is referred to the
paper of Shostak [25] . Though there can also be found some suggestions
for improvements, they do not change the st ructure of the procedure.
Instead of examining these here again, let us search for new concepts
in the next section which may lead to an essential improvement.

4.3. New concepts

Recall that the LOOP_RESIDUE procedure in section 4.2 constructs
linear lequalities from the atomic formulas in the conjunctions to be
decided for satisfiability by replacing formulas of the form A=B, AzB,
AB, and 2{A<B)by the formulas (A<B A BsA), BA, A+1<B, and
B+1sA, respectively, during the reduction process.
This simplifies the decision procedure because there is only one sort of
atomic formulas to be treated.
On the other hand, compact information given by the relations = and # is
spli t ted up into a conjunction or disjunction of two atomic formulas.

Let us now examine an instructive example.
Consider the formula

- 34 -

Fu { (§ la , c)sa A as f l a , c)) V
(xsg(x) A g lx)sx) V

(b<h3(b) A h3(b)sh®(b) A AhZ(b)<b) }
2

{ (§ l § l asc) , c) sa NA as f l f l a , c) , c)) V
(g%(x)sx A xsg?(x)) V

(hlb)<b A bsh(b)) 3.

Perhaps not seen at the f i rs t glance, this formula is valid. Assuming the
integer numbers as domain, the application of the procedure in figure 4.2
results in 24 (3#2#2#2) conjunctions & ; in the expansion of the negated
formula 7°$ into its disjunctive normal form, where each of the §);'s con-
juncts linear lequalities of the form A<B. The weli-definedness of functions
interpreting the function symbols in the & ; is violated for at least three
associated ILP's for each of which an appropriate formula + ; has to be
constructed. Recalling that in addition each & ; has to be proven unsatis-
fiable, at least 27 ILP’s have to be solved.
Indeed, there are more than 27 because the formulas + , have at least two
conjunctions in the disjunctive normal form which has a multiplicative effect
on the number of ILP's.
Though the t ransformat ion of A=B and A+B to (A<B A BsA) and (A+1<B
V B+1<A), respectively, during the expansion advantageously standardizes
the st ructure of the conjunctions (4;, the disadvantage that the given
information is not represented in a compact form becomes now evident.
The other way round: Compactly represented information may allow a
compact and quick computation. So what about trying to change the direc-
tion and reduce (A<B A BsA) and (A+1sB V B+41<A) to A=B and A+B ,
respectively ?
Let us reduce the above formula SF to

F= { §lac)=za V glx)=x V (K3(b)=b A A®(b)=b) }
i»

{ 6l6la,c),e)=za V g®(x)=x V h(b)=b},
which, using the relations = and #, resul ts in only three conjunctions after
negating and expanding into disjunctive normal form:

Gs = { §l§lac),c)ta, g®(x)tx, A(b)2b, la ,c)=a}
Gz = { § l § l ac) , c) t a , g5 (x) t x , h (b)Eb , g l x)=x)

Gs= { 6 l b l a ,e) , e) t a , g5 (x) t x , h (b) t b , h3(b)=b, A®(b)=b }.

- 35 -

Aren’t we now itching to use the equations as rewrite rules in order to
prove straightforwardly each of the &);'s unsatisfiable ?
In this example, we have automatically directed our attention to the new
concepts:
Compactifying information by additional usage of the relations = and %,
and, especially pointed out in the last conjunction, introducing the concept
of rewriting.
Before presenting an algori thm, we provide the basic notions of rewriting.

- 36 -

4.4. Rewriting

We now introduce the concepts of rewriting and point out the connection
to the decision problem of the quantif ier-free Presburger Arithmetic ex-
tended by predicate and function symbols.
The notations in section 4.4.1 and the algorithm in section 4.4.2 can be
found in the paper "Finding canonical rewrit ing systems equivalent to a
finite set of ground equations In polynomial time” of Gallier, Narendran,
Plaisted, Raatz, and Snyder [7] .
Sections 4.4.3 and 4.4.4 establish the relation to the class PA, and intro-
duce the notion of Presburger terms.

4.4.1. Notations

Let = C A x A be a binary relation on a set A. The transitive closure, the
transitive and reflexive closure, and the inverse of = are denoted by = ,
=5*, and = " or &, respectively. The relation = is Noetherian or well
founded if and only if there is no inf inite sequence < ag, Ags 0 .009 Ans 000)

of elements in A with a,=> a,.4 for all n20.
A partial order < on a set A is a binary relation <= C A x A that is re-
flexive, transitive, and antisymmetric. We let > = <™. Associated with a
partial order < on a set A is a strict ordering < defined by a<a ’ if and only
if a<a’ and ata’ . We let > = <". A strict ordering on a set is well founded
if and only if > is well founded according to the above definit ion.

Let the set T of ground terms and the set “7, of terms without loss of
generality be constructed by a ranked set U of variables and a ranked
family (°F;) ; .o of function symbols.

A str ict ordering < on (ground) terms is monotonic if and only if for every
two terms s, t and for every function symbol §, if s<¢ , then § (. . . , 5s, . . .)
<§ (. . . , t , . . .) . The str ict ordering < has the subterm property if and only
if ¢ < §(. . . , E, .. .) for every term §(. . . , ¢, . . .) .
A simplification ordering < is a str ict ordering that Is monotonic and has
the subterm property.
Note that if a s t r ic t ordering < is total , monotonic, and well founded, we
must have s<§(. . . ,s, . . .) for every s, since otherwise, by monotonicity, we
would have an inf inite decreasing chain. From this, we have immediately
that for a finite ranked alphabet, a total monotonic ordering < is weil

- 37 -

founded if and only if it is a simplification ordering. Such an ordering will be
called a total simplification ordering on ground terms.
It is shown by Dershowitz in [5] that for f inite ranked alphabets, any sim-
p l i f i ca t ion o rde r i ng is well founded, and that there ex is t total s imp l i f i ca t ion

orderings on ground terms.
Let & C °C x °C be a binary relation on ground terms. We define the relation
—g C °T x °C as fo l l ows : Given any two te rms £4, t2 € °C, t4 —¢g t2 if and

only if there is some pair (s , t) € & such that s is a subterm of ¢4, and ¢, is
obtained by replacing this occurrence of s by ¢.

When tt; —g ta, we say that t , rewrites to t2, or that we have a rewrite
step. When a pair (s , t) is used in a rewr i te step, we also call it a rewrite
rule (or rule), and use the notation s—¢ to emphasize its use as a rewrite
rule. The idea is that the pair is used oriented from left to right.
Denote the reflexive and transit ive closure, and the symmetric closure of
—g by —g* and «—>g, respectively. Similiarly, the reflexive and transitiv
closure of «—>g is denoted by —g* .

Given a set R of ground rewrite rules and a total simplification ordering =<,
we say that R is compatible with < if and only if ¢ < { for every rule [—¢
in R .

Given a set R of ground rewrite rules, we say that R is reduced if and only
if neither any lefthand side [of a rewri te rule [—¢ € R is reducible by any
rewri te rule in R-{ l->£} nor is any righthand side ¢ of a rewri te rule [> ¢
e R reducible by any rewrite rule in R .

Let — C °T x °C be a binary relation on I . We say that — is locally con-
fluent if and only if for all ¢, ¢4, t2 € °C, if ¢ — ¢4 and ¢ — tz then there is

some ¢’ such that ¢ ; —* ¢’ and ¢; —* € ’ . We say that — is confluent if
and only if for all ¢, ¢4, t2 € °C, if ¢ >* t , and t —* ¢, , then there is some

t ’ such that €; —*¢’ and ¢ , H*¢ ’
It is well known [11] that a Noetherian relation is confluent if and only if it is
locally confluent. We say that a set of rewri te rules X is Noetherian,
locally confluent, or confluent if and only if the relation HR associated
with R has the co r respond ing property.

We say that R is canonical if and only if it is Noetherian and confluent.

Note that since a reduced set of ground rewri te rules has no critical
pairs, it is locally confluent. A reduced set X of ground rewrite rules
compatible with > is also Noetherian because ¢ < [for every rule | — ¢,

and < is a simplification ordering.

- 38 -

Since R is Noetherian and locally confluent, it is confluent.

4.4.2. Canonical ground rewriting systems

Since total reduction orderings on ground terms exist, ground equations
can always be oriented, and thus are Knuth Bendix type completion proce-
dures guaranteed to terminate wi th an equivalent canonical system on input

sets of ground equations. Gallier, Narendran, Plaisted, Raatz, and Snyder
have presented an O(n3) algorithm [7] :

“The basic intuit ion behind the algorithm is the following. Let < be a reduc-
tion ordering total on ground terms. Given a finite set & of ground
equations, we run a congruence closure algorithm on &, obtaining its con-
gruence closure in the form of a part i t ion JI. Recall that the equivalence

Re @
I l := associated partition for the congruence closure of €

WHILE the partition II has some nontrivial equivalence class DO

Let po be the smallest element (wrt <) of the set of terms
Cs, U . . .U C,

where C4, ..., C, are the nontrivial equivalence classes
and let C; =1{p, \y, ..., Ag} be the one containing p.
Let £L = {Ag—>0p, ... , Apg—0}.
Obtain a canonical system L ' equivalent to £ by simplifying

the lefthand sides (the righthand side p is reduced).
Obtain R°’ by simplifying the lefthand sides of rules in R

using £°.
Let R = R* 'UL ’
Simplify all terms in II using 4°.

ENDWHILE

Figure 4.4: Computing a canonical rewr i t ing system equivalent
to a set & of ground equations in polynomial time

classes of [I consist of the sets of subterms occurring in E that are con-
gruent modulo &. Let C4, . . . , C, be the nontrivial equivalence c lasses’

19: Equ i va lence c l asses con ta i n i ng only one e l emen t are ca l l ed t r i v i a l .

- 39 -

of II. For each class C; , we can form a set of rules as follows: let p; be
the least element of C; (w. r . t . <), let £; be the set of all rules of the
form \—p; , where Ae C; , A > p;. Now, the union of the sets of rules
just constructed is almost the answer. The problem is that the sets £ ;
may not be reduced. In order to reduce them, some simplification steps
must be performed. But care must be exercised to carry out these
simplifications in polynomial time. Roughly speaking, the tr ick is to choose
the classes C; to form the sets of rules £ ; in an order such that the next
class selected is the one containing the least element belonging to non-
tr iv ial classes. What happens in this algorithm is that congruence
closure is performed only once at the beginning, and that every time a new
set of rules £ ; is produced (as the result of picking the right class), £ ; is
simplified to a canonical set and it is also used to simplify the current
part i t ion and the current set of rules formed so far.” [7]
Observe that if a Noetherian set R of ground rewrite rules is reduced,
then it is locally confluent and (since Noetherian) also confluent, and thus
canonical. |

So the algorithm constructs a canonical set of rules equivalent to the input
set of ground equations.

4.4.3. Quantifier-free Presburger theory and rewriting

Since variables can occur in formulas of the Presburger theory, the result
of the previous section seems not (directly) applicable to the decision
problem of the quantif ier-free Presburger Arithmetic extended by predicate
and function symbols.
We now explain how the result for ground equations of the previous section
can be used for this decision problem:
Recall that for deciding the validity of a quanti f ier-free formula °F, it
suffices to provide a decision procedure for the satisfiability of a con-
junction of atomic formulas, since °F is valid if and only if each conjunction
of atomic formulas in the disjunctive normal form of the negation of Ff is
unsatisfiable. |

Like the formula $F, such conjunctions are quantifier-free. For such a
quantif ier-free conjunction C, obtain a quanti f ier-free ground conjunction
Ca by replacing each variable o occurring in C by a new constant symbol ag.
Since the conjunction C and its existential closure 3C are equisatisfiable,
and since the conjunctions 3C and C , are also equisatisfiable by skolem-

- 40 -

ization of IC , the problem of determining the satisfiability of such a
quantifier-free conjunction which may contain variables can thus be re-
duced to the problem of determining the satisfiabil ity of a quantif ier-free
ground conjunction. |

And therefore, the resul ts of section 4.4.2 can serve for the decision
problem of the quantif ier-free Presburger Arithmetic extended by predicate
and function symbols.
In which way this is done is described in sections 4.5 and 4.6.

4.4.4. Presburger terms

Predicate or function symbois are said to be yninterpreted wrt a theory if
they do not occur in the axioms of this theory.
The Interpreted predicate and function symbols of the Presburger Arith-
metic are the predicate symbol < and the function symbols 0, 4, and +.

We define the terms of the Presburger Arithmetic ‘Tpa. or Presburger
terms, wrt a ranked set U of variables and a ranked family (*F;);.o of
function symbols such that 0, 1 € “Fo and + « 2 .

Let < be a total simplification ordering on the Presburger ground terms.

Since we want to distinguish between terms with the interpreted function
symbol + as outermost function symbol and terms with uninterpreted func-
tion symbol as outermost function symbol, we denote terms with top symbol

+ as sum-terms and terms with an uninterpreted top symbol as £-terms.

Let Rp 4 be a canonical rewrite system on ground terms for the Presburger
Arithmetic extended by predicate and function symbols such that the re-
duced terms have the form aqty + a ta + . . . + a , t , + ap where the a; are
constants and the ¢; are §-terms such that each §-term ¢; is reduced wrt
Rp.a for 1sisn and ¢; < t ; ,4 for 1sisn-1.

Intuitively, the rewrite system Rp 4 reduces the sum-subterms of the
$6-terms and shuffles the resulting §-terms ¢; according to the relation <
to their position. Sum-terms like at+bt are reduced to §-terms like (a+b)t
so that the ¢;'s are distinct.

For a set & of ground equations, a canonical rewrite system X of ground
rewrite rules equivalent to & can be constructed in polynomial time such
that R is reduced wrt Rp 4 by the same algorithm as in section 4.4.2.
This can be done by interreducing the terms wrt RDA between the given

computation steps.

- 41 -

Denote by £, or by L<, a set of lequalities 2°, by I a set of Inequalities,
and by & a set of equalities each of whose elements can be wri t ten in the
form at;+bt2sc, aty4+btate, and at t b ta=c , respectively, where the Pres-
burger terms t4 and ¢; are §- terms and a, b, and c are constants.

For an equality e, let the associated rewrite rule to or t le) be the rewrite
rule t4 — (-b6/a) ta+ c/a if t4> ta, and t2 — (~a /b l t y+ c/b If ta > t4
where ¢ is the equality a t + btz= c
The set R(E) of rewrite rules for a set & of equalities consists of those
rewrite rules that are associated with the equalities in €.
Denote by the set E(R) the set of equations which is obtained by replacing
—> in the rewrite rules of a set X by =.

A special §-term to is introduced as zero term. It is assumed that it
appears only with coefficient zero, while the other terms require - with-
out loss of generality - nonzero coeff icients.

Define the graph G(£) for a set £ of linear lequalities as follows:
For each §-term occurr ing in £ give G(£) a vertex labeled with this
§-term and for each lequality in £ give G(£) an edge labeled with this
lequality such that this edge connects the corresponding vert ices of the
occurring §-terms.
The other notations and definitions like path, tr iple sequence, admissibility,
binary operation * on tr ip les, residue, residue (str ict) lequality, loop,
simple loop, equality loop, infeasible loop, and closed graph from the
previous chapter are now simply transferred to such graphs whose nodes
are labeled with f§-terms instead of variables and whose edges are
labeled with lequalities which are linear in §-terms instead of variables.

As suggested in section 4.3, we now combine concepts for the relations x,
=, and + for a different treatment of conjunctions.

Denote by a system S a triple (£, &, 9) with components £, &, and OD
where £ is a set of lequalities, & is a set of equalities, and OD is a set of
inequalities.

A system S that contains the equality 4 = 0 in the set & of equalities is
called a degenerated system.

A system S is like a part i t ion of a conjunction which splits up its ele-

20: In the second chapter , £ has denoted a se t of l equa l i t i es wh ich are

l inear in variables, here the l equa l i t i es are l i nea r in § - t e rms .

- 42 -

ments into three groups.

Obtain for a system S=(4,E,9) an associated system S ,= (4y ,&5 ,9 ,)
by replacing each £- term ¢ (outermost, if nested) occurring in S by a new
variable o,.

In the second chapter, the problem of determining the satisfiability of a
set £ of lequalities of the unextended class has been reduced to the prob-
lem of determining the satisfiability of a set Ac of lequalities where the
graph (Lc) for Lc is a closed graph for £.
The notion of a closed graph was used to guarantee the completeness of
the LOOP_RESIDUE procedure in figure 2.1.
In the same way, we reduce the problem of determining the satisfiability of
a system S of the extended class to the problem of determining the sat is-
fiability of a closed system Sc where Sc is a closure for the system S .
We therefore momentarily define the notion of a closed system as fol lows:

A system S=(£ ,E ,D) is called a c/osed system iff
i) R(&) is a reduced canonical rewrite system,

ii) £ and I are normalized wrt R(E) URp 4,
and iil) £ is a strictly closed set?!,

The notions of a solution, of satisfiability, and of well definedness from
section 4.2.2 are naturally extended to systems:
Given a system S = (£4, &, 9) , a solution ¢ of the set LAU & U I is called
a solution for the system S .
And a system S = (£, &, 9) is said to be satisfiable if and only if the set
LU E&U DD is satisfiable.
Observe that a degenerated system is not satisfiable, since 1#0 is an
axiom of the Presburger theory. And note that there is only one degene-
rated closed system: S = (%, {1=0}, ®),
A system S = (4, &, 9) is said to be well defined wrt an interpretation ¢

if (§) is a well defined function for any function symbol § occurring in S.
According to the notion of equisatisfiability for sets, two systems Sy =
(Ly, E41 Ds) and S , = (Lo, E2, D2) are said to be eguisatisfigble If and
only if the two sets £ ,U E4UD, and £ ,U £20, are equisatisfiable.

The following definition of a closure for a system transfers the problem
for deciding the satisfiability from the system to its closure 22:

21: As def ined in chap te r two , a se t £ o f l equa l i t i e s is s t r i c t l y c l osed i f

the g raph &J(4) is c l osed and conta ins no equality l oop .

22 : S ince the c l osu re of a g raph is not un ique l y de f ined because of the

cho ice of the adm iss ib l e s imp le loops modulo cyclic permutation and

reversal, the c l osu re of a system is no t un ique l y def ined e i t he r .

- 43 -

A system SC is a closure of a system S if and only if

) S is a closed system,
and ii) SC and S are equisatisfiable.

In the remaining part of this section, we want to develop a suitable cr i-
terion for the satisfiabil i ty of a closed system.

This is done in two steps:
Fi rs t , some resul ts for (st r ic t ly closed) sets and closed systems con-
taining no funct ion symbols are presented, and then the main resu l t , a
cr i ter ion for the satisfiabil ity of a closed system without function symbols,
is t ransferred to closed systems containing function symbols using the
notion of an associated system.

The Lemmata 4.1 to 4.3 refer to sets, and str ic t ly closed sets of linear
lequalities without function symbols:
In Lemma 4.1 we show that the lequalities Lp labeling a simple equality
loop P in the graph G(L) of a set £ of lequalities and the equalities Ap=
are equivalid.
Lemmata 4.2 and 4.3 refer to a s t r ic t ly closed set £ of linear lequalities
without function symbols: The lequalities of such sets can be wri t ten as
s t r ic t lequalities and any inequality containing variables of £ can be added
without changing the satisfiability of £.
Theorem 4.4 confirms that any equality that is inferable by a satisfiable
closed system (£, €, I) without function symbols is inferable by €.
Supported by Lemmata 4.5 and 4.6, we obtain a cr i ter ion for the sat is-
fiability of closed systems without function symbols in Lemma 4.7.

The connection between the satisfiability of a closed system without func-
tion symbols and the satisfiabil ity o f a closed system with function symbols
is established in Lemma 4.8 by proving the equisatisfiability of a closed
system and its associated system.
We thus finally obtain a suitable cr i ter ion for the satisfiability of closed
systems (with function symbols) in Theorem 4.9.

Having done this, it remains to provide an algorithm for computing the
closure of a system which is presented in the next section.
Altogether, we thus can determine the satisfiabil ity of a system by com-
puting a closure and determining the satisfiabil ity of this closure.

- 44 -

Lemma 4.1:
For a set £ of linear lequalities and an equality loopD in the graph ((£),

L£p< and Lp- are equivalid.

Proof:
Since a solution for £p= is a solution for Lp, it suffices to show that a
solution for Lp ¢ is a solution for Ap=.
Assume on the contrary that a solution ¢ for Lp < does not satisfy all equa-
lities of p= . W. | . 0 . g. let tq, t2, . . . , En label the vertices of the loop P
and let a; ¢;+b;¢; .45¢ ; , 1sisn-1, and a, t, +b, t4sc, be the lequalities labeling
the edges of P such that

p la t ; +b; t;. 4) sole) for all 1sisn-1,
and p l a t , +b, ty) <plec,).
Let <a, b, ¢> = <ay, by, cs>*<az, ba, c2> * . 004 <An-49 by_4, En-4)> -
We have

KalP), b{P), e(P)> = Ka, b, ¢>*< ay, by, n> ,
sgn la ,)<aa , , -bb, , ca,-c, b>,

and
aa , -bb ,=0 , ca , -¢c ,b=0 ,

since D is an equality loop. Furthermore, by Lemma 2.2,

p la ty +bt,)<sple).

Observing sgn(b)=sgn(b, ,_,)=-sgn(a,) , we have also

p(sgn la ,)a , la ty+bt ,)) <= e¢lsgnla,)a,c)
and

p(-sgn la ,)b la , t ,+b , ty)) < o¢(-sgnla,)bec,)
implying

p(sgn la ,) (aa, -bb,) ty) < elsgnla,) lca,-c,b)).

But since we have aa , -66 ,=0 and ¢a,-¢c,b=0, we have ¢(0) < ¢(0) , a
contradiction. We thus have that a solution for Lo < satisfies any equality
of £p= which completes this proof.

Lemma 4.2:
For a str ic t ly closed set £ of linear lequalities without function symbols,

L , and £ , are equisatisfiable.

Proof.
We simply have by Theorem 2.3 and its extension to s t r ic t lequalities, and
by the absence of simple equality loops in the graph (4) since £ is str ic-

- 45 -

tly closed, that

L . is unsatisfiable
iff € has an admissible simple loop P with a (P)+b(P)=0 and c (P)<o

iff € has an admissible simple loop P with a(P)+b(P)=0 and ¢ (P)<0

iff 4. is unsatisfiable []

Lemma 4.3:
For a st r ic t ly closed set £ of linear lequalities without function symbols,
and for any inequality [3, say ao +bo’% ¢ , where v and »’ are variables
occurring in £ ,

Land LU { av+bo’%* c } are equisatisfiable.

Since a solution for LU {av+bo’'%* ec} is also a solution for 4, it suffices
to show that £ U {avo +b60°% c } is satisfiable if £ is satisfiable.

Now, if £=£< is satisfiable, then, by Lemma 4.2, the closedness of £,
and the absence of simple equality loops in its graph, £ . is also satisfiable.
Let @ be an interpretation that satisfies £..

We now claim that £ U { av +bo ’#¢ } is satisfiable.
If plao +bo’)* plc), or, equivalently, ¢ (c - {ao +bo’)) £0, then ¢ is a so-
lution for LU { av +b0’% ¢ } and we are done.
On the other side, if p lao+bv’)= ¢(c), or, equivalently, p(c-{ao +bov’))=0,
we construct an interpretation ¢ ’ as fol lows:
Let £ , © £ be that subset of £ that contains all lequalities { a ;0+ b;0; s ¢;}
in which vo occurs and let us define by e the elbowroom for this vertex o:

e = minimum ({p l e ; - a ;0 - b;0;) / a;sgnla;) | (a ;0+b ;v ; sc) € Ly) .

Since Lg is a subset of £ and £ is strictly satisfied by ¢ , we have

ple; -a;o - b;0;) > 0 and a;sgnla;) > O

for all (a ;0+b;0; se) € Lg and thus € > O.

We now define the interpretation ¢ ’ by

p ’= vw [oo (p l o) + e /2)] .

It is momentarily shown that the value for the variable o is changed in
such a way that the interpretation additionally satisfies the inequality (3.
We claim that ¢’ is a solution for A, U { ao +bo’#% ¢ } and prove this in the
following two steps by distinguishing between L£, and { ao+ bo’#% ec}:

- 46 -

I) ©’ is a solution for £ :
Let [be a lequality of £ - £ , . Since { does not contain the variable o, and
since ¢ satisfies [, , ¢ ’ also satisfies [,.
Now let [be a lequality of £ , , where [is a;0+b;0; sc. We have

e ’ (LA ; 0 ~ b ;0 ;)

eo’ (6;) - a ; ¢ ’ (o) - b :o ’ (0 ;)

e le) a l oo) +re/2) - bzplo;)
e le ; -a;0 - b;o;) - a;e/2

Recall that ¢(¢ ; - a;0 - b;0;) > 0 and e > 0. If a; < O, then - q;c/2 >0
and ¢(¢ ; - a;0 - bzv;) - a;e/2 >0. If otherwise a ;>0, l.e., sgnla;)=1,
we then have by definition of e that ¢(c;- a ;0 - b ;0 ;) /a sgnla;) 2e>e/2
and thus

p le ; -a ;o - boy) - a;(e/2)
> o l 6 :7 FX ¢ Bias b ;0 ;) - a; (p l CLA ~ b i o ;) / a;sgnla;))
= 0.

So in both cases a;>0 and q;<0, we have ¢ ’ (¢ ;- a;0 - b ;0 ;)>0 . Therefore,
©’ also satisfies [for I « £ , . Altogether, ¢’ satisfies £..

il) ¢° satisfies [3 where [3 is ao+bo’% ¢c:

Since plce-(av+bo’))=0, we have

¢ ’ (c - (av +bo ’))
¢’'(c) - (ap ’ (v) +bo ’ (D ’))
ele) - (a l p (o)+e /2) +bo(o®))
¢ lc - (ao+bo ’)) -a le /2)
0 -a l e /2)
0.

Since this is equivalent to ¢ ’ (ao+bo”) + ¢’(¢), ¢’ satisfies 3 .

+

By i) and ii), we have proved that ©’ is a solution for £, U { ao +b0’% ¢ }

and thus is £ , U { ao + bo ’# c } satisfiable.
Moreover, this implies that £ J { ao +bo’% ¢ } = £ U { l3) is satisfiable.

=

Theorem 4.4;
I) A nontrivial? equality = , say ao + 6o°= ¢ , can not be inferred by a satis-

fiable, str ict ly closed set £ of linear lequalities without function symbols.
ii) If an equality is inferable from a satisfiable closed system S= (£ ,& ,9)

without function symbols, then it is inferable from the equality set &.

23: An equal i ty au+bo ’ ze Ia t r iv ia l I f i t can be reduced by Rp to the

equal i ty 0=0 .

- 47 -

Proof:
i) Let an in terpretat ion ¢ be a solut ion for the sat isf iable set £, and obtain
the interpretations 9 , and pp? by pLo—(p(v) +1)] and pLo’—> (¢(v ’) +1)] ,
respectively.
If either o or vo’ does not label a vertex of the graph (4) , then one of the
interpretations (¢ or pn) or (or vg ’) , respectively, satisfies £ U {4 } .
If both terms o and o’ label vertices of the graph G(4) , the set £ U {{3}
is satisfiable by Lemma 4.3.
Altogether, we have that [= can not be inferred from £.
ii) Obviously, since by i) no equality can be inferred by 4, and no equality
can be inferred by 9 . []

Lemma 4.5:
For a closed system S=(4,£,0) without function symbols where I does
not con ta in the inequality 0%#0,

L and LUD are equisatisfiable.

Since a solution for £ U 9 is also a solution for £, it suffices to show
that £ U 9 is satisfiable if £ is satisfiable.

Let D=z={aq ;o ;+b ; v ; " t c ; | 1s i sn }
and I ; ={ a;vo;i+biv;ite; | 1sis j } for Osjsn.
We now inductively construct a sequence <Ly ,L4 , . . .4L ,> of sets of
lequalities such that for each Oxsisn, the following conditions i) and ii) are
satisf ied:

i) £;< is satisfiable, and
ii) £; and LUD; are equisatisfiable.

Basis:
Let Lo=£. Lo is satisfiable by the satisfiability of £ and Lemma 4.2. And
since Do=0, Lo and LUD, are equisatisfiable.
Induction Step: (in)
Since £ ; . is satisfiable, there is a solution ¢ for £;..
It can in a similiar way as in Theorem 4.4 be proved that £ ; . U { a ; . 40 ;+4

+b ; . 40 : . 4 * ¢ ; . 4 } is satisfiable by constructing an appropriate inter-
pretation ¢’ in case of ¢ la ; . 40 ; . 9+b8 ; . 40 ; . 4 ") = Olc;4+4) such that
0 ’ (A ;190 ;49+ 8090004") 9 ’ (6 :44) .
Recall that the equality a ; . s0 :49+0 ;4 .40 :44° = ¢€;.4 must be nontrivial
because of the closedness of the system S .

- 48 -

If now PO(A r Dig bag Ding) < 9’ (6144),

then let L i se - L i U {a ; . q D i+4+ b i g O i sq S Ci+4 } .

I f otherwise 0 ’ (a ; 4 0 : +4 +b;. 4 D i44 ") > ¢ ' (c ; . 4q) ,

then let L i g - L i U {4 “A; +1 D i+4 - bug D i+4 ' S 76144).

We have that both £ ; , 4 . and £ U I ; ,4 are satisfiable by the same inter-
pretation ¢’ . Therefore both conditions i) and ii) hold.
So finally, we have that £ , . is satisfiable and £ , and £ U 9 , are equi-
satisfiable. Thus is £ U 9 satisfiable.
We needed the sequence <£4,%4,...4L£,> of sets of lequalities in order
to refer the construction of a solution in the induction step to that of
Theorem 4.4,

Lemma 4.6:
Given a non degenerated closed system Sg=(£L,&,9) without function
symbols, then the systems

S=(£ ,0 ,9) and Sg are equisatisfiable.
Proof:
Since a solution for the system Sg is also a solution for the system S , it
remains to prove the reverse direction that Sg is satisfiable if S is sat is-
fiable.

So let ¢ be a solution for S .
We inductively construct a finite sequence <go , 94, ..., Pan? Of in terpre-
tations where n is less or equal to the number of equalities in & such that
for every i , Osi sn,

i) ¢ ; is a solution for S , and
ii) ¢; satisf ies at least i equalities of &.

Basis:
Let po= ¢ . Both conditions i) and ii) hold since ¢ is a solution for S and i=0.

Induction Step: |

From the induction hypothesis, ¢; is a solution for S . If it is also a
solution for Sg, we are done.
So if ¢; does not satisfy the system Sg, there is an equality ao +bo ’=¢
in & such that ¢;(ao+6o")%¢;(c). Let w.l.o.g. 0 ’—(-a /b)o + ¢/b be the
associated rewrite rule for this equality.24

24: The sys tem S can not conta in a non t r i v ia l equa l i ty of the form e¢=¢’

where ¢ and ec’ a re cons tan t s , s i nce by i t s c loasedness S wou ld t hen

con ta in the equa l i t y 1=0 in con t rad i c t i on to the assump t i on t ha t S is

not degene ra ted .

The unsa t i s f i ed equa l i t y is t hus of e i t he r fo rm of bv ’=e or av+béov’=c.

By add ing O0vga in the f i r s t case , we have av+bo ’=¢ in both cases .

- 49 -

Since Sg is a closed system, the sets £ and J are reduced wrt the
equations in &, and therefore does the variable 0 ’ not occur in £ , I , and
E- {av+bo ’=c) .
Let ¢ ; . 4 be the interpretation defined by

Bi44 =P [0 ° (p;((-a /b)o + c/b))] .

The interpretat ion ¢ ; . 4 is a solution for S . It satisf ies the equations of
E that are satisfied by ¢ ; , and, since

Pi+4(ao +60’) = ap; . 4 (0) +b ; .4(0°)
ag ; (o) +b Pe ((- a /b)o +e /b)
apo) +b (-a /b) p; (0) + bo;(c/b)
P lc) = pieqle),

it satisfies at least one more equality of & than ¢ ; . And since ¢; satisfies
at least i equalities of &, p ; , 4 satisf ies at least i+7 equalities. So both i)
and ii) hold for ¢ ; .q .

Since € is finite, there exists an n such that ¢ , is a solution for S and ¢ ,

satisfies all equalities of &. So the system Se is satisfiable.

Lemma 4.7:
A closed system S= (£ ,& ,9) without function symbols is unsatisfiable if
and only if either

i) AL is unsatisfiable,
or ii) 1=0 €¢ ,
or iii) 0%0 € 9D.

Proof:
If S is satisfiable, then both £ must be satisfiable, and neither & nor
2 can contain the equality 1=0 or the inequality 0#0, respectively.

Now conversely, if both £ is satisfiable and 2 does not contain the in-
equality 0%0, then, by Lemma 4.5 and the closedness of S , £U 9 is
satisfiable.
Since (£ ,0 ,D) is satisflable and since & does not contain the equality
1=0, S is a non degenerated closed system and we have by Lemma 4.6 that
(£ ,€ ,9) = Sis satisfiable. []

Lemma 4.7 thus provides a cr i ter ion for the satisfiability of an associated
system So for a closed system S . |

By the main theorem for the extended class following the next lemma, the
same cr i ter ion is applicable for a closed system S itself.

- 50 -

Lemma 4.8:
If the system Sg is an associated system for the closed system S ,

So and S are equisatisfiable.

Proof:
Let C , and C be the conjunctions corresponding to the systems Sy and
S. and let the formulas ‘Fp and FE be 7Cp and 1C, respectively.
In correspondence to the reduction process of the decidability proof in sec-
tion 4.1, let the formula F 44 be obtained by

Fag = (Ags /\ Agz A ee Age) 5 Fe

where F 44 contains an axiom Ag for each pair $(t4, . . . , tn), f lag, 0009 Un)

of distinct §-terms with the same outermost n-ary function symbol §. Re-
call that the axioms are of the form

t;=u4 A tazuz A ... A taza, D § l ty , . . . , End=Cl U4y . . . , uy).

The formula ‘F 40 is obtained by replacing each (ou te rmost) §-term € occur-
ring in F 44 by a new variable v,. The formula F 45 now contains axioms
of the form

04=04 ' Nozz02" A . . . A 0,=0," OD og = 0g ’ .

We now have that
Sy is unsatisfiable

iff Cp is unsatisfiable
iff Fo is valid

and
“Fao is valid

iff Fag is valid
iff “Fg is valid
iff C is unsatisfiable

iff S is unsatisfiable

by the result of section 4.1.
Using these equivalences and the closedness of the systems Sy, and S ,

we now prove the equisatisfiability of Sy and S .
It again suffices to show that S is satisfiable if Sy is satisfiable, since
the other direction holds obviously. We thus assume that Sy is satisfiable

and show that S must also be satisfiable:
Inductively construct a sequence < Sg , Sy , , Se) of systems such

that £ ;=£ , , &£;=&, and the following conditions hold:

- 51 -

ij) S ; is a satisfiable closed system without function symbols
i) a solution for S ; also satisfies Ags A Av2 A - . . A Aoi A Cop.
Basis:
Let So=So; So is satisfiable, and So and C , are equivalid: Both con-
ditions i) and ii) are satisf ied.

Induction Step:
Let Osist-1.
By the induction hypothesis, we have that S ; is a satisfiable closed system
without function symbols. Let axiom Ag ;+4 and the corresponding axiom
Ag,i+1 of the formula 7F 44 be

04504" A 02702" A. . . A 0 ,30 , " D og = 0g’
and

t4=ug N\ t2zua N ... A taza, D § l ty , . . . , End=Glgr . . . , Un) .

CASE 1:
There is an interpretation ¢ that satisfies 5 ; U {o ;#0,° } for some j,
1<j<n.
Let S; . , be obtained from S ; by reducing the inequality o#04" wrt the
set R(&;)=R(&,) of rewrite rules and augmenting the set I ; by this in-
equality.
Obviously, condition i) is satisf ied.
And since a solut ion ¢ for S; ,4 is also a solut ion for S ; , we have by the
induction hypothesis that the formula Ay A Apa A . . . A Api A Cp is
also satisfied by ¢ . Moreover, since ¢ is a solution for S; ,4, it also sat is-
fies that inequality which is obtained by reducing o,# 0 , " wrt the set R(&,).
Therefore, the interpretation ¢ also satisfies the axiom Ay ;+4 . Condition
ii) thus holds for this choice of S ;44 .
CASE 2:
Any interpretation that satisfies 5 ; also satisfies all equalities of the set
{ v4=04 ’ , 02202 ’ , ... , 0 , 50 , " } .

By the result of Theorem 4.4 for a satisfiable closed system without func-
tion symbols, all equalities of the set {04=0,’, 0z=0 ; ’ , ... , 0 ,50 , " } are
inferable from the set E;=E, of equalities.
By the construction of the associated system Sg, the equalities ¢,=uy,
t 25U2 , 00.09 En=Un must be inferable by the set E. Therefore, the equality
$(tgs coos End=Glgr . . . , Un) is also inferable by E. Again, by the construc-
tion of the associated system Sy, the equality 0g=0 6° is inferable by & 5 .

- 5 -

We thus have that any interpretation that satisfies S ; also satisfies
Ayo,i+1- We simply let I;,4=9;. Thus both conditions i) and ii) hold for
5 .45.
We have thus proved that the formula

Ao Ao2 NA eee A Aoe A Co
is satisfiable. Recalling “Fo%+ C,, the formula

Fao 8 (Ay ı Av2 A Ave) 5> Fo
is therefore not valid. As a result by the equivalence chain

Fo is valid

iff Fag is valid
iff Fg is valid
iff C is unsatisfiable
iff XS is unsatisfiable,

we have that the system S is satisfiable. This now completes the proof of
this Lemma.

| [J

Iheorem 4.9:
A closed system S=(£ , &, 9) is unsatisfiable if and only if either

I) A is unsatisfiable,
ii) 1=0 € § ,

or iil) 0%0 ¢ 9 .
Proof,
By Lemmata 4.7 and 4.8, and the construction of an associated system.

Having this cr i ter ion for the satisflability of a closed system, the remaining
task is the computation of a closure for a system. This is done In the next
section. We then can determine the satisflability of a system S by com-
puting a closure and decide the satisfiability of the closure by the cri terion
of Theorem 4.9.

- 53 -

4.6. The Equality Loop Residue Procedure

The task of this chapter is to compute a closure S¢ for a system S . We
do this by constructing a finite sequence S= So, Sy, Sa=Sc of
systems where for 71<sisn the systems S;_, and 5 ; are equisatisfiable.
Even more, this is done in such a way that they are equivalid.

Define the set &p of equalities for an equality loop P labeled with
as te tby tascy , azta+tbatzsca, 0 .09 apt t b t ysc , and - without loss of
generality - smallest term ¢4 (i.e., t4 < t; for 2si<n) by

Ep = {A j t ı tbg i t in4= cq; | 1s i sn -1 }

where aqgg ,b4g+644” =aqsbq .¢4 ”

and Caqgpobgisce;? = agebgscy? * . . x Cag bryce?

Lemma 4.10:
If P is an equality loop, then £p_ and Ep are equivalid.

Proof.
Since the triples ag; , 04 : , ¢4 ; ” are residues of (admiss ib le) subpaths of P,
the sets £p. and Lp_ U Ep are equivalid by Lemma 2.2.

CLAIM 1:
The sets £p- U &p and En U { ant, +b . t y=c , } are equivalid.

Proof:
Let C i - (Lp- = { a ; t ; +b ; t ; . 4= 6; | 1s i s j }) U Ep for Os j sn -1 .

We prove by finite induction on §, 1sjsn-1, that the sets & i -1 and & are
equivalid. Since &; c E j -4 and (E44 & 2) c { a j t i +b i t i r g = ci}, it there-
fore suff ices to show that the equality ag t i+ b i t i+q = 6 ; is inferable by Ez.
Observe that by their definition, Ep _c ¥ for all 0sjsn-1.
Basis.
Since aytı+t+bytz=64 € &4, Eo=&4 and thus they are equivalid.
Induction Step. |

Now, since >41,
Ag ,4 -9 t4%0q ,4 -4 t ; = cq4,3-4 Epc ly,

Ag , 3 t s tbyg ,4 t seq = €1 .4 € Epcéy 9

and {aq ,4 .b4 ,41¢4 ,47 = { ag ,4 -4 :b5 ,4 -1 :¢5 ,4 -1 # {agby , cy

= sgnlay) { ayg ,7 -4a4 , ~by,4-4b4. €1 ,4 -149¢ - C4 by ,4 -1 > ’

we have that the equalities

Ag ,4 -193 t3 + by ygqa3 t y > cq 44a ;
Ag ,3 -193 tg = by gyby tyey = cq4 ga c4by 44.

- 54 -

and
ay t ı + by t seq

byg-1a4ty / by g-q + by 4b i tys / by y y
(¢q,3-194 7 Aq, j -190j t4) / b4,4-4

+ (ay,z-490jt4 - (¢q , i -194 - ¢3b4 ,4 -4)) / bs ,4 -4
- 4

are inferable by Ez. Therefore, the sets E j - 4 and E; are equivalid which
completes the induction.
Since Eo=Lp -U Ep and & ,_ , = Ep U { anty +baty=c, }, the sets Lp. U
En and Ep U { ant, +b , ts=c , } are equivalid.

CLAIM 2:
Ep U {An tn tbu t y=cn } and Ep are equivalid.
Proof:
Recalling that

Agon -a9 tg tbg ,n -g tn = Cg,n -4 € Ep,
and alP)+b6(P)=06 and c(D)=0,
where

KalP), b (P) , e lP)>=Kay pn -g ibyn -v+6g ,n -9>%L Ap by , >
we have

Ag ,n -18n = bg n -4b , and cy , 4a , = cby , 4
Thus,

an t , tb, t y = (Ag ,n -18n tn t Ag, n -1b , t s) 4 Aqg,n-1

= (606g n -g tn *bpay n-4tyq) / Aqg,n-1

buts ,n-1 /Ag ,n -1

= AnCy ,n -1 /b4 ,n -4

= bgn -16n? Dayn-a
= ¢ , .

The equal i ty a , t ,+b , t4=c¢c, is thus in ferab le by <p and therefore are
Ep U { a , t . +b . t 4=c , } and Ep are equivalid which comple tes the proof
of this claim.

So we have by Lemma 2.2, Claim 1, and Claim 2,
£p- is valid

iff Lp. U &p is valid
iff En U { an tu tba t y=c , } is valid
iff Ep Is valid

- 55 -

Motivated by the result of Lemma 4.10, we now define the system S(PD):
For a system S= (£ ,€ ,9) and an equality loop P, denote by the system
S(P) the system (L(P), EU&p, MP) , where LIP) and OP) are
obtained by reducing the sets £ -£» and 9 wrt the rewrite system R(&p)

URpa-
Observe that the lefthand sides of the rules in R(&p) do not occur in LIP)
nor in D(P) and that only those lequalities are reduced which incident with
a vertex of the equality loop.

Theorem 4.11;
For a system S=(X4,&,9) and a simple equality loop P in the graph G(X),

ij) SS and S(P) are equivalid
ii) the graph G(L(P)) has less vertices than the graph G(£)

Proof:
i) S=(£ ,8 ,9) is valid

iff (by Lemma 4.1)

(L -Lp , EU Lp, 9) is valid
iff (by Lemma 4.10)

(L -Lp , EU &p, I) is valid
iff (by elimation of ¢2 ,¢5 , . . . , ¢ , by application of the rules R(&p))

SP) = (RD) , EU Lp, D(P)) is valid

il) Obviously, since a loop has at least length 2. U

Theorem 4.12:
a) Let S=(£ ,E,9 I) be a system and R be a canonical rewrite system

such that £=&(R) .
Recall that E(R) is obtained from R by replacing each — by =.
Let £(R) and I(R) be obtained by reducing £ and I by the rules in R.
Then are equivalent:

i) S=(£,E,9I) is valid

ii) (L ,E (R) ,D) is valid

iii) (LR), ER), D(R)) is valid.

b) Let S ’ be obtained from S by reduction wrt Roy: the canonical
rewrite system for the Presburger terms.
Then S and S”’ are equivalid systems of the Presburger theory.

Obviously. | =

- 56 -

It is assumed that a formula F of the quantifier-free Presburger Arith-
metic extended by predicate and function symbols that is to be examined
for validity is equivalently transformed to a formula without predicate
symbols (this can be done by the introduction of a new function symbol 6
for each predicate symbol D) which then is negated and expanded into
disjunctive normal form so that + } = S,V . . .V Sp where the S; 's are
conjunctions of lequalities, equalities, and inequalities so that they repre-
sent the systems S ; = (£; ,&;,0;) , Is isp. The formula °F is thus valid If
and only if each system 5S; is unsatisfiable.

The EQUALITY_LOOP_RESIDUE procedure in figure 4.5 can then be used
to determine the satisfiability of a system S.

This procedure calls some subprocedures which are now described:

The procedure LOOP_RESIDUE performs a generalized version of the pro-
cedure described in the second chapter. It is generalized in the sense that
the vertices are labeled by terms and the lequalities are linear in terms.

The procedure LOOP.COLLABATION takes as arguments a system S=

(£ ,&,9) and an equality loop P of the graph G(4).
The procedure computes the system S(P)=(L(P),EU&p,D(P)) where

L(P) and OP) are obtained by reducing the sets £ -£p and I wrt the
rewrite system R(&p) U Rp 4.
Note that in the FOR-loop where the procedure LOOP_COLLABATION is
called, the lequalities of the simple equality loops initially found in the graph

may be reduced in the collabation process if the vert ices of those loops
are not distinct.25
The procedure CANONIZATION computes for the set E& of ground equations
a canonical rewriting system R equivalent to & which is reduced wrt Rp 4.
According to section 4.4.2, this can be done in polynomial time. Recall that

Rp.a is a canonical rewrite system for the Presburger terms.

The procedure REDUCTION takes as arguments a system S= (4 ,& ,9) and
a canonical set R of rewrite rules. It produces a system (4(R),&,D(R)),
where £(R) and IR) are reduced wrt X U Rp 4.

Theorem 4.13;
The EQUALITY LOOP RESIDUE PROCEDURE terminates.

Proof:
It suffices to show that both REPEAT loops terminate:

In each iteration except the last one, the innermost REPEAT loop reduces
the number of vertices in the graph g(£) , since by Theorem 4.11 the graph

25: Look at the exampies in sect ion 4 .8 , especially example 6 .

- 57 -

REPEAT

RESET (collapsed)
REPEAT

SET (continue)
LooP_RESIDUE (G(L))

IF A (£) has an infeasible simple loop
THEN RETURN (S is unsatisfiable)
ELSE IF G(L) has no simple equality loop

THEN RESET (continue)
ELSE

BEGIN
SET (collapsed)
FOR all simple equality loops P in G(L) Do
S i= LOOP_COLLABATION (S ,P)

IF 9=0 e & OR 0%0 ¢ D
THEN RETURN (S is unsa t i s f i ab le)

END
UNTIL NOT cont inue
IF col lapsed

THEN BEGIN
S 1= REDUCTION (S, CANONIZATION(E))

IF 1=0<E OR 0%0€ 9
THEN RETURN (S is unsa t i s f i ab le)

END

UNTIL NOT collapsed
S = REDUCTION (SS, CANONIZATION(E))

IF 1=0¢ & OR 0%20¢ OD
THEN RETURN (S is unsa t i s f i ab le)
ELSE RETURN (S is sa t i s f iab le)

Figure 4.5: EQUAL ITY LOOP RESIDUE PROCEDURE

deciding the satisfiability of a system S

G(£(D)) has less vertices than the graph Gf 4).
And in each i te ra t ion of the ou te rmos t REPEAT loop except the last one, at
least one equality loop has been replaced by a single vertex in the inner loop.
Since the LOOP_RESIDUE procedure terminates and since a graph has
finitely many vert ices, both REPEAT loops of the procedure terminate.

- 58 -

Theorem 4.14;
The EQUALITY LOOP RESIDUE PROCEDURE is sound.

Proof;
We have to show that if the procedure answers that a system is unsatis-
fiable, the answer is correct.
The procedure constructs a sequence of systems. In order to prove the

soundness of the procedure, it suff ices to prove that every two subsequent

systems S and 5S’ in the sequence are equisatisfiable. We are even able
to show that they are equivalid.2®
Any modification of the system is performed by a call of either procedure

of
i) LOOP_RESIDUE,

ii) LoOP_COLLABATION, or
iii) REDUCTION,

We thus have the following cases for $=(4£,&,9) and S ’=(£ ' ,E ’ , I ’) :
ij) L=£°, &=&°, G(L’) is a closed graph for (XL). |

Since £ is a subset of £ ’ and £ ’ is augmented exclusively by loop
residue lequalities of admissible simple loops in the graph (4) , £ and
L'’ are equivalid by Lemma 2.2. Therefore, also S and S”’ are equivalid.

ii) L '=L(P) ,& '=EU&p,D°=0(P) .
S and S ’ are equivalid by Theorem 4.11.

i i) £ '=L (R) ,E ' =&EIR),D*=I(R) where R is a canonical rewrite system
equivalent to &.
By Theorem 4.12, S and S* are equivalid.

These cases prove that every two adjacent systems in the sequence of

systems generated during the computation are equivalid and thus equisatis-

fiable. LJ

Theorem 4.15:
The EQUALITY LOOP RESIDUE PROCEDURE is complete.

Proof:
We have to show that any unsatisfiable system is recognized as unsat is-

fiable. Or, equivalently, if a system is recognized as satisfiable, it indeed is

so.
It thus suf f ices to show that if the procedure te rminates wi th the answer

that the system is satisfiable that the obtained system is closed.

26 : The s t r onge r r esu l t is r equ i red in sec t i on 4 .9 for f u r t he r aspec t s and

improvemen ts .

- 59 -

Observe that the procedure LOOP_RESIDUE enumerates the admissible
simple loops of the graph &(£) modulo cyclic permutation and reversal and
that this is suff icient since by Corollaries A.2 and A.3 of appendix A, a loop
P is an equality loop if and only if ite reverse is an equality loop, and a per-
mutable loop P is an equality loop if and only if any permutation of D is an
equality loop.
Since the outermost REPEAT loop terminates for a satisfiable system if
and only if £ is a str ict ly closed set, condition iii) of the definition of a
closed system is satisf ied.
And because of the statement

S 1= REDUCTION (S, CANONIZATION(E))
conditions I) - ii) are also satisf ied.
Therefore, the procedure terminates for a satisfiable system with a com-
plete satisfiable system. In other words: the procedure is complete. |

4.7. Generalizations

Since a system is defined as a tr iple of lequalities, equalities, and inequali-
t ies, there are two ways of incorporating str ict lequalities:
First , like in the second chapter, the notion of a str ict loop with str ic t
residue lequality can be appended, and second, A<B can be replaced by
AsB and A+B.
The f i rs t option requires a modification of the procedure LOOP_RESIDUE.
It has to distinguish between lequalities and str ict lequalities and generates
either a nonstr ict loop residue lequality or a str ict loop residue lequality,
respectively.
The second option requires no modification in the algorithm: The basic
version can already treat lequalities in this way. But instead, the disad-
vantage is that the information is not as compactas possible.
Nevertheless, we choose for convenience the second option for the exam-
ples of the following section.

The extension to an arbitrary number of terms per lequality is essentially
in the same way as the extension to an arbitrary number of variables per
lequality for the unextended class: By the use of symbolic computation.

- 60 -

4.8. Examples and observations

4.8.1. Examples

EXAMPLE 1:
In sect ion 4.1, we cons idered the f o rmu la

Fp ® = CD(x)5> x=2 A 6(2*2) =f(2) A gly) =x+7]
>

C §lgly))=§(5+2xx) V P(x) 3.

By substituting the predicate symbol D by $p: we obtain the formula

Fg = Lgpln)=0 > x=2 A 6(2*2a) =f(2) Ag(4) =x+7 9
>

C§ lg l y))=4 (5+2+x) V a(fp l (x)=0) 3.

The disjunctive normal form of the negation has two conjuncts and results
in the systems?”

Sy - (Ly , 4 94) = (£ , € , ID U { $p(xJ)+* 0 })

Sz=(6k2 ,E2 , D2)= (k , EU { x=2 } ,9)
where

£L= 0
E = { 6(2*2)=$(a),

gly) - x=7 ,
$p l x)=0 }

O={ flgly))+§(5+2+x) } .

Since £4 and £ , are empty, the procedure LOOP_RESIDUE does not
enumerate any simple admissible loop in (£4) or (AL 2) and therefore,
the innermost and outermost REPEAT loops terminate immediately.
For the system Sy,

CANONIZAT ION (E4)

= { §(2%2)— §(2),
giv) —o x+7,

fp(x)—0 1}.
This reduces Dy = {§ (g ly)) * §(5+2xx), §p(x)% 0 } to

OD,(CANONIZAT ION (E4))

= { §(x+7)2§(5+2%x),
00 } .

27 : For conven ience , the f o rmu las a t+b¢ ’ ce l ¢ where z te l e { s ,= ,<) are g iven

in a non s tandard ized manne r . For examp le , the formula Owtg+17*6(x)+%*O

is wr i t ten as §(x)%20.

- 61 -

Since this result ing set of inequalities contains 0 ¢ 0, the system $y is un-
satisfiable.

In the same way, for the system S, ,

CANONIZAT ION (£5)

CANONIZAT ION ({ §(2x2)=§(2),
g l y) - x=7 ,

ép lx)=0
x=21 })

= { §(2+x2)> §(2),
g l y) > 9,

$pl2)—o0 ’
x —2)

which reduces 9 , = {§ (g ly)) t §(5+2xx) } to { 040 } with intermediate steps

{ $ (9) + { (5+2*x) } ,

and { § (9)2§ (9) } .

Hence, the system 5S, is also unsatisfiable.

EXAMPLE 2 :

Reconsider the f o rmu la of sec t ion 4 .2 .3 ,

F=(xsgx /\ gesx DO x=gggggx).
The negation of this formula resul ts in one system S where

S=({ xsgx , gxsx } , 0, { x* gggggx }).

The procedure LOOP_RESIDUE enumerates one loop, the equality loop PD,
which is labeled with the lequality set Lp=Lp= {xsgx , gxsx} and which
has residue <1, -1, 0 > independently of the initial vertex. By the definition
of Ep and S(P), we have

Ep = { 1xx+ (-1) xgx = 0 } = {x=gx},

RIED) = {gx ox},

and S (DP)= (®, { x=gx } , {0%0}) .

This proves the unsatisfiabiliy of S .

EXAMPLE 3: |

Let us now recons ider the ins t ruc t i ve f o rmu la of sec t ion 4.3,

- 62 -

Fu { (§ l a , c) sa A as§ la , c)) V
(xsglx) A g lx)sx) V

(b<h3(b) A K3(b)<h3(b) A h5(b)sb) }
2

{ (§ l § l ac) , c) sa AN as§ l§ l a , c) , c)) V
(glx)sx A x<g®(x)) V

(h(b)<b A bsh(b)) } .

The negated formula

7F = { (fla,e)sa A asfla,ce)) V
(xsglx) A glx)<x) V

(bs h?(6) A KP(6)sh®(8) ARKPCbISb) }

A |

a { (§ l § l a . c) , c) sa A as§ l f l a , c) , c)) V
(g®(x)sx A xsg®(x)) V

(h lb)sb A bsh(b)) }

=
| { (§ l ac) sa A as f l a , c)) V

(xsgl(x) A glx)sx) V
(bsh3(b) A K3(b)<h®(b) A K>3(b)sh) }

A
{ (6 lß l a , c) , e)>a VV a>ß l f l a , c) , c)) A

(g l x)>x V x>g°(x)) A
(h (b)>b V b>h(b6)) } .

resul ts in 24 (3 *2*2*2) systems each of which contains lequalities that
form a simple equality loop P where Ep contains either a=§(a ,c) , x=g(x) ,
or b=h3(b) and b=h* (b) . Each system requires one call to LOOP_RESIDUE.
The equalities are obtained by one call of the procedure LoOP_COLLABA-
TION. For the f i r s t two equalit ies, the inequal i ty 0%#0 is ob ta ined by the
same call. And for 6=A3(b) and 6=A3(b), one cali of each of the proce-
dures CANONIZATION and REDUCTION is required to obtain 0%0.

Observe that this example combines the three valid formulas

$la,c)sa A as§ la , c) DO §l§la,c),c)sa A as f l f l a , c) , c) ,

xsg(x) A g l x)sx) > g®(x)sx A xsg®(x),

and b<sh2(b) A K3(b)sh3(6) AA3(b)sb) D> h(b)sb A bsh(b)
two of which are s im i l i a r to the examples of sec t i on 3.3,

$la,b)=a > §(§la,b),b)=a,
and $bbbba=a A $ffa=a DO fa=a.

- 63 -

EXAMPLE 4:

Consider the system S = (4 ,0 ,) for

L = | (1) as2b -1 ,
(2) 4b < f(a + 20 + 5e) + 3,
(3) f la + 20 + 5¢) < 2a - 1,
(4) cs2d +1 ,
(5) 100 < §(2b + ¢ - g (x)) - 10 ,
(6) §(2b +c - g(x) < 5¢ + 5,
(7) Se < -g(x) + 2 ,
(8) -gl(x) < (4) - 7,
(9) $ (y) s 5e + 5 ,

(10) $(y) < §(glu))
(11) $ (g lu)) < 2§(a + 20 + Se) + 5 ,
(12) §(26 + c - g(x) < 2§(g(v)) - 4 ,
(13) 46(g lv)) <s -g lx) +9 }.

a r r a+2d 45€) I T , v) g l x)
(11) (10) (13)

(lalud) é(g(v))

pa PN PZ 2)

6(2b+0-g(x))

Figure 4.6.1: Graph G(£)

There are three admissible simple loops Py, P2, and Da in the graph
G(L) labeled by the lequalities (1) - (3) , (4) - (6) , and (7) - (9) . Their
residues are

- 64 -

z (D4) = (£1 , -2 , -4>x< 4 , -9 , 3>)%x<1 , -2 , -4>
- <4 , - 2 , 2>%<1 , - 2 , -1>
- <4 , -4 , o> ,

e(P2) = (1 , -2 , 1> *<10 , -1 , - 10>) *<41 , - 5 , 5>
- <40 , - 2 , -40> %< 1 , - 5 , 5>

= <10 , - 10 , 0> ,

and

e (D3)= (<5 , 1, 25+*< -1 , -1, - 75) *<1 , -5, 5>
- { 5 , -1, - 5>%<1 , -5 , 5>

- { 5 , - 5 , 00> .

We assume that these equality loops are encountered in the ordering P j ,
P+, and P , and that the following chain holds for the total simplification
ordering 48:

a<b<c<d<e<u<v<x<y<§<g
We then obtain a sequence < 5=54, Sy, S2, S3, Su > of systems. For
the loop Ps, and the resulting system $4, we have |

&(Ps3) = { Be + g lx) = 2,
5¢ - f(y) =-5 }

REP) = { glx) — -Se + 2,
f (y) > 5¢e +5 }

£4 = { (1) as2b -1 ,
(2) 4b < f(a + 20 + Se) + 3,
(3) f la + 20 + 5¢) < 2a - 1,
(4) c $20 +1 ,
(5) 100 < §(2b +c + 5¢ - 2) - 10 ,
(6) (2b + c+ 5e - 2) <5¢c+5 ,

(10) 5¢ < (g lu) - 5 ,
(11) $(g lu)) < 2¢(a + 20 + 5e) + 5,
(12) §(2b6 + c + 5¢ - 2) <s 2§ (g (v)) - 4 ,
(13) 4§(gl(v)) < Se + 7 }.

The graph G(£4) is shown in figure 4.6.2.
Observe that the loop coliabation of the equality loop Py in the graph
ÖlLo)=G(£) did not affect the residues and subresidues of the loops Pg
and DP, in the graph G(£44).
Since

28: Reca l l t ha t the va r i ab les occu r r i ng in the sys tem can be rega rded as

cons tan t s s i nce t he f o rmu la can be sko lem ized to an equ i sa t i s f i ab le

g round f o rmu la .

- 65 -

» 6 a ©
\

(1) N (8) (4)

(3) \ € (5)

a N \ 6(2b+ce+Se-2) 93

am (10) N (12)

\ , \ ,
§lglu)) la l)

Figure 4.6.2: Graph &(44)

E(D4) = { a - 2b = - 4%,
4a - 2 la + 20 + 5¢) = 2 }

and

RIE(P4)) = { b — (1/2)a + (1 /2) ,
f la + 20 + 5¢) — 2a - 1 },

the call of procedure LOOP_COLLABATION for arguments Sy and Py
results in the system $2, where

L r = { (4) c s20 +1 ,
(5) 100 < f l a + ¢c + 5¢ - 1) - 10 ,
(6) f la +c+5e -1)<5c+5 ,

(10) Se < §lglu)) - 5 ,
(11) $(glu)) < 4a + 3,
(12) f la +c + 5e - 1) < 2§(g(v)) - 4,
(13) | 46(gl(v)) s 5e + 7 }.

The graph for the set £2 of lequalities is shown in figure 4.6.3.

Finally, we have for the loop Pg
E(D2) = { c - 20

10¢ - 2 l a + c + Se - 1)
1,
- 10 }

and

- 66 -

$(a+c+5¢—1) d

(11) (10) (13) (12)

6(glu)) §taglo))

Figure 4.6.3: Graph G(£2)

R(EP2)) = 2 — (1 /2)c - (1/2),
f la +c +5e -1) > 5¢+5 }.

The procedure LOOP_COLLABATION computes S53 where

Li; = { (10) Se < § l g l u)) - 5 ,

(11) $(glu)) < 4a + 3,
(12) 5¢ < 2§ (g l v)) - 9 ,
(13) 46(gl(v)) < Se + 7 }

and

C3= { Be + g lx) = 2,
S5¢ - f(y) = - 5,
a - 2b = -4 ,

4a - 2¢(a + 20 + Se) = 2,
c - 20 = 4,

- 410 }.10c - 2 la + ¢ + 5e - 1)

Now the innermost REPEAT loop terminates and the flag collapsed is set.
We now obtain the system Sg’ by the procedures CANONIZATION, which
computes a canonical rewrit ing system R(&4) equivalent to the set E3 of
equalities, and REDUCTION, which reduces the lequalities in Ag to obtain
£4. The resulting system S4u=(£4,&4,04) has the components

- 67 -

Ex ,= { Be + glx) = 2,
Se - $ (y) = - 5 ,

a - 2b = - 4,
4a - 10e = 12 ,

4a - 200 = 22,
4a - 24((7 /5)a + Se - (11/58)) = 2 }.

and

Ly = { (10) Be s §lglu)) - 5,
(11) $(glu)) <= 4a + 3,
(12) 2a s 2§ (g (v)) - 3 ,
(13) 46 (g l v)) < 5¢ + 7 }.

€

ze
(13) / N (10)

/ N
yd AN

6(g(0)) { Se $lglu))

IN ,(12) JS (11)
r d

% r d

Figure 4.6.4: Graph (63)

The lequalities of the set £4 label an admissible simple loop Pg in the
graph G(4,4) which has the residue

e(Py) (<5 , -1, - 5>x<1 , MM, 3>)+ * (<2 , -2 , -3> x l #4, -5 , 7>)

<5 , #4, - 2>%<{8 , - 10 , 2>

<40 , - 40 , - 8> .

Since Pg is thus an infeasible simple loop, the system S also is infeasible.
Note that for this example, the computation process would have been
similiar for any other ordering of the loops since the vertices of the graph
G(L) labeled by f(a + 2d + Se) and §(26 + ¢ - g(x)) can only coincide
after all three equality loops are collapsed.

- 68 -

EXAMPLE 5:

To demonstrate the effect of the procedure LOOP_COLLABATION wrt the
variation of the st ructure of the graph for the lequalities, let us now con-
sider the system S= (£ ,£ ,0) where
L= { (1) 3¢ t<u+2 ,

(2) u< 3w- 2 ,

(3) 3w < ov + 2,

(4) o< 3 -2 ,

(5) 26 (3g(t) + 2h (u)) s h la) + 1,

(6) 2h(a) s 5 t - 2 ,

(7) us 3g(b) - 8 ,

(8) 5g lb) < 4§ (3g(w) + 2h (0)) + 10 ,
(9) 5g (-4g (b) + 2h(a) + 12) < 6h la) + 6,

(10) o < § l c) - 3 ,

(11) $lc) < g lég(b) - 2h(a) - 12) + 1,
(12) 2h(2u - l c) + 9) < 3 (0) + 5 ,

(13) 3§(3) < w - 5 ,

(14) glb) s 2h (-u + 2§ (c)) + 2 ,

(15) § l c) < 34 (3§ (3)) + 1 ,

(16) $ (t - 5) < 34 (3) + 4 }

and E= I=6 . The graph G(£)=Gl(kL0o) is shown in figure 4.7.1.
We demonstrate now how procedure 4.5 computes a sequence <S=So ,
Sy, 00 .5 Sq of systems. Let < be a total simplification ordering with

a<b<c<d< t<u<o<w=<§<g=<h
We will see that the procedure LOOP_COLLABATION is so effective such
that all computation is done within the innermost REPEAT-loop which thus
is only encountered once.
There is only one admissible simple loop Do in the graph G(£e)=G(L) . It
is labeled by the lequalities (1), (2), (3), and (4). Its res idue computes to

z (Do)= ((<3 , -14 ,2>*<1 , - 3 , - 2>) *<3 , -1 , 2>) *<41 , -3 , -2>
(<3 , - 3 ,0>%<3 , -1 , 2>) *<1 , -3 , -2>

<9, -3 , 6>*<41, -3, -2>
<9, -9, 0>.

The loop Do is therefore an equality simple loop. We have for this loop

- 69 -

agg , bgqs 44> =<3, -1, 2>

aga, bya, c42>=<3 , -3 , 0>
<agz , bys , cq3> =X9, -3 , 6>

and therefore

&(Po) = { (3 t+ (-1u = 2,

3t + (-3)w = 0,
9t + (-3)o = 6 }

and

R(E(Po)) = {uu — 3 t - 2,

w — t ,

o — 3t - 2 1}.

$(3g(e)+2h()) §(3g(10) +2h(v))

(5) (8)

gl{-4glb)+2h(a)+12) Al(-u+2§(e))
. . Ala) g(6) .

(9) N (14)

(6) 2 (7)N\,
AN (1) /

€ “

(4) (2)

[4 J Ww

PA (3) N
(10) , (13)

(11) DA 1 (12). “6(e) 6(3) -
gl(6g(b)-2h(a)-12) Al2u—§(ec)+9)

(15) (16)

$0360) ° "” £(e-5)

Figure 4.7.1: Graph (Lo)

- 70 -

The procedure LOOP_COLLABATION reduces the lequalities (5), (7), (8),
(10), (12), (13) and (14), and computes the system S,=(£, ,&4,9,) where

L ,=1 (5) 26(3g(t) + 2k(3t - 2)) < h la) + 1,
(6) 2h(a) < 5 t - 2 ,

(7) 3t < 3glb) - 6,
(8) 5g(b) < 4§(3g(t) + 2h(3 t - 2)) + 10 ,

(9) 5g l -4g(b) + 2hla) + 12) < 6h(a) + 6,

(10) 3 t < g le) - 1 ,

(11) $lc) < gl6g(b) - 2h(a) - 12) + 1,
(12) 2h (6 t - § l c) + 5) < 34 (3) + 5 ,

(13) 3§(d) s t - 5 ,

(14) gib) s 2h (-3 t + 2§ (c) + 2) + 2 ,

(15) $(c) < 36(34(3)) + 1 ,

(16) l t - 5) < 34(3) + 4 },

<q - E(Do)

and D,=@. The graph G for £ , is shown in figure 4.7.2.

The reduction wrt the rewrite rules of the loop Do in the graph G(£,) has
produced a new admissible simple loop Py in the graph G(£4) labeled with
the lequalities (7), (8), (5), and (6) and with residue

e(Pg)= ((£3 , -3, -6> *<5 , ~4 ,10>)%<2 , -1, 1>) *<2 , -5, -2>

(<15 , -12, 0> <2 , -1, 1>) *<2 , -5, -2>

{ 30 , - 12 , 12> <2 , -5 , -2>

{ 60 , -60, 0>.

The simple equality loop Ps has subresidues
<Aqg4r Bags €44> =< 3, -3, -6>
aqgzy bay e42> =< 15, -12, 0>
<a43s by , c43>=<30, - 12 , 12>

and there fore

(Py) = { 3¢ + (- 3)g (h) = - 6 ,

15t + (-12)§ (3g (t) + 2h(3¢ - 2)) = 0,

30 t + (-12)h (a) = 412 }

- 71 -

with

RIE(D4))= { g(b) — t + 2,

§(3g(t) + 2h(3t - 2)) — (5/4%)¢,

h(a) — (5/2) t - 1 }.

aN $(3glt)+2h(3¢-2))

NL
/

(5) ANG
Pa

gl(-4g(b)+2h(a)+12) J AN h(-3e+2§(c)+2)

{Ales gb) Jr .
(9) N pd (14)

N.

N
vd

2a
(10) yd (13)

pd

(11) yd \ (12)
. (0) $(2) .

gl(6g(b)-2h(a)-12) h(6t-§(c)+5s)

(15) (16)

© (3602) * 6(e-#)

Figure 4.7.2: Graph (44)

The procedure LOOP_COLLABATION is called for the arguments S , and
Pq, and both

gl-4g(b) + 2h(a) + 12) (—* gl(-4(t +2) + 2((5/2) t - 1) + 12))
and

gl6g(b) - 2h(a) - 12) (-—* g l6 (t + 2) - 2 ((5 /2) t - 1) - 12))

- 72 -

are reduced to

glt + 2).

in the lequalities (9) and (11).
Similiarly, R(&(P4)) reduces 6hla) + 6 to 15¢ in lequality (9) and we
obtain the system S2=(Lk2,E2,92) where

£L2= { (9) q (t + 2) < 15 t ,

(10) 3t < f le) - 1 ,

(11) file) < g(t +2) + 1,

(12) 2h(6 t - §(c) + 5) < 34(3) + 5 ,

(13) 3¢ (d) < t - 5 ,

(14) t s 2h (-3 t + 2f(e) + 2) ,

(15) f le) s 36(36(0)) + 1,

(16) $(t - 5) s 3403) + 4 },

a = E4 U E (D4) ,

and 9 ; = . The graph 4 for £ is shown in figure 4.7.3.
Again, an admissible simple loop Dz is encountered in the graph (62). It
is labeled by the lequalities (10), (11), and (9), and its residue is

e (D2)= (<3 , -1 , - 1> *<1 , -1 , 1>) *<5 , -15 , 0>

= <3, -1, 0>+*<5, -15, 0>

= <15, -15, 0> .

The loop D2 is thus an equality loop and has subresidues

<Ay4 ı r bgq , ¢44> =<3 , -1 , -1>
aga, bg2, ¢42>=<X3, -1, 0>

and therefore

E(D2)= { 3 t+ (-1)$ (e) = - 1 ,

3t + (- 1)g l t +2) =0 }

with

RIE(P2)) = le) — 3t + 1,

g(t + 2) — 3t } .

The terms A l6 t - §(c) + 5) and A (-3 t + 2§(c) + 2) are both rewritten to

h(3¢t + #) and procedure LOOP_COLLABATION reduces S$, wrt R(E(D2))
to the system S;=(£%£;,&5,93) where

- 73 -

L i= { (12) 2h(3¢t + 4) < 3(0) + 5,
(13) 3¢4(3) < t - 5 ,

(14) t s 2h (3 t + 4) ,

(15) t < §(3§(2)),
(16) $ (t - 85) < 34 (d) + 4 },

€ ; - 2 U E (D2) ,

and OD; = , The graph & for £3 is shown in figure 4.7.4 and contains

A(-3¢+24(0)+2)

Da
r d

~~

Da (14)

g(t+2) (9) a 7
a €rd

AN J N| j “

(11) yd (10) (13)

N Da N A6t-f l (c)+5)

a’ (e) (8) X -

$ $ (12)

(15) (16)

>» $(3§(2)) ® 6(£-5)

Figure 4.7.3: Graph (42)

an admissible simple loop Da labeled by the lequalities (14), (12), and (13)
and residue |

e (Ps)= (<1 , -2 ,0>+*<2 , -3 ,5>5) *<3 , -1 , -5>
£2 , - 6 ,10>%<3 , -1, -5>
<6, -6 , 0> .

The equality loop D3 has thus subresidues

- 74 -

<aqq , byy , Cq4”> =<1 , - 2 , o>

{ aqz , bya , c42>=X2, - 6 , 10>

and we obtain

E(Da)= { t + (- 2) k (3 t +4) = 0 ,

2t + (-6)§ (9) = 10 }

and

RIE(P3)) = {(A(3t +4) — (1 /2)¢ ,
$(2) — (1 /3) t - (5 /3) } .

t (14) Al 36+4)

AN, yd

/
=" §(36(3)) * 4(¢-5)

Figure 4.7.4: Graph G(4;)

We finally obtain the system Sg=(£4,84.,04) from the procedure Loo r_

COLLABATION which is called for arguments S ; and &(P3). We have

Ly= { (15) t <s g (t - 5),
(16) l(t - 5)< t -1 X

and an admissible simple loop P4 labeled by the two lequalities (15) and
(16) in the graph (44) . It is infeasible since

(Da) = <1 , -1 ,0>%<4 , -9 , -1> = <q9 , -1 , -1> .

The unsatisfiability of the given system is now returned from the inner-
most REPEAT loop.

- 75 -

EXAMPLE 6:
Let us now look at an example for which the ordering of the encountered
equality loops directs the construction of the sequence of systems.
Consider the system S= (£ , @, 0) where

L =O #x - 7§ (2a+ 1) s O0,
(2) 76(3b + 2) - 4x s -1 ,
(3) 76(3b + 2) - 7§(2a + 1) < - 1 ,

(4) 2a - 7§(2a + 1) < -1 ,

(5) 7§(2a + 1) - 54 < 0 ,
(6) Sy - 74(3b + 2) < 1,
(7) 76(3b + 2) - 3b < 14,

(8) S5y -2as<1 ,

(9) 3b -8y< -2 1}.

The graph G(£), shown in figure 4.8.1, has four admissible simple loops

x

a N

$(2a +1) , . (36 + 2)

(3)

4) (5) (6) (7)

(8) \ (9)

a Y

Figure 4.8.1.: Graph G(£)

- 76 -

Dar, P2+ Das and Pg which are labeled by the lequalities

L (Py)= { ((4) . 2a -7§ (2a + 1) s -1,

(5) | 76(2a + 1) - 5y < 0 ,

(8) 5y ~2a<1 1,

L(Pa2) = { (6) 54 - 74(3b + 2) < 1,
(3) 76 (3b + 2) - 7§(2a + 1) < -1 ,

(5) 76(2a + 1) - 5y <0 },

LPs) = { (9) 3b - 54 < -2 ,

(6) 54 - 7§ (36 + 2) < 1,

(7) 7§ (3b +2) - 3b<s1 1},

and

L (Pg) = { (1) 4x - 7§(2a + 1) < 0 ,

(5) 7§(2a + 1) - 54 <s 0 ,

(6) 5y - 7§ (36 + 2) < 1,

(2) 76(36b +2) - 4x < -1 } .

Their residues are

e(Pyg) = K2 , -7 , - 1> *<7 , -5, 0>»*<5, -2, 1>
= <14, -35 , - 7>%<£5 , -2 , 1>
= £70 , - 70 , 0> ,

e(P2) = <5, -7, 1>#*<7, -7, - 1> *<7 , -5, 0>
= £35, - 49 , 0> *<7 , -5 , 0>

= 245 , -245 , 0>,
e(P;) = <3, -5, - 25 *<5 , -7, 1> *<7 , -3, 1>

= £15, - 35 , - 5> *<7 , -3 , 1>
= <105, -105, 0>,

and

ePy) = <4 , -7 , 0>#<7 , -5, 0>%<K8, -7, 1>%L7, -4, -1>
= £28, -35, 0>+*<5, -7, 1> *<7 , 4 , -1>
= <140, -245, 35> <7 , -4, -1>
= <980, -980 , 0>.

So we have four simple equality loops.
We now construct three sequences of systems by chosing the short loop Py
containing a vertex with lower outdegree (the vertex labeled by a incidents

- 77 -

only with two edges) for the f i rs t sequence, the central loop Pz for the
second sequence, and the large loop Pg for the third sequence.
The ordering < may w. | . 0. g. satisfy a < 6 < x < y < §.
The subresidues, the equalities, and the corresponding rewrite rules ob-
tained by the equality loop Py are

{ aqq , qq, ¢44> =<2, =7, -1>
{aqa, bya, c42> =<14 , -35, - 7> ,

E(D4) = { 2a - 7§(2a + 1) = -1,

14a - 354 = -7 1},
RIE(Py)) ={ §l2a +1) — (2 /7)a + (1 /7)

y > (2 /5)a + (1 /5) }.

By calling the procedure LOOP_COLLABATION for S and Py, we obtain the
system Sy = (£4 , E (D4) , 0) where the set £4 is given by

Lez { (1) 4x - 2a s 1,
(2) 76 (3b + 2) - 4x < -1 ,

(3) 76(3b6 + 2) - 2a < 0 ,

(6) 2a - 74(3b + 2) sO ,

(7 76(3b6 + 2) - 3b < 1,
(9) 3b - 2a s -1 }

$036 + 2)

(7)

Figure 4.8.2.1: Graph G(44)

- 78 -

What has happened to the loops Pa, Da, and Pg of the graph GL) ?
Both loops D2 and Ps have lost an edge and Ps has changed a vertex.
The reason is that the vertices of the loops Pz and Pj; and the edges of
the loops Py, P2, and Py are not distinct. The loops Py, P2, and Py all
contain edge (5) of the graph (4). |

Out of the three equality loops, let us choose the modified loop Ps of the
graph (44) . We have lequalities

LPs) = (6) 2a - 7§ (3b + 2) < 0 ,

(7) 7§(36 + 2) - 3b < 1,

(9) 3b - 2a < -1 }

and residue

(Da) = K2 , -7 ,0>%K7 , -3, 1>#*<3, -2, -1>
<14, -21, 7>%<3, -2 , -1>

<42, -42, 0>

with subresidues

{ aqq , beg, 44> = £2, -7, 0>
aga, bez, c42> = <14, -24, 7> ,

and thus

EPs) = { 2a -7§ (36+2)=o0 ,

14a - 216 =7 }

with corresponding rewri te rules

REP3)) ={ §(3b + 2) — (2/7) a,
b— (2 /3)a - (1 /3) }.

We therefore obtain the system S2= (£2 , E2, ®) by the procedure LOOP.
COLLABATION where

Laz { (1) 4x - 2a 51,
(2) 2a -4x 5 -1 }

and

E2 = { 2a - 72a + 1) = -4 ,

14a - 35% = -7,
2a - 74(36 + 2) = 0 ,

14a - 216 = 7 }.

- 79 -

The lequality (3) , 7§ (3b + 2) - 2a s 0, has been reduced to 0<0 and there -
fore been dropped. The loop D2 has thus been erased completely. The loop
Ps has again been reduced in its length. We simply obtain the system S;=
(6, E; , @) by adding the equality 2a - 4x = -1 to the set E2. And since
there are no more lequalities left , the innermost REPEAT loop terminates.
The procedure CANONIZATION is now called for the set

&3={ 2a -7§ (2a + 1) = -1 ,

14a - 354% = -7,
2a - 7§(36 + 2) = 0 ,

14a - 21b
2a - 4x

u N

-4 }.

During the computation, this procedure reduces the constant b in the equal-
ity 2a - 7§(3b6 + 2) = O by the rule z(14a - 21b = 7) to the equality 2a -
7§(2a + 1) = 0 which again is reduced by the rule z (2a - 7§(2a + 1) = -1)
to the equality 1=0. It is thus returned that the system S is unsatisfiable.

Let us now consider how this result is obtained by chosing the central loop
Pa of the graph (LK) as first equality loop:
The subresidues and equalities obtained by the equality loop D2 are

{ aqq , bgq , C44> = <5, -7 , 1>
{aqz, bya, 42> = 35 , -49, 0 ,

E(D2) = { By - 7§(3b + 2) = 1,
354 - 49§4(2a +1) = 0 } ,

and the corresponding rewrite rules

RIE(P2)) ={ §(3b+2) — (8/7) y - (1/7)
§(2a + 1) — (5 /7) y }.

The procedure LOOP.COLLABATION produces the system S, ' = (4 ° ,
E(D2), P) where the set £,° is given by

Lye!= (1) 4x - By 5 O,
(2) 5y - 4x <0 ,

(4) 2a - 54 <= - 1 ,

(7) 5y - 3bs 2 ,
(8) | 5y - 2a <1 ,

(9) 3b-5ys<s-2 }

- 80 -

x
mA

(1) (2)

\ /

(4) (7)

(8) (9)
a £ b

Figure 4.8.3.1: Graph G(4£4’)

The other equality loops Py, Ps, and Pg have been reduced in their length.
Let us now chose the modified loop P4 consisting of the edges (4) and (8).
We thus have &E(P,)= {2a-8y = - 1 } and S2’=(£L2', E(PIHUEP2), 6)
where

La '= { (1) 4x - 2a 5 1,
(2) 2a - 4x s -1,
(7) 2a - 3b ss 1 ,

(9) 3b - 2a s -1 }.

The graph G(A42') is given in figure 4.8.3.2.
Independent of the ordering in which the two simple equality loops of the
graph G(£ , ') are chosen, we obtain the system S;° = (@, &4°, 0) with
the set

Ey ’ = ({ By - 7§ (3b+2) = 1,
354 - 494(2a + 1) = 0,

‚ 2a - 5% = - 1 ,

2a - 4x = -1 ,

2a - 36 = 1 } .

- 81 -

N

(1) (2)

\./

(7) (9)

NZ b

Figure 4.8.3.2: Graph Ö(42”)

Since the system $4 ’ has no lequalities, the innermost REPEAT loop
terminates and the procedure CANONIZATION is called for the set Ex’.
Again, by reducing the constant b in the equality 5w - 7§(3b + 2) = 1 by
the rule z (2a - 36 = 1) to the equality 5y - 7§(2a + 1) = 1, and by redu-
cing this equality by the rule ¢(35y - 49%(2a + 1) = 0), we obtain the
equality 1=0. Therefore, the system S is unsatisfiable.

Let us finally consider how the unsatisfiability is detected if the loop Pg is
chosen as f i rs t equality loop as argument of the procedure LoorP_COLLA-
BATION.
The subresidues of the loop Pg are

<4, -7, 0>
<28, -35, 0>
<140 , -245, 35>

aqq , bag, cq4>

agz, bya, ¢42>

aga, bea, c45>

and therefore we have

(Py) = { 4x - 7§(2a + 1) = 0,
| 28x - 354% = 0,

140x - 245§(3b + 2) = 35 }

- 82 -

and

RIE(Da)) ={ 62a + 1) —(4/1/7)x%,
y > (4 /5) x ,

$(3b +2) — (4 /7) x - (1 /7) }.

The procedure LOOP_COLLABATION constructs the system 5S,’ = (44 ° ,
E(Py) , ®) where the set £,°* is given by

Ly ={ (4) 2a - 4x < -1,
(7) 4x - 3b < 2 ,
(8) 4x - 2a < 1,
(9) 3b - 4x < -2 }.

Observe that all lequalities labeling edges of the loop P2 are removed sin-
ce the lequalities (5) and (6) label edges of the loop Ps and since the
lequality (3), 7§(36 + 2) - 7§(2a + 1) < -1, has been reduced to 0<0 .

(4) (7)

~~

\./
AN /

a (8) x (9) b

A
N

Figure 4.8.4.1: Graph G(£4 " ")

Again, we have two simple equality loops in the graph G(£2’ ”) , and we
obtain after two calls of the procedure LOOP_COLLABATION the system
Ss" = (0, E4" , 0) where

Es = { 4x - 7§(2a + 1) = 0,

28x - 35y = 0,

140% - 245§(3b + 2) = 35,
2a - 4x = -1,

36 - 4x = -2 }

The innermost REPEAT loop now terminates and the procedure CANONIZA-
TION obtains from the last two equalities the equality 2a - 36 = 1. We fi-
nally obtain the degenerated closed system Ss ’ = (®, {1=0}, ®) which is
unsatisfiable for the Presburger Arithmetic.

- 83 -

4.8.2. Observations

The formula ‘Fp of the first example results in two systems without le-
qualities. They only consist of equalities and inequalities.
This formula has been used to demonstrate how the reduction process,
described in figure 4.1, operates. Here, we want to use this example to
point out the differences between the concept of rewri t ing and the con-
gruence closure:
First of all, observe that the procedure CANONIZATION, a procedure com-
puting a canonical ground rewri t ing system equivalent to a finite set of
ground equations, contains one call of a congruence closure procedure
according to section 4.4.2. Here, the congruence closure is constructed
for the terms in that graph which represents only those terms occurring in
the equalities.
On the other side, if a conjunction of equalities and inequalities is decided
for satisfiabil ity only by use of a congruence closure algorithm, the graph
on which the congruence closure is computed, must represent each term
occurring in the equalities and inequalities.
Therefore, If the systems of example 1 would be augmented by inequalities,
the computational effort can significantly be increased for this method,
while the computation of a canonical ground rewri t ing system for the set
of equalities remains the same.
Roughly speaking, the congruence closure algorithm produces a maximal
set of equalities, while a canonical rewri t ing system equivalent to a set of
equations is minimal in the sense that no equation of a canonical set can
be inferred by the other equations of that set.
The concept of rewrit ing thus serves for compactness in representing the
given information.
Observe fur thermore that lequalities can not be processed by a congruence
closure algorithm. On the other side, rewrite rules can process terms
wherever they occur.

It is underlined by the second example that the rewri t ing concepts are ad-
vantageously incorporated in the decision process of the validity of a for-
mula of the quant i f ier- f ree Presburger Arithmetic extended by predicate
and function symbols:
For the formula SF = (xsgx /\ gxsx) DO x=gggggx. the reduction process
described in figure 4.1 would have produced a tremendous number of con-
junctions to be decided for satisfiabil ity in order to decide the validity of
F.

- 84 -

Shostak presented a procedure that decided the validity by constructing
only seven conjunctions. He needs an ILP-solver for the ILP’s associated
with the conjunctions and the recursive procedure EQPAIRS; an explicit
solution of a satisfiable ILP is required to determine the violations of well
definedness by the procedure EQPAIRS.
By the EQUALITY_LOOP_RESIDUE procedure, presented in this diploma
thesis, this computational effort reduces to the enumeration of one simple
equality loop, the construction of one rewrite rule, and the normalization
of one inequality. A fantastic improvement, isn't it?
Observe that the congruence closure algorithm alone is not directly
applicable to °F since it contains lequalities.

Example 3 points out that we have not yet succeeded in reducing the com-
putational effort for deciding the validity of the given formula.
But that is no point for desperation. We present a solution for this problem
in section 4.9.

The effects of the procedure LOOP_COLLABATION are particularly well
demonstrated by the examples 4, 5, and 6. All systems initially consist only
of lequalities.
In example 4, the simple equality loops encountered during the computation
are all contained in the system given initially. independently of their orde-
ring, their processing resul ts in an infeasible simple loop. Here, and in
example 5, the unsatisfiability is based on the detection of an infeasible
simple loop. In example 5, there exists only one simple admissible loop in
any system of the constructed sequence. This example figuratively demon-
strates the collabation of the graph.
Example 6 has especially been constructed to demonstrate how the colla-
bation of a loop affects the other loops in the graph: Edges disappear and
vertices are relabeled. And since the computation is not independent of the
ordering, some dif ferent orderings have been examined. This example sug-
gests to collabate the encountered equality loops according to their length
in an non increasing order. The aspect of the ordering of the enumerated
admissible simple loops is taken up in more detail in the next section 4.9.
For the example 6, the unsatisfiability is detected by reducing one of the
obtained equalitities to 1=0.

- 85 -

4.9. Further aspects and improvements

Since the generation of equalities by the procedure LOOP_COLLABATION
plays a central role in the EQUALITY_LOOP_RESIDUE procedure, let us
examine this procedure first.
The procedure LOOP_COLLABATION computes, according to its descr ipt i -
on, for a system S and an equality loop D the system S(D) whose equali-
ties are obtained by augmenting those of S by € .
Since we have proved the equivalidity of the sets Lp= and & for such a
loop by Lemma 4.10, wouldn't it be easier to add the lequalities Lp , to the
set £ or to replace Lp ¢ by Lp= instead of replacing Lp by the set Ep in
the p rocedu re LOOP_COLLABATION ?

Recall that the construction of the equalities of Ep requires the computati-
on of all subresidues of the loop P with a specific initial vertex, the vertex
labeled with the smallest term t4.
It would still be easier, but it would not be of advantage:
First of all, the set £p- is not minimal since the set &p is equivalent to
Lp= and has one equality less. Second, the right sides of the rewr i te rules
in R(&p) are already reduced wrt the rewrite rules R(&p) since only the
6-term t , appears on the right side. And third, the terms ¢ , , . . . , t, can
be replaced in all lequalities and inequalities by using one application of a
rewrite rule of Rp) for each occurrence of ¢ ; , 2sisn. Finally, the graph
for the set LP) can easier be obtained from the graph G(£) if Ep is used
instead of £p-.
All these are advantages of Ep. But what about the disadvantage of com-
puting all subresidues of D subject to a specific Initial vertex ?
This task can be transferred to the enumeration of the admissible simple
loops in the procedure LOOP_RESIDUE, where the residue of each encoun-
tered admissible simple loop modulo cyclic permutation and reversal is
computed by chosing that vertex labeled with the smallest term as initial
vertex. The subresidues can be computed without any additional effort.
Let the set &~ denote the set of equalities of the system before entrance
into the innermost REPEAT loop and the sets Es, . . . , En of equalities be
obtained from the equality loops of one pass of the innermost REPEAT
loop.

- 86 -

After termination of the innermost REPEAT loop, the procedure CANONI-
ZAT ION is called for the set E=&~ U & U . . . U &,. Since the procedure
CANONIZATION computes a canonical rewriting system equivalent to &
according to the procedure given in f igure 4.4, the congruence closure of
& is constructed.
Observe that the procedure CONGRUENCE_CLOSURE of figure 3.3 incre-
mentally computes the congruence closure of a set R {U{ (u ,0) } from the
congruence closure of R by calling the procedure MERGE with arguments
u and o, and that the sets Es, . . . , £ , correspond to subsets of the equi-
valence classes of the congruence closure of &.
This observation can be used to reduce the computational effort for con-
structing the congruence closure of the set &.
Further improvement is immediately possible in the case where E~=¢ and
all simple equality loops are initially contained in the graph. This is not an
unusual case. Observe that examples 2, 3, 4, and 6 satisfy this condition.
In order to use the algorithm for computing a canonical ground rewri t ing
system with more advantage, the enumeration of the simple admissible
loops may be modified in such a way that the least terms of the enumera-
ted loops form an increasing chain.
If the loops are enumerated in the suggested way, we can also incremen-
tally compute a canonical rewri t ing system equivalent to &4 U . . . U &, by
adding the appropriate steps of the WHILE loop of f igure 4.4 to the proce-
dure LOOP_COLLABATION. We thus have a canonical rewriting system for
E In case of E-=6.
Of course, if for E -+ the set &~ could efficiently be modified and exten-
ded to a canonical system equivalent to E&- U E, U . . . U &,, this improve-
ment would be preferable to the previous suggestions.

The following example demonstrates that it may be of advantage to modify
the procedure LOOP_COLLABATION in such a way that the set of equalities
is augmented by a canonized set C(&p) which is equivalent to Ep, instead
of augmenting the equalities by Ep. The sets £L(P) and D(P) are then
advantageously obtained by reducing £-£p» and I wrt the rules R(C(&p))

URpA.
For example, consider the formula

F = { (§ la ,c)sa A as f l a ,e)) A
(xsglx) A glx)<x) A

(bsh3 (6) N R2 (b)sh®(b) A A3 (b)sb) }
2

{ 6lßla,ce),e)=a Vg3(x)=x VA(b)=b 1}.

- 87 -

Here, the hypothesis of the formula °F is a conjunction, and the negation
of this formula,

FF = { (§ la ,c)sa A as f la ,c)) A
(xsglx) A glx)sx) A

(b<sh®(b) A AP(6)<h®(b) A h3(b)sh) }A |

{ § l f lac) i c) ta NAg®lx)tx AMb)EB }

resul ts in one system S= (4 , 6, 9) for its disjunctive normal form where

L= ({ßla,c)sa, asfla,c)), xsglx), g(x)sx),
b<h?(b), A2(b)<h®(b), AP(b)<b },

D= { f l f l a , c) , e) t a , g%(x) t x , h (b) t b }) .

The EQUALITY_LOOP_RESIDUE procedure may construct a sequence of
two systems corresponding to the encountered equality loops. For example,

Sy = ({ §la,c)sa, asfla,c)), xsglx), g(x)<x) },
{ b=A%(b) , b=h%3(}) },
{ § l § l ac) , c) t a , g%(x)tx, A (b)Eb)) ,

and Sz = ({ xsglx) , g(x)sx) },
{ b=A3(b), b=h"®(b), §(a,c)=a },
{o0 to , g%(x) t x , A(6)+*b6)}).

But the suggested version would canonize the set {(6=A®(5), 6=A%(b)}. Only

Se’= ({ §la,c)sa, asf la ,c)) , xsg lx) , g lx)sx) },
{ 6=4(6)3,
{ § (§ l asc) i c) t a , g®(x) t x , 0+0 })

would be constructed to detect the unsatisfiabilty.
Since ground rewrite rules can always be directed and since a Noetherian
system is confluent if it is locally confluent, the set J) for an equality loop
P is a canonical system uniess there is a critical pair consisting of two
terms which label vertices of the loop such that one term is a subterm of
the other. In the example, A9(6) is a subterm of A®(6) and both terms label
vert ices of the same equality loop.
If either of the other two simple equality loops would have been encounter-
ed, the procedure LOOP_COLLABATION would have immediately obtained
the inequality 020. This is not an unusual case since many formulas in pro-
gram verification are of a simple form. The canonization of the set En
thus requires only l i t t le additional effort and the unsatisfiability may be de-
tected much earlier.

- 88 -

Example 3 was deliberately constructed from three formulas to make the
multiplicative effect on the number of conjunctions in the disjunctive normal
form obvious.
Since the expansion into disjunctive normal form of the negated formula
=F results in 24 conjunctions which groupwise contain same information
(i.e., §(a,c)<a and as§la,c) occurs in 8 conjunctions), the compactness of
the presentation of the information must have been lost by the expansion
process.
This gives rise to a new idea: Instead of omitt ing the chance to work on
the original formula, we suggest to compact the formula in a perspicacious
way described in figure 4.9. |

A formula C is a subconjunction of a formula &F if C is a conjunction and
a subformula of F . It is obvious that any replacement of C by an equivalent
formula does not change the validity. It suff ices to take only maximal sub-
conjunctions into consideration. Otherwise, redundant computation is done.

Let us now turn our attention back to example 3:

‘F = { (§ la ,c)sa A as f la .c)) V

 (x sg l x) A glx)sx) V
(bsh3(b) NA R3(b)<h®(b) AK) }

—

{ (§ (§ l a , c) , c) sa A as f l f l a , c) , e)) V

(g®(x)sx A x<g®(x)) V
(h(b)<sb A bsh(b)) } .

Before it is negated and expanded into disjunctive normal form, the proce-
dure described in figure 4.9 t ransforms this formula to the equivalent for-
mula

{ az§la,e) V =x=glx) V b=h(b) }

| =
{ § l f lac)c)za V g%(x)=x V Ah(b)=b

Its negation is now expanded and consists of only three systems, namely,

S ı= (0, { az§ lase) }, {§ l§ lasc)c) t a, g5(x) + x, Alb) + b})

Sa=(0 , { x=g l x) } , { (§ l§ lac)c) t a, g®(x)* x, h(b) + b}) and

Sy=(P, {b=h(b)}, lblase),e)+ a, g5 (x) t x, Alb) + b})

Each system is immediately proved as unsatisfiable by one call to the pro-
cedures CANONIZATION and REDUCTION. We thus have an e igh t fo ld
reduction in the number of constructed systems.

- 89 -

FOR each subconjunction C of F
Do BEGIN |

apply the EQUALITY.LOOP_RESIDUE procedure
to the corresponding system S(C) of C
IF S(C) is satisfiable

THEN Jet CIS) be the conjunction that cor-
responds to the obtained closed system

ELSE Jet C(S) be 040
replace in “JF the subconjunction C by C(S)

END
Let Fa be the formula obtained from °F by moving the
negation inwards, i.e., replacing «+ (A\V/B) by “AN 28.
FOR each subconjunction C of Fa
DO BEGIN

apply the EQUALITY_-LOOP_RESIDUE procedure
to the corresponding system S(C) of C
IF S(C) is satisfiable

THEN Jet C(S) be the conjunction that cor-
responds to the obtained closed system

ELSE Jet C(S) be 0%0
replace in Fa the subconjunction C by C(S)

END

Expand the resulting formula into disjunctive normal form,
obtaining ‘F np. and construct a system S for each
conjunction C of the disjunctive normal form Fp .
FOR each system S
Do BEGIN

apply the EQUALITY.LOOP_RESIDUE
procedure to system S
IF S is satisfiable

THEN RETURN (°F is not valid)

END
RETURN (“F is valid)

Figure 4.9: Algorithm deciding the validity
of a formula Fe PA,

- 90 -

5. Conclusion

This diploma thesis presents a new decision procedure for the quantifier-
free Presburger Ari thmetic extended by predicate and function symbols,
the EQUALITY LOOP RESIDUE procedure. |

The well definedness of function symbols serves for combinatorial explosion
in the complexity of this decision problem if a sledgehammer is used like in
the procedure of the decidability proof in section 4.1.
Shostak has postponed this problem and f i rs t searches for a solution of
the associated ILP. If one is found and a violation is detected, he explicitely
computes a formula that summarizes the violation.
On the other side, the EQUALITY LOOP RESIDUE procedure can implici-
tely guarantee the well definedness of the function symbols. This leads to
a further milestone in reducing the computational effort of this decision
problem which is essential to mechanical theorem proving, program ver i f i -
cation, and other tasks.
Basically, it is a combination of two concepts: The concept of the LOOP_
RESIDUE method, originally designed for the unextended class, and the
concept of rewriting on ground terms which makes use of the information
which is compactly represented by additional use of = and #.
As it is evident by the examples in section 4.8, the computational effort
can significantly be reduced.
Though the worst case time complexity of the EQUALITY LOOP RESIDUE
PROCEDURE is still exponential since it uses a modified version of the

. Loop-Residue procedure as subrout ine ,the examples have pointed out that
there is still enough room left for an improvement of such decision proce-
dures.
Furthermore, we have seen in section 4.9 that the application of this pro-
cedure is not restr iced to the quant i f ier- f ree conjunctions of a disjunctive
normal form:
As shown by the example

FE { (§ la , c) sa A as f l ac)) V
(xsg(x) A glx)<x) V

(bsh3(6) A R3(6)<h®(6) A AZ%(b)<b) }
2

{ (§ (§ l a , c) , c) sa A as f l f l a , c) , c)) V
(g3(x)sx A xsg>(x)) 1%

(h(b)<sb A bsh(b)) 1},

- 91 -

the most effect ive way to use the new ideas is to disassociate with the
conventional method of negating and expanding into disjunctive normal form
and with the self-made restr ic t ion of concentrating only on the decision
algorithm for the satisfiabil ity of a system.
On the cont rary to the convent ional method , this example ind ica tes that
information should be compacted and processed, even before the negation
is expanded into disjunctive normal form and even before the formula is
negated.
Some interesting aspects have been pointed out in section 4.9 and a lot of
suggestions for improvements have been made which have to be evaluated
in detail. According to the examples and the suggested improvements, it
quite seems that the new procedure, the EQUALITY LOOP RESIDUE proce-
dure, is only the f i rst step of a substantial improvement of decision proce-
dures of the quant i f ier- f ree Presburger Arithmetic extended by predicate
and function symbols.

- 92 -

Appendix A:
Proof of the main theorem for the unextendedclass

Since theorem 2.3 is fundamenta l for the p rocedure of the extended class,
its proof is given here in detail. It is a refined version of the proof presen-
ted in [24] in which for some cases the idea is given and the proof was
left to the reader.

Lemma A.1:
The concatenation PQ of two admissible paths P and Q is admissible if
and only i f sgn(bp *ag) = -

Proof:
Note that sgnla) = sgnlsgnlazlasaz) = sgnlazasaz) = sgnlay)
and sgn(b) - sgnl-sgnlaz)bsby) - sgn(b4;b4b2) - sgnl bz)
for sgnlbsaz) = -1 and <a ,b ,e ” = {aq ,bq ,¢q ” *az ,basca? .
And, by induct ion, sgn(a)=sgnla4) and sgn(b)=sgn(b ,)
for Cabye? = agsbgrcy? *Aaz,62,627 * . 00#* < An ıBdnrCn?

with sgnlb;a;. 4) = -4 for 4qsi¢n.
Recalling the definition of admissibility, the lemma thus fol lows. |

Coro l lary A.2:
For an admissible loop D and its reverse Q, we have
i) P is infeasible if and only if Q is infeasible

if) P is an equality loop if and only if Q is an equality loop

Proof:
If we denote by the function ~ the change a ,b , c ” ~:=<b,a,c”
on tr iples, then

CAgebasez? “ * agobg rey? ™

= < bzsa2,C27 * byotgsCyq?

= sgnl by) < 62645 -azaq, (c2b4-c4a2)7
= sgnlaz) < -bybz , as az, (cqaz-c2b4)>
= (Cagybqecy? * Agyb2,¢27) ~

and by induction
*,;20 (Ap - i sbp - i s€n - i ” ~) = * ,20 Cag , b i ve i?) ~

Thus,
e(P)~ = <alP),b(P)l,ciP)>~ = <b (P) ,a lP) , e (P)>

= {a lQ) ,6 (Q) ,e (Q)> = ¢(Q).

- 93 -

i) P is infeasible
i ff (al(P) + bP) =0 and ¢(P) <0)
iff (a lQ) + 6(Q) =0 and ¢(Q) <0)
iff Q is infeasible

ii) P is an equality loop
i f f (alP) + b(P) =0 and c(D)= 0

iff (a lQ) + (QQ) =0 and e(QU = 0
iff Q is an equality loop []

—

e
a

”

Corollary A.3:
For an admissible permutable loop D and a cyclic permutation D” of P,
i) P is infeasible if and only if D’ is infeasible

if) P is an equality loop if and only if D” is an equality loop

Proof:
If P=P’, we are done. Otherwise, there are paths Q and R
wi th P=QR, P’=RQ,

e(P) = Ka lP) ,b (P) ,e lP)>
= sgnlalR)) a lQ)alR), -b(QI(R), (c(Q)alR)-(RI(Q)) >,

e(P’) = a lP ’) ,6 (P*) ,e (P ’)?
= sgnlalQ)) Ca lR)a lQ) , -b (R) I (Q) , (c (R)a lQ) -c (QI6(R)) ,

and, by Lemma A.1, sgn(b(R)al(Q)) = sgn(b(Q)alR)) = -1.

Denote by <“ for w#0 the relation AB iff Aw «Bw and analogously by
<’° for w#0 the relation Ax* B iff Aws Bw.
Now,
i) P is infeasible

iff al(P) + 6(P)= 0 and ¢l(P) co

iff a lQ)a lR)-6(QIB(R) = 0 and (Q)alR) AR) ARIUQ)
iff b6(R)/alR) = alQ)/b(Q) and ¢(Q)alR) AR) ¢(R)6(Q)
iff b(R)/alR) = alQ)/b(Q) and QUER) HR) ((R)atQ) 2°
iff alR)alQ)-b6(RIB(Q) =0 and (R)alQ) AQ) (Q)s(R)

(recalling sgn(b(R)al(Q)) = -1)

iff a lP’) + b6(P’) = 0 and ¢(P’) co
iff PD” is infeasible.

29 : Observe that Ax ¢ ° * Bx Iff A ° B and x to .

In the same way, we have
ii) P is an equality loop

iff alP) + bP) =o and ¢(P) =o0
iff a lQ)alR)-(Q)R) =0 and cl(Q)alR) = c(RI(Q)
iff O(R)/alR) = alQ)/b6(Q) and e(Q)alR) = (R I)
iff b(R)/alR) = alQ)/b(Q) and c(QIb(R) = e(R)alQ)
iff a lR)a lQ)-b(RIQ) =0 and cl(R)alQ) = c(Q)b(R)

(recalling sgnl(b(R)al(Q)) = -1)

iff alP') + bP’) =0 and e(P’) =o
iff PD” is an equality loop.]

Corollary A.2 . i) and A.3.i) refer to the definition of the closure of a graph:
Since a closure has for each admissible simple loop modulo cyclic permu-
tation and reversal an edge labeled with its residue lequality, the closure
of a graph is not uniquely defined. But for two closures (4 and §,, A4 has
an admissible simple loop if and only if (2 has an admissible simple loop by
the corollaries.
Definition: Define the discriminant dp, or (PD), of an admissible path D by

dp=cp/(ap+bp), where ap,bp,cp” is the residue of P.

Lemma A.4:
If PQ is an admissible loop from vg to vo, then the following statements
are equivalent:

i) PQ is infeasible
ii) dp »4Q dg

iii) ap <%P a9
Proof:
If PQ is an admissible loop from vo to vg, then al(P) = 6(P) = 0, and by
Lemma 1, sgn(-b6(P)al(Q)) = 1. Obviously, ii) and i i i) are equivalent.
We have

(PQ) = efP)xelQ) = 0 ,b (P) , c (P)) *<a lQ) ,0 ,e (Q)>
=<0 ,0 , sgn la l (Q)) ((P)a lQ) - c (Q)6 (P))>

Thus,
PQ is infeasible

iff e(PlalQ) «AMA QP) Li(-86(PIal(Q)) 3
if -e(DJ/6(D) «AQ -£(Q)/altQ)
iff (Prep) >a (Q)/al(Q)
iff AP) a l) AQ) HJ

nn

- 95 -

Lemma A.5:
If a closed graph & has an infeasible loop from vg to vo, then & has an
infeasible simple loop.

Proo f :
Let D be a shortest infeasible loop from vo to vo in § . If D is simple, we
are done. Otherwise, D can be expressed as P;P2P3, where D2 is an
admissible simple loop. We thus have

(1) a4=0 and b;=0 (vg is the first and last vertex of P)
(2) sgnl(b,az) = sgnlbzas) = -1 (by Lemma A.1)

e(PsP2) = 0 ,b4 ,¢47 * { az,b2,¢2? =sgn lay) 0 , - bsbz , (cqaz -c2b4)>

cqa2-¢c2by a; ¢4 C2- AR Ca %2 _ _4z2 2(3) (P4PD2)= “bbs = ba by 62 ba (Pq) + bs

e(P2P3) = azba,c2” *Caz,0,¢5” =sgnlaz) azasz,0,ca3-¢c3b3”

c2Q43~ c3b2 C2 b , C3 C2 b2
(4) 2 (P2Pa) A203 az az * aa az az * (Ps)

(5) 3(D4D2) >43 HPs) and (Py) »A2 ö(D2PD3)

(by Lemma A.4 and the infeasibility of PD).

We now proof by contradiction that the simple admissible loop D2 is in-
feasible. Suppose P . is not infeasible. Then either |) a+62,=0 and ¢z20 or
I) ax+b,%0.

Because of the length of the proof, the following survey of the distinguis-
hed cases may be very helpful to reconsider the proof:
| as+b,=0 and ¢520.

Il az+bsto.
II. A Paz is not permutable
II.B Dz2 is permutable and D2=D2’

11.B. 1 sgnla)=sgnlay)
11.B.2 sgn la)=sgn(b>)

I l .C Pa is permutable and PtP.’
11.C.1 sgnlazx+bz)=sgnlay)
11.C.2 sgn laz+by)=sgn(b ,) .

- 96 -

I) Assume az2+b2=0 and c2z0O.
Since by Lemma A.1, (2), and b2 = -az,

sgnlbgaz) =sgnl(bylbyazbrasz) ay)
=sgnlaz bz) =sgnl(-azaz) = -1.

Therefore, the loop D;D3 is admissible. Since sgnlazaz)zsgnl(-bzaz)=1,
we have

~ca/ba = ca/az 293 0.
So by (3), (5), and Lemma A.4,

(Py) = (- b2 /az) d(Py) = HP4P2) - ca lbs
243 AHP4P2) >%3 HPs).

The loop P4Ps is thus an infeasible loop from vg to vo and we have a
contradiction to the assumption that P=PsP.Ps is a shortest infeasible
loop f rom vg to Do.

I) Assume az+bst0.
Now the closedness of & provides an edge & labeled with axse that
connects some vertex x of the admissible loop P , with the vertex vo,
where ¢ / a is the discriminant of some cyclic permutation D2’ of Pa.
We have the following three cases:

A) Pa is not permutable,
B) P. is permutable and D2=D2’, and
C) Pa i s permutable and D24D2’.

11.A) Pz is not permutable:
We then have sgn(azb2)=1 by Lemma A.1.
Thus,

P=P2". a=a2+b2, c=c,,
and

sgnla) =sgnlaztba) =sgn laa) =sgnl(by).

Since
sgnlbsa)=sgn(byaz)=-1

and sgnlaag)=sgnlbzaz)=-1,

both P4& and ED3 are admissible loops from vg to vg.
By (3) and (4), we have

- 97 -

b“ LAPP Zap Zappa) + Eea(py)2 a azb2 z

and since (5), and sgn(a)=sgn{az)=-sgnlas):

(P4P2) <A (Ps)
and d(P2P3) <A (Py) .

We claim that at least one of DE and EPD3 is infeasible. Otherwise, by
Lemma A.4, (Py) <A 3(E) and AE) <3 3(D3) (or, since sgnlaay)=-1,
Ps) <2 3E&)). Thus,

2308)

2p cz bs cz az

- bz b r ' az | az+bs)

«(Gap appa) (50) + (Zap) apap) Ze)
a (Z2apy) arpa)| (t e J + | 2 apa) +3 (P4)) (—5-)

a (Sag) eae)) | Sr)+ (Zoervaer) (S22)
= 20g,

a contradiction. Therefore, either P4& or EPs is an infeasible loop from
Do to vg contradic t ing the shortness of P.

11.B) P2 is permutable and D2=D2’.
We then have sgn(azbz)=-1 by Lemma A.1. Recall that a=a; +b, and

sgnlbsas)
=sgnlbylazaz)(bzbz)as)
=sgnlbsaz)sgnlaz by) sgnlbzas)
=(-1) * (- 1) * (- 1)

=-1.

We distinguish between the two cases
1) sgnla)=sgn(az) and
2) sgnla)=sgn(b.).

- 98 -

11.8.1) sgn la)=sgn(az) .
Since

sgn(b,az) = -1
and

sgnlbqa) = sgnlbqaz) =-1,
both D;D3 and P,& are, by Lemma A.1, admissible loops.
Suppose neither PyP; nor P,& is infeasible.
Then, by lemma A.4, a(P4) <?3 3(D3) and (Py) <? 3(E) (or equivalenty
Py) <%2 AP;) and (Py) <2 IHP,), since P2)=d (&) and
sgnlazaz) =sgn(-bzas3)=1). Thus by (5)

AP.) = (22222) arp.) - = 2D)

az | 42+ ba _ 62
o l | az Japs) az Pa)

_ ¢2 . b2
a az az (Pa)

= 3(DP2D3) A2 (Pq) ,

a contradiction.
Therefore, at least one of P,P; and P4& is infeasible. But this once more
contradicts the shortness of P .

11.B.2) sgnla)=sgn(b,).
Since

sgnlbgaz) = -1
and

sgnlaaz) = sgn lbzaz) = - 1 |

both P,P; and EP; are, by Lemma A.1, admissible loops.
Suppose neither PsP; nor ED3 is infeasible.
Then, by lemma A.4, 3(P,4) <%3 (P;) and aE) <4 P3) (or equi-
valenty 3(P2) <43 3(D3), since 8(E) = 3(P2)). With (3) and (5), we have

Pos (S52)ap - 52 ap)

ag (B2*ba) yy) - 22 31
2% | ba Jap.) 5, Pa)

- QQ -

C2 _ az
b2 bo (Py)

HP4P2) > 43 APs) ,

a contradiction. We therefore have proved that at least one of PsP;
and &P; is an infeasible loop which again contradicts the shortness of PD.

11.C) Dz is permutable and PP’ .
Since D2 is permutable, we have sgnlazbz)=-1 and since D2+D2”, there
are paths Pg and Ps such that Pg has x as last vertex and Ps has initial
vertex x (Pz=PyPs and Po'=PsPy). The residues of D2 and Py,’ are

e(D2) = e(PyPs) = ay, by, c4>*< as, bs, cs>

sgnlas) <ayas, -bybs, cyas - csby> |

e(P2’) = e(PsPy) = { as , bs, cs> *<L ay, by, c4>
= sgnlay) <asay, ~bsby, csay - c4bs>.

Observe that
a = sgnlay) (agay - bsby),
ec = sgnlay) (csay - cbs),
az = sgn las)agas ,
ba = sgnlas)(-bybs) = sgnlby)bybs,

and ¢z = sgnlas) (cqas - csby).
We distinguish between the two cases

1) sgnlaztby) = sgnlaz),
and 2) sgnlax+by) = sgn(by).

11.C.1) sgnlaz+bo)=sgnlay).
Since

sgnlbya)
=sgnlby (sgnlay) (asay -bsby)))
- sgn (by (asas)ay (agas = by bs))

=sgnlbyas)*sgnlay)rsgnlasl(agas -bybs))
=(-1)xsgn lay) *sgn lay)
=-4 ,

the loop D/Dg4E is admissible by Lemma A.1. The discriminant of the loop
Po can be replaced by the discriminant of the loop Pa:

- 100-

_cqa -cby cylagas-bybs) - (csay - cybs)
Pa l) i AgA i Ag (azas - bybs)

_ ag lcqas - csby) ca _
"ag (agas - bubs) az+bz Pa)

Suppose that both P,P; and D;P4E are not infeasible. Then, by Lemma
A.4, 3(P4) 533 3(P3) and (Py) <4 3(D4E) = 2(P2) Recalling sgnlaz) =
sgnlay) =sgn lay) and (5) , we have

b b(Di) = (2222) arp) - Zap

az (az*bz _ 52‚az | - arp.) 2 (Ps)

_ 62 _ ba- 2 2 (Po)

= A(P2P3s) 42 (Py),
a contradiction. Therefore, at least one of the loops D,D3 and D;D4€ is
infeasible contradicting the shortness of D.

11.C.2) sgnlaz+bz)=sgn(by).
Since

sgnlaas)
=sgn l (sgn lay) (asay - bsby)) as)
=sgnlas(agas -bybs))*sgnlay)
=sgn laz + bz2)xsgnlaz)
=sgnlaz by)
= -4,

the loop PsP; is admissible by Lemma A.1. The discriminant of the loop
EDs can be replaced by the discriminant of the loop Pj:

cas - csa _ (csay - c4bs)as - cslasay - bsby)
- abs a - (A504 - bsby) bs

_ bs (cyas = csby) _ ea _

a bs (agas = 6462) a az+b , a MP)

Again, suppose that both PsP; and EDsPD3 are not infeasible. We then
have by Lemma A.4 that 3(P4) <%3 a(P3) and (Pz) = IEPs) <%3 AHP3).
Recalling (5), we have

(EPs)

- 101-

b
Pw) = (HE)apw) 32 ape

a3 a2+b , _ az
2 bs Jap .) ba (Py)

- ‘2 - A= bs 5. (Py)

= HU PsP2) »A3 HPs) ,

a contradiction. Therefore, one of the paths PsP; and EPsP; is an infea-
sible loop contradicting the shortness of P.

The main theorem:

If & is a closed graph for 5 , then the following statements are equivalent:
i) S is satisfiable
ii) 4 has no infeasible simple loop

Proof:
If S is satisfiable, then, by Lemma 2.2, the set of lequalities labeling gq
is, as augmentation of S by its loop residue lequalities, satisfiable. §
thus has no infeasible simple loop.

If, conversely, § has no infeasible simple loop, then inductively construct
a sequence of numbers 04° , 04 ° , ..., 0, ’ and a sequence of graphs Go, G4,
..., Gg Where vg, 04 , ..., 0 , are the variables in S in the following way:
Basis:
Let 05° =0 , Gp = § .
Induction Step:
For 0<i (st) let vo; be any value in the interval [{ ; ,u;J and obtain &; from
d.-4 by adding two new edges from v; to vg, labeled v;<v;” and o;20; ’ ,
respectively, where

l ; = max { 3p | P is an admissible path from
vo to vo; in A:-4 and bpc 0 }

and uu; = min { dp | P is an admissible path from
vo; to vg in G4 and ap>0 } 30

30 : We assume tha t fo r emp ty se t s , max { }= - 00 and m in { }= 00. Obse rve

t ha t for a pa th PD f r om vg to v ; w i t h 62<0O tha t v;20D, s i nce ap=o0,

=ep/ bp, and bpv; sep by the r es i due i nequa l i t y . In a s im i l i a r way , for
a path P f r om o; to vo w i t h ap>0 , we have v ;<dp , s i nce ép=0,
dp=op/ ap , and apv;sep by the r es i due inequal i ty.

- 102-

With (i) of the following claim we ensure that the o;’ and § ; are well
defined: |

CLAIM
(i) lL; su ; for 1< i s t

(ii) € ; has no infeasible simple loop for 1<is t

Proo f

By induction on ¢.

Basis.
For i=0, 4:34 and both (i) and (ii) hold.
Induction Step (i):
Assume [;>u;. Then, by definition of [; and u;, admissible paths Q and R
from vg to v; and v; to vg, respectively, exist in A: -4 with 6(Q) <0,
a(R) >0, and 3(Q)>3(R) . Then the loop QR from v , to vy, is admissible
by Lemma A.1 and infeasible by Lemma A.4.
@):-4 then has by Lemma A.5 an infeasible simple loop, contradicting (ii) of
the induction hypothesis.

|

Induction Step (ii):
Assume on the contrary that &; has an infeasible simple loop PD. Since
€).-4 has no such loop, and since the two new edges in & ; form no infea-
sible loop, P (or its r eve rse) must be of the form Q&, where & is one of
the two new edges and Q is a path from vg to 0 ; in § ;_ , .
By admissibility of Q&, sgn(b(Q=a()) = -1. Thus, b(Q) <0 for a l&)=1
(or 6({Q)>0 for a l&)= -1 , and a(R) >0 for R , the reverse of Q), which
implies [; 29 (Q) (or u ;<a (R)=3 (Q)) by the definitions of {; and u;, re-
spectively.
If € is labeled with v ;<0 ; ' (0 ;20 ; ’) , then al(&)=1 (al(&)=-1) and, by
Lemma A.4, a(Q)>d(&)=0; ’ (3(Q)<a(&) =v; ’) , contradicting 0;"2{;20(Q)
(0; ’ su ;s0 (Q)).

[] cLAM

Let ax+bysc be an inequality of S labeling an edge € in §, . P=&4&¢E;
forms an admissible loop where &4 is labeled with x'<x (x<x') for a>0
(a<0) and E2 is labeled with y’ <y (y<y’) for 650 (b<0). So

z(E4) =< 0, - sgn la) , - sgn la) x ’>

and
z(E2) =<-sgn(b), 0, ~sgnlb)y’>.

- 103-

The loop residue e(D) computes to

e(P)
= e(Ej) *e(E)*e(E2)
=<0O, -sgnla) , - sgn la) x ' > *<a , b, c> *e (E2)
=<0 , -sgn(a)(-sgn(a)b) , sgnla)(-sgnla)x’a - c l -sgn(a)))> *e (& ;)
=<0 , b, -ax’+c>*<-sgn(b),0,-sgn(b)yw”>
=<0 , 0, -sgn lb) ((-ax ’+c) (-sgn(b)) - (-sgn(b)y ’)b)>
=<0 , 0, ~ax’+c-by’> .

Since by the claim above and Lemma A.5, § , has no infeasible loop from vo
to vo. We thus have -ax’ -by’+c20, or ax’+by’sc. So the ov; satisfy the
lequalities of S .
So we have now proved the reverse direction that S is satisfiable if & has
no infeasible simple loop.
With the forward direction, we have now completed the proof of the main
t heorem.

=

- 104-

REFERENCES:

1.

2.

10

1"

12

13

ACKERMANN, W. “Solvable Cases of the Decision Problem”, North-
Holland Pub. Co., Amsterdam, 1954, pp. 98-103.

APSVALL, B., SHILOACH, Y. “ A polynomial-time algorithm for solving
systems of linear equalities with two variables per inequality”, Proc.
20th Ann. Symp. on Foundations of Comp. Sc., San Juan, Puerto
Rico, 1979, pp. 205-217.

. BLEDSOE, W.W., “A new method for proving certain Presburger for-
mulas”, Advance Papers 4th Int. Joint Conf. on Ar t i f . Intel l . , Tibilisi,
Georgia, U.S.S.R., Sept. 1975, pp. 15-21.

. COOPER, D.C., “Theorem proving in arithmetic without multiplication”,
B. Me l t ze r and D. M ich ie , Eds., In: Mach. In te l l . 7, Amer i can Elsevier,
New York, 1972, pp. 91-99.

. DERSHOWITZ, N., “Termination of Rewriting”, J. Symb. Comp., Vol. 3,
1987, pp. 69-116.

. DOWNEY, P., SETHI, R., TARJAN, R. E., "Variations o f the Common
Subexpression Problem”, J. ACM, Vol. 27, No. 4, Oct. 1980, pp. 758-
771.

. GALLIER, J., NARENDRAN, P., PLAISTED, D., RAATZ, S., SNYDER, W.,
“Finding canonical rewriting systems equivalent to a finite set of
ground equations in polynomial time”, Lusk and Overbeek, Eds., In:
Proceedings of 9th Conference on Automated Deduction, Springer,
Argonne, 1988, pp. 182-196.

. GOMORY, R. E., "An algorithm for integer solutions to linear pro-
grams”, R. L. Graves and P. Wolfe, Eds., In: Recent Advances in
Mathematical Programming, McGraw-Hil l , New-York, 1963, pp.
269-302.

. HARRISON, M., “Introduction to Formal Language Theory", Addison-
Wesley Pub. Co., Reading, Mass., 1978.

. HOARE, C.A.R., "An axiomatic basis for computer programming”,
Commun. ACM, Vol. 12, 1969, pp. 576-580.

. HUET, G., "Confluent Reductions: Abstract Properties and Applications
to Term Rewriting Systems”, J. ACM, Vol. 27, No. 4, 1980, pp. 797
-821.

JOHNSON, D., “Finding all the elementary circuits of a directed
graph”, SIAM J. Comput., Vol. 4, No. 1, March 1975, pp. 77-84.

KozeN, D., "Complexity of finitely represented algebras”, Proc. 9th
Annual ACM Symp. on Theory of Computing, Boulder, Colorado, May
1977, pp. 164-177.

|

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

- 105-

KREISEL, G., KREVINE, J. L., "Elements of Mathematical Logic",
North-Holland Pub. Co., Amsterdam, 1967, pp. 54-57.

LOECKX, J., SIEBER, K., "The Foundations of Program Verification”,
Teubner, S tu t tgar t , 1984.

NELSON, G., OPPEN, D., "A simplifier based on efficient decision
algorithms”, Proc. Fifth ACM Symp. on Prog. Langs., Tucson, A r i z .
Jan. 1978.

NELSON, G., OPPEN, D., “Fast Decision Procedures Based on Con-
gruence Closure”, J. ACM, Vol. 27, No. 2, Apr. 1980, pp. 356-364 .

NELSON, G., OPPEN, D., “Simplification by Cooperating Decision
Procedures”, ACM Transactions on Prg. Langs. a. Sys., Vol. 1, No. 2,
Oct. 1979, pp. 245-257.

OPPEN, D., "A 222N upper bound on the complexity of Presburger
Arithmetic”, Ph.D. Th., Univ. of Toronto, Toronto, Canada, 1975.

PRABHAKER, M., NARSINGH, D., "On Algorithms for enumerating all
circuits o f a graph”, SIAM J. Comput., Vol. 5, No. 1, March 1976, pp.
90-99 .

PRATT, V. R., “Two easy theories whose combination Is hard”, Tech.
Rep., MIT, Cambridge, Mass., Sept. 1977.

PRESBURGER, M., “Uber die Vollständigkeit eines gewissen Systems
der Arithmetik ganzer Zählen in Welchem die Addition als einzige
Operation hervortritt.”, Sprawozdanie z | Kongresu Matematykow
Krajow S lowcansk ich Warszawa , Warsaw, Poland, 1929, pp. 92-101.

READ, R. C., TARJAN, R. E., “Bounds on backtrack algorithms for
listing cycles, paths, and spanning trees”, ERL Memo M 433, Elec-
tronic Research Lab., Univ. of California, Berkeley, Calif., 1973.

SHOSTAK, R., “An algorithm for reasoning about equality”, Commun.
ACM, Vol. 21, No. 7, July 1978, pp. 583-585.

SHOSTAK, R., “A Practical Decision Procedure for Arithmetic with
Function Symbols”, J. ACM, Vol. 26, No. 2, Apr. 1979, pp. 351-360.

SHOSTAK, R., "Deciding Combinations of Theories”, J. ACM, Vol 31,
No. 1, Jan. 1984, pp. 1-12.

SHOSTAK, R., "Deciding Linear Inequalities by Computing Loop Re-
sidues”, J. ACM, Vol. 28, No. 4, Oct. 1981, pp. 769-779.

SHOSTAK, R., “On the SUP-INF Method for Proving Presburger For-
mulas”, J. ACM, Vol. 24, No. 4, Oct. 1977, pp. 529-543 .

SZWARCFITER, J. L., LAUER, P. E., “Finding the elementary cycles
of a directed graph in O(n+m) per cycle”, Tech. Rep. No. 60, Univ. of
Newcastle upon Tyne, Newcastle upon Tyne, England, May 1974.

- 106-

30. TARJAN, R. E., "Efficiency of a Good But Not Linear Set Union Al-
gorithm”, J. ACM, Vol. 22, No. 2, April 1975, pp. 2156-225.

31. TARJAN, R. E., "Enumeration of the elementary circuits of a directed
graph”, SIAM J. Comput., Vol. 2, No. 3, Sept. 1973, pp. 211-216.

32. YASUHARA, A., "Recursive Function Theory & Logic”, Academic Press
Inc., New York, 1971.

