Universitat Kaiserslautern
D-6750 Kaiserslautern 1, W. Germany

Fachbereich Informatik
Postfach 3049

achl-Working Paper

F
£ o
%f(((V75

\\ o2 Wi\,

@ ee

J
A

A Decision Procedure for
Presburger Arithmetic with
Functions and Equality

F.-J. Krdmer
SEKI Working Paper SWP-89-4

A Decision Procedure for Presburger Arithmetic
with Functions and Equality

F.-J. Krdmer
Fachbereich Informatik, Universitdit Kaiserslautern
Postfach 3049, D-6750 Kaiserslautern, W .-Germany

TABLE OF CONTENTS

PREFACE

—

1. INTRODUCTION
1.1. LANGUAGE CLASSES: A SURVEY 4

1.2. MOTIVATION 6
2. QUANTIFIER-FREE PRESBURGER ARITHMETIC 8
2.1. THE THEORY 8
2.2. THE LOOP_RESIDUE METHOD 9
2.2.1. REQUIREMENTS 9
2.2.2. THE MAIN THEOREM FOR THE UNEXTENDED CLASS 10
2.2.3. THE LOOP_RESIDUE PROCEDURE 14
2.2.4. GENERALIZATIONS 15
2.2.4.1 STRICT LEQUALITIES 16
2.2.4.2 LINEAR LEQUALITIES WITH AN ARBITRARY
NUMBER OF VARIABLES 16
3. QUANTIFIER-FREE THEORY OF EQUALITY 18
3.1. THE THEORY 18
3.2. CONGRUENCE CLOSURE 19
3.3. EXAMPLES 19
3.4. CONGRUENCE CLOSURE AND THE QUANTIFIER-FREE
THEORY OF EQUALITY 21
3.5. AN ALGORITHM FOR THE CONGRUENCE CLOSURE 21
4. QUANTIFIER-FREE PRESBURGER ARITHMETIC EXTENDED
BY PREDICATE AND FUNCTION SYMBOLS 24
4.1. DECIDABILITY 25
4.2. A PRACTICAL DECISION PROCEDURE 27
4.2.1. THE DOMAIN 27
4.2.2. SEMANTIC NOTATIONS 27
4.2.3. THE BASIC PROBLEM 28
4.2.4. THE PROCEDURE 30

4.3. NEw CONCEPTS 33

4.4, REWRITING 36

4.41. NOTATIONS 36
4.4.2. CANONICAL GROUND REWRITING SYSTEMS 38
4.4.3. QUANTIFIER-FREE PRESBURGER THEORY AND
REWRITING 39
4 4.4, PRESBURGER TERMS 40
4.5. THE MAIN THEOREM FOR THE EXTENDED CLASS 41
4.6. THE EQUALITY_LOOP_RESIDUE PROCEDURE 53
4.7. GENERALIZATIONS 59
4.8. EXAMPLES AND OBSERVATIONS 60
4.8.1. EXAMPLES 60
4.8.2. OBSERVATIONS 83
4.9. FURTHER ASPECTS AND IMPROVEMENTS 85
5. CONCLUSION 90
APPENDIX A:
PROOF OF THE MAIN THEOREM FOR THE UNEXTENDED CLASS 92

REFERENCES 104

Preface

Many of the formulas one tends to encounter in program verification are
contained in the quantifier-free Presburger Arithmetic and its extension by
predicate and function symbols.

Remarkable work for both the unextended and the extended class has been
done by Robert Shostak. Particularly for the quantifier-free Presburger
Arithmetic, he developed a very elegant algorithm based on the computation
of loop residues in a graph. The algorithm decides the satisfiability of of a
conjunction of atomic formulas of this theory.

This diploma thesis presents the development of a decision procedure for
the satisfiability of a conjunction of atomic formulas of the quantifier-free
Presburger Arithmetic extended by predicate and function symbols:

The EQUALITY_LOOP_RESIDUE procedure.

Thie procedure combines both the concept of the LoOP_RESIDUE method
in a refined version adjusted to the specific problems of the extended class
and the concept of rewriting.

The connection of this decision problem to ground terms is pointed out and
a polynomial time aigorithm for computing a canonical rewriting system
equivalent to a finite set of ground equations recently (1988) presented by
Gallier, Narendran, Plaisted, Raatz, and Snyder can be used as subpro-
cedure in the newly developed decision procedure.

The EQUALITY_LOOP_RESIDUE procedure does not only improve the deci-
sion process of the satisfiability of a conjunction of atomic formulas, but
also the determination of the validity of a quantifier-free Presburger for-
mula including predicate and function symbols.

1. Introduction

This diploma thesis deals with the problem of deciding the validity of a
formula out of a certain language class and of an extension of this class.
It is the language of quantifier-free Presburger Arithmetic: it contains all
Presburger formulas without quantifiers. The extended class? includes in
addition formulas with (uninterpreted) predicate and function symbols. The
interpreted predicate and function symbols of the Presburger Arithmetic
are <, and 0, 1, and +, respectively.

Array bound checks and tests on index variables, for example, give rise to
formulas of PA during program verification. And programs that operate on
arrays and other data structures that can be modeled as uninterpreted
functions are prone to produce formulas of PA‘ during the verification
process of the program.

Therefore, many formulas occurring during program verification and in
theorem provers belong to the unextended class PA and even more belong
to the extended class P,46 And since the decision of such formulas con-
stitutes the main issue in such programs, this straightforwardly indicates
the motivation for the development of efficient decision procedures.

It is evident by negation and expansion into disjunctive normal form that it
suffices to provide a decision procedure for the satisfiability of a conjunc-
tion of atomic formulas in order to decide the validity of a quantifier-free
formula.

Robert Shostak [271] has observed that the formulas occurring in program
verification have in many cases a simple form, and has developed an ele-
gant method for deciding the satisfiability of a (quantifier-free) con-
junction of atomic Presburger formulas where each formula can be written
in the form ax + bq s ¢ in which a, b, and ¢ are constants, and x, and v are
variables.

The underlying data structure of this method is a graph which is con-
structed in such a way that each variable x labels a vertex and each atomic
formula ax + by < ¢ labels an edge incidenting with those vertices labeled
by x and y.

The LooP_RESIDUE method has basically two concepts:

The computation of loop residues and the notion of a closure of a graph.

1: For convenience and abbreviation, we refer to the quantifier-free Pres-
burger Arithmetic by PA or unextended class and to its extension in-

cluding predicate and function symbols by 7),46 or extended class.

For example, a loop labeled by x - y < 0, y - 2 < 0, and 2 - x < ¢ has
residue x - x < ¢. The atomic formula x - x < ¢ is unsatisfiable for ¢<0. The
notion of a closure of such a graph is essential for the completeness of
the method.

The treatment of atomic formulas with relation < and of atomic formulas
with an arbitrary number of variables has for simplicity in presenting the
method been postponed as generalization. The generalized procedure can
determine the satisfiability of any conjunction of atomic formulas and
therefore provides a decision procedure for the quantifier-free Presburger
Arithmetic. It combines generality as well as suitability for simply struc-
tured formulas and is described in the second chapter.

Another method for determining the satisfiability of a (quantifier-free)
conjunction of atomic formulas is the SUP-INF method. Shostak attributes
the method to Bledsoe [3] and presents a refined version in [28].

At the core of the method are two procedures SUP and INF which compute
the maximum and minimum real value that a variable can have subject to a
set of linear constraints.

Shostak's basic version of the SUP-INF method is complete for the real
domain, and incomplete for the integer domain. But, "the incompleteness of
the basic method is of so little practical consequence, however, that
schemes for augmenting the method in order to obtain completeness are
largely a matter of theoretical interest.” [28]

The method can easily be applied to linear maximization problems with a
linear objective function M and a set £ of linear constraints by adding 2sM
as a constraint where 2 is a new variable and computing the maximal (real)
value of 2 subject to £ U {2<M} with the procedure SUP. Similiarly, if M
is to be minimized, M <2 is added and the procedure INF determines the
minimal real value of 2 subject to the set £ U { M <2} of constraints.

In order to compare the SUP-INF method with well-known real and integer
linear programming algorithms, Shostak implemented "both the Simplex
algorithm for real linear programming and the Gomory cutting plane algo-
rithm for integer linear programming. Surprisingly, neither of these im-
plementations performed more efficiently than the SUP-INF implementation
on naturally arising formulas. The rather poor relative performance of the
well-known algorithms stems from the fact that typical problems tend to
be small (thus emphasizing the overhead necessary to convert the problem
to matrix form) and structured in such a way as to produce sparse mat-
rices. The Gomory algorithm, moreover, could not be trusted to terminate
on unbounded probiems.” [28]

Related to the decision problem of the extended class is the decision
problem of the quantifier-free theory of equality. The atomic formulas of
this language are equalities of the form ¢=¢t" where t and ¢’ are terms.

The problem of verifying that an equality is a consequence of several other
equalities is a decision problem of the quantifier-free theory of equality.
For example, §(§(a,b),b)=a is a consequence of §(a,b)=a, or, less obvious-
ly, §a=a is a consequence of fffa=a and f§ffpa=a.

Again, since we have no quantifiers, it suffices to provide a decision pro-
cedure for the satisfiability of a conjunction of atomic formulas in order to
decide the validity of formulas of this theory.

"A practical algorithm for this problem is essential to mechanical program
verification (or to any other kind of mechanical reasoning), since almost all
proofs require reasoning about equalities.” [171]

The decision problem for the quantifier-free theory of equality with un-
interpreted function symbols has been attacked from quite different points
of view: As a variation of the common subexpression problem by Downey,
Sethi, and Tarjan [61, and as the word problem in finitely presented al-
gebras by Kozen [131].

Nelson and Oppen reduce all those problems "to the problem of construc-
ting the 'congruence closure’ of a relation on a graph.” [17]

The construction of the congruence closure of a relation on a graph is
described in the third chapter.

An approach for the extended class for the integer domain was given by
Shostak in [25] and is presented in the forth chapter. It introduces to the
main problem that arises from the extension by function-symbols: The
well-definedness of functions: A function is well defined if it assigns to
every argument of its domain a uniquely defined value of its range.?

Given a conjunction C of atomic formulas, Shostak obtains an associated
integer linear programming problem (ILP) by replacing the terms occurring
in the conjunction by new variables. An ILP-solver then determines the
satisfiability of the associated problem. Obviously, if the associated prob-
lem has no solution, then the given conjunction C is unsatisfiable.

Otherwise, the ILP-solver constructs a solution for the associated prob-
lem and another procedure then examines this solution for violations of
well definedness, or, in Shostak’'s words, for violations of the substitutivity
of equality subject to the conjunction C. An appropriate formula that

2: Shostak denotes the well definedness as the property of substitutivity
of equeality: if two terms are equal, they can replace each other mutually

as arguments of a function without changing its value.

summarizes the violation is generated, added to the conjunction C, and the
process is reapplied for each conjunction of the now resulting disjunctive
normal form.

The proof of the decidability of the extended class in chapter four provides
itself a decision procedure, but Shostak's suggested procedure reduces
the combinatorial explosion substantially. Nevertheless, there is still
enough opportunity for further improvement.

The objective of this diploma thesis is the design of a method for the ex-
tended class which is similiarly suitable to simply structured formulas like
the LooP_RESIDUE method for the unextended class. This procedure
should play a central part in the extended procedure.

As noted above, the main problem here is the well definedness of function
symbols. We basically succeeded in the design of such an algorithm by
means both of compactness in representing information and of incor-
poration of other concepts, especially rewriting:

A set & of equalities which are implied by a conjunction C of atomic for-
mulas is computed such that any equality implied by C is implied by &. A
canonical rewriting system R equivalent to & is computed and the conjunc-
tion C is reduced wrt the system R . The LOOP_RESIDUE method can now
immediately be applied to the resulting conjunction.

Briefly spoken, this is the basic idea of the presented procedure which is
named EQUALITY_LOOP_RESIDUE procedure.

And this procedure seems to improve the decision process not only for
large, but also for small problems. Violations of well definedness are
prevented implicitely while Shostak has done this explicitely.

1.1. Language classes: a survey

Figure 1.1 shows the location of the quantifier-free Presburger Arithmetic
and its extension in the hierarchy of language classes.

The language of second order predicate logic is neither recursively deci-
dable nor recursively enumerable. The one of first order is also not recur-
sively decidable, but recursively enumerable.

A subset of this language is the Presburger Arithmetic which has the inter-
preted function symbols 0, 7, and + and the interpreted predicate symbol <.
This class was first shown to be decidable by Presburger in 1929 [22].

A well known decision procedure, described by Kreisel and Krevine [14], is
based on a method of quantifier-elimination and prone to combinatorial
explosion. A more efficient procedure has been given by Cooper [4] in

1972. It is probably the best one in the worst case, and has deterministic
time complexity 0(222") where n is the length of the formula. This was
shown by Oppen [19] in 1975.

QUANTIFIER-FREE
PRESBURGER ARITHMETIC
EXTENDED BY
PREDICATE AND FUNCTION SYMBOLS

QUANTIFIER-FREE
PRESBURGER ARITHMETIC

PRESBURGER ARITHMETIC

FIRsT ORDER PREDICATE LOGIC

SECOND ORDER PREDICATE LOoGIC

Figure 1.1: Survey on language classes

Those Presburger formulas without quantifiers define the quantifier-free
Presburger Arithmetic. As a subclass of the Presburger Arithmetic, it
surely is decidable. This is also true for the extension by predicate and
function symbols: Any formula of the extended language can be trans-
formed into an equivalent formula of the unextended language. For both
language classes PA and PA, the decision problem can deterministically
be solved in worst case exponential time.

Please note that the Presburger Arithmetic does not include the extension
of the quantifier-free Presburger Arithmetic because it does not include
formulas with function symbols. But it includes for every such formula an
equivalent formula.

1.2. Motivation

Consider that you want to write a program and prove its correctness wrt
certain input and output specifications. Briefly spoken, one way to achieve
this is to state a precondition for the input data and a postcondition which
connects the input data with the output data and finally to prove the vali-
dity of an appropriate formula which includes those conditions and the
semantics of the program.3

So the task of program verification splits up into generating the corres-
ponding formula and checking its validity.

For example, consider the PASCAL-like program that transforms a bit
string into a decimal number which is shown in figure 1.2.

{ PRECONDITION: nelN; ae(N—N)}
D=0
i =n+1
WHILE 0 < i Do

BEGIN
D = 24D + ali-1)
& =i-1

END

{ POSTCONDITION: D = Zgzozo*a(o) }

Figure 1.2.: Program with Pre- and Postcondition

In order to prove the correctness of the program in figure 1.2. wrt the pre-
and postcondition, it is necessary to construct an appropriate formula and
to prove its validity. As a part of this process, it is important to find a
(WHILE) loop invariant formula. Loop invariant formula means that if it
holds before entrance into the loop then it holds after exit of the loop.

3: The pioneering paper is written by Hoare [10] titled "An axiomatic basis
for computer programming’”. Detailed information is found in "Foundati-

ons of Program Verification” presented by Loeckx and Sieber [15].

For example, define a formula F by

F=Fla,i,n,D) =(D= thlzo_i*a(Q)/\ ieN).
Since the formula ¥ given by

Fo = (Fla, i, n, D) N 0ci — Fla, i-1, n, 2¥D + ali-1))).

or, equivalently, by replacing the occurences of F in Fo,
For LUD=3 0 22 at) A iel) A oa)
(2D ali- = Y0 22 ey A i) ey

is valid, the formula ‘} is an invariant formula of the WHILE loop.

Observe that this formula contains, in addition to the function symbois 0,
1, and + of the Presburger theory, the function symbol a.

Since multiplication by constants is used in abbreviation for repeated
addition, the formula %F is contained in the language class PA¢ of quan-
tifier-free Presburger formulas extended by predicate and function sym-
bols.

An array is one example of data structures that can be modeled by uninter-
preted function symbols. All such data structures that can be modeled by
uninterpreted function symbols give rise to formulas of the quantifier-free
Presburger Arithmetic extended by predicate and function symbols in the
process of program verification.

2. Quantifier-free Presburger Arithmetic

As a subclass of the Presburger Arithmetic, the quantifier-free Presburger
Arithmetic surely is decidable. It's decision complexity is no worse than
exponential and is therefore substantially easier to decide than full Pres-
burger Arithmetic, which is decidable in 0(222") .

A commonly used technique to prove the validity of a quantifier-free for-
mula F is to prove the unsatisfiability of each (quantifier-free) conjunction
in the disjunctive normal form of the negation of ¥ where each such con-
junction consists of atomic formulas.

The atomic formulas of the quantifier-free Presburger Arithmetic can be
written in the form aj04+az202+...+a,0, tel ag where zel € {s, ¢, =, #},
the o;’s are variables, and the a;'s are constants.

A decision procedure for the satisfiability of conjunctions of linear lequal-
ities 4 with at most two variables (ax+bys¢) is presented in section 2.2
and is generalized to decide the satisfiability of terms of the form ajo4+
az03+...+a,0, tel ap where zel € {x<, <, =, #}.

2.1. The Theory

We first give a definition of the Presburger Arithmetic according to
Harrison [91.

The set PA of Presburger Formulas wrt the domain D is the least class
satisfying the following conditions:

a) For every m20 and n;,n;’ € D, O<ism,

Mo + Nyxg + voo + MpX, = N’ +ng’xg + oo0 + "%,

is a formula in PA with free variables x4, ..., x,,-

b) If Fq, F2 e PA, thensois Fy N Fa.
c) If Fqy F2 e PA,thensois Fy V Fa.

d) If F € PA, then so is +FF.
e) If Flxgy...,x,) € PA and 1sisn, then (Vx;)Flxq,...,x,) € PA.
f) If Flxgyeoenx,) € PA and 1sisn, then (Ix;)F(xqgy...,x,) € PA.

A formula with no free variable is called a sentence.

Presburger defined the Presburger Formulas wrt the domain of the non-
negative integers, the natural numbers N, and first proved the decidability
of this class in 1929 [22]. But instead of using a multiplication symbol, he
replaced the multiplication with constant natural numbers by repeated

4: Since equality and inequality refer to the relations = and %, respectively,

we refer to s by lequality (less or equal).

addition. A later proof of the decidability of the Presburger theory can be
found in Yasuhara's monograph of 1971 [321].

Formulas of the Presburger Arithmetic like x+x+x+x+x are conveniently
abbreviated by 5*x or 5x, for example, though the multiplication symbol *
is not contained in the original definition of the Presburger Arithmetic.

Not only for the initial domain of the Presburger theory, the quantifier-
free Presburger Theory (conditions a), b), c), and d)) is also decidable wrt
the domain of the integer numbers Z, the rational numbers Q, and the real
numbers R.5

And for the domain of the rational numbers, a formula <F can equivalently
be transferred into one where the coefficients are all integers. This is
simply done by multiplying each atomic formula occurring in <F with the
main denominator of the rational constants occurring in the atomic for-
mula. This indicates that the multiplication symbol can also be replaced for
this domain.

The natural, integer, rational, and real numbers are all infinite linearly
ordered domains. The notion of a linearly ordered domain is given in [32]
by the following conditions for a predicate «:

(Ve)(Vy) (x<y V x=y V yex)
(V)(Vy)(Va) (x<y A y<z O x<a)
(Vx)a(xcx)

A domain is dense if the following condition is satisfied:

(Vx)(Va)(3Iy) (x<a D xcy A y<a)
The rational and real numbers are dense, while the natural and integer
numbers are not dense. The LOOP_RESIDUE procedure presented in the
following section is complete only for dense domains like Q or R. For
domains which are not dense like the integer numbers, the procedure may

return satisfiable for an unsatisfiable set wrt this domain. Therefore, the
density of the domain is a necessary condition for the completeness.

2.2. The Loop-Residue Method

2.2.1. Requirements

The springs for the development of another method, generality and simpli-
city, are neatly expressed in the following quotation:

“A number of approaches have been used to decide the feasibility of sets of
inequalities, ranging from goal-driven rewriting mechanisms to the power-

5: Shostak gives decision procedures for these problems in [27] and [251].

‘]O

ful simplex techniques of linear programming. Some simple methods are
well suited to the small, trivial problems that most often arise, but are
insufficiently general. Full-scale simplex techniques, on the other hand, are
general and fast for medium to large scale problems, but do not take
advantage of the trivial structure of the small problems (involving only a
few variables and equations) encountered most frequently in program
verification and related applications.” [2716

2.2.2. The main theorem for the unextended class

Denote by £, or £_, a set of linear lequalities” each of whose elements [,
or [, can be written in the form ax+byse, where x and y are variables and
a,b, and ¢ are constants.

Obtain £, L=, £,, £,, and £; from £ and [, =, I,, I,, and l; from I by
replacing < by <, =, >, 2, and #, respectively.

We choose as domain D the dense linearly ordered structure of the
rational numbers Q.8

For convenience, a special variable v, is introduced as zero variable: it is
assumed that it appears only with coefficient zero, while the other variab-
les require - without loss of generality - nonzero coefficients.

Define G(£) as the graph for a set £ of linear lequalities in the following
way:

For each variable occurring in £ give G(£) a vertex labeled with this varia-
ble and for each linear lequality in £ give G(£) an edge labeled with this
lequality such that this edge connects the corresponding vertices of the
occurring variables.

Denote, in addition, for a graph & whose edges are labeled by lequalities
the set of those lequalities by £4, or £g¢.

A path P through & is uniquely described by a sequence vy, 12, ... B,, Op.y
of vertices and a sequence ey, e, ..., e, of edges (n21).

6: Atomic formulas of the form ax+éysc are denoted as lequalities in this
diploma thesis In order to distinguish from inequalities ax+by*c. But
Shostak denotes atomic formulas of the form ax+bysc also as inequali-
ties.

7: The number of variables per inequality is restriced to two for con-
venience. As an extension of the procedure, this restriction is dropped.
8: It will become evident that the density of the domain is necessary for the

completeness of the procedure. The Loop-Residue procedure is thus in-

complete for the integers.

‘]1

Denote by the triple sequence for P the sequence {ay.bs,c4”, az,bz.c2”,
wo. ap,bn.en”? wWhere ao+b;0;.45¢; is the lequality {; labeling edge ¢; for
each i, 1sis<n, and by L9, or Lpg, the set of linear lequalites labeling P.

A path P is admissible if for all 1sisn-1, b; and a;,, of its triple sequence
have opposite signs, i.e., sgn(b;*a;.,)=-1.°

Define the binary operator * on triples as follows:

For two triples <ay4,b4.¢4> and <az,b2,¢2” where b, and a, have opposite
signs, define ayq,b4,¢4” *az,bz,c2” = {kagaz, -kbsba, klcjaz-c264)>
(or, in abbreviation, (k< asaz, ~b4b2, cqaz-¢c2b47)) where k=sgn(as).®

Lemma 2.1.
The binary operator * on triples is associative.
Proof.

({agybgrcs? * <azbzcz?) * azbszes”
= Ckaaqaz -kzbgbz, kalcsaz-caby) > * {azbsucs?
= {kylkzaqgaz)azs ~ks(-k2b462) bsy kslkalcqaz-c2bg)as - c3l-kabgbz)>
= {kaaqlkzazaz), ~kzbs(-k3bsbs), kalcs(ksazas) - kylczaz-c3b2)b4)>
= {agbgreq) * Skzazaz, ~kzbzbsz, k3lczaz-c3bz) >

= agbgreq? * (Lazybaez) * {azbzes)

where kz=sgn(az) and kz=sgnlas). O
The residue ¢p = <ap, bp, ep>, or e(P)=<alP),b(P),ec(P)>, of an admis-
sible path P with triple sequence <ay,bs,c4>, <az.bz.c2>, ... <a,.bp.cp>
is defined by

<ap. bp. Cp) = <a4,b4,c4>* <az,bz,02>* *(a,,,b,‘,c,,> .

The residue of an admissible path is uniquely defined since * is associative.

The residue leguality lp, L(P), or lpg, of an admissible path P is given by
alP)x+b6(P)y < c(P), where <alP),b(P),clP) > is the residue of P and

x and y are the first and last vertices, respectively, of P.

Lemma 2.2.

For an admissible path P,

i) L£p and Lp U{lp} are equivalid,

i) Lp, and Lp U{lp are equivalid, and
i) Lp= and Lp=U{lp=} are equivalid.

9: The function sgn returns the sign of a number and is defined by sgn(0)=0,

sgnlx)=1 for x>0, and sgn(x)=-1 for x<0.

12

Proof. :
i) This is done by induction on the length n of path P.

Basis: n=2.
Let x, y, and 2 be the first, second, and last vertex of P, respectively.
Lp = L agx + byy s ¢q, azy + bza < ¢z} is valid
iff (observe that 6,#0 and az%0)

{ sgnlaz)aqazx + sgnlaz)byazy < sgnlaz) cqaz,
sgnlby) byazy + sgnlby)byboa < sgn(by)bycs } is valid

iff (since by admissibility of P, sgnlbsaz)=-1)
{ sgnlaz)aqazx + sgnlaz)bgazyy < sgnlaz)cqaz,
- sgnlaz)bgazy - sgnlaz)bsbza s - sgnlaz)bycz } is valid
iff
Lp U {ip} is valid.
where lp is the residue lequality of P, al(P)x+b(P)asc(P), or, equi-
valently, sgnlaz)asazx - sgnlaz)bsbs2 < sgnlaz)(cqaz-caby).

Induction Step. n>2. Let Q and R paths such that P=QR. Then,

Lp = Lq U Lg is valid
iff (by the induction hypothesis for Q and R)

Lo U {lgy U Lz U {lr} is valid
iff (since {lq, lg} is valid if and only if {lg, IR, Ip}is

valid by the same arguments as in the basis)

Lo U Lr U {lg, Iz, lp} is valid
iff

Lp U {ip} is valid

completing the proof of i).

ii, iii) The same proof as for i) with < and = instead of the relation S.D

A path with identical first and last vertex is called a foop. A loop is simple
if its intermediate vertices are distinct.
An admissible loop P is called an eguality Joop if and only if ap+bp=0 and
¢p=0 and an infeasible loop if and only if ap+bp=o and ¢pc¢0, where
<ap,bp,cp> is the loop residue of P.

The residue lequality a(P)x+b(P)x < ¢(P) of an infeasible (simple) loop
with initial and final vertex x is unsatisfiable. It follows that the set £ of
linear lequalities is unsatisfiable if the graph &(4) has an infeasible
simple loop.

13

The converse does not hold as the following example demonstrates:
Consider the set £ = {x22, x<y, x+ys2} which is unsatisfiable. The only ad-
missible loop in G(4£) is labeled with xsy and x+y<2 and has the residue
<4,4,2> = <4,-1,0>%<1,1,2> which represents the residue lequality
x+x<2.

We observe that although £ is unsatisfiable, §(£) has no infeasible simple
loop! This motivates the following notation:

Define a closure G (L) of the graph G(£) of a set £ of linear lequalities
in a constructive way: For each admissible simple loop P (modulo cyclic
permutation and reversal) of g(£) add a new edge labeled with the residue
lequality L(P).

The graph G(£) is also called a closed graph for £.

If the graph (L) of a set £ of linear lequalities is closed, £ is called a
closed set. If furthermore the graph (L) does not contain a simple
equality loop, £ is called a strictly closed set.

The reverse of an admissible (simple) loop is always admissible, and the
cyclic permutations of an admissible (simple) loop are admissible if and
only if a4 and b, have opposite signs where <ays.bs.c4>, <az,b2.c2>, ...
<a,,b,.c,> is the triple sequence of this path.

Furthermore, all cyclic permutations of an infeasible permutable (simple)
loop are infeasible and the reverse of an infeasible (simple) loop is in-
feasible.’® This justifies the restriction modulo cyclic permutation and re-
versal in the previous definition.

Note that the closure is not uniquely defined because the simple admissible
loops are chosen modulo cyclic permutation and reversal.

In the example, a graph gc({x22, xsy, x+y<2}) is obtained by adding to
G(L) an edge labeled with Ooy+2x<2 or, equivalently, x<7. This results
with lequality -x+vgs-2 (or x22) in an infeasible simple loop labeled with
the lequalities Oog+2xs2 and -x+0ss-2 and with residue <0,0,-2 .

Theorem 2.3.
If g is a closed graph for a set £ of linear lequalities, then the following
statements are equivalent:

i) £ is satisfiable

ii) § has no infeasible simple loop
Proof.
Because of its length, the proof is omitted here. But since this main
theorem is fundamental for the new procedure of the extended class, it
is given in appendix A. D

10: These statements are proved in appendix A.

14

2.2.3. The Loop-Residue Procedure

Based on Theorem 2.3, we now present a decision procedure in figure 2.1,
the LOOP_RESIDUE procedure, for the satisfiability of a set £ of linear
lequalities of the unextended class by computing loop residues. Such a set
L represents a conjunction of atomic formulas.

Since there are finitely many admissible simple loops both in the graph
G(L) and in a closed graph gj=(X), the procedure terminates. Its sound-
ness and completeness straightforwardly follow from Theorem 2.3.
Observe that this procedure only decides the satisfiability of a set of
linear lequalities. It does not construct a solution for a satisfiable set.
This can be done according to the proof of the main theorem in appendix
A by constructing a solution for a set £ from a closure g(£) without an
infeasible simple loop. But for applications such as program verification,
one is interested only in satisfiability; knowledge of an explicit solution is
not required in this case.

(0) For a set £ of linear lequalities, construct the graph G=¢j(L)
(1) Enumerate the simple admissible loops of
modulo cyclic permutation and reversal,
and compute their residues;
IF any infeasible simple loop is enumerated
THEN RETURN (£ is unsatisfiable)
ELse (2)
(2) Form a closure of §
by adding a new edge for each residue lequality;
Compute the residues
of all newly formed admissible simple loops™
IF any loop is infeasible
THEN RETURN (£ is unsatisfiable)
ELse RETURN (£ is satisfiable)

Figure 2.1: LooP_RESIDUE procedure deciding the satisfiability
of a set £ of linear lequalities

11: Note also that the new admissible loops formed in (2) must have initial

vertex vgp.

15

The implementation of the procedure requires some means of enumerating
the simple loops of a graph. There are several aigorithms (by Johnson 1975
[12] , Read and Tarjan 1973 [231], and Szwarcfiter and Lauer 1974 [291])
which operate in time order [x(IVI+IEl), and space order (IVI+IEl), where [
is the number of simple loops, IVI is the number of vertices, and IE! is the
number of edges. A graph may have exponentially many simple loops (in IEI)
and therefore the decision procedure shows worst-case exponential be-
haviour.

Though the worst case complexity is exponential, the average case seems
to have a pleasant complexity:

“In practise, however, one does not encounter such behavior. The sets of
inequalities that arise from verification conditions usually have the form of
transitivity chains. The corresponding graphs are treelike, seldom having
more that a few loops. Most of the loops that do occur are 2-loops, which
are easily tested at the time the graph is constucted.” [Shostak, 271]

So the run time behaviour can be compared with algorithms such as the
Simplex-Algorithm which also has worst case exponential time complexity,
but is widely used in practise.

2.2.4. Generalizations

Recall that the skolemization of the disjunctive normal form of a negated
formula of the quantifier-free Presburger Arithmetic consists of con-
junctions of atomic formulas which are either lequalities (5), strict lequali-
ties (<), equalities (=), or inequalities (#) each of which can be written in
the form ayxs+azxa2 + ... +a,x, tel aps where zel € {x, <, =, #}.

While aqxq+azxa+...+ta,x, = ap can be replaced by the conjunction of
Agxg+tagxxa t.c.tAnx, S Ap ANd ~Ag4Xy - A2%X2 - ...~ ApX, S —Ap, Neither a
strict lequality nor an inequality of the form asxs+a2xz+...+a,x, tel ap
where tel € {<, ¥} can be expressed by lequalities. We therefore require
the extension of the LOOP_RESIDUE procedure to strict lequalities. With
strict lequalities, asxgy+axx2+...+a,x, ¥ ap can be replaced by the dis-
junction of ayxg+azxz+...ta,x, < ap and ~A4xg4- A2X2 = .0o~ AnX, < —Ap.
So far, we have restricted the LOOP_RESIDUE procedure to decide the
satisfiability of a set with at most two variables per lequality. A gener-
alized version of the LOOP_RESIDUE procedure for lequalities and strict
lequalities with an arbitrary number of variables is presented in figure 2.3.
These two generalizations were proposed by Shostak in [27].

- 16 -

2.2.4.1. Strict lequalities

The version of the LOOP_RESIDUE procedure presented in figure 2.1 is
restricted to conjunctions of lequalities, i.e. atomic formulas with the
relation <. Lemma 2.2 indicates how the procedure is generalized to handle
strict lequalities of the form ax+by<c:

Let us denote by a strict path P such a path with at least one strict lequa-
lity and by £p the set of the lequalities and strict lequalities labeling P.
Then, for an admissible simple strict path P, the sets £p and Lp are
equivalid. This can similiarly be proved as in Lemma 4.2.

By Lemma 2.2 ii), we have that £p. and £p U {lp.} are equivalid where
lp. is the strict lequality al(P)x+b(P)y < c(P).

Therefore, £p and £p U {lp.} are equivalid for a strict path P.

An admissible strict loop P is infeasible if and only if a(P) + b(P) = 0 and
c(P)so. The residue strict lequality lp of an admissible strict path P
is the strict lequality a(P)x+b(P)y< ¢(P) where x and y are the first
and last vertices, respectively, of P.

Including this extension to strict lequalities, Theorem 2.3 still holds for a
set £ of linear lequalities and strict lequalities, as noted by Shostak [271.

2.2.4.2. Linear lequalities with an arbitrary number of variables

The LooP_RESIDUE procedure in figure 2.1 is for convenience designed to
decide the satisfiability of a set of linear lequalities with at most two var-
iables per lequality.

A further generalization includes linear (strict) lequalities with an arbit-
rary number of variables. This can be done by symbolic computation as il-
lustrated in the following example:

Consider the set £ = { x<y, 2asy-x+1, x22}.

2sx xsy /’\

Figure 2.2: Graph & for £ = {xsy, 2sy-x+1, x22}

- 17 -

One lequality (2sy-x+9) of the set £ has three variables two of which (y,2)
are chosen as endpoints of the corresponding edge in the graph g=G(4).
Symbolic computation in the only admissible simple loop (yay) yields the
residue <-1,7,-x+17%<-4,4,0> = <-1,1,-x+4> with residue lequality
-y+tys-x+qor xsq.

Adding this lequality to the graph results with the lequality x22 in an in-
feasible simple loop (vexv4), thus showing the unsatisfiability of £.

The procedure in figure 2.3 assumes an ordering of the variables other
than vy. The two lowest ranked variables of a (strict) lequality are called
primary variables. A (strict) lequality with more than two variables labels
an edge which is attached to the two nodes corresponding to the primary
variables of the (strict) lequality. The other lequalities are treated as usual.
The procedure for deciding the satisfiability of a set of (strict) lequalities
with an arbitrary number of variables is given in figure 2.3.

Since the number of nonprimary variables decreases in each iteration, the
procedure must terminate.

As noted by Shostak [27], the generalized procedure is complete as well
as sound which can be proved as an extension of the main theorem.

RESET(zepeatstop)
REPEAT
Compute a closure G(L) for the set L
using symbolic evaluation for the residues
IF QL) has an infeasible loop
THEN RETURN (£ is unsatisfiable)
ELSIF not all the variables of & are primary
THEN £ := residue (strict) lequalities (G(£))
ELSE SET(tepeatstop)
UNTIL tepeatstop
RETURN (£ is satisfiable)

Figure 2.3: LOOP_RESIDUE procedure for a set £ of linear
(strict) lequalities with an arbitrary number of
of variables per (strict) lequality.

._18_

3. Quantifier-free theory of equality

The language of the quantifier-free theory of equality is a subclass of the
first-order predicate logic. The only predicate symbol is the equality sym-
bol =. Unlike the quantifier-free Presburger Arithmetic, the quantifier-free
theory of equality contains uninterpreted function symbols.

The quantifier-free theory of equality is described in section 3.1. Given a
graph and a relation on its vertices, we then define the notion of the con-
gruence closure and give examples in sections 3.2 and 3.3, respectively.
Section 3.4 points out the relation of the congruence closure to the deci-
sion problem of the quantifier-free theory of equality and section 3.5 pre-
sents a procedure for computing the congruence closure.

This procedure was presented in the paper "Fast Decision Procedures
Based on Congruence Closure” of Nelson and Oppen [17]. The basic
theorem is given in Shostak's paper "An Algorithm for Reasoning About
Equality” [24].

3.1. The theory

We first introduce the notion of a term:

Given a set U of variables and a family (‘F;);,0 of function symbols where

each function symbol §<F, has arity n, we define the set T, of terms by

the smallest set which satisfies

D < Tp, and

ii) for any number n20, any function symbol §<“F,, and any terms ¢; €Ty,
1sisn, $ltgs voes ta) € Tp.

The set T of ground terms is defined by the smallest set such that for any

number n20, any function symbol §eF,, and any terms ¢; T, 1sizsn,

6(t1, sosy tn) € L.

The function symbols with arity 0 are also called constants.

The set of formulas of the quantifier-free theory of equality is the smal-

lest set satisfying the following conditions:

i) any equation ¢=¢’ is an (atomic) formula of this set where ¢, ¢’ € T,

ii) for any two formulas F and <}’ of the quantifier-free theory of equality,
the formulas +F, FVF', FAF', and FDOF’ are also formulas of

the quantifier-free theory of equality.

A formula of the quantifier-free theory of equality can be transformed into

19

a formula of the quantifier-free theory of equality without function symbols
by a procedure which is given in figure 4.1. The resulting formula is also
contained in the quantifier-free Presburger Arithmetic. The quantifier-
free theory of equality is thus decidable.

3.2. Congruence closure

Let §=(0,&) be a directed graph with labeling function { which assigns a
function symbol to each vertex. For a directed edge from u to o, u is called
predecessor of v, and v is called successor of 4. Let the edges leaving a
vertex o be ordered and denote by o[iJ], 1sisn(ov), the i-th successor of o
wrt the i-th edge leaving v, where n{o) denotes the outdegree of vertex o,
i.e., the number of edges leaving o. Multiple edges are allowed, i.e., oli]=
olj] is possible for i#j.

Let R < VxV be a binary relation on V. Define the relation Cr = Ux0
by (u,0) e Cg if and only if {(u)=l(v), n(u)=n(v), and (ulil, oli])eR for
all 1<isnl(u).

The pairs of vertices in Cx are said to be congruent under R. R is closed
under congruences if and only if Ce & R.

Define the congruence closure R~ of R as the minimal extension of R
such that R~ is an equivalence relation and closed under congruences.
One can prove that the congruence closure of a relation is uniquely defined.

3.3. Examples

Before the connection of the decision problem of the quantifier-free theory
of equality with the notion of the congruence closure of a relation on a
graph is pointed out in section 3.4 and an algorithm for computing the
congruence closure is given in section 3.5, let us first consider the fol-
lowing two examples:

Let &4 be the graph shown in figure 3.1, and let R = {(02,03)}.

Since the congruence closure R of a relation R is an equivalence re-
lation, we can represent R by its corresponding partion IJ.

The partition [ls ={{v4}, {02, 03}, {04}} is too fine, since we have (v4,02) €
CR' So we must merge the equivalence classes of the vertices v, and ov,.
We obtain the partition [I,={{o4, 02, 03}, {04}}. This partition represents
an equivalence relation which is closed under congruences. It thus repre-
sents the congruence closure of the relation R.

..20_

6 o1

Figure 3.1: Graph g4

As another example, consider the graph &, in figure 3.2 and the relation
R={(v1,06),(0v3,06)}.

Starting with the partition [Io ={{v4, 03, 0g}, {02}, {04}, {0s}} which
corresponds to the smallest equivalence relation containing R, we con-
struct a sequence of partitions by merging the equivalence classes of
congruent 12 vertices in order to obtain the congruence closure of R.
Since (v3,04) e R(Il5), the vertices v, and o are congruent under R([lo).
So we merge the equivalence classes of o, and vs and obtain [[,= {{v4, 03,
vs}, {02, 05}, {041)}. Now, since (v;,05) cR([l4), the vertices vy and o4
are congruent under R(II,). And, finally, for [l = {{v4, 03, 04, 05},
{02, vs}}, the vertices v; and os are congruent under R([Iz2), since
(og ,05)eR(II2). So II; consists of one equivalence class. The con-
gruence closure of R is thus R=={04, 02, 03, 04, s, 0512,

$ $ > A 6 $ a

o1 o2 03 o4 o5 vé

Figure 3.2: Graph g,

12: Congruent wrt the (equivaience) relation R(II) which is associated

with the partition II.

21

3.4. Congruence closure and the quantifier-free theory of equality

In order to point out the connection between the notion of the congruence
closure of a binary relation represented by a graph and the decision prob-
lem of the quantifier-free theory of equality, we assign a term t(o) to
each vertex o recursively in the following way:

For a vertex o without successor let ¢(o)=I(v) and for a vertex o with
outdegree n=n{v) let t(o)=I(v) (t(o[1]), ..., t{oln])).

Denote in addition for a relation R by ‘Tz the set Tm = { t(v)=t(v’) |
(o,0°) €« R }. It now can be proved that for a relation R and its closure
Rc. T and "L'RC are equivalid.

For the first example, ‘T = { §(a,b)=a } and §(§(a,b),b) = a ¢ T
One could prove, for example, the validity of the formula F=§(a,b)=a DO
$(§(a,b),b) = a in the following way:

Negate the formula and place it into disjunctive normal form. We obtain for
the negation of “F the two disjunctions §(a,b)=a and §(§(a,b),b) + a. The
congruence closure is now computed for the equalities and finally for each
inequality ¢#¢°, it is tested if the two terms ¢ and ¢’ belong to the same
equivalence class. If one such inequality exists, then the negation of the
formula F is unsatisfiable and thus %F is valid. Otherwise, F is not valid.
Since in our example the terms §(§(a,b),b) and a are contained in the
same equivalence class of the congruence closure, “F=§l(a,b)=a O
$($(a,b),b) = a is a valid formula.

And for the second example, ‘Tz = { §§fffa = a, fffa=a } and fa=a € Trc
Similiarly, the formula §§§ffa = a A\ $ffa=a O §a=a can be proved as a
valid formula.

These examples indicate that the concepts of rewriting might provide use-
ful support for such decision procedures. The concepts are introduced in
section 4.4 and it indeed turns out that they are very useful.

3.5. An algorithm for the congruence closure

We give an algorithm for computing the congruence closure according to
the paper of Nelson and Oppen [171 which is shown in figure 3.3.

As in the examples, an equivalence relation is represented by its corres-
ponding partition.

We now argue that the procedure MERGE is correct in the following sense:

22

CONGRUENCE_CLOSURE (R):
Ei={&y 1 &p={v} for all bV}
FOR ALL (u4,0)eR DO MERGE (u,0)

MERGE(4,0):
IF Eut&p
THEN
BEGIN
Pu 1= {up | 3 up. up is predecessor of u,
and u, is equivalent to u (i.e., upe,) }
Po 1= {op | 3 ve. vy is predecessor of v,
and v, is equivalent to o (i.e., 0oe&p) }
€ = (& - {&ys&pl) U {EYUER
FOR ALL (x%,4) € PyxPyp DO
IF E€x*#&, AND CONGRUENT (x,y)
THEN MERGE(x, y)
END

CONGRUENT(x, y):
IF L(x)=l(y) AND n(x)=n(y)
THEN BEGIN
FOR is=1 TO n(x) DO
IF Exri1#Eyria
THEN RETURN FALSE
RETURN TRUE
END
ELSE RETURN FALSE

Figure 3.3: Procedure CONGRUENCE_CLOSURE
with subprocedures MERGE and CONGRUENT

If a partition & represents the congruence closure of a relation R, then
MERGE (u, o) constructs the congruence closure of the relation R U{(u,0)} :
Since the equivalence classes of vertices u and o are only merged for pairs
(u,0) of the relation R by external calls of the procedure MERGE or for

23

congruent pairs by internal calls, the resulting equivalence relation is not
too coarse.

Suppose it is too fine. Then there are vertices x and y, such that they are
congruent but not equivalent. Since R was closed under congruences, x
and y were not congruent initially. Then there must have been some call of
the procedure MERGE for some vertices a and b such that either (x,y) or
(y,x) is in PaxPp. In accordance to the algorithm, either MERGE(x,y) or
MERGE (y,x) is called which merges the equivalence classes of x and y and
thus makes x and y equivalent contrary to the assumption that the equi-
valence relation is too fine.

Therefore, if the relation represented by & is closed under congruences
before calling the procedure MERGE, then it is also closed under congruen-
ces afterwards. The procedure CONGRUENCE_CLOSURE thus computes
the congruence closure of a relation K.

In their paper, Nelson and Oppen show furthermore that the algorithm for
computing the congruence closure can be implemented in O(m2) worst case
time behaviour and a sophisticated version in O(m#log(m)) where m is the
number of edges in the graph. It is assumed that there are no isolated ver-
tices, i.e., n=0(m) where n is the number of vertices.

24

4. Quantifier-free Presburger Arithmetic extended by predicate and
function symbols

The quantifier-free Presburger Arithmetic extended by predicate and func-
tion symbols includes, in addition to the quantifier-free Presburger Arith-
metic, formulas with predicate and function symbols.

The atomic formulas of the unextended class PA are linear in variables.
But the atomic formulas of the extended class PAg are linear in terms
that have an outermost uninterpreted function symbol. The atomic formulas
are furthermore augmented by such formulas as P(t4, t2, ..., t,) where P
is an uninterpreted predicate symbol and ¢4, ¢2, ..., ¢, are terms.

The decidability of PA‘ is established in section 4.1 and a decision proce-
dure for the domain of integer numbers, designed by Shostak [25], is pre-
sented in section 4.2.

Based on the given procedure, we look out for new concepts in order to
improve the decision process proposed by Shostak in section 4.3. For
example, separation of atomic formulas of the form at + bt’ tel ¢ where tel
e {5, =, #} subject to the predicate el serves for compactness in the
representation of the information.

Extracting information, for example by inferring equalities, is an often
stated goal. Very helpful is the notion of an equality loop. Equality loops
are used to generate equalities from a set of lequalities. This and some
more very interesting results are proved in section 4.5.

Considering the connection to rewriting on ground terms, we are able to
incorporate recent (1988) results on ground rewriting, presented in sec-
tion 4.4, in the newly developed decision procedure of this diploma thesis,
the EQUALITY_LOOP_RESIDUE procedure, given in section 4.6.

Examples indicate how this procedure improves the decision process and in
another section, further suggestions are made how the presented method
can serve for even more advantageous computation:

The Loor_RESIDUE procedure in section 2.2 for the unextended class and
the EQUALITY_LOOP_RESIDUE procedure in section 4.6 for the extended
class were originally designed to be applied to the conjunctions in the dis-
junctive normal form of the negation of a formula as last step in the deci-
sion process of the validity of a formula. But furthermore, they can advan-
tageously be applied to formulas before they are negated and expanded into
disjunctive normal form. This holds particularly for the EQUALITY_LOOP.
RESIDUE procedure.

25

An example demonstrates that the application of this procedure to sub-
conjunctions of a given formula “F can substantially reduce the number of
conjunctions in the disjunctive normal form of the negation by censtructing
a formula F’ which is equivalent to the formula OF and has much less con-
junctions in the disjunctive normal form of its negation than %F. Again, an
important aspect is the compactness of the formula F’. Especially this is
supported by the procedure.

4.1, Decidability

We now prove the decidability of the extended class PA¢ by reducing the
problem to the decidability of the unextended class PA:

The procedure in figure 4.1 reduces a formula ?6P in PA6 to a formula
“F in PA. The reduction is carried out in two steps:

First, the predicate symbols are eliminated by introducing new function

(1) For each n-ary predicate symbol P12 occurring in Fep
let §p be a new n-ary function symbol.
Obtain Fg from Fep by replacing each atomic
formula Plty,....tn) by the formula §plty,...,t,)=0.

(2) For each pair f(tysecestn), §(U4gs...,u,) of distinct terms
or subterms of terms in ‘3-'6 with the same outermost
function-symbol '3, construct the following axiom:

t1=U4/\ t2=u2/\ .../\t,.=u,. oD ‘(t,,..-,t,‘) = 6(“4....,“,‘).
Let F a4 be the formula

?)46 E ()41/\;42/\"-/\Ac) = 7&’

where the A; ‘s are the axioms so constructed.
(3) For each term t occurring in F a4 that has an outermost
function symbol, let x, be a new variable.
Obtain F from F a4 by replacing each such term t by x,
(In case where one such term is nested within another,
the larger term is replaced).

Figure 4.1: Reduction of a formula ?‘p
of the extended class

13: Uninterpreted predicate and function symbols of the Presburger Arith-
metic; i.e., the predicate symbol < and the function symbols 0, 1, and

+ are excluded.

26

symbols and second, the function symbols are eliminated by adding axioms
to the formula and finally replacing the terms by new variables.

Consider, for example, the valid formula

Fesp e [Plx)dx=2 A §(2xa)=§(2) Ng(y)=x+7]
-
[§lgly))=§(5+2xx) V 1P(x)]
(either holds +P(x) or P(x) implying x=2 and gly)=x+7 = 5+2%x).
Substituting the predicate symbol P by ﬁp, we obtain the formula
7‘ = Eﬁp(x)=0 D x=2 A §(2*2)=§(2) Ngl(y)=x+7]
>
[§lgly))=§(8+2xx) V/ 1(§p(x)=0) 1.
The formula‘} contains sux pairs of distinct terms with the same outer-
most function symbol - (3) pairs among the terms $(2xa), §(=2), §(gly)),
and §(5+2xx). Therefore, the formula ?’4‘ is given by

Fag= { 2xaza > f(2+a) = §(a)
A 2xazgly) > §(2%2) = §(gly))
A 2%a=5+2xx D f§(2xa) = §(5+2xx)
A azgly) > $(2) = §(gly))

A 2=5+2%x D $(2) = §(5+2%x)
A gly)=s5+2xx > §lgly)) = §(5+2xx) }
>
{r $p(x)=0 D x=2 A §(2*a)=§(2) Agl(y)=x+7]
o

[§(g(y))=§(5+2xx) V (§p(x)=0)1 }.

We obtain F by replacing the terms §p(x), §(2xa), §(2), g(y), §(g(y))
and §(5+2*x) by the variables 04, 02y 03y gy 05, and vg:¢

F o= { 22=2 > 02 = 03
/A 2azo,) D2 = 05
/A 22=85+2*%x D 02 = Og
A 2= 04 > 03 = vs
A 2=58+2%x D 03 = Vg
/A 04g=5+2%x D Vs = Og }
2
{ [0420 D x=2 A vzz0; N 0g=x+7 1]
=

[Los=os V =(vy=0)] }

- 27 -

The formula “F is contained in the unextended class, and therefore its
validity can be decided.

“"The reduction just described is quite similiar to Ackermann's [1] method
for eliminating function symbols from universally quantified equality for-
mulas in predicate calculus with function symbols and identity. The correct-
ness of the reduction can be proved straightforwardly; given a model for
1% ¢p. one can construct a model for =7F, and conversely. The details are
easily gleaned from Ackermann's proof, and so are omitted here.” [25]
Now since 17F¢p is unsatisfiable if and only if +%F is unsatisfiable, the
formulas ?673 and F are equivalid proving the decidability of the extended
class.

Observe that not only the two formulas F¢p and % are equivalid, but also

Fep Fé ‘},46, and F are all equivalid formulas.

4.2. A practical decision procedure

This section presents a decision procedure for the extended class with
integer domain which has been designed by Shostak [25]. It introduces to
the main problem of the extension by function symbols and shows by an
example that the difference between the number of conjunctions generated
in the reduction process and the number of conjunctions necessary to de-
cide the validity of a formula tends to grow enormously.

4.2.1. The domain

Shostak has chosen as domain the set of integer numbers.

The formula F to be decided is reduced to a set of integer linear pro-
gramming problems (ILP's) C; such that +%f and C, VC, V ... VC,,
are equivalid for the integer domain. This is done by negating ¥ and ex-
panding the negation into disjunctive normal form such that each C; is a
conjunction of linear lequalities of the form A<B. This is achieved by re-
placing formulas of the form A=B, A>B, AB, and 7(A<B) by the for-
mulas (AsB A BsA), BsA, A+1<B, and B+1sA, respectively, during the
reduction process. Note that this replacement is correct since the domain
is the set of integer numbers.

4,2.2. Semantic notations

We now need some definitions that refer to the semantic:
Given a set U of variables, a family (%F;);,o of function symbols, and a

28

family (P:)i.o of predicate symbols, an interpretation ¢ wrt a domain D is
an assignment such that ¢(o) is an element of D for a variable v, o(§) is a
function D"—D for a function symbol § in accordance to its arity, and
¢(P) is a subset of D" for an n-ary predicate symbol P.

An interpretation is extended to terms in a natural way as a homomor-
phism: to each term ¢ = §(t4,...,t,), it assigns @(§)(@(ts), ..., 9(t,)).
Analogously, the atomic formulas P(t.,, ta, ...y t,) are interpreted in such
a way that @(P(tq, ta, oo t,)) if and only if (@(ts), @(t2), ...y 9(t,))e
e(P).

The extension to all quantifier-free formulas is done by interpreting the
boolean connectives 7, V/, /A, and 2 as usual.

An interpretation ¢ of a formula of the Presburger Arithmetic additionally
satisfies ¢(<) = < for the interpreted predicate symbol <, ¢(0) = 0, ¢(1) =
1, and ¢(+) = + for the interpreted function symbols, and the axioms of the
Presburger theory.

We now introduce a notation for modifying an interpretation ¢:

Given a variable o and an element 3 of the domain D, we denote by
9[v—d] that interpretation obtained from ¢ by assigning the element 9 to
the variable o.

The notion of well definedness which normally refers to a function, is now
for convenience extended to function symbols, formulas, and sets:

A function symbol § is said to be well defined wrt an interpretation ¢, if
¢(§) is a well defined function.

A formula F is said to be well defined wrt an interpretation ¢, if ¢(§) is a
well defined function wrt ¢ for any function symbol § occurring in F.

A set L is said to be well defined wrt an interpretation ¢, if ¢(§) is a well
defined function wrt ¢ for any function symbol § occurring in 4.

A solution ¢ for a set £ of formulas wrt the domain D is an interpre-
tation which satisfies all formulas of £.

A set £ of formulas is satisfiable wrt a domain D if and only if there
exists a solution ¢ for the system S wrt the domain D.

Two sets £, and £, are said to be equisatisfiable if and only the following
condition holds:

The set £, is satisfiable if and only if the set £, is satisfiable.

4.2.3. The basic problem

The reduction described in figure 4.1 does not of itself provide an efficient
decision procedure. The example in section 4.1 gives us the intuition that

29

the reduction is prone to combinatorial explosion. Let us now investigate
the reason. Since a predicate symbol may be considered as a special function
symbol, it suffices to observe the extension of the language class by
introduction of function symbols.

Note that an axiom is constructed for each pair of terms with the same
outermost function symbol. The axioms state that the function symbols
have to be interpreted by well defined functions: A function assigns a uni-
quely defined value to every argument of its domain. The axioms, which are
added as hypotheses to the formula, justify the substitution of terms with
an outermost (uninterpreted) function symbol by new variables in the last
step of the reduction.

For a function symbol that occurs m times, there are (3) axioms, so the
number of axioms is in the worst case proportional to the square of the
length of the formula. And in the expansion to disjunctive normal form, an
axiom for a n-ary function symbol contributes at least the factor (n+1) to
the number of conjunctions, since ts=ug A tamua N ... \tuzu, > §(tq,...,t,)
= §(uqg,...,u,) is equivalent to the formula tstusV ttu V...V t.tu,V
$(tgseeests) = §(uq,...,u,) which is the disjunction of (n+1) formulas.

To illustrate the combinatorial explosion, consider the formula “F = (x<gx
A gxsx D x=gggggx) 4 . There are ten (= (3)) pairs of terms among the
five subterms gx , ggx , gggx . ggggx . and gggggx . An axiom is construc-
ted for each pair and thus 2'°=1024 conjunctions™ are in the disjunctive
normal form of the reduced formula. It is even worse (3'°=59049) if
(a<b \/ a>b) is used instead of atb.

So, obviously, the construction of axioms is responsible for the com-
binatorial explosion. At this point the question arises how this can be ob-
viated.

Let us look at the formula F = (xsgx A gxsx D x=gggggx). Out of the ten
axioms, only the four axioms for the pairs {gx, ggx}, {ggx, gggx}. {gggx.
ggggx}. and {ggggx. gggggx} are relevant. More important, these axioms
can be replaced by the single formula x=gx D x=gggggx.

So one aspect of improvement accounts for distinguishing relevant from
irrelevant information and, indeed, in most cases only a few axioms are of
relevance. Another aspect is that the relevant information is frequently
determinable in advance of its application as shown by the procedure
EQPAIRS in the next section.

14: For convenient reading, the parantheses are omitted In this example.
15: The base is 2, because the implications are assumed to be written in
the following disjunctive form: (atgstatgz V glargs)=glatgz)) which

uses the relation # to abbreviate (atgs<atgz V atgsratga).

_30-

4,2.4. The Procedure

The following approach greatly reduces the number of constructed axioms
for the decision of a formula compared with the number of axioms gene-
rated in the reduction process.

For a set & of linear lequalities associate an ILP obtained by replacing
each term t with an uninterpreted outermost function symbol by a new
variable x,. The associated ILP thus simply omits the axioms for the func-
tion symbols occurring in & which are constructed in the reduction pro-
cess given in figure 4.1.

The steps (4.1) and (4.2) of the procedure in figure 4.2 refer to the easier
of the cases: no additional formula needs to be constructed and the result
for the associated ILP can be transferred to the set ¢; itself.

Now, if a function symbol § in &); is not well defined wrt the solution ¢ for
the associated ILP, a formula #H is constructed which summarizes the vio-
lation such that & and H A & are equisatisfiable. Step (4) of the proce-
dure is now applied to each conjunction in the disjunctive expansion of
HAG.

As an illustration, let us consider, for example, the formula <F = (xsgx A
gxsx D x=gggggx). The negation expanded into the disjunctive normal form
(+F = G4V G2) is associated with the following two ILP's:

Gq = {xsgx, gxs<x, x+91sgggggx} and Gz = { xsgx, gx<x, gggggx+Isx}
Step (4.1) obtains a solution for the ILP associated with &4. For example,
x=0, gx=0, and gggggx=1. In this solution, the function symbol g is not
interpreted by a well defined function. The violation is expressed by the
formula # = x=gx D gx=gggggx = +,V H2V H; where H,= x+15gx,
Hao=gx+1sx, and Hy=gx=gggggx . This formula is now added as an axiom
to F to obtain the formula #L>%F. If this formula is negated 7 (HDF) =
(HAF) = (HAG9V (HAG2) and expanded into disjunctive normal
form HsNGAV (HaAG)V (HiNGDV (H NGV (Ha NGV
(H3NG2), the resulting six ILP's are found not to have any solutions.
Therefore, the original formula F must be valid.

Note that in this case only seven ILP's (the one associated with &4 and six
to decide the augmented formula #+{ >%F) are required to be solved, where
in the reduced formula at least 1024 had to be solved. Analyzing this enor-
mous gap, we observe that the reduction process constructs ten axioms six
of which are irrelevant and that the four relevant axioms x=gx > gx = ggx,

g% = ggx O ggx = gggx. ggx = g4gx > §d94* = ggggx. and gggx = ggggx

31

gg949x = g9949gx can be replaced by the single formula x = gx D x = gggggx
which is done by the procedure EQPAIRS presented in figure 4.3.

(1) Elimination of predicate symbols:
For each n-ary predicate symbol P occurring in F, let $p
be a new n-ary function symbol; replace each atomic for-
mula Plty,...,t,) in F by the formula §p(tss...rtp)=0.
(2) Elimination of addition in arguments:
Eliminate addition and multiplication by constants®
in arguments by introducing new variables
(i.e., replace x<§(2y+3) by y'=2y+3D x<§(y’)).
(3) Negation and construction of a disjunctive normal form:
G4V a2 V...V@P is obtained, where each §j; is
a conjunction of linear lequalities of the form A<B
(4) All G;'s are unsatisfiable if and only if F is valid.
Each such §; is now tested for satisfiability
in the following way:

(4.1.) Solve the ILP associated with §;
IF there is no solution for the associated ILP
THEN &j; is unsatisfiable
ELse (4.2))
(4.2.) IF G; is well defined wrt the found solution 17
THEN ¢j; is satisfiable
ELseE (4.3))
(4.3.) Summarize the violation in a formula .,
and reapply step (4) to each conjunction in
the disjunctive expansion of HLAG;

Figure 4.2: Decision procedure for the extended theory

The completeness of the procedure for the extended class wrt the integer
domain depends on the completeness of the ILP solver in step (4.1).

As noted in the second chapter, the LOOP_RESIDUE procedure for deciding
the satisfiability of a set of linear lequalities in variables is not of itself
integer-complete®,

16 : Recall that multiplication by constants is an abbreviation for addition.
17: The solution for the ILP is then also a solution for &j;.
18 : For example, a closed graph for { 1s2x, 2x<7 } has neither an Infea-

sible simple loop nor an integer solution.

32

On the other hand, incorporating integer concepts to obtain an integer-
complete version of the LOOP_RESIDUE method may result in too inef-
ficient procedures.

We have not yet shown how to examine the well definedness of a set of
formulas wrt an interpretation and how to construct a formula that sum-
marizes the violation. For these tasks, Shostak [25] has presented an ap-
propriate recursive procedure, the procedure EQPAIRS given in figure 4.3.

EQPAIRS (¢4, tz, alreadytried) =

IF <t4, t2> € alreadytried
THEN RETURN ¢
ELSIF ¢4 € Etz
THEN RETURN {<ty, t2>}
ELSIF for some function symbol § and terms us, uz:
(i) $(uq) € Eg,, and
(ii) 6(“2) € Etz' and
(iii) EQPAIRS (uq,uz,alreadytried (J {<ty, t2>})2 @
THEN RETURN Py U P2 U P3, where

P; = IF ty=flug) THEN @ ELSE {<tq,§(uqs)>}
Po = IF t;=§(uz) THEN @ ELSE {<tz,§(uz2)>}
P3 = EQPAIRS (uq,uz,alreadytried (J {(<ty4, t2>}

ELSE RETURN @.

Figure 4.3: Procedure EQPAIRS

Let ¢ be the discovered integer solution for the &; whose satisfiability is
to be determined, and T the set of terms to which ¢ assigns values. Denote
by U the set of all subterms of terms in 7. Finally, for each term ¢ e U,
define the set Egzby Eg ={t'eT | ¢ (t)=9p(t’) } for teT and Ez = {t} other-
wise.

The third argument is empty on external calls and is used in internal calls
to prevent infinite recursion. EQPAIRS returns a set of pairs in TxT.

33

Shostak states that ¢ has no violations of substitutivity if and only if for
all ¢, ¢* e T, either ¢ (¢)=9(¢t') or EQPAIRS (¢,¢’,()=@.
Furthermore, if for some terms ¢, ¢" € T, ¢ (t) ¢ (t’) and EQPAIRS (¢,¢°,0)
= {<CyeS9D s eoe, <TpsSp>}, n21, then the formula

H = [ey=syN\...\2ta=s, O ¢=¢t"]
follows from substitutivity but is not satisfied by ¢.
To check ¢ for violations of substitutivity, it thus suffices to compute
EQPAle(t.t'.¢) for such pairs ¢, ¢’ of terms in T to which different
values are assigned by ¢. A violation exists if and only if EQPAIRS (¢,¢°,()
@ for some such pair. In such a case, the formula #i summarizes the
violation [25].
Note that the procedure is called for terms ¢ and ¢’ with same outermost
uninterpreted function symbol, but different assigned values. It tests
whether terms are congruent using the notation of the previous chapter.
The congruence is based on a relation which is induced by the solution ¢ of
the associated ILP and on the well-definedness of the functions symbols
wrt to the interpretation ¢.
This shows the connection between the quantifier-free theory of equality
and the well-definedness. For further information and for the termination
of the procedure in figure 4.2, the interested reader is referred to the
paper of Shostak [25]. Though there can also be found some suggestions
for improvements, they do not change the structure of the procedure.
Instead of examining these here again, let us search for new concepts
in the next section which may lead to an essential improvement.

4.3. New concepts

Recall that the LOOP_RESIDUE procedure in section 4.2 constructs
linear lequalities from the atomic formulas in the conjunctions to be
decided for satisfiability by replacing formulas of the form A=B, A>B,
AcB, and 1(A<B) by the formulas (A<B A BsA), BsA, A+1<B, and
B+1sA, respectively, during the reduction process.

This simplifies the decision procedure because there is only cne sort of
atomic formulas to be treated.

On the other hand, compact information given by the relations = and # is
splitted up into a conjunction or disjunction of two atomic formulas.

Let us now examine an instructive example.
Consider the formula

34

F = { (§la,c)sa A asfla,c)) V
(xsglx) A glx)sx) V
(b<sh3(6) A h3(b)sh®(b) A hZ3(b)sb) }
-
{ (§(§la,c)ic)sa A aslfla,c),c)) v
(g%(x)sx A x<g®(x)) 4
(h(b)<b A bsh(b)) }.

Perhaps not seen at the first glance, this formula is valid. Assuming the
integer numbers as domain, the application of the procedure in figure 4.2
results in 24 (3#2#2#2) conjunctions &); in the expansion of the negated
formula +%F into its disjunctive normal form, where each of the §j;'s con-
juncts linear lequalities of the form A<B. The well-definedness of functions
interpreting the function symbols in the &; is violated for at least three
associated ILP's for each of which an appropriate formula -H., has to be
constructed. Recalling that in addition each ¢j; has to be proven unsatis-
fiable, at least 27 ILP's have to be solved.

Indeed, there are more than 27 because the formulas 'Hi have at least two
conjunctions in the disjunctive normal form which has a multiplicative effect
on the number of ILP's.

Though the transformation of A=B and A#+B to (A<B A BsA) and (A+1<B
V B+1<A), respectively, during the expansion advantageously standardizes
the structure of the conjunctions ¢j;, the disadvantage that the given
information is not represented in a compact form becomes now evident.
The other way round: Compactly represented information may allow a
compact and quick computation. So what about trying to change the direc-
tion and reduce (A<B A BsA) and (A+1sB \/ B+1sA) to A=B and A+B ,
respectively ?

Let us reduce the above formula <F to

F= { flactza V/ glx)=x \/ (K3(b)=b A A5(b)=b))
»)
{ §l§lasc)e)za V/ g®(x)=x \/ A(6)=b},

which, using the relations = and #, results in only three conjunctions after
negating and expanding into disjunctive normal form:

Gs= {§l§lac),c)ta, g%(x)tx, h(b)2b, §la,c)=a}
G2z { §l§lac),c)ta, g%(x)tx, h(b)th, g(x)=x}
Gs= {§l§lac),c)ta, g®(x)tx, h(b)tb, h3(b)=b, A®(b)=b} .

35

Aren’t we now itching to use the equations as rewrite rules in order to
prove straightforwardly each of the §;'s unsatisfiable ?

In this example, we have automatically directed our attention to the new
concepts:

Compactifying information by additional usage of the relations = and %,
and, especially pointed out in the last conjunction, introducing the concept
of rewriting.

Before presenting an algorithm, we provide the basic notions of rewriting.

- 36 -

4.4. Rewriting

We now Iintroduce the concepts of rewriting and point out the connection
to the decision problem of the quantifier-free Presburger Arithmetic ex-
tended by predicate and function symbols.

The notations in section 4.4.1 and the algorithm in section 4.4.2 can be
found in the paper "Finding canonical rewriting systems equivalent to a
finite set of ground equations in polynomial time” of Gallier, Narendran,
Plaisted, Raatz, and Snyder [71.

Sections 4.4.3 and 4.4.4 establish the relation to the class PAg and intro-
duce the notion of Presburger terms.

4.4.1. Notations

Let = C A x A be a binary relation on a set A. The transitive closure, the
transitive and reflexive closure, and the inverse of = are denoted by =",
=*, and =" or ¢, respectively. The relation = is Noetherian or well
founded if and only if there is no infinite sequence <ag, Ags cccs Ans 002
of elements in A with a,= a,.4 for all n20.

A partial order < on a set A is a binary relation < C A x A that is re-
flexive, transitive, and antisymmetric. We let = = <. Associated with a
partial order < on a set A is a strict ordering < defined by a<a’ if and only
if a<a’ and ata’. We let > = <™. A strict ordering on a set is well founded
if and only if > is well founded according to the above definition.

Let the set T of ground terms and the set ‘T, of terms without loss of
generality be constructed by a ranked set U of variables and a ranked
family (F;):, o of function symbols.

A strict ordering < on (ground) terms is monotonic if and only if for every
two terms s, ¢ and for every function symbol §, if s<¢, then §(..., s, ...)
< §(..es t, ...). The strict ordering < has the subterm property if and only
ift <¢§(..., t, ...) for every term §(..., ¢, ...).

A simplification ordering < is a strict ordering that Is monotonic and has
the subterm property.

Note that if a strict ordering < is total, monotonic, and well founded, we
must have s<§(...,s,...) for every s, since otherwise, by monotonicity, we
would have an infinite decreasing chain. From this, we have immediately
that for a finite ranked alphabet, a total monotonic ordering < is well

- 37 -

founded if and only if it is a simplification ordering. Such an ordering will be
called a total simplification ordering on ground terms.

It is shown by Dershowitz in [5] that for finite ranked alphabets, any sim-
plification ordering is well founded, and that there exist total simplification
orderings on ground terms.

Let & € °T x °T be a binary relation on ground terms. We define the relation
—g €T x T as follows: Given any two terms ¢4, t; € T, t4 —¢ t, if and
only if there is some pair (s,t) € & such that s is a subterm of ¢4, and ¢, is
obtained by replacing this occurrence of s by ¢.

When t;—g t,, we say that ¢4 rewrites to ¢, or that we have a rewrjte
step. When a pair (s,t) is used in a rewrite step, we also call it a rewrite
rule (or rule), and use the notation s—¢ to emphasize its use as a rewrite
rule. The idea is that the pair is used oriented from left to right.

Denote the reflexive and transitive closure, and the symmetric closure of
—¢& by —g* and «——g, respectively. Similiarly, the reflexive and transitiv
closure of «——¢ is denoted by «——g*.

Given a set R of ground rewrite rules and a total simplification ordering <,
we say that R is compatible with < if and only if ¢ < [for every rule [—>%
in .

Given a set R of ground rewrite rules, we say that R is reduced if and only
if neither any lefthand side { of a rewrite rule [—% € R is reducible by any
rewrite rule in R-{{-—%} nor is any righthand side ¢z of a rewrite rule [—¢
e R reducible by any rewrite rule in R.

Let — C T x T be a binary relation on T. We say that — is locally con-
fluent if and only if for all ¢, ¢4, t; € T, if t — £4 and ¢ — ¢, then there is
some ¢’ such that ¢, —* ¢’ and ¢; —* ¢° . We say that — is confluent if
and only if for all ¢, ¢4, tz € T, if t >* ¢4 and ¢ —* ¢, , then there is some
t’ such that ¢, —*¢’ and ¢; —*¢’ .

It is well known [11] that a Noetherian relation is confluent if and only if it is
locally confluent. We say that a set of rewrite rules R is Noetherian,
locally confluent, or confluent if and only if the relation —s & associated
with R has the corresponding property.

We say that R is canonical if and only if it is Noetherian and confluent.

Note that since a reduced set of ground rewrite rules has no critical
pairs, it is locally confluent. A reduced set R of ground rewrite rules
compatible with > is also Noetherian because ¢ < [for every rule | — ¢,
and < is a simplification ordering.

38

Since R is Noetherian and locally confluent, it is confluent.

4.4.2. Canonical ground rewriting systems

Since total reduction orderings on ground terms exist, ground equations
can always be oriented, and thus are Knuth Bendix type completion proce-
dures guaranteed to terminate with an equivalent canonical system on input
sets of ground equations. Gallier, Narendran, Plaisted, Raatz, and Snyder
have presented an O(n3) algorithm [7]:

"The basic intuition behind the algorithm is the following. Let < be a reduc-
tion ordering total on ground terms. Given a finite set & of ground
equations, we run a congruence closure algorithm on &, obtaining its con-
gruence closure in the form of a partition [I. Recall that the equivalence

R=¢

1 := associated partition for the congruence closure of &€
WHILE the partition [I has some nontrivial equivalence class DO

Let p be the smallest element (wrt <) of the set of terms

C’ U voe U Cn
where Cy4, ..., C, are the nontrivial equivalence classes
and let C; =1{p, Ay, ..., \g} be the one containing ¢.

Let £ = {Ag—>0, ..., \g—0}.

Obtain a canonical system L' equivalent to & by simplifying
the lefthand sides (the righthand side p is reduced).

Obtain R’ by simplifying the lefthand sides of rules in R
using L°.

Let R =R'UKL’

Simplify all terms in [1 using &°.

ENDWHILE

Figure 4.4: Computing a canonical rewriting system equivalent
to a set & of ground equations in polynomial time

classes of [] consist of the sets of subterms occurring in & that are con-
gruent modulo &. Let Cy, ..., C, be the nontrivial equivalence classes™

19: Equivalence classes containing only ocne element are called trivial.

-39_

of [I. For each class C;, we can form a set of rules as follows: let p; be
the least element of C; (w.r.t. <), let £; be the set of all rules of the
form \»—p; , where Ae C; , A > p;. Now, the union of the sets of rules
just constructed is almost the answer. The problem is that the sets £;
may not be reduced. In order to reduce them, some simplification steps
must be performed. But care must be exercised to carry out these
simplifications in polynomial time. Roughly speaking, the trick is to choose
the classes C; to form the sets of rules £; in an order such that the next
class selected is the one containing the least element belonging to non-
trivial classes. What happens in this algorithm is that congruence
closure is performed only once at the beginning, and that every time a new
set of rules £; is produced (as the result of picking the right class), £; is
simplified to a canonical set and it is also used to simplify the current
partition and the current set of rules formed so far.” [7]

Observe that if a Noetherian set R of ground rewrite rules is reduced,
then it is locally confluent and (since Noetherian) also confluent, and thus
canonical.

So the algorithm constructs a canonical set of rules equivalent to the input
set of ground equations.

4.4.3. Quantifier-free Presburger theory and rewriting

Since variables can occur in formulas of the Presburger theory, the result
of the previous section seems not (directly) applicable to the decision
problem of the quantifier-free Presburger Arithmetic extended by predicate
and function symbols.

We now explain how the result for ground equations of the previous section
can be used for this decision problem:

Recall that for deciding the validity of a quantifier-free formula %F, it
suffices to provide a decision procedure for the satisfiability of a con-
junction of atomic formulas, since F is valid if and only if each conjunction
of atomic formulas in the disjunctive normal form of the negation of &F is
unsatisfiable.

Like the formula <F, such conjunctions are quantifier-free. For such a
quantifier-free conjunction C, obtain a quantifier-free ground conjunction
C4 by replacing each variable o occurring in C by a new constant symbol a,.
Since the conjunction C and its existential closure 3C are equisatisfiable,
and since the conjunctions 3C and C, are also equisatisfiable by skolem-

- 40 -

ization of 3C, the problem of determining the satisfiability of such a
quantifier-free conjunction which may contain variables can thus be re-
duced to the problem of determining the satisfiability of a quantifier-free
ground conjunction.

And therefore, the results of section 4.4.2 can serve for the decision
problem of the quantifier-free Presburger Arithmetic extended by predicate
and function symbols.

In which way this is done is described in sections 4.5 and 4.6.

4.4.4. Presburger terms

Predicate or function symbols are said to be yninterpreted wrt a theory if
they do not occur in the axioms of this theory.

The interpreted predicate and function symbols of the Presburger Arith-
metic are the predicate symbol < and the function symbols 0, 1, and +.

We define the terms of the Presburger Arithmetic 'Pp,q. or Presburger
terms, wrt a ranked set UV of variables and a ranked family (F:)i,0 of
function symbols such that 0, 1 € Fo and + € F,.

Let < be a total simplification ordering on the Presburger ground terms.

Since we want to distinguish between terms with the interpreted function
symbol + as outermost function symbol and terms with uninterpreted func-
tion symbol as outermost function symbol, we denote terms with top symbol
+ as sum-terms and terms with an uninterpreted top symbol as f-terms.

Let R‘pﬂ be a canonical rewrite system on ground terms for the Presburger
Arithmetic extended by predicate and function symbols such that the re-
duced terms have the form asty + azta + ... + a,t, + ap where the a; are
constants and the ¢; are §-terms such that each §-term ¢; is reduced wrt
R.pﬂ for 1si<n and ¢; <¢;.4 for Isisn-1.

Intuitively, the rewrite system Rp,.t reduces the sum-subterms of the
§-terms and shuffles the resulting §-terms ¢; according to the relation <
to their position. Sum-terms like at+bt are reduced to §-terms like (a+b)t
so that the ¢;'s are distinct.

For a set & of ground equations, a canonical rewrite system R of ground
rewrite rules equivalent to & can be constructed in polynomial time such
that R is reduced wrt Rp,.t by the same algorithm as in section 4.4.2.
This can be done by interreducing the terms wrt Rp’.‘ between the given
computation steps.

41

4.5. The main theorem for the extended class

Denote by £, or by £, a set of lequalities 2%, by D a set of Inequalities,
and by & a set of equalities each of whose elements can be written in the
form aty+btasc, aty+btate, and aty+ bta=c, respectively, where the Pres-
burger terms ¢4 and ¢, are §-terms and a, b, and ¢ are constants.

For an equality e, let the associated rewrite rule tg or tfe) be the rewrite
rule t4 — (-b/a) ta+ c/a if t4> ¢, and ¢z — (-a/blty+ /b if t; > ¢,
where e is the equality ats+ btz= c.

The set R(&) of rewrite rules for a set & of equalities consists of those
rewrite rules that are associated with the equalities in &.

Denote by the set E(R) the set of equations which is obtained by replacing
— in the rewrite rules of a set R by =.

A special §-term ¢, is introduced as zero term. it is assumed that it
appears only with coefficient zero, while the other terms require - with-
out loss of generality - nonzero coefficients.

Define the graph G(£) for a set £ of linear lequalities as follows:

For each §-term occurring in £ give G(£) a vertex labeled with this
§-term and for each lequality in £ give (L) an edge labeled with this
lequality such that this edge connects the corresponding vertices of the
occurring §-terms.

The other notations and definitions like path, triple sequence, admissibility,
binary operation * on triples, residue, residue (strict) lequality, loop,
simple loop, equality loop, infeasible loop, and closed graph from the
previous chapter are now simply transferred to such graphs whose nodes
are labeled with §-terms Iinstead of variables and whose edges are
labeled with lequalities which are linear in f-terms instead of variables.

As suggested in section 4.3, we now combine concepts for the relations s,
=, and % for a different treatment of conjunctions.

Denote by g system S a triple (£, &, D) with components £, &, and O
where £ is a set of lequalities, & is a set of equalities, and O is a set of
inequalities.

A system S that contains the equality 1 = 0 in the set & of equalities is
called a degenergted system.

A system S is like a partition of a conjunction which splits up its ele-

20: In the second chapter, £ has denoted a set of lequalities which are

linear /n variables, here the lequalities are linear In §-terms.

42.

ments into three groups.

Obtain for a system S=(£,E,9) an gssociated system S,=(Ly &0 +9,)
by replacing each §-term ¢ (outermost, if nested) occurring in S by a new
variable o,.

In the second chapter, the problem of determining the satisfiability of a
set £ of lequalities of the unextended class has been reduced to the prob-
lem of determining the satisfiability of a set £~ of lequalities where the
graph G(L) for K is a closed graph for £.

The notion of a closed graph was used to guarantee the completeness of
the LOOP_RESIDUE procedure in figure 2.1.

Iin the same way, we reduce the problem of determining the satisfiability of
a system S of the extended class to the problem of determining the satis-
fiability of a closed system S where Sc is a closure for the system S.
We therefore momentarily define the notion of a closed system as follows:

A system S=(£,£,9) is called a ¢closed system iff
i) R(&) is a reduced canonical rewrite system,
ii) £ and D are normalized wrt R(&) URp 4,

and iil) £ is a strictly closed set?!.

The notions of a solution, of satisfiability, and of well definedness from
section 4.2.2 are naturally extended to systems:

Given a system S = (£, &, D), a solution ¢ of the set LU & U D is called
a solution for the system S.

And a system S = (£, &, D) is said to be satisfiable if and only if the set
LU EU D is satisfiable.

Observe that a degenerated system is not satisfiable, since 1#0 is an
axiom of the Presburger theory. And note that there is only one degene-
rated closed system: S = (@, {1=0}, @),

A system S = (£, &, D) is said to be well defined wrt an interpretation ¢
if ¢(§) is a well defined function for any function symbol § occurring in S.

According to the notion of equisatisfiability for sets, two systems Sy =

(Ly,&y,D4) and S, = (L2, E2, D2) are said to be equisatisfiable if and
only if the two sets £,U &,UD4 and £2U &2,UD; are equisatisfiable.

The following definition of a closure for a system transfers the problem
for deciding the satisfiability from the system to its closure 22:

21: As defined in chapter two, a set £ of lequalities is strictly closed if
the graph &(4L) is closed and contains no equality loop.

22: Since the closure of a graph is not uniquely defined because of the
choice of the admissible simple loops modulo cyclic permutation and

reversal, the closure of a system is not uniquely defined either.

43

A system 5C is a closure of a system S if and only if

) 5 is a closed system,
and i) SC and S are equisatisfiable.

In the remaining part of this section, we want to develop a suitable cri-
terion for the satisfiability of a closed system.

This is done in two steps:

First, some results for (strictly closed) sets and closed systems con-
taining no function symbols are presented, and then the main result, a
criterion for the satisfiability of a closed system without function symbols,
is transferred to closed systems containing function symbols using the
notion of an associated system.

The Lemmata 4.1 to 4.3 refer to sets, and strictly closed sets of linear
lequalities without function symbols:

In Lemma 4.1 we show that the lequalities Lps labeling a simple equality
loop P in the graph G(£) of a set £ of lequalities and the equalities Lp=
are equivalid.

Lemmata 4.2 and 4.3 refer to a strictly closed set £ of linear lequalities
without function symbols: The lequalities of such sets can be written as
strict lequalities and any inequality containing variables of £ can be added
without changing the satisfiability of £.

Theorem 4.4 confirms that any equality that is inferable by a satisfiable
closed system (£, &,D) without function symbols is inferable by &.
Supported by Lemmata 4.5 and 4.6, we obtain a criterion for the satis-
fiability of closed systems without function symbols in Lemma 4.7.

The connection between the satisfiability of a closed system without func-
tion symbols and the satisfiability of a closed system with function symbols
is established in Lemma 4.8 by proving the equisatisfiability of a closed
system and its associated system.

We thus finally obtain a suitable criterion for the satisfiability of closed
systems (with function symbols) in Theorem 4.9.

Having done this, it remains to provide an algorithm for computing the
closure of a system which is presented in the next section.

Altogether, we thus can determine the satisfiability of a system by com-
puting a closure and determining the satisfiability of this closure.

44

Lemma 4.1:
For a set £ of linear lequalities and an equality loop P in the graph §(£),

Lp< and Lp- are equivalid.

Proof:
Since a solution for £p= is a solution for Lpg, it suffices to show that a

solution for £p ¢ is a solution for Lp-=.
Assume on the contrary that a solution ¢ for Lps does not satisfy all equa-
lities of £p=. W. |. 0. g. let ¢4, t2, ..., £, label the vertices of the loop P
and let a;¢;+b;t; . 43¢ 1si<n-1, and a,t,+b,t4<c, be the lequalities labeling
the edges of P such that

plagt;+b;t; .) splc) for all 1sisn-1,
and platatb,ty) <ople,).
Let <a, b, ¢> = <ay, by, c4>*<az, bz, c2>*...%<Au_4y bu_yq, Cny>.
We have

<alP), b(P), e(P)> = Ka, b, c>*<ay, by, cn>,

= sgnla,) < aa,, -bb,, ca,-c,b>,

and

aa,-bb,=0, ca,-c,b=0,
since P is an equality loop. Furthermore, by Lemma 2.2,

platy+bt,)<ple).
Observing sgn(b)=sgn(b, _,)=-sgnl(a,), we have also

p(sgnla,) a,(ats+bt,)) < olsgnla,)a,c)

and

pl-sgnla,)bla,t,+b,ty)) < @(-sgnla,)be,)
implying

p(sgnla,) (aa,-bb,) ty) < e¢lsgnla,)lca,—cnb)).

But since we have aa,-bb,=0 and ca,-c,b=0, we have ¢(0) <« ¢(0), a
contradiction. We thus have that a solution for Lps satisfies any equality
of £p= which completes this proof.

Lemma 4.2:

For a strictly closed set £ of linear lequalities without function symbols,

L. and £ are equisatisfiable.

Proof.
We simply have by Theorem 2.3 and its extension to strict lequalities, and

by the absence of simple equality loops in the graph &(£) since K is stric-

45

tly closed, that

L. is unsatisfiable
iff & has an admissible simple loop P with a(P)+b(P)=0 and ¢(P)<0
iff & has an admissible simple loop P with a(P)+b(P)=0 and ¢(P)<o0
iff L. is unsatisfiable O

Lemma 4.3:

For a strictly closed set £ of linear lequalities without function symbols,
and for any inequality {4, say avo+bo’# ¢, where v and o’ are variables
occurring in £,

Land LU {ao+bv’t c} are equisatisfiable.

Proof:
Since a solution for LU { av+b0°% ¢ } is also a solution for £, it suffices
to show that L U { av +bo°% ¢ } is satisfiable if £ is satisfiable.

Now, if £=£ is satisfiable, then, by Lemma 4.2, the closedness of £,
and the absence of simple equality loops in its graph, £ is also satisfiable.
Let ¢ be an interpretation that satisfies £..

We now claim that £ U {av+bvo"# ¢} is satisfiable.

If plav+bo’)telc), or, equivalently, ¢(c-(aov +bo’)) #0, then ¢ is a so-
lution for £ U { av+ b0’ % ¢ } and we are done.

On the other side, if p(ao+bo’)= ¢(e), or, equivalently, p(c-(av+bv’)) =0,
we construct an interpretation ¢’ as follows:

Let £, < £ be that subset of £ that contains all lequalities {a;0+b;0; s ¢;}
in which o occurs and let us define by & the elbowroom for this vertex o:

€ = minimum ({9(c;-a;o - b;0;)/ a;sgnla;) | (a;o+b;0o; <¢) € L,1).
Since L, is a subset of £ and £ is strictly satisfied by ¢, we have
ple;-a,o - b,o;) > 0 and aysgnla;) > O
for all (a;0+b;0; s ¢) € L, and thus € > 0.
We now define the interpretation ¢’ by

o’= ¢ [o > (plo) + e/2)].

It is momentarily shown that the value for the variable o is changed in
such a way that the interpretation additionally satisfies the inequality (3.
We claim that ¢’ is a solution for £, U { ao+bo’% ¢ } and prove this in the
following two steps by distinguishing between £, and { ao+b0°% ¢ }:

46

i) ¢’ is a solution for £ :

Let { be a lequality of £ - £,. Since [does not contain the variable o, and
since ¢ satisfies [, ¢’ also satisfies {.

Now let [be a lequality of £,, where [is a;0+b;0; s ¢. We have

¢'le;-azo - bo;)
= P’(c;) -aup’(o) - b;(P'(D;)
= ¢ole) -ailplo)+e/2) - byplo;)
= ¢ple-ao - bio;) - a;e/2

Recall that ¢(¢;- a;0 - b;0;) > 0 and & > 0. If a; < O, then - a;e/2 >0
and @(¢; - a;0 - b;0;) - a;e/2 >0. If otherwise a;>0, i.e., sgnla;)=1,
we then have by definition of & that ¢(¢; - a;0 - b;0;)/ a;sgnla;) 2e>e/2
and thus

cp(c;-a;o - b;o;) - 45(8/2)
> ¢leg-azo-bo;) - alele,-ao - biv;)/ a;sgnla;))
= 0.

So in both cases a;>0 and a; <0, we have ¢’(¢; - a;0 - b;0;)> 0. Therefore,
¢’ also satisfies I for [e £,. Altogether, ¢’ satisfies £.

i) ¢’ satisfies I where [3 i8 ao+bo’% ¢:
Since ¢(¢c-(av+bo’))=0, we have

¢’(c-(ao+bo’))
= ¢'(e)-(ap’(v) +be’(0”))
= @le)-(alp(o)+e/2) +bop(o”))
= ¢le-(ao+bo’)) -~ale/2)
= 0-ale/2)
$ 0.

Since this is equivalent to ¢’(ao+bo’) £ ¢’(c), ¢’ satisfies It.

By i) and ii), we have proved that ¢’ is a solution for £, U { av+b0’# ¢}
and thus is £, U { ao + b0’ % ¢ } satisfiable.
Moreover, this implies that £ U { ao+b0°% ¢ } = £ U {14} is satisfiable.

O

Theorem 4.4:

i) A nontrivial23 equality {=, say ao + 6o°= ¢, can not be inferred by a satis-
fiable, strictly closed set £ of linear lequalities without function symbols.

i) If an equality is inferable from a satisfiable closed system $=(4£,&,0)
without function symbols, then it is inferable from the equality set &.

23: An equality ao + éo°=¢ is trivial If it can be reduced by RPA to the
equality 0=0.

_4_7_

Proof:

i) Let an interpretation ¢ be a solution for the satisfiable set £, and obtain
the interpretations ¢, and 9,* by pLo— (p(o) +1)] and pLo’ > (¢(v’) +1)],
respectively.

If either o or o’ does not label a vertex of the graph g(£), then one of the
interpretations (¢ or ¢,) or (¢ or ¢,°), respectively, satisfies £ U {{#}.

If both terms o and o’ label vertices of the graph (L), the set £ U ({3}
is satisfiable by Lemma 4.3.

Altogether, we have that [- can not be inferred from K.

ii) Obviously, since by i) no equality can be inferred by £, and no equality
can be inferred by 2. []

Lemma 4.5:
For a closed system $=(4,£,0) without function symbols where D does
not contain the inequality 0%40,

L and L UD are equisatisfiable.

Proof:
Since a solution for £ U D is also a solution for £, it suffices to show
that £ U D is satisfiable if £ is satisfiable.

Let D={ a;o;+b;v;"tc; | 1sisn}
and .’.)1' ={ a;o; +b;0;"tc; | 1sisj } for Osjsn.
We now inductively construct a sequence <£y,L4,...4L,> of sets of
lequalities such that for each O<is<n, the following conditions i) and ii) are
satisfied:

i) L is satisfiable, and

i) £; and LUD; are equisatisfiable.

Basis:
Let Lo=£. Lo is satisfiable by the satisfiability of £ and Lemma 4.2. And
since Do=0, £, and £UD, are equisatisfiable.

Induction Step: (i<n)

Since £ ;. is satisfiable, there is a solution ¢ for £;..

It can in a similiar way as in Theorem 4.4 be proved that £;. U { a; ,40; .4
+b;,40:.4" % ¢;.4)} is satisfiable by constructing an appropriate inter-
pretation ¢’ in case of ¢@la;,s0;,9+b;440:44") = ¢lc;44) such that
' (A;490:4.9+b;140:44") @ (ciiq).

Recall that the equality a;,40;49+0;4+40:44° = ¢;+4 must be nontrivial
because of the closedness of the system S.

48

If now ' (A;eg 049+ bi190:44") @' (ci4q),

then let L;...q = Li U {a;+.,v;+.,+b;+., 0;4.1’ SCisq).

If otherwise @’ (a;,40:49+b6:440:44") > ¢’ (ci0q),

then let L;...q = L"_ U { 'd;+10;+4‘b¢+40¢+4. S ~Civq).

We have that both £;.4¢ and £ U D; .4 are satisfiable by the same inter-
pretation ¢’. Therefore both conditions i) and ii) hold.

So finally, we have that £, is satisfiable and £, and £ U O, are equi-
satisfiable. Thus is £ U D satisfiable.

We needed the sequence <£4y,%L4,...4,> of sets of lequalities in order
to refer the construction of a solution in the induction step to that of
Theorem 4.4.

Lemma 4.6:
Given a non degenerated closed system Sg=(4£,£,0) without function

symbols, then the systems

S=(L,9,D) and Sg are equisatisfiable.
Proof:
Since a solution for the system Sg is also a solution for the system S5, it
remains to prove the reverse direction that Sg is satisfiable if S is satis-
fiable.

So let ¢ be a solution for S.
We inductively construct a finite sequence <¢qo, 94, ..., o> of interpre-
tations where n is less or equal to the number of equalities in & such that
for every i, O0<iz<n,

i) ¢; is a solution for S, and

ii) ¢; satisfies at least i equalities of &.

Basis:
Let o =¢. Both conditions i) and ii) hold since ¢ is a solution for S and i=0.

Induction Step:

From the induction hypothesis, ¢; is a solution for S. If it is also a
solution for Sg, we are done.

So if ¢; does not satisfy the system Sg, there is an equality ao+bo’=¢c
in & such that ¢;(ao+bo")t¢;(c). Let w.l.o.g. o'—(-a/b)o + ¢/ b be the
associated rewrite rule for this equality.24

24: The system S can not contain a nontrivial equality of the form c=c’
where ¢ and ¢° are constants, since by Its closedness S would then
contain the equality 7=0 in contradiction to the assumption that S is
not degenerated.

The unsatisfied equality is thus of either form of bv’=¢c or av+bév’=c.

By adding Ov, in the first case, we have av+bv’=¢ in both cases.

49

Since S¢ is a closed system, the sets £ and O are reduced wrt the
equations in &, and therefore does the variable o’ not occur in £L,9D, and
E-{av+bo’=c).
Let ¢;.4 be the interpretation defined by

Pirg =P [0’ (p:((-a/b)o + ¢/b))].
The interpretation ¢;.4 is a solution for S. It satisfies the equations of
& that are satisfied by ¢;, and, since

ap;+4(0) +bp;.q(0")

ap;(0) +b o, ((-a/blo +c¢/b)

ap;(0) +b(-a/b) p;(0) + bp;(c/b)

9i(e) = 9guqle),

it satisfies at least one more equality of & than ¢;. And since ¢; satisfies
at least i equalities of &, ¢;.4 satisfies at least i+7 equalities. So both i)
and ii) hold for ¢;.q4.

P;+q(ao+ bo’)

Since & is finite, there exists an n such that ¢, is a solution for S and ¢,
satisfies all equalities of &. So the system Sg is satisfiable.

Lemma 4.7:
A closed system S=(£,&,9) without function symbols is unsatisfiable if
and only if either
i) AL is unsatisfiable,
or ii) 1=0 € &,
or i) 0t0 € D.

Proof:
If S is satisfiable, then both £ must be satisfiable, and neither & nor
D can contain the equality =0 or the inequality 0%#0, respectively.

Now conversely, if both £ is satisfiable and 2D does not contain the in-
equality 0#0, then, by Lemma 4.5 and the closedness of S, £ U D is
satisfiable.

Since (£,§ ,D) is satisfiable and since & does not contain the equality
1=0, S is a non degenerated closed system and we have by Lemma 4.6 that

(L,E£,D) = Sis satisfiable. O

Lemma 4.7 thus provides a criterion for the satisfiability of an associated
system S, for a closed system S.

By the main theorem for the extended class following the next lemma, the
same criterion is applicable for a closed system S itself.

-50_.

Lemma 4.8:
If the system S, is an associated system for the closed system S,

S, and S are equisatisfiable.

Proof:
Let Cp and C be the conjunctions corresponding to the systems S, and

S, and let the formulas Fp and Fg be 7Cyp and 1C, respectively.
In correspondence to the reduction process of the decidability proof in sec-
tion 4.1, let the formula 7146 be obtained by

?A‘ . (Aﬁol/\)452/\ A A‘c) > 75
where TF 44 contains an axiom Ag for each pair §(ty, ..., ta), $lag, ooy uy)
of distinct §-terms with the same outermost n-ary function symbol $. Re-
call that the axioms are of the form

t=ug N\ tazuz A .o N tazuy DO §ltg, ooy ta)=flug, .oy un).
The formula‘;ﬂo is obtained by replacing each (outermost) §-term ¢ occur-
ring in F,4¢ by a new variable o,. The formula ‘F v now contains axioms
of the form

vg=04" A v2z02" A ... Aosz0," D vg =04
We now have that

S5, is unsatisfiable

iff C, is unsatisfiable
iff “Fp is valid

and
Fao is valid
iff ‘7’4‘ is valid
iff 7‘ is valid

iff C is unsatisfiable
iff S is unsatisfiable

by the result of section 4.1.

Using these equivalences and the closedness of the systems Sp and S,
we now prove the equisatisfiability of Sp and S.

It again suffices to show that S is satisfiable if Sy is satisfiable, since
the other direction holds obviously. We thus assume that S, is satisfiable
and show that S must also be satisfiable:

Inductively construct a sequence <So, Sq, ..., Se¢> of systems such
that £;=£,, &;=&, and the following conditions hold:

_51..

i) S; is a satisfiable closed system without function symbols

i) a solution for S; also satisfies Apy A Avz A - A Aoi A Co-
Basis:

Let S0=50;: So is satisfiable, and Sy and C, are equivalid: Both con-
ditions i) and ii) are satisfied.

Induction Step:

Let Osist-1.

By the induction hypothesis, we have that 5; is a satisfiable closed system
without function symbols. Let axiom Ay j+4 and the corresponding axiom

Ag,i+9 of the formula Fag be

04=04" A 0202 A ... A 0,=0," D og =0y’
and

tyzug A t2zuz A ... A tazu, O $lty, ..., t,)=(ug, ..., u,).
CAsE 1:
There is an interpretation ¢ that satisfies S5; U {o,t o,'} for some j,
1<jsn.
Let S;., be obtained from S; by reducing the inequality o,#o,’ wrt the
set R(&;)=R(&,) of rewrite rules and augmenting the set D; by this in-
equality.
Obviously, condition i) is satisfied.
And since a solution ¢ for S;,, is also a solution for 5;, we have by the
induction hypothesis that the formula Agy A Ap2 A ... A Api A Cp is
also satisfied by ¢. Moreover, since ¢ is a solution for S; .4, it also satis-
fies that inequality which is obtained by reducing o;#0,° wrt the set R(E,).
Therefore, the interpretation ¢ also satisfies the axiom Ap j+4. Condition
i) thus holds for this choice of S;.,.

CASE 2:

Any interpretation that satisfies 5; also satisfies all equalities of the set
{o4=04’, 02=02°, ... , 0,=0,"}.

By the result of Theorem 4.4 for a satisfiable closed system without func-
tion symbols, all equalities of the set {v4=04", 02=0;", ... , 0,%0,"} are
inferable from the set &;=&, of equalities.

By the construction of the associated system S,, the equalities ts=uy,
t2=Uz, ..., tx=4, must be inferable by the set &. Therefore, the equality
$(tgs ooeo ta)=fluq, ..., u,) is also inferable by &. Again, by the construc-
tion of the associated system S,, the equality o‘=06’ is inferable by & ;.

- 52 -

We thus have that any interpretation that satisfies S; also satisfies
Ao,i+1- We simply let J;,,=0;. Thus both conditions i) and ii) hold for

Si+4=5:.

We have thus proved that the formula

Aot Ao2 A ---AAoe A Co

is satisfiable. Recalling “Fy% 7 Cp, the formula

?,40 % (Ao Av2 N oA Aoe) 2 Fo

is therefore not valid. As a result by the equivalence chain

Fao is valid
iff F,ag is valid
iff g is valid

iff C is unsatisfiable
iff S is unsatisfiable,

we have that the system S is satisfiable. This now completes the proof of
this Lemma.

Theorem 4.9:

A closed system S=(X£, &, D) is unsatisfiable if and only if either
i) £ is unsatisfiable,
i) 1=0 € &,

or i) 0%20 € O.

Proof.

By Lemmata 4.7 and 4.8, and the construction of an associated system.

Having this criterion for the satisfiability of a closed system, the remaining
task is the computation of a closure for a system. This is done in the next
section. We then can determine the satisfiability of a system S by com-
puting a closure and decide the satisfiability of the closure by the criterion
of Theorem 4.9.

53

4.6. The Equality Loop Residue Procedure

The task of this chapter is to compute a closure S for a system S. We
do this by constructing a finite sequence 550, Sy, Sp=Sc of
systems where for 1sisn the systems S;_, and S5; are equisatisfiable.
Even more, this is done in such a way that they are equivalid.

Define the set &p of equalities for an equality loop P labeled with
asty+bytascy, azta+tbatzscay, ...y apt,+bytysc, and - without loss of
generality - smallest term ¢4 (i.e., t4 < ¢; for 2<i<n) by

ép = {aqterbyitinq=cq; | 1sisn-1}
where asy,b4g.¢41” = ag,b4,64”
and Lagsbgisess? =K agebyses) *.. % as,byye? .

Lemma 4.10:
If P is an equality loop, then £p_ and &p are equivalid.

Proof.
Since the triples <a.u,b.,;.c.,;> are residues of (admissible) subpaths of P,
the sets Lp- and Lp_- U &p are equivalid by Lemma 2.2.

CLAIM 1:
The sets £p_ U &p and &p U { ant, +bnts=c,} are equivalid.
Proof:
Let 8,’ = (Lp--{agt;+bitiq=c; | 1sisj}) U &p for Osjsn-1.
We prove by finite induction on §, 1sjsn-1, that the sets 81'-4 and 8,- are
equivalid. Since &7 ¢ &g and (&4 — &) c {ajt;+bitirqg = ¢z}, it there-
fore suffices to show that the equality a;¢;+ bftf+7 = ¢j is inferable by 8,-.
Observe that by their definition, £p ¢ &; for all 0sjsn-1.
Basis.
Since asty+byta=cy € &4, E4=&4 and thus they are equivalid.
Induction Step. '
Now, since 3>1,
Aq,4-1ta%bg,4-qty T eq5-4Epcly
Ag,4t1tbg gtyeg T Cqy € 87):81' "
and Kay,4.b5,4.¢5,47 = $@yg,4-9.b5,4-9.¢4,3-47 %<ag by ey
= sgnlay) Kaq,4-144, ~by,4-1by. cq,g-1a5-c3bs 4 47,
we have that the equalities
Ag,4-193t5 % by g qayty = ¢y 4 qay,

Aq,3-193t4 - 54.;-161t;+4 = Cq,3-193" 0151.;~—r-

54

and
a, t’ + bf tf“"f

byg-1a3ty /by yg t by g gbytyg /by

(cq,3-1a3 ~ Ag,3-ga3t4) /[by 4
tlag,y-qa5ty = (eq-qay = €3by 4 4)) / by 44

- C’

are inferable by E,i. Therefore, the sets Ei_q and 8" are equivalid which
completes the induction.

Since £p= Lp- U &p and &,_, = &p U { antn +bats=c, }, the sets Lp_ U
&p and &p U { antn +baty=c, } are equivalid.

CLAIM 2:
&p U lapt,+baty=c,} and &p are equivalid.
Proof:
Recalling that

Agn-9t1+ b1 n-1tn = €404 € Ep,
and a(P)+b6(P)=0 and c¢c(P)=o0,
where

alP), b{P), elP)>=<ay pn-g+1bg,n-g91€q,n-1>*%<Aps b,y cy>
we have

aAg,n-1 Qn = b1.n-1 bn and Ctn-19n = ‘nb't,n-'t
Thus,

antn+bnt4 = (“4,n-4antn+a4.n—4bnt4) 4 A4,n-1

= (bubgn-gtn tbpg,n-9t4) / @y, 44

bucs,n-1/A4,n-1
- “ucd,n-'i/b'i.n-'l
bd.n-'i‘n/bd.n—'i
Cp-
The equality a,t,+b,ts4=¢c, is thus inferable by Cp and therefore are
&p U { antatbaty=c,} and Cp are equivalid which completes the proof
of this claim.

So we have by Lemma 2.2, Claim 1, and Claim 2,
Lp- is valid
iff Lp- U &p is valid
iff &p U { antntbats=c,} is valid

iff Cp is valid

..55_

Motivated by the result of Lemma 4.10, we now define the system S(P):

For a system S$=(£,&,D) and an equality loop P, denote by the system
S(P) the system (L(P), EUEp, O(P)), where L(P) and IAP) are
obtained by reducing the sets £-£p and 2 wrt the rewrite system R(&p)

URpa-
Observe that the lefthand sides of the rules in R(&p) do not occur in £(P)

nor in O(P) and that only those lequalities are reduced which incident with
a vertex of the equality loop.

Theorem 4.11:
For a system $=(4£,&,9) and a simple equality loop P in the graph g(X£),

) S and S(P) are equivalid
ii) the graph G(4L(P)) has less vertices than the graph §(4)

Proof:
i) S=(4£,E,9) is valid
iff (by Lemma 4.1)
(L-Lp, EULp-, D) is valid
iff (by Lemma 4.10)
(L-Lp, EU&p, D) is valid
iff (by elimation of £2,¢3,...,¢, by application of the rules R(&p))
S(P) = (L(P), EU&p, D(P)) is valid
i) Obviously, since a loop has at least length 2. D

Theorem 4.12:
a) Let S=(£,&,9) be a system and R be a canonical rewrite system

such that £€=&(R).
Recall that E(R) is obtained from R by replacing each — by =.
Let £(R) and D(R) be obtained by reducing £ and O by the rules in R.
Then are equivalent:
N S=(4L,8,9) is valid
ii) (£L,&(R),D) is valid
iii) (LIR),E(R),D(R)) is valid.
b) Let S® be obtained from S by reduction wrt RP,A' the canonical

rewrite system for the Presburger terms.
Then S and S’ are equivalid systems of the Presburger theory.

Proof:
Obviously. D

56

It is assumed that a formula “F of the quantifier-free Presburger Arith-
metic extended by predicate and function symbols that is to be examined
for validity is equivalently transformed to a formula without predicate
symbols (this can be done by the introduction of a new function symbol ﬁp
for each predicate symbol P) which then is negated and expanded into
disjunctive normal form so that +F = S,V...V S’, where the S;'s are
conjunctions of lequalities, equalities, and inequalities so that they repre-
sent the systems S; = (£;,&;,9;), 1sisp. The formula F is thus valid if
and only if each system S; is unsatisfiable.

The EQUALITY_LOOP_RESIDUE procedure in figure 4.5 can then be used
to determine the satisfiability of a system S.

This procedure calls some subprocedures which are now described:

The procedure LOOP_RESIDUE performs a generalized version of the pro-
cedure described in the second chapter. It is generalized in the sense that
the vertices are labeled by terms and the lequalities are linear in terms.

The procedure LoOOP_COLLABATION takes as arguments a system S=
(£,&,9) and an equality loop P of the graph G(4).

The procedure computes the system S(P)=(L(P),EUEp,D(P)) where
L(P) and O(P) are obtained by reducing the sets £-£p and D wrt the

rewrite system R(&p) U Rp 4.
Note that in the FOR-loop where the procedure LOOP_COLLABATION is

called, the lequalities of the simple equality loops initially found in the graph
may be reduced in the collabation process if the vertices of those loops
are not distinct.25

The procedure CANONIZATION computes for the set & of ground equations
a canonical rewriting system R equivalent to & which is reduced wrt Rp 4.
According to section 4.4.2, this can be done in polynomial time. Recall that
RP,A is a canonical rewrite system for the Presburger terms.

The procedure REDUCTION takes as arguments a system S$=(£,&,9) and
a canonical set R of rewrite rules. It produces a system (4(R),&,0(R)),
where £(R) and D(R) are reduced wrt R U Rpﬂ-

Theorem 4.13:

The EQUALITY LooP RESIDUE PROCEDURE terminates.

Proof:

It suffices to show that both REPEAT loops terminate:

In each iteration except the last one, the innermost REPEAT loop reduces
the number of vertices in the graph &(£), since by Theorem 4.11 the graph

25: Look at the examples in section 4.8, especially exampile 6.

57

REPEAT
RESET (collapsed)
REPEAT
SET (continue)
LoopP_RESIDUE (G(L))
IF (L) has an infeasible simple loop
THEN RETURN (S is unsatisfiable)
ELse IF (L) has no simple equality loop
THEN RESET (continue)
ELSE
BEGIN
SET (collapsed)
FOR all simple equality loops Pin (L) Do
S = LOOP_COLLABATION (S,P)
IF =0 ¢ & OR 0%0 ¢ D

THEN RETURN (S is unsatisfiable)
END

UNTIL NOT continue
IF collapsed
THEN BEGIN
S := REDUCTION (S, CANONIZATION(E))
IF =0 e & OR 0#0 ¢ D
THEN RETURN (S is unsatisfiable)
END
UNTIL NOT collapsed
S = REDUCTION (S, CANONIZATION(E))
IF 1=0 ¢ &€ OR 0%#0 ¢ D
THEN RETURN (S is unsatisfiable)
ELSE RETURN (S is satisfiable)

Figure 4.5: EQUALITY LOOP RESIDUE PROCEDURE
deciding the satisfiability of a system S

G(L(P)) has less vertices than the graph G(£).

And in each iteration of the outermost REPEAT loop except the last one, at
least one equality loop has been replaced by a single vertex in the inner loop.
Since the LOOP_RESIDUE procedure terminates and since a graph has

finitely many vertices, both REPEAT loops of the procedure terminate.

58

Theorem 4.14;
The EQUALITY LOOP RESIDUE PROCEDURE is sound.

Proof:
We have to show that if the procedure answers that a system is unsatis-
fiable, the answer is correct.
The procedure constructs a sequence of systems. In order to prove the
soundness of the procedure, it suffices to prove that every two subsequent
systems S and S’ in the sequence are equisatisfiable. We are even able
to show that they are equivalid.?®
Any modification of the system is performed by a call of either procedure
of

i) LOOP_RESIDUE,

ii) LoOOP_COLLABATION, or

iii) REDUCTION,

We thus have the following cases for $=(4£,&,2) and 5°=(£',&°,0°):
0 £=£L', &=&°, G(L') is a closed graph for §(£).
Since £ is a subset of £* and £’ is augmented exclusively by loop
residue lequalities of admissible simple loops in the graph G(4), & and
£’ are equivalid by Lemma 2.2. Therefore, also S and S' are equivalid.
i) L'=L(P),E&'=EU&p,D"=D(P).
S and S° are equivalid by Theorem 4.11.
i £'=£LIR),&E =&E(R), D’ =I(R) where R is a canonical rewrite system
equivalent to &.
By Theorem 4.12, S and S’ are equivalid.

These cases prove that every two adjacent systems in the sequence of
systems generated during the computation are equivalid and thus equisatis-
fiable.

Theorem 4.15:

The EQUALITY LoorP RESIDUE PROCEDURE is complete.

Proof:

We have to show that any unsatisfiable system is recognized as unsatis-
fiable. Or, equivalently, if a system is recognized as satisfiable, it indeed is
sO.

It thus suffices to show that if the procedure terminates with the answer
that the system is satisfiable that the obtained system is closed.

26: The stronger result is required in section 4.9 for further aspects and

improvements.

- 59 -

Observe that the procedure LOOP_RESIDUE enumerates the admissible
simple loops of the graph &(£) modulo cyclic permutation and reversal and
that this is sufficient since by Corollaries A.2 and A.3 of appendix A, a loop
P is an equality loop if and only if its reverse is an equality loop, and a per-
mutable loop P is an equality loop if and only if any permutation of P is an
equality loop.
Since the outermost REPEAT loop terminates for a satisfiable system if
and only if £ is a strictly closed set, condition iii) of the definition of a
closed system is satisfied.
And because of the statement

S = REDUCTION (S, CANONIZATION(E))
conditions i) - ii) are also satisfied.
Therefore, the procedure terminates for a satisfiable system with a com-
plete satisfiable system. In other words: the procedure is complete. D

4.7. Generalizations

Since a system is defined as a triple of lequalities, equalities, and inequali-
ties, there are two ways of incorporating strict lequalities:

First, like in the second chapter, the notion of a strict loop with strict
residue lequality can be appended, and second, A<B can be replaced by
A<B and A+B.

The first option requires a modification of the procedure LOOP_RESIDUE.
It has to distinguish between lequalities and strict lequalities and generates
either a nonstrict loop residue lequality or a strict loop residue lequality,
respectively. ,

The second option requires no modification in the algorithm: The basic
version can already treat lequalities in this way. But instead, the disad-
vantage is that the information is not as compact as possible.
Nevertheless, we choose for convenience the second option for the exam-
ples of the following section.

The extension to an arbitrary number of terms per lequality is essentially
in the same way as the extension to an arbitrary number of variables per
lequality for the unextended class: By the use of symbolic computation.

60

4.8. Examples and observations

4.8.1. Examples

ExXAMPLE 1:
In section 4.1, we considered the formula

Fep = [P(x)dx=2 A §(222)=§(a) N gly)=x+7]
>

C§lgly))=§(5+2xx) \/ P(x) 1.
By substituting the predicate symbol P by 67), we obtain the formula

Fs = L[fpin)=0 2> x=2 A §(2%a)=§(a) N gly)=x+7]
>
C§lgly))=§(5+2xx) V (fp(x)=0)1].

The disjunctive normal form of the negation has two conjuncts and results

in the systems?27

Sy=(£Ly,&4,94) =(L,E,DU{ 67)(1)# 0})
B 2 [l €0:0) =L, EL) { %=22Y,)

where
L=¢
& = { §(2x2) =§(2),
gly)-x=7,
§p(x)=0)

D={ §lgly))t§(5+2xx) }.
Since £4 and £, are empty, the procedure LoOP_RESIDUE does not
enumerate any simple admissible loop in G(£4) or G(L;) and therefore,
the innermost and outermost REPEAT loops terminate immediately.
For the system Sy,

CANONIZATION (&4)
= { §(2%2) > §(2),
gly) > x+7,
6p(x)——)0 }.

This reduces Dy = {§(gly)) * §(5+2%x), §p(x)* 0} to

D,(CANONIZATION (E4))
= { §(x+7)2§(5+2%x),
0t01}.

27: For convenience, the formulas at+b¢’ tel ¢ where tele{s,=,<} are given
in a non standardized manner. For example, the formula O*¢tg+I*f(x)t0

is written as §(x)*0.

61

Since this resulting set of inequalities contains 0 # 0, the system Sy is un-
satisfiable.

In the same way, for the system S;,

CANONIZATION (&)
CANONIZATION ({ §(2*2)=§(=2),

gly)-x=7,
$p(x)=0
x=21})
= { §(2x2) > §(2),
gly) — 9,
6p(2)-—)0,
x —2}

which reduces D, = {§(gl(y)) % §(5+2%x) } to {0#0} with intermediate steps

{§(9) +§(5+2%x)},
and {§(9)2§(9)}.

Hence, the system S, is also unsatisfiable.

EXAMPLE 2:
Reconsider the formula of section 4.2.3,

F=(xsgx N\ gxsx DO x=gggggx).
The negation of this formula results in one system S where
S = ({xsgx, gxsx}, P, { x* gggggx }).

The procedure LOOP_RESIDUE enumerates one loop, the equality loop P,
which is labeled with the lequality set Lp=£p={xsgx, gxsx} and which
has residue <1, -1, 0> independently of the initial vertex. By the definition
of &p and S(P), we have

Ep = { Ixx+(-1)xgx = 0} = {x=gx},
R(&p) = {gx—x},
and S(P) = (@, {x=gx}, {020}).
This proves the unsatisfiabiliy of S.

EXAMPLE 3:
Let us now reconsider the instructive formula of section 4.3,

62

F = { (§la,c)sa A as§la,c))
(xsglx) A glx)sx) V
(b<h3(b6) A h3(6)<h®(b) A h®(b)sb) }
=2
{ (§(§lac),c)sa N as§l§la,c),c)) vV
(g®(x)<sx A xsg®(x)) VvV
(h(b)sb A bsh(b)) 1}.

The negated formula

- F = { (§la,c)sa A\ asflac)) V
(xsglx) A glx)<x) V
(bsh3(6) A h3(6)<h®(6) A A3(b)sb) }
A
7 { (§(§la,c),c)sa A asl§la,c),c)) 14
(g3(x)sx A x<g®(x)) 4
(h(b)<b A bsh(b)) }

{ (§la,c)sa A asfla,c)) V
(xsg(x) A glx)sx) V
(bsh3(6) A R3(6)<h®(b) A h®(b)sb) }
A
{ (§l§lac)ic)>a V a>fl(§la,c),c)) A
(g®(x)>x V/ x>g°(x)) A
(h(b)>b \/ b>h(b)) }.

results in 24 (3*2x2%2) systems each of which contains lequalities that
form a simple equality loop P where &p contains either a=§(a,c), x=g(x),
or b=h3(b) and b=h*(b). Each system requires one call to LOOP_RESIDUE.
The equalities are obtained by one call of the procedure LooP_COLLABA-
TION. For the first two equalities, the inequality 020 is obtained by the
same call. And for 6=A3(b8) and 6=A%(b), one call of each of the proce-
dures CANONIZATION and REDUCTION is required to obtain 0%0.

Observe that this example combines the three valid formulas
$la,c)sa A as§la,c) D §l§la.c),c)sa A as§l§la,c),c),
xsglx) A glx)sx) D g®(x)sx A xsg®(x),

and b<s h3(b) A K3(b)sh®(6) Nh3(b)sb) > h(b)<b A bsh(b)
two of which are similiar to the examples of section 3.3,
§la,b)=a > §(§(a,b),b)=a,
and $b66ba=a A $fpa=a > pa=a.

63

EXAMPLE 4:
Consider the system S = (£,0,0) for
L = { as2b-1,

(2) 4b < §la + 20 + 5¢) + 3,
(3) $la + 20 + 5¢) < 2a - 1,
(4) c<s2d +1,
(5) 100 < §(2b + c - g(x)) - 10,
(6) §(2b6 + c - g(x)) < 5¢ + 5,
(7) 5¢ s -g(x) + 2,
(8) -glx) < §(y) - 7,
(9) $(y) < 5¢ + 5,
(10) $(yv) < §(glu))
(1) $(glu)) < 2f(a + 20 + 5¢) + 5,
(12) §(26 + c - g(x)) < 24(g(v)) - 4,
(13) 4§(glv)) < -gl(x) + 9 b,

a ﬁ(a+2d+5¢) $(y) glx)
(11) (10) (13)
$(glu)) ~ $(glo))
% & /2)

§(2b+o-g(x))

Figure 4.6.1: Graph g(4)

There are three admissible simple loops P4, P2z, and Ps in the graph
G(L) labeled by the lequalities (1) - (3), (4) - (6), and (7) - (9). Their

residues are

64

e(Pg) = (<1, -2, -1> %<4, -1, 3>)x<1, -2, -1>

= <4, -2, 2>%<1, -2, -1>

=<4, -4,0>,
e(P2) = (<1, -2, 1>%<190, -1, -10>)x<1, -5, 5>

= {40, -2, -10> %<1, -5, 5>

= <10, -10, 0>,
and
e(Ps) =(<5,1,2>x<{-1,-1,-7>)*x<1, -5, 5>

=<5, -1,-5>%<1, -5, 5>

= <5,-5,0>.
We assume that these equality loops are encountered in the ordering P3,
P4+, and P2 and that the following chain holds for the total simplification
ordering 28:

a<b<c<d<e<u<v<x<y<f=<g
We then obtain a sequence < 5=5¢, S, S22+ S3, S¢ > of systems. For
the loop P3, and the resulting system S5y, we have
&(Ps3) = { 5e+glx)=2,

5¢ - fly) =-5 }
R(E(P3)) = { glx) > -5e + 2,
$(y) > 5e+5 }

Ly = { W) as2b-41,
(2) 4b < fla + 20 + 5¢) + 3,
(3) §la+ 20+ 5¢) <2a-1,
(4) c<2d+1,
(5) 100 < §(2b + c + 5¢ - 2) - 10,
(6) §(2b+ c + 5¢ - 2) s 5¢ + 5,
(10) 5¢ < §(glu)) - 5,
(11) $(glu)) < 2f(a + 20 + 5e¢) + 5,
(12) §(2b + c + 5¢e - 2) < 2§(g(v)) - 4,
(13) 4§(glv)) s 5e + 7 5,

The graph G(£4) is shown in figure 4.6.2.

Observe that the loop collabation of the equality loop P3 in the graph
G(Lo)=G(L) did not affect the residues and subresidues of the loops Py
and P, in the graph G(£4).

Since

28: Recall that the variables occurring in the system can be regarded as

constants since the formula can be skolemized to an equisatisfiable

ground formula.

65

.\b >
N
n (2x (8) (4)
3\
\

// " (5) .
a £(a+za+5e)\\ / \ $(2b+c+5e-2) P}
AN AN
(11\ /10) (13\ (12)
\-' \‘-
$(gl«)) #lglv))

Figure 4.6.2: Graph G(£,)

&Py = { a- 2b =-1,
4a - 2f(a + 20 + 5¢) = 2 }

and

RIE(P4)) =1 b — (1/2)a + (1/2),
fla + 20 + 5¢) > 2a - 1 ¥,

the call of procedure LOOP_COLLABATION for arguments S, and Py
results in the system S, where

L = { (4) cs2d +1,
(5) 100 < fla + ¢ + 5¢ - 1) - 10,
(6) f§la+c+5e-1)<5c+5,
(10) 5¢ s §lglu)) - 5,
(11 6(glu)) < 4a + 3,
(12) f§la + c + 5¢ - 1) s 24(g(0)) - 4,
(13) 46(g(v)) < 5¢ + 7 }.

The graph for the set £, of lequalities is shown in figure 4.6.3.

Finally, we have for the loop P2

£(pg)={ c- 20
10¢ - 2fla + ¢ + 5¢ - 1)

1,
- 10 }

and

_66...

. (-}
(8) (4)
a € (5)
$l(a+c+rs5e-1) P}
(11 (10) (13) \ 12)
$(glau)) $lg(v))
Figure 4.6.3: Graph G(£2)
RIEDP2)) =1 3 — (1/2)c - (1/2),
fla+c+5e-1) > 5c+5 .
The procedure LOOP_COLLABATION computes S; where
L; = { (10) 5¢ < §l(glu) - 5,
(1) $(gl(u)) < 4a + 3,
(12) 5¢ < 2§(g(v)) - 9,
(13) 4§(g(v)) < 5e + 7 }
and
€3 = { Be+ glx) = 2,
5e - §(y) = -5,
a- 2b = -4,
4a - 2fla + 29 + 5¢) = 2,
c- 20 =1,

10¢c - 2fla + ¢ + S5e - 1) =- 10 }.

Now the innermost REPEAT loop terminates and the flag collapsed is set.
We now obtain the system S4 by the procedures CANONIZATION, which
computes a canonical rewriting system R(&4) equivalent to the set &5 of
equalities, and REDUCTION, which reduces the lequalities in £; to obtain
L4 . The resulting system Sy=(£4,&4,94) has the components

- 67 -

&4 = { Be+ glx) = 2,
5¢ - 6(‘[) =-5
a- 2b =-1,
4a - 10c =12,
4a - 200 =22,
4a - 2§((7/5)a + 5¢ - (11/5)) =2 }
and
Ly = { 010 B¢ s §lglu)) - 5,
(1) $(g(u)) < 4a + 3,
(12) 2a s 2f(g(v)) - 3,
(13) 46(g(v)) < 5¢ + 7 }
[-4
a
P
13 7 . (10)
;f// \\\\
$lgtor) & e flgla))
\\\\ ////
(12) ™ (1)
\\\ ///
\"-. .'//
[
Figure 4.6.4: Graph g(4;)

The lequalities of the set L4 label an admissible simple loop P4 in the
graph g(£4) which has the residue
e(Py) = (<5, -1, -8> %<1, -4, 3>)%(<2, -2, -3> %<4, -5, 7>)
<5' -4, -2>*<8, -10’ 2>
<40, -40, -8>.

n

Since Py is thus an infeasible simple loop, the system S also is infeasible.
Note that for this example, the computation process would have been
similiar for any other ordering of the loops since the vertices of the graph
G(L) labeled by §(a + 23 + 5¢) and §(2b + ¢ - g(x)) can only coincide
after all three equality loops are collapsed.

-68_

EXAMPLE 5:

To demonstrate the effect of the procedure LOOP_COLLABATION wrt the
variation of the structure of the graph for the lequalities, let us now con-
sider the system S=(£,&,D) where

L={ () 3tsu+2,
(2) us3w-2,
(3) 3w <o+ 2,
(4) v < 3t-2,
(5) 26§(3g(t) + 2h(u)) < h(a) + 1,
(6) 2h(a) < 5t - 2,
(7) u < 3g(b) - 8,
(8) 5g(b) < 4§(3g(w) + 2h(v)) + 10,
(9) 5g(-4g(b) + 2h(a) + 12) < 6h(a) + 6,
(10) o< §le) -3,
(11) 6(c) < glég(b) - 2h(a) - 12) + 1,
(12) 2h(2u - §lc) + 9) < 3§(3) + 5,
(13) 3¢(3) < w - 5,
(14) g(b) s 2h(-u + 2§(c)) + 2,
(15) §lc) < 36(34(3)) + 1,
(16) $(t - 5) < 36(3) + 4 }

and £=D=@. The graph G(L)=6(L,) is shown in figure 4.7.1.

We demonstrate now how procedure 4.5 computes a sequence <S5=S5,,

Sqy o0y Sq > of systems. Let < be a total simplification ordering with
a<b=<c<d<t<u<o=<w=<f§<g=<h

We will see that the procedure LOOP_COLLABATION is so effective such

that all computation is done within the innermost REPEAT-loop which thus

is only encountered once.

There is only one admissible simple loop Po in the graph G(£,s)=G(L). It

is labeled by the lequalities (1), (2), (3), and (4). Its residue computes to

2(Po)= ((K3, -1,2> %<1, -3, -2>)x<3, -1, 2>) %<4, -3, -2>
(<3, -3,0>%<3, -1,2>)x<1, -3, -2>

<9, -3, 6>%<1, -3, -2>

<9, -9, 0>.

The loop Py is therefore an equality simple loop. We have for this loop

-69_

<¢!14. 644, 644) =<3, -1, 2>
<a429 6429 512>=<3v -3, 0>
<agz, bg3, c43> =<9, -3, 6>

and therefore

&(Po) = {(3t+(-1Du = 2,
3t + (-3)w = 0,
9t + (-3)o = 6}
and
R(E(Po)) = {u — 3¢t -2,
w — t,

0o — 3t -2 }.

$(3g(t)+2A(u))

(5)

gl—4g(b)+2h(a)+12)

$(3g(10)+2h(0))

§(36(3))

(8)

. Ala) g(b) .
N,
(9) N Ve
\\\ fx/
(6) ™ A7)
., /
AN N ~
t
(4) (2)
144
[/" (3) \\.
s N\,
(10)/ (1)
(1) Fd \\
6(a) $03)
gl(6gl(b)-2h(a)-12)
(15) (16)

Al-u+2§(s))

(14)

(12)

Al2u—§(c)+9)

$(¢t-5)

Figure 4.7.1: Graph Gj(£,)

70

The procedure LOOP_COLLABATION reduces the lequalities (5), (7), (8),
(10), (12), (13) and (14), and computes the system S,=(£4,&4,94) where

Ly={(5) 2§(3g(t) + 2h(3t - 2)) < hla) + 1,

(6) 2h(a) < 5t - 2,

(7) 3t < 3g(b) - 6,

(8) 5g(b) < 4§(3g(t) + 2h(3¢t - 2)) + 10,

(9) 5g(-4g(b) + 2h(a) + 12) < 6h(a) + 6,

(10) 3t < §le) - 1,

(1) $lc) s gl6g(b) - 2h(a) - 12) + 1,

(12) 2h(6t - §(c) + 5) < 3§(d) + 5,

(13) 3§(3) s ¢t - 5,

(14) g(b) < 2h(-3¢t + 2§(c) + 2) + 2,

(15) §(c) < 36(34(3)) + 1,

(16) §(t - 5) < 36(3) + 4 5,
&4 = &(Po)

and D,=@. The graph & for £, is shown in figure 4.7.2.

The reduction wrt the rewrite rules of the loop Po in the graph §(£,) has
produced a new admissible simple loop Py in the graph G(4,) labeled with
the lequalities (7), (8), (5), and (6) and with residue

et(Pg)= ((K3, -3, -6>x<5, -4,10>)*x<2, -1, 1>)*<2, -5, -2>
(<15, -12, 0> %<2, -1, 1>)*x<2, -5, -2>

<30, -12, 12> %<2, -5, -2>

<60, -60, 0>.

The simple equality loop P4 has subresidues
<aqqy byq, €44> =<3, -3, -6>
{aqz, byz, ¢42>=<15, -12, 0>
{agzy byz, ¢43> =30, -12, 12>
and therefore
&(Pqg) = { 3¢+ (-3)g(bh) = -6,
15t + (-12)§(3g(t) + 2h(3¢ - 2)) = 0,
30t + (-12)h(a) 12 }

with

RIE(PL)) = L glb)

71

— t + 2,

$(3g(t) + 2h(3t - 2)) — (5/4)¢,

hl(a) — (5/2)t -1 }.
8 $(3g(e)+2h(3¢-2))
SN
/// \\
(5), \.(8)
e \\
g(-4g(b)+2h(a)+12) / * A(-3¢+2§(c)+2)
rd
o) -.\\Il(ﬂ) g(b)/, YY)
.)
\\
(6) /7)
.
S F
m] ¢
/ ~,
,-'// \\
\\
(10) N\ (13)
7 .,
AN
(1) e N (12)
§(<) §02)
g(6g(6)-2h(a)-12) A(6¢t-§(c)+5)
(15) (16)
$(36(2)) §(¢-5)
Figure 4.7.2: Graph G(44)

The procedure LOoOP_COLLABATION is called for the arguments S, and

P+. and both

gl(-4g(b) + 2h(a) + 12)
and

gl(6g(b) - 2h(a) - 12)

(—* gl-4(t +2)+2((5/2)¢t -1) +12))

(—* glé(t +2)-2((5/2)¢-1)-12))

..72_

are reduced to
glt +2).

in the lequalities (9) and (11).
Similiarly, R(&(P4)) reduces 6h(a) + 6 to 15¢ in lequality (9) and we
obtain the system S,=(£,,&,,9,) where

£L2=1{(9) 5g(t + 2) < 15¢,
(10) 3t < §le) - 1,
(1) $(c) s gt +2) + 1,
(12) 2h(6t - §(c) + 5) < 3§(d) + 5,
(13) 3§(3) < t - 5,
(14) t < 2h(-3t + 2§(c) + 2),
(15) §lc) < 3§(34(3)) + 1,
(16) $(t - 5) < 36(d) + 4 },

E2=&, U &(Py),
and D, =@. The graph & for £, is shown in figure 4.7.3.
Again, an admissible simple loop P, is encountered in the graph G(£;). It
is labeled by the lequalities (10), (11), and (9), and its residue is
eP2)= (<3, -1, -1> %<1, -1, 1>)*<5, -15, 0>
= <3, -1,0>%<5, -15, 0>
<15, -15, 0> .

The loop P2 is thus an equality loop and has subresidues
<a4.,, bqq. 644> =<3, -1, -1>
<ayqz, 642, 042>=<3, -4, 0>

and therefore

&(P2) = { 3t+(-1)§lc) = -1,
3t + (-1)glt +2) =01}
with
RIEP2)) = { §le) — 3¢+ 1,
gt +2) — 3t }.

The terms A(6¢t - §(c) + 5) and A(-3¢t + 2§(c) + 2) are both rewritten to
h(3¢t + 4) and procedure LOOP_COLLABATION reduces S, wrt R(&(P2))
to the system S3=(£;,&5,9D3) where

73

Ly={ (12) 2h(3t + 4) s 3§4(3) + 5,
(13) 34(3) < t - 5,
(14) t < 2h(3t + 4),
(15) t < §(3§(3)),
(16) $(t - 5) < 36(d) + 4 }

83 = 82 U 8(?2)»
and D; =@. The graph g for L5 is shown in figure 4.7.4 and contains

A(-3¢+2§(c)+2)

gltsa) (9) -~

“ » .
(1 \\ 1o N (13)

N // \\\ Al6t-§(c)+5s)
" §la) $c2) ™

12)

15) (16)

$036(3)) $(t-5)

Figure 4.7.3: Graph g(4,)

an admissible simple loop P; labeled by the lequalities (14), (12), and (13)
and residue
e(Ps)= (<1,-2,0>%<2,-3,5>)*x<3, -1, -5>
= <2, -6,10>%<3, -1, -5>
= <6, -6, 0>.

The equality loop P3 has thus subresidues

..74_.

{aqgqy, byq, ¢44> =<1, -2, 0>
{aqzy bgay c42>=<2, -6, 10>
and we obtain
&(Ps) = { 4t +(-2)h(3t + 4)
2t + (-6)§(2)

n
o

10 }

and

RIE(P3)) = { A3t +4) — (1/2)¢,
6(2) — (1/3)t - (5/3) }.

(14) A(3¢+4)

" §(36(3)) * §(¢e-53)

Figure 4.7.4: Graph G(£3)

We finally obtain the system S4=(£4,&4,94) from the procedure Loopr._
COLLABATION which is called for arguments $; and &(Pj3). We have

Lyg={ (15) t < §(t-5),
(16) §(t-5)<t-1 1},
and an admissible simple loop P4 labeled by the two lequalities (15) and
(18) in the graph g(£4). It is infeasible since
ePy) = <4,-1,0>*<9,-1,-1> = <1,-1,-1>.

The unsatisfiability of the given system is now returned from the inner-
most REPEAT loop.

- 75 -

EXAMPLE 6:

Let us now look at an example for which the ordering of the encountered
equality loops directs the construction of the sequence of systems.
Consider the system S=(£, @, @) where

L= 4x - 7§(2a + 1) < 0,
(2) 76(3b + 2) - 4x < -1,
(3) 76(3b + 2) - 7§(2a + 1) < -1,
(4) 2a - 7§(2a + 1) s -1,
(5) 7§(2a + 1) - 5y < 0,
(6) 5y - 7§(3b +2) < 1,
(7 76(3b +2) - 3b <1,
(8) 5y -2as1,
(9) 3b-5y<-2).

The graph G(£), shown in figure 4.8.1, has four admissible simple loops

x

N\

\,

(1) (2)

$(2a + 1) $(36 + 2)
// N\ (@
(4) (5) (6) (7
/ (8) \ / (9)
a v b

Figure 4.8.1.: Graph G(4)

76

P4+ P2, P3, and Py which are labeled by the lequalities

L(Py)={ (4) - 2a-7§(2a + 1) s -1,

(5) 7§(2a + 1) - 5y s 0,

(8) 5y - 2a <1 },
L(Pz)={ (6) 5y - 7§(36 + 2) < 1,

(3) 76(3b + 2) - 74(2a + 1) < -1,

(5) 7§(2a + 1) - 5y <0 1},
L(Ps) =1 (9) 3b- 5y < -2,

(6) 5y - 7§(36 + 2) < 1,

(7) 76(36 +2) - 36b<1 },

and

L(Pg) =1 4x - 74(2a + 1) s 0,

(5) 7§(2a + 1) - 5y < 0,

(6) 5y - 7§(36 + 2) < 1,

(2) 76(3b +2) - 4x < -1).

Their residues are
ePy) = <2, -7, -1>x<K7, -5, 0> <5, -2, 1>
= <14, -35, -7>%<£5, -2, 1>
= K70, -70, 0>,

e(Pr) = KB, -7, 1>%L7, -7, -1>%<7, -5, 0>
= <35,-49, 0>*<7, -5, 0>
= <245, -245, 0>,

e(Py) = <3, -5, -2>%<8, -7, 1>%£7,-3, 1>
= <15, -35, -5>x<7, -3, 1>
= <105, -105, 0>,

and
tPy) = <&4,-7,0>%L7, -5, 0>%<5, -7, 1>%L7, -4, -1>

= <28,-35,0>%<5, -7, 1>*L7, -4, -1>
= <140, -245, 35> <7, -4, -1>
<980, -980, 0>.

So we have four simple equality loops.
We now construct three sequences of systems by chosing the short loop Py
containing a vertex with lower outdegree (the vertex labeled by a incidents

- 77 -

only with two edges) for the first sequence, the central loop P, for the
second sequence, and the large loop P4 for the third sequence.
The ordering < may w. |. o. g. satisfy a < b < x < y < §.
The subresidues, the equalities, and the corresponding rewrite rules ob-
tained by the equality loop Py are

<aqgq, bgq, ¢44> =<2, -7, -1>

{aqz, byz, ¢42> = <14, -35, -7>,

&(Py) ={ 2a-7§(2a+1)= -1,

14a - 35y = -7 1},
RIEPL)) ={ §(2a+1) — (2/7)a + (1/7)
y— (2/5)a+(1/5) }.

By calling the procedure LooP_COLLABATION for S and Py, we obtain the
system Sy = (L4, E(P4), P) where the set L4 is given by

Loz { (1) 4x - 2a < 1,
(2) 76036 + 2) - 4x < -1,
(3) 7§(36 + 2) - 2a s 0,
(6) 2a - 7§(3b + 2) < 0,
(7) 76(3b+2) - 36 s 1,
(9) 3b - 2as -1 }

-

//\

/N

Figure 4.8.2.1: Graph G(44)

- 78 -

What has happened to the loops Pz, P3, and Ps of the graph (L) ?
Both loops P2 and P4 have lost an edge and P; has changed a vertex.
The reason is that the vertices of the loops P2 and P and the edges of
the loops Py, P2, and Py are not distinct. The loops Py, P2z, and Py all
contain edge (5) of the graph §(£).

Out of the three equality loops, let us choose the modified loop P3 of the
graph g(£). We have lequalities

L(Ps) =1 (6) 2a - 7§(36 + 2) s 0,
(7) 7§(36 +2) - 36 <1,
(9) 3b - 2a s -1 }

and residue

e(Ps) = <2,-7,0>%<7, -3, 1>x<K3, -2, -1>
<14, -21, 7> %<3, -2, -1>
{42, -42, 0>

with subresidues

2,-7,0>
<14, -21, 7 >,

< aqq, 641. 044>

asz, bz, c42>
and thus
&(Ps)={ 2a-7§(36+2)=0,
14a - 216 =7 }
with corresponding rewrite rules
RIE(P3)) =1 §(3b +2) — (2/7)a,
b— (2/3)a - (1/3) }.

We therefore obtain the system S$,=(%,, &2, @) by the procedure LoopP_
COLLABATION where

Lo={ (1) 4x-2a<1,
(2) 2a - 4x < -1}
and
&2={2a-7§(2a+1)=-1,
14a - 35y = -7,
2a - 74(3b+2) =0,
14a - 246 = 7 }.

- 79 -

The lequality (3), 7§(36 + 2) - 2a < 0, has been reduced to 0<0 and there-
fore been dropped. The loop P, has thus been erased completely. The loop
P4 has again been reduced in its length. We simply obtain the system S;=
($, E5. P) by adding the equality 2a - 4x = -1 to the set &,. And since
there are no more lequalities left, the innermost REPEAT loop terminates.
The procedure CANONIZATION is now called for the set
&3={2a-7§(2a+1)=-1,
14a - 38y = -7,
2a - 7§(3b + 2) = 0,
14a - 216 = 7,
2a - 4x = -1 }.

During the computation, this procedure reduces the constant b in the equal-
ity 2a - 7§(3b6 + 2) = 0 by the rule z(14a - 216 = 7) to the equality 2a -
7§(2a + 1) = 0 which again is reduced by the rule z(2a - 7§(2a + 1) = -1)
to the equality 7=0. It is thus returned that the system S is unsatisfiable.

Let us now consider how this result is obtained by chosing the central loop
P2 of the graph (L) as first equality loop:
The subresidues and equalities obtained by the equality loop P, are
<5, -7, 1>
{agz, byz, ¢42> = <35, -49, 0>,
&(P2) =A By - 7§(3b+2) =1,
35y - 49§(2a + 1) = 0 },

<aqq, byg, c44>

and the corresponding rewrite rules
RIEP2)) =1 §(36b+2) > (5/7)y-(1/7)
$(2a + 1) — (5/7)y 8

The procedure LOOP_COLLABATION produces the system S,’ = (£,°,
E(P2), P) where the set £,° is given by

Ly'=0 () 4x - 5y < 0,
(2) 5y - 4x < 0,
(4) 2a - 5y < -1,
(7 5y -3bs2,
(8) 5y -2as1,

(9) 36-5¢y<-2 }

80

x

N
(1) (2)
vy ¥
(4) \\ (7)
sl (8) k
P / ~\ 5
Figure 4.8.3.1: Graph G(44°)

The other equality loops Py, P3, and P4 have been reduced in their length.
Let us now chose the modified loop P4 consisting of the edges (4) and (8).
We thus have &(Py)={2a-8y = -1} and S’ =(L,", E(PLHUEPL), §)

where

La2'={ (1) 4x - 2a s 1,
(2) 2a - 4x < -1,
(7) 2a-3bs<1,
(9) 3b-2as-1).

The graph G(4£;’) is given in figure 4.8.3.2.
Independent of the ordering in which the two simple equality loops of the
graph G(£,') are chosen, we obtain the system S,° = (@, £4°, §) with
the set
&'z | By - 7§(3b+2) = 1,
35y - 494(2a + 1) = O,

24—5|t=‘4,
2a - 4x = -1,
2a -3b=1 }.

_81..

) (2)

(7) (9)

_/ b

Figure 4.8.3.2: Graph g(4£;")

Since the system S4’ has no lequalities, the innermost REPEAT loop
terminates and the procedure CANONIZATION is called for the set &4°.
Again, by reducing the constant b in the equality 5y - 7§(36 + 2) = 1 by
the rule £(2a - 36 = 1) to the equality 5y - 7§(2a + 1) = 1, and by redu-
cing this equality by the rule 2(35y - #9§(2a + 1) = 0), we obtain the
equality 1=0. Therefore, the system S is unsatisfiable.

Let us finally consider how the unsatisfiability is detected if the loop Py is
chosen as first equality loop as argument of the procedure LoorP_CoOLLA-
BATION.
The subresidues of the loop P4 are

{aqgq, byq, c44> <4,-7, 0>

<aqz, bgz, ¢42> = <28, -35, 0>

<aqz, byz, ¢43> = <140, -245, 35>

and therefore we have
E(Py) = { 4x - 7§(2a + 1) = 0,
28x - 35y = 0,
140x - 245§(3b + 2) = 35 }

= Bd =

and
R(E(Py)) = { §(2a + 1) — (4/7)x,
¥y — (4/5)x,
§(3b +2) > (4/7)x - (1/7) }.

The procedure LOOP_COLLABATION constructs the system S,°° = (£,"’,
E(Py), P) where the set £,°* is given by

Ly® =0 (4) 2a - 4x s -1,
(7 4x - 3b < 2,
(8) 4x - 2a < 1,
(9) 3b - 4x < -2 }.

Observe that all lequalities labeling edges of the loop P, are removed sin-
ce the lequalities (5) and (6) label edges of the loop P4 and since the
lequality (3), 7§(3b6 + 2) - 7§(2a + 1) < -1, has been reduced to 0s0.

(4) (7)
4 N
s

/s

(8) . (9) 5

/\

' :
N

Figure 4.8.4.1: Graph g(£,°’)

Again, we have two simple equality loops in the graph G(£;’"), and we
obtain after two calls of the procedure LOOP_COLLABATION the system
S = (P, &4, @) where
&y = 4x - 7§(2a + 1) = 0,
28x - 35y = 0,

140x - 2454(3b + 2) = 35,
2a - 4x = -1,
3b-4x=-2 }

The innermost REPEAT loop now terminates and the procedure CANONIZA-
TION obtains from the last two equalities the equality 2a - 36 = 1. We fi-
nally obtain the degenerated closed system S;°* = (@, {1=0}, @) which is
unsatisfiable for the Presburger Arithmetic.

- 83 -

4.8.2. Observations

The formula ?673 of the first example results in two systems without le-
qualities. They only consist of equalities and inequalities.

This formula has been used to demonstrate how the reduction process,
described in figure 4.1, operates. Here, we want to use this example to
point out the differences between the concept of rewriting and the con-
gruence closure:

First of all, observe that the procedure CANONIZATION, a procedure com-
puting a canonical ground rewriting system equivalent to a finite set of
ground equations, contains one call of a congruence closure procedure
according to section 4.4.2. Here, the congruence closure is constructed
for the terms in that graph which represents only those terms occurring in
the equalities.

On the other side, if a conjunction of equalities and inequalities is decided
for satisfiability only by use of a congruence closure algorithm, the graph
on which the congruence closure is computed, must represent each term
occurring in the equalities and inequalities.

Therefore, if the systems of example 1 would be augmented by inequalities,
the computational effort can significantly be increased for this method,
while the computation of a canonical ground rewriting system for the set
of equalities remains the same.

Roughly speaking, the congruence closure algorithm produces a maximal
set of equalities, while a canonical rewriting system equivalent to a set of
equations is minimal in the sense that no equation of a canonical set can
be inferred by the other equations of that set.

The concept of rewriting thus serves for compactness in representing the
given information.

Observe furthermore that lequalities can not be processed by a congruence
closure algorithm. On the other side, rewrite rules can process terms
wherever they occur.

It is underlined by the second example that the rewriting concepts are ad-
vantageously incorporated in the decision process of the validity of a for-
mula of the quantifier-free Presburger Arithmetic extended by predicate
and function symbols:

For the formula %F = (xsgx /\ gxsx) O x=gggggx. the reduction process
described in figure 4.1 would have produced a tremendous number of con-
junctions to be decided for satisfiability in order to decide the validity of

F.

84

Shostak presented a procedure that decided the validity by constructing
only seven conjunctions. He needs an ILP-solver for the ILP's associated
with the conjunctions and the recursive procedure EQPAIRS; an explicit
solution of a satisfiable ILP is required to determine the violations of well
definedness by the procedure EQPAIRS.

By the EQUALITY_LOOP_RESIDUE procedure, presented in this diploma
thesis, this computational effort reduces to the enumeration of one simple
equality loop, the construction of one rewrite rule, and the normalization
of one inequality. A fantastic improvement, isn't it?

Observe that the congruence closure algorithm alone is not directly
applicable to F since it contains lequalities.

Example 3 points out that we have not yet succeeded in reducing the com-
putational effort for deciding the validity of the given formula.

But that is no point for desperation. We present a solution for this problem
in section 4.9.

The effects of the procedure LOOP_COLLABATION are particularly well
demonstrated by the examples 4, 5, and 6. All systems initially consist only
of lequalities.

In example 4, the simple equality loops encountered during the computation
are all contained in the system given initially. Independently of their orde-
ring, their processing results in an infeasible simple loop. Here, and in
example 5, the unsatisfiability is based on the detection of an infeasible
simple loop. In example 5, there exists only one simple admissible loop in
any system of the constructed sequence. This example figuratively demon-
strates the collabation of the graph.

Example 6 has especially been constructed to demonstrate how the colla-
bation of a loop affects the other loops in the graph: Edges disappear and
vertices are relabeled. And since the computation is not independent of the
ordering, some different orderings have been examined. This example sug-
gests to collabate the encountered equality loops according to their length
in an non increasing order. The aspect of the ordering of the enumerated
admissible simple loops is taken up in more detail in the next section 4.9.
For the example 6, the unsatisfiability is detected by reducing one of the
obtained equalitities to 1=0.

85

4.9. Further aspects and improvements

Since the generation of equalities by the procedure LOOP_COLLABATION
plays a central role in the EQUALITY_LOOP_RESIDUE procedure, let us
examine this procedure first.

The procedure LOOP_COLLABATION computes, according to its descripti-
on, for a system S and an equality loop P the system S(P) whose equali-
ties are obtained by augmenting those of S by &p.

Since we have proved the equivalidity of the sets Lp: and & for such a
loop by Lemma 4.10, wouldn’t it be easier to add the lequalities Lpz to the
set £ or to replace Lp ¢ by £p= instead of replacing £p ¢ by the set &p in
the procedure LOOP_COLLABATION ?

Recall that the construction of the equalities of Ep requires the computati-
on of all subresidues of the loop P with a specific initial vertex, the vertex
labeled with the smallest term ¢4.

It would still be easier, but it would not be of advantage:

First of all, the set £p= is not minimal since the set &p is equivalent to
Lp: and has one equality less. Second, the right sides of the rewrite rules
in R(&p) are already reduced wrt the rewrite rules R(&p) since only the
f-term t, appears on the right side. And third, the terms t,, ..., ¢, can
be replaced in all lequalities and inequalities by using one application of a
rewrite rule of R(&p) for each occurrence of ¢;, 2sisn. Finally, the graph
for the set £(P) can easier be obtained from the graph (L) if &p is used
instead of Lp-=.

All these are advantages of 87_;. But what about the disadvantage of com-
puting all subresidues of P subject to a specific initial vertex ?

This task can be transferred to the enumeration of the admissible simple
loops in the procedure LOOP_RESIDUE, where the residue of each encoun-
tered admissible simple loop modulo cyclic permutation and reversal is
computed by chosing that vertex labeled with the smallest term as initial
vertex. The subresidues can be computed without any additional effort.

Let the set &~ denote the set of equalities of the system before entrance
into the innermost REPEAT loop and the sets &4, ..., &, of equalities be
obtained from the equality loops of one pass of the innermost REPEAT
loop.

86

After termination of the innermost REPEAT loop, the procedure CANONI-
ZATION is called for the set £ =& U & U ... U &,. Since the procedure
CANONIZATION computes a canonical rewriting system equivalent to &
according to the procedure given in figure 4.4, the congruence closure of
& Is constructed.

Observe that the procedure CONGRUENCE_CLOSURE of figure 3.3 incre-
mentally computes the congruence closure of a set RU{(u,0)} from the
congruence closure of R by calling the procedure MERGE with arguments
u and o, and that the sets &4, ..., £, correspond to subsets of the equi-
valence classes of the congruence closure of &.

This observation can be used to reduce the computational effort for con-
structing the congruence closure of the set &.

Further improvement is immediately possible in the case where £C=¢ and
all simple equality loops are initially contained in the graph. This is not an
unusual case. Observe that examples 2, 3, 4, and 6 satisfy this condition.
In order to use the algorithm for computing a canonical ground rewriting
system with more advantage, the enumeration of the simple admissible
loops may be modified in such a way that the least terms of the enumera-
ted loops form an increasing chain.

If the loops are enumerated in the suggested way, we can also incremen-
tally compute a canonical rewriting system equivalent to & U ... U &, by
adding the appropriate steps of the WHILE loop of figure 4.4 to the proce-
dure LOOP_COLLABATION. We thus have a canonical rewriting system for
& in case of E=0.

Of course, if for Ec+{ the set &= could efficiently be modified and exten-
ded to a canonical system equivalent to & U &4 U ... U &,, this improve-
ment would be preferable to the previous suggestions.

The following example demonstrates that it may be of advantage to modify
the procedure LOOP_COLLABATION in such a way that the set of equalities
is augmented by a canonized set C(&p} which is equivalent to £p. instead
of augmenting the equalities by &p. The sets L(P) and O(P) are then
advantageously obtained by reducing £-£p and D wrt the rules R(C(&p))

URpa.
For example, consider the formula
F = { (§la,c)sa A asfla,c)) A

(xsglx) A glx)sx) A
(bsh3(b6) A A3(b)<h®(6) A h3(b)<b) }
2

{ §l§lac),c)=a Vg®(x)=x Vh(b)=b 1}.

- 87 -

Here, the hypothesis of the formula ¥ is a conjunction, and the negation
of this formula,

+Fs { (§la,e)sa A asfla,c)) A
(xsg(x) A glx)sx) A
(b<h®(b6) A K3(b6)<h®(b) A h®(b)sb) }
A
{ §(§la,c)c)ta ANAg®lx)tx Ah(b)tb)}

results in one system S=(£,, D) for its disjunctive normal form where

L= A{§lac)sa, asfla,c)), xsglx), g(x)sx),
b<h®(b), A3(b)sh®(b), h5(b)sb },
D= {§l§lac)e)ta, g®(x)tx, h(b):b}).

The EQUALITY_LOOP_RESIDUE procedure may construct a sequence of
two systems corresponding to the encountered equality loops. For example,

Sy = ({ §la,c)sa, asf§la,c)), x<glx), glx)sx) },
{ b=A®(b), b=h%(b) 1},
{§l§lac)ic)ta, g®(x)tx, h(b)tb}),

and Sz = ({ xsglx), g(x)sx) },
{ 6=43(b), b=h%(b), §la,c)=a },
{o0t0, ¢g%(x)tx, h(b)tb}).

But the suggested version would canonize the set {=A®(5), 6=A*(6)}. Only

Se'=({ §la,c)sa, as§la,c)), xsglx), glx)sx) },
{b=h(b)},
{$l(§lac)c)ta, g®%(x)tx, 0201})

would be constructed to detect the unsatisfiabilty.

Since ground rewrite rules can always be directed and since a Noetherian
system is confluent if it is locally confluent, the set £p for an equality loop
P is a canonical system uniess there is a critical pair consisting of two
terms which label vertices of the loop such that one term is a subterm of
the other. In the example, A2(6) is a subterm of A®(6) and both terms label
vertices of the same equality loop.

If either of the other two simple equality loops would have been encounter-
ed, the procedure LOOP_COLLABATION would have immediately obtained
the inequality 0#0. This is not an unusual case since many formulas in pro-
gram verification are of a simple form. The canonization of the set Cp
thus requires only little additional effort and the unsatisfiability may be de-
tected much earlier.

88

Example 3 was deliberately constructed from three formulas to make the
multiplicative effect on the number of conjunctions in the disjunctive normal
form obvious.

Since the expansion into disjunctive normal form of the negated formula
7°F results in 24 conjunctions which groupwise contain same information
(i.e., §(a,c)<a and as§la,c) occurs in 8 conjunctions), the compactness of
the presentation of the information must have been lost by the expansion
process.

This gives rise to a new idea: Instead of omitting the chance to work on
the original formula, we suggest to compact the formula in a perspicacious
way described in figure 4.9.

A formula C is a subconjunction of a formula ¥ if C is a conjunction and
a subformula of . It is obvious that any replacement of C by an equivalent
formula does not change the validity. It suffices to take only maximal sub-
conjunctions into consideration. Otherwise, redundant computation is done.

Let us now turn our attention back to example 3:
F = { (§la,c)sa A asfla,c))
 (xsglx) A glx)sx) V
(b<sh3(b6) A h3(b)<h®(b) A h*3(b)sb) }
-
{ (§(§lac),c)sa A asfl§la,e)e))
(g®(x)<x A xsg®(x)) 14
(h(b)sb A b<h(b)) 1.
Before it is negated and expanded into disjunctive normal form, the proce-
dure described in figure 4.9 transforms this formula to the equivalent for-
mula
{ a=§lac) V x=gl(x) VV/ b=h(b) }
2
{ $l§lac)e)=a V g®%(x)=x \/ Ahl(b)=b }

Its negation is now expanded and consists of only three systems, namely,
Se= (P, {a=§lae) }, (f(§lac),e)t a, g%(x)t x, h(b) t b})
S2=(P, {x=glx)}, {fl§lasc)ic)t a, g%(x)t x, h(b) £ b}) and
Ss=(0, {b=h(b)}, {(fl§lasc)ic)t a, g5(x)t x, h(b) % b})

Each system is immediately proved as unsatisfiable by one call to the pro-

cedures CANONIZATION and REDUCTION. We thus have an eightfold
reduction in the number of constructed systems.

89

FOR each subconjunction C of F

Do BEGIN
apply the EQUALITY_.LOOP_RESIDUE procedure
to the corresponding system S(C) of C
IF S(C) is satisfiable
THEN /et C(S) be the conjunction that cor-
responds to the obtained closed system
ELse let C(S) be 0%0
replace in “F the subconjunction C by C(S)
END
Let “Fa be the formula obtained from =F by moving the
negation inwards, i.e., replacing 1+ (A\/B) by 7AA 18B.
FOR each subconjunction C of F
Do BEGIN
apply the EQUALITY_LOOP_RESIDUE procedure
to the corresponding system S(C) of C
IF S(C) is satisfiable
THEN Jet C(S) be the conjunction that cor-
responds to the obtained closed system
ELse let C(S) be 0%0
replace in Fa the subconjunction C by C(s)
END
Expand the resulting formula into disjunctive normal form,
obtaining ?/\,-D, and construct a system S for each
conjunction C of the disjunctive normal form Fap.-
FOR each system S
Do BEGIN
apply the EQUALITY_LOOP_RESIDUE
procedure to system S
IF S is satisfiable
THEN RETURN (F is not valid)
END
RETURN (F is valid)

Figure 4.9: Algorithm deciding the validity

of a formula “F e PAg

90

5. Conclusion

This diploma thesis presents a new decision procedure fo; the quantifier-
free Presburger Arithmetic extended by predicate and function symbols,
the EQUALITY LOoOP RESIDUE procedure.
The well definedness of function symbols serves for combinatorial explosion
in the complexity of this decision problem if a sledgehammer is used like in
the procedure of the decidability proof in section 4.1.
Shostak has postponed this problem and first searches for a solution of
the associated ILP. If one is found and a violation is detected, he explicitely
computes a formula that summarizes the violation.
On the other side, the EQUALITY LOOP RESIDUE procedure can implici-
tely guarantee the well definedness of the function symbols. This leads to
a further milestone in reducing the computational effort of this decision
problem which is essential to mechanical theorem proving, program verifi-
cation, and other tasks.
Basically, it is a combination of two concepts: The concept of the LoopP_
RESIDUE method, originally designed for the unextended class, and the
concept of rewriting on ground terms which makes use of the information
which is compactly represented by additional use of = and %.
As it is evident by the examples in section 4.8, the computational effort
can significantly be reduced.
Though the worst case time complexity of the EQUALITY LOOP RESIDUE
PROCEDURE is still exponential since it uses a moditied version of the
Loop-Residue procedure as subroutine, the examples have pointed out that
there is still enough room left for an improvement of such decision proce-
dures.
Furthermore, we have seen in section 4.9 that the application of this pro-
cedure is not restriced to the quantifier-free conjunctions of a disjunctive
normal form:
As shown by the example
F = { (§la,c)sa A as§la,c)) V
(xsg(x) A glx)sx) V
(6sh3(6) N R3(6)<h®(6) A KZ(6)sb) }
>
{ (§(§la,c).c)sa A asfl§la,c),c)) 4
(g%(x)sx A x<g”(x)) 14
(h(b)sb A bsh(b)) 1},

91

the most effective way to use the new ideas is to disassociate with the
conventional method of negating and expanding into disjunctive normal form
and with the self-made restriction of concentrating only on the decision
algorithm for the satisfiability of a system.

On the contrary to the conventional method, this example indicates that
information should be compacted and processed, even before the negation
is expanded into disjunctive normal form and even before the formula is
negated.

Some interesting aspects have been pointed out in section 4.9 and a lot of
suggestions for improvements have been made which have to be evaluated
in detail. According to the examples and the suggested improvements, it
quite seems that the new procedure, the EQUALITY LOOP RESIDUE proce-
dure, is only the first step of a substantial improvement of decision proce-
dures of the quantifier-free Presburger Arithmetic extended by predicate
and function symbols.

92

Appendix A:
Proof of the main theorem for the unextended class

Since theorem 2.3 is fundamental for the procedure of the extended class,
its proof is given here in detail. It is a refined version of the proof presen-
ted in [24] in which for some cases the idea is given and the proof was
left to the reader.

Lemma A.1:
The concatenation PQ of two admissible paths P and Q is admissible if
and only if sgn(bp*ag)=-1

Proof:

Note that sgn(a) = sgn(sgnlaz)asaz) = sgnlazaqaz) = sgn(ay)

and sgn(b) = sgnl-sgnlaz)bsbz) = sgn(by6462) = sgn(bz)

for sgnlbsaz) = -1 and <a,b,c?={ay,bq,cs” *azbaicz? .
And, by induction, sgn(a)=sgn(a4) and sgn(b)=sgn(b,)

for Karb,e? =2 Agyb4,647 ¥ A20624¢20 %o ¥ Apybpyey”

with sgnlb;a;.4) = -1 for Isicn.

Recalling the definition of admissibility, the lemma thus follows. |___|

Corollary A.2:
For an admissible loop P and its reverse Q, we have

i) P is infeasible if and only if Q is infeasible

ii) P is an equality loop if and only if Q is an equality loop
Proof:

If we denote by the function ™~ the change {a,b,¢”> ~:=<b,a,c>
on triples, then

< dz,bz,ﬂz) ~ o < dq,bq,dq) ~

< 62.42,62> *< bq;dq,&q)

sgnlby) bzby, ~azaq, (c2b4-c4az)?

sgnlaz) <-byb2, as az, (cqaz-czb4)>
({agybgecq) ¥ A2,b2,¢27) ™

and by induction
a'(-l.:o (<an—i’bn—i’an—i>~) = (*',;:0 <ai'bi’c5>)

~

Thus,

< b(p),a(p) ’ C(p) >
e(Q).

oP)~ = alP),b(P),ciP)>~

< a(Q) ’ 6(Q) ’ C(Q) >

93

i) P is infeasible
iff (alP) + 6(P) =0 and ¢(P) <0)
iff (alQ) + (Q) =0 and ¢(Q) <0
iff Q is infeasible

~

i) P is an equality loop
iff (alP) + b(P) =0 and c(P)=o0
iff (alQ) + b(Q) =0 and ¢(Q) =0
iff Q is an equality loop D

N

Corollary A.3:
For an admissible permutable loop P and a cyclic permutation P* of P,

i) P is infeasible if and only if P’ is infeasible
ii) P is an equality loop if and only if P’ is an equality loop

Proof:
If P=P’, we are done. Otherwise, there are paths Q and R

with P=QR, p.=k‘Q ’

eP) = <alP),b(P),e(P)>
= sgnlalR)) <alQ)a(R),-b(Q)b(R),(c(Q)alR) - (RIS(Q))> ,
e(P*) = <alP*),b(P*),c(P*)>

sgnlalQ)) <alR)alQ),-b6(RI6(Q),(c(R)alQ)-c(QI6(R))>,
and, by Lemma A.1, sgn(b(R)al(Q)) = sgn(b(Q)al(R)) = -1.

Denote by < for w#0 the relation A< B iff Aw «Bw and analogously by
< for w#0 the relation A<* B iff Aw< Bw.
Now,

i) P is infeasible
iff al(P) +b6(P)=o0 and ¢(P) <o
it alQ)alR)-6(Q)B(R) = 0 and <(QalR) AR (r)s(Q)
iff 6(R)/alR) = alQ)/6(Q) and (QalR) AR (R)6(Q)
iff B(R)/alR) = alQ)/6(Q) and c(QIBIR) HIR) ((R)a(Q) 29
iff alR)alQ)-b6(RIB(Q) =0 and c(RIalQ) A(Q) (Q)s(R)

(recalling sgn(b(R)al(Q)) =-1)

iff alP’) + b(P')=o0 and ¢(P’) <0
iff P’ is infeasible.

29 : Observe that Ax <“* Bx Iff A < B and x?o0.

In the same way, we have

ii) P is an equality loop

iff alP) + b(P) =0 and ¢(P)=o0

iff alQ)al(R)-b(QI6(R) =0 and cl(Q)alR) = ¢(RIHQ)

iff 8(R)/alR) = alQ)/b(Q) and e(Q)alR) = (RIH(Q)

iff b(R)/al(R) = alQ)/b6(Q) and c(QI(R) = c(R)alQ)

iff alR)al(Q)-b(RI6(Q) =0 and e(R)alQ) = c(QIb(R)

(recalling sgn(b(R)al(Q)) =-1)
iff al(P') +b6(P’) =0 and ¢(P') =0
iff P’ is an equality loop. |

Corollary A.2.i) and A.3.i) refer to the definition of the closure of a graph:
Since a closure has for each admissible simple loop modulo cyclic permu-
tation and reversal an edge labeled with its residue lequality, the closure
of a graph is not uniquely defined. But for two closures &, and g, 4 has
an admissible simple loop if and only if > has an admissible simple loop by
the corollaries.

Definition: Define the discriminant dp, or a(P), of an admissible path P by
dp=ep/(ap+bp), where {ap,bp,cp> is the residue of P.

Lemma A.4:
If PQ is an admissible loop from vy to vy, then the following statements

are equivalent:
i) PR is infeasible
i) 9p »9Q aq
i) ap <4P aq
Proof:
If PQ is an admissible loop from vs to ve, then a(P) = b(P) = 0, and by
Lemma 1, sgn(-6(P)al(Q)) = 1. Obviously, ii) and iii) are equivalent.

We have
e(PQ) = e(P)xe(Q) = <0,6(P),c(P)> x{alQ),0,:(Q)>
=<0,0,sgn(alQ)) (c(P)alQ)-(Q)6(P))>
Thus,
PQ is infeasible
iff e(PlalQ) <Al Qs(P) Lil-6(PlalQ))]
itf -e(PIBP) A —c(Q)/alQ)
iff P)/oP) > (Q)/alQ)
iff aAP) > alQ) Q) [

95

Lemma A.5:
If a closed graph & has an infeasible loop from vg to v, then & has an
infeasible simple loop.
Proof:
Let P be a shortest infeasible loop from v, to vs in &. If P is simple, we
are done. Otherwise, P can be expressed as PsP.Ps where P, is an
admissible simple loop. We thus have

() a4=0 and b5=0 (v, is the first and last vertex of P)

(2) sgnlbyaz) = sgnlbzaz) = -1 (by Lemma A.1)

t(?qu) = < 0,64,61> *< 42,62,62> = sgn(az) < 0,‘6462,(61“2-6264) >

cqaz-coby a; ¢4 ¢z az c2
(3) af)= — = - x—+— = - =% (P, + —
p‘fpz _ 6162 bz b{ bz 5 p" bz
e(P2Ps) = az,bz,c27 *{az,0,¢c5 =sgnlaz){azaz,0,c2a3-c3b,>
_¢2As7¢csbz ez bz ¢s ez b2
(4) 3(P2P,) = aza3 " az az *43 " az az *2(Ps)

(5) A(P4Pz) >3 3(P;) and AP4) >%32 APPs)
(by Lemma A.4 and the infeasibility of P).

We now proof by contradiction that the simple admissible loop P, is in-
feasible. Suppose P is not infeasible. Then either |) a,+6,=0 and ¢;20 or
i) a2+62¢0.

Because of the length of the proof, the following survey of the distinguis-
hed cases may be very helpful to reconsider the proof:

| az+b,=0 and ¢z20.
Il az+byto0.
II.A P2 is not permutable
Il.B P2 is permutable and P=P,’
I1.B. 1 sgnla)=sgnlaz)
11.B.2 sgnla)=sgn(b)
Il.C P2 is permutable and PP,’
11.C.1 sgnlaz+bz)=sgnlay)
11.C.2 sgnlaz+bz)=sgn(b,).

96

I) Assume ay+b,=0 and ¢220.
Since by Lemma A.1, (2), and b; = -a_,

sgnlbqaz) =sgn(bylbyazbzas)as)

z=sgnlaz bz) =sgnl-azaz)=-1.

Therefore, the loop P4Ps is admissible. Since sgnlazaz)=sgn(-bza3)=1,
we have

-e2/ by = ca/az 293 0.
So by (3), (5), and Lemma A.4,

APyg) = (-bz/az)d(Py) = 3(P4P2) - c2/ b2

243 3(P4P2) > Ps3).

The loop P4Ps is thus an infeasible loop from v, to v, and we have a
contradiction to the assumption that P=P,PzP; is a shortest infeasible
loop from vy to v,.

I1) Assume ay+b,t0.
Now the closedness of & provides an edge & labeled with axsc that
connects some vertex x of the admissible loop P, with the vertex oo,
where ¢/ a is the discriminant of some cyclic permutation P’ of Pa.
We have the following three cases:

A) P2 is not permutable,

B) P2 is permutable and P>=P.’, and

C) Pz is permutable and PatP,".

II.A) P2 is not permutable:
We then have sgnf{azbz)=1 by Lemma A.1.
Thus,

pz':?z’: azaz+bz, c=ca,
and

sgnla) =sgnlaz+bz) =sgnlaz) =sgnl(b2).
Since

sgnlbga)=sgnlbyaz)=-1
and sgnlaaz)=sgnlbzaz)=-1,
both P4&€ and &P are admissible loops from v, to v,.
By (3) and (4), we have

97

%2, AHUP4P2) + 22 % APy4) 2 AUP2Ps) + ig*'*b('/);-,)
b2 b2 az Qaz
and since (5), and sgnl(a)=sgn(az)=-sgnlas):

AP4P2) % a(Ps3)
and A(P2Ps) <2 aPy).
We claim that at least one of P4& and &P; is infeasible. Otherwise, by
Lemma A.4, a(Py) <® (&) and (&) <43 A(P;) (or, since sgnlaasz)=-1,
AUPs) <A &)). Thus,

23(&)

=23(7)2)
) 2 (bz
= 5.

& (42 A(Py) + AP4P2))

°‘|
Y _ ~— ~— ~——

+

/"_'\

eu

—

A~

w

N

+

(V)

~

©

N

v

Q)

_/

;_vu
N

b OO et __/ S———

(o
A (%éz'a(?,)w(?a)(——bz
<A (-‘Ea(&ha(a)) (

= 24d¢,

a contradiction. Therefore, either P4& or &€P3 is an infeasible loop from
v, to v, contradicting the shortness of P.

11.B) P2 is permutable and P2=P2’.
We then have sgnlazbs)=-1 by Lemma A.1. Recall that a=a_ + b, and

sgnlbyas)
z=sgnlbylazaz)(bobz)as)
z=sgnlbsaz)sgnlazbz)sgnlbas)
=(-1)%(~1)*(-1)
=-1.
We distinguish between the two cases

1) sgnla)=sgnl(az) and
2) sgnla)=sgn(b).

98

11.B.1) sgnl(a)=sgn(ay).
Since
sgn(b.,ag) = -9
and
sgn(b,a) = Sgﬂ(bqﬂz) =-1,
both P4P3; and P4& are, by Lemma A.1, admissible loops.
Suppose neither P,P; nor P,& is infeasible.
Then, by lemma A.4, 3(P4) <?3 3(P3) and A(P4) <2 &) (or equivalenty
aPy) s%2 AP3) and AHP4) %2 (Pz), since P:)=d(E) and
sgnlazas) =sgn(-byaz)=1). Thus by (5)

P, = (f?alz”i)a(p,) : -f-’fz 3(D,)
az 12:_13?_ = E
<2 - Jarp2) 2 2Ps)
} 2 _ b
. e 2 3(P,)

= a(?ng) A2 b(?,),

a contradiction.
Therefore, at least one of PyP3 and P4& is infeasible. But this once more
contradicts the shortness of P.

11.B.2) sgnla)=sgn(b,).
Since
sgnlbyaz) = -1
and
sgnlaaz) = sgnlbzaz) = -1
both P,P; and EP; are, by Lemma A.1, admissible loops.
Suppose neither P4yP; nor EP; is infeasible.
Then, by lemma A.4, 3(P4) <%3 3(P;) and &) <% (P;) (or equi-
valenty 3(P2) <43 3(P;), since a(&) = 3(P2)). With (3) and (5), we have

az+b, az

a('P3)= (—bz)b(?a) - Z‘; 8(?3)

azt bz az

,43 (—E_)a(pz) - Fapy

99

= 2] - Az
- N ;2 o(Py)

AUPLP2) % AP,),

a contradiction. We therefore have proved that at least one of PsP;
and EP; is an infeasible loop which again contradicts the shortness of P.

11.C) Pz is permutable and PP,
Since P2 is permutable, we have sgnlazbz)=-1 and since P#P,’, there
are paths Py and Ps such that Py has x as last vertex and Ps has initial

vertex x (P=PyPs and P2’=PsPy). The residues of P, and P,’ are
et(P2) = t(PyPs) = <ay, by, c4>*<as, bs, ¢5>

sgnlas) <ayas, ~bybs, cyas - csby>

2(PsPy) = Kas, bs, cs> *<ay, by, cy>

sgnlay) <asay, ~bsby, csay - c4bs>.

2(7)2 ’)

Observe that

a = sgnlay) (asay - bsby),

¢ = sgnlay) (csay - c4bs),

az = sgnlas) azas,

ba = sgnlas)(-bybs) = sgnlby)bybs,
and ¢z = sgnlas) (cyas - csby).

We distinguish between the two cases
1) sgnlaz+by) = sgnlaz),
and 2) sgnlaxt+ba) = sgnl(by).

I1.C.1) sgnlaz+bz)=sgnlay).
Since
sgnlbya)

=sgnlby (sgnlay) (asay -bsby)))

=sgnlbylasas)aylagas - bybs))

=sgnlbyas)*sgnlay)xsgnlas(agas - bybs))

=(-1)xsgnlay)*sgnlaz)

=-1q,
the loop PsP4€ is admissible by Lemma A.1. The discriminant of the loop
P4+& can be replaced by the discriminant of the loop P,:

- 100 -

cqa - cby _ cylagas-bybs) - (csay - c4bs)

APyE)

aza Ag (4445 - bqbs)
_ ag [cqas - ecsby) _fa2 _
i bobe) " azibs oP2)

Suppose that both PsP; and PsP4E are not infeasible. Then, by Lemma
A.4,03(Py) <3 3(P3) and A(P4) <% 3(Pyl) = d(P2) Recalling sgnlaz) =
sgnlas) =sgn(ay) and (5), we have

b b
3P = (f%i)a(p,) - 2y
<72 (ﬁfi—'li)a(pz) - %3 APs)
2 2
} 2 . b
- = 2 2(Ps)

3(?;?3) (42 3(7-)1).
a contradiction. Therefore, at least one of the loops P,Ps and PsPe& is
infeasible contradicting the shortness of P.

I1.C.2) sgnlaz+bz)=sgn(b.).
Since
sgnlaas)

= Sgn((sgn(ﬂq) (asay -bsby))as)

z=sgnlaslazas - bybs))*sgnlay)

=sgnlaz +bz)*sgnlaz)

=sgnlazb;)

=-1,
the loop &€PsP; is admissible by Lemma A.1. The discriminant of the loop
&Ps can be replaced by the discriminant of the loop Pj:

cas - csa (csay - cybs)as - cslasay - bsby)

b(EPs) = ‘465 - - (4544 = 65b4) 65
) bs (cqas - csby) _Ca _
T bs (agas - bybs) T agthy *P-)

Again, suppose that both P,P; and EPsPj; are not infeasible. We then
have by Lemma A.4 that 3(P4) <?3 3(P3) and A(P2) = A EPs) <3 P;).
Recalling (5), we have

= 101 =

(a2+ b,

8(7)_.—,)= _—bz)b(pa) - Z—; a(pa)

ax+b;

a - —
»43 (—E—)a(pz) 22 aPy)
b2 b2

= AUPLP2) >3 AP,

a contradiction. Therefore, one of the paths PsP; and EPsP; is an infea-
sible loop contradicting the shortness of P.

The main theorem:

If g is a closed graph for S, then the following statements are equivalent:
i) S is satisfiable
ii) & has no infeasible simple loop
Proof:
If S is satisfiable, then, by Lemma 2.2, the set of lequalities labeling ¢
is, as augmentation of S by its loop residue lequalities, satisfiable. q
thus has no infeasible simple loop.

If, conversely, & has no infeasible simple loop, then inductively construct
a sequence of numbers v4’, v,’, ..., 0.’ and a sequence of graphs o, G4,
..., Q¢ Where vy, 04, ..., v, are the variables in S in the following way:
Basis:
Let 05°=0,G06=4q.
Induction Step:
For 0<i (<) let v; be any value in the interval [; ;] and obtain &; from
Gji-4 by adding two new edges from o; to v,, labeled v;<v;’ and o;20;’,
respectively, where
l; = max { dp | P is an admissible path from

vo to v; in G, and bp< 0}
and u; = min { 3p | P is an admissible path from

v; to Dy in Gy and ap>0 } 0

30 : We assume that for empty sets, max{}=- 00 and min{}= 00. Observe
that for a path P from vg to v; with bp<o that uizap, since ap=0,
ap=a7,/bp. and bpu; sep by the residue inequality. In a similiar way, for
a path P from o; to vp with ap>0, we have v;<dp, since ép=0,
dp=ep/ ap, and apv;<e¢p by the residue inequality.

= 302 -

With (i) of the following claim we ensure that the v;” and §); are well
defined:

CLAIM
() & s u; for 1<ise
(i) G; has no infeasible simple loop for 7s<isz

Proof
By induction on ¢.

Basis.
For i=0, ;=4 and both (i) and (ii) hold.

Induction Step (i):

Assume [;>u;. Then, by definition of [; and u;, admissible paths Q and R
from v, to v; and v; to vy, respectively, exist in §;_, with 6(Q)<o0,
a(R) >0, and 3(Q)>3(R). Then the loop QR from v, to v, is admissible
by Lemma A.1 and infeasible by Lemma A.4.

{:-4 then has by Lemma A.5 an infeasible simple loop, contradicting (ii) of
the induction hypothesis.

Induction Step (ii):
Assume on the contrary that ¢j; has an infeasible simple loop P. Since
¢i-4 has no such loop, and since the two new edges in &; form no infea-
sible loop, P (or its reverse) must be of the form Q&, where & is one of
the two new edges and Q is a path from 04 to v; in §;_4.
By admissibility of Q&, sgnl(b6(Q=al(&)) = -1. Thus, b(Q) <0 for al&)=1
(or 6(Q)>0 for a(&)=-1, and al(R)>0 for R, the reverse of Q), which
implies [;23(Q) (or u;<d(R)=3(Q)) by the definitions of [; and u;, re-
spectively.
If & is labeled with v;<0;” (0;20;’), then a(&)=1 (al(&)=-1) and, by
Lemma A.4, 3(Q)>d(&)=0v;" (a(Q) (&) =v;’), contradicting v;"2(;23(Q)
(0;"su;<9(Q)).

[J cLam

Let ax+bysc be an inequality of S labeling an edge & in §,. P=&4EE;
forms an admissible loop where &, is labeled with x'sx (x<x’) for a>0
(a<0) and &, is labeled with 4’ <y (y<y’) for 650 (b<0). So

(&) =<0, -sgnla), -sgnla)x’>
and
e(&2) =<-sgn(b), 0, -sgn(b)y’>.

- 103 -

The loop residue z(P) computes to
e(P)

=el&)*el(E)*e(EL)

=<0, -sgnla), -sgnla)x'> x<a, b, c>*el&;)

=<0, -sgnla)(-sgnl(a)b), sgnla)(-sgnla)x’a - c(-sgnla)))> x2(&;)

=<0, b, ~ax’+c>* < -sgn(b),0,~sgn(b)y">

=<0, 0, ~sgn(b)((-ax’+c)(-sgn(b)) - (-sgn(b)y’)b)>

=<0, 0, -~ax’+c-by’> .
Since by the claim above and Lemma A.5, g, has no infeasible loop from v,
to 0. We thus have -ax’-by’+c20, or ax’+by’sc. So the o; satisfy the
lequalities of S.
So we have now proved the reverse direction that S is satisfiable if & has
no infeasible simple loop.
With the forward direction, we have now completed the proof of the main
theorem. D

- 104 -

REFERENCES:

1. ACKERMANN, W. “Solvable Cases of the Decision Problem”, North-
Holland Pub. Co., Amsterdam, 1954, pp. 98-103.

2. APSVALL, B., SHILOACH, Y. " A polynomial-time algorithm for solving
systems of linear equalities with two variables per inequality"”, Proc.
20th Ann. Symp. on Foundations of Comp. Sc., San Juan, Puerto
Rico, 1979, pp. 205-217.

3. BLEDSOE, W.W., “A new method for proving certain Presburger for-
mulas”, Advance Papers 4th Int. Joint Conf. on Artif. Intell., Tibilisi,
Georgia, U.S.S.R., Sept. 1975, pp. 15-21.

4. COOPER, D.C., “Theorem proving in arithmetic without multiplication”,
B. Meltzer and D. Michie, Eds., In: Mach. Intell. 7, American Elsevier,
New York, 1972, pp. 91-99.

5. DERsHOWITZ, N., “Termination of Rewriting”, J. Symb. Comp., Vol. 3,
1987, pp. 69-116.

6. DOWNEY, P., SETHI, R., TARJAN, R. E., “Variations of the Common
Subexpression Problem”, J. ACM, Vol. 27, No. 4, Oct. 1980, pp. 758-
771.

7. GALLIER, J., NARENDRAN, P., PLAISTED, D., RAATZ, S., SNYDER, W.,
“Finding canonical rewriting systems equivalent to a finite set of
ground equations in polynomial time”, Lusk and Overbeek, Eds., In:
Proceedings of 9th Conference on Automated Deduction, Springer,
Argonne, 1988, pp. 182-196.

8. GOMORY, R. E., "An algorithm for integer solutions to linear pro-
grams”, R. L. Graves and P. Wolfe, Eds., In: Recent Advances in
Mathematical Programming, McGraw-Hill, New-York, 1963, pp.
269-302.

9. HARRISON, M., “Introduction to Formal Language Theory", Addison-
Wesley Pub. Co., Reading, Mass., 1978.

10. HOARE, C.A.R., "An axiomatic basis for computer programming",
Commun. ACM, Vol. 12, 1969, pp. 576-580.

1. HUET, G., "Confluent Reductions: Abstract Properties and Applications
to Term Rewriting Systems ", J. ACM, Vol. 27, No. 4, 1980, pp. 797
=-B21.

12. JOHNSON, D., “Finding all the elementary circuits of a directed
graph”, SIAM J. Comput., Vol. 4, No. 1, March 1975, pp. 77-84.

13. KozeN, D., “Complexity of finitely represented algebras”, Proc. 9th
Annual ACM Symp. on Theory of Computing, Boulder, Colorado, May
1977, pp. 164-177.

14.

15,

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

- 105 -

KREISEL, G., KREVINE, J. L., "“Elements of Mathematical Logic",
North-Holland Pub. Co., Amsterdam, 1967, pp. 54-57.

LoeckX, J., SIEBER, K., “The Foundations of Program Verification”,
Teubner, Stuttgart, 1984.

NELSON, G., OPPeN, D., “A simplifier based on efficient decision
algorithms”, Proc. Fifth ACM Symp. on Prog. Langs., Tucson, Ariz.,
Jan. 1978.

NELSON, G., OpPPEN, D., “Fast Decision Procedures Based on Con-
gruence Closure”, J. ACM, Vol. 27, No. 2, Apr. 1980, pp. 356-364.
NELSON, G., OPPEN, D., "Simplification by Cooperating Decision
Procedures”, ACM Transactions on Prg. Langs. a. Sys., Vol. 1, No. 2,

Oct. 1979, pp. 245-257.

OPPEN, D., "A 222N upper bound on the complexity of Presburger
Arithmetic”, Ph.D. Th., Univ. of Toronto, Toronto, Canada, 1975.

PRABHAKER, M., NARSINGH, D., "On Algorithms for enumerating all
circuits of a graph”, SIAM J. Comput., Vol. 5, No. 1, March 1976, pp.
90-99.

PRATT, V. R., "Two easy theories whose combination is hard”, Tech.
Rep., MIT, Cambridge, Mass., Sept. 1977.

PRESBURGER, M., “Uber die Vollsténdigkeit eines gewissen Systems
der Arithmetik ganzer Z#&hlen in Welchem die Addition als einzige
Operation hervortritt.”, Sprawozdanie z | Kongresu Matematykow
Krajow Slowcanskich Warszawa, Warsaw, Poland, 1929, pp. 92-101.

READ, R. C., TARJAN, R. E., "Bounds on backtrack algorithms for
listing cycles, paths, and spanning trees”, ERL Memo M 433, Elec-
tronic Research Lab., Univ. of California, Berkeley, Calif., 1973.

SHOSTAK, R., “An algorithm for reasoning about equality”, Commun.
ACM, Vol. 21, No. 7, July 1978, pp. 583-585.

SHOSTAK, R., “A Practical Decision Procedure for Arithmetic with
Function Symbols*”, J. ACM, Vol. 26, No. 2, Apr. 1979, pp. 351-360.
SHOSTAK, R., "Deciding Combinations of Theories”, J. ACM, Vol 31,

No. 1, Jan. 1984, pp. 1-12.

SHOSTAK, R., “Deciding Linear Inequalities by Computing Loop Re-
sidues”, J. ACM, Vol. 28, No. 4, Oct. 1981, pp. 769-779.

SHOSTAK, R., “On the SUP-INF Method for Proving Presburger For-
mulas”, J. ACM, Vol. 24, No. 4, Oct. 1977, pp. 529-543.

SZWARCFITER, J. L., LAUER, P. E., “Finding the elementary cycles
of a directed graph in O(n+m) per cycle”, Tech. Rep. No. 60, Univ. of
Newcastlie upon Tyne, Newcastle upon Tyne, England, May 1974.

- 106 -

30. TARJAN, R. E., "Efficiency of a Good But Not Linear Set Union Al-
gorithm™, J. ACM, Vol. 22, No. 2, April 1975, pp. 215-225.

31. TARJAN, R. E., "Enumeration of the elementary circuits of a directed
graph”, SIAM J. Comput., Vol. 2, No. 3, Sept. 1973, pp. 211-216.

32. YASUHARA, A., “Recursive Function Theory & Logic", Academic Press
Inc., New York, 1971,

