Ja“wauﬂg . _g m
]))

) Jm

AN\

Y (1)

\\6’ \‘oil\al
@ ee

in LISPLOG
HAROLD BOLEY

=

1))
k=
g

<

L=
— O
< T
g
D.K
Z &
<
m <
g5
o
=
2
)
ad

SEKI WORKING PAPER SWP-87-03

Aueuuan ‘M ‘I uleine|siasie)| 05/9-a
60€.Yyoessod []
uJaINe|SIasie)| JelISIaAIUN
jlieuoju] yolasaqyoe4 @

FONE AND FALL: FORWARD-WITH-BACKWARD CHAINING IN LISPLOG
Harold Boley, FB Informatik, Univ. 675 Kaiserslautern, Box 3049, W. Germany

SEKI Working Paper SWP-87-03, June 1987

Abstract: A small extension for incorporating forward chaining into and
on top of LISPLOG's backward-chaining framework is presented.

This extension of LISPLOG realizes forward-computation 'productions'

on the top-level, but permits backward-verification 'rules' (or, any
LISPLOG programs) for proving the premises of productions.

Productions come in groups related to the contexts in [Lee 1986].

; Such a production 'system' s is called by fone/fall (forward one/all)

; with (s ...) as argument; thus, (s) is usable as a degenerated pattern
that constitutes the head of all LISPLOG rules representing the system
(with larger patterns, production-system usage can be parameterized).
The deduction cycle of fone calls is controlled by backtracking, i.e.

it proceeds in a single-step fashion governed by LISPLOG's more command.
; (n-solutions ... 1) avoids final cuts for all productions of all systems.
; A production of system s is notated by (ass (s ...) pl ... pN (nap c)),
with pI as premises and c as conclusion; nap [read "not? assert! pp!"]
asserts and pretty prints its argument iff it is not yet asserted nor
provable. A sample system like a below may be used by typing (fone (a)),
; followed by more, ... or typing (fall (a)); however, (fall (d)) diverges.
For system c a trace with the spy command can be instructive.

; References (order [Boley 1986] and more LISPLOG papers: lisplog@uklirb.UUCP):
; [Boley 1986] H. Boley (Ed.): A Bird's-Eye View of LISPLOG: The LISP/PROLOG

; Integration with Initial-Cut Tools. Universitaet Kaiserslautern,

; FB Informatik, SEKI Working Paper SWP-86-08, Dec. 1986

[Lee 1986] N. S. Lee: Programming with P-Shell. IEEE Expert 1(2), Summer 1986

; The forward-with-backward implementation:

(ass (fone _sy) (n-solutions _sy 1) (forward one _sy)) ; one step at a time
(ass (fall _sy) (not (forward all _sy))) ; all steps together
(ass (forward one _sy)) ;reflexive and
(ass (forward _x _sy) (n-solutions _sy 1) (forward _x _sy)) ;transitive closure
(ass (nap _x) (not _x) (ass _x) (pp-external-form _x)) ; note 'dynamic ass'

System a shows a depth-2 forward chaining acid->corrodent->risky:

’

(ass (a) (corrodent _x) (nap (risky _x))) ; N=1
(ass (a) (acid _x) (nap (corrodent _x))) ; N=1
(ass (a) (acid _x) (nap (piquant _x))) ; N=1
(ass (acid vinegar)) ; 'working memory' fact

System b exemplifies a backward rule for verifying food liking:

’

(ass (b) (likes _x wine) (likes _x food) (nap (likes john _x))) ; N=2
(ass (likes mary wine)) ; 'working memory' fact 1
(ass (likes _y food) (corpulent _y)) ; 'working memory' rule
(ass (corpulent mary)) ; 'working memory' fact 2

; System c uses a conclusion containing an anonymous [ID] variable:

(ass (c) (ok ich) (ok du) (nap (roger ID))) ; N=2 ['alles Roger!']
(ass (c) (sonntagskind _x) (nap (ok _x))) ; N=1

(ass (sonntagskind du)) ; 'working memory' fact 1
(ass (ok ich)) ; 'working memory' fact 2

; System d demonstrates an infinite transitive closure enumerable by fone:
(ass (d) (natural _x) (nap (natural (succ _x)))) ; N=1 [recursive production]
(ass (natural 0)) ; 'working memory' fact

; System e employs predicate parameters filled via (e parent brother uncle):
(ass (e _p _q _r) (p _x_y) (q_y_z) (nap (_r _x _z))) ; N=2

(ass (parent nina gina)) ; 'working memory' fact 1
(ass (brother gina tino)) ; 'working memory' fact 2

FONE AND FALL:
Forward-with-Backward Chaining
in LISPLOG

HAROLD BOLEY

SEKI WORKING PAPER SWP-87-03

; FONE AND FALL: FORWARD-WITH-BACKWARD CHAINING IN LISPLOG
; Harold Boley, FB Informatik, Univ. 675 Kaiserslautern, Box 3049, W. Germany

; SEKI Working Paper SWP-87-03, June 1987

; Abstract: A small extension for incorporating forward chaining into and
on top of LISPLOG's backward-chaining framework is presented.

~e

This extension of LISPLOG realizes forward-computation 'productions'

on the top-level, but permits backward-verification 'rules' (or, any
LISPLOG programs) for proving the premises of productions.

Productions come in groups related to the contexts in [Lee 1986].

Such a production 'system' s is called by fone/fall (forward one/all)
with (s ...) as argument; thus, (s) is usable as a degenerated pattern
that constitutes the head of all LISPLOG rules representing the system
(with larger patterns, production-system usage can be parameterized).
The deduction cycle of fone calls is controlled by backtracking, i.e.

it proceeds in a single-step fashion governed by LISPLOG's more command.
(n-solutions ... 1) avoids final cuts for all productions of all systems.
A production of system s is notated by (ass (s ...) pl ... pN (nap c)),
with pI as premises and c as conclusion; nap [read "not? assert! pp!"]
asserts and pretty prints its argument iff it is not yet asserted nor
provable. A sample system like a below may be used by typing (fone (a)),
followed by more, ... or typing (fall (a)); however, (fall (d)) diverges.
For system c a trace with the spy command can be instructive.

Ne Ne Ne Ne Ne Ne Ne Ve Ne Ne Se Ne Se Se Ne Se No

References (order [Boley 1986] and more LISPLOG papers: lisplog@uklirb.UUCP):
[Boley 1986] H. Boley (Ed.): A Bird's-Eye View of LISPLOG: The LISP/PROLOG
Integration with Initial-Cut Tools. Universitaet Kaiserslautern,

FB Informatik, SEKI Working Paper SWP-86-08, Dec. 1986

[Lee 1986] N. S. Lee: Programming with P-Shell. IEEE Expert 1(2), Summer 1986

Se Se Ne Ne N

; The forward-with-backward implementation:

(ass (fone _sy) (n-solutions _sy 1) (forward one _sy)) ; one step at a time
(ass (fall _sy) (not (forward all _sy))) ; all steps together
(ass (forward one _sy)) ;reflexive and
(ass (forward _x _sy) (n-solutions _sy 1) (forward _x _sy)) ;transitive closure
(ass (nap _x) (not _x) (ass _x) (pp-external-form _x)) ; note 'dynamic ass'’

; System a shows a depth-2 forward chaining acid->corrodent->risky:

(ass (a) (corrodent _x) (nap (risky _x))) ; N=1
(ass (a) (acid _x) (nap (corrodent _x))) ; N=1
(ass (a) (acid _x) (nap (piquant _x))) ; N=1

(ass (acid vinegar)) 'working memory' fact

; System b exemplifies a backward rule for verifying food liking:

(ass (b) (likes _x wine) (likes _x food) (nap (likes john _x))) ; N=2
(ass (likes mary wine)) ; 'working memory' fact 1
(ass (likes _y food) (corpulent _y)) ; 'working memory' rule
(ass (corpulent mary)) ; 'working memory' fact 2
; System c uses a conclusion containing an anonymous [ID] variable:

(ass (c) (ok ich) (ok du) (nap (roger ID))) ; N=2 ['alles Roger!']
(ass (c) (sonntagskind _x) (nap (ok _x))) ; N=1

(ass (sonntagskind du)) ; 'working memory' fact 1
(ass (ok ich)) ; 'working memory' fact 2

; System d demonstrates an infinite transitive closure enumerable by fone:
(ass (d) (natural _x) (nap (natural (succ _x)))) , N=1 [recursive production]
(ass (natural 0)) ; 'working memory' fact

; System e employs predicate parameters filled via (e parent brother uncle):
(ass (@ _p g _r) (p _x_y) (q_y_z) (nap (_r _x _z))) ; N=2

(ass (parent nina gina)) ; 'working memory' fact 1
(ass (brother gina tino)) ; 'working memory' fact 2

	BB_0002.jpg

