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A B S T R A C T

This thesis presents a theoretical investigation of the optical properties
of ensembles of ultracold multilevel quantum emitters. The theoret-
ical model is based on the coarse-grained master equation which
includes the interatomic dipole-dipole interference. We consider here
complicated internal atomic structure, including several energy levels.
The presence of additional energy levels leads to vacuum-induced
interference between the non-degenerate dipole transitions. These
processes lead to the formation of the cross-interference terms, which
are usually neglected. In this work we investigate the impact of the
cross-interference terms on the interatomic dipole-dipole interaction,
their effect on the shapes of spectral lines, cooperative Lamb shift and
cooperative decay rate.

Z U S A M M E N FA S S U N G

Diese Arbeit befasst sich mit der theoretischen Erforschung der op-
tischen Eigenschaften von Ensembles ultrakalter Quantenemitter mit
mehreren Energieniveaus. Das theoretische Modell basiert auf grob-
granularen Mastergleichungen unter Berücksichtigung interatomarer
Dipol-Dipol-Wechselwirkungen. Die Arbeit berücksichtigt komplexe
atomare Strukturen einschließlich verschiedener Energieniveaus. Das
Vorhandensein der zusätzlichen Energieniveaus führt zu vakuumin-
duzierten Interferenzphänomenen zwischen nicht-entarteten Dipol-
übergängen. Diese Prozesse haben die Bildung von sogenannten
Cross-Interferenztermen zur Folge, welche normalerweise vernach-
lässigt werden. Diese Arbeit untersucht den Einfluss dieser Cross-
Interferenzterme auf die interatomare Dipol-Dipol-Wechselwirkung,
ihren Effekt auf die Form von Spektrallinien, kooperative Lamb-
verschiebung und kooperative Zerfallsrate.
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I N T R O D U C T I O N

One of the most remarkable phenomena in quantum optics is superra-
diance [1]. It originates from interatomic dipole-dipole interference,
when dipolar transitions of individual atoms are coupled via modes
of electromagnetic field, forming collective states. Optical properties
of these states can significantly deviate from the ones of individual
atoms, leading for example to the enhancement of radiation emission
[1, 2] and broadening of spectral lines and their frequency shifts. Thus,
superradiant light scattering plays the key role for spectroscopy of
dense cold atomic gases.

The phenomenon of superradiance can be consequently described
via the Born-Markov master equation. First theoretical works on su-
perradiance, based on the master equation formalism [2–4], consid-
ered atomic media as ensembles of simple 2-level atoms, where each
atom has unique ground and excited states. Later theoretical work [5]
demonstrated the importance of Zeeman degeneracy of atomic levels.
Master equations also have been developed for quantum emitters
with several energy gaps [6, 7]. The presence of various energy levels
leads to several types of dipolar transitions, which in principle can
interfere, leading to so-called cross-interference terms [7–12]. These
terms have been discussed in [12–15] in terms of their relevance for
high-precision spectroscopy of single atoms. The cross-interference
terms, formed by non-degenerate dipolar transitions, are the in the
focus of the presented work. We investigate their impact on the dipole-
dipole interaction in a superradiant medium and their effect on the
spectral lines of cold atomic ensembles.

The master equation preserves all necessary properties of the den-
sity matrix, such as trace preservation, hermiticity and positivity, if
it has the so-called Lindblad form [16]. Consequent incorporation of
the cross-interference terms between non-degenerate dipoles is a theo-
retical issue, their presence in the master equation might violate the
Lindblad form. In the presented thesis we use the coarse-graining
formalism [17, 18] to derive the coarse-grained master equation for
an ensemble of multilevel atoms [19], the resulting master equation
preserves the Lindblad form without any phenomenological assump-
tions.

This thesis consists of two chapters. In the first chapter we present
a derivation of master equation for ensembles of multilevel atoms,
using the Born-Markov approximation in its traditional form [2, 20–
22]. We discuss the physical meaning of all the components of the
equation and the problem of the Lindblad form preservation, related
to cross-interference terms and the Born-Markov approximation.
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The second chapter is based on Ref. [19], we present a deriva-
tion of the coarse-grained master equation, which involves the cross-
interference terms resulting from non-degenerate dipole, while pre-
serving the Lindblad form. We apply the derived coarse-grained mas-
ter equation to simulate the optical properties of a simple superradi-
ant system, consisting of two 3-level atoms. We investigate how the
cross-interference terms affect the superradiant line broadening, the
dipole-dipole induced line shift and the robustness of the solution to
fluctuations of the coarse-graining time, which is a free parameter in
the developed theory.

vi



C O N T E N T S

1 Master equation for an ensemble of multi-level quantum
emitters 1

1.1 System modeling 1

1.2 Born-Markov master equation 4

1.2.1 Validity of the master equation 9

1.3 Solution of the master equation for a few simple sys-
tems 10

1.3.1 Single two-level atom 10

1.3.2 Single two-level atom with Zeeman degener-
acy 12

1.3.3 Single three-level atom: problem of hermiticity
preservation, quantum beat spectroscopy 13

1.3.4 A pair of two-level atoms 15

1.4 Appendix 18

1.4.1 Combination of various terms in the von Neu-
mann equation 19

1.4.2 Mean values of the field operators for the ther-
mal reservoir 23

1.4.3 Angular integration of the correlation function 24

1.4.4 About atomic dipole moments 25

1.4.5 Laser field hamiltonian 26

2 Master equation for multilevel interference in a superradiant
medium 29

2.1 Abstract 29

2.2 Introduction 30

2.3 Derivation of The Superradiant Master equation 32

2.3.1 Multilevel emitters interacting with the quantum
electromagnetic field 33

2.3.2 Master equation for an ensemble of multilevel
emitters 35

2.4 Excitation spectrum of two emitters 42

2.4.1 Photon-count signal 43

2.4.2 Line shifts due to cross interference 45

2.4.3 About the coarse graining time scale 47

2.5 Conclusions 50

2.6 Acknowledgements 52

2.7 Appendix 52

2.7.1 Derivation of the Born-Markov master equation
in the coarse graining formalism 52

2.7.2 Parameters of the simulation 53

2.7.3 Determination of the line shifts 54

vii



viii contents

Bibliography 59



1
M A S T E R E Q UAT I O N F O R A N E N S E M B L E O F
M U LT I - L E V E L Q UA N T U M E M I T T E R S

In this chapter we present a derivation of a Born-Markov master equa-
tion for an ensemble of multi-level quantum emitters. The equation
describes dissipative dynamics of an atomic ensemble, coupled with
the electromagnetic field (EMF) via electric-dipole coupling. The cou-
pling of the individual atomic transitions with the modes of the EMF
mediates effective interactions that give rise to collective dynamics. As
a consequence, the optical properties might significantly differ from
an ensemble of independent atoms.

Most of the theoretical approaches of these dynamics are based
on a simplified model of two-level atoms [1–4, 23], some of them
include Zeeman degeneracy of the relevant energy levels [5, 24–26].
The multi-level internal atomic structure considers multiple excitations,
which may interfere and increase the complexity of interatomic dipole–
dipole interference. One aspect, the center of this investigation, is
the phenomenon of interchannel vacuum-induced interference. The
master equation derived below systematically includes all this variety
of interference processes.

1.1 system modeling

We consider an ensemble of N atoms, coupled with the quantized
electromagnetic field. The center of mass of each atom is pinned
at point R⃗α (α = 1, 2, .., N), excitations of electron are described by a
discrete spectrum, we discard the ionization spectrum. We also discard
any interaction between the atoms, and solely consider the interaction
of the atomic dipolar transitions with the electromagnetic field. Here
we specifically talk about atoms, but one should keep in mind that it
might be any kind of quantum emitters: molecules, atomic clusters
[27] or nanostructures in a crystal [28–33], as long as their spectra
fulfill the general properties considered here.

The entire system’s state is characterised by the density matrix χ̂(t).
It is a Hermitian operator and acts on a Hilbert space H = HA ⊗HR.
Here HR is the subspace of the EMF reservoir and HA is the N-atom
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2 master equation for an ensemble of multi-level quantum emitters

system subspace: HA =
N
⊗

α=1
HA

α . The density matrix is further a semi-

positive Hermitian operator with a trace equal to one:

χ̂ ≥ 0; χ̂† = χ̂; Tr(χ̂) = 1. (1.1)

The dynamics of the density matrix is governed by the von Neumann
equation:

∂χ̂

∂t
=

1
ih̄
[
Ĥ, χ̂

]
, (1.2)

where the Hamiltonian reads:

Ĥ = ĤA + ĤR + V̂. (1.3)

The first term ĤA = ∑N
α=1 ĤA

α includes the spectral information of
each atom: ĤA

α = ∑n En
α |n⟩α⟨n|, where |n⟩α and En

α are the eigenstates
and eigenvalues of the atom α, they fulfill the eigenvalue equation:
ĤA

α |n⟩α = En
α |n⟩α . Here n indicates a set of quantum numbers, which

characterise the electronic bound state. The second term on the right-
hand side of equation (1.3) is the reservoir Hamiltonian, which in our
case is the quantized electromagnetic field

ĤR = ∑
λ

h̄ωλ

(
â†

λ âλ +
1
2

)
. (1.4)

Here λ labels the mode of the EMF, âλ and â†
λ are the annihilation and

creation operators of photons in mode λ, fulfilling the commutation
relations [34]:

[âλ, â†
λ′ ] = δλλ′ , [â†

λ, â†
λ′ ] = [âλ, âλ′ ] = 0. (1.5)

For simplicity, we have restricted the electromagnetic field to a box
with the quantization volume V, imposing periodic boundary condi-
tions [35]. The mode λ of the EMF is characterised by its wave vector
k⃗λ and transverse polarization e⃗µ with µ = ±1, so e⃗µ (⃗k) ⊥ k⃗λ and
e⃗µ · e⃗µ′ = δµµ′ . The wave vector and the frequency are related by the
dispersion relation |⃗kλ|c = ωk with the speed of light c. The third term
of Hamiltonian (1.3) is the interaction operator V̂, it is given in the
long wavelength electric dipole approximation1 [36]

V̂ =
N

∑
α=1

V̂α = −
N

∑
α=1

ˆ⃗dα · ˆ⃗E(R⃗α). (1.6)

It contains the operator of the quantized electric field, which reads (in
Gaussian units)

ˆ⃗E(R⃗α) = i ∑
k⃗,µ

√
2πh̄ωk

V

(
âλ⃗ e⃗k,µei⃗kR⃗α + â†

λ⃗e ∗
k⃗,µ

e−i⃗kR⃗α

)
, (1.7)

1 The form of the interaction operator (1.6) in the long wavelength dipole approximation
is justified by the fact that the linear size of low excited atomic orbitals (∼ 10−10m) is
much smaller than the optical wavelengths ∼ 10−7m.



1.1 system modeling 3

where V is the quantization volume. The dipole operator reads

ˆ⃗dα = ∑
m,n

d⃗mnσ̂mn
α = ∑

m<n
d⃗mnσ̂mn

α + H.c., (1.8)

where σ̂mn
α = |m⟩α⟨n|, σ̂mn

α = σ̂nm †
α and d⃗mn is the matrix element of

the atomic dipole moment [37]. Hereafter, for shortness, we label the
transition between a pair of coupled states (m, n) with a single index i.
In the following we insert (1.8) and (1.7) in (1.6) and get an expression
for the interaction operator

V̂ = h̄ ∑
α,i

Γ̂†
iασ̂i

α + Γ̂iασ̂i †
α . (1.9)

Here we have introduced the coupling operators [20]

Γ̂iα = ∑
λ

gλ
iα âλ + (ḡλ

iα)
∗ â†

λ, (1.10)

written via the coupling constants

gλ
iα = −i

√
2πωλ

h̄V
(d⃗ i ∗

α · e⃗λ)ei⃗kR⃗α , (1.11a)

ḡλ
iα = −i

√
2πωλ

h̄V
(d⃗ i

α · e⃗λ)ei⃗kR⃗α . (1.11b)

We want to derive an effective equation for the atomic variables by
appropriately eliminating the EMF degrees of freedom in equation
(1.2). For this purpose we consider the von Neumann equation in the
interaction picture

∂χ̃

∂t
=

1
ih̄
[
Ṽ, χ̃

]
, (1.12)

where

χ̃(t) = ÛI(t)χ̂(t)Û†
I (t), (1.13)

Ṽ(t) = ÛI(t)V̂Û†
I (t), (1.14)

and ÛI(t) = e
i
h̄ (ĤA+ĤR)t.

The atomic operators transform as σ̃i
α = σ̂i

αe−iωit, with ωi being the
frequency of ith transition ωi = ωmn = (Em − En)/h̄, and the photon
field operators as ãλ = âλe−iωλt. Now we formally integrate the von
Neumann equation (1.12) and get the integral equation for the density
matrix:

χ̃(t) = χ̃(0)− i
h̄

∫ t

0
dt1
[
Ṽ(t1), χ̃(t1)

]
, (1.15)

and by inserting it in the right-hand side of 1.12 we obtain

∂χ̃(t)
∂t

=
1
ih̄
[
Ṽ(t), χ̃(0)

]
− 1

h̄2

∫ t

0
dt1
[
Ṽ(t),

[
Ṽ(t1), χ̃(t1)

]]
. (1.16)
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The atomic density matrix ρ̂(t) can be obtained from the one of the
composite system χ̂(t) by tracing out the EMF’s degrees of freedom

ρ̂ = TrR(χ̂)

= ∑
r,m,n

|m⟩⟨n|⟨r ⊗ m|χ̂|r ⊗ n⟩, (1.17)

where {|r⟩} is an orthonormal basis of HR, {|n⟩} is an orthonormal
basis of HA and {|r ⊗ n⟩} is an orthonormal basis of the complete
Hilbert space H. We implement the partial trace over the reservoir
degrees of freedom to equation (1.16), yielding

∂ρ̃(t)
∂t

=
1
ih̄

TrR
([

Ṽ(t), χ̃(0)
])

− 1
h̄2

∫ t

0
dt1TrR

([
Ṽ(t),

[
Ṽ(t1), χ̃(t1)

]])
.

(1.18)

1.2 born-markov master equation

The integro-differential equation (1.18) is so far exact. We now make
the so-called Born approximation. For this purpose we assume that
initially the EMF and the atoms are uncorrelated, such that the total
density matrix χ̂(0) = χ̃(0) can be factorized

χ̂(0) = ρ̂(0)⊗ R̂, (1.19)

where R̂ describes the state of the EMF. Correlations between the
atoms and the EMF will be created by the interactions as time pro-
gresses. Assuming weak coupling between atoms and field, the density
matrix χ̃(t) will keep a separable form up to the zeroth order in the
interaction. We further assume that the EMF state is stationary. As a
result, the density matrix χ̃(t) takes the form

χ̃(t) = ρ̃(t)⊗ R̂ +O(Ṽ), (1.20)

where the last term is non-separable. We now choose a specific form
of the photon reservoir - a thermal reservoir

R̂ =
1
Z

e−
ĤR
kBT . (1.21)

Here ĤR is the reservoir Hamiltonian (1.4), T is the reservoir temper-
ature, kB is the Boltzmann constant and Z is the partition function:

Z = Tr
(

e−
ĤR
kBT

)
. We now use (1.19) and (1.21) in equation (1.18). The

first term of the right-hand side (1.18) vanishes as

TrR
(
Ṽ(t)R̂

)
= ⟨Ṽ(t)⟩R = 0, (1.22)

because ⟨Ṽ(t)⟩R = −d̃(t) · ⟨Ẽ(t)⟩R and for the thermal reservoir
⟨Ẽ(t)⟩R = 0 [35]. Now we plug (1.20) into the second term of the
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right-hand side of (1.18) and keep only the terms up to the second
order over the interaction ∼ (Ṽ)2, the equation reads

∂ρ̃(t)
∂t

= − 1
h̄2

∫ t

0
dt1TrR

([
Ṽ(t),

[
Ṽ(t1), (ρ̃(t1)⊗ R̂)

]])
. (1.23)

After inserting the explicit form of the interaction operator (1.9) into
(1.23) and tracing out the EMF degrees of freedom (see Appendix 1.4.1
for details) we obtain

∂ρ̃(t)
∂t

= ∑
α,β

∑
i,j

∫ t

0
dt1d i

αd j
βCij

αβ(t − t1) [σ̃
j
β(t1)ρ̃(t1), σ̃i

α(t)]

+d i
αd j ∗

β Cij
αβ(t − t1) [σ̃

j †
β (t1)ρ̃(t1), σ̃i

α(t)]

+d i ∗
α d j

βCij
αβ(t − t1) [σ̃

j
β(t1)ρ̃(t1)σ̃

i †
α (t)]

+d i ∗
α d j ∗

β Cij
αβ(t − t1) [σ̃

j †
β (t1)ρ̃(t1), σ̃i †

α (t)] + H.c.,

(1.24)

where Cij
αβ(t − t1) is a correlation function. With t − t1 = τ it reads

Cij
αβ(τ) =

1
(2π)2h̄c3

∫ ωcut

0
dω ω3Fij

αβ(kRαβ)(1 + n(ω, T))e−iωτ

+ ω3Fij
αβ(kRαβ)n(ω, T)eiωτ, (1.25)

where
n(ω, T) =

1
exp(τRω)− 1

, (1.26)

is the mean number of photons of one of the mode at frequency ω

at the photon reservoir temperature T and τR = h̄
kBT . The quantity

Fij
αβ(kRαβ) is a so-called diffraction type function [2], which describes

the dipole–dipole coupling between a pair of atoms α and β, separated
by a distance Rαβ = |R⃗α − R⃗β|:

Fij
αβ(kRαβ) = 4π

{
sin(kRαβ)

kRαβ

(
(⃗e i∗

α · e⃗ j
β)− ε̂i∗

αβ ε̂
j
αβ

)
+

(
cos(kRαβ)

(kRαβ)2 −
sin(kRαβ)

(kRαβ)3

)(
(⃗e i∗

α · e⃗ j
β)− 3ε̂i∗

αβ ε̂
j
αβ

)}
, (1.27)

here e⃗ i
α = d⃗ i

α

d i
α

is a unit vector of a corresponding dipole moment and

the quantity ε̂i
αβ =

d⃗ i
α·R⃗αβ

d i
α Rαβ

is the dipole’s projection on the interatomic
axis. The single-atom case α = β corresponds to the limit kRαβ → 0
and (1.27) reads

Fij
αα = lim

kRαβ→0
Fij

αβ(kRαβ)

=
8π

3
(⃗e i∗

α · e⃗ j
α). (1.28)
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The integral over frequencies (1.25) is truncated at ωcut < ∞ for
certain reasons. The cut-off frequency is estimated as [37] ωcut ∼ mc2

h̄ ∼
1021 Hz, m here is the electron’s mass.

Further actions on equation (1.24) depend on the properties of the
correlation function (1.25). Particularly, one needs to quantify τcorr,
the reservoir correlation time. It is a parameter, which determines the
time-scale of decay of the atom-reservoir correlation function (1.25).
We can estimate the width of the correlation function as [20]

τcorr = max
{

ω−1
cut, τR

}
. (1.29)

In this thesis we always assume that the photon reservoir is at room
temperature T = 300 K, so τR ≈ 10−13 sec, while ω−1

cut ∼ 10−21 sec,
so the reservoir correlation time is implicitly assumed always to be
τcorr = τR.

The typical time scale for the time-evolution of the atomic variables
is τA ∼ 10−8 sec (for optical transitions), such that τR ≪ τA holds.
The variable change t − t1 = τ in the time integral (1.24) also enters
in the density matrix ρ(t1) → ρ(t − τ), thus we can consider the
atomic density matrix in the integrand as a function of events in the
past. The whole considered period of time evolution of the system
can be analysed in the coarse-grained grid with step ∆t, fulfilling
the inequality: τR ≪ ∆t ≪ τA. The width of the correlation function
defines a characteristic time, over which the reservoir memory is
relevant and might impact the atomic variables. Since the atomic
variables evolve very slowly over ∆t we approximate ρ(t − τ) ≈ ρ(t).
This is equivalent to an assumption that the reservoir is memoryless for
τR → 0, which is known as the Markov approximation, widely used
in quantum optics [2, 20, 21]. A case of a finite-time light propagation

τL = |R⃗1−R⃗2|
c > 0 is investigated in [38] for a pair of two-level atoms.

After we make the variable change τ = t − t1 in equation (1.24) the
integration limits remain the same,

∫ t
0 dt1 →

∫ t
0 dτ. Given τR ≪ τA we

can extend the integration limit to infinity in the spirit of the Markov
approximation. The equation becomes:

∂ρ̃

∂t
= ∑

α,β
∑
i,j

(∫ ∞

0
dτCij

αβ(τ)e
iωjτ

)
×
(

d i
αd j

β[σ̃
j
β(t)ρ̃(t), σ̃i

α(t)] + d i∗
α d j

β[σ̃
j
β(t)ρ̃(t), σ̃i †

α (t)]
)

+

(∫ ∞

0
dτCij

αβ(τ)e
−iωjτ

)
×
(

d i
αd j∗

β [σ̃
j †
β (t)ρ̃(t), σ̃i

α(t)] + d i∗
α d j∗

β [σ̃
j †
β (t)ρ̃(t), σ̃i †

α (t)]
)

+H.c. (1.30)
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The correlation function Cij
αβ(τ) still contains the integration over the

photon frequencies. We now use the following relation:∫ ∞

0
dτe−i(ω−ωj)τ = πδ(ω − ωj)− iP

(
1

ω − ωj

)
, (1.31)

for the time integral. The first term on the right-hand side of (1.31)
contains the so-called Dirac delta-function2 and the second term is the
Cauchy principal value3.

Using the expression (1.31) we can easily get the final form of the
master equation (see more details in 1.4.1.1)

∂ρ̃

∂t
=

1
ih̄

N

∑
α

[
H̃LS

α , ρ̃
]
+ LDρ̃ +

1
ih̄

N

∑
α,β( ̸=α)

[
H̃CLS

αβ , ρ̃
]
+

+ LD
ρ̃ + LS

ρ̃. (1.34)

The quantity LDρ̃ + LD
ρ̃ is the so-called dissipator, which describes

dissipative dynamics. One can distinguish the secular part

LDρ̃ = ∑
α,β

∑
i,j
(1 + n(ωj, T))

Γij
αβ

2
[σ̃

j
β ρ̃, σ̃i †

α ] +
Γij ∗

αβ

2
[σ̃i

α, ρ̃ σ̃
j †
β ]


+ n(ωj, T)

Γij ∗
αβ

2
[σ̃

j †
β ρ̃, σ̃i

α] +
Γij

αβ

2
[σ̃i †

α , ρ̃ σ̃
j
β]

 , (1.35)

and the non-secular one

LD
ρ̃ = ∑

α,β
∑
i,j
(1 + n(ωj, T))

Γij
αβ

2
[σ̃

j
β ρ̃, σ̃i

α] +
Γij ∗

αβ

2
[σ̃i †

α , ρ̃ σ̃
j †
β ]


+ n(ωj, T)

Γij ∗
αβ

2
[σ̃

j †
β ρ̃, σ̃i †

α ] +
Γij

αβ

2
[σ̃i

α, ρ̃σ̃
j
β]

 , (1.36)

2 For a, b, c ∈ R: ∫ b

a
dx δ(x − c) =

1, if c ∈ [a, b];

0, otherwise.
(1.32)

3 Let an integrand of
∫ b

a f (x)/(x − c)dx have a singularity point c ∈ [a, b] ( f (x) is a
smooth function on the considered interval), then we write the integral as follows:∫ b

a

f (x)
x − c

dx →
∫ c−δ1

a

f (x)
x − c

dx +
∫ b

c+δ2

f (x)
x − c

dx (δ1, δ2 > 0),

and take a limit for both δ1 and δ2 to zero:∫ b

a
f (x)dx = lim

δ1,δ2→0

(∫ c−δ1

a

f (x)
x − c

dx +
∫ b

c+δ2

f (x)
x − c

dx
)

. (1.33)

If the limit (1.33) exists, then it is called the Cauchy principle value of integral:

lim
δ1,δ2→0

(∫ c−δ1

a

f (x)
x − c

dx +
∫ b

c+δ2

f (x)
x − c

dx
)
= P

∫ b

a

f (x)
x − c

dx.
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where the coefficients read

Γij
αβ =

di∗
α dj

βFij
αβ(k jRαβ)

4πh̄c3 ω3
j , (1.37a)

Γij
αβ =

di
αdj

βFij
αβ(k jRαβ)

4πh̄c3 ω3
j . (1.37b)

The coefficients (1.37) contain the diffraction type function (1.27). The
single-atom case (α = β) corresponds to the limit of vanishing inter-
atomic distance k jRαβ → 0 (1.28) and these coefficients read

Γij
αα =

4
3

d⃗ i ∗
α · d⃗ j

α

h̄c3 ω3
j , (1.38a)

Γij
αα =

4
3

d⃗ i
α · d⃗ j

α

h̄c3 ω3
j . (1.38b)

In the case i ̸= j the coefficients do not vanish when the dipoles of
the corresponding transitions are parallel, so that their scalar product
does not vanish.

The operator H̃LS(t) takes the form

H̃LS
α (t) = −h̄ ∑

i,j
σ̃i †

α σ̃
j
α(∆−

ij + ∆T
ij) + σ̃

j
ασ̃i †

α (∆+
ij − ∆T

ij), (1.39)

with coefficients

∆±
ij =

2d⃗ i ∗
α d⃗ j

α

3πh̄c3 P
∫ ωcut

0
dω

ω3

ω ± ωj
, (1.40a)

∆T
ij =

2d⃗ i ∗
α d⃗ j

α

3πh̄c3 P
∫ ωcut

0
dω n(ω, T)

(
ω3

ω − ωj
− ω3

ω + ωj

)
. (1.40b)

The diagonal elements of (1.40a) (i = j) correspond to a shift of an
atomic state energy due to the electron’s interaction with the virtual
photons of the vacuum. The integral over the photon’s frequencies
diverges, but it can be treated using the procedure of renormalization,
described for example in [39]. For the Hydrogen atom, this contribu-
tion is different from zero for S states and is known as the Lamb-shift
[37].

The off-diagonal elements (1.40a) (i ̸= j) are the cross − shi f t terms
[21], [7], result from the interference between parallel dipoles of dif-
ferent transitions of an individual atom. We can estimate them using
corresponding diagonal terms [15]:

∆±
ij ≈

1
2

d⃗ i ∗
α d⃗ j

α

(
∆±

ii

|d⃗α
i|2

+
∆±

jj

|d⃗α
j|2

)
. (1.41)

The coefficients (1.40b) are contributions due to thermal fluctuations.
Their impact on high-precision atomic measurements is investigated,
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for example, in [40]. The Hamiltonian H̃CLS
αβ describes an effective

interaction between dipolar transitions of different atoms:

H̃CLS
αβ = ∑

i,j
h̄Λij

αβσ̃i †
α (t)σ̃j

β(t), (1.42)

with the coefficients

Λij
αβ =

di∗
α dj

β

h̄c3 ω3
j

{
−

cos(k jR)
k jR

(
(⃗e i∗

α · e⃗ j
β)− ε̂i∗

αβ ε̂
j
αβ

)
+

(
sin(k jR)
(k jR)2 +

cos(k jR)
(k jR)3

)(
(⃗e i∗

α · e⃗ j
β)− 3ε̂i∗

αβ ε̂
j
αβ

)}
, (1.43)

it results in the so-called cooperative Lamb shift, which namely, a
shift of spectral lines observed in optically dense media [3]. The off-
diagonal terms (i ̸= j) are the interatomic cross − shi f t terms, they are
schematically shown in Fig. 2.1c. The last quantity LS

ρ̃ of (1.75) is the
non-secular part of the Lamb shift:

LS
ρ̃ = −i ∑

α,β
∑
i,j

(
∆
− ij
αβ + ∆

T ij
αβ

)
[σ̃

j
β(t)ρ̃(t), σ̃i

α(t)]

+
(

∆
+ ij
αβ − ∆

T ij
αβ

)∗
[σ̃

j †
β (t)ρ̃(t), σ̃i †

α (t)]

−
(

∆
+ ij
αβ − ∆

T ij
αβ

)
[σ̃i

α(t), ρ̃(t)σ̃j
β(t)]

−
(

∆
− ij
αβ + ∆

T ij
αβ

)∗
[σ̃i †

α (t), ρ̃(t)σ̃j †
β (t)]. (1.44)

The fast-oscillating terms LD
ρ̂ and LS

ρ̂ omitted within the rotating-
wave approximation (RWA) [20], [23].

1.2.1 Validity of the master equation

We now analyse whether the master equation (1.34) is a valid master
equation. The master equation must satisfy a few criteria (1.1): it must
preserve the trace, hermiticity and positivity of the density matrix. All
these features of density matrix are preserved if master equation has
the so-called Lindblad f orm [16, 35].

Lindblad theorem states that the most general form of a time-local
master equation that preserves both trace and positivity of the density
matrix is

∂tρ̂ =
1
ih̄

[
ĥ, ρ̂
]
+

N2−1

∑
n,m

anm

(
F̂mρ̂F̂†

n − 1
2
{F̂†

n F̂m, ρ̂}
)

, (1.45)

where ĥ is a Hermitian operator which acts on elements of the Hilbert
space HA, N = dimHA and {F̂m} is an orthonormal basis of the space

of operators acting on elements of HA. If the matrix
↔
A= (anm) is

semi-positive and the operators ĥ, F̂m are bounded (which always
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holds in the case of a finite dimensional Hilbert space HA), then the
Lindblad theorem guarantees that for any density matrix ρ̂(t) the time
propagated density matrix ρ̂(t′), t′ > t, determined from (1.45), is
semi-positive, Hermitian and has trace one.

We now compare the master equation (1.45) with the derived one
(1.34) without the fast-oscillating terms (1.36) and (1.44), assuming that
the RWA holds. The Hermitian operator ĥ in the Liouvillian of (1.45) is
equvalent to Ĥ = ∑N

α=1 ĤA
α + ĤLS

α + ∑N
β( ̸=α)=1 ĤCLS

αβ in the derived mas-
ter equation (1.34). However, the Lamb shift (1.39) and the imaginary
dipole-dipole interaction (1.42) hamiltonians contain the cross-shift
terms in form (1.40) and (1.43), which violate the hermiticity of the
operators when the cross-shift terms are formed by non-degenerate
dipole transitions ωj ̸= ωi. Thus, when non-degenerate transitions
are involved and form the cross-interference terms, one violates the
Lindblad form preservation and one cannot guarantee positivity of
the evolved density matrix as well.

Thus, one may conclude that the master equation (1.34) in general
does not preserve the Lindblad form. The derived equation is valid
only in the particular case when the atomic structure is taken only with
a single energy gap and all transitions are degenerate, i.e. Γij

αβ(ωj) =

Γji
βα(ωi) for ∀ i, j.

1.3 solution of the master equation for a few simple

systems

Here we solve the derived the Born-Markov master equation for a few
simple systems in order to give an insight into the processes described
by the different terms.

1.3.1 Single two-level atom

Here we discuss the decay dynamics of an atom, composed by the
ground and excited states |g⟩ and |e⟩ with transition frequency ω0. The
coupling with the electromagnetic field leads to the master equation

∂tρ̂ +
i
h̄

[
ĤA + ĤLS, ρ̂

]
−LDρ̂ −LD

ρ̂ −LS
ρ̂ = 0, (1.46)

where the last two terms are the non-secular ones, we discard them
from consideration for now. The Hamiltonian in the commutator reads:

HA + HLS =

(
0 0

0 h̄(ω0 + ΩLS)

)

with ω0 being the atomic transition frequency and ΩLS = ∆+ − ∆− −
2∆T is the Lamb shift. The part ∆+ − ∆− is due to the coupling with
the vacuum and 2∆T is the ac Stark effect by the blackbody radiation



1.3 solution of the master equation for a few simple systems 11

(BBR), the coefficients ∆± and ∆T are given in (1.40). The dissipator
reads:

LDρ̂ =
Γ
2
(1 + n̄)

(
2σ̂ρ̂σ̂† − σ̂†σ̂ρ̂ − ρ̂σ̂†σ̂

)
+

Γ
2

n̄
(

2σ̂†ρ̂σ̂ − σ̂σ̂†ρ̂ − ρ̂σ̂σ̂†
)

, (1.47)

with n̄ = n(ω0, T) being the mean number of photons of a mode at
frequency ω0 at temperature T. The current master equation can be
solved straightforward, particularly the coherences have the following
form:

ρge(t) = ρge(0)ei(ω0+ΩLS)t− Γ
2 (1+2n̄)t,

ρeg(t) = ρeg(0)e−i(ω0+ΩLS)t− Γ
2 (1+2n̄)t. (1.48)

One can see that the transition frequency parameter is shifted by
the value ΩLS and the decay rate includes the mean-photon number
n̄. The temperature-dependent mean photon number n̄ arises from
the BBR, it leads to line broadening and a shift of the line position
by the coefficient ∆T (1.40b). The BBR corrections for the Lamb shift
and for the line broadening were studied, for example, in [41]. It
was shown that they might be relevant for transitions between the
high-excited Rydberg states [42, 43]. For transitions with frequency
in the optical or ultraviolet regime, at room temperature ω0τR ≫ 1
and consequently n(ω0, T) ≪ 1, see Fig. 1.1a. The BBR affects the
atomic state populations. The results below are the solution of (1.46)
for diagonal elements with initial conditions ρee(0) = 1, ρgg(0) = 0:

ρee(t) =
(1 + n̄)e−Γt(2n+1) + n̄

1 + 2n̄
,

ρgg(t) =
(1 + n̄)− e−Γt(2n̄+1)(1 + n̄)

1 + 2n̄
, (1.49)

At the time limit t → ∞ the magnitudes of the level populations are
determined by the value of n̄, Fig. 1.1(b). The larger the value n̄, the
more one can observe the tendency for equal population as it shown
in Fig. 1.1(c). In the limit n̄ → ∞: ρee(t) = ρgg(t) = 1

2 .
One may conclude that the diagonal terms of (1.40) lead to the

energy shifts of the considered atomic excited states, while the diago-
nal terms of (1.37a) Γαα = Γ correspond to the lifetime of an excited
state. The BBR factor n(ω0, T) is not relevant for the optical transition
frequencies ω0 at a room temperature T = 300K.

The solution of the master equation (1.46) with the non-secular
terms LD

ρ̂ and LS
ρ̂ was discussed in [44] in the limit n̄ → 0. The

incorporation of the non-secular terms in the master equation gives
a frequency shift ∼ Γ2

ω0
, which is the analog of the Bloch-Siegert shift

[45]. If we take Γ = 2π × 6 MHz and ω0 = 2π × 384 THz, which are
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Figure 1.1: (a) The mean-photon number value n(ω, T) (1.26) at room tem-
perature T = 300 versus the photon frequency ω, (b) the atomic
states populations (1.49) in the limit t → ∞ for a two-level atom,
(c) the time dynamics of the atomic states populations (1.49) for
various values of n(ω0, T).

the parameters of line D2 for Rb87 [46], the value of this correction
is Γ2

ω0
= 2π × 0.094 Hz. Thus, for optical transition parameters the

non-secular terms give a correction which is negligibly small, and the
non-secular terms LD

ρ̂ and LS
ρ̂ are usually skipped within the RWA.

Moreover, the presence of the non-secular terms might be in conflict
with the Markov approximation, it is discussed for example in [47].

1.3.2 Single two-level atom with Zeeman degeneracy

Here we assume a level structure with a single energy gap, but a
degenerate ground state: the unique excited state can decay into 3

channels, Fig. 1.2(a). The master equation for such a system reads:

∂ρ̂ =
1
ih̄

[
ĤA, ρ̂

]
+ ∑

i=1,2,3

Γii

2

(
2σ̂iρ̂σ̂i † − σ̂i †σ̂iρ̂ − ρ̂σ̂i †σ̂i

)
, (1.50)

here we discarded the non-secular terms and the BBR factors n(ω0, T),
considering the optical transition frequencies and the room temper-
ature of the photon reservoir. Note that we do not have any cross-
damping terms involved in the equation Γij (i ̸= j), because they
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Figure 1.2: Schematic representation of the processes: (a) relevant for the
problem 1.3.2, decay of a unique excited state into degenerate
ground state, (b) relevant for the problem 1.3.3, decay of each
excited state and the coherence between the decay processes,
formed by the cross-damping terms, leading to the quantum
beats.

vanish for orthogonal dipoles within a single atom. The equation for
the excited state population reads:

∂tρee = −ρee ∑
i=1,2,3

Γii

2
= −ρee ∑

i=1,2,3

Γe−gi , e−gi

2
, (1.51)

with the solution
ρee(t) = ρee(0)e−

γt
2 , (1.52)

where γ = ∑i=1,2,3 Γe−gi , e−gi . Thus, the quantity γ describes the life-
time of the excited state, while each individual term Γii has the mean-
ing of a decay rate into a certain decay channel.

1.3.3 Single three-level atom: problem of hermiticity preservation, quantum
beat spectroscopy

Let our system be a single three-level atom, a unique ground state
|g⟩ is coupled to two non-degenerate excited states |e1⟩ and |e2⟩ by

electric dipole transitions ˆ⃗dge1 =
ˆ⃗d1 and ˆ⃗dge2 =

ˆ⃗d2. The dipole moments
are parallel, i.e. they have the same polarisation. The master equation
for such a system reads

∂ρ̂

∂t
=

1
ih̄

[
ĤA, ρ̂

]
+

2

∑
i,j=1

Γij
(

2σ̂jρ̂σ̂†
i −

{
σ̂†

i σ̂j, ρ̂
}
+

)
, (1.53)

with the atomic Hamiltonian

ĤA = h̄ω1|e1⟩⟨e1|+ h̄ω2|e2⟩⟨e2|. (1.54)

The dissipator is written via the atomic operators

σ̂1 = |g⟩⟨e1|, (1.55)

σ̂2 = |g⟩⟨e2|. (1.56)



14 master equation for an ensemble of multi-level quantum emitters

The coefficients (1.37a) in the single-atom case (1.97) read

Γij =
4
3

d∗i dj

h̄c3 ω3
j .

Our master equation (1.53) includes the cross-damping terms and it
gives a system of 9 linear differential equations for elements of the
density matrix. Let us compare the two of them:

ρ̇ge2 = −1
2

Γ12ρge1 −
(

1
2

Γ22 − iω2

)
ρge2 ,

ρ̇e2g = −1
2

Γ21ρe1g −
(

1
2

Γ22 + iω2

)
ρe2g. (1.57)

These are the equations for coherences and one should transform into
another via hermitian conjugation, but this is not fulfilled because of
the cross-damping terms Γ12 ̸= Γ21. Thus, ρge2 ̸= ρ∗e2g and the solution
of the master equation might lead to unphysical results. For degenerate
transitions, Γ12 = Γ21 and hermiticity is naturally restored. For the
non-degenerate transition, hermiticity can be restored artificially by
setting

ωj → ωij =
√

ωiωj, (1.58)

in (1.37a) [21]. In this way the coefficients become Γij = 4
3

d⃗∗i d⃗j

h̄c3 ω3
ij = Γji

with ωij =
√

ωiωj. However, the step (1.58) is done in a non-systematic
way, which causes a question about the validity of such procedure.
Particularly one may ask a practical question: how large can be the
energy gap between the transitions δω = ω2 − ω1 in order to justify
the action (1.58)?

The cross-damping terms Γij are important for spectroscopy. Let us
assume that the atom is excited to one of the upper states or their
linear superposition by a short laser pulse. The atom will decay to the
ground state, emitting a photon. The intensity of emitted light can be
written via atomic coherences ρgei [21]:

I(t) ∼ Γ11|ρge1(t)|2 + Γ22|ρge2(t)|2 + 2Γ12Re(ρge1(t)ρge2(t)). (1.59)

If we neglect the damping rates, then the coherences can be approx-
imately written as ρge1(t) ≈ ρge1 eiωit and, thus, the light intensity
reads:

I(t) ∼ Γ11|ρge1 |2 + Γ22|ρge2 |2 + 2Γ12Re(ρge1 ρge2) cos(tδω). (1.60)

The light intensity (1.60) clearly exhibits oscillations in time with the
period δω, they are also called quantum beats [48]. These intensity
oscillations can be measured and from their period we can extract the
magnitude δω [49]. Note that if the cross-damping terms, entering
the expression for emission light intensity, are at the basis of the phe-
nomena of quantum beats. The interference process between parallel
dipoles for a single atom, leading to the single-atom cross-interference
terms, is illustrated in Fig. 2.1(a).
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1.3.4 A pair of two-level atoms

Now we consider two emitters, composed each by two levels, coupled
via dipole-dipole interaction, pinned at positions R⃗1 and R⃗2. The single-
atom Lamb shift value is included in the transition eigenfrequency, we
do not include the non-secular parts and the temperature-dependent
coefficients here. The master equation reads:

∂tρ̂ =
1
ih̄ ∑

α=1,2

ĤA
α +

2

∑
β( ̸=α)=1

ĤCLS
αβ , ρ̂


+

2

∑
α,β=1

Γαβ

2

(
2σ̂βρ̂σ̂†

α − σ̂†
α σ̂βρ̂ − ρ̂σ̂†

α σ̂β

)
. (1.61)

The Hamiltonian matrix in the commutator is not diagonal in the basis
{|gg⟩, |ge⟩, |eg⟩, |ee⟩} due to the dipole-dipole interaction terms:

∑
α=1,2

ĤA
α +

2

∑
β( ̸=α)=1

ĤCLS
αβ =


0 0 0 0

0 h̄ω0 h̄Λ12 0

0 h̄Λ12 h̄ω0 0

0 0 0 2h̄ω0

 .

The coefficients Λ12 are functions of the interatomic distance R12 =

|R⃗1 − R⃗2| (1.43). These coefficients vanish in the limit R12 → ∞ and
diverge when R12 → 0 as shown in Fig. 1.3(b). The Hamiltonian matrix
is diagonal in the so-called "molecular eigenstates" basis [21]:

|g⟩ = |gg⟩,

|s⟩ = 1√
2
(|eg⟩+ |ge⟩) ,

|a⟩ = 1√
2
(|eg⟩ − |ge⟩) ,

|e⟩ = |ee⟩, (1.62)

where |s⟩ and |a⟩ are the symmetric and antisymmetric states respec-
tively, we also have a set of eigenenergies:

Eg = 0, Es = h̄(ω0 + Λ12), Ea = h̄(ω0 − h̄Λ12), Ee = 2h̄ω0.

In the basis (1.62) the master equation (1.61) is solved straightfor-
ward, solutions for coherencies ρsg(t) and ρag(t) read

ρsg(t) = ρsg(0)e−i(ω0+Λ12)t−
Γ+Γ12

2 t,

ρag(t) = ρag(0)e−i(ω0−Λ12)t−
Γ−Γ12

2 t. (1.63)

We see that the dipole–dipole interaction causes an energy gap 2h̄Λ12

between the symmetric and antisymmetric states and also modifies
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Figure 1.3: Interatomic coupling term (1.37a) for two-level limit Γ12 versus
the interatomic distance R12 (a): light blue curve corresponds
to the case ε̂12 = 0, blue curve is for ε̂12 = 1, grey line is the
single-atom spontaneous decay rate Γ. Interatomic coupling term
(1.43) for two-level limit Λ12 versus the interatomic distance R12
(b): red curve corresponds to the case ε̂12 = 0, orange curve is for
ε̂12 = 1.

their lifetimes. The symmetric state with the enhanced decay rate
is also called superradiant, while the antisymmetric one is called
subradiant. In the limit R12 → 0 we have Γ12 → Γ (it is shown in Fig.
1.3(a)) and the linewidth of the superradiant state is twice larger than
for a single atom, while the subradiant state becomes stable.

Assuming that the atomic pair is driven by a laser field we can add
the driving laser Hamiltonian

ĤL = h̄ ∑
α=1,2

Ω ei(⃗kL R⃗α−ωLt)σ̂†
α + H.c., (1.64)

in the Liouvillian of (1.61), where k⃗L is the laser wave-vector, ωL =

c|⃗kL|, and Ω is the Rabi frequency, the derivation of (1.64) is given
in Appendix 1.4.5. The explicit time-dependence of the complete
hamiltonian Ĥ = ∑α=1,2 ĤA

α + ĤL
α + ∑2

β( ̸=α)=1 ĤCLS
αβ (ĤL

α corresponds
to a single term on the RHS of (1.64)) disappears in a reference frame
oscillating with a laser frequency ωL = ω0 + δL, where δL is a laser
detuning defined with respect to transition frequency of a single atom
ω0. In the rotating frame the full hamiltonian reads

Ĥ = h̄


0 Ω∗

2 Ω∗
1 0

Ω2 −δL Λ12 Ω∗
1

Ω1 Λ12 −δL Ω∗
2

0 Ω1 Ω2 −2δL

 ,

where Ωα = Ω ei⃗kL R⃗α and further in molecular basis (1.62) {|g⟩, |s⟩, |a⟩, |e⟩}

Ĥ = h̄


0 Ω∗

s Ω∗
a 0

Ωs −(δL − Λ12) 0 Ω∗
s

Ωa 0 −(δL + Λ12) −Ω∗
a

0 Ωs −Ωa −2δL

 .
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We see that the ground state |g⟩ is coupled with the symmetric |s⟩ and
antisymmetric |a⟩ states by certain Rabi frequencies

Ωs = Ω
ei⃗kL R⃗1 + ei⃗kL R⃗2

√
2

, (1.65)

Ωa = Ω
ei⃗kL R⃗1 − ei⃗kL R⃗2

√
2

. (1.66)

From (1.66) we can see that if the atoms are illuminated with the
same phase, i.e. when k⃗LR⃗1 = k⃗LR⃗2, the coupling between the ground
and antisymmetric states vanishes. We solve numerically the master
equation (1.61) with the driving laser Hamiltonian (1.64) for various
laser detunings δL = ωL − ω0. We pin the atoms at a relative distance
|R⃗12| = 0.025λ and drive them as shown in Fig 1.4(a), the laser field is
always kept such that E⃗L ⊥ R⃗12 and Ω = 20Γ.

We use the numeric solution to construct the photon-count signal
[15] as a function of the laser detuning

S(δL) =
N=2

∑
α,β=1

ΓαβTr
[
σ̂βρ̂ σ̂†

α

]
, (1.67)

the results of the calculations are given in Figs 1.4(b)-(f). In Figs. 1.4(b)-
(e) we can see that the system’s spectrum consists of three lines: the
red-shifted narrow peak and the blue-shifted broadened peak are
associated with transitions to symmetric and antisymmetric states,
respectively, the central peak is associated with the double-excited
state |ee⟩. Note that, the smaller the angle between the vectors k⃗L and
R⃗12, the smaller the intensity of the red-shifted subradiant peak. This
is because, as the angle decreases, we approach to the case where
the atoms are illuminated by the laser in the same phase, which
means vanishing of the corresponding Rabi frequency (1.66). In the
limit k⃗L ⊥ R⃗12 shown in Fig. 1.4(f) the subradiant peak disappears.
Thus, as already noted, the excitation spectra show both symmetric
and antisymmetric collective states, except for the special case when
the atoms are driven in-phase. In this particular case the subradiant
component disappears.

One may conclude that the interatomic dipole–dipole interaction
forms collective states, their spectral properties depend on the co-
efficients Γii

αβ (1.37a) and Λii
αβ (1.43) (α ̸= β), these coefficients are

schematically shown in Fig. 2.1(b). The interatomic dipole–dipole in-
terference can occur also between different types of dipoles, these
processes correspond to the terms Γij

αβ, Λij
αβ (α ̸= β, i ̸= j) in the master

equation, they are schematically displayed in Fig. 2.1(c). These terms
are relevant, for example, for quantum beats between non-identical
two-level atoms [21]. Their impact has also been studied in superradi-
ant atomic ensembles in the case of interfering degenerate orthogonal
dipoles [5, 24].
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Figure 1.4: Spatial orientation of the driving laser wave vector k⃗L and the
interatomic axis vector R⃗12 = R⃗1 − R⃗2 (a). The photon-count
signals are given for angles φ = 0.025π (b), φ = 0.005π (c),
φ = 0.0025π (d), φ = 0.001π (e), φ = 0 (f). All calculations
are performed for Ω = 20Γ and |R⃗12| = 0.025λ, atomic dipole
moments are taken oriented perpendicularly to the interatomic
axis. The laser detuning δL is taken with respect to the transition
frequency of a single atom ω0: ωL = ω0 + δL.

1.4 appendix

Here we present some arithmetic details of the derivation of the master
equation, which we removed from the main text in order to improve
its readability.
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1.4.1 Combination of various terms in the von Neumann equation

After we explicitly write the double commutator from (1.23) we get:

∂ρ̃(t)
∂t

= − 1
h̄2 ∑

α,β

∫ t

0
dt1TrR

[
Ṽα(t)Ṽβ(t1)(ρ̃(t1)⊗ R̂)

]
−TrR

[
Ṽβ(t1)(ρ̃(t1)⊗ R̂)Ṽα(t)

]
−TrR

[
Ṽα(t)(ρ̃(t1)⊗ R̂)Ṽβ(t1)

]
+TrR

[
(ρ̃(t1)⊗ R̂)Ṽβ(t1)Ṽα(t)

]
. (1.68)

Now we insert the explicit form of the interaction operator into (1.68):

∂ρ̃(t)
∂t

= −∑
α,β

∑
i,j

∫ t

0
dt1⟨Γ̃†

iα(t)Γ̃
†
jβ(t1)⟩R σ̃i

α(t)σ̃
j
β(t1)ρ̃(t1) (1.69a)

+⟨Γ̃†
iα(t)Γ̃jβ(t1)⟩R σ̃i

α(t)σ̃
j †
β (t1)ρ̃(t1) (1.69b)

+⟨Γ̃iα(t)Γ̃†
jβ(t1)⟩R σ̃i †

α (t)σ̃j
β(t1)ρ̃(t1) (1.69c)

+⟨Γ̃iα(t)Γ̃jβ(t1)⟩R σ̃i †
α (t)σ̃j †

β (t1)ρ̃(t1) (1.69d)

−⟨Γ̃†
iα(t)Γ̃

†
jβ(t1)⟩R σ̃

j
β(t1)ρ̃(t1)σ̃

i
α(t) (1.69e)

−⟨Γ̃iα(t)Γ̃†
jβ(t1)⟩R σ̃

j
β(t1)ρ̃(t1)σ̃

i †
α (t) (1.69f)

−⟨Γ̃†
iα(t)Γ̃jβ(t1)⟩R σ̃

j †
β (t1)ρ̃(t1)σ̃

i
α(t) (1.69g)

−⟨Γ̃iα(t)Γ̃jβ(t1)⟩R σ̃
j †
β (t1)ρ̃(t1)σ̃

i †
α (t) (1.69h)

−⟨Γ̃†
jβ(t1)Γ̃†

iα(t)⟩R σ̃i
α(t)ρ̃(t1)σ̃

j
β(t1) (1.69i)

−⟨Γ̃jβ(t1)Γ̃†
iα(t)⟩R σ̃i

α(t)ρ̃(t1)σ̃
j †
β (t1) (1.69j)

−⟨Γ̃†
jβ(t1)Γ̃iα(t)⟩R σ̃i †

α (t)ρ̃(t1)σ̃
j
β(t1) (1.69k)

−⟨Γ̃jβ(t1)Γ̃iα(t)⟩R σ̃i †
α (t)ρ̃(t1)σ̃

i †
β (t1) (1.69l)

+⟨Γ̃†
jβ(t1)Γ̃†

iα(t)⟩R ρ̃(t1)σ̃
j
β(t1)σ̃

i
α(t) (1.69m)

+⟨Γ̃†
jβ(t1)Γ̃iα(t)⟩R ρ̃(t1)σ̃

j
β(t1)σ̃

i †
α (t) (1.69n)

+⟨Γ̃jβ(t1)Γ̃†
iα(t)⟩R ρ̃(t1)σ̃

j †
β (t1)σ̃

i
α(t) (1.69o)

+⟨Γ̃jβ(t1)Γ̃iα(t)⟩R ρ̃(t1)σ̃
j †
β (t1)σ̃

i †
α (t). (1.69p)

We have 16 terms in the current equation, we combine them as follows:
(1.69a) with (1.69e), (1.69b) with (1.69g), (1.69c) with (1.69f), (1.69d)
with (1.69h), (1.69i) with (1.69m), (1.69j) with (1.69o), (1.69k) with
(1.69n), (1.69l) with (1.69p). The result reads
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∂ρ̃(t)
∂t

= ∑
α,β

∑
i,j

∫ t

0
dt1⟨Γ̃†

iα(t)Γ̃
†
jβ(t1)⟩R [σ̃

j
β(t1)ρ̃(t1), σ̃i

α(t)]

+⟨Γ̃†
iα(t)Γ̃jβ(t1)⟩R [σ̃

j †
β (t1)ρ̃(t1), σ̃i

α(t)]

+⟨Γ̃iα(t)Γ̃†
jβ(t1)⟩R [σ̃

j
β(t1)ρ̃(t1), σ̃i †

α (t)]

+⟨Γ̃iα(t)Γ̃jβ(t1)⟩R [σ̃
j †
β (t1)ρ̃(t1), σ̃i †

α (t)] (1.70a)

+⟨Γ̃†
jβ(t1)Γ̃†

iα(t)⟩R [σ̃i
α(t), ρ̃(t1)σ̃

j
β(t1)]

+⟨Γ̃jβ(t1)Γ̃†
iα(t)⟩R [σ̃i

α(t), ρ̃(t1)σ̃
j †
β (t1)]

+⟨Γ̃†
jβ(t1)Γ̃iα(t)⟩R [σ̃i †

α (t), ρ̃(t1)σ̃
j
β(t1)]

+⟨Γ̃jβ(t1)Γ̃iα(t)⟩R [σ̃i †
α (t), ρ̃(t1)σ̃

j †
β (t1)]. (1.70b)

The quantity (1.70a) is hermitian conjugated of (1.70b). Here we intro-
duce correlation functions:

C++
(iα)(jβ)(t − t1) = ⟨Γ̃†

iα(t)Γ̃
†
jβ(t1)⟩R; C−+

(iα)(jβ)(t − t1) = ⟨Γ̃iα(t)Γ̃†
jβ(t1)⟩R;

C+−
(iα)(jβ)(t − t1) = ⟨Γ̃†

iα(t)Γ̃jβ(t1)⟩R; C−−
(iα)(jβ)(t − t1) = ⟨Γ̃iα(t)Γ̃jβ(t1)⟩R.

(1.71)

Let it be t1 = t − τ, then:

C++
(iα)(jβ)(τ) = ∑

λ

(gλ
iα)

∗ ḡλ
jβeiωλτn(ωλ, T)+ ḡλ

iα(gλ
jβ)

∗e−iωλτ(1+n(ωλ, T)),

(1.72a)
C−+
(iα)(jβ)(τ) = ∑

λ

gλ
iα(gλ

jβ)
∗e−iωλτ(1+n(ωλ, T))+ (ḡλ

iα)
∗ ḡλ

jβeiωλτn(ωλ, T),

(1.72b)
C+−
(iα)(jβ)(τ) = ∑

λ

(gλ
iα)

∗gλ
jβeiωλτn(ωλ, T)+ ḡλ

iα(ḡλ
jβ)

∗e−iωλτ(1+n(ωλ, T)),

(1.72c)
C−−
(iα)(jβ)(τ) = ∑

λ

gλ
iα(ḡλ

jβ)
∗e−iωλτ(1+n(ωλ, T))+ (ḡλ

iα)
∗ ḡλ

jβeiωλτn(ωλ, T).

(1.72d)
Here above we have used the following relations:

⟨â†
λ âλ′⟩ = δλλ′n(ωλ, T), ⟨âλ â†

λ′⟩ = δλλ′(1 + n(ωλ, T)), (1.73)

where n(ωλ, T) = 1
exp(h̄ωλ/(kBT))−1 is a mean number of photons at

mode λ of the thermal reservoir, a detailed derivation of quantities
(1.73) is given in Appendix 1.4.2. Now we make some additional as-
sumptions. We assume that the photon reservoir has a very large
quantisation volume and, thus, the spectra of photon modes is contin-
uous. It allows us to go from the discrete sum to the integral form:

∑
λ

→ V
(2π)3c3

∫ ωcut

0
dω ω2

∫
4π

dΩ ∑
µ=±1

, (1.74)

explicit integration over the angular variables is given in Appendix
1.4.3.



1.4 appendix 21

1.4.1.1 Coefficients of the master equation

After we implement the formula (1.31) to the equation (1.30) we obtain:

∂ρ̃

∂t
= ∑

α,β
∑
i,j(

1
2

Γij
αβ(n(ωj, T) + 1)− i∆αβ

− ij − i∆αβ
T ij
)
[σ̃

j
β(t)ρ̃(t), σ̃i

α(t)]

+

(
1
2

Γij
αβ(n(ωj, T) + 1)− i∆αβ

− ij − i∆αβ
T ij
)
[σ̃

j
β(t)ρ̃(t), σ̃i †

α (t)]

+

(
1
2

Γij ∗
αβ n(ωj, T)− i

(
∆αβ

+ ij
)∗

+ i
(

∆αβ
T ij
)∗)

[σ̃
j †
β (t)ρ̃(t), σ̃i

α(t)]

+

(
1
2

Γij ∗
αβ n(ωj, T)− i

(
∆
+ ij
αβ

)∗
+ i
(

∆
T ij
αβ

)∗)
[σ̃

j †
β (t)ρ̃(t), σ̃i †

α (t)]

+

(
1
2

Γij
αβn(ωj, T) + i∆αβ

+ ij − i∆αβ
T ij
)
[σ̃i

α(t), ρ̃(t)σ̃j
β(t)]

+

(
1
2

Γij ∗
αβ (n(ωj, T) + 1) + i

(
∆αβ

− ij
)∗

+ i
(

∆αβ
T ij
)∗)

[σ̃i
α(t), ρ̃(t)σ̃j †

β (t)]

+

(
1
2

Γij
αβn(ωj, T) + i∆αβ

+ ij − i∆αβ
T ij
)
[σ̃i †

α (t), ρ̃(t)σ̃j
β(t)]

+

(
1
2

Γij ∗
αβ (n(ωj, T) + 1) + i

(
∆
− ij
αβ

)∗
+ i
(

∆αβ
T ij
)∗)

[σ̃i †
α (t), ρ̃(t)σ̃j †

β (t)].

(1.75)

The coefficients of (1.75) contain both real and imaginary parts. Col-
lecting the real coefficients is quite straightforward and we focus on
the imaginary ones, their expressions read

∆± ij
αβ =

di∗
α dj

β

(2π)2h̄c3P
∫ ωcut

0
dω

ω3Fij
αβ(kR)

ω ± ωj
, (1.76a)

∆
± ij
αβ =

di
αdj

β

(2π)2h̄c3P
∫ ωcut

0
dω

ω3Fij
αβ(kR)

ω ± ωj
, (1.76b)

∆T ij
αβ =

di∗
α dj

β

(2π)2h̄c3P
∫ ωcut

0
dω n(ω, T)Fij

αβ(kR)
(

ω3

ω − ωj
− ω3

ω + ωj

)
,

(1.76c)

∆
T ij
αβ =

di
αdj

β

(2π)2h̄c3P
∫ ωcut

0
dω n(ω, T)Fij

αβ(kR)
(

ω3

ω − ωj
− ω3

ω + ωj

)
.

(1.76d)
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Here below we focus on the secular imaginary terms of (1.75):

i Im (∂tρ̃)sec = i ∑
α,β

∑
i,j

(
−∆αβ

− ij − ∆αβ
T ij
)
[σ̃

j
β(t)ρ̃(t), σ̃i †

α (t)]

+
(
−
(

∆αβ
+ ij
)∗

+
(

∆αβ
T ij
)∗)

[σ̃
j †
β (t)ρ̃(t), σ̃i

α(t)]

+
((

∆αβ
− ij
)∗

+
(

∆αβ
T ij
)∗)

[σ̃i
α(t), ρ̃(t)σ̃j †

β (t)]

+
(

∆αβ
+ ij − ∆αβ

T ij
)
[σ̃i †

α (t), ρ̃(t)σ̃j
β(t)].

We can rewrite it in a more compact form if we exchange indexes for
the third and the fourth terms i ↔ j, α ↔ β:

i Im (∂tρ̃)sec =
1
ih̄ ∑

α,β
∑
i,j
(−h̄)

(
∆αβ

− ij + ∆αβ
T ij
)
[σ̃i †

α (t)σ̃j
β(t), ρ̃(t)]+

+(−h̄)
((

∆αβ
+ ij
)∗

−
(

∆αβ
T ij
)∗)

[σ̃i
α(t)σ̃

j †
β (t), ρ̃(t)].

(1.77)

Further arithmetic actions significantly depend on whether the atomic
operators in commutators (1.77) refers to the same atom (α = β) or
not (α ̸= β) because of the commutation relationship for the atomic
operators. For a single atom (α = β) we can write the expression (1.77)
in the form:

i Im (∂tρ̃)sec, (α=β) =
1
ih̄ ∑

α

[
H̃LS

α (t), ρ̃(t)
]

, (1.78)

the expression of operator H̃LS
α (t) is given by (1.39). In the second

case (α ̸= β in (1.77)) we can swap the operator’s order in the second
commutator σ̃i

ασ̃
j †
β = σ̃

j †
β σ̃i

α and change the indexes, then the equation
(1.77) reads:

i Im (∂tρ̃)sec, (α ̸=β) =
1
ih̄

(−h̄) ∑
α,β( ̸=α)

∑
i,j

σ̃i †
α (t)σ̃j

β(t)
(

∆−ij
αβ + ∆+ij

αβ

)
, ρ̃(t)

 ,

(1.79)
with the sum in the parentheses

(−h̄)
(

∆−ij
αβ + ∆+ij

αβ

)
=

= (−h̄)
di∗

α dj
β

(2π)2h̄c3

P
∫ ωcut

0

ω3Fij
αβ(k jR)

ω − ωj
+

ω3Fij
αβ(k jR)

ω + ωj
dω

 . (1.80)

We can make a variable change in the second term ω → −ω and set
ωcut → ∞, then:

(−h̄)
(

∆−ij
αβ + ∆+ij

αβ

)
= (−h̄)

 di∗
α dj

β

(2π)2h̄c3P
∫ ∞

−∞

ω3Fij
αβ(k jR)

ω − ωj
dω

 .

(1.81)
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Note, that the quantity in the figure brackets and the dissipator’s
coefficient Γij

αβ (1.37a) are connected by the Kramers–Kronig relation.
The integral over frequencies can be calculated and the final expression
for (1.80) reads:

h̄Λij
αβ = h̄

di∗
α dj

β

h̄c3 ω3
j

{
−

cos(k jR)
k jR

(
(⃗e i∗

α · e⃗ j
β)− ε̂i∗

αβ ε̂
j
αβ

)
+

(
sin(k jR)
(k jR)2 +

cos(k jR)
(k jR)3

)(
(⃗e i∗

α · e⃗ j
β)− 3ε̂i∗

αβ ε̂
j
αβ

)}
(1.82)

and finally we can write for (1.79):

i Im (∂tρ̃)sec, (α ̸=β) =
1
ih̄ ∑

α ̸=β

[
H̃CLS

αβ , ρ̃
]

, (1.83)

where Hamiltonian H̃CLS
αβ describes an effective interaction between

dipolar transitions of different atoms (1.42).

1.4.2 Mean values of the field operators for the thermal reservoir

During derivation of the master equation we take a specific form of
the photon reservoir - a thermal reservoir [35]:

R̂ =
1
Z

e−
ĤR
kBT = ∏

λ

{
e−h̄ωλ â†

λ âλ/(kBT)
(

1 − e−h̄ωλ/(kBT)
)}

, (1.84)

where ĤR is defined by (1.4). We use this photon state for calculation
of mean values ⟨â†

λ âλ′⟩ and ⟨âλ â†
λ′⟩

⟨â†
λ âλ′⟩R = δλλ′

[
∏

ν( ̸=λ)

(
∞

∑
nν=0

e−h̄ωνnν/(kBT)(1 − e−h̄ων/(kBT))

)]

×
(

∞

∑
nλ=0

nλe−h̄ωλnλ/(kBT)(1 − e−h̄ωλ/(kBT))

)

= δλλ′

∞

∑
nλ=0

nλe−h̄ωλnλ/(kBT)(1 − e−h̄ωλ/(kBT)), (1.85)

the sum can be cast into geometric series:

∞

∑
n=0

ne−an = − ∂

∂a

∞

∑
n=0

e−an = − ∂

∂a
1

1 − e−a =
e−a

(1 − e−a)2 .

Thus, the final result reads

⟨â†
λ âλ′⟩ = δλλ′n(ωλ, T), (1.86)

with the mean photon number in mode λ:

n(ωλ, T) =
1

eh̄ωλ/(kBT) − 1
.
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Similarly it is easy to show that

⟨âλ â†
λ′⟩R = δλλ′(1 + n(ωλ, T)), (1.87)

⟨â†
λ â†

λ′⟩R = ⟨âλ âλ′⟩R = 0, (1.88)

using the commutators (1.5).

1.4.3 Angular integration of the correlation function

When we perform the procedure of reduction, we consider the limit of
large quantisation volume, and we can cast the sum over the reservoir’s
modes into an integral, where the sum over photon polarisations is
included. Let vectors a⃗ and b⃗ represent the dipole moments, then:∫

Ω
dΩ ∑

µ=±1
(⃗a · e⃗⃗k,µ)(⃗b · e⃗∗

k⃗,µ
)ei⃗kR⃗αβ =

8π

3
a⃗

↔
D

Ω

αβ b⃗, (1.89)

where the integration region should involve all photon modes Ω =

4π. The sum over the polarisations and the angular integration are
included in a matrix:

↔
D

4π

αβ=
3

8π

∫
Ω=4π

dΩ ei⃗kR⃗αβ ∑
µ=±1

e⃗⃗k,µ⃗e T
k⃗,µ︸ ︷︷ ︸

matr

=
3

8π

∫
Ω=4π

dΩ ei⃗kR⃗αβ

(
Î3 − e⃗k e⃗ T

k

)
, (1.90)

where e⃗k = k⃗/|⃗k| and Î3 is a unit matrix of size 3 × 3. Let us chose the
unit wave vector as follows

e⃗k =

sin (θ) cos (ϕ)

sin (θ) sin (ϕ)

cos (θ)

 , (1.91)

where the polar angle θ is defined with respect to vector R⃗αβ (we
chose vector R⃗αβ in the integrand of (1.90) as R⃗αβ = {0, 0, Rαβ} in
cartesian coordinate system). The angular integrals can be calculated
straightforwardly, the answer reads

↔
D

4π

αβ =
3

8π

D1(kRαβ) 0 0

0 D1(kRαβ) 0

0 0 D1(kRαβ)− D2(kRαβ)


=

3
8π

(
D1(kRαβ)Î3 − D2(kRαβ )⃗eR e⃗ T

R

)
, (1.92)

where e⃗R =
R⃗αβ

Rαβ
and

D1 = 4π

(
sin(x)

x
+

cos(x)
x2 − sin(x)

x3

)
, (1.93)

D2 = 4π

(
sin(x)

x
+ 3

cos(x)
x2 − 3

sin(x)
x3

)
. (1.94)
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Now the product in the RHS of (1.89) reads

8π

3
a⃗

↔
D

4π

αβ b⃗ = |⃗a||⃗b| × Fab
αβ(kRαβ), (1.95)

here Fab
αβ(kRαβ) is so-called diffraction type function [2]

Fab
αβ(kRαβ) = 4π

{
sin(kRαβ)

kRαβ

(
(⃗ea · e⃗b)− ε̂a

αβ ε̂b
αβ

)
+

(
cos(kRαβ)

(kRαβ)2 −
sin(kRαβ)

(kRαβ)3

)(
(⃗ea · e⃗b)− 3ε̂a

αβ ε̂b
αβ

)}
, (1.96)

it describes the strength of the interatomic dipole–dipole coupling
versus the interatomic distance. The symbol ε̂a

αβ denotes a projection

of vector a⃗ on the interatomic distance Rαβ: ε̂a
αβ =

a⃗·R⃗αβ

|⃗a||R⃗αβ|
. For short

distances the RHS of (1.96) reads

Fab
αβ(x) x→0−−→ 4π

{
1 ×

(
(⃗ea · e⃗b)− ε̂a

αβ ε̂b
αβ

)
+

(
1 − 1

2 x2

x2 −
x − 1

6 x3

x3

)(
(⃗ea · e⃗b)− 3ε̂a

αβ ε̂b
αβ

)}
=

=
8π

3
(⃗ea · e⃗b). (1.97)

1.4.4 About atomic dipole moments

Here below we present a general expression for a dipole moment,
which correspond to transition between two given atomic states
|n, L, S, J, F, MF⟩ → |n′, L′, S′, J′, F′, M′

F⟩. We consider the following
momentum coupling scheme:

F⃗ = I⃗ + J⃗, (1.98)

J⃗ = L⃗ + S⃗, (1.99)

where S⃗, L⃗ and J⃗ are the spin, the orbital angular momentum and the
total angular momentum of an electron, I⃗ is the angular momentum of
an atomic nuclei (individual for specific isotopes), F⃗ is the total angular
momentum of the atom. The general expression for the dipole moment
can be construct form a consequence of the following identities:

⟨n, F, MF|d̂q|n′, F′, M′
F⟩ = (−1)F−MF

(
F 1 F′

−MF q M′
F

)
⟨n, F|d̂|n′, F′⟩,

(1.100)
where MF is the magnetic quantum number MF = −F,−F + 1, ..., F −
1, F and ⟨n, F|d̂|n′, F′⟩ = ⟨n, J, I, F|d̂|n′, J′, I′, F′⟩, where

⟨n, J, I, F|d̂|n′, J′, I′, F′⟩ =

= (−1)I+1−J′−F
√
(2F + 1)(2F′ + 1)W(JFJ′F′; I1) ⟨n, J|d̂|n′, J′⟩,

(1.101)
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where ⟨n, J|d̂|n′, J′⟩ = ⟨n, L, S, J|d̂|n′, L′, S′, J′⟩ and

⟨n, L, S, J|d̂|n′, L′, S′, J′⟩ =

= (−1)S+1−L′−J
√
(2J + 1)(2J′ + 1)W(LJL′ J′; S1)× ⟨n, L|d̂|n′, L′⟩,

(1.102)

with

⟨n, L|d|n′, L′⟩ =
√
(2L + 1)(2L′ + 1)

(
L 1 L′

0 0 0

) ∫ ∞

0
dr r3RnLRn′L′︸ ︷︷ ︸
dR(n′L′,nL)

.

(1.103)
Note that the 3j-symbols obey the following selection rule: |F − 1| ≤
F′ ≤ F + 1, MF − M′

F = q, where q = 0,±1 corresponds to π and σ±

polarisations, respectively. Dipole moments with the same value of
q are called parallel. The expressions (1.101) and (1.102) follow the
momentum couplings, W(j1, j2, l1, l2; J, L) is the Racah W-coefficient,
which is related with Wigner’s 6-j symbols:

W(j1, j2, l1, l2; J, L) = (−1)j1+j2+l1+l2

{
j1 j2 J

l2 l1 L

}
.

The radial integral in (1.103) can be computed exactly only for hy-
drogen and the hydrogen-like single-electron ions. For many-electron
atoms one can use the Hartree-Fock approach and its generalizations,
such as MCHF [52] or RPAE [53], to calculate the radial integrals
with satisfactory precision. However, in practise the values of radial
integrals are extracted from available experimental data. The final
expression for an atomic dipole moment reads:

⟨n, F, MF|d̂q|n′, F′, M′
F⟩ = (−1)MF+I−J′+S−L′−J

(
F 1 F′

−MF q MF

)
×

×
√
[F][F′][J][J′][L][L′]W(JFJ′F′; I1)W(LJL′ J′; S1)×

×
(

L 1 L′

0 0 0

)
dR(n′L′, nL), (1.104)

where [k] = 2k + 1.

1.4.5 Laser field hamiltonian

Here we present detailed derivation of the driving laser hamiltonian.
A quantized laser field state could be considered as a coherent state
|αλ⟩ ∈ HR, which defined as follows [35]:

|αλ⟩ = D̂λ(α)|vac⟩, (1.105)
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where D̂λ(α) is a displacement operator:

D̂λ(α) = eαâ†
λ+α∗ âλ , (1.106)

with α ∈ C. Let us assume laser at a certain mode λ and freequency
ωL. Then the density matrix of the laser field state reads

R̂ = D̂λL(αe−iωLt)|vac⟩⟨vac|D̂†
λL
(αe−iωLt). (1.107)

Now we perform a unitary transformation in order to simplify the
basis of the reservoir state. The transformation reads

ÛL = D̂†
λL
(αe−iωLt) = D̂λL(−αe−iωLt). (1.108)

After we apply the transformation (1.108) to (1.107) we get transformed
density matrix for reservoir

R̂′ = |vac⟩⟨vac|. (1.109)

The next step is apply the transformation (1.108) to the hamiltonian
(1.3)

Ĥ′ = ÛLĤÛ†
L − ih̄ ÛL

∂Û†
L

∂t
. (1.110)

In order to obtain the transformed hamiltonian we have to evaluate
all the terms of the original hamiltonian. First of all let us evaluate the
creation and annihilation field operators of photons â and â† using
so-called the Baker-Haussdorf lemma [54]

eÂB̂e−Â = B̂ + [Â, B̂] +
1
2!
[Â, [Â, B̂]] +

1
3!
[Â, [Â, [Â, B̂]]] + ... (1.111)

Using lemma (1.111) the transformed creation operator reads

ÛL(t)â†
λÛ†

L(t) = D̂†
λL
(αe−iωLt)â†

λD̂λL(αe−iωLt)

= â†
λ + [−αe−iωLt â†

L + α∗eiωLt âL, âλ]

= â†
λ + α∗eiωLtδLλ1R. (1.112)

Analogiously transformed annihilation operator

ÛL(t)âλÛ†
L(t) = âλ + αe−iωLtδLλ1R. (1.113)

Equations (1.112) and (1.113) can be generalized for an arbitrary poly-
nomial G(â, â†) [54], namely

ÛL(t)G(â, â†)Û†
L(t) = G(â + αe−iωLt1R, â† + α∗eiωLt1R). (1.114)

Using the equation (1.114) we can evaluate the reservoir hamiltonian
(1.4) as

ÛL(t)ĤRÛ†
L(t) = ∑

λ

h̄ωλ

(
ÛL â†

λ âλÛ†
L +

1
2

)
= ∑

λ

h̄ωλ

[
(â†

λ + α∗eiωLtδλL1R)(âλ + αe−iωLtδλL1R) +
1
2

]
= ĤR + h̄ωL

(
α∗eiωLt1R âL + αe−iωLt1R â†

L + |α|21R

)
.

(1.115)
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Atomic system hamiltonian acts in HA. It means that it commutes
with the transformation operator ÛL and the transformed atomic
Hamiltonian is identical to the original one

ÛLĤAÛ†
L = ÛLÛ†

LĤA = ĤA. (1.116)

The interaction operator (1.6) contains the sum over all the atoms, the
result of the unitary transformation for one of them reads:

V̂α = h̄ ∑
λ

∑
i

(
ḡλ

iα âλei⃗kλ R⃗α +
(

gλ
iα

)∗
â†

λe−i⃗kλ R⃗α

)
σ̂i

α

+
(

gλ
iα âλei⃗kλ R⃗α +

(
ḡλ

iα

)∗
â†

λe−i⃗kλ R⃗α

)
σ̂i †

α .

It contains single creation and annihilation operators, thus we can use
results (1.112) and (1.113) to evaluate the interaction operator

ÛLV̂αÛ†
L = V̂α+

+ h̄ ∑
i

((
gL

iα

)∗
α∗e−i(⃗kL R⃗α−ωLt)1R + ḡL

iααei(⃗kL R⃗α−ωLt)1R

)
σ̂i

α

+
(

gL
iααei(⃗kL R⃗α−ωLt)1R +

(
ḡL

iα

)∗
α∗e−i(⃗kL R⃗α−ωLt)1R

)
σ̂i †

α . (1.117)

Thus, the transformation of the original operator V̂α gives the same
operator plus an additional term, which is called Laser-field hamilto-
nian

ĤL
α = h̄ ∑

i
Ω̄i

αei(⃗kL R⃗α−ωLt)1Rσ̂i
α + Ωi

αei(⃗kL R⃗α−ωLt)1Rσ̂i †
α + H.c., (1.118)

here Ω̄i
α = ḡL

iα and Ωi
α = gL

iα are Rabi frequencies. The transformation
of original hamiltonian has performed. The terms ∼ Ω̄i

α are the fast
oscillating terms and cn be omitted within the RWA. The last step is
to compute the second term in (1.110). The time-derivative reads

∂Û†
L

∂t
=

∂

∂t

(
eα exp(−iωLt)â†

L · e−α∗ exp(iωLt)âL
)

= αe−iωLt(−iωL)â†
LÛ†

L + eα exp(−iωLt)â†
L(−α∗eiωLt(iωL)âL)e−α∗ exp(iωLt)âL

= (−iωL)
[
αe−iωLt â†

LÛ†
L + α∗eiωLtÛ†

L âL

]
, (1.119)

we multiply it on ih̄ ÛL from the left side and get

ih̄ ÛL
∂Û†

L
∂t

= h̄ωL

(
αe−iωLt â†

L + α∗eiωLt âL + |α|21R

)
. (1.120)

The last equation vinishes with the second term of transformed reser-
voir hamiltonian (1.115). Thus, the whole transformed hamiltonian
reads

Ĥ′ = ĤA + ĤR + V̂ + ĤL. (1.121)

It has additional term, which has already been mentioned above, it is
the Laser-field hamiltonian

ĤL = ∑
α

ĤL
α = h̄ ∑

α
∑

i
Ωi

αei(⃗kL R⃗α−ωLt)1Rσ̂i †
α + H.c. (1.122)
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2.1 abstract

We derive a master equation for a superradiant medium which in-
cludes multilevel interference between the individual scatterers. The
derivation relies on the Born-Markov approximation and implements
the coarse-graining formalism. The master equation fulfills the Lind-
blad form and contains terms describing multilevel interference be-
tween parallel transitions of a single atom, multiatom interference
between identical transitions, and multiatom interference between
different electronic transitions with parallel dipoles. This formalism
is then applied to determine the excitation spectrum of two emitters
using the parameters of the hydrogen transitions 2S1/2 →4P1/2 and
2S1/2 →4P3/2, where the gap between the parallel dipoles is of the
order of GHz. The distortion of the signal due to the interplay of
multilevel and multiemitter interference is analyzed as a function of
their distance. These results suggest that interference between parallel

29



30 master equation for multilevel interference in a superradiant medium

dipolar transition can significantly affect the spectroscopic properties
of optically dense media.

2.2 introduction

Superradiance generally denotes a phenomenon which enhances ra-
diation. In quantum optics, it originates from quantum interference
in the light emission by an ensemble of atoms, molecules, or other
types of resonant emitters which form an optically-dense medium
[1–3]. In free space, this requires that the average interparticle distance
is smaller than the wavelength of the scattered radiation. Then, the
coupling of the individual atomic transitions with the modes of the
electromagnetic field can be effectively described in terms of collective
dipoles and the radiative properties depend on the collective spin
quantum numbers [1]. Superradiant (and subradiant) scattering plays
a relevant role in the spectroscopy of dense atomic gases [25, 55–60], it
could enhance transport of light in organic semiconductors [61], and
it is the key mechanism of recent realizations of ultranarrow lasers [62,
63].

Superradiant light scattering is often described by means of a per-
turbative expansion in the atom-photon interactions and using the
Born-Markov approximation [2–5, 20, 35, 38, 64–66]. Most theoreti-
cal treatments focus on two-level dipolar transitions [2–5, 20, 24, 38,
64–66], some also including the possible degeneracy of the ground
or excited state of the transition [5, 24, 66]. These treatments success-
fully predict experimental measurements at sufficiently low optical
densities. Qualitative discrepancies have been found when comparing
the predictions of these models with recent experiments with dense
atomic media [25, 56, 60]. This requires one to assess the effects of
terms which are typically discarded or only partially considered.

In this work we derive a master equation for an optically dense
medium and set our focus on vacuum-induced interference [6, 21, 67,
68]. Vacuum-induced interference refers to interference phenomena
between electronic transitions coupled to common modes of the elec-
tromagnetic field. If the transitions are dipolar, they are denoted by
parallel dipoles. Interference also occurs when the electromagnetic
field modes are in the vacuum, and is qualitatively different from
laser-induced interference [69]. In closed level structures, these ef-
fects can be tested by means of quantum beat spectroscopy and are
expected to give rise to "steady-state quantum beats" [21, 67]. They
are also expected to play an important role in high-precision spec-
troscopy [10, 15, 70, 71]. In this work, we determine the Born-Markov
master equation of multilevel scatterers in an optically dense medium
and which includes interference terms between parallel dipoles. For
this purpose, we derive the master equation by applying the coarse-
graining formalism of Refs. [17, 18]. The master equation that we
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Figure 2.1: Interfering processes leading to photon scattering by resonant
emitters. The emitter’s relevant states are the ground state |g⟩
and the excited states |e⟩, |e′⟩; the transitions |g⟩ → |e⟩ and
|g⟩ → |e′⟩ have parallel dipole moments. The horizontal lines
sketch the scattering processes, the wavy lines the photon, and the
level schemes give the corresponding occupation of the emitters’
internal levels (dot and circles). The emitters are initially in the
ground state (solid line). Photon absorption (first wiggle line) can
excite a coherent superposition of (a) the excited states of a single
emitter, (b) the resonant states of the two emitters, and (c) different
excited states of the two emitters but with parallel dipoles. Photon
emission (second wiggle line) projects the emitters in the same
final state. In this work, we analyze the spectroscopic features
due to the interference of these three processes.
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obtain preserves the Lindblad form and, in the limit of one single
emitter, it reduces to the coarse-grained master equation of Ref. [15].
We then apply it to determine the excitation spectrum and the light
shift of two identical emitters, each composed of two parallel dipoles
sharing the same ground state. In this simplified model, we show that
collective scattering results from the coherent sum of three processes,
which we illustrate in Fig. 2.1: (a) the interference between parallel
dipoles of the individual atoms, (b) the interference between resonant
transitions of different atoms, and (c) the interference between parallel
dipoles of different atoms. Here, we argue that in an optically dense
medium, they can give rise to measurable shifts of the spectroscopic
lines.

This work is organized as follows. In Sec. 2.3 we present the deriva-
tion of the master equation by eliminating the degrees of freedom of
the electromagnetic field within the Born-Markov approximation and
by implementing the coarse-graining method developed in Ref. [17].
By these means, we obtain a superoperator that fulfills the Lindblad
form. This superoperator consistently describes interference processes
between parallel dipoles of the individual atoms and interference
processes of different atoms. In Sec. 2.4, we then consider the specific
example of two emitters, composed of two parallel dipoles sharing
the same ground state, and determine their excitation spectrum using
the parameters of the transitions 2S1/2 →4P1/2 and 2S1/2 →4P3/2 of a
hydrogen atom. By means of a simple fitting function, we argue that
the interference effects give rise to measurable shifts of the resonance
lines. Finally, in Sec. 2.5, we draw the conclusions and discuss outlooks
of this work. The appendices contain details of the calculations in Sec.
2.3 and 2.4.

2.3 derivation of the superradiant master equation

In this section, we report the derivation of the Born-Markov master
equation for an optically dense atomic or molecular medium. Our
derivation follows the lines of textbook derivations [2, 6, 20, 35] and
we extend it by implementing the coarse-grained method developed
in Ref. [17]. This allows us to systematically take into account the
interference of parallel dipoles and, at the same time, to preserve
the Lindblad form of the master equation. In the single-atom limit,
our master equation reproduces the one derived in Ref. [15], which
includes the interference processes between parallel dipoles in a single
atom.

For convenience, in the following we assume an ensemble of emit-
ters with identical electronic transitions. This formalism, nevertheless,
can be straightforwardly extended to ensembles of different parti-
cles (which could also be a mixture of atoms and molecules) with
quasiresonant transitions. The relevant assumption is that the emitters
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are pinned at given positions and are distinguishable particles. Our
starting point is the von-Neumann equation governing the coherent
dynamics. Below we provide the salient steps leading to the corre-
sponding coarse-grained master equation for the emitters’ internal
degrees of freedom.

2.3.1 Multilevel emitters interacting with the quantum electromagnetic
field

We consider N emitters interacting with the modes of the electromag-
netic field (EMF) in the volume V. We assume that the particles are
pinned at the positions R⃗α, with α = 1, . . . , N. We denote by H the
Hilbert space of the emitters’ internal degrees of freedom and of the
EMF’s degrees of freedom, H = HA ⊗HR. The time evolution of the
density matrix χ̂(t), describing the state of photons and emitters, is
governed by the von-Neumann equation

∂tχ̂ = [Ĥ, χ̂]/ih̄ , (2.1)

where Ĥ is the Hamiltonian determining the dynamics, which we
decompose into the sum of the Hamiltonian ĤA for the emitters’
(internal) degrees of freedom, the Hamiltonian ĤR for the free EMF,
and the emitter-photon interactions V̂:

Ĥ = ĤA + ĤR + V̂ . (2.2)

We remark here that ĤR ≡ 1̂A ⊗ ĤR and ĤA ≡ ĤA ⊗ 1̂R, where 1̂R and
1̂A the identity operators in the Hilbert spaces HR and HA, respectively.
Thus, we use the same notation for the operator Ĥj=A,R defined in the
extended Hilbert space H and in the reduced Hilbert space Hj.

The emitters’ Hamiltonian. The emitters Hamiltonian describes the
dynamics of the internal degrees of freedom of N emitters,

ĤA =
N

∑
α=1

ĤAα ,

where ĤAα is the Hamiltonian of emitter α = 1, . . . , N at position R⃗α

and we assume that the size of the center-of-mass wave packet is
much smaller than the interparticle distance (in Eq. (2.3), we omit to
explicitly write that ĤAα is the identity operator in the Hilbert space of
the emitters with β ̸= α). We consider here only the lowest electronic
bound states assuming that the system is at room temperature. The
spectrum of each emitter is discrete and the Hamiltonian in diagonal
form reads

ĤAα = ∑
n

En|n⟩α⟨n| , (2.3)

with En the eigenvalue and |n⟩α the corresponding eigenvector for
the emitter at the position R⃗α. In a more general treatment, where
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the emitters might not be identical and/or in the presence of spatial
inhomogeneity, the energy also depends on the label α.

The quantum electromagnetic field. We treat the EMF in second quanti-
zation and choose the Coulomb gauge. We denote the quantization
volume by V and assume periodic boundary conditions. The energy
of the field relative to the vacuum energy reads

ĤR = ∑
λ

h̄ωλ â†
λ âλ , (2.4)

where λ denotes the sum over the EMF modes and the sum has an
upper cutoff given by the energy h̄ωcut ∼ mc2, with m the electron
mass. The modes here are traveling waves and are fully characterized
by the wave vector k⃗λ and by the transverse polarization e⃗λ, with the
frequency ωλ = c|⃗kλ| and c the speed of light in vacuum. Operators
âλ and â†

λ annihilate and create, respectively, a photon of mode λ,
and fulfill the bosonic commutation relations [âλ, â†

λ′ ] = δλ,λ′ and
[âλ, âλ′ ] = 0.

The initial state of the EMF field is assumed to be given by the
thermal distribution

R̂ = exp (−ĤR/kBT)/Z , (2.5)

where kB is Boltzmann’s constant, T is the temperature, and Z =

Tr{exp (−ĤR/kBT)} is the partition function. Within the validity of
the Born approximation, R̂ gives the state of the EMF at all times. Here
we assume room temperatures, T ∼ 300 K.

Emitter-photon interactions. Here, emitter-photon interactions are
treated in the electric-dipole approximation. Operator V̂ is the sum of
the interactions of the fields with each emitter, V̂ = ∑N

α=1 V̂α, with

V̂α = h̄ ∑
n

Γ̂α
nσ̂α

n , (2.6)

where the sum is over all pairs of electronic levels n = (n1, n2) cou-
pled by an electric-dipole transition. Here, operator σ̂α

n describes the
transition between |n1⟩α and |n2⟩α:

σ̂α
n ≡ |n1⟩α⟨n2| .

The corresponding coupling strength is determined by the coupling
operator Γ̂α

n, which acts over the degrees of freedom of the electromag-
netic field and reads

Γ̂α
n = ∑

λ

(
gαλ

n âλei⃗kλ R⃗α + ḡαλ
n â†

λe−i⃗kλ R⃗α

)
. (2.7)

The coupling strengths gαλ
n have the dimensions of a frequency and

are given below in gauss units and in the length gauge,

gαλ
n = −i

√
2πωλ

h̄V
d⃗α

n · e⃗λ , (2.8)

ḡαλ
n = i

√
2πωλ

h̄V
d⃗α

n · (⃗eλ)
∗ , (2.9)
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with d⃗α
n the dipole moment of the transition, which is the matrix

element of the dipole operator ˆ⃗dα and reads d⃗α
n = α⟨n1| ˆ⃗dα|n2⟩α. We

remark that this description applies the long-wave approximation,
and thus it is valid when the size of the electronic wave packet is
smaller than the optical wavelength. Moreover, in our model, we did
not include the self-energy which appears in the length gauge (see
Refs. [72, 73] for an insightful discussion).

For later convenience, we introduce the frequency ωn,

ωn = (En1 − En2)/h̄ . (2.10)

By definition, it can also take negative values.

2.3.2 Master equation for an ensemble of multilevel emitters

We now proceed to derive the Born-Markov master equation using
the coarse-grained formalism. The procedure repeats, in the essential
steps, the one of Ref. [15], with some notable differences due to the
many-body nature of the problem.

We first introduce the density matrix ρ̂(t) describing the state of the
emitters at time t. Operator ρ̂(t) is defined in the Hilbert space HA and
is related to the density matrix χ̂(t) by the equation ρ̂(t) = TrR{χ̂(t)},
where TrR denotes the partial trace over the degrees of freedom of the
EMF.

We now consider the von Neumann equation, given by Eq. (2.1),
and move to the interaction picture with respect to Hamiltonian Ĥ0 =

ĤA + ĤR. We denote the system’s density matrix in the interaction
picture by

χ̃(t) = Û0(t)†χ̂(t)Û0(t) , (2.11)

where we have introduced the unitary operator Û0(t) = exp(Ĥ0t/(ih̄)).
In this representation, the reduced density matrix of the system is
related to the reduced density matrix in the Schrödinger picture by
the relation:

ρ̃(t) = TrR{χ̃(t)} = e−ĤAt/(ih̄)ρ̂(t)eĤAt/(ih̄) .

In the interaction picture the unitary operator determining the time
evolution reads

Ũ(t, t′) = T exp
(
− i

h̄

∫ t′

t
dt1Ṽ(t1)

)
, (2.12)

where Ṽ(t) = Û0(t)†V̂Û0(t) and T denotes the time ordering, such
that

T Ṽ(t1)Ṽ(t2) = Ṽ(t1)Ṽ(t2)θ(t1 − t2) + Ṽ(t2)Ṽ(t1)θ(t2 − t1) ,

with θ(t) the Heaviside function. Using this formalism, at t′ > t the
state ˆ̃χ(t) evolves into state

χ̃(t′) = Ũ(t, t′)χ̃(t)Ũ(t, t′)† . (2.13)
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2.3.2.1 Dyson equation and Born-Markov approximation

Let now ∆t = t′ − t > 0 denote a finite and sufficiently small time step,
which we quantify later. We write the Dyson series of the right-hand
side of Eq. (2.13) until the second order in the interaction, but keep the
exact form. After tracing out the EMF degrees of freedom, we obtain
the expression

ρ̃(t + ∆t) = ρ̃(t) + ∆t ∑
α

Λα
1 ρ̃(t)

+∆t ∑
α,β

1
∆t

∫ t+∆t

t−∆t
dT

∫ ∆t

−∆t
dτθ(τ)Λα,β

2 (T, τ)ρ̃(T − τ) . (2.14)

The terms Λα
1 , Λα

2 on the RHS are linear maps, and the subscript
indicates the order in the Dyson expansion. In deriving Eq. (2.14),
we have made the Born approximation at the initial time t, namely,
we have assumed that there are no quantum correlations at time t
between EMF and emitter. This corresponds to writing χ̃(t) = R̂⊗ ρ̃(t)
where R̂ is the thermal state of the EMF, given by Eq. (2.5).

The map Λα
1 acts over the Hilbert space of the emitter α and is given

by

Λα
1 ρ̃(t) =

1
ih̄∆t

∫ t+∆t

t
dt1TrR

{[
Ṽα(t1), χ̃(t)

]}
=

1
ih̄
[
⟨Ṽα(t)⟩R, ρ̃(t)

]
, (2.15)

where, between the first and the second line, we have applied the Born
approximation and introduced the time-averaged operator (here in
interaction picture):

⟨Ṽα(t)⟩R =
1

∆t

∫ t+∆t

t
TrR

{
Ṽα(t1)R̂

}
. (2.16)

Note that operator V̂α, given by Eq. (2.6), vanishes over the thermal
state of the EMF, given by Eq. (2.5). The second integrand of Eq. (2.14)
contains the Heaviside function θ(τ) and also includes the coupling
between different emitters. Its detailed form is reported in Appendix
2.7.1.

Equation (2.14) is generally valid for sufficiently short time intervals
∆t, over which one can assume that the Born approximation holds.
After some time, in fact, the interactions establish quantum correlations
between system and reservoir. These correlations can be neglected
when the interactions can be treated perturbatively.

The master equation becomes local in time when the Markov approx-
imation holds. The Markov approximation consists in approximating
ρ̃(T − τ) ≈ ρ̃(t) in Eq. (2.38). It is equivalent to the Wigner-Weisskopf
approximation for the propagator [72] and is justified when the char-
acteristic time scale τR of the correlation function Cαβ(τ), given by
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Eq. (2.40), is orders of magnitude smaller than the system’s relaxation
time. In a thermal bath, the correlation function is composed of a term
which decays exponentially with the correlation time, τR = h̄/kBT,
and by power-law tails that can be discarded for typical evolution
times [47, 72]. At room temperatures, T ∼ 300 K, this time is of the
order of τR ∼ 10−13 sec. This time shall be compared with the relax-
ation time of the system. For optical transitions, the natural linewidth
of a single atom, γ ∼ 2π × 106 − 108 Hz, fulfills γτR ≪ 1. In this limit,
we can choose the time scale ∆t such that τR ≪ ∆t ≪ 1/γ and ignore
memory effects in the integral.

In the presence of dipole-dipole interactions, there are some issues
to be considered: in first place, superradiance gives rise to an N-fold
enhancement of the single atom decay rate, and thus when Nγ be-
comes comparable with 1/τR, the approximation becomes invalid.
This is the regime where one can observe the Dicke phase transition in
an ensemble of two-level systems [74], and where the assumptions at
the basis of this treatment break down. At the same time, subradiant
states can be characterized by extremely small linewidths. Observ-
ing their decay requires one to analyze the system’s dynamics over
long time scales, over which the power-law tails of the correlation
function can become important. These considerations suggest that the
formalism shall be revisited for media with very high optical dense
media.

2.3.2.2 Coarse-grained master equation

In what follows, we assume an optically dense medium for which
the Born-Markov approximation is valid. Then, from Eq. (2.14), we
derive the Born-Markov master equation (now back in the Schrödinger
picture):

∂tρ̂ =
1
ih̄
[ĤA + ĤS, ρ̂(t)] + LDρ̂(t) , (2.17)

where Hamiltonian ĤS and superoperator (dissipator) LD contain
both the single-atom as well as the interatomic interference terms
between parallel dipoles. The details of the derivation are standard
and are reported in Appendix 2.7.1. The master equation is valid
for any time t > 0 within a grid whose resolution is determined by
the coarse-grained timescale ∆t. As a consequence, the coefficients
multiplying the terms of the operator ĤS and the superoperator LD

are scaled by the function

Θ(∆t)
ij =

sin((ωi + ωj)∆t/2)
(ωi + ωj)∆t/2

. (2.18)

This term selects transitions which are resonant within the resolu-
tion set by the coarse-graining time ∆t. For optical transitions, this
factor selects a pair of frequencies ωi and ωj with opposite signs.
Correspondingly, it selects terms in the Hamiltonian and dissipator
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where the pairs of operators σ̂α
i σ̂

β
j describe an excitation and a de-

excitation along two (quasi)resonant transitions. For convenience, we
introduce the operator ζ̂α†

i ≡ σ̂α
i , which describes a transition i2 → i1

with ω̄i = ωi > 0 and dipole moment D⃗α∗
i = d⃗α

i . Then, the operators
appearing in the master equation are of the form ζ̂α†

i ζ̂
β
j or ζ̂α

i ζ̂
β†
j , and

the factor (2.19) now reads

Θ(∆t)
ij =

sin((ω̄i ± ω̄j)∆t/2)
(ω̄i ± ω̄j)∆t/2

. (2.19)

In what follows, we discard the processes where two transitions are
simultaneously excited or deexcited, corresponding to the + sign in
the argument of Eq. (2.19).

Hamilton operator. The Hamiltonian term due to the interaction with
the EMF is given by the expression

ĤS = ∑
α

⟨V̂α⟩R +
1
2 ∑

α,β
ĤS

αβ ,

where ⟨V̂α⟩R is given in Eq. (2.16) and is now reported in the Schrödin-
ger picture. This latter term vanishes since we assume that the EMF is
in the thermal state. The Hamilton operator ĤS

αβ contains the frequency
shifts and couplings due to the multilevel interference, and is derived
from the expression (here given in the interaction picture)

H̃S
αβ = − i

2h̄∆t

∫ t+∆t

t
dt1

∫ t+∆t

t
dt2

×θ(t1 − t2)TrR
{
[Ṽα(t1), Ṽβ(t2)]R(t)

}
+ H.c. (2.20)

For α = β, it is the Hamilton operator for a single atom and it coincides
with the operator derived in Ref. [15]. For α ̸= β, it describes the
Hamiltonian terms due to the dipole-dipole interactions, including
the interference between all parallel transitions of different atoms. We
report it in the form which includes both cases,

ĤS
αβ = −h̄ ∑

i,j

[(
∆αβ−

ij + ∆αβ(T)
ij

)
ζ̂α†

i ζ̂
β
j

+
(

∆αβ+
ij − ∆αβ(T)

ij

)∗
ζ̂α

i ζ̂
β†
j

]
+ H.c., (2.21)

where ∆αβ(T)
ij = ∆αβ−

ij (T) − ∆αβ+
ij (T) and the individual coefficients

read (below in gauss units)

∆αβ±
ij = Θ(∆t)

ij

D⃗α∗
i · D⃗ β

j

(2π)2h̄c3P
∫ ωcut

0

dω ω3

ω ± ωij
Fij

αβ(R⃗αβ),

(2.22)

∆αβ±
ij (T) = Θ(∆t)

ij

D⃗α∗
i · D⃗ β

j

(2π)2h̄c3P
∫ ωcut

0

dω ω3n(ω, T)
ω ± ωij

Fij
αβ(R⃗αβ) .

(2.23)
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Here, P denotes the Cauchy principal value and ωcut is the cutoff
frequency. The frequency

ωij =
ω̄i + ω̄j

2

is the average between the two transition frequencies, and the coeffi-
cient Fij

αβ(R⃗αβ) depends also on the distance R⃗αβ = R⃗α − R⃗β between
the atoms and on the wave number k = ω/c. It takes the form1

Fij
αβ(R⃗αβ) = 4π

j0(kRαβ)

1 −
(D⃗α

i · R⃗αβ)
∗(D⃗ β

j · R⃗αβ)

Dα
i Dβ

j R2
αβ


−

j1(kRαβ)

kRαβ

1 −
3(D⃗α

i · R⃗αβ)
∗(D⃗ β

j · R⃗αβ)

Dα
i Dβ

j R2
αβ

 , (2.24)

where we used the notation Dα
i = |D⃗α

i | and Rαβ = |Rαβ|. Here, j0(x)
and j1(x) are spherical Bessel functions of the first type [75]. The
dependence on the vector joining the two atoms breaks the spherical
symmetry and is at the origin of the anisotropic light emission of
superradiance [2]. For the case of one atom, N = 1, one has Fij

αα(0) =
8π/3 [20], and Hamiltonian of Eq. (2.21) takes the form of the single-
atom Hamiltonian of Ref. [15].

Dissipator. The Lindblad term LD describes the incoherent processes.
It can be decomposed into the sum

LDρ̂(t) = ∑
α,β

Lαβ
D ρ̂(t) , (2.25)

where the terms with α = β describe the dissipation of N non-
interacting atoms, while the terms with α ̸= β originate from multiple
scattering of resonant photons and vanish when the distance between
the atoms exceeds several wavelengths. The individual terms are ob-
tained from the expression in the interaction picture,

L̃αβ
D ρ̃(t) =

1
2h̄2∆t

∫ t+∆t

t
dt1

∫ t+∆t

t
dt2TrR {A(t1, t2)} ,

where

A(t1, t2) = 2Ṽβ(t1)[ρ̃(t)⊗ R̃(t)]Ṽα(t2)

−[Ṽα(t1)Ṽβ(t2), ρ̃(t)⊗ R̃(t)]+

1 Here it is written specifically for the non-orthogobal dipoles
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and [, ]+ denotes the anticommutator. After performing the integration
and going back to the Schrödinger picture, the individual terms take
the form

Lαβ
D ρ̂(t) = ∑

i,j
(1 + n(ωij, T))

×

Γij
αβ

2

[
ζ̂

β
j ρ̂(t), ζ̂α†

i

]
+

Γij
αβ

2

[
ζ̂

β
j , ρ̂(t)ζ̂α†

i

]
+ ∑

i,j
n(ωij, T)

×

Γij∗
αβ

2

[
ζ̂

β†
j ρ̂(t), ζ̂α

i

]
+

Γij∗
αβ

2

[
ζ̂

β†
j , ρ̂(t)ζ̂α

i

] , (2.26)

with the damping coefficients

Γij
αβ = Θ(∆t)

ij

D⃗α∗
i · D⃗ β

j

2πh̄c3 ω3
ijF

ij
αβ(kij), (2.27)

and kij =
ωij
c . We note that for i ̸= j, the damping coefficients are

different from zero if the scalar product D⃗α∗
i · D⃗ β

j ̸= 0. Master equation
(2.17) fulfills the Lindblad form and take into account the multilevel
structure of the quantum emitters.

2.3.2.3 Discussion

We first review the dynamics that the master equation (2.17) predicts
for a very dilute ensemble of emitters (Rαβ → ∞), when it is well
approximated by N independent experiments with a single atom. In
this case, the damping coefficients Γii

αα are the Einstein coefficients of
spontaneous emission. For i ̸= j, instead, the coefficients Γij

αα describe
processes where two different transitions with parallel dipoles are
simultaneously deexcited. These transitions shall be resonant within
the frequency resolution of the coarse graining 1/∆t. This process,
even though incoherent, is a quantum interference between spectral
lines [15, 21, 68, 70]. The corresponding terms have been denoted by
cross-damping terms in the literature [10, 71]. These dynamics have
a corresponding Hermitian component in the Hamiltonian term Ĥαα

S .
The coefficients include an energy shift of the electronic states due
to the vacuum fluctuations, which for the ground state is the non-
relativistic Lamb shift, as well as a shift due to thermal fluctuations
of the EMF. Vacuum and thermal fluctuations also give rise to an
effective coupling between electronic levels with parallel dipoles and
quasiresonant frequencies; the coupling coefficients are given by Eqs.
(2.22)-(2.23) after setting α = β. They can be estimated by using the
approximate relation [15]

∆αα±
ij ≈ 1

2
(D⃗α∗

i · D⃗ α
j )Θ

(∆t)
ij

(
1

|D⃗α
i |2

∆αα±
ii +

1
|D⃗α

j |2
∆αα±

jj

)
. (2.28)
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Figure 2.2: The structure of electronic states 2S and 4P of the hydrogen
atom (left panel) and the transitions we consider in the numerical
simulations of this work (right panel): The three states which
we consider in this work are marked with the black colour, the
scattering transitions are indicated by the red (gray) arrows.

When the interparticle distances are comparable with the wave-
length, namely, for α ̸= β, Eq. (2.17) is the master equation for opti-
cally dense media which now includes quantum interference between
transitions with parallel dipoles. Keeping only the terms with i = j,
one obtains the master equation discussed in the literature [2, 3, 5,
24], where the dissipator gives rise to phenomena such as superra-
diance and subradiance, while the coherent part describes coherent
dipole-dipole interaction, including frequency shifts such as the so-
called collective Lamb shift [3, 59, 76, 77]. Our derivation highlights, in
addition, the existence of interference terms between quasi-resonant
transitions of different atoms with parallel dipoles both in the incoher-
ent as well as in the coherent parts of the master equation.

We finally remark that by taking the limit ∆t → 0, then for an
infinitesimally small coarse-grained timescale, the function (2.19) be-
comes a Dirac delta function. Then, the coarse-grained master equation
reduces to the Born-Markov master equation, discussed, for instance,
in Refs. [20, 72, 78]. In this limit, however, one discards effects due to
the finite timescale of the reservoir dynamics, and thus interference
phenomena between parallel transitions which are close in frequency
but not exactly resonant. The coarse-graining master equation allows
one to include these dynamics in a systematic way. We refer the
interested reader to Refs. [15, 17, 35, 79] for discussions on the coarse-
grained master equation and to the next section for a discussion of the
choice of ∆t.
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2.4 excitation spectrum of two emitters

We now determine the excitation spectrum of two emitters, which
are pinned at the positions R⃗1 = 0 and R⃗2 = R⃗ and are uniformly
driven by a linearly polarized laser. Their electronic configuration
is composed of three electronic levels of hydrogen, which consists
of the ground state |1⟩ and the two excited states |2⟩ and |3⟩. The
transitions |1⟩ → |2⟩ and |1⟩ → |3⟩ are parallel optical dipoles with
moments D⃗α

12 and D⃗α
13, respectively, and the transition frequencies

are denoted by ω12 and ω13 (from now on, ω̄1e = ω1e > 0 with
e = 2, 3). The reduced level structure allows us to highlight the effects
of multilevel interference. Despite the fact we consider the parameters
of two transitions of the hydrogen atoms, however, the choice we
perform breaks the rotational symmetry of the atoms. This shall be
kept in mind when discussing the single-emitter properties.

The dynamics induced by the laser is described by a Hamiltonian
term, which is added to the Hamilton operator of Eq. (2.17). This
procedure corresponds to assuming that the laser field is described
by a coherent state and to moving to the reference frame where the
quantum state of the laser field is in the vacuum [80]. We denote by
ωL the laser frequency, and assume that the laser polarization is linear
and that the spatial dependence of the laser field wave vector k⃗L is
orthogonal to the vector R⃗ joining the two emitters. The laser-atom
Hamiltonian has the form

ĤL = −h̄ ∑
α=1,2

∑
e=2,3

gα
1ee

−iωLt ζ̂α†
1e + H.c. , (2.29)

where we have introduced the Rabi frequency gα
1e = −d⃗α

1e · E⃗L/2h̄,
which depends on the electric field amplitude E⃗L. The master equation
takes the form

∂tρ̂ =
1
ih̄
[ĤA + ĤS, ρ̂(t)] + LDρ̂(t) +

1
ih̄
[ĤL, ρ̂] , (2.30)

where now the sums over the atoms run to N = 2 and the sums over
the internal transitions include just the two transitions with parallel
dipolar moments. For simplicity, thus, we can now replace the sum
over the transitions i = i1, i2 with the sum over the excited state e = 2, 3.
Using the simplified level structure, we simplify the Hamiltonian term
ĤS

12, given by Eq. (2.21), as follows:

ĤS
12 = −

3

∑
e,e′=2

Fc(ω1e + ω1e′)ΞF
e e′(R⃗)ζ̂1†

1e ζ̂2
1e′ + H.c. , (2.31)

where Fc(ω1e + ω1e′) is obtained by means of a smoothening of the
fast-oscillating function Θ(∆t)

ij (see Ref. [15] and Sec. 2.4.3), and

ΞF
e e′(R⃗) = D⃗1e · D⃗1e′

(ωe e′

c

)3
(

y0(kR)− y1(kR)
kR

)
. (2.32)
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Here we used that the atomic dipole moments are real vectors and
introduced the notation ωe e′ = (ω1e + ω1e′)/2. Moreover, we have
used that the dipole moments are orthogonal to the vector connecting
the two atoms. When the interference between different transitions is
discarded, Fc(ω1e + ω1e′) = δe,e′ and this term takes the form of the
collective Lamb shift of Ref. [5] for the corresponding laser excitation.

In the dissipator’s coefficient, we also use the smoothening pro-
cedure by replacing Θ(∆t)

ij with Fc(ωi + ωj). Moreover, we discard
the temperature-dependent terms since they give negligibly small
contribution at T = 300 K and optical frequencies.

2.4.1 Photon-count signal

In order to study the effect of multilevel interference, we determine
the excitation spectrum S(δL) over the whole solid angle and as a
function of the laser detuning δL = ωL − ω12. The excitation spectrum
(or photon-count signal) is defined as:

S(δL) = ∑
α,β

∑
e,e′

Γe e′ F
αβ Tr[ζ̂β

1e′ ρ̂stζ̂
α †
1e ] , (2.33)

and it is calculated for the steady-state density matrix ρ̂st, which is the
solution of Eq. (2.17) at eigenvalue zero, ∂tρ̂st = 0. In our simulations,
we take the parameters of the transition 2S→4P of hydrogen. Specifi-
cally, the ground state is |1⟩ = |2s 1

2
, F = 0, MF = 0⟩, and the excited

states are |2⟩ = |4p 1
2
, F = 1, MF = 0⟩ and |3⟩ = |4p 3

2
, F = 1, MF = 0⟩,

as illustrated in Fig. 2.2. Further details of the parameters are given in
Appendix 2.7.2. The coefficients are calculated taking a coarse-grained
timescale ∆t = 10−11 sec (see Sec. 2.4.3 for the analysis of the depen-
dence of the results on the choice of the coarse-graining timescale).
For further details, we refer the reader to the discussion at the end
of this section. We note that for the level scheme which breaks rota-
tional symmetry, the excitation spectrum of a single emitter exhibits
nonvanishing shifts even after integration over the whole solid angle
[15].

Figure 2.3 displays the photon-count signal (cyan line) for a given
value of the laser intensity and as a function of the laser detuning δL

for two interatomic distances: (a) R = 0.01 µm and (b) R = 0.1 µm.
These shall be compared with the wavelength λ12 = 2πc/ω12 =

0.468 µm such that (a) corresponds to kR ≃ 0.13 and (b) to kR ≃ 1.3.
The blue line gives the signal obtained when one artificially sets
the multilevel interference effects to zero (corresponding to setting
Θ(∆t)

ij → δ(ω̄i − ω̄j), namely ∆t → 0). The mismatch between the cyan
and the blue superradiant peaks is caused by the cross-interference
terms.

We start with discussing the case R = 0.1 µm, when the interatomic
distance is of the order of the wavelength. In this case, the photon-
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Figure 2.3: Photon-count signal, given by Eq. (2.33), for two emitters as a
function of the laser detuning δL and at interatomic distance (a)
R = 0.01 µm and (b) R = 0.1 µm. The cyan (light-gray) curve is
calculated with the full master equation (2.17). The blue (dark-
gray) curve is calculated by setting all cross-interference terms to
zero in Eq. (2.17). The Rabi frequency for the |1⟩ → |3⟩ transition
is g13 = 20 γ3, where γ3 is the decay rate from the state 4PF=1

3/2 to
the state 2SF=0

1/2 . The coarse-graining time is taken to be ∆t = 10−11

sec. The vertical dashed lines indicate the frequency ω12 and ω13
of the individual atomic resonances. The parameters of the atomic
transitions are reported in the text and in Appendix 2.7.2.
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count signal is dominated by the photon-count signal of the individual
atoms, the peak maxima are at the frequency of the atomic levels, and
there are no evident features which could be attributed to superra-
diance and/or subradiance. Here, the inclusion of cross-interference
terms gives rise to a slightly visible discrepancy between the two
curves in the frequency interval between the two peaks. When decreas-
ing the interatomic distance to R = 0.01 µm, the spectroscopic lines
are split into the sub- and superradiant components. The frequency
gap between the peaks of the sub- and superradiant components is
given by the corresponding diagonal frequency shifts of Eq. (2.20). In
the next section, we determine the line shifts one extracts by analyzing
these spectra.

2.4.2 Line shifts due to cross interference

In order to quantify the effect of the cross-interference terms, we
determine the line shifts δωj due to the multilevel interference. We
focus on the lines of the superradiant states and extract the shift

δωj =
1

2π

(
x′j − xj

)
, (2.34)

where the quantity x′j (with j = 2, 3 for |1⟩ → |j⟩) is extracted from the
photon-count signal calculated using the master equation (2.17). The
frequency xj, instead, is obtained by artificially setting all multilevel

interference terms to zero, namely, by setting Θ(∆t)
ij → δ(ω̄i − ω̄j) in

the coefficients of Eq. (2.17). Thus, the frequency xj also includes the
collective Lamb shift. The line shifts we report are determined from
the photon count signal as a function of the interatomic distance by
taking the limit of vanishing Rabi frequencies, and are extracted by
fitting the photon-count signal using the following function, which is
the sum of two Lorentzian curves:

SLL(x) =
a2

π

b2/2
(x − x2)2 + (b2/2)2+

+
a3

π

b3/2
(x − ω0 − x3)2 + (b3/2)2 , (2.35)

and ω0 = 2πν0 is the frequency gap between states |2⟩ and |3⟩ and
is given in Appendix 2.7.2. It discards the presence of the subradiant
peaks, whose magnitude becomes very small at low Rabi frequencies
(for instance, for Rabi frequencies that are 1% of the natural linewidth,
the magnitude is approximately 10−3, 10−4 smaller than the superradi-
ant ones). Nevertheless, these signals are generally different from zero
and give rise to a systematic error in determining the line shift of the
superradiant resonance. We remark that the choice of the fitting func-
tion is not optimal: In fact, Eq. (2.35) corresponds to the spectroscopic
signal due to the sum of two independent decay processes, and does
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Figure 2.4: Line shifts versus the interatomic distance for two emitters
transversally driven by linearly-polarized light. The cyan (light-
gray) curve corresponds to the line of transition |1⟩ → |2⟩ and the
blue (dark-gray) ones to the transition |1⟩ → |3⟩. The solid lines
are extracted from the photon count signal using the fit of Eq.
(2.35); the dashed lines are the curves in the absence of multilevel
interference, where ideally δωj = 0. The deviation from zero is
here due to the fact that we have discarded the presence of the
subradiant peaks in applying the fitting function (2.35). The hori-
zontal dotted lines indicate the shift due to multilevel interference
in a single three-level emitter ("atom").

not properly catch the features due to interference. Indeed, the data
in Fig. 2.3 show that the curves are more similar to Fano-like profiles.
Previous studies showed that the excitation spectra of optically dense
(homogeneously broadened) media differ from Lorentz resonances [5,
24, 81]. Our choice is thus not going to be a reliable estimate of the
shifts induced by multilevel interference. We expect, nevertheless, that
it allows us to gain insight into their order of magnitude.

Figure 2.4 shows the line shifts as a function of the interatomic
distance: at sufficiently short distances, the shifts are significantly
larger than the ones predicted for a single emitter and above the
systematic error, due to discarding the subradiant peaks and illustrated
by the dashed lines. The line shifts tend to increase the frequency
gap between the two excited states as R → 0, while for R → ∞
they converge to the values indicated by the dashed lines, which are
the shifts that we calculate for the case of a single artificial emitter
composed by three levels.
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We now argue that the observed shifts are due to quantum interfer-
ence between the processes illustrated in Fig. 2.1. For this purpose we
analyze the shifts by considering two artificial cases: (i) The single-atom
cross interference, in which we only consider the scattering processes
displayed in Figs. 2.1(a) and 2.1(b). This corresponds to set ∆12

ij = 0

in (2.21) and Γij
12 = 0 in (2.26) for i ̸= j. (ii) The interatomic cross

interference, in which we discard scattering processes displayed in Fig.
2.1(a) and we keep the others. In this case, we set ∆αα

ij = 0 and Γij
αα = 0

for i ̸= j. We further separately analyze the effect of the cross-damping
terms (namely, the terms of the master equations where multilevel
interference appears in the dissipator) and of the cross-shift terms
(where multilevel interference appears in the Hamiltonian (2.21)).

We first study the impact of the cross-damping terms versus R
and artificially set all terms ∆αβ

ij = 0 with i ̸= j in Hamiltonian (2.20).
Figure 2.5(a) represents the results when we include the cross-damping
terms (i) only in the single-atom dissipator (intra-atomic, α = β), (ii)
only in the interatomic dissipator (interatomic, α ̸= β) and (iii) when
we consider both intratomic and interatomic cross-damping terms. In
the case (i), the shifts due to the single-atom cross-damping terms at
large distance oscillate around a magnitude of ∼ 100 Hz. In the case
(ii) the line shifts vanish for R → ∞. For vanishing distances, the line
shifts (i) and (ii) converge to a similar value. The total contribution
of the intra- and interatomic cross-damping terms is not additive, as
visible when comparing these curves with the ones obtained including
both kinds of cross-damping terms. Figure 2.5(b) displays the impact
of the cross-shift terms on the line shifts after artificially setting all
terms Γ12

ij = 0 in the dissipator (2.25). Over the interval of distances,
R = [0.1, 1]µm. The total line shift has some oscillatory behaviour
which tends to the single-atom result as R increases. At small R, the
cross-shift terms become dominant and tend to increase the frequency
gap between the spectroscopic lines.

The behaviour at short distances is diplayed in Fig. 2.6. Here it is
evident that the cross-shift terms are responsible for large shifts of the
lines. Below R = 48 nm (which corresponds to R ∼ λ/10), the shift
of the line |1⟩ → |3⟩ increase rapidly to the magnitude of 0.6 MHz,
which starts to be comparable with the natural linewidth for optical
transitions.

2.4.3 About the coarse graining time scale

The use of the coarse graining master equation allows one to derive,
ab initio, a master equation fulfilling the Lindlad form and yet sys-
tematically including the cross-interference terms. The drawback is
the explicit dependence on the coarse-graining time, which becomes
visible in the functional form of Θ(∆t)

ij , given by Eq. (2.19), and which
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Figure 2.5: Line shifts vs the interatomic distance for two atoms transversally
driven by a linearly polarized laser due to (a) the cross-damping
terms (after setting all cross-shift terms ∆αβ

ij = 0 for all i ̸= j in
Hamiltonian (2.20)) and (b) the cross shift terms (after setting
all cross-damping terms Γαβ

ij = 0 for all i ̸= j in the dissipator
(2.25)). The cyan (light-gray) curves correspond to the line of
transition |1⟩ → |2⟩ and the blue (dark-gray) ones to the transition
|1⟩ → |3⟩. The dashed curves correspond to case (i), the dotted
lines correspond to case (ii), and the solid lines include both
intra-atomic and interatomic (a) cross damping and (b) cross-shift
terms.
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Figure 2.6: Same as Fig. 2.5(b), but for interatomic distances below λ/5;
the vertical dotted line indicates the value λ/10. (b) Zoom of the
behaviour in the interval [λ/10, λ/5].
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multiplies all coefficients for i ̸= j. We note that this function deter-
mines the frequency window, for which the interference of two parallel
dipolar transitions gives rise to relevant contributions to the dynamics.

One striking property is that Θ(∆t)
ij gives rise to strong oscillations of

the coefficients with ∆t. The oscillations are majorly due to the sharp
time intervals over which the dynamics has been divided and could
be eliminated by introducing a smoothening, for instance by taking a
Gaussian function of width ∆t and calculating the convolution [15]

Θ(∆t)
ij → Fc(ωi + ωj) =

∫ ∞

0
dxΘij(x)

e−x2/∆t2

√
π∆t/2

. (2.36)

This smoothening procedure delivers the new damping coefficients,

Γij (F)
αβ = Fc(ωi + ωj)

D⃗α∗
i · D⃗ β

j

2πh̄c3 ω3
ijF

ij
αβ(kij) , (2.37)

which preserve the Lindblad form of the density matrix. Similarly, we
obtain the cross-coupling Hermitian terms after the smoothening.

Even after this smoothening, the coefficients of the master equation
still depend on the choice of ∆t. For the master equation to be valid,
their value shall be independent of the specific choice of ∆t over an
interval of value. A rigorous lower bound for ∆t can be found by
imposing the positivity of the Lindblad equation, as discussed in
Ref. [79]. A heuristic approach is based on identifying the coarse-
grained time for which the scattering properties are stable over several
orders of magnitude, such that τR ≪ ∆t and ∆t is smaller than the
smallest rate of the system dynamics. Figure 2.7 shows the line shifts
for different values of the coarse-graining time. The results do not
vary over the interval of values of ∆t, over which we expect that
the timescale separation ansatz holds. They start to appreciably vary
for ∆t > 10−10 sec, and thus when ∆t becomes comparable with the
natural lifetime of the excited states, which is here of the order of 10−8

sec.

2.5 conclusions

In this work, we have presented the systematic derivation of a mas-
ter equation for an optically dense medium, which is composed of
multilevel emitters. The master equation fulfills the Lindblad theorem
[35] and includes the effect of interference between transitions which
have parallel dipoles. This interference is induced by vacuum effects
and gives rise to additional terms in the dissipator and Hamiltonian
which can mutually interfere and whose strengths depend on the
mean interparticle distance.

We have provided a numerical example where we have applied
our master equation to two identical emitters, each consisting of two
parallel dipoles with a common ground state. We have shown that
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Figure 2.7: Dependence of the relative line shifts on the coarse-graining
parameters. The relative line shifts are defined as |(x(∆ti) −
x(∆ti+1))/x(∆ti)|. Here, ∆ti = 10−i sec is the coarse-graining
time and the index i takes integer values from 8 to 12. Cyan
(black) triangles correspond to a relative shift of the first (second)
line. The interatomic distance (a) R = 0.1 µm and (b) to R = 1 µm.

even if the dipoles are not resonant, vacuum-induced interference
gives rise to measurable effects in the excitation spectrum. We have
verified that the magnitude of the shifts depends on the ratio between
the frequency gap between the interfering dipoles and their average
linewidth and increases as this ratio decreases [21], they become more
evident when the interparticle distance decreases and emerge from
the interplay of the interference between parallel dipoles of a single
emitter and of the two emitters. Moreover, for realistic configurations
the photodetection signal depends on the angle of emission and can
be larger for certain directions [15].

Future work shall focus on alkali-metal or alkali-earth metal atoms,
consider the full sublevel structure and analyze the spectrum at differ-
ent detection angles. A more accurate choice of the fitting functions
shall provide a better estimate of the line shift due to multi-level inter-
ference [81, 82]. This model, moreover, can be extended to Rydberg
transitions [83], where the multilevel interference is expected to be
more prominent [67], and to molecules [84].

The master equation here derived can be extended and applied to
studying propagation of quantum light in superradiant media and
confined geometries [85–87]. By means of the input-output formalism
[20, 88], one can extract from our model the coherence properties of the
scattered light and analyze the effect of vacuum induced interference
on field- and intensity-intensity correlation functions. Future studies
will analyze its prediction on light transport in a disordered medium
[24, 89, 90] and in an ordered array of emitters [91, 92] for level
configurations where vacuum-induced interference is expected to be
relevant.
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2.7 appendix

2.7.1 Derivation of the Born-Markov master equation in the coarse graining
formalism

The second integrand on the right-hand side of Eq. (2.14) is reported
here after applying the Born approximation:

Λα,β
2 (T, τ)ρ̃(τ−) = ∑

i,j
C̄αβ

ij (τ)
([

σ̃
β
j (τ−)ρ̃(τ−), σ̃α

i (τ+)
]

+
[
σ̃α

i (τ+), ρ̃(τ−)σ̃
β
j (τ−)

])
+ H.c. , (2.38)

where τ± = T ± τ. Subscript i labels a pair of levels coupled by a
nonvanishing dipole moment: i ≡ i1, i2 with dipole moment d⃗α

i =

α⟨i1|d⃗|i2⟩α. The function C̄αβ
ij (τ) specifically reads

C̄αβ
ij (τ) = ∑

λ

(
gλ

i ḡλ
j (n(ωλ, T) + 1)e−iωλτei⃗kλ·(R⃗α−R⃗β)

+ḡλ
i gλ

j n(ωλ, T)eiωλτe−i⃗kλ·(R⃗α−R⃗β)
)

, (2.39)

where n(ω, T) = 1/[exp(h̄ω/kBT)− 1] is the mean photon number
at frequency ω and temperature T, and the sum over the modes is
bounded by the cutoff frequency ωcut. In the continuum limit it is
given by the expression

C̄αβ
ij (τ) →

ωcut∫
0

dω

(2π)2h̄c3 ω3
(
[1 + n(ω, T)]e−iωτ

+n(ω, T)eiωτ
)

F̄ij(k, R⃗αβ) . (2.40)

Assuming the Born-Markov approximation, we can write ρ̃(T −
τ) ≈ ρ̃(T) in Eq. (2.38) [17, 35]. We also note that consistently with the
Markov approximation, ρ̃(T) is essentially constant over the interval
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of integration [t, t + ∆t] of the variable T. We then set ρ̃(T) = ρ̃(t̄),
with t̄ = t + ∆t/2. Using that σ̃

β
j (t1) = eiωj(t1−t̄)σ̃

β
j (t̄), we first rewrite

Eq. (2.38) as

Λα,β
2 (T, τ)ρ̃(τ−) ≈ ∑

i,j
Cαβ

ij (T, τ)
([

σ̃
β
j (t̄)ρ̃(t̄), σ̃α

i (t̄)
]

+
[
σ̃α

i (t̄), ρ̃(t̄)σ̃β
j (t̄)

])
+ H.c. , (2.41)

where
Cαβ

ij (T, τ) = C̄αβ
ij (τ)e

i(ωi+ωj)Tei(ωi−ωj)τ. (2.42)

Using now that σ̃α
j (t) = exp(iωjt)σα

j in Eq. (2.38), the time integrals
take the form:

1
2∆t

∫ ∆t

−∆t
dTe±i(ωi−ωj)T/2

∫ ∆t

−∆t
dτ θ(τ)Cαβ(τ)e±i(ωi+ωj)τ/2

= Θ(∆t)
ij

∫ ∆t

−∆t
dτ θ(τ)Cαβ(τ)e±i(ωi−ωj)τ/2 , (2.43)

where

Θ(∆t)
ij =

sin((ωi + ωj)∆t/2)
(ωi + ωj)∆t/2

. (2.44)

When the transitions are in the optical range, this function selects
secular terms. For this reason, in the following we restrict the sum
to all pairs such that ωi > 0. The second integral is evaluated after
approximating the extrema of integration by [−∆t, ∆t] → [−∞, ∞],
which is consistent with the assumption that C(τ) decays to zero over
time scales much shorter than ∆t.

2.7.2 Parameters of the simulation

The magnitude of the fine structure splitting for the 4p state is taken
to be ν0 ≈1.367 GHz [71, 93] and also includes the hyperfine structure
splitting and QED corrections. We neglect thermal effects: we set
n(ω1e) = 0, which is a good approximation at room temperature, T =

300 K. Moreover, we take the following values for the radiative shifts:
∆S

22 = −2π × 1401.52 kHz for the state 4p 1
2

and ∆S
33 = 2π × 1767.30

kHz for the state 4p 3
2

[82]. We then construct the atomic cross-shift

term between the excited states using relation (2.28): ∆S
23= ∆S

32 =

2π × 366.2 kHz using the relation between dipole moments of the
corresponding transitions: d12 = (1/3)dR, d13 = −(

√
2/3)dR, where

dR is the radial integral dR = ⟨2s|r|4p⟩ = 1.28 [a.u.]. The values for the
natural line width are γ2 = Γ22 = 2π × 511 kHz for the state 4p 1

2
and

γ3 ≡ Γ33 = 2π × 1022 kHz for the state 4p 3
2
. All the cross-interference

terms both for the dissipator and the Lamb shift were computed with
the coarse-graining time ∆t = 10−11 sec. The computational checks
showed that the solutions of the master equation for the chosen system
remain stable in this coarse-graining time region; see Fig. 2.7 in Sec.
2.4.3.
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Figure 2.8: Line shift ∆j(g) of a single emitter as a function of the Rabi
frequency g13. The cyan (light-gray) curves correspond to the
line of transition |1⟩ → |2⟩ and the blue (dark-gray) ones to
the transition |1⟩ → |3⟩. The line shift is extracted from the
photon-count signal by using the fitting functions of Eq. (2.35). (a)
The line shifts without any cross-interference terms. (b) The line
shifts are obtained for the full master equation (2.17) for a single
emitter. The levels are illustrated in Fig. 2.2, and the parameters
are detailed in the text.

2.7.3 Determination of the line shifts

Line shifts due to cross-interference for a single emitter. In this Appendix,
we illustrate the procedure that we apply in order to determine the line
shifts due to the multilevel quantum interference terms. We provide
the example of a single emitter, and we refer to it as a "single atom".
However, due to the special structure, we assume the emitter is not
rotationally invariant, which changes the spectroscopic properties and
gives rise to a global line shift when integrating the photon count
signal over the whole solid angle.

The line shifts for a single atom are defined as

∆j(g) =
1

2π

(
xg

j − xeigen
j

)
, (2.45)

where xeigen
j is the eigenfrequency of the jth transition (j = 1 for

|1⟩ → |2⟩ and j = 2 for |1⟩ → |3⟩) which we extract from the master
equation when we set all multilevel interference terms to zero, and xg

j
is the line position obtained by fitting the photon-count signal using
the fitting function (2.35). The line shifts ∆j(g) depend on the laser
intensity and thus on the Rabi frequency g. The line shift we identify
corresponds to the limit

∆j = lim
g→0

∆j(g). (2.46)

The limit is extracted from our numerical analysis: We evaluate it for
decreasing values of g. We report the behaviour in Fig. 2.8(a), when
we set to zero the multilevel interference terms and 2.8(b), for the full
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master equation. The presence of the interference terms shifts both
peaks to the magnitudes ± 195 Hz for vanishing laser intensity.





O U T L O O K

In the presented thesis we theoretically investigated the excitation
spectrum of superradiant ensemble of multilevel quantum emitters. As
a theoretical tool we used the derived coarse-grained master equation,
which includes the cross-interference terms formed by non-degenerate
dipoles while preserving the Lindblad form. The relevance of these
cross-interference terms was shown for ensembles with strong dipole-
dipole interaction, such as atomic pairs with ultra small interatomic
distances. We found out that the cross-interference terms give rise to
an off-resonant contribution to the dipole-dipole interaction.

The developed coarse-grained master equation is difficult to imple-
ment for description of systems with many atoms. The Hilbert space
of the system grows exponentially with the number of particles. A
further direction of our research might be a derivation of the model
of coherent dipoles (MCD) [24, 25], taking the derived coarse-grained
master equation as a basement. The MCD is shown to be a pow-
erful tool for simulation of coherent light scattering on ultra-dense
disordered atomic ensembles. We expect that incorporation of the
cross-interference terms would be relevant for spectroscopy of ultra-
cold atomic gases and potentially explain some recent experimental
results, as for example [94], where the positions of spectral lines devi-
ate from predictions of MCD based on a model with a single energy
gap.

The presented theoretical framework includes only the transitions
between atomic states allowed in the electric dipole approximation.
It might be useful to incorporate higher-order multipole transitions
such as electric quadrupoles. The resulting master equation would
probably include cross-interference terms formed by different mul-
tipoles, such as dipole-quadrupole interaction terms. This could be
relevant for transitions between highly-excited atomic Rydberg states
and spectroscopy of forbidden transitions.

Another basic concept of the presented research is an atomic system
as an open system. The coupling of atoms with the photon reser-
voir leads to the spontaneous emission rate, Lamb shift, interatomic
dipole-dipole interaction and the cross-interference terms. It would
be interesting to investigate what would happen if an atomic system
was coupled with more than one reservoir. This might be, for example,
a phonon reservoir, which would be relevant for quantum emitters
placed on the surface of a crystal.
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