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Abstract

The central aim of this thesis is to bridge between the study of human speech
variability and representation learning, focusing on how modern deep neural
networks (DNNs) process and encode speech variability and variation in their
latent representations. Diverging from prior machine learning research which has
primarily focused on improving model performance in the face of variability, this
thesis seeks to provide better insights into how different dimensions of speech
variability shape neural network representations. The first part of this thesis,
concerned with neural models of spoken language identification, introduces two
studies investigating the model’s adaptability to domain variability and the extent
to which the model representations capture cross-linguistic variation. The second
part of this thesis focuses on neural models of spoken-word representations,
presenting three studies that explore various dimensions of variability including:
the encoding of word-form variability in the model representational geometry, the
variability of linguistic experience and its role in shaping non-native spoken-word
representations, and the integration of high-level lexical knowledge into the model
to abstract from variability in word acoustic realization. The third and final part of
this thesis analyzes the latent discrete representations in transformer-based speech
models trained with self-supervision and codebook learning, and demonstrates
that information-theoretic metrics reflect acoustic-phonetic variability in segment
realization. In summary, this thesis makes tangible contributions by uncovering how
neural models encode domain, acoustic-phonetic, and cross-linguistic variation,
exploring the role of L1/L2 similarity on non-native spoken-word processing,
and characterizing the relationship between discrete speech representations and
abstract phonetic categories such as phonemes. Throughout six diverse studies, this
thesis takes an interdisciplinary perspective and demonstrates the utility of machine
learning models as a potent scientific tool to answer novel and linguistically-
informed research questions that are grounded in the fields of sociolinguistics,
speech perception, and cognitive modeling research.
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Zusammenfassung

Das zentrale Ziel dieser Dissertation ist es, die Forschungslücke zwischen der Unter-
suchung von Variabilität und Variation in der menschlichen Sprache und der ma-
schinellen Verarbeitung von Sprache auf der Grundlage von Repräsentationslernen
zu schließen, um neue Erkenntnisse darüber zu gewinnen, wie moderne tiefe
neuronale Netze (DNNs) verschiedene Dimensionen der Sprachvariabilität in
ihren Repräsentationen verarbeiten und kodieren. Obwohl einige Aspekte der
Variabilität in früheren Forschungsarbeiten zur computergestützten Sprachverar-
beitung behandelt wurden, lag der Hauptschwerpunkt bei vorherigen Ansätzen
des maschinellen Lernens stets auf der Entwicklung von Modellen, die robust
gegenüber Variationen in den Aufnahme- und Akustikbedingungen sind, sowie
auf der Generalisierungsfähigkeit gegenüber Unstimmigkeiten zwischen Trainings-
und Testdaten aufgrund von Domänen-, Sprecher- und linguistischen Variationen.
Daher konzentrierten sich die Forschungsbemühungen in der bisherigen Sprachre-
präsentationsforschung in erster Linie auf die Verbesserung der Leistungsmetriken
für eine bestimmte Aufgabe bei Vorhandensein einer Variabilitätsquelle. Anstel-
le dieses leistungsorientierten Ansatzes nimmt diese Dissertation eine andere
Perspektive ein und zielt darauf ab, zu analysieren und zu verstehen, wie das
Repräsentationsprofil von neuronalen Sprachnetzwerken durch verschiedene Di-
mensionen der Sprachvariabilität geformt wird, wie z.B. Domänenvariabilität,
sprachübergreifende Variation, Variabilität innerhalb der Kategorie, Variabilität
in der sprachlichen Erfahrung und akustische Variabilität abstrakter phonetischer
Kategorien

In dieser Dissertation werden sechs Studien vorgestellt, die in drei verschiedene
Teile gegliedert sind, wobei jeder Teil einer Sprachverarbeitungsaufgabe gewid-
met ist. Im ersten Teil der Dissertation stelle ich zwei Studien vor, die sich mit
neuronalen Modellen zur Identifikation gesprochener Sprache (SLID) befassen,
um ihre Anpassungsfähigkeit an Domänenvariabilität zu untersuchen (Studie
I) und zu analysieren, inwieweit sie sprachübergreifende Variationen darstellen
(Studie II). In Studie I zeige ich, dass DNNs - wie erwartet - nicht robust gegen
Domänenvariabilität sind, jedoch können bestimmte Trainingsstrategien (z.B ad-
versarial learning) effektiv sein, um zu verhindern, dass das Modell Abkürzungen in
den Daten lernt, um seine domänenübergreifende Generalisierung zu verbessern. In
Studie II zeige ich, dass die Repräsentationen neuronaler Netze sprachübergreifende
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Ähnlichkeit erfassen und in einer Weise geclustert sind, die Sprachverwandtschaft
widerspiegelt.

Im zweiten Teil der Dissertation stelle ich drei Studien vor, die sich mit neu-
ronalen Modellen des Keyword-Spotting und der akustischen Worteinbettung
befassen, um die Variabilität von gesprochenen Wortrealisierungen zu untersu-
chen. Zunächst gehe ich näher auf die Geometrie des Repräsentationsraums für
gesprochene Wörter ein, um zu untersuchen, wie er die Variabilität von Bei-
spielen innerhalb einer Kategorie kodiert und wie sich die Variabilität in den
Anfangsbedingungen des Modells auf die Repräsentationen auswirkt, sobald sie
konvergiert sind (Studie IV). Anschließend wird eine Studie vorgestellt, die dar-
auf abzielt, die Variabilität der sprachlichen Erfahrung und ihre Rolle bei der
Verarbeitung nicht-muttersprachlicher Sprache zu modellieren (Studie V). Kon-
kret wird in dieser Studie die sprachliche Erfahrung als die Muttersprache (L1)
des Modells während des Trainings charakterisiert und die Verarbeitung nicht-
muttersprachlicher gesprochener Wörter simuliert, indem das Ausmaß gemessen
wird, in dem nicht-muttersprachliche Modelle muttersprachliche Repräsentationen
von gesprochenen Wörtern erzeugen. Schließlich stelle ich ein Berechnungsmodell
für die Repräsentation gesprochener Wörter vor, das von der menschlichen Sprach-
verarbeitung inspiriert ist und eine Zuordnung zwischen der akustischen Form und
einer semantischen Repräsentation auf abstrakter Ebene erlernt, die lexikalisches
Wissen kodiert (Studie V). Ich zeige, dass die Integration von lexikalischem Wissen
in das Training gesprochener Wortrepräsentationen die Fähigkeit des Modells
verbessert, zwischen lexikalischen Kategorien zu unterscheiden, und das Modell
ermutigt, von der Variabilität des Sprechers und des lexikalischen Kontexts zu
abstrahieren.

Im dritten Teil konzentriere ich mich auf die diskreten Repräsentationen von
Sprache, die sich beim Training von Transformer-Modellen durch Selbstüberwachtes-
und Codebuchlernen entstehen. In diesem Teil wird ein Ansatz zur Charakterisie-
rung der Beziehung zwischen diskreten Sprachrepräsentationen und abstrakten
phonetischen Kategorien wie Phonemen vorgestellt. Konkret schlägt das Kapitel
zunächst einen informationstheoretischen Rahmen vor, in dem jede phonetische
Kategorie als eine Verteilung über diskrete Einheiten dargestellt wird. Die Stu-
die zeigt, dass die Entropie phonetischer Verteilungen die akustisch-phonetische
Variabilität der zugrunde liegenden Sprachlaute widerspiegelt, wobei Sonoranten
im Durchschnitt entropischer sind als Obstruenten. Darüber hinaus zeigt sich,
dass phonetisch ähnliche Laute auf niedriger Ebene ähnliche Verteilungen aufwei-
sen, während eine Clusteranalyse zeigt, dass die höchste Ebene der Aufteilung
Obstruenten und Sonoranten trennt.
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Insgesamt bietet diese Dissertation wertvolle Einblicke in die Art und Weise,
wie DNNs Sprachvariabilität über mehrere Dimensionen hinweg verarbeiten und
kodieren. Dies verbessert unser Verständnis von Sprachverarbeitung und trägt zur
Entwicklung robusterer und linguistisch informierter Sprachtechnologieanwendun-
gen bei.
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Most of the problems of the world stem from linguistic mistakes and simple

misunderstandings. Don’t ever take words at face value. When you step into

the zone of love, language as we know it becomes obsolete. That which

cannot be put into words can only be grasped through silence.

— Elif Shafak
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Part I

FOUNDATIONS





1
Introduction

Prior to the advent of deep learning, the field of modeling speech signal pro-
cessing relied on hidden Markov models (HMMs) and Gaussian mixture models
(GMMs). While these traditional models were widely used, they had inherent
limitations that hindered their adoption in various speech technology applications.
One significant drawback was the need for task-specific feature engineering, which
required experts to manually design and engineer task-relevant features. This
process was time-consuming, labor-intensive, and often involved domain exper-
tise. Moreover, the complexity of the data pipelines involved in these approaches
made it challenging to scale, adapt, and maintain the systems, particularly when
faced with different languages, dialects, or acoustic conditions. The reliance on
handcrafted features limited the models’ ability to capture intricate patterns
and complex temporal dependencies in speech signals, leading to suboptimal
performance in challenging conditions. As a result, the success of speech technol-
ogy applications that relied on these traditional approaches was rather limited,
mainly due to their complexity and inefficiency (Hinton et al., 2012).

Deep neural networks (DNNs) have emerged in the last decade as the leading
paradigm in modeling speech processing, thanks to advances in representation
learning and the availability of high-performing computing processors. DNNs
have overcome the limitations of earlier traditional methods, leading to their
widespread adoption for different speech processing tasks, ranging from language
identification and keyword spotting to automatic speech recognition (ASR) and
spoken dialogue systems. By automatically extracting task-relevant features from
acoustic data, speech representation learning eliminates the need for manual
feature engineering in acoustic models. The flexibility and adaptability of neural
networks facilitate the transfer of their weights and representations across different
tasks and languages, while earlier approaches had little transferability. End-to-end
neural architectures offer scalable and elegant solutions that simplify the complex
data pipelines involved in speech processing. For example, and unlike traditional

3



4 introduction

ASR systems that required separate acoustic and lexical models, along with
language models to guide the search process, end-to-end architectures seamlessly
integrate bottom-up pattern recognition and top-down linguistic decoding (e.g.,
Bérard et al., 2016; Chan et al., 2016; Graves, Fernández, et al., 2006; Toshniwal
et al., 2018; Ying Zhang et al., 2016). By consolidating different components
into a single architecture, the complexity and inter-dependencies of the data
pipelines have been substantially reduced. Throughout multiple layers of non-
linear transformations, DNNs learn to hierarchically integrate low-level acoustic
cues to build high-level, distributed representations of linguistic units that are
(perceptually) discrete (e.g., phonemes, syllables, words).

The success of deep neural networks (DNNs) in modeling human speech is
particularly impressive if we consider the inherent complexity and variability
of human speech. Speech variability and variation have been extensively studied
in the field of human language processing and speech perception research (Bent
and Holt, 2017; Clopper and Pisoni, 2021; Klatt, 1989; Luce and McLennan, 2005;
Pisoni, 1993, inter alia). A key question in this area is how humans can effortlessly
comprehend speech despite the lack of acoustic-phonetic invariance (Klatt,
1979). In other words, despite the absence of simple mapping between the various
acoustic realizations of a phonetic segment and its underlying perceptual unit—
the phoneme, humans exhibit a remarkable ability in decoding the speaker’s
communicative intent encoded in a spoken utterance, even in adherent conditions
where the speech signal is noisy or incomplete. The variability in speech goes
beyond phonetic segment variability and encompasses various factors, including
speaker-related factors such as vocal tract shape, gender, age, and context-
related factors such as coarticulation and predictability of linguistic units within
a given context. Additionally, sociolinguistic factors, such as dialect and linguistic
experience of the speaker, further contribute to the variability in speech production.
As a result, it is highly unlikely for two acoustic realizations of the same linguistic
unit to be identical, even if produced by the same speaker.

The problem of speech variability and the intriguing fact of its negligible impact
on human listeners during speech comprehension have received considerable
attention in human language processing research. However, in machine learning
and speech technology research, the study of speech variability has been limited
to only a few factors. The primary focus in machine learning research has been on
developing models that are robust against variations in recording conditions and
acoustic environments, as well as generalization capabilities against training-testing
data mismatch scenarios (Benzeghiba et al., 2007; Sriram et al., 2018; Tatman
and Kasten, 2017; Tripathi et al., 2018; Z. Wang et al., 2003). Another area of
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interest has been the adaptation of acoustic models to account for cross-speaker
variability (Hansen and Hasan, 2015; Hazen and James R Glass, 1997; Liao, 2013;
Meng, J. Li, et al., 2018; Saon et al., 2013). These research directions primarily
focused on improving performance metrics for the given task in the presence of
variability. However, the analysis of neural representations in response to speech
variability has not received much attention in prior work. In this thesis we argue
that analyzing neural network models through the lens of speech variability enables
us to understand what research questions need to be asked for a better-informed
exploration of speech representations. Towards this end, this thesis presents several
studies that address dimensions of variability that have been overlooked, including
adaptability to domain variability, cross-linguistic variation, within-category and
cross-category spoken-word variability, and acoustic variability of abstract phonetic
categories. By grounding its research questions on speech variability, the thesis
establishes a connection between different areas of research that have remained
so far unconnected—the machine learning of speech processing on one side, and
human speech perception, sociolinguistics, cognitive modeling on the other.

1.1 Thesis Statement

Various efforts within the machine learning community have aimed to develop
robust models for speech and natural language processing. However, these efforts
have traditionally viewed variability as a source of “undesirable noise”, and focused
primarily on improving model performance in its presence. While these endeavors
have indeed improved the robustness and generalization abilities of speech pro-
cessing models, these models remain “black boxes” that are opaque and difficult to
interpret. As a result, we have recently witnessed significant progress in analytic
methods for neural network interpretability (See, for example, Alishahi et al.,
2017a; Belinkov and J. Glass, 2017; Chung, Belinkov, et al., 2021; Scharenborg,
Gouw, et al., 2019; Shah et al., 2021). Despite this progress, the community’s pri-
mary interest has shifted towards large-scale speech and language models, with an
emphasis on their emergent capabilities and their encoding of linguistic structure
(e.g., Pasad et al., 2021; G. Shen et al., 2023). Unarguably, understanding the dy-
namics of these large deep neural network models is an intriguing scientific pursuit.
However, since these models are not trained in settings that control for domain and
linguistic factors, their analysis falls short in understanding how speech variability
shapes their representations. This thesis sets itself apart from ongoing efforts in
the research community in two key aspects: (1) it places speech variability at the
core, considering deep neural networks as scientific tools to analyze the influence of
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Figure 1.1: A visual illustration of the thesis organization. Chapters are organized into
three parts where each part is dedicated a speech processing task. Each
chapter presents a study that addresses one dimension of speech variability
and variation.

multiple dimensions of variability, and (2) it presents well-controlled experiments
that isolate specific sources of variability while controlling for others. Throughout
several studies, the thesis aims to bridge the gap between the study of human
speech variability and representation learning, with a specific focus on understand-
ing how modern deep neural networks process and encode the different dimensions
of speech variability in their latent representations. The thesis comprises six studies
investigating the role of speech variability across various dimensions, shedding
light on how it shapes neural network representations and addressing research
questions that are grounded in the fields of sociolinguistics, speech perception, and
cognitive modeling research. Approaching the topic through an interdisciplinary
lens, this thesis highlights the utility of machine learning models as powerful
scientific tools for exploring better-informed research questions within these areas.
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1.2 Thesis Overview

This thesis consists of six different studies unified by the overarching objective of
analyzing and understanding how deep neural networks process, represent, and
encode speech variability and variation. Despite their diversity, all studies in this
thesis are concerned with speech processing models that take an untranscribed,
continuous acoustic signal as input and produce latent speech representations. In
addition to Part i, Foundations, the rest of the thesis is structured into three
parts, each dedicated to a specific speech processing task as follows

• In Part I, which consists of chapter 1 and chapter 2, we present an introduc-
tion to the thesis as well as the essential knowledge required to understand
the experimental studies in the following parts of thesis.

• In Part II, which consists of chapter 3 and chapter 4, we study neural
models of spoken language identification and develop a novel approach
to mitigate the effect of domain variability and analyze the encoding of
cross-linguistic variation in the intermediate model representations.

• In Part III, which consists of chapter 5 through chapter 7, we focus on
neural models of spoken-word processing. Through three different studies,
we explore how speech variation is encoded in the their representations,
investigate the impact of linguistic experience variability (as characterized
by the language of the training data) on their representational profile, and
examine how semantic supervision facilitate the abstraction from variability
in the acoustic realization of spoken words.

• In Part IV, which consists of chapter 8, we develop a framework based on
information-theory to analyze how self-supervised discrete representations
of speech reflect acoustic-phonetic variability.

Each chapter in this thesis is summarized as follows

Part I: Foundations

Chapter 1 presents an introduction to the thesis, its structure, contributions,
and the publications it was based on.

Chapter 2 presents some preliminaries that are used in the rest of this thesis.
These preliminaries include essential theoretical knowledge regarding human speech
as well as some technical foundations on the representation of speech in machines.
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Part II: Speech Representations of Language Identity

Chapter 3 is concerned with the problem of domain variability and its impact
on neural network representations for spoken language identification (SLID).
The impact of domain variability is quantified by the extent to which a SLID
model trained on one dataset (i.e., source domain) can generalize to speech
samples from an unseen dataset (i.e., target domain). The study in this chapter
first shows that the representations of convolutional models for SLID do not
transfer well across different domains that vary in their recording conditions (i.e.,
read speech and broadcast speech). The chapter then presents a novel approach
based on unsupervised adversarial adaptation to encourage the model to build
domain-invariant speech representations. Further analysis in this study shows
that adversarial training prevents neural networks from exploiting dataset-specific
artifacts as predictive features for the language, thus leading to better cross-domain
generalization.

Methods: unsupervised domain adaptation, domain adversarial learning, gradient
reversal, convolutional neural networks.
Sources of variability: domain variability, discrepancy in recording conditions.
Relevant publications:

• Badr M. Abdullah, Tania Avgustinova, Bernd Mobius, and Dietrich Klakow.
Cross-Domain Adaptation of Spoken Language Identification for
Related Languages: The Curious Case of Slavic Languages. In the
proceedings of Interspeech 2020.

Own contributions:

• The implementation of the data preprocessing, training, and evaluation
pipeline.

• The code development for the neural models and adversarial training.

• The analysis and visualization of the results.

• Writing the paper with assistance from co-authors.

Chapter 4 is concerned with the encoding of cross-linguistic variation in DNN-
based representations of spoken language identity. While DNN-based models have
been shown to perform very well on the task of discriminating related languages
from acoustic speech signals, it remains unknown whether they capture cross-
linguistic variation in their intermediate representations. This chapter presents a
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case study on the related Slavic languages that investigates the degree to which
the model’s representational similarity among languages reflect objective measures
of language similarity. Even though the model does not have access to any signal
regarding how the languages relate to each other, this study demonstrates that
the model representations exhibit a cluster structure that corresponds to the
phylogenetic groups within the Slavic language family, even for languages that are
not observed during training. The findings of this study provide further evidence
that neural networks learn to faithfully encode the hierarchical grouping of the
data in a way that largely corresponds to our linguistic intuitions.

Methods: exploratory visualization analysis, geographic correlation analysis,
clustering analysis.
Sources of variability: cross-linguistic variation.
Relevant publications:

• Badr M. Abdullah, Jacek Kudera, Tania Avgustinova, Bernd Möbius, and
Dietrich Klakow. Rediscovering the Slavic Continuum in Repre-
sentations Emerging from Neural Models of Spoken Language
Identification. In Proceedings of VarDial Workshop on NLP for Similar
Languages, Varieties and Dialects, COLING 2020.

Own contributions:

• The conceptualization of the research study.

• The code development for representation extraction, data visualization, and
analytic methods.

• Writing the paper with assistance from co-authors.

Part II: Spoken-Word Representations

Chapter 5 is the first of three chapters that study neural models of spoken-
word processing and auditory-lexical representations. In this part, each word is
modeled as an abstract category consisting of several acoustic exemplars that
vary across speakers and within-speaker given different lexical contexts. Spoken-
word processing models encode each acoustic exemplar in a representational
space such that different exemplars of the same word category are nearby. The
chapter begins this part by presenting an analytic study from a neural network
interpretability perspective. Concretely, the study in this chapter takes a closer
look into the geometry of spoken-word representation space to investigate how
it encodes cross-category variability. The first analysis in this study shows that
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models of spoken-word representations tend to be highly anisotropic, which means
that the variation within the speech samples is encoded in a small fraction of all
possible dimensions. The second analysis shows word discriminability positively
correlates with word acoustic distinctiveness—operationalized as phonological
surprisal and word length—but does not correlate with word frequency. The third
analysis demonstrates that (trivial) variability in the initial conditions (i.e., random
initializations) yield neural networks for spoken-word representations to exhibit
substantial individual differences in their geometry, specially for models trained
with contrastive objectives. This chapter concludes with a few recommendations on
using DNN-based spoken-word representations as cognitive models for spoken-word
processing.

Methods: convolutional and recurrent neural networks, geometric isotropy analy-
sis, representational similarity analysis.
Sources of variability: cross-category and within-category variability of spoken-
words.
Relevant publications:

• Badr M. Abdullah and Dietrich Klakow. Analyzing the Representa-
tional Geometry of Acoustic Word Embeddings. In Proceedings of
BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for
NLP, EMLNP 2022.

• Badr M. Abdullah, Marius Mosbach, Iuliia Zaitova, Bernd Möbius, and Diet-
rich Klakow. Do Acoustic Word Embeddings Capture Phonological
Similarity? An Empirical Study. In Proceedings of Interspeech 2021.

Own contributions:

• The implementation of the data preprocessing, training, and evaluation
pipeline.

• The code development for neural models of spoken-word representations.

• Supervising the research assistant, Iuliia Zaitova, who was involved in pre-
processing the data for the languages in the study.

• The visualization of the concepts and analysis of the results.

• Writing the papers with assistance from co-authors.

Chapter 6 presents a comprehensive study that aims to model the role of
variability in the linguistic experience and its impact on non-native speech process-
ing. Concretely, this study characterizes the linguistic experience as the “native”



1.2 thesis overview 11

language of the model during training and it simulates human spoken-word pro-
cessing by monolingually training neural networks models on different languages.
The main contribution of this chapter is introducing a framework based on rep-
resentational similarity analysis that quantifies the extent to which non-native
models produce native-like representations. Furthermore, the chapter presents
a case study on the closely related West Slavic languages (namely Czech and
Polish) and demonstrates that representational similarity correctly predicts higher
mutual intelligibility among West Slavic languages in comparison to other Slavic
languages (e.g., Russian, an East Slavic language) as well as other languages spo-
ken in Europe (e.g., German, a non-Slavic language). Since the models trained for
this study do not have access to high-level linguistic information such as sentence
context or lexical semantics, these findings provide evidence that cross-linguistic
intelligibility can be partly attributed to form-based processing.

Methods: recurrent neural networks, representational similarity analysis, centered
kernel alignment.
Sources of variability: variability in the linguistic experience, cross-linguistic
variation.
Relevant publications:

• Badr M. Abdullah, Iuliia Zaitova, Tania Avgustinova, Bernd Möbius, and
Dietrich Klakow. How Familiar Does That Sound? Cross-Lingual Rep-
resentational Similarity Analysis of Acoustic Word Embeddings.
In Proceedings of BlackboxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP, EMLNP 2021.

• Badr M. Abdullah, Tania Avgustinova, Bernd Möbius, and Dietrich Klakow.
Representational Similarity Predicts Cross-linguistic Intelligility:
Insights from Computational Modeling. A journal article under-review.

Own contributions:

• The conceptualization of the research study.

• The development of the experimental pipeline and the underlying codebase.

• The visualization of the concepts and analysis of the results.

• Conducting and maintaining the experiments on the local university servers.

• Writing the papers with assistance from co-authors.
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Chapter 7 presents a study that takes inspiration from human speech pro-
cessing to encourage computational models of spoken-word processing to abstract
away from speaker and word enviroment variability. In chapter 5 and 6, models
are trained with supervision signals that only capture low-level, form-based in-
formation about the word. That is, spoken-word representations are learned in a
bottom-up approach whereby acoustic-phonetic cues are combined in the model to
encode its acoustic and phonological structure. Nevertheless, a host of psycholin-
guistic studies on human listeners have shown that top-down, high-level lexical
properties—such as word semantics—not only interact with the word recognition
process but also facilitate discrimination between word competitors. Inspired
by prior psycholinguistic findings, this chapter presents a model that integrates
form-based and meaning-based supervision via multi-task learning. The proposed
model learns a mapping from the acoustic input onto a lexical representation in
addition to bottom-up form-based supervision. This chapter presents experiments
on three languages and empirically demonstrates that integrating high-level lexical
knowledge into training spoken-word representations improves the ability of the
model to discriminate between word categories.
Methods: recurrent neural networks, phonological decoding, form-to-meaning
regression, dimensionality reduction.
Sources of variability: cross-category and within-category variability of spoken-
words, variability in word semantic content.
Relevant publications:

• Badr M. Abdullah, Bernd Möbius, and Dietrich Klakow. Integrating Form
and Meaning: A Multi-Task Learning Model for Acoustic Word
Embeddings. In Proceedings of Interspeech 2022.

Own contributions:

• The Implementation of the data preprocessing, training, and evaluation
pipeline.

• The code development for the semantically-enriched model of spoken-word
representations.

• The visualization and analysis of the results.

• Writing the paper with assistance from co-authors.

Part III: Discrete Speech Representations
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Chapter 8 focuses on latent, discrete representations of speech that emerge
while training transformer-based models via self-supervision and codebook learn-
ing. This chapter aims to characterize the relationship between discrete speech
representations and abstract phonetic categories such as phonemes. Concretely, the
chapter first proposes an information-theoretic framework whereby each phonetic
category is represented as a distribution over discrete units. The chapter then
presents a case study on how two different self-supervised models (namely, wav2vec
2.0 and XLSR) encode American English speech as discrete units. The study
shows that the entropy of phonetic distributions reflects the acoustic-phonetic
variability of the underlying speech sounds, with sonorants being more entropic
on average than obstruents. In addition, phonetically similar sounds are found
to exhibit similar distributions at the low level while a clustering analysis shows
the highest level of division separates obstruents and sonorants. The findings of
this study suggests the characterization of discrete units as sub-phonemic events,
rather than high-level categories such as phonemes.

Methods: self-supervised speech models, information theory, information entropy
and surprisal, Jensen-Shanon divergence.
Sources of variability: acoustic-phonetic variability, segment realization vari-
ability.
Relevant publications:

• Badr M. Abdullah, Mohammed Maqsood Shaik, Bernd Möbius, and Diet-
rich Klakow. An Information-Theoretic Analysis of Self-supervised
Discrete Representations of Speech. In Proceedings of Interspeech 2023.

Own contributions:

• The conceptualization of the research study.

• The visualization and analysis of the results.

• Supervising the research assistant, Mohammed Maqsood Shaik, who ex-
tracted the discrete representations and aligned them to phonetic categories
in TIMIT dataset.

• Writing the papers with assistance from co-authors.
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1.3 Additional Publications

In addition to the studies discussed in next chapters, the author of this PhD thesis
has been involved in a few collaborations that have contributed the following
publications:

• Marius Mosbach, Stefania Degaetano-Ortlieb, Marie-Pauline Krielke, Badr
M. Abdullah and Dietrich Klakow. A Closer Look at Linguistic Knowl-
edge in Masked Language Models: The Case of Relative Clauses
in American English. In Proceedings of International Conference on
Computational Linguistics, COLING 2020.

• Alexandra Mayn, Badr M. Abdullah and Dietrich Klakow. Familiar words
but strange voices: Modelling the influence of speech variability
on word recognition. In Proceedings of the student research workshop,
EACL 2021.

• Nicole Macher, Badr M. Abdullah, Harm Brouwer and Dietrich Klakow.
Do we read what we hear? Modeling orthographic influences on
spoken word recognition. In Proceedings of the student research workshop,
EACL 2021.

• Elizabeth Salesky, Badr M. Abdullah, Sabrina J. Mielke, Elena Vitalievna
Klyachko, Oleg Serikov, E. Ponti, Ritesh Kumar, Ryan Cotterell and Ekate-
rina Vylomova. SIGTYP 2021 Shared Task: Robust Spoken Language
Identification. In Proceedings of the SIGTYP Workshop for Research in
Computational Linguistic Typology and Multilingual, EACL 2021.

• Iuliia Zaitova, Badr M. Abdullah and Dietrich Klakow. Mapping Phonol-
ogy to Semantics: A Computational Model of Cross-Lingual Spoken-
Word Recognition. In Proceedings of VarDial Workshop on NLP for
Similar Languages, Varieties and Dialects, COLING 2022.

• Badr M. Abdullah, Mohammed Maqsood Shaik, and Dietrich Klakow. On
the Nature of Discrete Speech Representations in Multilingual
Self-supervised Models. In Proceedings of the SIGTYP Workshop for
Research in Computational Linguistic Typology and Multilingual, EACL
2023.

• Julius Steuer, Badr M. Abdullah, Johann-Mattis List, and Dietrich Klakow.
Information-Theoretic Characterization of Vowel Harmony: A
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Cross-Linguistic Study on Word Lists. In Proceedings of the SIGTYP
Workshop for Research in Computational Linguistic Typology and Multilin-
gual, EACL 2023.





2
Preliminaries

While each part of this thesis is self-contained, it is important to have a
foundational understanding of the motivation and methods behind the studies
presented in the next chapters. Therefore, this chapter serves as an overview
of the theoretical and technical aspects that form the basis of this thesis.

2.1 The Dual Nature of Human Speech

One of the most fascinating characteristics of human speech is its dual nature
(James Robert Glass, 1988; Ladd, 2011; L. J. Lee, 2004). On the one hand, speech is
discrete. That is, listeners perceive speech as a sequence of linguistic units that are
discrete and categorical, usually in the form of phonemes or syllables. The phoneme
as a concept is well-established in speech science as “the smallest unit of speech that
can distinguish one word from another in a particular language”. For instance, the
words bill and pill differ by one phoneme in word-initial position. Experimental
studies have shown that human listeners who did not practice an alphabetic
writing system can discriminate between phonemic categories, and this effect has
been observed in both preliterate children and illiterate adults. Furthermore, each
language is characterized by a finite inventory of phonemes that are combined
to form syllables, and then words. The word formation process is governed by
language-specific phonotactic rules that make some sound combinations more
probable than others. To form complete utterances, words are combined according
to morphosyntactic rules of the language. These linguistic units form a hierarchy
that represents the linguistic description of speech (see Figure 2.1).

On the other hand, speech is continuous. That is, the physical realization
of human speech is a continuous stream of energy with no explicit boundaries

17
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Figure 2.1: From the continuous to the discrete: the linguistic description of speech.

between adjacent linguistic units. Speech processing can thus be viewed as a
process of decomposing the complex continuous speech signal into form-based
representations. These representations then make contact with higher-level lin-
guistic representations at the levels of syntax, semantics, and pragmatics, with
the ultimate goal of decoding the communicative intent of the speaker. Given this
definition of speech processing, the acoustic speech signal can be thought of as a
stream of energy that encodes three sources of information (Clopper and Pisoni,
2005): (1) the linguistic message, (2) individual speaker attributes, and (3) the
communication channel. Each source of information in the signal is inherently
subject to variability. For example, the encoding of a linguistic message may
substantially vary due to in-context predictability, leading to the reduction of pre-
dictable expressions either lexically or phonetically, or at both levels. On the other
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hand, speakers vary in their vocal tract shapes, which affects speech production,
as well as in their dialect or language variety. Lastly, the communication medium
itself can induce changes in the acoustic manifestation of speech due to variability
in the environment or electronic transmission. Considering all these sources of
variability in speech, the ability of humans to effectively communicate in everyday
life is indeed remarkable.

2.2 Speech Variability and Variation

The traditional approach to the study of speech perception and language processing
has often relied on abstract phonemic descriptions of speech that largely ignore
its inherent variability across different utterances, speakers, and contexts. In this
paradigm, the main assumption is that the human auditory system normalizes
the acoustic signal into an abstract representation that is largely invariant to
the previously discussed sources of variability. Proponents of this approach view
the sources of variability in speech as natural consequences of language variation
and argue that variability is not something to be discarded but rather should be
incorporated into conceptual and computational models of speech perception and
processing (e.g., Clopper and Pisoni, 2021; Pisoni and Levi, 2012). According to
this alternative approach, human listeners encode these “indexical” properties
of speech in their memory, leveraging the variability in speech signals to help
them better understand and interpret linguistic messages. For example, exemplar-
based models of speech perception posit that every experience of a spoken word
leaves a memory trace (or exemplar) that is rich in acoustic-phonetic detail,
including speaker-specific and context-dependent information (e.g., Hawkins, 2003;
Pierrehumbert, 2002; Port, 2007). Then, the recognition of linguistic units involves
the activation of and comparison among these exemplars in memory.

Furthermore, the problem of language variation has been a long standing topic
of interest to sociolinguists. One can identify two lines of research that have
emerged in the sociolinguistics literature which delve into different dimensions of
variations. The first line of research is concerned with the descriptive study of
language variation as it occurs in social strata, geographical regions, and ethnic
groups. Researchers along this line of research are faced with questions about the
social implications of such variation (Clopper and Pisoni, 2021). The second line
of research is concerned with how variation in language is processed by listeners in
order to decode the intended message by the speaker. This line of research focuses
on language processing in the face of dialect variation and develops objective mea-
sures to quantify the mutual intelligibility of related language varieties (Gooskens,
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2017; Van Heuven, 2008). The latter line of sociolinguistic research bears greater
relevance to the work presented in this thesis with respect to the representation of
cross-linguistic variation in neural networks and the role of linguistic experience
non-native spoken word processing.

While neural networks have been adopted as cognitive models for speech pro-
cessing in recent research (Magnuson et al., 2020; Matusevych, H. Kamper, et al.,
2021, inter alia), the study of speech variability under the framework of repre-
sentation learning has been somehow limited. This situation is largely due to
the predominant emphasis within the machine learning community on improv-
ing performance metrics for predefined benchmarks, which are typically used as
indicators of progress. As a result, a majority of the research efforts have been
channeled towards the development of models that exhibit robustness against vari-
ability in recording and acoustic conditions. Moreover, considerable focus has been
dedicated to improving the models’ ability to generalize, thereby enabling them to
effectively handle discrepancies between training and evaluation datasets. However,
an area that remains relatively underexplored is the investigation of how neural
network representations are shaped by speech variability. While a few factors
such as recording conditions and speaker-specific variations have sufficiently been
studied, the subtler aspects of speech variability—for example, acoustic-phonetic
and cross-linguistic variations—are not adequately explored and analyzed. This
reveals an essential gap in our understanding that requires further comprehensive
research that takes a closer look into the nuances of speech variability under the
representation learning framework.

2.3 Spectral Representations of Speech

The (digital) speech signal can be described as a sequence of feature vectors where
the dimensions of each vector correspond to the energy of different frequency
bands. This low-level feature representation is produced via a signal processing
pipeline transforming the temporal audio waveform into a frequency domain
representation consisting of spectral vectors, each representing the information
in a small temporal window of the signal. Consider a digitized audio signal s[n]

consisting of N samples, where n is an integer that is an index over time (i.e.,
the nth sample). The corresponding spectral representation can be described as a
sequence A = a1:T = (a1, . . . ,aT ) consisting of T acoustic vectors, where each
vector at ∈ Rk and k represents the number of frequency bands. The most common
spectral representations in ASR research are Mel-frequency filter banks, also known
as Mel-Frequency Spectral Coefficients (MFSCs), and Mel-Frequency Cepstral
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Figure 2.2: A schematic that illustrates the different processing steps in extracting
spectral representations from a speech waveform. Dashed lines indicate
processing steps that are required only for MFCCs. The figure is based on
the extraction pipeline from Jurafsky and Martin (2000).

Coefficients (MFCCs). The preprocessing pipeline for these feature representations
typically involves the following steps (illustrated in Figure 2.2):

• Frame segmentation: The temporal speech signal s[n] is first divided into
T number frames each consisting of J samples, typically with a stride of K
samples between the start of adjacent frames (J < K). Even though speech
is a non-stationary, time-varying signal, this segmentation assumes that
each frame is a quasi-stationary signal with negligible variation in energy
characteristics in the corresponding time window. Therefore, the frame size
J and stride K are chosen such that the properties of the audio signal are
fairly time-invariant within each frame.

• Windowing: To minimize discontinuities at the edges of the frames, each
frame is processed by a window function such as a Hamming window, which
numerically reduces the values of the signal toward zero at the window
boundaries.

• Discrete Fourier Transform (DFT): The DFT step is applied to extract
spectral information of each windowed frame and convert it from the time
domain to the frequency domain. The goal of this step is to compute the
amount of energy in each frequency band.

• Mel Filter Bank and Log: The human auditory system is known to exhibit
various sensitivities to different frequency bands. That is, the human ear is
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more sensitive to frequency bands below 1000 Hz. Modeling this property in
the feature extraction pipeline has been shown to improve speech recognition
performance. To this end, the powers of the spectrum are computed and
then mapped using a set of triangular filters that are spaced according to
the Mel scale. The Mel scale is a perceptual scale of pitches where equal
distances correspond to equal perceived differences in pitch. Then, and since
the human auditory system seems to be logarithmic, the log operation is
applied to each of the Mel values. These operations together result in a Mel
filter bank representation, or MFSCs.

• Discrete Cosine Transform (DCT): The amount of energy at different
frequency bands can exhibit statistical correlations that are undesirable
for earlier models of speech processing such as Gaussian Mixture models.
To decorrelate the spectral features, a Discrete Cosine Transform (DCT)
is applied to the log Mel filter bank energies to decorrelate the energies.
Typically only the first 12-13 DCT coefficients are kept in order to decompress
the data.

• Delta and Delta-Delta features: It is a common practice to append the
delta (first derivative) and delta-delta (second derivative) of the MFCCs
to the feature vector to incorporate some information that captures the
dynamics of the speech signal. This step is optional and can be omitted for
models that are designed to capture the temporal dynamics of speech such
as deep neural networks.

This signal processing pipeline has been the subject of extensive engineering
in the last few decades. Although various modifications to this pipeline have
been proposed in the literature, the improvements due to the feature extraction
pipeline seem to be trivial compared to modeling innovations in the architectural
system design and training data, specially when modeling speech using deep neural
networks.

2.4 Neural Network Representations of Speech

In this section, we present three neural network architectures that are widely
employed as representation models for speech processing.
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2.4.1 Convolutional Neural Networks

Although convolutional neural networks (CNNs) have been initially developed
in the computer vision research, they have been adapted for language problems
in NLP (Collobert et al., 2011; Kalchbrenner et al., 2014; Kim, 2014; Ye Zhang
and Wallace, 2015) as well as speech processing (Abdel-Hamid et al., 2014; Merkx
and Scharenborg, 2018; Palaz et al., 2015; Sainath et al., 2015). One-dimensional
convolutional networks are often employed as a front-end processor to identify
local patterns and extract relevant phonetic features from a raw speech input or a
spectral representation of the audio signal. In this section, we consider the case
of a spectral representation in the form of a sequence of acoustic feature vectors
such as MFCCs. Let us denote the spectral representation of the speech input as
a matrix A ∈ Rk×T , where k is the number of frequency bands, or channels, and
T is the number of frames in the signal. This matrix can be formally described as

A = a1:T =


| | | |
a1 a2 . . . aT

| | | |

 (2.1)

To extract high-level features that are predictive for the speech processing task, a
convolutional filter W ∈ Rk×M is applied to a window of M acoustic vectors to
obtain a new latent feature

ct = α(W ∗ at:t+M−1 + b) (2.2)

where ct is a scalar, W and b are trainable parameters that are shared across
time (i.e., same set of parameters applied to all possible convolutional windows
at:t+M−1), the ∗ operation is an element-wise matrix multiplication followed by
summation (in order to obtain a scalar), and α is a non-linear activation function.
The parameters of the filter W are learned when training the neural network and
back-propagating the error in a (self)-supervised learning task. The convolutional
filter is then applied to all successive convolutional windows of width M by sliding
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Figure 2.3: A visual illustration of a convolutional neural network for learning high-
level representations of speech. The convolutional block in this example
network consists of three convolutional layers followed by statistical pooling
operation.

the filter over the k × T matrix that represents the input speech to induce a
feature map C ∈ R(T−M+1) as

C =


c1

c2
...

cT−M+1

 =


|
c1

|

 (2.3)

Note that multiple convolutional filters are simultaneously applied on the input
so that different filters will specialize in detecting various phonetic and lexical
features. That is, instead of applying a single convolutional filter W, a set of
filters {Wi}Fi=1 are applied and jointly learned during training. The resulting
representation from applying multiple filters is the feature map C ∈ R(T−M+1)×F ,
which can be described as follows
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C =


| | | |
c1 c2 . . . cF

| | | |

 (2.4)

The presented computation so far only describes the processing of speech in a
single convolutional layer. Oftentimes, the input goes through several layers of
convolutions (e.g., l convolution operations) that learn higher levels of abstraction
of the input signal as a set of feature maps {C1, · · · ,Cl}. At the end of the
convolutional block, the last feature map Cl is down-sampled using a statistical
pooling operation over time to obtain a statistical summary of the feature that is
captured by the filter

ĉ = stat-pool(Cl) (2.5)

Here, ĉ ∈ RF l is a high-level feature representation, where F l is the number of filters
in the last convolutional layer. The pooling operation makes it possible to obtain
fixed-size representations for variable length sequences. For a speech classification
task, the final vector representation is then passed to a few fully-connected layers
followed by a softmax function to obtain a probability distribution over the set
of output labels. For tasks that require learning a vector representation of the
speech input as a task of its own, the resulting high-level feature representation is
passed into an objective function that computes a loss, for example via contrastive
learning. However, modern CNN architectures may potentially involve many other
operations (e.g., batch normalization, skip connections, unit dropout, etc.), which
can be quite complex compared to the one described in this section.

2.4.2 Recurrent Neural Networks

In representation learning, the conventional architecture for processing variable-
length sequences is a recurrent neural network (RNN). Given a sequence of spectral
feature vectors A = a1:T ∈ Rk×T , an RNN is recursively defined as follows

ht =

FRNN

(
ht−1,at; θ

)
if t ≥ 1

0 otherwise
(2.6)
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where ht is the hidden state of network at time step t and θ are the parameters
of the recurrent function. This recursive definition enables the RNN to process
sequences of arbitrary length, and that is the case with speech data. In theory,
the hidden state ht is a summary of the information that has been observed
in the sequence up to timestep t. In practice, vanilla RNNs fails to encode all
information in the hidden state when sequences are long. It was shown that this
limitation of RNNs is caused by the vanishing gradient problem (Y. Bengio et al.,
1994; Jozefowicz et al., 2015). To address this problem, gated recurrent structures
with memory elements have been proposed. The most notable variants of gated
recurrent structures are the long-short term memory (LSTM, Hochreiter and
Schmidhuber, 1997) and the gated recurrent unit (GRU, Cho et al., 2014). Since
GRUs are used in this thesis, we introduce the typical computational dataflow for
a GRU in this section. A GRU is characterized by two gates: reset gate rt and
update gate zt. The motivation to use these two gates is to adaptively control
how much information from the hidden state should be carried to the next state
and how much information from the current input should be taken in the next
hidden state. The vectorized computation of GRU can be expressed as follows

rt = σ(Wrat + Urht−1) (2.7)

zt = σ(Wzat + Uzht−1) (2.8)

h̃t = tanh(Wvt + U(rt ⊙ ht−1)) (2.9)

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t (2.10)

The recurrent computation presented so far considers processing the input
sequence in one direction. The last hidden state in the RNN can be considered
as a representation that compresses, or summarizes, the entire input sequence in
a vector. However, it was shown that processing the sequence in two directions
(i.e., forward and backward) can improve the performance of many sequence
modeling tasks such as machine translation (Bahdanau et al., 2014) and speech
recognition (Graves, A.-r. Mohamed, et al., 2013). In the bidirectional recurrent
structure, the last hidden states in the forward direction and backward direction
are merged (either by concatenation or element-wise addition) to form a single
vector that represents the sequence. For speech classification tasks, this vector
is transformed via a fully connected layer into a softmax vector that represents
a probability distribution over the output space. In this thesis, we focus on
unidirectional recurrent networks. A schematic view of a unidirectional RNN for
speech processing is depicted in Figure 2.4.
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Figure 2.4: A visual illustration of a unidirectional recurrent neural network for learning
high-level representations of speech. The recurrent block in this example
network consists of three (stacked) recurrent layers.

2.4.3 Transformer Neural Networks

The transformer architecture has been a revolutionary innovation in the field of
NLP as well as speech processing (Vaswani et al., 2017). Transformer-based models
are particularly effective for sequence-to-sequence tasks where the input and output
sequences can be of different lengths, such as in speech recognition, text-to-speech
synthesis, or speaker diarization. They are also effective for speech classification
tasks, including spoken language identification and emotion recognition. Moreover,
large speech transformer-based models for speech can be pre-trained via self-
supervision without explicit transcriptions or labels. Since the last study of this
thesis presents an analysis of the transformer-based speech representations from
wav2vec 2.0 (Baevski et al., 2020), this section describes the computations within
this model.

Contrary to earlier neural models, wav2vec 2.0 does not operate on spectral
speech representations, but directly on the raw audio. To reduce the complexity of
the acoustic signal, the input is first passed through a series of convolutional layers
that downsample it. Each acoustic frame consists of a 25 msec of speech interval
(with a 10 msec stride), which is then transformed into a single representation that
is suitable to be further processed by the transformer layers. This step produces a
feature vector sequence at a rate of 50 frames per second. It has been shown that
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Figure 2.5: A visual illustration of the wav2vec 2.0 model. The vector quantization
module (VQ) is only used during pre-training. Adapting the model to
a downstream task requires fine-tuning the Transformer network using
labeled speech data.

the output of the convolutional layers is highly correlated with spectral speech
representations (Pasad et al., 2021).

Formally, consider a continuous acoustic signal represented as a sequence of T
acoustic frames denoted as x = (x1, . . . ,xT ). As previously mentioned, here xt is
an interval of the raw waveform that corresponds to 25 msec of speech. Within the
wav2vec model, the signal x is first transformed via a local, temporal convolutional
encoder f : X 7→ Z into a sequence of latent speech representations in a continuous
space as f(x) = z = (z1, . . . , zT ), where zt ∈ Rd. During pre-training, the feature
sequence is fed into two different blocks:

• A Transformer network g : Z 7→ C that contextualizes the feature sequence
and build representations c = (c1, . . . , cT ) via the self-attention mechanism
to (ideally) capture information at the global level (i.e., entire sequence).

• A quantization module q : Z 7→ Q that discretizes the feature sequence and
to induce quantized representations q = (q1, . . . ,qT ) via product quantiza-
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tion. These quantized representations are the targets of the self-supervised
learning objective during pre-training.

Note that the quantization module is only used during pre-training and completely
discarded when fine-tuning wav2vec 2.0 on a (labeled) downstream task such
as speech recognition or language identification. Nevertheless, the nature of the
discrete unit that emerge in the model during pre-training are interesting from an
interpretability point of view. Therefore, we dedicate the last chapter of this thesis
to the phonetic analysis of these discrete units. The details of the computations
within the quantization module are explained in-depth in Chapter 8. In this
section, we focus on the computations of the contextualization network based on
the Transformer architecture.

The Transformer block consist of L number of layers (i.e., usually 12 or 24
layers in speech models). The output of the convolutional feature extractor zt is
passed through the L layers of the transformer network. Each layer consists of a
multi-head self-attention mechanism and a position-wise feed-forward network.
For example, the first Transformer’s layer (i.e., l = 1) takes the output of the
convolutional encoder as input and produces a contextualized representation as
output. At the high-level, this operation can be formalized as follows

c(1) = FNN(self-attention(z)) (2.11)

Here, self-attention() is s the scaled dot-product attention operation introduced
in Vaswani et al. (2017) and FNN() represents a feedforward neural network. The
FNN() function applies a linear transformation followed by a non-linear activation to
each position separately, and then another linear transformation. Generalizing from
the first layer to the other layers in the Transformer network, the contextualized
representation at any layer l can be described as follows

c(l) = FNN(self-attention(c(l−1))) (2.12)

A detailed mathematical description of self-attention() operation is beyond
the scope of this section, and we therefore refer an interested reader to the work of
Vaswani et al. (2017) to get a deeper view of the self-attention mechanism. However,
at the high-level, the self-attention() operation enables a representation c

(l)
t in

a particular temporal position t to be interact with the representations of the lower
layer c(l−1) = (c

(l−1)
1 , . . . , c

(l−1)
T ) across all temporal positions. The self-attention
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mechanism eliminates the need of a recurrent function to model the temporal
dynamics of the speech signal. The temporal range of the attention mechanism
in Transformer network is unbounded in theory, which enables the Transformer
layers to capture longer-term dependencies such lexical and discourse-level context
of a spoken sentence.

2.5 Information Theory

Information theory, at its core, is a mathematical framework that aims to study
and quantify the storage and communication of information. As a framework,
information theory was first pioneered by Claude Shannon and was fundamentally
concerned with quantitatively defining information transmission and compres-
sion, as well as understanding the limits and capabilities of information systems.
Moreover, information theory has been shown to be applicable to the study of
linguistic structure, explaining why human languages are the way they are and
how communication pressures shape human languages(Futrell and Hahn, 2022;
Mahowald et al., 2013; Piantadosi et al., 2011, inter alia). Therefore, information
theory can be viewed as a quantitative framework for measuring the amount of
information conveyed by linguistic units, such as phonemes or words. Information
theory has been adopted as a framework to study various aspects of linguistic
structure, including phonology, morphology, and syntax. Due to its relevance to
the work presented in this thesis, this section introduces some fundamental con-
cepts of information theory. This section is based on the definitions and notations
introduced in the textbook of MacKay (2003).

Consider a random variable X associated with a triple (x,Ωx,Px), where x

represents the outcome of the random variable. The outcome can take a value
from a set of possible values defined by Ωx = {ω1, . . . , ωI}, where each value
is associated with probability from the set Px = {p1, p2, . . . pI}. We define a
probability mass function such that

P (x = ωi) = pi and
∑

ωi∈Ωx

P (x = ωi) = 1 (2.13)

Note that the set Ωx represents the outcome space of an experiment. For example,
when randomly sampling a letter from an English book, the set Ωx is the English
alphabet. In general, the set Ωx can represent any set of discrete linguistic events
such as phonemes or words. For convenience and brevity of notation, we write
P (x = ωi) as P (x). Moreover, we can quantify the uncertainty associated with a
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random variable using information theoretic notation of surprisal. For a specific
outcome, we measure its Shannon information content or surprisal is computed as

η(x) = −log2 P (x) (2.14)

This quantity is measured in bits, and it quantifies the unexpectedness of an
outcome being observed as a value of the random variable X. When an outcome
is certain to occur, it is surprisal is minimal (i.e., η(x) = 0). The uncertainty or
“randomness” of the associated probability distribution can be further quantified
as the average surprisal, or entropy as follows

H(X) =
∑
x∈Ωx

P (x) η(x) (2.15)

where 0 ≤ H(X) ≤ log2|Ωx| and it is also measured in bits. If one outcome is
certain to occur, then entropy associated with the random variable is minimal
such that H(X) = 0. On the other hand, a distribution associated with a random
variable is maximally entropic (i.e., H(X) = log2|Ωx|) when all outcomes are
equally likely to occur. For convenience, the entropy H(X) may also be written
as H(p), where p can be viewed as a “vectorized” representation of Px.

2.6 Representational Similarity Analysis

Representational Similarity Analysis (RSA) is a data-analytical framework de-
veloped in the neuroscience community to enable comparison of neural activity
patterns across brain regions and computational models of information processing
(Kriegeskorte et al., 2008). The RSA framework abstracts away from the activity
patterns themselves and operates on the geometry of the representation or feature
space. This makes it applicable for interpretability and analysis of neural networks
when the correspondence between neurons across different layers or architectures
is unknown. In NLP research, RSA has previously been employed to study the
correlation between neural network and symbolic representations of language
(Chrupa la and Alishahi, 2019) and analyze word representations in language
models (Abdou et al., 2019; Abnar et al., 2019; Beinborn and Choenni, 2020;
Lepori and McCoy, 2020; J. Wu et al., 2020). In computational speech processing
research, RSA has been further employed to analyze the representations of speech
recognition models (Chrupa la, Higy, et al., 2020; Chung, Belinkov, et al., 2021)
and quantify their similarity to human brain activations while listening to speech
(Magnuson et al., 2020). In this thesis, the RSA framework is used in two different
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studies to: (1) analyze the effect of initial model conditions on the consistency
of its word representations, and (2) quantify the impact of linguistic experience,
characterized by the language of exposure, on non-native spoken-word processing.
Therefore, we introduce some fundamental information on the representational
similarity analysis framework in this section.

Consider a set of K acoustic stimuli {A1, . . . ,AK} in addition to two neural
representation models Fy and F z. Here, the two models Fy and F z have the same
architecture but differ across one dimension of variability. For instance, the two
models are initialized with the same initial weights but trained on two different
languages, or trained on the same data but initialized differently. Now, Fy and F z

can be used to induce representations of the speech stimuli, resulting in two views
of the data: Y ∈ RK×D and Z ∈ RK×D, respectively. Since the two models are
trained independently, their representations do not correspond at the neuron-level.
Therefore, comparing the two the views at the individual representation level using
a metric such as the cosine distance is not feasible. To solve this problem, the RSA
framework was developed the so that the representation similarity can be quantified
using pairwise similarities instead of direct sample-to-sample comparison.

Although several variants of the RSA framework have been introduced within the
neuroscience and machine learning community, we use Centered Kernel Alignment
(CKA) as a representational similarity measure between the two views of the same
input samples in this thesis.(Kornblith et al., 2019). CKA abstracts away from the
representations themselves and operates on pairwise distances between the sample
representations. Moreover, CKA has been shown to be invariant to orthogonal
transformation and isotropic scaling which makes it suitable for our analysis when
analyzing the effect of one of dimensions of speech variability. Given two different
views of the input stimuli as the matrices Y and Z, each view matrix is multiplied
by a centering matrix H = IK − 1K/K to make each column’s mean equal to zero
and obtain centered second moment matrices as

GY = HYY⊤H⊤/D,

GZ = HZZ⊤H⊤/D
(2.16)

Then, the representational similarity of the two views is computed using CKA as

CKA(Y,Z) =
⟨vec(GY), vec(GY)⟩

||GY||F ||GZ||F
(2.17)

where vec(.) represents the vector-reshaped matrix, ⟨., .⟩ is the inner product, and
||.||F is the Frobenius norm. This ensures that CKA ∈ [0, 1], where values close to
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1 indicate high similarity between the two views of the data, while values close to
0 indicate low similarity.

In summary, RSA aims to characterize the representational geometries by
abstracting away from the representations themselves and analyzing the correlation
between pairwise dissimilarity matrices derived from different views of a given set
of stimuli. This way, RSA allows for both qualitative and quantitative comparisons
between different representation models, enabling us to gain insights about how
different dimensions of speech variability shape the representational profile of
neural networks.





Part II

SPEECH REPRESENTATIONS OF LANGUAGE
IDENTITY





3
Domain-Invariant Speech Representations

for Language Identification

This chapter begins the second part of the thesis, which is concerned with
representations of spoken language identity. The study presented in this
chapter focuses on the problem of domain variability and how it affects the
transferability of neural network representations across different datasets.
Concretely, we first show that the representations of convolutional models for
spoken language identification do not transfer well across different datasets
that vary in their recording conditions. To solve this problem, we propose
an approach based on unsupervised adversarial adaptation to encourage the
model to build domain-invariant speech representations. We demonstrate
that adversarial training prevents neural networks from exploiting dataset-
specific artifacts as predictive features for the language, thus leading to better
performance across domains.

3.1 Introduction

Spoken language identification, henceforth SLID, is the problem of determin-
ing the identity of the language in a spoken utterance (H. Li, Ma, and K. A. Lee,
2013). In today’s globalized world, SLID systems can facilitate a wide range of
cross-lingual speech and communication technologies such as spoken language
translation (Bangalore et al., 2012; Fügen et al., 2007; Waibel et al., 2000) and
multilingual spoken document retrieval (Chelba et al., 2008). Furthermore, robust
SLID systems can be crucial in assisting the field linguistics community and their
ongoing efforts in the preservation, documentation, and categorization of the
world’s endangered languages (Levow, Ahn, et al., 2021; Levow, Bender, et al.,
2017).

37
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Earlier work has addressed the SLID task using the so-called phonotactic
approach. In this paradigm, the acoustic signal is first transduced into a sequence
of discrete symbols (e.g., phones), then probabilistic models are utilized to obtain
language likelihoods (Lamel and Gauvain, 1994; H. Li and Ma, 2005). This
approach has been outperformed by approaches that operate directly on the
acoustic signal without discretizing it. Acoustic approaches used to be based
on Gaussian Mixture Models (GMMs) and the i -vector framework, which has
been applied to both speaker and language identification (Garcia-Romero and
Espy-Wilson, 2011; Kenny, 2010; Martinez et al., 2011; Su and Wegmann, 2016).
Currently, end-to-end deep neural networks (DNNs) are predominant for SLID
and outperform GMMs, especially for short utterances (e.g., Gonzalez-Dominguez
et al., 2014; Lopez-Moreno et al., 2014; Mateju et al., 2018; P. Shen et al., 2018;
Shon et al., 2018).

Discriminating between closely related languages is a difficult task for human
listeners due to their phonetic and phonological similarity (Skirg̊ard et al., 2017).
On the other hand, SLID models based on neural networks have shown striking
performance discriminating between spoken varieties of Arabic (Bulut et al., 2017;
Grégory Gelly et al., 2016; Shon et al., 2018), Slavic languages (Mateju et al.,
2018), and languages in accented speech samples from multilingual speakers (Titus
et al., 2020). For instance, the best neural SLID model in the work of (Mateju
et al., 2018) has reported an error rate as low as 1.2% when discriminating between
11 Slavic languages. Generally speaking, the impressive performance of DNN-based
SLID reported in the literature gives the impression that SLID is almost a solved
problem.

3.1.1 The Problem of Domain Variability

Despite their success in solving many challenging problems in the field of artificial
intelligence, DNNs still have some limitations. One of the well-known limitations
of DNN-based models is that their performance usually degrades when tested on
data samples with different characteristics than the training data. This problem
is referred to in the machine learning community as a data distribution shift
(Ben-David et al., 2010; Ganin, Ustinova, et al., 2016). In other words, DNN-
based models usually do not perform well when they encounter test samples
that are drawn from a different distribution even if it is similar to the training
data distribution. In the speech modality, this problem is encountered when the
recording conditions vary between training and test samples. For example, a
model trained on read speech recorded in a quiet environment will not perform
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well if tested on speech recordings with a microphone or background noise. This
discrepancy in the recording environments exemplifies a domain mismatch
problem whereby the training distribution can be regarded as the source domain
and the test distribution be regarded as the target domain. In this chapter, we
view the domain mismatch problem as one instance of intersession variability
in the acoustic realization of human speech (H. Li, Ma, and K. A. Lee, 2013).

In addition to the domain mismatch problem, neural networks tend to exploit
dataset biases as shortcuts when learning to perform a task from data (Geirhos,
Jacobsen, et al., 2020). That is, instead of recognizing the underlying structure of
the data and how it relates to the prediction task, neural networks have a strong
tendency to learn decision rules based on spurious correlations between the input
features and the labels (e.g., Beery et al., 2018; Geirhos, Rubisch, et al., 2018;
Glockner et al., 2018; Y. Goyal et al., 2017; Kavumba et al., 2019). As a result, a
strong performance on a benchmark task where the training and test samples are
random splits of the same dataset does not usually transfer to other datasets with
more challenging conditions in real-world scenarios. To measure the true ability of
a model to solve a certain task, we argue that the evaluation procedure should
always consider out-of-domain samples in addition to the in-domain samples.
Since spurious correlations are usually dataset-specific (or domain-specific) and
very unlikely to exist in other datasets (or domains), out-of-domain evaluation
can deliver insights about the limitations of the model and whether or not it has
learned the task by recognizing the true patterns that are predictive of the labels.

3.1.2 Research Questions

Most of the previous work in SLID has addressed the task without considering the
out-of-domain generalization problem. That is, SLID models in previous work
were trained and evaluated using disjoint splits of the same dataset where the
training and evaluation samples have similar, if not identical, recording conditions
(i.e., same domain). Therefore, the impact of dataset bias on SLID robustness
has not yet been investigated with a systematic evaluation across datasets. For
the case where the languages are closely related and perceptually similar, picking
up superficial correlations in the data could be an easier task for neural networks
than learning robust discriminative patterns between the languages. Therefore,
it remains unclear whether the success of SLID models in an in-domain setting
reflects the true ability of the models in identifying features that are truly predictive
of the languages under study. This chapter presents a study whereby we bridge
this gap and focus on the challenging case of SLID for short utterances of related
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Slavic languages in a cross-domain setting. We investigate the following research
questions:

• RQ1. To what degree do neural SLID models for related languages gener-
alize to another domain with different recording conditions?

• RQ2. Are different low-level speech features equally robust under domain
mismatch?

• RQ3. Can we adapt SLID models to a new domain without using la-
belled data in the new domain? If yes, what are the factors that affect the
adaptability of the model?

To address these research questions, we present a series of SLID experiments with
datasets from two domains: (1) Read speech recordings from the Slavic subset of
the GlobalPhone speech database (Schultz et al., 2013), and (2) Slavic broadcast
recordings collected and distributed by Mateju et al., 2018 for SLID (RQ1). We
also compare the performance of spectral (MFSCs) and cepstral (MFCCs) speech
features within the same domain and across different domains (RQ2). Finally,
we propose a novel SLID model based on unsupervised domain adaptation with
adversarial learning (Ganin and Lempitsky, 2015) to improve the model robustness
and cross-domain transferability, analyze predictions from the adapted model, and
visualize its representations compared to the baseline (RQ3).

3.2 SLID with Deep Neural Networks

3.2.1 Problem Definition

We define the SLID task as a discriminative sequence classification problem. First,
a variable-length utterance is transformed by an acoustic front-end into a sequence
of acoustic observations x1:T = (x1, . . . ,xT ), where xt ∈ Rk is a frame-level feature
vector at timestep t. To simplify the notation, we use a bold symbol without
subscripts (i.e., x) to denote the entire input sequence. Given a sequence x, the goal
is to predict the spoken language ŷ. Using a deep neural network as a classification
model, the SLID problem can be defined as

ŷ = arg max
y∈Y

P (y |x; θ) (3.1)



3.2 slid with deep neural networks 41

Conv + BN + ReLUCNN 1

Conv + BN + ReLUCNN 2

Conv + BN + ReLUCNN 3

Conv + BN + ReLUMax Pooling

Conv + BN + ReLU

Conv + BN + ReLUFully-Connected

Conv + BN + ReLUSoftmax

Fully-Connected

Conv + BN + ReLU1D Conv Layer

Conv + BN + ReLUBatch Norm

Conv + BN + ReLUReLU

Figure 3.1: A schematic view of our baseline SLID model. The model can viewed as
two components trained jointly: (1) a high-level feature extractor Gf and
(2) a language classifier Gy

.

where Y is a finite set of languages, θ is the model’s parameters learned in
a supervised approach, and P (y|x;θ) represents a posterior probability of the
language label y.

3.2.2 Baseline SLID

Our SLID model consists of a 1D 3-layer convolutional network followed by 3-
layer fully-connected feed-forward network as schematized in Figure 3.1(a). We
describe the mapping between the input and the output in the neural network as
follows: given an input sequence x sampled from a spectro-temporal space X , the
input is first transformed by a high-level feature extractor Gf : X → RD into a
D-dimensional feature vector as

f = Gf (x;θf ) ∈ RD (3.2)

Then, the feature vector f is transformed by a language classifier Gy : RD → R|Y|

into a logit vector via a series of non-linear transformations as

ŷ = Gy(f ;θy) ∈ R|Y| (3.3)
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Figure 3.2: A schematic view of our domain-adversarial neural networks for SLID: (a)
the architecture of DA-SLID I, and (b) the architecture of DA-SLID II

By applying a softmax function on the logit vector ŷ, we obtain an empirical
probability distribution over the language space. The parameters of the network
θf and θy are learned jointly in an end-to-end approach given a dataset DS =

{(xi, yi)}NS
i=1 of NS labelled samples from a single domain. The objective function

is to minimize

J(θf ,θy) =
∑

(xi,yi)∈DS

Ly

(
Gy

(
Gf (xi;θf );θy

)
, yi

)
(3.4)

where Ly is the loss of the language classifier. For the sake of simplicity, we
consider the convolutional block as the high-level feature extractor Gf while the
feed-forward block as the language classifier Gy in our baseline SLID model.

3.2.3 Domain-Adversarial Neural Network for SLID

In this study, we employ domain-adversarial neural network (DANNs) which
have been successfully applied to many vision and speech recognition problems
(Ganin and Lempitsky, 2015; Meng, Zhuo Chen, et al., 2017; Shinohara, 2016).
DANNs aim to minimize the discrepancy between two domains given a dataset
DT = {xi}NT

i=1 of NT unlabelled samples in the target domain, in addition to the
source labelled samples DS . This adaptation technique is unsupervised because
it only requires unlabeled samples in the target domain, while the supervision is
transferred from the labeled samples of the source domain.
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To improve the SLID model’s out-of-domain generalization, the feature rep-
resentations emerging from the model should be both language-discriminative
and domain-invariant. This objective can be achieved if the model is encouraged
during training to build up representations that are good predictors of the spoken
language but do not encode domain-related information. To this end, a fully-
connected feed-forward block Gd : RD → [0, 1] is added to the network to predict
the domain given f (see Figure 3.2 (a) and (b)). We view Gd as a domain classifier
with a separate set of parameters θd which are learned by exploiting the domain
labels of source and target samples. That is, each training sample in the source
domain (xi, yi) is augmented with a domain label di = 0, while each training
sample in the target domain xj is augmented with a domain label dj = 1. We
seek the parameters θd that minimize the loss of the domain classifier. On the
other hand, the feature extractor Gf is trained such that f is uninformative for
the domain classifier. Thus, we seek the parameters θf that maximize the domain
classifier loss, encouraging the feature representation f to be domain-invariant.
This procedure is an instance of adversarial learning where different blocks in the
network are trained with competing objectives. The overall objective function is
to minimize

J(θf ,θy,θd) =
∑

(xi,yi)∈DS

Ly

(
Gy

(
Gf (xi;θf );θy

)
, yi

)
− λ

∑
(xi,di)∈(DS∪DT )

Ld

(
Gd

(
Gf (xi;θf );θd

)
, di

)
(3.5)

where Ly is the loss of the language classifier, Ld is the loss of the domain classifier,
and λ is a trade-off hyperparameter that controls the contribution of the domain
classifier’s loss to the overall loss which is computed as

λ =
2

1 + exp(−10 · α)
− 1 (3.6)

where α is a progress parameter that is proportional to the iteration index and
changes from 0 to 1 in a linear scale during the training procedure. Therefore,
the adaptation hyperparameter λ is initiated at 0 to suppress the noisy signal
from the language classifier during the early training iterations. In practice, this
adversarial learning strategy is realized with a special layer that behaves as an
identity function in the forward pass but during backpropagation it reverses the
direction of the gradient signal coming from the domain classifier’s loss into the
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feature extractor. Following previous literature on adversarial domain adaptation
(Ganin and Lempitsky, 2015), we refer this layer as as a gradient reversal layer.

Prior work on adversarial domain adaptation has made a design decision to
consider the convolutional block as the feature extractor Gf (.) and the feed-forward
block as the label predictor Gy(.), and we also adopt the same design for our
baseline SLID model. In this study, we argue that this design decision is rather
arbitrary since it is solely based on the network architecture of the internal blocks
and not supported by empirical evidence. Moreover, this design decision could have
non-trivial consequences on the DANN performance since the gradient reversal
layer is plugged in between the feature extractor Gf (.) and the domain classifier
Gd(.). Therefore, we experiment with two variants of the domain adversarial SLID
model: (1) DA-SLID I: an identical configuration to Ganin and Lempitsky (2015),
where the convolutional block of the model is considered as the feature extractor
as illustrated in Figure 3.2 (a), and (2) DA-SLID II: we consider the feature
extractor as the convolutional block as well as the first layer of the fully-connected
block Figure 3.2 (b). Therefore, in DA-SLID II the reversed gradient signal from
the domain classifier is back-propagated into all layers of the network, except the
two final layers before the softmax of the language classifier.

3.3 Experimental Data and Setup

3.3.1 Datasets for Slavic SLID

GlobalPhone Read Speech (GPS) We use the Slavic portion of the multi-
lingual GlobalPhone speech database (Schultz et al., 2013) which includes read
speech recordings from native speakers of six Slavic languages: Bulgarian (BUL),
Croatian (HRV), Czech (CZE), Polish (POL), Russian (RUS), and Ukrainian
(UKR). The utterances vary in length and quality across languages. We set the
minimum utterance length to 3 seconds and segment longer utterances into non-
overlapping 3-second speech segments. Our final training subset consists of 8,000
utterances per language. We use the same splits as in (Tachbelie et al., 2020).

Radio Broadcast Speech (RBS) A large collection of Slavic recordings were
collected by harvesting online radio broadcasts in (Mateju et al., 2018; Nouza
et al., 2016). The original dataset contains recordings for 11 Slavic languages.
We use the same subset of six languages as in the GPS dataset. The extracted
utterances are either segments of professional news reports or of spontaneous
speech during discussions. Occasionally, the utterances include background music



3.3 experimental data and setup 45

and different sorts of acoustic noise. We sample 8,000 and 500 utterances per
language from the training split as our training and validation sets, respectively.
This dataset does not include any speaker IDs. Thus, we cannot confirm whether
training and evaluation speakers are disjoint, which may have an impact on the
model’s performance.

3.3.2 Low-level Feature Extraction

In our experiments, we use the first 13 coefficients of MFSCs and MFCCs, with
the zeroth coefficient being the average frame energy, as low-level speech features.
While previous works usually refer to MFSCs as mel-filterbanks (Shon et al.,
2018), we use the term MFSCs to refer to mel-frequency spectral features that
are correlated (A. Mohamed, 2014). Since both datasets in our study are sampled
at 16 kHz, we extract frames of 400 samples with 160 samples stride, which
corresponds to 25 ms and 10 ms, respectively. We apply standardization on the
features to have zero mean and unit variance.

3.3.3 Model Architecture and Hyperparameters

Baseline Architecture. We use 1D 3-layer convolution over the temporal
dimension with 128, 256, and 512 filters and widths of 5, 10, and 10 for each layer
and keep stride step at 1. We apply batch normalization and ReLU non-linearity
following each convolutional operation. We apply max pooling to downsample
the representation only at the end of the convolution block. For the feed-forward
block, we use 3 fully-connected layers (512 → 512 → 512 → 6) before the softmax
for both the non-adapted and the adapted SLID models.

Domain-Adversarial SLID. For our SLID models with domain adaptation,
we use an identical architecture for the convolutional and feed-forward blocks as
the baseline model. The only difference is an additional feed-forward block with
the gradient reversal layer where we employ a 3-layer feed-forward network (512
→ 1024 → 1024 → 2) as the domain classifier.

Training Details. In this study, we focus on three experimental variables:
(1) model type (Baseline SLID vs. DA-SLID I vs. DA-SLID II), (2) adaptation
direction (GPS → RBS vs. RBS → GPS), and (3) low-level acoustic features
(MFSCs vs. MFCCs). For each possible combination, we train 25 neural network
instances that differ in their random initialization which we control using different
random seed for each run. Therefore, we have 300 neural network instances in
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Table 3.1: Cross-domain evaluation of SLID models in accuracy (%). ∆ indicates the
relative difference.

Evaluation

Source Dataset In-domain Out-of-domain ∆

GlobalPhone Speech (GPS) MFSCs 96.59 40.87 -57.69
MFCCs 96.39 39.53 -58.99

Radio Broadcast Speech (RBS) MFSCs 96.07 56.49 -41.20
MFCCs 95.60 53.12 -44.44

total. For the loss function, we use cross-entropy loss for both Ly and Ld. The
ADAM optimizer is used with learning rate of 0.001. We train our models with a
batch size of 256 for 50 epochs and observe the in-domain validation performance
during training. The epoch that yields the top performing model on the in-domain
validation is used for both in-domain as well as out-of-domain evaluation on
held-out test sets.

3.4 Experimental Results

We now present and discuss the results of our experiments. To make the results
comparable across datasets and prevent undesirable effects due to potential biases
caused by utterance length mismatch, we train and evaluate each of our SLID
models on 3-second utterances. Since the GPS evaluation data is imbalanced, we
use balanced accuracy (Brodersen et al., 2010) as our evaluation metric to obtain
a better estimate of the model performance. We observe that balanced accuracy
scores highly correlate with equal error rate (EER) and average cost (Cavg), which
we do not report for the sake of conciseness.

3.4.1 Cross-Domain Evaluation

Table 3.1 presents the results of the cross-domain evaluation on both datasets
without adaptation. For this evaluation, we report the maximum accuracy score
we obtain across all 25 runs for each model type. Even though our SLID models
are not heavily regularized, the in-domain performance is always above 95%, while
MFSC and MFCC features yield a comparable performance. On the other hand,
out-of-domain (OOD) evaluation shows a considerable drop in accuracy in each
cross-domain setting. It is interesting to observe that the drop in accuracy is more
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Table 3.2: OOD performance of adapted models in accuracy (%).

Adaptation Model

Transfer task Baseline SLID DA-SLID I (∆) DA-SLID II (∆)

GPS → RBS MFSCs 40.87 44.67 (+09.30) 47.43 (+16.05)
MFCCs 39.53 41.93 (+06.07) 43.23 (+09.36)

RBS → GPS MFSCs 56.49 70.47 (+24.75) 88.78 (+57.17)
MFCCs 53.12 73.85 (+39.02) 91.86 (+72.93)

pronounced for MFCC features, while the correlated MFSCs seem to be more
robust under domain shift. To verify this observation, we conduct a paired student
t-test across the results of all 25 neural networks instances of the baseline models
trained on MFSCs and MFCCs. The result of the test shows that the difference is
statistically significant for the model trained on the GPS and evaluated on RBS
(t(24) = 6.28, p < 0.0001) and for the model trained on RBS and evaluated on
GPS (t(24) = 8.67, p < 0.0001). Moreover, the impact of domain shift is more
pronounced in when training GPS and evaluating on RBS.

3.4.2 Domain Adaptation Results

In our adaptation experiments, we investigate two transfer tasks; GPS → RBS and
RBS → GPS. The results are shown in Table 3.2 where we report the performance
of the model with the maximum accuracy score across the 25 different runs for
each model type. The adapted models consistently improve the out-of-domain
accuracy compared to the source-only non-adapted baseline with both features
and in both directions. Our DA-SLID II model yields the best results, which
suggests that the domain discrepancy is present not only in the convolutional
layers, but also in the fully-connected layers that are more distant from the input.
We present and discuss the results for both directions.
RBS → GPS Both domain adaptation models yield significant improvements
over the baseline models. While the MFSC-based DA-SLID II model improves
OOD accuracy from 56.49% to 88.78% with a relative accuracy gain of 57.17%, its
MFCC-based counterpart improves OOD accuracy from 53.12% to 91.86% with a
relative accuracy gain of 72.93%.
GPS → RBS Even though adapted models improve over the baseline, the
improvements in this direction are less impressive than what is observed in the
RBS → GPS direction. The MFSC-based DA-SLID II model improves OOD
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accuracy from 40.87% to 47.43% with a relative accuracy gain of only 16.05%. On
the other hand, the MFCC-based DA-SLID II model improves OOD accuracy
from 39.53% to 9.36% with a relative accuracy gain of only 9.36%.

3.4.3 Result Discussion

The performance gap between the two directions in our experiments seemed
surprising at the beginning. In retrospective, this should not be surprising as the
two directions are not equally challenging. The RBS dataset is more diverse in
terms of the number of unique speakers and background noise. An SLID model
trained on the RBS dataset has to learn to extract language ID features from
noisy speech signals, thus it is expected to be more generic and perform well on
clean speech signals even under domain shift. This finding is consistent with what
has been reported in the domain adaptation literature on how source domain
diversity affects adaptability of the model to new domains (Ganin and Lempitsky,
2015). On the other hand, if the model has not been exposed to noisy speech
signals during training, it is unlikely to perform well on noisy signals even if the
representation discrepancy has been minimized, which is the case in the GPS →
RBS direction. This suggests that alternative adversarial training procedures that
add noise to the input representation could be explored to encourage the model
to transform the noisy input signals into noise-robust representations. Moreover,
our experiments show that MFCCs are more sensitive to input variations due to
domain shift, thus MFCC-based models in both directions tend to benefit more
from adaptation in terms of relative accuracy gain compared to their MFSC-based
counterparts, with only one exception case.

3.5 Stability Analysis

In the previous section, the performance of the neural network instance that
performs best on the validation set was reported. That is, we report only the
performance of a single run out of 25 different instances that were trained for
each model type. However, adversarial learning, which involves training two
competing networks, is known to be unstable and sensitive to different random
initializations. As a result, the performance of the models may vary across different
runs. Therefore, we analyze the results across all neural network instances in this
section.
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Figure 3.3: Stability analysis of the model in the RBS → GPS transfer task: (left)
MFSC features and (right) MFCC features. Each data point corresponds to
out-of-domain evaluation accuracy of a single run. The value of the median
is annotated on top of each box plot.
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Figure 3.4: Stability analysis of the model in the GPS → RBS transfer task: (left)
MFSC features and (right) MFCC features. Each data point corresponds to
out-of-domain evaluation accuracy of a single run. The value of the median
is annotated on top of each box plot.

RBS → GPS The stability analysis of this transfer task is shown in Figure 3.3.
By visualizing the out-of-domain results of the 25 different runs for each model as
samples from a distribution, one can visually observe that the three distributions
seem to be different. To verify this visual observation by means of statistical
test, we conduct paired sample t-tests. For the models based on MFSCs, the
t-test reveals that both differences between the DA-SLID II vs. the baseline
(t(24) = 36.31, p < 0.0001) as well as the DA-SLID I vs. the baseline are statistically
significant (t(24) = 15.42, p < 0.0001). Likewise, for the models based on MFCCs,
statistically significant differences are observed between the DA-SLID II vs. the
baseline (t(24) = 148.17, p < 0.0001) as well as the DA-SLID I vs. the baseline
(t(24) = 12.96, p < 0.0001). These results demonstrate that the domain adaptation
performance of this transfer task is consistent and stable across different runs,
albeit some outliers.
GPS → RBS The stability analysis of this transfer task is shown in Figure 3.4.
For both feature types MFSCs and MFCCs, the three distributions appear to
be overlapping and the domain adaptation performance does not seem to be
consistent across different runs. Statistical tests based on a paired sample t-test
did not reveal any statistically significant differences between the distributions with
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Figure 3.5: Out-of-domain F1 score (%) per language of our MFSC-based model (left)
MFCC-based model (right) in the RBS → GPS direction.

p-value < 0.01, indicating that the improvements in the GPS → RBS direction are
not consistent across different runs. Therefore, it seems that adversarial domain
adaptation improves only the maximum across 25 runs for this transfer task, but
the improvement is not consistent and there are many failed runs in the adapted
models where the performance is even below than the baseline. This analysis
demonstrates that the diversity of the speech samples in the source domain plays a
crucial role in the success of domain adaptation using adversarial learning. A more
diverse source domain provides a broader range of acoustic variations and linguistic
characteristics, enabling the model to learn more robust and generalizable language
ID features.

3.6 Why Does Adversarial Domain Adaptation work?

In this section, we seek to understand why unsupervised adaptation with adver-
sarial training improves out-of-domain performance. To this end, we analyze the
results and the representations of the RBS → GPS transfer task to get insights
into the factors that lead to the significant improvements in this direction.

3.6.1 Fine-grained Performance Analysis

Figure 3.5 shows the performance per language measured by F1 score. In the
non-adapted case, we observe a much higher variance between languages compared
to the adapted models. For example, while the non-adapted MFCC-based model
achieves up to 74.8% F1 on Czech, F1 is only 21.9% for Ukrainian, which is barely
above than chance-level F1 (16.7%). We inspected the performance on Ukrainian
in the other direction and found that the F1 is even worse than chance-level.
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We hypothesized that the acoustic conditions of the Czech recordings in the two
domains are similar, while the discrepancy is maximal in the case of Ukrainian. To
validate this hypothesis, we manually inspected several Ukrainian utterances from
the GPS dataset. We found that most utterances are characterized by unnatural
pauses and hesitations that distort the speech signal and are uniformly distributed
across Ukrainian training and evaluation speakers in the GPS dataset. This effect
adds to the discrepancy due to domain shift since RBS utterances are more
naturally flowing speech than the read speech from the GPS dataset, despite the
occasional background noise. In particular, this effect creates abnormal patterns
that hinder non-adapted SLID performance in two ways: (1) if these patterns
are not uniformly distributed across languages and observed during training, the
network exploits them as shortcuts to discriminate between languages, and (2) if
these patterns are encountered during out-of-domain inference, the distorted signal
causes a failure because the model has not been exposed to such patterns during
training. Both cases lead to poor out-of-domain generalization when training on
a single-domain dataset without adaptation. However, since these patterns are
only present in one dataset, they are good predictors of the domain. Therefore,
adversarial training with domain confusion prevents the models from exploiting
such dataset-specific artifacts, which consistently yields a better out-of-domain
generalization. The advantage of adversarial training is demonstrated in Figure 3.5.
For instance, our MFCC-based adapted model boosts the F1 score on Ukrainian
from 21.9% to 96.7%, which is surprisingly the highest in this transfer direction.

3.6.2 Visualizing the Representations

In Figure 3.6, we visualize the representations using the t-SNE algorithm (Maaten
and Hinton, 2008). We sample a set of 1800 data points from each domain and
obtain the representations from the penultimate hidden layer of the MFCC-based
SLID models: (a) source-only non-adapted SLID, (b) DA-SLID I, and (c) DA-
SLID II. Figure 3.6 demonstrates how adversarial domain adaptation encourages
the neural network to build language-discriminative representations that are also
domain-invariant. Therefore, we can attribute the success of cross-domain transfer
learning to the domain-invariant nature of the emergent representations in the
neural network.
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Baseline SLID DA-SLID I DA-SLID II

Figure 3.6: t-SNE visualization: (Top) data points are colored by domain, red points
correspond to source domain samples while blue points corresponds to
target domain samples, and (Bottom) data points are colored by language.

3.7 Summary

In this study, we have investigated the problem of spoken language identification for
closely-related languages in a cross-domain setting, using deep convolutional neural
networks as discriminative models. While our experiments have confirmed that
they perform very well within-domain, our cross-domain evaluation has revealed
that neural models poorly generalize to a novel dataset with acoustic conditions
that differ from those that have been observed during training. To improve the
robustness of our models against domain mismatch, we have applied unsupervised
domain adaptation with gradient reversal and shown that our adaptive models
generalize better across domains. Our analysis has shown that adversarial training
prevents the model from exploiting dataset-specific artifacts, thus leading to
better out-of-domain generalization. We have identified the diversity of the speech
samples in the source domain as the major factor that affects the adaptability of
the model to a new domain. Given a diverse source dataset, our adaptive models
achieved relative accuracy improvements of up to 72.9%.



4
Language Representations and

Cross-Linguistic Variation

This chapter is concerned with the encoding of cross-linguistic variation in
neural network representations of spoken language identity. While neural
models have been shown to perform very well on the task of discriminating
related languages from acoustic speech signals, it remains unknown whether
they capture cross-linguistic variation in their intermediate representations.
This chapter presents a case study on the related Slavic languages that in-
vestigates the degree to which the model’s representational similarity among
languages reflects objective measures of language similarity. Even though the
model does not have access to any signal regarding how the languages relate to
each other, this study demonstrates that the model representations exhibit a
cluster structure that corresponds to the phylogenetic groups within the Slavic
language family, even for languages that are not observed during training.

4.1 Introduction

The relationship between a group of human languages can be characterized across
several dimensions of variation (Skirg̊ard et al., 2017), including (1) the temporal
dimension, wherein languages have diverged from a common historical ancestor
as in the case of Romance languages; (2) the spatial dimension, wherein the
speaker communities are geographically adjacent as in the case of the Indo-
Aryan and Dravidian languages of India; and (3) the socio-political dimension,
wherein languages have evolved under shared political and/or religious forces
as in the case of Malay and Swahili. Languages, or language varieties, can be
related across all these dimensions, which often results in a dialect continuum.
In some cases, speakers of languages that constitute a dialect continuum—

53
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for example, North Germanic languages of mainland Scandinavia— can usually
communicate with each other efficiently using their own mother tongue. The degree
of intercomprehensibility between speakers of different language varieties within
a continuum is mainly determined by linguistic similarities (Gooskens, 2007). In
this study, we focus on the representation of cross-linguistic variation in neural
models of spoken language identification for the related Slavic languages, which
are known to be mutually intelligible to various degrees depending on how “distant”
the languages are.

One of the goals of linguistics is to study and categorize languages based on
objective measures of linguistic distance. The degrees of similarity at different levels
of the linguistic structural organization can be seen as preconditions for, as well
as predictors of, successful oral intercomprehension. For closely-related languages,
similarities at the pre-lexical, that is the acoustic-phonetic and phonological, level
have been found to be better predictors of cross-lingual speech intelligibility than
lexical similarities (Gooskens, W. Heeringa, and Beijering, 2008; W. Heeringa
et al., 2009). In a different, yet relevant research direction, Skirg̊ard et al. (2017)
have investigated non-linguists’ perception of language variation using data from
the popular spoken language guessing game, the Great Language Game (GLG).
By analyzing the confusion patterns of the GLG’s human participants, the authors
have shown that factors predicting players’ confusion in the game correspond
to objective measures of similarity established by linguists. For example, both
phylogenetic relatedness and overlap in phoneme inventories have been identified
as factors of perceptual confusability (and by implication, similarity) of languages
in GLG.

4.1.1 Research Question

The development of automatic systems that determine the identity of the language
in a speech segment has received attention in the automatic speech processing
community (see H. Li, Ma, and K. A. Lee (2013) for an overview). State-of-the-art
approaches for automatic spoken language identification (SLID) are based on
multilayer deep neural networks (DNNs). DNN-based LID systems are parametric
models that learn a mapping from spectro-temporal acoustic features of (untran-
scribed) speech to high-level feature representations in geometric space where
languages are linearly separable. These models have shown tremendous success not
only in discriminating between distant languages but also closely-related language
varieties (Grégory Gelly et al., 2016; Mateju et al., 2018; Shon et al., 2018). Nev-
ertheless, none of the studies in previous work has analyzed neural SLID models
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to investigate whether or not and to what extent they capture cross-linguistic
variation in their emerging representations. Thus, it is still unknown whether the
distances in these representation spaces correspond to objective measurements
of linguistic similarity and variation. In this study, we aim to fill this gap and
consider the family of Slavic languages as a case study in our analysis.

• RQ Do the neural SLID models capture cross-linguistic similarity in their
emergent representations? If yes, Which (linguistic) factors can best explain
the similarity in the emergent language representation space?

4.2 Background

4.2.1 Slavic Languages

The Slavic language family is a branch of Indo-European languages that is con-
ventionally divided into three subgroups: West-, East-, and South-Slavic (see 4.1).
Apart from being related across the temporal dimension by sharing a common
ancestor, Slavic languages form a spatial continuum of variation in a relatively
connected geographic area across Europe and Northern Asia, except for the region
where the Romance and Finno-Ugric wedge separates the South-Slavic from the
West- and East-Slavic subgroups. Beside this traditional division (see Ethnologue,
23ed.), alternative classifications can be found in the Slavistics literature (cf. Bed-
narczuk, 2018; Dalewska-Greń, 2020; Lehr-Sp lawiński et al., 1954; Mańczak, 2004;
Nalepa, 1968; Pianka and Tokarz, 2000). Nevertheless, and despite differences in
taxonomies among various proposals, the development of contemporary Slavic
languages from a common historical ancestor is uncontroversial. The supporting
arguments are based on historical phonology and comparative studies of the
phoneme inventories (Sawicka, 1991), as well as on studies of loanwords and Slavic
toponyms. The high number of cognates as well as cross-linguistically shared
features, such as lexical aspect, phonemic jotation and complex consonant clusters,
provide strong evidence for common roots. In terms of diachronic phonology, the
Common-Slavic era ends with the vocalization and reduction of the yers – the
so-called “half-vowels” or “reduced vowels”, [ъ] and [ь]. The outcomes of these
alternations consistently define the most common division of Slavic. Similarly,
the reflexes of yat [ě] provide a clear distinction between East-, West- and South-
Slavic. The results of common phonological processes, such as liquid metathesis,
palatalization and sibilarization, also support the tripartite division. Moreover,
these regularities of sound changes allow us to precisely trace the phonological
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Figure 4.1: A political map that illustrates the set of Slavic languages in this study.
The languages are classified based on widely accepted tripartite division of
the Slavic languages.

development within the language family not only in the core standardized varieties
but also in vernaculars and dialects. One of the objectives of our study is to
assess the extent to which neural models of spoken language learn to detect such
regularities from acoustic realizations of contemporary Slavic speech.

4.2.2 Language Identification in Speech Signals

Research in automatic identification of the language in a speech signal (i.e., SLID)
is mainly concerned with the development of computational models that take an
acoustic realization of a short utterance (usually a few seconds of speech) and
predict the spoken language as output (H. Li, Ma, and K. A. Lee, 2013). Currently,
end-to-end deep neural networks are the predominant paradigm for SLID and
have shown tremendous success in prior studies (Gregory Gelly and Gauvain, 2017;
Gonzalez-Dominguez et al., 2014; Lopez-Moreno et al., 2014). In this paradigm,
the SLID problem has been modelled as a temporal sequence classification problem
in which a spectro-temporal representation of a spoken utterance (e.g., a sequence
of spectral feature vectors) is transformed via a multi-layer neural network into a
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high-level vector representation that captures language identity. Other studies in
the literature have addressed SLID for closely-related spoken language varieties
including Arabic dialects (Grégory Gelly et al., 2016; Shon et al., 2018), Iberian
languages (Grégory Gelly et al., 2016), and Slavic languages (Mateju et al., 2018).

At the intersection of speech recognition and linguistic typology, Gutkin et al.
(2018) have trained a neural network on a large-scale multilingual speech database
to predict typological features of the World Atlas of Language Structure (WALS)
(Dryer and Haspelmath, 2013) for a language given a speech segment. The authors
have shown that the speech modality contains enough signals to predict typological
features of a held-out set of languages without explicit linguistic annotations. Their
findings indicate that neural networks trained on multilingual speech could capture
linguistic regularities and generalize beyond the languages observed in the training
data. However, we are not aware of any prior work that has analyzed the emerging
representations from SLID models or investigated whether or not the distance in
these representation spaces reflect the linguistic distance.

4.2.3 Language Representations in Continuous Vector Spaces

Inspired by the advances in representation learning for NLP, multilingual neural
models have been explored in the literature to induce real-valued language vectors,
also known as language representations or language embeddings, where a single
vector (v ∈ Rd) is associated with each language. Even though it has been
motivated from different points of view, the main idea of this stream of research is to
train a single NLP model on many languages whereby the language representation
space is learned by exploiting the multilingual signal. For example, M. Johnson
et al. (2017) introduced a multilingual neural machine translation (NMT) model
in which the required target language of the translation was specified by a
language embedding. Other studies have either scaled this approach to a massively
multilingual setting (Malaviya et al., 2017; Östling and Tiedemann, 2017) or
explored other NLP tasks such as linguistic structure prediction (Bjerva et al.,
2019) and grapheme-to-phoneme conversion (Peters et al., 2017). Furthermore,
Rabinovich et al. (2017) and Bjerva et al. (2019) have analyzed the learned
language representations and shown that the distance in the representation space
reflects the phylogenetic distance between Indo-European languages. However,
Bjerva et al. (2019) have argued that structural syntactic similarities between
languages are a better predictor of the language representation similarities than
phylogenetic relatedness.
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The most relevant analysis to ours is the recent work by Cathcart and Wandl
(2020), in which the authors have trained a neural sequence-to-sequence model
on a Slavic etymological dictionary. Their model was trained to take as input a
reconstructed Proto-Slavic word form and a language embedding, then produce
a word-form in the modern language specified by the language embedding. The
authors have applied a clustering analysis on the learned language embeddings
and were able to approximate the phylogenetic Slavic family tree. Our study
complements this line of research with one fundamental difference: we perform our
analysis on contemporary realizations of Slavic speech instead of the historically
reconstructed phonological data without explicitly training our model to capture
systematic sound changes.

4.3 Analytical Methodology

In this study, we analyze one of the models that have been developed from the
previous chapter. Concretely, we analyze the emergent language representations
in the domain-adaptive spoken language identification model (DA-SLID II) which
takes mel-frequency spectral coefficients (MFSCs) as input. This SLID model
was trained on the Slavic radio broadcast speech (RBS) as the source domain
(i.e., labelled data) and the GlobalPhone speech (GPS) as the target domain (i.e.,
unlabelled data) for adaptation. The RBS dataset is a large collection of Slavic
speech recordings that were collected by crawling online radio stations in prior
work (Nouza et al., 2016; Mateju et al., 2018). The RBS dataset includes speech
segments in 11 Slavic languages from the three subgroups:

1. South Slavic languages: Bulgarian (BUL), Croatian (HRV), Serbian (SRP),
Slovene (SLV), and Macedonian (MAC).

2. West Slavic languages: Czech (CZE), Polish (POL), and Slovak (SLO).

3. East Slavic languages: Russian (RUS), Ukrainian (UKR), and Belarusian
(BEL)

Even though the model was trained to identify only six of these 11 languages, we
use all 11 languages in this analytical study to investigate whether or not the model
can correctly identify the language subgroup for an unseen languages. To obtain
vector-space language representations, we feed the utterances of the evaluation
set to the model and extract the representations of the last non-linear layer of the
language classifier (see Figure 4.2). Therefore, we use the language classification
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Figure 4.2: A spoken language identification (SLID) model used an encoder to represent
a speech segment in a vector representation space.

model as an encoder Fslid : X → RD to represent each speech segment x as a
vector representation vl, which can be formally described as follows

vl = Fslid(x;θ) ∈ RD

where θ are the parameters of the encoder and D is the dimensionality of the
representation of the last non-linear layer (here D = 512). The evaluation set
consists of 500 utterances for each language where each utterance is a 5-second
speech segment. Therefore, we obtain 500 representations for each language which
we use in the exploratory visualization analysis in section 4.4. However, the
analyses presented in sections 4.5 and 4.6 require a single vector representation for
each language. To this end, we obtain a single prototypical vector representation
for each Slavic language in our study by taking the average over the representations
of the evaluation speech segments of language L as

vL =
1

|EL|
∑
x∈EL

Fslid(x;θ) ∈ RD

where EL is the evaluation speech segments for language L. The distance in
the representation space between two languages is then computed using two
metrics: (1) Euclidean distance, and (2) cosine distances. Given two language
representations v and u, the Euclidean distance is defined as
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dE(v,u) = ∥v − u∥ =
√

(v − u)⊤(v − u) ∈ R+ (4.1)

On the other hand, the cosine distance is defined as

dc(v,u) = 1 − ⟨v,u⟩
∥v∥∥u∥

= 1 − v⊤u

∥v∥∥u∥
∈ [0, 2] (4.2)

where the ∥v∥ :=
√
v⊤v is the L2 norm of the vector v and ⟨v,u⟩ is the inner

product between the vectors v and u.

4.4 Analysis 1: Exploratory Visualization

In our first analysis, we visually inspect the emergent language representation
space by means of data visualization. To this end, we use dimensionality reduction
techniques to obtain two-dimensional projections of the evaluation samples and
visualize the resulting data points. We use two dimensionality reduction tech-
niques; t-SNE (Maaten and Hinton, 2008) and UMAP (McInnes et al., 2018). The
motivation for using two different techniques in this analysis is that t-SNE and
UMAP have different optimization objectives that complement each other. That
is, the t-SNE algorithm preserves the local structure of the space; thus, it mainly
reveals the cluster structure within the representation space. On the other hand,
the UMAP algorithm preserves the global structure of the space. The resulting
graphs are illustrated in Figure 4.3. We observe that both t-SNE and UMAP plots
in Figure 4.3 show very similar trends since the emerging language space shown
in the figure correspond to the conventional sub-grouping of Slavic languages into
East-Slavic, West-Slavic, and South-Slavic.

4.5 Analysis 2: Correlation with Geographic Distance

In the field of sociolinguistics, and specifically the sub-field of dialectology, geo-
graphic proximity is hypothesized to play a role in similarity of language varieties
as well as a predictors of mutual intelligibility. That is, the closer the speaker
communities of two language varieties A and B in the spatial sense, the more
similar A and B are due to historical factors and the effect of borrowing linguistic
features. This hypothesis was tested on the intelligibility of Dutch dialects and
it was observed that geographic distance is not only a good predictor of dialect
intelligibility but also highly correlates with measures of linguistic similarity such
as lexical similarity (Gooskens and W. Heeringa, 2004; W. J. Heeringa, 2004).
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Figure 4.3: Two-dimensional visualization of representations of evaluation speech seg-
ments: (top) t-SNE projections, and (bottom) UMAP projections (best
viewed in color).
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Figure 4.4: Correlation between geographic distance and distances between prototype
language representations measured by Euclidean distance (left) and cosine
distance (right).

However, in the same study the correlation in the case of Norwegian dialects
was lower. A follow up study has proposed to use travelling time as predictor
of linguistic similarity has shown as higher correlation with the intelligibility of
Norwegian dialects (Gooskens, 2005). In the field of NLP and computational
linguistics, Bjerva et al. (2019) have investigated the degree to which the emer-
gent language representations in neural language models reflect the geographic
proximity of their respective speaker communities.

To compute geographic distance, we follow a similar approach as in Skirg̊ard
et al. (2017) and Bjerva et al. (2019). First, each language is characterized by a
pair of geographical coordinates in terms of latitude and longitude on the map,
which we obtain from the ASJP linguistic database and they are intended to
reflect the cultural and/or historical center of each language. We then compute
the pairwise distances between the coordinates on the map (in kilometers) using
the Haversine formula and convert them into log10 scale. Figure 4.4(a) shows a
scatter plot between the data points in which the x-axis represents the geographic
distance and the y-axis represents the cosine distance in the representation space.
We observe a strong positive correlation between the geographic distance and
the representational distance when measured in Euclidean distance (Pearson’s
r = 0.62, p << 0.0001) as well as cosine distance (Pearson’s r = 0.58, p << 0.0001).
This finding indicates that the distance in the representation space does indeed
reflect the geographic distance.

Admittedly, representing a language as a pair of geographical coordinates is a
cruel simplification in the context of modeling language variation and similarity.
One can therefore rise the question whether the observed correlation between
the language representational distance and geographic distance is a robust cor-
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Figure 4.5: Testing the robustness of the correlation between geographic distance and
representational distance measured by Euclidean distance (left) and cosine
distance (right).

relation, and not just due to chance. To test the robustness of this correlation,
we generate correlation coefficients using a sampling method to obtain the geo-
graphical coordinates that represent a language under two different assumptions:
(1) the geographical coordinates are randomly sampled from the geographic area
within the borders of the country where that language is spoken, and (2) the
geographical coordinates are randomly sampled from the Slavic speaking area,
without considering country borders. For each assumption, we sample a set of
geographical coordinates for all languages and repeat this procedure 100,000 times
to obtain two distributions. In assumption (1), the geographical coordinates are
always restricted to be within the geographic area associated with the language
(controlled by country borders). This restriction does not exist in assumption (2)
and therefore we can obtain a null distribution where we are certain that the
representational distance and geographic distance are unrelated. The results of
the robustness test are shown in Figure 4.5 where the red and grey distribution
curves represent the correlation values under assumption (1) and assumption (2),
respectively. We observe that the two distributions are visually distinct where
the mean of the null distribution (grey, assumption (1)) is centered at 0 while
the mean of the “geographically restricted” distribution (red, assumption (2)) is
centered approximately at 0.44. Moreover, none of the sampled sets of geograph-
ical coordinates under assumption (1) yields a negative correlation value. This
clearly shows that the positive correlation we observe is a robust indication of
the relatedness between the representational language similarities and geographic
proximity and cannot be attributed to chance.
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Figure 4.6: (a) a genetic tree generated from pairwise distances of the language repre-
sentations measured by Euclidean distance. (b) (a) a genetic tree generated
from pairwise distances of the language representations measured by cosine
distance. (c) a ground-truth genetic tree.
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4.6 Analysis 3: Probing the Genetic Signal

Similar to the analysis in Bjerva et al. (2019) and Cathcart and Wandl (2020), we
investigate the genetic signal in the representation space. To this end, the pairwise
representational distances computed in the previous section are first converted
into a distance matrix for both Euclidean and cosine distances. Then, we generate
a tree for each distance measure by performing hierarchical clustering on the
distance matrix using the Ward algorithm (Ward, 1963). The generated trees are
depicted in Figure 4.6(a) and Figure 4.6(b). We provide a reference phylogenetic
tree from the work of Novotná and Blažek (2007) in Figure 4.6(c). Novotná and
Blažek (2007) have used a classical glottochronological approach to propose a
genetic a tree for the Balto-Slavic languages where the authors constructed a
phylogenetic tree based on pairwise distances between languages using a string-
based distance algorithm over a cross-linguistic word lists. We observe that the
generated tree using Euclidean distance as a measure of dissimilarity (see Figure
4.6(a)) better approximates the reference tree proposed by Novotná and Blažek
(2007) (see Figure 4.6(c)) for two main reasons: (1) the generated tree groups
South- and West-Slavic languages into one major cluster, and (2) all South-, West-,
and East-Slavic languages represent pure clusters as all languages are grouped
into their respective sub-group. Nevertheless, there are minor, yet notable minor
differences in the clustering within sub-groups. The most notable difference in
our perspective is the the grouping of Sloven and Macedonian together before
joining the Serbo-Croatian group, while Bulgarian seems a bit distant than the
other South Slavic languages. Moreover, Belarusian and Ukrainian are grouped
together first within the East Slavic languages in the reference tree, while in our
reconstructed tree Belarusian is first grouped with Russian. On the other hand, the
reconstructed tree using the cosine distance (see Figure 4.6(b)) is less similar to
the reference tree since Slovak was incorrectly grouped with the Slavic languages.
Other than that, the resulting (sub-)clusters are identical to the reconstructed tree
using the Euclidean distance in Figure 4.6(a). Therefore, we conclude that it is
necessary to test different measures of representational distance when performing
phylogenetic inference over a continuous-space (computational) representation.

4.7 Discussion

A number of recent studies have shown that deep neural networks are adequate
models of human perception. For example, R. Zhang et al. (2018) and J. C.
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Peterson et al. (2018) have shown that emerging representations from neural
models trained on visual recognition tasks are predictive of human similarity
judgments. For auditory recognition, neural speech recognition models have been
shown to capture human-like behavior in cross-lingual phonetic perception (Schatz
and Feldman, 2018). Inspired by this line of research, our objective in this study
presented in this chapter is to investigate the extent to which neural models
of spoken language identification capture language similarity and relatedness.
Nevertheless, and because of the complex space in which language variation can
be realized, the similarity between languages is a multidimensional phenomenon
that cannot be expressed in a single number (Van Heuven, 2008). We therefore do
not consider a single reference as a “ground truth” in our analysis, but consider
several reference criteria of linguistic distance and relatedness, namely geographic
proximity and genetic relatedness.

Our analysis of the emerging language representation space has shown that
the SLID model in our study captures language similarity to a great extent. The
representation visualization illustrated in Figure 4.3 demonstrates the general-
ization ability of our model to project speech segments of held-out languages
into subspaces of their respective subgroups. That is, even though the model has
not observed any speech sample from Belarusian or Macedonian, Belarusian was
projected onto the East-Slavic cluster while Macedonian was projected onto the
South-Slavic cluster. Given that the data in our study constitute contemporary
realizations of Slavic speech that do not explicitly encode diachronic sound changes,
we first hypothesized that the geographic distances between the speaker communi-
ties would be a good predictor of the distances in the representation space of the
SLID model. This turns out to indeed be the case as we observe a strong positive
correlation at Pearson’s r = 0.62, p << 0.0001 between geographic distances and
representational distances among the prototype language representations.

On the other hand, we were less optimistic about our SLID model captur-
ing the genetic signal between Slavic languages (that is, whether the language
representation space can accurately predict the historical relationships between
languages). Prior studies in the literature that have investigated computational
approaches to generating genetic language trees have either employed historical
etymological data capturing phonological sound changes (Cathcart and Wandl,
2020), sequences reflecting syntactic patterns in different languages (Bjerva et al.,
2019; Rabinovich et al., 2017), or word lists reflecting lexical similarity (Serva
and Petroni, 2008). Arguably, these sources of language data are more likely
to preserve the relationship between languages across the temporal dimension
compared to the contemporary Slavic speech we use in this study. Therefore, our
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initial intuition was that the resulting tree would reflect variation across the spatial
dimension more than the temporal dimension. Nevertheless, the tree generated
by our analysis is an adequate approximation of the Slavic genetic tree given the
contemporary nature of the data sources.

4.8 Summary

This chapter explored the encoding of cross-linguistic variation in neural network
representations of spoken language identity. While neural models have demon-
strated impressive performance in discriminating related languages based on
acoustic speech signals, it remained unknown whether they captured and rep-
resented cross-linguistic variation in their intermediate representations. To this
end, we presented a linguistically-informed exploration of neural representations
of spoken languages. We focused on the Slavic language family and investigated
the degree to which the model’s representational similarity among languages
aligned with objective measures of language similarity. Importantly, the model
did not have any access to explicit information regarding the phylogenetic re-
lationships between the languages under consideration. Through this study, it
was demonstrated that the model’s representations exhibited a cluster structure
that corresponded that largely reflects the phylogenetic groups within the Slavic
language family. Remarkably, this held true even for languages that were not
included in the model’s training data. These findings highlights of ability of neural
models to capture and reflect the underlying linguistic relatedness of languages,
despite the absence of direction supervision signals or knowledge regarding their
phylogenetic relations.
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5
On the Geometry of Spoken-Word

Representations

This chapter begins the third part of the thesis, which is concerned with neural
models of spoken-word representations. In this part, each word is modeled as an
abstract category that consists of several acoustic exemplars that vary across
speakers and within-speaker, given different lexical contexts. Spoken-word
representation models encode each acoustic exemplar in a representational
space such that different exemplars of the same word category are nearby. This
chapter presents an analytical study that takes a closer look at the representa-
tional geometry of acoustic word embeddings and how they encode spoken-word
variability. Specifically, we analyze the uniformity of the representation space,
propose a metric to quantify word category discriminability, and employ the
concept of representational consistency to investigate whether acoustic word
embeddings models exhibit individual differences.

5.1 Introduction

Distributed representations such as semantic word embeddings are nowadays a cen-
tral component in natural language processing (NLP). Inducing word embeddings
from text yields representations such that words occurring in similar contexts are
nearby in the vector space (Mikolov, Sutskever, et al., 2013; Pennington et al.,
2014). Therefore, the representational geometry of text-based word embeddings
captures lexical similarity and semantic relatedness at multiple levels of granularity.
Word embeddings, and their underlying distributional semantic models, have also
been adopted as models of human semantic memory in cognitive science research
(Grand et al., 2022; Nematzadeh et al., 2017; Pereira et al., 2016).

71
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Figure 5.1: UMAP two-dimensional projection of a sample of acoustic word embeddings
(AWEs) produced by a correspondence autoencoder (CAE) model trained
on English speech. AWE models project different exemplars of the same
word type closer in the embedding space while abstracting away from
speaker and context variability.

In the speech processing domain, researchers have independently developed
representations of acoustic segments that correspond to linguistic units (S. Bengio
and Heigold, 2014; Herman Kamper, W. Wang, et al., 2016; Levin et al., 2013;
Settle and Livescu, 2016b, inter alia). A notable example of such representations
are acoustic word embeddings (AWEs)—vector representations that encode the
sound structure of spoken words, not their semantic content or syntactic structure—
see Figure 5.1. AWEs support voice-based speech technology applications such as
query-by-example spoken term discovery (Jansen and Durme, 2012; Metze et al.,
2013; Yaodong Zhang and James R Glass, 2009) and keyword spotting (Myers
et al., 1980; Rohlicek, 1995). In addition, AWEs can facilitate access to speech
recordings of endangered spoken languages that might lack standardized writing
systems (Bird, 2021; San et al., 2021).

However, there are fundamental differences between text-based and speech-based
word representations that have to do with the degree of variability between
the two modalities. Contrary to written words which have context-invariant
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orthographic realizations,1 spoken words are notoriously variable. The acous-
tic realizations of words vary across speakers due to differences in vocal tract
shapes, genders, and dialects, among many other factors. In addition, two acoustic
instances, or exemplars, of the same word vary in different phonological and
semantic contexts even if they are produced by the same speaker (Jurafsky, 2003).
Therefore, spoken-word representations such as acoustic word embeddings are
not static vectors in a lookup table, but rather they are computed “on the fly”
given a spoken-word segment as input. To project different acoustic exemplars
of the same word onto the same point of the representation space, spoken-word
representation models have to abstract away from speaker and context variability.

5.1.1 Research Questions

State-of-the-art spoken-word representation models for acoustic word embeddings
are based on deep neural networks (DNNs). In addition to their speech technology
applications, AWEs have been adopted as models of human speech processing
and analyzed from a cognitively motivated angle in several recent studies. For
example, it has been shown that AWEs exhibit a human-like word onset bias where
distinct words are more likely to be perceived as similar if they begin with the
same sound (Matusevych, Herman Kamper, et al., 2020b). AWE models have also
been shown to predict non-native perceptual difficulties in phonetic categorization
(Matusevych, Schatz, et al., 2020) as well as cross-linguistic effects in auditory-
lexical processing (Matusevych, H. Kamper, et al., 2021). Furthermore, models of
AWEs have been reported to capture lexical production patterns among Japanese-
speaking learners of English as a second language (Ando et al., 2021). Nevertheless,
AWEs as well as their underlying neural architectures and learning objectives
have not yet been extensively studied from a neural network interpretability point
of view. Therefore, it remains unclear how DNN-based models of AWEs encode
speech variability and whether or not their representational geometry is affected
by variability in initial conditions of the model. In this study, we aim to answer
the following research questions:

• RQ1. How do AWE models encode spoken-word variability in within
their representations? That is, to which degree is the variance uniformly
distributed across all dimensions of the representation space?

• RQ2. By considering a word as a category comprised of several acoustic
exemplars, how can we quantify the compactness and separability of each

1 although some orthographic variation exists in informal, user-generated text such as tweets.
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category? What lexical properties could potentially predict word discrim-
inability within the representation space?

• RQ3. Does the variability in the initial conditions of the models influence
their representational profile? In other words, do different initializations
result in individual differences among AWE models?

To address these research questions, we employ several analytic methods from
machine learning and neuroscience to take a closer a look at the representational
geometry of acoustic word embeddings. Concretely, we analyze the uniformity of
the representation space (RQ1, §5.5), propose a metric to quantify word category
discriminability (RQ2, §5.6), and employ the concept of representational
consistency to investigate whether AWE models exhibit individual differences
(RQ3, §5.7).

5.2 Acoustic Word Embedding Models

Given an acoustic signal that corresponds to a spoken word represented as a
temporal sequence of T acoustic feature vectors, i.e., A = (a1,a2, ...,aT ), the
goal of an AWE model is to transform a into a fixed-dimensionality vector
representation x. Due to the variability in speech production (i.e., speech rate,
emotional state, etc), the length of the acoustic segment T varies between different
exemplars, or instances, of the same word type. Therefore, this task is modeled as a
mapping F : A −→ RD, where A is the (continuous) space of acoustic sequences and
D is the dimensionality of the embedding. Formally, transforming a variable-length
acoustic input into a D-dimensional AWE is described as

x = F(A;θF) ∈ RD (5.1)

where θF are the parameters of the encoder function F . In a supervised setting of
training AWE models, one assumes a dataset D = {(a1, w1), (a2, w2), . . . , (aN , wN )}
of N spoken word instances where wi is the word type, or word category, of the ith

acoustic sample. In this study, we experiment with two architectures—recurrent
and convolutional—and employ four different learning objectives for training AWE
models that were proposed in the literature. Next, we formally describe each of
the objectives.



5.2 acoustic word embedding models 75

Acoustic Word
Embedding

(b)(a) (c)(c)

Acoustic encoder Phonological decoder Acoustic decoder

(d)

Figure 5.2: A visual illustration of the different learning objectives for training AWE
encoders: (a) correspondence Autoencoder (CAE): a sequence-to-sequence
network with an acoustic decoder, (b) phonologically guided encoder (PGE):
a sequence-to-sequence network with a phonological decoder, and (c) con-
trastive siamese encoder (CSE): a contrastive network trained via triplet
margin loss. After training the model, only the encoder component of
the model F is used to produce AWEs. (d) Individual components of the
models.

5.2.1 Correspondence Autoencoder

In the correspondence autoencoder (CAE; Herman Kamper, 2019), each training
acoustic word sample A is paired with another sample that corresponds to the
same word type A+ = (a+

1 ,a
+
2 , ...,a

+
S ). The acoustic encoder F takes A as input

and produces an embedding x, which is then fed to an acoustic decoder H that
aims to sequentially reconstruct the corresponding acoustic sequence A+—see
Figure 5.2(a). The objective is to minimize the L2 distance at each timestep in
the decoder, which is equivalent to

L(θF ,θH) =
∑

(Ai,wi)∈D

dist
(
Ai+, H

(
F(Ai;θF);θH

))

=
∑

(Ai,wi)∈D

S∑
t=1

∥a+
t −H(x)t∥2

(5.2)

where dist(., .) can be viewed as a distance function between two sequences, a+
t is

the ground-truth acoustic feature vector at timestep t, H(x)t is the reconstructed
acoustic vector at the same timestep as a function of the embedding x, and θG
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are the parameters of the decoder. Matusevych, Herman Kamper, et al. (2020a)
have hypothesized that learning the correspondence between different acoustic
realizations of the same word category seems to encourage the encoder to build
up speaker-invariant word representations while preserving linguistically-relevant
phonetic information . When the target acoustic sequence to generate is the same
as the input signal A, this corresponds to a conventional autoencoder (AE), which
we consider as one of our baseline learning objectives in this study.

5.2.2 Phonologically Guided Encoder

The phonologically guided encoder (PGE) is trained as component in a sequence-to-
sequence model to map a sequence of continuous acoustic vectors onto a sequence
of discrete phonological units. First, the acoustic sample A is transformed by the
encoder into an embedding x. Given the output of the encoder x, a phonological
decoder G(.;θG) is trained to decode the corresponding phonological sequence
φ = (φ1, . . . , φτ ) of the word-form—see Figure 5.2(b). The objective is to minimize
the surprisal of the corresponding phonological sequence. This learning objective
is realized by a categorical cross-entropy loss at each decoder timestep, which is
equivalent to minimizing the term

L(θF ,θG) = −
∑

(Ai,wi)∈D

log P
(
φ | F(Ai;θF); θG

)
= −

∑
(Ai,wi)∈D

τ∑
t=1

log P
(
φt | t,xi; θG

) (5.3)

where P
(
φt | t,xi; θG

)
is the probability of the phoneme φt at the tth timestep,

conditioned on the previous phoneme sequence φ<t and the AWE x, and θG are
the parameters of the decoder. The underlying intuition of this learning objective is
as follows: despite the variation in acoustic realizations due to speaker and context
variability, different exemplars of the same word category should have identical
phonological sequences. Consequently, we expect the encoder to project exemplars
of the same word category close together in the embedding space. Ideally, the
degree of representational similarity should correlate with phonological similarity.

5.2.3 Contrastive Siamese Encoder

The contrastive siamese encoder (CSE) has been explored in the context of AWEs
with both recurrent and convolutional architectures in several studies (Jacobs,
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Matusevych, et al., 2021; H. Kamper et al., 2016; Settle and Livescu, 2016a).
Contrary to the previously described objectives, the CSE explicitly minimizes the
distance between exemplar embeddings of the same word type—see Figure 5.2(c).
First, each acoustic word instance is paired with another instance of the same
word type (A,A+). Given their embeddings (xa,x+), the objective is then to
minimize a triplet margin loss

L(θF) = max
[
0,m + d(xa,x+) − d(xa,x−)

]
(5.4)

Here, d(., .) is the cosine distance and x− is an AWE that corresponds to a
different word category sampled from the mini-batch such that the term d(xa,x−)

is minimized. This learning objective aims to bring acoustic instances of the same
word type closer in the embedding space while pushing away instances of different
word types, with the extent of separation controlled by the margin hyperparameter
m.

5.3 Experimental Setup

5.3.1 Data

The data in our study is drawn from the the LibriSpeech dataset which contains
read speech recordings of American-English (Panayotov et al., 2015). LibriSpeech
is a public dataset under the CC BY 4.0 license. We sample 384 speakers from
for training and 128 speakers for evaluation—disjoint sets—and obtain word-
aligned speech samples using the Montreal Forced Aligner (McAuliffe et al.,
2017). To make our models comparable with prior work, which has focused on
AWEs for low-resource languages, we sample ∼ 39.4k samples for training and
∼ 9.7k for evaluation. The phonetic transcription for each word is produced
using the online WebMaus G2P tool (Strunk et al., 2014). Then, each acoustic
sample is parametrized as a sequence of 39-dimensional Mel-frequency spectral
coefficients (or Mel filter-banks representations) of 25ms frames a stride of 10ms—
the conventional feature representation of speech in automatic speech recognition
(ASR). It is worth pointing out that in this study we consider each morphological
variant of a lexeme as a separate word category. For example, different inflections
of the lexeme make such as {made, making, maker, etc.} represent different
word categories, each consisting of several exemplars.
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5.3.2 Architectures, Hyperparameters, and Training Details

CNN Acoustic Encoder. We employ a 3-layer temporal convolutional network
(1D-CNN) with 256, 384, and 512 filters and widths of 4, 8, and 16 for each
layer and keep stride step at 1. Following each convolutional operation, we apply
batch normalization, ReLU non-linearity, and dropout. We apply average pooling
to downsample the representation at the end of the convolution block, then apply
one non-linear layer with Tanh on the CNN output, which yields a 512-dimensional
AWE.

RNN Acoustic Encoder. We employ a 3-layer unidirectional Gated Recurrent
Unit (GRU) with a hidden state dimension of 512, then apply one non-linear layer
with Tanh on the GRU last hidden state, which yields a 512-dimensional AWE.
We apply layer-wise dropout with a probability of 0.1.

Phonological Decoder G(.;θG). We employ a 1-layer GRU of 512 units hidden
state that takes the 512-dimensional AWE as the initial hidden state and decodes
the corresponding phonological sequence without teacher forcing.

Acoustic Decoder H(.;θH). We employ a 1-layer GRU of 512 units hidden
state that takes the 512-dimensional AWE as the initial hidden state and decodes
the corresponding acoustic sequence with a teacher forcing ratio of 0.2.

Contrastive Loss. For the CSE, we experiment with different values of the
margin hyperparameter m = {0.2, 0.3, 0.4, 0.5}, out of which 0.4 yields the best
performance on the validation set.

Training Details. All models in this study are randomly initialized with each
parameter drawn uniformly from [−0.05, 0.05]. Then, each model is trained for
100 epochs with a batch size of 256 using the ADAM optimizer (Kingma and Ba,
2015) and an initial learning rate of 0.001. The learning rate is reduced by a factor
of 0.5 if the mAP on the validation set does not improve for 10 epochs.

Implementation. We build our models using PyTorch (Paszke et al., 2019)
and use FAISS (J. Johnson et al., 2017) for efficient similarity search.

5.4 Evaluation: Acoustic Word Discrimination Task

We conduct an intrinsic evaluation for the AWEs to assess the performance of
our models using the same-different acoustic word discrimination task measured
by the mean average precision (mAP) metric (Algayres et al., 2020; Carlin et al.,
2011; Herman Kamper, Elsner, et al., 2015; Settle, Audhkhasi, et al., 2019). The
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word discrimination task mainly evaluates the ability of a model to determine
whether or not two given spoken-word instances correspond to the same word
category. Following the definition of Müller (2015), we conceptualize this task
as an exemplar retrieval problem: given a query spoken-word instance q and a
candidate set of k spoken-word instances S = {s1, ..., sk}, the goal is to rank
spoken-word candidates in S in such a way that those which belong to the same
word type as the query q are highly ranked among other candidates. To this end,
a vector-based search index is built by mapping each word candidate in S into
an embedding. Then, the cosine similarity between the query embedding q and
each embedding in the search index is computed which yields a ranked list, or
an ordering, of spoken-word instances based on the cosine similarity score. The
average precision metric is used to evaluate the quality of the ordering for a single
query as

AP =
1

|Sq|

k∑
r=1

Pq(r) × Iq(r) (5.5)

where Sq are the spoken-word candidates in S that are true exemplars of the same
word category as the query instance q, Pq(r) is the precision at rank r, and Iq(r)

is a relevance function such that Iq(r) = 1 if the candidate at rank r corresponds
to the same word category as the query, or Iq(r) = 0 otherwise. The arithmetic
average over all AP values in the test set yields the mean average precision (mAP)
metric.

The results of the evaluation is shown in Figure 5.3. We observe that each
recurrent encoder outperforms its convolutional counterpart within each objective.
Moreover, the performance largely depends on the strength of the supervision
signal where the contrastive encoders outperform other objectives that lack explicit
loss to group exemplars of the same category closer in the embedding space. Note
that the CAE model is pre-trained as autoencoder for 10 epochs, following prior
work (Herman Kamper, 2019).

5.5 Analysis 1: Uniformity of Representation Space

In our first analysis, we take a closer look at the uniformity of representational
spaces of AWE models by analyzing the distribution of cosine similarity for each
model type and quantifying the degree to which the embeddings are isotropic.
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Figure 5.3: Evaluation on the same-different acoustic word discrimination task quanti-
fied by the word discrimination task and the mAP metric: Learning curves
of 100 training epochs for (a) the recurrent encoder and (b) convolutional
encoders. (c) mAP of the best epoch.

5.5.1 Distribution of Cosine Similarity

Analyzing the geometry of representation spaces in the acoustic domain can be
achieved by examining the cosine similarity distributions among instances of
the same word category versus those across different categories. From a practical
point of view, high cosine similarity among exemplars of the same category
is desirable (i.e., minimizing within-category variability), while instances from
different categories should ideally exhibit low cosine similarity (i.e., maximizing
cross-category separability). These concepts and how they are reflected in the
representation space are visually illustrated in the Figure 5.4

For this analysis, we compute the within-category and cross-category cosine
similarity scores from a large sample of spoken-word pairs derived from the
training data. The results of this analysis are presented in Figure 5.5. We observe
that the difference between the means of the within-category and cross-category
distributions largely depends on the strength of the supervision signal, with the
randomly initialized encoders (RIE) having the smallest mean differences for both
architectures. The contrastive encoders have the largest mean difference with
mean cross-category scores centered at the zero. This behavior of the contrastive
encoders is not surprising considering the explicit supervision signal they receive
in grouping exemplars of the same category closer in the embedding space. On
the other hand, it is surprising that the untrained convolutional encoder yields
cosine similarity scores very close to 1 for each input pair.
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Figure 5.4: A visual illustration of within-category and cross-category cosine similarity
in a simplified view of a two-dimensional representation space with two
distinct categories.

5.5.2 The Degree of (An)isotropy

Although inspecting the cosine similarity distributions is an insightful analysis,
it does not enable us to make well-informed judgments about the uniformity of
the representation spaces. Here, we ask two questions: (1) do AWE models utilize
all dimensions of the vector space to represent the speech samples and separate
the categories? and (2) how do architecture and learning objective affect the
distributivity of information in the embedding space? To answer these questions, we
inspect the degree of isotropy in the representation spaces. A representation space
is said to be maximally isotropic if the variance is uniformly distributed across
all dimensions. That is, the data points are geometrically organized in a uniform
matter in all directions from the origin, with no preferred direction of variance.
On the other hand, a representation space is said to be minimally isotropic if
the data points vary along a single dimension. An anisotropic representation space
can be anywhere between maximally isotropic and minimally isotropic depending
on the degree of the variance uniformity. Isotropy is often a desired property in
the representational spaces of deep neural networks. The concept of isotropy is
illustrated in Figure 5.6.

Prior work in NLP has found that semantic word embeddings tend to be
anisotropic since they only utilize a few dimensions of the vector space—an
effect that has been observed for word embeddings that are static (Mimno and
Thompson, 2017; Mu and Viswanath, 2018) as well as contextualized (Cai et al.,
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Figure 5.5: Distribution of cosine similarity across different AWE models for within
category samples (i.e., exemplar pairs of the same word type) and cross-
category samples (i.e., sample pairs that correspond to different word
types). Each row in the figure corresponds to one learning objective and
each column corresponds to one architecture.

2020; Ethayarajh, 2019; Rudman et al., 2022). The degree of isotropy in acoustic
word embeddings, however, remains so far unknown.

To inspect the degree of isotropy of the AWE vector spaces, we use the IsoScore
metric recently proposed by Rudman et al. (2022), which is—to the best of our
knowledge—the only metric in the literature that is grounded on the mathematical
definition of isotropy. The IsoScore metric operates on the covariance matrix of
the embedding dimensions and returns values between 0 (minimally isotropic)
and 1 (maximally isotropic).2 We quantify the degree of isotropy using IsoScore
for each model type and show the result in Figure 5.7(a). We observe that
IsoScore returns values that are within the range [0.002, 0.095], which indicates
that embedding spaces for all models tend towards being minimally isotropic.
However, the embeddings of untrained, randomly initialized encoders (RIE) tend
to be extremely anisotropic (i.e., IsoScore values close to 0). This observation
suggests that the anisotropic space does not “emerge” during the model training
but rather that it is an inherent property of the encoder architecture. We are not
aware of prior work in NLP that has studied the degree of isotropy in untrained
NLP models to investigate whether anisotropic spaces are an emergent or inherent
feature. In our case, training with a learning objective that encourages the model
to separate word categories moves the representation space more towards utilizing
more dimensions, therefore resulting in a higher degree of isotropy. Moreover,

2 The detailed mathematical definition of the IsoScore is beyond the scope of this chapter. We
refer the reader to the work of Rudman et al. (2022) for a detailed formal description of this
metric.
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Figure 5.6: A visual illustration of the isotropy concept in a two-dimensional repre-
sentation space with two distinct categories. In a maximally anisotropic
space, the variance in the data is encoded along a single dimension, or a
line (left). In general, the variance in an anisotropic representation space is
not uniformly distributed across all dimensions (middle). In a maximally
isotropic space, the variance is uniformly distributed (right).
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Figure 5.7: (a) The degree of isotropy of AWE for each model. (b) Correlation between
the word discrimination performance measured by mAP and isotropy score
(Pearson r = 0.89, p < 0.001).

recurrent encoders tend to be more isotropic than their convolutional counterparts
within the same learning objective.

Despite the tendency of all models to be anisotropic, we find a strong pos-
itive correlation between the degree of isotropy and the performance on word
discrimination—see Figure 5.7(b). That is, the more dimensions the model utilizes
in the representation space, the better it performs on the intrinsic evaluation task.

5.6 Analysis 2: Word Category Discriminability

Ideally, AWE models should project exemplars of the same word category onto the
same point in the embedding space. However, there are no strong constraints during
training to encourage maximal separability between different word categories. In
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this analysis, we seek to answer two questions: (1) how well-separated are the word
categories of the training samples? and (2) to what degree do lexical properties
predict the discriminability of word categories?

5.6.1 Category Discriminability Index

In order to investigate the geometric density of each word category in the represen-
tation space, we need to measure within-category compactness and cross-category
separability. Inspired by the exemplar discriminability index proposed in the
neuroscience literature (Nili et al., 2020), we define category discriminability
index (CDI) as a metric that operates on within-category and cross-category
distances. If we consider each word category in the training set as a set of its
exemplar embeddings C = {x1, . . . ,x|C|}, CDI is defined for a single word category
C as

CDI(C) =
1

|C|
∑
∀xi∈C

( ∑
∀xj∼C|j ̸=i

d(xi, x̃j) − d(xi,xj)
)

(5.6)

where d(., .) is the cosine distance and {xi,xj} is a pair of within-category samples
while x̃j is an embedding sampled from a different word category. In this metric,
higher CDI values indicate higher word discriminability. We compute CDI for each
word category in the training set and take the average over categories to estimate
how well the categories are separated in the embedding space of each model type.
The result of this analysis is shown in Figure 5.8(a). For each learning objective,
we observe that word discriminability is higher in the recurrent encoders compared
to their convolutional counterparts. Besides that, the contrastive objective yields
encoders with a higher word discriminability index regardless of the architecture
type (i.e., recurrent vs. convolutional). Furthermore, we observe a strong positive
correlation between average CDI and the performance on the evaluation task—see
Figure 5.8(b). This finding indicates that word discrimination performance on
future, held-out samples can be predicted based on the CDI computed on the
training samples.

5.6.2 Effect of Frequency and Distinctiveness

The proposed CDI in the previous section quantifies the separability and compact-
ness for each word category in the representation space. Next, we aim to identify
the factors that could make a word category compact and well-separable.
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Figure 5.8: Averaged Category Discriminability Index (CDI) for each AWE model with
error bars showing standard deviation over word categories. (b) Correlation
between the word discrimination performance measured by mAP and
averaged CDI (Pearson r = 0.90, p < 0.001).

In this analysis, we study the effect of two lexical properties that could be quan-
tified in a data-driven approach: word frequency and acoustic distinctiveness.
Our initial hypothesis is that a word category with many training exemplars
becomes more discriminable in the embedding space. This is because the repeated
exposure to several within-category samples that exhibit acoustic-phonetic variabil-
ity should ideally enable the model to learn compact and precise representations
for categories with high exemplar frequency. In additions, words that are acousti-
cally distinct have fewer competitors in the perceptual space, thus they should
be more separable than words with many phonological neighbours that sound
similar. Therefore, we expect word acoustic distinctiveness (WAD) to positively
correlate with CDI. In this analysis, we operationalize WAD using two metrics:
word length (i.e., the number of phonemes) and phonological distinctiveness.
Word length contributes to WAD since word formation in natural languages is a
combinatorial process. That is, increasing the number of phonemes in a word-form
decreases the likelihood of encountering a similarly sounding word-form, which
makes it less confusable. However, the word formation process is governed by
language-specific phonotactic rules which makes some sound combinations more
probable than others. To capture the probabilistic nature of sound sequences, we
employ phonological information content (PIC), an information-theoretic
metric that estimates WAD based on its phoneme-to-phoneme transition probabil-
ities (Meylan and Griffiths, 2017). Given a word-form as a sequence of phonemes
φ = (φ1, . . . , φτ ), PIC is defined as

PIC(φ) = −
τ∑

i=1

log pθ(φi|φ<i) (5.7)
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Learning objective Architecture Frequency Length PIC

Autoencoder (AE) cnn -0.081† 0.315† 0.263†
rnn -0.087† 0.357† 0.306†

Correspondence Autoencoder (CAE) cnn 0.021 0.376† 0.274†
rnn 0.077† 0.447† 0.359†

Phonologically Guided Encoder (PGE) cnn 0.035 0.039* -0.011
rnn -0.043* 0.325† 0.263†

Contrastive Siamese Encoder (CSE) cnn 0.131† 0.075† 0.031
rnn 0.109† 0.100† 0.030

Table 5.1: Pearson correlation (r) between word category discriminability index (CDI)
and three lexical properties: frequency, length, and phonological information
content (PIC). Statistical significance is marked with * and † for p < 0.05
and p < 0.001, respectively.

where pθ is a probabilistic phoneme-level language model (PLM). We estimate
pθ using a trigram PLM with the counts of the phonemes in the training word
categories. Higher values of PIC indicate less probable phoneme sequences thus
more distinct word-forms. Note that PIC is not length normalized and therefore
shorter words tend to have lower PIC.

Next, we conduct a correlation analysis between word CDI and the three
predictors: frequency, length, and PIC. The result of this analysis is shown in
Table 5.1. Surprisingly, our correlation analysis shows that lexical frequency is
a poor predictor of CDI. Although in five out of eight models the frequency
positively correlates with CDI, the correlation is rather weak. However, measures
of acoustic distinctiveness have a stronger correlation with CDI compared to
frequency, and the strength of the correlation is more noticeable in all decoding-
based models—except the convolutional PGE—compared to contrastive models.
We also find it surprising that PIC is not a better predictor of CDI than word
length. However, it has been shown in a prior related work that autoencoder-based
AWEs encode duration as an acoustic feature (Matusevych, H. Kamper, et al.,
2021). Taken together with our findings, this suggests that the models exploit
and rely on acoustic word length as a feature to discriminate between the word
categories. Arguably, word length is a more accessible feature to learn from the
acoustic signal compared to structural phonological regularities in the training
data.
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Learning objective Architecture mean max min std

Autoencoder (AE) cnn 0.137 0.141 0.133 0.0026
rnn 0.183 0.186 0.179 0.0024

Correspondence Autoencoder (CAE) cnn 0.505 0.510 0.500 0.0040
rnn 0.646 0.650 0.643 0.0029

Phonologically Guided Encoder (PGE) cnn 0.595 0.599 0.592 0.0033
rnn 0.704 0.710 0.687 0.1000

Contrastive Siamese Encoder (CSE) cnn 0.676 0.680 0.674 0.0023
rnn 0.742 0.745 0.739 0.0027

Table 5.2: mAP statistics across six different runs for each model type.

5.7 Analysis 3: Network Representational Consistency

Suppose we train two instances of the same architecture and learning objective
on the same training samples, but each with a different random initialization. Do
these two neural network instances exhibit differences in their representational
geometries? In this section, we shed light on the representational discrepancies
caused by different initializations. In other words, we are interested in quantifying
the degree to which variability in the initial conditions affects the way two models
separate the same set of speech samples.

5.7.1 Performance Stability

First, we quantify the effect of the initial weights on the evaluation task perfor-
mance. To this end, we train six model instances—in identical setup but with
different initializations—for each architecture and each learning objective, which
yields 48 model instances in total (6 × 4 RNN runs and 6 × 4 CNN runs). We
evaluate each model instance on the acoustic word discrimination task while ob-
serving the result variation per model type. The result of the performance stability
analysis is shown in Table 5.2. We observe that all instances have converged and
the performance is fairly stable across different runs. Therefore, there are no
notable qualitative differences in the performance of models due to variability in
the initial conditions of the model in the representation space.



88 on the geometry of spoken-word representations

0.6 0.7 0.8 0.9 1.0

RIE

RIE

CSE

Recurrent EncodersConvolutional Encoders

AE

CSE AEPGE

CAE

PGE
CAE

Figure 5.9: Network representational consistency (RC): (top) recurrent encoders and
(bottom) convolutional encoders. Values closer to 1 indicates higher RC.

5.7.2 Representational Discrepancies

Our previous performance stability analysis has demonstrated that different DNN
instances exhibit only trivial quantitative differences. However, a stable perfor-
mance on the evaluation task does not necessarily entail an identical representa-
tional geometry across different instances. That is, two network instances could
have have an identical performance on the evaluation task while each having a
distinct representational geometry. To closely investigate representational discrep-
ancies between network instances, we employ the representational consistency
(RC) analysis (Mehrer et al., 2020), which is a neuroscience-inspired technique
based on the representational similarity analysis (RSA) framework (Kriegeskorte
et al., 2008). For our analysis, we operationalize the RC using linear Centered
Kernal Alignment (CKA) as a representational similarity measure of two views of
the same input samples (Kornblith et al., 2019). CKA abstracts away from the
embeddings themselves and operates on pairwise distances between the sample
representations. Concretely, given K spoken-word samples AK

1 = {A1, . . . ,AK},
we embed the samples using two encoder instances to obtain two different views
of the samples X ∈ RK×D and Y ∈ RK×D. Then, the representational similarity
of the two views is computed using CKA as

CKA(X,Y) =
⟨vec(X), vec(Y)⟩

||X||F ||Y||F
(5.8)

where the function vec(X) reshapes the matrix X into a vector, ⟨., .⟩ is the inner
product, and ||.||F is the Frobenius norm to ensure that CKA ∈ [0, 1]. CKA values
close to 1 indicate that the two instances are highly consistent, while values close
to 0 indicate low consistency. A more precise mathematical definition of CKA was
introduced in the preliminaries chapter.
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Using CKA, we conduct pairwise similarity analysis across all six instances
which yields 15 comparisons for each model type. We report the mean of the
resulting CKA values for each model type in Figure 5.9. First, we observe that
randomly initialized encoders (RIE) are highly consistent for both architectures
(mean CKARIE/RNN ≈ mean CKARIE/CNN = 0.98). However, after training the
encoder instances, convolutional networks are more consistent than their recurrent
counterparts. Note that this behaviour cannot be attributed to a difference in the
number of trainable parameters between the two architectures since they are com-
parable. Moreover, all decoding-based learning objectives (i.e., AE, CAE, and PGE)
return mean CKA values above 0.87, which indicates that their representational
profiles are similar despite some noticeable differences especially among the recur-
rent encoders. The only exception to this trend are model instances trained with
contrastive loss since they are significantly less consistent compared to the other
learning objectives (mean CKACSE/RNN = 0.61 and mean CKACSE/CNN = 0.74).
We emphasize that CKA is a second-order isomorphismic approach that oper-
ates on the similarity of the pairwise similarity matrices across different views.
Therefore, the anisotropic nature of AWEs reported in §5.5 cannot explain their
similarity-based representational profiles, and by implication, their representational
consistency. Furthermore, and given that different initializations have only resulted
in only trivial differences on the evaluation task metric (mAP), we conclude that
the network representational consistency cannot be explained by quantitative
differences, but rather by representational discrepancies due to disagreement in
the geometric arrangement of the speech samples in the embedding space.

5.8 Analysis 4: Qualitative Evaluation

To further inspect the representation space and its neighborhood structure, we
conduct a qualitative analysis by querying the representation space with a few
word samples. In this analysis, we compute word category centroids by averaging
the word embeddings of the training samples, then we use a word centroid as a
query and obtain the top-10 ranked nearest neighbors. The result of this analysis
is shown in Figure 5.3. For the majority of the examples in Figure 5.3, we observe
that there is a strong word onset bias where the most similar words are those that
begin with a similar sounding prefix as the query word.
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Query (↓) Convolutional Encoders (CNN) Recurrent Encoders (RNN)

AE CAE PGE CSE AE CAE PGE CSE

mentioned

mention mention mention mention mention mention mention mention
wretched mansion mansion mansion wretched mansion mansion mansion
nation motion legends merchant nation merchant merchant merchant
midst merchant management mission merchant motion legends mission
merchants making merchants mental motion nation mountain pinching
motion wilson magic vincent merchants making merchants massive
merchant nation matrons pinching midst vincent mission mental
message midst mission medicine milking nineteen magician transient
regiment missing merchant crouching winter nature motion motion
winter nature magician midst vessel rachel wretched hudson

intellectual

individual introduction intellect intellect individual individual individual introduction
interesting individual individual adjoining interesting introduction intelligence individual
indifferent interrupted introduction recollection neglected uncomfortable introduction immature
newton indifference intelligent delightful petition intelligent intellect objection
institution attraction encouragement individual magician intelligence uncomfortable implacable
departure intellect interrupted employing hokosa interesting intelligent delightful
imitation immature intelligence impetuous compassion invisible interpretation theatrical
hokosa indifferent indifferently employed departure interrupted industrial thoughtful
encountered encouragingly unconditional natural convention imperfectly incapable industrial
neglected implacable impetuous accumulated consulted incredible insensible election

maker

labor naked naked baker labor nature baker liquor
liquor natured liquor naked nature local nature negro
labored nature natured negro walker naked liquor eaten
labour local nature liquor local labour labour baker
wicker labour baker local naked labor labor nature
leaping major major native labour major major labor
lifted labor negro nature rachel natured negro naked
walker native native major liquor baker neighbors newspaper
local making wicker matrons labored liquor vapor mink
nature navy labor vigor leaping negro labors vigour

profession

position procession procession professor position procession procession professor
proceed professor professor sufficient professors possession proportion procession
positions position position procession possessions position perfection perfection
physician possession petition professors proceeded professor possession sufficient
proceeded professors pushing efficiency physician possessions protection proposition
possessed pushing professors efficient condition permission proportions proportion
prison perfection possession petition procession discussion position production
possessions positions physician prevent presumption positions possessions petition
perfect discussion positions position protested commission professor compassion
discussion preferred precious physician proceed physician petition pushing

seized

ceased ceased ceased thieves ceased ceased ceased thieves
freedom season seizing ceased faded feasts thieves ceased
seated thieves season season cities scenes saves fuse
faded saves thieves feast singing thieves seats jesus
singing seems saves seizing scenes saves seems spheres
scenes scenes ceasing feared feeding seems scenes feels
season ceasing seems ceasing season feast seemed cities
cities saints feast saves sweetest saints feast season
field feast seats species seated faced saved seats
seeming sins seemed speed saying seemed seizing scenes

experiments

experiment experiment experiment experiment experiment experiment experiment experiment
experience experienced experience experienced experienced experienced experienced attendants
experienced experience experienced garments experience experience experience extremities
experiences experiences experiences extermination extinguished experiences experiences islands
extinguished extremities expense expense experiences exposed expressions experienced
exchange established embarrassment experience expected extremities extermination prominence
extremities extraordinary expanse aramis exchange expense extremities edmunds
expressions extinguished extraordinary disturbance expressions expanse extremity instruments
extremely extremity extremities examined extremities extinguished expression attendance
extremity expanse expressions vanished extent exclusion expensive commons

Table 5.3: Top-10 nearest word embedding centroids for a word sample.
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5.9 Discussion of Main Findings

Acoustic word embeddings (AWEs) are vector representations that encode the
sound structure and acoustic-phonetic features of spoken words. AWEs are induced
from actual acoustic realizations of speech, and therefore AWE models have to
abstract away from non-linguistic dimensions of variability in speech signals (e.g.,
speaker characteristics, speech rate, recording conditions, etc). While analyzing the
representational geometry of semantic word embeddings is a topic that has received
a substantial attention in the NLP research community, the interpretability of
AWEs remains an under-explored topic and we are aware of a few prior studies in
this direction (e.g., Matusevych, Herman Kamper, et al., 2020a). In this study, we
made a number contributions in analyzing the representational geometry of AWEs
and obtained research findings which we discuss and summarize in this section.

Learning objective affects the geometry more than architecture. Our
three analyses in this study have shown that the learning objective shapes the
representational geometry of the AWE encoders more than their underlying
architectures. This finding suggests that recurrent and convolutional encoders
may exhibit similar inductive biases while the learning process is mainly guided
by the loss function.

AWE models are anisotropic. Our analysis in Section 5.5 demonstrated that
AWEs tend towards being minimally isotropic, or anisotropic. This implies that
within-category and cross-category word variability are encoded by neural networks
in a small subspace, while the majority of dimensions exhibit no significant variance.
However, it’s important to note that the anisotropic nature of AWE models is not
an emergent property of the training process. Instead, we found that isotropy is an
inherent property of the underlying neural network architecture itself. Moreover,
we found a positive correlation between the degree of isotropy after model training
and performance on the acoustic word discrimination evaluation task. Interestingly,
different models exhibited varying degrees of isotropy, indicating that the variance
is not uniform spoken-word representations from a geometric point of view. As a
result, we conclude that making comparisons between different models based solely
on absolute distance metrics, such as cosine distance, could lead to inaccurate
conclusions.

Word distinctiveness, but not frequency, predicts category discrim-
inability. As found in Section 5.6, word acoustic distinctiveness has been shown
to be a good predictor of the extent to which a word category is compact and
well-separated in the representation space. However, word frequency does not
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correlate with category discriminability. In retrospect, this finding shouldn’t be
surprising, as frequent words tend to be shorter in length. Shorter words tend
to have more phonological neighbors that are perceptually similar in form, thus
making them more confusable with other words. Future work can employ linear
mixed effects models to analyze the interaction between different lexical properties
such as frequency, phonological neighborhood density, and word length, and their
impact on word category discriminability.

AWE models exhibit individual differences. Though AWE model in-
stances trained with different random initializations are stable with respect to
the performance of the evaluation task, they exhibit individual differences in
their representational profiles, as shown in Section 5.7. However, the degree of
the network’s representational consistency across different initializations depends
on both the architecture and the learning objective. Contrastive objectives are
less consistent than decoding-based objectives, while recurrent encoders are less
consistent than their convolutional counterparts. These findings are relevant when
models of AWEs are adopted as cognitive models of human speech processing. For
example, it would be important to establish a reasonable upper bound of model
similarity when training on one language, before conducting comparisons across
models trained on different datasets or languages.

Contrastive models have distinct representational profiles. In the
analyses we presented in this study, we observed that the contrastive encoders
behave differently than other encoders trained with non-contrastive losses. For
example, word distinctiveness has been found to be a weak predictor of category
discriminability in the embedding spaces of the contrastive encoders. Recall that
our contrastive encoders have a stronger constraint in grouping exemplars of the
same category closer in the embedding space guided by the margin hyperparame-
ter, while decoding-based model lack this constraint. We hypothesize that this
constraint forces the models to emphasize the separability of the word categories in
the embedding space. Therefore, a stronger constraint seems to make contrastive
encoders different compared to other learning objectives and different instances of
the same contrastive encoder are less consistent in their representational geometry.

5.10 Summary

Computational and conceptual modeling of spoken-word recognition is a well-
researched area in cognitive science (Dahan and Magnuson, 2006; Luce and
McLennan, 2005; Scharenborg and Boves, 2010; Weber and Scharenborg, 2012,
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inter alia). On the other hand, nueral models of spoken-word representations
have been independently developed by researcher in speech technology research.
However, we still do not know much about how these neural network models
encode spoken-word variability in their representational geometry. In this study,
we have taken a closer, analytical look at the representational geometry of acoustic
word embeddings (AWEs) from three different, but complementary perspectives:
(1) representational space uniformity, (2) word category discriminability, and (3)
network representational consistency. We have shown that the representational
spaces of AWEs tend towards being minimally isotropic, or in other words, they
utilize only a few dimensions of the representation space to encode spoken-word
variability. Another finding was that most AWE models rely on word length as a
feature to discriminate between word categories since the word discriminability
index positively correlates with the number of phonemes in a word. Furthermore,
our representational consistency analysis have shown that AWE models exhibit in-
dividual differences in their representational profiles, with the contrastive encoders
being the most inconsistent across different random initializations.

Even though we focused on acoustic word embeddings in this study, our ana-
lytic methodology can also be employed for the interpretability of spoken-word
representations in self-supervised speech models such as contrastive predictive
coding (A. v. d. Oord et al., 2018) and wav2vec (Schneider et al., 2019b). Also,
the emergent representations of sub-lexical units such phonemes and syllables in
speech neural networks can be analyzed using the our proposed methodology in
this study.





6
The Role of Linguistic Experience in

Intercomprehension

Closely related languages are often mutually intelligible to various degrees.
Cross-linguistic intelligibility is mainly driven by language similarity across
different levels of the linguistic hierarchy. Nevertheless, the contribution of
lower levels of language processing (i.e., acoustic-phonetic and phonological)
to this phenomenon remains unclear. In this paper, we develop a data-driven
approach based on computational modeling and the representational similarity
analysis framework to quantify the contribution of low-level speech processing
to cross-linguistic intelligibility. Our approach quantifies the representational
similarity between native and non-native spoken-word representations using
acoustic models trained on naturalistic speech data. Therefore, our proposed
approach does not require parallel (spoken) word lists which are usually difficult
to obtain in a cross-linguistically comparable format. Using our approach, we
present a case study on the related Slavic languages and we demonstrate that
representational similarity not only captures language similarity in the broad
sense, but also predicts the degree of cross-linguistic intelligibility between
closely related languages.

6.1 Introduction

Successful comprehension of spoken language requires the processing of the in-
coming acoustic signal to activate and retrieve the lexical categories intended by
the speaker. Despite the highly variable nature of speech, human listeners exhibit
a high degree of robustness in recognizing spoken words in their native language
(L1), enabling them to resolve inherent ambiguities in speech communication
(Luce and McLennan, 2005). However, listening to a non-native (L2) speech is a
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completely different experience. Since the human auditory processing system is
shaped by the exposure to one’s native language, listeners experience perceptual
difficulties along dimensions that are not informative for decoding speech in their
L1 or when L2 speech deviate from the statistical regularities of their L1 (Pallier
et al., 1997). Many of these difficulties can be explained by the misperception
of L2 phonological contrasts, both segmental and suprasegmental. For example,
L1 Japanese listeners fail to discriminate between English minimal pairs such as
long-wrong due to the perceptual assimilation of the non-native phonetic categories
[ô]-[l] onto a single Japanese category [R], thus the two word forms are perceived
as homophones (Goto, 1971; MacKain et al., 1981; Miyawaki et al., 1975). Similar
auditory processing difficulties have been reported due to inability to recognize
suprasegmental contrasts such as variable lexical stress (Peperkamp et al., 2010)
and contrastive tones (Y. Wang et al., 1999). However, not all cross-language per-
ceptual difficulties can be explained by misperception of L2 phonological contrasts
(Amengual, 2016). For example, L2 Russian learners (native speakers of English)
confuse words that are phonological similar (e.g. molotok-moloko), despite the
absence of unfamiliar L2 phonological contrasts to English listeners (Cook et al.,
2016).

On the other hand, the listener’s linguistic experience can in some cases have
a facilitative effect on cross-language speech processing. For example, speakers
of closely-related languages can comprehend each other’s speech to an extent
that enables a form of communication known in the sociolinguistics literature
as intercomprehension or receptive multilingualism (refer to Van Heuven
(2008), Gooskens (2017), and Gooskens (2019) for an overview). Even in the absence
of prior familiarity with each other languages, L1/L2 structural similarity
across the different levels of the linguistic hierarchy enables interlocutors to
decode the incoming L2 speech using their L1 competence. The factors that
contribute to intercomprehension and mutual intelligibility can be categorized
as either linguistic (e.g., inherent cross-linguistic similarities) or extra-linguistic
(e.g., listener’s attitude). However, isolating the effects of linguistic versus extra-
linguistic factors remains a challenge in experimental studies involving human
participants..

Recently, acoustic models based on deep neural networks (DNNs) have been
analyzed from a cognitively motivated angle to investigate the degree to which
they exhibit human-like behavior on a variety of speech processing tasks (e.g.,
Matusevych, H. Kamper, et al., 2021; Matusevych, Herman Kamper, et al., 2020a;
Millet et al., 2021; Schatz and Feldman, 2018). Furthermore, it has been shown
that neural networks reflect human perception of cross-linguistic and dialectal
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variation of spoken language (Bartelds, de Vries, et al., 2022; Bartelds and Wieling,
2022). In this study, we build on this line of research and investigate a class of
acoustic models that project a spoken-word stimulus of an arbitrary length onto
a fixed-dimensionality representation (e.g., Herman Kamper, W. Wang, et al.,
2016; Levin et al., 2013; Settle and Livescu, 2016b). In speech technology research,
these representations are known as acoustic word embeddings (AWEs) and their
underlying acoustic models are employed in voice-based applications such as as
query-by-example spoken term discovery (Jansen and Durme, 2012; Metze et al.,
2013; Yaodong Zhang and James R Glass, 2009) and keyword spotting (Myers
et al., 1980; Rohlicek, 1995). AWE models are trained in a way such that different
acoustic exemplars of the same word category, or word type, are ideally projected
onto the same point in the representation space. From the cognitive perspective,
these models simulate auditory-lexical processing during language comprehension.

In this chapter, we present a computational framework to study the impact of
linguistic factors on mutual intelligibility. Our objective is to study how lower-levels
of language processing (i.e., acoustic-phonetic processing and phonological decod-
ing) contribute to the facilitating effect of language similarity on cross-language
speech processing. Concretely, our study makes the following contributions:

1. We develop a data-driven framework based on representation similarity
analysis (RSA) to study the role of linguistic experience in non-native
spoken-word representations (§ 6.3). Our framework is visually illustrated
in Figure 6.1.

2. Using our framework, we present a case study on the related Slavic languages
and demonstrate that cross-lingual representational similarity not only
predicts language similarity in the broad sense, but also the degree of mutual
intelligibility among related langauges (§6.6).

3. We conduct a qualitative analysis of the model representations and shed
light on the sources of cross-linguistic differences among the models (§6.7
and §6.8).

6.2 Background

In this section, we discuss some context that situates our work within the broader
literature. In section 6.2.1, we discuss the relevant sociolinguistic research on
the empirical testing of mutual intelligibility among closely related languages. In
section 6.2.2, we highlight research efforts on modeling human speech processing
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using deep neural networks. Finally, in Section 6.2.3, we briefly discuss the
neuroscientific framework of representation similarity analysis and its application
in interpreting and analyzing neural networks in natural language processing
(NLP) and automatic speech recognition (ASR).

6.2.1 Cross-Linguistic Intelligibility

In speech communication, the term intelligibility refers to the quality of informa-
tion decoding at the listener’s side when the speech is transmitted under adverse
conditions (e.g. noise) or when it deviates from the norm (e.g., foreign-accented
speech). Even though speech is highly variable, human listeners are usually able to
reliably understand utterances in adverse conditions, and in some cases, compre-
hend what is being communicated in a different, but related language. A host of
studies in the sociolinguistics literature reported varying degrees of mutual intel-
ligibility between related languages across different language families and dialect
continua including Romance, Germanic, and Slavic languages (e.g., Golubović
and Gooskens, 2015; Gooskens and Heuven, 2017; Gooskens, Heuven, et al., 2018).
It has been observed that the objective measures of linguistic distance, such as
lexical distance, are strong predictors of cross-linguistic intelligibility (Gooskens,
2007).

In this study, we focus on the cross-linguistic intelligibility of Slavic languages
and propose a computational, analytic approach to analyze the contributions of
lower levels of language processing to mutual intelligibility. Despite their intriguing
linguistic features and remarkable similarities, Slavic languages remain understud-
ied within the NLP and speech processing literature. We ground our research on
findings from the sociolinguistics literature regarding the effect linguistic distance
on mutual intelligibility. For example, Golubovic (2016) shown that languages in
a geographically connected area that are members of the same sub-family (e.g.,
West Slavic languages such as Czech and Polish) exhibit a higher cross-linguistic
intelligibility compared to languages that belong to different sub-families (e.g., Bul-
garian, a South Slavic language, and Czech). In their study, Golubovic (2016) used
a spoken-word translation task to test mutual intelligibility among speakers of
different South Slavic and West Slavic languages. Human participants in this task
listened to L2 spoken-word stimuli and were asked to translate what they heard
into their native language. When translating Czech word stimuli, Polish-speaking
participants performed better on average (54.3%) compared to Croatian-speaking
(43.0%) and Bulgarian-speaking (41.6%) participants. Similarly, when translating
Polish word stimuli, Czech-speaking participants performed better on average
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Figure 6.1: A schematic view of our experimental pipeline whereby we quantify the
extent to which non-native models produce native-like representations using
representational similarity analysis. A set of N spoken-word stimuli from
language λ are represented using the encoder F (λ) which was trained on
language λ to obtain a native view of the data: X(λ/λ) ∈ RD×N . Simulta-
neously, the same stimuli are represented using encoders trained on other
languages, namely F (α) and F (β), to obtain two different non-native views
of the data: X(λ/α) and X(λ/β).
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(63.2%) compared to Croatian-speaking (37.5%) and Bulgarian-speaking (43.3%)
participants. These findings are not surprising given that Slavic languages share a
large number of cognate words—words with a common etymological origin that
the same meaning and similar form. Nevertheless, the contributions of phonetic
perception and phonological decoding to cross-language spoken-word recognition
are difficult to isolate in experimental studies with human participants. To address
this challenge, our study makes use of computational models that have access
solely to the acoustic instances of word-forms, but not their semantic content.

6.2.2 Neural Networks as Models of Human Speech Processing

Recent developments in representation learning have made it possible to develop
computational models that simulate language learning from raw, continuous speech
input. Working with speech representation learning as a cognitive framework
enables researchers to address questions about language acquisition and speech
processing without making strong assumptions about the (emergent) categorical
nature of speech (Alishahi et al., 2017b; Dupoux, 2018; Gelderloos et al., 2020;
Magnuson et al., 2020; Matusevych, Schatz, et al., 2020; Räsänen et al., 2016a;
Scharenborg, Gouw, et al., 2019). Complementing this line of research, DNN-
based models for automatic speech recognition (ASR) have been adopted as
cognitive models of speech processing in several prior studies, with a strong focus
on modeling cross-linguistic effects. For example, Schatz and Feldman (2018) have
shown that an ASR predicts cross-linguistic perceptual effects due to misperception
of non-native phonological contrasts—e.g., L1 Japanese listeners’ difficulty with
the English [l]-[ô] contrast. Matusevych, H. Kamper, et al. (2021) have shown
that lexically-constrained acoustic models predict non-native lexical processing
difficulties that cannot be explained by phonetic categorization. These studies
demonstrate the value of computational modeling to shed light on an important
question: how does linguistic experience shape our speech processing system?

6.2.3 Representational Similarity Analysis

Representational Similarity Analysis (RSA) is a data-analytical framework de-
veloped in the neuroscience community to enable comparison of neural activity
patterns across brain regions and computational models of information processing
(Kriegeskorte et al., 2008). The RSA framework abstracts away from the activity
patterns themselves and operates on the geometry of the representation or fea-
ture space, which makes it applicable for interpretability and analysis of neural
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networks where the correspondence between neurons across different layers or
architectures is unknown. In the NLP and speech processing community, RSA
has previously been employed to study the correlation between neural network
and symbolic representations of language (Chrupa la and Alishahi, 2019), ana-
lyze word representations in language models (Abdou et al., 2019; Abnar et al.,
2019; Beinborn and Choenni, 2020; Lepori and McCoy, 2020; J. Wu et al., 2020),
and analyze the representations of speech recognition models (Chrupa la, Higy,
et al., 2020; Chung, Belinkov, et al., 2021). In this study, we build on prior work
and employ the RSA framework to quantify the impact of linguistic experience,
characterized by the language of exposure, on non-native spoken-word processing.
We do so by building spoken-word representation models based on deep neural
networks in a controlled setting where we keep all dimensions of variability fixed
except the language of exposure (i.e., language of the training samples) to examine
cross-linguistic effects. To the best of our knowledge, our study is the first to
employ the RSA framework to analyze the impact of linguistic experience on the
degree to which non-native speech models exhibit native-like representations.

6.3 Research Methodology

A neural spoken-word representation model can be formally described as a mapping,
or an encoder function, F : A → RD, where A is the (continuous) space of
acoustic sequences and D is the dimensionality of the representation space. Given
an acoustic word signal represented as a temporal sequence of T acoustic events
A = (a1,a2, ...,aT ), where at ∈ Rk is a spectral vector of k coefficients, a word
representation is computed as

x = F(A;θ) ∈ RD (6.1)

Here, θ are the parameters of the encoder, which are learned by training the
model in a monolingual supervised setting. That is, the training word segments
are speech intervals that are sampled from utterances produced by native speakers
where the word identity of each acoustic segment is known. To encourage the
model to abstract away from speaker variability, the training samples are obtained
from multiple speakers, while the resulting representations are evaluated on a
held-out set of speakers.
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Step 1: Simulating spoken-word processing

Since our goal is to characterize how the linguistic experience shapes speech
processing, the first step in our analytic approach is to simulate spoken-word pro-
cessing in (adult) listeners who have been exposed to a single language. To achieve
this goal, we train monolingual, word-level acoustic models on different languages
where the training data and conditions are cross-linguistically comparable with
respect to the number of word stimuli, genre, and speaker variability. We there-
fore have access to several models {F (α),F (β), . . . , ,F (ω)}, where the superscripts
{α, β, . . . , ω} denote the language of the training samples. In this study, we focus
on models that are based on unidirectional recurrent neural networks because they
are better at capturing the sequential incremental nature of speech in comparison
to other architectures (i.e., convolutional and transformer networks).

Step 2: Projecting word stimuli onto native vs. non-native representation
spaces

Next, we obtain a set of experimental conditions in the form of N held-out spoken-
word stimuli produced by native speakers of language λ: A(λ)

1:N = {A(λ)
1 , . . . ,A

(λ)
N },

where Ai is a spectral representation of a spoken-word instance. Then, each
acoustic word stimulus in this set is mapped onto a representation using the model
F (λ), which yields a matrix X(λ/λ) ∈ RD×N . Since the model F (λ) was trained on
language λ, we refer to it as the native model and consider the matrix X(λ/λ) as the
native view of the stimuli. To obtain a non-native view of the same experimental
conditions, we project each of sample in the stimuli A(λ)

1:N onto the representation
space of the model F (α), which was trained on a different language α. Therefore,
we have a second matrix X(λ/α) ∈ RD×N for the non-native representations. Here,
we read the superscript notation (λ/α) as word stimuli of language λ represented
by a model trained on language α.

Step 3: Measuring representational similarity

In this step, we aim to measure the degree to which the non-native model produces
native-like representations. This goal can be achieved by quantifying the structural
correspondence and alignment between the representational spaces of the models
F (λ) and F (α) in response to the stimuli A

(λ)
1:N . To this end, we measure the

representation similarity between the two matrices X(λ/λ) and X(λ/α) using linear
Centered Kernel Alignment (CKA) as
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Σ(λ, α) := CKA(X(λ/λ),X(λ/α)) (6.2)

Here, Σ(λ, α) ∈ [0, 1] is a scalar that quantifies the agreement between the
responses of the two models, i.e., native F (λ) and non-native F (α), when tested
with spoken-word stimuli A

(λ)
1:N . If the two models separate the experimental

conditions with a similar geometry in their representational spaces, Σ will be
close to 1. On the other hand, values close to 0 indicate different representational
geometries and a difficulty in establishing an alignment. Note that CKA is a
neuroscience-inspired measure that emphasizes the distributivity of information in
neural activity patterns and abstracts away from the roles of individual neurons.
In addition, CKA is invariant to orthogonal transformation and isotropic scaling,
which are desirable properties for our analysis.

Step 4: Analyzing cross-linguistic differences

To analyze cross-linguistic differences in spoken-word processing and representation,
we obtain another non-native view X(λ/β) of the stimuli A(λ)

1:N using the non-native
model F (β). We then quantify the representational similarity between the models
F (λ) and F (β) as

Σ(λ, β) := CKA(X(λ/λ),X(λ/β)) (6.3)

If Σ(λ, α) > Σ(λ, β), we can conclude that the representations of the model F (α)

are more native-like compared to the representations of F (β). Note that while
CKA(., .) is a symmetric metric—i.e., CKA(X,Y) = CKA(Y,X)—our established
similarity metric Σ(., .) is not symmetric—i.e., Σ(λ, α) : ̸= Σ(α, λ). To compute
Σ(α, λ), we use word stimuli of language α and collect the matrices X(α/α) and
X(α/λ). Then we compute

Σ(α, λ) := CKA(X(α/α),X(α/λ)) (6.4)

When we apply our proposed experimental pipeline across L different languages,
the effect of language similarity can be characterized by constructing a cross-
lingual representational similarity matrix (xRSM) which is an asymmetric L× L

matrix where each cell represents the structural correspondence between two
representational spaces.
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Spoken-Word
Representation

Figure 6.2: A visual illustration of the models in our study: (left) Phonologically Guided
Encoder (PGE) (left) and (right) Correspondence Autoencoder (CAE).

6.4 Spoken-Word Representation Models

In this section, we describe the two spoken-word representation models that we
employ for our study. Both models are supervised, utilizing top-down lexical
constraints to direct the learning process. Training the models requires a dataset
D = {(Ai, wi)}Mi=0 of M spoken word instances where wi is the category (or word
type) of ith instance and Ai is an exemplar of this word category. Note that the
two models, presented in the following two subsections, were introduced in greater
depth in the previous chapter, and briefly presented here to contextualize their
application in the current study.

6.4.1 Phonologically Guided Encoder

The first model we experiment with is the phonologically guided encoder (PGE),
which is a sequence-to-sequence model that is trained with explicit phonological
supervision. Given an acoustic word sequence A and its corresponding phonemic
transcription φ = (φ1, . . . , φτ ), a recurrent encoder F takes A as input and
produces a single representation x (i.e., the last hidden state of the recurrent cell).
Then, the phonological decoder G aims to decode φ from x. The objective is to
minimize a categorical cross-entropy loss at each timestep in the decoder, which
is equivalent to

L = −
τ∑

i=1

log p(φi|φ<i,x) (6.5)



6.4 spoken-word representation models 105

where p is the probability of the phone φi at timestep i, conditioned on the previous
phone sequence φ<i and the embedding x. The intuition of this learning objective
is the following: although their acoustic realizations might vary due to speaker and
context variability, different exemplars of the same word category have identical
phonemic transcriptions. Therefore, the model is expected to project exemplars of
the same category nearby in the representation space and the representational
distance should ideally reflect phonological (dis)similarity.

6.4.2 Correspondence Autoencoder

The second model we experiment with is the correspondence autoencoder (CAE),
which is also sequence-to-sequence model with an identical encoder architecture
to the PGE model (Herman Kamper, 2019). However, the CAE differs from the
PGE in the nature of the supervision signal. To train the CAE, two acoustic
word exemplars of the same category are paired to make a tuple (A,A+). Then,
the encoder F takes A as input and builds up a representation x, which is
then fed into an acoustic decoder H that aims to (sequentially) reconstruct the
corresponding acoustic sequence A+. The objective is to minimize the L2 distance
at each timestep in the decoder, which is equivalent to

L =
T+∑
t=1

||A+
t −H(x)t||2 (6.6)

where A+
t is the ground-truth spectral vector at timestep t and H(x)t is the recon-

structed spectral vector at timestep i as a function of the computed representation
x.

Despite the difference in the learning objectives between the PGE and CAE,
both models implement a memory bottleneck since the decoders have access
only to the last hidden state of the encoder without an attention mechanism.
Therefore, both models are encouraged to learn high-level abstractions of the
detailed acoustic input in their bottleneck representations. We hypothesize that
this constraint also encourages the models to uncover phonological regularities in
the speech data in order to efficiently compress the acoustic input into a single
bottleneck representation.
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Figure 6.3: Word duration distributions across the languages in our study.

6.5 Data and Experimental Setup

6.5.1 Experimental Data

The data in our study is a subset of the GlobalPhone speech (GPS) database
(Schultz et al., 2013) which is a multilingual read speech resource containing
utterances recorded by native speakers (who self-reported their gender in the
metadata) in a controlled recording environment with minimal noise. Therefore, the
recording conditions are comparable across languages which enables us to conduct
a cross-linguistic comparison. To access the data, we obtained the license for the
languages in our study from the copyright holder, XLingual LLC. We experiment
with five Slavic languages: Czech (cze), Polish (pol), Russian (rus), Bulgarian
(bul), and Croatian (hrv), and additionally with three Indo-European languages
outside the Slavic language family as control languages: Brazilian Portuguese
(por), French (fra), and German (deu). To train the models, a set of 42 speakers
of balanced gender was sampled from each language to make a training dataset
consisting of roughly the same number of training samples for each language
(~28k spoken-word instances each). Spoken-word alignments were produced using
the Montreal forced aligner (McAuliffe et al., 2017). Each acoustic word signal is
parametrized as a sequence of 39-dimensional Mel-frequency spectral coefficients
where frames are extracted over intervals of 25ms with 15ms overlap. digure 6.3
shows word duration distributions across for each language.

6.5.2 Architecture and Hyperparameters

Acoustic Encoder F(.;θF). We employ a 3-layer recurrent neural network with
a unidirectional Gated Recurrent Unit (BGRU) of hidden state dimension of 512,
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which yields a 512-dimensional representation. The encoder is identical in both
the PGE and CAE model.

PGE–Phonological Decoder G(.;θG). We employ a 1-layer GRU of 512 units
hidden state that takes the 512-dimensional bottleneck representation from the
encoder as the initial hidden state and decodes the corresponding phonological
sequence without teacher forcing.

CAE–Acoustic Decoder H(.;θH). Similar to the phonological decoder, but it
decodes the corresponding acoustic exemplar thus the inputs and outputs of this
decoder are 39-dimensional vectors, which is the dimensionality of the spectral
dimension of our acoustic stimuli.

Training Details. All models in this study are trained for 100 epochs with
a batch size of 256 using the ADAM optimizer (Kingma and Ba, 2015) and an
initial learning rate (LR) of 0.001.

Implementation. Our models are developed using PyTorch (Paszke et al., 2019)
and FAISS (J. Johnson et al., 2017) for efficient similarity search during evaluation.
Our code, data statistics, configuration files of hyperparameters, and speaker splits
will be publicly available on a public GitHub repository upon publication.

6.5.3 Quantitative Evaluation

To keep track of the learning progress during the models’ training, we monitor
the performance of the models at each epoch on the exemplar retrieval task. In
the speech technology literature, this task is also known as the same-different
acoustic word discrimination task and it mainly assesses the model’s ability to
separate distinct lexical categories and discriminate between word exemplars of
different categories, which is quantified using the mean averaged precision metric
(mAP). The task can be verbally described as follows: given each acoustic word
instance in the evaluation set as a query, the goal is to retrieve all instances that
are exemplars of the same category as the query word. The similarity search
takes places in the model representation space with cosine distance as the ranking
criterion. The word discrimination task and the mAP metric were introduced in
greater detail in the previous chapter.

Figure 6.4 shows the results of the quantitative evaluation using the mAP metric
during training. It can be observed that the PGE model converges faster than
its CAE counterpart and requires fewer epochs to reach a plateau. This behavior
is expected if we consider the objective function of the two models since the
supervision signal is stronger in the PGE (i.e., deterministic phonological target).
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Figure 6.4: (A-B) Learning curves of the PGE model (A) amd CAE model (B) dur-
ing the first 100 epochs of training, quantified by the exemplar retrieval
performance (measured by mAP) on the validation set for each language.
The black dashed line is the mean across languages at each epoch. (C)
Performance of the converged model measured by mAP.

6.6 Similarity Analysis

6.6.1 Quantifying Within-Language Variation

To investigate the effect of non-language factors of variation, we first quantify
the model representational consistency while varying two training conditions: (1)
initial weights, and (2) speaker sample. Our aim is to obtain a reasonable upper
bound on how (dis)similar two (native) models would be if they vary along a
dimension that is not the language of exposure. To this end, we train 10 different
model instances for Czech and Polish for each learning objective (PGE vs. CAE)
and for each training condition (different seeds, same speakers vs. same seed,
different speakers), which yield 80 different instances in total. Then, we measure
the representation similarity between native models across each varying training
condition. The results of this analysis are shown in Fig 6.5. We observe that
both factors of variability affect the (within-language) representational similarity.
However, model variation due to exposure to different speakers during training
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Figure 6.5: Impact of initial weights (•) and speaker sample (•) on the representational
similarity of models trained on the same language. Statistical significance
is marked with ** and *** for p < 0.01 and p < 0.001, respectively.

has a greater impact on the extent to which two native models agree on the
arrangement of the test samples.

6.6.2 Cross-Linguistic Similarity

For our cross-linguistic RSA experiments, we focus on the similarity of the non-
native models to native West Slavic models, namely Czech and Polish. The
motivation to focus on these two languages stems from the fact that both languages
are within the West Slavic dialect continuum—a geographically connected linguistic
area with closely-related languages that exhibit high cross-linguistic intelligibility.
Figure 6.7 shows the results of this analysis where each data point corresponds
to the similarity index between one of the native models from the previous
section (i.e., speaker variability experiment) and a non-native model. We observe
that the extent to which both the PGE and CAE models exhibit a native-
like representation is largely conditioned on the language of exposure during
training. That is, the non-native representations of Czech and Polish test stimuli
are more native-like in the Slavic models compared to the non-Slavic models.
Furthermore, both PGE and CAE predict the West Slavic advantage since the
Polish view of the Czech stimuli is the most native-like and vice versa. In the
PGE view of the Czech stimuli, mean similarity scores to the native model are
µPolish = 0.761 > µSlavic = 0.749 > µnon-Slavic = 0.702, while for Polish stimuli
µCzech = 0.743 > µSlavic = 0.733 > µnon-Slavic = 0.667. A similar trend can be
observed in the CAE model as it predicts both the Slavic advantage as well
as the West Slavic advantage when processing Czech and Polish word stimuli.
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Figure 6.6: Cross-linguistic RSA of the Czech stimuli which quantifies the extent to
which L2 models produce native-like (here, Czech) representations. Each
point in the figure corresponds to one comparison between a native Czech
model and an L2 model. Red dashes represent the means over 10 native
models.

It is worth pointing out that the PGE and CAE models also predict the L1
advantage, since all cross-linguistic similarity scores in Figure 6.7 are significantly
below those reported in the within-language variation experiments in Figure 6.5.
Also, similarity scores between native models and an untrained model are always
below 0.180 for both encoders, which demonstrates that similarities can only be
attributed to the linguistic experience and not to architectural inductive biases.

6.6.3 Clustering Analysis

To get further insights into the impact of the linguistic experience on repre-
sentational similarity, we constructed a cross-lingual representational similarity
matrix (xRSM) using the similarity scores (8 × 8 matrix, where 8 is the num-
ber of languages in our study). The construct matrix for each model (PGE vs.
CAE) is illustrated as a heatmap in Figure 6.8, where warmer colors indicate
higher representational similarity. We then applied hierarchical clustering with
the Ward algorithm (Ward, 1963) on each matrix, which is also illustrated in the
dendrograms in Figure 6.8. One can observe that the Slavic languages form a
single cluster in both dendrograms. Likewise, the Romance languages in our study,
French and Portuguese, are grouped together in each dendrogram. This grouping
demonstrates that the representational geometries of two models exhibit higher
agreement if their training languages are structurally similar



6.6 similarity analysis 111

Ger
man

Fr
en

ch

Por
tug

ue
se

Rus
sia

n

Bulg
ar

ian

Cro
ati

an

Cze
ch

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

S
im

ila
rit

y
(Σ

)

PGE - Polish word stimuli

Ger
man

Fr
en

ch

Por
tug

ue
se

Rus
sia

n

Bulg
ar

ian

Cro
ati

an

Cze
ch

0.68

0.7

0.72

0.74

0.76

0.78

0.8

S
im

ila
rit

y
(Σ

)

CAE - Polish word stimuli

Figure 6.7: Cross-linguistic RSA of the Polish stimuli which quantifies the extent to
which L2 models produce native-like (here, Polish) representations. Each
point in the figure corresponds to one comparison between a native Polish
model and an L2 model. Red dashes represent the means over 10 native
models.

However, the internal grouping of the Slavic languages varies between the
two models. While both models are consistent with the grouping of West Slavic
languages (i.e., Czech and Polish) into one sub-cluster, the grouping of South Slavic
(i.e., Croatian and Bulgarian) languages differs. The PGE clustering analysis groups
Croatian and Bulgarian together, while the CAE groups Russian and Bulgarian
first. In addition, the CAE clustering analysis shows that Russian and Bulgarian
is the most similar language pair, even though Russian belongs to the East Slavic
branch. Note that the key difference between the two models is the nature of the
supervision signal, and this difference could explain the inconsistency between the
two models regarding the grouping of South Slavic languages. The supervision
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Figure 6.8: Cross-lingual representational similarity matrix of the two models: PGE
(left) and CAE (right).
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Figure 6.9: Exemplar-based RSA (x-axis) vs. centroid-based RSA (y-axis) of the two
models.

signal in the PGE is symbolic in the form of discrete phonological sequences, thus
it is more likely to preserve historical relatedness and reflect the phylogenetic
signal. In contrary, the CAE does not have access to symbolic units during training
since the supervision signal is purely acoustic based on correspondence learning
between exemplars of the same word category. Therefore, the CAE is more likely
to be sensitive to contemporary phonetic and word-internal prosodic similarities
that are encoded in the acoustic signals. As an example, Bulgarian has variable
(or free) word stress and strong phonetic reduction patterns, which are common
features in Russian. Due to their variable word stress, Bulgarian and Russian are
characterized by a stronger contrast between stressed and unstressed syllables, and
vowels in unstressed syllables undergo a process that is known as vowel-quality
alternation, or lexicalized vowel reduction (Barry and Andreeva, 2001). This
finding suggests that the CAE model is more sensitive to fine-grained details in
the acoustic realizations of vocalic segments. We suggest further in-depth studies
analyzing the differences of vowel representations between the two models as
future work.

6.7 Exemplar vs. Centroid Similarity

One of our key findings from the previous section is that L1/L2 representational
similarity in the acoustic models not only predicts language similarity in the broad
sense but also the degree of mutual intelligibility within a set of closely-related
languages. In this section, we investigate potential factors that may contribute to
the cross-linguistic differences among the models. Both models we consider in this
study (PGE and CAE) are trained with decoding objectives that do not explicitly
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aim to separate word categories in the representation space. That is, there are no
strong constraints on the arrangement of categories and category exemplars in
the high-dimensional representation space. Therefore, differences between native
and non-native representations can be driven by two factors: (1) differences in the
arrangement of individual exemplars within their respective word category cluster,
and/or (2) differences in the placement of overall word category clusters in the
representation space.

To investigate the sources of differences among the native and non-native views of
the stimuli, we first obtained the centroid for each word category by computing the
arithmetic mean of all exemplar representations within a category. Then, we apply
a statistical approach based on bootstrap re-sampling to estimate the consistency
of category centroids compared to category exemplars in the representation space.
To control for the difference between the overall number of exemplars and number
of categories, we sample exactly 1750 word categories for each language and then
sample one exemplar per category in each bootstrapped sample. For each pair
of samples (centroids vs. exemplars), we compute the representational similarity
between each native model and each of the non-native models using our proposed
similarity score, which yields a set of pairwise comparisons between centroid-
based RSA and exemplar-based RSA. The results of this analysis is depicted in
Figure 6.9. We observe that centroid-based RSA scores are always higher than
their exemplar-based RSA counterparts, which can be visually inferred from the
positions of comparison data points above the identity line. This finding suggests
that the relative positions of category centroids are more consistent between the
native and non-native representations, and the relative positions of individual
exemplars within lexical clusters seem to have a stronger effect in making L2
representations dissimilar than the native ones.

6.8 Analyzing Exemplar Representations

To further investigate the discrepancy between exemplar arrangements within
lexical clusters among L1 vs. L2 models, we conduct a qualitative evaluation of
the representation space by inspecting the distances between held-out exemplars
of word categories that the native model observed during training. We conduct
this analysis on the representations of Czech word stimuli from the CAE model
using the L1 Czech model and two non-native models; the Polish model (most
similar) and the German model (least similar).
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můž
e

bu
de

de
va

ten
ác

t

de
va

de
sá
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můž
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př

ı́kl
ad

roku

jako

jsou

který
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Figure 6.10: Representation dissimilarity matrix (RDM) of Czech stimuli of 12 word
categories, each with 10 exemplars. Warmer colors indicate higher dis-
similarity (large distances), while cooler colors indicate higher similarity
(small distances). Note that each cell contains the cosine distance between
two representations associated with two different stimuli. The RDM is
symmetric along a diagonal of zeros.
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A. Czech model's view (native)

B. Polish model's view (non-native)

C. German model's view (non-native)

Figure 6.11: Three-dimensional t-SNE visualizations of a sample of Czech spoken word
stimuli. Data points that are close in the representation space and have
the same color are exemplars of the same word category.
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Our first analysis is based on visualizing the representational dissimilarity matrix
(RDM) which characterizes the pairwise distances between the word stimuli in
the representation space (Figure 6.10). We analyze 12 word categories where
sample 10 held-out exemplars (unheard speakers) for each category. From the L1
Czech representations in Figure 6.10–A, we observe a block-like structure centered
along the diagonal which is visually recognized by cooler colors, revealing small
distances between exemplars of the same category. This block-like structure is
less obvious in the L2 representations of the Czech stimuli produced by the Polish
model in Figure 6.10–B and the German model in Figure 6.10–C. Therefore, our
analysis reveals that the native exemplar representations are tightly clustered
around their centroid while their non-native counterparts are loosely tied to
their centroid. Moreover, the RDMs reveal intriguing cross-linguistic differences
between the Polish and German views of the Czech stimuli. One can observe that
distinct Czech word categories are better separated by the Polish model compared
to the German model (characterized by the presence of warmer colors in the
Figure 6.10–B compared to Figure 6.10–C). This behaviour can be explained by
the fact that Czech and Polish exhibit similar phonological regularities, which
enables the Polish model to produce more native-like representations, thus better
category separability, compared to the German model.

Finally, we inspect the representation space by means of visualization and
dimensionality reduction using the the t-SNE algorithm (Van der Maaten and
Hinton, 2008). Figure 6.11 shows 3-dimensional projections of Czech held-out
stimuli by the native Czech model and non-native Polish and German models.
The geometric structures of the exemplar placement in Figure 6.11 confirms our
observations from the RDMs. That is, category exemplars are tightly clustered
around their centroid in the native view, while the non-native views exhibit a
looser geometric arrangement. The effect of loosely clustered exemplars is more
prominent in the German view compared to the Polish view of the Czech stimuli.

6.9 Discussion and Summary

In the sociolinguistics literature, it has has been reported that the objective
measures of linguistic distance (e.g., lexical distance) is a strong predictor of
mutual intelligibility among related languages (Gooskens, 2007). However, it
remains a challenge to disentangle the contributions of language similarity at
different levels (i.e., phonetic, lexical, syntactic, semantic, etc.) to cross-linguistic
intelligibility. In addition, the contributions of lower levels of the linguistic hierarchy
(e.g., phonetic, phonological, and prosodic) to mutual intelligibility are difficult to
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study and quantify due to confounding experimental variables (i.e., extra-linguistic
factors such as listeners’ prior exposure to different languages besides their mother
tongue). The key contribution of our study is a computational, analytic approach
for quantifying the effect of cross-language similarity at lower levels of the linguistic
hierarchy on L2 speech processing using a neural acoustic modeling and the RSA
framework. By quantifying the extent to which non-native models exhibit native-
like behavior—operationalized as representational similarity—our approach does
not require a parallel list of word stimuli. Therefore, it is applicable to any
sample experimental stimuli as long as the training conditions of the models are
cross-linguistically comparable.

The computational models we investigate in this study simulate the first stage of
lexical access during speech comprehension, namely the acoustic-phonetic analysis
and the phonological decoding of the incoming speech signal. Since our acoustic
models operate at the word level, we isolate the effects of sentence-level contextual
cues during language processing, and focus on word recognition. Furthermore, the
models have access only to word-form information, but not the semantic content of
the lexical data. Therefore, the observed effects of the linguistic experience in our
presented analysis cannot be attributed to the transparency of form-to-meaning
mapping of word cognates, but rather to similarity in phonological regularities. In
other words, since our models have no access to information beyond the word-form
level, our analysis shows that the observed cross-linguistic intelligibility among
the Slavic languages reported in sociolinguistic studies can be partly attributed
to word-internal acoustic-phonetic, phonological, and prosodic similarities which
enable the listener to activate the correct word-form mental representation prior
to lexical access.

In this study, we aim to bridge between several directions of (computational)
linguistics research that have been so far unconnected. Therefore, our work avoids
the “Square One Bias” (Ruder et al., 2022) in language and speech processing
research by connecting the speech modality, neural networks interpretability, and
multilinguality research in a single study. Furthermore, our study exemplifies how
an interdisciplinary perspective can enable us to pose novel research questions
that are grounded on sociolinguistic studies of cross-language speech processing.





7
Semantically-Enriched Spoken-word

Representations

The presented representation models of acoustic word embeddings (AWEs)
in the previous chapters learn to map variable-length spoken-word segments
onto fixed-dimensionality vector representations. These models are trained
in a bottom-up approach that integrates acoustic cues to build up a word
representation given an acoustic or symbolic supervision signal. Therefore,
these models do not leverage or capture high-level lexical knowledge during
the learning process. In this study, we propose a multi-task learning model
that incorporates top-down lexical knowledge into the training procedure of
AWEs. Our model learns a mapping between the acoustic input and a lexical
representation that encodes high-level information such as word semantics
in addition to bottom-up form-based supervision. We experiment with three
languages and demonstrate that incorporating lexical knowledge improves the
embedding space discriminability and encourages the model to better separate
word categories.

7.1 Introduction

The development of robust automatic speech recognition (ASR) systems requires
large collections of high-quality transcribed speech, which are only available for
a small subset of the world languages. To facilitate access to spoken content
for language varieties that are not yet supported by conventional ASR systems,
researchers have developed voice-based search applications such as query-by-
example (QbE) search (e.g., Jansen and Durme, 2012; Metze et al., 2013; Yaodong
Zhang and James R Glass, 2009). These systems rely on vector-space acoustic
models that map variable-length spoken-word segments onto fixed-size vector
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Figure 7.1: A schematic view of our proposed model.

representations such that exemplars of the same word are (ideally) projected onto
the same vector (S. Bengio and Heigold, 2014; Herman Kamper, W. Wang, et al.,
2016; Levin et al., 2013; Settle, Levin, et al., 2017; Settle and Livescu, 2016b,
inter alia). In the speech technology literature, these fixed-dimensionality vector
representations are known as acoustic word embeddings (AWEs). Currently, the
top performing and the most efficient models of AWEs are based on deep neural
networks (DNNs, He et al., 2017; H. Kamper et al., 2016; Herman Kamper, 2019;
Herman Kamper, Elsner, et al., 2015). Due to the ubiquity of computers that
support DNNs coupled with highly-optimized vector-space search algorithms (i.e.,
FAISS (J. Johnson et al., 2017)), AWEs enable efficient indexing and retrieval of
spoken content at an unprecedented scale.

In addition to their applications in speech technology, DNN-based models of
AWEs have been adopted as models of human speech processing and analyzed
from a cognitively motivated angle in recent studies. It has been shown that AWEs
predict non-native perceptual difficulties in phonetic categorization (Matusevych,
Schatz, et al., 2020), cross-linguistic effects in auditory lexical processing (Matu-
sevych, H. Kamper, et al., 2021), and non-native lexical production patterns of
second language (L2) learners (Ando et al., 2021). These empirical findings from
cognitively motivated, computational word perception and production studies
encourage further integration between speech technology and cognitive science.
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Nevertheless, the majority of existing AWEs rely on supervision signals that
only capture low-level, form-based information about the word. That is, AWEs are
learned in a bottom-up approach whereby acoustic-phonetic cues are integrated
in the model to build up a word-form representation that encodes its phonetic
features and phonological structure. However, a host of psycholinguistic studies
with human listeners have shown that top-down, high-level lexical properties—
such as word semantics—not only interact with the word recognition process but
also facilitate discrimination between word competitors (Cortese et al., 1997; Hino
and Lupker, 1996; Mirman and Magnuson, 2009; Strain et al., 1995; Zhuang et al.,
2011). We take inspiration from these experimental findings and introduce an AWE
model based on the multi-task learning framework that integrates form-based
and meaning-based supervision signals into a single model (Figure 1). Contrary
to prior work that aims to learn the semantic content directly using a very large
speech corpus (Chung and James R. Glass, 2020), our model incorporates word
semantics as an additional supervision signal, thus requiring only a few hours
of speech and being more applicable in low-resource settings. We experiment
with read speech corpora for three languages and empirically demonstrate that
integrating high-level lexical knowledge into training AWEs improves the ability
of the model to discriminate between word categories.

7.2 AWEs via Multi-Task Learning

Given an acoustic signal that corresponds to a spoken-word represented as a
temporal sequence of T spectral vectors, i.e., A = (a1,a2, ...,aT ), the goal of an
AWE model is to transform A into a D-dimensional vector representation x. This
task corresponds to learning an encoder function Fθ : A −→ RD, where A is the
(continuous) space of acoustic sequences, D is the embedding dimensionality, and
θ are the parameters of the function. Sequences in A can vary in length, thus
the function Fθ should be modeled with a suitable neural architecture such as
recurrent networks (RNNs). Therefore, transforming a variable-length acoustic
input into a D-dimensional AWE can be described as

x = F(A;θF) ∈ RD (7.1)

Different approaches in the literature have been proposed for modeling the func-
tion F(.;θF), which can be characterized as either architectural innovations or
introducing new loss functions. In the approach we propose in this study, which
is inspired by a classical connectionist model of spoken-word processing (Gaskell
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and Marslen-Wilson, 1997), our goal is to integrate two sources of supervision
signals—namely phonological form and lexical semantics—into the training pro-
cedure. To this end, we assume a dataset D = {(A1, w1), . . . , (AN , wN)} of N
spoken words where wi is the written form of the ith word. Such a dataset can
be automatically obtained using a forced alignment tool on a transcribed speech
dataset. Furthermore, we assume the availability of two look-up dictionaries:
(1) a dictionary that maps each written word onto its phonemic transcription as
Φ(w) = φ1:τ = (φ1, . . . , φτ ), which can be automatically created using a grapheme-
to-phoneme (G2P) tool, and (2) a lookup dictionary that maps each word into
a distributed word representation as Λ(w) = w ∈ RK . The distributed word
representation ideally encodes high-level lexical knowledge about the word—such
as its semantic and syntactic properties—and can be obtained independently using
a large text corpus or from a public repository of semantic word embeddings such
as Glove (Pennington et al., 2014) or fasttext (Mikolov, Grave, et al., 2018).

7.2.1 Form-based Phonological Supervision

Our first learning objective is based on the sequence-to-sequence learning frame-
work in which the network is trained as a word-level acoustic model (Figure7.1,
branch [A]). Given the output of acoustic encoder x, a phonological decoder
G(.;θG) aims to decode the corresponding phonological sequence φ1:τ of the word-
form x. The objective is to minimize a categorical cross-entropy loss at each
timestep in the decoder, which is equivalent to minimizing the term

Lϕ(θF ,θG) = −
∑

(Ai,wi)∈D

log P
(
Φ(wi) | F(Ai;θF); θG

)
= −

∑
(Ai,wi)∈D

τ∑
t=1

log P
(
φt | t, xi; θG

) (7.2)

where P
(
φt | t, xi; θG

)
is the probability of the phoneme φt at the tth timestep,

conditioned on the previous phoneme sequence φ1:t−1 and the AWE x, and θG

are the parameters of the decoder. The learning objective is based on the idea
that while acoustic realizations of words vary across speakers and contexts, all
exemplars of a specific word should have the same phonemic transcription. Thus,
the model should map exemplars of the same word close together in the embedding
space, where the distance should ideally reflect phonological (dis)similarity.
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7.2.2 Meaning-based Lexical Supervision

Our second learning objective aims to map the acoustic input A onto a high-level
lexical representation (Figure7.1, branch [B]). The goal here is to incorporate a
supervision signal from a level that is higher in the linguistic hierarchy compared
to form-based phonological supervision. Inspired by Maas et al. (2012), we model
this task as a vector regression problem. The output of the acoustic encoder x is
transformed via a feed-forward network into a semantic vector as v = H(x;θH) ∈
RK . Thus, the objective is to minimize the term

Lλ(θF ,θH) =
∑

(Ai,wi)∈D

||H
(
F(Ai;θF);θH

)
− Λ(wi) ||2

=
∑

(Ai,wi)∈D

||vi − Λ(wi) ||2
(7.3)

where Λ(wi) ∈ RK is the ground-truth distributed representation, or semantic
word embedding, of the ith sample. We assume that continuous, distributed word
representations are available to the model during training. Given the ubiquity of
word embeddings in the NLP research and the availability of text corpora for many
languages, we believe that our assumption is reasonable. Since all exemplars of a
word category are associated with the same semantic representation, we expect
this objective to separate word categories in the representation space.

7.2.3 Integrating Form and Meaning Supervision

To integrate the two sources of supervision when training the model, we jointly
minimize the term

L(θF ,θG,θH) = α · Lϕ(θF ,θG) + β · Lλ(θF ,θH) (7.4)

Here, α and β are trade-off hyperparameters (i.e., scalars) that control the contri-
bution of each term to the overall loss.

7.3 Baseline: Contrastive Acoustic Model

We compare the performance of our proposed model to a strong baseline that
explicitly minimizes the distance between exemplars of the same word category.
The baseline model employs a contrastive triplet loss that has been extensively
explored in the AWEs literature with different underlying architectures and has
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shown strong discriminative performance (Abdullah et al., 2021; Jacobs and
Herman Kamper, 2021b; H. Kamper et al., 2016; Settle and Livescu, 2016a).
Given a matching pair of AWEs (xa,x+)—i.e., embeddings of two exemplars of
the same word type—the objective is then to minimize a triplet margin loss

L(θF) =
∑

(Ai,wi)∈D

max
[
0,m + d(xi,x+) − d(xi,x−)

]
(7.5)

where x− is an AWE that corresponds to a word other than wi, and d : RD×RD →
[0, 1] is the cosine distance. This objective aims to map acoustic exemplars of
the same word closer in the embedding space while pushing away segments of
different word types by a distance defined by the margin hyperparameter m. To
obtain negative samples, we create mismatching pairs from the mini-batch such
that d(xi,x−) is minimized (Jansen, Plakal, et al., 2018).

7.4 Experiments

7.4.1 Experimental Data

The data in our study is drawn from the GlobalPhone multilingual speech database
(Schultz et al., 2013) for Portuguese, German, and Polish (see Table 7.1). We
sample 42 speakers from each language for training and obtain spoken-word
segments using the Montreal Forced Aligner (McAuliffe et al., 2017). It is worth
pointing out that the speakers in the validation and test splits are held-out and
not used while training. The phonemic transcription for each word is produced
using the eSpeak G2P tool. Then, each acoustic segment is parametrized as a
sequence of 39-dimensional Mel-frequency spectral coefficients of 25ms frames
with 10ms overlap.

Table 7.1: Word-level statistics of our experimental data.

# segments per split duration
(mean± std)

Type-Token Ratio
train valid test

Portuguese 28810 9029 9580 0.51 ± 0.19 0.147
German 28914 9683 9372 0.44 ± 0.18 0.193
Polish 27979 9656 9089 0.50 ± 0.18 0.267
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Figure 7.2: Learning curves of the models for 100 training epochs, quantified by the
word discrimination task and the mAP metric.

7.4.2 Architecture and Hyperparameters

Acoustic Encoder F(.;θF). Our acoustic encoder consists of a hybrid, convolutional-
recurrent neural network architecture. The frond-end consists of a 1D convolutional
layer of 64 filters with a kernel size of 5 spectral vectors and stride of 2. Then, the
output of the convolutional layer is fed sequentially into a recurrent block that
consists of a 3-layer unidirectional Gated Recurrent Unit (GRU) with a hidden
state of 512 units, which yields a 512-dimensional AWE as the last hidden state
of the GRU. We apply layer-wise dropout with a probability of 0.2. Bidirectional
GRUs did not yield further improvements.

Phonological Decoder G(.;θG). We employ a 1-layer GRU of 512 units hidden
state that takes the 512-dimensional AWE as the initial hidden state and decodes
the corresponding phonological sequence without teacher forcing.

Form-to-Meaning Regressor H(.;θH). We employ a linear layer (512 → 300)
followed by a Tanh non-linearity to project the AWE x onto the corresponding
distributed word representation. We use pre-trained 300-dimensional fasttext
embeddings as distributed word representations. Deeper feed-forward networks
did not yield further improvements.

Contrastive Loss. For the baseline model with the contrastive loss, we experi-
ment with different values of the margin hyperparameter m = {0.2, 0.3, 0.4, 0.5},
out of which 0.4 yields the best performance on the validation set.

Training Details. We train all models in this study for 100 epochs with batches
of 256 samples using the Adam optimizer (Kingma and Ba, 2015) with an initial
learning rate (LR) of 0.001. The LR is reduced by a factor of 0.5 if the performance
on the validation set does not improve for 10 epochs. The epoch with the best
validation performance is used for evaluation on the test set.
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Figure 7.3: Word discrimination performance (mAP) on test set.

7.4.3 Experimental Results

We conduct an intrinsic evaluation for the AWEs to assess the performance of
our models using the same-different acoustic word discrimination task with the
mean average precision (mAP) metric, which was defined in Chapter 5 (§5.4).
Prior work has shown that performance on this task positively correlates with
improvement on downstream QbE speech search (Jacobs and Herman Kamper,
2021b). This task evaluates the ability of the model to determine whether two
given lexical segments correspond to the same word type—that is, whether or not
two acoustic instances are exemplars of the same category.

Figure 7.2 shows the learning curves for the models during 100 epochs of training
quantified by the performance on the validation set. Contrary to the other models,
we observe that the contrastive baseline model reaches a reasonable performance
before the 10th epoch, which we attribute to the fact that the evaluation task (word
discrimination) and the learning objective (contrastive triple loss) are analogous.
Figure 7.3 shows the final performance on the test set. We observe that both
the form-only model (α = 1, β = 0) and the meaning-only model (α = 0, β = 1)
perform poorly compared to the contrastive baseline. However, integrating the
two sources of supervision in the form + meaning setting (α = 1, β = 1) enables
the model to outperform the contrastive baseline for the three languages in our
study.

The gain in performance is more prominent in the Polish language (relative
mAP gain by 5.06%), which is the most morphologically complex language in our
study due to its rich inflection system. The Polish morphological complexity is
also reflected in its relatively high type-to-token ratio (TTR) in Table 7.1. These
findings show that integrating high-level linguistic knowledge in training acoustic
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models improves the discriminability of the embeddings space, and the effect
seems to be more prominent on a language with a rich morphological system.

7.4.4 Embedding Visualization

To analyze our multi-task learning model and gain further insights into its embed-
ding space, we use the t-SNE (Van der Maaten and Hinton, 2008) dimensionality
reduction algorithm on the AWEs from the setting where α = 1 and β = 1 (form +
meaning supervision). We visualize the embeddings of acoustic word samples from
held-out speakers (i.e., a set of speakers the models were not trained on). Note
that the t-SNE objective aims to preserve the local structure within the higher-
dimensional space when reducing the dimensionality. Therefore, the local distance
between the two-dimensional projections of the embeddings mainly reflects the
cluster structure within the embedding space, which enables us to visually inspect
the emergent clusters and investigate whether or not they correspond to distinct
word categories.

The t-SNE visualizations for the three languages in our study are illustrated in
Figure 7.4 for Portuguese and German, and in Figure 7.5 for Polish. We observe a
clear tendency for exemplars of the same word category to closely cluster in the
embedding space, despite the lack of an explicit clustering objective in the learning
procedure. One notable exception we observe in Figure 7.5 for the Polish language
is the two nearby, nearly overlapping clusters that correspond to the word forms
[tysięcy] and [tysiące]. Note that these two word forms are two morphological
variants of the same lemma (i.e., [tysiąc], the Polish word for thousand). Given
their semantic and phonological similarity, a small distance between the centroids
of their clusters is expected.

7.5 Summary

AWEs are vector representations of spoken words that encode their acoustic-
phonetic features and phonological structures. In addition to their utility in speech
technology applications, models of AWEs have shown to produce human-like be-
havior in various auditory lexical processing tasks. Existing methods for learning
AWEs from speech corpora employ training strategies with acoustic, phonologi-
cal feature-based, or symbolic form-based supervision. These learning strategies
correspond to the bottom-up integration of acoustic-phonetic cues to build up
a word-form representation. In this study, we have introduced a methodology
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based on the multi-task learning framework that leverages top-down, high-level
lexical knowledge to learn semantically-enriched AWEs. We have experimented
with semantic word embeddings as distributed meaning representations that guide
the learning process in addition to form-based phonological supervision. Our
experiments have demonstrated that integrating the two sources of supervision
(i.e., phonological form and lexical semantics) improves the discriminability of
the embeddings space—for the three languages in our study—as evidenced by the
competent performance of our model compared to a strong contrastive AWE model.
Furthermore, the t-SNE visualization analysis has supported our experimental
findings in the word discrimination evaluation and provided further evidence
that incorporating top-down lexical knowledge encourages the model to better
separate the lexical categories in the embedding space without explicit supervision
that directs the network to minimize the distance in the embedding space or a
clustering
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DISCRETE SPEECH REPRESENTATIONS





8
Discrete Representations of Speech and

Phonetic Variability

Self-supervised representation learning for speech often involves a quantization
step that transforms the acoustic input into discrete units. However, it remains
unclear how to characterize the relationship between these discrete units and
abstract phonetic categories such as phonemes. In this chapter, we propose
an information-theoretic characterization whereby we represent each phonetic
category as a distribution over discrete units. We then apply our framework
to two different self-supervised models (namely English wav2vec 2.0 and
Multilingual XLSR-53) and use American English speech as a case study.
Our study demonstrates that the entropy of phonetic distributions reflects the
variability of the underlying speech sounds, with phonetically similar sounds
exhibiting similar distributions. While our study confirms the lack of direct,
one-to-one correspondence, we find an intriguing, indirect relationship between
phonetic categories and discrete units.

8.1 Introduction

Self-supervised learning (SSL) for the speech modality is an active area of research
that aims to develop models that build meaningful speech representations from raw
audio without any explicit labels or transcriptions (see A. Mohamed et al. (2022)
for an overview). These models can be further adapted for downstream tasks such
as automatic speech recognition and speaker identification, and have become the
state-of-the-art approach even when limited labeled data are available (Baevski
et al., 2020; Hsu et al., 2021; A. v. d. Oord et al., 2018; Schneider et al., 2019a).
Recently, it has become a common practice to include a quantization module within
the architecture of SSL speech models that transforms the acoustic input into a

133
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Phonetic categories as distributions over discrete units

Discrete units
Figure 8.1: Phonetic categories as empirical probability distributions over highly re-

sponsive discrete units in the multilingual wave2vec2.0-XLSR-53 model.

sequence of discrete entities. Besides representing the complex acoustic signal in a
compact and computationally efficient manner, learning discrete representations of
speech can also facilitate training large SSL speech models using a masked language
modeling objective similar to those employed in natural language processing (e.g.,
BERT (Devlin et al., 2019)).

Nevertheless, the nature of the discrete units learned via self-supervision remains
an under-explored area of research. A key question is whether these discrete
representations correspond to abstract phonetic categories such as phonemes. A
few recent studies have investigated the discrete units from a neural network
interpretability point of view (e.g., Higy et al., 2021; T. A. Nguyen et al., 2022;
Sicherman and Adi, 2023; Wells et al., 2022). The phonetic analysis of Wells
et al. (2022) have shown that discrete representations of speech correspond to
low-level “sub-phonetic” events—rather than high-level phonetic categories—since
they are sensitive to context-dependent and non-phonemic variations in speech.
In Sicherman and Adi (2023), the authors concluded that there exists a strong
correspondence between discrete units and phonemes, and attributed the lack of
consistent phoneme-to-unit mapping to variations in phonological contexts. These
findings seem to be contradictory and rely on different definitions of the term
“phoneme”, and thus remain inconclusive.

Although information theory was initially proposed as a mathematical theory
of communication (Shannon, 2001), it also provides a quantitative framework
for measuring the amount of information conveyed by linguistic units, such as
words or sounds. Information theory has been adopted as a framework to study
various aspects of linguistic structure, including phonology (Pimentel, Meister,
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et al., 2021; Pimentel, Roark, et al., 2020), morphology (Rathi et al., 2021; S. Wu
et al., 2019), and syntax (Futrell, Mahowald, et al., 2015; Hahn et al., 2018). This
study builds on this line of research and develop information-theoretic metrics
to characterize the relationship between phonetic categories and discrete units.
Concretely, we make the following contributions:

1. We develop an empirical approach to represent each phonetic category as
a probability distribution over discrete units using two self-supervised pre-
trained models: English wav2vec 2.0 (henceforth w2v2) and multilingual
wav2vec-XLSR (henceforth xlsr) (§ 8.2).

2. We characterize each phonetic category using the notion of information
entropy and demonstrate that entropy quantifies acoustic-phonetic variability
(§ 8.4).

3. We quantify the dissimilarity between phonetic distributions using Jensen-
Shannon divergence and illustrate that this metric highly reflects feature-
based phonetic similarity (§ 8.5).

8.2 Research methodology

8.2.1 Speech quantization via self-supervised learning

Consider a continuous acoustic signal represented as a sequence of T acoustic
frames x = (x1, . . . ,xT ). Here, each xt is a short temporal window over the
raw waveform with a stride. Given a pre-trained speech encoder, the signal x is
first transformed via a local, temporal convolutional encoder F : X 7→ Z into a
sequence of latent speech representations in a continuous space as F(x1, . . . ,xT ) =

(z1, . . . , zT ), where zt ∈ Rf . As a part of the quantization step, the sequence of
continuous representations gets discretized to produce a sequence of discrete units
D(z1, . . . , zT ) = (ω1, . . . , ωT ), where D : Z 7→ Ω can be viewed as a vector-to-
centroid mapping and ωt ∈ Ω is the index of the centroid. Here, we use Ω to denote
the finite set of discrete units within the model codebook. During pre-training
using masked learning objectives, the corresponding quantized representations of
these discrete units become the targets of the model prediction.

Figure 8.2 illustrates the computational flow within the quantization module
in the wav2vec 2.0 model. Here, we give a concise formal description of the
quantization process. Consider the output of the convolutional encoder at a single
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Figure 8.2: A visual illustration of the quantization module in wav2vec 2.0. In this
study, we analyze the emergent discrete units within the quantization
module. In particular, we look into the correspondence between the indices
of the codebook and phonetic categories.

type step zt. Within the quantization module, a linear transformation is first
applied to map the vector zt is into a vector as follows

lt = Wq zt ∈ R(G·V ) (8.1)

where G is the number of codebooks within the quantization module and V is the
number of entries in each codebook. Given that the developers of the wav2vec 2.0
model have made a design choice of incorporating two independent codebooks, the
resulting vector of this transformation is lt ∈ R2V . Then, the vector lt is organized
into two groups such that each group goes through a computation that eventually
activates a specific entry in the codebook. This computation takes a logit vector
as input and produces a one-hot encoding vector as output through a differential
Gumble-softmax function followed by an argmax function. Each codebook in the
quantization module resembles an embedding lookup in NLP models, which can
be formally described as a matrix E ∈ RV×d/2. Each entry in a codebook can be
characterized by an index i and a corresponding vector Ei ∈ Rd/2. Let i and j be
the two selected indices based on the resulting one-hot vectors, the corresponding
codebook entries are concatenated to yield the vector

q̃t = E
(A)
i ⊕ E

(B)
j ∈ Rd (8.2)

Here, E(A)
i and E

(B)
j are the selected vectors from codebooks A and B, respectively,

and ⊕ is the concatenation operation. Finally, a linear transformation is applied
to map the resulting vector into a vector of the same dimensionality as the
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contextualized representation of the current speech frame within the Transformer
network as follows

qt = Wp q̃t ∈ Rf (8.3)

During pre-training, the learning objective is to minimize the distance between the
contextualized representation of the final Transformer layer ct and the output of the
quantization module qt. Although many the design choices made by wav2vec 2.0
developers are not thoroughly justified and the motivation behind this particular
process of vector quantization remains unclear, the model has been influential and
effective for all speech processing tasks.

8.2.2 Phonetic categories as distributions over discrete units

Consider a speech corpus that is transcribed and aligned to phonetic segments
given an inventory of phonetic categories Φ. In this scenario, a phonetic category
can be considered as a set of K different acoustic exemplars obtained from
the corpus, φ = {φ1, . . . , φK}. These exemplars represent different acoustic
realizations of the underlying phonetic category, and should optimally be produced
by various speakers in diverse phonological contexts. Using the feature encoder and
quantization module of a self-supervised speech model, we transform the associated
acoustic segments of all exemplars {x1, . . . ,xK} into a discrete representation to
obtain a collection of discrete sequences {(ω1

1, . . . , ω
1
τ1

), . . . , (ωk
1 , . . . , ω

k
τk

)} for each
phonetic category. We then discard the exemplar identity as well as the sequential
nature of each discrete sequence and view each phonetic category as a bag of
discrete units. In this approach, each phonetic category can be described as a
frequency distribution over the units in Ω. To facilitate our information-theoretic
analysis, we turn the frequency distribution into a probability distribution where
the probability of observing a discrete unit ω under a phonetic category φ is
calculated using maximum likelihood estimation as follows

pφ(ωi) =
Nφ(ωi)∑
π∈Ω Nφ(π)

(8.4)

Here, Nφ : Ω 7→ Z+ is a function that returns the number of occurrences of a
discrete unit under the phonetic category φ, and therefore pφ : Ω 7→ [0, 1] is a
probability mass function defined over Ω such that

∑
ω∈Ω pφ(ω) = 1. Note that

each phonetic category in our analysis has its own pφ and Nφ functions. For
example, the vowels /æ/ and /O/ are represented as two empirical distributions
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Articulatory Class Phonetic Categories (IPA)

Vowels i I eI E @ æ aI aU A O 2 oU OU U u Ç

Approximants j w r l

Nasals m n N

Fricatives f v T D s z S Z h

Affricates tS dZ

Plosives p b t d k g

Table 8.1: Phonetic categories in the TIMIT speech corpus of American English,
grouped by several articulatory classes.

p/æ/ and p/O/, respectively. Given our representation of a phonetic category as a
distribution over discrete units pφ, we can employ information-theoretic metrics
to characterize each phonetic distribution. For simplicity, we henceforth omit the
subscript notation in pφ and use p to denote a distribution associated with a
single phonetic category.

8.3 Experimental setup

Experimental Speech data. We use the TIMIT speech corpus which consists
of recordings from 630 American English speakers each speaking 10 different
sentences, for a total of 6,300 sentences covering a diverse range of ages, genders,
and regional accents from across the United States (Garofolo, 1993). Following
(Räsänen et al., 2016b), the original phonetic categories of TIMIT annotation are
mapped to the reduced set of 40 categories. We exclude silences and closures from
our analysis.

Self-supervised speech models. We conduct our analysis using two SSL
speech models that are publicly available via the HuggingFace Model Hub: (1)
monolingual English wav2vec 2.0-base (Baevski et al., 2020), which is a 12-layer
transformer model, and (2) multilingual wav2vec XLSR-53-large (Conneau et al.,
2020), which is a 24-layer transformer model trained on different languages. Both
models employ two codebooks with 320 discrete units each, for a total of 640 units
in each model. We consider the concatenation of the two codebooks as the set of
discrete units in our analysis, thus |Ω| = 640.
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8.4 Analysis 1: Phonetic variability as information entropy

8.4.1 Information content and entropy

For any discrete unit within the codebook ω ∈ Ω, we measure its information
content, or surprisal under a specific phonetic category as

η(ω) = −log2 p(ω) (8.5)

which quantifies the unexpectedness of the discrete unit to be observed under the
phonetic category associated with the distribution p. It is measured in bits. The
uncertainty or “randomness” of the distribution p can be quantified as the average
surprisal, or entropy

H(p) =
∑
ω∈Ω

p(ω) η(ω) (8.6)

where 0 ≤ H(p) ≤ log2|Ω|. If all acoustic realizations of a phonetic category are
associated with a single discrete unit, then its entropy is minimal H(p) = 0. On
the other hand, a distribution of a phonetic category is maximally entropic (i.e.,
H(p) = log2|Ω|) when all discrete units are equally likely to be aligned to this
category. Therefore, entropy can be viewed as a measure of (within-category)
acoustic-phonetic variability in our case. That is, the more entropic a phonetic
category is, the higher the difficulty of predicting its alignment to discrete units.
Note that our measure of variability is similar to the measure of diversity (i.e.,
the unit purity measure) introduced in (Hsu et al., 2021), but we express the
variability of phonetic distributions using information-theoretic metrics.

8.4.2 Entropy per phonetic category

We compute the entropy of each phonetic category using Eq. 8.6. First, we find that
phonetic categories are more entropic on average under w2v2 (mean H = 3.97)
compared to xlsr (mean H = 3.52). After inspecting the phone-to-unit alignment
of the TIMIT corpus, we attribute this behavior to different utilization of the
codebooks across the two models. While there are 56.6% of the discrete units
under w2v2 with non-zero counts across all phonetic categories, only 24.2% of
the units have non-zero counts under xlsr. This difference gets reflected in lower
entropy values in xlsr compared to w2v2.

Fig. 8.3 illustrates the results of our analysis with entropy as a measure of
phonetic variability. Fig. 8.3A shows the entropy of each phonetic category in
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Figure 8.3: (A) The (normalized) entropy of each phonetic category in w2v2 (x-axis)
vs xlsr (y-axis). (B-C) The entropy of several selected articulatory classes
in w2v2 (B) and xlsr (C).

w2v2 (x-axis) and xlsr (y-axis). We report the normalized entropy in Fig. 8.3A
to account for differences in entropy values between the two models. In addition,
we group phonetic categories according to several articulatory classes, average
the entropy over the categories within each class, and depict the result for w2v2
(Fig. 8.3B) and xlsr (Fig. 8.3C). From Fig. 8.3A, we observe a strong correlation
between the two models (Pearson’s r = 0.92, p ≪ 0.001). When considering
entropy values, we see that none of the phonetic categories is minimally entropic
(i.e, H(p) = 0), which confirms the findings in the literature about the lack of
one-to-one correspondence between high-level abstract phonetic categories and
discrete units in self-supervised speech models.
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Regarding the variation of entropy across different phonetic categories, we
observe that vowels tend to be more entropic than consonants in w2v2 (HV =

4.28 > HC = 3.78) and xlsr (HV = 3.77 > HC = 3.36). This reflects a higher
variability in the acoustic realizations of vowels compared to consonants, since
vowels are subject to a higher degree of variation due to vowel reduction in
unstressed syllables and co-articulation, as well as other factors such as cross-
speaker and dialect variability (Hagiwara, 1997; Hillenbrand et al., 1995; G. E.
Peterson and Barney, 1952). For consonants, the nasal sounds (i.e., /n, m, N/) are
the most entropic consonant group, followed by the approximant sounds (i.e., /l,

j, w, ô/), and then by the fricative sounds (i.e., /D, z, Z, v, T, s, S, f, h/). We also
observe that resonating consonants (i.e., nasals and approximants) exhibit higher
variability on average than obstruents (i.e., plosives, fricatives, and affricates).
Furthermore, we find an effect of voicing on variability since the voiced fricatives
(i.e., /D, z, Z, v/) are more entropic than their voiceless counterparts (i.e., /T, s, S, f/).
For example, consider the voiceless-voiced contrast /f-v/ where /v/ is substantially
more entropic than /f/ under w2v2 (H(/v/) = 4.40 > H(/f/) = 3.41) and xlsr
(H(/v/) = 4.01 > H(/f/) = 2.75). This effect of voicing can be explained by the
presence of low-frequency voicing energy in voiced fricatives which is likely to vary
due to cross-speaker variability. Finally, the affricates (i.e., /dZ, tS/) are found to
be the least entropic consonant category under both w2v2 (H = 3.33) and xlsr
(H = 2.86).

8.5 Analysis 2: Phonetic dissimilarity as Jensen-Shannon
divergence

8.5.1 Relative entropy and divergence

Consider two phonetic distributions p and q that are defined over the same set of
discrete units Ω. To quantify how different p is from q, we measure the expected
surprisal from using q as a model distribution when the true distribution is p.
This quantity is known as the relative entropy or Kullback–Leibler divergence

DKL(p || q) = −
∑
ω∈Ω

p(ω) log2
q(ω)

p(ω)
(8.7)

Here, DKL(p || q) ≥ 0, with DKL(p || q) = 0 only if p = q. Note that relative
entropy is not symmetric, that is, DKL(p || q) ̸= DKL(q ||p). Since a symmetric
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metric is more suitable for our analysis, we therefore measure the distance between
two probability distributions using Jensen-Shannon divergence (JSD) as

DJS(p || q) =
1

2
DKL(p ||m) +

1

2
DKL(q ||m) (8.8)

where m = 1
2
p + q and 0 ≤ DJS(p || q) ≤ 1. Here, our goal is to investigate the

degree to which the distance between distributions reflects phonetic similarity.
Therefore, we use JSD as a measure of phonetic (dis)similarity in our analysis.

8.5.2 Exploratory similarity analysis

Table 8.2 presents a qualitative similarity analysis for a few selected phonetic
categories under both models we analyze in this study. Concretely, we retrieve
five phonetic categories that exhibit the lowest JSD scores (and by implication
the highest similarity) for each of the categories in the set /w, E, S, g/. We then
provide a ranking in the table from the most similar to the least. In the case
of the approximant or semivowel /w/, we observe that the approximant sound
/l/ exhibits the highest similarity under both models, but four vowels appear in
ranks 2 − 5. This indicates a high similarity in phonetic distributions between the
approximant /w/ and vowels, which we further study in the clustering analysis
below. For the front vowel /E/, the top-5 similar categories are all vowels under
both models, although no strong preference for other front vowels can be observed
since similar vowels are a mixture of front and central vowels. The two models
exhibit the highest agreement in the case of the unvoiced post-alveolar fricative
/S/, since both models have identical ranks that include the voiced post-alveolar

Table 8.2: Top-5 most similar phonetic categories to each of the categories /w, E, S, g/
in both w2v2 (w) and xlsr (x).

/w/ /E/ /S/ /g/

w x w x w x w x

1 /l/ /l/ /æ/ /æ/ /tS/ /tS/ /k/ /k/

2 /u/ /u/ /2/ /I/ /Z/ /Z/ /b/ /b/

3 /U/ /U/ /I/ /2/ /dZ/ /dZ/ /d/ /d/

4 /O/ /@/ /eI/ /eI/ /s/ /s/ /p/ /p/

5 /OI/ /oU/ /aU/ /aI/ /z/ /z/ /D/ /h/
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Figure 8.4: A multidimensional scaling (MDS) plot illustrating the distances between
phonetic distributions in W2V2 (left) and XLSR (right).

fricative /Z/ and the affricates /tS, dZ/ among the most similar. For the voiced
velar plosive /g/, the unvoiced velar plosive /k/ is the most similar, as expected.

Furthermore, we apply the multidimensional scaling (MDS) to visualize the
view of the pairwise distances on a two-dimensional plan. The resulting plots of
the MDS are shown in Figure 8.4, where we can identify four different clusters: (1)
vowels and approximants, (2) nasals, (3) sibilant fricatives, and (4) non-sibilant
obstruents.

8.5.3 Hierarchical clustering

To study the similarity patterns among the phonetic categories, we apply ag-
glomerative hierarchical clustering with the Ward algorithm (Ward, 1963) over
the distance matrix generated by category-wise JSD values. The result of this
clustering is illustrated in Fig. 8.5, where each phonetic category is colored by
the manner of articulation. We observe that the clustering analysis yields a sim-
ilar high-level grouping between w2v2 and xlsr, except for the placement of
nasals which differs across the two models. For w2v2 in Fig. 8.5A, the highest
level of organization divides the phonetic categories into two groups: a group
that represents obstruent sounds (i.e., plosives, fricatives, and affricates) as well
as nasals, and another group that represents vowels and approximants. On the
other hand, the highest level of organization in xlsr in Fig. 8.5B reveals a pure
obstruent vs. sonorant division, since both approximants and nasals exhibit a
higher similarity to vowels than to other consonants. The consistent grouping of
approximant sounds with vowels is not surprising given their acoustic-phonetic
properties. Even though approximant sounds are considered consonants from a
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Plosives
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u l w o a a æ e i j n m v ð f t d g k h p b z s

w u l o a a æ e i j n m v ð f g k h p b d t z s

A    W2V2-EN

B    XLSR-53

Figure 8.5: The resulting clusters from applying agglomerative hierarchical clustering
over the distance matrix, where our measure of the distance is the Jensen-
Shannon divergence between phonetic distributions: (A) w2v2 and (B)
xlsr.

phonological point of view, they are produced with a (relatively) unconstricted
articulation and exhibit a formant structure similar to vowels (Raphael, 2021).

Considering lower-level grouping for obstruent consonants, labio-dental and
dental fricatives /f, v, T, D/ exhibit a higher similarity to plosive sounds /p, b, t,

d, k, g/ than alveolar and postalveolar fricatives /s, z, S, Z/ in both models. The
affricates /Ã, Ù/ are grouped together with alveolar and postalveolar fricatives
under both models, indicating the prominence of the fricative component of
affricates in their underlying distributions over the discrete units. The only phonetic
category that exhibits unexpected behavior in this analysis is the glottal fricative
/h/, which is grouped within plosives under both models. However, the placement
of the fricative /h/ among plosives should not be surprising given that the voiceless
plosives /p, t, k/ are typically aspirated in syllable-initial position before a stressed
vowel. Plosive aspiration is acoustically realized as a friction noise following the
release of the plosive, similar to the friction of the sound /h/. Furthermore, the
lowest level of grouping reflects the high similarity of phonetic minimal pairs (i.e.,
voicing contrasts) among all plosive contrasts (i.e., /t, d/, /p, b/, and /k, g/),
but only two fricative contrasts (i.e., /s, z/ and /S, Z/). As for the vowels, the
lower-level grouping seems to reflect vowel backness more than vowel height in
both models, although only a slight tendency to separate front vowels from back
vowels can be observed.
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8.5.4 Correlation with feature-based phonetic distance

To study the degree to which our measure of (dis)similarity (JSD) reflects phonetic
distance, we correlate the distance among phonetic distributions over discrete
units against a measure of feature-based phonetic distance. To this end, we map
each phonetic category in the TIMIT inventory onto a discrete, multi-valued
feature vector based on the PHOIBLE feature set (Moran and McCloy, 2019).
We then compute the feature-based distance as the Hamming distance between
their feature vectors. When we consider all phonetic categories, we find a strong
positive correlation between the JSD and feature-based phonetic distance in w2v2
(r = 0.63) and xlsr (r = 0.61). Surprisingly, the correlation becomes stronger
when we consider only the vowels in our analysis for both w2v2 (r = 0.77) and
xlsr (r = 0.80), while it becomes weaker for consonants in w2v2 (r = 0.47)
and xlsr (r = 0.43). The weaker correlation among the consonants could be
attributed to the high similarity between the phonetic distributions of vowels
and approximants in both w2v2 and xlsr, and vowels and nasals in xlsr. The
correlation coefficients reported in this section are all Pearson’s r and significant
with p ≪ 0.001.

8.6 Summary

We presented an information-theoretic framework for characterizing the relation-
ship between phonetic categories and discrete units in self-supervised speech
models. By representing each phonetic category as a distribution over discrete
units, we have shown that the distribution entropy reflects the acoustic-phonetic
variability of the underlying speech sounds, with vowels being more entropic on
average than consonants. Moreover, phonetically similar sounds have been found
to exhibit similar distributions, with the highest level of division separating ob-
struents and sonorants. Our findings confirm the characterization of discrete units
as sub-phonemic events, rather than high-level categories such as phonemes, which
is consistent with the findings of Wells et al. (2022). Given that speech sounds
are dynamic acoustic signals that vary considerably due to many factors such as
context and speaker, we argue that the characterization of phonetic categories as
distributions over sub-phonemic events allows for a more nuanced understanding of
the relationships between phonetic categories and discrete units in self-supervised
speech models.





9
Conclusion and Future Outlook

In this chapter we summarize the thesis and highlight its contributions. Fur-
thermore, we discuss perspectives and directions for future research that can
build on the work and methodolody presented in this thesis.

9.1 Thesis Summary

One of the keys attributes that distinguishes humans from other intelligent species
is our remarkable ability to communicate through language. Language serves as
a powerful vehicle that enables us to exchange ideas, thoughts, and emotions
across diverse cultures and communities. Through language, we can transmit and
preserve knowledge to ensure our continuity and evolution across generations.

While human language is often described as a linguistic system using symbolic
and discrete elements, the actual acoustic realization of language is continuous
and dynamic. This dynamic nature of language is subject to various sources of
variability in speech communication. Factors such as individual speaking styles,
accents, dialects, and contextual influences all contribute to the unique use of
language by individuals and communities. Despite the inherent variability in spoken
language, speakers communicate ideas to listeners who can almost effortlessly
decode the intended message.

Significant advancements in representation learning have allowed us to develop
computational models that can effectively process and decode human language.
While these models have empowered many successful speech and language technol-
ogy applications, we have limited knowledge regarding how they encode, process,
and represent different dimensions of speech variability. This thesis argues that
a variability-centric perspective enables us to ask novel research questions and
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conduct better-informed explorations of neural speech representations. To this
end, each chapter in this thesis presented a case study that analyzes a dimension
of speech variability and investigate how it shapes the representation profile of
neural networks. In the following section, the thesis contributions are summarized.

9.2 Contributions

• A novel approach that improves the adaptability of neural networks to
domain variability. The approach is based on unsupervised adversarial adap-
tation and requires only unlabeled samples from the unseen, target domain.
We experimented with neural models of spoken language identification and
we have demonstrated that adversarial training improves the model ro-
bustness against variability in recording conditions. Further analysis has
revealed that adversarial training prevents neural networks from exploiting
dataset-specific artefacts and spurious correlations as shortcuts for to predict
the language.

• A linguistically-informed exploration of spoken language representations
to analyze whether and to what extent they capture cross-linguistic vari-
ation and similarity. This exploration has revealed that neural networks
uncover phylogenetic relations among the related Slavic languages, while
representational similarity positively correlates with geographic proximity.

• An exploration of acoustic word embeddings as models of spoken-word rep-
resentations from a neural network interpretability perspective. This explo-
ration was mainly concerned with the encoding of variability in spoken-word
representations and has revealed that spoken-word variability is encoded in a
small fraction of the representation space. Our analysis has also shown that
acoustically distinct words are easier to discriminate for the models, while
word categories with many exemplars are not necessarily easier to discrimi-
nate. Furthermore, we have found that variability in initial conditions of the
models lead to substantial individual differences in their representational
geometry.

• A computational framework to study the role of linguistic experience, char-
acterized by the first language of exposure (L1), on non-native spoken-word
representations. The framework is based on representational similarity analy-
sis and it aims to shed light on how variability in linguistic experience shapes
speech representations of a non-native language (L2). With our framework,
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we presented a case study on several Indo-European languages with vari-
ous degrees of similarity and demonstrated that representational similarity
predicts cross-linguistic intelligibility.

• A novel neural model that integrates form-based and meaning-based supervi-
sion signals for spoken-word representations. The two sources of supervision
are integrated using the multi-task learning framework. Our model exem-
plifies how variability in lexical semantic content can encourage the neural
network to better separate perceptually similar word categories.

• An information-theoretic exploration of the encoding of phonetic structure in
discrete representations of speech that emerge in Transformer-based models
via self-supervision. The exploration has revealed that entropy of phonetic
distributions reflects the acoustic-phonetic variability of the underlying
speech sounds, with sonorants being more entropic on average than obstru-
ents. In addition, phonetically similar sounds are found to exhibit similar
distributions while a clustering analysis has shown that phonetic categories
are mainly grouped by manner of articulation.

9.3 Future Work

Embracing an interdisciplinary perspective, which resonates with the spirit of this
thesis, opens up avenues for addressing additional research questions in future
work. Moreover, the methodologies developed in this thesis can be adapted for
various research directions that are relevant to the studies presented. The following
subsections present and discuss some of these research questions.

9.3.1 Linguistically-informed Cross-lingual Transfer Learning

Previous studies have shown that cross-lingual transfer learning is most effective
when transferring from a source training language that is linguistically similar
to the target language. This language similarity effect has been observed in
natural language processing (e.g., Lauscher et al., 2020; Pires et al., 2019) as
well as speech processing (e.g., Jacobs and Herman Kamper, 2021a; Żelasko
et al., 2020). Our analytical studies have demonstrated that similar languages
exhibit higher representational similarity, indicating that the geometry of neural
network representations are strongly shaped by the language(s) of exposure. These
findings shed light on the role of cross-linguistic similarity in cross-lingual learning.
However, in this thesis, cross-linguistic similarity was operationalized based on
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mutual intelligibility and phylogenetic relatedness within a language family, which
represents a coarse-grained approach. An alternative approach at the level of
typological similarity would provide a more fine-grained analysis of cross-linguistic
similarity and its impact on cross-lingual transfer across different tasks. In light
of this, the following research question is posed:

What is the role of typological similarity in cross-lingual transfer learning? Which
level of typological similarity is most relevant for a given task?

We hypothesize that typological similarity at the level of phonetic and phonological
structure is more relevant for tasks such as automatic speech recognition, while
higher linguistic levels (e.g., syntactic similarity) are more relevant for tasks such as
language modeling (See also Papadimitriou and Jurafsky, 2020). This perspective
will also inform language sampling when training multilingual models and benefit
the resource construction process for under-resource languages.

9.3.2 Encoding of Indexical Properties in Multilingual Speech models

The development of multilingual, self-supervised models has opened up possibilities
for speech technology applications in less-resourced languages (e.g., Babu et al.,
2021; Conneau et al., 2020). However, the representation of multilinguality in these
models remains an under-explored research topic. While it has been demonstrated
that monolingual speech models encode indexical properties (e.g., speaker identity),
in their representations (S. Li et al., 2022; Liu et al., 2023), it remains unknown
how multilingual speech models disentangle speaker and language information.
Therefore, the following research question is posed:

Is the representation of speaker information shared across languages in
multilingual speech models?

This question is relevant to speech variability, as previous research in speech
perception has shown that listeners can identify voices of their native language
more accurately than those of an unfamiliar language (Goggin et al., 1991; E. K.
Johnson et al., 2018). These findings allow us to generate research hypotheses
about the encoding of speaker identity in multilingual speech representations.
The probing method, or diagnostic classifiers, can be employed to extract speaker
information from the representation of one language and evaluate the performance
of the probe on speech samples from another language. If the performance remains
similar to that of the probing language, it indicates that the speaker representation
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subspace is shared across languages. Furthermore, we hypothesize that language
similarity will have a strong effect on the probing results.

9.3.3 Language Representations in Multilingual Transformers for Speech
Translation

The task of direct speech-to-text translation has greatly benefited from the use of
Transformer-based speech models. In this task, an end-to-end encoder-decoder
model is trained to take unsegmented acoustic input in the source language (speech
encoder) and generate a text translation in the target language (text decoder).
These models can also be trained in multilingual settings, where the encoder can
process speech utterances from various languages and produce text translations in
the target language. The encoder component of these speech translation models
acts as a multilingual processor, dealing with significant cross-linguistic variability
in speech sounds. However, it remains unclear how the encoder handles the
multilingual nature of the input to generate accurate translations. To gain further
insights into the behavior of these models, the following research question is posed:

Does the encoder of multilingual Transformers for speech translation learn a
universal semantic space that is shared across languages?

Answering this question requires analyzing a multilingual speech translation model
trained on typologically diverse languages. We hypothesize that the lower layers
of the encoder perform language-specific auditory processing tasks, such as noise
filtering, speaker normalization, and acoustic-phonetic processing. In contrast, the
deeper layers are expected to uncover a universal semantic space that is shared
across languages, where utterances that encode the same message are nearby in
the representation space.
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