
Saarland University

Department of Computer Science

Three modest proposals for building trust in social
media discourse, in the software that powers it

and in the browsers that run the software

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

von
Ilkan Esiyok

Saarbrücken, 2023

Tag des Kolloquiums: 3 September 2024

Dekan: Prof. Dr. Roland Speicher

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Markus Bläser
Berichterstattende: Prof. Dr. Michael Backes

Prof. Dr. Stefano Calzavara

Akademischer Mitarbeiter: Dr. Robert Künnemann

Zusammenfassung
Da das Web immer komplexer wird, ist die Schaffung von Vertrauen (definiert als die
Gewährleistung eines sicheren und zuverlässigen Systembetriebs) wichtiger denn je.
Diese Arbeit befasst sich mit der notwendigen Vertrauensbildung in drei wesentlichen
Komponenten des digitalen Ökosystems: dem Diskurs in sozialen Medien, der zugrunde
liegenden Software und den Webbrowsern, die für die Ausführung dieser Software
verantwortlich sind. In dieser Arbeit stellen wir drei innovative Vorschläge vor, um das
Vertrauen in jedem dieser Bereiche zu verbessern.

Unsere erste Initiative namens „Trollthrottle“ zielt auf den Diskurs in den sozialen
Medien ab. Dieses Protokoll begrenzt die Anzahl der Kommentare, die ein Nutzer auf
teilnehmenden Websites veröffentlichen kann, und macht diese Websites gleichzeitig für
etwaige Inhaltszensur verantwortlich. Da das Protokoll als externe Browserfunktion
implementiert ist, hängt die Wirksamkeit des Protokolls von der genauen Übertragung
und Ausführung seines Codes durch den Browser ab. Da ein bösartiger Webserver
unentdeckt unterschiedlichen Code an verschiedene Nutzer senden kann, wird Vertrauen
zu einem Problem.

Um dieses Problem anzugehen, präsentieren wir unseren zweiten Vorschlag mit dem
Namen „Accountable JS“, der das Vertrauen in den zugrunde liegenden Webanwen-
dungscode sicherstellen soll. Mit diesem Protokoll können Nutzer bestätigen, dass der
aktive Inhalt im Code einer Webanwendung, der von einer Website geliefert wird, für alle
Besucher konsistent ist und den Richtlinien des Protokolls entspricht. Diese Maßnahme
setzt jedoch auch Vertrauen in den Webbrowser selbst voraus, um eine zuverlässige
Ausführung zu gewährleisten.

Unser dritter Vorschlag mit dem Titel „Formales Browsermodell für die Sicherheits-
analyse“ zielt direkt auf dieses Problem ab. Dieses umfassende Framework nutzt ein
formales Modell von Webbrowsern, das auf RFC-Standards basiert, um potenzielle
Sicherheits- und Datenschutzschwachstellen zu identifizieren. Sollte bei der Modellprü-
fung ein Gegenbeispiel gefunden werden, generiert das Framework ein entsprechendes
Testszenario zur Ausführung im Browser. Dies ermöglicht es Browserentwicklern und
-testern, ihre Produkte eng an den RFC-Richtlinien auszurichten, Schwachstellen zu
identifizieren und schließlich zu beheben. Eine solche gründliche Überprüfung erhöht
das Vertrauen der Nutzer, da sie sicherstellt, dass der Browser strengen Tests und
Validierungen anhand idealer Sicherheitsmaßstäbe unterzogen wurde.

In dieser Arbeit gehen wir näher auf diese Protokolle ein, befassen uns intensiv mit der
Software, die ihnen zugrunde liegt, und wenden sie auf verschiedene Fallstudien an, die
jeweils in separaten Kapiteln besprochen werden.

iii

Abstract
As the web has become increasingly complex, establishing trust (defined as the assurance
of secure and reliable system operations) is more vital than ever. This thesis addresses
the trust imperative across three critical components of the digital ecosystem: social
media discourse, underlying software and the web browsers that are responsible for
executing this software. In this thesis, we offer three modest proposals to enhance the
trust in each of these domains.

Our first initiative called "Trollthrottle" targets social media discourse. This protocol
limits the number of comments a user can post on participating websites while also
holding these sites accountable for any content censorship. As the protocol implemented
as an external browser feature, the protocol’s effectiveness relies on the accurate trans-
mission and execution of its code by the browser. Given that a malicious web server can
deliver different codes to different users without detection, trust becomes a concern.

To address this, we present our second proposal called "Accountable JS" designed to
ensure trust in the underlying web application code. This protocol empowers users to
confirm that the active content in the web application code delivered by a website is
consistent for all its visitors and compliant with the protocol’s guidelines. However, this
measure also necessitates trust in the web browser itself for faithful execution.

Our third proposal called "Formal Browser Model for Security Analysis" aims directly
at this issue. This comprehensive framework utilises a formal model of web browsers
based on RFC standards to identify potential security and privacy vulnerabilities.
When a counterexample is found during model checking, the framework generates a
corresponding test case scenario for execution in the browser in order to check whether
the same behaviour can be observed in the real-world browser. This enables browser
developers and testers to align their products closely with RFC guidelines, thereby
identifying and mitigating vulnerabilities. Such thorough verification increases user
confidence, as it ensures that the browser has undergone rigorous testing and validation
against ideal security benchmarks.

Throughout this thesis, we elaborate on these protocols, delve into the software that
underpins them and apply them to various case studies, each discussed in separate
chapters.

v

Background of this Dissertation
In the following, we discuss the papers and the open-source artefacts that form the
foundational basis of this thesis. While the author of this thesis led all of these research
projects, we will emphasise the contributions made by other researchers. With the
exception of one paper, which we plan to submit to The ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA) conference in 2024 by submission
deadline (Round 1) in December 2023, all the remaining papers have been accepted and
presented at prestigious peer-reviewed conferences in the field of information security.

Chapter 3, in which we describe an internet protocol [P1] that addresses the problem
of astroturfing on social media websites and provides accountability for censorship, was
presented in Applied Cryptography and Network Security (ACNS) 2020 conference.
Cryptographic proofs and an extension to the protocol in this paper were conducted
by Lucjan Hanzlik. For completeness they are included in Chapter 7 in Trollthrottle
Appendix.

Chapter 4 is based on our paper presented in the Network and Distributed System
Security Symposium (NDSS) 2023, in which we present an opt-in accountability protocol
[P2] for websites that want to convince their users that they are trustworthy in an
economical way. Using this protocol the users can verify that the active content on the
web page, they are visiting is the same for all visitors of the website. Moreover, in the
client side the code adheres to the standards set by the protocol. This project received
a research award for privacy-preserving technologies from Meta research, specifically for
the ”Transparency.js, transparency for active content” initiative. In the beginning of
this project, we were in close contact with Meta’s WhatsApp team to gather industrial
expectations for accountability and security, and we shared the first draft of this paper
with the WhatsApp team. Then, Meta took the lead to implement Code Verify tool [76]
that also implements accountability for active content for only Meta websites for now
and it has been made available for end users in 2022.

In Chapter 5, we present our work [P3] that is conducted with Hamed Nemati and
Robert Künnemann. We intend to submit this work to the ISSTA 2024 conference
(deadline in December 2023). In this work, we contribute to web browser security by
systematically identifying potential vulnerabilities in web browsers. We utilise formal
modelling of web browsers and generate test cases for the counterexamples from model
checking, enabling further analysis on the potential vulnerabilities.

[P1] Esiyok I., Hanzlik L., Künnemann R., Budde L. M., and Backes M., “TrollThrottle
—Raising the Cost of Astroturfing”. In Applied Cryptography and Network
Security, 2020.

[P2] Esiyok I., Berrang P., Gordon K-C., Künnemann R., "Accountable Javascript
Code Delivery". In Network and Distributed System Security Symposium, 2023.

[P3] Esiyok I., Nemati H., Künnemann R., "Formal Browser Model for Security Analy-
sis". Under submission, 2023.

vii

The Open-source Artefacts

We developed several open-source implementations and formal models for this thesis.

• For [P1] in Chapter 3, we implemented a prototype of the protocol to evaluate
in terms of how easy it is to deploy [164] and how much performance overhead
it incurs [165]. We also forked an implementation of a cryptographic operations
library MIRACL [118] for adapting it to support the requirements of the prototype
in the web browser. In addition, we formally modelled and verified correctness
of the protocol using Tamarin Prover in Appendix Section 7.4. Furthermore, we
generated big query scripts to conduct empirical analysis on big social media
data [163].

• For [P2] in Chapter 4, we implemented a web browser extension prototype to
evaluate performance and applicability of the approach on the client side [58]. We
also formally verified the correctness of the protocol using Tamarin Prover.

• For [P3] in Chapter 5, we generated a formal model in Alloy language that
captures web browser behaviours, and we provided an implementation that parses
the model checking tool’s output and extracts test cases out of them. Then, we
implemented a simulator tool that simulates these attack scenarios on the browser
to check if the attack can be realised on the browser.

Further Contributions of the Author

The author of this thesis has contributed to two more papers ([P4], [P5]) which are
not part of this thesis.

[P4] received a Distinguished Paper Award from Computer Security Foundations
Symposium (CSF) 2019 conference. In this work, we defined a mechanised framework
for the verification of accountability in security protocols in which the framework at
the time was built on top of SAPIC [92] tool. The author took the responsibility for
formally modelling and verifying the case studies of this project using SAPIC and
Tamarin Prover. The author also took part in improving the SAPIC implementation in
Tamarin Prover repository.

In [P5], we applied formal analysis and compared the security of the two widely used
exposure notification systems : the ROBust and privacy-presERving proximity Tracing
protocol (ROBERT) and the Google Apple Exposure Notification (GAEN) framework.
In this project, the author was responsible to reverse engineer the ROBERT and GAEN
implementations that contributed to the comparative analysis.

[P4] Künnemann R., Esiyok I., and Backes M., “Automated Verification of Account-
ability in Security Protocols”. In IEEE 32nd Computer Security Foundations
Symposium (CSF), 2019.

[P5] Morio K., Esiyok I., Jackson D., Künnemann R., "Automated Security Analysis
of Exposure Notification Systems". In 32st USENIX Security Symposium, 2023.

viii

Acknowledgments
I am profoundly grateful to my advisor, Prof. Michael Backes, for providing me the
incredible opportunity to pursue my Ph.D. in his research group. I consider myself very
fortunate to have been a part of such a dynamic and enthusiastic team. Special thanks
go to Dr. Robert Künnemann, who has been an invaluable mentor for me from the
beginning of my research journey to its conclusion. I have always admired his calm,
patient and rational approach to problem-solving. It was a great pleasure to work with
Dr. Künnemann who always has lots of diverse and insightful ideas. I also wish to
acknowledge my research collaborators: Lucjan Hanzlik, Lena Marie Budde, Pascal
Berrang, Katriel-Cohn Gordon, Kevin Morio, Dennis Jackson and Hamed Nemati, for
their invaluable contributions.

Additional thanks go to Patrick Speicher and Hamed Rasifard, who have been excellent
roommates. I am also grateful to my colleagues in the research group : Faezeh
Nasrabadi, Matthis Kruse, Marco Patrignani, Xaver Fabian, Guido Patrick Battiston
and Tiziano Marinaro, for their awesome support. Further, I would like to thank
all the employees at CISPA for contributing to a collaborative and enjoyable work
environment. Furthermore, I wish to express my deepest appreciation to my family for
their unconditional support throughout my journey, without which this work would
not have been possible. Lastly, a special mention to my dear friend Paulina Jaszewska,
whose friendship and encouragement during challenging times have been invaluable.

I am further indebted to the generous support provided by the Meta Research Award,
the ERC Synergy Grant and the Turkish Ministry of Education Scholarship, providing
the financial support for my pursuit.

ix

Contents

1 Glossary 1
1.1 Glossary . 3

2 Introduction 5
2.1 Outline . 11

3 Trollthrottle 13
3.1 Problem Statement . 15
3.2 Overview . 16

3.2.1 Accountable Commenting . 18
3.3 Protocol Definition . 19

3.3.1 Direct Anonymous Attestation Scheme 20
3.3.2 Zero Knowledge . 21
3.3.3 Trollthrottle Protocol . 21

3.4 Practical Implementation . 24
3.4.1 Identity providers . 24
3.4.2 Encrypting comments on the ledger 25
3.4.3 Deferring identity verification with pseudo-probabilistic auditing 26
3.4.4 Revocation . 29
3.4.5 Holding the issuer accountable 31
3.4.6 Other considerations . 32
3.4.7 Goals & Incentives . 32

3.5 Evaluation . 33
3.6 Limitations . 38
3.7 Related Work . 38
3.8 Impact on Society . 40
3.9 Conclusion . 41

4 Accountable Javascript Code Delivery 43
4.1 Problem Statement . 45
4.2 Overview . 47
4.3 Background . 48

4.3.1 Threat Model . 49
4.4 Use Cases . 50

4.4.1 Self-Contained Application . 50
4.4.2 Trusted Third-Party Code . 51

xi

CONTENTS

4.4.3 Delegate Trust to Third Parties 51
4.4.4 Untrusted Third-Party Code . 52
4.4.5 Code Compartmentalisation . 52

4.5 Approach: Accountable JS . 52
4.6 Manifest File . 54

4.6.1 Execution Order . 54
4.6.2 Trust and Delegation . 55
4.6.3 Types of Active Elements . 56
4.6.4 Sandboxing . 57

4.7 Use Cases, Revisited . 57
4.7.1 ‘Hello World’ Application . 57
4.7.2 Self-Contained Web Applications 58
4.7.3 Trusted Third-Party Code . 58
4.7.4 Delegate Trust to Third Parties 58
4.7.5 Untrusted Third-Party Code . 59
4.7.6 Compartmentalisation of Code and Development process 60

4.8 Measurement procedure . 62
4.9 Signing and Delivering a Manifest . 64
4.10 Protocol . 65
4.11 Protocol Verification . 66

4.11.1 Code Verify Protocol . 67
4.12 Logging Mechanism . 68
4.13 Evaluation . 69
4.14 Limitations of Prototype . 72
4.15 Related Work . 73
4.16 Discussion . 75
4.17 Conclusion . 76

5 Formal Browser Model for Security Analysis 77
5.1 Problem Statement . 79
5.2 Overview . 80
5.3 Outline . 82
5.4 Methodology . 83
5.5 Formal Model Design . 86
5.6 Camera Access Model . 90

5.6.1 URL Manipulation . 91
5.6.2 Secure Context Assignment . 93

5.7 Cross-Origin Isolation State . 94
5.7.1 Side Channel Access Model . 95

5.8 Security Analysis . 97
5.8.1 Ryan Pickren’s Webcam Attack 97
5.8.2 Shorter Version of Ryan Pickren’s Webcam Attack 101
5.8.3 Security Analysis of Cross-Origin Isolation State 103

5.9 Test Case Generation and Simulation . 103
5.10 Evaluation . 105

xii

CONTENTS

5.11 Related Work . 109
5.12 Discussion . 113
5.13 Conclusion . 114

6 Conclusion 117

7 Throllthrottle - Appendix 121
7.1 Instant linkability . 123
7.2 Security Analysis . 123
7.3 Holding the Issuer Accountable . 125

7.3.1 Preliminaries . 125
7.3.2 Accountable Commenting Scheme with Credibility (ACSC) . . . 126
7.3.3 Instantiation . 126
7.3.4 Security Analysis . 128
7.3.5 Efficient instantiation of the proof for relation RGB 128

7.4 Formal analysis of the deferred verification and auditing protocol 129
7.5 Review and adoption of the security model 132
7.6 Proofs of Security . 135

7.6.1 Model Oracles . 135
7.6.2 Protection against trolling . 136
7.6.3 Non-frameability . 139
7.6.4 Anonymity . 140
7.6.5 Accountability . 142

8 Accountable Javascript - Appendix 145
8.1 Verification of Security Properties . 147
8.2 Claim Verification . 149
8.3 Formal model of Accountable JavaScript 150
8.4 Formal model of Code Verify . 157
8.5 Evaluation Details . 162

8.5.1 ‘Hello World’ Application Scenario 162
8.5.2 Self-Contained Web Application Scenario 162
8.5.3 Trusted Third-party Code Scenario 163
8.5.4 Delegate Trust to Third Parties Scenario 163
8.5.5 Untrusted Third-Party Code . 164
8.5.6 Compartmentalisation of Code and Development Process 165

xiii

List of Figures

3.1 TrollThrottle parties . 18
3.2 Message flow for commenting scheme. Note that in step 0, the user’s

secret DAA key is restored using a password, see Section 3.4.6, and that
entries in the ledger are encrypted, see Section 3.4.7. Furthermore, to
save space on the ledger, we identify the comment m by its hash. . . . 26

3.3 Identity verification protocol scheme . 27
3.4 Join− Issue protocol scheme . 28
3.5 Auditing protocol scheme . 30
3.6 Certificate update protocol scheme . 31
3.7 Screenshot of Reddit deployment, for identity creation and commenting

scenarios, see Retrofitting subreddit . 34

4.1 Structure of Nimiq Ecosystem. 60
4.2 Manifest file generation and metadata collection 63
4.3 Protocol flow: CodeStapling (before t) and CodeDelivery (after t). . . . 65
4.4 Accountable JS in the context of other web technologies. 74

5.1 Ryan Pickren’s Webcam Attack (State-8 is absent in our model’s attack
trace, elaborated in Section 5.8.2) . 99

5.2 Application Framework Flowchart Diagram 105

7.1 Trollthrottle Credibility . 128
7.2 Trollthrottle protection against trolling 136
7.3 Trollthrottle non-frameability . 139
7.4 Trollthrottle anonymity . 141
7.5 Trollthrottle accountability soundness 142
7.6 Trollthrottle accountability completeness 143

xv

https://old.reddit.com/r/trollthrottle/comments/ervowu/retrofitting/?sort=new

List of Tables

3.1 Overview: security analysis. 24
3.2 Time periods used in the protocol. 25
3.3 Evaluation for Reddit use case (3 cores). 37
3.4 Scenarios for performance evaluation, including the number of comments,

source of the data stream, number of Intel E5 2.6 GHz cores, operating
cost per day, maximum latency, percentage of queries answered within
0.1 secs, number of genesis tuples computed (i.e., number of distinct
nicknames), and total ledger size. 37

4.1 Trust Relationships by Type of Active Element 56
4.2 Evaluation results on case studies: The second and third columns show

the number and total size of additional requests made by the extension,
i.e. the number of signed manifest and certificate. Each subsequent block
provides Lighthouse performance metrics for rendering time and the total
time that the browser spends unresponsive. For each metric, we compare
the baseline (no Content Security Policy (CSP), no Accountable JS) with
the overhead incurred by enabling CSP and enabling the Accountable JS
extension (leaving CSP disabled). For compartmentalisation, the baseline
is with the extension activated but the same signing key for all Nimiq
components. All the time values are averages over n = 200 runs and given
in milliseconds. The additional traffic(kB) value is affected by the size of
the signature and Signed HTTP Exchanges (SXG) certificate. Signatures
are generated on uncompressed manifest JSON files. 70

5.1 Performance Evaluation Results for Case Studies 107
5.2 Comparison of Web Concepts in Formal Models 110

xvii

List of Code Listings

4.1 Trusted third party code . 51
4.2 Delegate trust to third party . 52
4.3 First example: Hello World. 57
4.4 Manifest for first example. 58
4.5 Manifest is delegated to a trusted third party 59
4.6 Untrusted AdSense and the Delegated Nimiq wallet at manifest section

sequence number ‘6’. 60
4.7 Delegated content Nimiq Wallet’s manifest. 61
4.8 Nimiq Keyguard depends on its own content. 61
5.1 Browser signature in Alloy . 86
5.2 Alloy Definitions for Modeling Browser Function Calls 87
5.3 Alloy State Transitions . 87
5.4 Cross-Origin Isolation State headers . 94
5.5 Alloy Assertion Property for Verifying Media Access 101
5.6 Alloy Property for Restricting Media Access 102
5.7 Alloy Assertion Property to Verify Cross-Origin SharedArrayBufferAccess103
5.8 A Detailed Blob URL Definition (old) 106
5.9 A Sufficiently Abstract Blob URL Definition (new) 107
7.1 Formal model of the deferred verification and auditing protocol in

Trollthrottle . 129
8.1 Formal model of Accountable JavaScript protocol 150
8.2 Formal model of Code Verify protocol 157

xix

1
Glossary

1

1.1. GLOSSARY

1.1 Glossary

CA Certificate Authority
CDN Content Delivery Network
CSP Content Security Policy
CT Certificate Transparency
DOM Document Object Model
JS JavaScript
OCSP Online Certificate Status Protocol
PKI Public Key Infrastucture
SPA Single Page Applications
SRI Subresource Integrity
SXG Signed HTTP Exchanges
TLS Transport Layer Security
XSS Cross-Site Scripting
RFC Request for Comments
CEGAR Counterexample Guided Abstraction Refinement
SAB SharedArrayBuffer

3

2
Introduction

5

This thesis addresses three key areas in the web where building trust is important:
social media discourse, the underlying software and the browsers that are responsible
for executing the software. We present three proposals to enhance the trust in each of
these domains.
This chapter is structured into three subsections, each representing one of the three
proposals. The first subsection introduces a trustworthy social media platform. The
second subsection provides a protocol designed to address trust issues in the underlying
software of the social media platform and other web applications. Lastly, the third
subsection presents a formal model and a test case validation platform aimed at enhancing
the trust in the web browser used for executing the software.

Trustworthy Social Media Platform

The internet is a decentralised platform and it is a global collection of distributed
computer networks spanning across countries, organisations and individuals. There is
no single entity that has the authority to control the internet. However, in the context
of the web, that is the primary platform to access the online content, it has increasingly
become centralised and dominated by a few large technology operators such as Facebook,
YouTube, Twitter and Reddit, that have lots of power and influence on controlling the
web.
This centralisation of the web raises concerns about trust, freedom of expression,
censorship, political activism and manipulative content selection particularly on social
media platforms. Platforms may selectively censor certain opinions that they think
unfavourable or inconsistent with their policies. Currently, there is a lack of effective
mechanisms to detect and hold platforms accountable for censorship, manipulative
content selection or other concerns. A recent analysis [75] on the Twitter algorithm, that
has recently been posted online by Twitter [150], showed that the platform performs
more aggressive filtering on the Ukraine-Russia crisis content which means fewer tweets
and more censorship in this context. Another example is manipulative content selection
on social media feeds and on trending topics. A feed algorithm may prioritise posts
and trending topics that align with the user’s interests saved on the platform to keep
users engaged and addicted to the platform. This can lead to less exposure to diverse
viewpoints and increase polarisation. In fact, a recent study presents polarisation of
opinions on the vaccination debate on Facebook [141] and discusses that social media
campaigns which aim to provide accurate information struggle to reach beyond specific
sub-groups because of the echo chambers created by social media platforms.
Few platforms focus on building trust with their users and aim to provide more reliable
and transparent social media experience. Those platforms are open about their algo-
rithms for the operations such as content filtering, content selection and moderation. In
contrast to the large operators, users of these platforms have greater confidence in the
contents they encounter. For instance, they can be assured that ‘all’ content related to
a specific topic is presented to the users without censorship or the content they observe
is presented without manipulation by paid agents trying to advertise some opinion or
product for profit or political gain.

7

CHAPTER 2. INTRODUCTION

In the first part of this thesis in Chapter 3, we propose such a trustworthy platform that
mainly tackles the problem of astroturfing and censorship in social media. Astroturfing
can be defined as the fabrication of public discourse by private or state-controlled
sponsors via the creation of fake online accounts. Classic astroturfing involves paid
agents fabricating false public opinion about a particular product or topic. These agents
may act as ordinary users for creating an illusion to show widespread support on a
product or opinion to manipulate public perception. With the rise of social media and
various functionalities in the web to remain anonymous, astroturfing has become more
prevalent and cost-effective. In fact, advancements in the technology has also allowed
to mechanise the astroturfing with automated internet bots.

Following the ‘one person one voice’ principle, we introduce Trollthrottle platform
that limits the number of comments a person can post on participating websites to a
certain threshold. The goal is raising the cost of astroturfing: if the threshold is τ , the
cost of posting n comments is the cost of acquiring ⌈n

τ ⌉ identities, be it by employing
personnel, by bribery or by identity theft. An important ingredient of this platform
is accountability for censorship: if a user believes her comment ought to appear on
the website, she can provide evidence that can be evaluated by the public to confirm
misbehaviour on the part of the website. By employing a public ledger that stores users’
comments, the platform provides assurance that the comments that are addressed to a
website should actually appear on the website. If a website does not publish a user’s
comment, it must have sufficient grounds for censorship that must be evaluated by the
public.

The astroturfing problem has become more prevalent with the emergence of large
language models such as ChatGPT from Open AI. Previously the private or state-
controlled sponsors had to employ personnel and allocate funds to generate comments
on the websites. However with the large language models, the process has become
easier and cost-effective for these sponsors. Rather than relying on human personnel,
they can simply make requests to the large language models, such as asking for a ‘two
thousand ways to downplay the significance of global warming’. This change has enabled
easier and cheaper astroturfing. This makes Trollthrottle more relevant to address this
problem as it limits the number of comments that can be posted on websites, regardless
of whether they are carried out by human personnel or internet bots.

The Trollthrottle platform is web-based and operates by delivering necessary libraries
and content directly to the user on the client side. To ensure the effective functioning
and to fulfil the desired properties of the Trollthrottle system which we define extensively
in the Chapter 3, it is essential for the website visited by the user to deliver the correct
libraries that will be executed on the client side of the application. Any manipulation or
tampering with these libraries by the website can undermine the integrity of the system.
Therefore, Trollthrottle system requires the trust in the executable (or active) content
delivered from the websites.

For addressing this trust requirement on the active content, we developed our second
work Accountable JavaScript which is defined in the Chapter 4.

8

Trust Protocol for Underlying Software

Active content such as JavaScript that is delivered to the user for each web request
can be tampered with by the website to microtarget and compromise the security and
privacy of the user. Currently, there are no effective transparency or audit mechanisms
in place for the web, leaving users vulnerable to attacks. A client visiting a website has
no guarantee that the code it receives today is the same as yesterday, or the same as
other visitors receive.

Despite advances in web security, the ephemeral nature of web applications brings
a significant challenge to audit the web application code on the client side. Unlike
curated software repositories that undergo security analysis before deployment, web
applications are rendered dynamically in the browser environment. Since browsers focus
primarily on performance to render the content immediately, applying comprehensive
security analysis on the code after delivery is very challenging before an attack actually
takes place in the browser. To address this issue, it is essential to perform the security
analysis on active content before the delivery to the browser like in the curated software
repositories. However, in the current design of the web, even if a security analysis
takes place before the delivery, there is no mechanism to verify that the audited code
is actually delivered to the client. The server can decide to deliver different codes in
runtime without any notice to the client. Hence, the code auditing becomes ineffective
to protect users without a reliable verifiability mechanism.

This lack of verifiability in active content can lead to security breaches, as malicious
servers can use this vulnerability to microtarget the user by for example injecting
malicious code to the client side environment without any indication to the user. In
our second work, we introduce Accountable JavaScript protocol that aims to mitigate
this issue of verifiability. Using this protocol, users can verify that the active content
they receive from the server is consistent across all users of the website. The users can
ensure that they received a specific version of the code from the server and they can
prove it. While auditing the code is beyond the scope of this work, it enables effective
code auditing in the web.

Since Accountable JavaScript is a client-side protocol, it cannot prevent the server to
deliver unaudited code to the user. However, it can hold the developer of the code
accountable when it is the case. The Accountable JavaScript protocol generates an
undeniable record of the code delivery, by using digital signatures that is the proof of
the version of the code delivered to the user. If any inconsistencies occur between the
intended and delivered code, the verifiable record can be used to hold the developer of
the code responsible. As a result, accountability will create a deterrence mechanism for
developers. The developers will be more careful about the code they deliver and adhere
to the best practices knowing that malicious activities can be traced back to them.

More concretely, Accountable JavaScript employs cryptographic operations to enable
users to verify that the active content they download is consistent across all users of a
website and that the code adheres to the standards set by protocol on the client side. To
implement this approach, we propose that the web application developers, who choose

9

CHAPTER 2. INTRODUCTION

to opt in to the Accountable JavaScript protocol, provide a signed manifest enumerating
all the active content in their web applications. The signed manifest files are stored in
publicly readable transparency logs. When a browser requests a URL and downloads
the resulting HTML document from the web server, the web server also provides the
corresponding signed manifest for this URL. Then, the browser performs several checks
to ensure accountability: it verifies that the active content provided by the server
matches the manifest entry, the manifest is correctly signed and it is consistent with the
entry in the transparency logs. Moreover, the practical implementation of Accountable
JavaScript continuously monitors the web application on the client side to check whether
the code behaves exactly as declared by the developer. This monitoring enables to
detect any unexpected changes to the active content. For instance, undeclared third
party active content dynamically imported to the web application will make Accountable
JavaScript report an issue to the user.
With Accountable JavaScript, users are able to verify the integrity and authenticity of
the active content on the website they visit. Thus, they are able to ensure that the
active content runs exactly as intended by the web application developer. Consequently,
integration of Accountable JavaScript enhances the trust in the active content, using
accountability. The system applies to the Trollthrottle protocol but also any other
web-based platforms in the web ecosystem.
However, while Accountable JavaScript addresses the trust in active content, it raises
another trust issue related to the browser itself. Users have to trust that the browser
implements operations correctly and executes the active content faithfully. We try to
address this concern in Chapter 5, Formal Browser Model for Security Analysis work.

Enhancing the Trust in the Browser

Web browsers serve as key gateways to the internet, relying heavily on protocols
and guidelines set by Request for Comments (RFC) documents. While RFCs aim to
standardise browser behaviour for a secure and consistent user experience, real-world
browser implementations sometimes vary depending on optimisations throughout the
code base with respect to security, privacy, user experience and others. This results in
potential inconsistencies and vulnerabilities in different browser implementations. The
challenge is increased by the ever-changing nature of the web, which requires constant
updates to both RFCs and browsers. Furthermore, browsers are complex systems, with
multiple interdependent functionalities like URL parsing, HTML interpretation, security
protocols and others. A minor change in one component can have cascading effects on
others, leading to unforeseen vulnerabilities.
A browser with security vulnerabilities can be used by malicious actors for cyber attacks
against users. They can gain unauthorised access to the user’s device, steal sensitive
information, display misleading content or even exploit larger web-based systems. In
Chapter 5, we focus on systematically identifying potential security vulnerabilities in
web browsers, relative to a set of RFCs that we will just call "the RFCs" in the follow-up.
We formally model the browser features, with respect to RFCs, as a state transition
system in the Alloy language and apply model checking to find out whether the system

10

2.1. OUTLINE

satisfies given security properties. If the property is not satisfied, then the model
checking provides a ‘counterexample’ that is the sequence of transitions that leads to a
state in which this property is not satisfied. Then, to further analyse this vulnerability
in practice, we use the sequence of transitions that leads to the error state in the model
to automatically generate test case scenarios that can be simulated in the browser to
check whether the error state could also be reached in the browser. This allows us to
examine the real-world implications of the vulnerability. The whole process, except
the modelling, is fully automated. The user only needs to execute a desktop Java
application.

Our framework is built with adaptability in mind, easily accommodating changes or
additions to browser functionalities, security policies and APIs. Due to its modular ar-
chitecture, the integration of new features is a simple task. Furthermore, it can facilitate
exhaustive testing of security and privacy implications in the browser. Each module in
the formal model can communicate with others, enabling a comprehensive validation of
vulnerabilities arising from interactions between different browser components. This
design not only streamlines the incorporation of updates but also contributes to ongoing
improvements in browser security and privacy.

With our framework, browser developers and testers can ensure that their browser’s
implementation aligns as closely as possible with the ideal security specifications set
by the RFCs. They can identify potential vulnerabilities and then even check whether
their improvements to these vulnerabilities also lead to any attacks using the framework.
Therefore, our framework raises the trust on browsers, as users can be more confident
that their browser is secure and reliable knowing that the browser has been tested and
validated against ideal security standards.

2.1 Outline

In this chapter, Chapter 2, we delved into the problem of trust in the web that forms
the motivation of this thesis, we stated the existing challenges in the field and we
introduced our contributions that approach to the problem. Next, we present our
first work Trollthrottle in Chapter 3 that mainly addresses the astroturfing problem
in social media and solves censorship problems with accountability. In the following
chapter, Chapter 4, we describe our second work Accountable JavaScript that solves
the trust issue on the active content that Trollthrottle and alike web-based platforms
encounter. Subsequently, in Chapter 5, we present our final work Browser model for
Security Analysis which is a comprehensive approach to tackle the trust problem related
to the browser itself such as ensuring that it implements operations correctly so that
web-based platforms like Accountable JavaScript can trust. Then, in Chapter 6, we
discuss our conclusions and possible future works of this thesis. After the conclusion,
we have two more chapters in the Appendix. In Chapter 7, we put the Trollthrottle
Appendix forward that includes cryptographic proofs of the protocol, an extension to the
protocol and the formal model of the protocol in Tamarin Prover. Then, in Chapter 8,
we present formal verification of the Accountable JavaScript protocol and evaluation
details on various case studies introduced in the main part.

11

3
Trollthrottle, Raising the Cost of

Astroturfing

13

3.1. PROBLEM STATEMENT

Astroturfing, i.e. the fabrication of public discourse by private or state-controlled
sponsors via the creation of fake online accounts to put narratives forward, has become
incredibly widespread in recent years. The anonymity of the cyberspace makes astro-
turfing much cheaper and it can even be mechanised with social bots. Prior efforts
without deanonymising the participants have not yet proven effective.
In this chapter, we present an online protocol that limits the number of comments a
single person can post on participating websites in total to raise the cost of astroturfing.
Using direct anonymous attestation scheme and a public ledger, the user is free to
choose any nickname, but the number of comments is aggregated over all posts on all
websites, no matter which nickname was used. Thus, if the threshold is τ , the cost of
posting n comments for an astroturfer is the cost of acquiring ⌈n

τ ⌉ identities, be it by
employing personnel, by bribery or by identity theft.
To present Trollthrottle, we firstly discuss how we approach the problem; thereafter
we define the protocol in terms of a set of cryptographic algorithms which we also
analyse for security. We then consider caveats of implementing this system that is not
covered in the cryptographic model: the incentive structure for the participants and how
to perform verification. What’s more, we also present our prototype implementation
for the protocol, we demonstrate its deployability by retrofitting it to a popular news
aggregator website Reddit and we evaluate the cost of deployment of such a system for
the scenario of:

• a national newspaper receiving around 100K messages per day,
• an international newspaper receiving around 168K messages per day,
• and the Reddit itself receiving around 3.5M messages per day.

3.1 Problem Statement

Astroturfing describes the practice of masking the sponsor of a message in order
to give it the credibility of a message that originates from ‘grassroots’ participants
(hence the name). Classic astroturfing involves paid agents fabricating false public
opinion surroundings, e.g. some product. The anonymity of the cyberspace makes
astroturfing very inexpensive; now, it can even be mechanised [63]. This form of
astroturfing, also called ‘cyberturfing’, is a Sybil attack that exploits a useful, but
sometimes fallible heuristic strategy in human cognition: roughly speaking, the more
people claim something, the improved judgement of credibility [99, 96]. In the wake of
the 2016 US elections, Twitter identified, ‘3,814 [..] accounts’ that could be linked to the
Internet Research Agency (IRA), a purported Russian ‘troll factory’. These accounts
‘posted 175,993 Tweets, approximately 8.4% of which were election-related’ [166], which
is likely only a fraction of the overall activity. This influence comes at a modest price,
as the IRA had a $1.25M budget in the run-up to the 2016 presidential election [48]
and only 90 members of staff producing comments [35].
The everyday political discourse has also suffered. Many newspapers have succumbed
under the weight of moderation, e.g. the New York Times [61]. Some newspapers
decided to move discussion to social media [195], where they only moderate a couple of

15

CHAPTER 3. TROLLTHROTTLE

stories each day and leave out sensitive topics such as migration altogether [133]. Kumar
et. al. show that many popular news pages have hundreds of active sock puppets, i.e.
accounts controlled by individuals with at least one other account [95]. The New York
Times, one of the largest newspapers worldwide, has put serious effort and technological
skills into moderating discussion, but ultimately, they had to give up. In mid-2017, they
reported how they employ modern text analysis techniques to cluster similar comments
and moderate them in one go. At that point in time, they had 12 members of staff
dedicated to moderation, handling a daily average of 12,000 comments [102]. Despite the
effort and expertise put into this, they had to give up three months later, deactivating
the commenting function on controversial topics [61].

Even if troll detection could be automated, e.g. via machine learning, as soon as the
detection algorithm becomes available to attackers, numerous techniques permit the
creation of adversarial examples [100] to evade classifiers. Fundamentally, astroturfing
does not even rely on automated content generation and can be conducted by paid
authors in countries with low labour cost: e.g. the so-called 50-cent party, a group of
propagandists sponsored by China, was named after the remuneration they receive per
comment [115].

3.2 Overview

In this work, we propose a cryptographic protocol that permits throttling the number
of comments that a single user can post on all participating websites in total. The goal
is raising the cost of astroturfing: if the threshold is τ , the cost of posting n comments
is the cost of acquiring ⌈n

τ ⌉ identities, be it by employing personnel, by bribery or by
identity theft. Our proposal retains the anonymity of users and provides accountability
for censorship, i.e. if a user believes her comment ought to appear on the website, she
can provide evidence that can be evaluated by the public to confirm misbehaviour on
the part of the website.

Our approach is orthogonal to detection by content. If we can limit the number of
messages to a certain threshold τ that each physical person can send per day, bots
become largely useless, and troll farms need to pay, bribe or steal the identity from
sufficiently many actual people to send messages in their name. Besides raising the cost,
this also raises the probability of larger operations being detected.

This approach comes at a cost for honest users, as it imposes a bound on power users,
too. We will discuss this issue in-depth in Section 3.8.

We want to establish a system that serves a set of websites W1 to Wn and that, for each
user U , provides the following guarantees:

I. If the number of messages a user posts to any of the websites exceed τ , all
subsequent messages should be discarded.

II. A user is free to choose a virtual identity (nickname) of his choice for any comment.
His comments are unlinkable, even if one or more websites conspire against him.

16

3.2. OVERVIEW

III. A website should be accountable for censorship: should it choose not to display a
comment, the user is able to provide a piece of verifiable evidence for the public
that this comment was withheld, without revealing his identity.

IV. The trust placed in the organisation running the system should be limited.
V. For each party in the system, there should be a clear incentive to participate.

Our approach is based on direct anonymous attestation scheme (DAA) of Brickell and Li
[27]. In DAA, there is an issuing party that distributes membership credentials to signers
(in our case users) that it considers legitimate. Each signer can prove membership by
signing data: a valid DAA signature guarantees that a valid signer signed this data, but
does not reveal the signer’s identity. DAA schemes can also be seen as group signature
schemes that do not allow the issuing party to identify the signer of the message, a
feature known as the opening.
To avoid a single point of trust, the identification of the user is not only a matter of the
issuer, who is likely to be the provider of this service. Instead, an agreed upon set of
verifiers establishes the legitimacy of users, i.e. they are real people and that they have
not received a DAA key before. We will discuss how the issuer and the verifiers keep
each other honest in Section 3.4.7. To provide accountability for censorship, a public
ledger keeps record about the comments that websites ought to publish.
Thus, the following parties (shown in the Figure 3.1) cooperate in TrollThrottle: an
issuer I, who issues DAA keys, a set of verifiers V , who verify the user’s identities, a
set of users U , who create DAA signatures from their comments, a public append-only
ledger L, who records these signatures, and a set of websites, who verify these signatures
and are bound to publish comments whose signatures appear on the ledger.
In DAA, a signature can be created and verified with respect to a so-called basename.
Signatures created by the same user with the same basename can be linked. This is
the key feature to achieve throttling. Within a commenting period t, e.g. a day, only
signatures with a basename of the form (t, seq) are accepted, where seq is a sequence
number between 1 and the desired threshold τ . If a user signs two messages with the
same basename, they can be linked and discarded by the website. Hence a user can
create at most τ signatures that are unlinkable to each other. A valid DAA signature
assures the website that a valid user signed this comment, but neither the website, nor
the issuer or the verifier learns who created the comment, or which other comments
they created.
By storing the signatures on the ledger L, the websites can :

(a) enforce a global bound, and
(b) provide accountability for censorship by promising to represent all comments to

this website that appear in the ledger. If a website does not publish a user’s
comment, it must have sufficient grounds for censorship.

We build on Brickell and Li’s DAA scheme [27] for its efficiency, but extend it with various
features to make TrollThrottle more efficient (TrollThrottle Appendix Section 7.1),
more secure (Section 3.3.2), more practical (Section 3.4.4), and more resistant against
compromise (Section 3.4.5)

17

CHAPTER 3. TROLLTHROTTLE

V1 . . . Vn

I U L

Wm
. . .W1

verifiers web servers

identify

au
di

ts

issues DAA key comments
represent

Figure 3.1: TrollThrottle parties

We took care to explicitly devise a clear system of incentives for all participating parties.
Part of this system is a pseudo-random audit process to ensure honest behaviour, which
we have formally verified.

We show that this protocol, TrollThrottle, can be retrofitted to existing websites. We
set up a forum1 on Reddit that demonstrates our proposal. We also compute the
additional cost of operation incurred by our protocol by simulating user interaction
for three real-life scenarios: an international newspaper, a nationwide publication and
all comments posted on Reddit in one day. In the newspaper case, the computational
overhead incurs a cost of about $1.20; for the whole of Reddit, $3.60 is sufficient.

As a by-product and second contribution, we extend the notion of direct anonymous
attestation (DAA) by proposing two features with applications outside our protocol.
Both are already supported by an existing DAA scheme by Brickell and Li [27]. First,
updatability, which means that the issuer can non-interactively update the users’
credentials. This allows for easy key rollover in the mobile setting and for implicit
revocation of credentials by not updating them (old credentials invalidated). Second,
instant linkability, which means that each signature contains a message-independent
pseudonym that determines whether two signatures can be linked. This allows to
efficiently determine whether a signature can be linked to any existing signature within
a given set.

3.2.1 Accountable Commenting

We assume the issuer I is known to all users and websites; the verifiers V are known to
the issuer and all websites; and the public ledger L is known to all participants in the
protocol. The ledger can be implemented using a consensus mechanism between the
websites and some trusted representatives of civil society (e.g. via Tendermint [78] or
Practical Byzantine Fault Tolerance (PBFT) [36]), or open consensus mechanisms like
blockchains. We will formalise our approach in terms of probabilistic polynomial time
algorithms (PPT) and an interactive protocol.

Definition 1 (Accountable commenting scheme). An accountable commenting
scheme consists of a tuple of algorithms (Setup, KeyGen, Comment, Verify, Claim,

1https://old.reddit.com/r/trollthrottle/

18

https://old.reddit.com/r/trollthrottle/

3.3. PROTOCOL DEFINITION

VerifyClaim) and an interactive protocol (Join− Issue). The algorithms and the pro-
tocol are specified as follows.

Setup(1λ) models the generation of a setup parameter ρ used by all participants from the
security parameter 1λ. This parameter is an implicit argument for the other algorithms,
but we omit it for brevity. The issuer I invokes KeyGen(ρ) to generate its secret key skI
and public key pkI from this parameter.

The issuing procedure ⟨Join(pkI,U) ↔ Issue(skI, ver,U)⟩ is an interactive protocol
between I and a new user (identified with U) that has not registered so far. At the end
of the protocol, the user receives a credential credU and a secret key skU . We abstract
away from the verifiers by giving the issuer access to a read-only database ver such that
ver[V,U] ∈ {0, 1} is 1 iff the verifier V confirms the identity of a user. In Section 3.4.3,
we present and verify a protocol to implement and audit this verification step.

The commenting procedure is split into four PPT algorithms, Comment for U to generate
comments that she sends to the ledger, Verify for W to verify that a comment on the
ledger should be displayed, Claim for U to generate a claim that a valid comment on the
ledger ought to be published, and VerifyClaim for the public to verify that said claim is
valid.

Comment(pkI, skU , credU , dom,m) is executed by U , who knows the issuer’s public key
pkI, its own secret key skU and credentials credU . U chooses a basename dom ∈ {0, 1}∗
and a message m ∈ {0, 1}∗ and obtains a signed comment γ and a pseudonym nym,
both of which are stored on the ledger. The basename determines a given user’s nym, so
that anyone can check whether two comments were submitted with the same basename
by checking their respective nyms for equality. This is a key feature: in TrollThrottle,
all basenames have to be of the form ⟨t, i⟩ for a commenting period t and an integer
i ∈ {1, . . . , τ}. Hence there are at most τ unique basenames within t, and thus at most
τ nyms per skU and t.

Verify(pkI,nym, dom,m, γ) can be computed by any website that has access to the
issuer’s public key pkI, the comment on the ledger γ, pseudonym nym, domain dom
(which can be determined by trial and error) and a message m ∈ {0, 1}∗ received
from the user. If the output is 1, the comment γ is valid w.r.t. m, and m needs
to be displayed by the website. Should W fail to display m, the user computes
Claim(pkI, skU , credU , dom,m, γ) on the same data as before. The output evidence
can be publicly verified using the algorithm VerifyClaim(pkI, dom,m, γ, evidence), which
outputs 1 iff evidence and the ledger entry γ prove that m ought to be displayed in the
commenting period indicated by dom.

3.3 Protocol Definition

Before we present TrollThrottle as an instance of an accountable commenting scheme,
we introduce the necessary cryptographic notions.

19

CHAPTER 3. TROLLTHROTTLE

3.3.1 Direct Anonymous Attestation Scheme

We follow the DAA definition proposed in [27]. We slightly simplify their model, as our
protocol’s computations are performed by a single host and not split between a TPM
and an untrusted device.

A DAA scheme consists of four PPT algorithms :

(SetupDAA, SignDAA, VerifyDAA, LinkDAA)

and an interactive protocol:

(Join − IssueDAA)

between parties: an issuer I, a verifier V and a signer S. In our case, the websites take
the role of the verifiers, and the users the role of the signer.

SetupDAA(1λ) is run by I; based on the security parameter 1λ, it computes the issuer’s
secret key skI and public key pkI , including global public parameters. Join− IssueDAA
is an interactive protocol between I and S to provide credentials issued by I to S. It
consists of sub-algorithms JoinDAA and IssueDAA. S executes JoinDAA(pkI , skS) on input
pkI and skS to obtain the commitment com. We slightly alter the original definition
and assume that instead of sampling this key inside the algorithm, S provides the key as
an input. I executes IssueDAA(skI , com) to create a credential credS that is associated
with skS and sent to S. Note the key of S remains hidden from I.

SignDAA(skS , credS , dom,m) is executed by S to create a signature σ for a message m
w.r.t. a basename dom, which is optionally provided by V . If dom ̸= ⊥, signatures
created by the same signer can be linked. In the original definition, SignDAA also takes
a nonce nV as input, which the signature verifier provides to prove freshness of the
message. Brickell and Li make this nonce explicit but it can be part of the signed
message. What’s more, we do not make use of such a nonce in our system and assume
that if freshness of a signature is required then this nonce will be part of the signed
message.

VerifyDAA(pkI ,m, dom, σ,RL) is a deterministic algorithm run by V on a message m, a
basename dom, a signature σ, and a revocation list RL to determine if a signature σ is
valid. In the original definition, I stores revoked secret keys in the revocation list RL;
signatures created with a revoked secret key are not valid.

LinkDAA(σ0, σ1) is a deterministic algorithm that determines with overwhelming prob-
ability whether signatures σ0 and σ1 were created by the same signer with the same
basename dom ≠ ⊥. It outputs 1 if the signatures are linked, 0 for unlinked and ⊥ for
invalid ones.

DAA features Brickell and Li’s DAA scheme [27] has the following security properties:

• Correctness: if an honest signer’s secret key is not in the revocation list RL, then,
with overwhelming probability, signatures created by the signer are accepted and
correctly linked by an honest verifier.

20

3.3. PROTOCOL DEFINITION

• User-controlled-anonymity: a PPT adversary has a negligible advantage over
guessing in a game where she has to distinguish whether two given signatures
associated with different basenames were created by the same signer or two
different signers.

• User-controlled-traceability: no PPT adversary can forge a non-traceable yet valid
signature with dom ̸= ⊥ without knowing the secret key that was used to create
the signature, or if her key is in the revocation list RL. The basenames in
TrollThrottle are always different from ⊥ (see Section 3.3.3).

• Instant-linkability: we add this feature to DAA. There is a deterministic poly-time
algorithm NymGen s.t. NymGen(skS , dom) generates a nym that is otherwise
contained in the signature, and two nyms are equal if and only if the corresponding
signatures are linkable.

3.3.2 Zero Knowledge

The user creates non-interactive proofs of knowledge to show that her key was honestly
generated. Let R be an efficiently computable binary relation. For (x,w) ∈ R, we
call x a statement and w a witness. Moreover, LR denotes the language consisting of
statements in R, i.e. LR = {x | ∃w : (x,w) ∈ R}.

Definition 2. A non-interactive proof of knowledge system Π consists of the following
three algorithms (Setup,CreateProof,VerifyProof).

Setup(1λ): on input security parameter 1λ, this algorithm outputs a common reference
string ρ.

CreateProof(ρ, x, w): on input common reference string ρ, statement x and witness w;
this algorithm outputs a proof π.

VerifyProof(ρ, x, π): on input common reference string ρ, statement x and proof π; this
algorithm outputs either 1 or 0.

3.3.3 Trollthrottle Protocol

We define TrollThrottle protocol based on the accountable commenting scheme (Sec-
tion 3.2.1). Besides an instantly linkable DAA scheme (Section 3.3.1), we assume a
collision-resistant hash function h and a non-interactive proof of knowledge system
(Section 3.3.2) for the relation:

((com, pkI,DAA), (skS,DAA)) ∈ RJoin ⇐⇒ com←$ JoinDAA(pkI,DAA, skS,DAA)

We assume that the witness for the statement (com, pkI,DAA) contains the random coins
used in JoinDAA.

Definition 3. TrollThrottle Protocol

The algorithms Setup and KeyGen generate the issuer’s DAA keys and parameters for
the non-interactive zero-knowledge proof of knowledge for the relation RJoin.

21

CHAPTER 3. TROLLTHROTTLE

Setup(1λ) - compute the parameters for the zero-knowledge proof of knowledge:

ρJoin ←$ SetupZK(1λ)

and output:

ρ = (1λ, ρJoin)

KeyGen(ρ) - execute:

(pkI,DAA, skI,DAA)←$ SetupDAA(1λ)

set and return:

pkI = pkI,DAA

skI = (pkI,DAA, skI,DAA)

The Join− Issue protocol closely resembles the Join− IssueDAA protocol of the DAA
scheme with two main differences. Firstly, the user provides her secret key as input to
the Join algorithm. This is for practical reasons: in Section 3.4.6, we explain how this
key can be recomputed from a pair of login and password using a key derivation function
when a user switches machines. The second difference is the ΠJoin proof created by the
user to ensure honestly generated secret keys and allow the security reduction to extract
secret keys generated by the adversary. We remark that during the Join− Issue protocol,
the user communicates with a publicly known verifier who validates her identity and
confirms it to I. In Section 3.4.3, we present a protocol for obtaining this confirmation
and running a pseudo-probabilistic audit of V by I.
Join(pkI, skU ,U) - let :

pkI = pkI,DAA and skU = skS,DAA

run:

com←$ JoinDAA(pkI,DAA, skS,DAA)

compute proof:

ΠJoin = CreateProof(ρJoin, (com, pkI,DAA), skS,DAA)

send (com,ΠJoin) to the issuer and receive credU , then return: (credU , skU).

Issue(skI, ver,U) - parse :

skI = (pkI,DAA, skI,DAA)

receive (com,ΠJoin) from the user.
Abort if the proof is invalid, i.e.

VerifyProof(ρJoin, (com, pkI,DAA),ΠJoin) = 0

Otherwise, execute the IssueDAA protocol with input (com, skI,DAA), receiving cre-
dentials credU . Send credU to the user.

22

3.3. PROTOCOL DEFINITION

Comment creates the information that U stores on the ledger, consisting of the signed
comment γ and pseudonym nym. To provide accountability for censorship, U sends the
signature to the ledger, which notifies the website W . At this point, W must publish
the comment γ = (σ,nym, dom,m) as long as the signature σ, message and dom are
deemed valid, and nym appears exactly once on the ledger.

With the validity requirement on the basename dom and the ability to detect repeated
basenames in the ledger, we can easily implement the desired throttling mechanism. Let
τ be a threshold for some time frame (e.g. a day) and let t mark the current period.
Then, a valid dom is of the form (t, seq) with seq ∈ {1, . . . , t}. The sequence number seq
in dom is allowed to arrive out-of-order, but it cannot be larger than τ . The throttling
is ensured because there exist only τ valid basenames per commenting period and thus
only τ valid nym per (skU , dom).

Comment(pkI, skU , credU , dom,m) - set and return:

γ = (σ,nym, dom, h(m))

where :

σ ←$ SignDAA(skU , credU , dom, h(m))

nym ←$ NymGen(skU , dom) = NymExtract(σ)

Verify(pkI,nym, dom,m, γ) - Parse

γ = (σ,nym, dom, h∗)

and :

pkI = pkI,DAA

then output 1 iff :

VerifyDAA(pkI,DAA, h
∗, dom, σ, RL∅) = 1

h(m) = h∗

NymExtract(σ) = nym

VerifyBsn(σ, dom) = 1

If W refuses to publish the comment, then U can use Claim to claim censorship and
provide the entry on the ledger γ and m as evidence to the public that m ought to be
displayed. The public checks the same conditions that W should have applied. Part of
this check is to interpret a common agreement for moderation, which we discuss in more
detail in Section 3.4.6, but do not model explicitly. We show the security of this protocol
in the cryptographic model, see TrollThrottle Appendix Section 7.2.

23

CHAPTER 3. TROLLTHROTTLE

Claim(pkI, skU , credU , dom,m, γ) - return

evidence = γ

VerifyClaim(pkI, dom,m, γ, evidence) - parse

γ = (σ,nym, dom, h)

and output 1 iff :

Verify(pkI,nym, dom,m, γ) = 1

3.4 Practical Implementation

A deployable system needs more than just a cryptographic specification, but a system
of incentives and checks. First, we discuss what methods for identity verification are
available. We detail how to identity verification can be deferred to the verifiers and
misbehaviour can be detected using pseudo-probabilistic audits. A realistic system
also has to deal with revocation, which we solve by exploiting a novel property called
updatability. Finally, we discuss questions related to the end user: how moderation is
handled and where to store credentials. Table 3.1 summarises the protocol components
and their security analysis.

Table 3.1: Overview: security analysis.

components security analysis

base protocol cryptographic proof (TrollThrottle Appendix Section 7.2)
encrypted ledger strictly weakens the attacker
identity verification formally verified (Section 3.4.3)
revocation simple hybrid argument (TT. Appendix Section 7.5)
extended protocol cryptographic proof (TT. Appendix Section 7.3)
storing credentials trivial modification

3.4.1 Identity providers

The verifiers need to attest that only real people receive digital identities and each
person obtains only one. We discuss multiple competing solutions to this problem, none
perfect by itself. In combination, however, they cover a fair share of the users for our
primary target, news websites.

Identity verification services (IVS): Banks, insurers and other online-only services
already rely on so-called identity verification services, e.g. to comply with banking or
anti-money laundering regulations. Usually, IVS providers verify the authenticity of
claims using physical identity documents, authoritative sources, or by performing ID
checks via video chat or post-ID.

24

3.4. PRACTICAL IMPLEMENTATION

Subscriber lists: Newspaper websites are the main targets of our proposal, because of
their political and societal relevance and the moderation cost they are currently facing.
It is in their interest to provide easy access to their subscribers. Insofar as bills are
being paid, they do have some assurance of the identity of their subscribers, so they
can use their existing relationship to bootstrap the system by giving access to their
customers right away.

Biometric passports and identification documents: Biometric passports are
traditional passports that have an embedded electronic microprocessor chip containing
information for authenticating the identity of the passport holder. The chip was
introduced to enable additional protection against counterfeiting and identity theft.
This authentication process can be performed locally (as part of e.g. border control)
or against a remote server. Biometric passports are standardised by the International
Civil Aviation Organization (ICAO) [84] and issued by around 150 countries [67]. More
importantly, even many electronic identification documents are supporting this standard,
e.g. the German eID [29].

Our system can easily leverage this infrastructure to authenticate users. Of course,
we need to assume that governments are issuing those documents honestly, however,
large-scale fraud would have serious repercussions for the issuing government.

These methods can be combined: even if somebody is neither a subscriber of a newspaper
nor the owner of a digital passport, they still have the option of identifying to the IVS.
We note that a natural person could use two methods (e.g. IVS and subscriber list) to
obtain two DAA credentials and thus effectively double her threshold. As we provide a
method for revocation (see Section 3.4.3), the verifiers can run private set-intersection
protocols (see [131] for an overview) and revoke parties in the intersection.

Table 3.2: Time periods used in the protocol.

name symbol purpose typical duration

epoch te implicit revocation one week
billing period tb billing one month
commenting period t throttling one day

3.4.2 Encrypting comments on the ledger

We distinguish a billing period tb that is distinct from the commenting period t (see
Table 3.2). Assume a CCA-secure public key encryption scheme (KGenc, enc, dec),
a collision-resistant hash function h and a standard existentially unforgeable digital
signature scheme (KGsig, sig, ver). We apply the accountable commenting scheme from
Definition. 3. The output of Comment is encrypted with a public key pkW⃗ ,tb

distributed
to all websites participating in the current billing period tb. Claims need to include the
randomness used to encrypt. See Figure 3.2 for the complete message flow.

25

CHAPTER 3. TROLLTHROTTLE

User Ledger Website

skU ··= kdf (login, pw)
h(login), credte

dom ··= (t, seq)
nym ··= NymGen(skU , dom))
σ ··= Sign(skU , cred, dom, h(m),W)
γ ··= {enc(pkW⃗ ,tb

, (σ,nym); r), h(m),W, dom}

γ

γ

m

dec(skW⃗ ,tb
, γ) ··= (σ,nym)

Verify(pkU , σ, ⟨cred, dom, h(m),W ⟩)
VerifyBsn(σ, dom) = 1
seq ≤ τ
m is acceptable

nym

publish m if nym is fresh and m is acceptable.
claimU ··= {σ,nym, r,m}

Figure 3.2: Message flow for commenting scheme. Note that in step 0, the user’s secret
DAA key is restored using a password, see Section 3.4.6, and that entries in the ledger
are encrypted, see Section 3.4.7. Furthermore, to save space on the ledger, we identify
the comment m by its hash.

.

3.4.3 Deferring identity verification with pseudo-probabilistic auditing

Our security model in TrollThrottle Appendix Section 7.2 abstracts away the commu-
nication between verifier and issuer. We propose a protocol to implement this step
and formally verify it in the symbolic setting, which is better suited for reasoning

26

3.4. PRACTICAL IMPLEMENTATION

about complex interactions. The protocol (Figure. 3.3) improves privacy by hiding the
identity verification process from the issuer and improves accountability by providing a
pseudo-random audit.

User Issuer Verifier

create secure session sid

choose: login and pw
rU ← {0, 1}λ

login, h(rU ,nbd, 1)

rI ← {0, 1}λ
cI ··= h(rI, sid, h(rU ,nbd, 1))

sig(skI, cI)

skU ··= kdf (login, pw)
{nbd, cI, rU , sig(skI, cI)}

verify U ’s identity with evidence E
ψ ··= sig(skV , cI)

ψ

recreate the session sid
ψ

run Join− Issue pro-
tocol, (Fig. 3.4)

start auditing us-
ing ψ, (Fig. 3.5)

Figure 3.3: Identity verification protocol scheme
.

27

CHAPTER 3. TROLLTHROTTLE

We assume a collision-resistant one-way hash function h to instantiate a binding com-
mitment scheme. When a user wants to register, the website directs her to the issuer.
They run an authentication protocol akin to the ASW protocol for fair exchange[9]
where, in the end, U gets V ’s signature on a commitment cI generated by I. Only with
this signature, the issuer runs the Join− Issue procedure from Definition. 3 (repeated
in Fig. 3.4 for completeness). Note that the ledger distributes the issuer’s public key
and public parameters. In Section 3.4.4, we explain a revocation mechanism that is
based on updating the issuer’s public key every epoch and publishing the fresh key in
the ledger. U also makes use of the ledger by storing its credentials in case it needs to
recover its state (see Section 3.4.6).

User Issuer Ledger

pkI

run Join− IssueDAA pro-
tocol using skU and
pkI for epoch te, and

U gains credte and wte .

h(login), credte

h(login), wte

Figure 3.4: Join− Issue protocol scheme
.

After verification, I may trigger a pseudo-random audit by sending the previously
hidden values sid, rI in the commitment cI of the identity verification protocol to V
(see Fig. 3.5). If the hash of these values matches the hash of V ’s signed commitments,
an audit is triggered. If we consider a random oracle in place of the hash function, the
probability of an audit is Pr[audit] = 2−L, where L is the number of bits both parties
compare. L is agreed upon in advance, to define this probability. Since the nonce rI has
been revealed to V before, I cannot modify the second hash (s′) to avoid audit. As the
digital signature scheme is existentially unforgeable, I cannot fabricate a valid signature
to raise the probability of an audit and to learn something about U . If the session is
chosen for audit, V has to hand over the evidence {E} it collected for identification —
this is a standard procedure for IVS. If V fails to comply, then I can publish a claim
and the public can determine whether to audit V .
Presuming that I is honest, the probability that colluding U and V can create n usable
fake identities is thus bound by (1− Pr[audit])n + negl(λ) for some negligible function

28

3.4. PRACTICAL IMPLEMENTATION

negl(λ).

The auditing protocol is very simple cryptographically, but has many possible message
interleaving. It is well known that pen-and-paper proofs for such protocols are not only
tedious, but also prone to errors. We analyse the protocol in the symbolic model, using
the SAPIC process calculus [93] and Tamarin protocol verifier [142]. We formally verify
that:

1. Whenever I accepts to run the Join− Issue protocol with a user, V has validated
her identity, unless I or V are dishonest.

2. When determining the need for an audit, neither a dishonest I, nor a dishonest
V can predict the value of the other party, unless both are dishonest. Therefore,
they cannot trigger or avoid the audit.

3. If the public accepts a claim, then V did indeed receive the values rI and sid and
send out ψ (unless V is dishonest and tricks itself into the obligation of an audit).
As these values determine both hashes, the public can now decide if an audit was
justified.

The verification takes about 10 sec on a 3.1 GHz Intel Core i7 and 16 GB RAM computer.
See TrollThrottle Appendix Section 7.4 for the model code.

3.4.4 Revocation

In case U runs the identification protocol a second time with a different V , or simply
forgets her password and needs to re-identify, her previous DAA key skU ,DAA needs
to be revoked. But how can U revoke her DAA key if she forgets her password? We
circumvent this problem by implicit revocation: DAA keys are short-lived by default,
but the system can issue new keys without interacting with the user. Keys that are not
issued are thus implicitly revoked by the end of their lifetime, which we call the epoch
(see Figure. 3.2).

At the start of each epoch te, I defines a new public key pkI,t′
e

which is chosen so that
I can recompute all credentials credt′

e
for the new epoch by itself (see Fig. 3.6). At this

point, only those DAA keys remain valid, for which such a cred is computed, all others
are implicitly revoked. If a user forgets her password, she reports to the verifier, who
confirms (by means of the commitment cI) that her old key is invalidated. Starting
from the next epoch, she can use her new key. To allow for such mechanism, the DAA
scheme has to be structured in a way that I can update her public key and all users
’credentials without any interaction.

Definition 4 (Updateable DAA scheme). A DAA scheme is updateable if:

1. SetupDAA can be divided into Setup1 and Setup2, s.t.:

• Setup1(1λ), outputs a persistent group public key gpk1

• Setup2(1λ, gpk1) outputs an ephemeral group public key gpk2 and a secret
key skS, where pkI = (gpk1, gpk2).

2. The Join− IssueDAA protocol consists of two steps UserDAA and IssuerDAA, s.t.:

29

CHAPTER 3. TROLLTHROTTLE

Issuer Public Verifier

{sid, rI}

s ··= h(ri, sid, 2)
s′ ··= h(ψ)

s ··= h(ri, sid, 2)
s′ ··= h(ψ)

compare the first L bits
s|0L = s′|0L

compare the first L bits
s|0L = s′|0L

E

if V fails to comply
claimI ··= {rI, sid, h(rU ,nbd, 1), ψ}

claimI

The public audits V and
V proves it acted in good
faith sending {rU ,nbd, E}

The public gives the verdict

Figure 3.5: Auditing protocol scheme
.

• UserDAA(gpk1, skS) outputs an update u,
• IssuerDAA takes pkI , u and skI as inputs and outputs valid credentials credS

for secret key skS with respect to the new pkI .
3. Setup1 uses only public coins to generate gpk1, i.e. there are no secrets required

to generate gpk1 and giving those coins to the adversary only negligibly increases
its advantage in the user-controlled anonymity and traceability experiments.

Brickell and Li’s scheme with a minor modification possess these features (see TrollThrottle
Appendix Section 7.5 for a formal proof).
Updatability is interesting on its own: it allows for regular, non-interactive key rollovers

30

3.4. PRACTICAL IMPLEMENTATION

Issuer Ledger Verifier

announces new epoch t′e
updates pkI,t′

e

pkI,t′
e

sig(skV , (’update’, cI))

I obtains update mes-
sage u for all valid logins

from L : h(login, u)

creates new credentials for each login
credt′

e
··= IssuerDAA(skI, pkI, u)

I stores new creden-
tials for each login in
L : h(login, credt′

e
, t′e)

Figure 3.6: Certificate update protocol scheme
.

in DAA. I can create each user’s credential offline, so the user can fetch this credential
(in encrypted form) at a later point, even if I is offline.

3.4.5 Holding the issuer accountable

In TrollThrottle, a corrupt issuer and verifier can collude to introduce arbitrarily many
valid credentials into the system. This form of Sybil attack is difficult to counter while
retaining the user’s privacy: Without trust in either the verifiers or the issuer, the
only way of determining whether a user is legitimate is to have another entity (e.g.
the websites, or the public) check this identity — otherwise, the adversary controls
all parties involved. Even if done in a pseudo-random manner similar to the auditing
procedure in Section 3.4.3, the loss of individual privacy would be considerable.

31

CHAPTER 3. TROLLTHROTTLE

In TrollThrottle Appendix Section 7.3 we present the extended TrollThrottle protocol
to mitigate this issue to the extent possible. Here, for every user that joins, a genesis
block is added to the ledger. This block is signed by the verifier, which allows the public
to tell how many credentials were validated by each verifier. Large-scale fraud could thus
be detected through an unusual number of participants coming from a single verifier.
This information is public and can be computed by any participant at any time.
During the commenting phase, U downloads a subset of genesis tuples and computes a
zero-knowledge proof that her genesis tuple is part of this set. To achieve, e.g. anonymity
among 100 users, about 49 KB of data is downloaded once per commenting period. She
includes this proof along with the time point at which she queried the list in her DAA
signature. In TrollThrottle Appendix Section 7.3.5, we show that for Brickell and Li’s
scheme [27], we can instantiate a non-interactive proof of knowledge system with proofs
that are logarithmic in the number of genesis tuples in the ledger. We show that, in
addition to the security properties in TrollThrottle Appendix Section 7.2, no adversary
can create comments that cannot be attributed.

3.4.6 Other considerations

Moderation News websites need to moderate comments (see step 8 in Fig. 3.2). This
decision is ultimately a human decision, but it should be based on a binding agreement
between the participating websites, and in compliance with the laws that apply to them.
When U claims censorship, the public has to judge based on the agreement and the
content of m.

Storing credentials By default, a cookie or browser plugin may store the credentials,
however, many users expect a system to work similarly to a third-party website, where
they can log in from a computer of their choice. We, therefore, allow users to restore
their identities, by making the users’ secret keys e.g., skU derivable from their login and
password chosen by themselves in the identification process. Hence, we assume there
exists an efficiently computable key-derivation function kdf [90] that maps to the space
of secret keys. Such a function exists for the scheme we use, where the secret key is just
an element in Z∗

q .
The secret key skU can be recomputed by applying the key-derivation function to login
and password, while the DAA credentials cred can be recovered from the ledger by
querying with the hash of her login. Note that the login should not identify the user on
other platforms, otherwise an attacker can use it to check if the user is participating in
TrollThrottle. The last value of seq can be recovered by using bisection to discover the
largest seq s.t. NymGen(skU , (t, seq)) is on the ledger.

3.4.7 Goals & Incentives

A system like TrollThrottle can only be deployed if all parties have incentives to run it
and we build our design on the following incentives.

Websites: Websites have an incentive to get information about the trolls to lessen the
burden on moderation and save on personnel. The system requires paying the issuer a

32

3.5. EVALUATION

fee for running the infrastructure; hence these costs must be covered by the websites’
fee to the issuer. As they benefit from the system, they have an incentive to pay, as
long as it is not possible to piggyback on the system. The information necessary to
determine whether a user is a troll must hence only be available to paying websites.
This can be achieved by using public-key encryption, see below.

Issuer: The issuer runs a service and collects a fee. She relies on the trust of the
websites to maintain her business. The short-term gain of accepting bribery for issuing
non-validated DAA certificates could, however, outweigh the loss of this trust and the
potential failing of her business. First, the protocol only allows forging identities in
collusion with a verifier. Second, it is possible to keep track of the number of identities
in the system that each verifier attested to by modifying the protocol (see Section 3.4.5).
If a verifier confirms an unusually large number of identities or it is inconsistent with
public information (e.g. subscriber lists; the circulation of newspapers is independently
audited in most countries, as it is used to set advertising rates), this will raise doubts.
A fake identity can thus be linked to the verifier that colluded in creating it. Hence,
both the issuer and the verifier carry the risk of exposure, which grows with the number
of fake identities they produce.

Verifiers: The verifier’s incentive to participate is that it is either being paid (IVS),
run by one of the participating websites (subscriber list) or is a readily available
governmental service (smart passports/identity cards). For an IVS, as well as the
government issuing smart identification documents, trustworthiness is existential. By
adding a pseudo-probabilistic procedure to the protocol (see Section 3.4.3), large-scale
fraud can be detected with high probability, which would terminate the IVS’s business.
For newspapers, the participating websites need to carefully decide, which subscriber
list they accept — the newspaper should have a reputation to lose. As discussed before,
a dishonest issuer has to collude with a dishonest verifier. In this case, they can quietly
skip the audit; however, the public can still determine the number of identities verified
per verifier. This allows at least some amount of public scrutiny, as, e.g. the approximate
size of the subscriber list is publicly known. One could make the auditing publicly
verifiable. This, however, comes the expense of some users’ privacy.

3.5 Evaluation

We evaluate TrollThrottle in terms of how easy it is to deploy, and how much performance
overhead it incurs. To demonstrate the former, we retrofit it to an existing website,
without any modification to the server-side code — in fact, without the website being
aware of this. To demonstrate that it incurs only modest costs, we simulate realistic
traffic patterns using a recorded message stream and measure computational overhead
and latency.

Deployability We demonstrate that the protocol can be deployed easily by retrofitting
it, without any server-side changes, to Reddit.com, the most visited news website in the
world [4] and an alleged target for large-scale astroturfing and propaganda efforts [159].

33

CHAPTER 3. TROLLTHROTTLE

Figure 3.7: Screenshot of Reddit deployment, for identity creation and commenting
scenarios, see Retrofitting subreddit

On Reddit, we created a forum as a testing ground. We implemented signature creation
and verification in a JavaScript library and used a simple browser extension [164] to load
this library when entering the forum. In an actual deployment, this library would be
loaded via JavaScript inclusions. We point out, however, the known problem that there
is no guarantee the website W is transmitting the correct script. This is a well-known
issue for all web-based services that claim end-to-end security (e.g. ProtonMail [88]), and
sometimes mitigated by offering optional plugins (e.g. mega.co.nz). Note, though,
that there was an incident where the chrome extension itself was compromised via the
Chrome web store, which highlights the need to trust both the software developer and
the distribution mechanism [5].

We forked the Multiprecision Integer and Rational Arithmetic Cryptographic Library
(MIRACL)[121] and modified it for portability. Then, using emscripten, we compiled
this library to JavaScript. As this library is widely used to implement elliptic curve
cryptography and large integers, this modified version could be of independent interest
for front-end applications[118]. We use this library to implement Brickell and Li’s
pairing based DAA scheme using Barreto-Naehrig (BN) [12] elliptic curve at the 128-bit
security level. Furthermore, we use Libsodium [101] for digital signatures used in the
identity verification protocol (based on Ed25519 with 256 bit keys), hashing (BLAKE2B),
authenticated public-key encryption (based on XSalsa20 stream cipher and X25519 key

34

https://old.reddit.com/r/trollthrottle/comments/ervowu/retrofitting/?sort=new
mega.co.nz

3.5. EVALUATION

exchange with 256 bit keys) and randomness generation. For key derivation, we used
PBKDF2 in Crypto-js [47] with 100,100 iterations.2 The simulation is available in [165].

Any comment posted in this subreddit is transmitted according to the protocol (see
Fig. 3.2). As the server side is not validating the comments in this instance, this task
is performed by the JS library as well. It communicates with a simple HTTP server
implementing the public ledger. Comments that do not pass are greyed out by using a
subreddit-specific stylesheet (see Fig. 3.7).

Performance To evaluate TrollThrottle’s performance, we compiled three realistic
datasets [21] to represent plausible scenarios. Our focus is on traditional news outlets
that want to establish a close relation with their readership. We thus examine two
scenarios in this domain, and a third, representing an extreme case: the entirety of
Reddit, the largest website categorised as ‘News’ by Alexa [4].

Scenario I: nationwide news source Most news pages operate primarily on a
national scale. Here, traffic patterns can have sharp peaks, e.g. is the vast majority
of German speakers situated in the same time zone. Using Germany as an example,
the most popular news page [3] reports a ‘clear five-figure number’ of comments per
day [110], with other pages reporting between 12k and 80k [201]. As we have no access
to comments before moderation, we simulate the traffic patterns. We do so by combining
the traffic of the German-speaking r/de subreddit of sufficiently many days until we
reach a volume of 168k comments.

Scenario II: international newspaper In mid-2017, just three months before they
decided to stop accepting comments out of lack of resources, the New York Times
reported 12K comments per day [102]. If we assume an exponential growth at a rate of
about 140% per year3, we estimate 398k incoming comments in January 2020. Again,
we use Reddit data to retrieve realistic traffic patterns. In this case, we collected all
comments on submitted links to nytimes.com from a 24h period. We aggregated the
comments over a two-month period, from the beginning of May to the end of June 2019,
to reach 268k comments.

Scenario III: Number of comments per day on Reddit From a 10-year dataset
that includes all comments ever posted on Reddit, we pick the recent busiest day, which
is 27 June 2019 with 4,913,934 comments. As for the other datasets, we did not filter
out the comments that are marked as ‘[deleted]’, i.e. were removed by moderators or
their respective authors. They do not contain information about their authors, but still
show the request patterns that the website needs to handle. Hence, we regarded them
as one regular user.

2Default for server-side storage of passwords in LastPass [97].
3Extrapolated from data points in 2016 [200] and 2018 [201].

35

r/de
nytimes.com

CHAPTER 3. TROLLTHROTTLE

3.5.0.1 Performance measures

We focus on the performance requirements from the perspective of the news outlet that
has to serve users within a given latency and compute the additional cost due to the
new computations. To get a precise measure of the overhead incurred, our experiment
only simulates the cryptographic operations and does not display the comments or
use network communication. The computation is performed separately for the server
and the client. We assume the issuer is trusted and thus disregard the extension in
TrollThrottle Appendix Section 7.3.
As for the other datasets, we collected the comments annotated with their author’s
nickname and the time point they were posted. The dataset is thus a sequence of tuples
(t, u,m) ordered by the time point t at which u posted comment m. We assume each
nickname corresponds to a different actual person, thus over-approximating the effort
for key generation.

(1) simulate the issuing protocol, if u comes out in the entire (10 years) dataset for
the first time,

(2) simulate the commenting protocol to produce a signature for the comment, and
finally

(3) simulate the server side signature verification.
Step (1) and (2) can be done in a pre-processing step, as they are computed by the
user and issuer. We measure the time for commenting (δComment) and issuing (δIssue

I and
δIssue

U , for the issuer and the user, respectively). For step (3), we simulate the load of
the server side on a Ruby-on-Rails application with Nginx load balancer.
Firstly, we estimated the number of cores needed to satisfy a latency requirement
of l = 0.1 seconds using a simple first-come-first-serve scheduler. To determine this
value, we used the following algorithm. We sampled the server computation time δs by
measuring the verification time for a random comment. We start with one core. We
compute a first-come-first-serve scheduling until we reach a point where a comment
posted at t is scheduled at t′ such that t′ + ts < t+ l. If we never reach such a point,
we are done and output the number of cores. Otherwise, we add a new core.
Secondly, we simulated the load on the server. For each point (t, u,m) in the database,
we simulate the arrival of the encrypted signature (γ,nym) resulting from pre-processing
m, at time t + δComment + δIssue

I + δIssue
U . We run Verify on the signature and measure

the finishing time tf , as well as the actual processing time δVerify. We report the results
in seconds for the largest dataset in Table 3.3.
In Table 3.4, we report the number of cores needed and the cost incurred by the
computations just described, i.e. the overhead compared to normal website operations.
The number of cores to meet the latency requirement was estimated as described above
and used in the simulation. To account for the cost, we employ the core hours metric,
which is the product of the number of cores and the total running time on the server.
We take Amazon on Demand EC2 pricing [8] as an example and assume $0.05 per core
hour. We also report on the maximal latency encountered in the simulation and the
percentage of comments that met the target latency of ≤ 0.1s. Finally, we report the

36

3.5. EVALUATION

Table 3.3: Evaluation for Reddit use case (3 cores).

measure mean median variance

issuing (on U)1 δIssue
U 0.038 0.036 0.069

issuing (on W)1 δIssue
I 0.010 0.009 0.0006

commenting2 δComment 0.036 0.032 0.0003
verification δVerify 0.021 0.018 0.0002

latency3 tf − t 0.022 0.019 0.0002

commenting
(on U)4 δComment

U 0.058 0.057 0.01

(1) over all new users.(2) computation overhead w/ pre-
computed signatures.(3) shows server-side total processing
time.(4) on 1000 samples, single-threaded.

Table 3.4: Scenarios for performance evaluation, including the number of comments,
source of the data stream, number of Intel E5 2.6 GHz cores, operating cost per day,
maximum latency, percentage of queries answered within 0.1 secs, number of genesis
tuples computed (i.e., number of distinct nicknames), and total ledger size.

scenario #comments #cores daily
cost

max.
latency

latency
< 0.1s

#genesis
tuples

ledger
size(mb)

Nationwide
newspaper (r/de)

168k 1 $ 1.20 0.166s 99,99% 13,975 204

International
news. (url:nytimes)

268k 1 $ 1.20 0.391s 99.99% 87,223 633

Reddit (r/all) 4.9M 3 $ 3.60 1.011s 99.99% 1,217,761 10628

number of genesis tuples created in the ledger, i.e. the number of nicknames in the
dataset, and the total size of the ledger, representing an over-approximation of the
storage requirements of a single day of operation.

Since comments are hashed before signing, the communication overhead is approximately
2.4 KB, independent of the comment size. To evaluate the storage requirements on a
consensus-based public ledger, we chose Tendermint [78] as an example. Tendermint
employs a modified AVL tree to store key-value pairs. Values are kept in leaf nodes and
keys in non-leaf nodes. The overhead is about 100 bytes per non-leaf node [156]. For
the largest dataset, each participant in Tendermint would thus require approximately
12 GB of space. Once the current commenting period is over, the signed comments and
hence most of the data can be purged. To allow accountability for censorship over the
last month, the data of the last thirty commenting periods can be stored on less than
0.5 TB.

In summary, the additional cost on the websites is modest compared to the moderation
effort saved.

37

CHAPTER 3. TROLLTHROTTLE

3.6 Limitations

Despite the auditing by the issuer and the limited accountability for colluding issuer and
verifiers in the extended protocol, we have centralised trusted authorities. One way to
remove these is to introduce protocols that can recognise Sybils. This could relieve the
issuer from the responsibility of auditing the verifiers and potentially allow for a protocol
with accountability features to deter misbehaviour. As this topic is orthogonal to our
protocol, we leave it for future work, but remark that, theoretically, Sybil-detection
is possible without user identification. A potential approach is to combine biometric
methods [149, 10] with captchas. Uzun and Chung proposed such a protocol to show
liveness. Here, the user’s response to a captcha involves physical actions (smiling,
blinking) that she captures in a selfie video [168] within a 5s time limit. Their approach
is based on the fact that automated captcha-solving takes considerable time, and face
reenactment (e.g. [158]) is difficult to do at scale. Building on the same assumptions, a
Sybil-detection scheme could be built by pseudo-randomly defining sets of users that
need to show liveness at the same time.

TrollThrottle aims to provide a similar user experience to website logins. Hence, all
client-side secrets are derived from the login and password of the user and thus vulnerable
to password-guessing attacks. This can be mitigated by incorporating a two-factor
authentication into the protocol, or by setting up the key generation to require a
password of sufficient length and entropy, as to enforce the use of password managers.

Finally, the client-side code is loaded by the website, which could potentially include a
different script albeit this behaviour would leave traces. As previously discussed (see
Section 3.5), this is a well-known problem for web-based apps, and usually mitigated by
offering optional plugins.

3.7 Related Work

The detection of astroturfing has been tackled using reputation systems (e.g. [124]),
crowdsourcing (e.g. [171]) and feature-based analysis (e.g. n-gram detection [127],
sentiment analysis [144], or by analysing responses [116]). Fundamentally, the posting
profile of a politically motivated high-effort user is not very different from a state-
sponsored propagandist[91], hence we focus on prevention instead of detection. The
detection and prevention approaches could be combined, but detection approaches
either come at a loss of accountability, or they need to explain their decisions, although
many of them rely on the fact that the bot is not adapting to the mechanism (e.g. via
adversarial machine learning [83]).

Our approach is similar to anonymity protocols in which we specify a way of exchanging
messages without revealing identities. In contrast to anonymity protocols, TrollThrottle
provides anonymity with respect to the ledger, but presumes the communication chan-
nels to provide sufficient anonymity. By itself, TrollThrottle is not resistant against
traffic analysis — here anonymity protocols come into play. One might ask whether
anonymity protocols already do what TrollThrottle proposes to do. To the best of our
knowledge, Dissent [46] is the only anonymity protocol that provides explicit account-

38

3.7. RELATED WORK

ability guarantees, but these pertain to the type of communication, not to sending more
messages than allowed. Furthermore, unlinkability is not achieved within the group, but
towards outsiders. In each protocol phase, parties generate new secondary keys, which
they broadcast signed and encrypted to all members of the group. This requires setting
up a group in advance. This is unsuitable for our setting, where the group comprises all
registered users of a web. TrollThrottle preserves unlinkability even within this group.

Pseudonymity systems like Nym [79] or Nymble [87] provide anonymous, yet authen-
ticated access to services, but some allow resource owners to block access at their
discretion. By using a ledger and a common set of rules, TrollThrottle users can claim
and prove censorship, but have to trust the ledger. This is in contrast to p2p-protocols,
where censors may be sidestepped, but cannot be forced to publish the content them-
selves. Dingledine et al. advocate for the transaction of reputation/credit between
pseudonyms [50]. By contrast, the credit in our scheme is essentially the number of
nyms. This simplifies the system and ensures unlinkability, at the cost of inherent
limitations: the ‘credit’ is the same for every participant (τ for each commenting period)
and cannot be transferred.

One of the main cryptographic components of TrollThrottle is a specific DAA scheme
with additional properties (instant-linkability and updatability). DAA was introduced
as a way to address privacy issues of the remote attestation protocol proposed for
TPMs [73]. There exists a number of schemes, e.g. based on the RSA assumption [24],
on elliptic curve cryptography [25, 41], on the LRSW assumption [26, 18] and on the
q-SDH assumption [39, 27, 38]. We focused on the scheme by Brickell and Li [27],
because it supports these properties, produces short signatures and because a reference
implementation was available.

There are building blocks besides DAA that are compatible with TrollThrottle. Anony-
mous Credentials (AC) allow users to prove (a set of) attributes about themselves to
third parties, usually via an interactive protocol (but there are non-interactive schemes).
An efficient scheme, by Baldimtsi and Lysyanskaya[11], supports only single-time use of a
credential, which would require to store a fresh credential for each comment that the user
would like to post in the future (the shown attribute would also need to include the date
and some unique value). Multi-show credentials, for instance the one by Camenisch et
al. [32], would decrease the number of fresh credentials required, but would still depend
on the user’s obtain an attribute for every possible day/comment number combinations.
What’s more concerning is that the attribute value would have to be set by the issuer
to a unique value (to prevent double spending/commenting), which would decrease the
privacy of this approach and allow the Issuer to link certain comments. Therefore, it
seems more efficient to use a system that supports domain-specific pseudonyms with a
secret-key based attribute than lightweight credential systems. It worths noting that
DAA can be viewed as such a credential system for just a single and secret attribute
(the secret key).

The most similar credential system to the DAA scheme, that we used, was proposed
by Camenisch et al. [33]. In this system, an issuer creates and distributes so-called
dispensers. Dispensers are used to create a predefined number of one-time credentials
valid for a given date. This system can be immediately used in TrollThrottle. As an

39

CHAPTER 3. TROLLTHROTTLE

implementation was not available, we perform a qualitative analysis. On the one hand,
verification is faster in their scheme, they perform seven multi-exponentiations in a
prime order group and one in an RSA group, while Brickell and Li’s scheme perform
one multi-exponentiation in each group i.e. G1,G2,GT , and one pairing computation.
On the other hand, the signatures, which consists of a unique serial number (similar to
a pseudonym) and a number of proofs of consistency are at least twice as much larger
and their size depends on how the proofs are implemented. This produces considerable
computation and communication overhead in the ledger. Moreover, the verification of
comments is performed by the websites, making verification efficiency less important
than the size of the data included in the ledger. Therefore, the DAA scheme represents
a preferable tradeoff.

3.8 Impact on Society

We provide a solution for newspapers that want to interact with their readership, but
cannot bear the cost of moderation. As of now, among the Top 10 websites in the Alexa
‘News’ section that belongs to a newspaper, three do not offer on-site commenting,
two others disable commenting functionality for controversial topics and four require a
Facebook signup with a real name. The last one apparently has this functionality, but
did not display any comments or provide a link to leave one, presumably due to a glitch.
Hence any technique making this interaction feasible again is an improvement to the
political discourse. We shall nevertheless discuss some implications in case TrollThrottle,
or a similar system, should be adopted in larger parts of the web.

Setting the threshold

From a technical view point, setting the threshold is a matter of balancing the number of
regular users that post beyond this threshold with some target cost that an astroturfing
operation should incur. From this perspective, there should be a clear demarcation
between bots and regular users, that is characterised among other features by the
number of messages these users send. This is, however, not the case, as the journalist
Michael Kreil argues in response to a scientific study that used text mining and other
learning techniques to recognise social bots [77]. He contacted these purported bots
and found out that many of them were, in fact, real people who post well over 150
politically divisive messages per day [91]. In our evaluation database, we found that
around 2 % of users are above the threshold of 20 messages per day. Upon inspection,
some of those can be categorised as bots, but many are just very active users or cannot
be clearly distinguished from those. One particular user posts a daily average of 96
messages on a cricket-related forum. He or she is just a big sports fan. If, in addition
to the daily limit, we impose a limit of 100 comments a week and 300 comments per
month, then only an additional 443 Reddit users will be affected, compared to 206, 855
out of 6, 619, 612 users affected by the daily limit itself (in June 2019).

This shows that the system can be set up to avoid affecting intensive users, but,
ultimately, there is no threshold that distinguishes trolls from intensive users. During
the world cup match between India and Afghanistan in June, e.g. the aforementioned

40

3.9. CONCLUSION

cricket fan posted 928 comments. The method we propose is thus affecting the political
discourse. It discourages communication patterns employed by power users. This is not
necessarily a bad thing, as collective belief formation is driven both by learning from
the (stated) beliefs of others and by some interest in maintaining social acceptance [96].
Due to the difficulty of mapping virtual identities to real-world identities, one may
argue that the discourse stands to benefit from a limit on the messages, which favours
thought-out contributions. In summary, we propose a method for moderation instead
of a clear-cut filtering mechanism. It can enable discussion where, currently, there is
none. It can be adjusted to accommodate for fluctuations in use by evaluating current
patterns, it will impose restrictions on a minority of users.

Centralisation of discourse

The public ledger provides a centralised view of the discourse on participating websites,
even if its implementation is decentralised. This offers several potential advantages:
with a slight modification of the protocol, the user can optionally add a pseudonym
nymrep = NymGen(skU , x) for some arbitrary x (e.g. by signing the comment again
under an additional basename x), to make a set of messages — across websites —
cryptographically linkable. Users can thus build a reputation across websites. Similarly,
we may add yet another pseudonym nymthr = NymGen(skU , tid), with tid some global
identifier for discussion threads, to ensure that authors have only one identity per thread
and don’t respond to themselves with a different account. Websites could, theoretically,
stop providing their own infrastructure for user registration, and only permit signed
posts to appear, providing essentially projections of the ledger’s representation of the
public discourse.

While these features seem appealing, the idea of a centralised political discourse beyond
news websites has to be seen critically. Most importantly, it may undermine the
incentives of the issuer described in Section 3.4.7, so she might take the risk and
collaborate with a malicious verifier. In our view, this scenario is unlikely. According to
a 2018 study, about two thirds of U.S. adults obtain their news on social media sites,
about 43% from Facebook[147]. The business model of most of these social media sites
is based on exclusive access to their users’ information; hence they have little interest to
share it. Our focus is therefore on traditional news pages, who benefit from a healthy
discourse.

3.9 Conclusion

The prevalence of social bots and other forms of astroturfing in the web poses a danger
to the political discourse. As many newspapers are closing down their commenting
functionality despite the availability of sophisticated detection methods, we argue that
they should be combined with a more preventive approach.

We presented TrollThrottle, a protocol that raises the cost of astroturfing by limiting
the influence of users that emit a large amount of communication, even if using differ-
ent pseudonyms. TrollThrottle preserves anonymity, provides accountability against

41

CHAPTER 3. TROLLTHROTTLE

censorship, it is easy to deploy and comes at a modest cost. We have also discussed its
social impact in Section 3.8.

By how much do we raise the cost of astroturfing? We shall regard the last week before
the 2016 US election for a rough calculation. The computational propaganda project
considered around 3.4M election-related tweets to be originating from bots who emit
more than 50 messages per day [80]. If we assume a threshold of 20 messages/day and
perfect coordination between the bots, 24,178 identities need to be stolen to reach the
same target. A lab study [15] finds that users are willing to sell their Facebook accounts
for $26 on average, which is only slightly above the black-market value for stolen verified
Facebook accounts. Such operation would thus face a cost of $634,501 and a risk of
detection.

A remaining challenge for future work is to provide Sybil detection without identifying
the users. The verification of user identities inherently relies on the party asserting
them, but, theoretically, this step is not necessary to determine whether, at a given
time, two virtual identities are controlled by independent parties.

42

4
Accountable Javascript Code

Delivery

43

4.1. PROBLEM STATEMENT

The Internet is a major distribution platform for web applications, but there are no
effective transparency and audit mechanisms in place for the web. Due to the ephemeral
nature of web applications, a client visiting a website has no guarantee that the code it
receives today is the same as yesterday, or the same as other visitors receive. Despite
advances in web security, it is thus challenging to audit web applications before they
are rendered in the browser. A compromised or malicious web server can easily target
classes of users by sending different codes to different users. The web server might insert
malware based on browser fingerprints, an email provider might disable encryption on
a specific IP range, a cryptocurrency wallet might redirect payments made in some
countries or the server might use the user’s browser for cryptojacking.

In this chapter, we present an opt-in Accountable JS protocol that can be used by
websites to convince their users that they are trustworthy in an economical way. Using
the Accountable JS protocol the users can verify that the active content on the web
page they are visiting is the same for everyone and in the client side it adheres to the
standards set by the Accountable JS protocol.

To present Accountable JS protocol, we begin with outlining our threat model and
underlying assumptions. Next, we describe several types of web application use cases
(including WhatsApp Web, AdSense and Nimiq) that can benefit from our protocol.
Thereafter, we provide an overview of our approach to the problem and how we use
cryptographic algorithms. Then, we revisit the use cases to illustrate how Accountable
JS could be applied to real-world applications and discuss how it enhances the security
and accountability in those use cases.

4.1 Problem Statement

Over the years, the web has transformed from an information system into a decentralised
software distribution platform. Websites are programs that are freshly fetched whenever
accessed and the web browsers are runtime environments. This design implies that when
a user opens a website, they have no reason to trust it will run the same program that
it did yesterday or the same program that other users receive. Instead, the application
loaded may vary over time, and different users may receive different codes.

The majority of web pages, and even web applications, have neither specified security
goals nor the need to establish them. Nevertheless, for some websites, maintaining trust
between developers and users is part of the business model:

• a private email provider might wish to reassure users that it will always encrypt their
messages,

• a cryptocurrency wallet might wish to guarantee that it has no access to users’ funds,
or

• a tracking pixel might wish to prove that it only receives data that is explicitly sent
to it.

Some academic proposals for secure protocols implemented for browsers include TrollThrot-
tle [59] and JavaScript Zero [143];

45

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

industry proposals include payment platforms such as Stripe [154] and Square [152],
chat protocols such as WhatsApp Web [175], Facebook Messenger [62] and Matrix’s
Hydrogen client [107], encrypted cloud storage such as MEGA [111] or SpiderOak [151].

A concrete example is Nimiq [123], an entirely web-based digital currency managing
private keys in the browser. It is challenging for such websites to make verifiable
guarantees to their users: a compromised or malicious web server can precisely target
classes of users: the email provider might disable encryption on a specific IP range, the
cryptocurrency wallet might redirect payments made in some countries, or the tracking
pixel might exfiltrate data only for certain users.

Auditing A common risk mitigation strategy is auditing: a developer who wishes to
build trust appoints external auditors to inspect the client code. This can include both
vulnerability research (e.g. via bug bounties) or commissioned security audits. Audits
work well where it is possible for a user to verify that the code they are running is the
same code that was audited, for example when binaries are received via third party
package repositories or app stores that control the distribution and targeting. App
stores do not usually permit developers to deliver different codes to different users for
the same app, except in a restricted set of circumstances such as for beta testing new
features.

However, auditing does not work for web applications: a compromised or malicious web
server can simply choose at load time to deliver unaudited code to a user. No matter
how careful the audit or even verification of the web application, users cannot know that
they are receiving the audited code. Large parts of modern web security thus depend
on techniques like sandboxing or access control to critical resources like cameras, but
fail to capture properties defined in the context of the application (e.g. authorisation of
transactions in a payment system).

Accountability A second risk mitigation strategy is accountability, where developers
can be held accountable for applications which they publish. In curated software
repositories such as Debian GNU/Linux or the Apple App Store, developers’ code is
reviewed and malicious or compromised code is linked to their identities. Developers who
repeatedly publish malicious code may face consequences such as loss of user trust or
banning from the repositories. For example, a package mirror which publishes malicious
code may be removed from future lists of mirrors, or a developer who takes over a
browser extension and publishes a malicious version [42] may be blocked from publishing
future code updates.

Again, web applications fail to have accountability. A malicious or compromised web
server may publish malicious code to certain users, but there is no public record of the
code which it serves, and thus no way for users to hold the server accountable.

Summarising, it is difficult to establish trust in the web as a software distribution
mechanism because it lacks auditability (the means for anyone to inspect the code being
distributed to others) and accountability (the means to hold a developer accountable for
the code they publish).

46

4.2. OVERVIEW

4.2 Overview

In this chapter, we propose an opt-in transparency protocol that aims to establish
more rigorous trust relations between browsers and web applications, and provide the
foundation for a more secure web. Using our standard for accountable delivery of active
content, efficient and easy-to-use code-signing technique, and public transparency logs;
websites can convince the users that they are trustworthy in an economical way. At a
high level, we propose that web application developers, who choose to opt in, provide a
signed manifest enumerating all the active content in their applications. The manifest
files in our proposal are stored in publicly readable transparency logs. When a browser
requests a URL and downloads the resulting HTML document from the web server, the
web server also provides the corresponding manifest for this URL. The browser checks
that the active content provided by the server matches the manifest entry, that the
manifest is correctly signed, and it is consistent with the transparency logs.

Moreover, our proposal aims to reinforce the communication between the browser and
the web server by adding non-repudiation to the HTTP request-response procedure.
By itself, Transport Layer Security (TLS) does not provide evidence that what was
delivered actually originated from the web server. Using digital signatures, we show
how HTTP requests can be extended to provide a proof of origin.

From the signed manifest, the transparency logs, and the non-repudiation mechanism,
the protocol establishes that:

• The code a user executes is the same for the users of the plugin within a certain
timeframe depending on the validity of the manifest and a new manifest is signed.

• On the client side, the code is bound to interact with third party code according to
how the developer declared in the manifest. This includes the order of execution, the
trust relation to third party code, and the use of sandboxing.

• If the code’s execution is inconsistent with the manifest, the browser can provide a
claim that can be verified by the public.

Our proposal can be implemented by changes in the server configuration only, without
the need to modify the served web content (assuming that the web page already makes
use of Subresource Integrity hashes) and without changes to the HTML standard.

To sum up, our contributions are as follows:

1. We propose Accountable JS, a protocol to enable auditability and accountability for
web apps.

2. We formally model Accountable JS with the Tamarin Prover and prove desired
properties in the presence of active adversary.

3. We implement Accountable JS in a browser extension that obtains the signed manifest,
verifies its signature, and both statically and dynamically ensures that the active
content on a web page agrees with the manifest. We also provide a code-signing
mechanism for the developers.

47

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

4. We evaluate the deployment of this technology and the performance overhead for the
client in six case studies, including real-world applications: Google AdSense, Nimiq
and WhatsApp.

5. We model Meta’s Code Verify protocol and compare its properties with Accountable
JS.

Relationship to Meta’s Code Verify protocol In [76], Meta (formerly Facebook)
proposed Code Verify, likewise implementing a mechanism to enforce accountability
via transparency for active content in the web. Our present proposal goes beyond
Code Verify and provides a superset of its functionality, most notably the ability to
delegate trust to third parties. On the other hand, our browser extension is an academic
prototype and thus not ready for productive use. The protocol has the same message
flow, but choses a different signature scheme and encodings. We elaborate on these
differences in Section 4.11.1.

An initial draft of the present proposal was shared with Meta’s WhatsApp team in 2022.
The protocol, manifest file format and browser extension we present in this work are
academic developments by the authors and not endorsed by Meta in any way.

4.3 Background

Web pages are delivered via HTTP or HTTPS. In the latter case, a secure and authen-
ticated TLS channel tunnels the HTTP protocol. Typically, the initiator of the TLS
connection, i.e. the web browser, is not authenticated1, whereas the responder, i.e. the
web server, is identified with their public key and a certificate linking the public key to
the domain.

The authentication guarantees of TLS do not include non-repudiation of origin, i.e. a
communication party cannot prove to a third party that they received a certain message.
This property is an important building block for accountability and can be achieved, e.g.
using digital signatures. After the shared keys are established in TLS, any messages
exchanged could be produced by either party. Roughly speaking, the party providing
the evidence has enough information to forge it. Ritzdorf et al. [136] proposed a TLS
extension that provides non-repudiation, but it has not been deployed in the wild.

Browsers typically parse the HTML document describing the web page into a tree of
HTML elements called Document Object Model (DOM) [37]. Some HTML elements have
active content, which includes Flash or Silverlight, but we will focus on JavaScript (JS)
in this work. Active content can be inline, i.e. hard-coded in <script>-tags or event
handlers, external, i.e. referring to an external JS file by URL, or via iframe, i.e. the
web page contains an iframe that refers to an HTML file which, again, contains active
content. The browser may include multiple windows with multiple tabs, displaying
websites in parallel. For our purposes, we can abstract the browser to a single top-level
window that represents the client side in the HTTP protocol. App stores provide a
unified distribution system for applications. Typically, they are curated by their owners:

1At the communication layer. Authentication may be implemented at the application layer.

48

4.3. BACKGROUND

developers submit their software, the app store owner inspects them for compliance with
their guidelines (which can include quality control, but also censorship) and distributes
them to their users. While it has been proposed to use app stores to deliver diversified
versions of software [65] and both Google and Apple’s App Store support A/B testing,
users expect to not receive targeted applications.
Like in the case of app stores, we distinguish between the roles of the website, which
is distributing the web application, and the developer, which is the author of the web
application. This allows us to view the website as a distribution mechanism that is
necessarily online and publicly visible, as opposed to the developer, who can be offline
most of the time. We distinguish the following roles:
• The web application developer (short: developer) creates the active content and has

a secure connection to the web server. It is not active all the time.
• The web server (short: server) delivers code provided by the developer to the client.

The website and the developer are associated with a domain, but the client is
anonymous.

• The web browser (short: client) requests a URL from the website.
A transparency log (short: ledger) provides a publicly accessible database. It typically
has the property of being append-only (for consistency), auditable, verifiable, and it
hinders equivocation. Hence, for the data in the logs, all parties are convinced that it is
a public record and that everyone sees the same version of it. We are using the ledger
to store manifest files for each URL. Having public records of the manifest files allows
us to reason about accountability.

4.3.1 Threat Model

Dolev-Yao attacker We consider a Dolev-Yao style adversary, i.e. cryptography
is assumed perfect (i.e. cryptographic operations do not leak any information unless
their secret keys are exposed), but the attacker has full control over the network. This
is formalised in our SAPiC [92] model in Section 8.1. Informally, we assume hash
function to behave like random oracles, signature schemes to be unforgeable and TLS
to implement an authentic and confidential communication channel. We also rely on an
intact public-key infrastructure.

Corruption scenarios We assume honest parties follow the protocol specification and
dishonest parties are controlled by the attacker. The parties which considered to be
honest are determined by the property of interest:
• Accountability and Authentication of Origin: An honest client wants to be sure that

code is executed only if it was made public and transparent i.e. inserted into logs by
the developer; here developer and web server are assumed dishonest.

• Non-repudiation of Reception A dishonest client may want to present false evidence
for having received some JS code. Here we assume the public to be trusted and run
a specified procedure2 to check the evidence, and the web server to behave honestly,
2Detailed in Accountable JavaScript Appendix Section 8.2.

49

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

i.e. not to help the client provide false claims of reception, which are against the web
server’s interest.

• Accountability of Latest Version An honest client that receives a version of the code
and wants to ensure it is the most recent version. We assume an honest global clock
that helps comparing the time of the code reception and the latest version at that
time, and consider a dishonest developer and web server.

Target websites We target developers that aim at establishing user trust or pretend to
do so. Hence we assume, for honest developers, that active content changes infrequently,
e.g. multiple times per day, and that their code is designed to facilitate the audit.
Dishonest developers may counteract, but, due to accountability and authentication of
origin, there is public record of that.

Therefore, while our formal security arguments make no assumption on how often
the code changes are or how obfuscated it is, we assume that, from accountability
of authentication of origin, code obfuscation attacks or microtargeting are practically
disincentivised.

Browser features & Transparency log We assume existing browser security features,
in particular the sandbox attribute of the iframe tag, to be implemented correctly.
Furthermore, the transparency log is trusted, efficient, available, append-only and
provides non-equivocation (i.e. the same information is served to everyone).

There are many strategies to implement such a log. For example, Trillian [161] and
CONIKS [114] use data structures that can be distributed over multiple parties and
allow to efficiently prove append operations. Misbehaviour can thus be detected by
trusted public auditors or by honest logs distributing such proofs (called gossiping). See
[113] for a survey over different mechanisms.

4.4 Use Cases

We introduce several types of web applications that will benefit from our protocol. We
will revisit these examples later and show how our approach is applicable to them.

4.4.1 Self-Contained Application

Perhaps the simplest possible web application is a one-page HTML document with
active content that simply prints ‘Hello World’ into the developer console. Upon loading
this website, a user can manually check that its sole behaviour was to print ‘Hello
World’, but they have no guarantees about subsequent page loads: a server could easily
decide to provide different behaviour to certain users, or to insert malware based on IP
address or browser fingerprint. For this simple example, the consequences of a malicious
or compromised server are relatively limited, although we remark that cryptojacking3

is a growing trend [34]. We remark that, by default, every user who loads this web
3Malicious JS which secretly mines cryptocurrencies in unsuspecting users’ browsers.

50

4.4. USE CASES

application receives the same source code. However, there is no easy way for users to
verify this fact.

More complicated web applications may have login functionality, or asynchronous
client-server communication, or other advanced features. In order to personalise users’
experiences, applications may dynamically fetch data using technologies such as Relay 4

or Apollo 5. However, it is often still the case that all users receive the same JS source
code bundle.

WhatsApp Web is a large real-world self-contained web application: its source code is
bundled using WebPack and served to all users; personalisation is implemented through
local storage and dynamic data fetching. We will show how our protocol can be applied.

4.4.2 Trusted Third-Party Code

Many websites rely not just on their own content but on resources served by a third party.
This may be a Content Delivery Network (CDN) serving common JS libraries, embedded
content such as photos or videos, analytics and measurement libraries, tracking pixels,
fraud detection libraries, or many other options. For example, the following code loads
the jQuery JS library from a CDN, and uses it to display a ‘Hello World’ message.

<html>
<head>
<script src="https://googleapis../jquery-3.6.1.min.js" ↷
integrity="sha384-i6..."/>

</head>
<body>
<script>$("body").html("Hello World")</script>

</body>
</html>

Listing 4.1: Trusted third party code

As before, users are supposed to always receive the same code from the server. This time,
there is an additional avenue for compromise, though: even if the first-party server is
honest, it is possible for the CDN to perform targeted attacks. The developer, however,
wants to pin the third party code to the precise version that they inspected or trust.

4.4.3 Delegate Trust to Third Parties

The application uses third party code that its developer cannot vouch for. This can
be the case if the code is too complex to inspect or if the application developer wants
to always use the latest version. The third-party developer, however, is willing to
vouch for their code. An example of this is Nimiq’s Wallet, a web application for easy
payment with Nimiq’s crypto currency. This application can be embedded by first-party
applications that provide, e.g. a web shop, who are willing to trust Nimiq, but only
given that they make themselves accountable for the code they deliver.

4https://relay.dev/
5https://www.apollographql.com/

51

https://relay.dev/
https://www.apollographql.com/

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

<html>
<body>
<script type="text/javascript">
function addTransaction () {
window.postMessage({’id’: ’123’, ’amount’: ’10n’, ’↷
from’:’abc’}, ’https://wallet.nimiq.com/’);

}
</script>
<iframe src="https://wallet.nimiq.com/" onload="↷
addTransaction()">
</iframe>

</body>
</html>

Listing 4.2: Delegate trust to third party

4.4.4 Untrusted Third-Party Code

For web technologies, consecutive deployability is a must. Hence, in this use case,
the application developer cannot audit the code, but the third party does not use
Accountable JS. The application developer needs to blindly trust the third party, but
using sandboxing techniques, it can restrict the access that the possibly malicious script
provided by the third party can have.

A particularly important instance of this problem is ad bidding. The third party is an
ad provider that decides online which ad is actually served. Because they cannot review
the ads that they distribute, which may contain active content, they are not willing to
vouch for the code they distribute. This is the case for Google AdSense, used by over
38.3 million websites. Cases where ads were misused to distribute malicious code are
well documented [2].

4.4.5 Code Compartmentalisation

The application that the developer provides can be compartmentalised so that the most
sensitive information is guarded by a component that is easy to review and changes
rarely. The other components that are user-facing and changing more often are separated
from this component using sandboxing. The developer wishes to reflect this structure
and make themselves accountable for the whole code, but also separately commit on
keeping the secure core component small and auditable. For example, Nimiq’s Wallet
components follow a similar structure.

4.5 Approach: Accountable JS

We propose a cryptographic protocol between the client, the server, the developer, and
a distributed network of public transparency logs. The protocol’s objective is to hold
the developer accountable for the code executed by the browser. The protocol provides
four main functionalities:

52

4.5. APPROACH: ACCOUNTABLE JS

• The server provides a manifest declaring the active content and trust relationships
of the web application, which the client compares with a published version on the
transparency logs.

• The client measures and compares the active content received by collecting active
elements, e.g. JS, in the HTML document delivered by the web server.

• Developers and clients submit manifests to a public append-only log to verify that
everybody receives the same active content.

• The server signs a nonce as non-repudiable proof of origin for the JS that the client
receives.

Website Manifests Website developers may provide a signed manifest for each publicly
accessible URL in their websites (excluding the query string). The signed manifest
comprises a manifest and a signature block over this manifest. A manifest describes
the webpage, including, besides the active content, its URL and a version number.
The active content is described in a custom format. We elaborate on the manifest
directives in the supplementary material [58]. The developer’s identity is distinct
from the server’s, but their certificates must share the same Common Name(CN) in
order to restrain from unauthorised manifest deployments. The browser validates the
authenticity of the developer’s public key in the same way, using the existing Public
Key Infrastucture (PKI) and its built-in root Certificate Authority (CA) certificates.

Accountable JS is an opt-in mechanism. The website declares the signed manifest using
an experimental HTTP response header field called x-acc-js-link. Henceforth, the
client, however, expects the website to always provide a valid manifest for this URL.

Client Measurement The client measures the active content inside the HTML
document delivered in the response body, collecting information about each active
element in the document and validating it with the corresponding manifest block in
a manifest file. Elements that cannot be matched trigger an error and the user is
warned about this error. The current extension is not preventive, but in the future with
pervasive developer support, browsers may be designed to choose to halt the execution if
delivered code is inconsistent with the boundaries drawn by manifest. The active content
is measured with a so-called mutation observer, starting with the first request. The
measurement procedure that we developed listens to the observer’s collected mutations
that regard active elements in a list. In Section 4.8, we explain the process in more
detail.

Manifest Logs While a signed manifest may prove the integrity and authenticity
of the manifest, it cannot prevent equivocation, i.e. it cannot prove the same signed
manifest is delivered to every request by the web server. To this end, we propose to
use transparency logs. Manifest files declare version numbers and there can be only
one manifest file per version number. The developer publishes their signed manifest
in a publicly accessible, auditable, append-only log very similar to the Certificate
Transparency (CT) protocol [134], which provides logs for TLS certificates. Clients may

53

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

verify that a version they receive is the most recent online, or use a mechanism similar
to Online Certificate Status Protocol (OCSP)-Stapling [128] to check that a version
they receive was the most recent version a short time ago. Any client that encounters
a signed manifest that is not yet in the log can submit it to the log. We discuss the
transparency log considerations in more detail in Section 4.12.

Non-Repudiation of Origin We propose a non-repudiation mechanism for the client’s
web requests done by the client. In case a developer distributes damaging active content,
an individual client cannot prove that they have received that content from a web server.
While TLS provides integrity of communication via Message Authentication Codes and
authenticity of the communication partner via its handshake, the client is nevertheless
unable to prove that they received damaging content as both communication partners
are able to forge the message transcripts after the key exchange.

We propose a simple mechanism whereby the web server signs a nonce chosen by the
client, along with the signed manifest. The client transmits this nonce via a request
header. We elaborate on the non-repudiable web request protocol in Section 4.10.

4.6 Manifest File

In the manifest, the developer declares the active elements a web application is bound
to execute during its run time. The run time starts from the web request and ends
with the window’s close or a new web request. For Single Page Applications (SPA) (e.g.
Nimiq), the run time for the web page ends when page is refreshed, its URL is changed
or the window is closed.

The manifest file represents the active elements and their relevant metadata as a
collection of attribute-value pairs in the JSON format. The metadata expresses the
trust relations w.r.t. third party content and settings for sandboxing. The top-level
properties in the manifest, also called manifest header, contain descriptive information
about the web page: its URL, its version number, and optional metadata, e.g. the
developer’s email address. The domain within the URL determines which keys can be
used to sign the manifest, namely, the common name of the signature key’s certificate
has to match that domain.6 The developer can decide for any numbering scheme for
the version, but they must be strictly increasing with each new manifest published.

A manifest file is accepted if it is syntactically correct, i.e. follows the schema (see manifest
manual in the supplementary material [58] for details), complete, i.e. it contains enough
information about the web application and its active elements to enable evaluation, and,
most importantly, consistent with the delivered resource, i.e. that evaluation succeeds.

4.6.1 Execution Order

An active content is considered dynamic if it is added after the window’s load event;
otherwise, it is static. The manifest specifies elements as either static or dynamic

6The query component of the URL [17] can be excluded, since the browser extension discards that
part in the measurement.

54

4.6. MANIFEST FILE

using the dynamic attribute. SPAs in particular download or preload resources during
navigation, rewriting the DOM on the fly depending on how the user navigates.

For static elements, the sequence number seq specifies in which order they must appear
after browser renders the delivered HTML. It starts from 0 and repetitions are not
allowed. Dynamic content is only measured if they are present in the web page, i.e. it is
allowed to be injected, but not required to. This mechanism can also be used to declare
region-specific active content. The order is ignored for dynamic content.

The measurement procedure will check if the list of the elements in the manifest is in the
same order except for elements that will be dynamically added to the DOM. Elements
may be removed dynamically, but only if the attribute persistent is set to false.

A JS element can be loaded synchronously (sync), asynchronously (async) or it can be
deferred until the HTML parsing is done (defer). A synchronous JS element blocks the
HTML parsing process and is executed in-order. Asynchronous and deferred elements
do not block parsing. Asynchronous elements are loaded in parallel with other HTML
elements, while deferred elements are loaded after parsing has finished. Hence, for both,
the position on the DOM tree may not be predicted precisely.

4.6.2 Trust and Delegation

With the manifest, the developer provides assurance for the active content in their
application. Third-party components, e.g. JS libraries, bootstrappers, advertisements
or ad-analytics tools play a significant role in most modern web applications, which are
thus a mixture of first-party code and code from multiple third parties. In the manifest,
we enable the developers to decide the trust level on each active element imported
to their web applications. For instance, they can take the responsibility and provide
assurance (i.e. with a cryptographic hash) on first party elements while for the external
elements, they may declare a valid source and delegate the trust on the developers of
those resources.

We thus require each block in the manifest to have a trust declaration. There are three
options to declare the trust level:

• assert : The developer provides the hash of the expected active content and asserts
it is behaving as intended. It is computed using the standard Subresource Integrity
(SRI) hash generation method [167], i.e. comprises the hash algorithm used, followed
by a dash and the base64-encoded hash value.

• delegate: The developer refers the trust to the third party providing this element.
Now the third party is taking responsibility for this code and provides a manifest
whose location is either declared in the first-party manifest, or delivered in the headers
of the third party’s response. The third party manifest can likewise delegate trust,
thereby constructing a chain of trust delegations.

• blind − trust: The developer blindly trusts the third party, without identifying the
code they trust. This should only be used in combination with the sandbox attribute.

55

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

Table 4.1: Trust Relationships by Type of Active Element

trust

type assert blind − trust delegate sandbox

inline • ◦ ◦ ◦
event_handler • ◦ ◦ ◦
external • • • ◦
iframe with . . .

src_type =external • • • •
src_type =srcdoc • ◦ ◦ •
src_type =script • ◦ ◦ •

4.6.3 Types of Active Elements

The developer describes the manifest blocks for each active element by their resource type
type (e.g. javascript, iframe), trust policy trust (e.g. assert, delegate, blind − trust),
whether they are dynamic or static and, in case they are static, their sequence number
seq. There are mandatory and optional directives for writing a manifest and these
directives may depend on the resource type. If the developer declared a manifest section
including an optional directive, that does not mean this directive is ignored in the
evaluation; this directive still is part of the evaluation. For instance, the crossorigin
directive is optional for external resource type, but if the developer declares a crossorigin
attribute, then it has to match with the active content information. Not all resource
types support all trust policies (see Table 4.1). We will discuss them one by one:

• inline: Inline scripts are script elements without the src attribute, i.e. the JS code
is included in the HTML document. Therefore, trust can only be assert and may be
omitted. The cryptographic hash covers the included JS code, i.e. the textContent
value of the script element.

• event_handler : Event handlers are active content included in attributes such as
onClick that are executed on HTML events. Like inline scripts, trust must be assert
and can be omitted. Unlike inline, however, the (Subresource Integrity (SRI)-encoded)
hash value covers the entire element, including the HTML tag itself.

• external : A script element can be outsourced by specifying its URL in the src
attribute. An external script can originate from a different origin (cross-origin) or
from the same origin. Trust can be set to assert and delegate – as sandboxing is not
supported for external scripts, blind − trust would give little assurance.

• iframe : An iframe embeds another document within the current document. There
are three different ways this can happen, which the manifest file represents using the
attribute src_type. The most common is to specify a URL (src_type = external).
This type of content can be declared with any trust value. For trust = assert, it is
possible to either hash the whole embedded HTML document, or to provide a list of
manifest blocks for the active elements inside the embedded document.

Second, an iframe’s content can also be hardcoded in the outside document (src_type =

56

4.7. USE CASES, REVISITED

srcdoc), in which case trust can only be set to assert (and the hash is computed on
the srcdoc attribute of the iframe element).

Third, the embedded document can be created using the document_write method [51],
via JS code inlined in the iframe’s src attribute (src_type = script). Since this JS
code is known at this point, trust must be set to assert and, again, either the JS
code’s hash be provided, or a list of manifest blocks.

4.6.4 Sandboxing

In addition, iframes permit the use of sandboxing via the attribute with the same
name [55]. A sandboxed iframe is considered a cross-origin resource, even if its URL
points to the same-origin website. Hence, because of the browser’s same-origin-policy [13],
the parent window and the iframe are isolated, and they cannot access the DOM of
each other. Furthermore, sandboxing blocks the execution of JS and the submission of
forms and more. These restrictions can, however, be lifted using an allow list in the
HTML tag.

As we will see in the next section, security-critical websites need to use sandboxing
to protect data from other browsing contexts; hence we reflect the sandbox feature in
the manifest file. The measurement procedure ensures that the active element has an
equally strict or stricter sandboxing policy than described in the manifest. An allow list
is stricter if it is a subset of the other.

4.7 Use Cases, Revisited

We come back to the use cases from Section 4.4 to illustrate how Accountable JS applies
to real-world web applications with different trust assumptions.

4.7.1 ‘Hello World’ Application

We begin with the basic ‘Hello World’ website example, and add a reference to the
manifest in its meta tags.

<html>
<head>
<meta charset="utf-8" name="x-acc-js-link" content="http↷
://www.helloworld.com/manifest.sxg">

</head>
<body>
<script>console.log("Hello World")</script>

</body>
</html>

Listing 4.3: First example: Hello World.

Alternatively, the manifest can be provided as an HTTP response header. The manifest
file provides the URL and version of the website and simply lists the base64-encoded
SHA-256 hash of the inline script.

57

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

{

"url": "http://www.helloworld.com/",

"manifest_version": "v0",

"contents": [

{

"seq": 0,

"type": "inline",

"load": "sync",

"trust": "assert",

"hash": "sha256-AfuyZ600rk..."

}

]

}

Listing 4.4: Manifest for first example.

4.7.2 Self-Contained Web Applications

Web applications can be completely self-contained. This may be for security or because
they follow the recent serverless computing paradigm (e.g. Amazon Lambda). In
serverless computing, a web application developer may only write static user-side code
and delegate all the server-side logic to a cloud service provider.

The application of Accountable JS is straightforward in this case: as part of our
prototype, we developed our deployment tool generate_manifest, which computes
the hash values of all active contents in the browser and produces a manifest file that
asserts their trustworthiness. The developer can then sign this manifest file.

We tested this methodology on a popular example, the WhatsApp Web client, and
provide the manifest file in the supplementary material [58]. It lists nine external and
four inline scripts.

4.7.3 Trusted Third-Party Code

The developer can use the manifest file to identify the included third party code by
hash and set the order of execution. This expresses that the developer vouches for the
third party code. We add the following attribute to the header of ‘Hello World’ example
from Section 4.4.2 and we declare it in the manifest file with trust = assert.

<script src="https://googleapis../jquery-3.6.1.min.js" ↷
integrity="sha384-i6...">
</script>

4.7.4 Delegate Trust to Third Parties

The first party can delegate trust to a third party by embedding their code in an iframe
(or linking their JS) and setting trust to delegate. The extension will verify the third
party code based on a manifest file signed by its developer. This expresses that the

58

4.7. USE CASES, REVISITED

main developer vouches for the third party to be trustworthy, but demands that the
third party itself can be held to account. This is in contrast to trusting a concrete piece
of code provided by the third party.

We tested this technique using Nimiq’s Wallet, which can be embedded in third-party
web pages. These can now combine the code that they control (e.g. for setting up a
shopping cart) with the code that Nimiq provides for signing transactions.

The website’s manifest below (Listing 4.5) specifies some inline scripts with trust = assert
(omitted) and an iframe with trust = delegate. The browser now expects the response
to the query for the iframe’s content (https://wallet.nimiq.com) to point to a
URL with a signed manifest.

{

"url": "https://www.example-shop.com/",

"manifest_version": "v2",

"contents": [

[inline script manifests omitted]

{

"seq": 2,

"type": "iframe",

"src_type": "link",

"src": "https://wallet.nimiq.com/",

"sandbox": "allow-scripts",

"dynamic": false,

"trust": "delegate"

}

]

}

Listing 4.5: Manifest is delegated to a trusted third party

4.7.5 Untrusted Third-Party Code

High-security applications may want to rely on third-party code they cannot vouch for,
e.g. when including ads that are dynamically chosen by an ad-bidding process. We
developed a small web application that uses Google AdSense and sandboxed this code,
but noticed that AdSense and many other ad providers require access to the top-level
window [85] for fraud detection, e.g. to detect invalid clicks [119].

We therefore needed to turn the relationship between the secure code and the untrusted
code around. We sandboxed the secure code with trust set to assert, protecting it
from the potentially unsecure AdSense code, which is not sandboxed and declared
blind − trust. Now the AdSense code cannot access the secure document in the iframe.
The manifest file is shown in List. 4.6. It includes thirteen active elements (six external,
seven iframe) related to AdSense, along with Nimiq’s Wallet (seq=’6’), for which trust
is delegated.

59

https://wallet.nimiq.com

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

wallet.nimiq.com
or

example shopping site

hub.nimiq.com keyguard.nimiq.com

includes in
sandboxed iframe

Blockchain

accesses

origin:
keyguard.nimiq.com

private keys

redirects to

Figure 4.1: Structure of Nimiq Ecosystem.

{

"url": "https://www.helloworld.com/",

"manifest_version": "v3",

"contents": [

[six external scripts for AdSense with trust=blindtrust]

{

"seq": 6,

"type": "iframe",

"src_type": "link",

"src": "https://wallet.nimiq.com/",

"sandbox": "allow-same-origin allow-scripts",

"dynamic": false,

"trust": "delegate" // See Listing 4.7

},

[six more iframes for AdSense with blindtrust]

]

}

Listing 4.6: Untrusted AdSense and the Delegated Nimiq wallet at manifest section
sequence number ‘6’.

Note that we relax the sandbox attribute of the secure iframe to allow script execution
and to gain access to its own origin (https://wallet.nimiq.com) in order to access
its cookies. Because of the trust delegation, we create a new signed manifest, which
we expand upon in the next section (see Listing 4.7). The communication between the
parts of the web application that handle user interaction and the trusted code in the
sandbox takes place via postMessage calls.

4.7.6 Compartmentalisation of Code and Development process

We further expand on Nimiq’s Wallet application, this time as an example for compart-
mentalising the code and the signing process. Nimiq’s Wallet application at no point
has direct access to the users’ private keys. It is treated the same way as any other

60

https://wallet.nimiq.com

4.7. USE CASES, REVISITED

third party application interacting with the Nimiq ecosystem (see Fig 4.1). It embeds
the Hub which acts as an interface to the user’s addresses and can trigger actions on
the private keys. Access to the users’ private keys is only possible through the Hub
and pre-specified APIs. The Hub will then forward any request that needs to access
the private keys to the KeyGuard component, which upon user input can decrypt the
locally stored keys, perform the requested action, and return the result to the Hub.

The procedure generate_manifest produces the following manifest for Nimiq’s Wallet.
Observe that it heavily employs sandboxing. Both included iframes have the sandbox
attribute set empty, meaning that there are no exceptions.

{

"url": "https://wallet.nimiq.com/",

"manifest_version": "v0",

"contents": [

[five external scripts]

{

"seq": 3,

"type": "iframe",

"src_type": "link",

"src": "https://hub.nimiq.com/iframe.html",

"sandbox": "",

"dynamic": true,

"trust": "assert",

"manifest": [

[seven external scripts],

{

"seq": 7,

"type": "iframe",

"src_type": "link",

"src": "https://keyguard.nimiq.com/",

"sandbox": "",

"dynamic": true,

"trust": "delegate"

}

]

}

]

}

Listing 4.7: Delegated content Nimiq Wallet’s manifest.

The Wallet’s manifest includes hub.nimiq.com in an iframe, containing, among other
elements, the KeyGuard, which has a separate origin and thus exclusive access to the
user’s keys. For transactions, the Hub redirects to the KeyGuard. The KeyGuard is
trusted, easy to audit, does not depend on any third party code and changes rarely.
The KeyGuard manifest is as follows.

{

"url": "https://keyguard.nimiq.com/",

61

hub.nimiq.com

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

"manifest_version": "v0",

"contents": [

{ "seq": 0,

"type": "external",

"link": "https://keyguard../web-offline.js",

"hash": "sha256-L8NMxOGkIW...",

"load": "defer",

"dynamic": false,

"trust": "assert"

},

[two external scripts w/ same dynamic/trust.]

]

}

Listing 4.8: Nimiq Keyguard depends on its own content.

The Wallet manifest file reflects the web applications compartmentalisation: every
component – Wallet, Hub and KeyGuard – runs on a different domain, hence locally
stored information like the wallet key is inaccessible to the Hub or Wallet due to the
same-origin policy.

With this setup, it is easy to compartmentalise the development process, too. A separate
developer key could be used for the KeyGuard code given that it is already bound to a
second domain. New KeyGuard releases would need to be signed by that key, which,
internally, can be assigned additional oversight requirements. Without requesting a new
key from the PKI, any bypassing of this procedure would either end up with code that
cannot access the user’s key or be provable with the signed manifest for the Wallet.

4.8 Measurement procedure

We present a practical active content measurement procedure that can be used to
identify active elements and collect their metadata, allowing the client to check whether
the web application complies with the provided manifest. In development mode, the
same procedure can be used to automatically generate a manifest file from an HTML
document.

The measurement procedure is depicted in Fig. 4.2. The browser’s rendering engine parses
the raw HTML document and creates the DOM, observing the DOM for mutations, e.g.
elements that are added at run time. Whenever an active element is appended, edited
or removed from the DOM, the metadata agent will be triggered, which keeps a list of
the active elements and their metadata.

The extension obtains access to the DOM by defining a content script, a script that
runs in the context of the current page. This includes all pages loaded in top-level
browser windows (e.g. Tabs), but also iframes within those. Content scripts running
at the top level are responsible for collecting metadata on all active elements in their
context. For nested iframes, they can only collect the metadata about the iframe like
the attributes src_type, src and sandbox, but not inspect the document inside this

62

4.8. MEASUREMENT PROCEDURE

postMessage
iframe's
content script

top-​level content script

...external

...externalMutation
ObserverDOM

HTML
nodes

active
content

monitor DOM
pass modifications

1.
2.

...inline

...external

...external

...external

generateMan
ifest

(developer
mode)

manifest

compliance
checker

(user mode)

signed
manifest

green / red
signal

global active
content list

...external

...external

Figure 4.2: Manifest file generation and metadata collection .

iframe. The same-origin policy forbids this in many cases. We therefore use the iframe’s
content script to gather information: if the content script recognises that it is not at
the top-level, it runs statelessly, collecting the metadata as usual, but reporting it to
the parent window’s content script via postMessage.

The metadata agent distinguishes script and iframe elements by their HTML tags. A
script that has src attribute is external otherwise it is inline. For external scripts SRI
hashes, crossorigin and load attributes are collected. For inline scripts, hash is computed
on the script and the load attribute is collected. Event handlers are searched inside all
DOM elements checking if their attributes contain any of the global event attributes e.g.
onclick in a given list [81]. For event handlers, the hash is computed on the value of
the event attribute. For iframes, the metadata is collected based on src_type which is
srcdoc if the iframe has srcdoc attribute, otherwise script if the src attribute has a script
as a value, and external if the src attribute has a URL value. For iframes with srcdoc or
script, a hash is computed on the srcdoc or src contents, and crossorigin and sandbox
attributes are collected by the metadata agent in the parent window. For iframes with
external, the metadata agent in the parent window collects the crossorigin and sandbox
attributes and gathers the metadata about the document inside the iframe from its
content script. In addition, for each active element boolean dynamic and persistent
scores are assigned by the metadata agent. An active content is considered dynamic
if it is added after the window’s load event; otherwise, it is static. Elements that get
removed from the DOM are marked to be non-persistent, but still kept in the active
content list for evaluation.

An opt-in website could be opened in a popup or an iframe, the measurement procedure
runs as usual in this case. If the opener/parent window is not opt-in, the measurement
will only take the popup/iframe website into account. However, if the opener/parent
window that is in the same origin, it can cause changes in the popup/iframe context

63

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

without triggering the mutation observer in the popup/iframe. This could undermine
accountability, hence, we require the opener/parent window must also be opt-in if the
popup/iframe is in the same origin.

If the web page opted in, i.e. it has sent the x-acc-js-link header in the past and
provided a valid manifest, then the metadata collector compares the metadata list with
the list of active elements in the manifest. If the web page does not comply with the
protocol, the extension reports this to the user.

In developer mode, a failure to comply triggers the manifest generator to collect and
generate metadata for the active elements. The generate_manifest procedure then
produces a manifest file with trust = assert for each active element based on the
collected information, which can be easily adapted to other trust settings. This manifest
represents the most restrictive manifest functional for this web application.

4.9 Signing and Delivering a Manifest

A valid signature on the manifest proves that the manifest was created by a known origin,
i.e. a developer publicly associated with the website, and that it was not tampered with
in transit. To sign manifests, we adopt the SXG standard [196]. SXG is an emerging
technology that makes websites portable. With SXG, a website can be served from
others, by default untrusted, intermediaries (e.g. a CDN or a cache server), whereas the
browser can still assure that its content was not tampered with and it originated from the
website that the client requested. This allows decoupling the web developer from the web
host and nicely fits our view of websites as software distribution mechanisms. The SXG
scheme allows signing this exchange with an X.509 certificate that is basically a TLS
certificate with the ‘CanSignHttpExchanges’ extension. Browsers will reject certificates
with this extension if they are used in a TLS exchange, ensuring key separation. SXG
certificates are validated using the PKI, allowing Accountable JS to be used with the
existing infrastructure, although, currently, Digicert is the only CA that provides SXG
certificates [49]. The lifespan of an SXG certificate is at most 90 days [196], limiting
the impact of key leaks.

An SXG signature includes the HTTP request, as well as the corresponding response
headers and body from the server. The signature is thus bound to the requested URL,
in our case, the manifest file’s URL. It also includes signature validation parameters
like the start and end of the validity period and the certificate URL. If the current time
is outside the validity period, SXG permits fetching a new signature from a URL. This
URL is also contained in the (old) signature’s validation parameters. These features
provide a solid foundation for Accountable JS’s signed manifests, allowing manifests
to be cached during the validity period and enabling dynamic re-fetching and safe key
renewals.

A web application in compliance with Accountable JS must deliver the signed manifest.
If it is small enough, it can be transmitted directly via the HTTP response header (using
the directive x-acc-js-man). Alternatively, the response includes the URL of the
SXG file, using the HTML meta-tag or HTTP-response header x-acc-js-link. The

64

4.10. PROTOCOL

signature in this file includes the manifest file (as the HTTP response body) and the
manifest URL (part of the HTTP request). In addition, the browser needs to check that
the URL value in the manifest corresponds to the web application’s URL (excluding
the query part of the URL).

Providing a signed manifest indicates the website (i.e. the URL) opted into the protocol.
From now on, the extension will expect an accountability manifest until the users
explicitly choses to opt out.

Apart from the manifest generation, the signing operation and uploading the signature
to the ledger can also be automated thanks to existing tool support for SRI and SXG.
We stress that the signatures need only be computed if the JS code changes. Techniques
like microtargeting are disincentivised by accountability (see Section 4.3.1), hence the
performance of the signature generation is of secondary concern.

4.10 Protocol

Client Web Server Developer Ledger

(φ, v) ··= measure(HTML)

com ··= Sign(skD, ⟨φ, v,URL⟩)

sigL
··= Sign(skL, com)

sigL

t

n R← {0, 1}λ

Sign(skC , ⟨n,URL⟩)

sigW
··= Sign(skW , ⟨HTML′,n, sigL⟩)

1. (φ′, v′) ··= measure(HTML′)

2. verif(pkW , sigW , ⟨HTML′, n, sigL⟩)

3. verif(pkL, sigL, ⟨φ′, v′,URL⟩))

Figure 4.3: Protocol flow: CodeStapling (before t) and CodeDelivery (after t).
.

In this section, we present the Accountable JS protocol. The end-to-end goal is to hold
the developer accountable for the active content the client receives. Clients can compare
this code with the manifest, hence, for honest clients, we can reformulate this task as
follows:

• Clients should only run active content that complies with the manifest. This is a
setup assumption.

• Any manifest the client accepts needs to originate from the developer, even if the
developer or server is dishonest. This follows from the non-repudiation of origin

65

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

property of the signature scheme. A signed manifest was either signed by the
developer, or the developer leaked their key.

• Whenever two clients accept a manifest with the same version number, that manifest
must be the same, or they can provide non-repudiable proof that this was not the
case. This is achieved by including a transparency log that gathers all manifest files
with valid signatures.

• Whenever a client accepts a manifest with some version number, this version was the
latest version in some client-defined time frame. This is achieved by a timestamping
mechanism similar to OCSP-Stapling [53].

• A client can provide non-repudiable proof that they received a manifest from the web
server. This is achieved by signing a client-provided nonce.

The developer of the website generates a manifest file for the web page that is identified
with a URL, signs the manifest and publishes it in one or more public transparency
logs (see Fig. 4.3 before t). The signature proves to the client that the developer takes
responsibility of the manifest.

The CodeStapling protocol ensures that, whenever the client accepted a manifest, the
developer can be held accountable for publishing it. Nevertheless, the developer cannot
be held accountable for delivering it to an individual client, as there is no proof for
that. We thus define the CodeDelivery protocol for non-repudiable code delivery (in
Fig. 4.3 after t). With the HTTP GET request, the client C sends a nonce n signed
with its individual signing key skC . The web server W responds with a signature on
the HTTP response HTML, the client nonce n, and signed log timestamp sigL. The
client validates the log’s signature and the developer’s signature within. Should one
of these checks fail, the client aborts and displays an error message. Then, the client
compares the active content in HTML with the manifest; if they are consistent, the
browser decides the web page adheres to the protocol.

4.11 Protocol Verification

We analysed Accountable JS with Tamarin [112], considering the protocol’s security w.r.t.
a Dolev-Yao adversary that can manipulate messages in the network and corrupt other
processes to impersonate them. Using Tamarin’s built-in stateful applied-π calculus [92],
we were able to model a global state such as represented by the transparency log.

The protocol comprises five processes running in parallel:

!PDeveloper |!PWebserver |!PClient |!PLog | PPub

The first three processes model the role of the developer, web server and client, outputting
and accepting messages as specified in Figure 4.3. The developer, web server and the
client are under replication to account for an unbounded number of parties acting in
each role. Any party except the log and the public process can become dishonest. This
is modelled by giving control to the adversary, but only after emitting a Corrupted

66

4.11. PROTOCOL VERIFICATION

event, which can be used to distinguish the party’s corruption status in the security
property. A corrupted party remains dishonest for the rest of the protocol execution.
The process PLog models an idealised append-only log using insert and lookup operations
to a global store [92]. Moreover, the built-in lock and unlock commands are used to
ensure atomicity of the operations. Finally, the process PPub make the public’s ability to
validate a client’s claim explicit. Upon obtaining a claim (from the client), this process
(1) reads from the log the information that concerns the URL mentioned in the claim,
(2) verifiers the signatures in the claim and (3) matches the signed values with those in
the log.
Using Tamarin, we prove the following properties which are detailed in Accountable
JavaScript Appendix Section 8.1.
• Authentication of origin: The client executes active content only if the correspond-

ing manifest was generated by the honest developer unless the adversary corrupts
the developer.

• Transparency: If the client executes code then its manifest is present in a trans-
parency log in a sufficiently recent entry.

• Accountability: When the public accepts a claim, then even if the client was
corrupted, the code must exist in the logs and the server must have sent that data
(either honestly or dishonestly via the adversary).

• End-to-end guarantee : Only by corrupting the developer it is possible to distribute
malicious code.

4.11.1 Code Verify Protocol

Meta’s Code Verify [76] was published in March 2022 and made available as an extension.
As of now, it is deployed only by WhatsApp Web. Intuitively, WhatsApp Web (the
developer) submits a hash of their JavaScript along with a version number to Cloudflare,
which Cloudflare then publishes to the end user. The end user’s browser extension
computes a hash on the JavaScript delivered from WhatsApp Web and compares it
against the hash published by the Cloudflare. Given that the manifest is hashed instead
of signed, Cloudflare is trusted for authenticity and thus constitutes a trusted third
party, replacing the log. Moreover, users’ IP addresses are sent to Cloudflare instead of
to WhatApp Web.
We likewise modelled Code Verify in Tamarin, considering the following five processes:

!PDeveloper |!PWebserver |!PClient |!PCloudflare | PPub

Again, we assume the developer is separate from the web server. The protocol does
not have a public log and does not include independent auditors. Instead, Cloudflare
records the hashes for each version. To our knowledge, Cloudflare does not provide
information about the history of submitted versions or which is most recent. As
the public cannot inspect how often versions have changed, it relies on Cloudflare to
implement countermeasures against microtargeting. Publicly available information [76]
did not give information about such measures in Meta’s deployment.

67

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

Under these considerations, we analysed the same properties, except for transparency,
which, due to the lack of a public log, could not apply. We highlight the differences to
our original properties below.

• Authentication of origin: The client executes active content only if the correspond-
ing manifest was generated by the honest developer unless the developer or Cloudflare
is corrupted.

• Non-Accountability: The data provided to the client is not sufficient to prove they
received certain content from the web server, even if web server and Cloudflare are
honest.

• End-to-end guarantee: Only by corrupting the developer or Cloudflare it is possible
to distribute malicious code. In a separate lemma we show that, the developer by
itself can indeed distribute malicious content.

The latter property indicates that Cloudflare’s role as trusted party is not fully exploited
yet. At least as far as we know [76], Cloudflare neither promises to ensure the code
is harmless, nor does it guarantee to collect information to provide transparency or
accountability. Nevertheless, the current message flow can be extended to provide such
guarantees by having Cloudflare acts as a transparency log. Accountability can likewise
be achieved by simply deploying signatures instead of a hashing scheme.

4.12 Logging Mechanism

We would like clients to verify they received the latest and same version of the code as
any other user. To this end, we assume a public append-only log to provide a public
record of the software published and prevent equivocation attacks. The log does not
determine which JS is considered malicious, but it provides proof of receipt and origin,
and allows identifying malicious versions.

Such a public log is realistic to deploy: CT Logs [134] are used in the modern internet
infrastructure. These logs store certificates, which are signed by CAs. In contrast,
our logs need to store manifests signed by the developers. It is thus not possible to
simply reuse the existing CT infrastructure, but we can closely follow the structure and
properties of CT.

Websites that offer security-conscious services have an incentive to retain their reputation.
Similar to how CT logs operate, our log can be run by a party that wants to support
such webpages. Third party monitors can keep the monitor honest and we allow third
parties to submit signed manifests they observe in the wild.

When implemented naively, a logging mechanism can have significant privacy implica-
tions: To confirm that other clients receive the same manifest, the client would need
to consult the log on each request and reveal the URL to the log. We can mitigate
these privacy issues by allowing the web server, which learns each request anyway, to
include a signed and timestamped inclusion statement from the log instead. This is
similar to the OCSP stapling for certificate revocation status requests [128]. While it
mitigates the privacy issues of consulting the log, it instead requires the user to trust

68

4.13. EVALUATION

the specific log selected by the web server. We outline other approaches to solve the
trade-off between trust and privacy in Section 4.15.

Overall, our transparency log needs to provide interfaces to at a minimum:

• store the signed manifest file (including its version number) bound to a URL,

• query the latest signed manifest file for a URL in the logs,

• form a signed response for a query that can be pre-fetched by the web server to staple
it to each request from the clients.

A possible implementation of this functionality could be based on Verifiable Log-
Based Maps [56]. An implementation of this structure for Trillian [161], the software
running Google’s CT server, is currently in progress [162], with the goal of supporting
transparency in certificate revocation [98].

Availability, scalability and the size of the transparency logs are other implications.
Be it submitting a new manifest to the log or collecting the latest version of manifest
for a URL, low latency to access the network of transparency logs can be achieved by
eliminating the single point of failure by adding multiple logs that will provide load
balancing. The mechanism proposed for query privacy will also decrease the number of
requests to the logs since the web server will provide the stapled result in most cases.

Websites that frequently update their active contents can create significant burden on
the log size. We calculate approximately how many times each log can be updated for
a limited time and space. We assume a non-leaf node overhead is approximately 100
bytes and for the leaf nodes it is 700 bytes(signature 600 bytes + 100 bytes). If a log
provider has 100 TB of space for 5 years, it can contain 137 billion signatures in total.
To make sense of this number, take the following example. We start with a log of 10M
URLs with eight updates per month on average. The number of URLs also increases
exponentially at a rate of 1% with each update (i.e. also eight times per month)7. This
number would be well below 137 billion signatures.

4.13 Evaluation

We implemented Accountable JS in a Chrome extension [58] for demonstration and
prototyping. Ideally, the measurement procedure should be part of the browser’s
rendering engine, since it can access the response body and observe mutations to
elements first-hand. Our measurements here can thus be seen as (promising) upper
bounds. We elaborate on the technical limitation imposed by the extension SDK in
Section 4.14.

We come back to the use cases from Section 4.7 and measure how the extension affects
the following metrics: 1. number of additional requests, 2. size of additional traffic,
3. time until the browser paints the first pixel / the largest visible image or text block8

7e.g. after the first update, 10M updates along with 100k new URLs are appended to the existing
10M, resulting in a total of 20.1M.

8More precisely: the ‘largest contentful paint’.

69

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

/ until the web page is fully responsive. 4. total blocking time, i.e. time during which
web page cannot process user input. We consider differences below 100 ms to be
imperceptible to the users, differences of 100-300 ms barely noticeable and differences
above 300 ms noticeable.9

Table 4.2: Evaluation results on case studies: The second and third columns show
the number and total size of additional requests made by the extension, i.e. the
number of signed manifest and certificate. Each subsequent block provides Lighthouse
performance metrics for rendering time and the total time that the browser spends
unresponsive. For each metric, we compare the baseline (no CSP, no Accountable
JS) with the overhead incurred by enabling CSP and enabling the Accountable JS
extension (leaving CSP disabled). For compartmentalisation, the baseline is with the
extension activated but the same signing key for all Nimiq components. All the time
values are averages over n = 200 runs and given in milliseconds. The additional
traffic(kB) value is affected by the size of the signature and SXG certificate. Signatures
are generated on uncompressed manifest JSON files.

additional network . . . time to . . . baseline + CSP overhead + Accountable JS overhead

case study requests traffic (kB) first pixel largest element reactive blocking time

Hello World 2 2.06 196 +1 +20 197 +0 +23 196 +1 +24 0 +0 +0
Trusted Third-Party 2 2.46 462 +0 +21 462 +0 +21 462 +0 +21 0 +0 +0
Delegate Trust (Nimiq A) 3 9.93 262 +3 -10 262 +3 -10 5591 -29 -144 172 +4 +87
AdSense + Nimiq B 3 15.62 747 +2 +91 901 +5 +68 6034 +1 -82 159 +3 +77

Compartmentalisation 2 + 2 8.66 +1.10 2200 -17 4675 +20 5321 +115 212 +7

Evaluation environment Measurement took place on a MacBook Pro with 2 GHz
Intel Quad-Core i5, 16 GB RAM and macOS Monterey 12.5.1 with Google Chrome
107.0.5304.121. The results are compiled in Table 4.2. We measured the number of
additional requests and traffic using Chrome’s developer tools and the rendering metrics
using Lighthouse (set to ‘desktop simulated throttling’). Unfortunately, WhatsApp Web
is incompatible with Lighthouse, so we instead computed the combined duration of all
tasks performed by the browser using Puppeteer Page metrics [125]. We automated
this process using Puppeteer and NodeJS and perform n = 200 trials per website and
configuration to minimise the impact of network latency on page loads.

Configurations For performance evaluation, we compare the CSP built into the
browser with the Code Verify and Accountable JS extensions as follows:

1. Baseline: disabled CSP and extensions.

2. CSP: CSP active, no extension.

3. Accountable JS: CSP inactive, only Accountable JS extension active.

4. Code Verify: CSP inactive, only Code Verify extension active. This configura-
tion only applies to WhatsApp Web, as Code Verify currently only supports Meta
websites.

9We derive these performance categories from the RAIL model [108]. According to RAIL, users
feel the result is immediate if < 100 ms and feel they are freely navigating between 100-1000 ms (see
also [122]). However, we found this gap is too wide to ignore, and split the category at 300 ms for an
unusually common delay in web apps due to the ‘double tap to zoom’ feature on iPhone Safari [169].

70

4.13. EVALUATION

Experiments We consider the examples from Section 4.7: Hello World, WhatsApp
Web, Trusted Third-Party, Delegate Trust to Third Parties (Nimiq A), Untrusted Third
Party (Google AdSense and Nimiq B). For the compartmentalisation experiment on
Nimiq’s Wallet, we use a different baseline that we will discuss below. For the CSP
measurement, we defined CSP headers for each website that listed all active content
in the Accountable JS manifest files. We collected all valid sources of external scripts
and hashes for the external and inline scripts in CSP’s script-src directive, hashes
for event handlers in script-src-attr and sources for iframes in child-src. For
the Accountable JS experiment, we first navigate to the target website and wait for
ten seconds for the page to load. Thereafter, using the generate_manifest in the
extension, we download the manifest file and self-sign it using the gen − signedexchange
command line tool [148]. For Nimiq A+B and AdSense, we changed the trust attribute
for the external element(s) to delegate before signing. We publish this signed manifest
via a local web server and configure the web server to provide a response header pointing
to a URL. We also ensure the website provides SRI tags for external scripts. Evaluation
procedures of each case study are elaborated in the Accountable JavaScript Appendix
Section 8.5.

Results The CSP configurations show an imperceptible overhead in all case studies.
This is hardly surprising, as CSP is built into the browser built-in and can validate
resources during rendering. A detailed CSP defined for Nimiq A (Nimiq including its own
CSP) increases the reaction time by about 65 ms. The Accountable JS configurations
likewise have an imperceptible overhead in all case studies. Moreover, the traffic
requirements are modest and incur only modest blocking time. For Nimiq A, the traffic
requirements are about 9.9 kB for the additional signature. In terms of performance,
CSP and Accountable JS’ overhead are comparable. The time to interactive value
unexpectedly decreases more with Accountable JS than CSP. However, the difference is
minimal and could possibly be explained by a) network latency, (b) side effects of the
browser’s just-in-time compilation or scheduling or (c) a side effect of the former two
on how Lighthouse evaluates the reactive metric. Nimiq is a complex web application
heavily dependent on external data, in particular the remote blockchain it connects to.

Discussion The Accountable JS configurations have an imperceptible overhead which
is slightly higher than the CSP configurations. Recall that the CSP is built in the
rendering engine whereas Accountable JS runs as a browser extension. Accountable
JS has to perform signature validation, meta data collection and a final compliance
check. The prototype achieves good performance overheads by measuring all elements
simultaneously and combining their results. The browser extension panel displays the
results instantaneously, while the evaluation is in progress, although the evaluation is
usually too quick for the user to notice. Moreover, the traffic requirements are modest
and incur little blocking time.

For AdSense + Nimiq B, the network overhead is slightly higher than Nimiq A. This
is due to the larger size of the manifest, which now also includes AdSense. We again
observe an imperceptible impact on performance with Accountable JS.

71

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

The difference between Code Verify (220ms) and Accountable JS (244ms) on WhatsApp
Web is small. This is remarkable, because Code Verify only applies SRI checks on
external scripts but not event handlers or iframes. In contrast to Accountable JS, the
order of active elements is ignored, attributes are not checked (e.g. load=’async’ for
scripts) and a short hash value is downloaded from Cloudflare, rather than a signature.

Compartmentalisation For compartmentalisation, we evaluate the impact of the
additional signing key. We signed Nimiq Keyguard, which is embedded in Nimiq
Wallet, with a different signing key and set the Keyguard’s trust attribute to delegate
in the Wallet’s manifest. The baseline therefore also has the Accountable JS extension
activated, but uses the same signing key on all Nimiq components. The Wallet’s manifest
includes the Hub’s manifest inside and the Hub’s manifest declares the Keyguard with
trust = delegate in its manifest section. Thus a separate manifest is required for the
KeyGuard. Also, this time a separate signing key is used for the KeyGuard manifest.
For the baseline performance, we inline the KeyGuard’s manifest as an entry for its
iframe in the Wallet’s manifest, thus having one manifest and one signing key, and
activate the extension.

In the compartmentalisation evaluation, we observe that there are two more round
trips and slightly higher traffic overhead (relative to the overhead of Accountable JS,
w.r.t. the overall page traffic of 4.6 MB). This is due to downloading the extra SXG
certificate and manifest for Keyguard. The effect on the rendering metrics is small; the
barely noticeable increase for time-to-reactive value can again be explained with network
latency and side effects described above. This is due to the fact that the delegated
manifest can be validated in parallel to rendering, while it is inlined in the baseline
scenario and thus validated in sequence.

Due to stapling, the overhead for clients to verify that they received the latest version
of the code (and thus the same as any other user), is negligible. The web server staples
a query result, i.e. the log’s signature on the signed manifest, to each request. The
signatures use 2048-bit RSA keys and are 256 Byte long.

4.14 Limitations of Prototype

The browser extension is a prototype to evaluate performance and applicability of the
approach. The advantage of an extension (as opposed to modifying the browser’s source
or writing a developer plugin) is that users can easily experiment with its code. On the
other hand, extensions cannot interrupt the browser’s rendering engine. Thus we inject
a content script [45] that can apply the client-side operations of the protocol to the
browser window. The content script runs in the same context as the web page; hence
it can observe changes to the DOM via the Mutation Observer. Since the extension
cannot access to the browser’s rendering engine, there is the possibility that some active
elements are added within a small time frame before the Mutation Observer is registered.
This race condition is a limitation of using the extension and fixable by closer integration
into the browser.

Another limitation is that other browser extensions may interfere with the measurement

72

4.15. RELATED WORK

by injecting active content to the web page. Since extensions cannot distinguish website
code from the code that other extensions injected to the web page, this can break the
measurement. This is the correct behaviour, as the website developer cannot attest to
every possible modification of the active content by other extensions, however, there are
various client-side solutions: (a) closer integration into the browser could distinguish
active content injected by websites, (b) the extension could provide an API for third
party extensions to register modifications or (c) an allowlisting for the most common
extensions that gives a warning to the user.

4.15 Related Work

We first discuss how Accountable JS relates to other (proposed) web standards with
seemingly similar goals, before discussing related academic proposals.

CSP was introduced to counter Cross-Site Scripting (XSS) attacks. They specify runtime
restrictions for the browser, typically the set of allowed sources for scripts, iframes,
stylesheets, etc., including eventual requirements for sandboxing. Like accountability
manifests, CSPs can specify which sources are allowed and, combined with SRI, fix
their content. This is comparable to a manifest file that includes types with trust set to
either assert (if SRI is employed) or blind − trust (otherwise). By contrast, CSPs do
neither cover the order nor possibly nested active contents (e.g. iframe within iframe).
Mixed ordering of active content may create malicious activity, a site loading script
A before script B may mean something different from loading B before A. A site that
only uses CSP cannot catch that behaviour, whereas in Accountable JS, we take the
order into account. Most importantly, in CSP, there is no means of delegating trust
and no distinction between web server and developer. Steffens et al. [153] show that
outsourced content is one of CSP’s major deployment obstacles. Instability in third
party inclusions (e.g. adbidding code that delivers code from different resources) forces
first parties to continuously update the CSP. Techniques like in Section 4.7.5 allow
developers to delegate trust to the third party. It is conceivable to incorporate features
like trust delegation into CSP, along with a mechanism for signing CSP headers. By
contrast, capturing the order or the nesting between active elements and providing
non-repudiation appears to clash with the design of CSP. Moreover, CSP tries to
mitigate XSS attacks throughout the web, whereas Accountable JS targets websites
willing to allow for an audit. The ability to identify the code that is run is a key
requirement for that. Overall, the goals of CSP and Accountable JS are orthogonal and
can be combined. It is possible to generate a CSP from a manifest file.

The Web Package proposal (currently in draft status [197], see Fig. 4.4) aims at
packaging web applications for offline use. Web packages provide a declaration of the
web application’s metadata via Web App Manifests [105], a serialisation of its content via
Web Bundles [198], and authenticity via SXG [196]. We likewise employ SXG to provide
authenticity of origin via signatures.SXG, like Accountable JS, decouples web developer
from website hoster. Web App Manifests, despite their name, are only superficially
related. They contain startup parameters like language settings, entry points and
application icon, e.g. for ‘installable web application’ displayed in a smartphone’s

73

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

launcher. Web Bundles are a serialisation format for pairs of URLs10 and HTTP
responses. They represent a web application as a whole, but a signature on a web
bundle would change with every modification of a web pages’ markup. Web Packages
are thus not competing with Accountable JS. Instead, both standards are compatible.
A web bundle can contain x-acc-js-link in the header of its entry point’s HTTP
response, triggering the browser to validate the manifest. The manifest is specified via
a URL that also included in the web bundle. This URL maps to an HTTP response
that contains the manifest in its content part.
Signature-based SRI [172] proposes easier maintainable SRI tags to protect against
script injections, by including signature keys instead of hashes. These enable validating
the provider of the third party script, instead of their content, similar to the trust
relationships expressed with trust = delegate. The tags are part of the HTML code,
instead of the manifest file. Signing the HTML files is impractical, as they are frequently
changing.
Service Workers [138] are Network proxies programmable via JavaScript, often used
to perform URL response caching, separate from the browser cache. Theoretically, a
compliance check similar to our measurement could be implemented in a service worker,
but (a) the service worker would need to be delivered correctly and (b) service workers
lack access to the DOM and thus information about how active elements used.
We will now discuss related academic work. Accountability in the web requires non-
repudiable proof. For static assets, this can, in principle, be provided by digital
signatures (e.g. via SXG and web bundles, see above), but recreating the signature
for each exchange is costly. We solve this via a simple challenge-response mechanism.
Ritzdorf et al. [136] provide a full-fledged solution, giving non-repudiation for the entire
communication, optionally hiding sensitive data. The statement we prove is that the
client has obtained certain active content, not that they execute it. Ensuring a remote
partner runs certain software is the goal of remote code attestation (e.g. [74]). Outside

10More precisely, HTTP representations [64].

Header

URL

CSP

Manifest

Web Bundle

Web App
Manifest

W
eb

 P
ac

ka
ge

SXG

HTTP responsemapped to

x- acc- js- link

HTML

Content

 contains

7

Figure 4.4: Accountable JS in the context of other web technologies.

74

4.16. DISCUSSION

embedded systems, this is typically based on a trusted execution environment (e.g.
TPM, SGX). While the browser (and for that matter, our extension) could provide a
trusted execution, establishing trust in the correctness of the browser is the crux.

Our work relies on a transparency log. As mentioned before, Trillian’s [161] verifiable
log-based maps would fit the bill, but there are many ways to implement such a store.
The most interesting aspect is privacy. We propose an approach based on stapling,
an established method for revocation management [53], but other techniques promise
privacy, too. CONIKS [114] provides a log, mapping user identities to keys and keeping
the list of all user identities in the system private. This would not help in our case, as
the URLs (the domain of our mapping) are not secret, but which URL a user accesses.
Multiparty protocols for Private Information Retrieval [66], Private Set Intersection
(e.g. [130]) or ORAM [68] lack efficient database updates, mechanisms to efficiently
update precomputation steps, or only preserve k-anonymity for URLs. K-anonymity is
often not enough if we consider that an attacker, e.g. a censor, tries to punish access
to a few critical URLs, each of which may end up in a bucket with uncritical, but also
not frequently visited URLs. Finally, Accountable JS may be an enabler for formal
verification of web applications, as users are potentially able to link the code they receive
to code to published verification results. Various static and dynamic analyses target
JavaScript already [126, 139].

Although we showcased only a single approach to code compartmentalisation (as it is
being deployed by our real-world example), other approaches are also compatible with
Accountable JS. Language-based isolation methods like BrowserShield [132]) rewrite
JavaScript into a safer version preventing or mediating access to critical operations
like createElement or eval. If the code is rewritten on the client (typically using
JavaScript), the developer declares the wrapper that fetches the code and deals with the
code rewriting in the manifest file. If the code is rewritten on the server, the developer
declares the transformed JavaScript code that will be delivered to the user. Frame based
isolation methods (e.g. AdJail [103]) that isolate the third party code inside iframe are
also compatible with our proposal, see the use case for untrusted third party code in
Section 4.7.5.

4.16 Discussion

We provide a solution that allows users to detect if they are microtargeted by developers
and to prove this to the public if it is the case. Sending different codes to classes of users
might not be outlawed in many countries, but sending malicious code is. Our solution
neither provides a code audit tool nor does it propose a framework, legal or otherwise,
for the punishment of malicious code distribution. It provides, however, verifiable data
that authorities can use to evaluate which code was published and whether that code
was delivered to a specific user. Moreover, the protocol provides users with a claim that
includes the delivered code and the identity of the developer.

The transparency logs can be used as a point of reference for the public code for auditing
and evaluating. Honest developers aim to make their code easy to audit; dishonest
developers thus risk loss of reputation if they microtarget users (as frequent updates are

75

CHAPTER 4. ACCOUNTABLE JAVASCRIPT CODE DELIVERY

visible on the transparency logs), silently opt out of the system (as this will be caught
by users that received a previous opt-in), or provide obfuscated code (due to the log).

Honest developer will benefit from a good reputation and their ability to provide proofs
for any efforts they make toward independent audit or formal verification. Clients, who
often debate a website’s reputation in a public forum (e.g. the case of ProtonMail or
Lavabit) obtain data to substantiate positive and negative claims.

We stress that accountable code delivery is necessary to connect auditing results to
the code users actually run, but does not by itself guarantee the safety of this code.
Realistically, it will take some time until software analyses are mature enough to handle
this at scale. Assuming, however, that such analyses may not necessarily run at each
browser independently, authentic code delivery appears to be a necessary first step.

Moreover, Accountable JS only authenticates the active content, thereby exposing the
active content to data-only attacks, e.g. modified button labels or form URLs. A
signature on the content of a web application could be achieved by building on Web
packages/Web bundles (which we discussed in Section 4.15); however, this approach
would be too static and inflexible for the requirements of the current web ecosystem.
Thanks to accountability, the developer would take responsibility for the active content
that they published, in this case, for code that is vulnerable to data-only attacks.
Realistically, there would not be consequences, because they can plausibly point to
the dire state of verification of JavaScript—which is at least partially because users
could thus far not be sure to receive the verified code anyway. Accountable JS choice to
validate the active content only is a compromise and possible starting point for future
work, as we discuss in the next section.

4.17 Conclusion

With Accountable JS, we provide a basis for the accountable delivery of web applications,
and thus a first step towards re-establishing the trust between a user and the web
application code they run on their computers. How to actually achieve security – via
audit, code analysis or formal verification – is a question that we left open on purpose.
Accountable delivery is, nevertheless, a requirement for any non-instantaneous analysis.

A key question for verification and audit is how to relate the web page’s user interface
to the active content. As some desirable security properties concern user input, we
would like to give guarantees about, e.g. form fields. We can account for the JavaScript
code that address them by ID, but those are invisible to the user. Future work may
investigate how to establish stronger ties between the manifest and the user interface.

76

5
Formal Browser Model for Security

Analysis

77

5.1. PROBLEM STATEMENT

As web technologies continue to evolve, ensuring the security and privacy of browsers
has become increasingly complex. This chapter presents a novel framework that employs
formal methods to identify security and privacy vulnerabilities in browser implemen-
tations with respect to Request for Comments (RFC) standards. By model checking
detailed browser models against RFC properties, we systemically and exhaustively
explore potential vulnerabilities in browsers. Our framework automates the process of
testing contemporary browsers against these vulnerabilities to validate their real-world
implications.

We validate the efficiency of our approach through two case studies. The first case study
demonstrates a potential vulnerability that could allow unauthorised camera access
by exploiting a browser’s vulnerabilities in URL parsing, origin assignment and secure
context assignment. The second case study shows a scenario where a website might
engage in side-channel attacks between browsing contexts by abusing Cross-Origin
Isolation State in the browser. In the first case study, we find a previously known
camera attack in an old version of Safari browser and our analysis also shortens the
original attack process. Our contributions include a comprehensive browser model,
implemented as a state machine in Alloy, and an automated framework that integrates
model checking, counterexample parsing, test-case generation and test-case validation
in browsers. Our findings showcase the effectiveness of such rigorous analysis in the
realm of browser security, particularly as web technologies advance every day.

5.1 Problem Statement

Web browsers serve as gateways to the digital world, connecting users with content,
services and applications from the web. They rely on multiple standardised protocols
and guidelines that are detailed in RFC documents. RFCs outline the ideal standards,
best practices and informational guidelines for web protocols and browser functionalities.
They offer a consistent and secure online experience in theory. However, in practice,
real-world browser implementations may have different interpretations of the RFC
specifications and different optimisations throughout the code base with respect to
security, privacy, performance and user experience, resulting in inconsistent behaviours
and potential security and privacy vulnerabilities across different browsers.

The change is also complicated. The web is not a static entity. It evolves with new
technologies, user demands, and security and privacy challenges emerging regularly.
RFCs need to encapsulate these evolving needs while balancing backward compatibility
and progressive innovation. As these standards evolve, so do the browsers need to adapt
to this ongoing cycle of changes.

Furthermore, browsers can rightly be considered as operating systems for the web,
orchestrating multiple layers of functions from parsing URLs, establishing connections
to websites, interpreting HTML, executing JavaScript to handling multiple windows,
managing web resources, multitasking, accessing media devices, security and origin isola-
tion and others. These functionalities are not just independent components operating in
isolation, they are deeply interconnected, with each component influencing others. Even
a minor change in one component may impact another, leading to unforeseen vulnera-

79

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

bilities. Therefore, it is imperative to undertake an exhaustive and holistic approach to
testing browsers that encompasses all components and their complex interrelations.

To address these concerns, there is an evident need for frameworks that can bridge the
gap between the theoretical world of RFC standards and the practical world of browser
implementations. Such tools must be robust and adaptable to fulfil the ongoing change
demands on web browsers. Beyond the robustness and adaptability, they should have
an exhaustive search capability diving deep to uncover vulnerabilities within standalone
browser components and the web of interrelations they form. Only by employing such
comprehensive tools can we ensure the level of security and reliability that users expect
from modern web browsers.

5.2 Overview

In this chapter, we propose a framework that uses formal methods to unearth vulnerabil-
ities in browser implementations relative to RFC standards. We model check on detailed
browser models that encompass browser functionalities, policies and APIs, against
properties highlighted by the respective RFCs. The model checking systematically and
exhaustively checks whether the browser model adheres to the property. When model
checking identifies a violation of the property (also referred as a counterexample), our
framework automatically creates a test case scenario from the violation and validates it
on browsers to find out whether actual browsers exhibit this flawed behaviour.

Our framework is designed with adaptability in mind, new browser features or changes
on existing browser functionalities, policies and APIs can be easily integrated to our
framework. This is achieved through our model’s modular architecture. This modular
architecture enables rapid and accurate validation of the security and privacy implications
of updated browser features. Moreover, new browser features and their interrelations
with existing features can be accommodated to the framework and their implications can
be validated before these features become part of the real-world browsers, contributing
to ongoing improvement of browser security and privacy. Integrating new features to the
framework requires considerably less effort with the modular architecture. Furthermore,
the modular architecture of our framework also enables to easily represent interactions
between browser components. Each module is designed with an interface that allows
to communicate with other components, showing interdependencies between browser
functionalities. This design helps capturing behaviours exhaustively that can arise from
the interactions between functionalities and it enables more accurate and comprehensive
validation of potential security and privacy vulnerabilities.

The framework executes the process in multiple phases:

1. RFC Formalisation :

We begin with formally modelling the RFC behaviour as a basis for the standardised
behaviour. This model serves as the reference against which all browser behaviours
are evaluated. We build the model as a state machine in Alloy specification
language. The model changes from one state to another state in response to an
event using transition functions defined for the event.

80

5.2. OVERVIEW

2. Browser Behaviour Analysis:

Subsequently, we examine different browser implementations to analyse and
pinpoint their deviations from the RFC behaviours and individual characteristics.

3. Divergence Integration:

We then integrate these identified divergences into our browser-specific models,
ensuring the models reflect the current state of the specific browsers.

4. Model Checking:

The rest of the process is mechanised by our framework. Utilising model checking
which the framework provides, we automatically check to discover if the deviations
from the RFCs can lead to any potential vulnerabilities on the browser models.
For every vulnerability that is discovered, the model checker provides a model
execution trace that shows the states of the browser components and applied
events that led to the changes on the state in each step.

5. Attack Validation:

Our framework generates test-case scenarios from these traces. The test-case
scenarios consist of generic JavaScript codes to apply the events in the trace to the
browser components. The test-case scenarios are then run on real-world browsers
to ascertain the practical implications of the detected issues.

6. Incremental Solving:

If the test-case scenario execution results in an actual attack on the browser, we
store the counterexample in the system’s directory. Subsequently, we resume
the ‘Model Checking’ phase to identify additional counterexamples from the
same model and property. This iterative process continues until no further
counterexamples emerge from the model.

7. Feedback Loop:

If the test-case scenario execution does not yield an attack, we return to the
‘Divergence Integration’ phase and refine our model based on the new findings of
the browser behaviours and apply the same processes from this phase until we
find an actual attack on the browsers.

Our formal browser models formulate the following concepts in browsers:

• Browsing environment elements : browsing contexts, browsing context groups and
browser tabs [190],

• Document and HTML content : Document [191], DOM API [177], HTML elements
(JavaScript and non-active elements), iframes and sandboxed iframes [182],

• Security and isolation elements : secure contexts [193], origin [192],

• Navigation elements : History API [185],

• Network elements : web servers [174], DNS servers [52], absolute URLs (HTTP/S) [16],

• Local resource elements : local URLs (about:blank [120], data [106], blob [1]),

81

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

• Security policies : Same-origin Policy [13], Cross-Origin Resource Sharing (CORS)
Policy [179] and Cross-Origin Isolation State [183],

• Browser APIs (Events) : WindowOpen, Navigate and RenderResource [135],
• JavaScript APIs (Events) : History.pushState [186], Location.replace [187], Cre-

ateBlob [94], Popup [188], ReadDOM, WriteDOM, CreateIframe [178], AddSand-
box [182], Document.write [184], AccessToMedia [109], SharedArrayBufferAc-
cess [146].

To showcase our framework’s effectiveness, we employ it on two distinct case studies.
Here, we examine if our models could potentially open the way for unauthorised access
to sensitive browser data. In the first case study, we analyse whether the browser
model can result into an unauthorised media device access e.g. camera. This scenario
explores how an untrusted website might exploit vulnerabilities in URL parsing, origin
assignment and secure context assignment, to gain unwarranted access to the camera.
Whereas, in the second case study, we examine whether the browser model can lead to
side-channel attacks between browsing contexts. This case study delves into mechanisms
in which an untrusted website in one browsing context can unjustly gain access to the
powerful JavaScript functionalities that enable side-channel attacks on other browsing
contexts. Notably, the browser models deployed in each case study are rigorously derived
and consistent subsets of our detailed formal browser model denoted by Mrfc. The
camera access model in the first case study is denoted by Mcam and the side-channel
access model in the second case study is denoted by Msch. This approach is adopted to
circumvent the challenges posed by the state-space explosion problem inherent in model
checking. We elaborate on this in Section 5.4.
We summarise our contributions in this chapter as follows:

• We develop a detailed browser model conceptualised as a state machine in Alloy.
For practical applications in our case studies, we craft two distinct and consistent
subsets of this model. Our analysis has identified a previously known camera
attack in an older browser version and even made the attack process shorter in
the first case study.

• We introduce a framework equipped to automate tasks such as model checking,
counterexample parsing, test-case generation and test-case validation on browsers.

5.3 Outline

In Section 5.4, we describe the methodology used for the formal modelling of web
browsers. Subsequently, in Section 5.5, we present the design and structure of the
detailed formal browser model. Next, we outline the browser camera access model
for the first case study in Section 5.6. Thereafter, in Section 5.7, we describe the
Cross-Origin Isolation State and in a following subsection we outline the model for the
second case study. In the following, in Section 5.8, we discuss the security properties
and vulnerabilities targeted in analysis of the case studies. Next, in Section 5.9 we
describe the process of generating test cases based on the identified counterexamples
and explain how these test cases are used to simulate potential attack scenarios in the

82

5.4. METHODOLOGY

browser. In the following, in Section 5.10, we present our evaluation of the effectiveness
and accuracy of the formal models and analysis techniques we employed. Thereafter,
in Section 5.11, we discuss the existing related work on web browser formal models
and security analysis. In the following, in Section 5.12, we discuss the strengths and
weaknesses of the proposed approach and any potential areas for improvement. Then,
in Section 5.13, we summarise the main findings of the study and their significance.

5.4 Methodology

Our main objective in this chapter is to develop a formal model of web browsers and to
evaluate the model’s capability in detecting vulnerabilities that lead to unauthorised
access to critical data in browsers. We construct a detailed model that encapsulates
the essential features and behaviours of the browser, and we enhance the model by
incorporating security-critical policies e.g. same-origin policy, cross-origin resource
sharing policy and cross-origin isolation state. We generate two consistent subsets of
the general model and employ these sub-models on two distinct case studies, recognising
that verification of two different mechanisms on one large model can be limiting in
model checking because of the state-space explosion problem [44]. These sub-models
are tailored to explore distinct security and privacy concerns in greater depth and they
are fine-tuned to detect specific kinds of threats.

For instance, the first specialised sub-model (Mcam, Camera Access model) is
tailored to detect vulnerabilities involving unauthorised access to user’s media device e.g.
camera, via the browser. This model mainly comprises various types of URLs, browsing
contexts, documents, iframes, sandboxing, secure contexts, origins, history, web servers
and DNS servers, and it incorporates the Same-Origin Policy. It is further refined to
focus on specific functionalities that are required to access the media devices such as
URL parsing, origin assignment, secure context assignment and media device access
control. Our analysis investigates whether an attacker through a malicious website
could exploit these functionalities in some cases to gain unauthorised access to a user’s
camera.

By contrast, the second specialised sub-model (Msch, Side Channel Access model) is
crafted to detect vulnerabilities involving side-channel attacks between browsing contexts
using powerful JavaScript APIs. This model includes essential browser elements like
browsing contexts, browsing context groups, documents, iframes, HTML elements
(JavaScript and non-active elements), DOM API, origins, web servers, DNS servers
and absolute URLs. Moreover, it incorporates the Same-Origin Policy, Cross-Origin
Resource Sharing Policy and Cross-Origin Isolation State. In this model, powerful
JavaScript APIs (e.g. SharedArrayBuffer) are only accessible when a browsing context
is in Cross-Origin Isolation State. Our analysis in this model examines for instance
whether an attacker in a browsing context that is not in Cross-Origin Isolation State
can gain access to the powerful APIs such as through a different browsing context that
is in the Cross-Origin Isolation State.

We apply model checking to rigorously identify the vulnerabilities in browsers. To
this end, we formulate the model using the Alloy formal modelling language. Model

83

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

checking is a systematic method that allows to exhaustively search all possible states to
determine whether properties hold for the current model. By exploring the entire state
space, model checking provides guarantees in detecting flaws or verifying the absence of
them in the model. On the other hand, fuzzing is another prevalent technique to detect
vulnerabilities in software. It involves providing random or grammar-based inputs to
the software under test and observing its behaviours to identify weaknesses in a software.
Fuzzing is a more computationally lightweight and automated approach in software
testing. However, it has limitations, it cannot provide the same level of guarantees as
model checking because it is not exhaustive, therefore it may not cover all possible cases
and some edge cases that could compromise the software might go untested. Hence, we
choose model checking to provide stronger guarantees. Nevertheless, we discuss how
our platform can be enhanced by incorporating both the model checking and fuzzing in
the Section 5.12.

In this work, we take the distinction between the RFC specifications and practical
implementations into account. RFCs define standards for web protocols and function-
alities, and the practical implementations from different vendors such as Safari and
Chrome, realise those standards for their end users. RFCs are published by the Internet
Engineering Task Force (IETF) and they describe the best practices to implement web
features. However, different browser vendors may have different interpretations of the
specifications and different optimisations throughout the code base with respect to
security, privacy, performance and user experience resulting in inconsistent behaviours
and potential security and privacy vulnerabilities across different browsers.

Our methodology includes a rigorous analysis on RFCs and browser implementations
to identify those potential vulnerabilities. We start by formally modelling Mrfc which
is the RFC behaviour as a basis for the standardised behaviour. Next, we analyse the
behaviour of browser implementations e.g. Safari, noting any deviations or unique
characteristics they exhibit from the RFC-defined standards. We then incorporate these
discrepancies into our browser-specific model denoted by Mcam to assess whether they
can lead to actual attacks.

To manage the complexity in the model, we apply an iterative refinement strategy in
our modelling. Building a detailed model from the beginning would cause an excessive
amount of counterexamples, making the model challenging to manage. Therefore, we
firstly construct an abstract browser model that only represents very basic functionalities
and behaviours of the browsers. Then, we iteratively refine the model by adding
more details of the browser functionalities and behaviours based on the spurious
counterexamples we encounter which do not lead to any actual attacks in the browser.
This process goes on until the model provides a more comprehensive and accurate
representation of the real-world browser.

To construct the model, we use Alloy [6] which is a declarative formal modelling language
and is based on first-order logic and relations. Alloy’s declarative language enables
concise representation of complex models. It has been successfully used in various
domains. In addition, it provides visualisation of models and its backend Kodkod [160]
provides a library for Java development environment that we utilise for mechanising the
whole model checking and counterexample validation process. We specify constraints

84

5.4. METHODOLOGY

and relations in first-order logic. Alloy, in turn, translates the model into a boolean
formula using Kodkod. Then, the formula is transformed into a satisfiability problem
in which an off-the-shelf SAT solver attempts to find solutions for a given property.
Alloy also provides bounded model checking that allows to efficiently explore a finite
number of states in the model. This is useful for a large and complex system like the
web browser, as we can define a smaller scope and analyse the properties within that
scope and thus reduce the computational burden which can be extensive in exhaustive
state space exploration. However, we also note that there may exist additional solutions
in larger scopes which we did not explore.

Furthermore, Alloy offers a variety of SAT solvers. We choose the MiniSat solver [54]
for its efficiency and performance. MiniSat solver also supports incremental solving
which helps to efficiently find subsequent instances of the model by using the work
that is done in previous analysis, reducing redundant computations. This optimisation
enabled us to explore more instances of the model within a shorter timeframe. Alloy also
provides three different decomposition strategies that can be parallel, batch or hybrid
for efficient, scalable and flexible problem solving. In the parallel strategy, Alloy splits
the problem into multiple subproblems and tries to solve each problem with concurrent
processes. The batch strategy solves the problem by looking at all the signatures and
fields together at once, covering every possible instantiation. The hybrid strategy is a
combination of the parallel and batch strategies which performs parallel decomposition,
but reserves one process for batch problems. We experimented with both parallel and
hybrid methods. However, for our model, we found that these techniques led to slower
model checking. Hence, we decided to select the batch strategy for decomposition.

In Alloy, there are two ways of analysing properties. One is finding an instance to a
property that provides an instantiation of the model that satisfies a property. The other
way is asserting the property cannot be refuted in the model for the selected scope. In
the latter case Alloy attempts to find an assignment of relations in the model called
counterexample in which the property is not satisfied. We generally use the second
method to identify counterexamples to our properties, reserving the first method for
sanity checks to test that our model is correctly implemented. This approach guarantees
that the property holds for all possible instantiations of the model in the selected scope.

The counterexamples show potential vulnerabilities in the model. We further analyse
these counterexamples to determine whether the vulnerability can actually be exploited
in the browser. To mechanise the process, we implement a Java application that
incorporates essential components such as Kodkod for translations of the boolean
formula, SAT solvers to tackle the satisfiability problem, a parser to interpret the
counterexample, a test case generator to replicate the same configurations and actions
in the browser and a test case executor that attempts to execute the attack scenario.
The application automatically analyses the specified properties and checks whether the
identified attack can be realised in the browser environment. The application framework
is explained in Section 5.9.

85

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

5.5 Formal Model Design

In this section, we present our detailed browser model designed to investigate unautho-
rised access to critical data within web browsers. This model serves as the foundational
framework for our analysis and is further elaborated in the subsequent sections. In
Section 5.6, we shift our focus to the specialised Camera Access model Mcam. This
model is specifically engineered to identify vulnerabilities that could lead to unauthorised
access to users’ media devices, such as cameras, via browser interfaces. Following that,
Section 5.7 explores the Cross-Origin Isolation State model Msch. This standalone
model is oriented towards security features that mitigate unauthorised data access at
the microarchitectural level.
To implement the models, we use Electrum [104] which is an extension to the Alloy
specification language. State machines can be modelled more easily with Electrum as
it allows to model signatures and relations that can evolve from state to state in each
model execution step. This enables an easier representation of dynamic systems.

one abstract sig Browser extends Client {
var bcs : set BrowsingContext
...

}

Listing 5.1: Browser signature in Alloy

For instance, we can define a ‘Browser’ signature that has a mutable ‘bcs’ relation
representing the set of browsing contexts in the ‘Browser’. In this context, the ‘var’
keyword is used to indicate mutability. A new browsing context can be inserted to this
‘bcs’ set every time a new ‘WindowOpen’ action occurs in the model execution trace.
Electrum also supports temporal logic operators within properties. Using the temporal
logic operators, we can reason about properties of the system that involves time. For
instance, we can define a safety property that says when a ‘Navigate’ action occurs on a
browsing context, there must have been an earlier ‘WindowOpen’ action on the same
browsing context in the trace.
We build the model as a state machine. The model changes from one state to another
state in response to an event using transition functions defined for the event. In addition,
some events are neutral and have no effect on the current state, hence the system will
remain in the same state when those events occur. In fact, Electrum considers traces as
infinite. Hence, all execution traces must end with a final state that repeatedly stays
in the same state in response to a neutral event. This behaviour is sometimes called
stuttering.
All browser components and browsing contexts are stored in the ‘Browser’ signature
which represents the state in our model. To optimise the model-checking process, we
aim to minimise unnecessary complexity in the model. Considering that all traces
must start with at least one tab open in the browser, we adapt a simple initial state
in our model that consists of a single tab opened in the browser but not navigated
to any documents yet. In the model, that initial state is represented with a single
browsing context appended to the ‘Browser’ signature and associated with StartupUrl

86

5.5. FORMAL MODEL DESIGN

and StartupOrigin. Moreover, it is unaffiliated to any document, but ready to initiate
navigation or other actions in the first step. Additionally, we initialise all other browsing
contexts and associated relations empty. These elements are not immediately considered
as part of the active state. Instead, they are appended to the state as the model
transitions in response to the events with each iterative step.

To have a dynamic system in which the ‘Browser’ evolves with each step, we define a
mutable ‘Call’ signature that serves as an interface for the transitions. The policies in
the browser, e.g. same origin policy, are also enforced within this ‘Call’ interface in the
model. It describes where the call originates from, its destination, arguments sent and
results returned from this call. Furthermore, it is associated with an event that shows
which function will be triggered from this call.

The ‘Function’ signature represents an event (or action) in the model. It is an abstract
signature for all possible events e.g. ‘WindowOpen’, ‘Navigate’ and others. The ‘rootBc’
relation refers the root browsing context that is associated with the event and presence
of this relation ensures that any event can only be called by a browsing context that
is part of the state. In other words, it prevents a browsing context from triggering an
event, when it is not related to one of the root browsing contexts in the ‘bcs’ relation
in the ‘Browser’ signature. The ‘bc’ relation refers to the actual browsing context that
the state transition will be applied when the event occurs. As stated before, it has to be
related to one of the root browsing contexts in the state. The ‘party’ relation refers to
the browsing context that triggers this event on the ‘bc’ relation. The browsing context
associated with the ‘party’ relation should have a reference to the browsing context
associated with the ‘bc’ relation e.g. the ‘party’ is the browsing context of a window
that was previously opened as a popup by the window of ‘bc’. Also, the Same-Origin
Policy applies between the ‘bc’ relation and ‘party’ relation.

var one abstract sig Call {
var from : lone (BrowsingContext + Script),
var to : lone (BrowsingContext + Browser + Server),
var args : set HtmlResource,
var returns : set HtmlResource,
var event : one Function

}
var lone abstract sig Function {

var rootBc : one BrowsingContext,
var bc : one BrowsingContext,
var party : one BrowsingContext

}

Listing 5.2: Alloy Definitions for Modeling Browser Function Calls

We ensure that only one ‘Call’ and one ‘Function’ exist in each step in the model
execution trace. The events trigger state transitions in the model. State transitions are
predicates that describes the changes in the state. Each predicate is associated with an
event. The switch below ensures the associated predicate is called depending on the
event selected in the trace.

fact {

87

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

always (all c : Call | exec[c.event, c])
}

pred exec [f : Function, c : Call] {
f in WindowOpen implies window_open[f, c]
f in Navigate implies navigate[f, c]

}

pred window_open[..]{}
pred navigate[..]{}

Listing 5.3: Alloy State Transitions

We build the model on general web concepts in the browser and the interactions
between browser features, web servers, DNS servers and JavaScript APIs. To capture
the relationships between the browser, the web servers and the DNS servers, the
communications in the model take place between endpoints which are servers (web
servers) and clients (browser and JavaScript elements), though some interactions can
also take place between the browser and JavaScript APIs.

There is only one single browser in the current design. It contains multiple browsing
contexts modelled based on the HTML standard [190]. Browsing contexts serve as
containers for the tabs and iframes in the browser. Therefore, every browsing context is
associated with a tab or an iframe. The browsing contexts are responsible for displaying
documents and non-active contents such as stylesheets, images and HTML elements.
Additionally, scripts are executed within the browsing contexts. We elaborate on the
browsing context features in the model as the following:

• A URL and an origin are set for a browsing context depending on the URL
visited in its current document. Every browsing context starts with an initial
URL that varies across different browser vendors in real life. We simplify these
differences and we assign a ‘StartupURL’ in the beginning of each browsing context.
Additionally, we assign a corresponding ‘StartupOrigin’ to each browsing context,
which represents the origin of the ‘StartupURL’. This origin does not have any
capabilities and it is essentially a placeholder that is used only for the initial setup
of the browsing context. The origin determines the access rights that a browsing
context has. These access rights are enforced with the Same-Origin Policy [13]
which regulates the interactions between different entities from different origins.

• Each browsing context is associated with a single active document that is currently
being presented to the user when the user is visiting a website. This document may
contain various HTML elements e.g. JavaScript or non-active elements. Initially, a
URL corresponding to each element is sent in the first HTTP request to the server.
Subsequently, the browser initiates additional resource requests to these URLs to
retrieve the associated resources from the respective servers. Once a document
has successfully acquired all its child elements from their corresponding servers, it
reaches a ’DOM rendered’ state. At this point, the document’s elements can be
manipulated: they can be edited or removed using the Document Object Model
(DOM) API, and new elements can also be added through the same API. Notably,

88

5.5. FORMAL MODEL DESIGN

in the real browsers, HTML elements can also be altered during rendering, we do
not consider this case in our model.

• Every browsing context maintains a session history that keeps track of the docu-
ments that it has visited and is currently visiting.

• A browsing context can open multiple nested child browsing contexts representing
the behaviour that a browser document contains iframe documents inside. A
browsing context without an opener is a top level browsing context.

• A boolean secure context value is assigned for each browsing context. Certain
browser APIs and features require stronger security measures and they are only
accessible for browsing contexts that are in secure contexts. For a website to
be in secure context, its code must be delivered through an authenticated and
encrypted channel i.e. over TLS. In the model, we abstract away the channel
authentication and encryption, and we assume that the browsing context is a
secure context when a valid absolute URL [194] with HTTPS scheme is visited in
its current document. However, for ultimately being considered in secure context
by the browser, the entire opener chain is involved in the decision process. We
detail other requirements that a browsing context to ultimately be in a secure
context in Section 5.6.2.

• The iframes can be sandboxed in the browsers to isolate the iframe content. Hence,
a browsing context that is associated with an iframe can be sandboxed in our
model. We introduce a boolean variable called ‘isSandboxed’ for those browsing
contexts to indicate whether they are sandboxed.

In this section we only describe the Same-Origin Policy mechanism in our detailed
model Mrfc. The Cross-Origin Resource Sharing Policy and the Cross-Origin Isolation
State are presented in Section 5.7. In addition, the absolute URLs and local URLs are
detailed in Section 5.6.1.
We integrate our model with the Same-Origin Policy which is a security mechanism
inherent to browsers to restrict data access between different origins to ensure data
isolation. In the model, this policy is constructed based on an integrity property that
prevents unauthorised information exchange between distinct origins. In simpler terms,
this property functions as an access control mechanism between browsing contexts that
intend to initiate events on each other’s document. The integrity property is associated
with the Function signature in the Call interface and it regulates the event calls to the
browsing contexts. The ‘party’ relation in the Function signature identifies the browsing
context initiating the event and the ‘bc’ relation identifies the browsing context on
which the transition function will be applied in response to the event. If the ‘party’
relation is different from the ‘bc’ relation, then the browsing contexts in each relation
must be in the same origin. Additionally, the browsing context in the ‘party’ relation
should hold a reference to the browsing context in the ‘bc’ relation e.g. a self-opened
popup window or embedded iframe.
In browsers, origins mainly fall into three categories: tuple origins, opaque origins and
special scheme internal origins. Tuple origins are the most prevalent. They are derived
from scheme, hostname and port number in the URLs. They represent different web

89

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

server addresses on the internet. Opaque origins are unique origins generated in specific
scenarios e.g. sandboxed iframes and the local scheme URLs e.g. about and data URLs.
In addition, browsers may have special internal origins for specific functionalities in the
browsers e.g. startup or error page origins like ‘safari-resource://’. We represent all
special internal origins with StartupOrigin in our models. This also makes it feasible to
apply the same model across different browsers e.g. Chrome, Firefox.
The following is a breakdown of the Same-Origin Policy’s restrictions across different
origins:

• We prevent StartupOrigin from accessing the document of any browsing context,
because they are only placeholders for the error documents or the browsing context
that is in the initial state and lacking a document yet.

• A browsing context that has an opaque origin cannot be accessed by any other
browsing context. Opaque origins are serialised into ‘null’ in the browser. However,
the browser assigns a unique opaque origin to each document even if the documents
have the same URL. Hence every opaque origin is a different origin and access is
prevented. An exception applies to about URLs (when they are not sandboxed),
they can be accessed by any browsing context sharing the same origin this includes
those with opaque origins.

• Tuple origins are only accessible by which browsing contexts that have the same
tuple origins, namely the scheme, host and port numbers must align.

• There is a unique case called the ‘BlankOrigin’ which is not part of the RFC
specifications. It is only available in our Safari v13.04 model Mcam. It is assigned
to a blob URL whose creator origin is an opaque origin or a blank origin when it is
opened in a top-level window in some scenarios that we elaborate on in Section 5.8.
A blank origin is a blank scheme, blank hostname and blank port number which
serialises into ‘://’. Blank origins can only be accessible by the browsing contexts
that have the same blank origin.

5.6 Camera Access Model

This specialised sub-model Mcam is derived from the detailed browser model described
in Section 5.5. As mentioned before, it mainly incorporates various types of URLs,
browsing contexts, documents, iframes, sandboxing, secure contexts, origins, history,
web servers and DNS servers, and it integrates the Same-Origin Policy in the model.
This model is utilised to detect vulnerabilities involving unauthorised access to users’
media devices e.g. camera via the browser. The model is further refined to focus
on specific functionalities that are required to access the media devices such as URL
parsing, origin assignment, secure context assignment and media device access control.
Browsers need to parse strings into URLs and due to the complex syntax variations
of URLs, browsers can make mistakes in this process. Correct URL parsing is one of
the most important tasks in browsers, primarily because origins are determined based
on accurately interpreted URLs. Incorrect origin assignment can lead to security and
privacy violations. Furthermore, secure contexts are assigned to local resources or

90

5.6. CAMERA ACCESS MODEL

external resources that are delivered confidentially i.e. via TLS. Additionally, errors
in URL parsing not only affect the correct origin assignment but also secure context
assignment especially since the evaluation of local resources and those delivered through
TLS depends on the correct interpretation of URLs.

In the model, for the URL parsing concept, we aim to determine how browsers handle
different URL formats, including their schemes, delimiters, hosts, ports, paths, queries
and fragments, as well as how they assign origins for URLs. In the secure context
assignment concept, we aim to analyse how browsers establish and maintain secure
contexts for different browsing contexts in different scenarios e.g. when they are in
sandboxed iframe or when they are opened in a popup window. Then, we model the
correct behaviours and the vulnerabilities associated with these concepts in Safari
browser (v13.04) i.e. how it handles error URLs with malformed components and how
it assigns origins and secure contexts to the browsing contexts that attempt to navigate
such URLs. We select the Safari v13.04 to demonstrate that our model can detect a
media devices attack taking place on this and preceding versions, as identified by Ryan
Pickren [129].

We aim to evaluate whether entities, such as JavaScript elements or browser tabs, that
do not qualify the required permissions and secure context requirements, can still gain
access to users’ camera by exploiting vulnerabilities in URL parsing, origin assignment
and secure context assignment. In the following two subsections, we present the URL
manipulation and secure context assignment concepts in our model.

5.6.1 URL Manipulation

We firstly model the valid definition of URLs in RFC [17] specification. We only model
the URLs in the following schemes, and we exclude other schemes that are not in this
list e.g. File, JavaScript. Furthermore, we also remark that the origins for these URLs,
we state in the following for each, are based on when they are navigated in a new tab
i.e. they are not opened as a popup window or iframe in another tab or sandboxed,
because the origin assignments in the browser are subject to these conditions.

• Absolute HTTP and HTTPS URLs: The browser and web servers communicate
to deliver web content in these cases. The URL specifies the web address, that
comprises the scheme, host name, and optional port number, path, query, and
fragment components. The host name is used to search DNS servers to obtain
the web server’s address. The origin of an absolute URL is categorised as a
‘TupleOrigin’. A tuple origin consists of the scheme, host name and port number.
The port number is included if it is applicable in the URL.

• About URLs: Local URLs used internally to access browser specific features
e.g. ‘about:blank’ opens a new blank document. The origin of an about URL
is classified as ‘OpaqueOrigin’. The opaque origins serialise into ‘null’ in the
browsers.

• Data URLs: Local URLs that are not used to point to any internal or external
resources. Instead, they embed data inside the URL. The URL contains the mime
type of the data, encoding type and the actual data. Their origin is opaque origin.

91

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

• Blob URLs: Local URLs that point to data that is called Binary Large Objects
(Blob) in the browser’s memory. They can be created by JavaScripts. The URL
includes the creator browsing context’s serialised origin and a random identifier.
The origin equals to the creator browsing context’s origin in the URL. Safari
v13.04 fails to assign the correct origin to top-level blob URLs whose creator
origin is an OpaqueOrigin in some cases we explain in Section 5.8. It assigns a
‘BlankOrigin’ and we cover this behaviour in the model.

Subsequently, we cultivate URL manipulation techniques and their behaviours in the
model. Browsers provide multiple methods in JavaScript realm to manipulate the
URLs. Those methods are useful to create dynamic web applications e.g. Single Page
Applications (SPA). Using those methods, the developers can modify the URL and
change the content of the document without a page refresh or new web request to the
server. However, it is crucial to implement these methods correctly to avoid potential
security vulnerabilities. Improper implementation of URL manipulation methods can
lead to security risks. For instance, a browser assigning an incorrect origin to some
content might result in attacks like cross-site scripting (XSS), information leakage and
script injection. In the following, we provide the URL manipulation interfaces that
we model. Each of these interfaces is represented as events in the model that result
into transitions between states e.g. the URL of the browsing context changes, the old
document gets discarded, a new history gets appended to the list and others :

• Navigate : Refers to the action where the user enters a URL in the address bar to
visit a web page in the browser or clicks to a link in the current web page. A new
browsing context is created and appended to the browser. The origin of the new
browsing context is computed from the visited URL.

• Popup : A top-level window or an iframe opens a new tab in the browser and
navigates to a specified URL. A new browsing context is created and appended
to the browser. The origin of the new browsing context is computed from the
visited URL, except for about URLs. About URLs opened in a popup inherit the
origin of the opener.

• History.pushState : Inserts a new record to the browsing context’s history list
and changes the URL displayed in the address bar in the browser. It includes a
URL to be appended to the list. This URL in the new record must be in the same
origin as the original URL of the browsing context. Additionally, the new URL
can also be a relative path. In this case, the relative path is either added to the
original URL or it replaces the path in the original URL if a path already exists.
As Safari v13.04 fails to parse the blob URLs and to assign the correct origins to
them, attackers can use the history.pushState to replace the blob URL. This is
detailed in Section 5.8.

• Location.replace : Allows to replace the current web page with the one in the
specified URL. The new URL is not appended to the browsing context’s history
list, hence the user cannot use the back button to navigate back to it. In addition,
‘Location’ object that represents the current URL of the web page points to the new
URL. However, the Same-Origin Policy restricts the cross origin replace requests

92

5.6. CAMERA ACCESS MODEL

to the ‘Location’ object. The JavaScript object that calls the ‘Location.replace’
method on the web page must have the same origin as the current page that will
be replaced. For instance, in the popup context, if an opener browser tab attempts
to replace the location of the opening tab, then the document of the opener tab
and the document of the opening tab must have the same origin.

• Document.write : Permits to directly replace the content inside a document
with the string specified in the method. It is currently discouraged to use by
RFC [82] because it may affect the HTML parser in some cases and result into
DOMException errors. When the Document.write operation is applied by another
entity, e.g. a top-level window, an iframe or a popup, then it also replaces the
URL and the origin of the document with the URL and origin of the applying
entity. In general, the Same-Origin Policy applies in this and the other interface
contexts. The document and the applying entity must have the same origin.

• Add sandbox flag : Being in a sandboxed iframe will affect the origin of the
browsing context. When an iframe is sandboxed, it will always have an opaque
origin, regardless of the URL it contains. Additionally, a sandbox flag can
dynamically be assigned to an iframe after it is rendered in the document. However,
the sandbox flag will only take effect after the iframe navigates to a new page.
Once the iframe loads the new page, the new document inside the iframe will
have the opaque origin. In cases where the new page navigation attempt in the
iframe fails due to a reason such as the Content Security Policy (CSP) [173] or
XFrameOptions [137] preventing the content from being presented in an iframe,
the iframe document will be replaced with an error document, its URL will be
the ‘StartupURL’ and the origin will become ‘OpaqueOrigin’. However, there
is a deviation in how Safari v13.04 handles this situation. Instead of properly
updating the iframe’s document and origin, the iframe document remains in the
previous state, and the sandbox flag is still applied to the iframe. We cover this
behaviour in the Mcam model.

5.6.2 Secure Context Assignment

In the model, we assign a boolean ‘secure context’ value for each browsing context. This
value represents whether a particular browsing context is considered to be in a secure
context or not. A context is considered secure when data was delivered with integrity
guarantees i.e. delivered over TLS which provides a confidential and authenticated
channel. To simplify the model, we abstract away the details of the TLS infrastructure.
Instead, we assume for a browsing context that is associated with a top-level window
and navigates a valid absolute URL with the HTTPS scheme, then it is in a secure
context [193]. For other URL schemes, e.g. HTTP, Data, Blob, except the About scheme,
we assume that the browsing context is in a non-secure context. This means that when
a browsing context navigates to a URL with these schemes, certain restrictions may
apply accordingly to access browser APIs.

The secure context algorithm in the specification [193], includes ancestral checks to
determine the secure context of a browsing context in an iframe. Browsing contexts in

93

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

iframes are considered in secure context when their documents are delivered over TLS
and they are embedded in a document that is also in a secure context. For instance,
an iframe document that has a URL with HTTPS scheme is ultimately considered
non-secure context when one of its chains of ancestors is in a non-secure context. In
the model, for such a scenario, we assign the browsing context in the iframe as secure
context, but when we evaluate the browsing context’s secure context value for accessing
to the browser APIs, we compute the ‘ultimate secure context’ value that shows the real
secure context value of the browsing context. This simplifies the model as some browser
(e.g. Safari v13.04) whose behaviours we modelled performs an erroneous behaviour
with secure context assignment. The ultimate secure context value is computed with
‘decideUltimateSecureContext[bc]’ function in the model and the secure context value
in the execution trace does not represent the ultimate secure context value.

Furthermore, URLs with the About scheme inherit the secure context value of the
opener, when they are opened in an iframe or in a popup window. It is crucial to
assign the correct secure context value of a popup window with About scheme when it
is opened by an iframe. The secure context values of the ancestor chain of the iframe
must be taken into consideration when the secure context value is copied to the popup
window that has the About scheme. Safari v13.04 deviates from the expected behaviour
in the secure context assignment procedure in this scenario and we cover this behaviour
in the model.

5.7 Cross-Origin Isolation State

Processors apply speculative executions by guessing future paths in the software code
and executing the instructions in those paths beforehand to improve performance.
However, the speculative executions can leave traces in the cache. In Spectre side-
channel attacks [89], the attackers can infer knowledge from these traces by for instance
measuring the time it takes to access certain data in the memory. In the context of
the browser, this could mean a JavaScript code in a web page in one browser tab can
gain knowledge about other tabs opened in the browser by accessing memory locations
that other tabs have which bypasses the Same-Origin Policy and results into data leaks.
Browsers like Chrome introduced site isolation that assigns a different process for each
browsing context to avoid sharing processes with attackers. However, process isolation
is not a complete safeguard to prevent side-channel attacks like Spectre as they facilitate
the underlying hardware that includes the CPU cache which is shared among processes.
Hence, in addition, browsers disable powerful APIs such as SharedArrayBuffer (SAB)
and performance.now() which provide high precision timers and are available in the
JavaScript realm to be used by the attackers.

The browsing contexts that are in Cross-Origin Isolation State [117] are exceptions for
those APIs. Cross-Origin Isolation State is a state-of-the-art security feature extending
the principles set by the Same-Origin Policy and it re-enables the powerful APIs for the
browsing contexts that are in this state. There are two features that browsing contexts
need to opt in by sending the response headers presented below to achieve this state.

Cross-Origin-Opener-Policy : same-origin

94

5.7. CROSS-ORIGIN ISOLATION STATE

Cross-Origin-Embedder-Policy : require-corp

Listing 5.4: Cross-Origin Isolation State headers

When a browsing context opens a new popup window, it retains a reference to this
window’s browsing context which means they can interact with each other using the
reference via the DOM API. This can present a security risk. For instance, without
the user noticing, the opening website can redirect the opener website to another
website that looks like the original website but is malicious instead. Setting the Cross-
Origin-Opener-Policy (COOP) [176] to ‘same origin’ prevents the opening window and
the opener window from holding references to each other if they are not in the same
origin. This measure effectively reduces the attack surface by limiting the cross-origin
interactions e.g. when a Spectre attack takes place.

Furthermore, websites frequently embed third-party contents in their applications.
These third-party contents share the same browser process since they reside within the
same browsing context. Setting the Cross-Origin Embedder Policy (COEP) [180] to
‘require-corp’ will require the cross-origin content to explicitly permit being embedded in
a cross-origin document. In other words, with COEP set to ‘require-corp’, the browser
will block a cross-origin content to be embedded in a document if it did not allow
to be embedded using Cross-Origin Resource Policy (CORP) [181] or Cross-Origin
Resource Sharing (CORS) [179] policies. This is mainly for protecting the third-party
content from the main document. In this way, the main document cannot attack the
third-party content that did not opt-in to the COEP feature. This measure minimises
the attack surface. The CORP response header allows to set the origins that can access
the resource. Possible directives are ‘same origin’, ‘same site’ or ‘cross-origin’. On the
other hand, CORS is a policy defined by the Access-Control-Allow-Origin response
header [189]. The value for this response header represents the permitted origins.

5.7.1 Side Channel Access Model

The second specialised sub-model Msch is also derived from the detailed browser model,
as detailed in Section 5.5. This Msch model includes key browser components like
browsing contexts, browsing context groups, documents, iframes, HTML elements
(JavaScript and non-active elements), DOM API, origins, web servers, DNS servers
and absolute URLs. Moreover, it incorporates the Same-Origin Policy, Cross-Origin
Resource Sharing Policy and Cross-Origin Isolation State. In this model, some powerful
JavaScript APIs (e.g. SharedArrayBuffer) are only accessible when a browsing context
is in Cross-Origin Isolation State in the browser. However, a browsing context can share
data with or even allow scripting to other browsing contexts. In this model, we explore
whether the powerful APIs like SharedArrayBuffer can be shared between cross-origin
browsing contexts.

In the refined Msch model, we exclude various local URL definitions present in the
original model and we only consider Absolute URLs that require HTTP requests to
and responses from servers. The model is constructed upon two principal HTTP
requests : main requests and resource requests for content embedded within the main

95

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

document. Additionally, the model incorporates the ‘popup’ operation i.e. opening a
new window from the main website. The main request is dispatched to a server identified
by its domain name in the URL. The response to this primary request provides a raw
HTML document containing only URLs pointing to embedded resources at this stage.
Additionally, the response includes the response headers that indicate the policies and
their associated directives e.g. ‘COOP=same-origin’ and ‘COEP=require-corp’ that
the server opted for. When sending resource requests or opening a new popup window
from the main website, the browser considers these policies. For instance, with a policy
like ‘COEP=require-corp’, all cross-origin resource requests will inspect the response
for CORP and CORS response headers. Subsequently, the browser issues iterative
resource requests for each embedded resource URL listed in the main HTML document
to their corresponding servers. In response, servers provide either a JavaScript or a
non-active element, accompanied by specific response headers, e.g. CORP or CORS
indicating which origins are authorised to embed this element. Taking these policies
into account, the browser then decides whether to incorporate the element into the
document’s ‘elements’ list if it is deemed compliant or into the ‘blocked’ list otherwise.

Drawing from the RFC specification [190], we also introduce ‘browsing context groups’
in our model. A browsing context group collects a list of browsing contexts that are
directly accessible from each other. For instance, a typical browsing context group
might comprise a primary browsing context and its associated nested child browsing
contexts (e.g. iframes) and the browsing contexts that it holds references to (e.g. popup
windows). When a browsing context initiates a new popup, the associated COOP policy
of the browsing context’s document is considered by the popup operation. Specifically, if
‘COOP=same-origin’ is set then cross-origin popups are not added to the same browsing
context group with the initiating browsing context.

Furthermore, we introduce a ‘SharedArrayBufferAccess’ event in this model to permit
scripts to access the SAB, which provides a shared memory among same-origin doc-
uments [146]. For a website to access SAB, it must operate within a secure context
and be in a Cross-Origin Isolated State. In this model, we abstract away the scheme
part of URLs. Hence, we simply assume all websites are within a secure context and
only cross-origin isolated state is required to access the SAB. We incorporate this
functionality to explore whether a script can access a cross-origin document’s SAB. For
the ‘SharedArrayBufferAccess’ event, our model imposes the following constraints:

1. script is legitimate: within the model’s execution trace, the script should be
an element of a document, which in turn should be the active document of a
browsing context. This browsing context should be part of a browsing context
group present in the ‘bcgs’ relation of the state,

2. the document is legitimate: the document must be a recognised as part of the
state, following the chain relation as outlined above,

3. the document has access to SAB: the document is in cross-origin isolated state,

4. the origin of the script’s associated document and the origin of the document itself
must be identical.

96

5.8. SECURITY ANALYSIS

5.8 Security Analysis

Proper implementation of URL parsing, origin assignment and secure context assignment
are crucial aspects for preserving the security and privacy in web browsers. Fundamental
browser security features such as the Same-Origin Policy rely on correctly determining
the origin of a web document which further relies on correct URL parsing. The Same-
Origin Policy regulates interactions between a resource in one origin to a resource in
another origin. An incorrect origin assignment can inadvertently undermine this policy,
leading to potential unauthorised actions on a resource or undesired information leak.
Moreover, in some browsers, certain sensitive APIs, for instance, those granting access
to a user’s media devices require origin-based permissions explicitly defined by the
user beforehand. An incorrect origin assignment can therefore violate users’ privacy.
On the other hand, a secure context ensures the sensitive APIs are only accessible to
websites that have proven some level of trustworthiness i.e. only the websites that
are accessed over a secure communication, preventing man-in-the-middle attacks, can
access to camera or geolocation of the user. Misassignment of secure context to an
untrustworthy website can also jeopardise the privacy of the user.
As browsers continue to evolve incorporating even more complex functionalities, ensuring
data privacy and integrity becomes increasingly challenging. With new cases being
added constantly, browser testing becomes more complicated every day. The vast
expanse of the test case scenarios can be daunting to navigate and it is becoming
evident that covering all edge cases in traditional testing methodologies might fall short.
Consequently, employing formal methods, which offer a systematic and comprehensive
approach to understanding and verifying countless test case scenarios, can assist in
identifying security and privacy vulnerabilities in the browsers.
In Section 5.5, we present our formal browser model that deeply examines the implica-
tions of URL manipulation, origin assignment and secure context assignment. In this
section, we specifically explore their collective impact on accessing sensitive APIs that
control accesses to users’ media devices e.g. camera and require origin-based permissions
defined by the user and secure context for access. Our objective is to uncover methods
that could mislead the browser into mistakenly granting access to malicious websites by
presenting them as if they are from permitted sources within a secure context using
the URL parsing, origin assignment and secure context assignment vulnerabilities. We
show that vulnerabilities that seem minor can actually lead to significant security and
privacy breaches in the browser.
In our formal analysis, we find variations of a previously known camera attack by Ryan
Pickren [129] on Safari v13.04 and our model even finds a shorter version of the attack.

5.8.1 Ryan Pickren’s Webcam Attack

We selected Ryan Pickren’s webcam attack [129] on Safari v13.04 as our case study
due to its complexity. It requires multiple steps and many browser functionalities to
be modelled. As we show the attack plan in the following, detecting such attacks
through conventional testing can be hard. On the other hand, formal methods permit
an exhaustive search for potential vulnerabilities, at least up to a certain boundary.

97

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

In 2019, Ryan Pickren showed that Safari v13.04 browser can be hacked to gain
unauthorised access to the webcam by exploiting the URL parsing, origin assignment
and secure context assignment vulnerabilities. We elaborate on the attack plan in the
following :

• The attacker is a web attacker who operates a potentially legitimate website and
seeks to exploit vulnerabilities in Safari browser to gain unauthorised access to
the user’s webcam by leveraging browser APIs, e.g. MediaDevices Web API [109].
Browsers, by design, grant access to specific APIs only within a secure context and
to trusted websites that are explicitly set by the users. If the attacker’s website
can masquerade as a trusted entity and bypass the secure context checks, it can
exploit these permissions to access an unsuspecting user’s camera without a proper
consent.

• Apple’s native applications such as Safari have default access to the camera
without requiring explicit permission from the operating system. In Safari, when
the website attempts to use the camera, the users are prompted with a bar asking
users if they grant the camera access to that website. On the other hand, users
have the flexibility to provide persistent camera access to specific websites through
Safari’s settings. This means that users can designate trusted websites to access
their camera without being prompted for permission each time. If an attacker
manages to trick Safari into believing that a malicious website is among the trusted
websites, they can access to the camera without direct user consent.

• The attack, as depicted in Figure 5.1, hinges on the nuances of tracking websites on
the Safari. Safari v13.04 does not use origins to monitor ‘currently open websites’,
instead it employs a generic URL parsing on all open windows that removes the
URL’s scheme and scheme delimiter part and strips ‘www.’ from the hostname.
That leads to malformed URLs such as ‘blob://example.com’ to be interpreted
as legitimate ‘example.com’. If a user navigates such a URL directly, Safari will
display an error document and script execution will be halted, preventing an
attack. However, if an attacker begins with a valid webpage URL and later finds a
way to alter it, script execution is not interrupted, opening the way for a potential
attack.

• The goal of the first part of the attack is to create a URL that will be interpreted
as a trusted URL e.g. example.com, by the genetic parser which considers the
‘blob://example.com’ and ‘https://example.com’ are the same websites. Concur-
rently, the aim is to produce a document that allows script execution. As outlined
in the formal model Section 5.5, when Safari encounters a blob URL created by
an opaque origin and navigated in a top-level window, it assigns a blank origin
to this URL. Additionally, when it is opened in a popup window, it inherits the
opener’s origin. The attacker starts by navigating to a data URL. Subsequently,
in the document encoded in this URL, he generates a blob whose creator origin
is an opaque origin. Then, he replaces the present document with a document
that includes the blob content using the location.replace API. As a result, the
current document not only supports script execution but also possesses a blob
URL with a blank origin. This part is presented with the state transitions from

98

5.8. SECURITY ANALYSIS

State - 0

BrowsingContext 0

href : StartupURL
origin : StartupOrigin
secureContext : True

State - 1

BrowsingContext 0

href : about:blank
origin : OpaqueOrigin
secureContext : True

State - 2

BrowsingContext 0

href : about:blank
origin : OpaqueOrigin
secureContext : True

Navigate CreateBlob

State - 3

BrowsingContext 0

href : blob:null/1234..
origin : BlankOrigin
secureContext : False

Location.replace ('blob:null/1234..')

State - 4

BrowsingContext 0

href : blob://
origin : BlankOrigin
secureContext : False

History.pushState
 ('blob://')

State - 5

BrowsingContext 0

href: blob://example.com
origin : BlankOrigin
secureContext : False

History.pushState
 ('example.com')

State - 6

BrowsingContext 0

href : blob://example.com
origin : BlankOrigin
secureContext : False

BrowsingContext 1

href : about:blank
origin : BlankOrigin
secureContext : False

State - 7

BrowsingContext 0

href : blob://example.com
origin : BlankOrigin
secureContext : False

BrowsingContext 1

href : blob://example.com
origin : BlankOrigin
secureContext : False

State - 8

BrowsingContext 0

href : blob://example.com
origin : BlankOrigin
secureContext : False

BrowsingContext 1

href : blob://example.com
origin : BlankOrigin
secureContext : False

Create Iframe

Document.write
 (BC0 -> BC1)

Dynamically add
 sandbox
 to iframe

State - 9

BrowsingContext 0

href : blob://example.com
origin : BlankOrigin
secureContext : False

BrowsingContext 1

href : blob://example.com
origin : OpaqueOrigin
secureContext : False

Location.replace Iframe to XFrameOptions website

State - 10

BrowsingContext 0

href : blob://example.com
origin : BlankOrigin
secureContext : False

BrowsingContext 1

href : blob://example.com
origin : OpaqueOrigin
secureContext : False

BrowsingContext 2

href : about:blank
origin : OpaqueOrigin
secureContext : True

Popup from Iframe

State - 11

BrowsingContext 0

href : blob://example.com
origin : BlankOrigin
secureContext : False

BrowsingContext 1

href : blob://example.com
origin : OpaqueOrigin
secureContext : False

BrowsingContext 2

href : blob://example.com
origin : OpaqueOrigin
secureContext : True

Document.write(BC1 -> BC2)

State - 12

BrowsingContext 0

href : blob://example.com
origin : BlankOrigin
secureContext : False

BrowsingContext 1

href : blob://example.com
origin : OpaqueOrigin
secureContext : False

BrowsingContext 2

href : blob://example.com
origin : OpaqueOrigin
secureContext : True

Access to
 Media
 Device Attack

Figure 5.1: Ryan Pickren’s Webcam Attack (State-8 is absent in our model’s attack
trace, elaborated in Section 5.8.2)

99

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

State-0 to State-3 in the Figure 5.1.

• To craft a URL that is recognised as trustworthy, the attacker uses the his-
tory.pushState API to modify the existing URL without triggering Safari to
navigate to the actual URL. As detailed in the formal model section, the his-
tory.pushState API facilitates two main functions: it can replace the entire
URL with a provided URL in the parameters or simply replace the path of the
current URL using the path supplied to the API. For the first function, the
history.pushState API evaluates whether the existing URL holds the same origin
as the URL that is used for modifying. Given that the current URL’s origin is
blank origin (encompassing a blank scheme, hostname and port number) that
serialises only to the delimiters ‘://’, an opportunity arises. The attacker can
swap the current URL with ‘blob://’ whose origin is similarly interpreted as a
blank origin. Subsequently, using the history.pushState API’s second functionality,
Safari can be deceived into believing that it is merely replacing the path when any
sequence of characters that lacks the scheme delimiters provided to the API. For
instance, when supplied with the ‘example.com’ parameter, the API will modify
the URL as ‘blob://example.com’. Since this URL is interpreted as ‘example.com’
by the Safari, the document will have direct access to the camera if it satisfies
the secure context requirement. In the Figure 5.1, the transition from State-3
to State-5 illustrates the modifications in browsing contexts resulting from the
application of history.pushState events.

• The objective of the second part of the attack is to have secure context for the
existing document whose URL is derived from a local URL. As outlined in the
formal model section, to attain a secure context, the website must be delivered
in TLS. Additionally, a document in a secure context embedded within a non-
secure context (e.g. within an iframe) will ultimately be regarded as non-secure.
Hence, it is essential to consider the opener chain. However, Safari diverges from
these standards by assigning secure context to any document whose origin is
opaque origin and failing to check the opener chain when making secure context
determinations. The attacker can leverage these vulnerabilities by opening a
popup with the crafted URL and setting its origin as an opaque origin within a
JavaScript enabled document.

• As highlighted in the formal model section, sandboxed iframes always have opaque
origins. Leveraging this can help to establish a secure context for the document.
Moreover, the Document.write operation allows for the modification of the target
document’s content and this operation propagates the URL to the targeted
document. As depicted in the Figure 5.1, in deploying an attack, the sequence
will include the steps in the following:

1. The attacker begins by creating a standard iframe within the existing docu-
ment, initialising it with an about URL. This is depicted in the transition
from State-5 to State-6.

2. Subsequently, the Document.write operation is executed on the iframe, copy-
ing the malicious camera exploit code into it. As an outcome, the iframe

100

5.8. SECURITY ANALYSIS

inherits the crafted URL from the parent document (from State-6 to State-7
transition).

3. To escalate the exploit, the attacker dynamically appends a sandbox attribute
to this iframe, aiming an opaque origin within the iframe (from State-7 to
State-8 transition). However, as emphasised in the formal model section,
sandbox attributes appended dynamically only become active after a new
website is navigated in this iframe. A challenge here is that if a fresh website
is navigated within the iframe, any JavaScript contained within the iframe
will be purged. Hence, a careful orchestration is required to ensure the
malicious code persists in the iframe. To address this, the attacker lets the
browser to navigate a website with an X-Frame-Options response header set
to deny to be embedded in an iframe. Upon this attempt, the navigation
fails. However, it ensures that the iframe adopts a sandboxed state with an
opaque origin, while the JavaScript remains intact inside the iframe (from
State-8 to State-9).

4. The last step is to open a popup with about URL (from State-9 to State-
10) from this iframe and apply Document.write() operation to the popup
document (from State-10 to State-11). Consequently, this new popup will
have the crafted URL equipped with an opaque origin and a secure context.
Within this environment, the attacker can seamlessly exploit the camera API
(from State-11 to State-12).

5.8.2 Shorter Version of Ryan Pickren’s Webcam Attack

Upon further analysis through our formal model checking, we discovered variations of
Ryan Pickren’s webcam attack. Central to our analysis was the evaluation of a specific
security property, formulated as: "Is it feasible for an attacker to gain access to a user’s
media devices, through a browsing context whose URL does not conform to an Absolute
URL?"

assert cameraAttack {
always {

no bc : BrowsingContext | some m : Media {
bc.currentDoc.src !in AbsoluteUrl and
m in bc.accesses

}
}

}
check cameraAttack for 1 but 6 Url, 3 Path, 3 Domain,
3 BrowsingContext, 3 Document, 4 Endpoint, 6 Origin,
7 History, 14 Function, 14 steps

Listing 5.5: Alloy Assertion Property for Verifying Media Access

In Section 5.8.1, we discussed Ryan Pickren’s Webcam Attack and how Safari v13.04
has a parsing flaw concerning URLs. This flaw allows for malformed URLs, such
as ‘blob://example.com’, which isn’t a true Absolute URL, to be misinterpreted by
Safari as a legitimate Absolute URL like ‘example.com’. If a user has previously

101

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

marked the ‘example.com’ as a trusted site for media device access, then the deceptive
‘blob://example.com’ URL would also gain access to the media devices. Hence, in our
security property, our investigation focuses on assessing whether a URL containing
a trusted domain (e.g. ‘example.com’), but not being a genuine Absolute URL, can
indeed access media devices.

In the following, we present the constraint in our model that must be true for all media
accesses. Recall that the ‘bc’ relation in events (‘Access2Media’ in this case) indicates
the browsing context that is attempting media access. The event also contains a ‘media’
relation representing the target media which further has ‘permitted’ relation listing the
domains authorised for access. Therefore, a browsing context can only access the media
device if:

1. the browsing context is among the currently open browser tabs,

2. the URL of the browsing context is considered a ValidUrl,

3. the origin of the browsing context is not a StartupOrigin,

4. the domain name present in the URL is listed in the media’s set of permitted
domains,

5. the browsing context is in a secure context.
fact mediaAccess {

always (
all f : Access2Media |
let nbc = f.bc | let m = f.media |
let dom = find_domain[nbc.currentDoc.src] |

f.canAccess = nbc implies (

nbc in Browser.bcs and
nbc.currentDoc.src in ValidUrl and
nbc.origin !in StartupOrigin and
some dom and dom in m.permitted and
decideUltimateSecureContext[nbc] = True

)
)

}

Listing 5.6: Alloy Property for Restricting Media Access

With our analysis, we also undercover a deviation from the initial understanding of
iframe origin assignments in the Ryan Pickren attack. In the original attack, it was
believed that to achieve an opaque origin within an iframe, it was essential to dynamically
append a sandbox attribute to the iframe to get an opaque origin in the end (transition
from State-7 to State-8 in the Figure 5.1). However, our model has brought forward
an easier approach, potentially simplifying the attacker’s task. Our findings indicate
that navigating the iframe to a website with an X-Frame-Options header set to deny
inherently results in the iframe obtaining an opaque origin, irrespective of the presence
or absence of a sandbox attribute. This revelation means that the additional step of

102

5.9. TEST CASE GENERATION AND SIMULATION

sandboxing the iframe becomes redundant. The iframe, once denied navigation due to
the X-Frame-Options, will naturally acquire the desired opaque origin, also ensuring
that the malicious JavaScript remains operative within the iframe. Hence, the transition
from State-7 to State-8 is absent in our observed attack trace.

By understanding and leveraging this behaviour, attackers can potentially reduce the
steps and complexity involved in their exploit, making their attacks more efficient. It also
underscores the importance of consistent formal model checking in identifying nuances
and deviations that might not be immediately obvious during traditional software
testing.

5.8.3 Security Analysis of Cross-Origin Isolation State

As outlined in the Section 5.7, we extended our formal model to encompass the Cross-
Origin Isolation State, a vital security feature designed to reinforce the isolation of
resources (e.g. SAB) between origins. The intention behind this modelling was to
ascertain whether there exist any vulnerabilities or unexpected behaviours that could
potentially be exploited i.e. a script can access SAB through a cross-origin document.
Upon rigorous analysis, our model did not identify any counterexamples. The absence
of counterexamples supports that the existing design of the Cross-Origin Isolation
State effectively maintain the expected isolation of resources between origins, validating
the robustness of the feature against potential attacks. It is also important to note
that this absence of counterexamples is confined to the scope of our defined model.
Counterexamples may exist in broader scopes that we did not explore. The following is
the security property that we check in our analysis which by default analysed for 10
steps.

assert sharedBufferAccess {
always {
no script : Script | some buffer : SharedArrayBuffer |
let crossOriginDoc = buffer.~sharedbuffer |
let scriptDoc = script.context |
legitScript[script] and
buffer in script.sabAccess and
crossOriginDoc.src.origin != scriptDoc.src.origin

}
}
check sharedBufferAccess for 4 but 2 BrowsingContextGroup,
3 BrowsingContext, 3 Server

Listing 5.7: Alloy Assertion Property to Verify Cross-Origin SharedArrayBufferAccess

5.9 Test Case Generation and Simulation

We further analyse the counterexamples generated by the model checking of the prop-
erties using our test case generator and simulator. These tools collectively assess the
feasibility of exploiting the potential attack path highlighted in the counterexamples
within an actual browser environment. To automate the process, we implemented a Java

103

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

application framework that not only executes the model checking but also interprets
the model checker’s output. The application then formulates a test case to replicate
the same configurations and actions within the browser, subsequently simulating the
potential attack scenario. This automation provides a comprehensive analysis of the
defined properties and verifies the viability of the detected attack within the browser’s
environment. The framework is depicted in Figure 5.2.

Kodkod [160], a boolean satisfiability (SAT) based constraint solver, is Alloy’s backend.
In our application, we utilise the Kodkod library [6] to apply model checking to our
model for finding solutions (counterexamples) to our security properties. When a
counterexample emerges from Kodkod, it is presented as a state transition trace. This
trace is a sequence of states each influenced by transition functions in response to specific
events. This representation offers insights into the progression of potential attacks,
showing how state components (known as signatures in the model) and their relations
evolve in each step.

We implement a parser in our application that parses the counterexample output and
breaks down the output into its constituent states. Following this division, it generates
the same representation of elements and their relations within the Java application for
each distinct state. Drawing from principles of object-oriented programming, elements
are represented as objects whereas their relations are expressed as attributes. Specifically,
we define a ‘State’ object within our application encapsulating all objects and their
associated attributes for a given state, applicable across all steps. This approach results
in the application creating a series of ‘ModelState’ objects, ranging from the initial state
to the final state.

Following that, we find the differences between the ModelState objects utilising the
Javers [86] tool in Java. This tool computes the differences between consecutive
ModelState objects and highlights the additions, deletions and modifications of objects
and collections. Then, we store any differences between consecutive states along with
the event and the specific browsing contexts (the ‘rootBc’, ‘bc’ and ‘party’ relations as
explained in the formal model Section 5.5) in an object called ModelDiffState. We keep
the ModelDiffStates in an ordered list.

To craft a test case, we firstly take the initial state represented by the first ModelState
object in the state collection. Subsequently, we reproduce these initial conditions
within the browser using the BrowserStack test automation tool [28]. BrowserStack is a
platform for web applications that allows cross-browser compatibility testing on various
browsers, operating systems and devices. It further streamlines the testing process
by automating it using the Selenium WebDriver scripts [145]. Using the Selenium
WebDriver scripts on BrowserStack, we automate the counterexample validation process
in the browser.

As highlighted in the formal model Section 5.5, all traces must start with at least one
tab open in the browser. Hence, the initial state consists of a single tab (a browsing
context) opened in the browser but not navigated to any documents yet. Moreover,
the browsing context in the browser has other properties e.g. its URL, origin, secure
context value, sandbox value and others which are extracted from the ModelState object.

104

5.10. EVALUATION

Model

Model Checker

Translate
(Kodkod)

Solve
(MiniSat)

Parser

CE List<MS>

CE : Counterexample
MS : ModelState

Test Case Generator

List<MS> List<MDS>

MDS : ModelDiffState

Execute Event
 (in MDS)

IDS

 Compare
MDS <-> IDS

Test Case Executor

Attack

Refinement

IS : ImplementationState
IDS : ImplementationDiffState

Browser

Retrieve IS
 (1)

Retrieve IS
 (2)

Figure 5.2: Application Framework Flowchart Diagram

Using BrowserStack and Selenium tools, we emulate the initial state in the browser by
launching a new tab without navigating to a URL. Each state includes an event leading
to the transition from the current state to the succeeding state. We maintain a list of
Selenium scripts that can apply various events to the browser tabs. In addition, the
‘rootBc’, ‘bc’ and ‘party’ relations in the ModelDiffState are used to navigate to specific
browser tabs or frames and to apply the events based on these relations.

Upon replicating the initial state to the browser, we take the implementation state
of the browser and keep it in an ‘ImplementationState’ object. We have Selenium
scripts that take the properties of the affected browser tabs i.e. the origins, the secure
context values are captured from the browser and stored in the ImplementationState
object. Next, the event associated with the initial state is executed on the browser.
Subsequently, we take a second implementation state to capture the new properties
of the browser tabs after the event is applied. Using Javers tool, we compare these
implementation states and keep them in an ‘ImplementationDiffState’ object. Then,
we compare the ModelDiffState explained above (that shows the changes on the model
state) and ImplementationDiffState (that shows the changes on the implementation
state). Any inconsistency between these objects indicates a spurious counterexample,
prompting us to return to our model for further refinement manually and restart the
model checking procedure. If the changes on the model state align with the changes on
the implementation state, we continue with the succeeding state, applying the same
verification process. This process continues until a counterexample actually realises in
the browser e.g. a browsing context gaining access to the camera.

5.10 Evaluation

Our models (Mrfc, Mcam and Msch) and the framework implementation are available
in [60]. In this section, we examine the efficiency of our framework, focusing on model

105

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

checking and test case validation. We benchmark our system based on three primary
criteria: abstraction level in the model, efficiency of both model checking and the
framework, and correctness. The level of abstraction metric evaluates the degree to
which our model abstracts the real-world browser behaviour. It should be balanced that
the model should not be overly abstract, losing important details of the browsers, nor
excessively detailed, becoming impractical for computational analysis. The efficiency
metric measures the computational resources e.g. CPU cores and memory, and the
duration needed for model checking and test case validation. For correctness, our main
concern is whether our model accurately mirrors the real browser and the framework
reliably executes the test cases on the browser as intended.

Level of Abstraction In our model implementation, the issue of finding the correct
level of abstraction proved to be more straightforward to address, thanks in large part
to our iterative approach. We initiated the process with a very simplified model and
then systematically enriched it, incorporating more details and features until we reached
an abstraction level that accurately reflected real-world browser behaviour. However,
this was still not without its challenges. One notable hurdle was our initial too detailed
definition of URLs in the model. We aimed for comprehensive representation and thus
included numerous components like schemes, delimiters, hosts, ports, paths, queries
and fragments for every type of URL. Although this granularity seemed promising for
capturing a wide range of behaviours, the model checking process became noticeably
slower as a result. Hence, we applied a reduction in the level of detail by abstracting
away the components like delimiters, ports, queries and fragments. Instead of using a
granular representation, we employed abstract signatures to clearly define the special
aspects of URL. The listings below serve as an example for this adjustment. In addition,
while we have streamlined the URL definition in the main model to improve efficiency, we
have retained the detailed URL version. This detailed version is available for researchers
who are particularly interested in a more granular abstraction of URL in the Alloy
framework.

sig Url{
scheme : Scheme,
sch_delim : lone Delimiter,
auth_precede : lone Delimiter,
authority : lone Authority,
path_delim : lone Delimiter,
path : lone Path,
query_delim : lone Delimiter,
query : lone Text,
frag_delim : lone Delimiter,
fragment : lone Text

}
sig BlobPath extends Path {

creator_origin : lone (OpaqueOrigin + TupleOrigin),
uuid_delim : lone Delimiter,
uuid : lone UUID,
media_type : lone MimeType,
data : lone HtmlResource

}

106

5.10. EVALUATION

Listing 5.8: A Detailed Blob URL Definition (old)

abstract sig Url {
scheme : lone Scheme

}

abstract sig ValidUrl extends Url {}

abstract sig BlobUrl extends ValidUrl {
creator_origin : lone Origin

}{
scheme = Blob

}

Listing 5.9: A Sufficiently Abstract Blob URL Definition (new)

Table 5.1: Performance Evaluation Results for Case Studies

Case study Cores RAM Time to first Time to #Lines of
solution validation code

Camera Access 1 30 GB 8 h, 43 min 32 seconds 2260
(w/o WindowOpen)
Camera Access 1 30 GB 52 h, 58 min 32 seconds 2300
(w/ WindowOpen)
Side Channel Access 1 30 GB 10 seconds - 630
(scope for 3)
Side Channel Access 1 30 GB 22 h, 24 min - 630
(scope for 4)

Efficiency As discussed in the Methodology Section 5.4, Alloy offers three distinct
decomposition strategies that can be parallel, batch or hybrid for efficient, scalable
and flexible problem solving. The parallel and hybrid methods led to slower model
checking. Thus, we used the batch strategy that facilitates only a single-core processor.
We conducted our experiments on a high performance machine equipped with 64 cores
an Intel(R) Xeon(R) CPU E5-4650L running at 2.60GHz, and 756GB of RAM. However,
as we used batch strategy only one core of CPU is used in both case studies. We outline
the performance results for each case study in the Table 5.1. The RAM values refer to
the maximum heap size allocated for the Java Virtual Machine (JVM).

The duration of the model checking is denoted by the ‘time to first solution", measured in
hours. For the first case study, Camera Access model Mcam, based on our experiments,
we determined that the ‘WindowOpen’ event is not required to achieve the attack.
Hence, we conducted the model checking with and without the ‘WindowOpen’ event
and presented the results in the Table 5.1. With ‘WindowOpen’ event enabled, the
model checking takes approximately 53 hours to find the same attack, whereas without
this event it just takes 8 hours and 43 minutes. These results suggest that excluding

107

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

certain unrelated events from the model can streamline the model checking process. The
‘WindowOpen’ event reflects the user action that opens a new window (a new browsing
context), that is not related to existing browsing contexts in the browser i.e. it will not
hold a reference to any other browsing context. Our model does not consider transitions
that would relate the unrelated browsing contexts. This implies that the ‘WindowOpen’
event may not be pivotal in this attack scenario, therefore it can be omitted.

For the first case study, the time taken is justifiable given that 11 steps required to
achieve the attack. The model checking time increases exponentially based on the
number of steps and selected scope which determines the size of signatures in the
counterexamples (e.g. 3 BrowsingContext, 6 History etc.). We did not reduce the
number of steps (by abstracting some events away) to maintain a detailed model.
However, we chose the minimum signature sizes that could still find the counterexample
in the first case study. In addition, we employed restrictions (expressed as facts in
Alloy) that the model checking must conform. Many of these restrictions arose from
eliminating spurious counterexamples, reducing the number of traces that the model
checker needs to evaluate. For instance, we defined facts stating that a document cannot
be the ‘currentDoc’ of two distinct browsing contexts at the same time or a browsing
context cannot be in its own ‘nestedBcs’. In total, we established 18 such facts to
eliminate spurious counterexamples in the Camera Access model.

To highlight the impact of the selected scope for signature sizes on the duration, the
second case study, Side Channel Access Msch, serves as a suitable example. Initially,
we executed this model with a scope of 3 for all signatures for the ‘sharedBufferAccess’
assertion property, as detailed in the Listing 5.7. This configuration resulted in a 10
seconds of solution time. However, when we increase the scope for 4 signatures for all
signatures with the exception of 2 BrowsingContextGroup, 3 BrowsingContext and 3
Server, the computation time took more than 22 hours. This contrast underscores the
exponential growth in computation time with slight increase in the scope.

The time required to validate the first case study in the browser is again reasonable. This
includes the steps of parsing the counterexample from the model checking output, setting
up the same configurations in the framework, launching the browser via BrowserStack
(accounting for internet-related delays), executing events on the browser and comparing
the model state with the implementation state. In addition, to ensure accurate appli-
cation of events to the browser, we incorporated Thread.sleep(time) operations prior
to fetching the implementation state from the browser. Retrieving the implementation
state prematurely, before the event is fully processed by the browser, might result in
inaccurate behaviours. Nevertheless, adjusting the duration of Thread.sleep operations
could potentially minimise the overall time.

Correctness Iterative refinement can be an indicator of the model’s and the validation
framework’s accuracy. By deriving test cases from counterexamples and attempting
to realise these counterexamples in the browser, one can validate the model against
real-world scenarios. If a counterexample cannot be realised in the browser, refining the
model ensures the model captures the actual behaviour of the system. This iterative
process assists in progressively eliminating inaccuracies in the model and the framework,

108

5.11. RELATED WORK

thus enhancing the confidence in their correctness. In our experiments, the Camera
Access model underwent about 10 refinement iterations. While we did not implement
the validation framework for the Side Channel Access model, it was refined 3 times
based on the counterexamples produced by the Alloy Analyser tool [7].

5.11 Related Work

In this section, we highlight the existing academic research focused on enhancing browser
security through formal modelling and analysis. Concurrently, we position our research
within this framework, explaining how our work in this chapter adds to the current
literature. There is a considerable academic work on formally modelling and analysing
browsers in recent years. A thorough review of formal methods for web security is
available in [30], covering various topics within the realm of web security including
formal browser models.

Grier et al. introduced an experimental browser named OP which later evolved to OP2,
claiming enhanced security features [69]. They employ Maude [40] to formally validate
components of OP2 and message passing APIs for the communication between those
components. The verification was conducted under the assumption of attackers that can
compromise these components and the message passing APIs. Their model encapsulates
possible browser attack routes e.g. address bar spoofing. In such an attack, the attacker
could take control of a web page subsystem component and exploit the message passing
API, coercing the compromised component into transmitting false URL data to the user
interface component. In addition, the Same-Origin Policy in the OP2 is designed to
apply access control policies between browser components. Again in the presence of an
attacker, they check whether the Same-Origin Policy can be violated by a compromised
component. In contrast, the attackers in their model operate at the software level, while
our model’s attackers are all external websites, with the exception of trusted ones.

Sasse et al. developed a browser, named IBOS, that is designed with security in
mind [140]. In the architecture of IBOS, multiple components operate concurrently and
kernel of the browser is the sole entity that is trusted. All communication (message-
passing) in the browser goes through the kernel and policies applied by the kernel on
the messages, ensuring controlled flow of information. They carried out the formal
verification with Maude and they formulated the same properties with OP2 in model
checking. Notably, while both browser models, OP2 and IBOS, formulate the low-level
browser components and message passings between them, our focus with respect to
our case study is intentionally more specific to show the applicability of our modelling,
automated verification, test case generation and validation approach on a concrete
example in prevalently used standard browsers. We delve deep into the JavaScript
APIs and the implications of their actions on the browsing contexts concerning the
assignment of URL, origin and secure context.

Gross et al. provided a detailed browser model for reasoning about browser-based
security protocols e.g. identity federation [70]. Their model delves deeper into HTTP
requests and response transactions, capturing the nuances through request and response
headers e.g. Referer, Accept_Language and others. In addition, they cover local storage,

109

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

Table 5.2: Comparison of Web Concepts in Formal Models

Concepts Mrfc Featherweight Bauer et al. WebSpec
(Alloy) (Coq) (Pen & paper) (Coq)

Browsing environment
Browsing Context (and BC.Group) • ◦ ◦ ◦
Browser tabs (windows) • • • ◦

HTML content
Document • • • •
DOM API • • • •
HTML elements • • • •
HTML forms ◦ • ◦ •
JavaScript • • • •
Iframes • ◦ • •

Isolation content
Cookies ◦ • • •
Secure Cookies ◦ ◦ ◦ •
Secure contexts • ◦ ◦ ◦
Origin • • • •
Sandboxing • ◦ ◦ ◦

History API • ◦ • ◦
Bookmarks ◦ ◦ • ◦
Web servers • ◦ • ◦
DNS servers • ◦ ◦ ◦
URLs

HTTP URLs • • • •
HTTPS URLs • ◦ ◦ •
About URLs • • ◦ •
Data and Blob URLs • ◦ ◦ •

HTTP headers ◦ • • •
Security policies

SOP (DOM access + AJAX req.) • • • •
CORS • ◦ ◦ •
COIS • ◦ ◦ ◦
CSP ◦ ◦ • •
Noninterference ◦ • • ◦

Browser APIs
WindowOpen • • • ◦
HttpRequest • • • •

JavaScript APIs
XMLHttpRequest • • • •
History.pushState + Location.rep. • ◦ ◦ ◦
Create blob • ◦ ◦ •
Popup • • ◦ ◦
Document.write • ◦ ◦ ◦
Access to media • ◦ ◦ ◦
SharedArrayBuffer • ◦ ◦ ◦
PostMessage ◦ ◦ • •

User input/output ◦ • • ◦
Service Workers ◦ ◦ ◦ •
Browser extensions ◦ ◦ • ◦
Storage APIs (Cache+Local s.) ◦ ◦ • •

(Local s.)

110

5.11. RELATED WORK

cache and history objects in their model. In our model, we only cover the history objects
from this list in the context of the History API of JavaScript. We should also note that
their model operates under the assumption that JavaScript is disabled in the browser.
Given the integral role of JavaScript in modern web applications, as Bugliesi et al. also
pointed out in the survey [30], this can be considered unrealistic in many real-world
scenarios.

Bohannon et al. proposed a formal browser model called Featherweight Firefox in
Ocaml [23] and Bohannon himself later transcribed a limited and updated version
of it in Coq [155] in his PhD thesis [22]. The original model formulates multiple
windows in the browser (excluding iframes), the HTTP protocol, about URLs, HTTP
request/response, cookies, HTML elements e.g. div, img and script (inline or external),
scripting functionalities like eval, user actions e.g. opening a window and clicking on
a link, AJAX requests via XMLHttpRequest, DOM manipulations and others. In
comparison, our model provides a more comprehensive list of JavaScript functionalities
e.g. opening popup windows, creating iframes, creating sandboxed iframes, applying
document.write operation, creating Blobs in the browser, managing browsing history,
secure contexts, etc. We present a comparison of web concepts across various browser
models, including our own model Mrfc, in the Table 5.2.

Furthermore, there are other applications that utilise the Featherweight Firefox frame-
work as a basis. For instance, Bielova et al. augmented the original framework, focusing
on exploring non-interference policies for web browsers which act as alternatives or
supplements to the traditional Same-Origin Policy [20]. The Same-Origin Policy isn’t
foolproof against scenarios where, for instance, website-specific JavaScript might covertly
leak users’ private information back to its originating website. Bielova et al. implemented
their non-interference policies on the Featherweight Firefox platform as it provides a
detailed user input and output events. Similarly, Bugliesi et al. used the Coq model
to validate non-interference [31]. Their research investigated how the HttpOnly and
secure cookie attributes could mitigate the unintentional exposure of cookies, used
for web session identification. Although our foundational model does not encompass
user input events e.g. user inputs a secret text to a document, it is designed with
extensibility in mind. User inputs can easily be incorporated in our model by describing
the behaviours of the components after the user input event e.g. how those inputs are
validated, processed, where they are directed, etc. Even script injection, e.g. Cross-Site
Scripting, can be integrated into our framework akin to the approach for user inputs.
Building upon this user input functionality, our model can also detail and analyse a
non-interference-based Same-Origin Policy. For those interested in a more detailed
framework to verify the confidentiality and integrity properties of browser-based security
protocols or to extend the model for other properties like non-interference focused
Same-Origin Policy, we have made the original version of our model available, including
key components of the browser e.g. DOM API, JavaScript elements, XmlHttpRequest.
These components are not used in our case studies (Mcam and Msch), but they are made
available in the generic model. As previously highlighted in our comparison with the
Featherweight Firefox model, our model also provides a more detailed list of JavaScript
functionalities.

111

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

Bauer et al. presented a comprehensive formal model aiming to prove non-interference
using taint tracking in browsers [14]. Their model covers user actions, servers, browser
tabs, cookies, event handlers, scripts, bookmarks, history and browser extensions. In
addition, it supports policy specifications e.g. Content Security Policy (CSP). Their
model is not mechanised with a model checking tool. They also implemented a prototype
in the Chromium browser to validate that their design enforces additional protection in
the browser. In contrast, our prototype serves a different purpose, it is implemented
to create test cases for browsers from the counterexamples unearthed during model
checking.

The WebSpec framework introduced by Veronese et al. [170] is closest to our framework,
particularly in its pursuit to establish a browser model centred on security analysis for
identification of security vulnerabilities and ensuring cross-browser validation of test
cases. The aim shared by both frameworks is to identify potential security loopholes
in browsers before they can be exploited by malicious entities. Both frameworks,
developed independently, aim to proactively identify and mitigate potential browser
security vulnerabilities. The WebSpec framework is similarly formulated as a state
transition system. It similarly captures various elements of the browser, encompassing
aspects like browser windows, documents, the DOM API, cookies, HTTP request-
response mechanism that is further complemented with CORS and CSP response
headers. Notably, it integrates various security policies ranging from CSP and Service
Workers to Cache API and Local Storage API. These choices are reflective of the case
studies and specific security concerns that WebSpec aims to address. In contrast, while
our model sidesteps these specific security policies, it takes into account other pivotal
components and security features that are equally important, like iframes, sandboxes,
resource rendering, URL manipulation, origin assignment, secure contexts, media device
accesses and cross-origin isolation state in the browser. These components and features
are selected based on the specific case studies and security scenarios we aim to explore.
While both WebSpec and our framework focus on ensuring web security by discovering
potential vulnerabilities, they employ different tools and approaches. WebSpec provides
a formalisation with Coq and utilises the Z3 theorem prover [199] for model checking.
In contrast, our methodology employs a more direct model-checking approach with
Alloy. One significant advantage of this choice is the accessibility and familiarity that
Alloy offers to browser testers and developers. Unlike the more abstract constructs used
in Coq, Alloy’s input language is based on Object-Oriented Programming constructs,
making it more intuitive for those with a background in software development. In
addition, Coq employs the logical constructions to facilitate manual proofs, offering
stronger guarantees in the process. On the other hand, Alloy focuses on automated
model checking within bounded models, providing a more direct approach to verification.
For cross-browser validation, WebSpec utilises Web Platform Tests [157], which are
aimed at standards compliance. On the other hand, we employ BrowserStack [28] to
ensure that our test cases are not only reliable but also applicable across a broader
range of browser environments. Given the complementary scopes of the models and
methodologies of the two frameworks, they stand as valuable contributions to the field
of browser security. When considered together, they offer a multifaceted approach to
understanding, analysing and improving browser security and privacy.

112

5.12. DISCUSSION

The browser models that we highlighted so far, including our model, can be used
to validate new browser-based security protocols, allowing to preemptively address
vulnerabilities, instead of reacting after exploitation. Our framework and WebSpec
include test case generation which assists in replicating intricate attack scenarios in a real-
world browser environment, bridging the gap between theoretical and practical worlds.
Other research formulates the browser in order to prove higher-level properties e.g.
Bhargavan et al [19]. They defined Defensive JavaScript, that can safely be embedded
into untrustworthy web pages to isolate sensitive information even if some JavaScript
running in the same browsing context compromises the execution environment. They
verify their components using formal methods. However, such security protocols rely on
browsers’ implementing their core components correctly. When the core components
function as intended, the protocols layered on top of them can also operate effectively.
Consequently, careful design and thorough validation of these core browser components
are crucial.

5.12 Discussion

Our findings indicate that our end-to-end framework has significant implications for web
browser security, in particular in the context of the gap between RFC documents and real-
world implementations. Our framework can detect security and privacy bugs in browsers
due to discrepancies between RFCs and actual implementations and also confirm their
absence. This makes the framework an invaluable tool for browser developers and testers
who seek to align their software more closely with existing RFC standards and improve
security.

One of the main strengths of our framework is that the model takes into account a wide
range of browser functionalities, from basic navigation tasks to complex interactions
with various APIs and security policies. This holistic approach allows us to identify and
analyse a diverse set of security vulnerabilities with the model that might be overlooked
in less exhaustive models. Furthermore, the other standout strength of the model is
its extensiveness. Its modular design makes it easier to integrate new browser features,
APIs and security policies into the model. For example, incorporating a new JavaScript
API into the model can be easily accomplished by appending a new ‘event’ to the
‘Function’ signature and crafting a corresponding predicate that handles the event’s
associated inputs, and preconditions and postconditions within the state.

On the other hand, while our model offers detailed insights, it may also face scalability
challenges. Model checking is computationally intensive task in its nature. The
more detailed model means the more computational resources it requires for effective
verification. Also, in some cases, model checking may not even terminate within a
reasonable time, especially when the model is highly detailed or the scope given for the
property under examination is too large. These present limitations for the framework’s
scalability when quick verification is required. However, the modular nature of our
model offers a workaround to this limitation. Components of the model that are not
directly related to the property of interest can be removed, allowing for a more focused
and efficient model checking process, as demonstrated in the case studies presented in

113

CHAPTER 5. FORMAL BROWSER MODEL FOR SECURITY ANALYSIS

this chapter. This adaptability partially addresses the scalability issue.

Additionally, the parser, test case generator and test case executor modules in the
framework are currently specialised for the camera access model in our first case study.
A more generic implementation of these modules is required for broader applicability.
Specifically, developing a universal Alloy-to-Java parser capable of interpreting Alloy
output regardless of the underlying formal model structure can extend the framework’s
adaptability. Following this, a more robust architecture can be defined for the framework
in which the parser, test case generator and test case executor can be developed as
modular, loosely coupled components. Each component can have its own internal
architecture but would operate independently, allowing for seamless integration with a
variety of model outputs.

Moreover, Fuzzing can enhance the formal modelling step in our framework which
currently relies on manual testing for browser fault detection and incorporates known
vulnerabilities into the formal model. Fuzzing can automate the process of discovering
faulty behaviours in browser by generating random or grammar based inputs and
observing the browser’s response. Fuzzing can efficiently help finding a wider spectrum
of faulty behaviours. Once the fuzzer identifies certain faults, they can be analysed,
categorised and incorporated into the model. Then, the model checker can verify whether
these faults could lead to more significant attack vectors.

Incorporating Counterexample Guided Abstraction Refinement (CEGAR) [43] is another
avenue for enhancing our framework. Currently, our framework relies on the manual
process that the model is iteratively refined based on the spurious counterexamples that
do not lead to the same behaviour in the browser. The refinement process could be
automated with CEGAR. CEGAR is a method that constructs a more precise model
of a software system from a less precise model in an iterative process using the spurious
counterexamples.

Furthermore, machine learning language models could also enhance the modelling
process in our framework, by facilitating automated model construction directly from
RFC documents. Since RFC documents are often well structured, language models
could be trained to analyse these documents and automatically generate formal models.
This can reduce the manual effort required to specify the model and help to minimise
human errors in the model.

5.13 Conclusion

With our framework, we provide a basis for a comprehensive and exhaustive formal
analysis of web browsers, thereby enhancing trust in their underlying architecture. The
effectiveness of any security protocols designed for browsers fundamentally relies on
the accurate implementation of the browser’s core components. By offering a robust
mechanism for detecting software bugs and verifying the absence of security and privacy
vulnerabilities, our framework ensures these components function as intended. This
contributes to elevating the overall trustworthiness and reliability of browsers, providing
both developers and users with increased confidence in the security measures in place.

114

5.13. CONCLUSION

Our framework has the potential for near-full automation by integrating techniques such
as Fuzzing, CEGAR and machine learning language models as outlined in the Discussion
Section 5.12. Beyond these, the browser model can be further elaborated to include
additional browser functionalities such as security policies e.g. Content Security Policy,
browser extensions e.g. Accountable JavaScript [57], as well as user-triggered actions e.g.
form submissions and other advanced JavaScript functionalities e.g. Service Workers.
Building on this, after achieving comprehensive verification of low-level browser features
and security policies, we consider the integration of real-world web applications into the
model. This would offer more practical insights into how our framework could serve as
a valuable tool for enhancing browser security in real-world scenarios.

115

6
Conclusion

117

In this thesis we addressed trust requirements in three key domains of the web. In the
first domain, social media discourse, we introduce a protocol named "Trollthrottle", as
detailed in Chapter 3. This protocol is designed to support the credibility of online
information by setting limitations on the number of comments a user can post on
websites that participate in the protocol. By imposing such limitations, the protocol
raises the cost of astroturfing. Additionally, Trollthrottle ensures that participating
websites are held accountable for any censorship of content. This serves to combat the
creation of echo chambers by social media platforms, thereby contributing to a more
balanced and trustworthy online discourse.

From a technical standpoint, the Trollthrottle protocol is not embedded within the
browser, but is required to be delivered by the participating web servers. Therefore,
the protocol’s effectiveness relies on the accurate transmission and execution of its
code by the browser. For instance, a malicious web server can target users by sending
different codes to different users without detection. To address this trust issue on all
websites, we introduce our second protocol named "Accountable JS" in Chapter 4. This
protocol is designed to ensure trust in the underlying web application code. For this
the website developers are required to declare a manifest for the active content in their
application in a public log. This enables users to verify that the active content in the web
application code delivered by a website is consistent with respect to the version declared
in public logs, thus confirming the active content in the web application is consistent
for all visitors. This architecture substantially mitigates the risk of code tampering and
creates a higher level of trust among end users. The protocol implementation runs as
an external feature in the browser and ensures the active content is compliant with the
guidelines declared in the manifest.

The Accountable JS protocol also requires trust in the web browser itself for faithful
execution. Our third proposal called "Formal Browser Model for Security Analysis"
in Chapter 5 targets this issue. This end-to-end framework facilitates a formal model
of web browser based on RFC specification to identify potential security and privacy
vulnerabilities through model checking. If a counterexample is found during model
checking, the framework generates a test case scenario from this counterexample and
executes this counterexample in the browser to validate if the vulnerability exists in the
real-world browser. This rigorous approach enables browser developers and testers to
align their browser implementation closely with RFC guidelines, effectively identifying
and mitigating vulnerabilities. By ensuring that browsers have been put through this
rigorous testing and validation process, we significantly increase user trust, as they can
be confident that their browser adheres to established security benchmarks outlined by
RFCs.

Possible future work for this thesis includes enriching the manifest in Accountable JS
protocol by incorporating user interface information e.g. form fields. This enhancement
of the protocol could further ensure that specific information declared in the manifest
cannot be used by some third-party JavaScript and such information never leaves
the user’s browser. Additionally, the formal model in "Formal Browser Model for
Security Analysis" framework could be extended to encompass a wider range of browser
functionalities such as security policies e.g. Content Security Policy, browser extensions

119

CHAPTER 6. CONCLUSION

e.g. Accountable JS, as well as user-initiated actions e.g. form submissions and other
more advanced JavaScript functionalities e.g. Service Workers. A compelling case study
for this extended formal model would be to examine the integration of the Accountable
JS protocol with the enriched manifest.

120

7
Throllthrottle - Appendix

121

7.1. INSTANT LINKABILITY

7.1 Instant linkability

In Brickell and Li’s scheme [27], signatures are composed of the actual signature and the
corresponding pseudonym. To check whether two valid signatures are linked, i.e., were
created by the same signer with the same dom ̸= ⊥, one merely compares the nyms.
We exploit this property to instantly check whether a new comment is linked to any of
the previous comments and thus avoid ‘double spending’ of basenames. To generalise to
other DAA schemes, we formalise this requirement as follows:

Definition 5 (Instantly linkable DAA scheme). We call a DAA scheme instantly
linkable if:

1. A nym can be generated without knowledge of the data m, i.e. there is a deter-
ministic poly-time algorithm NymGen s.t. NymGen(skS , dom) =

NymExtract(SignDAA(skS , cred, dom, ·)).

2. Signatures contain a nym that links them, i.e., there is a deterministic poly-
time algorithm NymExtract s.t. for all signatures σ1, σ2, Link(σ1, σ2) = 1 iff
NymExtract(σ1) = NymExtract(σ2).

3. The basename used to create a signature can be checked without knowing the data
m and is uniquely defined by the signature, i.e. there exists a poly-time algorithm
VerifyBsn s.t. for all PPT adversary A, the following probability is negligible in λ

Pr
[
(dom, dom′, σ, pkI ,m)←$ A(1λ) :

VerifyBsn(σ, dom′) = 1 = VerifyBsn(σ, dom) ∧
VerifyDAA(pkI ,m, dom, σ, RL∅) = 1] ,

where RL∅ corresponds to an empty revocation list.

7.2 Security Analysis

Here we show the intuition that the protocol we propose here enforces the threshold
τ , valid comments cannot be forged, users remain anonymous and its accountability
mechanism is sound and complete.

We define the security goals of TrollThrottle in terms of five properties within an
experiment. The adversary has access to oracles for user creation, honest execution
of the commenting procedure and the Join− Issue protocol, and she can corrupt both
users and verifiers. The formal model (Section 7.4) and full proofs (Section 7.6) are
available in TrollThrottle Appendix.

1. Correctness, intuitively: honest users should always be able to create and publish
a comment (acceptable by the policy of the website) and the comment should
appear on the website. Moreover, if a comment is not published, the user should
be able to generate a claim that can be publicly verified.

123

CHAPTER 7. THROLLTHROTTLE - APPENDIX

2. Protection against trolling, intuitively: the number of valid comments that the
adversary A can produce per basename is at most the number of users that she
corrupted plus the number of users maliciously verified by a corrupted verifier.
Let n be the number of user identities under adversarial control (either by bribing
the user or by bribing the verifiers) this directly results in the bound τ · n for the
number of comments the adversary can emit per epoch.

3. Non-frameability, A cannot create comments that can be linked to a nym of an
honest user.

4. Anonymity, intuitively: When challenged with distinguishing a comment produced
by a user of her choice from a freshly created user, the adversary can do no better
than a guess.

5. Accountability, intuitively: Whatever the adversary does, for any honestly gener-
ated comment one can produce a verifiable claim that this comment ought to be
published. Furthermore, it is not possible to produce such a claim in the name of
an honest user unless the comment has been produced by her.

Theorem 1 (Protection against trolling). The TrollThrottle protocol satisfies
protection against trolling if the DAA scheme is user-controlled traceable and instantly
linkable, h is collision resistant and we have proofs of knowledge for the relation RJoin.

Sketch. An adversary can fake comments in three ways:

• by creating a fresh digital identity,

• using an existing signature under a different message, or

• forging valid pseudonyms with acceptable basenames for an existing signature
(this would allow her to publish the same comment multiple times).

An adversary that uses the first strategy can be used to break the user-controlled
traceability of the DAA scheme. The second attack would break collision resistance.
Finally, due to instant linkability of the DAA scheme, we conclude that the adversary
cannot find a second nym that is valid under the same basename.

Theorem 2 (Non-frameability). The TrollThrottle protocol satisfies non-frameability
if the underlying DAA scheme is user-controlled traceable and instantly linkable, the
function h is collision-resistant and the proof system for relation RJoin is a proof of
knowledge.

Sketch. We use a similar observation. An adversary that can post in the name of an
honest user generates a forgery for the DAA scheme and thus can be used to break
user-controlled traceability or break the collision resistance of the hash function.

Theorem 3 (Anonymity). The TrollThrottle protocol satisfies anonymity if the
underlying DAA scheme provides user-controlled anonymity and the proof system for
relation RJoin is zero-knowledge.

124

7.3. HOLDING THE ISSUER ACCOUNTABLE

Sketch. Since user-controlled anonymity of the DAA scheme ensures that the adversary
cannot tell which of two uncorrupted users signed a message it follows that this implies
that an adversary cannot also tell which user commented (since comments are signed
using DAA signatures). Note that because of the zero-knowledge property the proof for
relation RJoin can be simulated.

Theorem 4 (Accountability). The TrollThrottle protocol satisfies accountability if it
is correct and h is collision-resistant.

Sketch. Correctness of TrollThrottle ensures that honest users can always generate a
valid claim even if an adversary tries to prevent this. The evidence produced can be
compared with the ledger state, as the message is given. If the message claimed is
accepted, but different from a valid entry in the ledger, it constitutes a collision.

7.3 Holding the Issuer Accountable

In this section we consider an extended version of our protocol that copes with an
untrusted issuer, i.e. how can we protect against trolling even if the Issuer is untrusted.
The high-level idea is to use so-called genesis tuples for every new user, which are signed
using a standard signature scheme by the verifier checking the personal data of the
user. Then while commenting, the user proofs that there exists one genesis tuple that
corresponds to her identity. A malicious issuer can create an unlimited number of DAA
credentials but cannot generate genesis tuples at will without colluding with a verifier.
We cannot protect against such a collusion but our approach allows the public to track
suspicious behaviour, i.e. one verifier is signing a high volume of genesis tuples.
We begin this section by recalling cryptographic primitives used in this version. We
then show how to extend the existing notion of our accountable commenting scheme
and define a property we call credibility, which will formally capture a dishonest issuer
trying to selectively troll the system.

7.3.1 Preliminaries

In addition to an instantly linkable DAA scheme, this scheme assumes a standard
existentially unforgeable digital signature scheme (KGsig, sig, ver). The user has access to
signing oracle for a verifier with key pair (skV , pkV). Moreover, we recall the definitions
given by Groth et al. [72].
Definition 6 (Zero-Knowledge). A proof system Π is called zero-knowledge, if there
exists a PPT simulator Sim = (S1, S2) such that for all PPT algorithms A the following
probability, denoted by Adv[AZK

Π], is negligible in the security parameter 1λ:∣∣∣Pr
[
ρ← Setup(1λ) : ACreateProof(ρ,·,·)(ρ) = 1

]
−

Pr
[
(ρ, τ)← S1(1λ) : AS(ρ,τ,·,·)(ρ) = 1

]∣∣∣ ,
where τ is a trapdoor information, S(ρ, τ, x, w) = S2(ρ, τ, x) for (x,w) ∈ R and both
oracles output ⊥ if (x,w) ̸∈ R.

125

CHAPTER 7. THROLLTHROTTLE - APPENDIX

Definition 7 (Soundness). A proof system Π is called sound, if for all PPT algo-
rithms A the following probability, denoted by Adv[Asound

Π], is negligible in the security
parameter 1λ:

Pr
[

ρ← Setup(1λ),
(x, π)← A(ρ)

:
VerifyProof(ρ, x, π) = accept

∧ x ̸∈ LR

]
.

Definition 8 (Knowledge Extraction). A proof system Π is called a proof of
knowledge for R, if there exists a knowledge extractor Extr = (E1, E2) as described below.
For all algorithms A:

|Pr[ρ← Setup(1λ) : A(ρ) = 1]−
Pr[(ρ, τ)← E1(1λ) : A(ρ) = 1]| ≤ Adv[AE1

Π]

Pr[(ρ, τ)← E1(1λ), (x, π)← A(ρ), w ← E2(ρ, τ, x, π) :
VerifyProof(ρ, x, π) = reject ∨ (x,w) ∈ R] = 1]

Adv[AE1
Π] is negligible in 1λ.

7.3.2 Accountable Commenting Scheme with Credibility (ACSC)

We define an accountable commenting scheme with the additional property of credibility
as follows:

Definition 9 (ACSC). An accountable commenting scheme with credibility consists of
a tuple of algorithms (Setup,KeyGen,Comment,Verify,Claim,VerifyClaim,Attribute) and
an interactive protocol (Join− Issue) with inputs and outputs specified as follows.

All algorithms are defined in a similar way to the ones for the standard scheme presented
in Def. 1. The only differences are as follows:

1. the Join algorithm of the Join− Issue protocol additionally outputs a genesis tuple
gb,

2. the Comment, Verify and VerifyClaim algorithms take as an additional list GB
containing genesis tuples.

In addition, we define the PPT algorithm Attribute(gb) that allows the public to attribute
a genesis tuple gb to a verifier V by outputting the verifier’s public key, which uniquely
identifies the verifier. Even if the issuer is colluding with selected verifiers, the public
can attribute users to verifiers, and thus gather statistics on how many users were
verified by which V that could expose cheaters.

7.3.3 Instantiation

We will now define an efficient instantiation of an accountable commenting scheme
with credibility. The scheme closely resembles the scheme presented in Def. 3, but

126

7.3. HOLDING THE ISSUER ACCOUNTABLE

includes the generation and verification of genesis tuples. In particular, let use define
the following relation that users will use to prove knowledge of genesis tuples:

((nym, dom,GB), (skS)) ∈ RGB ⇐⇒
∃(·,nym1, ·) ∈ GB ∧ nym1 = NymGen(skS , 1)

∧ nym = NymGen(skS , dom).

Definition 10. Extended TrollThrottle Protocol

Setup(1λ) - compute ρGB ←$ SetupZK(1λ),
ρJoin ←$ SetupZK(1λ) and
output ρ = (1λ, ρJoin, ρGB).

KeyGen(ρ) - equal to KeyGen in Def. 3.

Join(pkI, skU ,U) - parse pkI = pkI,DAA and skU = skU,DAA.
Execute com←$ JoinDAA(pkI,DAA, skU,DAA) and
compute proof ΠJoin = CreateProof(ρJoin, (com, pkI,DAA), skU,DAA).
Send (com,ΠJoin) to the issuer and receive credU .

Compute the pseudonym nym1 = NymGen(skU , 1), and
set gbU = (pkV ,nym1, sig(skV ,nym1)),
where sig(skV ,nym1) was created by an identity verifier.

Return (credU , skU), gbU).

Issue(skI, ver,U) - equal to Issue in Def. 3.

Comment(pkI, skU , credU , dom,m) - set and return γ = (σ,nym, dom, h(m),Π)
where Π = CreateProof(ρGB, (nym, dom,GB), skU)),
σ = SignDAA(skU , credU , dom, h(m)) and
nym ←$ NymGen(skU , dom) = NymExtract(σ).

Verify(pkI,nym, dom,GB,m, γ) - Parse pkI = pkI,DAA and γ = (σ,nym, dom, h,Π).
Output 1 iff

• VerifyDAA(pkI,DAA, h, dom, σ, RL∅) = 1,

• if h(m) = h,

• NymExtract(σ) = nym,

• VerifyBsn(σ, dom) = 1.

• VerifyProof(ρGB, (nym, dom,GB),Π)) = 1.

Claim(pkI, skU , cred, dom,m, γ) - Claim in Def. 3.

VerifyClaim(pkI,GB, dom,m, γ, evidence) - return 1 iff γ is valid for m,
i.e., that Verify(pkI,nym, dom,GB,m, γ) = 1.

Attribute(gb) - parse gb = (pkV ,nym1, sig(skV ,nym1) and return pkV .

127

CHAPTER 7. THROLLTHROTTLE - APPENDIX

7.3.4 Security Analysis

Here we will formally define what it means for an accountable commenting scheme to
have the credibility property and proof that the scheme presented above fulfils it.

Definition 11. We say that the system is credible if for every adversary A, every 1λ,
the probability Pr[Expcredibility

A (1λ) = 1] is negligible 1λ.

Experiment Expcredibility
A (1λ):

CU← ∅; V ← ∅; ver← ∅;
(skI, pkI)←$ Setup(1λ)
O = {CorruptVer(·, ver), JoinSystem(·, ver, skI)}
OUT = {(nym∗

i , dom∗
i ,m

∗
i , γ

∗
i)}ki=1 ←$ AO(ρ, skI)

Return 0 if Verify(pkI,nym∗
i , dom∗

i ,m
∗
i , γ

∗
i) = 0 for any i ∈ {1, . . . , k}

S = {(nym, dom) : ((·,nym, dom, ·)) ∈ OUT}
t = max(·,dom)∈S |{(nym) : (nym, dom) ∈ S}|
Return 1 iff t > |VM|

Figure 7.1: Trollthrottle Credibility

Theorem 5 (Credibility). The Extended TrollThrottle protocol (see Def. 10) satisfies
credibility (see Def. 11) if the underlying DAA scheme is instantly linkable (Def. 5) and
the proof system for relation RGB is sound.

Proof. The idea behind the proof is as follows. Because we know that to win an
adversary has to return t > |VM| valid signatures for one basename but at the same
time there exist only |VM| genesis tuples. It is easy to see now that if the adversary
wins, then there must exist at least proof Π∗

i , where γ∗
i = (·, ·, ·, ·,Π∗

i) that is false and
can be used to break the soundness property of the proof system. Note that this follows
from the fact that because of instant linkability there can only exist |VM| secret keys
that form the pseudonyms nym1 in a genesis tuple.

7.3.5 Efficient instantiation of the proof for relation RGB

Pseudonyms in the scheme by Brickel and Li are of the form h(dom)skS , where h is a
collision-resistant hash function that maps elements from {0, 1} to elements of a group
G of order q and the secret key skS is an element in Z∗

q . It follows that in such a case
we have nym1 = h(1)skS and nym = h(dom)skS .

To generate Π we will make use of the proof system by Groth and Kohlweiss [71]. They
showed an interactive Σ-protocol for the following statement. Given n commitments
c1, . . . , cn at least one opens to 0. The communication size is logarithmic in n, which
means that by applying the Fiat-Shamir transformation we receive a non-interactive zero-
knowledge proof of the same size. Note that this proof system requires the commitment
scheme to be homomorphic and the message space to be Zq. In particular, Groth

128

7.4. FORMAL ANALYSIS OF THE DEFERRED VERIFICATION AND AUDITING
PROTOCOL

and Kohlweiss show that their proof system works for Pedersen commitments where
com(x, r) = gx · ĝr for some elements g, ĝ ∈ G.

We will now show an efficient proof system for the following statement: Given dom,nym
and ledger L with genesis tuples gb1, . . . , gbb (where gbi =

(
·,nymi

1, ·
)
) there exists

a secret key skS and an index j such that nym = NymGen(skS , dom) and nymj
1 =

NymGen(skS , 1). First we notice that by setting g = h(1) and ĝ = h(2) we can use g, ĝ
as parameters for a Pedersen commitment scheme. What’s more, for all i ∈ {1, . . . , n}
we have nymi

1 = com(sk(i)
S , 0) where sk(i)

S is the secret key of the user that generated
tuple gbi.

To create proof Π the Prover with secret witness skS , j proceeds as follows:

1. computes a commitment c = com(skS , r) using random coins r ∈ Zq,

2. for all i ∈ {1, . . . , n} computes ci = c/nymi
1 = com(skS − sk(i)

S , r),

3. computes proof π using the system by Groth and Kohlweiss that one of c1, . . . , cn

is a commitment to 0,

4. returns proof Π = (c, π).

To verify the proof a Verifier proceeds as follows:

1. for all i ∈ {1, . . . , n} computes ci = c/nym(i)
1 ,

2. verifies proof π using c1, . . . , cn as part of the statement and returns true if and
only if this proof is valid.

7.4 Formal analysis of the deferred verification and auditing
protocol

theory TrollThrottle
begin

builtins: hashing

functions:
pk/1,sk/1[private],
sign/3, verify/3,extrmsg/1,
true/0

equations:
verify(sign(m, r, sk(i)), m, pk(i)) = true,
extrmsg(sign(m,r,x))=m

let Issuer =
let
skI = sk(’I’)
skV = sk(’V’)
pkV = pk(’V’)
m1 = sid
pat_m2 = <login,h(<rU,nbd,’1’>)>

129

CHAPTER 7. THROLLTHROTTLE - APPENDIX

cI = h(rI,sid,h(<rU,nbd,’1’>))
m3 = sign(cI,r3,skI)
s1 = h(<rI,sid,’2’>)
s2 = h(m5)
claim = <rI,sid,pat_m2,m5>
in
out (m1);
in (pat_m2);
new rI;
new r3;
out (m3);
in (m5);
if verify(m5,cI,pkV)=true() then
event Accepted(nbd);
(// case distinction: the attacker may decide to play a ↷
game
(in(xs1); // (a) the dishonest verifier tries to

// predict s1 to avoid auditing
if xs1 = s1 then
event VerifierPredict()

)
+
(// (b) only if the verifier does not want to play this ↷
game,
// she learns rI

out(<sid,rI>); // we may use a public channel here,
// because V considered dishonest anyway

out(claim)
)
)

let Verifier =
let
skI = sk(’I’)
pkI = pk(’I’)
skV = sk(’V’)
cI = h(<rI,sid,h(<rU,nbd,’1’>)>)
pat_m4 = <nbd,cI,rU,xm3>
m5 = sign(cI,r5,skV)
s1 = h(<rI,sid,’2’>)
s2 = h(m5)
in
in(pat_m4);
if verify(xm3,cI,pkI)=true() then
lock cI; // make sure that for the same cI,

// only one execution is started
in(evidence);
event Verified(nbd,evidence);
new r5;
event InResponse(rI,sid,m5);
(// As before, adversary can decide
(in(xs2); // (a) to let a dishonest issuer try to ↷
predict s2

// as to chose m5 in a way that avoids ↷
auditing

130

7.4. FORMAL ANALYSIS OF THE DEFERRED VERIFICATION AND AUDITING
PROTOCOL

if xs2 = s2 then
event IssuerPredict()

)
+
(// (b) continue the protocol, as usual
out(m5);
in(<sid,rI>);
// starting from here, assume an audit takes place
// (adversary can decide whether to run this step)
out(<rU,nbd>)
)
)

let CheckClaim = let
// A dishonest issuer tries to claim that V needs to send
// evidence, although the values do not match.
// I controls s1 but honest V choses s2
// Hence the issuer wins if she can send s1 and s2 that pass
// checking, but s2 was not the answer of verifier to sid and
// rI used to computed it

skI = sk(’I’)
skV = sk(’V’)
pkV = pk(’V’)
m3 = sign(cI,r3,skI)
pat_claim = <rI,sid,xm2,xm5>
cI = h(rI,sid,xm2)
/* s1 = h(<rI,sid,’2’>) // not used, but this can be used↷
to recompute the check */
s2 = h(xm5) //
in
in(pat_claim);
if verify(xm5,cI,pkV) = true() then

event ClaimAccept(rI,sid,xm5)

!(
(new sid; Issuer)

|Verifier)
|CheckClaim
| !(in(p:pub); event Corrupted(p); out(sk(p)))

lemma sanity : // considers dishonest user
exists-trace
"Ex nbd #i. Accepted(nbd) @ i
&
not (Ex #j p. Corrupted(p)@j)
"

lemma authenticity_accept : // considers dishonest user
"All nbd #i. Accepted(nbd) @ i ==>
(Ex #j evidence. Verified(nbd,evidence) @ j)

| (Ex #j. Corrupted(’V’)@j)
| (Ex #j. Corrupted(’I’)@j)
"

lemma unpred_issuer:
" All #i. IssuerPredict()@i ==> Ex #j. Corrupted(’V’)@j"

131

CHAPTER 7. THROLLTHROTTLE - APPENDIX

lemma unpred_verified:
" All #i. VerifierPredict()@i ==> Ex #j. Corrupted(’I’)@j↷
"

lemma authenticity_claim : // if claim is accepted, then the
// verifier indeed responded to ↷
values
// that determine the decision

"All ri sid m5 #i. ClaimAccept(ri,sid,m5) @ i
==> (Ex #j . InResponse(ri,sid,m5) @ j)
| (Ex #j. Corrupted(’V’)@j)
"

end

Listing 7.1: Formal model of the deferred verification and auditing protocol in
Trollthrottle

7.5 Review and adoption of the security model

We review Brickell and Li’s security model [27], including the user-controlled-anonymity
and user-controlled-traceability experiment. Their DAA scheme satisfies both notions
under the decisional/ strong Diffie-Hellmann assumption. We slightly simplify their
model, as our protocol’s computations are performed by a single host and not split
between a TPM and an untrusted device.
Definition 12 (User-controlled-anonymity). A DAA scheme is user-controlled-
anonymous if no PPT adversary can win the following game between a challenger C
and an adversary A, i.e. if Adv[Aanonymity

DAA] = Pr[A wins] is negligible:
• Initial: C runs SetupDAA(1λ) and gives the resulting skI and pkI to A.
• Phase 1: C is probed by A who makes the following queries:

– Sign: A submits a signer’s identity S, a basename dom (either ⊥ or a data
string) and a message m of her choice to C, who runs SignDAA to get a
signature σ and responds with σ.

– Join: A submits a signer’s identity S of her choice to C, who runs JoinDAA
with A to create skS and to obtain a set of valid credentials credS from A. C
verifies the validation of credS and keeps skS secret.

– Corrupt: A submits a signer’s identity S of her choice to C, who responds
with the value skDAA of the signer.

• Challenge: At the end of phase 1, A chooses two signers’ identities S0 and S1,
a message m and a basename dom of her choice to C. A must not have made
any Corrupt query on either S0 or S1, and not have made the Sign query with the
same dom if dom ≠⊥ with either S0 or S1. To make the challenge, C chooses a
bit b uniformly at random, signs m associated with dom under (skSb

, credSb
) to

get a signature σ and returns σ to A.

132

7.5. REVIEW AND ADOPTION OF THE SECURITY MODEL

• phase 2: A continues to probe C with the same type of queries that it made in
phase 1. Again, A is not allowed to corrupt any signer with the identity either S0
or S1, and not allowed to make any Sign query with dom if dom ̸=⊥ with either
S0 or S1.

• Response: A returns a bit b′. We say that the adversary wins the game if b = b′

Definition 13 (User-controlled-traceability). A DAA scheme is user-controlled-
traceable if no probabilistic polynomial-time adversary can win the following game between
a challenger C and an adversary A, i.e. if Adv[Atrace

DAA] = Pr[A wins] is negligible:
• Initial: C runs SetupDAA(1λ), gives the resulting pkI to A but keeps skI .
• Phase 1: C is probed by A who makes the following queries:

– Sign: The same as in the game of user-controlled-anonymity.
– Join: There are two cases of this query. Case 1: A submits a signer’s identity
S of her choice to C, who runs Join− IssueDAA to create skDAA and cred for
the signer. Case 2: A submits a signer’s identity S with a skDAA value of her
choice to C, who runs Join− IssueDAA to create cred for the signer and puts
the given skDAA into a revocation list RL. C responds the query with cred.
Suppose that A does not use a single S for both of the cases.

– Corrupt. This is the same as in the game of user-controlled-anonymity, except
that at the end C puts the revealed secret key into the list RL.

• Forge: A returns a signer’s identity S, a signature σ, it’s signed message m and
the associated basename dom.
We say that the adversary wins the game if

1. VerifyDAA(pkI ,m, dom, σ, RL) = 1(accepted), but σ is no response of the
existing Sign queries,
and/or

2. In the case of dom ̸=⊥, there exists another signature σ′ associated with the
same identity and dom, and the output of LinkDAA(σ, σ′) is 0 (unlinked).

We will use the following notation to denote the queries made by the adversary:
SignDAA(S, dom,m) - On input of a signer’s identity S, a basename dom (either ⊥ or a

data string), a message m the oracle returns signature σ.

HJoinDAA(S) - On input of a signer’s identity S of her choice, the adversary obtains
credentials credS . The secret key skS is kept secret by the oracle. This oracle
corresponds to Case 1 joining.

JoinDAA(S, skS) - On input of a signer’s identity S of her choice and a secret key skS ,
the adversary obtains credentials credS . This oracle corresponds to Case 2 joining.

IHJoin(S) - On input of a signer’s identity S of her choice, this interactive honest
user joining oracle allows the adversary to issue credentials for an honest user
in the name of the issuer. This oracle represents the Join oracle defined in
user-controlled-anonymity.

133

CHAPTER 7. THROLLTHROTTLE - APPENDIX

CorruptUserDAA(S) - On input of a signer’s identity S, the value sk is returned to the
adversary.

Definition 14 (correctness). If both the signer and verifier are honest, then the
signatures and their links generated by the signer will be accepted by the verifier with
overwhelming probability, i.e. for any secret key skS in the user’s secret key space if

(pkI , skI)← SetupDAA(1λ),
(com)← JoinDAA(pkI , skS),

(credS)← IssueDAA(skI , com),
σ0 ← SignDAA(skS , cred,m0, dom), and
σ1 ← SignDAA(skS , cred,m1, dom),

then, with overwhelming probability,

1← VerifyDAA(pkI ,m, dom, σi), i ∈ {0, 1}

and
1← LinkDAA(σ0, σ1).

Brickell and Li’s scheme is easily shown to fulfil our requirement that the Link function
can also be represented using the pseudonym that is included in the signature. This
pseudonym is fixed per identity and per basename.

Theorem 6. For any cryptographic collision resistant hash function h : {0, 1}∗ → G,
Brickell and Li’s scheme [27] is an instantly linkable DAA scheme if we define:

NymExtract(σ) ··= σ2

NymGen(skS , dom) ··= h(dom)skS

VerifyBsn(σ, dom) ··=
{

1 if σ1 = h(dom)
0 otherwise

where σ = (σ1, . . . , σ9).

Proof. It is easy to see that pseudonyms of the form h(dom)skS are already used by
the Brickell and Li scheme but are hidden as part of the signature (i.e. as σ2). Thus,
NymExtract and NymGen work according to the definition of instant linkability. Lastly,
we note that the first element of the signature σ1 is actually the base under which
we compute the pseudonym, i.e. h(dom). Note that in our system we always use
domain-based DAA signatures and this element is in the range of the hash function and
not a random element (as also allowed in the Brickell and Li scheme).

Theorem 7. Brickell and Li’s scheme [27] with a minor modification is an updatable
DAA scheme.

134

7.6. PROOFS OF SECURITY

Proof. The main observation is that in the Join− IssueDAA protocol the user computes
a Diffie-Hellman public key F = hf

1 and computes a Schnorr like proof for f , i.e. it
computes R = h

rf

1 , challenge c = h(pkI ||nonce||F ||R) and proof sf = rf + c · f . The
generator h1 is part of the public key pkI , nonce is some nonce send by the issuer to
prevent replay attacks and u = (F, c, sf , nonce). What’s more, the setup algorithm the
generator h1 by directly sampling a group element, i.e. it is generated using public coins
.

One can easily notice that we can set gpk1 = (h1) (including the group definition),
where gpk2 contains the remaining parameters (see [27] for a full specification). The
only problem we have to tackle with is that the challenge c, used to generate the proof
sf , contains the full public parameters pkI . Indeed, there is no reason to include the full
pkI besides to protect against cross issuer attacks, i.e. a malicious man-in-the-middle
could register a user into a different DAA system (with a different pkI). However, in
our case we want this to be true. What’s more important here is that changing the
challenge does not break the soundness of the proof. Since the used proof is a standard
Fiat-Shamir instantiation of a sigma protocol, it is sufficient that challenge contains
remaining values.

7.6 Proofs of Security

We first define the adversarial model in terms of the oracles at the attacker’s disposal.
Then we treat introduce and prove each security property, one by one.

7.6.1 Model Oracles

To model the security of the protocol, we first define the adversarial capabilities in terms
of a set of oracles that will be used in the following security definitions. The challenger
in all these definitions is defined in terms of these oracles and the winning condition of
the adversary.

Definition 15. We define the following oracles and global sets CU, HU, VM, USK,
CH, COMM that are initially set empty:

CorruptUser(U) - on input of the user identifier this oracle, checks if there is a tuple
(U , skU , credU) ∈ USK then output (skU , credU). Otherwise it outputs ⊥. Finally,
it adds U to the set CU and sets HU = HU \ {U}.

CorruptVer(U , ver, V) - on input of the user identifier and database ver, this oracle sets
ver[V,U] = 1 and adds (V,U) to the set VM.

CreateHonestUser(U , ver, skI, V) - this oracle first checks that U ̸∈ HU ∪ CU and
returns ⊥ if not. Then it sets ver[V,U] = 1 and runs the Join− Issue protocol,
receiving (skU , credU). Finally, it adds (U , skU , credU , V) into USK and U to
HU.

135

CHAPTER 7. THROLLTHROTTLE - APPENDIX

JoinSystem(U , ver, skI, V) - this oracle first checks that U ̸∈ HU ∪ CU, ver[V,U] = 1
and that (·,U) ̸∈ VM. It returns ⊥, if both checks fail. Then, it interactively
executes Issue(skI, ver,U) by communicating with the adversary.

HJoinSystem(U , ver, pkI, V) - this oracle first checks that U ̸∈ HU ∪ CU and (·,U) ̸∈
VM. It returns ⊥ if both checks fails. Then it sets ver[V,U] = 1, samples a fresh
secret key skU and interactively executes the Join(pkI, skU ,U) protocol with the
adversary, receiving credU . It then adds (U , skU , credU , V) to USK and U into
HU.

CreateComment(U , dom,m, pkI) - this oracle first checks that U ∈ HU and then
computes (nym, γ)←$ Comment(pkI, skU , credU , dom,m).
Finally, it adds (U ,nym, dom,m, γ) to COMM and outputs γ and the pseudonym
nym.

Challb(U , dom,m, skI, pkI) - this oracle first checks that U ∈ HU and returns ⊥ if not.
If (U , dom, skU ,dom , credU ,dom) ̸∈ CH then the oracle executes the Join− Issue
protocol to receive a new secret key skU ,dom and credential credU ,dom. Then it
adds (U , dom, skU ,dom , credU ,dom) to CH and computes:
if b = 0: (nym, γ)←$ Comment(pkI, skU , credU , dom,m),

else if b = 1: (nym, γ)←$ Comment(pkI, skU ,dom , credU ,dom , dom,m)
Finally, it outputs γ and pseudonym nym.

7.6.2 Protection against trolling

Definition 16. We say that the system protects against trolling if for every adversary
A, every 1λ, the probability Pr[Exptroll

A (1λ) = 1] is negligible 1λ.

Experiment Exptroll
A (1λ):

CU← ∅; HU← ∅; V ← ∅;
USK← ∅; COMM← ∅; ver← ∅;
(skI, pkI)←$ Setup(1λ)
O = {CorruptUser(·),CreateHonestUser(·, ver, skI),
CorruptVer(·, ver), JoinSystem(·, ver, skI),CreateComment(·, ·, ·, pkI)}
OUT = {(nym∗

i , dom∗
i ,m

∗
i , γ

∗
i)}ki=1 ←$ AO(ρ, pkI)

OUT = OUT \ {(nym, dom,m, γ) : (·,nym, dom,m, γ) ∈ COMM}
Return 0 if Verify(pkI,nym∗

i , dom∗
i ,m

∗
i , γ

∗
i) = 0 for any i ∈ {1, . . . , k}

S = {(nym, dom) : (nym, dom, ·, ·) ∈ OUT}
t = max(·,dom)∈S |{(nym) : (nym, dom) ∈ S}|
Return 1 if t > |CU|+ |VM|

Figure 7.2: Trollthrottle protection against trolling

Theorem 8 (Protection against trolling). The TrollThrottle protocol (see Def. 3)
satisfies protection against trolling (see Def. 16) if the underlying DAA scheme provides

136

7.6. PROOFS OF SECURITY

user-controlled traceability (Def. 13) and is instantly linkable (Def. 5), the user hash
function is collision-resistant and the proof system for relation RJoin is a proof of
knowledge.

Proof. We begin this proof by noting that the adversary can only win the trolling
experiment in three ways.

1. by finding a comment with a DAA signature σ under basename dom1 and message
m that is also valid for basename dom2 and message m, where dom1 ̸= dom2.

2. forging a signature for an honest user for message m∗ where there exists a tuple
(·, ·, ·,m, ·) ∈ COMM for which h(m∗) = h(m).

3. by creating a “fake” new user without interacting with the issuer or forging
a signature for an honest user for message m∗ where there exists no tuple
(·, ·, ·,m, ·) ∈ COMM for which h(m∗) = h(m).

We will now show that any adversary has only a negligible probability to actually
perform any of the above attacks. To do so, we will create reductions that interact with
the adversary and a DAA challenger for the user-controlled traceability. However, first
we show how those reductions will answer the oracle queries of the adversary. In every
case, the reduction will play the role of the adversary against the DAA scheme. Thus, it
will receive the public key of the DAA issuer pkI . Moreover, every reduction will keep
its own local vector ver (initially zero) and initially empty lists HUR, CUR (different
than the ones used in the definitions) and COMM.

Generic way of answering oracle queries by the reduction

CorruptVer(U , ver) - on a corrupt verification query, the reduction just sets the local
value ver[U] to 1.

CreateHonestUser(U , ver, skI) - on an honest user creation query, the reduction returns
credU if (U , credU) ∈ HUR. If such a tuple does not exist, it queries the DAA
HJoinDAA(S) oracle, where S = U , receives a DAA credentials credS and adds
(U , credU) into HUR and returns credU = credS .

CorruptUser(U) - on a corrupt honest user query, the reduction returns ⊥ if there
exists no tuple (U , credU) ∈ HUR. Otherwise, it queries the DAA oracle
CorruptUserDAA(S), where S = U and receives the DAA secret key skU = skS and
credentials credU = credS . The reductions updates HUR = HUR \ {(U , credU)},
add (U , skU , credU) to CUR and returns skU = skS .

JoinSystem(U , ver, skI) - on a corrupt user joining query, the reduction returns ⊥ if
ver[U] = 0 or (U , ·) ∈ HUR. The reduction then uses the extraction algorithm
Extr to extract skS from ΠJoin. It then uses its own JoinDAA(U , skS) and obtains
credentials credS . The reduction then adds (U , skS , credS) to CUR and returns
credU = credS to the adversary.

CreateComment(U , dom,m, pkI) - on a commenting query, the reduction first checks
that the query is for an honest user, i.e. that (U , ·) ∈ HUR and returns ⊥ if this

137

CHAPTER 7. THROLLTHROTTLE - APPENDIX

is not the case. It then uses its own signing oracle to query SignDAA(U , dom,m)
receiving signature σ and computes nym = NymExtract(σ). Finally, it returns
γ = (σ,nym,m, dom) and it adds (U ,nym, dom,m, γ) into COMM.

If the Extr fail, then the reduction also fails. Thus, it is easy to see that the probability
of any reduction in simulating the real experiment without error depends heavily on
this algorithm. Fortunately, we assumed that they fail only with negligible probability,
so does our reduction.

Case 1 We will now discuss that there cannot exist any adversary that can use the
first attack strategy. This basically follows from the instant linkability of the DAA
scheme, i.e. because of the VerifyBsn, we ensure that signatures are linked to basenames
and the probability that any A finds such a “collision” is negligible.

To show this more formally, let us assume that there exists an adversary A that wins
by returning a valid comment γ1 = (σ∗, ·, dom∗,m∗) where (·,nym∗, dom∗,m∗, γ1) ̸∈
COMM but there exists a tuple γ2 = (σ∗, ·, dom,m∗) such that (·,nym∗, dom,m∗, γ2) ∈
COMM, which is what we assumed in this case. However, because both commitments
are valid we know that VerifyBsn(σ∗, dom∗) = 1 and VerifyBsn(σ∗, dom) = 1, and
VerifyDAA(pkI ,m, dom∗, σ∗, RL∅) = 1 and VerifyDAA(pkI ,m, dom, σ∗, RL∅) = 1. Thus,
we found a “collision” and broke the instant linkability property of the DAA scheme for
which we assumed that there exists no PPT adversary with non-negligible probability.

Case 2 It is easy to see that by winning in this case the adversary A can be used to
break collision-resistance of the hash function h. The reduction just returns (m,m∗) as
a collision for h.

Case 3 We will now show that in case 2 if there exists an adversary A against the
trolling experiment, then we can use it to construct a reduction R against the user-
controlled-traceability experiment. In particular, we have shown above that how R can
answer all possible queries of A using its own oracles for the user-controlled-traceability
experiment. Thus, at some point A will conclude and return a list OUT. We assume
without loss of generality that this list does not contain any of the signatures returned as
part of the CreateComment oracle queries. Note that the experiment explicitly disal-
lows such tuples. Since we assumed that A wins the experiment, thus there must exist
a basename dom for which max(·,dom)∈S = t > |CU|+ |VM|, where S = {(nym, dom) :
(·,nym, dom, ·) ∈ OUT}. However, what this implies is that there must exist exactly t
valid DAA signatures in OUT for the basename dom. Let us denote those signatures un-
der respectively pseudonyms nym1, . . . ,nymt and messages m1, . . . ,mt as σ1, . . . , σt. We
also know that all nym1, . . . ,nymt are distinct. What’s more, because of instant linkabil-
ity we know that there exist secret keys sk1, . . . , skt for which nymi = NymGen(ski, dom),
where there is at least one secret key skj which was not extracted by the reduction
(and put in on the revocation list by the user-controlled-traceability experiment). It
follows that for the revocation list RL = {sk1, . . . , skj−1, skj+1, . . . , skt} we have that
VerifyDAA(pkI ,mj , dom, σj , RL) = 1. Thus, since we know that all signatures in OUT
are not an output of the CreateComment oracle and there exists at least one valid

138

7.6. PROOFS OF SECURITY

signature despite using a revocation list with the secret keys of all corrupted users by
returning (U , σj ,mj , dom) for some U of a signer, the reduction wins the user-controlled-
traceability experiment. The U is chosen depending on the type of forgery. If skj does
not correspond to a secret key of any honest user (the reduction can check this asking
its oracle for a signature under a dummy message for all honest users in basename dom
and comparing the corresponding pseudonym with nymj) U is chosen as an identifier of
a corrupted user and otherwise as the identifier of the honest user with secret key skj .

Thus, we have

Pr[Exptroll
A 1λ) = 1] = 3 · (Adv[Rtrace

DAA] + Adv[Rcollision
h]+

+ Adv[RVerifyBsn
DAA]) + Adv[RE1

Π]
≤ negl(λ).

7.6.3 Non-frameability

Definition 17. We say that the system is non-frameable if for every adversary A, every
1λ, the probability Pr[Expnoframe

A (1λ) = 1] is negligible 1λ.

Experiment Expnoframe
A (1λ):

CU← ∅; HU← ∅; V ← ∅;
USK← ∅; COMM← ∅; ver← ∅;
(skI, pkI)←$ Setup(1λ)
O = {CorruptUser(·),CreateHonestUser(·, ver, skI),
CorruptVer(·, ver),CreateComment(·, ·, ·, pkI), JoinSystem(·, ver, skI)}
(nym∗, dom∗,m∗γ∗)←$ AO(ρ, pkI)
Return 0 if Verify(pkI,nym∗, dom∗,m∗, γ∗) = 0
Return 1 if:
1) there exists no tuple (·,nym∗, dom∗,m∗, γ∗) in COMM, and
2) ∃U∗∈HU nym∗ = nymU∗ , where
(nymU∗ , ·)←$ Comment(pkI, skU∗ , credU∗ , dom∗,m∗), and (U ∗, skU∗ , credU∗ , ·) ∈ USK

Figure 7.3: Trollthrottle non-frameability

Theorem 9 (Non-frameability). The TrollThrottle protocol (see Def. 3) satisfies
Non-frameability (see Def. 16) if the underlying DAA scheme provides user-controlled
traceability (Def. 13) and is instantly linkable (Def. 5), the hash function h is collision-
resistant and the proof system for relation RJoin is a proof of knowledge.

Proof. Assume there exists a PPT adversary A that can win the non-frameability game
with non-negligible probability. Then by instant linkability there ∃dom,U ∈ HU,nym =
NymGen(skU , dom), s.t. Verify(pkI,nym, dom,m, γ) = 1 and ¬∃(·,nym, dom,m, γ) ∈

139

CHAPTER 7. THROLLTHROTTLE - APPENDIX

COMM. In other words, the adversary is able to create a valid γ = (σ,nym, dom,m)
tuple that corresponds to an honest user U ∈ HU. We first exclude the case that the
adversary wins by using a comment from COMM under a different message m′. It is
easy to see that this basically corresponds to an attack against the collision-resistance of
the hash function and we can use A to break the security of the hash function h. We will
show that in any adversary winning in any other can be used to create reduction R that
wins the user-controlled traceability experiment for the DAA scheme with non-negligible
probability.

R simulates the non-frameability experiment for A according to 7.6.2. With non-
negligible probability, R obtains (nym∗, dom∗,m∗, γ∗) ←$ AO(ρ, pkI). Let out =
(U ∗, σ∗,m∗, dom∗), where γ∗ = (σ∗,nym∗, dom∗,m∗) and U ∗ corresponds to the honest
user with nym∗ = NymGen(skU∗ , dom∗). According to winning conditions of the non-
frameability experiment we have that
VerifyDAA(pkI,DAA,m

∗, dom∗, σ∗, RL∅) will return 1 and σ∗ is not the result of any
signing query made by the reduction R. What’s more, the winning conditions require
that the signature corresponds to an honest user, which by instant linkability means
that σ∗ is also valid for the revocation list containing the secret keys of all corrupted
users in CU. Thus, by returning out, the reduction wins the user-controlled-traceability
experiment with a non-negligible probability. It follows that we have

Pr[Expnoframe
A (1λ) = 1] =Adv[Rtrace

DAA] + Adv[Rcollision
h]+

Adv[RE1
Π] ≤ negl(λ).

7.6.4 Anonymity

Definition 18. We say that the system is anonymous if for every adversary A, every
1λ, the probability Pr[Expanon

A (1λ) = 1] = 1
2 + negl(λ).

140

7.6. PROOFS OF SECURITY

Experiment Expanon
A (1λ):

CU← ∅; HU← ∅; V ← ∅;
USK← ∅; COMM← ∅; ver← ∅;
(skI, pkI)←$ Setup(1λ)
O = {CorruptUser(·),CreateHonestUser(·, ver, skI),
HJoinSystem(·, ver, pkI, V),CreateComment(·, ·, ·, pkI)}
(U ∗, dom∗,m∗)←$ AO(ρ, skI)
b←$ {0, 1}
chall = Challb(U ∗, dom∗,m∗, skI, pkI)
O2 = {CorruptUser(·),CreateHonestUser(·, ver, skI),
HJoinSystem(·, ver, pkI, V),CreateComment(·, ·, ·, pkI)}
b∗ ←$ AO2(ρ, skI, chall)
Return 0 if (U ∗, ·, dom∗, ·, ·) ∈ COMM
Return 1 iff b = b∗ and U ∗ ∈ HU

Figure 7.4: Trollthrottle anonymity

Theorem 10 (Anonymity). The TrollThrottle protocol (see Def. 3) satisfies Anonymity
(see Def. 18), if the underlying DAA scheme provides user-controlled anonymity (Def. 12)
and the proof system for relation RJoin is a proof of knowledge.

Proof. Assume there exists a PPT adversary A that can break the anonymity game
with probability 1

2 + ε(λ) where ϵ is non-negligible in λ. We construct a PPT adversary
R against the user-controlled-anonymity game that wins with the same probability as
A.We construct R as follows:

1. Experiment simulation for A:

• The oracles CorruptUser(·),CreateHonestUser(·, ver, skI),
CreateComment(·, ·, ·, pkI) are simulated according to 7.6.2.

• To answer queries to the HJoinSystem oracle, the reduction uses its own
IHJoin(S) oracle and the simulator Sim to generate the proof for relation
RJoin (here we require the zero-knowledge property).

• The oracle Challb(U , dom,m, skI, pkI) is simulated as follows:

– R chooses some U ′ ̸= U and (U ′, ·, ·, ·) ̸∈ USK uniformly at random.

– R queries it’s Join oracle on U ′ obtaining credU ′ .

– R gives S0 = U and S1 = U ′ , m and dom to its challenger and receives
the challenge σ′

b = SignDAA(skSb
, credSb

,m, dom).

– R sends (NymExtract(σ′
b), (σ′

b,NymExtract(σ′
b), dom,m)) to A. If the

challenged bit is 0, the simulation of R is equivalent to Chall0(·). Other-
wise, it the challenged bit is 1, the simulation is equivalent to Chall1(·).

• With non-negligible probability, R obtains bA ←$ AO(ρ, skI).

141

CHAPTER 7. THROLLTHROTTLE - APPENDIX

2. R returns out = bA and wins the user-controlled anonymity experiment if A wins
against it’s anonymity game.

Thus, by user-controlled anonymity of the DAA scheme and the zero-knowledge of the
proof system we have Pr[Expanon

A (1λ) = 1] = 1
2 + Adv[Ranon

DAA] + Adv[RZK
Π].

7.6.5 Accountability

The system shall provide accountability against censorship by allowing a participant to
claim and prove that a website censored its comment. The party provides evidence that
can be used to prove that an entry in the public ledger belongs to a certain message
and basename. Deciding when a message is acceptable is a matter of public opinion
and not modelled here.

7.6.5.1 Soundness

Definition 19. We say that the system’s accountability mechanism is sound if for every
adversary A and 1λ, the probability Pr[Expaccsound

A (1λ) = 1] is negligible 1λ.

Experiment Expaccsound
A (1λ):

CU← ∅; HU← ∅; VM← ∅;
USK← ∅; COMM← ∅; ver← ∅;
(skI, pkI)←$ Setup(1λ)
O = {CorruptUser(·),CreateHonestUser(·, ver, skI),
CorruptVer(·, ver),CreateComment(·, ·, ·, pkI), JoinSystem(·, ver, skI)}
(dom∗,m∗, γ∗, evidence∗)←$ AO(ρ, pkI)
Return 1 if all of the following hold true

• COMM contains no tuple (·, dom∗,m∗, ·)
• COMM contains a tuple (·, ·, ·, ·, γ∗)
• VerifyClaim(pkI, dom∗,m∗, γ∗, evidence∗) = 1

Figure 7.5: Trollthrottle accountability soundness

Theorem 11 (Sound accountability). The TrollThrottle protocol (see Def. 3) has a
sound accountability mechanism (see Def. 19) if h is collision resistant.

Proof. Assume there exists a PPT adversary A that can win the sound account-
ability game with non-negligible probability. For the case where the experiment re-
turns 1, the adversary returns (dom∗,m∗, γ∗, evidence∗) such that, (·, ·, dom∗,m∗, ·) ̸∈
COMM, but, for some U ′, nym′, dom′ and m′, (U ′,nym′, dom′,m′, γ∗) ∈ COMM, and
(by definition of VerifyClaim), γ∗ = (σ∗,nym∗, h(m∗), dom∗) for some σ∗ and nym∗,
as well as Verify(pkI,nym∗, dom∗,m∗, γ∗) = 1. By definition of CreateComment,
(nym′, γ∗)←$ Comment(pkI, skU ′ , credU ′ , dom′,m′), and thus by definition of Comment,
γ∗ = (σ′,nym′, h(m′), dom′) = (σ∗,nym∗, h(m∗), dom∗). Hence, (U ′,nym∗, dom∗,m′, γ∗) ∈
COMM. As we assume h to be collision-resistant, m′ ̸= m while h(m′) = h(m)
would constitute an attack. Hence, if A′ does not find a collision this way, then

142

7.6. PROOFS OF SECURITY

(U ′,nym∗, dom∗,m∗, γ∗) ∈ COMM, contradicting the assumption that no such tuple is
in COMM.

7.6.5.2 Completeness

Definition 20. We say that the system’s accountability mechanism is complete if for
every adversary A, every 1λ, the probability Pr[Expacccompl

A (1λ) = 1] is negligible 1λ.

Experiment Expacccompl
A (1λ):

CU← ∅; HU← ∅; V ← ∅;
USK← ∅; COMM← ∅; ver← ∅;
(skI, pkI)←$ Setup(1λ)
O = {CorruptUser(·),CreateHonestUser(·, ver, skI),
CorruptVer(·, ver),CreateComment(·, ·, ·, pkI), JoinSystem(·, ver, skI)}
(U ∗,nym∗, dom∗,m∗, γ∗, evidence∗)←$ AO(ρ, pkI)
Return 1 if there exist tuples (U ∗,nym∗, dom∗,m∗, γ∗) ∈ COMM,
and (U ∗, skU , credU , ·) ∈ USK such that
VerifyClaim(nym∗, dom∗

i ,m
∗, γ∗, x) = 0

for x = Claim(pkI, skU , credU , dom∗,m∗, γ∗,nym∗).

Figure 7.6: Trollthrottle accountability completeness

Theorem 12 (Completeness of accountability mechanism). The TrollThrottle
protocol (see Def. 3) has a complete accountability mechanism (see Def. 18), if correctness
holds.

Proof. This follows immediately from the definition of CreateComment (Def. 15),
and the correctness of the DAA scheme (Def. 14).

143

8
Accountable Javascript -

Appendix

145

8.1. VERIFICATION OF SECURITY PROPERTIES

8.1 Verification of Security Properties

By default, Tamarin assumes that the adversary controls the network. Our model allows
the adversary to impersonate the untrusted parties in the protocol and thereby access
their secrets. This is logged with a Corrupted(p) event in the trace with p an identifier
for the corrupted principal.

We model the principals in the following structure using applied-π calculus.
in($p);
(

(event Corrupted($p);
out(sk($p)))

| out(pk(sk($p)))
| (

/* process goes here */
)

)

The shortcut $p denotes that the term p is a public value. The attacker, by inputting the
public value $p can pick some identifier for the party. Then, if the attacker corrupts the
party, a corruption event is emitted and the attacker gets access to the secret key. The
public (verification) key is emitted so that other parties can use it to verify the signed
messages of p. We exemplify the process with the example of PDeveloper as follows:

in($D);
(

[..]
| (

in(<$manifest, $url, $v>);
event DUploads($D, $url, φ);
out(<’update’, $D, $manifest, $url, $v, φ>)
...

)
)

This code snippet includes the interaction with the network via in and out, which
is represented by the attacker. The attacker hence inputs the public values manifest,
url and version number v, then the developer process computes a signature φ from
these values and sends an update message to the log including all that information.
Events are annotations associated with the parts of the processes that enable to define
restrictions and security properties. In this example, before sending the update message
to the log, the developer logs a DUploads event in the trace, annotating the developer’s
new code update request to the transparency logs.

The process PLog represents the transparency log as a protocol party that can receive and
send messages, and in addition apply insert and lookup operations to an append-only
global store. The applied-π calculus provides constructs for modelling the manipulation
of a global store. The code snippet below includes an insert and a lookup operation.

insert <$D, $L, ’version’, $url>, $v;

147

CHAPTER 8. ACCOUNTABLE JAVASCRIPT - APPENDIX

...
lookup <$D, $L, ’manifest’, $url> as $manifest

in P else Q

The insert construct associates the value $v to the key which is a tuple< $D, $L, ‘version‘,
$url > and successive inserts overwrite the old values. The lookup construct retrieves the
value associated with the key < $D, $L, ‘manifest‘, $url > and assigns it to $manifest
variable. If the lookup was successful, it proceeds with process P , otherwise with Q.
$D stands for the developer’s identity, whereas $L stands for the log’s identity. Since
there are unbounded number of developers and logs; we associate the values that are
stored in the global store with the URL and the identities of the related developer and
log for uniqueness.

Our model also includes lock and unlock, which the stateful applied-π calculus defines
for exclusive access to the global store in the concurrent setting. The code snippet
below shows an example of lock and unlock operations used in our protocol.

lock ($url);
insert <..., $url>, ...;
...
unlock ($url);

When a $url is locked, any subsequent attempt to lock the same $url will be blocked
until it is unlocked. We provide exclusive accesses based on the $url, when the log
attempts to insert a new value to the global store. This is an over approximation: if a
lock requires exclusive access independent for every write (independent of the URL) our
model correctly captures this behaviour too. We do not require locks for other reads,
which also increases generality.

Security properties and restrictions are first-order formulas over the annotated events and
time points. Universal quantification (meaning: for all) and existential quantification
(meaning: there exists) are used to check if the security property formula (lemma) holds
for all examples in the domain or there exists at least one example that satisfies the
formula respectively. If the lemma holds for the former case then the Tamarin Prover
shows that it is proven, whereas for the latter case a satisfying example is presented to
the user. The time points enable to account for event order in the trace, where e.g. E@i
means that event E was emitted at index i in the trace. We prove that the following
security properties hold in our protocol:

Theorem 13 (Authentication of origin). Intuitively, the client will only execute
active content code (signified by the event CExec with url and manifest φ) if the code
was uploaded by the honest developer D (logged the event DUploads), or the developer
was corrupted. The KU event is emitted whenever the attacker (who is acting on behalf
of the corrupted party D) constructs a message. We simplify the formula as follows:

CExec($D, $url, φ) =⇒ DUploads($D, $url, φ) ∨
(Corrupted($D) ∧KU($url) ∧KU(φ))

148

8.2. CLAIM VERIFICATION

Formally, the lemma is: for all CExec events there exists either an earlier DUploads
event or there exists a Corrupted($D) event and KU events before CExec event.

Theorem 14 (Transparency). If the client executes JS code c for url with timestamp
ts (CExec′), then there is a corresponding log entry (Log) and it was deemed recent
(CRecent) by the client. The session identifier sid binds the moment when the client
checks the timestamp is recent (CRecent) to the moment it executes (CExec′) the code.

CExec′($url, sid, c, ts) ⇒ Log($url, c, ts) ∧ CRecent(sid, ts)

Authentication of origin and transparency describe the proactive behaviour of the
extension. The following theorems cover the reactive behaviour. We first establish that
a claim that a client submits to the public is non-repudiable, i.e. that a corrupted client
cannot forge false evidence to implicate honest parties.

Theorem 15 (Accountability). When the public accepts a claim (identified with
server id, url, manifest, client nonce and log timestamp) then, even if the client was
corrupted, the code must exist in the logs (Log′), and the server must have sent that
data, either honestly, or dishonestly via the adversary.

PAccept($W, $url, φ, n, ts) =⇒ Log′($url, φ, ts) ∧
(WSend($W, $url, φ, n) ∨

(Corrupted($W) ∧KU ($W, $url, φ, n))

Here, the event WSend is emitted by W (who is honest) right before it sends the signed
tuple sigW to C in Fig. 4.3.

Theorem 16 (End to end guarantee). When the client executes a malicious code,
then a corrupted developer is necessary to distribute it.

CExec($D, $url, ‘malicious‘) =⇒ Corrupted($D)

Theorem 17 (End to end non-guarantee). When the client executes a malicious
code, then a corrupted developer is sufficient to distribute it.

Ex. CExec($D, $url, ‘malicious‘) =⇒ (All x. Corrupted(x) =⇒ (x =$D))

Tamarin reports these results within 3 hours on a 16-core computer with 2.6 GHz Intel
Core i5 processors and 64 GB of RAM. The proof is fully automatic, but relies on
a so-called ‘sources’ lemma to specify were certain messages can originate from. We
specified this lemma by hand, but it is verified automatically. The full protocol can be
found in the supplementary material [58].

8.2 Claim Verification

The public runs a procedure to verify the claim generated by a client that was allegedly
targeted by a website. As detailed in the Accountable JavaScript Appendix 8.1 Theorem

149

CHAPTER 8. ACCOUNTABLE JAVASCRIPT - APPENDIX

15, a claim is identified with server name, URL, manifest, request nonce and the
timestamp that was set for the manifest by the ledger. The signatures on the request
and the response data are verified, and the request nonce is asserted with the server
nonce for authenticity. Next, the delivered content behaviours are checked against the
manifest using the measurement procedure. Then, the public evaluates if the manifest
is the latest version on the ledger using the timestamp. If the evaluation fails in any of
these steps, then the claim is accepted.

8.3 Formal model of Accountable JavaScript

theory AccountableJavaScript
begin

builtins: multiset

functions:
pk/1, sk/1[private],
sign/2, verify/3[destructor],
true/0, eq/2,
extractmsg/1[destructor]

equations:
verify(pk(sk(i)), sign(sk(i), m), m) = true,
extractmsg(sign(skey,m))=m // only for attacker

predicates: LessThan(x,y) <=> (Ex z. y = x + z)
, HonestRun() <=> not (Ex p #j. Corrupted(p)@j)

export queries:
"
set preciseActions = true.
"

//for the same url, the W and D must be the same
restriction webserver_dev_unique:

"All w1 d1 w2 d2 u #i #j. WebserverDevUnique(w1,d1,u)@i &↷
WebserverDevUnique(w2,d2,u)@j

==> w1=w2 & d1=d2"

//it must be the same webserver
restriction webserver_url_unique:

"All w1 w2 u #i #j. WebserverUrlUnique(w1,u)@i & ↷
WebserverUrlUnique(w2,u)@j

==> w1=w2"

//it must be the same developer
restriction dev_url_unique:

"All d1 d2 u #i #j. DevUrlUnique(d1,u)@i & DevUrlUnique(↷
d2,u)@j

==> d1=d2"

150

8.3. FORMAL MODEL OF ACCOUNTABLE JAVASCRIPT

//it must be the same content if it is the same url and ↷
version
restriction content_ver_unique:

"All u v c1 c2 #i #j. ContentVersionUnique(u,v,c1)@i & ↷
ContentVersionUnique(u,v,c2)@j

==> c1=c2 & #i = #j"

// ledger always honest
restriction ledger_cannot_corrupt:

"not (Ex x #i #j. Corrupted(x)@i & LedgerE(x)@j)"

restriction log_stamp_unique:
"All u v c d l #i #j. LogsUnique(u,v,c,d,l)@i & ↷
LogsUnique(u,v,c,d,l)@j ==> #i = #j"

restriction new_log_mono:
"All url v1 v2 #i #j. NewLogInserted(url,v1)@i & ↷
NewLogInserted(url,v2)@j & #i < #j

==> LessThan(v1,v2)"

restriction parties_unique:
"All p #i #j. Party(p)@i & Party(p)@j

==> #i=#j"

let Developer =
(

in($D);
event Party($D);
((

event Corrupted($D);
out(sk(’D’,$D))

)
|
out(pk(sk(’D’,$D)))
| (

in(<$content,$url,$v>);
if $content = ’malicious’ then 0
else (

event DUploads($D,$url, $content);
event ContentVersionUnique($url, $v, $content);
event DevUrlUnique($D, $url);

let mUpdate=<’update’, $D, $content, $url, $v> in

out(<mUpdate, sign(sk(’D’,$D), mUpdate)>);
in(<’updateNote’, $L, =mUpdate, logstamp, $ts>);
if verify(pk(sk(’L’,$L)), logstamp, <$ts, sign(sk(↷
’D’,$D), mUpdate)>)=true() then

151

CHAPTER 8. ACCOUNTABLE JAVASCRIPT - APPENDIX

out(<’updateCode’, $W, $L, mUpdate, sign(sk(↷
’D’,$D), mUpdate), logstamp, $ts>)

)

))
)

let Ledger =
(

in($L);
event Party($L);
event LedgerE($L);
(
out(pk(sk(’L’,$L)))
| (

in(<mUpdate, sigmUpdate>);
let <’update’, $D, $content, $url, $v>=mUpdate in
if verify(pk(sk(’D’,$D)), sigmUpdate, mUpdate)=true()↷
then

in($ts);
let logstamp = sign(sk(’L’,$L), <$ts, sigmUpdate>)↷
in
event LogStamp($url,$content,$ts);
event LogsUnique($url, $v, $content, sigmUpdate, ↷
logstamp);
event NewLogInserted($url, $v);
//event LogStampNonEquivocation(<$url, $D, $L, ↷
$content, $v, sigmUpdate, logstamp, $ts >);
insert <$D, $L, ’lversion’, $url>, $v;
insert <$D, $L, ’lcontent’, $url>, $content;
insert <$D, $L, ’lsignD’, $url>, sigmUpdate;
insert <$D, $L, ’lts’, $url>, $ts;
insert <$D, $L, ’lsignL’, $url>, logstamp;

out(<’updateNote’, $L, mUpdate, logstamp, $ts>)
))

)

let Webserver =
(

in($W);
event Party($W);
(

event Corrupted($W);
out(pk(sk(’W’,$W)))

|
(

(
in(<’updateCode’, =$W, $L, mUpdate, ↷
sigmUpdate, logstamp, $ts>);
let <’update’, $D, $content, $url, $v>=mUpdate ↷
in

152

8.3. FORMAL MODEL OF ACCOUNTABLE JAVASCRIPT

if (verify(pk(sk(’L’,$L)), logstamp, <$ts, ↷
sigmUpdate>)=true() &

verify(pk(sk(’D’,$D)), sigmUpdate, ↷
mUpdate)=true()) then

lock $url;
event WebserverDevUnique($W, $D, $url);
event WebserverUpdated($url, $v);
event WCodeUpdated($url, sigmUpdate, ↷
logstamp);
insert < $W, ’developer’, $url>, $D;
insert < $W, ’ledger’, $url>, $L;
insert < $D, $L, ’version’, $url>, $v;
insert < $D, $L, ’content’, $url>, $content↷
;
insert < $D, $L, ’signD’, $url>, ↷
sigmUpdate;//the signature from D
insert < $D, $L, ’timestamp’, $url>, $ts;
insert < $D, $L, ’signL’, $url>, logstamp↷
;//the signature from L
//TODOlater the logs must be accesible by↷
the attacker

unlock $url
)
||
(

in(<’request’, newReq, signewReq>);

let <$C, =$W, $url, ~n>=newReq in

if verify(pk(sk(’C’,$C)), signewReq, newReq)=↷
true() then

event WebserverUrlUnique($W, $url);
lookup < $W, ’developer’, $url> as $D in
lookup < $W, ’ledger’, $url> as $L in
lookup < $D, $L, ’version’, $url> as $v in
lookup < $D, $L, ’content’, $url> as ↷
$content in
lookup < $D, $L, ’signD’, $url> as ↷
sigmUpdate in
lookup < $D, $L, ’timestamp’, $url> as $ts↷
in

lookup < $D, $L, ’signL’, $url> as ↷
logstamp in
//in($x_content); // superflous, but to ↷
make clear: adversary could send *any* ↷
content
//transparency_developer lemma will fail ↷
if webserver sends x_content instead
event WResponseSent($W, $D, $url, ~n, ↷
$content);
event Wsent(<$W, $url, ~n, sigmUpdate, ↷
logstamp>);
event LearnedFromW(<$W, $url, $content, ~n↷
>);

153

CHAPTER 8. ACCOUNTABLE JAVASCRIPT - APPENDIX

let resp = <~n, $url, $v, $content, $C, $W↷
, $D, $L, sigmUpdate, logstamp> in

out(<’response’, resp, sign(sk(’W’,$W), ↷
resp), $ts>)

)
))

)

let Client =
(

in($C);
event Party($C);
((

event Corrupted($C);
out(sk(’C’,$C))

)
|
out(pk(sk(’C’,$C)))
|
(

new ~n; in($url);

let newReq=<$C, $W, $url, ~n> in

out(<’request’, newReq, sign(sk(’C’,$C), newReq)>);

in(<’response’, resp, sigResp, $ts>);
let < =~n, =$url, $v, $content, =$C, =$W, $D, $L, ↷
sigmUpdate, logstamp>=resp in

if (verify(pk(sk(’W’,$W)), sigResp, resp)=true() &
verify(pk(sk(’D’,$D)), sigmUpdate, <’update’, $D↷
, $content, $url, $v>)=true() &
verify(pk(sk(’L’,$L)), logstamp, <$ts, sigmUpdate↷
>)=true()) then

event CRecent(~n, $ts);
event RecentResponseReceived($W, $url, ~n↷
, $content, $ts);
event HonestResponseReceived($C, $url, ~n↷
);
event CExecutes($D, $url, $content);
event CExecuteTime($url, ~n, $content, $ts);
//event End2EndGuarantee($D, $content);

let evidence = <~n, $url, $v, $content, $C,↷
$W, $D, $L, sigmUpdate, logstamp, ↷
sigResp> in

out($url);

154

8.3. FORMAL MODEL OF ACCOUNTABLE JAVASCRIPT

out(<’claim’, evidence, sign(sk(’C’,$C), ↷
evidence)>)

))
)

let Pub =
(

in($url);
lookup < $D, $L, ’lversion’, $url> as $v in
lookup < $D, $L, ’lcontent’, $url> as $content in
lookup < $D, $L, ’lsignD’, $url> as sigmUpdate in
lookup < $D, $L, ’lts’, $url> as $ts in
lookup < $D, $L, ’lsignL’, $url> as logstamp in
in(<’claim’, <~n, =$url, =$v, =$content, $C, $W, $D, ↷
$L, =sigmUpdate, =logstamp, sigResp>, sigEvidence>);

if (verify(pk(sk(’C’,$C)), sigEvidence, <~n, $url, $v,↷
$content, $C, $W, $D, $L, sigmUpdate, logstamp, ↷

sigResp>)=true() &
verify(pk(sk(’W’,$W)), sigResp, <~n, $url, $v, ↷
$content, $C, $W, $D, $L, sigmUpdate, logstamp>)↷
=true() &
verify(pk(sk(’D’,$D)), sigmUpdate, <’update’, ↷
$D, $content, $url, $v>)=true() &
verify(pk(sk(’L’,$L)), logstamp, <$ts, ↷
sigmUpdate>)=true())

then
//event PAccepts(<p_sigevidence, $C, $W,↷

$D, $L, $url,~n, p_dsig, p_lsig, p_wsig↷
>)
event PAccepts(<$W, $url, $content, ~n, $ts↷
>)

)

//auto ; ~3 minutes
lemma dev_update_or_adv_provide [sources]:

"
All w u s1 s2 n #i. Wsent(<w,u,n,s1,s2>)@i ==>

((Ex #j. KU(<s1,s2>)@j & j<i) | (Ex #j. WCodeUpdated↷
(u,s1,s2)@j & j<i))

"

//auto ; ~3 minutes
// it is possible to receive a verified response without any ↷
corrupted party
lemma sanity[output=[spthy]]:

exists-trace
"Ex c url n #i. HonestResponseReceived(c,url,n)@i & ↷
HonestRun()"

//auto ; takes ~10sec

155

CHAPTER 8. ACCOUNTABLE JAVASCRIPT - APPENDIX

//nonrepudiation lemma
//Intuition: The client will only execute JS
//code if the code was uploaded by the honest developer ðİŘů,
//or the developer was corrupted
lemma auth_of_origin:

" All d url content #i. CExecutes(d,url,content)@i
==> (

(Ex #j. DUploads(d,url,content)@j) |
(Ex #k #l #m. Corrupted(d)@k & KU(url)@l & KU↷
(content)@m)

)
"

//auto ; takes ~3 minutes
//Intuition: if the client executes the code it must be ↷
recent
lemma code_recent:

" All u sid ts content #i. CExecuteTime(u, sid, content, ↷
ts)@i

==> Ex #j #k.
LogStamp(u, content, ts)@j & j < i
& CRecent(sid,ts)@k

"
//auto ; takes ~5 minutes
//Intuition: If the webser sends a JS response
//(either the developer D has uploaded it or D is corrupted) ↷
and
//the JS is in the logs.
//Note also, it will fail if the webserver sends arbitrary ↷
content
lemma transparency_developer:

" All w d u nonce content #i. WResponseSent(w,d,u,nonce,↷
content)@i

==> ((Ex #j . DUploads(d,u,content)@j)
| (Ex #k. Corrupted(d)@k) & (Ex ts #l. LogStamp(u↷
,content,ts)@l)

)
"

//auto ; takes ~3 minutes
//Intuition: if Client receives a legitimate response from W
//that means (webserver has sent it or webserver is corrupted↷
)
//and the Js is in the logs
lemma transparency_webserver:

" All w u nonce content ts #i. RecentResponseReceived(w,u↷
,nonce,content,ts)@i

==> ((Ex d #j. WResponseSent(w,d,u,nonce,content)@j)↷
|

(Ex #k. Corrupted(w)@k)) & (Ex #l. LogStamp(↷
u,content,ts)@l & l<i)

"

//auto ; takes ~15 seconds
//stronger non-repudiation:

156

8.4. FORMAL MODEL OF CODE VERIFY

// Intuition: if public accepts a Js code reception,
// (either the code was learned from W or W is corrupted and ↷
adversary computed w,u,c,n by itself)
// and the Js is in the logs
lemma public_accept_claim_only_if_W_sent:

"
All w u content n ts #i . PAccepts(<w,u,content,n,ts↷
>)@i

==> ((Ex #j. LearnedFromW(<w,u,content,n>)↷
@j & j <i) |

((Ex #m. Corrupted(w)@m & m < i)
& (Ex #k1. KU(<w,u,content,n>)@k1 & k1<i ↷
))) & (Ex #k2. LogStamp(u,content,ts)↷
@k2 & k2<i)

"

lemma e2eguarantee:
" All d u #i. CExecutes(d,u, ’malicious’)@i

==> (Ex #k. Corrupted(d)@k)
"

// verified
// corrupting D is sufficient to distribute malicious code
lemma e2eNonguarantee:

exists-trace
" Ex d u #i. CExecutes(d, u, ’malicious’)@i
& (All #k x. Corrupted(x)@k ==> (x = d))
"

process:
!Developer | !Webserver | !Client | Pub | !Ledger

end

end

Listing 8.1: Formal model of Accountable JavaScript protocol

8.4 Formal model of Code Verify

theory CodeVerify
begin

builtins: multiset, hashing

functions:
h/1, true/0, eq/2,
pk/1, sk/1[private],

157

CHAPTER 8. ACCOUNTABLE JAVASCRIPT - APPENDIX

sign/2, verify/3[destructor],
chan/2[private]

equations:
verify(pk(sk(i)), sign(sk(i), m), m) = true

predicates: HonestRun() <=> not (Ex p #j. Corrupted(p)@j)

options: asynchronous-channels

export queries:
"
set preciseActions = true.
"

restriction parties_unique:
"All p #i #j. Party(p)@i & Party(p)@j

==> #i=#j"

let Developer = (

((
event Corrupted(’D’);
out(sk(’D’))

)
|
out(pk(sk(’D’)))
| (

in(<$content, $v>);
if $content = ’malicious’ then 0
else (

event DUploads(< $content, $v, h($content)>);
let mUpdate = <’update’, h($content), $v > in

out(<mUpdate, sign(sk(’D’), mUpdate)>);
in(<’updateNote’, =mUpdate, cf_sign>);
if verify(pk(sk(’CF’)), cf_sign, sign(sk(’D’)↷
, mUpdate))=true() then

let codeUpdate = <’updateCode’, $content, ↷
$v > in
out(<codeUpdate, sign(sk(’D’), codeUpdate↷
)>)

)
)

)

)

let CloudFlare =
(

((
event Corrupted(’CF’);
out(sk(’CF’))

)

158

8.4. FORMAL MODEL OF CODE VERIFY

|
out(pk(sk(’CF’)))
| (

in(<mUpdate, sigmUpdate>);
let <’update’, hash_content, $v>=mUpdate in
if verify(pk(sk(’D’)), sigmUpdate, mUpdate)=true↷
() then

event HashUpdated(<$v, hash_content>);
let cf_sign = sign(sk(’CF’), sigmUpdate) in
out(<’updateNote’, mUpdate, cf_sign >);
!(

in(chan($C,’CF’),<’hashRequest’, $C, =$v↷
>);
event HashResponse(<$C, $v, hash_content↷
>);
out(chan($C,’CF’),<’hashResponse’, $C, ↷
hash_content, $v>)

)
))

)

let Webserver =
(

((
event Corrupted(’W’);
out(sk(’W’));
!(in($C); out(chan($C,’W’)))

)
|
out(pk(sk(’W’)))
| (

in(<codeUpdate, sigCodeUpdate>);
let <’updateCode’, $content, $v>= codeUpdate in
if verify(pk(sk(’D’)), sigCodeUpdate, codeUpdate ↷
)=true() then

event CodeUpdated(<$content, $v>);
!(

in(chan($C,’W’),<’httpRequest’, $C>);
event WResponseSent(< $C, $content, $v >);
out(chan($C,’W’),<’httpResponse’, $content↷
, $v>)

)

))
)

let Client =
(

in($C);
event Party($C);
((

event Corrupted($C);
out(sk(’C’,$C));
out(chan($C,’W’))

)

159

CHAPTER 8. ACCOUNTABLE JAVASCRIPT - APPENDIX

|
out(pk(sk(’C’,$C)))
| (

out(chan($C,’W’),<’httpRequest’, $C>);
in(chan($C,’W’),<’httpResponse’, $content, $v >);

out(chan($C,’CF’),<’hashRequest’, $C, $v >);
in(chan($C,’CF’),<’hashResponse’, =$C, hash_content,↷
=$v>);

if hash_content = h($content) then
event CodeVerified(< $C, $content, $v, ↷
hash_content>);
let evidence = <$C, $content, $v, hash_content > ↷
in

out(<evidence, sign(sk(’C’, $C), evidence)>)

))
)

let Pub =
(

in(<evidence, sigEvidence>);
let < $C, $content, $v, hash_content >= evidence in
if (verify(pk(sk(’C’, $C)), sigEvidence, evidence)=true↷
() &

hash_content = h($content)) then

event PAccepts(<$C, $content, $v, hash_content >)
)

// Reactivated: we need this because otherwise chan(..) ↷
forces partial reconstructions
// verified
lemma hash_resp_provide [sources]:

"
All c v hsh #i. HashResponse(<c,v,hsh>)@i ==>

((Ex #j. KU(hsh)@j & j<i) | (Ex #j. HashUpdated(<v,↷
hsh>)@j & j<i))

"

//auto
lemma sanity[output=[spthy]]:

exists-trace
"Ex c #i. CodeVerified(c)@i & HonestRun()"

// verifies ~1min
lemma auth_of_origin:

" All c v con hsh #i. CodeVerified(<c, con, v, hsh>)@i
==> (

(Ex #j. DUploads(<con, v, hsh>)@j) |

160

8.4. FORMAL MODEL OF CODE VERIFY

(Ex #k #l #m. Corrupted(’D’)@k & KU(v)@l & KU↷
(con)@m) |
(Ex #k . Corrupted(’CF’)@k)

)
"

// corrupting D is necessary to distribute malicious code, (W↷
and CF restricted to corrupt together)

// auto <1min
lemma e2eguarantee:

" All c v hsh #i. CodeVerified(<c, ’malicious’, v, hsh>)↷
@i

==> (Ex #k. Corrupted(’D’)@k)
| (Ex #k . Corrupted(’CF’)@k)

"

// auto, quick
// corrupting D is sufficient to distribute malicious code
lemma e2eNonguarantee:

exists-trace
" Ex c v hsh #i. CodeVerified(< c, ’malicious’, v, hsh>)↷
@i
& (All #k x. Corrupted(x)@k ==> (x = ’D’))
"

// auto, quick
// non-accountability.
// The client can fake the public’s information, as the TLS ↷
channels does not
// provide non-repudiation
lemma public_accept_claim_only_if_W_sent:

exists-trace
"
not(

All c v con hsh #i . PAccepts(<c,con,v,hsh>)@i

==> ((Ex #j. WResponseSent(<c, con, v>)@j &↷
j <i)

| (Ex #m. Corrupted(’W’)@m & m < i)
| (Ex #m. Corrupted(’CF’)@m & m < i)

))
"

process:
!Developer | !Webserver | !CloudFlare | !Client | Pub

end

end

/* hash_resp_provide (all-traces): verified (49 steps) */
/* sanity (exists-trace): verified (9 steps) */
/* auth_of_origin (all-traces): verified (774 steps) */

161

CHAPTER 8. ACCOUNTABLE JAVASCRIPT - APPENDIX

/* e2eguarantee (all-traces): verified (630 steps) */
/* e2eNonguarantee (exists-trace): verified (7 steps) */
/* public_accept_claim_only_if_W_sent (exists-trace): ↷
verified (6 steps) */

Listing 8.2: Formal model of Code Verify protocol

8.5 Evaluation Details

We provide details about evaluation of each case study as follows.

8.5.1 ‘Hello World’ Application Scenario

We evaluate the sample web application (Listing 4.3) using our browser extension. The
manifest file in Listing 4.4 is produced automatically. The extension fetches and verifies
the signed manifest linked in the response headers in parallel to collecting the metadata
on the inline script. Signature validation, meta data collection and the final compliance
check succeed with imperceptible impact on performance with Accountable JS. We
evaluated the same scenario by enabling CSP and disabling Accountable JS. We firstly
deployed a detailed CSP header that is close to Accountable JS manifests, namely
includes the valid sources for scripts and provides the hashes for the script and event
handler resources.

add_header content-security-policy "default-src ’self’; ↷
script-src ’self’ ’sha256-AfuyZ600rkX8AD+xANHUProHJm+22↷
Tp0bMnvPFk/vas=’; object-src ’none’";

We compared the CSP results with the Accountable JS results and the difference is very
small.

8.5.2 Self-Contained Web Application Scenario

This case study shows that our browser extension is compatible with WhatsApp’s web
client. All active components are hosted on web.whatsapp.com, it is thus easy to
generate and maintain the manifest file. We observed that URLs for some external
scripts include parts of their content’s hash, likely related to caching optimisations. As
any change to the content of an external script requires a new manifest file anyway, this
is not a concern for our proposal. Moreover, generate_manifest can automatically
generate the manifest file.

For measurement, we firstly mirrored the HTML page WhatsApp provides, locally to
add integrity attributes for scripts. However we observed that some dynamic behaviours
(e.g. script add and delete dynamically) did not exactly take place in local. Hence, we
evaluated the public website with integrity attributes for scripts stored hardcoded in
the extension’s content script (that collects metadata) and a hardcoded response header
x-acc-js-link directed to a local URL that provides the signed manifest file. The

162

web.whatsapp.com

8.5. EVALUATION DETAILS

WhatsApp Web application consists of nine external and four inline scripts present in
the initial HTML. No more active content is appended after the window’s load event,
however, some external scripts are removed later. These removals occur during the
measurement process, hence the automatically generated manifest successfully marks
these external scripts with the persistent attribute and the others without it. The
WhatsApp website is incompatible with Lighthouse tool, it shows a banner during the
evaluation and the active contents are not delivered. Therefore, we use Puppeteer’s
Page metrics for evaluation.

The traffic requirements are modest (about 1.17 bytes) and incur only modest blocking
time. The performance overhead for combined duration of all tasks performed by
the browser for baseline is 204ms, whereas it is 220ms for Code Verify and 244ms for
Accountable JS. The difference between Code Verify and Accountable JS is very small.
This is remarkable, because Code Verify only applies SRI checks on external scripts
but not event handlers or iframes. In contrast to Accountable JS, the order of active
elements is ignored, attributes are not checked (e.g. load=’async’ for scripts) and a
short hash value is downloaded from Cloudflare, rather than a signature.

8.5.3 Trusted Third-party Code Scenario

This case study shows that our prototype is compatible with third party active contents
and dynamic modification to the DOM. Again, the extension captures the jQuery code
and the inline JS, and automatically generates a manifest. Note that the jQuery library
removes the effectuating active content from the DOM, after interpreting the code and
displaying the message in the window. It removes the script element in Listing 4.1 and
leaves only a non-executable message:

<html>
<head>

<script src="https://googleapis../jquery-3.6.1.js">
</script>

</head>
<body>Hello World</body>

</html>

The measurement captures the inline script although it is removed and successfully
compares the active content list against the manifest. The additional network traffic is
almost identical to the simpler ‘Hello World’ case. Likewise, the performance overhead
is imperceptible. The difference between CSP overheads and Accountable JS overheads
is very small again.

8.5.4 Delegate Trust to Third Parties Scenario

Nimiq’s Wallet application behaves differently when the user does not have the Nimiq
credentials stored in the browser and when the user has credentials. It contains Hub
in an iframe and Hub contains Keyguard in an iframe if the user does not have an
account yet. If the user has an account, the Hub does not embed the Keyguard. We
generated a manifest for Wallet that covers both cases by declaring the Keyguard with
dynamic = true. In this way, the Keyguard may or may not be delivered. The browser

163

CHAPTER 8. ACCOUNTABLE JAVASCRIPT - APPENDIX

extension will take the Keyguard into account if it is delivered; otherwise it will ignore
it. For this case study, we created a user account using Nimiq Hub prior the evaluation;
hence the Keyguard is not embedded inside the Hub.

We created a simple shopping cart application that uses Nimiq’s Wallet in an iframe.
The first-party inline scripts communicate with the third party code in the iframe via
postMessages. As shown in Listing 4.2, the inline script transmits a transaction record
to the Nimiq Wallet. In the main window’s manifest (Listing 4.5), the inline elements
have trust = assert, while trust for the third party iframe (Wallet) is delegated to Nimiq.
Hence Nimiq’s server is in charge of delivering a separate signed manifest for its content.
The main window’s manifest was automatically generated, but we changed the trust
attribute for Wallet to delegate.

The manifest for Nimiq’s Wallet (Listing 4.7) has seven external scripts and one iframe
that is Hub. We chose to assert trust for the external scripts via cryptographic hashes.
For the Hub iframe, the manifest section has a nested manifest attribute that includes
the manifest sections for the active contents inside the Hub (six external scripts, one
inline script and the iframe for the Keyguard). For the KeyGuard iframe, being the
most critical component, the manifest section has also a nested manifest attribute that
includes the manifest sections for the active contents inside the KeyGuard document.1
Our prototype successfully evaluates the active content list against the manifests. For
efficiency, the prototype measures all elements simultaneously and combines their results
once computed. The browser extension panel displays result instantaneously, while the
evaluation is in progress, although the evaluation is usually too quick for the user to
notice. The traffic requirements are about 9.9 kB for the additional signature. In terms
of performance, the impact of Accountable JS is again imperceptible.

In the CSP evaluation for this case study, we defined CSP headers for the main website,
Wallet, Hub and Keyguard. Accountable JS performance results are again close to CSP
except the total blocking time is slightly higher than the CSP. Besides, the reaction
time unexpectedly decreases more with Accountable JS. However, the difference in
reaction time is minimal and could possibly be explained by a) network latency, (b) side
effects of the browser’s just-in-time compilation or scheduling or (c) a side effect of the
former two on how Lighthouse evaluates the reactive metric. Nimiq is a complex web
application heavily dependent on external data, in particular the remote blockchain it
connects.

8.5.5 Untrusted Third-Party Code

For Google AdSense, we tested with the active content of the framework, but no ads
imported, as we could not obtain an account with the provider.

As in the previous case, we integrate the high-security code (Nimiq’s Wallet) as a
sandbox and include third party code AdSense with trust = blind − trust. The web
application, including AdSense, is functional and our prototype shows compliance with
the manifest. The network overhead is comparable to Nimiq A, albeit slightly higher.

1We used both, for demonstrations in Section 4.4. generate_manifest produces all variants, but
the nested manifest has precedence during the compliance checks.

164

8.5. EVALUATION DETAILS

This is due to the larger size of the manifest, which now includes AdSense as well.
Nevertheless, the performance overhead is imperceptible with Accountable JS.

8.5.6 Compartmentalisation of Code and Development Process

As we stated before in Accountable JavaScript Appendix Section 8.5.4, Nimiq’s Wallet
behaves differently when the user does not have an account stored in the browser yet.
Furthermore, it redirects to Nimiq Hub from Wallet, when there is no account. In
this case study, we didn’t create an account and since we have the local copy of Nimiq
framework, we slightly updated the Nimiq’s code to prevent the redirection, to have
the compartmentalisation case study (Wallet includes Hub in iframe and Hub further
includes Keyguard in an iframe).

We evaluate the performance impact of compartmentalisation slightly differently. We
consider Nimiq’s Hub application, which includes the KeyGuard application with
trust = delegate and thus requires a separate manifest for the KeyGuard. This time, a
separate signing key is used for the KeyGuard manifest. For the baseline performance,
we inline the KeyGuardâĂŹs manifest as an entry for its iframe in the Hub’s manifest,
thus having one manifest and one signing key. In contrast to the other case studies, the
extension is activated in the baseline measurement, too.

We observe that there are two more round trips and noticeably higher traffic overhead
(about the overhead of Accountable JS, not the overall page traffic of 4,6 MB). This
is due to downloading the extra SXG certificate and manifest. The effect on the
rendering metrics is small. However there is a barely noticeable increase in reaction
time. Nevertheless, this can again be explained with network latency and side effects
described above in Accountable JavaScript Appendix Section 8.5.4.

165

Bibliography

Other references

[1] A URL for Blob and MediaSource reference. W3C Working Draft. 2023. url:
https://www.w3.org/TR/FileAPI/#url.

[2] AdSense Program Policies. 2021. url: https://support.google.com/
adsense/answer/48182?amp;stc=aspe-1pp-en (visited on 07/19/2021).

[3] Alexa Internet, Inc. Top Sites in Germany. Online. 2019. url: https://www.
alexa.com/topsites/countries/DE.

[4] Alexa News. 2019. url: https://www.alexa.com/topsites/category/
Top/News.

[5] Alexandre, A. MEGA Chrome Extension Compromised to Steal Users’ Monero.
https://cointelegraph.com/news/mega-chrome-extension-comp
romised-to-steal-users-monero. Sept. 2019.

[6] Alloy 6.0.0. 2021. url: https://github.com/AlloyTools/org.alloyt
ools.alloy/releases/tag/v6.0.0.

[7] Alloy Analyser. url: https://alloytools.org/.
[8] Amazon EC2 on-demand pricing. url: https://aws.amazon.com/ec2/

pricing/on-demand/.
[9] Asokan, N., Shoup, V., and Waidner, M. Asynchronous protocols for optimistic

fair exchange. In: S&P’98. IEEE Comp. Soc., 1998, 86–99.
[10] Azimpourkivi, M., Topkara, U., and Carbunar, B. A secure mobile authentication

alternative to biometrics. In: Proc. of the 33rd ACSAC. ACSAC 2017. ACM,
Orlando, FL, USA, 2017, 28–41. url: http://doi.acm.org/10.1145/
3134600.3134619.

[11] Baldimtsi, F. and Lysyanskaya, A. Anonymous credentials light. In: (CCS’13).
ACM, 2013, 1087–1098.

[12] Barreto, P. S. L. M. and Naehrig, M. Pairing-friendly elliptic curves of prime
order. In: Selected Areas in Cryptography. Ed. by Preneel, B. and Tavares, S.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, 319–331.

[13] Barth, A. The Web Origin Concept. RFC 6454. http://www.rfc-editor.
org/rfc/rfc6454.txt. RFC Editor, Dec. 2011. url: http://www.rfc-
editor.org/rfc/rfc6454.txt.

[14] Bauer, L., Cai, S., Jia, L., Passaro, T., Stroucken, M., and Tian, Y. Run-time
monitoring and formal analysis of information flows in chromium. In: 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2015. The Internet Society, 2015. url: https:

167

https://www.w3.org/TR/FileAPI/#url
https://support.google.com/adsense/answer/48182?amp;stc=aspe-1pp-en
https://support.google.com/adsense/answer/48182?amp;stc=aspe-1pp-en
https://www.alexa.com/topsites/countries/DE
https://www.alexa.com/topsites/countries/DE
https://www.alexa.com/topsites/category/Top/News
https://www.alexa.com/topsites/category/Top/News
https://cointelegraph.com/news/mega-chrome-extension-compromised-to-steal-users-monero
https://cointelegraph.com/news/mega-chrome-extension-compromised-to-steal-users-monero
https://github.com/AlloyTools/org.alloytools.alloy/releases/tag/v6.0.0
https://github.com/AlloyTools/org.alloytools.alloy/releases/tag/v6.0.0
https://alloytools.org/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
http://doi.acm.org/10.1145/3134600.3134619
http://doi.acm.org/10.1145/3134600.3134619
http://www.rfc-editor.org/rfc/rfc6454.txt
http://www.rfc-editor.org/rfc/rfc6454.txt
http://www.rfc-editor.org/rfc/rfc6454.txt
http://www.rfc-editor.org/rfc/rfc6454.txt
https://www.ndss-symposium.org/ndss2015/run-time-monitoring-and-formal-analysis-information-flows-chromium
https://www.ndss-symposium.org/ndss2015/run-time-monitoring-and-formal-analysis-information-flows-chromium

BIBLIOGRAPHY

//www.ndss- symposium.org/ndss2015/run- time- monitoring-
and-formal-analysis-information-flows-chromium.

[15] Benndorf, V. and Normann, H.-T. The willingness to sell personal data. The
Scandinavian Journal of Economics 120, 4 (2018), 1260–1278.

[16] Berners-Lee, T., Fielding, R. T., and Masinter, L. Absolute URI. STD 66. http:
//www.rfc-editor.org/rfc/rfc3986.txt. RFC Editor, Jan. 2005. url:
https://datatracker.ietf.org/doc/html/rfc3986#section-4.3.

[17] Berners-Lee, T., Fielding, R. T., and Masinter, L. Uniform Resource Identifier
(URI): Generic Syntax. STD 66. http://www.rfc-editor.org/rfc/
rfc3986.txt. RFC Editor, Jan. 2005. url: http://www.rfc-editor.
org/rfc/rfc3986.txt.

[18] Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N. P., and Warinschi, B.
Anonymous attestation with user-controlled linkability. Int. J. Inf. Secur. 12, 3
(2013), 219–249.

[19] Bhargavan, K., Delignat-Lavaud, A., and Maffeis, S. Language-based defenses
against untrusted browser origins. In: 22nd USENIX Security Symposium (USENIX
Security 13). USENIX Association, Washington, D.C., Aug. 2013, 653–670.
url: https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/bhargavan.

[20] Bielova, N., Devriese, D., Massacci, F., and Piessens, F. Reactive non-interference
for a browser model. In: Cited by: 38; All Open Access, Green Open Access.
2011, 97–104. url: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-81055139598&doi=10.1109%2fICNSS.2011.6059965&
partnerID=40&md5=24982a29cf90e1f78fb3944f4f0e607f.

[21] Big query reddit dataset. url: https://bigquery.cloud.google.com/
dataset/fh-bigquery:reddit_comments.

[22] Bohannon, A. Foundations of webscript security. PhD thesis. University of
Pennsylvania, 2012. url: https://citeseerx.ist.psu.edu/document?
repid=rep1&type=pdf&doi=699295d8e46892582ece122ceb0328ee
52a3b493.

[23] Bohannon, A. and Pierce, B. C. Featherweight firefox: formalizing the core of a
web browser. In: USENIX Conference on Web Application Development (WebApps
10). USENIX Association, June 2010. url: https://www.usenix.org/
conference/webapps-10/featherweight-firefox-formalizing-
core-web-browser.

[24] Brickell, E. F., Camenisch, J., and Chen, L. Direct anonymous attestation. In:
CCS’04. ACM, 2004, 132–145.

[25] Brickell, E., Chen, L., and Li, J. A new direct anonymous attestation scheme
from bilinear maps. In: Trusted Computing-Challenges and Applications. Springer,
2008, 166–178.

[26] Brickell, E., Chen, L., and Li, J. Simplified security notions of direct anonymous
attestation and a concrete scheme from pairings. Int. J. Inf. Secur. 8, 5 (2009),
315–330.

168

https://www.ndss-symposium.org/ndss2015/run-time-monitoring-and-formal-analysis-information-flows-chromium
https://www.ndss-symposium.org/ndss2015/run-time-monitoring-and-formal-analysis-information-flows-chromium
https://www.ndss-symposium.org/ndss2015/run-time-monitoring-and-formal-analysis-information-flows-chromium
https://www.ndss-symposium.org/ndss2015/run-time-monitoring-and-formal-analysis-information-flows-chromium
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
https://datatracker.ietf.org/doc/html/rfc3986#section-4.3
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bhargavan
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bhargavan
https://www.scopus.com/inward/record.uri?eid=2-s2.0-81055139598&doi=10.1109%2fICNSS.2011.6059965&partnerID=40&md5=24982a29cf90e1f78fb3944f4f0e607f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-81055139598&doi=10.1109%2fICNSS.2011.6059965&partnerID=40&md5=24982a29cf90e1f78fb3944f4f0e607f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-81055139598&doi=10.1109%2fICNSS.2011.6059965&partnerID=40&md5=24982a29cf90e1f78fb3944f4f0e607f
https://bigquery.cloud.google.com/dataset/fh-bigquery:reddit_comments
https://bigquery.cloud.google.com/dataset/fh-bigquery:reddit_comments
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=699295d8e46892582ece122ceb0328ee52a3b493
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=699295d8e46892582ece122ceb0328ee52a3b493
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=699295d8e46892582ece122ceb0328ee52a3b493
https://www.usenix.org/conference/webapps-10/featherweight-firefox-formalizing-core-web-browser
https://www.usenix.org/conference/webapps-10/featherweight-firefox-formalizing-core-web-browser
https://www.usenix.org/conference/webapps-10/featherweight-firefox-formalizing-core-web-browser

OTHER REFERENCES

[27] Brickell, E. and Li, J. A pairing-based daa scheme further reducing tpm resources.
In: Trust and Trustworthy Computing. Ed. by Acquisti, A., Smith, S. W., and
Sadeghi, A.-R. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, 181–195.

[28] BrowserStack. url: https://www.browserstack.com/.
[29] BSI. Technical Guideline TR-03110 v2.21 – Advanced Security Mechanisms for

Machine Readable Travel Documents and eIDAS Token. 2016. url: https:
//www.bsi.bund.de/EN/Publications/TechnicalGuidelines/
TR03110/BSITR03110.html.

[30] Bugliesi, M., Calzavara, S., and Focardi, R. Formal methods for web security.
Journal of Logical and Algebraic Methods in Programming 87 (2017), 110–126.
url: https://www.sciencedirect.com/science/article/pii/
S2352220816301055.

[31] Bugliesi, M., Calzavara, S., Focardi, R., and Khan, W. Cookiext: patching the
browser against session hijacking attacks. Journal of Computer Security 23, 4
(2015). Cited by: 33, 509–537. url: https://www.scopus.com/inwar
d/record.uri?eid=2-s2.0-84944273601&doi=10.3233%2fJCS-
150529&partnerID=40&md5=450e08f72972da184fd6c6f1523b8ae5.

[32] Camenisch, J., Drijvers, M., Dzurenda, P., and Hajny, J. Fast keyed-verification
anonymous credentials on standard smart cards. In: ICT Systems Security and
Privacy Protection (SEC 2019). Springer, 2019, 286–298.

[33] Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., and Meyerovich,
M. How to win the clonewars: efficient periodic n-times anonymous authentication.
In: CCS’06. ACM, 2006, 201–210.

[34] Carlin, D., Burgess, J., O’Kane, P., and Sezer, S. You could be mine(d): the
rise of cryptojacking. IEEE Secur. Priv. 18, 2 (2020), 16–22. url: https:
//doi.org/10.1109/MSEC.2019.2920585.

[35] Carroll, O. St.Petersburg troll farm to influence US election campaign. 2017. url:
https://www.independent.co.uk/news/world/europe/russia-us-
election-donald-trump-st-petersburg-troll-farm-hillary-
clinton-a8005276.html.

[36] Castro, M., Liskov, B., et al. Practical byzantine fault tolerance. In: OSDI. Vol. 99.
1999, 173–186.

[37] Chang, B., Kesselman, J., and rahman, r. Document Object Model (DOM)
Level 3 Validation Specification. Editors, W3C Recommendation. 2004. url:
http://www.w3.org/TR/DOM-Level-3-Val/ (visited on 04/23/2021).

[38] Chen, L., Morrissey, P., and Smart, N. DAA: Fixing the pairing based protocols.
Cryptology ePrint Archive, Report 2009/198, Withdrawn. 2009.

[39] Chen, L. A DAA Scheme Requiring Less TPM Resources. Cryptology ePrint
Archive, Report 2010/008. 2010.

[40] Chen, S., Meseguer, J., Sasse, R., Wang, H. J., and Wang, Y.-M. A systematic
approach to uncover security flaws in gui logic. In: 2007 IEEE Symposium on
Security and Privacy (SP ’07). 2007, 71–85.

[41] Chen, X. and Feng, D. A new direct anonymous attestation scheme from bilinear
maps. In: Young Computer Scientists, 2008. ICYCS 2008. IEEE. 2008, 2308–
2313.

169

https://www.browserstack.com/
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html
https://www.sciencedirect.com/science/article/pii/S2352220816301055
https://www.sciencedirect.com/science/article/pii/S2352220816301055
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944273601&doi=10.3233%2fJCS-150529&partnerID=40&md5=450e08f72972da184fd6c6f1523b8ae5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944273601&doi=10.3233%2fJCS-150529&partnerID=40&md5=450e08f72972da184fd6c6f1523b8ae5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944273601&doi=10.3233%2fJCS-150529&partnerID=40&md5=450e08f72972da184fd6c6f1523b8ae5
https://doi.org/10.1109/MSEC.2019.2920585
https://doi.org/10.1109/MSEC.2019.2920585
https://www.independent.co.uk/news/world/europe/russia-us-election-donald-trump-st-petersburg-troll-farm-hillary-clinton-a8005276.html
https://www.independent.co.uk/news/world/europe/russia-us-election-donald-trump-st-petersburg-troll-farm-hillary-clinton-a8005276.html
https://www.independent.co.uk/news/world/europe/russia-us-election-donald-trump-st-petersburg-troll-farm-hillary-clinton-a8005276.html
http://www.w3.org/TR/DOM-Level-3-Val/

BIBLIOGRAPHY

[42] Cimpanu, C. Chrome extension caught hijacking users’ search engine results. 2019.
url: https://www.zdnet.com/article/chrome-extension-caught-
hijacking-users-search-engine-results/ (visited on 11/04/2021).

[43] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. Counterexample-guided
abstraction refinement. In: Computer Aided Verification. Ed. by Emerson, E. A.
and Sistla, A. P. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, 154–169.

[44] Clarke, E. M., Klieber, W., Nováček, M., and Zuliani, P. Model checking and the
state explosion problem. In: Tools for Practical Software Verification: LASER,
International Summer School 2011, Elba Island, Italy, Revised Tutorial Lectures.
Ed. by Meyer, B. and Nordio, M. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012, 1–30. url: https://doi.org/10.1007/978-3-642-35746-6_1.

[45] Content Scripts. 2021. url: https://developer.chrome.com/docs/
extensions/mv3/content_scripts/ (visited on 04/23/2021).

[46] Corrigan-Gibbs, H. and Ford, B. Dissent: accountable anonymous group messag-
ing. In: CCS’10. ACM. 2010, 340–350.

[47] Crypto-js documentation. url: https://www.npmjs.com/package/crypt
o-js.

[48] Department of Justice : Charges in case 1:18-cr-00032-DLF. url: https://
www.justice.gov/file/1035477/download.

[49] DigiCert. Get your Signed HTTP Exchanges certificate. 2021. url: https://d
ocs.digicert.com/manage-certificates/certificate-profile-
options/get-your-signed-http-exchange-certificate/ (visited
on 11/05/2021).

[50] Dingledine, R., Mathewson, N., and Syverson, P. Reputation in p2p anonymity
systems. In: Workshop on economics of peer-to-peer systems. Vol. 92. 2003.

[51] Document write. 2021. url: https://developer.mozilla.org/en-
US/docs/Web/API/Document/write.

[52] Domain names - implementation and specification. RFC 1035. Nov. 1987. url:
https://www.rfc-editor.org/info/rfc1035.

[53] Eastlake, D. et al. Transport layer security (TLS) extensions: Extension def-
initions. RFC 6066. 2011. url: https://www.rfc-editor.org/rfc/
rfc6066.txt.

[54] Eén, N. and Sörensson, N. An extensible sat-solver. In: International Conference
on Theory and Applications of Satisfiability Testing. 2003. url: https://api.
semanticscholar.org/CorpusID:9774288.

[55] Eicholz, A., Moon, S., Danilo, A., Leithead, T., and Faulkner, S. Sandboxing. W3C
Recommendation. Jan. 2021. url: https://www.w3.org/TR/2021/SPSD-
html52-20210128/browsers.html.

[56] Eijdenberg, A., Laurie, B., and Cutter, A. Verifiable Data Structures. 2015. url:
https://github.com/google/trillian/blob/b7ea8d2ca870e5b8a
e1c05e9d2a33c4fdcca4580/docs/papers/VerifiableDataStructu
res.pdf (visited on 11/05/2021).

[57] Esiyok, I., Berrang, P., Cohn-Gordon, K., and Künnemann, R. Accountable
javascript code delivery. In: 30th Annual Network and Distributed System Security
Symposium, NDSS 2023, San Diego, California, USA, February 27 - March 3,

170

https://www.zdnet.com/article/chrome-extension-caught-hijacking-users-search-engine-results/
https://www.zdnet.com/article/chrome-extension-caught-hijacking-users-search-engine-results/
https://doi.org/10.1007/978-3-642-35746-6_1
https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://www.npmjs.com/package/crypto-js
https://www.npmjs.com/package/crypto-js
https://www.justice.gov/file/1035477/download
https://www.justice.gov/file/1035477/download
https://docs.digicert.com/manage-certificates/certificate-profile-options/get-your-signed-http-exchange-certificate/
https://docs.digicert.com/manage-certificates/certificate-profile-options/get-your-signed-http-exchange-certificate/
https://docs.digicert.com/manage-certificates/certificate-profile-options/get-your-signed-http-exchange-certificate/
https://developer.mozilla.org/en-US/docs/Web/API/Document/write
https://developer.mozilla.org/en-US/docs/Web/API/Document/write
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/rfc/rfc6066.txt
https://www.rfc-editor.org/rfc/rfc6066.txt
https://api.semanticscholar.org/CorpusID:9774288
https://api.semanticscholar.org/CorpusID:9774288
https://www.w3.org/TR/2021/SPSD-html52-20210128/browsers.html
https://www.w3.org/TR/2021/SPSD-html52-20210128/browsers.html
https://github.com/google/trillian/blob/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/docs/papers/VerifiableDataStructures.pdf

OTHER REFERENCES

2023. The Internet Society, 2023. url: https://www.ndss-symposium.
org/ndss-paper/accountable-javascript-code-delivery/.

[58] Esiyok, I., Berrang, P., Gordon, K.-C., and Kuennemann, R. Accountable Javascript
Supplementary Material. 2023. url: https://github.com/iesiyok/
accountable-js.

[59] Esiyok, I., Hanzlik, L., Künnemann, R., Budde, L. M., and Backes, M. TrollThrot-
tle —Raising the Cost of Astroturfing. In: Applied Cryptography and Network
Security. Ed. by Conti, M., Zhou, J., Casalicchio, E., and Spognardi, A. Vol. 12147.
Lecture Notes in Computer Science. Springer International Publishing, Cham,
2020, 456–476. url: https://link.springer.com/10.1007/978-3-
030-57878-7_22 (visited on 05/19/2021).

[60] Esiyok, I., Nemati, H., and Kuennemann, R. Formal Browser model for Security
Analysis Supplementary Material. Github. 2023. url: https://github.com/
model-evaluator/model-evaluator/tree/maven.

[61] Etim, B. Why No Comments? It’s a Matter of Resources. 2017. url: https:
//www.nytimes.com/2017/09/27/reader-center/comments-moder
ation.html.

[62] Facebook Messenger. https://www.messenger.com/. Accessed on: [2023-
08-23].

[63] Ferrara, E., Varol, O., Davis, C., Menczer, F., and Flammini, A. The rise of
social bots. Commun. ACM 59, 7 (June 2016), 96–104. url: http://doi.acm.
org/10.1145/2818717.

[64] Fielding, R., Notthingham, M., and Reschke, J. HTTP Semantics. url: https:
//datatracker.ietf.org/doc/html/draft-ietf-httpbis-semant
ics-15.txt#section-8 (visited on 07/14/2021).

[65] Franz, M. E unibus pluram: massive-scale software diversity as a defense mech-
anism. In: Proceedings of the 2010 New Security Paradigms Workshop. NSPW
’10. Association for Computing Machinery, New York, NY, USA, Sept. 21, 2010,
7–16. url: https://doi.org/10.1145/1900546.1900550 (visited on
07/22/2021).

[66] Gasarch, W. Private information Retrieval Survey (), 31. url: https://
crypto.stanford.edu/~dabo/courses/cs355_fall07/pir.pdf.

[67] Gemalto. The electronic passport in 2018 and beyond. June 2018. url: https:
//www.gemalto.com/govt/travel/electronic-passport-trends.

[68] Goldreich, O. and Ostrovsky, R. Software protection and simulation on oblivious
RAMs. J. ACM 43, 3 (May 1, 1996), 431–473. url: https://doi.org/10.
1145/233551.233553 (visited on 07/20/2021).

[69] Grier, C., Tang, S., and King, S. T. Designing and implementing the op and
op2 web browsers. ACM Transactions on the Web 5, 2 (2011). Cited by: 18.
url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
80052072472&doi=10.1145%2f1961659.1961665&partnerID=40&
md5=592428561b181d34e988300a22c94a6b.

[70] Groß, T., Pfitzmann, B., and Sadeghi, A.-R. Browser model for security analysis
of browser-based protocols. In: Computer Security – ESORICS 2005. Ed. by

171

https://www.ndss-symposium.org/ndss-paper/accountable-javascript-code-delivery/
https://www.ndss-symposium.org/ndss-paper/accountable-javascript-code-delivery/
https://github.com/iesiyok/accountable-js
https://github.com/iesiyok/accountable-js
https://link.springer.com/10.1007/978-3-030-57878-7_22
https://link.springer.com/10.1007/978-3-030-57878-7_22
https://github.com/model-evaluator/model-evaluator/tree/maven
https://github.com/model-evaluator/model-evaluator/tree/maven
https://www.nytimes.com/2017/09/27/reader-center/comments-moderation.html
https://www.nytimes.com/2017/09/27/reader-center/comments-moderation.html
https://www.nytimes.com/2017/09/27/reader-center/comments-moderation.html
https://www.messenger.com/
http://doi.acm.org/10.1145/2818717
http://doi.acm.org/10.1145/2818717
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-15.txt#section-8
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-15.txt#section-8
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-15.txt#section-8
https://doi.org/10.1145/1900546.1900550
https://crypto.stanford.edu/~dabo/courses/cs355_fall07/pir.pdf
https://crypto.stanford.edu/~dabo/courses/cs355_fall07/pir.pdf
https://www.gemalto.com/govt/travel/electronic-passport-trends
https://www.gemalto.com/govt/travel/electronic-passport-trends
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052072472&doi=10.1145%2f1961659.1961665&partnerID=40&md5=592428561b181d34e988300a22c94a6b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052072472&doi=10.1145%2f1961659.1961665&partnerID=40&md5=592428561b181d34e988300a22c94a6b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052072472&doi=10.1145%2f1961659.1961665&partnerID=40&md5=592428561b181d34e988300a22c94a6b

BIBLIOGRAPHY

Vimercati, S. d. C. di, Syverson, P., and Gollmann, D. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005, 489–508.

[71] Groth, J. and Kohlweiss, M. One-out-of-many proofs: or how to leak a secret
and spend a coin. In: EUROCRYPT 2015. Springer, 2015, 253–280.

[72] Groth, J., Ostrovsky, R., and Sahai, A. Perfect non-interactive zero knowledge
for NP. In: EUROCRYPT 2006. Ed. by Vaudenay, S. Vol. 4004. LNCS. Springer,
Heidelberg, 2006, 339–358.

[73] Group, T. C. Main Specification Version 1.1b. 2001. url: https://trustedc
omputinggroup.org/tpm-main-specification/.

[74] Gu, L., Ding, X., Deng, R. H., Xie, B., and Mei, H. Remote attestation on
program execution. In: Proceedings of the 3rd ACM Workshop on Scalable Trusted
Computing. STC ’08. Association for Computing Machinery, New York, NY, USA,
Oct. 31, 2008, 11–20. url: https://doi.org/10.1145/1456455.1456458
(visited on 07/21/2021).

[75] Gupta, A. The Real Twitter Files: The Algorithm. url: https://www.news.
aakashg.com/p/the-real-twitter-files-the-algorithm (visited
on 04/02/2023).

[76] Hansen, R. and Silveira, V. Code Verify : An open source browser extension for
verifying code authenticity on the web. 2022. url: https://engineering.
fb.com/2022/03/10/security/code-verify/ (visited on 03/10/2022).

[77] Hegelich, S. and Janetzko, D. Are social bots on twitter political actors? empirical
evidence from a ukrainian social botnet. In: Tenth Int. AAAI. 2016. url: https:
//ojs.aaai.org/index.php/ICWSM/article/view/14764/14613.

[78] Herlihy, M. and Moir, M. Enhancing accountability and trust in distributed
ledgers (June 2016).

[79] Holt, J. E. and Seamons, K. E. Nym: practical pseudonymity for anonymous
networks. Internet Security Research Lab Technical Report 4 (2006), 1–12.

[80] Howard, P., Kollanyi, B., and Woolley, S. C. Bots and automation over Twitter
during the second US presidential debate. Tech. rep. Political Bots, 2016.

[81] HTML Living Standard: 8.1.8.2 Event handlers on elements, Document objects,
and Window objects. url: https://html.spec.whatwg.org/#event-ha
ndlers-on-elements,-document-objects,-and-window-objects.

[82] HTML Living Standard: Dynamic Markup Insertion: document.write().
Online. Accessed on: [2023-07-23]. url: https://html.spec.whatwg.
org/multipage/dynamic-markup-insertion.html#dom-document-
write-dev.

[83] Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., and Tygar, J. Adversarial
machine learning. In: Proc. of the 4th ACM workshop AISec. ACM. 2011, 43–58.

[84] ICAO. Machine Readable Travel Documents - Part 11: Security Mechanism for
MRTDs. Doc 9303. 2015.

[85] Is it allowed to use Iframe. 2020. url: https://support.google.com/
adsense/thread/24384322/is-it-allowed-to-use-iframe?hl=en
(visited on 11/05/2021).

[86] Javers v7.3.2. 2023. url: https://javers.org/.

172

https://trustedcomputinggroup.org/tpm-main-specification/
https://trustedcomputinggroup.org/tpm-main-specification/
https://doi.org/10.1145/1456455.1456458
https://www.news.aakashg.com/p/the-real-twitter-files-the-algorithm
https://www.news.aakashg.com/p/the-real-twitter-files-the-algorithm
https://engineering.fb.com/2022/03/10/security/code-verify/
https://engineering.fb.com/2022/03/10/security/code-verify/
https://ojs.aaai.org/index.php/ICWSM/article/view/14764/14613
https://ojs.aaai.org/index.php/ICWSM/article/view/14764/14613
https://html.spec.whatwg.org/#event-handlers-on-elements,-document-objects,-and-window-objects
https://html.spec.whatwg.org/#event-handlers-on-elements,-document-objects,-and-window-objects
https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#dom-document-write-dev
https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#dom-document-write-dev
https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#dom-document-write-dev
https://support.google.com/adsense/thread/24384322/is-it-allowed-to-use-iframe?hl=en
https://support.google.com/adsense/thread/24384322/is-it-allowed-to-use-iframe?hl=en
https://javers.org/

OTHER REFERENCES

[87] Johnson, P. C., Kapadia, A., Tsang, P. P., and Smith, S. W. Nymble: anonymous
ip-address blocking. In: Intern. Workshop on PETS. Springer. 2007, 113–133.

[88] Kobeissi, N. An Analysis of the ProtonMail Cryptographic Architecture. Cryptol-
ogy ePrint Archive, Report 2018/1121. 2018. url: https://eprint.iacr.
org/2018/1121.

[89] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y. Spectre attacks:
exploiting speculative execution. In: 2019 IEEE Symposium on Security and
Privacy (SP). 2019, 1–19.

[90] Krawczyk, H. Cryptographic extraction and key derivation: the hkdf scheme.
In: Advances in Cryptology – CRYPTO 2010. Ed. by Rabin, T. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, 631–648.

[91] Kreil, M. Social Bots, Fake News und Filterblasen. 2017. url: https://en.
wikipedia.org/wiki/List_of_newspapers_by_circulation.

[92] Kremer, S. and Künnemann, R. Automated analysis of security protocols with
global state. In: Proceedings of the 2014 IEEE Symposium on Security and
Privacy. SP ’14. IEEE Computer Society, Washington, DC, USA, 2014, 163–178.
url: https://doi.org/10.1109/SP.2014.18.

[93] Kremer, S. and Künnemann, R. Automated analysis of security protocols with
global state. In: S&P’14. IEEE Comp. Soc., 2014, 163–178.

[94] Kruisselbrink, M. The Blob Interface and Binary Data. W3C Working Draft.
2023. url: https://w3c.github.io/FileAPI/#blob-section.

[95] Kumar, S., Cheng, J., Leskovec, J., and Subrahmanian, V. An army of me:
sockpuppets in online discussion communities. In: Proc. of the 26th Int. Conf.
on WWW. 2017, 857–866.

[96] Kuran, T. and Sunstein, C. R. Availability cascades and risk regulation. Stan. L.
Rev. 51 (1998), 683.

[97] LastPass: About Password Iterations. url: https://support.logmeininc.
com/lastpass/help/about-password-iterations-lp030027.

[98] Laurie, B. and Kasper, E. Revocation Transparency. 2014. url: https://
www.links.org/files/RevocationTransparency.pdf (visited on
09/20/2021).

[99] Leiser, M. Astroturfing, cyberturfing and other online persuasion campaigns.
EJLT 7, 1 (2016). url: http://ejlt.org/article/view/501.

[100] Li, Y. and Ye, J. Learning adversarial networks for semi-supervised text classifi-
cation via policy gradient. In: Proc. of the 24th ACM SIGKDD. KDD ’18. ACM,
London, United Kingdom, 2018, 1715–1723.

[101] Libsodium documentation. url: https://libsodium.gitbook.io/doc/.
[102] Long, K. Keeping The Times Civil, 16 Million Comments and Counting. 2017.

url: https://www.nytimes.com/2017/07/01/insider/times-
comments.html.

[103] Louw, M. T., Ganesh, K. T., and Venkatakrishnan, V. AdJail: practical en-
forcement of confidentiality and integrity policies on web advertisements. In:
19th USENIX Security Symposium (USENIX Security 10). USENIX Associ-
ation, Washington, DC, Aug. 2010. url: https://www.usenix.org/

173

https://eprint.iacr.org/2018/1121
https://eprint.iacr.org/2018/1121
https://en.wikipedia.org/wiki/List_of_newspapers_by_circulation
https://en.wikipedia.org/wiki/List_of_newspapers_by_circulation
https://doi.org/10.1109/SP.2014.18
https://w3c.github.io/FileAPI/#blob-section
https://support.logmeininc.com/lastpass/help/about-password-iterations-lp030027
https://support.logmeininc.com/lastpass/help/about-password-iterations-lp030027
https://www.links.org/files/RevocationTransparency.pdf
https://www.links.org/files/RevocationTransparency.pdf
http://ejlt.org/article/view/501
https://libsodium.gitbook.io/doc/
https://www.nytimes.com/2017/07/01/insider/times-comments.html
https://www.nytimes.com/2017/07/01/insider/times-comments.html
https://www.usenix.org/conference/usenixsecurity10/adjail-practical-enforcement-confidentiality-and-integrity-policies-web
https://www.usenix.org/conference/usenixsecurity10/adjail-practical-enforcement-confidentiality-and-integrity-policies-web

BIBLIOGRAPHY

conference/usenixsecurity10/adjail-practical-enforcement-
confidentiality-and-integrity-policies-web.

[104] Macedo, N., Brunel, J., Chemouil, D., Cunha, A., and Kuperberg, D. Lightweight
specification and analysis of dynamic systems with rich configurations. In: Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. FSE’16: 24nd ACM SIGSOFT International Symposium
on the Foundations of Software Engineering. ACM, Seattle WA USA, Nov. 2016,
373–383. url: https://dl.acm.org/doi/10.1145/2950290.2950318
(visited on 07/27/2023).

[105] Marcos Cáceres, Kenneth Rohde Christiansen, Mounir Lamouri, Anssi Kostiainen,
Matt Giuca, and Aaron Gustafson. Web App Manifest. url: https://www.w3.
org/TR/appmanifest/.

[106] Masinter, L. RFC2397: The "Data" URL Scheme. USA, 1998. url: https:
//www.rfc-editor.org/rfc/rfc2397.

[107] Matrix’s Hydrogen client. https://hydrogen.element.io/. Accessed on:
[2023-08-23].

[108] Measure performance with the RAIL model. June 10, 2020. url: https://web.
dev/rail/ (visited on 10/24/2022).

[109] Media Capture and Streams: 9.2 Media Devices. World Wide Web Consortium
(W3C). 2023. url: https://w3c.github.io/mediacapture-main/
#mediadevices.

[110] Medien, H. 2018. url: https://www.heise.de/newsticker/meldun
g/Der-Hass-in-den-Kommentarspalten-macht-vielen-Medien-
Sorgen-4140143.html.

[111] MEGA. https://mega.io/. Accessed on: [2023-08-23].
[112] Meier, S., Schmidt, B., Cremers, C., and Basin, D. The tamarin prover for the

symbolic analysis of security protocols. In: Computer Aided Verification. Ed. by
Sharygina, N. and Veith, H. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,
696–701.

[113] Meiklejohn, S., DeBlasio, J., O’Brien, D., Thompson, C., Yeo, K., and Stark, E.
SoK: SCT Auditing in Certificate Transparency. PoPETs 2022, 3 (July 2022),
336–353. url: https://petsymposium.org/popets/2022/popets-
2022-0075.php (visited on 11/21/2022).

[114] Melara, M. S., Blankstein, A., Bonneau, J., Felten, E. W., and Freedman,
M. J. CONIKS: bringing key transparency to end users. In: 24th USENIX
Security Symposium (USENIX Security 15). USENIX Association, Washington,
D.C., Aug. 2015, 383–398. url: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/melara.

[115] Michael Bristow BBC News, B. China’s internet ’spin doctors’. 2008. url:
http://news.bbc.co.uk/2/hi/7783640.stm.

[116] Mihaylov, T., Georgiev, G., and Nakov, P. Finding opinion manipulation trolls
in news community forums. In: Proc. of the Nineteenth CoNLL. 2015, 310–314.

[117] Mike, W. Post-Spectre Web Development. W3C Working Draft. 2021. url: htt
ps://www.w3.org/TR/post-spectre-webdev/.

174

https://www.usenix.org/conference/usenixsecurity10/adjail-practical-enforcement-confidentiality-and-integrity-policies-web
https://www.usenix.org/conference/usenixsecurity10/adjail-practical-enforcement-confidentiality-and-integrity-policies-web
https://www.usenix.org/conference/usenixsecurity10/adjail-practical-enforcement-confidentiality-and-integrity-policies-web
https://www.usenix.org/conference/usenixsecurity10/adjail-practical-enforcement-confidentiality-and-integrity-policies-web
https://dl.acm.org/doi/10.1145/2950290.2950318
https://www.w3.org/TR/appmanifest/
https://www.w3.org/TR/appmanifest/
https://www.rfc-editor.org/rfc/rfc2397
https://www.rfc-editor.org/rfc/rfc2397
https://hydrogen.element.io/
https://web.dev/rail/
https://web.dev/rail/
https://w3c.github.io/mediacapture-main/#mediadevices
https://w3c.github.io/mediacapture-main/#mediadevices
https://www.heise.de/newsticker/meldung/Der-Hass-in-den-Kommentarspalten-macht-vielen-Medien-Sorgen-4140143.html
https://www.heise.de/newsticker/meldung/Der-Hass-in-den-Kommentarspalten-macht-vielen-Medien-Sorgen-4140143.html
https://www.heise.de/newsticker/meldung/Der-Hass-in-den-Kommentarspalten-macht-vielen-Medien-Sorgen-4140143.html
https://mega.io/
https://petsymposium.org/popets/2022/popets-2022-0075.php
https://petsymposium.org/popets/2022/popets-2022-0075.php
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
http://news.bbc.co.uk/2/hi/7783640.stm
https://www.w3.org/TR/post-spectre-webdev/
https://www.w3.org/TR/post-spectre-webdev/

OTHER REFERENCES

[118] MIRACL with DAA API for Javascript. url: https://github.com/iesiy
ok/MIRACL.

[119] Modifications of AdSense ad code. 2021. url: https://support.google.
com/adsense/answer/1354736 (visited on 11/05/2021).

[120] Moonesamy, S. RFC6694: The "about" URI Scheme. USA, 2012. url: https:
//www.rfc-editor.org/rfc/rfc6694.

[121] Multiprecision Integer and Rational Arithmetic Cryptographic Library (MIRACL).
url: https://github.com/miracl/MIRACL.

[122] Nielsen, J. Response Times: The 3 Important Limits. Jan. 1, 1993. url: https:
//www.nngroup.com/articles/response- times- 3- important-
limits/ (visited on 10/24/2022).

[123] Nimiq. https://www.nimiq.com. Accessed on: [2023-08-23].
[124] Ortega, F. J., Troyano, J. A., Cruz, F. L., Vallejo, C. G., and Enríquez, F.

Propagation of trust and distrust for the detection of trolls in a social network.
Computer Networks 56, 12 (2012), 2884–2895. url: http://www.sciencedi
rect.com/science/article/pii/S138912861200179X.

[125] Page.metrics method. url: https://pptr.dev/api/puppeteer.page.
metrics/ (visited on 12/03/2022).

[126] Park, D., Stefănescu, A., and Roşu, G. KJS: a complete formal semantics of
JavaScript. In: Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’15: ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, Port-
land OR USA, June 3, 2015, 346–356. url: https://dl.acm.org/doi/10.
1145/2737924.2737991 (visited on 07/20/2021).

[127] Peng, J., Choo, R. K., and Ashman, H. Astroturfing detection in social me-
dia: using binary n-gram analysis for authorship attribution. In: 2016 IEEE
Trustcom/BigDataSE/ISPA. Aug. 2016, 121–128.

[128] Pettersen, Y. N. The Transport Layer Security (TLS) Multiple Certificate Status
Request Extension. RFC 6961. June 2013. url: https://rfc-editor.org/
rfc/rfc6961.txt.

[129] Pickren, R. Webcam Hacking. 2019. url: https://www.ryanpickren.com/
webcam-hacking.

[130] Pinkas, B., Rosulek, M., Trieu, N., and Yanai, A. SpOT-Light: Lightweight
Private Set Intersection from Sparse OT Extension. In: Advances in Cryptology
– CRYPTO 2019. Ed. by Boldyreva, A. and Micciancio, D. Lecture Notes in
Computer Science. Springer International Publishing, Cham, 2019, 401–431.

[131] Pinkas, B., Schneider, T., and Zohner, M. Scalable private set intersection based
on ot extension. ACM Trans. Priv. Secur. 21, 2 (Jan. 2018), 7:1–7:35. url:
http://doi.acm.org/10.1145/3154794.

[132] Reis, C., Dunagan, J., Wang, H. J., Dubrovsky, O., and Esmeir, S. Browsershield:
vulnerability-driven filtering of dynamic HTML. ACM Trans. Web 1, 3 (2007),
11. url: https://doi.org/10.1145/1281480.1281481.

[133] Reuter, M. and Dachwitz, I. Moderation bleibt Handarbeit: Wie große Online-
Medien Leserkommentare moderieren. url: https://netzpolitik.org/

175

https://github.com/iesiyok/MIRACL
https://github.com/iesiyok/MIRACL
https://support.google.com/adsense/answer/1354736
https://support.google.com/adsense/answer/1354736
https://www.rfc-editor.org/rfc/rfc6694
https://www.rfc-editor.org/rfc/rfc6694
https://github.com/miracl/MIRACL
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nimiq.com
http://www.sciencedirect.com/science/article/pii/S138912861200179X
http://www.sciencedirect.com/science/article/pii/S138912861200179X
https://pptr.dev/api/puppeteer.page.metrics/
https://pptr.dev/api/puppeteer.page.metrics/
https://dl.acm.org/doi/10.1145/2737924.2737991
https://dl.acm.org/doi/10.1145/2737924.2737991
https://rfc-editor.org/rfc/rfc6961.txt
https://rfc-editor.org/rfc/rfc6961.txt
https://www.ryanpickren.com/webcam-hacking
https://www.ryanpickren.com/webcam-hacking
http://doi.acm.org/10.1145/3154794
https://doi.org/10.1145/1281480.1281481
https://netzpolitik.org/2016/moderation-bleibt-handarbeit-wie-tageszeitungen-leserkommentare-moderieren
https://netzpolitik.org/2016/moderation-bleibt-handarbeit-wie-tageszeitungen-leserkommentare-moderieren

BIBLIOGRAPHY

2016/moderation-bleibt-handarbeit-wie-tageszeitungen-lese
rkommentare-moderieren.

[134] Laurie, B., Langley, A., and Kasper, E. Certificate Transparency. RFC 6962
(Experimental). Fremont, CA, USA: RFC Editor, June 2013. url: https:
//www.rfc-editor.org/rfc/rfc6962.txt.

[135] Fielding, R. and Reschke, J. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. RFC 7231 (Proposed Standard). RFC. Fremont, CA, USA: RFC
Editor, June 2014. url: https://www.rfc-editor.org/rfc/rfc7231.
txt.

[136] Ritzdorf, H., Wust, K., Gervais, A., Felley, G., and Capkun, S. TLS-N: Non-
repudiation over TLS Enabling Ubiquitous Content Signing. In: Proceedings 2018
Network and Distributed System Security Symposium. Network and Distributed
System Security Symposium. Internet Society, San Diego, CA, 2018. url: https:
//www.ndss-symposium.org/wp-content/uploads/2018/02/ndss
2018_09-4_Ritzdorf_paper.pdf (visited on 06/17/2021).

[137] Ross, D. and Gondrom, T. HTTP Header Field X-Frame-Options. RFC 7034.
Oct. 2013. url: https://www.rfc-editor.org/info/rfc7034.

[138] Russell, A., Song, J., Archibald, J., and Kruisselbrink, M. Service Workers 1. url:
https://www.w3.org/TR/service-workers/ (visited on 07/23/2021).

[139] Santos, J. F., Maksimović, P., Grohens, T., Dolby, J., and Gardner, P. Symbolic
Execution for JavaScript. In: Proceedings of the 20th International Symposium
on Principles and Practice of Declarative Programming. PPDP ’18: The 20th
International Symposium on Principles and Practice of Declarative Programming.
ACM, Frankfurt am Main Germany, Sept. 3, 2018, 1–14. url: https://dl.
acm.org/doi/10.1145/3236950.3236956 (visited on 07/20/2021).

[140] Sasse, R., King, S. T., Meseguer, J., and Tang, S. Ibos: a correct-by-construction
modular browser. In: Formal Aspects of Component Software. Ed. by Păsăreanu,
C. S. and Salaün, G. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, 224–
241.

[141] Schmidt, A. L., Zollo, F., Scala, A., Betsch, C., and Quattrociocchi, W. Polariza-
tion of the Vaccination Debate on Facebook. arXiv e-prints, arXiv:1801.02903
(Jan. 2018), arXiv:1801.02903. arXiv: 1801.02903 [cs.SI].

[142] Schmidt, B., Meier, S., Cremers, C., and Basin, D. The tamarin prover for the
symbolic analysis of security protocols. In: CAV’13. Vol. 8044. LNCS. Springer,
2013, 696–701.

[143] Schwarz, M., Lipp, M., and Gruss, D. JavaScript Zero: Real JavaScript and Zero
Side-Channel Attacks. In: Proceedings 2018 Network and Distributed System
Security Symposium. Network and Distributed System Security Symposium.
Internet Society, San Diego, CA, 2018. url: https://www.ndss-symposium.
org/wp-content/uploads/2018/02/ndss2018_07A-3_Schwarz_
paper.pdf (visited on 05/19/2021).

[144] Seah, C. W., Chieu, H. L., Chai, K. M. A., Teow, L., and Yeong, L. W. Troll
detection by domain-adapting sentiment analysis. In: 2015 18th Int. Conf. on
Inf. Fusion (Fusion). July 2015, 792–799.

[145] Selenium. url: https://www.selenium.dev/.

176

https://netzpolitik.org/2016/moderation-bleibt-handarbeit-wie-tageszeitungen-leserkommentare-moderieren
https://netzpolitik.org/2016/moderation-bleibt-handarbeit-wie-tageszeitungen-leserkommentare-moderieren
https://netzpolitik.org/2016/moderation-bleibt-handarbeit-wie-tageszeitungen-leserkommentare-moderieren
https://netzpolitik.org/2016/moderation-bleibt-handarbeit-wie-tageszeitungen-leserkommentare-moderieren
https://www.rfc-editor.org/rfc/rfc6962.txt
https://www.rfc-editor.org/rfc/rfc6962.txt
https://www.rfc-editor.org/rfc/rfc7231.txt
https://www.rfc-editor.org/rfc/rfc7231.txt
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_09-4_Ritzdorf_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_09-4_Ritzdorf_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_09-4_Ritzdorf_paper.pdf
https://www.rfc-editor.org/info/rfc7034
https://www.w3.org/TR/service-workers/
https://dl.acm.org/doi/10.1145/3236950.3236956
https://dl.acm.org/doi/10.1145/3236950.3236956
https://arxiv.org/abs/1801.02903
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07A-3_Schwarz_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07A-3_Schwarz_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07A-3_Schwarz_paper.pdf
https://www.selenium.dev/

OTHER REFERENCES

[146] SharedArrayBuffer Objects. ECMAScript Language Specification. 2023. url:
https://tc39.es/ecma262/multipage/structured-data.html#
sec-sharedarraybuffer-objects.

[147] Shearer, E. and Matsa, K. E. News User Acrosss Social Media Platforms 2018.
Pew Research Center. 2018. url: https://www.pewresearch.org/jour
nalism/2018/09/10/news-use-across-social-media-platforms-
2018/.

[148] Signed exchange generation. 2021. url: https://github.com/WICG/webpa
ckage/tree/master/go/signedexchange (visited on 11/05/2021).

[149] Sluganovic, I., Roeschlin, M., Rasmussen, K. B., and Martinovic, I. Using reflexive
eye movements for fast challenge-response authentication. In: Proc. of the 2016
ACM SIGSAC CCS. ACM. 2016, 1056–1067.

[150] Source code for Twitter’s Recommendation Algorithm. url: https://github.
com/twitter/the-algorithm (visited on 06/11/2023).

[151] SpiderOak. https://spideroak.com/. Accessed on: [2023-08-23].
[152] Square. https://squareup.com. Accessed on: [2023-08-23].
[153] Steffens, M., Musch, M., Johns, M., and Stock, B. Who’s Hosting the Block

Party? Studying Third-Party Blockage of CSP and SRI. In: Proceedings 2021
Network and Distributed System Security Symposium. Network and Distributed
System Security Symposium. Internet Society, Virtual, 2021. url: https:
//www.ndss-symposium.org/wp-content/uploads/ndss2021_3A-
3_24028_paper.pdf (visited on 09/20/2021).

[154] Stripe. https://stripe.com. Accessed on: [2023-08-23].
[155] Team, C. D. The Coq Proof Assistant Reference Manual V8.4pl2. 2013. url:

https://flint.cs.yale.edu/cs430/coq/pdf/Reference-Manual.
pdf.

[156] Tendermint avl performance and benchmarks. url: https://github.com/
tendermint/iavl/blob/master/PERFORMANCE.md.

[157] The Web Platform Tests project. https://web-platform-tests.org/.
Accessed on: [2023-08-23].

[158] Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., and Nießner, M. Face2face:
real-time face capture and reenactment of rgb videos. In: Proc. of the IEEE
CVPR. 2016, 2387–2395.

[159] Tony Romm, W. P. Senate investigators want answers from Reddit and Tumblr
on Russia meddling. 2018.

[160] Torlak, E. and Jackson, D. Kodkod: a relational model finder. In: 13th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). Mar. 2007, 632–647.

[161] Trillian. 2021. url: https://github.com/google/trillian (visited on
09/20/2021).

[162] Trillian – Experimental Beam Map Generation. 2021. url: https://github.
com/google/trillian/tree/b7ea8d2ca870e5b8ae1c05e9d2a33c4f
dcca4580/experimental/batchmap (visited on 11/05/2021).

[163] Trollthrottle Big Query. url: https://github.com/iesiyok/trollthro
ttle/tree/master/big_query.

177

https://tc39.es/ecma262/multipage/structured-data.html#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/multipage/structured-data.html#sec-sharedarraybuffer-objects
https://www.pewresearch.org/journalism/2018/09/10/news-use-across-social-media-platforms-2018/
https://www.pewresearch.org/journalism/2018/09/10/news-use-across-social-media-platforms-2018/
https://www.pewresearch.org/journalism/2018/09/10/news-use-across-social-media-platforms-2018/
https://github.com/WICG/webpackage/tree/master/go/signedexchange
https://github.com/WICG/webpackage/tree/master/go/signedexchange
https://github.com/twitter/the-algorithm
https://github.com/twitter/the-algorithm
https://spideroak.com/
https://squareup.com
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_3A-3_24028_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_3A-3_24028_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_3A-3_24028_paper.pdf
https://stripe.com
https://flint.cs.yale.edu/cs430/coq/pdf/Reference-Manual.pdf
https://flint.cs.yale.edu/cs430/coq/pdf/Reference-Manual.pdf
https://github.com/tendermint/iavl/blob/master/PERFORMANCE.md
https://github.com/tendermint/iavl/blob/master/PERFORMANCE.md
https://web-platform-tests.org/
https://github.com/google/trillian
https://github.com/google/trillian/tree/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/experimental/batchmap
https://github.com/google/trillian/tree/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/experimental/batchmap
https://github.com/google/trillian/tree/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/experimental/batchmap
https://github.com/iesiyok/trollthrottle/tree/master/big_query
https://github.com/iesiyok/trollthrottle/tree/master/big_query

BIBLIOGRAPHY

[164] Trollthrottle Browser Extension. url: https://github.com/iesiyok/
trollthrottle_chrome.

[165] Trollthrottle Simulation. url: https://github.com/iesiyok/trollthro
ttle.

[166] Twitter, I. Update on Twitter’s review of the 2016 US election. 2018. url:
https://blog.twitter.com/official/en_us/topics/company/
2018/2016-election-update.html.

[167] Using Subresource Integrity. 2021. url: https://developer.mozilla.
org/en-US/docs/Web/Security/Subresource_Integrity#using_
subresource_integrity (visited on 11/03/2021).

[168] Uzun, E., Chung, S. P. H., Essa, I., and Lee, W. Rtcaptcha: a real-time captcha
based liveness detection system. In: NDSS. Georgia Institute of Technology, 2018.

[169] VanToll, T. What Exactly Is..... The 300ms Click Delay. Nov. 21, 2013. url:
https://www.telerik.com/blogs/what-exactly-is.....-the-
300ms-click-delay (visited on 10/24/2022).

[170] Veronese, L., Farinier, B., Bernardo, P., Tempesta, M., Squarcina, M., and Maffei,
M. Webspec: towards machine-checked analysis of browser security mechanisms.
In: 2023 IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, Los Alamitos, CA, USA, May 2023, 2761–2779. url: https://doi.
ieeecomputersociety.org/10.1109/SP46215.2023.10179465.

[171] Wang, G., Mohanlal, M., Wilson, C., Wang, X., Metzger, M., Zheng, H., and
Zhao, B. Y. Social turing tests: crowdsourcing sybil detection. arXiv preprint
arXiv:1205.3856 (2012).

[172] West, M. Mikewest/Signature-Based-Sri. July 13, 2020. url: https://github.
com/mikewest/signature-based-sri (visited on 07/20/2021).

[173] West, M. and Sartori, A. Content Security Policy Level 3. W3C Working Draft.
2023. url: https://www.w3.org/TR/CSP3/.

[174] What is a web server? https://developer.mozilla.org/en-US/docs/
Learn/Common_questions/Web_mechanics/What_is_a_web_server.
Accessed on: [2023-08-23].

[175] WhatsApp Web. https://web.whatsapp.com/. Accessed on: [2023-08-23].
[176] WHATWG. Cross-Origin Opener Policies. Accessed on: [2023-09-01]. 2023. url:

https://html.spec.whatwg.org/multipage/browsers.html#
cross-origin-opener-policies.

[177] WHATWG. DOM API. Accessed: 2023-09-01. 2023. url: https://dom.spec.
whatwg.org/.

[178] WHATWG. DOM Standard. Accessed on: [2023-09-01]. 2023. url: https://
dom.spec.whatwg.org/#ref-for-dom-document-createelement%
E2%91%A0.

[179] WHATWG. Fetch: CORS protocol. Accessed on: [2023-09-01]. 2023. url: https:
//fetch.spec.whatwg.org/#http-cors-protocol.

[180] WHATWG. Fetch: Cross-Origin Embedder Policies. Accessed on: [2023-09-01].
2023. url: https://html.spec.whatwg.org/multipage/browsers.
html#coep.

178

https://github.com/iesiyok/trollthrottle_chrome
https://github.com/iesiyok/trollthrottle_chrome
https://github.com/iesiyok/trollthrottle
https://github.com/iesiyok/trollthrottle
https://blog.twitter.com/official/en_us/topics/company/2018/2016-election-update.html
https://blog.twitter.com/official/en_us/topics/company/2018/2016-election-update.html
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity#using_subresource_integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity#using_subresource_integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity#using_subresource_integrity
https://www.telerik.com/blogs/what-exactly-is.....-the-300ms-click-delay
https://www.telerik.com/blogs/what-exactly-is.....-the-300ms-click-delay
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179465
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179465
https://github.com/mikewest/signature-based-sri
https://github.com/mikewest/signature-based-sri
https://www.w3.org/TR/CSP3/
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Web_mechanics/What_is_a_web_server
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Web_mechanics/What_is_a_web_server
https://web.whatsapp.com/
https://html.spec.whatwg.org/multipage/browsers.html#cross-origin-opener-policies
https://html.spec.whatwg.org/multipage/browsers.html#cross-origin-opener-policies
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/#ref-for-dom-document-createelement%E2%91%A0
https://dom.spec.whatwg.org/#ref-for-dom-document-createelement%E2%91%A0
https://dom.spec.whatwg.org/#ref-for-dom-document-createelement%E2%91%A0
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cors-protocol
https://html.spec.whatwg.org/multipage/browsers.html#coep
https://html.spec.whatwg.org/multipage/browsers.html#coep

OTHER REFERENCES

[181] WHATWG. Fetch: Cross-Origin Resource Policy Header. Accessed on: [2023-
09-01]. 2023. url: https://fetch.spec.whatwg.org/#cross-origin-
resource-policy-header.

[182] WHATWG. HTML Standard: 4.8.5 Iframe Element. Accessed: 2023-09-01. 2023.
url: https://html.spec.whatwg.org/multipage/iframe-embed-
object.html#the-iframe-element.

[183] WHATWG. HTML Standard: A cross-origin isolated capability. Accessed on:
[2023-09-01]. 2023. url: https://html.spec.whatwg.org/multipag
e/webappapis.html#concept-settings-object-cross-origin-
isolated-capability.

[184] WHATWG. HTML Standard: Document.write. Accessed on: [2023-09-01]. 2023.
url: https://html.spec.whatwg.org/multipage/dynamic-markup-
insertion.html#dom-document-write-dev.

[185] WHATWG. HTML Standard: The History Interface. Accessed on: [2023-09-
01]. 2023. url: https://html.spec.whatwg.org/multipage/nav-
history-apis.html#the-history-interface.

[186] WHATWG. HTML Standard: The History Interface. Accessed on: [2023-09-
01]. 2023. url: https://html.spec.whatwg.org/multipage/nav-
history-apis.html#dom-history-pushstate-dev.

[187] WHATWG. HTML Standard: The Location Interface. Accessed on: [2023-09-
01]. 2023. url: https://html.spec.whatwg.org/multipage/nav-
history-apis.html#dom-location-replace-dev.

[188] WHATWG. HTML Standard: The Window Object. Accessed on: [2023-09-01].
2023. url: https://html.spec.whatwg.org/multipage/nav-histor
y-apis.html#the-window-object.

[189] WHATWG. Http Responses: Access-Control-Allow-Origin. Accessed on: [2023-09-
01]. 2023. url: https://fetch.spec.whatwg.org/#http-responses.

[190] World Wide Web Consortium (W3C). HTML Standard. Online. Accessed on:
[2023-07-23]. url: https://www.w3.org/html/wg/spec/browsers.
html#browsing-contexts.

[191] World Wide Web Consortium (W3C). Interface Document. Online. Accessed
on: [2023-07-23]. url: https://dom.spec.whatwg.org/#interface-
document.

[192] World Wide Web Consortium (W3C). Origin. Online. Accessed on: [2023-07-23].
url: https://www.w3.org/html/wg/spec/origin-0.html.

[193] World Wide Web Consortium (W3C). Secure Contexts. https://w3c.github.
io/webappsec-secure-contexts/. Accessed on: [2023-07-23].

[194] World Wide Web Consortium (W3C). URLs. Online. Accessed on: [2023-07-23].
url: https://www.w3.org/TR/2011/WD-html5-20110525/urls.
html#absolute-url.

[195] Wullner, D. Lassen Sie uns diskutieren. 2015. url: https://www.suedd
eutsche.de/kolumne/ihre-sz-lassen-sie-uns-diskutieren-
1.2095271.

179

https://fetch.spec.whatwg.org/#cross-origin-resource-policy-header
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-header
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#the-iframe-element
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#the-iframe-element
https://html.spec.whatwg.org/multipage/webappapis.html#concept-settings-object-cross-origin-isolated-capability
https://html.spec.whatwg.org/multipage/webappapis.html#concept-settings-object-cross-origin-isolated-capability
https://html.spec.whatwg.org/multipage/webappapis.html#concept-settings-object-cross-origin-isolated-capability
https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#dom-document-write-dev
https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#dom-document-write-dev
https://html.spec.whatwg.org/multipage/nav-history-apis.html#the-history-interface
https://html.spec.whatwg.org/multipage/nav-history-apis.html#the-history-interface
https://html.spec.whatwg.org/multipage/nav-history-apis.html#dom-history-pushstate-dev
https://html.spec.whatwg.org/multipage/nav-history-apis.html#dom-history-pushstate-dev
https://html.spec.whatwg.org/multipage/nav-history-apis.html#dom-location-replace-dev
https://html.spec.whatwg.org/multipage/nav-history-apis.html#dom-location-replace-dev
https://html.spec.whatwg.org/multipage/nav-history-apis.html#the-window-object
https://html.spec.whatwg.org/multipage/nav-history-apis.html#the-window-object
https://fetch.spec.whatwg.org/#http-responses
https://www.w3.org/html/wg/spec/browsers.html#browsing-contexts
https://www.w3.org/html/wg/spec/browsers.html#browsing-contexts
https://dom.spec.whatwg.org/#interface-document
https://dom.spec.whatwg.org/#interface-document
https://www.w3.org/html/wg/spec/origin-0.html
https://w3c.github.io/webappsec-secure-contexts/
https://w3c.github.io/webappsec-secure-contexts/
https://www.w3.org/TR/2011/WD-html5-20110525/urls.html#absolute-url
https://www.w3.org/TR/2011/WD-html5-20110525/urls.html#absolute-url
https://www.sueddeutsche.de/kolumne/ihre-sz-lassen-sie-uns-diskutieren-1.2095271
https://www.sueddeutsche.de/kolumne/ihre-sz-lassen-sie-uns-diskutieren-1.2095271
https://www.sueddeutsche.de/kolumne/ihre-sz-lassen-sie-uns-diskutieren-1.2095271

BIBLIOGRAPHY

[196] Yasskin, J. Signed HTTP Exchanges. 2021. url: https://wicg.github.
io/webpackage/draft-yasskin-http-origin-signed-responses.
html (visited on 04/13/2021).

[197] Yasskin, J. Use Cases and Requirements for Web Packages. url: https://
datatracker.ietf.org/doc/draft-yasskin-wpack-use-cases/
(visited on 11/02/2020).

[198] Yasskin, J. Web Bundles. url: https://wicg.github.io/webpackage/
draft-yasskin-dispatch-web-packaging.html.

[199] Z3 Theorem Prover. url: https://github.com/Z3Prover/z3/wiki#
background.

[200] Zeit, D. 2016. url: https://www.zeit.de/zeit-magazin/2016/31/
kommentare-internet-medien-community-redakteur.

[201] Zeit, D. 2018. url: https://blog.zeit.de/glashaus/2018/03/02/
wie-wir-leserkommentare-moderieren/.

180

https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html
https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html
https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html
https://datatracker.ietf.org/doc/draft-yasskin-wpack-use-cases/
https://datatracker.ietf.org/doc/draft-yasskin-wpack-use-cases/
https://wicg.github.io/webpackage/draft-yasskin-dispatch-web-packaging.html
https://wicg.github.io/webpackage/draft-yasskin-dispatch-web-packaging.html
https://github.com/Z3Prover/z3/wiki#background
https://github.com/Z3Prover/z3/wiki#background
https://www.zeit.de/zeit-magazin/2016/31/kommentare-internet-medien-community-redakteur
https://www.zeit.de/zeit-magazin/2016/31/kommentare-internet-medien-community-redakteur
https://blog.zeit.de/glashaus/2018/03/02/wie-wir-leserkommentare-moderieren/
https://blog.zeit.de/glashaus/2018/03/02/wie-wir-leserkommentare-moderieren/

	Glossary
	Glossary

	Introduction
	Outline

	Trollthrottle
	Problem Statement
	Overview
	Accountable Commenting

	Protocol Definition
	Direct Anonymous Attestation Scheme
	Zero Knowledge
	Trollthrottle Protocol

	Practical Implementation
	Identity providers
	Encrypting comments on the ledger
	Deferring identity verification with pseudo-probabilistic auditing
	Revocation
	Holding the issuer accountable
	Other considerations
	Goals & Incentives

	Evaluation
	Limitations
	Related Work
	Impact on Society
	Conclusion

	Accountable Javascript Code Delivery
	Problem Statement
	Overview
	Background
	Threat Model

	 Use Cases
	Self-Contained Application
	Trusted Third-Party Code
	Delegate Trust to Third Parties
	Untrusted Third-Party Code
	Code Compartmentalisation

	 Approach: Accountable JS
	Manifest File
	Execution Order
	Trust and Delegation
	Types of Active Elements
	Sandboxing

	 Use Cases, Revisited
	`Hello World' Application
	Self-Contained Web Applications
	Trusted Third-Party Code
	Delegate Trust to Third Parties
	Untrusted Third-Party Code
	Compartmentalisation of Code and Development process

	 Measurement procedure
	Signing and Delivering a Manifest
	 Protocol
	 Protocol Verification
	Code Verify Protocol

	Logging Mechanism
	 Evaluation
	Limitations of Prototype
	 Related Work
	 Discussion
	 Conclusion

	Formal Browser Model for Security Analysis
	Problem Statement
	Overview
	Outline
	Methodology
	Formal Model Design
	Camera Access Model
	URL Manipulation
	Secure Context Assignment

	Cross-Origin Isolation State
	Side Channel Access Model

	Security Analysis
	Ryan Pickren's Webcam Attack
	Shorter Version of Ryan Pickren's Webcam Attack
	Security Analysis of Cross-Origin Isolation State

	Test Case Generation and Simulation
	Evaluation
	Related Work
	Discussion
	Conclusion

	Conclusion
	Throllthrottle - Appendix
	Instant linkability
	Security Analysis
	Holding the Issuer Accountable
	Preliminaries
	Accountable Commenting Scheme with Credibility (ACSC)
	Instantiation
	Security Analysis
	Efficient instantiation of the proof for relation RGB

	Formal analysis of the deferred verification and auditing protocol
	Review and adoption of the security model
	Proofs of Security
	Model Oracles
	Protection against trolling
	Non-frameability
	Anonymity
	Accountability

	Accountable Javascript - Appendix
	Verification of Security Properties
	Claim Verification
	Formal model of Accountable JavaScript
	Formal model of Code Verify
	Evaluation Details
	`Hello World' Application Scenario
	Self-Contained Web Application Scenario
	Trusted Third-party Code Scenario
	Delegate Trust to Third Parties Scenario
	Untrusted Third-Party Code
	Compartmentalisation of Code and Development Process

