
>
€

E
©
©

c =
x © Ml
- 53 c
CO o

Ev 35
Sg =
Coo n
= ER
s< SLLeh ©
SZ eX
2558
SEN
SE SO
Yo

TREid
(i A

566
ooo |

I

J
A

~ FONE AND FALL:
Forward-with-Backward Chaining

in LISPLOG

il

HAROLD BOLEY

SEKI WORKING PAPER SWP-87-03S
E

M-
 W

or
kin

g P
ap

er

FONE AND FALL: FORWARD-WITH-BACKWARD CHAINING IN LISPLOG

Harold Boley, FB Informat ik, Un iv . 675 Ka isers lautern , Box 3049 , W. Germany

SEKI Working Paper SWP-87-03 , June 1987

Abstract : A small extension for incorporating forward chaining into and
on top o f L ISPLOG's backward-chaining framework i s presented.

-
a

This extension o f LISPLOG real izes forward-computation 'product ions '
on the top- level , but permits backward-verification ' r u l es ' (o r , any
LISPLOG programs) for proving the premises o f product ions.
Productions come in groups related to the contexts in [Lee 1986] .
Such a production ' s ys tem ' s i s ca l led by fone/fal l (forward one/a l l)
with (s . . .) as argument; thus , (s) i s usable as a degenerated pattern
that const i tutes the head o f a l l LISPLOG ru les representing the system
(with larger pat terns, production-system usage can be parameter ized).
The deduction cycle o f fone ca l l s i s controlled by backtracking, i . e .
i t proceeds in a s ingle-step fashion governed by L ISPLOG's more command.
(n-sclut ions . . . 1) avoids final cuts for al l productions o f al l systems.
A production o f system s i s notated by (ass (s . . .) p l . . . pN (nap ¢)) ,
with p I as premises and c as conclusion; nap [read "not? asse r t ! pp ! "]
asser ts and pretty prints i ts argument i f f i t i s not yet asserted nor
provable. A sample system l ike a below may be used by typing (fone (a)) ,
followed by more, . . . or typing (fal l (a)) ; however, (fal l (d)) diverges.
For system c a trace with the spy command can be instruct ive.

M
E

“a

M

a

M
y

N
g

M

g

N
g

W

y
w

y
w

y
w

g,
w

e

w
e

M

g
w

e

W
y

W
g

References (order [Boley 1986] and more LISPLOG papers: l i sp log@uk l i rb .UUCP) :
[Boley 1986] H. Boley (Ed .) : A B i rd ' s -Eye View o f LISPLOG: The LISP/PROLOG
Integration wi th Ini t ial-Cut Too l s . Universitaet Kaiserslautern,

; FB Informatik, SEKI Working Paper SWP-86-08 , Dec. 1986
[Lee 1986] N. S. Lee : Programming wi th P -She l l . IEEE Expert 1 (2) , Summer 1986

; The forward-with-backward implementation:
(ass (fone _sy) (n-solut ions sy 1) (forward one _sy)) 7; one step a t a t ime
(ass (fa l l s y) (not (forward a l l _sy))) ; a l l steps together
(ass (forward one _sy)) ;reflexive and
(ass (f o rwa rd x sy) (n-solut ions sy 1) (f o rwa rd x _sy)) transitive closure
(ass (nap _x) (not _x) (ass _x) (pp-external-form _x)) ; note 'dynamic ass '

System a shows a depth-2 forward chaining acid->corrodent->risky:[

’

(ass (a) (corrodent x) (nap (r isky _x))) ; N=1
(ass (a) (acid _x) (nap (corrodent _x))) ; N=1
(ass (a) (ac i d x) (nap (piquant _x))) ; N=1
(ass (ac id v inegar)) 7 'working memory' fact

; System b exemplif ies a backward rule for verifying food l ik ing:
(ass (b) (l i kes x wine) (l i kes x food) (nap (l i kes john _x))) ; N=2
(ass (l i kes mary w ine)) ; 'working memory' fact 1
(ass (l i kes _y food) (corpulent _y)) ; 'working memory' rule
(ass (corpulent mary)) ; 'working memory' fact 2

; System c uses a conclusion containing an anonymous [ID] variable:
(ass (c) (ok i ch) (ok du) (nap (roger ID))) N=2 [' a l l es Roge r ! ']
(ass (c) (sonntagsk ind x) (nap (ok _x))) N=1
(ass (sonntagskind du)) 'working memory' fact 1
(ass (ok i ch)) 'working memory' fact 2“a

w

g

W
g

W
m

a

; System d demonstrates an inf ini te transit ive c losure enumerable by fone:
(ass (d) (natural x) (nap (natural (succ _x)))) 7; N=1 [recursive production]
(ass (natural 0)) ; 'working memory' fact

; System e employs predicate parameters f i l led v ia (e parent brother unc le) :
(ass (@ _p qq _r) (p_x_y) ((q_y _z) (nap (_r _x _z))) ; N=2
(ass (parent nina g i na)) ; 'working memory' fact 1
(ass (brother gina t i no)) ; 'working memory' fact 2

FONE AND FALL:
Forward-with-Backward Chaining

in LISPLOG

HAROLD BOLEY

SEKI WORKING PAPER SWP-87-03

; FONE AND FALL: FORWARD-WITH-BACKWARD CHAINING IN LISPLOG

; Harold Boley, FB Informatik, Univ. 675 Kaiserslautern, Box 3049 , W. Germany

; SEKI Working Paper SWP-87-03, June 1987

; Abstract: A small extension for incorporating forward chaining into and
; on top o f L ISPLOG's backward-chaining framework i s presented.

This extension o f LISPLOG realizes forward-computation 'product ions'
on the top-level, but permits backward-verification ' r u l es ' (o r , any
LISPLOG programs) for proving the premises o f productions.
Productions come in groups related to the contexts i n [Lee 1986] .
Such a production ' sys tem ' s i s cal led by fone/fall (forward one/al l)
with (s . . .) as argument; thus , (s) i s usable as a degenerated pattern
that constitutes the head o f a l l LISPLOG rules representing the system
(with larger patterns, production-system usage can be parameterized).
The deduction cycle o f fone calls i s controlled by backtracking, i . e .
i t proceeds i n a single-step fashion governed by LISPLOG's more command.
(n-solutions . . . 1) avoids final cuts for a l l productions o f a l l systems.

A production o f system s i s notated by (ass (s . . .) p l . . . pN (nap c)) ,
with p I as premises and c as conclusion; nap [read "not? asser t ! pp ! "]
asserts and pretty prints i ts argument i f f i t i s not yet asserted nor
provable. A sample system l ike a below may be used by typing (fone (a)) ,
followed by more, . . . or typing (fal l (a)) ; however, (fall (d)) diverges.
For system c a trace with the spy command can be instructive.M

g

s
p

w

g

up
g

W
g

M
g

M

g

M
a

W

g
M

p

M
y

M
p

5

W
y

w
p

W

y
w

g

References (order [Boley 1986] and more LISPLOG papers: l isp log@ukl i rb .UUCR):
[Boley 1986] H. Boley (Ed .) : AB i rd 's -Eye View o f LISPLOG: The LISP/PROLOG
Integration with Initial-Cut Too ls . Universitaet Kaiserslautern,
FB Informatik, SEKI Working Paper SWP-86 -08 , Dec . 1986
[Lee 1986] N. S. lee : Programming with P-She l l . IEEE Expert 1 (2) , Summer 1986w

g

W
g

W
g

W
y

W
g

; The forward-with-backward implementation:
(ass (fone _sy) (n-solutions sy 1) (forward one _sy)) ; one step a t a t ime
(ass (fal l _sy) (not (forward al l _sy))) : ; a l l steps together
(ass (forward one _sy)) ;reflexive and
(ass (f o rwa rd x _sy) (n~solutions sy 1) (f o rwa rd x sy)) transitive closure
(ass (nap _x) (not _x) (ass _x) (pp-external-form x)) ; note 'dynamic ass ’

; System a shows a depth-2 forward chaining acid->corrodent->risky:
(ass (a) (corrodent x) (nap (risky _x))) ; N=
(ass (a) (acid _x) (nap (corrodent _x))) ; N=1
(ass (a) (ac i d x) (nap (piquant x))) ; N=1
(ass (acid vinegar)) ; 'working memory' fact

; System b exemplifies a backward rule for verifying food l ik ing:
(ass (b) (l i kes _x wine) (l i kes _x food) (nap (l ikes john _x))) ; N=2
(ass (l ikes mary w ine)) ; 'working memory' fact 1
(ass (l i kes _y food) (corpulent _y)) ; 'working memory' rule
(ass (corpulent mary)) ; 'working memory' fact 2

; System c uses a conclusion containing an anonymous [ID] variable:
(ass (c) (ok ich) (ok du) (nap (roger ID))) ; N=2 [' a l l es Roge r ! ']
(ass (c) (sonntagskind x) (nap (ok _Xx))) ; N=1
(ass (sonntagskind du)) ; 'working memory' fact 1
(ass (ok i ch)) ; 'working memory’ fact 2

; System d demonstrates an infinite transitive closure enumerable by fone:
(ass (d) (natural x) (nap (natural (succ _x)))) 7; N=1 [recursive production]
(ass (natural 0)) ; 'working memory' fact

; System e employs predicate parameters f i l led v ia (e parent brother unc le) :
(ass (@¢ _p gq x) (Pp x vy) (q_y _2) (nap (_r _x _z))) ; N=2
(ass (parent nina g i na)) ; 'working memory' fact 1
(ass (brother gina t i no)) ; 'working memoxy' fact 2

	BB_0002.jpg

