
U
ni

ve
rs

itä
t K

ai
se

rs
la

ut
er

n

D
-6

75
0

K
ai

se
rs

la
ut

er
n

1,
 W

. G
er

m
an

y

F
a

ch
b

e
re

ic
h

 I
nf

or
m

at
ik

P
os

tfa
ch

 3
04

9

FE &gg= fi
\ ly6668
XX 4

Lazy E-Unification -
A Method to Delay

Alternative Solutions

Hans-Jürgen Biirckert

SEKI-Working Paper SWP-87-07 Okt. 87a
th

 -
W

or
ki

ng
 P

ap
er

Lazy E-Unification -
A Method to Delay

Alternative Solutions

Hans-Jürgen Bürckert

SEKI-Working-Paper SWP-87-07 Okt. 87

Lazy E-Unification - A Method to Delay Alternative Solutions”

Hans-JürgenBürckert, FB Informatik, Universität Kaiserslautern,

Postfach 3049, D-6750 Kaiserslautern, W.-Germany

net- address: UUCP ...Imcvax!unido!uklirb!buerkert

* extended abstract of a talk given at the 1st Workshop on Unification at Val d'Ajol, France, 1987

Lazy E-Unification - A Methodto Delay Alternative Solutions Page 2

One of the most unsuitable properties of E-unification is the existence of more than one most
general E-unifiers (G. Plotkin 1972, F. Fages & G. Huet 1986, J. Siekmann 1987). We want to
present a general method to delay these alternative solutions in the context of Logic Programming,
since there it will be most problematic. Nevertheless, this method is also useful in other kinds of
deduction systems (H.J. Ohlbach 1986). The idea is to be lazy in unification, that is to unify at most
those parts of a unification problem that will not split up the solution space (H.-J. Bürckert 1986).
The partial unifier will be used for resolution and the remaining part of the unification problem will be
kept in memory. If the empty clause is derived, the collected residues of the unification problems will
be totally E-unified. If they are not E-unifiable, backtracking takes place.

Let Zbe a signature consisting of a set PRED ofpredicate symbols with their arities, a set FÜN of
function symbols with their arities, and an infinite set VAR of variables. Let Tbe the set of terms
over Z, let L be the set of literals over Z and let SUB be the set of substitutions {x; & t ; : 1 < i <n}
over X. A definite clause is a pair h < B of a literal h € L (the head) anda finite set B of literals (the
body) with the obvious meaning that the conjunction of the body literals imply the head literal (all
variables are assumed to be universal quantified). A definite clause with empty body is called afact,
the others are called rules. A goal clause is a rule with no head. We use the following notation for
these three kinds ofHorn clauses (b,,...,b, is the body B):

-h << by,....b, (rule)
-h (fact)
-¢=by,....0, (goal)

Now, a logic program P over X is a finite set of rules and facts, and a query Q to the program P is
any goal clause. We denote the set of variables of any of these or other objects O consisting of terms
by YO).

We assume a distinguished binary predicate = in PRED, written infix and called equality. Notice,
that both head and body literals might be equality literals. Clauses with equality head are called
functional clauses, the others are called relational. If = should semantically denote equality in a
program P, thenP must contain the equality clauses

-X=X (reflexivity)

"X=Yy&Ey=Xx (symmetry)
-X=zZ&EX=Y,y=2 (transitivity)
-f(xp.0x,) = f Ya) EX =X , =), (function replaceability)

for each function symbolf € FUN with arity n 2 1
-D(Xıs Xp) SE DVI Yu) Xp = Vo i Xy = In (predicate replaceability)

for each predicate symbolp € PRED with arity n > 1

Lazy E-Unification - A Method to Delay Altemative Solutions Page 3

Given a goal clause with afocused goal literal g and the residue G we call every application of one
of the following transformation rules to the goal g & G a goal reduction with the program P:

R) p t , . . t)&G2s ,= t ;& . . &s ,= t , &B&G (resolution)
if p(s,,...,s,) <=B is a clause of P totally renamed with new variables

(I) x=x&G—>G | (tautology)
B) x= t&Gx= t& {x «& YG (binding)

i f x ¢ Ut), but x e UG) and {x « t} is a substitution of x by ¢
DO) f l sp . . . s)= f t ; , . . t)&G > s ; ,= t ,& . . .&s , = t , &G (decomposition)
0) t =x&G—2x= t&G (orientation)

Notice, that the focused goal literal in the resolution rule might also be an equality literal. A
refutation of a query Q with a program P is a sequence of goal reductions starting with Q and
terminating with a solved goal, that is a goal of equality literals x, = f,,..., x, = ¢,, such that the ¢; are
terms and the x; are pairwise different variables with x; ¢ Vlt,,...,t„). Every such solved goal
defines a correct answer substitution {x, «t,,....x, «t } to the query Q.

Any ordering of goal reductions is called a strategy. If we apply after each resolution step the
unification rules (T) - (O) to the introduced equality literals s, = tt, & ... & 5, = ¢, (unification
conditions) until they are reduced completely into solved form, then we call this a standard refutation
strategy. The reduction of a set of equality literals to solved form with the unification rules only is just
Robinson unification (J.A. Robinson 1965) and the combination of a resolution step followed by
Robinson unification of the unification conditions is the common SLD-resolution. A strategy that
applies only the resolution rule to the goals until we have a pure equality goal (not necessary solved),
followed by a sequence of applications of the unification rules transforming the equality goal into a
solved goal, is called a totally lazy refutation strategy. It is clear that an implementation of a totally
lazy strategy will be rather inefficient, since a lot of backtracking will become necessary, and we will
get the information of unification failures much to late. G. Huet (1972) uses a similar concept of
refutation (constraint resolution) for higher order logics, where unification has similar problems as
E-unification. Every strategy between these two extreme cases is called a lazy refutation strategy. We
want to use the concept of lazy strategies to incorporate equational theories into logic programs.

Let E := {Sj =1 , . . , 5 ,=1 } be a finite set of term pairs. An equational theory is the finest
congruence relation on the term algebra 7 that contains all term pairs os = ot withs =¢ € E and with
0 € SUB. We denote this congruence by = , and call it E-equality. It is clear that the equality facts of
a logic program induce such an equational theory. By a result of G. Plotkin (1972) for the whole first
order predicate logics we can remove the equality facts and the equality clauses from a program, if we
replace Robinson unification by E-unification under the standard strategy, where E is the removed set

Lazy E-Unification - A Method to Delay Alternative Solutions Page 4

of equality facts, and if no clauses with equality head remain in the program. We call this a standard
E-refutation strategy. E-unification is the computation of substitutions 6 € SUB for an equality goal
<8; =t;, . . .5, = t, (also called E-unificationproblem), such that Os; = ot; for each i (1 < i <n).
We write Ui(I') to denote the set of all such E-unifiers of an equality goal I“. The E-unifiers can be
obtained as answer substitutions to the query <5; = ¢,,....5, = f , t0 a program consisting just of the
equality facts of E and the equality clauses. This implies the soundness of Plotkin's method for first
order Horn logics. J. Jaffar, J.-L. Lassez & M. Maher (1986) show the completeness of the standard
E-refutation strategy for Hom logic with E-equality; see also (J.H. Gallier & S. Raatz 1986).

Theorem: SLD-Resolution with E-unification is sound and complete
for programs withoutfunctional clauses. a

A set uU„(T) of substitutions is called a base or a minimal, complete set of E-unifiers of I’, iff

(1) HURT) CULT) (correctness)
(ii) Vöe UI) Joe HUT) with &x = ; Aox (completeness)

(for all x € UT) and some A € SUB)
(iii) 0, Te PUT) with ox =; Ax (for all x € VG) and some A) (minimality)

implies = T

The elements of uUg(T’) are calledmost generalE-unifiers (E-mgu) of TI.
An E-unification problem I"is unitary, if it has a base with a single E-mgu, i.e., if /uU(T)/ #1.

Givena set D of distinguished equality goals, called extended disagreements, the application of the
following transformation rules to an equality query is called lazy unification withD.

T) x=x&G—>G (tautology)
Bp) x= t&G2x= t& {x t)G (lazy binding)

if x & Ut), bu tx € UG) and {x « t} is a substitution of x by ¢
and if the goal =x = t i s i nD

Dp) f i sp . .8)= f t . . . t)&G =D s ;= t ,& . . .&s ,=1 ,&G (lazy decomposition)
provided the goal <f(s,,....s,) = ft;.....t,) isnotin D

(0) t =x&G—2>x= t&G (orientation)

Usually D should contain all goals & x = ¢, such that the binding rule is not lazy. To obtain
Robinson unification D must just consist of all goals <= 5 = t, where s and¢ start with different
symbols, since then the decomposition rule is always applicable for term pairs starting with the same
function symbol. In this case D is just the set of disagreements as defined by J.A. Robinson (1965).

Lazy E-Unification - A Method to Delay Alternative Solutions Page 5

To get lazy E-unification we modify the lazy decomposition rule, such that it decomposes also all
term pairs with decomposable top-symbols (C. Kirchner 1984), if we have these subgoals not in D.
An equality literalf{s,,...,s,) = f(t,...,t.) is E-decomposable, iff

Ug f(s}.. . .8,) = f l t ; , . . . 1 ,)) = Ux(Sy _— I yoo esSy —_— t ,) .

We assume D to be the set of all E-unification problems with /uUg(I')/ # 1, and containing no
E-decomposable goals. Provided there is an algorithm that computes a base for each unitary
E-unification problem, we can add the following merging rule for a focused subgoal I”

M T&G— x ;=4& . .&x ,= t , &G (unitary merging)
if 'e D and (x, «¢ , , . . . x , « t , } is the E-mgu o fI

For an implementation of lazy E-unification we should add some failure rules that terminate rule
application, whenever a subgoal is focussed that is not E-unifiable (H.-J. Biirckert 1986).

Now, we can combine these lazy E-unification rules with the resolution rule (R) to obtain a lazy
E-refutation strategy. A lazy E-refutation of a query Q with a program P with built in E-equality is a
sequence of applications of (R) and the lazy E-unification rules starting with Q and terminating with
an E-unifiable equality goal I'. Every E-unifier of I" computed by a suitable E-unification algorithm is
an E-answer to Q.

Theorem: Lazy E-refutation is sound and complete forprograms withoutfunctional clauses.

Sketch of Proof: Soundness is obvious. Completeness follows immediately with the Switching
Lemma (independence of focused goal literal, J.W. Lloyd 1984) applied to the program consisting of
P, the equational facts E and the equality clauses. A refutation with this extended program can be
rearreanged, such that resolution with clauses ofE or with equality clauses will be delayed to the end.
Hence the first part of the rearranged refutation is essentially a lazy E-refutation and the last part is
E-unification. m

Lazy E-refutation may be used to extend the Abstract Prolog Machine of D.H.D Warren (1983) for
logic programs with certain built in equational theories (H.-J. Bürckert 1986). The main idea is to
compile lazy E-unification into suitable instructions for the Warren Machine and to collect the
extended disagreements, that occur in the goals during computation, in a special memory. After
termination the remaining disagreements are E-unified. I f they are not E-unifiable, backtracking will
be used to try an alternative path.

Lazy E-Unification - A Method to Delay Altemative Solutions Page 6

Literature

H.-J. Bürckert: Lazy Theory Unification in Prolog: AnExtension of the Warren Abstract Machine,
Proc of GWAI'86, Springer, Informatik Fachberichte 124, 1986

F. Fages & G. Huet: Complete Sets of Unifiers andMatchers inEquational Theories. J. of Theoret.
_ Comp. Sci., 1986
G. Huet: Constraint Resolution: A Complete Methodfor Higher Order Logic, Thesis, Case Western

Reserve University, 1972
J.H. Gallier, S. Raatz: SLD-ResolutionMethodsfor Horn Clauses with Equality based on

E-Unification, Proc of Symp. on Logic Programming, Salt Lake City, 1986
J. Jaffar, J.-L. Lassez, M.J. Maher: Logic Programming Language Scheme, in Logic Programming:

Functions, Relations, Equations (ed. D. DeGroot, G. Lindstrom), Prentice Hall, 1986
C. Kirchner: A New Equational UnificationMethod: A Generalization ofMartelli-Montanari's

Algorithm, Proc of CADE'84, Springer, LNCS, 1984
J.W. Lloyd: Foundations ofLogic Programming, Springer, 1984
H. J. Ohlbach: The Semantic Clause Graph Procedure - A First Overview, Proc of GWAI'86,

Springer, Informatik Fachberichte 124, 1986
J. Siekmann: Unification Theory, to appear in J. of Symb. Comp., 1987
D.H.D. Warren: An Abstract Prolog Instruction Set, SRI Technical Note, Stanford, 1983

