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Abstract
Exploring the Dynamics of Red Blood Cell Aggregation in

Microcirculation: A Physics and Artificial Intelligence Approach

by Julie Martin-Wortham

Examining the characteristics and behavior of red blood cells (RBCs) enables
insights into fundamental aspects of blood circulation as well as specific dis-
orders such as sickle cell disease, as observed through the examination of cell
shape, or the identification of inflammation or sepsis via the erythrocyte sed-
imentation rate, a measure closely associated with aggregation rate. Build-
ing upon this fundamental and clinical significance, this doctoral work takes
a multi-physics approach involving biology, fluid and solid mechanics and
computer science, to study the RBCs in flow in capillaries at a microscopic
scale.

A first part focuses on the distribution of RBCs at an in vitromicro-bifurcation
considering the influence of aggregation rates tuned by Dextran. Experimen-
tal investigations demonstrate that the presence of aggregation amplifies the
non-homogeneous distribution of RBCs, highlighting the significant impact
of aggregation forces on the observed Zweifach-Fung effect. These findings
enhance our understanding of the complex interplay between aggregation
and microvascular flow dynamics.

The second part of this doctoral research addresses the development of a high-
throughput automatic shape recognition system for RBCs. A novel digital sig-
nal generation and processing approach combining optical spatial amplitude
modulation and artificial intelligence is proposed, presenting a concept for an
imaging tool capable of capturing RBCs in flowwithout the need for complex
cameras or sophisticated optical setups. By utilizing simple cell fingerprints
derived from intensity-modulated signals generated through a 2D binary slit
mask, image reconstruction of RBCs in microfluidic flow is achieved.

Overall, the combination, in this PhD, of experimental investigations and in-
novative imaging techniques provides insights into the behavior of RBCs at
a microscopic scale. These findings contribute to the fields of blood rheol-
ogy, microfluidics, and biomedical research, with implications for the devel-
opment of improved diagnostic tools and therapeutic interventions.
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Résumé
Exploration de la Dynamique de l’Agrégation des Globules Rouges dans

la Microcirculation : Une Approche Fondée sur la Physique et
l’Intelligence Artificielle

par Julie Martin-Wortham

L’étude des caractéristiques et du comportement des globules rouges (GR)
permet de comprendre des aspects fondamentaux de la circulation sanguine
ainsi que des troubles spécifiques tels que la drépanocytose, observée par
l’examen de la forme des cellules, ou l’identification de l’inflammation ou
de la septicémie par le biais de la vitesse de sédimentation des érythrocytes,
une mesure étroitement associée au taux d’agrégation. S’appuyant sur cette
importance fondamentale et clinique, ce travail de doctorat adopte une ap-
proche multi-physique impliquant la biologie, la mécanique des fluides et
des solides et l’informatique, pour étudier l’écoulement des GR dans les capil-
laires à l’échelle microscopique.

Une première partie se concentre sur la distribution des GR à une micro-
bifurcation in vitro en tenant compte de l’influence des taux d’agrégation
réglés par le Dextran. Les études expérimentales démontrent que la présence
d’agrégats amplifie la distribution nonhomogènedesGR, soulignant l’impact
significatif des forces d’agrégation sur l’effet Zweifach-Fung observé. Ces ré-
sultats améliorent notre compréhensionde l’interaction complexe entre l’agré-
gation et la dynamique du flux microvasculaire.

La deuxième partie de cette recherche doctorale porte sur le développement
d’un système de reconnaissance automatique de la forme des GR à haut débit.
Une nouvelle approche de génération et de traitement de signauxnumériques
combinant la modulation d’amplitude spatiale optique et l’intelligence artifi-
cielle est proposée, présentant un concept pour un outil d’imagerie capable
d’imager des GR en mouvement sans avoir recours à des caméras complexes
ou à des configurations optiques sophistiquées. En utilisant des empreintes
cellulaires simples dérivées de signaux modulés en intensité générés par un
masque 2D binaire à fentes, la reconstruction d’images de GR dans un flux
microfluidique est réalisée.

Dans l’ensemble, la combinaison, dans cette thèse, d’études expérimentales
et de techniques d’imagerie innovantes permet de mieux comprendre le com-
portement des GR à l’échelle microscopique. Ces résultats contribuent aux
domaines de la rhéologie sanguine, de la microfluidique et de la recherche
biomédicale, avec des implications pour le développement d’outils de diag-
nostic et d’interventions thérapeutiques améliorés.
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Zusammenfassung
Erforschung der Dynamik der Aggregation roter Blutkörperchen in der
Mikrozirkulation: Ein Ansatz aus Physik und künstlicher Intelligenz

von Julie Martin-Wortham

DieUntersuchungder EigenschaftenunddesVerhaltens roter Blutkörperchen
(Erythrozyten) ermöglicht Einblicke in grundlegende Aspekte des Blutkreis-
laufs sowie in spezifische Erkrankungenwie die Sichelzellkrankheit, die durch
dieUntersuchungderZellformbeobachtetwerden kann, oder die Identifizier-
ung von Entzündungen oder Sepsis durch die Erythrozytensedimentation-
srate, ein Maß, das eng mit der Aggregationsrate verbunden ist. Aufbauend
auf dieser grundlegenden und klinischen Bedeutung verfolgt diese Doktorar-
beit einenmultiphysikalischenAnsatz, der Biologie, Strömungs- und Festkör-
permechanik und Informatik umfasst, um die Erythrozyten in der Strömung
in Kapillaren auf mikroskopischer Ebene zu untersuchen.

Ein erster Teil konzentriert sich auf die Verteilung der Erythrozyten an einer
Mikroverzweigung in vitro unter Berücksichtigung des Einflusses der durch
Dextran eingestellten Aggregationsraten. Experimentelle Untersuchungen
zeigen, dass dasVorhandensein vonAggregation die inhomogeneVerteilung
von Erythrozyten verstärkt und den signifikanten Einfluss von Aggregation-
skräften auf den beobachtetenZweifach-Fung-Effekt hervorhebt. Diese Ergeb-
nisse verbessern unser Verständnis des komplexen Zusammenspiels zwis-
chen Aggregation und mikrovaskulärer Flussdynamik.

Der zweite Teil dieser Doktorarbeit befasst sichmit der Entwicklung eines au-
tomatischen Hochdurchsatz-Formerkennungssystems für Erythrozyten. Es
wird ein neuartiger digitaler Ansatz zur Signalerzeugung und -verarbeitung
vorgeschlagen, der optische räumliche Amplitudenmodulation und künstli-
che Intelligenz kombiniert und ein Konzept für ein Bildgebungsinstrument
vorstellt, mit dem Erythrozyten im Fluss erfasst werden können, ohne dass
komplexe Kameras oder ausgefeilte optische Anordnungen erforderlich sind.
DurchdieVerwendung einfacher Zell-Fingerabdrücke, die aus intensitätsmo-
dulierten Signalen abgeleitet werden, die durch eine binäre 2D-Schlitzmaske
erzeugt werden, wird eine Bildrekonstruktion von Erythrozyten immikroflu-
idischen Fluss erreicht.

Insgesamt bietet die Kombination aus experimentellen Untersuchungen und
innovativen Bildgebungsverfahren in dieser Doktorarbeit Einblicke in das
Verhalten von Erythrozyten auf mikroskopischer Ebene. Diese Erkenntnisse
tragen zu den Bereichen Blutrheologie, Mikrofluidik und biomedizinische
Forschung bei und haben Auswirkungen auf die Entwicklung verbesserter
Diagnoseinstrumente und therapeutischer Interventionen.
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Introduction

Blood is a vital biological fluid that plays a crucial role in maintaining the
health and homeostasis of most animal species by transporting oxygen, nu-
trients, metabolic waste and by regulating temperature. While some aquatic
species, such as jellyfishes and corals, do not possess blood or any similar
fluid [1], blood in other species can vary greatly in its composition and prop-
erties. For example, ice-fish blood is characterized by its low hemoglobin con-
centration [2], and various animal classes like birds, typically own nucleated
red blood cells [3][4]. However, this thesis will focus specifically on human
blood and aims to contribute to specific aspects of the understanding of blood
properties.

The dynamics and rheology of blood at different scales, from single cell me-
chanics up to flows in complex vessel networks has been the topic of intense
research since the pioneering works of Poiseuille[5] and has attracted a re-
newed interest in the past decades thanks to the rapid development of new
techniques, including microfluidics, numerical simulation and interdiscipli-
nary synergies. Many recent developments focus on the link between red
blood cell properties and blood flows at larger scale in healthy and patholog-
ical situations. For instance, several pathologies can alter RBC mechanical
properties, shape and interactions with direct consequences on their ability
to flow through capillary networks to perform their function and on blood
rheological properties.

In this work, we focus on two studies aiming at improving our understand-
ing of blood flows in the microcirculation by analysing the influence of RBC
aggregation on their distribution in capillary bifurcations as well as propos-
ing new tools for diagnostic purposes thanks to a RBC shape classification
and reconstruction technique based on artificial intelligence.

The aggregation of red blood cells (RBCs) is a complex phenomenon that has a
significant impact on the fluid dynamics of blood and its ability to transport
oxygen and nutrients throughout the body. A first aim of this thesis is to
contribute to the investigation of the underlying physicalmechanisms of RBC
aggregation and how it affects the rheological properties and fluid dynamics
of blood, as well as the influence of external factors and aggregate size on
the process. More specifically, we focus on the influence of RBC aggregation
on the hematocrit separation at capillary bifurcations. Indeed, at the scale of
small vessels (capillary networks), it is well known that the distribution of
RBCs is not homogeneous, which has consequences on oxygen transport and
availability for instance. As it is suspected that RBC aggregationmay increase
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these heterogeneities. This thesis provides a first quantitative assessment of
this phenomenon.

The second aspect of this work takes advantage of the rapid development
of Artificial Intelligence (AI) techniques in the domain of image and signal
processing to set up a rapid and efficient flowing cell classification technique
and image reconstruction that could form the basis of a new flow cytometry
principle. It focuses on the shape of RBCs flowing in capillaries, which is
itself a marker of their mechanical properties and may reveal pathological
situations.

This manuscript is organized as follows : it will begin by providing a back-
ground on blood, including its properties as a non-Newtonian fluid, its gen-
eral behavior, and the various components that make it up. The focus will
then shift to RBCs, which are essential for oxygen transport and play a key
role in the aggregation process. This chapter will also cover the phenomenon
of aggregation and its impact on blood circulation andmicrocirculation, which
is of particular interest in the study ofmicrofluidics. The next part of this chap-
ter will delve into the field of microfluidics, which involves the study of fluid
flow at the microscale. This includes the analysis of flow dynamics in small
channels, the behavior of suspensions of particles and microflow, and the ef-
fect of migration and cell-free layers on the distribution of RBCs. The chapter
will also cover the Fahraeus effect, which is the phenomenon of a decreased
RBC concentration in the outer layer of a blood vessel due to the decrease in
radius, and its impact on bifurcation.

The following chapter will focus on the distribution of aggregated RBCs at
a microbifurcation. This study will involve the use of chip design and fabri-
cation, blood sample preparation, and an experimental setup to measure the
flux and velocity of RBCs. The results will be compared with and without
aggregation and will take into account the influence of large and small ves-
sels, as well as the plasma skimming effect. The chapter will also discuss the
equilibrium position of RBCs in a microchannel and the impact of shear rate
on the distribution.

The final chapter of the thesis will cover the use of image and signal process-
ing with artificial intelligence to recreate pictures of red blood cells from a
1D signal. This will involve the use of convolutional neural networks (CNN),
image processing techniques, and the training of an artificial neural network
to classify and reconstruct RBC images. The chapter will cover the character-
ization of RBCs based on their shape, length/width ratio, and light reflection
and absorption properties. The study will also simulate the use of a single
photosensor to capture RBC images, and the use of a mask for classification
and image reconstruction. The results will be analyzed and compared with
different mask patterns, and the quality of the reconstructed images will be
assessed using image classification. The conclusion will summarize the find-
ings of the study and discuss future perspectives, such as the use of genera-
tive adversarial networks (GANs) and the construction of a more advanced
experimental setup.
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Through this research, we hope to gain a greater understanding of this vital
biological fluid and its potential to improve human health and well-being.
Overall, this thesis aims to better understand the aggregation of red blood
cells and its impact on the distribution of RBCs in microcirculation, as well as
to develop a method to recreate images of RBCs using artificial intelligence.
The research will involve a combination of biology, physics, and computer
science to provide a comprehensive understanding of the subject matter. The
results of this research have the potential to contribute to the development of
new diagnostic and therapeutic tools for blood disorders such as sickle cell
anemia and thrombosis.
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Chapter 1

Background

1.1 Blood
Thehumanbody contains a vast network of bloodvessels that transport blood
throughout the body, carrying oxygen and nutrients to the body’s tissues, re-
moving metabolic waste products and regulating body temperature. The to-
tal volume of blood in a humanbody can be estimated at around 70mL/kg for
men and 65mL/kg forwomen [6]. Blood is composed of a liquid phase called
plasma, which contains dissolved ions, hormones and proteins, and a cellular
phase, which consists of red blood cells, white blood cells and platelets.

Red blood cells, also known as erythrocytes, are responsible for carrying oxy-
gen from the lungs to the tissues and carbon dioxide from the tissues to the
lungs. They contain a protein called hemoglobin, which binds to oxygen and
gives blood its characteristic red color. White blood cells, or leukocytes, are
involved in the immune system and play a key role in fighting infections and
diseases. Platelets, also known as thrombocytes, are essential for blood clot-
ting and hemostasis.

The rheology of blood, or its flow properties, is of particular interest in the
field ofmedicine andphysiology. The viscosity, or resistance to flow, of blood
plays a crucial role in the circulatory system, with abnormal viscosity levels
being associated with various health conditions such as cardiovascular dis-
ease and blood disorders. Additionally, the rheology of blood can also pro-
vide important insights into themicro-mechanics of blood flow at the cellular
level, which is useful in the development of medical devices such as artificial
heart pumps.

In this chapter, we will delve deeper into the intricacies of human blood, ex-
amining its composition, properties and functions in detail. Through this re-
search, we hope to gain a greater understanding of this vital biological fluid
and its potential to improve human health and well-being.
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Figure 1.1: Centrifuged blood. a) Comparison of a blood sample before (left) and
after (right) centrifugation. b) After centrifugation, the supernatant is the plasma,
containing proteins, the pellet is composed of the red blood cells and the layer at the
interface is called the buffy coat and contains the white blood cells and the platelets.

1.1.1 Blood composition
Plasma

More than half of the total volume of human blood is comprised of plasma
(Figure 1.1), which mainly consists of water, accounting for approximately
90 % of its composition. Plasma is a crucial component that carries a wide
range of proteins, nutrients, and hormones. The primary protein found in
plasma is albumin, present at concentrations ranging from 35 to 50 g/L. Albu-
min plays a key role inmaintaining the colloid osmotic pressure of the plasma,
which helps regulate fluid balance in the body at around 25 mmHg [7][8],
corresponding to an osmolality at 290 mOsm/kg. Additionally, albumin acts
as a transporter for various substances, including fatty acids, hormones and
drugs [9].

Globulins, the second most prominent protein family, are present in the pla-
sma at concentrations between 30 and 45 g/L [8]. Apart from their function
as carriers for other proteins, globulins also contribute to immune system re-
sponses [10].

Fibrinogen is another relevant protein, within the range of 1.5-4 g/L in plasma
at physiological concentration and is themain factor of aggregation of the red
blood cells [11][12]. It is also an important ingredient in coagulation processes
that involve the formation of fibrin clots.

The plasma maintains a balanced pH of around 7.4 due to the presence of
ions. Additionally, the plasma density is approximately 1030 kg/m3.
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Figure 1.2: Illustration of a RBC shape at rest; a) cross-section of a side view; b) over-
head view

Red blood cells

The hematocrit is the volume ratio of erythrocytes, or red blood cells (RBCs),
in blood. The average hematocrit ranges from 41% to 50% for men and from
36% to 48% for women. In human blood, the main elements of mature RBCs
are their cytoplasm and their membrane. The cytoplasm contains the hemo-
globin, the oxygen-transport protein responsible of the red color of the blood.
The membrane of the RBCs is a complex structure. The proteic cytoskeleton
supports a lipid bilayer aroundwhich the glycocalyx (the pericellular matrix)
is located. At rest, an RBC has a biconcave shape with a diameter of approx-
imately 8 µm and a width of 2 µm (Figure 1.2). This singular shape is the re-
sult of its volume, around 90 pL, the surface of its membrane, about 136 µm2,
and the membrane elasticity. It especially increases the gas exchanges be-
tween the inside of the RBC and its surroundings and thus helps the trans-
port of CO2 and O2. As a first approximation, the RBC membrane can be
considered inextensible/incompressible, however its ability to bend and the
deflated shape of RBCs make them highly deformable, allowing them to go
through the capillaries, which can be narrower than the RBC’s diameter.

Other elements

The remaining blood components represent less than 1%of the blood volume.
The leucocytes, the family of the different white blood cells, circulate through
the body via both the blood and the lymphatic systems and are part of the
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Figure 1.3: Image of RBCs (a) in a buffer solution (b) forming rouleaux in a 20mg/ml
dextran solution in a Petri dish. Reprinted from Brust, Aouane, Thiébaud, et al. [13].

immune response. The thrombocytes, more commonly known as platelets,
are vesicles that ensure coagulation.

1.1.2 General rheological behavior of blood
Most of themodels consider in the vascular system that plasma alone behaves
essentially like aNewtonian fluid, meaning it followsNewton’s law of viscos-
ity :

τ = µ × γ̇ (1.1)

where τ is the shear stress, µ = 1.20 mPa.s the estimated viscosity of plasma
at 37 °C and γ̇ the shear rate. However viscoelastic properties of the plasma
have been highlighted due to the presence of certain proteins [14][15] at high
shear rates, that can be reached in the microvascular network.

Additionally, the presence of cells in the plasma at high concentrationwill ob-
viously affect the hemorheology at both macroscopic and microscopic scales.
Thus, the behavior of blood at high shear rates (of the order of γ̇ = 100 to
1000 s−1, in vessels highly bigger than the cells like arteries or veins, can
still be assumed as Newtonian, but with a modified viscosity of µ = 3 to
4 mPa.s [16].

However, as RBCs are highly deformable particles that can also form aggre-
gates as we shall see below, blood is actually a non-Newtonian fluid with
a strong shear-thinning behavior, as long as we consider flow in confined
channels or lower shear rates (<100 s−1), as first quantified by Chien [17] (Fig-
ure 1.4).

1.2 Aggregation
RBCs tend spontaneously to form clusters in a stack shape, called rouleaux
(Figure 1.3). The stacks can organize themselves to build a network. The
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Figure 1.4: Comparison of viscosity of RBC suspensions at 45 % Ht, normalized by
plasma viscosity, as a function of the shear rate, for RBC suspended in plasma (nor-
mal blood, NP), in 11 % albumin (without aggregation, NA) and glutaraldehyde-

stiffened RBCs in albumin (HA). Reprinted from Chien [17].
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Figure 1.5: Scanning electron microscopy image of a thrombus. RBCs are pseudo-
colored in red. Scale bar is 30 µm. Reprinted from Tomaiuolo, Litvinov, Weisel, et al.

[18]

aggregation index (which can be defined, for instance, as the fraction of ag-
gregated cells) varies according to numerous parameters, such as species, in-
dividual, position in the circulatory system, state of health, etc. This phe-
nomenon is fundamentally different from coagulation. On one hand, coag-
ulation is the formation of a blood clot (Figure 1.5, or thrombus, an unor-
ganized cluster of RBCs and platelets in a fibrin network (a fibrous protein
obtained from the fibrinogen polymerization). Coagulation is an irreversible
phenomenon.

On the other hand, aggregation is entirely reversible, involves only interac-
tions between RBCs and is largely the result of the presence of fibrinogen,
although other proteins in plasma can influence lightly the aggregation in-
dex. It occurs at low shear-rate and when hydrodynamic stresses that tend
to dissociate RBC clusters are sufficiently low. The aggregation index is of-
ten measured in medical blood tests by observing the sedimentation rate of
RBCs, rouleaux falling faster than single RBCs. It is often, but not systemat-
ically, correlated to a high level of fibrinogen and is generally considered a
non-specific indicator of inflammation.

Aggregation is considered as the principal cause of the shear-thinning be-
havior of blood as shown in Figure 1.4. The network of rouleaux created
at very low shear-rate increases the viscosity and when the network then the
rouleaux themselves are broken, as the shear rate increases, the viscosity de-
creases.

1.2.1 Models of aggregation
Several studies have been leaded to understand and characterize the under-
lying aggregation mechanisms. The two main identified mechanisms, which
are not mutually exclusive, are bridging and depletion. The two models rely
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on the presence of macro-molecules surrounding the RBCs. In blood, this
macro-molecule is the fibrinogen, but for studying purpose, the use of Dex-
tran as a model molecule has been investigated since the beginning of the
century. Dextran can be produced with different molecular weights thus al-
lowing a better understanding of the models of aggregation. The relation be-
tween aggregation and concentration in Dextran presents in this case a bell-
shape curve (Figure 1.6 (left)), reaching a maximum at an optimal concen-
tration of Dextran, depending on its molecular weight. With fibrinogen, the
variation of the interaction energy with concentration is more monotonous in
the physiological range (1.5− 4 g/L) but also exhibits a bell-shaped behavior
at higher concentrations which are more difficult to reach due to solubility
limitations [13], [19], [20] (Figure 1.6 (right)).

Bridging consists on the adsorption of macro-molecule on the RBCs mem-
brane, physically linking theRBCs together. There is no consensus onwhether
the binding is specific [21][22] or not [23]. There are then two theories on the
source of the bell-shape. The first, presented by Jan and Chien [21], considers
the electrostatic repulsive force. It increases when more Dextran is adsorbed
on the cells’ membrane until it counteracts the binding force. The second
explanation relies on the limited binding spots available on the RBC mem-
brane. Once the surface is saturated, it cannot bindwith themacro-molecules
present on another RBC, assuming there is no steric interaction between the
macro-molecules.

The second model, known as depletion, arises from the difference in osmotic
pressure created by the exclusion of macro-molecules around the immediate
vicinity of RBCs [24]. To illustrate this concept in a simplified manner, we
can consider a basic model where both macro-molecules and RBCs are seen
as non-deformable spheres. When two RBCs approach each other closely,
the surrounding medium lacks sufficient space for the Dextran molecules,
resulting in a disparity in osmotic pressure. This difference in pressure tends
to keep the RBCs in close proximity to each other, thereby contributing to the
aggregation phenomenon. More refinedmodels have been developed, based
on the shape of the molecules and the cells [25] or the partial penetration of
the Dextran into the glycocalyx [26].

1.2.2 Blood circulation
Circulatory system

The cardiovascular system is a complex network of vessels of different sizes
from a few µm up to a cm or more in diameter. Figure 1.7 (left) illustrates its
different parts : the pulmonary circulation from the right heart to the lungs
and then to the left heart to release carbon dioxide and oxygenate the RBCs,
and the systemic circulation from the left heart to rest of the body and then to
the right heart to irrigate the different organs, delivering oxygen and collect-
ing carbon dioxide. A RBC travels the whole loop in a minute on average.
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Figure 1.6: a) Comparisons between calculated (solid lines) and experimental (data
points from Buxbaum, Evans, and Brooks [27]) values of interaction energy (wT) for
RBC suspended in various concentrations of Dextran 70 kDa or Dextran 150 kDa.
Reprinted fromNeu andMeiselman [28]. b)Microscopical aggregation indice versus
the concentration ofmacromolecule; Dextran 70 kDa (black curve), HES 130 kDa (red
curve), saltfree (filtered) Fibrinogen (blue, filled triangles), Fibrinogen as delivered
by Sigma Aldrich with approx. 40 % salt (empty triangles) and C-reactive protein
(green). Error bars represent the standard deviation of measurements for at least
three healthy donors. Reprinted from Flormann [20]. Lines are guides to the eye.

The oxygenated blood goes through the arteries then the arterioles and the
capillaries. In the capillary network occur the gaseous exchanges, the deoxy-
genated blood then goes through the venules and finally the veins to reach the
left heart. The network including arterioles, capillaries and venules is called
the microcirculatory system (Figure 1.7 (right)). It is a complex network, very
asymmetrical, consisting in a succession of bifurcations and junctions.

The vessels within the macrocirculatory system exhibit diameters ranging
from millimeters to tens of millimeters, in stark contrast to the microcircu-
lation, where vessel diameters are on the order of ten microns (Figure 1.8). In
smaller vessels, blood cannot be considered a homogeneous fluid as in large
arteries and veins and its cellular nature has to be taken into account. This
substantial difference in size leads to distinct characteristics of the blood flow,
depending on the specific segment of the circulatory system under consider-
ation. Considering the Reynolds number and the Womersley number is an
effective approach to analyze the predominant forces in each case.

Reynolds number Re quantifies the predominance of the inertial forces over
the viscous forces, with Re = ρ.u.w/µ where w is the diameter of the vessel,
ρ = 1060 kg · m−3 is the density of the blood, µ ≈ 3 mPa.s is the viscosity of
blood and u is the characteristic velocity of the flow. In the macrocirculation,
Re > 150 while in microcirculation Re < 0.75, which means the flow follows
the laws of microfluidics as we shall detail below.

Womersley number α is used to characterize a pulsatile flow, where α = w/2 ·
(ωρ/µ)1/2, where ω = 20 rad.s−1 is the pulsation for a pulse of 60 beats per
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Figure 1.7: Illustration of a) the cardiovascular system and b) focus on a
part of the microvascular system. Blue represents the deoxygenated blood
and red the oxygenated blood. Illustrations from Anatomy & Physiology,

http://cnx.org/content/col11496/1.6/, Jun 19, 2013.

Figure 1.8: Main characteristics of the different vessels in the blood circulatory sys-
tem. Reprinted from Lim H. W., Wortis, and Mukhopadhyay [30].

minute [29]. While the flow is highly pusatile in veins and arteries (α > 3)
due to heart beats, it is widely attenuated in microcirculation (α < 0.03) and
is generally overlooked.

Microcirculation and specificities

In general, the blood flow in microvessels can be considered as laminar as
there are few sources of turbulence and because of the predominance of vis-
cosity forces (as the Reynolds number is low, inmost cases flows in themicro-
circulation are considered to be governed by the Stokes equation and inertia is
neglected . However punctual events can interfere, like the passage of awhite
blood cell (WBC) through a capillary, although they are much less common
than RBCs. As explained previously, the WBCs are bigger than RBCs and by
flowing through capillaries smaller than them, the flow resistance will tem-
porarily increase. In slightly bigger vessels, a phenomenofmargination of the
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WBCs has been observed and its implications has been studied in the work
of Chachanidze [31]. That being said, we generally consider the steady-state
flow.

Poiseuille flow In this case, Poiseuille Sutera and Skalak [32] established
one of the principal laws of microfluidics for a flow in a cylindrical tube :

Q =
πR4

8lµ
∆P (1.2)

where Q is the volumetric flowrate, R the radius of the tube, l the length of
the tube, µ the dynamic viscosity of the fluid and ∆P the pressure difference
between the two ends of the tube, and its derivative establishing the well-
known parabolic profile of velocity :

u(r) =
G
4µ

(
R2 − r2

)
(1.3)

where r is the distance from the center of the tube in a cross-section, and G =
∆P/l.

This law is only valid for a Newtonian fluid and therefore can describe the
behavior of blood in the bigger vessels as stated previously but in microcir-
culation it can only describe the carrier fluid, plasma with no suspended par-
ticles.

Migration and Fåhræus effect Due to hydrodynamic interactions between
the vessel wall and the cells, the distribution of RBCs in a cross-section is not
uniform. The RBCs tend to migrate toward the center of the vessel, creating
a zone close to the wall without cells called the cell-free layer (CFL) or cell-
deplated layer to consider the few cells that can punctually be there. A direct
consequence of this distribution, combined with the parabolic velocity pro-
file, is that the velocity of the RBCs will be higher than the average velocity
of the fluid. As a consequence of mass conservation (both plasma and RBC
fluxes must be conserved),Fåhræus [33] then observed that the hematocrit in
microcirculation, Ht, is lower than the inlet hematocrit in macrocirculation,
called discharge hematocrit HD (Figure 1.9), where the distribution of cells
is quasi-homogeneous. An empirical relation has been established by Pries,
Secomb, Gaehtgens, et al. [34], where the size of the vessel intervenes in the
HT/HD ratio.

Fåhræus-Lindqvist effect Fåhræus and Lindqvist [35] established that, due
to the existence of theCFL, the apparent viscosity of blood is lower inmicrocir-
culation than in macrocirculation. The apparent viscosity of blood is defined
through the Poiseuille law of Equation 1.2 as the viscosity of an equivalent
Newtonian fluid that would exhibit the same flow rate to pressure ratio. This
observation was then confirmed in multiple studies, summarized by Pries,
Neuhaus, and Gaehtgens [36] (Figure 1.10). The qualitative explanation is
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Figure 1.9: Fåhræus effect : ratio between the inlet hematocrit HD and the hematocrit
in the tube HT as a function of the tube diameter. Reprinted from Pries, Secomb,

Gaehtgens, et al. [34].

that the CFL acts as a lubricant, reducing the apparent viscosity. However in
capillaries smaller than 5 µm, RBCs, bigger than the diameter, squeeze into
the vessel and there is no CFL, which results in a sudden increase of friction
and apparent viscosity.

Bistability of RBCs in flow

As previously stated, the RBCs are highly deformable, which leads to specific
behaviors in microcirculation. Considering a straight channel, depending on
the confinement and the shear rate, several shapes and behavior have been
observed and simulated (Figure 1.12 (a)). In a specific range of constriction
levels (between 0.4 and 0.75), which is the ratio between the diameter of the
capillary and the diameter of the cell, and shear rate [37] a phenomenon of
bistability occurs (Figure 1.11).

Indeed, from the various shapes an RBC can take, two are predominant : the
slipper and the parachute shapes (Figure 1.12 (b)). Slippers are highly asym-
metrical and are off-centered of the channel. They are characterized by a
rounded head at the front of the RBC and an off-centered tail. They appear at
high velocities. In the case of a 10× 12 µmchannel [39], or a 10× 8 µmchannel
(Figure 1.12), they are dominant at 5 mm/s and higher velocities. Parachutes
are, on the opposite, symmetrical and positioned in the center of the channel.
They have a parabolic head, with a cavity behind. When the cross-section
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Figure 1.10: Fåhræus-Lindqvist effect : Change in relative apparent viscosity of a
45 %Ht RBCs solution circulating depending on the diameter of the tube. Reprinted

from Pries, Neuhaus, and Gaehtgens [36]



1.2. Aggregation 17

Figure 1.11: Phase diagram of RBC dynamics states for a 3D simulation of flow in a
cylindrical channel depending on the flow strength characterized by the shear rate
γ̇∗ and the confinement χ. The symbols depict performed simulations, with the RBC
states: parachute (green circles), slipper (brown squares), tumbling (red diamonds)
and snaking (blue stars) discocytes. The phase-boundary lines are guides the eye.

Reprinted from Fedosov, Peltomäki, and Gompper [37].
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Figure 1.12: Influence of velocity or pressure on RBC shape in flow in rectangular
10 × 8 µm microfluidic channels. (a) Fraction of RBC shapes as a function of the
applied pressure drop (bottom axis) and the mean cell velocity (top axis). (b) Repre-
sentative examples of a croissant (top) and a slipper (bottom) for experiments with
p = 100 mb and p = 600 mb, corresponding to cell velocities of v ≈ 1 mm.s−1 and
v ≈ 5.8 mm.s−1, respectively. The simulation snapshots are obtained at similar ve-
locities. The flow is in x direction, and the scale bars represent a length of 5 µm.

Reprinted from Recktenwald, Graessel, Maurer, et al. [38].
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of the channel is a rectangle instead of a disk or a square, the parachutes are
flattened and look more like croissants. They are dominant at 1-2 mm/s. The
shape of the RBCs will obviously depend on their flexibility. Yet the den-
sity of RBCs increases when they age, and their deformability decreases with
density [40]. They have a lifespan of approximately 120 days, until they even-
tually are not deformable enough to squeeze in the blood capillaries and are
eliminated by the macrophages in the spleen and liver.
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Chapter 2

Distribution of aggregated red
blood cells at a microbifurcation

2.1 Introduction

2.1.1 Motivation
Considering the size of a blood capillary and the characteristics of the flow,
microcirculation is assumed to follow a laminar regime. In the in vitro exper-
iment we designed, the width of the channel is w = 23 µm and the carrier
phase is water so we consider the density ρ = 1000 kg · m−3 and the viscosity
µ = 0.001 kg · m−1 · s−1. The maximum studied velocity is u = 25 mm · s−1.
Thus the maximum Reynolds number will be Re = ρ.u.w/µ = 0.575 < 1.

When a suspension of particles flows through a bifurcation in a microfluidic
flow as is the case in blood microcirculation, the two outlet branches are not
symmetric in the general case, whether for geometrical reasons (angle and
width of the channels) or because the flow rates are different due to different
pressures or flow resistances.

If the particles are small compared to the channel diameter and are homoge-
neously distributed in the inlet branch, they can be considered as flow trac-
ers that simply follow fluid streamlines and the distribution of particles in
the outlet branches simply follows the distribution of flow rates. Therefore,
in this limit case, the particle concentration remains homogeneous after the
bifurcation as would a dye concentration. This is generally the case in large
blood arteries or veins where the hematocrit is close to the systemic hemat-
ocrit everywhere.

On the contrary, it is known, especially in blood flows, that in the case of
non-symmetrical bifurcations, the hematocrit (volume fraction in red blood
cells) can be different in the two outlet branches. This was first revealed by
the pioneering work of Poiseuille [5] who showed that the red blood cell dis-
tribution is very heterogeneous in the capillaries and that there is a depletion
layerwith no red blood cells in the vicinity of thewalls, usually called theCell-
Free Layer (CFL) or Cell-Deplated Layer (CDL). The heterogeneity of this dis-
tribution is a consequence of an asymmetric separation of red blood cells at
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bifurcations. Model experiments in microfluidics have shown that in general,
for perfectly symmetrical bifurcations where the two outlet branches are lo-
cally geometrically identical but flow rates are different in these two branches
(for example because the outlet pressures or branch lengths are different), the
hematocrit is higher in the branch of higher flow rate, a phenomenon called
Zweifach-Fung effect [41][42]. If the asymmetry of the bifurcation outlet flow
rates is such that one branch receives only a quarter of the inlet flow rate, the
hematocrit in that branch may fall to zero, i.e. only plasma from the CFL of
the inlet branch goes to the low flow-rate outlet branch. A number of in-vivo
studies [43], as well as studies on model systems [44] or numerical simula-
tions [45] have been devoted to this phenomenon. It is strongly influenced
by the configuration of the particles or blood cells that arrive at the bifurca-
tion [46], which may even lead in some situations to inversion of the parti-
tion [47]. These phenomena are crucial for the distribution of red blood cells
at the scale of a capillary network [48].

Several experimental and numerical studies have shown that RBC aggrega-
tion has an influence on the structure of blood flow in small channels in
ranges of fibrinogen (or Dextran) plasma concentrations that cover physio-
logical ranges in healthy or pathological situations. For instance, aggrega-
tion tends to stabilize red blood cell clusters in capillaries [13] and leads to
an increase of the CFL thickness in channel flow. This effect result in a lower
effective viscosity of the blood, as the CFL acts like a lubrication layer [49][50].
The combination of these structural and rheological changes, as well as the
cohesion between flowing cells, is therefore expected to influence the behav-
ior of RBCs at a bifurcation and the distribution of the hematocrit in capillary
networks. Previous experiments have shown that the breakup or survival of
RBC aggregates flowing through a bifurcation is governed by a subtle balance
between hydrodynamic forces and aggregation forces with consequences on
the way RBCs are split between the outlet branches [51][52]. A suggested
generic feature seems to be that when hydrodynamic forces are not sufficient
to break aggregates, the Zweifach-Fung effect is enhanced. In addition, the re-
duction of the CFL thickness observed associated to aggregation [49] should
also enhance this hematocrit partitioning effect. A few recent studies have
focused on the influence of aggregation on the distribution of RBCs in bifur-
cations made of relatively large channels compared to the RBC size (100 µm
or more) [53][54][55].

Sherwood, Kaliviotis, Dusting, et al. [55] have studied the T-bifurcation of a
large and flat channel with a cross-section of 100×40 µm. Their work has
shown that a concentration of 5 g/L of Dextran 2000 kDa affects the distri-
bution of hematocrit in the daughter branches. The aggregation induced by
Dextran amplifies slightly the heterogeneity of the distribution and reduces
the number of RBCs flowing through the lower velocity branch, which results
in amaximal variation of 2% (Figure 2.1). A direct comparison of their results
with other studies is problematic because there is no study on the aggregating
force depending on the concentration of Dextran 2000 kDa. Additionally, the
size and flat shape of the channel do not align with the physiological range
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Figure 2.1: Measures of the flux of RBCs in one daughter branch normalized by the to-
tal flux of RBCs in both daughter branches as a function of the flow rate of blood in the
same branch normalized by the total flow rate of blood in both daughter branches in
a T-bifurcation with a cross-section of 100× 40 µm, in PBS without aggregation (red)
and with Dextran-induced aggregation (blue). The lines are sigmoid fits. Reprinted

from Sherwood, Kaliviotis, Dusting, et al. [55].
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for microcirculation. Although an higher effect of the CFL is to be expected in
smaller channels, there has been no systematic study of this phenomenon in
channel networks that are relevant to the microcirculation (channel diameter
lower than 20-30 µm), despite its likely strong influence on blood perfusion
inmicrocirculatory networks, oxygen delivery and the possible consequences
of hyper-aggregability in pathological cases.

In this chapter, we present a study on the distribution of RBC suspensions at
a model microfluidic bifurcation and provide results on the influence of the
interaction energy, hematocrit and flow rate distribution on the asymmetry
of RBC distribution in the outlet branches.

2.1.2 Problem statement and background
We chose to focus on amicrofluidic bifurcationwith a fixed, symmetric geom-
etry (one inlet branch with a roughly square cross-section and two identical,
symmetric outlet branches with the same cross-section), fed by a RBC suspen-
sion with controlled aggregation strength while the flow rates in the different
branches are controlled through imposed pressure boundary conditions. The
main objective is to characterize the Zweifach-Fung effect (phase separation
at the bifurcation) as a function of the imposed flow rate difference in the out-
let branches, aggregation strength and inlet hematocrit in order to quantify
the influence of aggregation on the hematocrit distribution at the outlets.

Empirically, for suspensions of RBCs or other particleswith no aggregation, it
has been shown that the relationship between FQe the ratio of particle fluxes
in the two outlet branches and FQb the ratio of global suspension flow rates
in these outlets follows an approximately sigmoid FQe = S(FQb) behav-
ior [34][46]:

FQe =
1

1 + e−FQb
(2.1)

Note that without phase separation, these two ratios would simply be equal,
translating the fact that particles behave as passive tracers. Pries, Secomb,
Gaehtgens, et al. [34] proposed the following improved relation between FQe
the ratio of the flux of RBCs in each daughter branch and FQb the ratio of the
flow of blood in each daughter branch :

FQe =


0 if FQb ∈ [0, X0]
f (FQb) =

1

1+e
−
[

A+B×logit
(

FQb−X0
1−2X0

)] if FQb ∈ ]X0, 1 − X0[

1 if FQb ∈ [1 − X0, 1]

(2.2)

where :
logit(x) = ln

(
x

1 − x

)
(2.3)
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and A, B and X0 are parameters that depend a priori on the geometry of the
bifurcation, inlet hematocrit and flow rate. A reflects the possible asymmetry
of the curve due to geometric differences between the outlet channels (differ-
ent angles or hydraulic diameters), and should be close to 0 in our case. X0
defines the range of flow rate ratios ]X0, 1− X0[ for which RBCs flow through
both daughter branches. In other words, outside this range, all RBCs go
through the same daughter branch. Thus X0 is connected to the existence
of a cell-free layer in the inlet branch and is an increasing function of the
CFL width. B represents the sigmoid-like curvature of the relation and the
sharpness of the transition and indicates the intensity of the phase separation
phenomenon : B = 1 means a linear relation (no phase separation), B > 1
means phase separation takes place, and when B → +∞ the relation is a step
function (all cells go to the same outlet branch).

In one of their papers, Pries, Secomb, Gaehtgens, et al. [34] establish general
expressions for parameters A, B and X0 as a function of the diameters (µm)
of the daughter branches, Dα and Dβ, of the mother branch, D f , and of the
hematocrit in the mother branch, Ht. Empirically, it establishes :

A =
−6.96

D f
× ln

(
Dα

Dβ

)
(2.4)

B = 1 + 6.98
1 − Ht

D f
(2.5)

X0 =
0.4
D f

(2.6)

These relations were established from a statistical study of in vivo observa-
tions on bifurcations in rat’s mesentery [34] without independent control of
the various parameters (inlet hematocrit, geometry of the bifurcation, flow
rate distribution). Furthermore, the RBC aggregation level was not imposed
or controlled. Therefore the expressions they obtained (Equations 2.4–2.6)
only represent an average behaviour over a large variety of situations. Ideally,
the specific influence of different parameters should be reflected by different
expressions for A, B, X0. In the following, and to highlight the influence of
RBC aggregation on hematocrit separation at bifurcations, we will assume
that the general form of the separation law (Equation 2.2) still holds, while
determining sets of paramters (A, B, X0) from specific experiments.

In the following, we first present the experimental setup, methods and pro-
tocols used in this in vitro experiment to control the flow, sample properties
and make local hematocrit and velocity measurements. We then follow by
presenting results in which we studied the distribution of the hematocrit at
the bifurcation by varying the ratio of outlet flow rates, for different levels of
RBC aggregation and hematocrit. We then provide conclusions on this work,
their implications on bloodmicrocirculation and suggestions for further stud-
ies.
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Figure 2.2: Microfluidic channel design, not to scale. The width of the channels is
23 µm, the distance between the inlet (top) and the bifurcation is approximately 5mm
and the distance between the bifurcation and the outlets (bottom) is approximately

12 mm.

2.2 Experimental setup and sample preparation

2.2.1 Microfluidic chip
The utilization of microfluidics allows for the manipulation of fluid in chan-
nels with dimensions on the micrometer scale. Soft lithography techniques,
allowing Polydimethylsiloxane (PDMS, a silicone elastomer) based microfab-
rication, are commonly employed in the construction of microfluidic chips
due to their cost-effectiveness, ease of replication, and versatility in design.
This technique is typically utilized in the creation of two-dimensional (2D)
channel configurations, but the potential for three-dimensional (3D) struc-
tures also exists through the use of multi-layered PDMS superimposition or
modulation of light exposure during the fabrication process. Additionally,
PDMS is an ideal material for microfluidic chip fabrication due to its biocom-
patibility, transparency, and gas permeability.

A microfluidic channel design, as depicted in Figure 2.2, was employed in
our experiments. The chip features a symmetrical Y-junction bifurcation, in
which all branches possess a width of 23 µm and a constant depth of 20 µm.
The angle between both outlet branches is 90 °. The large disks correspond to
the inlet and outlets connections of the chip. To improve stability and facili-
tate precise control of flow rate ratios through pressure regulation, serpentine
structures were incorporated to increase the length and hydraulic resistance
of the outlet branches.

Microfabrication of the mold

The fabrication process of a microfluidic chip follows the steps of the classic
soft-lithography technique described in Figure 2.3. The pattern of the chan-
nels is first created utilizing a computer-aided design software, able to pro-
duce vectorial drawings, such as AutoCAD, or through the use of Dilasesoft
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Figure 2.3: Steps of the microfabrication process by photolithography. (a) A layer
of 20 µm of photosensitive resist SU8 is spread by spin-coating on a silicon wafer.
(b) The chosen parts of the resist are exposed to UV to polymerize, either using a
photomask with the design of the channels, or by directly inscribing the channels
with a LASER beam. (c) The parts of the resist not exposed to UV are dissolved. The
result is the mold. (d) A 1:10 mixture of curing agent and PDMS is poured on the
mold and reticulates at 70 °C. (e) Once hardened, the PDMS is removed from the
wafer and pierced at the inlets and outlets of the channels. (f) The oxidation of the
surfaces using a plasma (from air or from oxygen) enables the chip sealing by (g)
bonding the PDMS to a glass slide. The mold can be used multiple times to make

more PDMS chips by doing again steps (d)-(g).
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integrated into the LASER direct photolithography system described below.
A photolithography method, a widely used and well documented technique
in the microfluidics field for its high precision at the microscopic scale [56],
is then employed to fabricate a mold of the pattern. Here, we recall the main
steps. The process begins with the spin-coating of a negative photosensitive
resist, SU8 (SU8-2025, Microchem), on a siliconwafer to create a homogenous
layer of a controlled thickness (here 20 µm). The pattern is then inscribed into
the resist through the use of a UV LASER beam (wavelength 405 nm, diam-
eter 1 µm) of the direct LASER photo-lithography equipment (KLOE Dilase
250). The exposed regions of the resist undergo polymerization, while the
unexposed regions are dissolved during development. The resulting mold
can then be utilized multiple times for single-use PDMS microfluidic chip
productions.

Fabrication of the PDMS device

To produce the PDMS microfluidic chip, a mixture of a curing agent (cross-
linker) and PDMS (Sylgard 184 fromDOW-Corning) is poured onto themold
with a volume ratio of 1:10. To remove air bubbles and thus ensure proper
channel formation and mixture homogeneity, the filled mold is placed in a
vacuum chamber prior to being cured in an oven at 70 °C where the PDMS
cross-links and hardens overnight. The PDMS slab is then cut and peeled off
the mold and punched at the inlets and outlets of the chip. To seal the chip,
the PDMS slab is bonded to a glass slide through plasma treatment, removing
hydrocarbon groups from both the PDMS and glass surfaces to create a Si-
O-Si covalent bond. The chip is subsequently heated at 70 °C for 15 min to
enhance the bond strength.

2.2.2 Blood sample preparation
Stock solutions

All solutions used in experiments are based on Phosphate-Buffered Saline
(PBS), an isotonic (i.e. which has the same osmotic pressure as the internal
medium of the cells, see Figure 2.4), water-based buffer solution with a pH
equal to 7.4. The buffer solution is prepared from powder tablets (Sigma-
Aldrich, REF P4417) dissolved into 200 mL of purified and deionized water.

Bovine Serum Albumin (BSA) is a protein extracted from cow’s blood and
used here to prevent the adhesion of the RBCs on the different surfaces of the
tubes, tubing and microchip. The solution is made by dissolving 100 mg of
BSA crystals (Sigma-Aldrich, REF A7906) into 10 mL of PBS, thus obtaining
a 1 % mass-volume ratio.

The aggregating agent used to tune the aggregation force in our experiments
isDextran 70 kDa (Dex70) as in previous studies [13][57]. Tomake a 60mg/mL
solution, 600 mg of Dex70 powder, produced by Leuconostoc mesenteroides,
(Sigma-Aldrich, REF D8821) are dissolved into 10 mL of PBS. This Dextran
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Figure 2.4: Illustration of the effect of tonicity on RBCs. (a) In an isotonic medium,
the RBCs take their usual discocyte shape at rest. (b) In a hypotonic medium, the
osmotic flow goes toward the cytosol. The RBCs take the shape of spherocytes or
stomatocytes. (c) In a hypertonic medium, the osmotic flow goes toward the external

medium. The RBCs shrink and take the shape of echinocytes.
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stock solution is thenused tomakemore diluteDextran solutionswhenprepar-
ing the final samples.

All stock solutions are kept at 4 °C in accordance with the supplier recom-
mendations.

Blood

The blood is supplied by the French blood establishment (Etablissement Fran-
çais du Sang, EFS). For each order, 2.7 mL of blood are taken from an anony-
mous donor in a citrated (citrate acts as an anticoagulant) tube 3 to 4 days
before the delivery. After the withdrawal, the blood sample is tested for sev-
eral pathologies : HIV, HTLV I-II, Hepatitis B, Hepatitis C and syphilis. Once
received, the sample is kept at 4 °C, for one day most of the time and up to
two days, in order to avoid an excessive evolution of RBCs properties [58].

After several trials and adjustments, the following protocol was established
to prepare 4 mL of diluted RBCs at different concentrations. To extract only
washed RBCs from the sample, 1.5 mL of full blood is centrifuged at 500 rcf in
an Eppendorf tube, for 3 to 5 min, to separate cells from plasma (Figure 1.1).
The supernatant (yellowish plasma) and the buffy coat, composed of white
blood cells and platelets, are then removed and replaced by PBS. The solution
is mixed by gently inverting the tube several times. Then the centrifugation
step and the replacement of the supernatant with fresh PBS are repeated two
more times. After the last centrifugation, a certain volume of packed RBCs
is taken from the bottom of the tube, depending on the desired hematocrit
(Ht) in the final sample (between 0.5 % and 7 %), and suspended in a solution
containing PBS and the aggregating agent Dex70 at different concentrations
(final concentration between 20 mg/mL and 50 mg/mL) from a 60 mg/mL
stock solution, depending on the desired aggregation force. The experiments
without aggregation refer to 0 mg/mL of Dex70. To prevent the adhesion
of the RBCs to channel walls, BSA is added from a 1 % (1 g/100 mL) stock
solution for a final concentration of 0.1 %. Thus, for instance, for a sample
with 2.5%Ht and 30mg/mLofDex70, 100 µ L of packed RBCs are suspended
in a solution containing 400 µ L of 1 % BSA, 2 mL of 60 mg/mL Dex70 and
1500 µ L of PBS.

2.2.3 Experimental set-up
The experiments are conducted by passing the red blood cell sample through
amicrofluidic bifurcation depicted above (Figure 2.2). The sample is pumped
from a 15 mL tube (Falcon, REF : 352097) using an air pressure controller
(Elveflow, REF : OB1), with pressures around 100 mb. PTFE tubing (adtech,
REF : BIOBLOCK/14) with an internal diameter of 0.8 mm is used to connect
the sample tank to the inlet of themicrofluidic chip and to connect each outlet
to its waste tank (Figure 2.5). In the experiment, we independently control
the pressure in the three inlet and outlet tanks. Creating a pressure drop by
keeping the pressure in the waste tanks lower than the one in the sample tank
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Figure 2.5: Connectiondiagramof the experimental set-up. The pressure controller is
connected to the sample andwaste tanks via soft tubing and using adaptor caps. The
pressure is applied inside the tanks. From the sample tank, the RBCs is pushed by
the air pressure through PTFE tubing towards the inlet of the microfluidic chip. The
sample is observed under microscope while flowing through the chip. The outlets of
the chip are connected to the waste tanks, half-filled with distilled water beforehand,
to collect the used sample. The pressure in the tanks are controlled as previously to

ensure the pressure drop between the inlet and the outlets.
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generates a flow. The flow-rate ratio between the daughter branches is tuned
bymodifying the pressures at the outlets while modifying the pressure at the
inlet will change the total flow-rate in the chip. In order to better control the
pressures at work, the PTFE tubings are filled with 1 % BSA beforehand, and
the waste tubes are half-filled with the same volume of distilled water.

The observation is made with an inverted microscope (Olympus IX71) work-
ing in bright field mode with a white light source (halogen lamp), using a
4-fold objective (Olympus Plan N, Numerical Aperture : 0.10, Objective Field
Number : 22) and a camera (ImagingSource, DFK 23UM021, sensor CMOS,
pixel size = 3.75×3.75 µm) recording at 117.65 fps.

2.3 Flux metrology
The data analysis consists in determining the flux of RBCs going in each
daughter branch as a function of the distribution of the total flow imposed
by the pressure control. We define the flux of RBCs with the following rela-
tion :

F = Q.Ht (2.7)

where Q is the flow rate in the branch and Ht is the spatial mean hematocrit
(volume ratio of RBC) in the branch.

Both Q and Ht have to be determined by image processing from the record-
ings. The processing has been semi-automatized using Python and the tech-
niques used to derive the hematocrit and flow rates are described in the fol-
lowing.

2.3.1 Segmentation
When the concentration of RBCs is low enough, with all the cells distinguish-
able, which occurs around a hematocrit of 2 %, the most accurate way to mea-
sure the concentration is to count them. First, a convolution filter is applied
to the video, using the f ilter2D function from the OpenCV python library, to
remove the pattern due to the camera sensor (Figure 2.6). The pixels on the
camera are grouped four by four, thus the kernel for the filtering has the same
size : {

1 1
1 1

}
∗ 1

4

Then, the background picture is determined by keeping the maximum light
value that each pixel takes during the recording. Indeed, the background
is composed of the walls of the channels, the specks of dust and the defects
which are all fixed items. The cells, however, shall not affect the background.
As they absorb light, when a cell passes, the light intensity is lower at this po-
sition. Keeping the maximum light value ensures measuring it from a frame
without a cell at this position. The background is then subtracted from all the
frames.
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Figure 2.6: Frame extracted from a recording of RBCs going through the bifurcation.
a) Raw picture from the camera andmagnification inset of the inlet channel. b) Same

picture after convolution filtering.
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Next, the frames are binarized by threshold and segmentedusing the function
morphology from the image processing library skimage. The number of cells
of each cluster in the branches is deduced using a histogram in such a way
that intervals of area are defined for a single cell ([C1min, C1max]), a cluster
with two cells ([C2min, C2max]) and a cluster with three cells ([C3min, C3max]).
Above C3max, an approximate number is assessed using the following linear
relation :

NRBC =

⌊
3

A − C1min

C3max − C1min

⌋
(2.8)

where NRBC is the number of RBCs in the cluster and A is the area in pixels
of the cluster. Thus, when A = C1min, NRBC = 0 and when A = C3max,
NRBC = 3.

Then, the mean hematocrit Ht in each branch follows the relation :

Ht =
VRBC

Vb.N f

N f

∑
i=1

NRBCi (2.9)

where VRBC = 90 µm3 is the mean volume of a RBC, Vb is the volume of the
branch, N f is the number of frames in the studied recording and NRBCi is the
number of RBCs in the branch on the ith frame.

2.3.2 Hematocrit measurements
When the hematocrit of RBCs is higher than 2 %, the counting method be-
comes irrelevant as the probability of overlap of RBCs increases, leading to a
significant error. Thus we chose to employ a method based on the transmis-
sion of light intensity by the RBCs. There are several phenomenons acting
when light goes through a RBCs mixture. First, the hemoglobin present in
the RBCs absorbs the light according to a Beer-Lambert law [59], especially at
wavelengths around blue and green [60]. Second, the RBCs, as a micrometer-
sized particles suspension with a refractive index that is higher than the sus-
pending medium, disperse and diffract the light. However it has been empir-
ically established [61][62] that, despite this complex combination of absorp-
tion and dispersion, the transmitted part of the light going through a blood
sample follows a Beer-Lambert like relation, for hematocrit up to 20 %, i.e.
it behaves as a purely absorbing medium although the effective absorptivity
cannot be simply related to the absorptivity of hemoglobin: :

It = I0. exp (−ϵ.l.Ht) (2.10)

where I0 is the incident light intensity, It the transmitted light intensity, ϵ the
effective absorptivity of the RBC, l = 20 µm the thickness of the sample and
Ht the concentration of RBCs.

We can then rewrite equation 2.10 as follows :
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Ht
Ht0

= −ln
(

It

I0

)
(2.11)

with Ht0 = 1
ϵ.l .

Ht0 can bedetermined byusing reference pictures at low concentrationswhen
both the light intensity and the hematocrit are known. The values at higher
hematocrit can thus be extrapolated.

In practice, the same convolution filter as for lower hematocrits is applied to
the recording. Nonetheless, the concentration of RBCs is too high to compute
the background picture the same way than previously, as the channels are al-
ways filledwith cells. Therefore we chose to record a short video (100 frames)
when the chip is only filledwith a BSA andDex70 solution at the same concen-
trations than the sample. To minimize the white noise, the background pic-
ture is made by taking the temporal median value of the video for each pixel.
As there is often a slight movement of the chip under the microscope during
the experiment, between two recordings, we re-aligned the background pic-
ture with the video. For that, we use the OpenCV library. First we binarize
both the background picture and the first frame of the video runing the adap-
tiveThreshold function, then we clean them using remove_small_holes from the
skimage.morphology library. Finally, we find the translation and rotation be-
tween them using the findTransformECC function and we run the warpAffine
function to re-align them.

We then apply the relation 2.11 on each pixel :

Ht
Ht0

= −ln

(
Isample

Ire f
.
Ire f0

I0

)
(2.12)

where Isample is the pixel value on the frame of the recording, I0 the pixel
value on the background, Ire f0 the reference intensity on the background and
Ire f the reference intensity on the frame. The reference intensities are used to
suppress the intensity temporal variability due to the camera and the experi-
mental set-up, and are determined by taking the spatial mean intensity of an
empty reference zone, in a corner of the region of interest, on the background
and the frame respectively.

We obtain a map of Ht
Ht0

such as in Figure 2.7. The final measured values
are the spatial and temporal mean of Ht

Ht0
in the mother branch and in both

daughter branches of the bifurcation. Ht0 can be determined for each set of
experiment by performing a low hematocrit recording. The actual Ht is com-
puted using the segmentation process, then Ht

Ht0
is computed with the process

described just above, leading to know Ht0 by a simple cross product. This
value can then be used to extrapolate the hematocrit for higher cell concen-
trations.
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Figure 2.7: Map of the computed Ht/H0 on a bifurcation for a) a previously deter-
mined inlet hematocrit of 2 % using the segmentationmethod and b) an extrapolated

inlet hematocrit of 16 %.

2.3.3 Velocity and flow rate measurements
As the flow is imposed through pressure control in the experiment and since
the effective viscosity varies in channels due to hematocrit variations and ag-
gregation, the flow rates in the different branches of the channel are not di-
rectly imposed. It is therefore necessary to measure the actual flow rate in
each branch. For that, a velocimetry technique based on image processing
is implemented. In order to measure the velocity, we use a method of time
correlation that has been used in previous studies of RBCs suspensions in mi-
crofluidic flows, the dual-slit technique [61][63]. As its name suggests, it relies
on the optical observation of two slits s1 and s2 at two different positions in
the channel, the second slit being further in the channel than the first, accord-
ing to the flow direction (Figure 2.8). As the cells pass by a slit in the channel,
they modify the transmitted light intensity, leading to a varying signal over
time, S1(t) from the first slit and S2(t) from the second slit.

S1(t) = ∑
(i,j)∈s1

f ramet(i, j)S2(t) = ∑
(i,j)∈s2

f ramet(i, j) (2.13)

where s1 and s2 are the sets of pixels contained in the first and second slit
respectively, and f ramet the frame at the time t from the video. If the distance
and the time separating the two slits in a straight channel are low enough, we
can consider the same pattern of cells passing through the second slit will lead
to nearly the same light modulation, as their configuration will stay the same.
Then the technique consists in deriving the delay between both signals by
locally comparing both signals by time-correlation, whose equation is :

Cn(∆t) = ∑
i

S1n(i + ∆t)× S2(i) (2.14)

where ∆t is the studied time delay, expressed in number of frames, S1n is the
nth sample of S1 with the size correlationwindow, such as :
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S1n = S1[n; n + correlationwindow] (2.15)

We determine ∆tM(n), the ∆t such as Cn(∆tM(n)) = max(Cn), i.e. the ab-
scissa of the maximum of the correlation. The length of the signal used for
the correlation is defined here by the length of each sub-signal taken from
the first slit to correlate with the whole signal from the second slit and thus
extract the delay and then the velocity with the formula :

udualslit(n) =
d. f

∆tM(n)
(2.16)

where d is the distance between the two slits and f is the frame rate. The
sub-signal from the first slit is then shifted one frame forward, keeping the
same length and is correlated to the signal from the second slit, extracting a
new velocity. This is done for all the sub-signals until the end of the signal
from the first slit is reached. The result is an array of velocities (one for each
sub-signal) and we keep the mean velocity over time of udualslit(n) as the best
approximation for the velocity of the cells in the channel during the experi-
ment. This velocity is determined in each channel of the bifurcation for each
recording.

When applying the dual-slit technique, several parameters have to be fit to get
an accurate result, depending on experimental conditions namely the concen-
tration of RBCs and the velocity range. Those parameters are the width w of
the slits, the distance d between the two slits, the length correlationwindow of
the signal used for the correlation and the delay range. They are determined
empirically for each set of experiment, by trial and error, taking into account
the following characteristics.

Width of the slits : The slits have to be wide enough compared to the frame
rate and the velocity so the distance traveled by the cell between two frames
is equal to or less than the width w of the slits. This ensures that all the cells
are a least once in each slit. Thus :

w >
u
f

(2.17)

where f is the frame rate and u is an approximation of the velocity made
manually on one cell from the recording. In the few cases the approximation
would be too low compared to the resulting velocity and the slit too thin to
match this requirement, thewidth is adjusted and the processing is computed
again to get a more accurate result.

However, if the slits are too wide, the signals will be a superposition of more
fingerprints of moving cells remaining longer in the slit and whose arrange-
ment may change when they do not all have the same velocity. This may
make the signals from the first slit and from the second too different from
each other to find significant correlations.
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Figure 2.8: Illustration of the dual-slit technique. a) Frame from a recording. The
white arrows indicate the sense of the flow. The velocity of the cells is measured in
each channel. The red slits are the first encountered by the cells in each channel, the
orange slits are the last. They all have the same width w, and the slits in the same
channel are separated by a distance d. b) The sum of the intensity of each pixel in
the slit is summarized and noted for each frame of the recording. A reversed peak in
this example corresponds to the passage of a RBC in front of the slit. c) The instant
velocity of the RBCs is generated by extracting the delay between the two signals.
Finally, themean of the velocity signal is considered as the velocity flow in the center

of the channel.
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Distance between the slits : In the same way, the bigger the distance be-
tween the two slits is, the more the arrangement of the cells varies between
them. However, the measurement uncertainty is lower when the distance
is higher. Indeed, the absolute uncertainty for any distance measurement is
∆d = 1

2 px = 1
2 . sizesensor

magni f ication = 1
2 .3.75

4 µm = 0.47 µm. The absolute uncer-
tainty for time measurement in our case is half the time between two frames
so ∆t = 1

2 . 1
f = 1

2 . 1
120 s = 0.004 s. We can define the uncertainty of the result

of a division by :

∆u =
1
2

.(umax − umin)

=
1
2

.
(

d + ∆d
t − ∆t

− d − ∆d
t + ∆t

)
=

1
2

.
(t + ∆t)(d + ∆d)− (t − ∆t)(−∆d)

(t − ∆t)(t + ∆t)

=
1
2

.
2t.∆d + 2d.∆t

t2 − (∆t)2

∼ 1
t
∼ 1

d

(2.18)

Thus the uncertainty is inversely proportional to the distance used for the
measure.

Length of the sub-signal : On one hand, if the sub-signal is too short, the
patternmay not be unique and fit with several passages of cells on the second
slit. On the other hand, the longer the sub-signal, the fewer trials of correla-
tion are possible, making the resulting mean velocity less robust to noise.

Roman [61] shows that the velocity obtainedusing the dual-slitmethod equals
the maximum velocity in a channel with a square cross-section, i.e. the veloc-
ity at the center of the parabolic-like velocity profile in a microfluidic channel
(see part 1.2.2 Fluid dynamics). As previously stated, we aim to determine
and study the influence of the flow rate Q, which cis related to the velocity
by :

Q = w.d.u (2.19)

where d is the thickness of the channels, w the width of the channels and u the
spatial mean velocity of the fluid in a section of the channel. As w = 23 µm
and d = 20 µm are constant and the same for every channel of our bifurca-
tion, the flow rate is then directly proportional to the mean velocity. More-
over, in our geometry the ratio between the maximum and the mean velocity
is a constant. Indeed, in our straight microfluidic channel configuration, the
Reynolds number is small and gravity is negligible (RBCs sedimentation is
small compared to flow velocities), therefore the Navier-Stokes equation re-
duces to the unidirectional Stokes equation for an incompressible fluid :
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∂2u
∂y2 +

∂2u
∂z2 =

1
µ

dp
dx

(2.20)

where µ is the viscosity of the fluid, p is the pressure in the channel and x is
the axial vector parallel to the direction of the flow.

As this equation is linear, the solution u follows umax/u = K, where K is a
constant depending only on the geometry of the channel [64]. For a straight
channelwith a circular section, K = 2 and in the case of a flat geometry (w >>
d), K = 3

2 . In our case, for a rectangular section :

umax

u
= K =

48
π3

∑∞
n=1,3,5,...(−1)(n−1)/2

[
1 − 1

cosh(nπb/2a)

]
× 1

n3

1 − 192a
π5b ∑∞

n=1,3,5,...
tanh(nπb/2a)

n5

(2.21)

where a = w
2 and b = d

2

The section of the channel is the same in each of the three branches of the
bifurcation. The multiplicative constant is thus the same for the velocities in
each branch. As previously said, the value given by the dual-slit technique
corresponds to the maximum velocity in the channel. This means that the ve-
locity in a daughter branch, normalized by the velocity in the mother branch,
is the same, whether we consider the maximum velocities or the mean veloc-
ities, as is the flow rate in a daughter branch normalized by the flow rate in
the mother branch.

2.4 Results
We aim to study the effect of aggregation on the known phase separation that
occurs at microbifurcation. As previously stated (paragraph 2.1.1), the main
cause for this phenomenon is the existence of the CFL, which we can directly
observe in our recordings at lowhematocrit. Indeed, our experiments follows
the laminar regime, as the maximum Reynolds number is Re = ρ.u.w/µ =
1000 × 25000.10−6 × 23.10−6/0.001 = 0.575 < 1. We chose the density ρ and
viscosity µ of the carrier phase, water. Figure 2.9 illustrates the average path
of RBCs by showing the standard deviation of the image pixel value over 1000
frames (around 9 s). Thanks to the great length of the mother branch of the
bifurcation, RBCs reach an equilibrium position at the center of the channel,
with symmetrical CFLs on both sides. After the bifurcation, the RBCs follow
trajectories according to the laminar flow and thus are off-centered toward
the inner walls before eventually (further in the daughter branches) reaching
again the center of the channel. Thus, after the bifurcation the CFLs are wider
near to the outer walls.

The effect of aggregation can be seen qualitatively by comparing the fluxes
of RBCs in daughter branches with and without aggregation, for a same flow
rate ratio, as depicted in Figure 2.10. For approximately the same inlet hema-
tocrit and for a flow rate ratio of 0.30 between the left branch and the right
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Figure 2.9: RBCs flowing through the microfluidic bifurcation. The picture (b) is a
super-imposition of the picture (a) and the map of the standard deviation of pixel
value over the full recording. We can visualise how the RBCs are centered in the
mother branch, while they are close to the inner walls in the daughter branches. This
highlights the cell-free layer (darker parts in the channels pointed by the arrows).

The black scale is 50 µm long.

branch, the amount of RBCs going to the low flow rate branch is visibly lower
when there is aggregation. Indeed, a quantitative measurement shows that
the ratio of RBCs fluxes without aggregation is equal to 0.17, and is lower,
equal to 0.13 when adding 30 mg/mL of Dex70.

Figure 2.11 show the studied ranges of inlet Ht and inlet velocities of RBCs.
The Ht spans from 0 % to 16 %, with 90 % of the measurements below an
Ht of 2 %. The velocity span from 27 µm/s to 28 mm/s, with 90 % of the
measurements below 6 mm/s. We can roughly assume the shear rate γ̇ at
the wall by :

γ̇ =
8u
w

(2.22)

Thus the shear rate is comprised between 10 s−1 and 10 000 s−1, with 90 % of
the measurements below 2 000 s−1.

Figure 2.12 shows the results for 3 experiments (N = 42, N = 17 and N =
41 measurements respectively) without aggregation (blue) and for 2 exper-
iments (N = 49 and N = 52 measurements respectively) with aggregation
induced by 30mg/mL of Dex70 (red). If bloodwas a perfect Newtonian fluid,
then the result would be a straight line with a slope of 1, with A = 0, B = 1
and X0 = 0. Naturally, and as we previously mentioned in paragraph 1.1.2,
General rheological behavior of blood, the presence of cells and proteins dis-
turbs such behavior. In a case where there is no aggregate and if we consider
only the cell-free marginal layer model, where we assume there is no RBC in
a layer of the size of the radius of an RBC rRBC, that is roughly 4.0 µm. In this
case, then A = 0, B = 1 and X0 = rRBC/w ≃ 4.0/23 ≃ 0.17. The relation be-
tween the normalized flux of RBCs and the normalized flow of blood is then
linear, from the threshold FQb = X0 to FQb = 1 − X0. This simplified model
corresponds to the piece-wise linear curve shown in Figure 2.12 (a).
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Figure 2.10: Typical example of the distribution of RBCs going through the bifurca-
tion a) without and b) with aggregation in a dilute case. The black scale is 50 µm long.
The ratio of the velocity in the left branch over the right branch is 0.30 in both cases.
The flux of RBCs is however different, J = 0.17 without aggregation, J = 0.13 with
aggregation, which illustrates that the aggregation enhances the phase separation

(Zweifach-Fung effect) between the two branches.

Figure 2.11: Variability of FQe and FQb depending on uin and Htin. We notice there
is no significant bias from the inlet velocity or hematocrit in the ranges we studied.
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Figure 2.12: Measures of the flux of RBCs in one daughter branch normalized by the
total flux of RBCs in both daughter branches, FQe, as a function of the flow rate of
blood in the same branch normalized by the total flow rate of blood in both daughter
branches, FQb. The black thick curves are the models corresponding to the equation
2.2, whom A, B and X0 are the mean of the fitting parameters of each dataset (thin
colored curves). a) Without aggregation for 3 different samples and chips with the
same geometry (N = 42, N = 17 and N = 41 measures respectively). b) With aggre-
gation [Dex70]=30 mg/mL for 2 different samples (N = 49 and N = 52 measures

respectively).

The model proposed by Pries et al. (Equations 2.2 to 2.6) is more accurate
than the simplemodel of the cell-freemarginal layer. Their sigmoidal relation
fits with the observed measurements, however depending on the conditions,
their parameters are not always appropriate.

According to equations 2.4-2.6 established by Pries, Secomb, Gaehtgens, et
al. [34] and defining D f as the equivalent diameter of our channels with a
rectangular cross-section, using the definition of hydraulic diameter [64], by
D f = 4A/P = 23 × 20 × 2/(23 + 20) = 21.4 µm with A the area of the cross-
section and P its perimeter, A = 0 as Dα = Dβ in our case; B = 1.32 and
X0 = 0.0187. The measurements in a case without Dextran, and so without
aggregation, match the theoretical model from Pries, Secomb, and Gaethgens
[43] (Figure 2.13). However, with Dextran, then the sigmoid is more distinct
and measured data deviate from the theoretical model.

To analyse more quantitatively the influence of aggregation on phase sepa-
ration, we chose to observe the slope of the curve following Pries’s model.
Indeed, analyzing the slope of the sigmoid at the inflection point, which de-
pends on all the parameters, allows for comparing the different curves in
an easily understandable way. The higher the slope, the more pronounced
the heterogeneity of the distribution and the more pronounced the Zweifach-
Fung effect. Based on the equation 2.2, the slope equation is :
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Figure 2.13: Comparison for different concentrations of Dextran 70 kDa of the flux of
RBCs in one daughter branch normalized by the total flux of RBCs in both daughter
branches, FQe, as a function of the flow rate of blood in the same branch normalized
by the total flow rate of blood in both daughter branches, FQb. a) Without Dex70, b)
[Dex70]=20 mg/mL, c) [Dex70]=30 mg/mL, d) [Dex70]=50 mg/mL. e) Comparison
of sigmoidal fits using Eq.2.2 for different Dex70 concentrations. The dashed line
represents the theoretical values using Pries, Secomb, Gaehtgens, et al. [34] model,

with A=0, B=1.32, X0=0.0187, D f=21.4 µm, Ht=0.01
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d f (FQb)
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and the second derivative is :
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Although, to find the inflection point, finding the analytical expression of the
root of the second derivative of f (FQb) for any A, B, X0 is exceedingly com-
plex, looking for a numerical value of the said root for a specific set of parame-
ters is more straightforward, using the python function fsolve from the library
scipy. Knowing the FQb value of the inflection point, we can then compute
the slope of f .

Table 2.1 provides a comprehensive summary of the diverse experimental
conditions, fit parameters, and slopes at the inflection point for the various
datasets. Notably, the parameter X0, which is linked to the presence of the
CFL, demonstrates an intriguing trend, exhibiting a peak at a Dex70 con-
centration of 30 mg/mL (Figure 2.14). It is worth mentioning that X0 does
not directly reflect the width of the CFL, as the intensity of heterogeneity in
the distribution of RBCs relies also on the other parameters of the sigmoid
curve. Examining the slope a of the curve at the inflection point, which de-
pends on all these parameters, reveals a clear increasing trend as the Dex70
concentration increases up to 30 mg/mL, followed by a maximum around
this concentration and then a subsequent decrease as Dex70 concentration
further increases. Several sources [28][19][57] agree on such a bell-shape in
the relation between the Dextran 70kDa concentration and the aggregation
force. However, the values and the concentration of Dex70 associated with
the maximal aggregation force appear to exhibit some variation based on fac-
tors such as temperature, measurement techniques, and hematocrit. Specifi-
cally, while Flormann, Aouane, Kaestner, et al. [57] reported a higher aggre-
gation at 50 mg/mL of Dex70, Neu and Meiselman [28] and Steffen, Verdier,



46 Chapter 2. Distribution of aggregated red blood cells at a microbifurcation

Figure 2.14: Influence of aggregation on the sigmoidal fit parameters. a) Fit param-
eter X0 according to equation 2.2 as a function of the Dex70 concentration. Slope of
the sigmoidal fits at the inflection point for the different concentration of Dex70, b) as
a function of the Dex70 concentration and c) as a function of the interaction energy
of aggregation according to Neu and Meiselman [28]. The dashed line is guide for

the eye.
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Dataset
# A B X0 slope sample

Ht (%)
[Dex70]
(mg/mL)Donnor

Pries 0 1.323 1.870·10−2 1.374 1 - -
1 3.983·10−2 1.146 8.834·10−2 1.394 1 0 A
2 7.227·10−1 2.037 0.000 2.122 0.5 0 B
3 2.047·10−1 1.009 1.603·10−1 1.469 5 0 C
Mean 3.224·10−1 1.397 8.287·10−2 1.720 - 0 -
4 1.977·10−1 1.453 2.060·10−1 2.493 1 30 D
5 -3.118·10−1 2.255 0.000 2.268 2 30 E
Mean -5.708·10−2 1.854 1.030·10−1 2.336 - 30 -
6 -2.383·10−1 1.905 0.000 1.915 1 20 F
7 -1.642·10−1 1.420 7.465·10−3 1.452 7 50 F

Table 2.1: Comparison of numerical values describing the distribution of RBCs at the
bifurcation. A, B and X0 are the fit parameters according to equation 2.2. The slope
represents the slope of the fitting curve at the inflection point, described by equation
2.23. The sample Ht is the hematocrit in the inlet tank. [Dex70] is the concentration
of Dextran 70kDa in the inlet tank. The rows named ”Mean” indicate the mean fit
parameters A, B and X0 for a same concentration of Dextran and the slope of the

theoretical fitting curve using these fit parameters.

and Wagner [19] observed the maximal aggregation at 30 mg/mL, aligning
well with our observations on RBCs distribution.

As source of comparison, Neu and Meiselman [28] offer a model with the
same characteristics by considering the depletion interaction and the electro-
static interaction between two RBCs, depending on the Dex70 concentration
(Figure 1.6). Using this model, Figure 2.14 (bottom) shows the slope of the
sigmoid at the inflection point depending on the approximated interaction
energy. As previously stated, the higher the slope, the more pronounced the
Zweifach-Fung effect is. We notice that when the interaction energy between
two RBCs increases, then the aggregated cells will go more largely through
the daughter branch with the higher velocity.

2.5 Discussion
Thanks to our in vitro approach, by tuning the pressure drops at the outlets,
we mimic different layouts of capillaries network after the bifurcation. The
relation between the ratio of flux of RBCs and the ratio of flow rates in the
outlets being non linear, we have highlighted the Zweifach-Fung effect in
this kind of configuration, by imposing asymmetrical pressures at the outlets.
In agreement with our speculation, we have demonstrated, by varying the
concentration of Dex70 in our medium, that the magnitude of this effect is
strongly influenced by RBC aggregation : the Zweifach-Fung effect is ampli-
fied when the aggregation between RBCs is stronger.
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Although the size and aspect ratio (20×23 µm) of our microbifurcation are
closer to a physiological configuration than in previous studies of the effect of
aggregation on the RBC distribution [65], the channels are still slightly wider
than capillaries of the microcirculation (typically between 5 to 10 µm). As by
nature the Zweifach-Fung effect is more pronounced when the ratio of par-
ticle size to channel size increases, we suspect that the effect we observed in
our specific case would be even stronger in smaller capillaries. Furthermore
our microfabrication method limits the channel geometry to rectangular or
square sections, which not fully replicate physiological conditions, where cir-
cular sections are more appropriate. Although the channel edges could influ-
ence the cell-free layer and the resulting numerical values, the extent of their
impact in a capillary of this size remains uncertain. While the underlying
trend is expected to persist, it becomes pertinent to explore various shapes
and sizes of channels to quantify potential differences.

Our experiments have been limited at relatively low hematocrits (<15 %) no-
tably by the refraction that can occur when several RBCs overlap on the trans-
verse axis, which became frequent at higher Ht. In order to experiment at
higher Ht, it could be considered to use a fluorescent cell dye such as fluores-
cein. The presence of a dye on the cells membrane would potentially modify
the aggregation but would presumably be a more accurate measure of the
Ht. Thus creating a calibration curve between themeasurement on the equip-
ment in brightfield and in fluorescence would allow to adjust our measures
madewith the Beer-Lambert like relation. Additionally, the use of a blue light
source or a filter could enhance the contrast, as hemoglobin absorbs light at
the same wavelength, potentially cancelling this effect.

It is noteworthy to mention that in the present study, we have focused on a
symmetrical Y bifurcation configuration. Although this design allowed us
to investigate the influence of Dextran-induced aggregation on RBC distribu-
tion, we acknowledge that the effect of different geometries and angles of bi-
furcation remains unexplored. In future investigations, employing the same
analytical methodology, we could systematically study the impact of these
parameters on RBC distribution within microbifurcation networks, where
the succession of bifurcations and junctions could lead to new behavior (Fig-
ure 2.15).

Compared to physiology, the dimensions of our channel is closer to the size
of a venule (diameter ≈ 20 µm), about two times the width of a capillary.
The mean of our studied velocities, and therefore shear rate, of RBCs are
slightly higher than those observed in venules (2 mm/s) and blood capillar-
ies (1 mm/s), yet our experiment covers the physiological ranges and does
not present any significant bias from the inlet hematocrit and the velocities
applied to the observed fluxes of RBCs ratio (Figure 2.11). Higher shear rate
means the clusters of RBCs are more likely to break [67][68]. Although these
previous work assume a minimal aggregation in capillaries because of the
high shear rate, our analysis demonstrated that aggregation still occurs in
such conditions, and affects the microcirculation. This is in accordance with
previous works [69][57].
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Figure 2.15: Blood flow through a series of small diameter arterial-type bifurcations,
showing an idealized hematocrit distribution at various axial positions. Reprinted

from Cokelet and Meiselman [66].

Preliminary experiments have been conducted on in vitro capillary networks
with channels of varying widths, including 20 µm wide channels [52] and
others of different widths [53]. These investigations have consistently high-
lighted the intrinsic heterogeneity of RBC distribution within such networks,
arising partly from the existence of a CFL even in the absence of aggregation.
The findings of our study suggest that this effect is further amplified depend-
ing on the level of aggregation. Moreover, theoretical studies focused on mi-
crocirculatory networks have postulated that the flux of RBCs can dynami-
cally vary over time, giving rise to curious behaviors such as oscillations or
bistability states [70][71]. Their simulations account for the spatial and tempo-
ral variation of viscosity, influenced by themean hematocrit in a cross-section
and the laws governing plasma skimming at bifurcations. Given the demon-
strated influence of aggregation on these dynamics, our findings can poten-
tially modify and refine these theoretical models. Consequently, in patholog-
ical scenarios involving altered RBC aggregation or variations between indi-
viduals, the multistability and oscillation states behavior in blood microcir-
culation could be significantly impacted. This paves the way for understand-
ing and interpreting blood flow dynamics in complexmicrovascular systems,
shedding light on the potential implications of RBC aggregation in various
physiological and pathological contexts.
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Chapter 3

Image processing in flow
cytometry: RBC shape
classification by a deep-learning
technique

3.1 Introduction
Cytological blood analysis is a versatile method of diagnosis for various dis-
eases such as anemia or thrombocytosis [72], through the examination of the
concentration, the morphology or the labeling of the different blood cells.
Those inspections are often realized by hand, on a relatively small sample
volume of blood. In the case of the detection of rare cells, as circulating tu-
mor cells (CTCs), the risk of a false negative diagnostic is not negligible. Con-
sequently, there has been a surge of interest for the development of automa-
tized processes. One can identify and compare two approaches : recording
of flowing cells through microscopy and methods such as cytometry. Both
approaches rest on the analysis of flowing cells in microchannels.

Flow cytometers are very powerful tools for high throughput cell analysis,
achieving count rates of up to 106 cells per second [73]. For detection, single
cells flow through a capillary and pass a highly localized optical excitation
spot. Scattering and fluorescence signals, for fluorecent cytometers, are then
collected by well-aligned lenses and routed to different light sensors to dif-
ferentiate measurement parameters such as forward- and side-scattering as
well as the optical wavelength in case of fluorescence. Eventually, the combi-
nation of these parameters gives information on the cell type and/or its char-
acteristics. Coulter counter [74] achieves detection of cells using impedance
variations and recent adaptation uses radio frequency [75]. Due to their size
andmechanical susceptibility, high throughput flow cytometers (HTFCs) are
restricted to laboratory use ensuring well-defined environmental conditions.
Besides costs, size and susceptibility, HTFCs lack the ability of single-cell
imaging due to the optical measurement principle. For this reason, comple-
mentary solutions such as scanning microscopy or imaging flow cytometers
exist [76]. However, these techniques are highly limited in throughput due
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to mechanical actuation or the frame rate of state-of-the-art cameras. For in-
stance, imaging flow cytometers achievemaximumevent rates of 104 s−1 [77][78][79]
under specific conditions, even if this threshold can be overcome by perform-
ing parallelization [80][81].

To overcome the throughput limitation due to the camera, techniques us-
ing a simple light sensor appeared during the past decade using a pulsed
LASER as light source and a sophisticated optical set-up [82][83][84], which
in principle could allow to improve acquisition rates by several orders of
magnitude. We here propose a concept which combines an optical spatial
amplitude modulation scheme with artificial intelligence to simultaneously
allow for high throughput single-cell detection and shape reconstruction in
microfluidic flow.

Our approach follows a low cost, highly robust implementation, requiring a
minimum of optical elements. The technique could potentially be integrated
into a disposable microfluidic chip. The key idea of our method is to use
a binary amplitude mask consisting of transparent (1) and opaque (0) areas,
which is placed in between a microfluidic channel and a light sensor (Figure
3.1 (a)). The setup is illuminated by a collimated light source similar to a
brightfield microscope.

Some studies consider a similar light modulation and machine learning re-
construction approach, using a camera [85][86] or time-consuming sequential
scanning procedures with digital masks [87]. In addition, while the object
must be almost static using these techniques, we take advantage of a mov-
ing object to perform the scanning. When passing the detection zone, the
light intensity is spatially modulated by means of refraction and attenuation
according to the shape and structural details of the cell and the particular
pattern of the slits mask. Thus, the obtained signal for each passing cell cor-
responds to the correlation of its brightfield image and the particular pattern
of the mask. These ”fingerprints” encode the main morphological charac-
teristics, allowing the recognition of each passing object although fine image
details are widely waived. Therefore, any sophisticated relay optics can be re-
linquished and a fast photodiode is sufficient to receive the highly simplified,
intensity-modulated signals.

A deep learning convolutional neural network (CNN) was built by Kihm,
Kaestner, Wagner, et al. [88] in order to classify, from their pictures, RBCs
according to their shape. Theywere able, thanks to the use of convolution ker-
nels, to extract geometrical features from the shapes of the cells. Their ANN
allocates a shape score to the input pictures to set them on a shape spectrum,
from slipper to croissant (see paragraph 1.2.2) including intermediate shapes.
Our first goal was to automatically classify the RBCs in a similar way, from
the fingerprints described above, instead of the pictures of the cells. Then we
pushed the concept one step further by using a comparable approach to find
back the shape of the cells from the fingerprints.

The modulated signal from the light sensor is decoded by means of a deep
learning artificial neural network (ANN) for cell image reconstruction at high
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Figure 3.1: Illustration of the signal acquisition. a) Single cells in a microfluidic chan-
nel of size 11.9 µm × 9.7 µm are passing the optical detection zone. In the simulated
setup, the cells are illuminated by a collimated light source and the transmitted light
is modulated by a binary amplitudemask that is placed in between the channel and a
simple light sensor. b) To implement a mimicked binary mask between the cell and
the sensor, we superimpose a black pattern onto the respective bright-field image.
Simulating the signal obtained from a light sensor is equivalent to integrating the
light intensity of all pixels of the image. The image is then shifted of a distance ∆x
while the mask remains in the same position to retrieve the new global light inten-
sity as if the cell is crossing the field of view. In our case, this process is equivalent

to computing the horizontal correlation between the picture and the mask.
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level of detail. This approach can be compared to replicating auto-encoders
which, for instance, are used for ”deepfake” [89] or texture swapping [90].
Themask acts as an encoder to compress the cell morphology to obtain a char-
acteristic fingerprint or featuremap. In contrast, theANNacts as a decoder to
recover the cell image. Therefore, the ANN mimics the optical transfer func-
tion of a real microscope, including optics and camera. Once the system is
trained according to a real setup, further implementations can be highly sim-
plified, relinquishing any sophisticated optics. This promises a high potential
for miniaturization. Moreover, the method allows for high throughput sam-
ple imaging, which is limited by the bandwidth of the sensor, the sample rate
of the data acquisition system and the expected signal-to-noise-ratio.

3.2 Materials and methods
Amajor part of this work has been published in our article Martin-Wortham,
Recktenwald, Lopes, et al. [91].

Most of the study in this chapter is based on pictures of single RBCs flow-
ing through a straight microchannel. A complete image dataset, containing
normalized pictures of croissant-shaped or slipper-shaped RBCs and various
intermediate shapes, was made by Kihm, Kaestner, Wagner, et al. [88] to cre-
ate an automatic shape classifier for RBCs. Those standardized pictures are
well-suited for the training of an ANN, therefore the development of our im-
age reconstruction ANN is based on them. Unless specified otherwise, the
following paragraphs in 3.2 describe from Kihm, Kaestner, Wagner, et al. [88]
the experiment to obtain these pictures.

3.2.1 Chip design and fabrication
The geometry of the microfluidic chip contains an inlet, an outlet, and sev-
eral parallel channels of different width in between. All the images for this
studywere taken in the same channel, whosewidthwas 12 µmanddepthwas
10 µm. This configuration provides a constriction factor for which two equi-
librium shapes of RBCs appear, which is well-suited to illustrate the image
reconstruction. From the chip design, a mold was made using photolithogra-
phy, in a similar way as in part 2.2.1. The first step consisting in pouring the
resin on a wafer is the same. The UV exposure, however, varies. Here, a UV
opaque mask is placed between the resin and a UV light source. The pattern
of the channels is drawn in negative on the mask, making it transparent to
UV. The exposed parts polymerize as previously described and remain after
developing, leading to a mold ready to be used for PDMS molding.

Epoxy molds During the development and test of our CNN, we used pic-
tures to generate the fingerprints. In order to check if this approach is close
enough to reality, we tested our process on videos of cells circulating in the
same channel as was used to produce the reverence (training) database. The
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chips in these experiments were fabricated using an epoxy replica of the orig-
inal silica mold. From a PDMS cast of the channels, we can make a replica
moldwith Epoxy [92]. As Epoxy is cheaper and sturdier than a silica wafer, it
highly increases the re-usability of the mold. Briefly, this consists in pouring
the two Epoxy reactants (R123 resin and R614 hardener) in a petri dish and
placing the PDMS cast face down on the Epoxy. Few days later the Epoxy
has hardened, the PDMS can easily be removed and the new Epoxymold can
be used as if it was a silica and resin mold, by filling it with new PDMS for
the chip. More information about the replication protocol can be found in the
work of Heuzé, Collin, Terriac, et al. [92].

3.2.2 Blood sample preparation
In the work of Kihm, Kaestner, Wagner, et al. [88], the RBCs used for the
experiment are extracted from human blood. A drop of blood is taken from
the donor using a sterilized needle, commonly used by patients with diabetes.
The drop is put in a 1.5 mL Eppendorf tube with 1 mL of PBS. The sample is
then centrifuged at 1500 rcf for 5minutes. The supernatant and the buffy coat
are replaced by PBS. This step is repeated two more times to clean the RBCs
of platelets, WBCs and proteins. Packed RBCs are taken from the bottom of
the tube and resuspended at 1 % hematocrit (Ht) in a solution of PBS and BSA
0.1 % (see more about BSA at paragraph 2.2.2).

3.2.3 Experimental set-up
The RBCs are pumped through the microfluidic chip using a pressure driver
(Elveflow OB 1Mk II) at different pressure drops. PTFE tubing is used to
connect the tank to the microfluidic chip. The observation is made with an
inverted microscope and a 60-fold oil-immersion objective (Nikon CFI Plan
Fluor, NA = 1.25, and a camera (Fastec HiSpec 2G) recording at 400 fps [88].

3.2.4 Picture normalization
Kihm, Kaestner, Wagner, et al. [88] normalize their images by cropping them
at a size of 90×90 px. The top and bottom borders of the pictures are then
smoothed using a Tukey window. Finally, pixel values are re-scaled so that
1 % of the lowest pixel values saturate at 0 and 1 % of the highest saturate at
255.

3.2.5 Brightfield and darkfield approach
In order to test an alternativemethod for imaging and to evaluate the sensitiv-
ity of the method to different types of illumination that may be implemented
in final applications, we selected a second approach that simulates darkfield
microscopy. Whereas brightfieldmicroscopy permitsmost of the light to pass
through the sample, darkfield imagery blocks most of the transmitted light
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Figure 3.2: Methods of background subtraction from a) a video frame of a damaged
leukemia cell leading to a mimicked b) brightfield or c) darkfield picture. The sig-
nals on the right are the intensity levels on the respective cross-sections, marked in
yellow on the pictures. The red thresholds represent the mean signal value from the

brightfield cross-section and the darkfield cross-section respectively.

and only allows oblique light rays to pass through the sample. This configu-
ration results in a highly contrasted image with a dark background. In this
case, the processing slightly differs. We have simulated a darkfield image
from a brightfield one through the implementation of a computational algo-
rithm that subtracts the image’s median and takes the absolute values of the
resulting difference (Figure 3.2).

3.2.6 Comparison between picture and video
We are studying moving cells in a stable state (steady shape). Therefore, the
morphology and position of the cell will significantly remain the same dur-
ing its passage in front of the ROI. Hence, instead of using heavy videos of
RBCs flowing in the channel, we create a virtual sequence of sub-images from
a single picture of the cell, by shifting the cell forward, with a step of one
pixel (0.13 µm). It effectively consists in replacing a time sequence obtained
by recording cells traveling across the measurement window by a scan of a
fixed image from front to back along the flow direction. To validate this pro-
cess of creating signals from pictures of RBC instead of videos, we compared
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the signals obtainedwith the slit mask from pictures of parachute RBCs using
correlation and from recordings of RBC actually flowing through the channel.
We then used a very high speed camera (Photron, Fastcam SA5). We chose
to make this comparison in darkfield as we noticed characteristic elements
of the curves are more distinguishable for the naked eye than in brightfield.
Figure 3.3 shows that the signals from the videos exhibit high frequency varia-
tions, due to the noise of the camera. The sampling frequency between videos
and pictures differs because of the differences in processing. On one hand,
the sampling frequency from videos is defined by the frequency of the cam-
era (10 000 fps). On the other hand, the sampling frequency of the pictures’
signals relies on the spatial resolution of the camera (0.16 µm/px). Despite
these differences, for a similar number of studied RBCs, the fingerprints, rep-
resented by the mean signals, are sensibly the same. Indeed, the distinctive
elements of the fingerprints for the parachute RBCs, i.e. the two peaks with
an increase of amplitude, remain identifiable and the mean curves from the
single pictures are in range of the standard deviation envelope of their cor-
responding signals from full videos. Therefore the approximation made by
using pictures and correlation to simulate the signals is close to what would
be obtained by using videos.

3.3 Mask for classification
The underlying principle of our technique relies on the use of a mask, posi-
tioned between the channel and the sensor, to encode the visual information
of a cell passing the detection zone. This mask, consisting of opaque and
transparent regions, will spatially modulate the transmitted light, resulting
in signals that exhibit a strong dependence on the specific pattern of themask,
as well as the intrinsic properties and velocity of the passing cell. This part
describes the design process employed to chose a mask pattern capable of
generating unique fingerprints, enabling the classification of RBCs based on
their morphological characteristics.

3.3.1 Mask simulation
This study serves as a proof-of-concept, necessitating the utilization of a high-
speed camera to accurately assess the results by comparison between the clas-
sification of the fingerprints and the classification of the actual pictures of the
cells. Furthermore, in order to conveniently evaluate various mask patterns
during the different steps of this work, a simulation approach is employed
during the post-processing stage, avoiding the fabrication of multiple masks.

Correlation To simulate the presence of the binary modulation mask in be-
tween the channel and the sensor, we pixelwise multiply the binary mask
pattern (black and white) with each sub-image from the ROI. Thus, optically
blocked areas are multiplied with zero and non-blocked areas are multiplied
with one. Subsequently, the sensor signal of a virtual photodiode is obtained
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Figure 3.3: Comparison of parachute signals obtained fromvideos and frompictures,
in darkfield, using a 3-pixel (0.4 µm) wide slit mask. a) Signals obtained by numer-
ically superimposing a mask on 8 videos of parachute shaped RBCs flowing in the
channel. b) Mean signal from a) where the semi-transparent envelope represents the
standard deviation. c) Signals obtained by mimicking, with an increasing shift, the
trajectory of 9 parachute shaped RBCs from pictures. d) Mean signal from c) where

the semi-transparent envelope represents the standard deviation.
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by integrating the intensity over all pixels of each masked sub-image, corre-
sponding to the total transmitted light of themask. By shifting the cell picture
by ∆x relative to each sub-image in the x-direction, the movement of the cell
is simulated (Figure 3.1 (b)). For each discrete shift, a new intensity value re-
sults and the obtained sequence corresponds to the correlation signal S(∆x),
which is defined as :

S(∆x) = (M ⊗ Y)(∆x) =
Wc−1

∑
j=0

Lc−1

∑
i=0

M(i + ∆x, j)× Y(i, j) (3.1)

where M denotes the array representation of the binary mask and Y the cell
sub-image. Lc corresponds to the length of the cell image and Wc to its width
in pixels. ∆x denotes the relative shift. The variations of the correlation re-
sult, due to border effect, known as correlation transients are suppressed
by padding with the median of the image. Additional signal parts due to
padding are then truncated after correlation. The resulting correlation se-
quence, or fingerprint, has a length of Lm + Lc − 1, where Lm corresponds
to the length of the mask.

Since the cell-characteristic fingerprint S(∆x) highly depends on the used bi-
nary mask design M, we use several mask patterns to test our approach (Fig-
ure 3.4). As we want to compare the efficiency of the patterns for the same
field of view, allmasks exhibit the same size of 90 px (width)× 256 px (length)
or 11.9 µm × 33.8 µm.

Final signals The signals S(∆x) in Figure 3.4 are generated for six different
mask designs and tested with 50 different parachute shapes of RBC (red) as
well as 50 different slipper shapes (blue) in brightfield. The statistical mean
value for these stable shapes is plotted as a solid line for each mask and cell
type, the respective standard deviation is indicated as a semi-transparent en-
velope.

All signals tend to decrease in amplitude when the RBC enters the ROI. This
is due to the fact that the light is refracted and attenuated with respect to the
void case. It is remarkable that depending on their features and symmetries
somemasks create similarwaveforms for parachutes and slippers, (Figure 3.4
(a), (c)-(e)), while other patterns create signals which are clearly different (Fig-
ure 3.4 (b), (f)).

3.3.2 Signals classification by convolution
The first design truly considered was the single slit, because of its simplicity
and the noticeable difference between the signals for the parachute RBCs and
the slipper RBCs in darkfield (Figure 3.5 (a)).

As a further examination, we attempted to automatize the classification of
the cell shape using the fingerprint obtained from the picture and correla-
tion, using the single slit mask (Figure 3.5). A reference fingerprint wasmade
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Figure 3.4: Characteristic fingerprints from red blood cells crossing the binary mod-
ulation mask. The shown signals express the average of each 50 parachutes (red)
slippers (blue), the standard deviation is indicated by a semi-transparent envelope.
The mask patterns used are : a) blank (no mask), b) 3-pixel slit (0.4 µm), c) chirp, d)

tilted stripes, e) tilted chirp, f) barrel organ.
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Figure 3.5: Classification of a cell signal by comparison with reference signals using
convolution. a) The signal is computed from a cell picture, using the 3-pixel width
slit mask, in darkfield. b) Reference signals from RBC crossing the single slit mask,
in darkfield, obtained from the mean of 10 pictures of parachute RBCs (red) and 10
pictures of slipper RBCs (blue) all in the same focal plane. The semi-transparent
envelopes represent the respective standard deviation. c) The convolution between
the signal of the sample cell and each reference is computed. The convolution with
the parachute reference signal (red) has been shifted on the x-axis for readability. The
maximum of each convolution is the fitting score in the respective category (slipper
or parachute), corresponding to equation 3.3. The cell is classified in the category

with the highest score.
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Figure 3.6: Histogram of the RBCs classified as slipper (blue) and as parachute (red)
depending on the shape score given by the CNN of Kihm, Kaestner, Wagner, et al.

[88]
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for both equilibrium shapes of RBCs, by taking the mean of 10 signals from
parachute RBCs and the mean of 10 signals from slipper RBCs, manually
picked for their characteristic and representative shape. These reference fin-
gerprints are compared by convolution to the signal of the RBC whose shape
is to be determined. The formula for the convolution is the following :

S ∗ R(x) =
min(x,m)

∑
j=max(1,x+1−n)

S(j)× R(x − j + 1) (3.2)

where S(x) is the signal from the sample RBC, R(x) is the reference finger-
print for parachute or slipper respectively, m is the length of S, n the length
of R. The final fitting values kept to compare the cell to a parachute and to a
slipper are themaximum of the convolutionwith the reference of a parachute
and slipper respectively, normalized using the auto-convolution of each sig-
nal :

f itting score =
max(S ∗ R(x))√

max(S ∗ S(x))× max(R ∗ R(x))
(3.3)

The cell is sorted in the shape group for which it has the highest fitting value.
The sorting was made on 619 pictures of cells. As we can notice on Fig-
ure 3.6, this method can accurately sort 100 % of the ”perfectly” shaped slip-
pers, meaning slippers with a score under -116.6 in Kihm, Kaestner, Wagner,
et al. [88] and 69 % of the ”perfectly” shaped parachutes, with a score above
116.6. The rate of correctly sorted cells drops as soon as the non-perfectly
shaped cells are considered, the method failing to sort the cells in the group
they are the closest to, even when the human eye can clearly identify them.
While the use of a reference signal and convolution could be done for interme-
diate shapes as well, by creating multiple categories based on score intervals,
the accuracy of the method would only decrease when the number of groups
increases.

3.3.3 Signals classification by ANN
To sort the cells according to their shapesmore precisely, we built an artificial
neural network (ANN) inspired by the one used in Kihm, Kaestner, Wagner,
et al. [88], where they give a shape score to the RBCs based on their pictures.
Instead, our new classifier ANN is based on the fingerprints of the RBCs, fol-
lowing a sequential architecture. The classifier is composed of an input dense
layer having the size of the fingerprints, i.e. lengthpicture + lengthmask − 1 =
90 + 256 − 1 = 345, with ReLU activation removing negative values, and an
output dense layer of size 1 giving the shape score. More explanations about
this kind of architecture are detailed in paragraph 3.4.1, which describes a
more complex architecture used for our image reconstruction.

The classifier has been trained according to the following procedure. The
training data set is generated from the reference signals determined previ-
ously for two purposes : to enrich the number of signals and to avoid possi-
ble outliers. A number D of signals of each category is randomly generated
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Figure 3.7: Histogram of the shape scores given by the classifier ANN to 9 real slip-
pers (light blue) and 10 real parachutes (light red). The blue and red lines indicate
the positions for the perfect slipper shapes (-1) and parachutes (+1). The classifier

was trained for D = 20, using darkfield pictures and the 3-pixel slit mask.
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following aGaussian distribution around the reference, with a variance equal
to the standard deviation of the reference. Each curve thus generated is ap-
proximated by a 13th degree polynomial. Then, the data set of each category
is augmented by making linear combinations between two of the D polyno-
mials. At this point, a group of curves corresponding to ”perfect” slippers
(whose shape score is +1) and a group corresponding to ”perfect” parachutes
(whose shape score is -1) have been generated. In order to include interme-
diate shapes of RBCs, we made the rough assumption that an intermediate
shape between a slipper and a parachute will lead to an intermediate signal
between the signals of slippers and the signals of parachutes. This hypothesis
allow us to virtually cover a continuum range of shapes and scores instead
of a finite number of shapes. We thus generate a panel of signals, coupled
with their respective shape score, covering the entire range of shape scores
between -1 and 1 by making linear combinations between a slipper signal
and a parachute signal. Those associations of signal and score are fed to the
ANN for the training. The validation step uses a different set of signal-score
pairs, generated using the same process.

Figure 3.7 presents the test of a classifier trained with darkfield signals, ob-
tained with the 3-pixel slit mask. The training signals were generated from
those presented in Figure 3.5 (b), creating randomly D = 20 training signals
for the parachutes and the same number for the slippers. The classifier was
tested on a small sample of clearly identifiable parachute (N=10) and slipper
(N=9) RBCs. As it was the case with classification by convolution, the pro-
cessing can sort efficiently the slippers from the parachutes.

However, once again the precision is lacking to include intermediate shapes.
The best assumption is that the process to make the fingerprints loses too
much data from the pictures. To improve the results, we focused on making
more complex designs of the mask, to enrich the signals, and on using AI not
to sort the cells but to regain more data from the fingerprints.

3.4 Mask optimization for image reconstruction
The slit mask used previously was picked arbitrary from a primary study of
the reference signals. In order to pick the most efficient mask design, it is
necessary to make an extensive study of different mask designs. In addition,
we also aim at evaluating the possibility to reconstruct RBC images from a
mask signal. To assess the efficiency of each pattern, distinct ANNs for image
reconstruction have been trained and additionally evaluated regarding the
respective learning performance and image quality after reconstruction.

3.4.1 Architecture of themultilayer perceptronneural network
As ANN, we employ a multilayer perceptron neural network which is real-
ized with Keras (TensorFlow back end). The ANN is composed of an input



66 Chapter 3. Image processing in flow cytometry: RBC shape classification by a
deep-learning technique

Figure 3.8: ANN architecture

layer of size 345 (length of S(∆x) for each cell), three hidden layers which con-
sist of 512, 1024, and 2048 neurons and an output layer of size 8100 which cor-
responds to the number of pixels on each reconstructed image (90 px× 90 px)
(Figure 3.8).

The three inner layers are each composed of three sublayers : (1) A fully con-
nected dense layer with transfer function f (X) = W.X + B, where W de-
notes the corresponding weights matrix, X the input vector and B the bias of
each neuron, (2) a LeakyReLU layer [93] with a transfer function correspond-
ing to f (xi) = 0.2 × xi if xi < 0 and f (xi) = xi otherwise, where xi
represent the components of X, and (3) a batch normalization layer [94].

3.4.2 Results depending on the mask pattern
Training and validation losses

For training, we use ”Adam” [95] as an optimizer. As a loss function, the
mean squared error (MSE) is employed which is calculated according to :

MSE =
1

Lp × Wp × P

P

∑
k=1

Wp−1

∑
j=0

Lp−1

∑
i=0

(Yk(i, j)− Ŷk(i, j))2 (3.4)

where Lp andWp correspond to the length and the width of the output image.
P denotes the total number of training and validation pictures, Yk(i, j) is the
intensity of pixel (i, j) of the kth input image. Similarly, Ŷk denotes the kth

predicted image.

In total, 1853 randomly selected images are used for training, and 618 are
selected for validation. Table 3.1 shows theMSEof the training andvalidation
loss for the 1000th iteration and a batch size of 100 of the respective masks.
Indicatively, the time required for the training for one mask is one hour on a
2.40 GHz single-core CPU.
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Mask’s name Training loss Validation loss
Blank 3.09×10−3 9.82×10−3

3-pixel width slit 1.64×10−3 12.7×10−3

Growing stripes 1.99×10−3 9.66×10−3

Tilted stripes 1.17×10−3 5.09×10−3

Growing tilted stripes 1.23×10−3 5.89×10−3

Barrel organ 0.893×10−3 3.45×10−3

Table 3.1: Comparison of the ANN training progress of certain mask types. It is ap-
parent thatmodulation schemeswith x- and y-components (lower three) performbet-
ter as they present lower training and validation losses than such with x-modulation
only (upper three). From the tested masks, the barrel organ mask shows the best

training performance.

Quality assessed using image classification

The different masks were designed considering the quality of image recon-
struction and the validation loss. Among variousmodulation patterns, which
were tested in the first place (e.g. slit, chessboard pattern, disc), the slit type
was the most promising. To increase the complexity of the modulation sche-
me, over time, more and more slits have been added and their width and
spacings have been varied. Besides better exploitation of the field of view,
masks with a larger spatial extent and certain complexity resulted in better
image reconstruction and lower validation loss (e.g. growing stripes as in
Figure 3.4 (c)). However, masks that are invariant in the vertical (y) direction
only modulate the light intensity in the x-direction (horizontal information),
which results in poor image reconstruction, especially for asymmetric cells as
by construction vertical information is flattened.

A demonstration of this is found in Figure 3.9 where the top row shows a
representative selection of different original images, the middle row the re-
constructions from a 3-pixel wide simulated slit mask (feature size of approx-
imately 0.4 µm), and the bottom row the reconstructions from the barrel organ
mask (which is not symmetric with respect to the x-axis). If the ANN recon-
structs the image of a waveform obtained from a slipper by means of an x-
symmetric mask, the output image is a superposition of both, bottom and top
located slippers (Figure 3.9 (left, middle line)). In agreement with intuition,
the signal from a vertically symmetric mask cannot see vertical asymmetries
and will lead to vertically symmetric reconstructions, even if they are irreal-
istic. To ensure that the mask exhibits modulation in both x- and y-directions
(vertical information), we rotated the openings (e.g. tilted stripes) or used
vertical slits of different lengths or positions (e.g. barrel organ). Resulting
modulation signals obtained from these mask types encode more informa-
tion on the cell geometry in two dimensions, and the reconstructed images
show lower distortions and fewer ambiguities.

As a consequence, the barrel organ mask shows the lowest training and vali-
dation losses and therefore promises the best reconstructionproperties among
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Figure 3.9: Original (top) and reconstructed images (middle, bottom) of red blood
cells moving through a 11.9 µm × 9.7 µm micro-channel. Using a simple 3-pixel
wide slit mask (middle), the reconstruction results in image ambiguities, especially
for cells that are located asymmetrically with respect to the horizontal axis off-axis.
Due to the spatial modulation in x- and y-direction, cell fingerprints obtained from
the barrel organ mask contain more spatial information (x- and y-direction) of the
cell shape and reconstructed images show clearly higher prominence. This is in ac-
cordance with the better training convergence shown in Table 3.1. For both shown
cases, the ANN is trained for a total of N=1000 iterations and a batch size of 100. All
original pictures are taken from the supplementarymaterial of Kihm, Kaestner, Wag-

ner, et al. [88].

all tested candidates. This assumption is confirmed by the reconstructed im-
ages (Figure 3.9) which shows the lowest distortions and the best agreement
with the original images.

In a further evaluation step, we benchmarked the reconstructed images of the
barrel organmask (best-performingmask) using the toolboxwritten byKihm,
Kaestner, Wagner, et al. [88]. This toolbox allows for the automatic classifi-
cation of RBCs in flow to obtain a so-called ”phase diagram”, which shows
the distribution of cell shapes within a dataset. The tool is based on a pre-
trained convolutional neural network (CNN), assigning a shape-depending
score to each observed RBC. In this context, a numerical value of -127 is the
target score for a slipper, and +127 is the target score for a parachute. An
intermediate score corresponds to a transition shape in between these stable
configurations.

Figure 3.10 (a) shows the comparison of 3090 original and reconstructed im-
ages from our approach, which have undergone classification by the CNN-
based toolbox. On the x-axis, the evaluation values of the original images are
shown, and the y-axis shows the corresponding scores for the reconstructed
images. A perfect reconstruction would lead to exactly the same score (pink
line) and, therefore, to the same statistical distribution (Figure 3.10 (d)). How-
ever, the coefficient of determination between the distribution scores R2 =
0.76, i.e., the fraction of variance unexplained (FVU), corresponds to 24 %.
In contrast, 76 % of cells are approximated correctly after reconstruction. By
applying the same thresholds as in the work of Kihm, Kaestner, Wagner, et
al. [88], 52 % of the cells originally classified as parachutes and 54 % of cells
originally classified as slippers remain in the same class after reconstruction.
Figures 3.10 (b) and 3.10 (c) illustrate an example of a cell that is wrongly
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classified. Here, the ANN added internal patterns to the cell image during
reconstruction. As the CNN relies on local convolutions within the image,
the variations created by artifacts highly affect the assigned score and, thus,
the accuracy of the classification. It can be expected that more sophisticated
reconstruction methods, e.g., using generative adversarial networks (GANs),
could lead to better results since image reconstructions are closer to the cor-
responding real images.

3.5 Conclusion
In summary, we investigated and simulated an advanced, label-free imag-
ing method without the need for sophisticated optics. We reconstructed im-
ages fromRBCs inmicrofluidic flowusing simple cell fingerprints originating
from intensity modulated signals which are generated by using a binary slit
mask. Themethod employs an artificial neural network for image reconstruc-
tion from simple waveforms, which could be recorded by a fast photodiode.
The upper limit of the framerate is restricted by the velocity of the cells and
the bandwidth of the photodiode. Considering a spacing of 33.8 µm between
two cells, which is equal to the length of the mask, the device can reach a
throughput of 29 586 cells/s for a cell velocity of 1 m/s and 295 858 cells/s
for 10 m/s. The spacing of 33.8 µm is to ensure that only one cell crosses
the ROI at a time. However, this distance might be reduced if certain mask
patterns exist, which can handle multiple cells in the field of view. Never-
theless, those patterns must first be identified and tested. The sample rate
is given by the minimal feature size of the mask. If the cell velocity corre-
sponds to 1 m/s and the minimal feature size is 0.4 µm, the time-of-flight
corresponds to 0.4 µs. Typically, a minimal oversampling rate of 10X is cho-
sen, resulting in an ADC sample rate of 25 MSPS. If the bandwidth of the
photodiode is chosen two times higher than the sample rate of the ADC, a
50 MHz photodiode might be sufficient to detect cells at 1 m/s. For 10 m/s,
the ADC frequency corresponds to 250 MSPS, the bandwidth of the photodi-
ode to 500MHz. It is demonstrated that the particular mask pattern is crucial
for the quality of the reconstruction and we found that binary masks with
2D modulation schemes are mandatory to obtain reasonable results. Image
reconstruction through light amplitude modulation and machine learning is
largely studied in the very recent years. For instance Ota, Horisaki, Kawa-
mura, et al. [96] uses an analytical recovery method to reconstruct a low reso-
lution fluorescence image from a one-pixel sensor. Another example is Chen,
Su, Liu, et al. [85] who uses a camera but highly simplifies the optical set-
up removing the lenses. In Jiang, Li, Peng, et al. [97], a method for image
reconstruction of blurry images is proposed, which uses using ANN-based
de-noising techniques macroscopic moving objects using a lens and a digital
mirror device (containing digital mask pattern). However, in practice, each
approach is highly case-dependent. Thus, investigating variousmethods and
applications remains essential to develop a general technique. While we use
a CNN for image reconstruction, the field of AI image building is in active
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Figure 3.10: a) The scatter plot shows the shape-score given by the CNN for the
original cell images (x-axis) and the corresponding reconstructions (y-axis) using the
barrel organ mask for modulation. In the case of perfect reconstruction, the data
points would be located on the pink line. The blue and red boxes indicate the target
area for slippers (-127) and parachutes (+127), and their size is defined by an optimal
threshold range (”adapted threshold range”). The marked outlier in (a) is shown
in (b) and (c), where (b) is the original image and (c) the poor reconstruction that
exhibits many artifacts leading to a wrong shape score. d) shows two histograms
of the shape scores given to the original dataset (dark gray) and the reconstructed
dataset (light gray). The blue and red lines indicate the positions for the perfect slip-
per shapes (-127) and parachutes (+127). The information loss due to modulation
and the resulting disturbances from reconstruction leads to a less defined, smoothed
shape spectrum and causes the distribution maxima to shift closer together. There-
fore, dealing with reconstructed data, the threshold ranges must be adapted to take
the distortions and different distribution properties into account. The original shape
scores and optimal threshold ranges in (a) and the picture (b) are all taken from the
article ”Classification of red blood cell shapes in flow using outlier tolerant machine

learning” by Kihm, Kaestner, Wagner, et al. [88].
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evolution. A more sophisticated architecture, like using generative adversar-
ial networks, could avoid the typical artifacts from a CNN and lead to better
results.

Our approach combines the use of a binary slit mask for the spatial modu-
lation of cell brightfield images of cells in microcapillary flow, and machine
learning to recover the cell images from moving cells at high velocities at mi-
croscale, without the need for a complex optical set-up. We tested themethod
using RBCs as model cells which exhibit two stable shape types depending
on the flow regime. However, more cell types or even clusters of RBCs could
be easily added by providing relevant training data to the network. The tech-
nique could further be implemented as part of a lab-on-chip device which
is not larger than a matchbox and more complex suspensions such as whole
blood could be investigated. Notably, we started to investigate the detec-
tion of circulating tumor cells, by differentiating them fromwhite blood cells
thanks to their deformation through an hyperbolic nozzle.

A step further into automation, in order for our ANN to adapt more flexibly
to the training data mentioned above, could be to integrate the generation
step of the mask pattern in the machine learning process. By iteration the
mask would converge toward an optimal pattern, suited to training data.

Although cells need no labeling, the system could be trained towards the
evaluation of fluorescence signals and the approach could be used for in-vivo
applications where optical imaging is difficult. Moreover, being able to re-
construct the cell images means that the fingerprints contain all major shape
information of the cells. As many applications require cell shape information
but not the image itself, the use of fingerprints would be a more efficient and
direct way to extract the desired cell parameters [96]. This sets the scene for
sophisticated diagnostic applications.
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In conclusion, this comprehensive research has delved into two different as-
pects in the field of blood flow dynamics and analysis of RBCs. The first
part of the study explored the impact of aggregation on the distribution of
RBCs at microbifurcations. By employing experimental techniques and a
multi-physics approach, we examined the behavior of RBCs in flow and its
correlation with Dextran-induced aggregation. Our findings revealed that
aggregation significantly influenced the distribution of RBCs inmicrobifurca-
tions, leading to increased non-linearity and heterogeneity in the distribution
patterns. The Zweifach-Fung effect demonstrated distinct variation with dif-
ferent concentrations of Dextran 70kDa. This study should be of significant
interest for the modeling and understanding of blood dynamics in the micro-
circulation and its alterations in inflammatory or pathological conditions, as
the RBC distribution at bifurcations together with blood effective viscosity in
confined channels are the key ingredients of network dynamics.

In the secondpart of this research, we focused onhigh-throughput automated
image processing of RBCs using optical modulation and artificial neural net-
works. Our novel technique employed a mask to encode visual information
of RBCs passing through the detection zone, facilitating the reconstruction of
images without the need for high-speed cameras or elaborate optical setups.
By combining optical spatial amplitude modulation and AI, we virtually ac-
complished image reconstruction and successfully achieved shape recogni-
tion of single RBCs with simplicity and efficiency.

Through a multidisciplinary approach integrating biology, fluid mechanics,
solid mechanics, and computer science, this work yields insights into the
behavior and distribution of RBCs under various conditions. It paves the
way for a deeper fundamental understanding of blood flow dynamics in mi-
crocirculatory networks and its relevance in clinical contexts. The ability to
quantify the effect of aggregation on RBC distribution opens new avenues for
studying various physiological and pathological conditions.

Moving forward, this research lays the foundation for future investigations
into the impact of geometric parameters, such as channel shapes and bifur-
cation angles, on RBC distribution and behavior, or the effect of the inlet Ht.
While we focused on an elementary unit, one bifurcation, the final aimwould
be to understand the blood flow in the whole microcirculatory network, con-
ducting such study on a complex succession of bifurcations and junctions
closer to physiology.
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Furthermore, the proposed AI-based image processing method showcases
potential for broader applications in various medical and scientific domains.
Characteristics must be considered to build the device that implements our
technique, such as the bandwidth and frequency of the diode or the resolu-
tion of fabrication of the mask pattern. The conceived ANN can easily be
adapted, with the correct training data, to consider cells other than RBCs, or
even to analyze clusters of RBCs and thus study aggregation in microflows.
As a proof-of-concept study, this work serves as a stepping stone for further
advancements and innovations in the study of blood rheology in microcircu-
lation and the analysis of RBC characteristics.
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Titel :  Erforschung der Dynamik der Aggregation roter Blutkörperchen in der Mikrozirkulation: Ein Ansatz aus Physik und künstlicher Intelligenz 

Zusammenfassung :  Die Untersuchung der Eigenschaften und des Verhaltens roter Blutkörperchen (Erythrozyten) ermöglicht Einblicke in 
grundlegende Aspekte des Blutkreislaufs und in spezifische Erkrankungen wie die Erkennung von Entzündungen oder Sepsis anhand der 
Erythrozytensedimentationsrate, die eng mit der Aggregationsrate verbunden ist. Aufbauend auf dieser grundlegenden und klinischen 
Bedeutung untersucht diese Doktorarbeit die Erythrozyten in der Strömung in Kapillaren auf mikroskopischer Ebene. 

Wir konzentrieren uns zunächst auf die Verteilung der Erythrozyten an einer in vitro-Mikroverzweigung unter Berücksichtigung des Einflusses 
der durch Dextran eingestellten Aggregationsraten. Experimentelle Untersuchungen zeigen, dass das Vorhandensein von Aggregation die 
inhomogene Verteilung von Erythrozyten verstärkt und den signifikanten Einfluss von Aggregationskräften auf den beobachteten Zweifach-
Fung-Effekt hervorhebt. 

Anschließend befassen wir uns mit der Entwicklung eines automatischen Formerkennungssystems für Erythrozyten, das optische Modulation 
und künstliche Intelligenz einsetzt, um Erythrozyten in der Strömung ohne komplexe Aufbauten zu erfassen. Durch die Verwendung einfacher 
Zell-Fingerabdrücke, die aus intensitätsmodulierten Signalen abgeleitet werden, die durch eine binäre 2D-Schlitzmaske erzeugt werden, wird 
eine Bildrekonstruktion von Erythrozyten im mikrofluidischen Fluss erreicht. 

Title : Exploring the Dynamics of Red Blood Cell Aggregation in Microcirculation: A Physics and Artificial Intelligence Approach 

Abstract:  Examining the characteristics and behavior of red blood cells (RBCs) enables insights into fundamental aspects of blood circulation 
and specific disorders such the identification of inflammation or sepsis via the RBC sedimentation rate, a measure closely associated with 
aggregation rate. Building upon this fundamental and clinical significance, this doctoral work takes a multiphysics to study the RBCs in flow in 
capillaries at a microscopic scale. 

We first focus on the distribution of RBCs at an \textit{in vitro} micro-bifurcation considering the influence of aggregation rates tuned by Dextran. 
Experimental investigations demonstrate that the presence of aggregation amplifies the non-homogeneous distribution of RBCs, highlighting 
the significant impact of aggregation forces on the observed Zweifach-Fung effect. 

We then address the development of an automatic shape recognition system for RBCs, using optical modulation and artificial intelligence to 
capture RBCs in flow without complex setups. By utilizing simple cell fingerprints derived from intensity-modulated signals generated through 
a 2D binary slit mask, image reconstruction of RBCs in microfluidic flow is achieved. 
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