
Saarland University

Department of Computer Science

TEE-based Designs for Network Gateways, Web
Authentication, and VM Introspection

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften (Dr.-Ing.)
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

vorgelegt von
Fabian Frank Schwarz

Saarbrücken,
2024

Tag des Kolloquiums: August 28, 2024

Dekan: Prof. Dr. Roland Speicher

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Peter Druschel
Berichterstattende: Prof. Dr. Christian Rossow

Dr. Sven Bugiel
Prof. Dr. Hojoon Lee

Akademischer Mitarbeiter: Dr. Alexi Turcotte

Abstract

Over the last decades, the complexity of client, server, and network devices has
drastically increased—and so has the number of sophisticated attacks against them.
New vulnerabilities are steadily being discovered, and attacks are becoming more so-
phisticated, including full system compromises that undermine software defenses. As a
potential solution, CPU vendors and researchers have designed several architectural ex-
tensions for trusted execution environments (TEEs). TEEs enable new security schemes
using hardware-based isolation of critical software components from a compromised sys-
tem. However, the benefits of TEEs have still not been considered for many critical
network and web authentication services.

Therefore, this dissertation explores how security-critical network and web services
can benefit from TEEs. In particular, we propose three TEE-based designs for network
firewalls and web authentication. First, we show how client-side TEEs can enable gate-
way firewalls to enforce trusted per-application network policies. Second, we enhance
the TEE protection to the gateway by designing a TEE-based router architecture with
isolated network paths and policy enforcement. Third, we combine electronic IDs with
TEE-protected cloud services to solve the recovery and cost issues of FIDO2 web au-
thentication. Finally, we design secure remote forensics of services protected by TEE
virtual machines while preserving their strong hardware protection.

iii

Zusammenfassung

Über die letzten Jahrzehnte hat sich die Komplexität von Client-, Server-, und
Netzwerk-Geräten drastisch erhöht—und ebenso die Anzahl an Angriffen gegen
sie. Ständig werden neue Schwachstellen entdeckt und immer komplexere Angriffe
entwickelt, einschließlich vollständiger Systemübernahmen. Als Gegenmaßnahme
haben Prozessorhersteller und Forscher etliche vertrauenswürdige Ausführungsumge-
bungen (kurz: TEEs) entworfen. TEEs ermöglichen neue Sicherheitslösungen
durch eine hardware-basierte Isolation kritischer Softwarekomponenten vom kom-
promittierten Restsystem. Die Vorteile von TEEs wurden jedoch für viele kritische
Web-Authentifizierungs- und Netzwerk-Dienste noch nicht untersucht.

Diese Dissertation erforscht daher, wie sicherheitskritische Dienste von TEEs prof-
itieren können. Insbesondere schlagen wir drei TEE-basierte Designs für Netzwerk-
Firewalls und Web-Authentifizierung vor. Zuerst zeigen wir, wie clientseitige TEEs es
Gateway-Firewalls ermöglichen können, vertrauenswürdige Netzwerkregeln je Anwen-
dung durchzusetzen. Zweitens entwerfen wir eine TEE-basierte Router-Architektur mit
isolierten Netzwerkpfaden und -regeln. Drittens kombinieren wir elektronische Ausweise
mit TEE-geschützten Cloud-Diensten um die Wiederherstellungs- und Kostenprob-
leme von FIDO2-Web-Authentifizierung zu lösen. Schließlich entwerfen wir eine sichere
forensische Fernanalyse von Diensten, die durch vertrauenswürdige virtuelle Maschinen
(TEE VMs) geschützt werden.

v

Background of this Dissertation

This dissertation is based on three peer-reviewed papers, a fourth one currently under
major revision (conditional accept), an extended technical report of one of the pa-
pers, and unpublished extensions to them. The three peer-reviewed papers have been
published at USENIX Security 2020 [P1], RAID 2022 [P2], and CCS 2022 [P3]. The
fourth paper is currently under major revision (conditional accept) at USENIX Security
2024 [P4]. The four papers form the basis for Chapters 2 to 5 of this dissertation. The
technical report [T1] provides additional information on [P3] and is therefore part of
Chapter 4, especially Section 4.6.2.1, 4.6.5.5, 4.7.5, and 4.7.6. A noteworthy extension
to SENG [P1]—our firewall extension for trusted per-application policies—which is not
part of the original paper, is presented in Section 2.12 of this dissertation. This ex-
tension provides an alternative implementation of our per-application firewall policies
tailored to Linux’s Netfilter packet filtering system.

Papers of the Author

[P1] Schwarz, F. and Rossow, C. SENG, the SGX-Enforcing Network Gateway:
Authorizing Communication from Shielded Clients. In: 29th USENIX Security
Symposium. 2020.

[P2] Schwarz, F. TrustedGateway: TEE-Assisted Routing and Firewall Enforcement
Using ARM TrustZone. In: Proceedings of the 25th International Symposium on
Research in Attacks, Intrusions and Defenses. ACM, 2022.

[P3] Schwarz, F., Do, K., Heide, G., Hanzlik, L., and Rossow, C. FeIDo: Recover-
able FIDO2 Tokens Using Electronic IDs. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security. 2022.

[P4] Schwarz, F. and Rossow, C. 00SEVen – Re-enabling Virtual Machine Foren-
sics: Introspecting Confidential VMs using privileged in-VM Agents. In: major
revision (conditional accept) at USENIX Security 2024.

Technical Reports of the Author

[T1] Schwarz, F., Do, K., Heide, G., Hanzlik, L., and Rossow, C. FeIDo: Recover-
able FIDO2 Tokens Using Electronic IDs (Extended Version). Technical Report.
https://publications.cispa.saarland/3894/. 2023.

I contributed to all papers and the technical report as the main author. In two
cases [P1, P4], I was the sole contributor next to a faculty-level co-author, and in the
case of [P2], the sole paper author. For our paper on trusted virtual machine intro-
spection [P4], I supervised two student helpers that supported me in implementing the
client side of the prototype and its analysis policies: Fabian van Rissenbeck helped me
preparing the performance measurements of the policies (Section 5.8.1), Erik Schmidt
helped me implementing the remote network connection of the LibVMI-based client
prototype (Section 5.8), and both provided detection policies for the rootkit experi-
ments (Section 5.8.2). The FeIDo paper [P3] is the result of a collaboration between

vii

https://publications.cispa.saarland/3894/

my faculty-level supervisor Christian Rossow, me and Khue Do, Gunnar Heide, and
their faculty-level supervisor Lucjan Hanzlik. I was the main contributor to the pa-
per and its implementation, however, all authors contributed with their valuable ideas.
Lucjan Hanzlik and Khue Do contributed particularly to the reduction-based security
argument of FeIDo (Section 4.7.1) and the unlinkability argument of its anonymous
credentials (Section 4.7.4.1). In addition, they provided background information on
electronic IDs and helped in finding the data required to calculate the risk of name col-
lisions (Section 4.7.2.3). Gunnar Heide contributed to the browser extension of FeIDo’s
prototype (Section 4.8.1.2), helped me in implementing the Android application of the
prototype (Section 4.8.1.1), and conducted the experiments for the performance eval-
uation (Section 4.8.2) under my supervision. For the aforementioned Netfilter-specific
extension of SENG [P1] (Section 2.12), Leon Trampert was responsible for implement-
ing the prototype under my supervision.

viii

Acknowledgments
First and foremost, I want to thank my supervisor Prof. Dr. Christian Rossow. Our

first contact dates back to my bachelor’s thesis in 2015, of which he was my supervisor.
Ever since then, I had the pleasure to cooperate with him on many different topics and
learn a lot from him. Throughout my bachelor’s thesis, master’s thesis, and various
research projects during my PhD, he guided me and provided me with countless advice
and insights on how to become a successful researcher. I particularly thank him for
giving me the freedom to work on projects that really drove my interest, including the
change of my PhD topic right at the beginning from machine learning-based anomaly
detection to trusted execution environments. I’m really grateful that he always gave
me the opportunity to come up with interesting research ideas on my own. That way,
I was able to develop a high degree of independence and expertise, such that I am
confident that I will be able to master whatever challenges arise on my next career
step—thank you for making that possible. Also special thanks for the many insightful
research discussions, and the possibility to attend several workshops and conferences
throughout my PhD.

Next, I want to thank Dr. Sven Bugiel who sparked my interest in system secu-
rity in 2014 during my bachelor studies. Since then, throughout my bachelor studies,
master studies, and early PhD phase, I enjoyed joining his lectures and discussing on
mobile and trusted computing topics with him. I learned a lot from him on the fun-
damentals of system security designs, trusted computing, and system research, which
had a significant impact on this dissertation. It was also Dr. Bugiel who recommended
Prof. Rossow to me as a supervisor for my bachelor’s thesis, and thus initiated my
successful academic research experiences of the last years. Thank you for all the inspi-
ration and for introducing me to the field of system security research—contributing to
research on new system designs that can benefit real-world systems and users has been
one of my strongest initial motivations for conducting a PhD. Also thank you again for
being a reviewer of this dissertation.

I also thank Prof. Dr. Hojoon Lee for being a reviewer of this dissertation and for
our insightful research discussions on system-level defenses. It would be a pleasure for
me to cooperate on some future projects.

I thank Dr. Giancarlo Pellegrino for being my supervisor during my first research
attempts as a student helper in the group of Prof. Rossow. Special thanks for motivating
me to follow the research direction that drives my interest. It was one of our discussions
that was the final push to make me move forward and switch from my initial PhD topic
on machine-learning based anomaly detection to the field of trusted computing.

A special thanks goes to my former colleagues at CISPA: Dr. Markus Bauer, Dr. Jo-
hannes Krupp, Dr. Giorgi Maisuradze, Jonas Bushart, Benedikt Birtel, and Michael
Brengel. Thank you for all the discussions, the daily “mensa walks”, our trips to
Dagstuhl, and the support during my PhD. Thank you to Markus for being the best
office mate possible, for sharing all the ups and downs, and all of our discussions—the
funny and the professional ones. Special thanks also for supporting me with the for-
matting of this dissertation. Special thanks to Johannes for your proofreading of and
advice on the TrustedGateway paper, which really helped me a lot at that time, and
thank you for sharing your post-PhD experiences. Special thanks to Giorgi for teaching

ix

me how to structure and write a research paper, your valuable feedback on my first
paper (SENG), and your encouraging words throughout the first two years of my PhD.
I’m really happy that I was able to share my PhD journey with so many brilliant but
humble people, and am grateful that we have stayed in contact beyond our PhD time.

I also want to thank the following colleagues and experienced researchers that have
supported me throughout my PhD journey:

• Prof. Dr. Bernd Finkbeiner for being my mentor during the preparatory phase of
my PhD

• Prof. Dr. Cas Cremers for providing me with helpful advice and insights on net-
work protocol security during my first project

• Dhiman Chakraborty for many interesting and funny discussions, and for provid-
ing me with practical tips on Arm TrustZone development boards at the beginning
of my TrustedGateway project

• Dr. Lucjan Hanzlik, Khue Do, and Gunnar Heide for the great cooperation during
our joined FeIDo project

• Leon Trampert for his support on the SENG-Netfilter extension
• Erik Schmidt and Fabian van Rissenbeck for their support on the 00SEVen pro-

totype
• my recent colleagues Marcos Sánchez Bajo, Amit Choudhari, Yepeng (Eric) Pan,

and Bogdan Cebere for giving me a warm welcome in Dortmund during my visit,
and for the great time in Kopenhagen during the CCS 2023 conference. Special
thanks to Marcos for being such a great, warm-hearted room mate during that
time. I wish all of you all the best for your PhD journeys!

Thank you to Saarland University, Saarbrücken Graduate School of Computer Sci-
ence, and the CISPA Helmholtz Center for Information Security for providing me with
a great working environment and organizational support throughout the preparatory
and dissertation phases of my PhD.

Finally, I want to thank my family for all their mental support, especially my
mother who always had my back and encouraged me. Also thanks to my friends,
especially to Mark Stutz for all the discussions on my PhD and for the relaxing spare
time activities, and to Dr. Patrick Speicher and Dr. Johannes Herrmann for shar-
ing their PhD experiences with me. The time with you helped me recharge my batteries.

All of you supported me in making this dissertation possible.
Danke für alles!

x

Contents

1 Introduction 1

2 SENG: the SGX-Enforcing Network Gateway 11
2.1 Motivation . 13
2.2 Problem Description . 13
2.3 Contributions . 14
2.4 Threat Model . 15
2.5 Related Work . 16
2.6 Background . 19

2.6.1 Intel SGX and Remote Attestation 19
2.6.2 Enclave Development and Graphene-SGX 20

2.7 Design . 21
2.7.1 Requirements . 21
2.7.2 Overview . 22
2.7.3 Application-Grained Firewall Policies 23
2.7.4 Deployment of SENG . 26

2.8 Implementation . 27
2.8.1 Initialization and Tunnel Setup 27
2.8.2 Network Traffic Shielding . 29
2.8.3 DNS Resolution Shielding . 30
2.8.4 Application-Grained Policy Enforcement 30
2.8.5 Shielded Servers . 30

2.9 Security Analysis . 31
2.10 Prototype Implementation . 36
2.11 Evaluation . 37

2.11.1 Network Performance . 38
2.11.2 Client Applications . 39
2.11.3 Server Application (NGINX) . 40
2.11.4 Setup Microbenchmark . 41
2.11.5 Accelerating NGINX using SENG-SDK 42
2.11.6 Server Scalability and Memory Overhead 42

2.12 SENG Netfilter and iptables Extension 43
2.12.1 Design of SENG-Netfilter . 43

2.13 Discussion . 45
2.13.1 Overcoming Memory Limitations of Enclaves 45
2.13.2 Frequent Measurement Updates 46

xi

CONTENTS

2.13.3 Other TEEs and Platforms . 46
2.13.4 Prototype Limitations . 47

2.14 Artifacts . 47
2.15 Conclusion . 47

3 TrustedGateway: TEE-Assisted Routing and Firewalling 49
3.1 Motivation . 51
3.2 Problem Description . 51
3.3 Contributions . 53
3.4 Setting: Gateway Routers are High-value Targets 54

3.4.1 Threat Model . 57
3.5 Towards Secure Network Gateways . 57

3.5.1 Goals and Requirements . 57
3.5.2 Design Tradeoffs and their Shortcomings 58

3.6 TruGW’s Design . 61
3.6.1 Trusted Networking . 62
3.6.2 Securely Sharing Network Access 64
3.6.3 Trusted Policy Configuration . 65

3.7 TruGW Details and Implementation . 66
3.7.1 Technical Background . 66
3.7.2 TEE Integration and Networking 67
3.7.3 Trusted Network Device I/O . 69
3.7.4 Address Resolution and Assignment 70
3.7.5 Trusted Policy Management . 70
3.7.6 Deployment . 71

3.8 Security Analysis . 72
3.8.1 Attacks and their Countermeasures 72
3.8.2 Real-World Vulnerabilities . 75

3.9 Evaluation . 76
3.9.1 Open-source Prototype . 76
3.9.2 Code Size Analysis . 77
3.9.3 Performance Evaluation . 77
3.9.4 Secure Memory Overhead . 81

3.10 Artifacts . 81
3.11 Conclusion . 81

4 FeIDo: Recoverable FIDO2 Tokens Using Electronic IDs 83
4.1 Motivation . 85
4.2 Problem Description . 85
4.3 Contributions . 86
4.4 Background and Related Work . 88

4.4.1 FIDO2 . 88
4.4.2 eIDs for Authentication . 90

4.5 FeIDo: Design Goals and Threats . 91
4.5.1 Goals and Requirements . 92

xii

CONTENTS

4.5.2 Threat Model . 92
4.6 FeIDo: Concepts and Design . 94

4.6.1 Big Picture . 94
4.6.2 Comparison to Existing Authenticators 94
4.6.3 Attribute-based Credentials . 97
4.6.4 Anonymous Credential Extension 99
4.6.5 FIDO2 Integration . 99
4.6.6 Deployment and Failover . 104

4.7 Security Analysis . 106
4.7.1 FeIDo’s FIDO2 Security . 106
4.7.2 Security Assumption Verification 108
4.7.3 FeIDo Component Theft (or Loss) 110
4.7.4 Security of Anonymous Credentials 111
4.7.5 Client Device Compromise . 111
4.7.6 Using an Untrusted Reader Device 112

4.8 Evaluation . 113
4.8.1 Prototype . 114
4.8.2 Performance Evaluation . 115

4.9 Discussion . 116
4.9.1 FeIDo as Sole Authenticator (Passwordless) 116
4.9.2 Enterprise Authentication Use Cases 117
4.9.3 eID Migration on Attribute Changes 117

4.10 Artifacts . 118
4.11 Conclusion . 118

5 00SEVen: Secure Remote Forensics for Confidential VMs 119
5.1 Motivation . 121
5.2 Problem Description . 121
5.3 Contributions . 122
5.4 Setting: Confidential VM In(tro)spection 124

5.4.1 Threat Model . 124
5.4.2 Design Goals and Requirements 125
5.4.3 (Un)Applicability of Existing VMI 126

5.5 Design of 00SEVen . 127
5.5.1 Design Overview . 127
5.5.2 VMI Work Flow . 130

5.6 Implementation . 137
5.6.1 Agent Integration and Startup 137
5.6.2 Channel Device and Scheduling 138
5.6.3 Attested Remote Communication 139
5.6.4 VMI-assisting Hypercalls . 140

5.7 Security Analysis . 140
5.7.1 Adversary and Goal Recap . 140
5.7.2 00SEVen’s Security Design . 140
5.7.3 Beyond 00SEVen: Collusion Attacks 141

xiii

CONTENTS

5.8 Evaluation . 142
5.8.1 (Remote) Analysis Performance 143
5.8.2 Rootkit Detection and Active Trapping 144
5.8.3 In-VM Requirements and Overhead 144

5.9 Discussion and Outlooks . 145
5.9.1 Other Confidential (VM) Platforms 145
5.9.2 Agent-side Optimizations for Virtual Memory Access 146
5.9.3 Isolating Shared Buffers . 146
5.9.4 Improving AMD SEV for Secure VMI 147
5.9.5 Outlook: Trusted I/O Support 147

5.10 Related Work . 148
5.11 Artifacts . 150
5.12 Conclusion . 150

6 Conclusion 151
6.1 Summary of Contributions . 153
6.2 Future Research Directions . 155

6.2.1 Further Exploration of TEEs and their Extensions 155
6.2.2 Enabling Cross-TEE Compatibility 157
6.2.3 Design of Custom Hardware Extensions 158
6.2.4 Protection Designs based on Non-TEE CPU Extensions 158

6.3 Concluding Thoughts . 159

xiv

List of Figures

2.1 Overview of SENG’s network topology and threat model 16
2.2 High-level overview of the SENG architecture 22
2.3 Corporate network topology with SENG 25
2.4 Overview of the SENG runtime components 29
2.5 SENG: iPerf3 throughput of a single TCP connection 38
2.6 SENG: Time differences from cURL benchmark 39
2.7 SENG: Average request latencies of NGINX 40
2.8 iptables rules using the SENG-Netfilter specifiers 44

3.1 Three critical attacks against a gateway’s network policies 55
3.2 Design overview of TrustedGateway (TruGW) 61
3.3 The TruGW architecture . 63
3.4 TruGW throughput evaluation setup . 78
3.5 TruGW: iPerf3 TCP throughput measurements 79

4.1 Simplified flow of a FIDO2 web authentication 89
4.2 Overview: FeIDo, hardware, and virtual FIDO2 tokens 93
4.3 FeIDo’s client middleware . 100
4.4 Message flow in a FeIDo authentication session 101
4.5 Mapping FeIDo to EAC eID security model 107

5.1 Setting of 00SEVen . 124
5.2 Design overview of 00SEVen . 128
5.3 00SEVen client script example (process list) 131
5.4 00SEVen’s page read-/write-monitoring traps 134
5.5 Disabled kernel function trap trampoline of 00SEVen (simplified) 135
5.6 00SEVen’s implementation . 137
5.7 Analysis times of KVMi and 00SEVen 143

xv

List of Tables

2.1 Related work of SENG . 17
2.2 Traditional firewall policies and their app-grained SENG alternatives . . 24
2.3 Assessment of attacks on SENG and its respective countermeasures . . . 32
2.4 Client setup times of SENG and Graphene-SGX 41

3.1 Router network OSes and underlying commodity OSes 52
3.2 Number of CVEs for OSes, hypervisors, and Linux networking modules 54
3.3 CVEs of user services, OSes, and hypervisors used by network devices . 56
3.4 Overview of TruGW’s defense measures against security-critical attacks 73
3.5 Code sizes of auxiliary network services on DD-WRT routers 76
3.6 Page load times and overhead with TruGW as an on-path router 80

4.1 Feature comparison: FeIDo, hardware and virtual FIDO2 tokens, and eIDs 95

5.1 VMI policies and their targets . 142
5.2 Comparison of existing VMI and memory forensic systems with 00SEVen 149

xvii

1
Introduction

1

Sophisticated attacks against client, server, and network devices are rapidly be-
coming more prevalent due to the drastically increasing complexity of these devices.
With their growing software stacks and permanent network connectivity, protecting
their huge attack surfaces has become significantly harder. Attackers are steadily dis-
covering new vulnerabilities and are developing more sophisticated attacks, including
full system compromises. As soon as attackers have compromised the system software,
e.g., OS kernel or virtualization software, they can entirely undermine existing software
defenses and security services, such as process isolation, access control schemes, or net-
work firewalls [160]. The rise in adoption of cloud computing, in which client services
are offloaded to virtual machines (VMs) on third-party servers, further adds to the
need for protection against untrusted system software. The cloud infrastructures are
fully controlled by the third-party vendors, putting malicious insiders or shady vendors
in an ideal position for system-level attacks. Furthermore, past vulnerabilities in vir-
tualization software enabled attackers to escape cloud VMs and compromise the host
systems—including all co-located tenant VMs [70].

One promising solution suggested by CPU vendors and researchers to address the
threat of system-level attacks are hardware-assisted platform extensions that provide
trusted execution environments (TEEs). In contrast to sandboxing techniques [235,
127, 100], which aim at confining potentially vulnerable or malicious software, TEEs en-
able the isolation of security-critical components from the rest of the system. That way,
even on a system software compromise, the TEE-isolated services can stay protected
and functional. Over the last years, CPU vendors and researchers introduced several
TEEs with varying security boundaries, including user space TEEs like Intel SGX [49],
TEEs with full system resource partitioning as provided by Arm TrustZone [178], re-
cent VM-level TEEs like AMD SEV-SNP [3] and Intel TDX [106], or customizable
research TEEs like CURE [20]. While TEEs differ w.r.t. their protection boundaries,
features, or implementation details, all TEEs typically aim at providing a common set
of properties: runtime protection of the contained code and data based on access con-
trol and/or memory encryption, the capability to attest their initial state (incl. code
and data) using signatures or measurements, and support for crypto operations, e.g.,
deriving TEE-bound encryption keys to protect data at rest. That way, TEEs enable
new protection designs rooted in attestable, hardware-isolated components.

TEEs not only offer additional protection but can enable new security features for
existing services. There has been wide research on the application of TEEs which grad-
ually pushed their limits beyond the vendor’s intended use cases, including tailored
protection designs for specific services, such as storage, network, or machine learn-
ing [182, 92, 126, 113], TEE containers for general purpose applications [24, 219, 202,
17, 3], or additional runtime protection and monitoring of TEEs [243, 40, 244]. Further-
more, there has been a lot of offensive research on TEEs and TEE-based designs [133,
226, 210], which helped to gradually improve their security. However, despite promising
work showing how TEEs can enable new security services [152, 135] or extend existing
concepts, e.g., for control-flow attestation [2] or protected system logs [122], the focus
has been mainly on the protection of user applications rather than security services. In
particular, many security-critical network and web authentication services still do not
benefit from TEEs, even though these services are fundamental for the protection of

3

CHAPTER 1. INTRODUCTION

our daily client, server, and cloud communication.
Therefore, in the first part of this dissertation, we address the meta research ques-

tion: (MQ1) How can security-critical network and web authentication services benefit
from TEEs? In order to answer this question, throughout Chapters 2 to 4, we look at
three concrete network and web security settings and explore the benefits and feasibil-
ity of applying existing TEEs to them. In fact, we propose three TEE-based design
extensions for network firewalls and web authentication, which enable new security
guarantees, even when facing strong system-level attackers. Our prototypes not only
show the practical feasibility of our designs, but additionally, by releasing them as open-
source projects (see list on page 9), we support security researchers and practitioners
in actually adopting or extending our proposals.

In Chapter 2, we focus on the ability of network firewalls to securely attribute and
filter network traffic of client (or server) applications. Gateway firewalls are impor-
tant gatekeepers that mediate all incoming and outgoing network communication of
consumer and enterprise networks. Their ability to attribute traffic to applications is
crucial in order to filter malware and attack traffic. However, widely used identifiers for
app attribution (e.g., connection port numbers) can be easily spoofed by malware, and
client-side attribution modules can be bypassed via process injections [21] or disrupted
on a system-level compromise. In Chapter 2, we therefore address the research ques-
tion: (RQ1) Can we use TEEs to enable secure per-application traffic attribution and
firewall policy enforcement? Client-side TEEs can provide trusted application identi-
fiers for network traffic that cannot be spoofed even if the client device is compromised.
That way, TEEs can allow for secure traffic-to-application attribution, and thus enable
gateway firewalls to enforce per-application policies, e.g., blocking communication by
malware and restricting traffic to known, fully-patched applications.

In Chapter 3, we focus on the protection of the traffic firewalling and routing by gate-
way routers. Current consumer and small to medium-sized enterprise (SME) routers
expose a huge attack surface prone to vulnerabilities as they build on commodity OSes
and incorporate many non-hardened auxiliary services, e.g., web UIs and media ser-
vices. Unfortunately, on a remote system compromise, attackers can bypass the firewall
and routing policies, and record and tamper with all network communication. In fact,
over the last years, there have been several actively exploited service vulnerabilities
affecting routers. Therefore, motivated by the importance of routers as network gate-
keepers and their high security risk, we investigate the research question: (RQ2) Can
we use TEEs to protect the network path and policy enforcement of routers against
compromised user and kernel space services? System-level TEEs like Arm TrustZone
are widely deployed and enable full partitioning of the CPU, memory, and peripherals
into a secure and non-secure part. That way, these TEEs can provide strong isolation
of the network hardware and software services interacting with the network traffic,
even if the router OS and auxiliary services are compromised. Therefore, a redesign
of standalone gateway routers based on such a TEE can guarantee secure traffic for-
warding and policy enforcement, thus increasing trust into the security of consumer
and enterprise networks.

In Chapter 4, we move beyond gateway-enforced network traffic filtering by looking
at user authentication towards external web services. Due to the plethora of secu-

4

rity weaknesses imposed by password-based authentication [191, 65, 166, 54], platform
vendors introduced token-based authentication, currently standardized via the FIDO2
authentication protocols [84]. FIDO2 augments passwords with web credentials based
on public-private key pairs generated by hardware-isolated token devices owned by the
users. While the public keys are shared with the web service, the private keys never
leave the token such that the credentials stay resistant against theft, including phishing
attempts as well as client- and server-side compromises. However, token-based FIDO2
authentication still faces practical challenges that hinder wide user adoption: users are
unwilling to buy dedicated token devices, and a loss (or theft) of a token can ren-
der all web accounts permanently inaccessible. In fact, most users already posses a
token-like device for authentication tasks: electronic IDs (eIDs), such as passports or
national IDs. eIDs provide verifiable user information that rarely changes throughout
a lifetime and can be used for authentication. However, eIDs are not compatible with
FIDO2 and risk leaking private information to third parties. Therefore, in Chapter 4,
we answer the research question: (RQ3) Can we use TEEs to overcome the deployment
and account recovery challenges of FIDO2 web authentication based on user eIDs while
preserving user data privacy? TEEs like Intel SGX or AMD SEV are strongly isolated
even if the underlying host system is compromised. They can therefore securely process
personal user data and derive web credentials based on it, without leaking either to un-
trusted third parties. Furthermore, the remote attestation of TEEs allows to securely
offload TEE-based services to external servers (e.g., cloud) by remotely verifying their
protection, removing the necessity of TEE support on user devices.

Having shown the benefits of TEE-based service designs in the first part of this dis-
sertation, in the second part, we look into secure runtime monitoring of TEE-protected
services. TEEs can provide strong hardware-based isolation from system-level attacks.
However, their contained services can still be vulnerable to software exploitation, e.g.,
memory corruption causing a malicious code execution inside the TEE. To minimize the
risk, the code size of TEE-based services and its associated attack surface is supposed
to be small or even verified. However, the complexity of TEE-based services increases,
and so does the risk of vulnerabilities [210], which raises the need for additional runtime
detection and prevention solutions inside TEEs. Due to their strong isolation, TEEs
require new dedicated defenses that cannot rely on the untrusted system software.
Therefore, in the second part of this dissertation, we contribute to the meta research
question: (MQ2) In how far can we securely enable attack detection or prevention tech-
niques for TEE-based services? Researchers have proposed several protection [243,
202, 40], prevention [47, 210], and monitoring [244] solutions that are tailored to a
specific TEE. However, while there has been a lot of focus on process-based TEEs like
Intel SGX, upcoming VM-level TEEs like AMD SEV-SNP [3] or Intel TDX [106] are
still rather unexplored. In fact, TEE VMs expose a much bigger attack surface than
small process-level TEEs, because they consist of a whole commodity OS with many
user services. Therefore, CPU vendors have recently started announcing new hardware
features to support intra-TEE VM protections [105, 3], and Hecate [83] has made a
first step towards intra-VM security policies. However, solutions for many common
non-TEE defenses, including runtime memory introspection for attack detection and
analysis, have still not been explored for TEE VMs.

5

CHAPTER 1. INTRODUCTION

Therefore, in Chapter 5, we contribute to the runtime security of TEE VMs by
addressing the research question: (RQ4) Can we enable forensic remote introspection
of (potentially) compromised TEE VMs without breaking their security guarantees? In-
deed, such forensic capabilities are inherently important in the security ecosystem.
They enable attack detection and prevention within TEE VMs and thus add an addi-
tional layer of protection, especially against software exploitation. However, the strong
memory protection of TEE VMs not only strengthens security against local attackers,
but also prevents benign forensic monitoring attempts by the legitimate VM owners.
Therefore, to enable versatile but secure remote introspection, we had to overcome this
challenge without weakening the protection of the TEE VMs.

Outline and Contributions

This dissertation consists of four main chapters—Chapters 2 to 5—which contribute
to two meta research fields (MQ1,MQ2) by each answering one of the above research
questions (RQ1-4). As outlined on page vii, these chapters are mainly based on our
research papers [P1, P2, P3, P4]. In the following, we provide a brief overview of the
contributions presented in each chapter and how they relate.

SENG: Extending Gateway Firewalls with Per-Application Policies (RQ1)

In Chapter 2, we demonstrate how client-side TEEs can enable gateway firewalls to
securely attribute network traffic to applications and thus enforce application-specific
policies, addressing research question RQ1. We present SENG, an extension for gateway
firewalls with TEE-based client-side components. SENG uses the Intel SGX process-
level TEE to isolate client applications from system-level attackers and securely tunnel
their network traffic to the gateway. By leveraging Intel SGX’s hardware-based remote
attestation, the gateway firewall can precisely identify the application corresponding to
a given network tunnel and thus enforce per-application policies. That way, the gate-
way can block communication by unauthorized applications, including client malware,
external attackers, or compromised services.

SENG’s client and gateway components cooperate to enable the traffic protection
and attribution. SENG’s client-side runtime uses a library OS to transparently wrap
existing applications inside SGX enclaves and incorporates a lightweight TCP/IP and
DNS stack to protect the traffic against system-level attacks. SENG’s gateway service
remotely attests each SGX enclave, i.e., verifies their initial code and data, to identify
the wrapped applications and assigns them unique IP addresses. The gateway firewall
can then seamlessly enforce application-specific policies on the associated IP addresses.

We evaluate our open-source prototype and show that SENG provides reasonable
network throughput and latency for practical usage. In addition, we implement ad-
ditional SENG prototypes with different tradeoffs: The SENG-SDK is an alternative
client-side component which provides even better performance by dropping the LibOS,
but at the cost of requiring manual porting of applications into SGX. SENG-Netfilter
is an alternative gateway-side service that is specifically tailored to the Linux iptables
firewall for easy policy specification. That way, depending on the setting, SENG can be

6

tweaked for more application portability, performance, or specific firewall integration.

TrustedGateway: Isolating Network Policy Enforcement of Routers (RQ2)

SENG extends gateway firewalls using client-side TEEs, however, it leaves the gateway
unprotected. In Chapter 3, we enhance TEE-based protection to the security-critical
network services of gateway routers. We design TrustedGateway (TruGW), a new
router architecture, that uses the Arm TrustZone system-level TEE to isolate the full
network path and policy enforcement from the vulnerable OS and auxiliary user space
services, e.g., web UIs. That way, TruGW can guarantee secure traffic I/O, including
traffic routing and firewalling, even on a system-level compromise, thus providing a
positive answer to RQ2. TruGW forwards traffic only selectively to the vulnerable
services and enables admins to restrict any communication from and to them.

TruGW leverages the full system partitioning of TrustZone to isolate the critical
core network services and drivers and provide them with exclusive access to the physical
network interfaced card (NIC). The router OS and services—typically Linux-based with
a huge attack surface—are sandboxed in the untrusted (non-secure) TrustZone domain
and can interact with the isolated network path only via a new, restricted virtual
network interface. TruGW protects all forward traffic against the non-secure services
and enables administrators to remotely configure its secure routing and firewall policies.

We implement an open-source prototype of TruGW and show that it achieves rea-
sonable throughput, latency, and firewall performance. TruGW has a network through-
put performance of ≥90 % compared to an unprotected router, imposes an average la-
tency overhead of 3.4 % on page loads times for client devices routing through TruGW,
and faces a minimal firewalling overhead of 0.5 % to 1 % when leveraging stateful firewall
rules. We conclude that TruGW protects gateway routers against recently exploited
service vulnerabilities with reasonable performance using a widely-available TEE.

FeIDo: Recoverable FIDO2 Authentication Tokens for Everyone (RQ3)

SENG and TrustedGateway protect network communication at the perimeter (gateway)
of consumer or enterprise networks. However, except for high-security settings, users
frequently communicate with external services, especially web services, towards which
they must securely authenticate. Therefore, in Chapter 4, we design FeIDo, a TEE-
assisted virtual FIDO2 token, to foster widespread user adoption of secure FIDO2 web
authentication over insecure, solely password-based authentication. FeIDo combines
widely-deployed eIDs, e.g., passports or national IDs, with user-shared, TEE-protected
cloud services. That way, FeIDo provides users with direct access to FIDO2 authen-
tication without imposing extra costs, and, in contrast to existing FIDO2 hardware
tokens, enables easy account recovery on an eID (token) loss. Thus, FeIDo addresses
RQ3 by showing how TEEs help to overcome the open challenges of FIDO2 using eIDs.

FeIDo uses a client device, e.g., phone, to read unique personal user information
from a user’s eID and securely derives FIDO2 credentials for web authentication inside
the cloud services. As the personal information is independent of a specific eID, users
can derive their web credentials with any of their (replacement) eIDs, enabling direct
recovery on an eID loss. The client shares personal information with the cloud services

7

CHAPTER 1. INTRODUCTION

only after ensuring their protection and genuineness using TEE-provided remote attes-
tation. That way, the user can ensure that the TEE-protected cloud services derive
the credentials in a privacy-preserving way and guarantee that no personal information
is leaked to third parties, including the cloud and web service providers. Optionally,
FeIDo can derive anonymous extra user data for web services, e.g., “is of full age”.

We implement an open-source prototype of FeIDo consisting of a Firefox extension,
Android app, and Linux service based on German ePassports and the Intel SGX TEE.
We show our prototype’s direct compatibility with the well-known webauthn.io FIDO2
test page, and evaluate its authentication performance. With caching enabled, FeIDo
requires ≤2 s per authentication operation on average, which is comparable to the
existing SoloKey and Nitrokey FIDO2 hardware tokens.

00SEVen: Enabling Secure Remote Forensics of TEE VMs (RQ4)

While the previous chapters present TEE-based service designs with tailored protection
schemes, in Chapter 5, we provide secure remote introspection for any service isolated
by VM-level TEEs, thus addressing RQ4. We present 00SEVen, a VMI system for
AMD’s VM-level TEE, called SEV-SNP. 00SEVen leverages recent intra-VM isolation
features to provide isolated in-VM agents that can securely perform memory and regis-
ter introspection as well as memory access traps. That way, 00SEVen enables periodic
or event-based analysis, detection, and prevention of in-VM attacks, including software
exploits and even kernel-level rootkits. The in-VM agents enable users to securely mon-
itor their SEV-SNP VMs for attacks by remotely exposing the introspection capabilities
to forensic clients. To the best of our knowledge, we are the first to securely re-enable
VMI for TEE VMs despite their memory encryption.

00SEVen combines SEV-SNP’s intra-VM isolation primitives, called VM privilege
levels (VMPLs), with new hypervisor extensions to protect the in-VM forensic agents
against both, out-of-VM and in-VM system-level attackers, as well as network at-
tackers. 00SEVen uses VMPLs and their memory permissions to deprivilege the VM
OS and thus protect the agents against in-VM system-level attackers, e.g., rootkits.
For secure remote communication, 00SEVen combines SEV-SNP’s remote attestation
with new hypervisor support for VMPL-aware device I/O to provide secure, dedicated
network channels between the in-VM agents and forensic clients of the VM owners.
00SEVen therefore enables secure remote introspection of SEV-SNP VMs while pre-
serving SEV-SNP’s protection guarantees against out-of-VM attackers.

We implement an open-source prototype of 00SEVen for QEMU/KVM with a re-
mote client based on the widely-known LibVMI introspection library. That way, our
prototype can support all analysis scripts and tools build on LibVMI, e.g., Volatility’s
LibVMI integration. We evaluate the effectiveness and performance based on a set of
analysis scripts and three open-source Linux rootkits. 00SEVen can successfully detect
the rootkits and even prevent infection by them using access traps. Furthermore, our
prototype shows a reasonable performance overhead compared to a local, non-TEE VM
introspection framework (KVMi), mainly attributed to the network communication.

8

Concluding Discussion

In Chapter 6, we conclude this dissertation with a summary of the presented contribu-
tions and an outlook on future research directions.

Open-source Prototypes

As part of the research covered by this dissertation, we implemented several prototypes
that we have published as open-source projects. From our perspective, openly sharing
prototypes with the community helps foster new follow-up research projects by making
it easier for researchers to enter the field and gather hands-on experience. We encourage
the community to use our prototypes for new experiments, build extensions on them,
or take them as a reference when implementing entirely new prototypes. Below we
provide a list of our open-source prototypes covered by this dissertation:

[S1] SENG Prototypes. url: https://github.com/sengsgx.
[S2] TrustedGateway Prototypes. url: https://github.com/trugw.
[S3] FeIDo Prototypes. url: https://github.com/feido-token.
[S4] 00SEVen Prototypes. url: https://github.com/sev-vmi/00seven.

9

https://github.com/sengsgx
https://github.com/trugw
https://github.com/feido-token
https://github.com/sev-vmi/00seven

2
SENG, the SGX-Enforcing

Network Gateway

Authorizing Communication from Shielded Clients

11

2.1. MOTIVATION

2.1 Motivation

Network administrators face a security-critical dilemma. While they want to tightly
contain their hosts, they usually have to relax firewall policies to support a large variety
of applications. However, liberal policies like this enable data exfiltration by unknown
(and untrusted) client applications. An inability to attribute communication accurately
and reliably to applications is at the heart of this problem. Firewall policies are re-
stricted to coarse-grained features that are easy to evade and mimic, such as protocols
or port numbers.

Therefore, in this chapter, we address RQ1 (see page 4), i.e., answer if we can use
trusted execution environments (TEEs) to enable secure traffic-to-application attribu-
tion and thus per-application firewall policy enforcement. We present SENG, a network
gateway extension that leverages client-side TEEs to achieve this goal. SENG shields
an application in an SGX-tailored LibOS and transparently establishes an attestation-
based DTLS channel between the SGX enclave1 and the central network gateway. Con-
sequently, administrators can perfectly attribute traffic to its originating application,
and thereby enforce fine-grained per-application communication policies at a central
firewall. Our prototype implementation demonstrates that SENG (i) allows adminis-
trators to readily use their favorite firewall to enforce network policies on a certified
per-application basis and (ii) prevents local system-level attackers from interfering with
the shielded application’s communication.

2.2 Problem Description

Companies and sovereign institutions aggregate increasing amounts of sensitive digital
information, while the number of attacks on them is proliferating steadily at the same
time. Attackers regularly infiltrate systems to steal information and disrupt competi-
tors, e.g., using social engineering (phishing) or advanced exploits (watering hole, zero
days) [75]. As a response, organizations harden endpoints, deploy network-based attack
detection systems, and train their employees. Yet, given the abundance and power of
attacks, preventing any kind of information leakage has become practically infeasible,
even in highly-secure settings and in absence of internal attackers.

Foremost among these problems is the fact that containing an organization’s in-
coming and outgoing communication is almost impossible. On the one hand, network
administrators deploy firewalls and Intrusion Detection Systems (IDS) to tightly con-
trol and contain information flows. On the other hand, they have to support a vast
diversity of applications and access methods and lack a mapping between which ap-
plication causes which traffic. This enables internal clients to (possibly unknowingly)
leak data by executing untrusted or even malicious software. Furthermore, companies
opening their servers to partners lack control over which remote client applications are

1note: Intel SGX version 1 served as a basis for SENG, and was widely available on client CPUs
at that time. After the release of SENG, Intel deprecated SGX on client CPUs and currently restricts
support to server and data center CPUs. However, SENG can still be used for server or cloud applica-
tions, and we assume that its concepts can be transferred to other client TEEs. We discuss this briefly
in Section 2.13.3, Section 2.13.1, and in the future work section of this dissertation (Section 6.2).

13

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

used to access these servers.
One fundamental solution to this problem is a certified attribution of network traffic

to its application, which would allow for app-specific communication policies. Existing
attempts to attribute traffic fall short in their security guarantees, as they (i) rely
on protocol identification and thereby can be evaded by traffic morphing [102], (ii)
rely on host-based sensors that can be evaded or manipulated by local attackers, or
(iii) are host-based only and cannot be used at central perimeter firewalls. In fact,
reliable traffic-to-app attribution is challenging, as attackers can inject code into trusted
processes [22] and abuse their identity. For example, if malware injects itself into
browsers, it hides its functionality within an otherwise trusted process and thus inherits
the browser’s identity and privileges. Lacking a hardware-based trust anchor, existing
attribution attempts can be fooled by system-level attackers.

To tackle this underlying core problem, we require a design that (i) shields processes
from system-level attackers and (ii) gives stronger integrity protection of processes than
just their name or any sort of other loose identifier. In fact, trusted execution envi-
ronments (TEEs) like Intel SGX [49] ensure such hardware-enforced protections and
have been the subject of endeavors to shield client applications [126, 88] and outsourced
network services [32, 179, 218]. Library operating systems (LibOSes) tailored for SGX
wrap and shield unmodified client and server applications, thus protecting legacy appli-
cations out of the box [24, 219, 17]. However, while they do enable transparent shielding
and attestation, existing LibOSes fail to provide the following two guarantees. First,
they rely on the untrusted host’s network stack, s.t. local system-level adversaries can
still manipulate and redirect traffic (e.g., DNS spoofing, IP/TCP header modification).
Second, the network gateway is still entirely blind to the concrete application which
is sending and/or receiving data. Gateways can therefore neither block unauthenti-
cated, vulnerable senders (e.g., malware, shadow IT) nor restrict communication with
security-critical servers to certain trusted client applications.

2.3 Contributions

In this chapter, we present SENG, a network gateway service coupled with a client-
side runtime library, which aims to solve the above problems. SENG transparently
protects the connections of applications that are shielded in an SGX-tailored LibOS
to prevent packet manipulation and redirection attacks by local system-level attackers.
Technically, SENG automatically establishes attestation-based, trusted DTLS channels
between the SGX enclaves and the central network gateway. Traffic from and to an
enclave is wrapped in the respective secure tunnel and thus inherits enclave-to-gateway
confidentiality and integrity guarantees. Furthermore, this design allows the gateway
to link traffic to the trusted application causing it. Consequently, the gateway can
distinguish between traffic from shielded and unshielded applications and can ultimately
enforce central fine-grained per-application policies. We have designed SENG in such
a way that shielded apps are wrapped in an SGX-based LibOS without requiring any
modifications. This allows us to shield legacy binaries without source code changes
and completely independent of the underlying network protocols. We also provide an
alternative SENG design, which operates without LibOS and provides SENG support

14

2.4. THREAT MODEL

for enclaves based on Intel’s SGX SDK [107] instead. While the latter does require
application modifications, it outperforms the LibOS variant in terms of performance.

To demonstrate the general feasibility, we have developed SENG in an open-source
(cf. Section 2.14) [S1] C++ prototype based on Graphene-SGX2 [219]. Our proof-of-
concept illustrates the security benefits of an SGX-enforcing gateway. To highlight the
two most important merits, SENG (i) allows network administrators to readily use
their favorite firewall implementation (e.g., Netfilter/iptables [163]) to enforce
network policies on a certified per-application basis and (ii) prevents local system-level
attackers from interfering with the shielded application’s communication.

In summary, we make the following contributions:

• We design SENG, which transparently (i.e., without the need of code rewriting)
shields applications to protect and attribute their network traffic.

• SENG enables tight control over network communication at the perimeter and
thereby mitigates information leakage by untrusted applications. Consequently,
central firewalls can enforce the use of particular trusted applications for traffic
entering or leaving their network.

• We implement and release a prototype [S1] and thoroughly evaluate its perfor-
mance based on network- and microbenchmarks as well as a set of real-world
client (cURL, Telnet) and server (NGINX) applications.

2.4 Threat Model

Centralized network firewalls (“perimeter firewalls”) are a core security instrument
in any network [76]. Network administrators typically segment clients and servers into
disjoint subnetworks that are interconnected via a central network gateway—a classical
demilitarized zone (DMZ) firewall setup, as shown in Figure 2.1. They can then specify
firewall policies based on source and destination addresses and protocol information
to regulate communication between these segments. To retain security guarantees of
perimeter firewalls, administrators usually aim to prohibit secondary WAN connections
(e.g., 4G/5G) or other bridges that would subvert the gateway’s centralized position.

Unfortunately, perimeter firewalls are restricted to coarse-grained policies. They
filter traffic based on host information (IP addresses, port number) and transport pro-
tocol (e.g., TCP or UDP). Firewalls cannot filter communication per application, as
the application source is unknown. Firewalls therefore lack mechanisms to block com-
munication of undesired and/or potentially malicious software. Firewalls have been
extended to learn about client programs using host-based sensors [45]. However, these
existing app attributions can be undermined when attackers compromise client sys-
tems (cf. Section 2.5), as malware can inject into allowlisted processes [22], or escalate
its privileges to subvert host sensors.

This challenging setting is exactly our use case. We aim to provide app-grained
traffic attribution to organizations with stationary clients that are potentially com-
promised by malware and/or want to isolate untrusted apps. Identical to the firewall

2note: Graphene has been renamed to Gramine [97] after the release of SENG

15

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

Trusted GW

External Client

Enterprise Network External Network (Internet)

Untrusted
Clients
SENG

Internal
Servers

SENG

Untrusted Client Subnetwork

DMZ / Trusted Server Subnet

External Servers

MITM
MITM

:trusted :untrusted

SENG Server

Figure 2.1: Overview of SENG’s network topology and threat model

setting (“bastion host”), also in our threat model the firewall and its underlying system
is fully trusted. In contrast to firewalls, however, we tolerate a system-level attacker
fully controlling the client’s software stack, including its OS and hypervisor(s). That is,
we do not mistrust the user or its hardware, but allow its host system to be fully com-
promised. After compromise, attackers will attempt to leak sensitive host information
either directly or indirectly by manipulating the network traffic of shielded apps.3

To tackle this problem, we leverage trusted hardware to enable firewalls to rely on
app identifications for network traffic. Technically, we shield client apps inside an Intel
SGX enclave with a trusted LibOS. Administrators can then maintain a list of trusted
apps and use their identifiers to create firewall policies that govern which network
resources a given app can access. For ease of discussion, we protect client systems and
assume that internal servers are not compromised, while our methodology can also be
applied to servers in principle.

For our work, we follow the classical SGX threat model. Denial-of-Service (DoS),
side-channel attacks, and physical attacks against the CPU are out of scope [233, 225,
133] and can be tackled by orthogonal work [203, 168, 10, 192]. Similarly, enclaves are
trusted and free of vulnerabilities. Any disk I/O by the application has to be protected
(e.g., hashing files and transparent sealing as provided by existing file system shields
and SDK functions [219, 17, 107]). Finally, we assume that all locally exposed enclave
interfaces are shielded [204] to avoid an oracle-like API access that could be abused for
information leaks based on confused deputy attacks.

2.5 Related Work

Table 2.1 summarizes related work and its deficiencies to cope with our threat model.
For the discussion, we consider the following attackers: (a) user space malware

3We refer to related work to mitigate covert channels [35, 234] and focus on stopping explicit and
malicious information exchange instead.

16

2.5. RELATED WORK

Ta
b

le
2.

1:
Re

la
te

d
w

o
rk

g
ro

up
e

d
in

to
p

e
rim

e
te

r
fir

e
w

a
lls

w
ith

h
o

st
se

n
so

rs
,

h
o

st
-le

ve
lfi

re
w

a
lls

,
a

n
d

se
c

ur
e

m
id

d
le

b
o

xe
s.

A
ss

e
ss

-
m

e
n

ts
fo

llo
w

th
e

m
e

tr
ic

s,
sy

m
b

o
ls

a
n

d
a

c
ro

ny
m

s
o

ut
lin

e
d

in
Se

c
tio

n
2.

5.
(* n

o
te

:
Q

ub
e

sO
S

tr
us

ts
O

S
o

fa
d

m
in

d
o

m
0,

th
o

ug
h

)

Tr
us

t
in

...
(S

R
2/

3)
(S

R
4)

(S
R

5)
(S

R
6)

Pr
oj

ec
t

C
om

po
ne

nt
s

at
...

O
S

V
M

M
C

PU
A

tt
ac

ke
rs

C
en

tr
al

?
C

+
I

TA
A

tt
r
¬I

L
SE

N
G

C
lie

nt
,G

at
ew

ay
no

no
✓

Sy
s c

li,
m

itm
ye

s
N

V
M

et
al

.
C

lie
nt

,G
at

ew
ay

ye
s

-
✓

M
W

us
er

ye
s

-
A

ss
ay

er
C

lie
nt

,M
B

ox
,S

rv
no

ye
s

✓
Sy

s c
li,

m
itm

ye
s

A
lc

at
ra

z
C

li/
Sr

v,
M

B
ox

,G
w

no
no

✓
Sy

s c
li+

m
bo

x,
m

itm
ye

s
En

dB
ox

C
lie

nt
,G

at
ew

ay
no

no
✓

Sy
s c

li,
m

itm
ye

s
ip

ta
bl

es
M

A
C

C
lie

nt
ye

s
-

✓
M

W
us

er
no

-
C

lip
O

S
C

lie
nt

ye
s

-
✓

M
W

us
er

,m
itm

no
-

Q
ub

es
O

S
C

lie
nt

no
*

ye
s

✓
Sy

s c
li,

m
itm

no
-

Sa
fe

B
ric

ks
G

at
ew

ay
,M

B
ox

ye
s

ye
s

✓
Sy

s m
b

ox
,m

itm
ye

s
-

-
-

Li
gh

tB
ox

G
at

ew
ay

,M
B

ox
ye

s
ye

s
✓

Sy
s m

b
ox

,m
itm

ye
s

-
-

-

17

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

(MWuser), (b) system-level attackers at the client (Syscli) or middlebox (Sysmbox), and
(c) on-path MITM attackers (mitm). The last four columns rate if an approach fulfills
(yes: , no: , n/a: -) the following requirements: (i) Confidentiality and integrity
(C+I) of client traffic (incl. IP headers and DNS queries), (ii) traffic authentication
(TA) of either protected client or host sensor traffic, (iii) secure (client) traffic-to-app
attribution (Attr), and (iv) protection against information leakage (¬IL)—defined as
security requirements SR2–SR6 in Section 2.7.

Perimeter Firewalls with Host Information Perimeter firewalls with client-side sen-
sors are most related to SENG. However, they fail to provide reliable traffic-to-app
attribution (Attr:), which is our central design goal. Host sensors like the Cisco Net-
work Visibility Module (NVM) [45] focus on firewall augmentation with per-flow host
data, including app identifiers (e.g., hash of binary, process name). Unfortunately,
malware can easily bypass such loose, static identifiers by injection into benign pro-
cesses [22]. Furthermore, a system-level attacker can completely subvert host sensors
such as NVM, as they fully rely on the OS. SOCKS [200] proxies and VPN [61] ser-
vices also control traffic centrally, but, similarly, they cannot reliably link traffic to its
applications.

Isolation-Based Traffic Auditing Assayer [176] uses a client-side hypervisor to aug-
ment app-level data of outbound client traffic with traffic statistics and signs it (C+I: ,
TA:). However, Assayer has no insights into the app identities of annotated traffic
(no introspection) and cannot prevent infected or malicious apps from submitting arbi-
trary traffic for annotation. Thus, Assayer can neither provide traffic-to-app attribution
(Attr:) nor prevent leaks by malware (¬IL:).

Alcatraz [18] establishes secure tunnels between SGX enclaves integrated into net-
work nodes (incl. clients and gateway). Traffic is securely tunneled between enclaves
with hop-specific keys to provide traffic confidentiality and integrity as well as path
integrity. While Alcatraz shields tunneled IP traffic from MITM attackers and com-
promised switches, Alcatraz doesn’t protect traffic against client compromise (C+I:).
Therefore, Alcatraz’s client enclaves cannot link traffic to apps (Attr:) and do not
restrict access to the tunnel, s.t. local attackers can send arbitrary authenticated IP
packets (¬IL:).

EndBox [87] outsources middlebox services to untrusted client systems for scalabil-
ity. EndBox runs inside an SGX enclave and tunnels all app traffic through a VPN
connection (C+I:) to the gateway, which blocks traffic that does not arrive through
the enclave-terminated VPN tunnel (TA:). However, similar to Alcatraz, EndBox
cannot enforce app-grained policies (Attr:), as all client apps are untrusted.

Container overlay networks like Slim OS [247] or Docker-based networks [60] assign
virtual IP addresses to containers enabling per-container firewall policies at virtual
switches. However, they cannot protect against system-level attackers, as they trust
the client OS, have no HW-based container identifiers, and do not deal with information
leakage.

18

2.6. BACKGROUND

Client-side Solutions with Host-level Firewalls Host-based firewalls enforce policies
directly at the client host, but do not provide an enterprise-wide decision and enforce-
ment point. They are often combined with compartmentalization frameworks which
confine apps in sandboxes to mitigate system compromises, which lead to direct firewall
subversion.

For example, iptables [163] is the de facto standard firewall configuration tool in
Linux. A Debian extension allows policies per user and process ID [112], while manda-
tory access control (MAC) modules [197, 206] allow fine-grained policies (incl. app-
grained). However, none of these approaches shares data with a central gateway fire-
wall. While some firewalls support labeled IPsec, which can negotiate MAC contexts
as traffic selectors [114], labeled IPsec faces major configuration and key management
complexity. ClipOS [46] is a hardened Linux which sandboxes apps and plans to in-
clude multi-level compartmentalization support. However, system-level attackers can
subvert all aforementioned approaches.

QubesOS [186] uses Xen to sandbox all apps into isolated VMs and provides per-app
VM network policies. QubesOS could thus be modeled to enable app-grained, central
policy enforcement by setting up separate VPN tunnels for each application VM and
enforce rules on the unique per-app VPN IP addresses. However, this would require
a complex client setup and requires trust in the hypervisor. In contrast, we want to
root our app attribution in hardware and stay fully compatible with existing gateway
firewalls.

SGX-Protected Middlebox Outsourcing Projects such as SafeBricks [179], Light-
Box [62] and ShieldBox [218] use SGX to protect middlebox services from untrusted
cloud or middlebox providers. The approaches mostly differ w.r.t. the focus and im-
plementation. SafeBricks, for instance, uses language-based methods to enforce least
privilege on third-party middlebox functions and isolation across chained functions,
while LightBox [62] focuses on support for stateful full-stack middlebox functions and
high-performance. Gkantsidis et al. [85] additionally propose a middlebox-aware TLS
variant (mbTLS) for secure inspection of encrypted client traffic. In contrast to our
threat model, these projects trust the client hosts, and thus fail to provide app-to-traffic
attribution (Attr:-) and to mitigate information leakage (¬IL:-). The middleboxes can
directly benefit from our desired traffic attribution, as they integrate easily (cf. AR3 in
Section 2.7.1).

2.6 Background

2.6.1 Intel SGX and Remote Attestation

TEEs provide an abstraction to run a process isolated from the remaining system. TEEs
enforce hardware-based protection of the integrity and confidentiality of the contained
code and data and have means to prove it to external entities [178, 49].

In the following, we focus on Intel SGX version 1, which forms a basis for our
overall design and has been widely supported by client devices when SENG was released
(cf. footnote 1 on page 13, and Section 2.13.3). SGX’s TEE entities are enclaves, which

19

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

only rely on the security of the CPU. Enclaves provide a dedicated memory region
called enclave page cache (EPC) which is isolated and transparently encrypted and
authenticated. The enclave app code is limited to user space instructions, s.t. enclaves
depend on the cooperation of the untrusted OS for system calls and interaction with
hardware devices. Therefore, SGX provides direct access to untrusted memory and the
notion of enclave calls (ECALLs) and outside calls (OCALLs), which allow controlled
transitions between the trusted and untrusted world. Furthermore, SGX allows to store
data encrypted on the disk via a sealing key derived by the CPU and only accessible
to the respective enclave [49].

SGX enclaves can prove their identity and protection to local and remote entities.
For local attestation, the CPU creates a cryptographic report of the enclave, which
contains a measurement (secure hash) of the initial enclave state. The report is signed
by the CPU with the key of the local challenger enclave and can then be passed to the
challenger for verification. For remote attestation, the Intel-provided Quoting Enclave
(QE) acts as local challenger. The QE then adds the platform state and forwards the
resulting quote to a trusted remote attestation service, e.g., Intel Attestation Service
(IAS), which checks the platform validity and returns a signed attestation report. En-
claves can bind user data (e.g., keys) to the attestation by embedding custom data into
their reports [49, 128].

2.6.2 Enclave Development and Graphene-SGX

There are at least three major paradigms to develop TEE-enabled programs. First,
applications can be explicitly designed for certain TEEs by using SDKs [107], which
abstract the implementation details. SDKs usually provide APIs for attestation and in-
teractions with the untrusted OS, e.g., for sealing files to disk. Second, semi-automated
approaches rely on compiler support and developer-provided source code annotations to
split code and data into sensitive and non-sensitive parts. The sensitive parts are then
moved inside the isolated enclave and connected to the untrusted parts via shielding
layers [146, 204]. Finally, as a third approach, SGX library operating systems securely
execute unmodified applications inside enclaves [24, 17, 219, 202]. Due to the user
space restriction of enclaves, these LibOSes handle system calls on behalf of the apps
and transparently provide POSIX abstractions, e.g., multi-threading support. As the
underlying OS is untrusted, the frameworks aim to shield system calls against so-called
Iago attacks [39], in which the untrusted operating system manipulates system calls and
their return values. However, while LibOSes typically provide shielding layers for secure
disk I/O and file integrity, they do not protect network traffic and rely on the untrusted
host network stack. While SCONE [17] includes transparent TLS proxy support for
server apps, it fails to protect client traffic and DNS—both essential requirements of
SENG.

In our design, we will follow the third approach, and use the Graphene-SGX LibOS
(now called Gramine [97]), which is open-source and allows us to transparently execute
unmodified applications in SGX enclaves [219]. Graphene-SGX transparently emulates
some system calls internally, while others are delegated to the untrusted OS. A manifest
file specifies the enclave size and number of threads, as well as the application and

20

2.7. DESIGN

corresponding dependencies that Graphene-SGX shields. The manifest is part of the
enclave identity for attesting the shielded application. While Graphene-SGX provides
multi-threading and a file system shield, it provides no secure network I/O for apps.

2.7 Design

2.7.1 Requirements

SENG’s high-level goals are twofold: (i) prevent attacks against the traffic of SGX-
shielded clients, and (ii) allow a central gateway to govern network access on a per-
application basis. From these, we derive six security (SR) and three auxiliary (AR)
requirements of our system, as shown next. These requirements hold equally for internal
and external shielded clients. Five of these requirements (SR2–SR6) heavily rely on
the new concepts introduced by our design.

SR1 Code and Data Protection During execution, the integrity and confidential-
ity of client code (binary, libs) and data (including files) must be protected.

SR2 Network Traffic Integrity and Confidentiality The integrity and confiden-
tiality of network traffic between shielded apps and the gateway is guaranteed,
which holds true both for internal and external clients.

SR3 Redirection Prevention Traffic from shielded clients must be protected
against packet header manipulation by local system-level or on-path MITM
attackers until it passes the gateway. Furthermore, local and on-path DNS
redirection attacks must be prevented.

SR4 Protection-based Traffic Authentication The gateway must be able to dis-
tinguish between traffic of shielded applications and that of non-shielded ones.
This property enables network policies that restrict the access to sensitive sub-
networks to shielded apps only.

SR5 Accountability of Shielded Traffic The gateway must be able to link shielded
traffic back to the respective shielded application to enforce per-app network
policies.

SR6 Information Leakage and Remote Control Prevention Whenever SENG
enforces that only shielded clients may communicate, local system-level and in-
ternal MITM attackers must not be able to leak information to external systems.
In the opposite direction, attackers must not be able to send information (e.g.,
malware commands) from the outside to compromised clients.

AR1 No Client Code Changes. To ease adoption and to support closed-source and
legacy applications, we seek for a solution that does not require any code changes
in the client app and its dependencies.

AR2 Scalability of Gateway Server The overhead introduced to the gateway
server per shielded app and per network connection must be low to allow for
scaling.

21

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

Gateway
F
i
r
e

w
a
l
l

Firewall

SENG
Server

Enterprise Network External Network (Internet)

Infected Client

Malware

Untrusted Client Subnetwork

DMZ / Trusted Server Subnet

External Servers

MITM

SENG
Runtime LibOS

Application attested
tunnel

malicious
traffic

MITM

Firewall

F
i
r
e

w
a
l
l

SGX Enclave

:trusted :untrusted

Infected
Client

attested
tunnel

Figure 2.2: High-level overview of the SENG architecture

AR3 Compatibility with other Gateway Services The protection and authenti-
cation techniques used by SENG should not interfere with other services on the
network gateway, such as middleboxes or firewalls.

2.7.2 Overview

We now provide an overview of the SENG architecture and explain how SENG shields
network traffic of unmodified client applications and enables app-grained traffic control.

The SENG architecture consists of two main components: (i) a client-side shielding
runtime, and (ii) a SENG server located at the gateway. Figure 2.2 provides an overview
of the SENG components and communication channels. On the client side, the SENG
runtime wraps a client application in a library OS (LibOS) and combines both in an
SGX enclave. The dedicated SENG server is located at the central network gateway. It
cooperates with the firewall and the SENG runtime instances to attribute and protect
traffic of the shielded apps.

On the client, the LibOS and SENG runtime transparently shield the client appli-
cations from local system-level attackers. To this end, the LibOS loads and executes
unmodified binary applications inside a hardware-protected SGX enclave. The LibOS
transparently handles system calls of the app and shields them against Iago attacks [39]
of the untrusted OS. For instance, the LibOS prepares its own file system to protect
against disk I/O tampering. The SENG runtime adds to this in that it protects net-
work I/O of shielded apps and establishes trust with the SENG server. Technically,
the SENG runtime incorporates a lightweight user space TCP/IP stack to cope with
the lack of trust in the host’s network stack. This user space network stack manages
the app’s connections inside SGX and enables secure tunneling of whole IP packets—
including the network and transport headers–to the SENG server.

The SENG server has to authenticate client apps and securely forward shielded
traffic between SENG runtime and gateway. The SENG runtime and server establish
an attested, secure communication channel to tunnel traffic. The SENG server listens

22

2.7. DESIGN

for incoming tunnel connections from shielded and trusted client apps. We use SGX’s
remote attestation to check the app’s identity and verify that it runs inside a valid
SGX enclave with SENG runtime. To this end, the SENG runtime generates a fresh
public and private key pair and binds it to the enclave report—inspired by work of
Knauth et al. [128]. The SENG runtime then uses the keys to establish a mutually
authenticated, end-to-end protected connection to the SENG server and provides the
attestation report during connection setup. Before accepting the connection, the SENG
server checks that the attestation report is bound to the connection and belongs to a
valid SGX enclave with a shielded application. After tunnel establishment, traffic of
the shielded app can be securely tunneled to the SENG server and routed through the
gateway (incl. firewall) while being protected from MITM attackers between enclave
and gateway.

2.7.3 Application-Grained Firewall Policies

Placing the SENG server on the gateway allows for fine-grained traffic control at the
perimeter firewall. With SENG, firewalls can precisely control which shielded app may
communicate where. This adds a completely new degree of freedom that standard
firewalls do not give, as they subsume all applications of a given system into a single
address.

The SENG server maintains a central allowlist (database) of trusted applications,
which links apps to their trusted attestation reports, and additionally, to an app-specific
IP subnetwork. The SENG server assigns a unique IP address from this particular
subnet to each shielded enclave instance of a given client app. Optionally, the host
IP on which a shielded enclave is executing can additionally be taken into account
when selecting the subnetwork. The enclave-unique addresses make the shielded app’s
identifier visible to all gateway services, including firewalls. Firewalls use this mapping
to define app-specific policies, which are easily integrated into existing toolchains.

To demonstrate this, we introduce a typical corporate network setup, as shown in
Figure 2.3. The network consists of a central, SENG-enabled gateway which intercon-
nects an untrusted internal client subnetwork, a trusted internal server subnet, a DMZ,
and external networks. The DMZ provides typical services for internal and external
hosts, including a public web shop and a DNS server. The internal servers are only
reachable by internal clients and host an intranet web server, as well as an LDAP
and database server. The client workstations run a set of trusted client applications
(e.g., browsers, mail clients) which require access to internal and external servers. The
white columns in Table 2.2 show traditional firewall policies (e.g., configured using
iptables) for this setup. Rules 1-2 allow workstations to connect to external hosts,
rules 3 and 8-10 grant them connections to internal and DMZ servers, and rules 4-7
allow external clients to connect to servers in the DMZ. Rule 11 allows internal and
DMZ servers to connect to external servers. Rule 12 allows all communication of such
established connections, and rule 13 is the default policy that rejects any other traffic.

If client hosts are fully compromised by a system-level attacker (cf. Section 2.4),
these traditional policies fall short. First, they allow malware on trusted hosts to
communicate to external servers. Second, they do not refine which external clients

23

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

Ta
b

le
2.2:

Tra
d

itio
n

a
lfire

w
a

llp
o

lic
ie

s
fo

rth
e

c
o

rp
o

ra
te

sa
m

p
le

n
e

tw
o

rk
(Fig

ure
2.3)

a
n

d
th

e
ira

p
p

-g
ra

in
e

d
SEN

G
a

lte
rn

a
tive

s
(g

ra
y

c
o

lum
n

).
Th

e
va

ria
b

le
s

in
c

o
lum

n
2

a
n

d
4

re
p

re
se

n
t

sub
n

e
ts

(e
.g

.,
$
W
O
R
K
S
T
A
T
I
O
N
S)

o
rse

rve
rIP

a
d

d
re

sse
s

(e
.g

.,
$
I
M
A
P).Th

e
n

e
w

va
ria

b
le

s
in

th
e

g
ra

y
c

o
lum

n
re

p
re

se
n

t
SEN

G
e

n
c

la
ve

sub
n

e
ts

($
W
S

fo
rw

o
rksta

tio
n

s,
$
A
N
Y

fo
ra

rb
itra

ry
IP

a
d

d
re

sse
s).

N
o.

Source
(w

/o
SEN

G
)

Source
(w

ith
SEN

G
)

D
estination

D
st.Port

State
A

ction
1

$W
O

R
K

STAT
IO

N
S

$W
S_

FIR
EFO

X
_

72
$EX

T
ER

N
A

L
80,443

N
EW

A
C

C
EPT

2
$W

O
R

K
STAT

IO
N

S
$W

S_
PSQ

L_
T

LS_
O

N
LY

$EX
T

ER
N

A
L

5432
N

EW
A

C
C

EPT
$IM

A
P

143,993
N

EW
A

C
C

EPT
3

*
$A

N
Y

_
T

H
U

N
D

ER
B

IR
D

_
68

$SM
T

P
465,587

N
EW

A
C

C
EPT

4
$EX

T
ER

N
A

L
$EX

T
ER

N
A

L
$SM

T
P

25
N

EW
A

C
C

EPT
5

*
*

$D
N

S
53

N
EW

A
C

C
EPT

6
*

$A
N

Y
_

FILEZILLA
$FT

PS
989,990

N
EW

A
C

C
EPT

7
*

*
$W

EB
SH

O
P

80,443
N

EW
A

C
C

EPT
8

$W
O

R
K

STAT
IO

N
S

$W
S_

FIR
EFO

X
_

72
$IN

T
R

A
N

ET
80,443

N
EW

A
C

C
EPT

9
$W

O
R

K
STAT

IO
N

S
$W

S_
PSQ

L
$D

ATA
B

A
SE

5432
N

EW
A

C
C

EPT
10

$W
O

R
K

STAT
IO

N
S

$W
S_

EN
C

LAV
ES

$LD
A

P
389,636

N
EW

A
C

C
EPT

11
$SERV

ER
S

$SERV
ER

S
$EX

T
ER

N
A

L
*

N
EW

A
C

C
EPT

12
*

*
*

*
ESTA

B
L.

A
C

C
EPT

13
*

*
*

*
*

R
EJEC

T

24

2.7. DESIGN

Trusted GW

Web
Server

Client Workstations: 10.0.0.0/8

Internal Servers: 172.16.0.0/16

Untrusted
Client

PSQL Cli

Untrusted
Client

FileZilla

Untrusted
Client

Firefox

:trusted

:untrusted

SENG Server

Demilitarized zone (DMZ): 8.8.8.0/24

External

Network

DNS
Server

FTP
Server

Mail
Server

Web
Server

switch

LDAP
Server

Database
Server

switch

.1

.2

.3

.4

.1

.2 .3 .4 .5

switchswitch

Untrusted
Client

Mail Cli

.1
.5.4.3.2

Figure 2.3: Sample topology of a corporate network consisting of a SENG-enabled
gateway, a subnet of untrusted clients with shielded apps, an internal server subnet
and a DMZ.

may use servers in the DMZ. To tackle these shortcomings, SENG grants only trusted
apps network access. The gray column in Table 2.2 shows the policy modifications that
SENG requires. Administrators just have to replace the coarse-grained source addresses
with app-grained addresses. For example, in rule 1, the firewall can now control that
only vetted Firefox clients from the workstation network can access external networks,
and any untrusted software is blocked. This minor change significantly hardens the
firewall setup. The SENG-enabled policies can be automatically derived when shielded
apps specify which endpoints they need for communication.

Subsumed Enclave Subnetworks Optionally, network admins can group shielded
apps sharing policies (e.g., all mail clients, or versions of same app) into privilege-based
subnets. Table 2.2 exemplifies both cases: While rule 3 restricts access to an individual
mail client version, rule 6 subsumes all FileZilla versions in a subnet. Rule 2 even
restricts access to external databases only to PSQL clients configured with SSL mode
enabled to protect against external MITM attackers.

Host IP Addresses We override the source IP address with an enclave-unique address
to easily integrate SENG into existing firewalls (AR3). Note that the SENG server
can still distinguish between enclaves running on different hosts and between enclaves
running on different subnets. While rule 6 grants internal and external FileZilla enclaves
access to the FTP server (DMZ), rule 8 restricts access to intranet web pages to shielded
browsers on internal workstations only.

25

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

Avoiding Network Fragmentation While SENG’s app-specific IP subnetworks en-
able easy integration into existing firewall and monitoring toolchains, there might be
large-scale enterprises that already face high network fragmentation and have a high
demand of IP addresses. In such a setting, with an increasing number of shielded apps
and clients, SENG’s enclave subnetworks might start reserving and fragmenting a no-
ticeable portion of the available corporate IP space, potentially causing a shortage of
available local IPv4 addresses. Therefore, in Section 2.12, we will describe an optional
Netfilter/iptables-specific extension to the SENG server that trades in SENG’s drop-in
deployment (AR3) for less network fragmentation by enabling the use of a single enclave
subnetwork if subsumed enclave subnetworks and source NATing are not enough.

2.7.4 Deployment of SENG

SENG raises questions regarding enclave deployment, key management and update
handling, which we discuss next.

Enclave Deployment The SENG runtime and its dependencies are shipped to
clients as a container image. Each shielded app needs a configuration file that lists the
files the LibOS has to protect, which can be (partially) automated4. App bundles can
then be offered, e.g., via corporate app stores.

New SENG client devices are enrolled by including their addresses as allowed host
addresses in the policy database of the SENG server. Strong device bindings can
optionally be established using orthogonal schemes such as IEEE 802.1X and strict
mappings between hosts and IP addresses. Alternatively, one could bind a secret to
the client CPU as part of the app installation process.

Mixed Environments / Gradual Deployment SENG can also be deployed in mixed
environments, i.e., heterogeneous networks where not all hosts support SGX (and thus
SENG). In this case, administrators can use network segmentation to separate SGX-
enabled workstations from legacy workstations. Whereas the unprotected subnetwork
of legacy hosts would be governed by traditional (and possibly more restrictive) firewall
rules, the protected network could readily use SENG policies. In fact, given a particular
workstation, this setup also allows to gradually migrate applications to SENG. Shielded
apps would belong to the protected subnetwork, whereas all other legacy applications
are bound to the unprotected subnetwork.

Key Management SENG requires minimal key management. The SENG server
authenticates clients via remote attestation and the client key pair (Kenc, K−1

enc) is gen-
erated on each startup, s.t. no key rollouts are required. The key pair of the SENG
server (Ksrv, K−1

srv) must be securely managed and the public key Ksrv is shipped to
clients as part of the SENG runtime. See Section 2.9 for respective security considera-
tions.

4e.g., using https://github.com/oscarlab/graphene/tree/v1.0.1/Tools, or an auto-
mated build chain for container generation [17]

26

https://github.com/oscarlab/graphene/tree/v1.0.1/Tools

2.8. IMPLEMENTATION

Component Updates On each component update (incl. keys, app, libs, SENG and
LibOS), the SENG runtime image is rebuilt, and a new attestation report is extracted
and inserted into the allowlist. Thus, SENG can identify the exact software bundle of
a given enclave (cf. Section 2.8.1) and allow, e.g., only specific app versions (Table 2.2,
rule 1)—mitigating the risk of outdated software that exposes security vulnerabilities.
While SENG provides new reports on each update, LibOSes commonly support dy-
namic loading [219, 24], s.t. SENG needs to reship only the modified files, the (small)
configuration, and new enclave signature.

Critical Updates and Key Rollovers In case of critical security updates, the com-
promised reports must be removed from the allowlist to revoke network access. SENG
can optionally terminate all established tunnels of such revoked apps, immediately dis-
connecting revoked apps from other network segments. A special case is the update of
SENG’s server key pair (Ksrv, K−1

srv) as part of a periodic or emergency key rollover.
As the public key Ksrv is pinned by each shielded app and part of their attestation,
every app report changes and has to be revoked. However, note that when using a tun-
nel cipher with (perfect) forward secrecy, their session keys are unaffected by a server
key breach (K−1

srv). Thus, all established tunnels and associated app connections can
continue operation (Table 2.2, rule 12).

2.8 Implementation

We now provide the details of the SENG architecture in chronological order of the
shielded app’s communication. That is, we first detail the setup phase, then how the
app’s network traffic is protected, and finally, how the perimeter firewall enforces app-
grained communication policies.

2.8.1 Initialization and Tunnel Setup

Initialization Phase Before the SENG runtime can protect a client application, the
SGX enclave must be set up. SENG uses the Graphene-SGX LibOS [219], as it supports
dynamic loading of unmodified, multi-threaded Linux apps and shields system calls.
First, Graphene-SGX sets up an SGX enclave and initializes the shielding layers. After
finishing the setup, but before loading the application, the SENG runtime loader is
called and launches a dedicated enclave thread for the user space TCP/IP stack and
for the tunnel module. The TCP/IP stack is instantiated with the embedded lwIP
stack [151], as it is lightweight and modular by design. The tunnel module manages
the tunnel to the SENG server and registers itself as network driver for the default
interface of lwIP, s.t. lwIP routes all IP packets of the client app through the tunnel
module.

On the gateway-side, the SENG server creates a virtual IP-level network interface
which it will later use for routing traffic of shielded apps and receiving packets destined
for them. Afterwards, the SENG server sets up a welcome socket and waits for incoming
tunnel connections by internal or external SENG runtime instances.

27

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

Tunnel Preparation After initialization, the SENG runtime generates credentials and
the enclave report for the secure tunnel to the SENG server. The tunnel module uses
DTLS (RFC 6347), which has well-documented end-to-end protection guarantees. We
chose UDP-based DTLS over TLS as it requires less state and is faster, which improves
scalability, and as the reliability and ordering guarantees of TLS are not required [80].
For tunneled TCP connections, the TCP/IP stacks of the communication endpoints—
namely SENG runtime and target server—already guarantee reliable, in-order packet
delivery. For tunneled UDP streams, both communication partners have to resolve
packet reordering in the application protocol anyway, and the choice of DTLS thus
does not weaken any security guarantees.

To couple remote attestation with the end-to-end protection of DTLS, the tunnel
module generates a fresh RSA key pair (Kenc, K−1

enc) and binds the public key Kenc

as user data to the enclave report—following the idea of Knauth et al. [128]. The
local Intel Quoting Enclave (QE) transforms the report into a verifiable, signed quote
using the attestation key. After receiving the signed remote attestation report via an
attestation service, the tunnel module uses the RSA keys (Kenc, K−1

enc) to generate an
X.509 client certificate and embeds the attestation report with corresponding signature
as extra fields.

Note that the tunnel module must not be able to directly communicate with external
Attestation Services, e.g., Intel Attestation Service (IAS), to request the signed remote
attestation report. Local and on-path adversaries could exploit the unprotected headers
of the IAS connection as covert channel and leak information (violating SR6). To solve
this dilemma, we can (i) let the enclave send the signed quote to the SENG server, which
in turn performs the IAS communication itself, or (ii) operate an internal attestation
service in the DMZ, and let the enclave submit the quote to the AS via TLS [199].

Tunnel Establishment The SENG runtime now connects to the SENG server via a
mutually authenticated DTLS connection. For server authentication, the runtime uses
the pinned server public key Ksrv. For client authentication and remote attestation, the
SENG server checks the validity and signature of the attestation report and matches the
embedded user data with the certificate key Kenc. The SENG server then verifies if the
report data belongs to a shielded application in the allowlist. Technically, the enclave
measurement contains the Graphene-SGX library and memory-mapped manifest (MF):

mrenclave← measuresgx(graphene, MF)

The manifest contains secure hashes h(·) for all dependencies of the SENG runtime and
shielded app, including the runtime library (sengrt), the pinned server key Ksrv, the
app’s binary and libraries, as well as other protected files:

MF := {h(sengrt), h(Ksrv), h(app), h(lib1), ...}

The file system shield enforces file integrity based on the hashes [219]. The inclusion
of the manifest in the measurement results in a unique enclave identity (mrenclave) for
each bundle of LibOS, SENG, and client app. Therefore, the SENG server can directly
link the report to the exact version of the shielded app. If the app was verified, the

28

2.8. IMPLEMENTATION

Linux Kernel

SENG Runtime
Socket

Handlers

Client Application
(binary, libs)

Kernel Space

User Space

lwIP

tunnel module SG
X

En
cl

av
eApp data

IP packets

DTLS records
SGX boundary

System calls
(incl. UDP send/recv)

:untrusted

:trusted

non-socket
APIs

Graphene-SGX

Figure 2.4: Overview of the SENG runtime components

SENG server knows that the DTLS tunnel is attested and established with a valid SGX
enclave. Finally, the SENG server looks up the app-specific IP subnet in its internal
database based on the app’s identity (mrenclave) and, optionally, host IP, and assigns
a unique IP address from the subnet to the SENG runtime instance (cf. Section 2.7.3).
The SENG runtime takes over the reported IP configuration, and Graphene-SGX loads
the app and transfers control to it.

2.8.2 Network Traffic Shielding

Redirecting IP Packets to the Tunnel SENG needs to protect the whole network
traffic of shielded applications. Graphene-SGX links the client apps against a patched
version of the standard C library where syscalls are replaced by calls to LibOS-internal
handler functions. This allows us to fully-transparently wrap and shield system calls.
The SENG runtime provides own handlers which shadow all network I/O functions, as
shown in Figure 2.4. The SENG handlers transparently redirect all socket API functions
of the client app to the respective lwIP functions, s.t. the app can perform network I/O
only through the SGX-internal user space stack. lwIP manages all connections of the
app and uses the tunnel module for receiving and sending the associated IP packets.

Sending Packets When the shielded app sends data, lwIP crafts corresponding IP
packets and passes them to the tunnel module. The tunnel module wraps the IP
packets with DTLS and forwards them through the attested tunnel to the SENG server.
For transferring the DTLS records, the tunnel module uses the LibOS to perform the
actual UDP send operation via the untrusted OS. Figure 2.4 shows the app’s data flow
and highlights that only the DTLS records cross the SGX boundary. The end-to-end
security protection of DTLS prevents attacks by local or MITM attackers. The SENG
server receives the DTLS records, decrypts contained IP packets and then passes them
through the virtual network interface to the gateway network stack. The gateway then
applies app-grained firewall rules (Section 2.8.4) and routes the packets to the target
server.

29

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

Receiving Packets For inbound traffic, the SENG server receives the corresponding
IP packets from the gateway through the virtual network interface. The SENG server
uses the target address to look up the DTLS connection to the respective shielded client
app and tunnels them back. The tunnel module receives and decrypts the IP packets
and puts them into the lwIP inbox queue. lwIP then processes the packets and passes
the contained app data to the shielded app.

2.8.3 DNS Resolution Shielding

Without further precautions, the enclave would fully rely on the host OS to resolve
domains. Local system-level attackers could thus launch severe redirection attacks
and redirect traffic of shielded apps to IP addresses of their choice. To tackle this
problem, SENG shields DNS lookups of client applications via three complementary
actions. First, the SENG runtime redirects the respective standard library functions
(e.g., getaddrinfo) to lwIP and configures lwIP to use a trusted DNS resolver lo-
cated at the gateway or in the DMZ. The trusted resolver can then securely query
internal DNS servers or contact trusted external ones via integrity-protected DNS vari-
ants, e.g., DNSSEC, DNS over TLS (DoT) or DNS over HTTPS (DoH)5. Second, we
provide trusted versions of configuration files used by third-party DNS libraries for
looking up information like the name server IP (“resolv.conf”) or protocol-specific port
numbers (“/etc/services”). We leverage the file system shield of the LibOS to protect
the integrity of the files. Third, all DNS queries sent via standard resolver functions
or third-party libraries eventually pass lwIP and are therefore tunneled through the
protected DTLS tunnel.

2.8.4 Application-Grained Policy Enforcement

SENG enables the perimeter firewall to apply app-grained network policies whenever
shielded traffic is routed through the gateway. App traffic reaches the gateway only
through SENG’s virtual network interface and the SENG server forwards traffic to
an app tunnel only if it matches the assigned enclave IP. Therefore, the gateway can
identify outbound traffic as shielded iff received from SENG’s network interface and
routes inbound traffic destined for enclave IPs to the SENG server. In the process, the
firewall on the gateway enforces app-grained policies as network policies on the app-
specific enclave IP subnets (cf. Section 2.7.3). To prevent impersonation attacks via IP
spoofing, the SENG server drops tunneled app traffic with mismatching enclave IP and
the firewall drops enclave traffic not arriving through SENG’s network interface.

2.8.5 Shielded Servers

So far, we took it for granted that all shielded apps are clients. However, SENG also
supports shielded server apps. SENG server sockets work analogously to default server
sockets. However, with SENG, the gateway can now fully control (i) if an enclave
can expose server functionality, and if so, (ii) which clients are allowed to contact the

5RFC 4033, RFC 8484, and RFC 7858

30

2.9. SECURITY ANALYSIS

enclave. Similar to client policies, server policies restrict communication to shielded
clients or specific enclaves only (app-grained policies).

Once created, SENG server sockets are reachable through the gateway under the
assigned enclave IPs. Recall that enclaves can either have public (globally routable)
or private (RFC 1918) IP addresses. In case of public addresses, the enclave’s server
socket is immediately exposed. If the enclave’s IP is private, yet should be reachable
from external clients, the gateway uses destination NATing to expose the service.

2.9 Security Analysis

We now discuss how adversaries could attempt to attack SENG. Table 2.3 summarizes
the attacks and respective defense mechanisms. We discuss why the protection from
the above adversaries implies the fulfillment of the security goals of Section 2.7.1 and
therefore solves the initial challenges.

Adversary Types With reference to Figure 2.1 (see page 16), SENG faces several
types of adversaries: (i) a client-side system-level attacker (“Sys”) who fully controls
the enclave’s OS interactions (including traffic), (ii) MITM attackers in the internal or
external client subnetwork (depending on the client’s location) who can fully control the
traffic between the client and the SENG gateway (“Mc2gw”), (iii) MITM attackers on the
path between the SENG gateway and the destination server (either internal or external)
(“Mgw2srv”), (iv) an internal attacker inside the organization who aims to leak sensitive
data (“Internal”), and finally, (v) an external attacker outside of the organization who
aims to sneak data (or malware commands) into the network (“External”). We will use
these attacker models to discuss how SENG protects against 16 security-critical attacks.
In addition, we will discuss a relaxed threat model assuming a compromised enclave
in A17. Furthermore, while SENG assumes a trusted gateway (“bastion host”, see
Section 2.4), in A18, we will discuss the impact of a system-level gateway compromise
(“Sysgw”) on SENG and outline possible mitigation strategies.

A01: Code/Data Tampering (SR1) Sys may aim to hijack the shielded app code,
tamper with the runtime data, or leak sensitive information like tunnel keys. The
hardware-enforced protection of Intel SGX blocks all unauthenticated access to enclave
memory and therefore prevents such attacks.

A02: File Tampering (SR1) Furthermore, the file system shield uses the manifest MF
to check the integrity of the SENG runtime, pinned SENG server key Ksrv, application
binary and all its dependencies (e.g. libs, config files), such that any attempt to tamper
with files is detected and blocked (cf. Section 2.8.1).

A03: LibOS Modification (SR2-4) Patching the LibOS binary or its manifest to
replace loaded files, e.g., the client app, or the pinned SENG server key Ksrv, is possible,
but results in deviating enclave identities (mrenclave). During remote attestation, the
SENG server will thus refuse the tunnel, as the unknown enclave is not in the allowlist.

31

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

Ta
b

le
2.3:

A
sse

ssm
e

n
t

o
fa

tta
c

ks
o

n
SEN

G
a

n
d

its
re

sp
e

c
tive

c
o

un
te

rm
e

a
sure

s,fo
llo

w
in

g
th

e
a

tta
c

ke
rm

o
d

e
ls

o
fSe

c
tio

n
2.9.

T
arget

/
G

oal
A

ttack
A

dversaries
SE

N
G

’s
D

efense
M

echanism
s

Secure?

Shielded
A

pp
A

01:
C

ode/D
ata

Tam
pering

Sys
SG

X
Enclave

✓
A

02:
File

Tam
pering

Sys
File

System
Shield

✓
A

03:
LibO

S
M

odification
Sys

A
ttest

+
A

llow
list

✓

SEN
G

’s
Tunneling

and
A

ccess
C

ontrol

A
04:

Fake/C
ustom

Enclave
Sys

A
ttest

+
Pinning

+
A

llow
list

✓
A

05:
C

lient
Im

personation
Sys,M

c2gw
K

ey
B

inding
+

Traffi
c

A
uth.

✓
A

06:
Server

Im
personation

Sys,M
c2gw

Pinning
+

D
T

LS
✓

A
07:

A
ttacking

SEN
G

’s
K

eys
Sys,M

c2gw
SEN

G
’s

K
ey

M
anagem

ent
✓

A
08:

TunnelTam
pering

Sys,M
c2gw

D
T

LS
+

Trusted
T

C
P/IP

Stack
✓

A
pp

C
onnections

A
09:

D
N

S
Spoofing

Sys,M
c2gw ,M

gw
2srv

SEN
G

’s
D

N
S

Shield
✓

A
10:

InternalC
onn.Tam

pering
Sys,M

c2gw
D

T
LS

Tunnel+
D

M
Z

✓
A

11:
ExternalC

onn.Tam
pering

M
gw

2srv
(Enforce

A
pps

w
/

Sec.C
om

m
.)

(✓
)

Inform
ation

Leaks
and

R
em

ote
C

ontrol

A
12:

D
irect

Info
Leak

Internal
SEN

G
’s

Shielding
and

Policies
✓

A
13:

D
irect

R
em

ote
C

ontrol
External

SEN
G

’s
Shielding

and
Policies

✓
A

14:
C

overt
C

hannel(H
eader)

Internal+
External

SEN
G

’s
Tunneling

+
D

T
LS

✓
A

15:
C

overt
C

hannel(T
im

ing)
Internal+

External
(A

dopt
T

im
e

M
asking)

(✓
)

A
pp

Interfaces
A

16:
Steering

Shielded
A

pps
Sys

(Secure
I/O

+
C

aller
ID

s)
(✓

)
SEN

G
’s

Policies
A

17:
Privilege

Escalation
M

alicious
Enclave

Traffi
c

A
uth.+

Policies
✓

C
entralG

atew
ay

A
18:

G
atew

ay
C

om
prom

ise
Sysgw

(T
EE-protected

Srv+
FW

+
N

IC
)

(✓
)

32

2.9. SECURITY ANALYSIS

A04: Fake/Custom Enclave (SR4) An adversary could try to establish a tunnel
to the SENG server directly, or from within a custom enclave. As the SENG server
expects a valid, correctly-signed attestation report, it will refuse direct connections
with attacker-crafted fake reports. When the adversary contacts the SENG server from
within a custom enclave, the attestation report will be valid, but not in the allowlist.
Therefore, the SENG server will refuse the connection by the unknown enclave as in
the previous attack (A03).

A05: Client Impersonation (SR4+SR5) Attackers could try to impersonate a trusted
client application. First, attackers could intercept an allowlisted attestation report and
embed it into their own client certificates. However, the report will not be bound to
the certificate and the SENG server will detect the mismatch and deny access. Second,
attackers could spoof an IP from a trusted enclave subnetwork. However, the SENG-
enabled gateway can identify the non-tunneled traffic as unauthenticated and drop the
packets (see Section 2.8.4).

A06: Server Impersonation (SR2) The attacker can also try to impersonate the
SENG server by intercepting connection attempts. If successful, the adversary could
gain access to all connections of the shielded application, including unprotected legacy
traffic. However, the SENG runtime pins the valid SENG server key Ksrv and checks
it during the DTLS handshake to detect such impersonation attacks.

A07: Attacking SENG Keys (SR2) SENG performs secure key management to pre-
vent multiple attacks against the tunnel security: (i) Rollback attacks against SENG’s
server public key Ksrv do not exist, as Ksrv is not sealed to disk and is integrity
protected (A02). A rollback of the whole app bundle (incl. Ksrv, LibOS and all de-
pendencies) results in a deprecated, blocked report (A03). (ii) If a private key of the
SENG (or attestation) server is breached, SENG blocks all vulnerable reports and thus
enclaves with stolen keys (cf. Section 2.7.4). As DTLS supports ciphers with perfect
forward secrecy, established tunnels are not affected by a breach of the SENG server
key K−1

srv. (iii) The client RSA key pair (Kenc, K−1
enc) is freshly generated for every new

enclave instance and the private key K−1
enc never leaves the enclave, s.t. it is protected

against attackers (cf. A01).

A08: Tunnel Tampering (SR2) Tampering with established tunnel connections is not
possible, because of the end-to-end security guarantees of DTLS. An adversary can re-
order or drop tunnel packets, which is explicitly supported by DTLS. However, tunneled
UDP connections do not expect reliable or in-order delivery and the endpoint network
stacks still ensure reliability and ordering guarantees for TCP packets (Section 2.8.1).

A09: DNS Spoofing (SR3) An attacker can try to leak information by redirecting
connections of shielded apps via DNS reply spoofing. SENG shields DNS traffic via
multiple complementary methods as discussed in Section 2.8.3. First, spoofing the re-
sults of untrusted resolver functions is prevented by redirecting the function calls to
lwIP. Second, DNS redirection to attacker-controlled nameservers via modification of

33

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

system configuration files is prevented by providing versions with trusted IP addresses
and port mappings. The LibOS ensures the integrity of the files via the file system
shield. Third, Sys and both types of MITM attackers (Mc2gw, Mgw2srv) can try to
attack unprotected DNS traffic directly. Direct attacks are prevented by securely tun-
neling DNS traffic through the DTLS tunnel to trusted, internal resolvers which follow
integrity-protected DNS protocols for name resolution (e.g. DNSSEC, DoH, DoT).

A10: Attacking Connections to Internal Servers (SR2+SR3) Attacking the com-
munication between shielded apps and internal servers (incl. DMZ) is not possible.
The traffic is protected from Sys and Mc2gw attackers by SENG’s DTLS tunnels be-
tween the shielded apps and the gateway. As the internal servers are located in trusted
networks, there are no Mgw2srv attackers between them and the trusted gateway.

A11: Attacking Connections to External Servers (SR2+SR3) SENG cannot protect
the traffic between gateway and external servers. However, SENG enables network
administrators to grant access to external networks only to shielded applications that
securely establish end-to-end protected connections (e.g. Table 2.2, rule 2). If required,
the file system shield can protect app-specific configuration files that define the security
level of the shielded app. Therefore, SENG can indirectly enforce protection against
Mgw2srv attackers.

A12: Direct Information Leakage (SR6) SENG enables the gateway to identify and
block traffic coming from non-shielded senders, such as malware. Attackers cannot
modify the behavior of shielded apps to leak information (A01–A03). They cannot
get access to attested tunnel connections to authenticate malicious traffic for home-
calling either (A04–A05, A07–08). Leaking non-encrypted traffic of shielded apps to
the external network or to attacker-controlled external servers via DNS- or header-
based redirection attacks are prevented as well (A09–A11). As a result, adversaries can
neither connect to external servers, nor encode sensitive data in shielded traffic, nor
redirect internal, shielded traffic to external networks.

A13: Direct Remote Control (SR6) SENG enforces access control also for incoming
connections, which blocks direct connections from external adversaries to internal mal-
ware. Sneaking data into the internal network by attacking external shielded clients is
prevented analogously to attacks against internal apps (see A12).

A14: Header-based Covert Channels (SR6) Any attempts to establish a covert
channel via header manipulations is prevented by SENG. Information leakage by inter-
nal attackers via tunnel header manipulation is prevented, as the SENG server strips
the headers at the gateway. Remote commands that external attackers may inject by
manipulating communication headers is likewise prevented, as the gateway strips the
link layer headers and the SENG server securely tunnels the IP packets to the shielded
applications. Therefore, adversaries cannot observe information encoded in the internal
headers.

34

2.9. SECURITY ANALYSIS

A15: Timing-based Covert Channels (SR6) Attackers may aim to create side chan-
nels based on packet timings (e.g., encoding information by delaying packets). While
we excluded such covert channels from our threat model, SENG could adopt techniques
to mask timing channels [35, 234].

A16: Steering Shielded Programs for Info Leaks (SR6) Attackers could try to abuse
shielded applications to exfiltrate data. Consider a shielded browser. Its interactive
interface lets users navigate (e.g., enter URLs). While we trust the user, a system-
level attacker could intercept keyboard input and inject malicious commands into the
shielded app. This way, adversaries control network traffic even of shielded apps. Non-
interactive interfaces allow for similar attacks. For example, if users click on links
displayed in a shielded mail client, the mail client calls a non-interactive interface to
steer a browser to open the link. Attackers can intercept or use the interface to control
the browsing targets and query strings. The general underlying problem is that shielded
applications have to verify if their inputs stem from shielded applications.

To mitigate these attacks, we can rely on trusted I/O for interactive applications
in addition to the shielded interfaces we specified in our threat model (cf. Section 2.4).
We regard the adoption of secure I/O in the form of upcoming HW extensions [131]
or dongles [68, 117] as realistic for critical business environments which already deploy
HW authentication dongles. The LibOS can leverage trusted I/O to use attested, secure
I/O paths between enclave and I/O devices [68, 117]. The LibOS can then verify that
user input comes from a trusted device before forwarding input to the shielded app.
Shielded interfaces based on local attestation, like SGX-based RPC calls [204], allow
shielded apps to securely interact and thereby protect non-interactive interfaces (e.g.,
trustworthy path from mail client to browser). Problems still persist, however, if the
caller has different (lower) app-grained privileges than the callee. To avoid the resulting
confused-deputy attacks, the callee would have to forward the identifier of the caller to
the SENG server—a significant research endeavor we leave open to future work.

A17: Privilege Escalation by Backdoored or Compromised Enclaves (SR6) We
now discuss a relaxed threat model, where attackers can gain control over shielded
apps, e.g., via backdoors or runtime compromises. Once compromised, attackers can
send malicious traffic through the app’s attested tunnel as long as the traffic matches
the app’s policies. If the policies are restrictive and allow communication to few vetted
destinations only (e.g., shielded mail clients may only contact the local mail server),
the resulting harm is limited. Any attempt of the compromised enclave to spoof its
IP addresses, e.g., to join a more privileged subnetwork, will fail, because the SENG
server detects unauthenticated traffic (A05) and restricts tunneled traffic to the assigned
enclave IP (cf. Section 2.8.4). Perspectively, the app-grained traffic separation enables
app-specific classification models for network intrusion detection systems, which further
ease the detection of anomalous behavior of shielded apps upon compromise.

A18: SENG Bypass via Gateway Compromise (SR2-3, SR4-6) Our threat model
fully trusts the central gateway, following the widely popular “bastion host” setting
of network firewalls. If system-level attackers gain full control over the SENG server,

35

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

firewall, and network card (NIC), they obtain full access to the network traffic (breaking
SR2+SR3) and can bypass the firewall (breaking SR4-6). While one could move the
SENG server and firewall into user-level TEEs (e.g., SGX enclaves) to protect the
decrypted enclave traffic and firewall integrity, this approach can only protect enclave-
to-enclave communication (breaking SR2+SR3). Yet as system-level attackers control
the hardware, they can still bypass the firewall and tamper with the communication.

To tackle this extended threat model, the gateway could rely on a system-level
TEE, which is isolated from the compromised OS and can additionally claim exclusive
ownership of the network card. We regard Arm TrustZone-assisted TEE systems, e.g.,
OP-TEE [145], a reasonable choice for designing a secure gateway with SENG support.
TrustZone extends CPUs, memory, and devices with the notion of a normal and secure
mode (resp. “world”) and allows for hardware-enforced access control based on the
current CPU mode [178]. In Chapter 3, we design a new trusted gateway architecture
that builds on TrustZone in order to isolate the full network I/O path and the firewall
service from system-level attackers and compromised user space services. That way,
our trusted gateway can guarantee secure traffic control and firewall enforcement on
all network traffic. As a future extension, the SENG server could be integrated as an
additional isolated application into our trusted gateway in order to protect the SENG
server against gateway attackers while extending the gateway firewall with SENG’s
per-application policies.

2.10 Prototype Implementation

We have implemented a prototype for the SENG runtime and SENG server, as well as
an alternative, library OS-independent runtime SDK based on Intel’s SGX SDK [107].

SENG Client Runtime (with LibOS) Our client-side component is written in C/C++
and consists of Graphene-SGX6 [219] and our SENG runtime library. As enclave
exits cause huge performance overhead [173], we use experimental support for exit-
less syscalls in Graphene-SGX [69]. The runtime is implemented in about 2400 lines
of code (SLOC)7 and uses lwIP 2.1.2 [151], OpenSSL 1.0.2g, and an adapted ver-
sion of the sgx-ra-tls attester code8 [128]. We only included the IPv4 modules of
lwIP to minimize the code base, and patched the definitions in the header file to
be compatible with POSIX/Linux. We chose OpenSSL as it is well-known and fast.
If a smaller code base is preferred over performance, we can easily replace it with
lightweight alternatives like mbedTLS. For the tunnel, we use DTLS 1.2 with the
ECDHE_RSA_WITH_AES_256_GCM_SHA384 cipher suite.

The SENG runtime is integrated as a middle layer between Graphene-SGX and the
shielded app via the preloading functionality of the internal linker. The runtime exposes
a secure socket API to the app which shadows the unprotected API of Graphene and
forwards calls to lwIP. We configured Graphene-SGX and lwIP to use two distinct file

6commit: 58cb88d2c187358aad428b100d1ff444173e1a2b
7measured using cloc [52]
8commit: 10de7cc9ff8ffaebc103617d62e47e699f2fb5ff

36

2.11. EVALUATION

descriptor ranges, s.t. we can distinguish between calls of the app and those of the
tunnel module.

In our current version, the tunnel module directly communicates with the IAS and
embeds the attestation report inside the X.509 client certificate. However, note that
the attestation variants described in Section 2.8.1 could be easily integrated. While
the tunnel module thread handles DTLS packet receipt, the lwIP thread handles the
decrypted IP packets. For increased parallelization and syscall reduction, we currently
use one DTLS socket per direction and replaced lwIP-internal locks with spinlocks.

SENG Client Runtime Without LibOS (SENG-SDK) Our standard client runtime uses
a LibOS, which adds to the client app’s complexity and overhead to ease SENG integra-
tion. In certain settings, it may be desired to deploy SENG for client apps that cannot
sacrifice performance or memory overhead. We thus designed an alternative client-side
runtime SDK that adds support for apps based on Intel’s SGX SDK [107]. This so-called
SENG-SDK does not include a library OS, which makes it more lightweight and enables
flexible integration into other frameworks [204]. Furthermore, by dropping the LibOS,
the SDK trades legacy support (AR1) in for higher performance (cf. Section 2.11.5)
and support for native SGX apps with trusted-untrusted split design.

The SENG-SDK is fully compatible with the SENG server and all SGX SDK-based
toolchains. While SENG-SDK cannot remove the effort of porting apps to SGX, the
toolchain integration makes porting enclaves to the SDK straightforward. Furthermore,
the SDK provides a single init function which handles the whole setup (network stack,
tunnels, threads) and afterwards exposes a secure POSIX-style socket and DNS API for
trusted enclave code. SENG-SDK is written in about 2300 lines of C/C++ code and
uses lwIP, adapted sgx-ra-tls attester code, SGX SSL9 v2.2, and the SGX SDK v2.7.1.
We added timeout support to condition variables of SGX SDK for lwIP, included the
SSL stack into SGX SSL, and added O/ECALLs for the DTLS tunnel management.
We use switchless OCALLs to accelerate the tunnel socket I/O.

SENG Server Our server prototype is an event-based, single-threaded DTLS server
written in C/C++ based on libuv 1.9.1 [141], OpenSSL 1.0.2g, and the challenger
code of sgx-ra-tls. The core functionality consists of ≈1300 lines of code (SLOC), and
support for SENG server sockets adds ≈1500 lines. The server uses a TUN device as
IP-level virtual network interface to the gateway. The SENG server configures the TUN
device as the default gateway for connected SENG runtime clients and links each DTLS
tunnel to the client’s enclave IP address. After the release of SENG, we implemented
a multi-threaded rewrite of the SENG server in Go (not part of the evaluation), and
published it as an additional open-source project for the community (cf. Section 2.14).

2.11 Evaluation

We now evaluate our prototype implementation regarding efficacy and overhead. We
use iPerf3 [111] to measure the network throughput, and then show how the results

9Intel’s SGX port of OpenSSL

37

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

0 200 400 600 800 1000

Bandwidth [Mbps]

0

200

400

600

800

1000

T
hr

ou
gh

pu
t

[M
bp

s]

390.36

925.93
867.66

native|pure
SENG
w/o exitless syscalls

Figure 2.5: iPerf3 throughput of a single TCP connection measured for the native and
pure setups (both blue), SENG (green), and SENG without exitless syscalls (gray).

transfer to real-world client (cURL, Telnet) and server (NGINX) applications. We
then provide microbenchmarks to measure the setup phase of the SENG runtime. Af-
terwards, we revisit SENG’s NGINX performance and significantly improve it by port-
ing NGINX to the SENG-SDK. We conclude with a discussion on the SENG server
scalability under an increasing number of enclaves and according tunnels.

In our experiments, the SENG server runs on a workstation with an Intel® Core™i5-
4690 CPU with 4 cores, 32 GB of memory and Debian 9 with a 4.9 Linux kernel. The
SGX-enabled client system has an Intel® Core™i7-6700 CPU with 8 cores, 64 GB of
memory and runs the SGX enclaves inside a Ubuntu 16.04.4 LTS docker container with
a 4.15 Linux kernel. The underlying host runs Ubuntu 18.04.2 LTS. Both systems are
connected to the local network via 1 Gbps NICs (Intel I217-LM/I219-LM). We route
the client’s traffic via the SENG server to ensure that traffic from and to our SGX
client system passes our virtual network gateway.

We take the native execution of the applications (“native”) as baseline for our
evaluation and compare it with the performance of Graphene-SGX (“pure”) and of
SENG (“SENG”). This way, we can attribute the overhead to either Graphene-SGX
or the additional latency and overhead introduced by the SENG runtime and SENG
server components.

2.11.1 Network Performance

We first report on the maximum downlink throughput of a single TCP connection using
iPerf3. iPerf3 sends TCP packets to another iPerf3 instance and measures the resulting
throughput. We generate the traffic on the gateway and receive traffic inside the enclave
on the client system. We keep the default configuration of iPerf3, which calculates the
average over 10 s, and we step-wise increase the bandwidth of the workload.

Figure 2.5 shows the average receive throughput over five iterations. The through-
puts of all three approaches scale linearly with increased iPerf3 bandwidths, and SENG
shows no overhead for bandwidths up to ≈800 Mbps. The native and pure Graphene-
SGX setups both reach a maximum throughput of 925.93 Mbps, whereas SENG’s peak

38

2.11. EVALUATION

1MB 10MB 20MB 40MB 100MB 1GB
File Size

−40
−30
−20
−10
0

10

20

30

40

D
ow

nl
oa

d
ti

m
e

ov
er

he
ad

[%
]

SENG:
+0.40%
(0.05ms)

+12.2%
(11ms)

+ 8.8%
(15ms)

+12.2%
(42ms)

+14.1%
(121ms)

+11.6%
(994ms)

native pure SENG

Figure 2.6: Time differences from cURL benchmark for native, pure, and SENG.

average throughput is 867.66 Mbps (≈6 % lower). Our 10 s measurements include TCP’s
slow start, and we observed higher temporal throughputs of ≈933 Mbps for native and
pure, as well as ≈899 Mbps for SENG, reducing the peak loss to 3 % to 4 %. The
slightly lower peak throughput of SENG is caused by the additional latency added by
the SENG-internal TCP/IP stack and the DTLS tunnel. We included the results of
SENG with enclave exits on every syscall (≈390 Mbps) to highlight that exitless designs
are a key-enabler for I/O-intense enclaves [17, 173].

We conclude that the reduced throughput peak (3 % to 7 %) is acceptable, especially
as clients and/or remote parties are typically bound to lower bandwidths, which showed
no overhead.

2.11.2 Client Applications

cURL cURL is a popular tool/library to transfer data via several common protocols.
In our setting, an external partner could use cURL to exchange files with internal
servers. We have chosen cURL to check if SENG readily supports and scales to real-
world client apps. To this end, we set up an Apache web server and measured how long
cURL takes to download files via HTTP. Apache runs on the local gateway to capture
the overhead with minimal impact from network jitter, analogous to iPerf3. We used
the built-in measurements of cURL and took the 30 % trimmed mean over 50 iterations
for each file size as a robust estimator [17].

Figure 2.6 shows the observed download time overhead relative to native execution.
Graphene-SGX is again on par with the baseline as it shares the untrusted kernel
network stack. For a file size of 1 MB, SENG shows minimal overhead due to the short
download time. As the file size increases, SENG faces overhead of 8.8 % to 14.1 %
which is higher than the one reported for iPerf3, but still reasonable. We observed
TCP segmentation for every cURL payload, which was not present during iPerf3 and
adds reassembly load and delay on lwIP as it cannot use HW offloading and has a
lightweight design.

We conclude that SENG also shows reasonable performance for real-world client
apps. Note that exitless syscalls in Graphene-SGX are still experimental and future

39

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

1 5 9 13 17 21

Workload [1k req/sec]

0

200

400

600

800

1000

La
te

nc
y

[m
s]

native
pure
SENG
SENG-sdk

31 34 37 40 43 46 49

Figure 2.7: Average request latencies of NGINX measured for native (blue), pure (or-
ange), SENG (green), and SENG with SENG-SDK instead of LibOS (red)

versions might stabilize and further reduce the network overhead.

Telnet Telnet (RFC 854) is widely used for remote terminal access and serves as our
representative for remote login tools. SENG’s built-in DTLS tunnel protects plaintext
Telnet against local system-level and on-path attackers within the organization network.
Furthermore, SENG can restrict remote access to trusted, TLS-based login clients and
shield them from local user- or system-level attackers (e.g., hooks).

We used a Telnet server on a local workstation and measured over 10 iterations the
average time it takes for a Telnet client to log in, execute a set of Bash commands for
entering a directory, list the contained files, and finally, display the content of a 1 kB
document. Telnet takes 269.38 ms during native execution and faces 0.17 % overhead
for Graphene-SGX and 0.09 % for SENG, which is practically negligible.

2.11.3 Server Application (NGINX)

We next evaluate a server setting where we aim to shield an internal server from internal
MITM and system-level attackers. We chose NGINX as a demonstrator which is a wide-
spread event-based HTTP server. NGINX runs on the client host inside SGX and uses
a single, poll-based worker thread to serve the 612 Byte demo page via HTTP. We used
the wrk2 benchmark tool from an internal workstation to issue HTTP requests under
step-wise increasing request frequency. For each workload, wrk2 spawned two threads
with 100 connections and calculated the mean reply latency over ten seconds.

Figure 2.7 shows the average latencies over five iterations. Graphene-SGX and
SENG can handle ≈15 k requests per second with a per-reply latency of 1.5 ms to
2.5 ms before performance degrades. Native execution clearly outperforms “pure” and
SENG with ≈40 k. This is no surprise and follows the observations of Tsai et. al [219],
because Graphene-SGX currently only supports synchronous syscalls, which cannot
effectively overlap computation and I/O. We inspected the CPU utilization of NGINX
under different loads and revealed that in the “pure” and “SENG” setting, the NGINX
thread saturates the CPU via continuous polling and Graphene’s I/O overhead.

40

2.11. EVALUATION

Table 2.4: Client setup times of SENG and Graphene-SGX (LibOS)

Microbench Time [ms] StdDev [ms]
SE

N
G

ru
nt

im
e

spawn lwIP thread 38.13 ± 0.53
OpenSSL init 710.98 ±10.16
RSA key gen (2048) 84.55 ±66.25
get SGX quote 35.67 ± 2.20
get IAS report 639.05 ±16.46
gen X.509 Cli-Cert 1.59 ± 0.13
DTLS tunnel setup 19.86 ± 1.22
spawn tunnel thread 42.64 ± 1.20
total SENG runtime 1578.03 ±68.12
without SSL init 867.05 -
without SSL init + IAS 228.00 -

Li
bO

S (a) LibOS init (default) 868.00 ±12.64
(b) LibOS init (reduced) 728.27 ± 8.06
(c) LibOS init (minimal) 274.27 ± 1.67

In conclusion, SENG cannot yet compete with native NGINX, but is on par with
Graphene-SGX while providing more security guarantees and features on top of it.
Furthermore, the bottleneck can be attributed to Graphene-SGX rather than to SENG
and we therefore expect better performance under future asynchronous or batched I/O
support. In Section 2.11.5, we will revisit this claim and show that we can significantly
improve the performance of NGINX by porting it to the SENG-SDK (cf. “SENG-sdk”
in Figure 2.7).

2.11.4 Setup Microbenchmark

We now measure the initialization overhead that the SENG runtime adds to Graphene-
SGX, excluding the prototype-specific socket API handlers. As the setup time of
Graphene-SGX depends on the enclave configuration, we measured the time for three
configurations: (a) default values of LibOS-internal tests, (b) with reduced stack, heap
and thread number, and (c) with minimal accepted size.10 For SENG, we measured
the different setup phases of the runtime.

Table 2.4 breaks down the average setup times over ten iterations. The total startup
overhead of the SENG runtime is 1578.03 ms, i.e. it adds about 182 % overhead on top
of the Graphene-SGX initialization under default configuration. However, the vast
majority of this overhead stems from two steps: (i) the init routine of the OpenSSL
library (710.98 ms) and (ii) the IAS communication (639.05 ms). The high OpenSSL
startup time is partially attributable to the default seeding of the random number
generator. It could be reduced by switching to the RDRAND engine to approach a setup
time of 867.05 ms, which is comparable to the default LibOS time (a). As discussed in
Section 2.8.1, the remote attestation could be handled by an internal AS server with

10default: 256MB size, 32MB heap, 4MB stack, 4 threads; reduced: 4MB heap, 256KB stack, 2
threads; min.: 128MB size + reduced; all: 2 rpc threads

41

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

caching support instead. Thus, the startup time added by the SENG runtime could be
further reduced to ideally 228 ms, i.e. about 26 % of the default LibOS time (a).

We conclude that SENG adds a reasonable startup overhead which could be op-
timized to become comparable to the initialization time of Graphene-SGX under re-
duced (b) or minimal (c) enclave configuration.

2.11.5 Accelerating NGINX using SENG-SDK

We next revisit the NGINX results of Section 2.11.3 and show that SENG performs
significantly better when replacing Graphene-SGX with a faster primitive. SENG per-
formed on par with “pure” Graphene-SGX for NGINX with ≈15 k requests per second,
but got clearly outperformed by the native baseline of ≈40 k (cf. Figure 2.7). To show
that SENG can overcome the bottleneck caused by Graphene-SGX, we dropped the
LibOS and instead ported NGINX11 to our SENG-SDK. We ported only NGINX’s
platform-specific code to preserve comparability with previous results and added about
1100 lines of code (SLOC) for enclave setup and missing syscalls.

Figure 2.7 shows that SENG-SDK (“SENG-sdk”) reaches ≈36 k request per second
with a per-reply latency of 1.5 ms to 2.0 ms. SENG-SDK significantly outperforms the
Graphene-based SENG runtime by factor 2.4 and reaches up to 90 % of native per-
formance. Compared to Graphene-SGX, SENG-SDK provides more efficient OCALL
interfaces tailored for the DTLS tunnel I/O and benefits from the more lightweight
abstractions of Intel’s SGX SDK. However, note that SENG-SDK loses legacy support
and drop-in deployment (AR1).

We conclude that SENG can significantly benefit from performance improvements
of the underlying primitives, letting it handle complex apps like NGINX with small
overhead. Our rudimentary port to SDK-SENG achieved 90 % of native performance
and could be further improved by adding NGINX-specific optimizations and an efficient
file system shield. We are confident that the SENG runtime will likewise benefit from
upcoming improvements of Graphene-SGX.

2.11.6 Server Scalability and Memory Overhead

We now discuss how the SENG server scales w.r.t. the number of clients and connec-
tions. The server has a small static memory footprint of which the TUN interface
accounts for at most 750 kB under a full transmit queue12. The dynamic memory over-
head is largely determined by the send and receive buffers of the per-enclave DTLS
tunnels. In common settings, these would consume 8 KiB to 256 KiB per enclave and
direction, plus about 32 KiB for the SSL frame buffer, but can be tuned to lower val-
ues. When considering the upper range, this still means that we could handle about
2000 clients per 1 GiB memory, with a huge potential for swapping large parts of the
typically unused buffers. For SOCKS servers, the memory overhead increases with the
number of connections they have to perform on behalf of the clients. In contrast, the
SENG server is oblivious to the tunneled client connections and therefore faces constant
per-client overhead.

11in single-process mode
12default length stores maximum 500 packets

42

2.12. SENG NETFILTER AND IPTABLES EXTENSION

The limiting performance bottleneck of the SENG server is the computational over-
head of de- and encryption of DTLS packets and the general network I/O. In our
experiments, the server easily coped with any client bandwidth, and given its 1 Gbps
network card we cannot test higher loads. The CPU utilization (around 65 % on a single
core, including waiting time) at maximum bandwidths suggests that the non-optimized
server implementation will scale to 6+ Gbps on our hardware. This performance could
be further optimized by improving the server code (e.g., using vectored sending, replac-
ing the tunnel device with DPDK kernel NICs, etc.).

2.12 SENG Netfilter and iptables Extension

As discussed in Section 2.7.3 and Section 2.8.4, SENG uses app-grained IP subnetworks
in order to enable existing gateway services, especially firewalls, seamless policy en-
forcement on enclave traffic. While this design requires no service changes and enables
drop-in deployment (AR3), it might cause scalability issues in large-scale settings with
increasing numbers of shielded apps and clients. While source NATing and grouping
of apps with the same network privileges can decrease the IP fragmentation caused by
app subnetworks (Section 2.7.3), large-scale enterprises with a high variety of apps and
a high demand of IP addresses might still risk running out of available IPv4 addresses.

Therefore, in the following, we present SENG-Netfilter, a server-side extension to
SENG, which intergrates per-application policy enforcement into the Netfilter/Xtables
firewall and iptables tool. The integration enables the SENG server to expose shielded
application identifiers directly to the firewall rather than indirectly via app-specific
enclave subnetworks. Consequently, all enclave subnetworks can be subsumed into
a single one to prevent shortage of IPv4 addresses and reduce network complexity.
SENG-Netfilter enables administrators of large-scale enterprise setups to easily define
per–application policies using new SENG iptables rule specifiers to express policies
based on the shielded app’s metadata. In contrast to vanilla SENG, the SENG Netfilter
extension is firewall-specific and therefore trades in the drop-in deployment of SENG
w.r.t. other gateway services (AR3) for more network scalability and usability.

2.12.1 Design of SENG-Netfilter

In SENG-Netfilter, the SENG server stays responsible for attesting shielded applica-
tions and assigning them IPs, however, in addition, it shares the enclave IPs and at-
testation metadata with the Netfilter/iptables firewall. The SENG Netfilter extension
introduces three new components: (i) a SENG Netfilter kernel module, (ii) a netlink-
based user space library, and (iii) an iptables extension library. The SENG Netfilter
module (i) extends the Netfilter/Xtables firewall with new SENG application rule speci-
fiers (e.g., app measurement) and handles the matching of network traffic against them.
The SENG server uses the new user space library (ii) to expose the mapping between
enclave IPs and their associated metadata (incl. measurement, host IP, and user-defined
app categories) to the Netfilter module, such that it can perform the traffic matching.
The iptables extension library (iii) registers against iptables to enable admins to easily
use the SENG rule specifiers as part of their firewall policies. We have implemented

43

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

1 # 1. Thunderbird 115 enclaves may send to tcp/25 (smtp)
2 iptables -A INPUT -i tun --source 192.168.28.0/24 -p tcp \
3 --destination-port 25 -m seng --src-app <thbird115> -j ACCEPT
4

5 # 2. browser enclaves may connect to tcp/443 (https)
6 iptables -A INPUT -i tun --source 192.168.28.0/24 -p tcp \
7 --destination-port 443 -m seng --src-cat Browser \
8 -m conntrack --ctstate NEW -j ACCEPT
9

10 # 3. allow communication from the gateway to NGINX enclaves
11 iptables -A OUTPUT -o tun --destination 192.168.28.0/24 -p tcp \
12 --destination-port 443 -m seng --dst-app <nginx> -j ACCEPT
13

14 # 4. block enclave traffic from non-internal host IPs
15 iptables -A INPUT -i tun --source 192.168.28.0/24 \
16 -m seng ! --src-host 10.0.0.0/8 -j DROP
17

18 # 5. allow established TCP connections from enclaves
19 iptables -A INPUT -i tun --source 192.168.28.0/24 -p tcp \
20 -m conntrack --ctstate ESTABLISHED -j ACCEPT
21

22 # 6. allow established TCP connections to enclaves
23 iptables -A OUTPUT -o tun --destination 192.168.28.0/24 -p tcp \
24 -m conntrack --ctstate ESTABLISHED -j ACCEPT

Figure 2.8: iptables rules using the SENG-Netfilter specifiers. 192.168.28.0/24 is used
a the sole local enclave subnetwork. App filters use the SGX measurements.

and released an open-source prototype of SENG-Netfilter (cf. Section 2.14) [S1] in order
to demonstrate the benefits of our tailored Netfilter and iptables integration.

2.12.1.1 SENG iptables Rules

The SENG iptables extension adds a set of new rule specifiers via the “seng” module
(-m seng) that allows for filtering traffic based on the application metadata. Admins
must define these app-grained firewall rules on SENG’s virtual IP-level (tunnel) network
interface (cf. Section 2.8.1). That way, the default iptables source and destination IP
specifiers of these rules are interpreted as the enclave IPs rather than the host IPs on
which they are executing. The new SENG rule specifiers enable admins to define rules
that additionally match against the source or destination application measurements
(-src/dst-app) and the host IPs of the applications (-src/dst-host). Optionally,
admins can define application categories in the SENG server’s database—which specifies
the app allowlist and subnetwork/s—to group shielded apps (e.g., “trusted browsers”)
and enforce per-category firewall policies (using -src/dst-cat). Figure 2.8 shows
examples of iptables rules using the new SENG rule specifiers.

44

2.13. DISCUSSION

2.12.1.2 Rule Enforcement and Metadata Sharing

The SENG Netfilter kernel module performs the traffic matching against SENG’s
iptables rules. The module maintains an internal hash table for mapping active en-
clave IPs to the shielded app’s metadata exposed by the SENG server, including the
app measurement (mrenclave), app category (if used), and the host IP on which the
enclave is running. When SENG iptables rules are active, the module matches an IP
packet against them by using the enclave IP (of the packet) to look up the corresponding
application metadata in the hash table and compare the metadata against the rules.

For maintaining the hash table, the module defines a dedicated generic netlink
channel on which it listens for update messages by the SENG server. The SENG server
uses the new user space library to inform the module via the netlink channel whenever
a new enclave IP has been assigned or an existing enclave (tunnel) has shut down.
When a new shielded app has connected, the SENG server sends the assigned enclave
IP together with the associated application metadata (from its database) to the SENG
module for the rule enforcement. The module can then add a new mapping to its
internal hash table with the new enclave IP and metadata. When an enclave (tunnel)
shuts down, the SENG server sends the enclave IP to the module for deletion, and addi-
tionally deletes all connection tracking (conntrack) entries associated with connections
from or to this enclave IP. That way, the SENG server prevents an exploitation of stale
connection entries for bypassing firewall rules if the released IP gets re-assigned to an
enclave with less-privileged network access.

2.13 Discussion

We conclude with a discussion on upcoming improvements and directions to overcome
limitations of our SENG prototype.

2.13.1 Overcoming Memory Limitations of Enclaves

Client-side TEEs like SGX face two common challenges in practice: (i) performance
impact of context switches and (ii) limited secure memory. In Section 2.11.1 and Sec-
tion 2.11.5, we have already presented that careful switchless designs and improvements
in existing LibOS primitives (incl. more recent ones like Occlum [202]) can significantly
increase SENG’s performance for complex apps like NGINX. In the following, we focus
on the memory bottleneck (ii). SENG’s prototype builds on the first version of SGX,
which was widely available on client-side devices when SENG has been released. How-
ever, SGXv1 was limited to only 128 MB of total EPC memory (of which around 90 MB
were usable by apps) and did neither support memory sharing across enclaves nor dy-
namic memory management. Thus, running many SGXv1 enclaves in parallel stressed
memory and triggered expensive paging. After the release of SENG, Intel has further
improved SGX and has published SGX version 2 for server and data center CPUs with
support for dynamic memory management, e.g., lazy loading and page unloading, and
with much larger EPC sizes of ≈64 GB to 512 GB. For the recent SGXv2, the memory
bottleneck has thus been resolved except if a tremendously high number of services
would be co-hosted in SGXv2 enclaves for thousands of cloud tenants.

45

CHAPTER 2. SENG: THE SGX-ENFORCING NETWORK GATEWAY

Nevertheless, as future client-side TEEs might still face similar secure memory
limitations as SGXv1, and to foster better enclave scalability for data centers, we
propose multiple ways to decrease the memory utilization in SENG: (a) The majority
of recent TEEs, including SGXv2, dynamic TrustZone, and VM-level TEEs, support
dynamic memory management, i.e., support lazy loading and page unloading, which
can be used to decrease the total memory pressure. In fact, recent studies on library
debloating [185, 184] have shown that apps only use small fractions of the loaded code
(incl. libraries), and tools like RAZOR [184] trim over 70 % of bloated binaries. With
widespread dynamic paging support, SENG can integrate compiler- and loader-based
schemes into the LibOS to reduce the enclave footprint. (b) SENG could follow the
idea of Panoply by splitting the SENG runtime library and other shared libraries into
separate enclaves that are shared by all shielded apps and used for attested RPC
calls [204]. (c) More recent LibOSes like Occlum [202] apply HW-isolation mechanisms
together with SW-based fault isolation to efficiently and securely run multiple processes
in a single enclave. By integration of SENG inside Occlum rather than Graphene-SGX,
multiple shielded apps with same privileges could directly share common libraries inside
an enclave. We conclude that there are several mid-term and long-term directions for
increasing the number of concurrent SENG-protected apps by decreasing the amount
of secure memory required per enclave.

2.13.2 Frequent Measurement Updates

Any change to an app will cause a change to the enclave report and identity, too, thus
resulting in a need to frequently update SENG’s database of allowed app measurements.
While alternative designs limit the number of updates by including only a loader inside
the measurement [24], we highlight that our choice roots the app identity directly in
the HW. We thus can directly specify app-grained policies on the exact app identity
and do not need additional, potentially vulnerable, SW-based authentication schemes.
As discussed in Section 2.7.4, we also regard integration of measurement updates into
today’s continuous build chains as practical and have shown in Section 2.7.3 that SENG
is flexible enough to group multiple app versions into shared enclave IP subnetworks.
A future direction might include exploration of shared “library enclaves” (“micron” in
Panoply [204]) to compartmentalize enclaves while keeping HW-based identification.

2.13.3 Other TEEs and Platforms

While our current design uses SGX, it relies on common properties of other TEEs,
namely trusted execution and remote attestation. Therefore, we can likely transfer
SENG to other TEEs [31, 124, 241]. When designing SENG, we chose Intel SGX, as it
has been widely available on commodity client systems, and posed additional challenges
due to its restriction to user space code. After the release of SENG, Intel SGX support
has unfortunately been deprecated for client devices. However, Intel is still continuing
SGX support for server and data center CPUs, i.e., SENG can still be readily used to
attribute network traffic to server or cloud applications. Furthermore, conceptually,
SENG should be portable to the recent VM-level TEEs, e.g., AMD SEV [3] or Intel
TDX [106], as they provide similar protection and attestation features. In particular,

46

2.14. ARTIFACTS

the vSGX project [241], which virtualizes SGX enclaves using AMD SEV VMs, might
be a promising system for adopting SENG on non-Intel platforms.

2.13.4 Prototype Limitations

Our current SENG runtime prototype does not support all system calls yet. We miss
fork and exec in particular, for which support could be added following concepts of
existing LibOSes [219, 204]. Furthermore, the SENG server currently supports only
a simple SQLite3 database for defining the shielded application (enclave) allowlist,
subnetworks, and host addresses rather than featuring a full database integration.

2.14 Artifacts

The prototypes of SENG are available as open-source projects at https://github.
com/sengsgx/ [S1], including the SENG runtime, SDK, and server, as well as the
SENG Netfilter extension and a multi-threaded rewrite of the SENG server in Go. See
page 9 for a list of all open-source prototypes covered by this dissertation.

2.15 Conclusion

Network administrators have lost control over which client apps communicate in their
sensitive networks. Not being able to centrally, precisely and reliably govern network ac-
cesses regularly results in data exfiltration by malware or exploitation attempts against
vulnerable client software. Unfortunately, existing attempts to prevent such incidents
(anti-virus, malware sandboxes, IDS, etc.) are susceptible to evasion. Therefore, in this
chapter, we have designed SENG which shows how client-side TEEs can help address
this challenge—answering RQ1 (see page 4). SENG’s ability to specify app-grained
policies enables for fine-grained and application-aware traffic control concepts. More-
over, SENG provides strong security guarantees that are rooted in hardware and even
withstand client-side system-level attackers. SENG thus fills a need that has existed
since the introduction of firewalls: per-app attribution of network traffic.

SENG does not focus on the protection of the network traffic and firewall policies
against a gateway system-level compromise (see A18 of Section 2.9). Therefore, in the
next chapter, we will propose a TEE-based gateway router architecture that guarantees
secure network I/O and policy enforcement, even under such a system-level attacker.

47

https://github.com/sengsgx/
https://github.com/sengsgx/

3
TrustedGateway

TEE-Assisted Routing and Firewall Enforcement

using ARM TrustZone

49

3.1. MOTIVATION

3.1 Motivation

Gateway routers are at the heart of every network infrastructure, interconnecting sub-
networks and enforcing access control policies using firewalls. However, their central
position makes them high-value targets for network compromises. Typically, gate-
ways are erroneously assumed to be hardened against software vulnerabilities (“bastion
host”). In fact, though, they inherit the attack surface of their underlying commodity
OSes which together with the wealth of auxiliary services available on both consumer
and enterprise gateways—web and VoIP, file sharing, remote logins, monitoring, etc.—
undermines this belief. This is underlined by a plethora of recent CVEs for commodity
OSes and services of popular routers which resulted in authentication bypass or remote
code execution thus enabling attackers full control over their security policies.

Therefore, in this chapter, we address RQ2 (see page 4), i.e., answer if we can
redesign gateway routers based on TEEs such that their network I/O and policy en-
forcement stays protected even if the router OS or auxiliary user space services have
been compromised. We propose TrustedGateway (TruGW), a gateway architecture,
which isolates “core” networking features—routing and firewall—from error-prone aux-
iliary services and gateway OSes. TruGW leverages a TEE-assisted design to protect
the network path and policies while staying compatible with commodity gateway plat-
forms. TruGW uses Arm TrustZone to protect the NIC and traffic processing from a
fully-compromised gateway and permits policy updates only by trusted remote admin-
istrators. That way, TruGW can readily guarantee the secure enforcement of trusted
policies on commodity gateways. TruGW’s small attack surface is a key enabler to
regain trust in core network infrastructures.

3.2 Problem Description

Gateway routers interconnect networks and govern their communication using firewall
policies. Therefore, gateways are attractive targets for adversaries seeking to abuse
their central position for network infiltration and information leakage. While gateways
were assumed to be hardened (“bastion host”), a series of recent CVEs has raised se-
rious concerns over their security. As we will show in Section 3.4, these vulnerabilities
typically arise out of non-hardened auxiliary services that execute on gateways. These
services easily add up to a large, complex code base which is hard to audit. Therefore,
many serious vulnerabilities lurk in these auxiliary services, which enable attackers to
remotely compromise the gateways. Once compromised, they threaten also core ser-
vices (routing and firewalling), because gateways nowadays build on commodity OSes
(cf. Table 3.1) for which several vulnerabilities and privilege escalation attacks have
been revealed. Consequently, remote attackers can chain service to system exploits to
gain full control over gateways and their policies—putting the entire network infras-
tructure at serious risk. As we will discuss in Section 3.4, the root cause indeed seems
to be the increased threat surface due to auxiliary services and commodity systems,
because, in fact, the core gateway tasks represent just a small fraction of the entire
software stack and attack surface on gateways. Yet vendors keep adding a plethora
of auxiliary gateway services (e.g., VoIP, file sharing, web proxies, printing, IoT hubs,

51

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

Table 3.1: A sample of router network operating systems (NOS) and the respective
commodity OSes they derive from. Many common router NOSes are based on com-
modity OSes and therefore inherit their security vulnerabilities. Many “old”, hardware-
specific NOSes nowadays run as user space services or VMs on recent platforms.

Vendor Network OS Underlying Commodity OS
AVM Fritz!OS Linux [149]
Cisco IOS XR Linux (Wind River), old: QNX [42]
Cisco IOS XE Linux [44]
DrayTek — Linux (now: DrayOS) [196]
Juniper Junos OS FreeBSD [119]
Juniper Junos OS Evolved Linux [118]
— DD-/OpenWRT Linux [33, 66]

content caching) to increase system utility and gain marketing advantages—at the cost
of security.

Researchers and large companies have realized the need for more secure network
gateways and try to re-establish trust by isolating their critical core functionalities.
However, existing approaches fail to protect commodity gateways—leaving millions of
home and smaller enterprise networks vulnerable (cf. Section 3.5). Commodity gate-
ways relying on VMs or OS containers for service isolation [43, 120] suffer from their
huge attack surface, while data center SmartNICs, which perform routing and filtering
isolated from the host system, are too expensive, bulky, and complex for commodity
devices. Research proposals using secure containers based on Intel SGX for routing and
firewall protection [179, 62, 18] rely on future hardware support and cannot guarantee
policy enforcement on standalone gateways due to SGX’s missing hardware control over
NICs, which enables a full policy bypass.

To foster widespread protection of network infrastructures of consumers and smaller
enterprises, we require a design that (i) guarantees secure enforcement of a gateway’s
routing and firewall policies even under a system-level attacker while having (ii) a small
trusted computing base (TCB) and (iii) compatibility with commodity hardware and
software. However, the complexity of network subsystems, including NIC I/O and
multiple layers of system software, makes it particularly challenging to come up with
a design that balances security, performance, and compatibility. For example, a fully
isolated network stack provides high protection, but at the cost of a bloated TCB
and potential incompatibilities with separated commodity services, while a low TCB
solution might face security limitations or high performance penalties on calls into the
protected submodules. In addition, compatibility with consumer gateways is often in
conflict with new efficient security technologies (e.g., SmartNICs) and might require
TCB-increasing extra frameworks.

52

3.3. CONTRIBUTIONS

3.3 Contributions

In this chapter, we present TrustedGateway (TruGW), a system architecture for com-
modity gateway routers, which aims to tackle this design challenge. TruGW builds on
Arm TrustZone-assisted trusted execution environments (TEEs) which provide HW-
enforced memory and I/O isolation, can be easily combined with existing OS and
hypervisor-based designs, and are widely available in millions of edge devices [178].
TruGW provides a new trusted networking core with a low TCB, which provides se-
cure network I/O and traffic processing isolated from system-level attackers who have
compromised the router OS and auxiliary user space services. TruGW leverages Trust-
Zone (TZ) to protect the core’s memory and grant it exclusive NIC access. That way,
TruGW’s network core has full control over the gateway’s ingress and egress path and
can guarantee the enforcement of trusted network policies. In particular, TruGW shows
how to solve several technical challenges: (i) enable fast, trusted network I/O in spite
of TZ’s high context switching overhead, (ii) after NIC isolation, re-establish network
access for commodity services without breaking security or compatibility, and (iii) allow
for trusted policy configuration—all while preserving a low TCB.

Technically, TruGW implements a minimal NIC I/O framework in TZ’s secure
world, which provides essential network and link layer abstractions, and realizes trusted
routing and firewalling on top of it. Trusted policies are configured by authenticated
remote administrators via a new trusted configuration service. TruGW’s framework
enables to incorporate only the essential I/O parts of physical NIC drivers into TZ,
which preserves a low TCB. To overcome TZ’s slow context-switches, TruGW designs
a trusted, lightweight notifier and worker system for efficiently scheduling trusted NIC
I/O, while keeping the system scheduler and threading in the untrusted world for a
better compatibility and TCB. For supporting the untrusted router services, TruGW
implements a virtio-based network device in TZ, which exposes a virtual NIC to the
untrusted system for shared network access. However, to prevent network attacks by
untrusted services (e.g. ARP spoofing), TruGW tightly controls and filters their traffic.

We implement an open-source prototype of TruGW (cf. Section 3.10) [S2] by ex-
tending an existing TEE with ≈10.5 k lines of TruGW-specific code. We evaluated this
prototype on the Nitrogen6X dev board [30], which nicely resembles the hardware con-
figuration of small commodity gateways. Our proof-of-concept illustrates how TruGW
efficiently enforces trusted routing and firewall policies even under a system-level com-
promise, and thus re-establishes trust in commodity gateways and their millions of
consumer and enterprise networks.

In summary, we make the following contributions:

• We raise awareness of the serious risk of remote system compromises of commodity
network routers, how they undermine firewall policies, and why existing defenses
fall short of efficiently protecting consumer and SME routers.

• We design TrustedGateway (TruGW), an architecture which efficiently enforces
trusted routing and firewall policies under a system compromise on standalone
commodity gateways. TruGW is tailored to balance security, performance, and
compatibility for seamless consumer and SME deployment.

53

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

Table 3.2: Number of CVE entries (as of 02.03.2022) for OSes, hypervisors, and Linux net-
working components based on categories of cvedetails.com and keyword searches
on cve.mitre.org. The CVEs show that (i) security kernels (e.g. OP-TEE) face a way
smaller risk of exploitation than commodity OSes used by routers, and (ii) the Linux fire-
wall and NIC drivers add only minimally to the risk of code execution (CE) vulnerabili-
ties compared to the full kernel or hypervisors. Note that the Xen and KVM hypervisor
require an additional host OS (e.g. Linux).

Product Total CVEs CE Search Keywords
Linux kernel 2763 263 —
Windows 10 OS 2590 538 —
FreeBSD OS 455 54 —
OP-TEE OS 10 3 —

Xen 378 20 —
QEMU (KVM) 355 77 —

Linux Firewall 67 2 linux netfilter
Ethernet NIC Driver 25 1 linux drivers net ethernet
Wireless Driver 39 1 linux drivers net wireless

• TruGW provides a TEE-tailored networking framework, and implements a TEE-
located virtio-net device to support controlled network access by untrusted aux-
iliary or OS services.

• TruGW provides a low TCB, trusted web service for remote policy management
with a secure admin enrollment process.

• We implement a TruGW prototype [S2] and evaluate its attack surface, network
performance, and secure memory overhead.

3.4 Setting: Gateway Routers are High-value Targets

Gateway routers play a critical role for the security of consumer and enterprise networks.
They isolate and interconnect internal client and server subnetworks, and their network
firewalls serve as central gatekeepers for all ingress and egress network traffic. The
gateways’ central role makes them attractive targets for a network infiltration putting
intruders in an ideal position for attacks. While gateways are widely assumed to be
trusted, their number of services has drastically increased over the years and so did their
attack surface. In fact, gateways nowadays fulfill a plethora of auxiliary functionalities
beyond secure traffic control, including proxies to cloud services, edge computing, and
typical consumer services such as file sharing, VoIP, streaming, or network monitoring.
Table 3.1 shows that popular gateway platforms therefore derive from large commodity
OSes, typically Linux, to easily integrate such services.

This software stack composition opens up a huge attack surface. For instance, 12
popular auxiliary network services on DD-WRT [66] routers together already include a
large, error-prone code base of ≈4517 kSLOC (see Section 3.8.2). Table 3.3 (page 56)

54

https://www.cvedetails.com
https://cve.mitre.org

3.4. SETTING: GATEWAY ROUTERS ARE HIGH-VALUE TARGETS

Client

Gateway
Router

Guest

Server

Proxy

external
networks

internal enterprise network

is
ol

at
ed

 su
bn

et
w

or
ks

internal
intrusion

proxy
bypass

2

3 external
intrusion

1

2

3

Vulnerable
Aux Service

1

Net Policies

Figure 3.1: Three critical attacks enabled by vulnerable auxiliary services that under-
mine a gateway’s network policies.

presents recent CVEs of popular network devices, that enable remote attackers con-
trol over a gateway’s network policies or even the whole system—bypassing any kind
of system-level defense. In fact, all these vulnerabilities lurk in auxiliary services and
system software unrelated to the security-critical core networking components (e.g.,
firewalls). In addition, Table 3.2 shows that the widely-used Linux kernel has faced
thousands of CVEs of which ≈10 % directly result in malicious code execution (CE)—
with new ones getting steadily discovered [195, 232, 194]. In contrast, less than 100
CVEs have been reported for the Linux kernel firewall and Ethernet NIC drivers to-
gether with merely ≈3 direct CEs. However, the plethora of kernel and remote service
vulnerabilities enable attackers to fully compromise gateways, and thus undermine also
their security-critical components and policies.

Figure 3.1 shows exemplary consequences of such an insecure gateway in a small
enterprise network. The central gateway interconnects an isolated guest, client, and
multiple server subnetworks. The gateway firewall permits guests and clients to access
external networks only through a traffic-filtering proxy. Furthermore, clients can access
only servers of their work department, and the firewall heavily filters external ingress
traffic. However, any vulnerable service on the gateway undermines these policies.
Attackers can compromise the gateway using a remote code execution (RCE) against
a service and perform a privilege escalation (e.g., kernel exploit) to gain access to the
firewall policies. (1) A malicious guest could manipulate the firewall policies to bypass
the proxy for direct external network access (e.g., to launch a spam campaign). (2) A
malicious or malware-infected client can bypass the server isolation to sabotage or steal
internal secrets. Lastly, (3) if vulnerable gateway services are exposed to the public
(e.g., file sharing), they enable external attackers to infiltrate the enterprise network.

Our goal is to re-establish trust in gateways by designing TruGW, a new architecture
for commodity network gateways, which enforces authenticated routing and firewall
policies even when the auxiliary services or system software are compromised. That
way, our envisioned gateway significantly hardens the security of enterprise networks by
eliminating the discussed threats. Furthermore, TruGW strengthens millions of home
networks by hardening consumer routers, which include a plethora of auxiliary features
(e.g., media, IoT), by providing secure traffic isolation and filtering.

55

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

Ta
b

le
3.3:

A
sa

m
p

le
o

f
re

c
e

n
t

se
c

urity
c

ritic
a

lvuln
e

ra
b

ilitie
s

in
a

uxilia
ry

se
rvic

e
s,

O
S

ke
rn

e
ls,

a
n

d
hyp

e
rviso

rs
(V

M
M

s)
use

d
b

y
p

o
p

ula
r

n
e

tw
o

rk
d

e
vic

e
s.

Th
e

C
V

Es
sh

o
w

th
a

t
re

m
o

te
a

tta
c

ke
rs

c
a

n
fully

c
o

m
p

ro
m

ise
suc

h
d

e
vic

e
s

b
y

c
h

a
in

in
g

re
m

o
te

c
o

d
e

e
xe

c
utio

n
e

xp
lo

its
to

O
S

a
n

d
(ifre

q
uire

d
)

V
M

M
e

xp
lo

its.
Th

us,a
tta

c
ke

rs
g

a
in

fullc
o

n
tro

lo
ve

ra
d

e
vic

e
’s

ro
utin

g
a

n
d

fire
w

a
ll.

C
V

E
D

evice
T

arget
/

V
ulnerability

A
ttack

E
ffect

User Space Network Services

2019-16028
C

isco
Firepow

er
Firew

all
LD

A
P

B
ypass

(via
H

T
T

P)
rem

ote
adm

in
access

2019-17621
D

-Link
D

IR
-859

W
i-Firouter

U
PnP

service
(via

H
T

T
P)

rem
ote

code
execution

(LA
N

)
2019-19494

B
roadcom

-based
cable

m
odem

s
buffer

overflow
(via

JS)
rem

ote
kernelcode

execution
2020-3115

C
isco

SD
-W

A
N

vM
anage

(input
validation

error)
localprivilege

escalation
(root)

2020-11503
Sophos

X
G

Firew
all

aw
arrensm

tp
(heap

overflow
)

rem
ote

code
execution

2020-15635
N

etgear
W

LA
N

R
outer

R
6700

acsd
service

(buffer
overflow

)
rem

ote
code

execution
2020-27600

D
-Link

R
outer

D
IR

-846
H

N
A

P
service

rem
ote

com
m

and
execution

2021-0254
Juniper

A
C

X
/M

X
routers

overlayd
(buffer

overflow
)

rem
ote

code
execution

2021-0260
Juniper

net.devices
(Junos

O
S)

snm
pd

(im
proper

authorization)
rem

ote
SN

M
P

read/w
rite

access
2021-1287

C
isco

W
ireless

V
PN

routers
w

eb
m

ngt.interface
rem

ote
code

execution
(root)

2021-1539
C

isco
A

SR
-5000

routers
TA

C
A

C
S

auth.bypass
(via

SSH
)

rem
ote

com
m

and
execution

2021-1602
C

isco
RV

160/260
routers

w
eb

m
ngt.interface

rem
ote

code
execution

(root)
2023-20198

C
isco

IO
S

X
E

routers/sw
itches

w
eb

config.interface
rem

ote
access

(non-adm
in)

2023-20273
C

isco
IO

S
X

E
routers/sw

itches
w

eb
config.interface

rem
ote

privilege
escalation

(root)

OS

2020-7460
FreeB

SD
-based

R
outers

(Table
3.1)

FreeB
SD

kernel
localkernelcode

execution
2021-31440

Linux-based
R

outers
(Table

3.1)
Linux

kernel5.11.15
localkernelcode

execution
2023-32258

Linux-based
R

outers
(Table

3.1)
m

ultiple
Linux

v5/v6,in-kernelSM
B

rem
ote

kernelcode
execution

VMM

2020-7467
FreeB

SD
-based

R
outers

(Table
3.1)

bhyve
(FreeB

SD
hypervisor)

V
M

escape
(host

code
exec.)

2020-14364
Linux-based

R
outers

(Table
3.1)

K
V

M
-Q

EM
U

(Linux
hypervisor)

V
M

escape
(host

code
exec.)

2021-4206
Linux-based

R
outers

(Table
3.1)

K
V

M
-Q

EM
U

(Linux
hypervisor)

V
M

escape
(host

code
exec.)

56

3.5. TOWARDS SECURE NETWORK GATEWAYS

3.4.1 Threat Model

TruGW relaxes the strong bastion host assumption for all gateway router software ex-
cept for the “core networking” features—routing and firewall. We build on the common
threat model which assumes a gateway located at the network perimeter and a set of
internal (int.) and external (ext.) network clients trying to circumvent the gateway’s
security policies (cf. Figure 3.1). Motivated by the discussed plethora of gateway CVEs,
we extend this model for TruGW in that we tolerate a system-level attacker (Sysgw)
which has gained major control over a gateway’s software stack, including all auxiliary
services, the OS, and, if available, the hypervisor (cf. Section 3.5). After a compromise,
Sysgw will attempt to leverage their central position to perform man-in-the-middle at-
tacks, tamper with routing rules, and bypass firewall policies for full network access.
We only trust verified admins which remotely manage the networking policies via secure
configuration requests from trusted devices.

TruGW will root its security guarantees in hardware by leveraging CPU-provided
secure containers (a.k.a. TEEs) for protecting the network traffic and policy enforce-
ment. We therefore trust the gateway’s CPU and all hardware bound to the TEE.
Furthermore, we trust the software in the TEE—our trusted computing base (TCB)—
and assume it to be free of vulnerabilities. While we regard Sysgw in control of all
non-TEE software, we exclude side-channel, denial-of-service (DoS), and all forms of
physical attacks.

3.5 Towards Secure Network Gateways

We will now outline TruGW’s design goals and requirements and discuss in how far
alternative solutions fall short of fulfilling them.

3.5.1 Goals and Requirements

The goal of TruGW is the protection and guaranteed enforcement of a gateway’s traffic
routing and firewalling even under a full system compromise. In addition, we want
TruGW to be easily integrable into commodity gateways without extra costs for wide
adoption in home and (small) enterprise networks. TruGW therefore must build only on
commodity hardware features and refrain from changes to a gateway’s system software.
At the same time, the interplay with existing gateway OSes and auxiliary services has to
be efficient, and the architecture itself feature a small TCB that can be easily audited.
We derive the following seven security (SR) and four auxiliary (AR) requirements that
TruGW’s design will fulfill:

SR1 Secure Network Setup. The setup phase must prevent unauthenticated net-
work communication until the firewall has initialized a restrictive or restored a
trusted state.

SR2 Routing and Firewall Isolation. The integrity of the routing and firewall
components must be guaranteed.

57

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

SR3 Mandatory Policy Enforcment. The enforcement of the routing and firewall
policies must be guaranteed.

SR4 Traffic Protection. The untrusted system must not be able to access (confi-
dentiality) or tamper with traffic (integrity) not explicitly destined to it. This
includes all forward traffic.

SR5 Spoofing Prevention. The untrusted system must not be able to spoof network
addresses (e.g., MAC, IP).

SR6 Trusted Policy Changes. Only authenticated remote admins must be able to
perform trusted policy changes.

SR7 Attack Surface. The trusted computing base (TCB) and exposed attack surface
must be small.

AR1 Commodity hardware. The design must build only on cost-efficient commod-
ity hardware applicable to network routers.

AR2 Service Compatiblity. The design must support existing untrusted gateway
OSes and auxiliary (network) services.

AR3 Minimal Changes. The design must require only minimal changes to the un-
trusted commodity system software.

AR4 Network Overhead. The design must only introduce reasonably small network
performance overhead to stay attractive to consumers and enterprises.

To achieve these goals, TruGW’s idea is to leverage Arm TrustZone (TZ)—a widely
available commodity TEE [178]—to isolate the network I/O path from the compromised
system, and design new, trusted networking components. That way, even system-
level attackers (Sysgw) can neither tamper with network traffic or policies, nor bypass
them. However, it is particularly challenging to come up with a design that fulfills
multiple, partially conflicting goals, especially considering the complexity of network
subsystems. For example, backwards compatibility (AR1-3) is often in conflict with
new efficient security technologies (AR4) and might require additional, TCB-increasing
frameworks (SR7), while a small TCB might limit the performance (AR4) or function-
ality (e.g. SR3). TruGW’s main contribution is therefore to solve this design challenge
and several additional challenges resulting from it (cf. Section 3.6 and 3.7).

3.5.2 Design Tradeoffs and their Shortcomings

Several related attempts follow similar objectives than our envisioned trusted gate-
way, yet fall short of fulfilling important security guarantees and/or deployment re-
quirements. We now discuss these approaches and their shortcomings w.r.t. TruGW’s
properties, and motivate TruGW’s decision in favour of a TrustZone-based design.

58

3.5. TOWARDS SECURE NETWORK GATEWAYS

Dedicated Devices Moving core networking services to dedicated devices could be
seen as an intuitive solution to our depicted problem. While such a physical separation
removes potentially vulnerable auxiliary services from the core networking devices, even
dedicated routers/firewalls still have a high attack surface, including a full commod-
ity OS (SR7). In addition, the extra devices introduce additional prime, energy, and
maintenance costs (AR1). Furthermore, the declined usability (lack of auxiliary ser-
vices) and the resulting need for multiple devices destroys a core marketing argument
of feature-rich routers (related to AR2).

SmartNICs and P4 In-network firewalls have been proposed for scalable enforce-
ment isolated from vulnerable gateway systems. FlowBlaze [180] enables stateful net-
work functions on SmartNICs for high scalability, whereas Kang et al. [121] introduce
context-aware policy enforcement on P4-programmable SDN switches. While these so-
lutions promise great scalability and security, they are too expensive, complex (related
to AR2/3), and “bulky” (form factor) for consumers and smaller enterprises (AR1).
In contrast, TruGW focuses on protecting exactly these millions of users by providing
them with an affordable gateway design for commodity hardware.

Intel SGX Gateway designs based on Intel’s commodity, hardware-isolated user space
containers—so-called Intel SGX enclaves—suffer from their missing hardware con-
trol [49]. They cannot guarantee secure network policy enforcement on a standalone
gateway, because they can neither directly access the NICs nor prevent attackers from
doing so (SR1/3/5). Alcatraz [18] enforces firewall rules and traffic protection, but
requires SGX support on every enterprise middlebox, switch, and host for per-hop tun-
nels (AR1). SafeBricks [179] and LightBox [62] securely offload middleboxes to an
untrusted cloud provider using SGX, but must assume a trusted enterprise gateway
to tunnel traffic to them (Sysgw). SENG [P1] uses SGX on the client-side to enforce
trusted per-application firewall policies on the gateway, but assumes the gateway to be
trusted (Sysgw), as discussed in Chapter 2 (especially in A18 of Section 2.9). TruGW’s
focus is on providing such a secure design for standalone gateways, i.e., we close a gap
of existing orthogonal designs.

Virtualization Hypervisors enable a secure containment of compromised OSes and
support secure I/O paths. Advanced gateway platforms by Cisco [43] and Juniper [120]
already support VMs for running third-party user space services. However, for our envi-
sioned gateway, hypervisors face two main limitations: a high attack surface (SR7), and
compatibility issues (AR3/4). Following ideas of VMwall [208], a gateway could use a
hypervisor to protect the network processing inside the host VM (“dom0”) against a
compromised gateway OS. However, Table 3.2 (page 54) shows that commodity hyper-
visors like Xen [216] or QEMU/KVM face a high attack surface, which is even further
increased by the dom0 OS—by default a full-blown Linux. Even when splitting core
services into multiple VMs (similar to QubesOS [217, 136]), the TCB stays large (SR7).
Minimal, so-called micro-hypervisors have a low TCB but are by design functionally
limited, e.g., to a single VM without isolated I/O, which makes efficient secure I/O
difficult (AR4) [41]. Furthermore, the use of security micro-hypervisors is in conflict

59

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

with deployed commodity gateway hypervisors, and therefore either (a) requires slow,
complex nested virtualization (SR7,AR4), (b) deep integration with gateway hyper-
visors (AR2/3), or (c) can only support gateways without hypervisors. McCormack
et al. [153] have proposed such a micro-hypervisor-based secure gateway, however their
concept fails to guarantee traffic protection and policy enforcement against system-level
attackers (SR3/4). Zhou et al. [245, 246] used micro-hypervisors to build minimal TCB,
trusted I/O paths from applications to specific device classes, but have not focused on
NICs or network policies (SR1-6). TruGW’s minimal TCB efficiently enforces and
protects secure networking against Sysgw even if they control a gateway hypervisor.

Confidential Virtual Machines (TEE VMs) Recent trusted virtualization technolo-
gies, e.g., AMD SEV-SNP, Intel TDX, and Arm CCA [3, 106, 16], transfer principles
of TEEs (e.g. Intel SGX) to virtual machines. These confidential VMs are hardware-
protected against the host platform (incl. hypervisor, peripherals) regarding the con-
fidentiality and integrity of their memory and CPU registers. However, we are not
aware of any research on trusted network routers using them for isolation. In fact,
these technologies are currently not widely available yet (TDX, CCA) or mostly lim-
ited to high-end desktop or server CPUs (SEV-SNP) rather than cost-efficient router
platforms (AR1, related to AR2/3). While virtual routers or firewalls could be im-
plemented inside confidential VMs, confidential VMs currently lack control over the
hardware NICs and therefore cannot guarantee secure network policy enforcement on
a standalone gateway (SR3), similar to SGX-based approaches [179, 62]. Furthermore,
by default, such a VM would include a whole network OS with a huge attack surface
(SR7). In Chapter 5, we use recent intra-VM isolation techniques of confidential VMs
as part of our secure VM introspection system. Furthermore, we discuss future trusted
I/O support of confidential VMs (Section 5.9.5) and briefly outline the idea of porting
TruGW to them in Section 6.2.1. However, leveraging these features for VM-controlled
secure network paths is non-trivial, might require SmartNIC (and CPU) support, and
will therefore become available only in data centers rather than router platforms in the
foreseeable future. In contrast, TruGW readily isolates network traffic and enforces
routing and firewall policies on cost-efficient consumer and smaller enterprise routers.

Arm TrustZone TruGW builds on Arm TrustZone (TZ)1, because TZ makes an ideal
candidate for a secure network gateway due to its hardware-enforced memory and
I/O isolation, and its widespread availability [178]. TZ provides hardware primitives
for Arm-based TEEs, i.e., secure containers for hosting code and data isolated from
all system software. Unlike Intel SGX, TZ is a system-level TEE and additionally
features device isolation. TZ extends all system resources—including CPU, memory
and devices—with a security state and supports HW-enforced access control rules based
on the states [178, 175]. TZ’s features enable standalone security architectures with
trusted I/O similar to hypervisors, but with a potentially very small TCB (cf. OP-TEE’s
small number of CVEs in Table 3.2 on page 54, and code size in Section 3.9.2 and 3.8.2)
and without being in conflict with deployed gateway hypervisors. In fact, TrustZone

1Our current focus is on Arm TrustZone for Cortex-A (TZ-A).

60

3.6. TRUGW’S DESIGN

NI
C

UP: Untrusted World (Network OS)

NetTrug

IoTMedia

TP: Trusted World (TEE OS)

Web UIs
auxiliary
services

NI
CConfigstraffic traffic

Tr
us

te
dG

at
ew

ay

Kernel (threads, files, …)

Routing Firewall

UP traffic

filtered
VNIC

Figure 3.2: Design overview of TruGW with the new (dashed) trusted NetTrug and VNIC
(dark: untrusted, light: trusted).

has been used for many domains like trusted user I/O [140, 236], trusted peripheral
access [125, 148], and secure stream processing [175]. However, none of these approaches
explore the protection of a gateway’s network path and policy enforcement (SR1-6).
Even though StreamBox-TZ [175] proposes exclusive NIC access by trusted components
for stream processing performance, it simply assumes trusted networking stacks and
NIC isolation as an available black box. In fact, StreamBox-TZ neither provides details
about networking, nor considers network policies, nor access by untrusted services (SR1-
6, AR2-4). To the best of our knowledge, there is no such trusted networking support
fulfilling all requirements for secure gateways. Therefore, TruGW designs new trusted
networking components as part of its secure gateway architecture.

3.6 TruGW’s Design

We now describe TruGW’s gateway design and mention challenges it had to solve. To
highlight how TruGW fulfills the requirements outlined in Section 3.5.1, we refer to
them at relevant passages. We provide additional details of TruGW’s architecture and
its implementation in Section 3.7.

TruGW’s main idea is to isolate network I/O and critical “core” gateway function-
alities from a gateway’s error-prone auxiliary services and system software. That way,
TruGW’s network “core” keeps full control over the network traffic and can guarantee
secure policy enforcement even on a service or system compromise. As shown in Fig-
ure 3.2, TruGW uses a TrustZone-assisted TEE to divide the gateway architecture into
an untrusted (UP) and a memory-isolated trusted (TP) partition. The untrusted UP

runs a gateway OS—in the following called network operating system (NOS)—which
hosts the auxiliary services and commodity kernel. The trusted TP hosts the TEE OS
and all core components of TruGW, i.e., our TCB. TZ-assisted TEEs [145, 90] have a
minimal TCB (SR7) with few CVEs (Table 3.2, OP-TEE), however, at the cost of a
very limited secure runtime dedicated to small, UP -exposed RPC services, e.g., trusted
key storage [92]. Current TEE OSes are not designed for fast, I/O-intense tasks and
thus neither support trusted network I/O nor traffic processing. Therefore, TruGW
designs a new TZ-tailored networking core in TP called NetTrug. NetTrug includes
new modules for trusted network I/O, routing, and firewalling isolated from UP at-

61

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

tackers (cf. Figure 3.2). Policies are remotely configured via a new trusted interface
(Section 3.6.3). To preserve compatibility with UP services under an isolated network
path, TruGW implements a new trusted virtual network device called VNIC, which
together with NetTrug provides UP with tightly-controlled network access (AR2).

We will now present how TruGW tackled the following major challenges: (i) achieve
fast, trusted networking in spite of TZ’s high context-switch overhead, (ii) securely
share network access with UP services without breaking security or compatibility, and
(iii) provide trusted policy configuration—all while preserving a low TCB.

3.6.1 Trusted Networking

In a commodity gateway, the network I/O and processing is performed by drivers and
services typically located in the NOS kernel. The NIC drivers form the I/O interface to
the NICs (network hardware) while the services perform essential tasks, e.g., routing.
However, their location makes them fully controllable by UP system-level attackers
enabling them to tamper with all traffic and bypass any security policy. To guarantee
secure traffic and policy processing (SR1-4), NetTrug therefore revokes UP ’s NIC access
and provides trusted networking in TP .

I/O and Scheduling First, NetTrug must enable trusted NIC I/O paths. NetTrug
therefore protects the NICs against UP and supports trusted NIC drivers in TP .
NetTrug protects a NIC’s I/O interfaces in TP : memory-mapped device registers,
shared I/O rings, and interrupts. Device registers enable drivers to interact with a
NIC and especially configure the memory location of the I/O descriptor rings. These
rings contain information about processable network buffers and by default reside in
unprotected system memory together with their buffers. Descriptor changes are sig-
naled via NIC interrupts and device registers [48]. If these interfaces stay unprotected,
UP attackers can tamper with network traffic inside the I/O buffers or directly interact
with the NICs and thus bypass any policy (SR1-4). Therefore, NetTrug leverages TZ’s
Protection Controller (TZPC) [178] to bind all NICs exclusively to the trusted kernel
space (T k

P) from boot on (SR1). That way, TZ blocks all UP access attempts to the
NIC registers and securely redirects all NIC interrupts to T k

P .
To protect the I/O rings and enable trusted I/O operation, NetTrug requires trusted

NIC drivers inside T k
P . However, current TZ-assisted TEEs [145, 90] have no support

for network I/O. Naïvely, we could try to port existing drivers to TP , but this raises
several technical challenges: a full port would massively bloat the TCB (SR7), because
drivers heavily depend on large, kernel-integrated driver frameworks and include many
management functions beyond I/O. Furthermore, driver frameworks assume fast inter-
rupt and threading support, which is either (i) not available in TP due to TZ TEEs [145]
relying on UP for scheduling, which suffers from costly TEE context-switches and limi-
tations in interrupt contexts (cf. Section 3.7.2) (AR4), or (ii) requires secure hardware
timers [90] and respective UP system-level changes for a TZ-tailored system scheduler—
violating TruGW’s goal of a low TCB design for commodity gateways (SR7,AR1+3).

Instead, NetTrug designs two new trusted kernel frameworks in TP : a NIC I/O
framework with partial driver integration, and a notifier and worker framework for

62

3.6. TRUGW’S DESIGN

Auxiliary
Services SockHelper

NIC

su
pe

rv
is

or
 (k

er
ne

l)
us

er

UP: Normal World (NOS) TP: Secure World (TEE OS)

NIC Tdrv

TEE drv

frames

UR traffic path

NIC Udrv*

ConfigService

Routing

TpU

TpK

UpU

UpK

 | x | x | x
x | x | x |

Socket API
TCP/IP Stack

Virtio-Net DriverVirtio-

MMIO

Ne
t NetTrug

VN
IC

IRQ DA

shm*

virtqueues

TLS*

port/patch*
 net. traffic
 config flow

trusted
untrusted

T

U

new

TEE OS kernelNOS kernel

Netifs
Firewall*
Workers

Configs*

Figure 3.3: The TruGW architecture with untrusted (dark) and trusted (light) compo-
nents. New components are marked with dashed lines; heavily ported or patched
ones with stars.

efficient I/O scheduling. To keep the TCB small (SR7), NetTrug’s I/O framework
implements only the essential network and link layer abstractions required for I/O op-
erations of NIC drivers, e.g., packet queues and NIC device interfaces. Furthermore,
NetTrug splits each NIC driver in two parts: a trusted I/O part (Tdrv) and an un-
trusted auxiliary part (Udrv). As shown in Figure 3.3, NetTrug integrates only the
trusted part Tdrv into T k

P , but keeps Udrv in the untrusted network OS. Tdrv protects
the NIC I/O descriptor rings in TP memory, handles NIC interrupts, and securely per-
forms I/O isolated from UP attackers (SR4). Udrv has no NIC access and only handles
uncritical tasks on behalf of Tdrv (split details in Section 3.7.3.1). To enable fast but
compatible, low TCB I/O paths (SR7,AR1+3-4), NetTrug keeps the system scheduler
and threading in the UP NOS and instead designs new trusted NIC I/O workers. These
workers build on lightweight, UP -scheduled TEE OS threads, but are designed to mini-
mize costly TZ context switches to UP and be notifiable by trusted interrupt handlers.
They are scheduled via a new trusted notifier on packet events, and run all NetTrug
network tasks, incl. Tdrv (details: Section 3.7.2). Combined, these frameworks ensure
that NetTrug has exclusive control over the gateway’s ingress and egress network paths
and can efficiently perform secure NIC I/O even under a full UP system compromise
(SR1+4,AR4).

Routing and Firewall For secure networking, NetTrug additionally requires trusted
traffic routing and filtering—features entirely missing in current TEE OSes. However,
we cannot directly port existing network stacks into TZ. Similar to driver frameworks,
they consist of large modules which would bloat the TCB (SR7) and heavily rely on
threading and synchronization primitives not efficiently available in compatible TEE
OSes (AR1+3-4). In addition, these stacks are not designed to defend against UP

system-level attackers (SR1-5). Therefore, NetTrug designs new TZ-aware network-
ing modules on top of its I/O and worker frameworks. In contrast to existing stacks,
NetTrug focuses on the security-critical “core services”—routing and firewall—and ex-
plicitly excludes client protocol and socket stacks (e.g., TCP/IP) from TP to minimize

63

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

the TCB [248] (SR7), as shown in Figure 3.3. NetTrug’s exclusive NIC control guaran-
tees secure traffic processing by its networking modules (SR3-4). NetTrug introduces
trusted and untrusted network interfaces on which its workers enforce trusted rout-
ing and firewall policies. NetTrug maps all physical NICs to trusted interfaces by
default, and can enforce extra routing and filter rules on untrusted interfaces. In Sec-
tion 3.6.2, we will explain how NetTrug and its virtual VNIC device securely enable
tightly-controlled network access to UP services via an untrusted network interface.
For traffic filtering, NetTrug incorporates a network firewall into its trusted networking
frameworks. NetTrug assumes at least a stateful L3/L4 firewall for secure, efficient
traffic protection, but is conceptually oblivious to the concrete firewall capabilities
(cf. Section 3.7.2). In contrast to commodity gateways, NetTrug securely manages
trusted routing and firewall policies in TP and guarantees mandatory policy enforce-
ment. UP attackers can neither bypass nor tamper with these policies (SR1-3).

3.6.2 Securely Sharing Network Access

As NetTrug isolates all NICs and processes their traffic securely in T k
P , any direct

network access by UP attackers is blocked (SR4). However, as NetTrug focuses on
trusted network I/O and security-critical services (SR7), all remaining gateway services
stay in UP and become unreachable. To resolve this compatibility issue, TruGW designs
VNIC, a new virtual network device that performs secure traffic forwarding between
UP and TP . In contrast to commodity virtual network devices [165], VNIC is tailored
to TZ and integrated into NetTrug’s networking frameworks. Together with VNIC,
NetTrug enables tightly-controlled network access for UP services (AR2).

From UP ’s point of view, VNIC exposes a memory mapped virtio-net device, i.e.,
a virtual Ethernet card with a low TCB memory interface (virtio-mmio) following the
virtio standard [165] (SR7). That way, the UP NOS can use its builtin virtio drivers
(AR3) to initialize a network interface to VNIC, which serves as UP ’s default interface
for all network I/O (cf. Section 3.7.3.2). The interface is configured with all IP addresses
of the gateway. As a result, UP services need not be modified and can use the standard
socket API and TCP/IP stack of the NOS for their network communication (AR2).

From TP ’s point of view, VNIC is a special trusted NIC driver associated with
an untrusted NetTrug network interface. VNIC performs the buffer I/O between the
untrusted UP virtio-net driver and NetTrug. VNIC’s virtual I/O rings are located
in untrusted memory shared with the UP driver (virtqueues, Figure 3.3). Therefore,
VNIC must securely copy network buffers between the rings and TP and check that un-
trusted buffers never overlap with trusted TP memory. That way, VNIC prevents traffic
tampering and memory attacks by UP system-level attackers and enables NetTrug to
securely process the network buffers in protected TP memory (SR3, SR4).

VNIC provides an explicit, secure path to UP services and thus enables NetTrug
to make them reachable again. However, NetTrug must enforce additional security
measures on the VNIC-associated untrusted network interface to protect forward traffic
against UP (SR4) and prevent address spoofing attacks by UP -located attackers (SR5).
By default, NetTrug routes traffic only to UP if it is explicitly destined to one of
TruGW’s IPs. That way, the forward traffic stays isolated from UP (SR4) and avoids

64

3.6. TRUGW’S DESIGN

additional I/O overhead (AR4). To prevent spoofing by UP (SR5), NetTrug replaces
the source MACs of all egress traffic with those of the output interfaces, drops packets
from UP with spoofed source IPs, and handles UP ’s host discovery messages locally
in TP (Section 3.7.4.1). In addition, TruGW enables trusted admins to define firewall
policies directly on the VNIC interface to tightly control network access from and to
UP , as discussed next.

3.6.3 Trusted Policy Configuration

Administrators are used to manage network policies using a NOS-provided UP web
application. However, any configuration service inside UP gives system-level attackers
full control over a gateway’s policies (SR3+6). Naïvely, we could isolate a configuration
service in TP and make it remotely reachable directly via NetTrug. Yet this would
require a full network and web stack in NetTrug (incl. a full-fledged web server, TCP/IP
stack, and socket API), leading to a stark increase in its TCB size and attack surface
(SR7).

Instead, TruGW offers a web-based configuration that does not require these com-
plex software stacks. To this end, we introduce ConfigService, a new tiny trusted user
space (T u

P) service for secure remote configuration of NetTrug’s trusted network policies
(cf. Figure 3.3). ConfigService provides authenticated admins with a trusted web appli-
cation for policy management (SR6) while offloading web resources and the connection
handling securely to UP for a low TCB (SR7). ConfigService includes a new minimal
(≈2.1 kSLOC, plus TLS library) HTTPS endpoint to handle TLS sessions with admins
and ship a web interface to their browsers. To minimize the TCB (SR7), ConfigService
securely offloads the TCP socket management to UP ; a new untrusted user space service
(SockHelper) handles the TCP sockets for ConfigService and forwards the protected
TLS records between the UP network stack and ConfigService (Figure 3.3). That way,
ConfigService requires no TCP/IP or socket stack inside TP .

SockHelper makes ConfigService remotely reachable via VNIC. However, UP at-
tackers become strong on-path MITM attackers as they control the shared UP TCP/IP
stack. While TLS provides end-to-end protection between admins and ConfigService,
ConfigService must additionally prevent impersonation and web attacks by UP (SR6).
Therefore, TruGW introduces a dedicated trusted web address (domain or IP) for
ConfigService and supports a secure enrollment process for establishing credentials for
mutual TLS authentication. The trusted address guarantees a different web origin than
UP services even though the TCP/IP stack is shared and thus enables ConfigService to
prevent web attacks by UP (cf. Section 3.7.5). During the enrollment process, TruGW
generates a TLS server certificate with ConfigService’s trusted address and registers a
TLS client certificate for a master admin. Admins then submit their own TLS client
certificates to ConfigService and get them approved by the master admin. By leverag-
ing TLS client certificates, TruGW avoids password-related security issues [84], reduces
the risk of phishing attacks, and can benefit from TPM-based storage backends [91].

Policy Translation TruGW avoids inventing new policy languages to ease adoption.
ConfigService uses a standard routing syntax (similar to ip-route [123]) and the vanilla

65

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

firewall syntax (cf. Section 3.7.2) for configuration. In addition, ConfigService enables
the reconfiguration of TruGW’s IPs (cf. Section 3.7.4.2). Admins can reuse existing
policies and further restrict services running on the gateway by defining new routing and
firewall rules for the VNIC interface. The VNIC interface enables admins to explicitly
control traffic from and to untrusted UP services and ConfigService. Comparing to a
commodity firewall configuration tool like iptables, firewall rules on NetTrug’s physical
NIC interfaces roughly translate to the pre-/postrouting and forward chains of iptables
while rules on the VNIC interface roughly translate to the input and output chains.

3.7 TruGW Details and Implementation

We will now present the details of our TruGW architecture. We picked Linux as the UP

OS, given that many commodity gateway NOSes are derivatives of Linux (cf. Table 3.1,
page 52). For the TEE, we chose OP-TEE [145] as it is a well-known, open-source TEE
for TZ with upstream Linux support and a low TCB (SR7, cf. Table 3.2 on page 54 and
code size in Section 3.9.2 and 3.8.2). OP-TEE provides a small trusted kernel compo-
nent running in TZ’s secure kernel mode (T k

P) and supports trusted user applications
(TAs) in the secure user mode (T u

P). Our implementation targets an i.MX6 SoC [164],
which features a TZ-compatible Central Security Unit (CSU) for device isolation and
a TZ Address Space Controller (TZASC) [178] for the memory partitioning. Without
sacrificing generality and for ease of discussion, we assume an Ethernet-based router
that operates in an IPv4 network.

3.7.1 Technical Background

We now provide background information on Arm’s boot security and OP-TEE’s thread-
ing architecture as relevant for TruGW’s secure TEE integration and I/O workers.

3.7.1.1 Arm Secure and Trusted Boot

Arm secure boot provides mechanisms to verify that only trusted images are loaded
during system boot. To implement this, the boot images are signed and each loader
verifies the image of the next stage before transferring control to it. That way, secure
boot establishes a chain of trust which is rooted in a trusted root signing key. While the
details are implementation-specific, the concepts of secure boot are well known [25, 14].
They typically include: (i) a trusted root key krot stored (typically by the manufacturer)
in tamper-proof non-volatile storage (e.g., OTP) inaccessible by system software, (ii) a
trusted boot ROM which uses krot to verify the signature of the first stage bootloader
image, and (iii) a set of public key hashes used to verify subsequent boot images (e.g.,
TEE image, UP bootloader) [25, 14]. The TrustZone-specific trusted board boot [14]
follows these principles to enable verification of the TEE (TP) image(s) and the UP

bootloader. TruGW integrates its trusted kernel components into OP-TEE’s TEE
image such that they are securely verified on boot, as will be discussed in Section 3.7.2.

66

3.7. TRUGW DETAILS AND IMPLEMENTATION

3.7.1.2 OP-TEE’s Thread Scheduling

OP-TEE [145] is not in control of the CPU scheduling and relies on the Linux scheduler
in UP for running secure tasks. Linux applications must explicitly call into OP-TEE
for service. This design suites OP-TEE’s service-oriented design and principle of least
privilege and contributes to OP-TEE’s small TCB (SR7). OP-TEE implements the
GlobalPlatform TEE Client API [86] which enables applications to create a session with
an OP-TEE trusted application (TA) and then invoke TA-exposed RPC interfaces.
OP-TEE’s Linux driver and secure kernel handle the resulting thread context switches
between Linux (in UP) and OP-TEE’s TAs (in TP) based on TrustZone’s SMC CPU
instruction [178]. OP-TEE’s kernel stores the execution contexts of the Linux threads in
trusted TEE thread structures while they perform TEE tasks. In Figure 3.3 (page 63),
the resulting control flow is shown for TruGW’s SockHelper and ConfigService TA.

However, a design like OP-TEE’s causes high performance overhead and limita-
tions. Keeping the thread scheduler in UP significantly increases the required number
of expensive context switches between TP and UP on common tasks, e.g., thread syn-
chronization. Furthermore, trusted TP interrupt handlers cannot schedule TEE tasks
as the UP scheduling APIs used for TEE-associated threads are context-switching and
therefore incompatible with interrupt contexts [215]. For that reason, such scheduling
designs (incl. OP-TEE’s) are unsuitable for fast, trusted network I/O as required by
TruGW. This motivated us to design TruGW’s new worker framework (cf. Section 3.6.1)
which overcomes these limitations and enables efficient NIC I/O in TP while keeping
the scheduler in UP , as we will discuss in detail in the next section.

3.7.2 TEE Integration and Networking

TruGW’s security is rooted in the integrity of its TP components and boot process.
Therefore, TruGW leverages secure boot to guarantee that only trusted bootloader
and TEE images are loaded (cf. Section 3.7.1.1). TruGW’s trusted kernel (T k

P) compo-
nents (cf. Figure 3.3) extend OP-TEE’s kernel and are therefore verified as part of the
TEE images (SR2). Optionally, TruGW can include all UP OS images in the secure
boot chain, e.g., by combining trusted boot with UEFI secure boot [36]. The trusted
bootloader includes a device tree (DT) blob [144] which describes all hardware compo-
nents of the system. On TEE boot, NetTrug parses the DT to bind all NICs to TP by
configuring them as secure in i.MX6’s CSU2 [135] and thus protect them against UP

(cf. Section 3.6.1). To prevent early boot attacks by UP , TruGW transfers control to
the UP bootloader only after all protections have been successfully set up (SR1).

Trusted Networking NetTrug is TruGW’s central extension to the trusted TEE ker-
nel. NetTrug mediates all gateway traffic and securely performs trusted network I/O
and policy enforcement in T k

P (cf. Section 3.6.1). On TEE boot, NetTrug initializes
one trusted network interface for each NIC and one untrusted interface for VNIC and
allocates an egress queue, ARP cache (cf. Section 3.7.4.1), I/O workers, and a config-
urable, static IP address (cf. Section 3.7.4.2) to each of them. NetTrug tags untrusted

2a TZPC or an other SoC-specific technology can replace the CSU

67

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

interfaces, s.t. its routing and firewall modules can enforce special restrictions on them,
e.g., to isolate trusted forward (and broadcast) traffic and prevent spoofing attacks by
UP (SR4-5 ; cf. Section 3.6.2 and 3.7.4.1). For packet filtering, NetTrug incorporates
the stateful, BPF-based L3/L4 firewall NPF [188]. To this end, we ported NPF to OP-
TEE and NetTrug’s worker framework, and integrated it as a callable firewall module
into NetTrug’s networking loop, where NPF enforces trusted filter rules on given IP
packets. We picked NPF as it is well-known (NetBSD’s firewall) and feature-rich. How-
ever, conceptually, NetTrug could adopt additional firewall modules (e.g., application
level) as trusted kernel or user modules.

NetTrug’s new I/O workers perform the actual traffic processing for each interface
securely in T k

P using a polling-based I/O model. On setup, NIC drivers (incl. VNIC)
request I/O workers for their interfaces and allocate device-specific I/O callbacks to
them. On a packet event (e.g., signaled by an interrupt handler), workers poll and
process all current RX (or TX) packets of their assigned NIC, before reentering a
sleep state. They perform a typical I/O loop: (i) Ethernet RX via driver, (ii) link
layer processing, (iii) ingress filtering and IP routing, (iv) egress filtering and ARP
resolution, (v) egress enqueueing, and (vi) packet transmission via driver.

NetTrug’s Workers For TruGW to be practical, it is crucial that TruGW’s trusted
networking causes only a small performance penalty compared to commodity gateways
(AR4). While TruGW and OP-TEE both follow the idea of keeping full scheduling
and threading stacks in UP to preserve compatibility and a low TCB (cf. Section 3.6.1),
OP-TEE’s approach is not suitable for efficient NIC I/O. OP-TEE relies on UP threads
to call into the TEE for service and assigns them lightweight TEE tasks (a.k.a. threads)
on entry (cf. Section 3.7.1.2). This design causes high overhead on thread switches and
synchronization—both omnipresent in networking cores—due to costly context switches
between TP and UP . In addition, it is not possible to schedule TEE tasks from trusted
interrupt handlers as required for NIC I/O, because the UP APIs are context-switching
and thus not callable from interrupt contexts [215].

NetTrug’s trusted workers build on lightweight (OP-)TEE threads, but overcome
their limitations. NetTrug exposes a new, minimal worker registration interface to UP ,
which a helper service uses to provide a pool of UP threads. One thread registers
as NetTrug’s notifier and the others as workers. NetTrug’s networking modules (e.g.,
drivers) can request scheduling of a worker using a new dedicated T k

P API (similar to
NAPI [48]). The API directly flags a worker without any context switch and is thus also
callable from trusted NIC interrupt handlers, e.g., on a packet event. NetTrug’s notifier
periodically checks for flagged workers and if sleeping, wakes up their associated threads
using UP ’s scheduler. As the worker’s sleep and wake-up operations fall back to costly
context switches to UP , NetTrug minimizes their number using several optimizations,
e.g., I/O batch processing, notification coalescing on multiple packets or full queues,
and a grace period of idling before putting worker threads to sleep. That way, NetTrug
keeps the performance penalty low (cf. Section 3.9.3) while preserving a UP -compatible,
low TCB design.

68

3.7. TRUGW DETAILS AND IMPLEMENTATION

3.7.3 Trusted Network Device I/O

3.7.3.1 Split NIC Driver Operation

NetTrug’s network I/O and worker frameworks provide the essential support required
for secure and efficient NIC driver I/O in TP . As full NIC drivers would bloat the TCB
(SR7), we split them and port only the critical, I/O relevant driver parts to OP-TEE
and NetTrug while keeping the uncritical rest in UP (cf. Section 3.6.1). On TP boot, the
secure subdriver Tdrv registers a trusted network interface and I/O workers on NetTrug
for the NIC and securely allocates the NIC I/O descriptor rings in TP . Combined with
the NIC’s TP -binding established by NetTrug (cf. Section 3.7.2), the NIC is in a clean
and protected state before the untrusted NOS starts booting (SR1). On UP boot, the
untrusted subdriver Udrv is responsible for performing uncritical configuration tasks
(e.g., power management) [246] and starting the physical Ethernet device of the NIC
(PHY).3 However, the NIC protection blocks any access attempts by Udrv to a NIC,
s.t. they result in a data abort (DA). Therefore, Tdrv registers a secure DA handler.
That way, if an uncritical Udrv task requires a one-time NIC access (e.g., PHY startup),
Tdrv can trap the access fault in TP , decode it [135], and securely perform the access
on behalf of Udrv. After boot, the trusted NIC workers securely perform the NIC I/O
and the packet forwarding between the NICs and NetTrug. Tdrv securely handles the
NIC’s I/O interrupts in TP and forwards uncritical ones to Udrv if required. Udrv is
not involved in the I/O phase, which enables a secure, low overhead operation (SR2-4,
AR4).

3.7.3.2 VNIC Device I/O

We designed VNIC’s UP -interface based on virtio-net and virtio-mmio [165] to make
it compatible with commodity NOSes and drivers (AR3) while having a small TCB
(SR7). On TP boot, VNIC registers an untrusted network interface on NetTrug and
extends the device tree [144] (cf. Section 3.7.2) to expose itself as a simple (SR7),
memory-mapped device to UP (virtio-mmio). On UP boot, Linux detects the VNIC
device and uses its virtio default drivers to set up a network interface for UP . To enable
UP interaction, VNIC exposes virtual device registers to UP using a dedicated memory
region. VNIC protects the region from UP via the TZASC (cf. Section 3.7), s.t. access
attempts by UP trap as data abort exceptions into TP . On a trap, VNIC decodes the
respective physical target address [135] and maps it to its virtual device registers. That
way, VNIC can transparently detect and handle configuration requests and I/O ring
notifications by UP . On network I/O, VNIC’s NetTrug worker receives Ethernet frames
from UP or NetTrug, securely processes and routes them, and forwards traffic between
TP and UP (cf. Section 3.6.2 and 3.7.2).

3a potential splitting of the PHY drivers is left as future work

69

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

3.7.4 Address Resolution and Assignment

3.7.4.1 ARP

TruGW must guarantee secure MAC address resolution to prevent redirection and
spoofing attacks by attackers in UP (SR5). Therefore, NetTrug includes a trusted
ARP stack inside TP and performs extra checks on UP traffic. For the physical NIC
interfaces, the ARP stack handles MAC address resolution and ARP requests securely in
T k

P . For the untrusted VNIC interface, NetTrug performs special steps to prevent ARP
spoofing attacks by UP : (a) UP ’s ARP requests are directly answered by NetTrug with a
virtual MAC and (b) UP ’s ARP replies are dropped. That way, NetTrug transparently
handles UP ’s ARP resolution and prevents UP from poisoning the ARP caches of any
NIC interface or of any internal or external host (SR5). When forwarding traffic to
UP , NetTrug knows VNIC’s UP -exposed MAC and can directly use it as the destination
MAC.

3.7.4.2 DHCP and DNS

By default, TruGW does not assign IP addresses or handle DNS queries to keep its
TCB small (SR7). TruGW has a set of static, preconfigured (yet configurable) IP
addresses (cf. Section 3.7.2). We assume that network admins reconfigure these to
fit their setup and operate a dedicated DHCP server to assign addresses to clients.
Conceptually, NetTrug could incorporate a basic DHCP stack for smaller networks, e.g.,
providing gateway, client, and DNS server IPs. However, a full DHCP server would
require a UDP/IP and socket stack inside TP , which significantly increases TruGW’s
TCB (cf. Section 3.6.1). Regarding DNS, the current design of TruGW assumes DNS
to be outside of the gateway, such as a dedicated DNS resolver or an external DNS
resolver (e.g., provided by ISPs or other entities such as Google). Either way, NetTrug
protects the confidentiality and integrity of DNS and DHCP communication against
UP system-level attackers using its restrictive routing and anti-spoofing measures on
the VNIC interface (SR4-5 ; cf. Section 3.6.2 and 3.7.4.1).

3.7.5 Trusted Policy Management

TruGW must prevent unauthenticated network communication by UP and network at-
tackers until a trusted policy has been provided. On startup, NetTrug therefore sets
up a “restrictive boot policy”. This policy only allows local HTTPS connections to
TruGW’s configuration ports, but neither outgoing UP connections nor traffic forward-
ing across network clients. That way, NetTrug restricts network traffic to local con-
figuration sessions until a policy gets configured via ConfigService or securely restored
from disk (SR1).

ConfigService is implemented as an OP-TEE trusted user application (TA). Its
binary is signed, integrity checked by OP-TEE on load, and protected against version
rollbacks [145]. On an admin connection, ConfigService ships only an initial tiny,
integrity-checked (hash) root HTML file. All other web resources are loaded from an
untrusted UP Apache server. That way, ConfigService can keep its latency and memory
footprint low (cf. Section 3.9.3 and 3.9.4) and does not depend on external resources

70

3.7. TRUGW DETAILS AND IMPLEMENTATION

which are blocked on startup (SR1+7,AR4). ConfigService uses subresource integrity
(SRI) [11] to guarantee the integrity of the UP -offloaded resources (SR6). Furthermore,
it verifies custom HTTP request headers to protect against cross-site request forgery
(CSRF) [23]; attacker-induced requests from different origins, e.g., by rogue untrusted
services (cf. Section 3.6.3), cannot add such custom headers. To support NPF’s policy
language, we ported NPF’s client tool to WebAssembly (Wasm) [67]. It parses the NPF
policies inside the trusted admin browsers and sends BPF filters via ConfigService to
NetTrug, where they are securely parsed, compiled, and enforced.

ConfigService’s server and client authentication is based on TLS server and client
certificates, respectively. On initial boot, NetTrug securely issues a self-signed TLS
server certificate Ccnf for ConfigService’s trusted web address (cf. Section 3.6.3) and
stores it on rollback-protected storage. For initial enrollment, the master admin then
connects via an exclusive physical network access to ConfigService and uploads a se-
curely generated TLS client certificate Cmst. In addition, the master admin distributes
Ccnf to all admins for certificate pinning (cf. Section 3.7.6) to prevent phishing and
CSRF attacks against ConfigService’s trusted address, especially by UP attackers. The
master can trust the initial Ccnf on first use (TOFU) as the secure boot (cf. Sec-
tion 3.7.2), factory state of UP , and exclusive network access of the master admin rule
out any device or network attacker. On completion, ConfigService securely stores Cmst
and starts enforcing access control based on the TLS client certificates of the HTTPS
client connections. Clients without a registered TLS client certificate can only upload
a TLS client certificate Cadm to request admin access, which then has to be explicitly
granted by the master. Only admins and the master have access to the trusted routing
and firewall policies. The master can additionally revoke admin certificates or request
server key rollovers, e.g., on a key breach. An explicit trusted factory reset (e.g., via
button) can wipe all certificates for a full re-enrollment.

3.7.6 Deployment

TruGW has been designed with the goal to be compatible with commodity Arm gateway
routers (AR1). TruGW currently requires Arm TrustZone with memory and device
isolation (TZASC, TZPC) and support for rollback-protected storage (e.g., eMMC with
RPMB). TP ’s secure memory demands are about 16–32 MB and therefore easily met
by many router platforms (cf. Section 3.9.4). Regarding software, TruGW is compat-
ible with commodity Linux and its upstream OP-TEE and virtio drivers (AR3). The
untrusted NIC drivers (Udrv) are slightly adapted versions of the Linux drivers. Man-
ufacturers can easily deploy TruGW, because its T k

P components are direct extensions
of the OP-TEE image(s) and its ConfigService TA and UP services can be packed into
OP-TEE’s Linux software package. TruGW is non-intrusive in that its TEE extension
does not affect other applications (AR2) and its UP helper services (e.g., SockHelper)
do not require any special permissions.

Manufacturers can update TruGW using standard methods. The untrusted and
trusted user space components (incl. ConfigService) can be updated via regular Linux
package updates. Attackers cannot manipulate the trusted components as OP-TEE
only accepts vendor-signed TAs (cf. Section 3.7.5). TruGW’s trusted kernel components

71

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

(e.g., NetTrug) require an update of the TEE image using existing (or device-specific)
methods for firmware updates [15]. TruGW does not affect the way commodity UP

software is updated.
Admins can follow common best practices for managing TruGW’s TLS server and

client certificates. The master admin distributes ConfigService’s server certificate Ccnf
to all admins for certificate pinning (e.g., via group policies). UP manages TLS server
certificates of untrusted UP services. Admins must vet these UP certificates to not
include the trusted web address of ConfigService before distributing them to guarantee
distinct web origins (cf. Section 3.6.3). To ease the UP vetting, TruGW could inte-
grate a TP certificate authority restricted to untrusted addresses (cf. RFC5280), whose
certificate could then be distributed instead. Key breaches and rollovers are securely
handled by master or via a full re-enrollment (cf. Section 3.7.5).

3.8 Security Analysis

We now analyze TruGW’s security design by discussing its countermeasures against
critical attacks and assessing how it contains real-world vulnerabilities of commodity
gateways.

3.8.1 Attacks and their Countermeasures

We now summarize attacks against TruGW. Many of them are directly related to the
requirements defined in Section 3.5.1.

Adversary Types Following our defined threat model (cf. Section 3.4.1), TruGW’s
main focus is on system-level attackers (Sysgw) which gained full control over UP via a
remote service and system exploit. Furthermore, we assume malicious network clients
located in internal (int.) or external (ext.) networks with the goal of bypassing access
restrictions. Beyond our threat model, we assume that adversaries might control a web
page visited by an admin (web). Finally, while we regard admins and their systems as
trusted, we also discuss the implications of a system-level attacker on the systems of
the admins (Sysadm) or master (Sysmst). Based on these attacker roles, we now discuss
how TruGW protects against 14 security-critical attacks shown in Table 3.4 (page 73).

A01: Image/Binary Tampering (SR2) The integrity of TruGW’s TP images (e.g.,
NetTrug) and device tree are guaranteed by secure boot (cf. Section 3.7.2). Tampering
with ConfigService’s binary is prevented as OP-TEE verifies TA binaries on load and
prevents rollbacks.

A02: Code/Data Tampering (SR2) Sysgw cannot tamper with TruGW’s TP com-
ponents using memory writes or direct memory access. From boot on, TruGW protects
TP memory and NICs from Sysgw using TrustZone and securely allocates all data in
TP (cf. Section 3.7.2).

72

3.8. SECURITY ANALYSIS
Ta

b
le

3.
4:

O
ve

rv
ie

w
o

fT
ru

G
W

’s
d

e
fe

n
se

m
e

a
su

re
s

a
g

a
in

st
se

c
ur

ity
-c

rit
ic

a
la

tt
a

c
ks

b
y

th
e

a
d

ve
rs

a
rie

s
d

e
fin

e
d

in
Se

c
tio

n
3.

8.
1.

T
ar

ge
t

/
G

oa
l

A
tt

ac
k

A
dv

er
sa

ri
es

T
ru

G
W

’s
D

ef
en

se
M

ec
ha

ni
sm

s
Se

cu
re

?
C

om
po

ne
nt

A
01

:
Im

ag
e/

B
in

ar
y

Ta
m

pe
rin

g
Sy

s g
w

se
cu

re
bo

ot
+

sig
ne

d
TA

s
✓

In
te

gr
ity

A
02

:
C

od
e/

D
at

a
Ta

m
pe

rin
g

Sy
s g

w
T

Z
m

em
or

y/
N

IC
pr

ot
ec

tio
n

vi
a

✓
N

et
Tr

ug
(+

T
dr

v)
Po

lic
y

En
fo

rc
em

en
t

A
03

:
Po

lic
y

En
fo

rc
em

en
t

B
yp

as
s

Sy
s g

w
,i

nt
.,

ex
t.

N
et

Tr
ug

’s
N

IC
I/

O
an

d
po

lic
ie

s
+

✓
fir

ew
al

l’s
pe

rim
et

er
lo

ca
tio

n

A
dd

re
ss

Sp
oo

fin
g

A
04

:
D

ire
ct

M
A

C
/I

P
Sp

oo
fin

g
Sy

s g
w

,i
nt

.
N

et
Tr

ug
’s

fil
te

rin
g

(+
po

rt
✓

pi
nn

in
g

+
su

bn
et

w
or

k
iso

la
tio

n)
A

05
:

A
R

P
Po

iso
ni

ng
/S

po
ofi

ng
Sy

s g
w

,i
nt

.
N

et
Tr

ug
’s

tr
us

te
d

A
R

P
ha

nd
lin

g
✓

(+
cf

.A
04

)
Tr

affi
c

Pr
ot

ec
tio

n
A

06
:

Tr
affi

c
Ta

m
pe

rin
g/

Sn
iffi

ng
Sy

s g
w

T
dr

v
+

N
et

Tr
ug

’s
N

IC
I/

O
+

✓
re

st
ric

tiv
e

ro
ut

in
g

Tr
us

te
d

Po
lic

y
C

on
fig

ur
at

io
n

A
07

:
Po

lic
y

Ta
m

pe
rin

g
Sy

s g
w

T
ZA

SC
+

N
et

Tr
ug

+
se

cu
re

✓
st

or
ag

e
A

08
:

Po
lic

y
C

ha
ng

e
vi

a
A

ut
h.

B
yp

as
s

Sy
s g

w
,i

nt
.(

,e
xt

.)
C

on
fig

Se
rv

ic
e’

s
en

ro
llm

en
t

an
d

✓
ce

rt
ifi

ca
te

m
an

ag
em

en
t

A
09

:
C

on
fig

C
on

ne
ct

io
n

Ta
m

pe
rin

g
Sy

s g
w

,i
nt

.
C

on
fig

Se
rv

ic
e’

s
pr

ot
ec

te
d

T
LS

✓
en

dp
oi

nt
A

10
:

C
on

fig
Se

rv
ic

e
Sp

oo
fin

g
Sy

s g
w

,i
nt

.,
we

b
C

cn
f

pi
nn

in
g

+
tr

us
te

d
do

m
ai

n
✓

or
IP

ve
tt

in
g

A
11

:
C

SR
F

ag
ai

ns
t

C
on

fig
Se

rv
ic

e
we

b
(S

ys
gw

)
cu

st
om

re
qu

es
t

he
ad

er
+

✓
tr

us
te

d
do

m
ai

n
or

IP
A

12
:

C
on

fig
Se

rv
ic

e
Fi

le
Ta

m
pe

rin
g

Sy
s g

w
SR

I
+

ha
sh

in
g

(+
sig

ne
d

TA
s)

✓
A

dm
in

s
/

M
as

te
r

A
13

:
A

dm
in

/M
as

te
r

C
om

pr
om

ise
Sy

s a
dm

,S
ys

m
st

T
PM

+
T

EE
br

ow
se

r
+

se
cu

re
(✓

)
us

er
I/

O
Le

ak
ag

e
A

14
:

C
ov

er
t

C
ha

nn
el

(H
dr

s,T
im

e)
in

t.,
ex

t.
(S

ys
gw

)
he

ad
er

fil
te

rs
+

tr
affi

c
tu

nn
el

s
+

(✓
)

tim
e

m
as

ki
ng

73

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

A03: Policy Enforcement Bypass (SR1/3) Sysgw cannot bypass NetTrug’s trusted
policies, because NetTrug has full control over the NIC I/O paths from TEE boot
(cf. A02) and can therefore guarantee their enforcement. int. and ext. attackers cannot
bypass TruGW’s policies due to TruGW’s deployment at the perimeter.

A04: Direct MAC/IP Spoofing (SR5) TruGW prevents Sysgw from sending traffic
with spoofed source MAC or IP address by replacing the source MAC with the MAC
of the resp. output NIC and by dropping UP packets with spoofed source IP on VNIC
(cf. Section 3.6.2). To defend against int. adversaries, TruGW can securely enforce
port-based MAC pinning schemes and subnetwork isolation in TP .

A05: ARP Poisoning/Spoofing (SR5) TruGW performs ARP request and response
handling securely in NetTrug. To prevent ARP poisoning and spoofing by Sysgw,
NetTrug isolates UP ARP messages by directly replying to UP ARP requests and not
forwarding UP ARP replies (cf. Section 3.7.4). For int. attackers, NetTrug can securely
enforce static routes or other common schemes (cf. A04).

A06: Traffic Tampering/Sniffing (SR4) Sysgw can neither read nor manipulate any
forward traffic or any network packet stored in TruGW’s trusted I/O buffers. NetTrug
and its secure NIC drivers (Tdrv) protect the NIC I/O paths (incl. I/O rings) in TP

(cf. Section 3.6.1). In addition, NetTrug routes only UP -destined traffic to UP (cf. Sec-
tion 3.6.2).

A07: Policy Tampering (SR6) Sysgw cannot directly tamper with trusted policies in
memory or on disk. NetTrug isolates the policies in TP memory and allows changes
only by ConfigService. Disk backups are protected via OP-TEE’s secure storage API.

A08: Policy Change via Auth. Bypass (SR6) Sysgw and int. cannot modify trusted
policies (or IPs) via ConfigService, because only master and admins have access. In
addition, the initial master enrollment is secure, because the gateway (incl. UP) is
in a secure boot state and the master has exclusive device access (cf. Section 3.7.5).
Afterwards, master grants only trusted admins access to ConfigService and blocks any
malicious requests by Sysgw or int. TruGW restricts access to ConfigService to internal
clients, which blocks ext.

A09 Tampering with Config Session (SR6) Sysgw and int. cannot tamper with con-
nections between trusted admins and ConfigService, because they are TLS-protected
and end in TP .

A10: ConfigService Spoofing (SR6) Neither Sysgw, nor int., nor web can imper-
sonate ConfigService, because admins securely pin its server certificate (Ccnf) for the
trusted web address (cf. Section 3.7.5). Furthermore, admins distribute UP service
certificates only for untrusted addresses (cf. Section 3.7.6).

74

3.8. SECURITY ANALYSIS

A11: CSRF against ConfigService (SR6) TruGW prevents web attackers from
launching CSRF attacks against admins of ConfigService by requiring custom HTTP
request headers [23] (cf. Section 3.7.5) which are only settable from the same web
origin. As ConfigService has a trusted web domain (or IP) and thus different origin
than UP services (cf. Section 3.6.3), Sysgw cannot launch CSRF either.

A12: ConfigService Resource Tampering (SR6) Sysgw cannot tamper with Config-
Service’s root HTML or UP -hosted web resources, because ConfigService uses secure
hashing and subresource integrity (SRI) to check their integrity on load (cf. Sec-
tion 3.7.5).

A13: Admin/Master Compromise (SR6) While we assume the master, admins, and
their systems as trusted (cf. Section 3.4.1), we now discuss the implications of a full
compromise of their systems. Sysadm cannot steal the admin private key K−1

adm if it
has been securely generated and stored in a TPM. However, Sysadm can use the admin
credentials to maliciously reconfigure TruGW’s trusted policies via ConfigService. If
such a breach is detected, the master must immediately revoke Cadm. To prevent such
an attack, TruGW can deploy orthogonal solutions on the admin-side, which establish
a secure I/O channel between the admin and a TEE-protected browser [68, 117], and
then enforce the use of the trusted browser for ConfigService access, e.g., via SENG’s
per-application policies (cf. Section 2.7.3). That way, Sysadm can neither steal K−1

adm
nor use it. The situation is similar for Sysmst, however, on a master key breach K−1

mst,
a full enrollment reset is required (cf. Section 3.7.5). On re-enrollment, the master
requires a clean system to prevent hijacking attempts by Sysmst.

A14: Covert Channels (Headers, Timing) TruGW’s current focus is not on an
active prevention of covert channels. However, TruGW could adopt existing techniques
to contain or prevent covert channels. For instance, TruGW could heavily filter all
packet headers (incl. UP ’s) to remove storage channels [234], deploy client-side solutions
for protected traffic tunnels to TruGW to entirely strip untrusted headers by int. (as
presented by SENG in A14 of Section 2.9), or adopt time masking schemes to prevent
timing channels by int. and ext. [35]. As TruGW currently relies on UP for scheduling
(cf. Section 3.7.2), Sysgw controls the scheduler and can exploit it for additional timing
channels. TruGW could prevent them by switching to a TP -controlled scheduler [90].

3.8.2 Real-World Vulnerabilities

Recent CVEs in network gateways have raised serious security concerns and motivated
our design of TruGW. We now asses how TruGW addresses these real-world vulner-
abilities. As discussed in Section 3.4, critical CVEs of network gateways mainly lurk
in auxiliary services, e.g., SNMP or web interfaces, and system components unrelated
to core network functionalities (cf. Table 3.2 on page 54, and Table 3.3 on page 56).
They enable remote attackers full control over the system, i.e., attackers effectively gain
the privileges of Sysgw, e.g., via a remote code execution. By design, TruGW contains
exactly these types of services and system components in UP and securely isolates the

75

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

Table 3.5: Code sizes of auxiliary network services on DD-WRT routers (rev. 47201) in
thousands of source lines of code (kSLOC).

Lines of Code [kSLOC]
Service Short Description Total C/ASM Hdrs

asterisk VoIP server 766.6 673.7 92.9
dropbear sys utils (incl. sshd) 95.3 87.5 7.8
freeradius3 authentication service 116.1 109.6 6.5
krb5 authentication service 308.3 256.9 51.4
lighttpd web server 82.9 71.5 11.4
minidlna streaming server 691.0 553.3 137.7
nginx web server 140.8 132.3 8.5
proftpd FTP daemon 227.7 220.9 6.8
samba4 file sharing server 1515.3 1431.8 83.5
snmp sys/net monitoring 288.2 257.9 30.3
squid web proxy 51.3 15.0 36.3
zabbix sys/net monitoring 233.5 221.1 12.4

SUM 4517.0 4031.5 485.5

core network functionalities (incl. firewall) in TP against Sysgw. Therefore, TruGW
successfully protects gateways against recent attacks.

TruGW’s security can only be undermined if vulnerabilities lurk in the remaining
attack surface within TP services themselves. However, TruGW only includes core
network services in TP (e.g., firewall, NIC drivers), which have faced very few CVEs,
especially compared to commodity OSes (cf. Section 3.4). Furthermore, our current
TruGW T k

P prototype (cf. Section 3.9.1) only has ≈110 kSLOC, whereas 12 popular
auxiliary services of DD-WRT routers already include an attack surface which is one
order of magnitude larger (≈4517 kSLOC, as shown in Table 3.5). Commodity UP OSes
are even larger and have faced 2-3 orders of magnitudes more CVEs than OP-TEE OS,
which faced only ≈10 CVEs (cf. Table 3.2, page 54). Therefore, TruGW drastically
decreases the TCB size of commodity routers and thus risk of critical vulnerabilities.

3.9 Evaluation

We now describe our prototype implementation and evaluate it in terms of code size
(TCB), performance, and memory overhead.

3.9.1 Open-source Prototype

We implemented an open-source TruGW prototype (cf. Section 3.10) on a Nitrogen6X
development board [30] with an i.MX6Q Arm CPU (32bit, 4 cores), 2 GB RAM, and
the Gbps Freescale Fast Ethernet Controller (FEC) as our secure NIC. FEC is known to
be technically limited to ≈470 Mbps maximum (cf. errata 004512), and indeed showed
only ≈400 Mbps for incoming/outgoing traffic in a vanilla setting in our experiments.

76

3.9. EVALUATION

However, we nevertheless chose this board due to its Ethernet support and as its Trust-
Zone support was well documented and successfully used in research projects by oth-
ers [135]. We run Debian 10 with a 4.14 Linux kernel4 as untrusted UP OS and OP-TEE
3.8.0 [145] as the secure TP OS. We use U-Boot 2018.07 as the (trusted) bootloader.4

To implement NetTrug’s ARP, routing, and NPF integration, we ported NPF-
Router [187] to OP-TEE and significantly extended it with trusted workers (incl. noti-
fier), device driver callbacks, packet buffers and queues, and VNIC support. NetTrug’s
worker registration interface (cf. Section 3.7.2) is exposed to UP via OP-TEE’s TA
client API. We have implemented VNIC mostly from scratch, but use the vqueue im-
plementation of Trusty OS [90] for the I/O rings. Tdrv follows the Linux FEC driver
and registers separate Rx and Tx workers on NetTrug for increased performance. We
integrated Tdrv into NetTrug’s driver framework and enabled interrupt sharing with
Udrv (cf. Section 3.7.3.1). For trapping and decoding UP NIC and VNIC access faults,
we have extended and integrated parts of SeCloak [135] into OP-TEE and NetTrug.

ConfigService is implemented as an OP-TEE trusted application (TA). We use the
tiny picohttpparser [167] for HTTP parsing and a small subset of mbedTLS for TLS.
The untrusted SockHelper is a small C program which handles the TCP server sockets
and calls into ConfigService via OP-TEE’s TA API. SockHelper exchanges TLS records
with ConfigService using a new ringbuffer based on OP-TEE’s shared memory API.
ConfigService’s web application is a simple web page which communicates via GET
and POST XMLHttpRequests with ConfigService and uses our WebAssembly (Wasm)
port of NPF’s client tool for the firewall policy parsing (cf. Section 3.7.5).

3.9.2 Code Size Analysis

We now analyze to what extent TruGW’s components increase the TCB size compared
to vanilla OP-TEE. We measured the source lines of code (SLOC) of OP-TEE’s and
TruGW’s trusted kernel components using cloc [52]. As OP-TEE and NPF choose
files depending on the platform configuration, we only counted the actually included
source/header files. OP-TEE’s core has ≈52 kSLOC plus ≈24.4 kSLOC for its crypto
library LibTomCrypt [213]. TruGW adds ≈8.4 kSLOC for NetTrug, VNIC, Tdrv, and
device access trapping combined plus ≈25.1 kSLOC for the NPF firewall with all its
libraries. That means, TruGW’s core increases OP-TEE’s core only by ≈16 % and the
addition of NPF is roughly on a par with OP-TEE’s crypto library (SR7). Moreover,
NPF makes up ≈75 % of the current TruGW code base, and there is a substantial
shrinking potential as NPF’s design is not tailored to TrustZone. ConfigService adds
only ≈2.1 kSLOC to T u

P , plus a subset of mbedTLS. Altogether, TruGW has a reason-
ably small impact on OP-TEE’s TCB size and significantly decreases the overall attack
surface compared to commodity UP OSes and services (cf. Section 3.8.2).

3.9.3 Performance Evaluation

We now report on the network performance of TruGW. We evaluate (i) the network
throughput of TruGW, (ii) the overhead of its firewall, (iii) TruGW’s impact on network

4we use the imx6 forks provided by the board vendor (Boundary Devices)

77

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

TrustedGateway

UpK

TpU

TCP connection
iPerf3 iPerf3

Host Host

b. For-
wardingiPerf3

TpK

a. Router RX
and TX

b.a.

Figure 3.4: Throughput evaluation setup. a. Throughput between an untrusted gate-
way router service and an internal host (both directions). b. Forwarding throughput.

latency, and (iv) the page load time of ConfigService. To this end, we interconnected
TruGW with two client hosts using a 5-port gigabit switch. The first host (HostM) is
a Macbook Pro (Mac) with an Apple Thunderbolt-to-Gigabit Ethernet Adapter. The
second host (HostL) is an HP Z1 workstation with an Intel I219-LM NIC running
Ubuntu. Each host is in a separate IP subnetwork and configured to use TruGW as its
default gateway, s.t. all traffic is forwarded through TruGW.

3.9.3.1 Network Throughput

We use iPerf3 [111] to evaluate the TCP network throughput of TruGW in three ways:
(i) the downlink of an untrusted router service (“Router RX”, e.g., file upload to a local
file server on the gateway) and (ii) uplink throughput of an untrusted router service
(“Router TX”, e.g., file download from the gateway’s file server), and (iii) the client
throughput when routing all traffic through TruGW (“Forwarding”). iPerf3 sends TCP
traffic via a single connection to another iPerf3 instance and measures the resulting
throughput performance over 10 s. Figure 3.4 illustrates our test cases and correspond-
ing network flows. For (i) and (ii), iPerf3 runs on one client host and as an untrusted
router service in TruGW’s UP . TruGW serves as the (i) receiver and (ii) sender re-
spectively. For (iii), we run iPerf3 on both client hosts and consider both sending
directions. We compare TruGW to the plain Linux setup of the Nitrogen6X board
without TrustZone as the baseline (“vanilla”). We disable NIC offloading features as
our current driver implementation does not yet support them, and map device regis-
ters uncached due to OP-TEE’s limited mapping support [135]. For both setups, we
perform 20 iterations for each test case.

Figure 3.5 shows the performance results for all six tests. (i) TruGW reaches a
receive throughput of about 385 Mbps, which is about 90 % of the vanilla throughput.
The observed overhead is likely caused by the current implementation of VNIC’s UP

interface (virtio-mmio). VNIC currently uses (legacy) interrupts for buffer notifications
to UP (and access traps in the opposite direction) which can frequently interrupt the
UP iPerf3 thread. We could further improve the results by refining VNIC’s batch
processing, but we regard the performance hit as acceptable for rare bulk uploads to
router services. (ii) TruGW reaches a transmission throughput of 392 Mbps for HostM ,
which is about 6.5 % higher than that of vanilla (368 Mbps avg.). For HostL, TruGW
reaches 99 % of vanilla’s average throughput (369 Mbps). While TruGW’s throughput
to HostM is currently higher than vanilla, we have observed comparable maximum
throughput values for HostL and vanilla, too. VNIC currently performs aggressive

78

3.9. EVALUATION

Mac Linux

Sending host

150

200

250

300

350

400

450

500

T
hr

ou
gh

pu
t

[M
bp

s]

t

v

t

v

Router RX

Mac Linux

Receiving host

150

200

250

300

350

400

450

500

t
v t v

Router TX

M→L L→M

Connect. dirct.

150

200

250

300

350

400

450

500

t
v

t v

Forwarding

TruGW (t) vanilla (v)

Figure 3.5: iPerf3 TCP throughput when the TruGW gateway router is used as a receiver
(left), sender (middle), and forwarder (right); each for two clients (Mac/Linux).

packet forwarding retries on a NIC congestion, which seem to benefit from HostM ’s
ACK sending behavior. (iii) Lastly, TruGW’s forwarding performance reaches 92.6 %
to 93.8 % (236 Mbps avg.) of the vanilla throughput when HostM is the sender and
101.9 % to 103.5 % (221 Mbps avg.) when HostM is the receiver. In summary, TruGW
shows an overall high throughput ≥90 % (AR4) and performs similar to the vanilla
system (92.6 % to 103.5 %) when forwarding.

3.9.3.2 Firewall Overhead

We now measure if adding NPF firewall rules causes overhead. We repeated the three
iPerf3 measurements with HostM while applying filter rules, i.e., the “Mac Router
RX/TX” and the “M → L” benchmarks of Figure 3.5. For RX/TX, we defined rules
on the VNIC interface, which check for TCP connections to TruGW’s IP on iPerf3’s
port. For forwarding, we defined analogous rules on the NIC interface to match iPerf3’s
connections to HostL. We performed 20 iterations of each test with (a) stateful rules
(connection tracking) and (b) bidirectional, stateless rules.

We observed a small overhead of about 0.5 % to 1 % in each test. This is not
surprising, because NPF enforces rules using just-in-time compiled BPF code and has
a fast path for connection tracking, which enables efficient allowlisting policies. While
the overhead will naturally increase with large rulesets, the observed overhead comes
from NPF’s static code. As long as stateful policies capture most of the traffic—which
is the norm for most networks—the overhead is thus marginal.

3.9.3.3 Latency Overhead

We now evaluate how TruGW affects latency during web browsing and on a per-packet
basis.

Web browsing To follow a typical user scenario, we measure the client-side load times
of web pages. We selected the ten stable pages from the top 13 of the Tranco list [132]
for the evaluation. We excluded “tmall.com” and “qq.com” as they blocked the page

79

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

Table 3.6: Overview of Chrome page load times and overhead when routing through
TruGW as an intermediate router.

avg. load [ms]
Web Page Baseline TruGW Overhead
instagram.com 1298.5 1362.8 4.95%
linkedin.com 654.0 685.8 4.86%
google.com 563.0 590.1 4.81%
youtube.com 560.8 587.2 4.71%
microsoft.com 823.1 856.3 4.03%
baidu.com 6642.9 6895.1 3.80%
facebook.com 813.2 843.6 3.74%
apple.com 963.8 993.0 3.03%
wikipedia.org 701.5 704.5 0.43%
twitter.com 1125.7 1126.5 0.07%

load or faced a high baseline variance (multiple seconds) and “windowsupdate.com” as
Chrome refused to load it. For each page, we measured the average load times over
10 iterations from HostM using a Chrome extension [224]. We kept all DNS entries
cached, but cleared the web caches after each page load. We compare the baseline
without TruGW (using a home router as HostM ’s direct gateway to a ≈60 Mbps line)
to a setup with TruGW as an additional intermediate router between them.

TruGW incurs an average load time overhead of ≈3.4 % reaching from 0.07 % to
4.95 % peak, as shown in Table 3.6. The latency is low when most packets arrive while
TruGW’s I/O workers are still polling, and is slightly higher when TruGW’s notifier
must wake them up (cf. Section 3.7.2). The workers partially compensate this by having
an idle grace period before entering the sleep state. We regard the observed average
overhead as reasonably small. Most of the overheads translate to page load delays of
about 30 ms, which is not noticeable by average users.

Packet Latency To gauge how latency-critical applications (e.g., gaming) are af-
fected by TruGW, we also evaluate the per-packet latency using ping. We measure
the average round trip time (RTT) from HostM to an external server for 1000 packets
over 10 iterations. We use the same baseline as in the page load test. TruGW shows an
average RTT of 14.22 ms, which is a tiny per-packet slowdown of ≈0.37 ms (≈2.67 %)
compared to the average baseline of 13.85 ms.

3.9.3.4 Trusted ConfigService Load

We now briefly report on the page load time of ConfigService’s master admin page. We
follow the approach of the previous section (Section 3.9.3.3). The load time includes
the server and client TLS authentication and the fetching of all ConfigService web
resources. We have observed an average load time of about 1385 ms, which fulfills
current user expectations of 1 s to 2 s [230]. We can further optimize ConfigService if
required.

80

3.10. ARTIFACTS

3.9.4 Secure Memory Overhead

Since routers are usually resource-constrained devices, we now discuss the secure mem-
ory overhead of TruGW. TruGW currently shares OP-TEE’s default configuration and
claims 30 MB of the system RAM exclusively for the trusted partition TP and 2 MB for
shared memory. VNIC additionally claims 268 B for its virtual device registers [165],
but its network buffers are allocated in untrusted memory instead (cf. Section 3.6.2).
These memory requirements are easily met by commodity router platforms. For in-
stance, OpenWrt [33] recommends ≥ 128 MB of RAM for routers, which is fulfilled
by the majority of its supported Arm devices.5 In addition, the TruGW prototype
currently leaves ≈20 MB of the 32 MB for trusted user apps, such that we could further
reduce TruGW’s secure memory requirements, likely to ≈16 MB. The exact secure
memory demand depends on the number of NICs and their I/O buffer sizes. For in-
stance, the FEC NIC uses two rings à 512 entries for Ethernet frames (≈1.5 MB).
However, TruGW relocates NIC I/O buffers, egress queues, and firewall states from UP

to TP , i.e., they do not increase the overall system RAM demands.
ConfigService has a small memory footprint inside the TA memory. The demands

are defined by the per-client TLS ringbuffers (≈4 kB), HTTP buffers (≈4 kB), and
internal TLS buffers (≈3.6 kB to 32 kB). The TLS admin certificates and the HTML file
are securely stored on disk. Other web resources are offloaded to UP (cf. Section 3.7.5).

3.10 Artifacts

The prototypes of TrustedGateway are available as open-source projects at https:
//github.com/trugw/ [S2]. See page 9 for a list of all open-source prototypes
covered by this dissertation.

3.11 Conclusion

The increasing attack surface introduced by commodity gateway OSes and auxiliary ser-
vices enables remote attackers to easily compromise gateway routers and bypass their
security-critical network policies. Unfortunately, network infrastructures still widely
rely on the assumption that gateways are trusted (“bastion hosts”). Existing ad-hoc
protection attempts result in large attack surfaces or are not suitable for the protection
of standalone consumer and SME gateways. TruGW bridges this important gap by
leveraging a system-level TEE to guarantee trusted policy enforcement with a small
attack surface even on a fully compromised gateway—answering our second research
question RQ2 (see page 4). TruGW’s design builds on the widely-available Arm Trust-
Zone TEE and combines it with well-supported software features (e.g., virtio) to enable
an affordable and readily deployable secure gateway architecture. TruGW thus restores
the trust in the security of gateway routers.

Together with SENG (see Chapter 2), TruGW increases the security of consumer
and enterprise networks by enforcing strong, fine-grained firewall and routing policies.
Even if a local client or gateway device is compromised by a system-level attacker,

5list of respective devices: https://openwrt.org/toh/views/toh_available_16128

81

https://github.com/trugw/
https://github.com/trugw/
https://openwrt.org/toh/views/toh_available_16128

CHAPTER 3. TRUSTEDGATEWAY: TEE-ASSISTED ROUTING AND FIREWALLING

SENG and TruGW can guarantee secure traffic attribution, forwarding, and policy
enforcement. However, both approaches have limited control on the way benign users
interact with external services, e.g., web services. In particular, they cannot protect
the user authentication towards such services, e.g., against password theft via phishing
attacks or a server-side compromise. Therefore, in the next chapter, we will explore if
TEEs can help provide users with secure web authentication.

82

4
FeIDo: Recoverable FIDO2 Tokens

Using Electronic IDs

Solving Token Loss and User Data Privacy via TEE-protected

Attribute-based Credentials

83

4.1. MOTIVATION

4.1 Motivation

Two-factor authentication (2FA) mitigates the security risks of passwords as
sole authentication factor. FIDO2—the de facto standard for interoperable web
authentication—leverages strong, hardware-backed second factors. However, practical
challenges hinder wider FIDO2 user adoption for 2FA tokens, such as the extra costs
($20-$30 per token) or the risk of inaccessible accounts upon token loss/theft.

To foster wider adoption of secure web authentication, in this chapter, we leverage
TEEs to overcome the above deployment and account recovery challenges of FIDO2 web
authentication, thus answering research question RQ3 (see page 5). We propose FeIDo,
a virtual FIDO2 token that combines the security and interoperability of FIDO2 2FA
authentication with the prevalence of existing eIDs (e.g., electronic passports) and the
attestable confidentiality of TEEs. Our core idea is to derive FIDO2 credentials based
on personally-identifying and verifiable attributes—name, date of birth, and place of
birth—that we obtain from the user’s eID. As these attributes do not change even
for refreshed eID documents, the credentials “survive” token loss. Even though FeIDo
operates on privacy-critical data, all personal data and resulting FIDO2 credentials stay
unlinkable, are never leaked to third parties, and are securely managed in TEEs, i.e.,
remotely attestable hardware containers (e.g., SGX enclaves). In contrast to existing
FIDO2 tokens, FeIDo can also derive and share verifiable meta attributes (anonymous
credentials) with web services. These enable verified but pseudonymous user checks,
e.g., for age verification (e.g., “is adult”).

4.2 Problem Description

Passwords still represent the most popular type of credentials in web authentication—
despite their widely-studied deficiencies [84], such as the risks of password database
breaches [191], shoulder surfing [65], phishing [166], or low entropy passwords [54]. To
mitigate these issues, a growing number of web services offer two-factor authentication
(2FA) to increase authentication security. 2FA schemes usually ask the user for some
proof of possession, such as one-time passwords (OTP) sent to the user’s mobile phone.
However, common second factors, e.g., SMS OTP [134] or OTP apps, are vulnerable
to client-side and server-side leaks of the OTPs and their secret seeds. Furthermore,
they require interceptable user input for entering the OTPs, and users must manage
them for each service and client device. To enable stronger 2FA, the FIDO2 standard
defines how to use protected hardware tokens (also called authenticators), especially for
web authentication [150]. FIDO2 follows a challenge-response protocol where for each
origin (e.g., web service), the hardware token securely generates and stores a public key
pair. Upon authentication, the FIDO2 client first verifies the server origin, after which
the token digitally signs a server-chosen challenge using its private key, which is never
accessible outside the token.

Given the above security benefits, FIDO2 has become the de facto standard for
strong, interoperable authentication supported by many popular services. However,
while FIDO2 support is increasing, the actual user adoption—i.e., users leveraging
FIDO2-compatible hardware tokens—lags behind. Two fundamental downsides of hard-

85

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

ware tokens hinder a wider adoption. (1) Costs: Users are reluctant to buy dedicated
hardware tokens as they incur extra costs. Even basic FIDO2 tokens cost around
$20-$30, which is a non-negligible investment. (2) Token loss: Hardware tokens are
subject to loss or theft. Users might no longer be able to log in, as token-based cre-
dentials cannot be backed up. Indeed, token vendors recommend registering at least
two different tokens to the same user account [240]—further increasing the costs and
hampering the usability of hardware tokens overall. Alternatively, users must fall back
to less secure alternative authentication or account recovery schemes (e.g., recovery
codes) if provided by the web service [238].

The barrier of additional costs has motivated vendors to offer FIDO2-compatible
“virtual” tokens. These tokens do not require extra hardware but root their signing se-
curity in trusted hardware of client devices. For instance, Android and Windows 10 have
FIDO2-certified authenticators: Android’s Keystore backed by Arm TrustZone [92], or
the Windows Hello authentication service relying on the Trusted Platform Module
(TPM). On the one hand, this allows virtual tokens to securely store authentication-
relevant secrets in trusted hardware so attackers cannot steal them. On the other, this
advantage comes at the cost that users can still not back up their authentication secrets.
Furthermore, not all user devices offer the trusted hardware (e.g., TPM) required by
the virtual FIDO2 tokens.

4.3 Contributions

In this chapter, we propose FeIDo, a fully FIDO2-compliant virtual token that tackles
the challenges of costs and token loss. FeIDo is mainly designed for—but not limited
to—providing private users with a strong second factor for two-factor web authenti-
cation. FeIDo is a virtual FIDO2 token utilizing electronic identifications (eIDs) such
as electronic passports or ID cards. FeIDo uses the communication interface of eIDs
as standardized by the International Civil Aviation Organization (ICAO) to extract
personal data from the documents. eIDs can prove the authenticity of personal at-
tributes, such as the user’s name, place of birth, and date of birth. These personal
attributes then form the basis for FeIDo’s user authentication. eIDs nicely address the
above authentication challenges in FIDO2: (1) No extra costs: eIDs obsolete the
need for dedicated security tokens for eID holders. Over 1 billion citizens already own
electronic IDs or passports [162, 214] (cf. Section 4.4.2). Our setup thus does not
impose additional hardware requirements—users can leverage eID readers such as NFC
readers that ship with off-the-shelf phones (cf. Section 4.4.2). (2) Token recovery:
The authentication in FeIDo is not bound to a particular eID but only to its verifiable
personal attributes. These attributes do not change even if a lost/stolen eID is replaced
by a new one, which enables direct credential and thus account recovery.

While personal attributes could be directly shared with and verified by authenticat-
ing services, most attributes stored on eIDs are privacy-sensitive (e.g., name, place of
living) and not required for authentication. There are many cases in which users wish
to remain pseudonymous, such as in adult websites, forums (e.g., health forums), learn-
ing platforms for kids, or even social media. Therefore, we design a FIDO2-compatible
attribute-based authentication scheme in which third parties do not learn personal de-

86

4.3. CONTRIBUTIONS

tails and credentials are unlinkable. Our core idea is to use trusted remote credential
services that validate and vet—but never share or leak—the personal data. The cre-
dential services feed the personal user data as input to a key derivation function to
derive attribute-based FIDO2 credentials. The resulting credentials depend on personal
attributes (name, date of birth, and place of birth) and a secret chosen by the credential
services but are unlinkable. To guarantee that the credential services can be trusted
to protect personal data against third parties (including the hosting providers), they
execute in attestable Trusted Execution Environments (TEEs). Users can remotely
attest the protection and authenticity of a given credential service, verifying its validity
before sharing their personal data.

In addition, our design comes with an attractive extension that is not in the scope
of existing FIDO2 tokens. FeIDo enables anonymous credentials that allow web service
providers to learn pseudonymous meta user attributes and verify their authenticity.
For example, adult websites may have to ensure that their users are of legal age, or
governmental websites may want to restrict services to residents. FeIDo’s credential
service derives such meta attributes (e.g., “is adult”) from the raw eID data (e.g., dob
= May 14, 1981) in an attestable way and, at the same time, guarantees that the raw
user data is never exposed outside of the credential service’s TEE.

Our design on the user side is agnostic to the choice of a concrete OS, hardware,
and eID. Users can use standard interfaces such as NFC to read personal data from
their eID and prove its authenticity to a credential service (cf. Section 4.4.2). The
credential service requires a TEE providing remote attestation, data encryption, and
integrity checks, e.g., as available on public cloud platforms—and one instance can
easily handle tens of thousands of users. FeIDo clients perform remote attestation be-
fore forwarding data to the credential service—notably without requiring TEE support
themselves. Clients also do not need to back up their credentials to withstand device
loss, as credentials are always freshly derived from eID data. FIDO2-capable web ser-
vices can readily use FeIDo-backed credentials, and can leverage anonymous credentials
using FIDO2 extension fields. In our evaluation, we instantiated this general design
in a concrete setting without losing generality. We securely implement an open-source
prototype (cf. Section 4.10) [S3] that consists of an Android app reading personal data
from an ePassport and a TEE-protected credential service receiving and vetting this
personal data to derive signing keys for authentication. We evaluate our prototype
by measuring the FIDO2 authentication duration on the well-known webauthn.io test
page [64]. We show that FeIDo is comparable in efficiency to existing FIDO2 hardware
tokens while tackling their shortcomings.

In summary, we make the following contributions:

• We design FeIDo, a virtual FIDO2 token that enables account recovery on a token
loss and is readily available without extra costs to the large population of users
owning a compliant eID such as ICAO-standardized ePassports.

• As the crucial enabler for account recovery, we present the concept of attribute-
based FIDO2 credentials, protecting personal data within an attestable TEE.

• FeIDo enables anonymous credentials (e.g., age group) that web providers can

87

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

verify without having access to privacy-infringing raw user attributes (e.g., date
of birth).

• We analyze the security and prototype [S3] of FeIDo.

4.4 Background and Related Work

We first provide the reader with background information on FIDO2 and electronic IDs
and describe their current shortcomings.

4.4.1 FIDO2

The FIDO2 standard (and its predecessor U2F) describes how to use hardware tokens
for authentication. Such tokens rely on public-key cryptography (PKC). To form au-
thentication credentials, the client creates a dedicated key pair per service as credentials
with the help of a hardware token (“authenticator”). The hardware token generates
and stores these key pairs. To register their credentials with an account, users send
their service-specific public key to the authenticating server (“relying party”). The
corresponding private key never leaves the hardware token, even if the user’s system
(“agent”) is compromised. To authenticate a user, client and server follow a challenge-
response protocol, as shown in Figure 4.1 for a web authentication setting. The client
signs a server-chosen challenge using their authenticator (token). To this end, the agent
verifies the origin (i.e., domain and port number) of the relying party (web service).
The authenticator then uses the origin-specific private key to sign the challenge. The
relying party uses the public key associated with the authenticating account to verify
the signed client response. In essence, possession of the private key serves as proof for
authentication.

This authentication workflow is realized in two core FIDO2 components, WebAuthn
and CTAP2. WebAuthn [150] standardizes the interface of PKC-based authentication
on the web. Basically, WebAuthn defines the communication between the client device
and the web server, including the challenge-response protocol mentioned above. The
standard defines an API for the agents that defines how to generate fresh credentials
(MakeCredential) and get the response to the relying party’s challenge (GetAssertion).
The Client to Authenticator Protocol (CTAP2) complements WebAuthn. CTAP2 de-
fines the communication between the authenticator and the agent.

The FIDO2 standard supports using authenticators in several private and enter-
prise use cases for secure authentication [72]. In this work, we set the prime focus on
FIDO2 authenticators as secure second factors for web authentication by private users.
However, we will later explain how our proposed scheme can be used as a single factor
(Section 4.9.1) or in enterprise-focused use cases (Section 4.9.2).

4.4.1.1 Open Challenges for FIDO2

FIDO2 mitigates password cracking via database breaches, phishing attacks, and inse-
cure storage of credentials. FIDO2 also makes users unlinkable across services, as the

88

4.4. BACKGROUND AND RELATED WORK

Relying Party  
(web service)

Agent 
(browser)

Authenticator
(hw token) Client Device

challenge{challenge, origin}

signature(c) s

c

s

(WebAuthn)(CTAP2)

Figure 4.1: Simplified flow of a FIDO2 web authentication.

authenticator generates a fresh public key for every relying party. However, FIDO2
introduces a new set of problems.

Costs The extra costs for dedicated hardware are one of the main obstacles to scaling
FIDO2 to the masses. Even the most basic hardware-based authenticators cost around
20-30 USD, a non-negligible expense for many. To tackle this challenge, vendors offer
FIDO2-compliant “virtual” authenticators that use trusted computing features (e.g.,
TPM or secure enclaves) of the user’s hardware. Google introduced an API to Android
OS that allows the user to store FIDO2 keys inside the Arm TrustZone-backed Android
Keystore [92]. To use this virtual FIDO2 authenticator, the user relies on the authen-
tication mechanism used to access the phone, i.e., a PIN code or biometric features.
The Windows Hello authentication service provides a similar solution based on TPMs.
FIDO2 is also available for macOS and iOS using Apple’s secure enclave for key man-
agement and FaceID and TouchID as user access control [28]. Chakraborty and Bugiel
proposed an authenticator called simFIDO [37] based on simTPM [38]. They use a
cheap SIM card running the Java Card OS as TPM to implement a FIDO2-compliant
authenticator, mitigating the cost issue. On the downside, this solution requires mobile
service providers to support and install extra applications (simFIDO and simTPM) on
their SIM cards. While all these approaches mitigate the cost issue, they require special
trusted computing features on the client side, which are not present in many consumer
devices. Furthermore, unless users choose alternative authentication methods, they will
lose access to their credentials if the device gets lost or stolen (discussed next).

Recently, support for roaming FIDO2 authenticators has been integrated into all
major browsers, which enables users to use a phone as a virtual FIDO2 second factor
for other devices [74]. While this scheme decreases the need for trusted hardware on
some user devices, this scheme still faces many disadvantages (incl. credential loss)
compared to our new scheme, as we will discuss in Section 4.6.2.1.

Token Loss Another open challenge of FIDO2 is to provide a cost-efficient and prac-
tical solution for account recovery in case the authenticator is lost. In principle, as the
private credential keys are protected on the authenticator and can not be extracted, los-
ing an authenticator implies losing access to all authenticator-protected accounts. The
naive yet recommended solution [239, 238] is registering an additional authenticator to
the same account as a backup, doubling the costs. Alternatively, if supported by the
relying party, additional authentication factors or service-specific recovery strategies,
such as SMS OTP or recovery codes, can be used, which, however, degrade security

89

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

and face several drawbacks [134, 130].
Recently, some platform vendors have partially rolled out support for multi-device

FIDO2 credentials, also called passkeys [74]. In Section 4.6.2.1, we will compare our
new scheme to passkeys and show that while they approach the token loss challenge,
passkeys are still suffering from many disadvantages and undesired tradeoffs.

4.4.2 eIDs for Authentication

This chapter proposes a FIDO2-compatible virtual authenticator that uses electronic
IDs (eIDs). eIDs and their user-based associations are inherently well-suited for au-
thentication. A combination of personal data such as the full name, day of birth, and
place of birth is reasonably specific to be used in strong authentication mechanisms.
For many eIDs, such personal data can be (i) securely read electronically, (ii) verified to
stem from a valid eID, and (iii) accompanied by freshness guarantees that show if a user
currently possesses the eID. eIDs typically include RFID chips with NFC interfaces,
for which respective NFC support is widely available on consumer phones, including
all iPhones released since 2016 (iOS ≥ 13.2) [205, 95] and most Android phones since
’15, e.g., from LG and HTC, all Samsung phones since ’15, and all Huawei phones
since ’17 [29, 95]. To prevent eID spoofing and ensure data authenticity, the personal
data is signed by a trusted issuing authority, e.g., a state. Furthermore, eIDs usually
physically protect memory for secret storage, prevent unauthorized data access, and
detect eID cloning.

The eID interfaces are either standardized (in the case of electronic passports) or
subject to the issuing country (in the case of national IDs). Having said this, an
ever-increasing number of countries deploy national eIDs or ePassports that provide
the above capabilities. For example, every eID following the ICAO standard [109] for
electronic machine-readable travel documents (eMRTDs) satisfies these requirements.
As of mid-2019, over 150 countries issued ePassports [214], including the top 10 most
populated countries constituting more than half of the earth’s population. Moreover,
also many national IDs implement this standard. For example, starting from August
2021, all European Union member states are required to issue ICAO-compliant national
ID cards [189]. Compliant IDs are also provided by Panama, Uruguay, Algeria, Saudi
Arabia, Ukraine, Kyrgyzstan, and mainland China ID cards for Hong Kong, Macao, and
Taiwan [209]. Several other national eIDs implement similar interfaces, often defined
in regional or country-specific standards [162]. Taking into account the accessibility of
ICAO-compliant eIDs, throughout this chapter, without losing generality, we assume
the eID is an eMRTD. This way, we can explain the general concept by the example of
concrete communication protocols.

An eMRTD interacts with a client through an NFC reader via well-defined protocols.
Three of these protocols [108], which map to the eID capabilities mentioned before, are
relevant in our context:

(i) PACE Password Authenticated Connection Establishment (PACE) is a
password-based access protocol to protect the communication between an eMRTD and
a reader. PACE assures that the reader is authorized to access certain data groups

90

4.5. FEIDO: DESIGN GOALS AND THREATS

on the eID [1, 27]. The chip asks the reader for a (static) password as access control,
typically printed on the eID. The user provides this eID-specific secret to the reader.
This password can optionally be cached in software to ease future accesses. The chip
and reader derive a Diffie-Hellman session key from this weak password to grant/obtain
read access and to establish a secure channel for subsequent data exchange.

(ii) PA During Passive Authentication (PA), the reader verifies the data authen-
ticity of the retrieved personal data. Next to raw data, an eMRTD chip can also send
a document security object (DSO), i.e., signed hash values of the personal data stored
on the eID. The DSO is also signed and can be verified, ensuring that only a trusted
eID authority can create valid DSOs. Readers can therefore validate the eMRTD data
by comparing data hashes.

(iii) CA While PA ensures data authenticity, Chip Authentication (CA) prevents
data and eID cloning. When initiating CA, the chip shares a static public key with
the reader. By checking this public key against the previously hash-protected eID data
received via PACE, one can verify the binding between the present eID and user data.
In addition, a successful CA channel establishment proves that the eID is in possession
of the unclonable CA private key and therefore authentic. After the reader sends an
ephemeral public key to the chip, both the chip and the reader derive a shared key
between the two parties from these keys—technically, a Diffie-Hellman key exchange.
They later use this shared key to derive session keys (encryption key and MAC key)
for secure communication.

4.4.2.1 Risks of eID-Based Authentication

The previous discussion showed that eIDs provide well-defined and easy-to-access
interfaces to extract verifiable personal data securely. However, while exposing
eID data to third parties for authentication is technically possible, it infringes a
user’s privacy as the personal data stored on eIDs is highly privacy-sensitive (e.g.,
date of birth, place of living). The data goes much beyond what is necessary for
authentication purposes. Furthermore, there are many use cases in which users wish
to remain pseudonymous (e.g., health forums), as described in Section 4.3. Therefore,
we see the potential for an eID-based authentication scheme that can be based on an
eID’s verified user data without revealing any user data to the authenticating service.

State authorities already identified authentication as another eID use case. Some
proposals even make eID-based identification compatible across countries, such as
eIDAS in the EU [158, 89, 71]. However, they either infringe privacy per the above
argument or rely on a country-specific pseudonym functionality whose authentication
credentials are invalidated every time an eID is renewed.

4.5 FeIDo: Design Goals and Threats

To overcome the roadblocks of FIDO2 adoption, this work aims to design a new au-
thenticator, called FeIDo. In the following, we present FeIDo’s goals and threat model.

91

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

4.5.1 Goals and Requirements

The goal of FeIDo is to form a FIDO2 authenticator for secure web authentication,
which overcomes current limitations of hardware and virtual authenticators. We design
FeIDo to combine concepts of virtual FIDO2 authenticators with that of smartcards
owned by billions [162] of citizens: eIDs such as electronic passports or ID cards. To
guide the design of FeIDo, we have defined six requirements:

R1 Compatibility FeIDo must be compatible with the standard FIDO2 protocols for
authenticator-based web authentication.

R2 Economic FeIDo must build on commodity hardware and eIDs that are readily
available for eID holders without extra costs.

R3 Account Recovery The user must be able to recover access to their accounts on
a FeIDo authenticator loss without having to register additional authenticators.

R4 User Privacy Third parties (incl. relying party, FeIDo provider) must neither be
able to access personal user data directly nor link personal data to FeIDo’s web
credentials.

R5 Platform Independence FeIDo must not bind users to a specific software or
hardware vendor (e.g., OS, client device).

R6 Anonymous Credentials The relying parties should be able to learn authenti-
cated yet pseudonymous meta information on a user for verification, but without
violating user privacy.

FeIDo provides a strong FIDO2 second factor for private users’ web authentication
(2FA). However, FeIDo is not limited to this application and can support additional
FIDO2 use cases, such as passwordless and enterprise schemes discussed in Section 4.9.1
and Section 4.9.2.

4.5.2 Threat Model

We follow the threat model of FIDO2 web authentication [73] and extend it to include
FeIDo-specific components and entities. Analogous to the FIDO2 setting, a trusted
user wants to register and log into a web service via their browser using the FIDO2
protocols and the FeIDo authenticator. We trust the web service and assume a secure,
authenticated connection between the browser and service. From a FIDO2 perspective,
the user’s browser forms the agent while the web service forms the relying party. We
assume the agent and client device to be trusted—following the trust setting of token-
based authentication. While we will discuss the implications of client-side attackers and
how we could relax our trust assumptions using TEEs on client devices in Section 4.7.5,
we also want to support users without access to special client-side features.

Figure 4.2 shows that FeIDo adds new components not present in existing authen-
ticators: a user eID, a remote credential service, and a client-located middleware. We
consider several attacks against each of the three components and active and passive
network attackers targeting the communication between them. We trust the individual
components in the following ways:

92

4.5. FEIDO: DESIGN GOALS AND THREATS

(a) FeIDo Authenticator

Relying Party 
(web service)

Agent 
(browser)

Middleware
Credential Service  

(TEE)eID

FIDO2 
(WebAuthn)

(c) virtual authenticator

(b) dedicated HW 
authenticator

Client Device

Figure 4.2: Comparison between (a) FeIDo and (b) existing hardware and (c) virtual
FIDO2 authenticators.

eID Similar to hardware authenticators, we trust the eID’s hardware-based pro-
tections and security protocols (Section 4.4.2) and the issuing document authority such
that we can verify if a user’s eID is genuine. That way, FeIDo can rule out attackers
trying to spoof or clone arbitrary eIDs that impersonate others. We assume an attacker
trying to steal and abuse the user eID for account hijacking (see Section 4.7.3). Finally,
we discuss the security of eIDs and explain the impact of malicious authorities on FeIDo
in Section 4.7.2.2.

Credential Service Service instances run on untrusted remote systems such
as public cloud platforms. We assume that remote attackers, including the hosting
providers and platforms, try to manipulate, steal, or clone credential services. There-
fore, we operate each service in a secure, hardware-based container [154] protecting
them against the above threats. Furthermore, we assume the containers support
remote attestation to rule out attacks that impersonate the service.

Client Middleware We do not trust the middleware to perform any eID valida-
tion but merely use it as a proxy between the eID and the credential service. Following
our assumption that we trust the client device, the middleware shares eID data only
with a valid, protected credential service, verified via remote attestation.

We assume FeIDo’s components to be free of exploitable vulnerabilities. To prevent
physical and micro-architectural side-channels, we rely on existing smartcard features
such as memory and constant-time cryptographic operations, similar to existing FIDO2
authenticators. We assume orthogonal defenses for the hardware-based containers pro-
tecting the credential services [168, 56, 20].

93

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

4.6 FeIDo: Concepts and Design

In the following sections, we explain the concepts and design of the FeIDo authenticator,
including its optional support for anonymous credentials. The section then concludes
with a deployment analysis. We refer to FeIDo’s design requirements (Section 4.5.1) in
relevant passages.

4.6.1 Big Picture

FeIDo’s core idea is to derive FIDO2 web credentials based on a user’s unique, personal
attributes that FeIDo securely retrieves from the user’s eID (R1). At its core, FeIDo
foresees hardware-protected and attestable credential services that convert privacy-
critical personal attributes—name, place of birth, and day of birth—to pseudonymous
authentication credentials. The credential service acts as a sort of “pseudonymizing
proxy” that ensures unlinkability and preserves user privacy against both the authen-
ticating services and the untrusted credential service hosters. FeIDo combines the
advantages of token-based authentication (strong security and privacy) and eID-based
authentication (easy token recovery, no extra costs), tackling the open challenges of
both schemes (cf. Section 4.4).

In FIDO2 terminology, FeIDo forms a virtual FIDO2 authenticator that combines
TEE-protected credential services with user-owned eIDs. The credential service derives
attribute-based credentials that are user-specific yet unlinkable (R4) and depend on a
user’s attributes rather than a specific physical device or eID. These attribute-based
credentials have clear advantages when it comes to account recovery because any user
eID carrying the same personal attributes can serve as a replacement eID (R2+3). In
order to retain user privacy and credential security, each credential service instance is
protected in a remotely verifiable hardware TEE and prevents attribute and credential
leakage to third parties (R4). In addition, the service supports so-called anonymous
credentials (R6), an extension that allows a relying party to learn meta user attributes,
e.g., for age verification, without violating a user’s privacy (see Section 4.6.4)—a feature
not present in current eIDs and authenticators. FeIDo’s service-based design requires
neither secrets nor trusted hardware features on client devices, which benefits account
recovery, user costs, and cross-platform support (R2+3, R5).

Figure 4.2 shows how FeIDo forms the virtual FIDO2 authenticator by combining
an off-the-shelf user eID with two new software components: a TEE-protected remote
credential service and a client-located middleware. The client middleware is a secretless
component that interfaces the FeIDo authenticator with the FIDO2 agent (typically
part of the browser) and securely mediates internal communication between the eID
and credential service (see Section 4.6.5).

4.6.2 Comparison to Existing Authenticators

FeIDo combines concepts of virtual FIDO2 authenticators with eIDs to overcome the
drawbacks of existing hardware and virtual authenticators and enable new features,
as shown in Table 4.1. FeIDo removes the need (and costs) for buying extra hard-
ware authenticators dedicated “only” to authentication purposes. Instead, FeIDo can

94

4.6. FEIDO: CONCEPTS AND DESIGN

Table 4.1: Feature comparison between FeIDo, existing hardware and virtual FIDO2
authenticators, and eID schemes.

FeIDo HW Auth Virt. Auth eID
R1 – FIDO2 Compatible ✔ ✔ ✔ ✕

R2 – No Extra Costs ✔ ✕ ✔ ✔

R2 – Widely Deployed ✔ ✕ ✔ ✔

R3 – Device Loss Recovery ✔ ✔ ✕ ✔

R3 – Token Loss Recovery ✔ (✔) (✔) ✔

R4 – User Privacy ✔ ✔ ✔ ✕

R5 – Cross-Platform ✔ ✔ ✕ ✔

R6 – Anon. Credentials ✔ ✕ ✕ ✕

leverage the wide deployment of eIDs across billions of citizens and their compatibility
with off-the-shelf phones (see Section 4.4.2). In contrast, hardware authenticators have
only limited user adoption due to their risk of token loss and their incurring extra costs
(Section 4.4.1.1). In contrast to virtual authenticators, FeIDo relies on secure hardware
containers on the credential service side rather than client devices. The credential ser-
vices can use TEEs widely available on public cloud platforms (e.g., Intel SGX, AMD
SEV-SNP [154]) and are thus easily shareable by thousands of users with negligible
costs, similar to Tor nodes [58]. FeIDo poses no requirements on client devices and uses
the client middleware only as a secretless proxy between eID and credential service.
Therefore, similar to hardware authenticators, FeIDo is independent of the specific
client device, which enables easy porting of the middleware to other client platforms.
Furthermore, a client device loss does not affect FeIDo or hardware authenticators,
while virtual authenticators and their credentials are tightly bound to a specific client
platform and device.

FeIDo retains account access on a token loss because any replacement eID carrying
the same user attributes enables access to a user’s credentials and thus accounts (Sec-
tion 4.6.3). Therefore, in contrast to existing authenticators, FeIDo can recover from
a token loss without requiring backup tokens (cf. hardware authenticators), insecure
vendor-specific cloud backups of token secrets (cf. some virtual authenticators), or in-
secure service-specific recovery methods (e.g., recovery codes). A potential downside
can be a longer renewal time for eIDs (a few weeks) compared to buying a new hard-
ware authenticator if no replacement eID is available (e.g., driver’s license, ePassport).
Finally, FeIDo enables anonymous credentials during the authentication process, e.g.,
for pseudonymous age verification—in contrast to existing FIDO2 authenticators.

Finally, when comparing FeIDo to naïve eID-based authentication without the pro-
posed middleware and credential services (Table 4.1, last column), we see that they are
not FIDO2 compatible and fully violate a user’s privacy by exposing personal data to
the authenticating services, as described in Section 4.4.2.1. Furthermore, they do not
support anonymous credentials.

In the next section, we will compare FeIDo to two additional FIDO2 authentication
variants for which support has increasingly rolled out: phone-based roaming authen-

95

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

ticators and the recent multi-device credentials, also called passkeys [74]. We discuss
them separately as they mainly build on the discussed FIDO2 authenticators rather
than representing new authenticator types and thus partially inherit their weaknesses.
While these two approaches share some of FeIDo’s goals, we will see that FeIDo still
offers different tradeoffs and several additional benefits over these schemes.

4.6.2.1 (Phone-based) Roaming Authenticators and Passkeys

The FIDO Alliance and platform vendors are increasingly supporting two recent FIDO
authentication variants: phone-based roaming authenticators and multi-device creden-
tials, also called passkeys. The first enables using Bluetooth-enabled phones as a virtual
FIDO2 token for 2FA while the latter tries to tackle the problem of device loss for FIDO
credentials [74]. Due to their similarities to FeIDo regarding their goals, we will now
briefly compare these recent schemes to FeIDo.

Phones as Roaming Authenticators The extended WebAuthn specification enables
the use of phones as roaming, i.e., external, authenticators. During a web authentica-
tion operation, users can connect a phone via Bluetooth to their workstation and then
leverage the phone as a virtual FIDO2 token as the second factor for a 2FA scheme.
That way, users without a physical FIDO2 token get access to a virtual, cross-device
FIDO2 2nd factor for client devices without a trusted built-in virtual token. How-
ever, this approach still suffers from the disadvantages of virtual tokens as described
in Section 4.6.2 (also cf. Table 4.1) and is mainly tackling deployment issues. In par-
ticular, phone-based roaming authenticators are still prone to token loss, similar to
dedicated hardware tokens, and require trusted hardware on the phone-side for pro-
tecting the FIDO2 credentials against a device compromise. In contrast, FeIDo solves
the token and device loss challenges and provides a secure cross-device FIDO2 token
that is compatible with any user device supporting NFC. Furthermore, FeIDo can se-
curely support the use of an untrusted phone or auxiliary device as an eID proxy for
workstations without NFC, as we will describe in Section 4.7.6.

Multi-device FIDO2 Credentials (Passkeys) To tackle device loss, the FIDO Al-
liance has introduced multi-device FIDO2 credentials, so-called passkeys, that can be
synchronized across multiple devices [74]. Platform vendors are increasingly rolling out
support for passkeys on client devices and hardware authenticators. Furthermore, they
provide cloud services that store encrypted backups of the passkeys (FIDO2 credentials)
and share them across user devices. That way, the credentials can be used across multi-
ple devices and recovered on a new device after a device loss. The on-device protection
of the credentials is platform-specific and typically relies on trusted client hardware and
authentication mechanisms, e.g., TEEs and biometrics, or dedicated hardware tokens,
i.e., on virtual or hardware authenticators (cf. Section 4.6.2).

In contrast to FeIDo, passkeys depend on trust in third-party service providers for
the credential recovery, still require trusted hardware for client-side credential protec-
tion, and are still not fully supported. Full support for passkeys across all platforms
and common services is still pending, though steadily increasing, whereas FeIDo can be

96

4.6. FEIDO: CONCEPTS AND DESIGN

readily used if at least one NFC-compatible phone is available. Furthermore, while the
cloud-based solution for passkey synchronization and backups is convenient for users,
users depend on the (platform-specific) service providers for credential availability and
the security of their backups. FeIDo never stores any user credentials (or attributes)
but dynamically re-derives them for each authentication operation. In addition, the
security of FeIDo’s TEE-protected credential service can be remotely attested by the
client middleware before sharing any sensitive user information, whereas the user has to
blindly trust the passkey service providers. The open-source design and envisioned de-
ployment model of FeIDo’s credential service (further discussed in Section 4.6.3.3) also
enable for shared hosting and therefore a high availability of the user credentials. While
passkeys optionally allow for more secure single-device credentials (device-bound) that
never leave a device and might be rooted in external hardware authenticators, these
passkeys reintroduce the problems of device and token loss (cf. Section 4.6.2). Finally,
FeIDo supports anonymous credentials (cf. Section 4.6.4) which are neither supported
by existing FIDO2 tokens nor passkeys.

4.6.3 Attribute-based Credentials

FeIDo’s credential service performs the actual FIDO2 authenticator operations for web
registration and login, i.e., credential creation and assertion [150]. We have designed
the resulting virtual token as a user-independent network service. This design mitigates
the risk that users can lose secrets. Instead, the credentials become remotely usable
for users from any device (R2+3, R5). The credential service keeps no persistent
user or credential state. Instead, to distinguish users and bind their FIDO2 credentials
exclusively to them, the credential service dynamically derives a user’s credentials using
a key derivation function (KDF). The unique, personal attributes from the eID are fed
to the KDF, resulting in attribute-based credentials.

4.6.3.1 Reading eID User Attributes

When FeIDo authenticates a user, the credential service first securely reads a user’s
personal attributes from their eID. The service cooperates with the client middleware
on each authentication request to remotely access the user’s eID. By explicitly requiring
a user’s eID on each request, the credential service can verify the freshness of the
attributes and eID and thus guarantee that credentials are only derived if the eID
is valid and present. Otherwise, attackers could provide a different user’s data for
an impersonation attack or use bogus eID clones. To enable secure eID access and
verification, FeIDo requires eIDs to provide support for (1) establishing a secure end-
to-end connection to them and (2) verifying the authenticity and integrity of the eID
and its stored user attributes. In our eMRTD-compatible prototype, the credential
service retrieves user attributes—tunneled via the client middleware—leveraging the
eID protocols described in Section 4.4.2.

97

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

4.6.3.2 Credential Derivation

The credential service now feeds the personal user attributes into a KDF to derive
user-specific credentials. The KDF input binds the resulting credentials to (a) the eID
owner and (b) the relying party. The credential service receives the relying party’s
effective domain (or origin) rpid from the client middleware. For the user binding, the
credential service chooses a unique set of attributes from the personal user data included
in eIDs: the user’s full name (name), date of birth (dob) and place of birth (pob),
and state (state) issuing the eIDs. For now, we assume that the above combination
of user attributes (i) remains constant for a given user and (ii) provides sufficient
uniqueness guarantees. We discuss these properties in more detail in Section 4.6.6.2
and Section 4.7.2.3, and explain the prevention of cross-state attacks in Section 4.7.2.2.

To guarantee the security of the attribute-based user credentials, the KDF input
additionally needs to include a secret skdf that is only accessible by a genuine, hardware-
protected credential service. Lacking this secret, attackers cannot recalculate creden-
tials purely based on the correct personal user attributes and relying party information
(rpid). Using the above inputs, we can now derive the credentials using a KDF. The
credential service leverages an HMAC as the KDF, uses skdf as the HMAC’s key [129],
and all user attributes and relying party information as HMAC inputs. More formally:

hcred = HMAC(skdf, rpid|name|dob|pob|state) (4.1)

where ”|” is the byte string concatenation. The credential service interprets the result-
ing hash hcred as the private key skcred of the user’s WebAuthn credential according to
the specified signature algorithm and then calculates the respective public key pkcred.

This reproducible public key pair can now be used in the FIDO2-typical way: During
a credential registration (MakeCredential), the credential service includes the public key
pkcred in the response. For a login (GetAssertion), the credential service uses the private
key skcred to sign the relying party’s assertion challenge [150]. Personal data such as
user attributes are not transmitted to the relying party. Furthermore, the credential
service does neither persistently store user data nor credentials but instead deletes them
at this point.

4.6.3.3 Cloud-Based Design

FeIDo foresees multiple redundant credential service instances that operate on public
cloud platforms, which mainly serves two purposes. First, users do not risk losing the
key derivation secret—all they need for authentication is stored on replaceable eIDs.
Second, as public credential services can be hosted and shared by many, the costs
become negligible. For a more detailed discussion on deployment scenarios, we refer to
Section 4.6.6.1.

Given that the credential service is offloaded to the cloud, users want to ensure that
a contacted service instance is trustworthy, i.e., it is a genuine service that is protected
and does not leak skdf or personal data. Furthermore, the communication between
the credential service and the middleware must be secured. Therefore, each credential
service instance operates in a TEE that allows achieving all these properties by offering
integrity, attestation, and confidentiality. Several TEE implementations provide these

98

4.6. FEIDO: CONCEPTS AND DESIGN

principles [154], like Intel SGX, AMD SEV-SNP, or RISC-V Keystone—of which some
are widely available on cloud platforms.

In our prototype, we have chosen an Intel SGX-based TEE. Intel SGX is a
widespread, commodity server-grade CPU extension that provides user-level TEEs,
so-called enclaves. While Intel has deprecated SGX for consumer CPUs, it continues
to support SGX for cloud CPUs—exactly our setting. SGX enclaves run in dedicated,
confidentiality- and integrity-protected memory regions and expose a minimal trusted
computing base (TCB), including only their code, data, and the CPU (cf. background
information on SGX in Section 2.6.1) [49]. Using Intel SGX’s remote attestation,
FeIDo users can verify the exact code and data running inside an enclave based
on hardware-issued cryptographic proofs and bootstrap authenticated connections
to them (similar to SENG in Chapter 2) [P1, 128]—without requiring access to
SGX-capable hardware on the client side.

The TEE-based design is key to securing a cloud-based KDF and shielding the secret
from attackers. The credential service randomly generates skdf on its initial startup.
To be able to derive the same user credentials after a restart, the credential service
must either previously use Intel SGX’s sealing capability to store skdf on disk securely
for recovery [49] or securely receive a copy by another credential service instance after
mutual remote attestation (cf. Section 4.6.6.3). Either way, the secret can never be
read outside of an enclave.

4.6.4 Anonymous Credential Extension

The design of the credential service can be extended towards anonymous credentials—
a feature neither provided by eID schemes nor FIDO2 authenticators (Section 4.6.2).
In certain settings, the relying party might be interested in a curated form of user
data. For example, the relying party may want to verify if users are adults or children
(user age above/below X years) before granting them access to adult content or kids-
only chats or may want to restrict its service to residents of a particular country.
The credential service can derive such anonymous credentials from the trusted user
attributes without leaking the raw data to the relying party (R6). Instead of receiving
the raw user attributes (e.g., date of birth), the relying party only learns the anonymous
credentials (e.g., “is adult”). In contrast to hardware-only tokens, FeIDo can add such
meta attributes easily in software. In order to provide users full control over their data,
the credential service shares only anonymous credentials that the user has explicitly
permitted for a given relying party.

The relying party must be able to verify anonymous credentials. Otherwise, at-
tackers could spoof meta attributes to bypass additional access policies, such as age
restrictions. Therefore, the credential service, executing in a TEE, enables a relying
party to remotely attest that a genuine credential service has generated the provided
meta attributes (see Section 4.6.5.4).

4.6.5 FIDO2 Integration

We now describe how our general idea of attribute-based credentials blends into the
FIDO2 authentication workflow. The middleware mediates this integration as the cen-

99

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

Client Device

Cloud Platform

Client Middleware

Credential Service 
(SGX Enclave)

eID

Browser 
(agent)

Extension

CTAP2

NFC,

PACE

CARA-TLS

(GUI)

User
WebAuthn,
WebSocket

RA-TLS,

CTAP2

Figure 4.3: The client middleware is the central mediator and consists of multiple mod-
ules for communication with the browser extension, credential service, eID, and user.

tral entity. In the following, we describe: (i) the middleware, (ii) the message flow and
how it ensures FeIDo’s FIDO2 compatibility, (iii) how FeIDo can support the revoca-
tion of stolen (or lost) eIDs, (iv) how it can extend the authentication process with
anonymous credentials, (v) and how these can be combined with remote attestation to
thwart offline attacks on the exceptional case of an skdf breach.

4.6.5.1 Client Middleware

The client middleware is the central communication mediator of FeIDo. It fulfills two
roles regarding FIDO2: on the one hand, it serves as a WebAuthn/CTAP2 agent for the
browser, which contacts the FeIDo authenticator and replies with WebAuthn responses
for the relying party. On the other, the client middleware is part of the authenticator
itself and mediates the communication between the eID, credential service, and op-
tionally, the user. That way, the client middleware bridges the gap between multiple
internal domains while ensuring seamless compatibility with the FIDO2 infrastructure.
The middleware in our prototype uses an integration solution fully compatible with
commodity browsers: a browser extension-based proxy agent. As shown in Figure 4.3,
the browser extension cooperates with the client middleware to integrate FeIDo into a
browser’s WebAuthn framework.

4.6.5.2 FIDO2 Authentication Workflow

A FeIDo authentication session follows the message flow in Figure 4.4. On a web authen-
tication request, the agent (browser) notifies the client middleware. The middleware
then communicates with the credential service and eID via authenticated, end-to-end
protected connections to come up with the respective WebAuthn credential (upon reg-
istration) or assertion response (upon authentication) for the relying party. The mid-
dleware mediates to give the credential service implicit access to the user’s eID. We
now iterate over these steps in more detail:

100

4.6. FEIDO: CONCEPTS AND DESIGN

TLS/HTTPS

PACE

RA-TLS

Relying Party Cred. ServiceeID Middleware

WebAuthn Register/Login

WebAuthn Response

Attributes, Metadata

Attributes, Metadata

Credential/Assertion

eID Chip Authentication (CA)

PA: Verify eID
Certs + Attributes

FIDO2 Cred.
Derivation

TLS/HTTPS

PACE

RA-TLS

Figure 4.4: Message flow in a FeIDo authentication session.

(1) FIDO2 Authentication Initialization To initiate a FIDO2-based authentication,
the relying party sends a WebAuthn registration or authentication request to the agent
(typically, a user’s browser). The agent then reaches out to the appropriate authenti-
cator as described in Section 4.4.1. In our prototype, the browser extension monitors
browser sessions for calls to the WebAuthn request APIs. On a web authentication
request, the browser extension notifies the client middleware via a local WebSocket
connection and forwards the WebAuthn request. That way, the browser extension in-
tegrates the client middleware as a WebAuthn agent into the browser. The client mid-
dleware can then start processing the request as part of the FeIDo authenticator. The
choice of WebSocket has the advantage that it is compatible with commodity browsers
and enables an easy relocation of the FeIDo authenticator to a trusted auxiliary user
device, e.g., a smartphone, in case the client device has no eID reader. In Section 4.7.6,
we will explain how FeIDo can retain its security guarantees even if the user leverages
an untrusted auxiliary device (e.g., a borrowed phone that is compromised) as the eID
reader.

(2) Reading User Attributes Next, the client middleware establishes a PACE-secured
connection with the eID to read the personal attributes, according to the description in
Section 4.6.3.1. It defers the CA-based eID validity check to a later stage. Depending
on the eID and agent, the client middleware may prompt for user interaction, such as
putting the eID on the reader or entering its PIN, if required.

(3) Credential Service Interaction The client middleware then establishes a secure
network connection to the credential service to share the user attributes. To this end,

101

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

the client middleware must verify that the connection is end-to-end protected and
established with a genuine, TEE-protected credential service instance. Therefore, the
client middleware uses RA-TLS [P1, 128], which combines a TLS connection with a
TEE-provided remote attestation (similar to SENG in Chapter 2, which however uses
DTLS). That way, the client middleware has a hardware-assured guarantee that it
communicates with a credential service instance that is TEE-protected, well-behaving,
and does not leak credentials or attributes to others.

As shown in Figure 4.3, the credential service incorporates an RA-TLS server end-
point [128] for attested, end-to-end protected communication with the client middle-
ware. A TLS server key pair is freshly generated by the credential service enclave on
startup or securely shared across different credential service instances (cf. Section 4.6.6).
RA-TLS binds the hash of the TLS server’s public key to the SGX attestation report
by incorporating it as authenticated user data and then integrates the resulting signed
attestation quote inside the TLS server certificate (cf. details on SENG’s DTLS vari-
ant in Section 2.8.1). This integration enables the client middleware to verify the
hardware-assured identity of the credential service and its binding to the established
TLS connection as part of the TLS server certificate validation [128, P1]. The client
middleware can then securely request WebAuthn operations from the credential service
through the RA-TLS connection.

(4) eID and Attribute Validation After receiving the user attributes, the creden-
tial service has to validate them using Passive Authentication (PA; cf. Section 4.4).
Furthermore, it uses Chip Authentication (CA; cf. Section 4.4), initiated through the
middleware’s PACE channel, to verify that the service can access the eID that shipped
the attributes. If both succeed, it uses the KDF to derive the user-specific authenti-
cation credentials: skcred and pkcred. Note that it is vital that the credential service
performs this validation and relies on the middleware only to tunnel the respective
communication. Otherwise, a malicious middleware could spoof arbitrary personal
attributes and eIDs and thus perform impersonation attacks.

(5) Authentication Termination Finally, to conclude the authentication, the cre-
dential service sends the reply for the requested authentication operation to the client
middleware [150], i.e., the signed credential public key pkcred on a registration and the
assertion challenge signed by the private key skcred on a login request, respectively (see
Section 4.6.3.2). The middleware converts this into a WebAuthn Response and shares
this with the relying party. To the relying party, this workflow is entirely transparent—
it will not even notice that eID data was read/used at any point in time.

4.6.5.3 eID Revocation

FeIDo is designed as a second factor for 2FA. Therefore, stealing a user’s eID does not
suffice to gain access to the user’s accounts (Section 4.7.3.2). Having said this, FeIDo
supports revocation of stolen eIDs to prevent account hijacking attacks if attackers
have additionally compromised the primary factor or if FeIDo serves as a sole authen-
ticator (Section 4.9.1). FeIDo foresees three complementary eID revocation strategies,

102

4.6. FEIDO: CONCEPTS AND DESIGN

providing different tradeoffs.
First, the credential service can consult existing trusted databases for stolen eIDs

on eID validation (Section 4.6.5.2, step 4), such as Interpol’s I-Checkit service [110],
and deny their use for authentication. The eID lookup does not leak personal user data
as it only requires pseudonymous eID identifiers (number, type, issuing state). This
approach does not add state or complexity to the credential service but requires trust
in the service provider (e.g., Interpol) not to re-enable or DoS eIDs and might require
a small fee [110].

Second, the credential service can derive and share eID-specific revocation certifi-
cates with the client middleware, which users can leverage on demand (e.g., upon eID
loss) to denylist a particular eID for all credential service instances. The middleware
can protect the certificates in client-side keystores that require physical device access
and user authentication [92]. On eID validation, each credential service checks the
denylist and aborts authentication. That way, FeIDo can securely enable eID denylist-
ing without requiring a trusted third party but client-side certificate storage and secure
state synchronization of the eID denylist by the credential services.

Third, web services can block users on a per-eID basis. The credential service
provides web services with service-specific, pseudonymized eID identifiers idsrv that
the web services can store together with a user’s FIDO2 public key. That way, web
services can deny specific eIDs to enable users to revoke old eIDs when logging in with
new ones—all without requiring additional state on the credential service or client-
side, but at the cost of small changes to the web services. The credential services can
dynamically derive unlinkable eID identifiers idsrv for each service based on the eID
number, type, and issuer:

idsrv = HMAC(skdf, rpid|eid_num|eid_type|state)

This approach faces a potential attack window until a replacement eID has been ac-
quired (cf. Section 4.6.2) and registered on the web services. However, users can im-
mediately close it if they own a second eID (e.g., eID and ePassport) or leverage one
of the previous two approaches, i.e., report the eID as stolen or denylist it.

4.6.5.4 Anonymous Credentials in FIDO2

FeIDo’s credential service enables a relying party to query pseudonymous meta user
attributes, so-called anonymous credentials, on every authentication (cf. Section 4.6.4).
The relying party can query these meta attributes (e.g., “is adult”) using WebAuthn
extensions [150] defined by FeIDo. On an authentication request, the middleware asks
the user which of the requested meta attributes they want to share with the given relying
party and caches the decision for future requests. Only meta attributes explicitly
permitted by the user are requested of the credential service, so users stay in full
control over their data. The credential service calculates the meta attributes based
on the verified personal user attributes as part of the regular authentication process
and includes them (e.g., “is adult: true”) inside the signed WebAuthn response data
(authenticator data [150]).

It is crucial that the relying party can verify that the provided meta attributes were
not spoofed but computed by some genuine FeIDo authenticator based on verified user

103

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

attributes. Therefore, the credential service enables a relying party to link every user
credential to the service’s SGX attestation report. This linking enables a relying party
to verify that some genuine credential service has securely generated a given credential.
Thus, the relying party transitively knows that all meta attributes associated with the
credential have also been generated by the (code-wise) same credential service and are
therefore trustworthy.

Technically, the credential service binds the public key hash of the WebAuthn key
pair used for signing the credential generation response, called the “attestation key
pair” [150], to the SGX attestation as authenticated user data—following the approach
of RA-TLS (cf. Section 4.6.5.2, step 3). The respective SGX attestation report is then
integrated as an X.509 extension [128] inside the public key’s certificate that is included
in the WebAuthn credential response [150]. That way, the relying party can verify the
response signature and associated attestation to check that some genuine credential
service has generated the included credential. The key pair and attestation report are
freshly generated for each new credential and preserve FIDO2’s credential unlinkability
(cf. Section 4.7.4.1).

4.6.5.5 Attesting Logins to Thwart Offline Attacks on a Secret Breach

Beyond the just discussed anonymous credential attestation, FeIDo can leverage re-
mote attestation in order to tackle the unlikely situation of a KDF secret skdf breach
(cf. Section 4.7.3.3) caused by, e.g., temporary vulnerabilities in the hardware TEE
itself—even though we currently regard such TEE vulnerabilities as out of scope and
to be handled by orthogonal defense mechanisms (cf. Section 4.5.2). By requesting
FeIDo’s credential service to include a fresh SGX attestation report linked to the cur-
rent login process (technically: the challenge data from the relying party) as part of the
meta attributes (Section 4.6.5.4), the relying party can verify that a genuine creden-
tial service protected by a patched TEE is used for this login attempt. That way, the
relying party can prevent attackers from exploiting the stolen KDF secret to perform
authentication operations using offline-calculated user credentials until a new s′

kdf is
rolled out, because the attacker cannot forge a valid attestation of FeIDo’s credential
service bound to the fresh login challenge.

4.6.6 Deployment and Failover

FeIDo’s design enables a cost-efficient, flexible, and scalable deployment on commodity
hardware. However, FeIDo also faces failover challenges that it must address to assure
credential access.

4.6.6.1 Component Deployment

The FeIDo authenticator is compatible with the FIDO2 standard for web authentication
and can therefore be transparently used for existing relying parties (cf. Section 4.8).
FeIDo leverages off-the-shelf eIDs on the client-side and relies on commodity TEEs
for its credential service. That way, FeIDo becomes easily deployable and does not

104

4.6. FEIDO: CONCEPTS AND DESIGN

demand additional user hardware as required by dedicated hardware or virtual FIDO2
authenticators.

FeIDo’s credential service can be securely deployed on any remote server. We en-
vision individuals or organizations volunteering to operate multiple credential service
instances in a cloud, similar to software mirrors or Tor [58] nodes. That way, the creden-
tial services become widely accessible and can be shared by many users, so deployment
costs become negligible. As the attribute-based credentials require only an initial state
on the credential service (the secret and TLS server key), several service instances
can be deployed in parallel without state synchronization—enabling wide availability
and load balancing. Users can then freely choose any of the services for authentica-
tion as long as the service shares the KDF secret required for deriving the requested
user credential. We discuss the credential service’s secret bootstrap and failover in
Section 4.6.6.3 and the possibility of local enterprise deployments in Section 4.9.2.

FeIDo’s client middleware can be deployed as a regular application on any client
device that supports an eID reader interface. The typical eID interfaces include NFC,
USB, and BLE and are thus widely available (Section 4.4.2). If no reader is supported,
e.g., on a workstation, the eID interactions can be offloaded to a trusted or untrusted
auxiliary device, such as a smartphone (cf. Section 4.6.5.2 and Section 4.7.6). The pre-
sented WebAuthn integration of the middleware via a browser extension is compatible
with commodity browsers, as demonstrated by our prototype (Section 4.8.1).

4.6.6.2 Update Management

FeIDo’s design as a virtual FIDO2 authenticator enables flexible update management.
In contrast to dedicated hardware authenticators, all components of FeIDo can be
updated via software or microcode updates. Therefore, the components can be quickly
patched without extra (hardware) costs for users or credential service providers. FeIDo’s
attribute-based credentials enable users to seamlessly use any replacement eID issued by
the same state that includes the same verifiable user attributes (Section 4.6.3) because
the KDF will derive the same credential keys (R3).

One typical but infrequent corner case occurs if user attributes change, such as
names after marriage. Such changes result in different WebAuthn credentials and thus
require a user to re-register new credentials for their accounts. The same argument holds
for users immigrating to other countries. Having said this, as FeIDo seamlessly accepts
any valid, non-revoked user eID, users can use their "old" documents for migrating to
newer attributes without risking account loss. We will discuss this approach further in
Section 4.9.3.

4.6.6.3 Secret Management

The credential service only requires minimal state on bootstrap: a KDF secret skdf
and a TLS server key pair. The credential service can freshly generate the TLS server
keys on each startup. If required for load balancing, the credential service can send a
certificate signing request to a trusted certificate authority via TLS or even securely
share the TLS server keys with other credential service instances via RA-TLS channels.

105

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

Secure management of skdf is crucial because skdf is part of the KDF input and binds
the user credentials to the credential service instances (cf. Section 4.6.3). A credential
service can recover user credentials only if using the same skdf used for creation. Anal-
ogously, multiple credential service instances can derive the same user credentials only
if they share the same skdf. Therefore, FeIDo and the credential service providers must
ensure that skdf can be restored. At the same time, skdf must never be disclosed outside
of the TEE protection domain to guarantee that it remains unknown to attackers.

We realize this guarantee as follows. The initial credential service instance generates
a random skdf. The credential service then uses the Intel SGX sealing functionality
which binds skdf to the credential service enclave and stores skdf encrypted and signed
on the untrusted disk for recovery on a restart [49]. Sealing allows data recovery only
on the same physical CPU. Should multiple credential service instances be scaled to
different CPUs, they must cooperate to synchronize on the key. The credential service
providers can configure new service instances to securely fetch skdf from other instances
via mutually-attested RA-TLS channels. This way, skdf is only accessible by verified,
TEE-protected credential services and is resilient against partial service failures or data
loss. In the unlikely case of an skdf breach, e.g., caused by a vulnerability in the TEE
(out of scope), FeIDo can bind login operations to the credential service’s attestation
report to prevent offline credential usage by attackers, as discussed in Section 4.6.5.5.

4.7 Security Analysis

In this section, we give a security analysis of FeIDo (Section 4.7.1 and Section 4.7.2),
discuss the implications of different component thefts (Section 4.7.3), and conclude with
an analysis of FeIDo’s anonymous credentials (Section 4.7.4). In addition, we will dis-
cuss a relaxed threat model assuming client-side attackers in Section 4.7.5 and explain
how to securely offload the eID interface to an untrusted proxy device in Section 4.7.6.

4.7.1 FeIDo’s FIDO2 Security

We now provide arguments about the security of FeIDo and leave a more formal security
proof of our scheme open to future work. We show that based on the security of the
building blocks of FeIDo, it can be seen as a standard virtual authenticator that uses
a keyed pseudorandom function to generate FIDO2 credentials. As shown by Hanzlik,
Loss, and Wagner [101], such a virtual token is formally secure against a man-in-
the-middle attacker residing between the agent and the relying party. The authors
also prove the unlinkability of the generated FIDO2 credentials. We will consider two
types of attackers: (A1) a man-in-the-middle attacker residing between the agent and
the relying party, and (A2) an attacker that additionally controls the communication
between the components of FeIDo.

Man-in-the-middle attackers (A1) cannot distinguish whether they interact with
FeIDo or a standard virtual authenticator. It is in line with the design goals specified
in Section 4.5.1, where we state that FeIDo must comply with the FIDO2 protocols
(R1). This also means that we can directly apply the result from [101], assuming the
function used to derive the credentials is pseudorandom. In our prototype, we use

106

4.7. SECURITY ANALYSIS

RFID

1. RA-TLSMiddleware Cred. ServiceeID 2. PACE

3. PA/CA 3. PA/CA

eID TerminalReader

1. TLS2. PACE

3. PA/CA/TA 3. PA/CA/TA

F
e
ID

o
E
A
C

Figure 4.5: Mapping FeIDo to EAC eID security model [50]. In contrast to EAC, FeIDo
uses RA-TLS instead of TLS and TA.

HMAC (cf. Section 4.6.3.2, Equation 4.1), which Bellare showed to be a pseudorandom
function [26]. Therefore, the security of FeIDo follows from [101], i.e., FeIDo provides
unlinkable FIDO2 credentials and is secure against a man-in-the-middle attacker resid-
ing between the agent and the relying party.

4.7.1.1 Reduction Security of FeIDo

We now discuss the case where an attacker can additionally interact with the com-
ponents of FeIDo (A2). We argue that assuming the credential service enclave is a
secure TEE (Section 4.7.2.1), the KDF secret is not accessible outside valid credential
services (Section 4.7.2.1), attributes used as input are unique (Section 4.7.2.3), and the
eID is secure and the authority issuing the eID is trusted (Section 4.7.2.2), it is not
easier to break the security of FeIDo than in the just discussed case where the attacker
cannot interact with the components of FeIDo (A1). Trusting the issuing authority
also assumes that an insider attacker cannot apply for an eID with personal data of a
different person, e.g., to launch a mimicry attack. In Section 4.7.2, we show that those
assumptions are reasonable.

Under those assumptions, the only difference between FeIDo and a virtual token is
the communication between components. Therefore, we argue the security of FeIDo by
reduction, starting from the secure Extended Access Control (EAC) protocol of ICAO-
compliant eIDs—an authenticated key exchange protocol between an eID and a termi-
nal. EAC has been proven to be secure by Dagdelen and Fischlin [50]. The protocol
combines eID authentication using CA and PA (Section 4.4.2) with certificate-based
authentication of the terminal, called Terminal Authentication (TA). TA is another
standard protocol in ICAO-standardized eIDs [108]. It is a challenge-response protocol
during which the eID validates the authenticity of the terminal communicating with it
based on a certificate chain rooted in the eID authorities. TA serves as an additional
protection mechanism that requires the terminal to be specifically certified by an eID
authority [108], e.g., when access to sensitive biometric data is requested. In EAC, an
eID reader communicates with a terminal using TLS to proxy CA, PA, and TA for
mutual eID and terminal authentication. The initial authentication between the reader

107

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

and eID can be based on PACE (cf. Section 4.4.2). We now show how FeIDo’s compo-
nents correspond to the ones used by the EAC security model in [50]. In both cases, the
role of the eID remains the same. We simplify the function of the client middleware to
that of an RFID/NFC reader. Finally, the credential service is the terminal verifying
the eID. We will now briefly argue that the minor changes in FeIDo do not influence
security. We begin by showing that RA-TLS provides the same security guarantees as
a TLS connection and implies a trusted credential service. These two results allow us
to argue the security of FeIDo without executing Terminal Authentication and directly
apply the results from [50] since the other subprotocols used (CA and PA) are the
same, as shown in Figure 4.5.

RA-TLS security The RA-TLS protocol combines the guarantees of TLS with the
remote attestation of a TEE (cf. Section 4.6.5.2, step 3). Therefore, it provides an end-
to-end protected connection between the client middleware and a verified credential
service instance—protecting against network attackers and spoofed credential services.
It follows that the RA-TLS connection satisfies the security properties of the TLS
connection between the eID reader and terminal as required by the EAC model.

EAC security The EAC protocol considers authentication of the terminal and the
eID. The credential service is protected inside a TEE against system-level attackers at
the service provider platform. In addition, the middleware remotely attests the pro-
tection and exact code of the credential service as part of the RA-TLS connection es-
tablishment. In combination with the credential service’s open-source design—allowing
for code audits (cf. Section 4.8.1)—users can validate the service’s correctness and in-
tegrity. Under the assumption that the credential service executes in a secure TEE
(Section 4.7.2.1), it follows that the credential service, i.e., the terminal, is trusted. It
also means that the security of the whole EAC protocol holds even if, in FeIDo, we
do not execute Terminal Authentication. Finally, the Passive Authentication protocol
(PA, cf. Section 4.4.2) provides the authenticity of the public key used by the eID during
Chip Authentication (CA, cf. Section 4.4.2), which is required by the EAC proof.

4.7.2 Security Assumption Verification

In the following, we discuss and verify our security assumptions made in FeIDo’s security
argument (cf. Section 4.7.1.1).

4.7.2.1 Credential Service TEE and Secret Security

The TEE protection of the credential service is crucial for FeIDo to protect the KDF
secret and thus the users’ FIDO2 credentials against malicious service providers and
spoofed services. Furthermore, remote attestation ensures that all communication par-
ties can validate whether they communicate with a genuine credential service.

The TEE-assisted protection of the secret guarantees that an attacker who knows
all user attributes cannot forge credentials. To derive the same secret key as the au-
thenticator, the attacker would need to retrieve the credential service’s secret key skdf
for the KDF. The credential service protects skdf using the runtime protection and

108

4.7. SECURITY ANALYSIS

secure storage mechanisms of its TEE. The credential service shares skdf only with
other verified credential services via mutually-attested, end-to-end protected connec-
tions (cf. Section 4.6.6.3). Furthermore, relying parties can detect abuse of leaked
secrets (cf. Section 4.7.3.3).

4.7.2.2 eID Security and Malicious eID Authority

FeIDo relies on secure eIDs and a trusted eID authority to securely bind credentials to
users based on their eIDs. FeIDo assumes the eIDs are free of backdoors and deploy
typical smartcard protections, such as unclonable memory, constant-time cryptographic
operations, and authentication mechanisms (see Section 4.4.2, Section 4.5.2). That way,
FeIDo can rule out attackers trying to clone valid user eIDs for account hijacking. Thus,
FeIDo follows similar assumptions as dedicated hardware authenticators, where trust
is put into the authenticator devices and their manufacturing vendors. Note that for
eIDs, cross-authority attacks are impossible, i.e., a malicious state trying to create valid
eIDs of another. eIDs include the issuing country and are signed by a country-specific
key checked during Passive Authentication. However, a malicious country M can still
issue an eID that matches all attributes of an existing eID of a target country T except
the issuing country code T. Therefore, FeIDo explicitly includes the issuing country
as input to the KDF (state, Equation 4.1), resulting in different credentials. Thus, a
malicious state (a.k.a. country) cannot issue eID clones to hijack accounts of residents
of a different state.

4.7.2.3 Uniqueness of Personal Attributes

FeIDo’s KDF uses a person’s full name, date of birth, place of birth, and state as input
(cf. Section 4.6.3, Equation 4.1). If two persons of the same state are born on the same
date, in the same city, and share the full name, they share the same credentials. The
likelihood of such a collision highly depends on the city’s respective naming convention
and size. Without perfect global data to precisely measure this risk, we can only give
approximations. For example, consider the US. Sweeney showed that place, gender,
and date of birth could uniquely identify half of the US population [212]. Surprisingly,
this is without considering the name and surname, which introduce significant entropy.
More generally, assume n users are namesakes born in the same state, city, and year.
Then, assuming d = 365 days per year, based on the birthday paradox, the probability
that none of these users share the same birthday is:

P = d− 1
d
∗ d− 2

d
∗ . . . ∗ d− (n− 1)

d

The resulting probabilities generally follow a Gaussian-like curve, but for smaller groups
of namesakes, the chance for a collision decreases quadratically with the number of
namesakes. To give upper bounds for the likelihood of a full collision in the US, we
use the data from the US birth names inventory [181]. Consider the most common
female (Olivia) and male name (Liam), combined with the most common surname
(Smith). On average, even in the largest city of the census (NYC), there were just
around n = 8 persons born with this name combination in 2019—resulting in a 92 %

109

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

chance even these US “worst-case combinations” of name/place/date are unique. Given
the example of the US, one can argue that most users have unique personal data and
hence KDF inputs. Admittedly, this argument may differ in naming conventions with
highly-skewed name distributions. However, even in the unlikely event of full collisions,
the security implications are limited in a 2FA setting. Section 4.9.1 discusses how
uniqueness can be extended for a single-factor setting.

4.7.3 FeIDo Component Theft (or Loss)

We now discuss how the theft (or loss) of the client device, eID, or KDF secret affects
the security of FeIDo.

4.7.3.1 Client Device Theft

By design, FeIDo only runs the secretless client middleware on the client devices, which
is not involved in the attribute-based credential derivation but only serves as a message
proxy between the eID and credential service (Section 4.6.5). Therefore, theft of a client
device has no security impact on FeIDo and, in contrast to client-side virtual FIDO2
tokens (cf. Section 4.4.1.1 and Section 4.6.2), does not stop a user from accessing their
credentials.

4.7.3.2 eID Token Theft

At first glance, FeIDo seems to share the security guarantees of hardware tokens upon
token/eID theft: Attackers could use the stolen eID for authentication operations.
While in a 2FA setting—FeIDo’s main use case—a stolen eID (or token) is not suf-
ficient for attackers to hijack user accounts, attackers could gain access if they have
additionally compromised the primary authentication factor or if FeIDo is used as
a sole authenticator (Section 4.9.1). Similar to hardware tokens, the credential ser-
vices could restrict service to eID types that support a PIN known only to the owner
to prevent abuse by attackers. Then again, FeIDo enables for additional protections
that off-the-shelf hardware tokens do not offer. In contrast to hardware tokens (Sec-
tion 4.6.2), FeIDo does support central and per-service revocation of stolen eIDs, which
blocks account hijacking attempts (Section 4.6.5.3). Furthermore, on an eID loss, users
neither need backup tokens, less secure login alternatives, nor re-registration of new cre-
dentials. Instead, FeIDo’s attribute-based credentials enable secure credential recovery
(and thus account recovery) directly via replacement eIDs.

4.7.3.3 KDF Secret Theft

FeIDo’s KDF secret skdf is crucial for deriving the user credentials. Therefore, the
credential service uses its TEE to protect skdf against theft by restricting access to
skdf only to secure, verified service instances (cf. Section 4.7.2.1). Furthermore, FeIDo
protects skdf against data loss and partial failures by combining TEE-protected back-
ups with secure credential service replication (cf. Section 4.6.3.2). That way, FeIDo
can guarantee credential availability and avoid skdf changes that would require creden-
tial re-registrations. Note that even if the secret should ever leak, offline-calculated

110

4.7. SECURITY ANALYSIS

credentials will still not be accepted by the relying parties—remote attestation of the
valid credential service can ensure that the credentials were genuinely derived (cf. Sec-
tion 4.6.5.5).

4.7.4 Security of Anonymous Credentials

We now discuss the security guarantees of FeIDo’s anonymous credentials (Sec-
tion 4.6.4) and their implications on an eID theft (Section 4.7.3.2).

4.7.4.1 Anonymity / Unlinkability Guarantees

FeIDo’s anonymous credentials enable a relying party only to learn pseudonymous
meta user attributes. The credential service only allows for meta attributes that
provide a sufficiently large anonymity set such that the anonymous credentials provide
reasonable group anonymity—even when used in conjunction. In addition, users have
full control over the attribute sharing because they can allow/block any meta attribute
on a per-relying party basis and must explicitly perform an authentication to allow for
queries by the relying party (cf. Section 4.6.4 and Section 4.6.5.4). This rules out (mass)
query attempts with the goal of user deanonymization. In the following, we assume
the meta attributes to be anonymous and defer their full specification to future work.

Even though FeIDo’s anonymous credentials are bound to the FIDO2 authentication
process (Section 4.6.5.4), they do not enable linking attacks. While a relying party can
notice via an SGX attestation report that the meta attributes are coming from some
credential service, i.e., FeIDo authenticator, different relying parties can still not link
multiple authentications to the same FeIDo instance. First, we showed that FeIDo
is a FIDO2 authenticator (cf. Section 4.7.1), i.e., its credentials and authentication
operations are unlinkable. Second, the anonymous credential integration introduces
no linkable information because (1) the meta attributes are anonymous, (2) SGX’s
attestation can provide unlinkability [49], and (3) credential services use fresh per-
credential attestation keys (cf. AnonCA [150]).

4.7.4.2 Impact of eID Theft

The anonymous credentials preserve FeIDo’s security guarantees and easy account re-
covery on an eID theft (Section 4.7.3.2). However, while FeIDo’s eID revocation pre-
vents any abuse of stolen eIDs, unnoticed theft, which does not lead to an eID revo-
cation, can be a real threat in practice for bypassing access policies that are based on
a user’s anonymous credentials. For instance, non-adult attackers might temporarily
steal an eID from an adult (e.g., a parent) to bypass age gates. To prevent such attacks,
FeIDo’s credential service could restrict service only to eIDs that support an access PIN
only known to the eID owner (Section 4.7.3.2).

4.7.5 Client Device Compromise

So far, we followed FIDO2’s threat model, assuming no attackers on the agent and
client device (cf. Section 4.5.2). In the following, we assume such client-side attackers.

111

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

We compare FeIDo’s security guarantees to those of hardware tokens and eIDs in this
setting.

Strong User Confirmation Hardware-backed FIDO2 authenticators (incl. FeIDo)
protect user credentials against direct access by client-side attackers. However, when
the hardware tokens—or in FeIDo’s case, user eIDs—are connected to the client
device, by default, they cannot prevent attackers from using them to authenticate to
a user’s accounts (ignoring 2FA for the moment). Attackers can perform arbitrarily
many authentication operations as long as the token/eID is connected—without the
user noticing. In order to tackle this issue, some hardware tokens require explicit user
confirmation on each operation, e.g., via a physical button on the token. However, even
with such tokens, attackers can trick users into unwillingly confirming an authentica-
tion request to an attacker-controlled relying party by manipulating the target origin
and displaying a phished confirmation request to the user. To prevent such attacks,
costly high-end hardware authenticators feature an integrated display [193], which
shows the target origin and thus enables target verification before user confirmation.

FeIDo can provide the same protection as costly high-end hardware tokens, but
without incurring additional costs, by leveraging client-side TEE support if present on
consumer phones. The idea is to let the credential service require that the WebAuthn
request data has been signed as part of protected user confirmation. FeIDo’s client
middleware can then leverage technologies like Android’s protected confirmation [53],
which supports a TEE-protected secure UI and button I/O, to display the target re-
lying party in an unforgeable way to the user. That way, the user can vet the target
relying party of the WebAuthn request and cancel the authentication when detecting
manipulation by a system-level attacker. That way, FeIDo users gain the same strong
confirmation guarantees as provided by FIDO2 tokens with dedicated displays and
buttons, but without requiring expensive token devices—clearly increasing the level of
security compared to standard tokens.

User Attribute Leakage FeIDo’s current design shares the property of eID schemes
that client-side attackers can intercept the personal attributes read from a user eID—or
the password required to read from the eID via PACE directly (cf. Section 4.4.2)—and
therefore leak the attributes. While the attacker cannot use the attributes to access
or recalculate FeIDo credentials (cf. Section 4.7.2.1), it can be considered a privacy
disadvantage compared to dedicated FIDO2 authenticators. However, we argue that
client-side attackers have several alternative opportunities to steal user information—
even beyond what is readable via PACE from an eID. For instance, users typically store
several personal documents on their devices, and attackers can intercept any user com-
munication (incl. emails and chats). Furthermore, sensitive biometric eID information
(except a low-resolution profile picture) is only accessible by special authorities.

4.7.6 Using an Untrusted Reader Device

For ease of discussion, so far, we have assumed that the client middleware is directly
running on a client device with NFC support. In Section 4.6.5.2 and Section 4.6.6.1,

112

4.8. EVALUATION

we have briefly mentioned the possibility of offloading the eID interactions to an auxil-
iary reader device, e.g., a phone, in case the primary client device (agent) has no NFC
support. While FeIDo’s WebSocket-based browser integration enables a direct reloca-
tion of the client middleware to a different trusted user device (cf. Section 4.6.5.2),
this approach cannot be applied to fully untrusted reader devices. In the following, we
elaborate on the latter setup and discuss required security considerations.

Following FeIDo’s threat model (Section 4.5.2), a user wants to authenticate from
a trusted client device to a web service using FeIDo. However, the client device does
not support NFC, e.g., being an older workstation, and therefore cannot directly com-
municate with the user eID as required by FeIDo. To resolve this issue, the user can
leverage an auxiliary device, e.g., a phone, as an eID-interacting proxy device. However,
the auxiliary device might be untrusted and therefore must not be able to arbitrarily
communicate with the user eID. Even though a malicious auxiliary device cannot steal
a user’s client-side passwords in a 2FA setting, the attacker could leverage eID access
to perform authentication operations or read personal user information from the eID,
as discussed in Section 4.7.5.

To prevent such attacks, FeIDo can keep the client middleware on the trusted client
device and leverage the auxiliary reader device only as a message forwarder to the
user eID. The secure end-to-end PACE and Chip Authentication (CA) connections
(cf. Section 4.4.2) remain established between the trusted client device and user eID as
was shown in Figure 4.4. To interact with the eID, the client middleware forwards the
end-to-end protected messages through a TLS channel to the auxiliary device which
passes them to the user eID. The connection establishments of PACE and CA are based
on a Diffie-Hellman key exchange which is secure against man-in-the-middle attackers,
including the untrusted auxiliary device. The auxiliary device cannot tamper with the
communication as the communication keys are securely located on the eID and trusted
client device. Furthermore, the auxiliary device cannot establish own communication
channels with the user eID, because the attacker does not know the eID password
required for PACE. The PACE password cannot be intercepted by the attacker during
the secure connection establishment by the client device.

The attacker could try to brute force the PACE password because it has only around
50 bits of entropy in total and includes some personal user data (e.g., name) that might
be easier to guess. However, our measurements have shown that each PACE establish-
ment attempt requires ≈1 s resulting in a very long attack time for 250 combinations.
In addition, the eID needs to be steadily connected to the auxiliary reader device dur-
ing this online attack. We therefore deem this attack scenario infeasible in practice,
even for scenarios where the entropy would be partially decreased, e.g., by an attacker
knowing the victim’s full name upfront.

We conclude that users can securely use an untrusted auxiliary device, e.g., a bor-
rowed phone, as an eID proxy for FeIDo. That way, FeIDo can easily support worksta-
tions even without NFC support.

4.8 Evaluation

We now describe our FeIDo prototype and evaluate its performance.

113

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

4.8.1 Prototype

Our current prototype consists of an Android app, a browser extension, and an SGX
enclave. For the sake of demonstration, without losing generality, we picked a German
ePassport as eID—but could have used any ICAO-standardized eID. Our prototype is
open-source (cf. Section 4.10) [S3] and currently focuses on the core concepts for web
authentication. It does not yet support anonymous credentials and does not yet cover
the extended settings described in Section 4.7.5 (client compromise) and Section 4.7.6
(untrusted reader).

4.8.1.1 Client Middleware

An Android app represents the client middleware. It provides a UI for manually en-
tering the eID’s static password as required for PACE—a one-time process that can be
replaced by taking a photo of the user’s eID (cf. Section 4.4.2). The client middleware
registers an NFC intent filter for detecting eIDs and uses the JMRTD library [170] for
NFC-based communication with them, e.g., for PACE and data group queries. The
client middleware communicates via protobuf messages with the credential service and
browser extension through an RA-TLS (credential service) and WebSocket connection
(browser extension), respectively. The client middleware enables the CA channel be-
tween the eID and the credential service by forwarding raw Application Protocol Data
Unit [174] commands. As a performance optimization, the client middleware can cache
data groups read from the user’s eID to avoid re-reading them via NFC. Having said
this, PACE, PA, and CA are re-executed on every authenticator operation to verify the
eID (Section 4.6.3.1, Section 4.6.5.2).

4.8.1.2 Browser Extension

The browser extension uses a content script to overwrite the create() and get() functions
of a browser’s navigator.credentials API. That way, the browser extension intercepts
WebAuthn requests by a web page and can forward them to the FeIDo authenticator
through the client middleware. This approach enables easy integration of FeIDo with-
out emulating a physical device (e.g., USB). The browser extension manually crafts
respective return values for the overwritten functions based on the client middleware’s
WebAuthn response data to interact with the web pages seemingly. While we tested
the browser extension with Firefox, the core APIs are also available in other browsers.

4.8.1.3 Credential Service

The credential service is implemented based on the Intel SGX SDK v2.15 [107] in ≈2.8 k
lines of C/C++ source code (excl. libraries). Upon an incoming RA-TLS connection by
a client middleware, the credential service sequentially processes the WebAuthn opera-
tion request and eID information before replying with a WebAuthn response. We have
integrated an RA-TLS server endpoint based on the SGX SSL patches of the SENG-
SDK (Section 2.10) [P1]. For parsing the eID data groups and running the PA and CA
protocols, we patched the OpenPACE library v1.1.2 [159] to add support for German
ePassports, SGX, and RA-TLS. To demonstrate eID revocation (Section 4.6.5.3), we

114

4.8. EVALUATION

have implemented a service that mimics Interpol’s I-Checkit database service of stolen
eIDs [110]. After CA, the credential service queries the blocklist via TLS using the
eID’s document number, type, and country of issuance (following [110]) and aborts
authentication on a database hit. For the attribute-based FIDO2 credential derivation,
the credential service uses a SHA-256 HMAC to hash the attributes, forms a private key
based on the hash, and finally calculates the corresponding public key. The credential
service prototype currently supports only German ePassports and the ES256 algorithm
for the WebAuthn signatures.

4.8.2 Performance Evaluation

We now evaluate the performance of our prototype implementation during a FIDO2
web authentication process.

4.8.2.1 Methodology

In our experiment, we host a local instance of the webauthn.io test page [63] and
measure the time it takes to (i) register and (ii) log into an account using single factor
FIDO2 authentication. We run the web service and the credential service on a Dell
XPS 9560 laptop with an Intel® i7-7700 HQ and Ubuntu 18.04 LTS. For the agent, we
use two devices: we run Firefox 96 and FeIDo’s browser extension on the Dell XPS but
run the middleware on a Pixel 4a phone with Android 12. The laptop and phone are
interconnected via a local 1 Gbps network using Ethernet and Wifi.

To assess the practical feasibility of FeIDo, we compare its performance against two
FIDO2 authenticators. For our measurements, we take a SoloKey Hacker v2.1 with
an unlocked 4.1.2 firmware and a Nitrokey with a 2.4.0 firmware, which are connected
via USB to the laptop, as baselines. We measure the average time over ten iterations
for each operation (registration, login) for each authenticator. We keep the WebAuthn
attestation feature of webauthn.io disabled for the measurements and assume the web
page and client middleware app (with cached PACE password) to be preloaded. We
assume that the ePassport is already placed on the NFC reader.

4.8.2.2 Evaluation Results

There were no significant time differences between the registration and login operations
for all authenticators. We have measured the performance of our FeIDo prototype two
times: once the initial, uncached performance (uncached) and once with the data groups
of the ePassport cached by the client middleware (cached) as described in Section 4.8.1.
The uncached FeIDo operations took ≈2980 ms on average, which is close to the average
performance of Nitrokey of ≈3183 ms. The overall median duration of Nitrokey has
been ≈2327 ms and the average duration of SoloKey ≈1813 ms. The standard error of
the means (SEM) of both FeIDo setups was below 28 ms and those of SoloKey below
101 ms. Nitrokey faced bigger SEMs of ≈669 ms (register) and ≈844 ms (login) due to
outliers caused by its unreliable user confirmation based on squeezing the authenticator
case in contrast to SoloKey’s button.

115

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

By caching the ePassport data groups in the client middleware, FeIDo has signifi-
cantly improved its average operation duration by ≈19.3 % to ≈1878 ms, which is close
to that of SoloKey. This shows that reading ePassport data via PACE contributes a
major part. In fact, our measurements have shown that the overall communication pro-
cessing between the client middleware and ePassport currently makes up ≈68 % to 78 %
of FeIDo’s operation duration. The total operation duration could probably be further
improved by parallelizing the prototype, e.g., by setting up the PACE and RA-TLS
connections concurrently or deriving the WebAuthn credentials while waiting for the
PA and CA results. The current measurement excludes the eID revocation lookup as
we have no access to the Interpol I-Checkit service. However, [110] states a lookup time
of ≈30 ms plus network latency, which is an insignificant extra overhead. We conclude
that the performance of our current FeIDo prototype is already in the range of existing
hardware FIDO2 authenticators.

4.9 Discussion

In the following, we discuss FeIDo’s applicability to single-factor (Section 4.9.1) and
enterprise authentication schemes (Section 4.9.2) and how FeIDo operates in settings
where personal user attributes change (Section 4.9.3).

4.9.1 FeIDo as Sole Authenticator (Passwordless)

While we assume FeIDo to be used as an additional factor in a 2FA scheme, in the
following, we want to discuss in how far FeIDo could serve as a sole authenticator
for FIDO2 web authentication. As FeIDo is a FIDO2-compliant virtual authenticator
(cf. Section 4.7.1), it can be directly used as the sole token. However, to provide high
security in a non-2FA setting, FeIDo requires additional protection.

On an eID theft, just as hardware tokens, FeIDo must prevent account hijacking by
attackers. To handle this, as proposed in Section 4.7.3.2, FeIDo’s credential services can
restrict service to eIDs that support an access PIN known only to the genuine owner—
analogous to PINs provided by some hardware tokens—and implement a suitable subset
of FeIDo’s eID revocation mechanisms (cf. Section 4.6.5.3). That way, stolen eIDs
become unusable by attackers not knowing the PIN or even entirely revoked for FeIDo
authentication operations.

While a collision of our chosen set of user attributes is unlikely in practice (Sec-
tion 4.7.2.3), when considering FeIDo for usage as the sole authenticator, we must
guarantee user-unique KDF inputs to derive distinct credentials. To this end, we could
add a user-specific secret salt to the KDF input set (Section 4.6.3.2). This secret must
be a strong, client-side random password accessible by the client middleware, which is
forwarded to a credential service as part of the authentication request. That way, even
on a full attribute collision of two users, their KDF input and thus derived credentials
stay distinct. While the secret can be cached on the client device, e.g., in a phone’s
TEE-protected key storage [92], the user has to back up the salt against client device
loss. As a positive side effect, the salt also protects against eID theft and cloned eIDs
issued by malicious authorities.

116

4.9. DISCUSSION

The depicted sole-factor usage of FeIDo allows to draw a comparison to sole-factor
passwords for web authentication. All FIDO2 schemes, including FeIDo, are resilient
against several attacks that passwords do not withstand, such as phishing, shoulder surf-
ing, password database leaks, or cracking/guessing attacks [191, 65, 166, 54]. Moreover,
whereas password leaks give attackers immediate access to the associated account(s),
the FeIDo/FIDO2 credentials cannot be extracted to impersonate users even if the at-
tacker has physical access to the token (or eID). While attackers can reuse stolen/lost
tokens to impersonate users, access codes (or the PIN/salt depicted above) mitigate
this threat. Admittedly, passwords have lower requirements: they are widely supported,
do not have to be carried, and require no special or dedicated hardware. For a more
detailed comparison between sole-factor FIDO2 and passwords, we refer to Lyastani et
al.’s systematization paper [84].

4.9.2 Enterprise Authentication Use Cases

So far, we have focused on FeIDo being used by private users. We now discuss FeIDo’s
applicability to enterprise-focused authentication use cases, loosely following those
given in [72] by the FIDO Alliance. As FeIDo is fully FIDO2-compliant, in princi-
ple, FeIDo can be used for any enterprise setting where FIDO2 hardware or virtual
authenticators are in use. Employees can directly use their eIDs with FeIDo for en-
terprise two- or single-factor web authentication. Alternatively, if a company issues
electronic employee ID badges that provide the required personal attributes and com-
patible authentication protocols (Section 4.4.2), FeIDo could support them.

FeIDo can also be used for local enterprise service or device authentication if network
connectivity is available. FeIDo requires access to a credential service and an attestation
service for validating the TEE protecting the credential service. If internet connectivity
is available (default), both services can be hosted remotely, e.g., in a public cloud and
by the TEE vendor. Alternatively, to enable local intranet settings, a company can
host a private credential service and attestation service (e.g., Intel SGX DCAP [103])
on a local enterprise server. That way, FeIDo can even be used for other settings such
as local client device (domain) logins, remote logins, or SSH logins. FeIDo can even
support physical access, e.g., via smart door locks, as smart locks often support NFC
and intranet access for checking credentials against the enterprise database.

FeIDo’s requirements are thus comparable to those of existing FIDO2 authentica-
tors, except authenticators do not require access to a TEE-protected credential service,
which simplifies local setups. In addition, they can better support offline use cases.

4.9.3 eID Migration on Attribute Changes

FeIDo’s KDF-based credentials rely on the fact that user attributes do not change.
While this is true for most attributes such as date and place of birth, names or na-
tionality may change. For example, users may change their surname upon marriage.
Since the credential derivation is based on a user’s attributes, the user loses access to
the relying parties once attributes change. This migration problem can be solved by
temporarily switching to other authentication schemes and eventually (re-)linking the
(new) user data to the account. Alternatively, users can leverage the fact that they may

117

CHAPTER 4. FEIDO: RECOVERABLE FIDO2 TOKENS USING ELECTRONIC IDS

own multiple valid eIDs issued by the same state (e.g., a national ID and an ePassport).
FeIDo transparently accepts any valid, non-revoked eID of a user. The user can first
apply for just one of the two documents with their new data. They can then still use
the “old” document for a final authentication based on their outdated data and then
link their new document to their accounts. Once all accounts are migrated, the user
can finally replace the other eID.

4.10 Artifacts

The prototypes of FeIDo are available as open-source projects at https://github.
com/feido-token [S3], including the SGX-based credential service, Android mid-
dleware app, Firefox browser extension, and demo eID database service. See page 9 for
a list of all open-source prototypes covered by this dissertation.

4.11 Conclusion

FeIDo represents the first attribute-based FIDO2 virtual authenticator. The system
uses an eID as the physical component that the user possesses and a TEE-protected
credential service that interfaces the eID’s authentication mechanism with the FIDO2
protocol. FeIDo addresses two major open challenges in FIDO2: cost efficiency, and
recovery in case of authenticator loss. We also showed that it is secure under reason-
able assumptions. In contrast to existing FIDO2 tokens and eIDs, FeIDo additionally
enables anonymous credentials, which the credential service can provide as a FIDO2-
compatible extension. Therefore, FeIDo not only shows that TEEs can help tackle
the open challenges of FIDO2—thus positively answering RQ3 (see page 5)—but can
additionally enable new security features, e.g., FeIDo’s anonymous credentials.

We released an open-source prototype of FeIDo and compared its efficiency with
existing hardware authenticators. In particular, we showed that the execution time
of our prototype implementation is comparable with standard FIDO2 authenticators.
We conclude that FeIDo is a practical, cost-efficient, and secure alternative to existing
hardware and virtual authenticators.

This chapter concludes the first part of this dissertation which focused on presenting
TEE-based designs for security-critical network and web authentication services. Chap-
ters 2 to 4 contributed to meta research question MQ1 (see page 4) by showing how
such services can benefit from TEEs, e.g., via protection against strong system-level
attackers or enabling of new security features. In the next chapter, we will present the
second part of this dissertation which contributes to meta question MQ2 (see page 5),
i.e., explores in how far we can enable additional runtime defenses for TEE-protected
services. We will focus on secure runtime monitoring for VM-level TEEs to detect,
analyze, or prevent in-VM attacks.

118

https://github.com/feido-token
https://github.com/feido-token

5
00SEVen – Re-enabling Virtual

Machine Forensics

Introspecting Confidential VMs using

privileged in-VM Agents

119

5.1. MOTIVATION

5.1 Motivation

The security guarantees of confidential VMs1 like AMD’s SEV are a double-edged
sword: Their protection against undesired VM inspection by malicious or compromised
cloud operators inherently renders existing VM introspection (VMI) services infeasible.
However, considering that these VMs particularly target sensitive workloads (e.g., fi-
nance), their customers demand secure forensic capabilities.

Therefore, in this chapter, we address RQ4 (see page 6), i.e., answer how we can
enable VM owners to remotely inspect their confidential VMs without weakening the
VMs’ protection against the cloud platform. We analyze the technical and threat
model-related challenges hindering the adoption of existing inspection techniques and
present a new VMI design tackling them, called 00SEVen. In contrast to naïve in-VM
memory aggregation tools, our approach is isolated from strong in-VM attackers and
thus resistant against kernel-level attacks, and it provides VMI features beyond memory
access. 00SEVen leverages the recent intra-VM privilege domains of AMD SEV-SNP—
called VMPLs—and extends the QEMU/KVM hypervisor to provide VMPL-aware
network I/O and VMI-assisting hypercalls. That way, we can serve VM owners with a
protected in-VM forensic agent. The agent provides VM owners with attested remote
memory and VM register introspection, secure pausing of the analysis target, and page
access traps and function traps, all isolated from the cloud platform (incl. hypervisor)
and in-VM rootkits.

5.2 Problem Description

The security of virtual machines (VMs) is a crucial factor that can determine if cus-
tomers are willing and regulatorily permitted to offload processes to a cloud platform.
In order to increase trust into cloud platforms, researchers and vendors have devel-
oped several VM security and monitoring solutions rooted in the privileged VM man-
ager, i.e., the hypervisor. These solutions range from kernel code integrity schemes
and virtualization-based enclaves to forensic VM introspection (VMI) services [198,
13, 246, 115]. An impactful recent virtualization extension has introduced so-called
confidential VMs.1 This security extension protects the confidentiality and integrity
of a VM’s memory and registers against the cloud platform, including the hypervisor
and peripherals. Confidential VMs aim at enabling cloud adoption for highly sensitive
customers that need to satisfy high security regulations and might distrust third-party
cloud providers, e.g., the finance and health sector. AMD SEV is the pioneering so-
lution, which has so far been extended multiple times (SEV-ES, SEV-SNP) [3] and is
widely available at cloud platforms [96, 12, 93]. Due to the high demand, other major
CPU vendors provide their own confidential VM designs, e.g., Intel TDX and Arm
CCA [106, 16].

However, while confidential VMs provide attestable hardware protection against
the cloud platform, they are still prone to runtime compromises. Remote attackers
can still exploit vulnerable network services within the VM or perform software supply

1also called Trusted Execution Environment VMs, TEE VMs, or TVMs

121

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

chain attacks to gain control over a confidential VM. Considering the sensitivity of
the confidential VMs’ target group, it is therefore crucial to deploy additional security
mechanisms and monitor the VM for indicators of compromise. Hypervisor-based VMI
is a well-explored forensic method to analyze a VM’s memory and execution state,
allowing to scan for such indicators, e.g., traces of rootkits [115]. Unfortunately, the
threat model of confidential VMs is inherently in conflict with VM security schemes that
root their trust in the cloud hypervisor, including VMI. Furthermore, the protection of
confidential VMs blocks major access methods required by these schemes—rendering
them unfeasible.

5.3 Contributions

Our goal therefore is to analyze these limiting factors and then propose a new design
for secure remote introspection of confidential VMs. That way, we fill an important
gap by re-enabling VM owners, i.e., the cloud customers, to inspect the runtime states
of their VMs (memory, registers) without sacrificing security guarantees against both
the hypervisor (e.g., cloud vendors) and in-VM attackers (e.g., kernel-level rootkits).
We aim to enable VM owners to, e.g., periodically scan for attacks or perform post-
mortem digital forensics without leaking any inspection data to the hypervisor or in-
VM attackers. This goal aligns with recent research ambitions trying to re-enable
hypervisor-based security schemes for confidential VMs. Hecate [83] is a noticeable
recent work that focuses on protecting legacy OSes inside confidential AMD VMs and
re-enabling in-VM network and static code integrity policies. Hecate shows the need
to redesign existing techniques for the threats and specifics of confidential VMs.

To the best of our knowledge, we are the first to focus on the challenges of re-enabling
secure remote VMI for confidential VMs. Previous work on inspecting confidential VMs
is limited to an attacker perspective. Approaches like SEVered [157] have exploited
the missing integrity protection of early SEV versions to leak memory and register
content of a VM [155, 156]. However, recent confidential VMs, e.g., SEV-SNP, feature
integrity protection that fixes the root causes of these attacks. Existing out-of-VM
forensic systems are blocked by SEV’s memory protection [78, 242, 201]. VM owners
currently must fall back on deploying forensic tools inside the confidential VMs, e.g.,
LeechAgent [79] or GPR [94]. However, these tools lack VMI features, e.g., VM pausing
and traps. Even worse, they are not isolated from privileged in-VM malware (e.g.,
rootkits) providing system-level attackers full control over them and thus rendering
them insecure.

In this chapter, we present 00SEVen, a design for secure remote introspection of
confidential AMD VMs, even under a strong in-VM attacker. Our design introduces a
privileged in-VM agent that exposes introspection capabilities via the network to the
VM owner, e.g., a cloud customer. The VM owner can securely connect an analysis
client (e.g., based on LibVMI [142]) to our agent to start a remote introspection session
of the VM. By deploying our agent inside the confidential VM, the agent can access
the private VM memory without being blocked by the memory protection while still
being isolated from the untrusted hypervisor. Furthermore, our agent is protected
against in-VM system-level attackers, offers hardware-based attestation of our VMI

122

5.3. CONTRIBUTIONS

infrastructure, and supports VMI features beyond pure memory forensics, e.g., register
access, VM pausing, and memory access traps.

However, these goals are not trivial to achieve for confidential VMs: The cloud
hypervisor is untrusted, i.e., we can not rely on it to protect the agent against the
in-VM OS. Furthermore, the hypervisor is still involved in important VM tasks, e.g.,
the scheduling of virtual CPUs, memory setup, and device I/O (e.g., networking).
We therefore cannot simply apply existing isolation and introspection techniques [242,
201]. Instead, 00SEVen builds on hardware-based in-VM isolation mechanisms and
adds new secure VMI-assisting hypercalls. Our implementation targets confidential
SEV-SNP VMs [3], which are widely available in server CPUs and at cloud platforms
(in contrast to, e.g., Intel TDX) and provide primitives for intra-VM isolation [96, 12,
93]. 00SEVen leverages SEV-SNP’s intra-VM privilege domains, called VM privilege
levels (VMPLs) [3], to protect our in-VM VMI modules (incl. agent) and grant them
full VM memory and register access. Our modules run in a bare-metal environment
independent of the untrusted in-VM OS. 00SEVen deprivileges the in-VM OS (incl. user
space services) by placing it in a less privileged VMPL with memory restrictions that
protect our VMI against in-VM attackers [4]. 00SEVen ensures that VMI results are
shared only with the authenticated VM owner. The VM owner can securely send
VMI requests to the in-VM agent using a new attested end-to-end encrypted network
channel. We enhance the QEMU/KVM hypervisor to support binding a virtual channel
device and its I/O directly to our agent’s privileged VMPL to operate the channel
independent of the in-VM OS. Finally, we extend the VM-to-hypervisor interface of
SEV with new VMI-assisting hypercalls used by our agent to securely offload sub-tasks
to the hypervisor, e.g., to pause the untrusted in-VM OS during a consistent analysis.

We implemented an open-source prototype of 00SEVen (cf. Section 5.11) [S4] with
support for the common LibVMI client library. That way, 00SEVen becomes com-
patible with all analysis scripts and tools building on LibVMI, e.g., Volatility’s VMI
plugin [222]. Our prototype includes the bare-metal in-VM VMI agent, our extensions
to the Linux KVM/QEMU hypervisor, and an extended version of LibVMI usable by
the remote clients. Our evaluation shows a reasonable performance and effectiveness
based on practical analysis tasks and real-world rootkits.

We regard 00SEVen as a first step towards secure VMI for confidential VMs. Instead
of covering all existing state-of-the-art VMI features and optimizations, our focus is on
providing solutions for challenges specific to VMI for confidential VMs. We encourage
future work to build on top of our foundation to explore new optimizations [51, 242],
use future features of SEV-SNP, or transfer our concepts to other platforms such as
Intel TDX and Arm CCA [106, 16].

In summary, we make the following contributions:

• We analyze the incompatibilities of confidential VMs with existing VMI tech-
niques and derive the resulting challenges imposed on confidential VMI designs.

• We design 00SEVen, a remote VMI for confidential SEV-SNP VMs. 00SEVen’s
in-VM agent enables clients to control and inspect their VMs while preserving
security.

123

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

analysis
client

sensitive data
confidential VM

cloud hypervisor

malware

OS (infected)

cloud platform (untrusted)

host service

tenant VM

tenant VM

forensic remote

analysis of VM

(memory, registers)

VM owner’s 
remote host

Figure 5.1: A client deploys a confidential VM at an untrusted cloud platform (dark
gray). As the VM might become compromised (mid gray), the client wants to perform
a remote analysis of the protected VM to scan for attack traces. (light gray: trusted,
dark: untrusted cloud, mid: untrusted in-VM)

• We implement 00SEVen for KVM/QEMU, including its in-VM agent, hypervisor
extensions, and remote client/s.

• We analyze the security of our implementation and evaluate our LibVMI-
compatible prototype (open-source) [S4] based on macro-benchmarks and
real-world rootkits.

5.4 Setting: Confidential VM In(tro)spection

As shown in Figure 5.1, we envision an organization that wants to securely offload
services to a third-party cloud platform, e.g., to benefit from the cloud’s resource scal-
ability and availability. These services operate on highly sensitive data, e.g., health
or financial data, customer data, or IP assets (intellectual property). The client (“VM
owner”) therefore decides to deploy these services in confidential VMs, in our case based
on AMD SEV-SNP. However, as the VM might become compromised at runtime, the
VM owner wants to perform a remote forensic analysis to search for attack traces.
Memory forensics typically covers the aggregation of the target’s memory, the identifi-
cation of data structures, and finally the analysis tasks [81, 21, 143]. The VM owner
plans to augment forensics with VM introspection (VMI), which leverages the hyper-
visor’s control over the VMs to expand memory forensics with additional techniques,
including on-demand pausing of the VM, CPU register inspection, and event-based or
live analysis [142, 201, 115]. Such runtime attack detection in confidential VMs implies
a new threat model, as discussed next.

5.4.1 Threat Model

Our threat model combines aspects of the model of remote VMI for non-confidential
VMs and that of confidential VMs. We refer to the former as “classical VMI”. We trust
the VM owner that deploys confidential SEV-SNP VMs in a third-party cloud and
wants to remotely inspect them using a trusted client system (light gray, Figure 5.1).
We regard the network path between clients and VMs as untrusted. In contrast to

124

5.4. SETTING: CONFIDENTIAL VM IN(TRO)SPECTION

the classical VMI model, the VM owner does not fully trust the cloud platform. We
therefore follow the model of confidential VMs in that we assume all system-level soft-
ware of the cloud platform (incl. the hypervisor) and co-located VMs to be untrusted,
e.g., potentially compromised by an attacker (dark gray, Figure 5.1), and trust the
cloud’s CPU(s) and confidential VM implementation (light gray) to be secure and free
of exploitable vulnerabilities, i.e., in our case, the SEV-SNP extension and attestation
service [3].

We follow a stronger model than confidential VMs regarding the VM security in that
we do not regard the whole confidential VM as trusted. Instead, similar to the classical
VMI model, we assume a potential in-VM attacker (mid gray) that has compromised
the VM OS (e.g., malware, rootkits) that the VM owner wants to remotely detect or
analyze [81, 115]. An attacker might have gained control over the VM for instance by
exploiting in-VM network services or software supply chain attacks against the VM’s
package managers.

We assume the in-VM attacker to be distinct from the cloud operator and not in con-
trol of the cloud platform (Figure 5.1). That is, we explicitly exclude collusion attacks
of the in-VM attacker (mid gray) and the untrusted cloud platform (dark gray). This
assumption is in line with the threat model of SEV-SNP and other existing confidential
VMs as they do not consider in-VM attackers in the first place [3, 106]. We regard
our assumption as reasonable in practice, because a collusion attack would significantly
increase the chance of an attack attribution to the cloud provider, which would result
in a serious reputation loss and lawsuit. Furthermore, we regard a compromise of a
specific confidential VM and the cloud platform by an external attacker at the same
time as rather unlikely and prone to detection by the cloud security infrastructure.
Nevertheless, in Section 5.7.3, we will briefly discuss the security impact of collusion
attacks and the limiting factors of a full mitigation using SEV-SNP.

Finally, we exclude all side-channel and hardware attacks that go beyond the guar-
antees of SEV-SNP and refer to orthogonal research on these topics, e.g., Cipher-
fix [226]. Similarly, we regard the prevention of denial of service (DoS) attacks issued
by the cloud platform as out of scope, because current confidential VMs cannot prevent
them either [3]. However, our VMI design will explore if we can detect or limit DoS
attacks by the hypervisor against our VMI operations. Furthermore, we will discuss
in-VM attackers trying to detect and delay (or even DoS) analysis attempts to hide
from them.

5.4.2 Design Goals and Requirements

To guide the design of our secure remote introspection of confidential VMs, called
00SEVen, we define eight major design requirements (R1–R8) that capture the func-
tional and threat model-specific security demands for a practical solution. In addition,
we define two desirable extra goals (E1+E2) going slightly beyond our threat model
achievable with the current hardware support, which we will not focus on but still
discuss in the chapter.

R1 Remote Memory and Register Access: 00SEVen must provide the VM owner
full remote access to the VM’s memory and virtual CPU registers (vCPU).

125

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

R2 Consistent Analysis 00SEVen must support secure pausing of the VM for a
consistent memory and register analysis. Cloud attackers must not be able to
resume VM execution without an explicit approval by 00SEVen.

R3 Event Traps 00SEVen must enable event-based analysis by supporting secure
traps on VM read/write accesses to monitored memory pages or calls to kernel
functions.

R4 Isolation from In-VM OS-level Attackers 00SEVen’s VMI components and
analysis results must be protected against in-VM OS-level attackers to enable
secure analysis of user malware and kernel rootkits.

R5 Isolation from Cloud Attackers 00SEVen’s VMI components and analysis re-
sults must be protected against the cloud platform (incl. the hypervisor) in line
with the threat model of confidential VMs (here: SEV-SNP).

R6 Secure Communication Channel The network communication between
00SEVen’s in-VM VMI components and the VM owner must be protected
against passive (sniffing), active (tampering), and impersonation attacks by
in-VM, cloud platform, and network attackers.

R7 Small TCB 00SEVen should keep the TCB and attack surface small to minimize
the risk of a compromise.

R8 Small Overhead on VM Workload 00SEVen should minimize the extra over-
head imposed on the confidential VM’s workload while no introspection is active.

(E1 Detect Analysis DoS) 00SEVen should enable the VM owner to detect DoS
attempts (e.g., scheduling-based) by cloud attackers (cf. R5) against VMI oper-
ations.

(E2 Hide Analysis from In-VM Attackers) 00SEVen should support hiding in-
coming remote analysis requests from in-VM attackers, e.g., to prevent attackers
from hiding attack traces just in time (cf. R4).

00SEVen provides the foundation for secure remote VMI of confidential VMs, using
the example of AMD SEV-SNP. We encourage future work to build on top of 00SEVen
in order to securely explore further VMI features and optimization techniques [51, 242,
115, 77] or transfer our concepts to other platforms, as discussed in Section 5.9.1 for
Intel TDX and Arm CCA.

5.4.3 (Un)Applicability of Existing VMI

Existing hypervisor-based VMI systems are inherently in conflict with our threat model.
These systems rely on a trusted hypervisor to control the target VMs and securely access
their memory or register content for the analysis [142]. However, in our setting, the VM
owner assumes the cloud platform (incl. hypervisor) to be untrusted (cf. Figure 5.1 and
R5). In fact, the hardware protection of SEV-SNP renders any out-of-VM approach
unfeasible. SEV-SNP’s memory and register protection blocks any cross- or out-of-VM

126

5.5. DESIGN OF 00SEVEN

access attempts, including those by the hypervisor or peripherals (R1). SEV-SNP gen-
erates and uses a unique de-/encryption key in hardware for each confidential VM to
encrypt a VM’s private memory pages when storing them in system RAM. All VM code
and page tables, as well as data pages marked for encryption in the in-VM page ta-
bles, are treated as private pages, i.e., are encrypted by SEV-SNP. Access to them only
succeeds from within the respective confidential VM, thus protecting their confidential-
ity [7]. In addition, SEV-SNP protects the integrity of private pages and their address
mappings. That way, SEV-SNP blocks unauthorized tampering attempts and enforces
one-to-one host-to-VM address mappings [3, 155]. Thus, SEV-SNP breaks VMI relying
on code injections [98] or page (re)mapping at the hypervisor’s nested (second-level)
page tables (NPTs), e.g., to access VM memory from a co-located VM [242] or isolate
in-VM agents [201]. Furthermore, in contrast to non-confidential VMs, the hypervisor
cannot access the vCPU registers of a confidential VM. SEV-SNP has relocated the
VM’s save areas (VMSAs)—storing the general purpose and control CPU registers on
a VM exit—into private VM memory. Therefore, the hypervisor can no longer inspect
vCPU registers or modify them (R1), e.g., to redirect the VM’s control flow to a VMI
implant [98]. Instead, if register access is required, the hypervisor requires explicit
cooperation by the untrusted VM OS via shared, i.e., unencrypted, memory [9].

Existing in-VM VMI approaches suffer from functional and security issues. While
in-VM forensic tools (cf. Section 5.3) can successfully access the private VM memory,
they are unprotected against in-VM OS-level attackers. Therefore, in-VM attackers
can easily tamper with the tools and their results, violating R4 and R6 (Section 5.4.2).
In addition, they lack several VMI features, e.g., secure VM pausing for a consistent
analysis (R2) and VM traps (R3). Unfortunately, it is non-trivial to protect and se-
curely extend existing in-VM tools within our threat model. In SEV-SNP (and other
confidential VMs), several important resources required by existing VMI systems are
still handled by the untrusted hypervisor, which prevents a direct transfer of out-of-
VM techniques [242, 98, 201]. The hypervisor controls the scheduling of vCPUs and
the second-level memory mappings (incl. permissions) via nested page tables (NPTs).
Furthermore, the untrusted hypervisor is still in the sole control of vCPU event inter-
ception [7]. Therefore, in-VM tools can neither use NPTs to isolate their memory space
from in-VM attackers [201, 98, 242] (R5), nor pause vCPUs for a consistent introspec-
tion (R2), nor directly monitor page accesses or intercept VM executions (R3) [83].

5.5 Design of 00SEVen

Next, we present the design of 00SEVen, our remote VMI solution. In Section 5.6, we
focus on its implementation details.

5.5.1 Design Overview

As shown in Figure 5.2, 00SEVen combines a secure in-VM agent with VMI-specific
hypervisor extensions. Together they provide the VM owner with remote analysis ca-
pabilities (R1), securely overcoming the limitations imposed by SEV-SNP. Our new
VMI agent forms 00SEVen’s in-VM TCB, while the rest of the VM and the cloud plat-

127

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

analysis
client

VMPL0 (in-VM) sensitive data
confidential cloud VM

malware

OS (infected)

steal,

tamper

E2EE

VMI requests

(encrypted)

VM owner’s 
remote host

network fwd vmi-calls hypervisor

VMI agent

attested E2EE
virtio channel

Figure 5.2: Design of 00SEVen: Secure in-VM agents enable remote VMI of confidential
VMs. VM owners query the agents via attested end-to-end encrypted (E2EE) network
channels. (light gray: trusted, dark: untrusted cloud, mid: untrusted in-VM)

form stay untrusted. In order to start a remote VMI session, the VM owner executes
a 00SEVen-compatible forensic client application on a trusted system. The client con-
nects via a network (reverse) proxy running at the cloud platform to our agent inside
the SEV-SNP VM and uses SEV’s hardware-assured remote attestation to authenticate
it [5]. The VM owner then uses the client to issue VMI requests to our in-VM agent
as required for the forensic analysis. The agent performs the requested VMI opera-
tions on behalf of the VM owner, e.g., accessing memory or register content (described
in Section 5.5.2), and returns the results. The workflow of 00SEVen will be familiar
to users of the common LibVMI [142] framework. However, in contrast to LibVMI,
which interacts with a local hypervisor, our client library remotely communicates with
00SEVen’s securely attested in-VM agent, not with the untrusted cloud hypervisor.

In-VM Agent Our in-VM agent forms the core of 00SEVen’s VMI. The agent is
responsible for processing the introspection commands of the analyst by implementing
the respective VMI operations (cf. Section 5.5.2). While SEV-SNP protects the in-VM
agent against out-of-VM attackers (incl. the hypervisor), it is crucial for a secure VMI
that the agent is also protected against in-VM attackers, e.g., a compromised VM OS
(R4–R6). Therefore, we leverage SEV-SNP’s VM privilege levels (VMPLs) for in-VM
isolation [3]. VMPLs are orthogonal to the kernel and user mode and enable multiple
separate execution contexts per vCPU that share the same physical VM address space.
In the current revision, SEV-SNP provides four hierarchically-ordered VMPLs, called
VMPL0 to VMPL3, with VMPL3 being the least privileged. For each vCPU, the
hypervisor requires one VMSA per VMPL, i.e., up to four separate register sets per
vCPU. A vCPU cannot switch between VMSAs (incl. VMPLs) by itself, in contrast
to the kernel and user mode. On scheduling, the hypervisor selects a vCPU’s current
VMSA, i.e., register set and VMPL. However, the hypervisor cannot directly access or
modify the VMSAs and their associated VMPLs (cf. Section 5.4.3), and the boot-time
VMSAs can be remotely attested. By default, VMPLs are unused and all VM software
executes in VMPL0.

We deploy the modules of our VMI agent inside VMPL0, which forms a special

128

5.5. DESIGN OF 00SEVEN

in-VM management domain. VMPL0 provides our agent with full VM memory access
(R1) and the capability to define per-VMPL memory permissions (read, write, execute)
that restrict access of less privileged VMPLs to a memory subrange. In addition,
VMPL0 securely manages the VMSA pages (cf. Section 5.4.3) and therefore enables
our agent full access to all registers of each vCPU (R1). 00SEVen deprivileges the
untrusted VM OS and user services inside a less privileged VMPL, following a proposal
by AMD [4]. That way, at boot time, our agent can define VMPL memory permissions
for the less privileged VMPLs that isolate our agent and the vCPU registers, i.e., VMSA
pages, from in-VM attackers (R4). For ease of discussion and without loosing generality,
we assume the VM OS and services to be relocated only into VMPL1, ignoring the even
less privileged VMPL2 or VMPL3. The VM OS running in VMPL1 can still execute
every privileged CPU instruction except those restricted to VMPL0. This affects only
the pvalidate instruction which is used to commit memory pages to the SEV VM at
boot time (by default) [8]. Therefore, our VMPL0 agent takes care of the VM memory
setup, as detailed in Section 5.6.1. Our agent executes in a bare-metal environment
without an OS kernel, independent of the potentially compromised VM OS (R8). By
refusing the use of a full-blown OS inside VMPL0, (in contrast to, e.g., Hecate [83]),
we keep 00SEVen’s TCB and attack surface significantly smaller (R7).

Hypervisor integration We extend the untrusted hypervisor to assist 00SEVen’s in-
VM agent with scheduling, remote communication, and VM control primitives. To-
gether with new in-VM security checks, that way, our agent can securely enable remote
VMI despite the untrusted hypervisor’s VM control. During regular workloads, we
want the hypervisor to execute the VM OS in VMPL1 without additional overhead
by our VMI system (R8). On remote VMI requests by the VM owner, we expect the
hypervisor to schedule our VMPL0 agent to perform VMI operations. However, ex-
isting hypervisors (e.g., KVM) do not yet distinguish between different VMPLs when
scheduling vCPUs or delivering I/O events. We therefore extend the hypervisor with
VMPL-aware scheduling and I/O operations. That way, we can bind a virtual I/O de-
vice for our VMI remote channel exclusively to VMPL0, i.e., our agent’s domain. The
channel device demands scheduling of VMPL0 from the hypervisor on VMI requests
and permits channel I/O only by our agent. All other I/O devices (e.g., disk, NIC)
stay associated with the VM OS in VMPL1, keeping their performance unaffected by
our agent (R8). When finishing the requested VMI operations, our agent hyper-calls
into the hypervisor to re-schedule VMPL1 execution. In Section 5.5.2, we will present
00SEVen’s hypervisor interfaces for VMI control primitives: VM pausing and trapping.

Secure client-to-agent communication The VMI channel between 00SEVen’s in-
VM agent and the VM owner’s remote client requires additional protection. In the
current SEV-SNP design, all hardware device I/O must pass through the untrusted hy-
pervisor. Therefore, we must rely on a packet forwarding service at the hypervisor-level
to forward our VMI channel messages via the network to the remote client (cf. Fig-
ure 5.2), affecting their security (R6). In order to protect our VMI messages, the
remote client and the in-VM agent use an end-to-end encrypted (E2EE) connection
(R6). Otherwise, attackers could tamper with the messages to hide attack traces or

129

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

leak private VM memory by exploiting inspection requests. 00SEVen’s connection end-
point is isolated from out-of-VM (cloud, network) and in-VM attackers by placing the
protocol stacks directly inside VMPL0—letting packets leave VMPL0 only in E2EE
form. As the agent operates only on the (E2EE) application-layer messages rather
than full network packets, we preserve a small in-VM TCB (R7). Being located in
VMPL0, the VMI channel operates independent of the untrusted VM OS in VMPL1
(R8)—not passing any packets through the VMPL1 network stack. To prevent im-
personation attacks, we combine certificates with SEV-SNP’s remote attestation for
mutual authentication, as discussed in Section 5.6.3.

5.5.2 VMI Work Flow

We now describe 00SEVen’s VMI (R1) and its hypervisor extensions for secure VM
pausing (R2) or event traps (R3).

5.5.2.1 Modus Operandi

00SEVen supports multiple forms of remote analysis triggers and modes. A typical use
case is the scanning for attack traces or active malware by the VM owner as part of an
incident response process, e.g., triggered by an intrusion detection system or as part of
a periodic security check. Beyond manually or periodically triggered analysis, 00SEVen
re-enables more advanced use cases by supporting event-based triggers based on page
access monitoring or code execution traps (cf. Section 5.5.2.5). That way, 00SEVen
can notify the client-side analysis script, e.g., if an in-VM attacker tries to tamper
with a memory page of a sensitive service (R3). 00SEVen’s main analysis mode then
enables the remote analyst (VM owner) to perform a consistent analysis of the VM
by providing secure pausing of the untrusted VMPL1 services, i.e., the VM OS and
user processes (cf. Section 5.5.2.4). In contrast to existing forensic tools that require
downloading a full VM memory dump for a client-side offline analysis, 00SEVen enables
interactive and selective remote memory and register introspection of the VM state and
thus better scalability by avoiding gigabyte-size memory dump transfers. Depending
on the analysis results, the VM owner can then quarantine or resume the VM. Even
though not being our focus, 00SEVen also has limited support for live memory analysis,
i.e., without pausing VMPL1 execution, as we will describe in Section 5.5.2.6.

5.5.2.2 Remote VMI Interface

00SEVen’s remote interface enables flexible analysis tasks by the VM owner. 00SEVen’s
in-VM agent implements fundamental operations required for VMI and exposes them
via an RPC-like interface to the remote client. These operations form the basis for high-
level VMI tasks by providing memory and register access (cf. Section 5.5.2.3). Further-
more, the agent exposes secure VM control primitives for pausing (cf. Section 5.5.2.4)
or trapping (cf. Section 5.5.2.5) the VM. That way, analysts have full control of the
VMI and can implement flexible analysis scripts tailored to their use cases. Our opera-
tions are similar to the features of the common LibVMI framework [142], which makes
it possible to adopt many existing LibVMI client analysis scripts and tools built on it,

130

5.5. DESIGN OF 00SEVEN

1 connect_to_agent (target_vm)
2 pause_vmpl(OS) // cons i s t en t , l i k e LibVMI
3

4 task_entry = ksym_va(" i n i t_ta sk ") + t a s k s _ o f f s e t
5

6 // scan the l i s t o f p roce s s e s
7 whi le (t rue) {
8 proc = task_entry − t a s k s _ o f f s e t
9 exec = read_str_va(proc + comm_offset)

10 i f (exec == " malware ") { . . . }
11 . . .
12 }
13

14 resume_vmpl(OS) // VMPL1 OS
15 disconnect_from_agent ()

Figure 5.3: Simplified excerpt of a client script remotely scanning the process list of a
Linux SEV-SNP VM for malware. (_va =̂ VM virtual address, comm =̂ command name)

e.g., Volatility’s VMI plugin [222]. As demonstration, our current remote analysis client
is based on LibVMI. We extend LibVMI with a new 00SEVen driver, i.e., API backend,
which sets up the attested E2EE connection to our agent and sends VMI operation and
VM control requests to our agent, instead of interfacing with a local hypervisor.

Figure 5.3 shows a simplified client script for remotely inspecting the process list us-
ing 00SEVen. In the preamble (lines 1+2), the VM owner’s client connects to 00SEVen’s
in-VM agent and requests secure pausing of the VM OS for a consistent analysis (cf. Sec-
tion 5.5.2.4). Afterwards, the client resolves symbols to get the address of the process
list of the Linux-based VM OS (line 4) and issues multiple memory read requests to
00SEVen’s agent to scan the list (lines 7–12). The agent receives the requests via the
E2EE channel and performs the respective memory accesses inside the VM. As we will
discuss in Section 5.5.2.3, the client might perform some steps locally to speed up the
analysis process, e.g., by caching page table information [51, 142]. Finally, in the epi-
logue (lines 14+15), the client resumes the VM execution if no malware has been found
and disconnects from the agent.

5.5.2.3 VMI Operations

We now outline the basic VMI operations 00SEVen supports.

Physical Memory Access 00SEVen’s basic memory access operation takes a phys-
ical memory address of the VM (PAvm) as input. Our agent maps the PAvm and
then uses the resulting virtual address (V Avmpl0) to access the page, returning the
requested content to the remote analyst. In contrast to out-of-VM VMI, there is no
need to explicitly translate the VM address to a host-level virtual address, as it will be
automatically handled by the hardware on the in-VM access. Before each access, the
agent must check that the requested physical address range does not overlap with the

131

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

VMPL0-exclusive memory region containing our agent’s code and data (Section 5.6.1).
Otherwise, in-VM attackers might maliciously modify kernel pointers to let them point
into the VMPL0 region to cause a corruption of 00SEVen on incautious VMI write
requests. Furthermore, the agent must ensure that the PAvm is correctly mapped as
private (encrypted) or shared page as registered in SEV-SNP (Section 5.4.3). This in-
formation must be encoded as a bit in each PAvm but might be unavailable or untrusted
when the PAvm is taken from VMPL1. As VMPL0 registers (“validates” [3]) private
pages in SEV-SNP, the agent can keep track of each page bit to correctly map them,
requiring only 1 MiB for a VM with 32 GiB RAM and 4 KiB page size. Optionally, the
agent can pre-map all pages linearly (V Avmpl0 = PAvm + offset) for a direct V Avmpl0
lookup (calculation) rather than a slower on demand mapping and/or page table walk.

Virtual Memory Access For accessing virtual kernel or process addresses of the
VMPL1-located VM OS, 00SEVen requires an address translation step. The VMPL0
agent uses separate page tables (PTs) that are isolated from the untrusted VM OS
to prevent malicious remapping attacks by in-VM attackers. For accessing a virtual
address of the VM OS (V Avmpl1), we therefore must translate the V Avmpl1 to a PAvm

before the agent can access it via a V Avmpl0, as described before. The translation
requires a (software-based) page table walk through the respective PTs of the VM
OS [143]. Depending on the virtual address space of the V Avmpl1, the physical address
(PAvm) of the respective root PT (directory table base) can be located using different
existing methods [143]: for kernel VAs based on the Linux ’init_top_pgt’ kernel symbol,
for process VAs inside the OS process list (Figure 5.3), or for the current address spaces
in the CR3 registers accessible in the vCPUs’ VMSAs (Section 5.4.3). We refer to the
forensic literature for more details, e.g., [143].

With our remote client being based on LibVMI (Section 5.5.2.2), the client performs
kernel symbol translations locally, e.g., based on the symbol table of the compiled VM
Linux kernel [177]. For the page table walks, the client issues the respective physical
memory and CR3 read requests to our agent as required for the V Avmpl1 ⇒ PAvm

translation. After translation, the agent can then map and access the target virtual
address via the resolved PAvm.

Client-side Memory Caches 00SEVen’s remote client adopts LibVMI’s client-side
caching [177] to enhance the memory access performance. We leverage LibVMI’s page-
level data caching to avoid additional network overhead for follow-up accesses to the
same physical VM page, e.g., when reading multiple page table entries or fields of a
structure [177, 142]. That is, the client requests whole page reads (4 KiB) of the agent
and caches {PAvm → page buffer} mappings, i.e., from a physical page address to the
respective page content, in order to enable client-local follow-up accesses to the same
memory page. That way, we avoid extra communication overhead. Furthermore, we
accelerate the address translation process (V Avmpl1 → PAvm) required when accessing
virtual addresses of the VMPL1 VM OS. LibVMI supports multiple related client-
side caches which maintain {kernel symbol → PAvm}2, {V Avmpl1 → PAvm}, and

2actually {ksym → V Avmpl1}, but P Avm is statically derived for Linux [143]

132

5.5. DESIGN OF 00SEVEN

{process ID → PAvm(root PT)} mappings and thus decrease the number of required
VMPL1 page table walks and remote memory access requests. In Section 5.9.2, we will
outline future directions to accelerate 00SEVen’s virtual memory accesses even further
by proposing new agent-side offloading and access optimizations strategies.

Virtual CPU Register Access 00SEVen’s agent securely manages the register save
states (VMSAs) of the vCPUs. The VMPL0 setup code allocates and registers one
VMSA page per VMPL for each vCPU [9]. When a vCPU of an SEV-SNP VM is
yielded, the CPU stores the general purpose, control, and virtualization registers of the
vCPU in the respective private VMSA page (cf. Section 5.4.3). Therefore, our agent
can directly inspect the register state of paused vCPUs (Section 5.5.2.4). To prevent
in-VM attackers from tampering with vCPU registers, our agent protects VMSA pages
using VMPL permissions.

5.5.2.4 Secure Pausing for a Consistent Analysis

00SEVen supports secure pausing of in-VM attackers for a consistent memory and
register introspection (R2). That is, 00SEVen can pause in-VM attackers such that
they cannot tamper with the memory or register content anymore, which stops data
manipulation attacks during the analysis, e.g., hiding of attack traces. In contrast
to non-confidential VMI, which trusts the hypervisor to fully pause all vCPUs dur-
ing the analysis, 00SEVen must follow a new approach. 00SEVen must not fully stop
vCPU execution because the in-VM agent must still perform the analysis. Instead,
only the execution of the untrusted VM OS and user space services should be paused,
i.e., the VMPL1 domain of the vCPUs. Furthermore, in our threat model, 00SEVen
cannot trust the hypervisor to keep VMPL1 paused throughout the analysis. There-
fore, we temporarily disable virtualization support in the EFER CPU control registers
of all VMPL1 VMSAs to prevent their execution while performing the analysis in
VMPL0. First, we extend the hypervisor with two new hypercalls from VMPL0 to
the hypervisor—one to request pausing of all VMPL1 contexts, yielding them if active,
and one for resuming them. Second, on a pause request, we let our VMPL0 agent
iterate all VMPL1 VMSAs, i.e., saved register states (Section 5.4.3), and atomically
unset the virtualization-enable CPU register bit EFER.SVME. If the register updates
succeed, VMPL1 has been paused by the hypervisor, and we have locked VMPL1 ex-
ecution, i.e., all attempts by the hypervisor to resume it will be blocked by the CPU.
If the hypervisor ignores a pause request (DoS attempt), the register updates will fail
as the VMSAs are not paused [4], causing the agent to retry. The remote analyst will
detect the attack, as the analysis will not proceed (E1). On a resume request, the
agent re-enables all VMPL1 VMSAs by setting their EFER.SVME and requests their
scheduling by the hypervisor. As shown in Figure 5.3 (lines 2 and 14), we expose pause
and resume APIs to the remote analyst.

5.5.2.5 Event-based VMI

00SEVen provides support for event-based VMI (R3): SEV-enabled memory access
traps and kernel function traps.

133

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

sensitive data
00SEVen 
VMI agent malware

OS (infected)

hypervisor

VM
PL

0

VM
PL

1

 1. #NPF 
(VMPL violation)

2. schedule

 VMPL0

3. analysis

VMSAs

vmpl 1

5. increase instr.

 pointer

4. emulate 
 access

6. continue

#NPF handler

Figure 5.4: 00SEVen’s VMPL0 agent combines VMPL permissions with instruction em-
ulation for secure page monitoring. (light gray: trusted, dark: untrusted cloud, mid:
untrusted in-VM)

Page R/W-Monitoring 00SEVen enables the remote analyst to request the monitor-
ing of read and/or write accesses to private VM pages. That way, the analyst can for
instance write-monitor a function pointer table in the VM OS, e.g., the system call
table, to detect malicious tampering attempts by a rootkit. Existing VMI implements
page monitoring using NPT permissions which we cannot trust [227]. Instead, to mon-
itor a page, our agent securely modifies the VMPL1 memory permissions for that page
to non-readable or non-writable using SEV’s RMPADJUST CPU instruction, restricting
access of the VM OS. On an access trap, the agent informs the analyst and waits for
VMI requests while keeping the VM OS paused.

Figure 5.4 shows 00SEVen’s control flow on an access trap. VMPL1’s access is
blocked by the VMPL permission and results in a nested page fault (NPF) at the un-
trusted hypervisor [7] (step 1). We extend the hypervisor’s #NPF-handler to forward
such VMPL violations to our agent by scheduling VMPL0 (step 2). The agent inspects
the #NPF details (given in the vCPU’s VMSA [7]) and, if a violation is associated with
a monitored page, securely pauses the vCPU’s VMPL1, notifies the remote analyst, and
waits for analysis requests (step 3). After the analysis, our agent must proceed execu-
tion of VMPL1. Existing hypervisor-based VMI grants VMPL1 temporary page access
and uses hardware single-stepping to securely perform the trapped access [227]. How-
ever, only the untrusted hypervisor can intercept the single-stepping exception, and
the hypervisor could simply resume VMPL1 execution without informing our agent,
resulting in relaxed VMPL permissions, i.e., a disabled trap. Therefore, instead, our
agent reads VMPL1’s instruction pointer register (RIP) to decode and emulate the vio-
lating memory access, i.e., performing it on behalf of VMPL1 (step 4) [135]. That way,
the VMPL restrictions are never relaxed such that we do not risk disabled monitoring
traps. During emulation, our agent translates the VMPL1 memory address using the
vCPU’s VMPL1 PTs, checks that it does not overlap with VMPL0 memory, and then
maps it temporarily into VMPL0. We must extract the page offset of the target address
from the instruction itself, as SEV masks the offset in the #NPF details for security
reasons [139, 228]. Finally, after access emulation in VMPL0, the agent updates the
VMPL1 registers in the VMSA, including the RIP to step over the emulated instruction

134

5.5. DESIGN OF 00SEVEN

1 trap :
2 jmp <fct > ; nop when trap i s enab led
3 wrmsr <MSR_GHCB>, 0x200 ; i n f o f o r KVM
4 mov rax , 4711 ; argument f o r VMPL0 agent
5 vmgexit ; h y p e r c a l l to s chedu l e VMPL0
6 xor rax , 1234 ; check re turn va lue . . .
7 jnz <trap> ; . . . by agent
8 f c t :

Figure 5.5: Disabled VMPL1 kernel function trap trampoline of 00SEVen (simplified).

(step 5), clears the #NPF to prevent a fault replay [83], and calls into the hypervisor
to resume execution (step 6).

The monitoring is protected against the untrusted hypervisor and in-VM attackers.
VMPL0 has exclusive control over the VMSAs and VMPL permission. That is, only
VMPL0 can access the vCPU registers of VMPL1 in the respective VMSA to perform
an instruction emulation, and only VMPL0 can modify the VMPL1 permissions of
the trap using the RMPADJUST CPU instruction [3]. Therefore, neither the hypervisor
nor VMPL1 can resolve the trap, and the hypervisor must schedule 00SEVen’s agent
to successfully resume the trapped instruction. If the hypervisor instead directly re-
schedules VMPL1, the NPF will be re-raised. Attempts to directly modify the SEV-
SNP page attributes, e.g., making a private page shared or trying to directly modify the
VMPL1 permissions, will either result in page data corruption or in the page becoming
invalid for the VM, requiring a re-registration (“validation” [3]) only resolvable by
VMPL0. The only option left for the attackers would be to try skipping the trapped
memory access entirely, e.g., by modifying the trapped instruction. However, 00SEVen
could prevent this by making the code page non-writable using VMPL1 permissions.

Kernel Function Traps Conceptually, 00SEVen also supports trapping the execution
of VMPL1 kernel code. That way, an analysis can be triggered on execution of a
certain VM OS function, e.g., a system call [229]. While we could adapt our page
read/write-monitoring idea to trap page execution by marking pages as non-executable
in the VMPL1 permissions, this approach would introduce significant emulation com-
plexity. On a read/write-trap, 00SEVen’s VMPL0 agent must emulate a single memory-
accessing VMPL1 instruction to resume VMPL1. However, on a code execution trap,
the agent would need to emulate all instructions located at the monitored memory
page, including all kinds of control flow instructions, e.g., function calls. Alternatively,
we could fall back on hardware single-stepping, but as discussed before, we then could
not guarantee that our agent can re-enable the trap afterwards.

Instead, 00SEVen can inject VMPL0 trampolines at the beginning of VMPL1 kernel
functions using compiler-assistance, similar to how ftrace is implemented in Linux [190]
or hot patching in Windows [231]. The injected code (cf. Figure 5.5) serves as pseudo-
breakpoints that, if enabled by our agent, call into VMPL0 for analysis. We inline
a loop that performs a hypervisor call (VMGEXIT instruction) telling the hypervisor
to schedule our VMPL0 agent and a check of the return register. SEV-SNP provides

135

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

communication interfaces between VMs and the hypervisor based on the GHCB spec-
ification (Guest-Hypervisor Communication Block) [9] using a MSR (model-specific
register) or dynamically allocated shared memory. 00SEVen’s trampoline passes the
scheduling request number to the hypervisor using the statically-known GHCB MSR in-
terface (line 3), which is compatible with static, compiler-assisted trampoline injections.
After the agent’s analysis, the agent sets the return register inside the VMPL1 VMSA
of the trapped vCPU in order to confirm a successful trap handling to the trampoline.
Otherwise, the loop retries the call to prevent the hypervisor from ignoring our schedul-
ing request (lines 6+7), similar to how AMD SVSM handles service calls [4]. That way,
we can reliably inject code execution traps. While we cannot hide our injected code,
we can reliably set the VMPL1 permissions as non-writable to prevent tampering by
in-VM attackers, because all code pages are treated as private VM pages in SEV-SNP
and are therefore affected by VMPL permissions (cf. Section 5.4.3). The injected code
is disabled by default by a prepended jump instruction skipping the call loop (line 2;
R8). The remote analyst can select the functions to be monitored, and our agent will
enable the respective trampolines by replacing their initial jumps in memory. However,
note that the context switches between VMPL1 and VMPL0 through the hypervisor
cause non-negligible overhead, limiting frequent execution tracing (cf. Section 5.9.4).

5.5.2.6 Live Analysis

Conceptually, 00SEVen supports live introspection for actively monitoring the memory
state of a VM. To perform live analysis, the remote analyst would simply skip pausing
the VM OS (Figure 5.3, line 2). That way, the remote analyst can perform its memory
analysis without requiring the VM OS and user space services in VMPL1 to pause
execution, enabling introspection of their memory changes at runtime. However, live
analysis has multiple implications: vCPU register live inspection is not possible (cf. Sec-
tion 5.5.2.3)—this limitation is shared with existing non-confidential VMI. In addition,
shared with LibVMI [142], entries of translation and data caches (cf. Section 5.5.2.3)
might become stale and the slower software-based virtual address translation might not
catch up with fast memory changes [242], which might allow for undetected data or
page table manipulations hiding attack traces.. In order to address stale cache entries,
00SEVen’s agent could use page write-traps (Section 5.5.2.5) to actively monitor and
detect page changes by the VM OS (e.g., page table entries) to update our caches—
similar to [51]. However, in SEV-SNP, we still cannot intercept swaps of the active
page table (CR3) without depending on the untrusted hypervisor (Section 5.4.3), po-
tentially missing attacker-hidden ones [242]. While an alternative approach could be to
try accessing virtual VM OS addresses (V Avmpl1) directly without software translation
to a V Avmpl0, existing approaches are not applicable to 00SEVen due to threat model
violations and restrictions by SEV-SNP, as explained in Section 5.9.2 (also cf. Sec-
tion 5.5.2.3). Therefore, as described in Section 5.5.2.1, 00SEVen’s current focus is
on paused consistent analysis triggered manually or by page traps. Designing a secure
solution for consistent live analysis in SEV-SNP is non-trivial, and we leave it for future
work. If future SEV versions provide VMPL0 with support for securely intercepting
VM exits (e.g., writes to CR3), a consistent live analysis design for 00SEVen might
become easier to achieve, as discussed in Section 5.9.4.

136

5.6. IMPLEMENTATION

 user
space

00SEVen
agent VMI

QEMU/KVM

 remote channel
 access / interact trustedT out-VM untr.U1

in-VM untr.U2

VM
PL

0

VM
PL

1

vsock-tcp relay

VMSAs

rootkit

VMI hypercalls

PTs
vmpl 1

vmpl-aware vsock

drivers

virtio rings

tcp/ip

user
spacemalwareservices

VM
 O

S

vmpl1 
perm.

vsock denies

vmpl1 mmio

denied

access

vsock driver
attested TLS

Linux kernel

NPT

perm.

Figure 5.6: 00SEVen’s implementation: an in-VM VMI agent, a network relay, and
VMPL-aware QEMU/KVM extensions (blue). (light gray: trusted, dark: untrusted cloud,
mid: untrusted in-VM)

5.6 Implementation

We now describe details of our 00SEVen implementation for the QEMU/KVM hyper-
visor and an SEV-SNP VM with Linux OS.

5.6.1 Agent Integration and Startup

00SEVen’s in-VM agent and its modules are an extension to AMD’s secure virtual
service module (SVSM) infrastructure [4]. SVSM provides a bare-metal VMPL0 envi-
ronment written in Rust, which handles the vCPU (VMSA) and memory setup that is
specific to SEV-SNP. In particular, as the VM OS is deprivileged inside VMPL1 and
thus cannot execute the pvalidate instruction anymore (cf. Section 5.5.1), SVSM ex-
poses service APIs to VMPL1 that re-enable the VM OS boot code to request the regis-
tration of memory pages to the VM on startup. 00SEVen’s agent uses SVSM’s memory
and VMSA management facility to provide remote analysts with our secure VMI and
communication channel infrastructure. For the SVSM, the QEMU/KVM hypervisor
partitions the physical VM memory into a large VMPL1 region and a VMPL0-exclusive
region at the top of the guest memory. The hypervisor maps the 00SEVen-extended
SVSM into the VMPL0 region and the regular BIOS/UEFI into the VMPL1 region. On
startup, the SVSM sets up the vCPUs and VMPL memory protections of the VMPL0
region, starts 00SEVen’s VMI agent, and finally transfers control to VMPL1 for the
Linux boot process. Figure 5.6 shows our implementation, excluding SVSM’s modules.

During startup, 00SEVen’s agent prepares the network communication with the re-
mote analyst. The agent first initializes the dedicated virtual channel device with the
hypervisor and then sets up a server socket that asynchronously listens for a remote con-
nection by the VM analyst. On a successful connection, the agent starts a VMI session
controlled by the remote analyst’s operation requests, as described in Section 5.5.2.

137

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

5.6.2 Channel Device and Scheduling

We extend QEMU/KVM’s VM setup process to prepare 00SEVen’s VMPL-aware re-
mote channel (Section 5.5.1). We adapted QEMU to allocate a dedicated virtual MMIO
(memory-mapped I/O) page next to the VMPL0 memory region and associate a vir-
tual MMIO-based I/O bus with it (virtio-mmio [165]). We bind the bus to VMPL0
(cf. next) and attach a virtual socket device (vsock) [165] to it as our remote chan-
nel device. A vsock device enables hypervisor services—in 00SEVen’s case, a network
relay—to connect to a socket-like interface in the VM and exchange messages without
requiring complex network stacks (R7). We ported the required virtio drivers [221] into
VMPL0 (Figure 5.6) and implemented SEV-SNP support for them in line with SEV’s
shared memory-based GHCB interface [9] (Guest-Hypervisor Communication Block),
such that our agent can interact with the channel device via read and write GHCB
requests to the MMIO page.

VMPL-aware MMIO We extend QEMU/KVM to support VMPL-aware virtual
MMIO devices. On each virtual MMIO access by a VM, QEMU virtio-mmio devices
can now inspect the accessor’s VMPL and deny the access based on that. 00SEVen
uses this mechanism to bind its remote channel device to VMPL0 (i.e., our VMI agent)
by making its bus permit MMIO operations only by VMPL0, preventing any MMIO
access by VMPL1 attackers. On a VM exit of a vCPU, our extension augments KVM’s
kvm_run structure (=̂ interface to QEMU) with the current VMPL of that vCPU.
Furthermore, we extend QEMU’s MMIO device callbacks to propagate the VMPL as
a new access attribute to the MMIO target device.

VMPL-aware Scheduling As described in Section 5.5.1, we extend QEMU/KVM
with VMPL-aware scheduling requests. That way, 00SEVen’s channel device can de-
mand explicit scheduling of VMPL0 on VMI requests by the remote analyst, such that
the agent can read the channel and process the requests (Section 5.5.2). On a schedul-
ing request, QEMU/KVM yields the vCPU, lets it switch from its VMPL1 register
set (VMSA) to its VMPL0 set, and resumes the vCPU. Note that by default, a vsock
device would instead inject an interrupt (IRQ) into the VM on a new message. How-
ever, QEMU/KVM does not yet support VMPL-aware IRQ delivery. Furthermore, in
SVSM, VMPL0 executes with masked IRQs and enabled SEV-SNP restricted injection
mode which prevents hypervisors from arbitrarily injecting interrupts into VMPL0, de-
creasing 00SEVen’s attack surface [3]. In fact, when scheduling VMPL0, there must
be no event injections by the hypervisor into the VM, e.g., device interrupt requests
(IRQ) or non-maskable interrupts (NMI). Otherwise, SEV-SNP’s restricted injection
mode will cause the CPU to raise a hardware error when trying to resume VMPL0
execution. Therefore, we implement the following additional steps in QEMU/KVM:
On a VMPL0 scheduling request, we temporarily disable NMIs for the vCPU in the
hypervisor. Furthermore, we check for a pending IRQ injection for the VM OS by other
devices. If so, we stash the pending (VMPL1) IRQ in a new field inside KVM’s vCPU
data structure. On the back-schedule to VMPL1, KVM then restores the stashed IRQ
to deliver it to the VM OS and re-enables NMIs for the vCPU. That way, we prevent

138

5.6. IMPLEMENTATION

NMIs (e.g., caused by Linux’s CPU stall detection) and pending (device) IRQs from
causing errors or getting dropped (potentially causing a vCPU hang). Note that there
will be no new IRQ injection attempts during VMPL0 execution beyond the stashed
one as VMPL0 executes with masked IRQs.

5.6.3 Attested Remote Communication

The remote communication of 00SEVen’s agent with the VM analyst is built on top
of the vsock channel. 00SEVen uses the channel to pass their messages via shared
virtio rings between VMPL0 and a network relay service at the hypervisor which for-
wards them via TCP/IP through the network, as shown in Figure 5.6. To protect
the messages, we integrate a TLS server endpoint into our agent and a TLS client
endpoint into the remote analysis client. That way, the communication is end-to-end
protected against in-VM and out-of-VM attackers even though it passes through the
untrusted hypervisor. Technically, the agent and client exchange VMI requests and
results (Section 5.5.2) using two separate transport layers: VSOCK for the agent–relay
interconnect and TCP/IP for the relay–client one.

Network Relay The relay is a Linux user space service that manages a VSOCK client
and a TCP server socket (e.g., socat). The relay waits for an incoming remote client
TCP/IP connection by the VM analyst. On a connection, the relay connects to our
in-VM agent via the vsock channel device and then starts forwarding packet payloads,
i.e., TLS messages, between the agent and remote client. The relay listens on a per-VM
dummy network interface that is configured on VM launch and can be interconnected
via a bridge interface to the NIC of the cloud server. That way, we can (dynamically)
assign the VMPL0 remote channel of each VM a dedicated IP address distinct from
the IP of the untrusted VMPL1 OS and expose the channel via the Internet to the VM
analyst.

Authentication and Attestation 00SEVen’s TLS channel combines mutual
certificate-based authentication with AMD SEV’s remote attestation [5]. We use a
client TLS certificate that is pinned by 00SEVen’s agent to verify the VM owner’s
remote client, e.g., shipped to the agent inside an encrypted VM disk image. To enable
authentication of the agent, we bind the TLS connection to the hardware-assured
attestation report of SEV. The attestation measurement covers the VM’s load-time
state including 00SEVen’s SVSM image with all agent modules. In addition, the SEV
hardware adds the VMPL of the report-generating VM component to the attestation
report. Therefore, the VM owner can remotely verify that it is in fact communicating
with the VMPL0-protected agent of the owner’s VM, not an attacker-controlled VM
or an impostor agent in VMPL1. To bind the TLS connection to the attestation, the
agent adds the hash of a fresh TLS server public key to the attestation report and
sends the report via TLS to the client [128] (similar to SENG’s and FeIDo’s approach
for Intel SGX, cf. Chapter 2 and 4). The client verifies the binding by checking if the
keys in the agent’s TLS certificate and the report match.

139

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

5.6.4 VMI-assisting Hypercalls

00SEVen adds new hypercalls to QEMU/KVM that securely support the agent’s VM
control primitives (cf. Section 5.5.1). The hypercalls are commands without arguments:
pausing or resuming the VMPL1 contexts (Section 5.5.2.4), switching back to VMPL1
after an r/w-trap (Section 5.5.2.5) or to VMPL0 on a function trap (Section 5.5.2.5).
The calls are implemented as new GHCB requests, i.e., extend SEV’s facility for guest-
to-hypervisor communication [9]. The VMPL switches change a vCPU’s active VMSA
(Section 5.5.1). On a VMPL1 pause request, we prevent the vCPU/s running the VMI
agent from switching back to VMPL1 and let QEMU pause (later resume) all other
vCPUs.

5.7 Security Analysis

We now summarize the security measures of 00SEVen and then discuss collusion attacks
by the hypervisor and in-VM attackers, which are beyond our and SEV’s threat models.

5.7.1 Adversary and Goal Recap

00SEVen’s threat model (Section 5.4.1) covers two non-colluding types of adversaries:
in-VM and out-of-VM attackers. The in-VM attackers are located inside VMPL1 and
fully control the VM OS, including all user space services. Their main goal is to
evade detection by 00SEVen, e.g., by compromising the agent. The out-of-VM at-
tackers include the system software of the cloud platform hosting the confidential VMs
(incl. hypervisor) and network attackers—the latter being a subset of the stronger cloud
attackers. Their goal is to gain access to the private memory and register values of the
SEV-SNP VMs or their VMI results, e.g., by tampering with VMI operations.

00SEVen’s main goal is to enable secure remote VMI of the VMs while preserving
SEV-SNP’s security guarantees (Section 5.4.2). That is, 00SEVen protects the VMI
operations and their requests from both types of attackers and enables the detection,
prevention, or analysis of in-VM attacks.

5.7.2 00SEVen’s Security Design

00SEVen’s VMPL0-located agent forms its in-VM TCB. The agent’s security is built
on top of SEV-SNP’s hardware-enforced memory and register protection [3]. Inside
VMPL0, the agent is protected against out-of-VM cloud attackers and can leverage
VMPL permissions to block access attempts by in-VM VMPL1 attackers. As SEV
VMs rely on support by the hypervisor, the same holds for 00SEVen. Beyond schedul-
ing and memory setup, 00SEVen offloads new VM control tasks to the hypervisor via
new hypercalls (e.g., pausing, VMPL switch). However, the hypercalls expose only a
minimal attack surface, and 00SEVen is designed to actively prevent malicious hypervi-
sor behavior on these tasks (e.g., VMPL1-locking on pausing) or remotely observe it as
anomalous VMI freezes. 00SEVen’s pausing of VMPL1 can therefore securely enable
consistent memory forensics, i.e., in-VM attackers cannot manipulate or remap any
data during the analysis, thus preventing attempts to hide attack traces. Live analysis

140

5.7. SECURITY ANALYSIS

can instead use memory traps to actively block suspicious data or PT changes (Sec-
tion 5.5.2.6). On memory introspection, the range and C-bit checks of the VMPL0 agent
(Section 5.5.2.3) additionally rule out attacks that map pages or pointers to VMPL0
or unprotected memory. The network forwarding of 00SEVen’s remote channel is also
offloaded to the hypervisor, but the communication is TLS-protected and authenti-
cated using certificates and SEV’s remote attestation. Therefore, neither out-of-VM
nor in-VM attackers can tamper with or leak VMI operation requests or results. The
channel’s interface to the untrusted hypervisor is based on MMIO-based virtio [165]
such that it exposes a minimal attack surface—in contrast to PCIe-based device I/O.

00SEVen currently relies on cooperation by the untrusted hypervisor to protect
MMIO and shared pages against access by in-VM attackers, because SEV-SNP’s VMPL
permissions are enforced only for private VM pages [7]. 00SEVen’s QEMU/KVM ex-
tension for VMPL-aware MMIO blocks MMIO accesses by VMPL1 to the channel
device to prevent reconfiguration attacks. Optionally, the device configuration could
be write-protected after device setup. 00SEVen’s agent requires shared pages for the
channel’s virtio rings and for GHCB buffers used to perform hypercalls and MMIO
requests (Section 5.6.2). In-VM attackers might tamper with these pages to change
GHCB requests or perform DoS attacks against the remote channel. In addition, they
might try to detect if a new analysis is pending by observing virtio ring changes (E2).
That way, attackers could try to hide attack traces just before an analysis in order to
evade it. In Section 5.9.3, we describe an optional hypervisor extension that enables
per-VMPL permissions for shared pages using NPTs. However, note that the channel is
TLS-protected and 00SEVen detects misbehaving hypercalls, limiting attacks against
shared pages. Furthermore, in-VM attackers cannot trap page accesses by VMPL0 or
the hypervisor but rather need to continuously scan all shared pages for changes to
time an attack—increasing their risk of detection. Finally, as soon as VMPL1 has been
paused for an analysis, VMPL1 can no longer interfere with any buffers (R2).

5.7.3 Beyond 00SEVen: Collusion Attacks

00SEVen’s design excludes collusion attacks between the untrusted cloud platform
(incl. hypervisor) and in-VM attackers (cf. Section 5.4.1). This assumption is in line
with the threat model of SEV-SNP, which does not yet cover in-VM attackers at all [3].
Still, we now briefly discuss the theoretical impact and mitigation issues of collusion
attacks.

The biggest risk of collusion attacks for 00SEVen are attempts to delay the VMI
until all traces of an in-VM attacker have been erased. As the untrusted hypervisor
is in control of the vCPU and VMPL scheduling, the hypervisor can delay scheduling
of our agent and warn in-VM attackers of a pending VMI request message. That way,
the in-VM attackers gain time to finish their attack and delete their attack traces
to prevent detection or analysis. While 00SEVen’s secure pausing locks the VMPL1
contexts, such that the hypervisor cannot resume their execution until the VMI has
finished, there is an exploitable time window between the pausing request and the
locking of the VMPL1 contexts (cf. Section 5.5.2.4). The root cause of this is SEV-
SNP’s reliance on the hypervisor to switch into VMPL0 and yield the VMPL1 contexts

141

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

Table 5.1: VMI policies and their targets, adopted from [147].

P1. process list P6. process memory map
P2. escalated privileges P7. keyboard sniffers
P3. Virtual File System hooks P8. module list
P4. TTY keyloggers P9. TCP4 “netstat-ops”
P5. syscall table hooks P10. open files

before they can be locked. The hypervisor’s platform control also makes it hard to
prevent all communication between the hypervisor and VMPL1. Even if some direct
channels could be blocked, e.g., shared pages via vTOM (cf. Section 5.9.3), there are
several ways to create other (covert) channels not controllable by VMPL0, e.g., based
on timed scheduling or VM exit events.

However, the cloud and in-VM attackers must be careful to not risk detection of
collusion attacks. For instance, while small analysis delays might be hidden in the
network jitter of the remote channel, too many or long delays could be detected by the
client. Furthermore, hypervisor-VMPL1 interactions might leave new memory traces
detectable via VMI. So even if collusion attacks are possible to DoS or delay an analysis,
they increase the risk of detection. In addition, memory traps can still prevent malicious
VMPL1 read/write accesses to critical regions, e.g., the syscall table. In Section 5.9.4,
we will suggest SEV changes that further harden 00SEVen against collusion.

5.8 Evaluation

We now evaluate the analysis performance of our 00SEVen prototype, its effective-
ness for detecting or preventing existing rootkits, and its VMPL0 memory and CPU
overhead.

00SEVen’s open-source prototype (cf. Section 5.11) [S4] consists of our in-VM agent
that extends the SVSM, extensions to QEMU/KVM, and extended LibVMI library for
analysis clients. It supports remote VMI operations, secure pausing, and page monitor-
ing traps. As SVSM currently supports only Linux VMs, we focus on VMI of Linux—
even though conceptually, support for other OSes is possible. The prototype does not
yet support function traps and the optional shared buffer isolation (Section 5.9.3).

As the evaluation testbed, we use a Dell PowerEdge R6515 server as our cloud
platform running Ubuntu 22.04 with our modified 5.14 kernel on a 2.85 GHz AMD
7443P CPU. The Dell server hosts our 00SEVen prototype including an SEV-SNP
Ubuntu VM serving as the VMI target. As the LibVMI remote analysis client, we use
a Debian 12 server with a 3.2 GHz AMD 74F3 CPU that shares a LAN with the VMI
target. For comparison, we measure three additional setups: LibVMI with KVMi, and
00SEVen with a local (same-host) LibVMI—with TLS and without (TCP-only). Our
baseline is LibVMI with the standard KVMi backend (v12) that we measure locally on
the Dell server targeting a non-SEV VM—KVMi does not support remote analysis. By
evaluating 00SEVen with local (TLS / TCP-only) and remote (TLS) clients, we can
distinguish sheer network and TLS overhead.

142

5.8. EVALUATION

P1 (180) P2 (233) P3 (18) P4 (34) P5 (17) P6 (419) P7 (17) P8 (362) P9 (17) P10 (472)
50

100

150

200

250

A
n
a
ly
si
s
T
im

e
[m

se
c]

KVMi local-tcp-00SEVen local-tls-00SEVen remote-tls-00SEVen

Figure 5.7: Analysis times for a local LibVMI-KVMi and three 00SEVen setups: with local
LibVMI via TCP, local via TLS, and remote via TLS. (#VMI-queries is given in brackets)

5.8.1 (Remote) Analysis Performance

We now evaluate the VMI performance of our four setups. We adopted the LibVMI
policies of the recent RDMI paper [147], which resemble practical queries for rootkit
detection. Table 5.1 lists their analysis targets (cf. [147] for details) except for one,
incompatible with our VM kernel version. We measured the initialization and analysis
time of each setup for 50 iterations per policy, cleaning LibVMI’s caches before every
run. 00SEVen’s local and remote setups showed negligible one-shot initialization times
<2 s, while KVMi’s default config takes≤10 s. Figure 5.7 compares the LibVMI analysis
times of the four setups. The analysis time captures all VMI queries to KVMi or
00SEVen’s agent for the paused target VM. During the analysis, 00SEVen schedules
only its agent, avoiding overhead by VMPL switches. The median analysis times are
68–151 ms for KVMi, 65–148 ms for 00SEVen with local TCP-only client, 65–157 ms
with local, and 69–204 ms with remote TLS client. That is, compared to KVMi,
00SEVen faces reasonable average median overheads of +1.91 % (TCP-only), +6.85 %
(local TLS), and +20.0 % (remote TLS).

00SEVen’s relative overhead increases with the number of queries (cf. x-labels, Fig-
ure 5.7). Each VMI read inherently requires a page to be copied out of SEV-protected
memory and sent via the VMI channel to the LibVMI client. The effect on the local
setups is significantly smaller, showing that the biggest overhead can be attributed to
the per-query network overhead. For small query numbers (≤ 34), 00SEVen was even
slightly faster than KVMi. In addition, the local results show that our TLS support,
currently missing CPU acceleration and zero-copy, adds noticeable extra overhead.
Therefore, optimizing the TLS code and decreasing the number of remote messages by
using more caching and offloading strategies (cf. Section 5.5.2.3 and 5.9.2) could fur-
ther improve 00SEVen’s performance. For instance, the P5 overhead is small because
LibVMI’s client-side page cache makes it require only 17 VMI queries for iterating the
hundreds of co-located syscalls.

143

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

5.8.2 Rootkit Detection and Active Trapping

We now evaluate 00SEVen’s capability of detecting or preventing rootkits. We adapted
three open-source Linux rootkits (also used in [147]) to our VM’s v5 kernel: Sutekh,
Spy, and Diamorphine [211, 207, 57]. Sutekh hooks the umask and execve syscalls by
overwriting their function pointers in the syscall table to enable user space processes
to gain root privileges. Spy is a keylogger that registers itself as a keyboard listener to
log all entered keystrokes. Diamorphine hooks the kill, getdent, and getdent64
syscalls to enable processes to request service via signals, e.g., hiding of files or threads.
For each rootkit, we implemented policies (inspired by Table 5.1) that detect an infec-
tion and evaluated their analysis performance. Our policies check if the syscall table
entries point to valid (in-kernel) functions to detect their hooks (Sutekh, Diamorphine),
check for privileged shells (Sutekh), and check for registered keyboard notifiers (Spy).
Sutekh required a median analysis time of 256, 256, 265, and 282 ms (KVMi, tcp-only,
local, remote), Spy of 219, 213, 217, and 217 ms, and Diamorphine of 136, 129, 131, and
132 ms. That is, the analysis times are in line with those of Figure 5.7: The median
overheads for Spy and Diamorphine are slightly negative as they only require 21 and 18
VMI queries (compare P5), while Sutekh required 222 queries and showed overheads
of 3.5 % for the local and 10.2 % for the remote TLS client.

Instead of detecting rootkits post-mortem, 00SEVen can also actively prevent the
infection process using page access traps (Section 5.5.2.5). This is an advantage over
approaches like RDMI [147] that have no trap support. We implemented event-based
policies for all three rootkits that successfully leverage page write-traps that trigger
when the rootkits are trying to tamper with the syscall table or keyboard notifier list.
That way, the remote client can directly pause the VM and perform an analysis of the
stopped exploitation chain. However, page traps add non-negligible overhead. They
should be used preferably to monitor suspicious accesses to critical pages, e.g., write
attempts to the syscall table. We measured the trap-and-resume overhead of a single
write (ADD) showing median overheads of 13.0 µs for KVMi’s traps (single stepping-
based), 738.5 µs and 761.8 µs for 00SEVen’s emulation-based traps in the local setups,
and in the remote one ≈1 ms to 3 ms if the VM is not yielded, otherwise ≈45 ms
(includes network overhead). 00SEVen’s overhead is caused by the VMPL switches,
TLS and network overhead, and missing single stepping. Suppressing VMPL switches
accelerates the local setups to 85.7 µs and 93.3 µs, showing that 00SEVen benefits from
reduced switching overhead, e.g., by adding a dedicated agent vCPU or improving
AMD SEV (cf. Section 5.9.4). To further decrease 00SEVen’s overhead, LibVMI’s trap
handlers could be partially offloaded into the agent’s user space to avoid communication
overhead, and the emulation could be optimized.

5.8.3 In-VM Requirements and Overhead

00SEVen is designed with a small idle load and TCB (R7+8) without a full-fledged OS
kernel. Our in-VM TCB consists of only ≈13.3 kSLOC (≈12.5 k in Rust), including
the SVSM (≈6.5), our VMI agent (≈5.1), and virtio drivers (≈1.7). By default, SVSM
reserves only 256 MiB of a VM’s RAM for VMPL0, i.e., 6.25 % for a 4 GiB VM. Our
actual memory requirement is even smaller (in the order of 10 MiB) but depends on

144

5.9. DISCUSSION AND OUTLOOKS

the number of vCPUs and the virtio ring size. 00SEVen’s agent does not impose
performance overhead on VM workloads while no analysis is active (R8). By default,
only the VM OS in VMPL1 is getting scheduled. VMPL0 is scheduled only if either
VMPL1 calls into a SVSM memory service—which is typically done only during boot—
or if the VM owner sends a remote request to 00SEVen’s agent. In the ”idle state”,
00SEVen’s VMPL0 components cause no overhead, in contrast to other recent (non-
VMI) SEV designs, e.g., Hecate [83], which must actively virtualize scheduling and
device I/O for VMPL1 (cf. Section 5.10).

5.9 Discussion and Outlooks

We now discuss the portability of 00SEVen to other confidential platforms and multiple
directions for future software- and hardware-based extensions of 00SEVen. We explain
how 00SEVen might be implemented on other confidential platforms, discuss additional
software-based memory access optimizations, and propose hypervisor extensions and
hardware-based SEV extensions to further improve secure VMI. Finally, we discuss how
00SEVen might leverage future hardware support for trusted device I/O to isolate and
accelerate its VMI for data centers even further.

5.9.1 Other Confidential (VM) Platforms

00SEVen’s current implementation is tailored to AMD SEV-SNP VMs. However,
00SEVen’s concepts generalize to other confidential VM platforms, all of which are
incompatible with existing VMI techniques by default (Section 5.4.3). In the following,
we discuss how the concepts of 00SEVen can be implemented in Intel TDX [106] and
Arm CCA [16].

Intel TDX Intel’s confidential VMs are called trusted domains (TDs) and provide sim-
ilar protection guarantees as SEV VMs using per-TD crypto keys. Intel has announced
support for TD partitioning in future Intel TDX version 1.5, which enables up to four
nested VM environments inside a single TD—comparable to VMPLs. TD partitioning
provides the foundation for the isolation of 00SEVen’s in-VM agent and the deprivi-
leging of the untrusted VM OS. Intel’s TDs also have a state-save area comparable to
AMD’s VMSAs, which are a key component for register introspection. In contrast to
SEV, TDX features a so-called monitor, which acts as trusted intermediate between
the untrusted hypervisor and the TDs. The monitor manages the TDs, has privileged
access, e.g., to the state-save areas, and can provide trusted hypercalls to TDs. An
implementation of 00SEVen for TDX might build on TD partitioning and offload some
tasks to the monitor.

Arm CCA Arm CCA introduces realms that provide secure execution environments,
e.g., for confidential VMs. In contrast to SEV and TDX, the isolation between realms
is not based on VM-unique crypto keys but on nested PTs (stage 2 PTs). These NPTs
are managed by the new trusted realm management monitor (RMM), which acts as
intermediate between the realms and untrusted host hypervisor. The RMM executes

145

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

with hypervisor-like privileges (EL2), sharing some similarities with the TDX monitor.
As the RMM manages NPTs for all realms, it should be possible to redesign existing
NPT-based isolation concepts to protect an in-VM agent or create a co-located VMI
VM [201, 242]. That way, a special per-realm domain for integrating concepts of
00SEVen’s agent could be created. Some of 00SEVen’s monitoring approaches could
be adapted to benefit from RMM’s trusted NPT management.

5.9.2 Agent-side Optimizations for Virtual Memory Access

In Section 5.5.2.3, we explained 00SEVen’s memory access methods and its client-side
caching strategies for faster consecutive page accesses and virtual memory accesses.
While these optimizations achieve good performance (cf. Section 5.8), especially when
inspecting co-located data, e.g., kernel structures or syscall table entries, high numbers
of one-time accesses to different VM pages can still face noticeable access overheads.
When accessing pages for the first time, the resulting client cache misses can poten-
tially cause multiple network requests as part of the software-based address translations
(V Avmpl1 → PAvm) with non-negligible network request latency. For future versions
of 00SEVen, we therefore consider offloading the VMPL1 page table walks required to
translate V Avmpl1 into the agent or even enabling the agent to directly access V Avmpl1
without additional translation steps in software.

By offloading the VMPL1 page table walk into the agent (V Avmpl1 → PAvm),
we could decrease the communication overhead between agent and remote client by
avoiding VMPL1 page table transfers to the client. Furthermore, we could then ad-
just the client’s page-level data caching from {PAvm → page buffer} to {V Avmpl1 →
page buffer}, such that the remote client need not lookup and send physical addresses
(PAvm) to the agent anymore.

Alternatively, instead of just offloading the translation, we could try to eliminate
the translation steps from V Avmpl1 to V Avmpl0 entirely. By securely using parts of the
untrusted VM OS (VMPL1) PTs directly from within our agent, we could omit the ad-
ditional translation (V Avmpl1 → PAvm) and mapping (PAvm → V Avmpl0) steps. That
way, the client need not translate V Avmpl1 but can let the agent directly access the ad-
dress with native speed, decreasing translation and access overhead on cache misses or
renewals—particularly useful for live introspection support (cf. Section 5.5.2.6). How-
ever, existing VMI techniques following such an approach [242, 201] are not applicable
to 00SEVen, as they rely on a trusted hypervisor managing nested (second-level) PT
entries, permissions, and/or trapping PT changes of VMPL1—violating SEV-SNP’s
and our threat models. We leave the challenge of securely using parts of the untrusted
VMPL1 page table entries from VMPL0 as future work.

5.9.3 Isolating Shared Buffers

As discussed in Section 5.7.2, 00SEVen requires a new hypervisor extension if its shared
VM pages—virtio rings and GHCB buffers—should be isolated against in-VM VMPL1
attackers. Even though the feasibility and impact of attacks against these pages is
limited, since they are hard to time, risk detection, are mainly DoS, and are shut down
by VMPL1 pausing (Section 5.5.2.4), we now present a concept for blocking any access

146

5.9. DISCUSSION AND OUTLOOKS

by VMPL1 to 00SEVen’s shared pages. Conceptually, we introduce per-VMPL nested
page table (NPT) views with slightly different access permissions. The view for VMPL0
(NPTvmpl0) is the unmodified default version as currently used for the VM. The view
for VMPL1 (NPTvmpl1) differs from it only in that the shared memory pages reserved
for 00SEVen’s GHCB buffers and remote channel (virtio rings, buffers) are marked as
non-accessible. On VM boot, before VMPL1 has been initialized, 00SEVen’s agent
issues a new hypercall to inform KVM about the locations of these shared pages, such
that KVM can create two versions of the respective NPT entries: permissive ones for
NPTvmpl0 and restrictive ones for NPTvmpl1. When KVM switches the VMPL contexts
for a vCPU, in addition to the existing cache cleanup steps and GHCB swap, KVM
swaps the NPT views. As a result, only VMPL0 and the hypervisor can access the
virtio and GHCB buffers, denying any access attempts by VMPL1 attackers (E2).

Comparison to Hecate Hecate [83] introduced a concept to isolate shared memory
pages inside SEV VMs without hypervisor support. Hecate instruments SEV’s vTOM
(virtual top of memory) feature to enforce any VMPL1 access to be treated as private
page access. That way, any VMPL1 access to a shared page will result in a nested
page fault [7]. However, in contrast to our concept, this approach cannot define indi-
vidual permissions for each page, i.e., VM OS access to all shared VM pages is denied,
including all device I/O buffers and GHCB buffers. Therefore, Hecate must virtualize
several operations for VMPL1 inside VMPL0, including all device I/O and hypervisor
communication. This design results in a more complex in-VM trusted computing base
and additional runtime overhead—violating 00SEVen’s design requirements R7 and R8
(cf. Section 5.4.2).

5.9.4 Improving AMD SEV for Secure VMI

00SEVen would benefit from new optimizations and features for AMD SEV regarding
performance and security. 00SEVen’s agent would benefit from VMPL0 support for
directly yielding and locking lower-privileged VMPLs and intercepting VM exit events
without relying on the hypervisor. That way, 00SEVen’s secure pausing feature would
not depend on support by the hypervisor, and 00SEVen could directly trap writes
to control registers as required for consistent live VMI (Section 5.5.2.6) or use single-
stepping for easier page access monitoring (Section 5.5.2.5). 00SEVen would also benefit
from VMPL permissions for shared memory pages. That way, 00SEVen could prevent
in-VM attackers from tampering with its virtio and hypercall buffers on a per-page
granularity without relying on the hypervisor (cf. previous section and Section 5.7.2).
Finally, as already observed by Ge et al. [83], VMPL switches through the hypervisor
cause non-negligible overhead. Hardware support for directly switching VMPLs with-
out hypervisor intervention would improve the performance of 00SEVen, especially its
memory access and function traps.

5.9.5 Outlook: Trusted I/O Support

AMD and Intel have announced support for trusted device I/O (TIO, also: TEE-IO) for
future versions of SEV and TDX VMs [6, 104]. This raises the question how 00SEVen

147

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

could benefit from this. Considering SEV as an example, SEV’s TIO will enable secure
device binding to a VMPL of an SEV VM, which grants the device access to the VM’s
private memory under the restrictions of the respective VMPL. That way, the VMPL
and device can securely communicate without interference by less-privileged VMPLs
or the cloud platform, including the untrusted hypervisor. While 00SEVen does not
require TIO to be effective, 00SEVen could take advantage of it: First, 00SEVen could
accelerate and further isolate the device I/O of the remote channel. By binding one
I/O path of a SmartNIC to VMPL0, 00SEVen’s agent could directly perform packet
I/O from private memory, isolated from VMPL1 and the hypervisor—at the cost of
additional network stacks and the SmartNIC becoming part of the in-VM TCB.

Another promising direction is to combine 00SEVen’s in-VM agent with DMA-
based remote memory aggregation solutions, as provided by PCILeech [78] or the recent
RDMI [147]. These approaches enable fast remote memory aggregation using devices
with direct memory access capability, e.g., SmartNICs or FPGAs. However, in contrast
to 00SEVen, they are not compatible with confidential VMs (e.g., based on SEV) and
do not have any control over the VM as required for instance for secure pausing or page
monitoring techniques. In the future, 00SEVen’s agent could be extended to securely
bind the remote DMA feature of a SmartNIC to SEV’s VMPL0 (or the analogous
privileged domain of Intel TDX). 00SEVen’s agent could then overcome the limitations
of RDMI’s memory aggregation by exposing VM control and trapping features to the
remote analyst (secure pausing, register access, page and code monitoring), while the
SmartNIC would enable fast memory access. That way, a combined design tailored
to confidential VMs with TIO support could securely enable flexible remote VMI with
high-speed memory access for data centers.

5.10 Related Work

Memory Forensic and VMI Most related to 00SEVen is work on non-confidential
VMI and memory forensic, e.g., out-of-VM [242, 142] and in-VM [201] VMI. In Ta-
ble 5.2, we provide a comparison of 00SEVen with existing VMI and forensic approaches.
00SEVen takes inspiration from these designs to fill the gap of enabling VMI techniques
securely for SEV-SNP VMs. To the best of our knowledge, 00SEVen is the first so-
lution enabling secure remote VMI for confidential VMs. LibVMI [142] is a common
framework for non-confidential VMI providing memory and register access, address
and symbol translation, as well as event-based traps. We designed 00SEVen to provide
similar features and based our remote client on it to enable reuse of existing analysis
scripts and tools (cf. Section 5.5.2.2). Zhao et. al [242] use the hypervisor to provide fast
out-of-VM VMI using a special co-located VM (ImEE) that shares the untrusted page
tables of the target VM securely using NPT permissions. SIM [201] provides an in-VM
VMI agent for non-confidential VMs that is protected by the hypervisor and uses spe-
cial call gates to switch into the agent without a VM exit. In contrast, 00SEVen focuses
on remote VMI for SEV-SNP VMs, uses VMPLs to protect its in-VM agent, and de-
signs VMI techniques not trusting the hypervisor. Bridging the semantic gap [115] is a
fundamental issue of VMI, rendering all these techniques relevant to 00SEVen. Katana
and LogicMem [77, 183] enable automatic symbol and data structure extraction, which

148

5.10. RELATED WORK

Table 5.2: Comparison of different types of existing VMI and memory forensic solutions
with our 00SEVen system for confidential SEV-SNP VMs. (HV =̂ hypervisor, PTs =̂ page
tables, SMM =̂ system management mode, ATS =̂ address translation service)

Name Agent Location Agent Isolation TCB Forensic Target
LibVMI HV/outside VM virtualization HV regular VMs
SIM [201] inside VM 2nd level PTs in-VM, HV regular VMs
ImEE [242] co-located VM 2nd level PTs co-VM, HV regular VMs
00SEVen inside VM SEV, VMPLs VMPL0, SEV SEV-SNP VMs
Smile [244] in SMM+SGX HW-isolated SMM(, SGX) SGX enclaves
RDMI [147] NIC/P4 switch dedicated HW NIC, P4 bare-metal OS

is an orthogonal feature useful for 00SEVen. Similarly, Oliveri et. al [169] proposed
OS-agnostic memory forensic, not requiring prior knowledge on the target, i.e., the VM
OS. VMIfresh [51] improves LibVMI’s caching (Section 5.5.2.3) using active monitoring
of page table changes to prevent stale entries (cf. Section 5.5.2.6). 00SEVen could adopt
this approach using its page-based memory access traps.

Other related work includes remote memory aggregation and forensics for trusted
execution environments (TEEs). PCILeech [78] and RDMI [147] enable memory access
via devices with (remote) direct memory access. While they provide fast access, they
are vulnerable to redirection attacks by a malicious OS or hypervisor [116, 19] and
are not tailored to VMI, lacking respective features, e.g, VM pausing and event traps.
While there is no work on VMI for SEV VMs, Smile [244] provides secure live memory
inspection for Intel SGX enclaves. Similar to 00SEVen, Smile had to securely overcome
the hardware-based memory protection of enclaves. In contrast to 00SEVen, Smile relies
on a semi-trusted out-of-enclave agent in the system management mode (SMM) and
faces different design challenges, e.g., when accessing enclave memory. Furthermore,
00SEVen provides additional features, e.g., secure in-VM pausing and event traps.
Guerra et. al [99] add VMI modules into Arm TrustZone to inspect the non-secure
system but not the Arm TEE itself.

SEV Research There is several orthogonal research on confidential SEV VMs. Most
related is Hecate [83], which supports legacy OSes inside SEV-SNP VMs by tailoring
a single-VM-capable nested hypervisor to SEV-SNP. In addition, Hecate drafts sup-
port for in-VM kernel code integrity and network filter policy enforcement. Similar to
Hecate, 00SEVen re-designs non-confidential hypervisor techniques securely for SEV-
SNP VMs. However, 00SEVen’s focus is on secure remote VMI and a small TCB with
negligible runtime overhead while no analysis is active. Narayanan et. al [161] integrate
a virtual TPM as a new orthogonal SVSM service into VMPL0, which could augment
the attestation of 00SEVen’s remote channel. Offensive work on SEV VMs explores
their weaknesses (e.g., cipher side-channels) and proposes countermeasures orthogonal
to 00SEVen [137, 226, 55, 139, 138, 34].

149

CHAPTER 5. 00SEVEN: SECURE REMOTE FORENSICS FOR CONFIDENTIAL VMS

5.11 Artifacts

The prototypes of 00SEVen are available as open-source projects at https:
//github.com/sev-vmi/00seven [S4]. See page 9 for a list of all open-source
prototypes covered by this dissertation.

5.12 Conclusion

00SEVen re-enables an essential security technique for confidential SEV VMs: secure
remote VMI. 00SEVen introduces new concepts to redesign existing non-confidential
VMI techniques for SEV-SNP VMs. By leveraging the recent virtual machine privilege
levels of SEV-SNP, 00SEVen realizes an in-VM VMI agent that is hardware-isolated
from out-of-VM and in-VM attackers. 00SEVen’s agent provides the VM owner with
secure remote inspection capabilities of the private VM memory and registers, as well
as secure pausing and trapping mechanisms for consistent and event-based analysis—
providing a positive answer to research question RQ4 (see page 6) on the feasibility of
remote forensics for confidential VMs (aka TEE VMs). Using 00SEVen, highly sensitive
customers, e.g., of the finance and health sector, can securely offload their workloads to
the cloud while retaining full introspection access for periodic security scans, incident
response, or attack detection, prevention, and analysis.

This chapter concludes the second part of this dissertation which focused on meta
research question MQ2, i.e., in how far we can securely enable attack detection or pre-
vention techniques for TEE-based services. 00SEVen contributes to MQ2 by enabling
remote VM introspection for AMD’s TEE VMs to detect, analyze, or even prevent run-
time attacks, e.g., software exploits or rootkits. 00SEVen’s VMI capabilities provide a
valuable additional protection mechanism and add to the research line of re-enabling
non-TEE VM security mechanisms for TEE VMs, like for instance Hecate [83]. In the
next chapter, we will summarize the contributions of this dissertation and discuss ideas
for future work before concluding.

150

https://github.com/sev-vmi/00seven
https://github.com/sev-vmi/00seven

6
Conclusion

151

6.1. SUMMARY OF CONTRIBUTIONS

6.1 Summary of Contributions

System-level compromises pose a serious threat to client, network, and cloud devices due
to their strong disruption of existing software security mechanisms. Several TEEs with
different protection boundaries have been proposed to isolate sensitive services from
such attacks and enable new security schemes, e.g., secure cloud computing. However,
security-critical network and web authentication services still missed out on the benefits
of TEE-based designs due to their lack of TEE adoption. Furthermore, more coarse-
grained TEEs like the recent VM-level TEEs, e.g., AMD SEV or Intel TDX, face a
large attack surface as they incorporate a full OS with a high number of non-hardened
user space services, resulting in a need for intra-TEE defenses.

In this dissertation, we therefore presented two lines of research that aimed at
(1.) leveraging TEEs to assist critical network and web authentication services, and
(2.) designing intra-TEE attack detection and prevention solutions, especially for VM-
level TEEs. Specifically, in the first part of this dissertation, we addressed our first meta
research question (MQ1) How can security-critical network and web authentication ser-
vices benefit from TEEs? In the second part, we contributed to our second question
(MQ2) In how far can we securely enable attack detection or prevention techniques for
TEE-based services?

TEE-based Service Designs (MQ1)

Using TEEs to redesign security-critical network and web authentication services not
only enables protection against system-level attacks but allows users to remotely guar-
antee that their security and privacy policies are diligently enforced. This significantly
increases trust in services that process sensitive information (e.g., personal user data) or
form important security anchors (e.g., network gateway firewalls). To address our first
meta question MQ1, we answered our three research questions RQ1 to RQ3 (see below)
by proposing three TEE-based service designs that demonstrate benefits of TEEs when
applied to network firewalls, gateway routers, and token-based web authentication.

First, in Chapter 2, we looked into the question (RQ1) Can we use TEEs to enable
secure per-application traffic attribution and firewall policy enforcement? We suggested
SENG, a gateway firewall extension, that leverages client-side TEEs to enable secure
traffic-to-application attribution for per-application policy enforcement. SENG demon-
strates how TEEs can help to finally turn a long-demanded firewall feature into a secure
solution that is robust against client-side compromises and rooted in trusted hardware.
The remote attestation of Intel SGX enables to precisely identify the applications and
vouch for their protection, in contrast to existing spoofable identifiers. Furthermore,
SENG’s traffic attribution allows for additional security measures on top, e.g., per-
application traffic analysis models (see A17, Section 2.9).

Second, in Chapter 3, we contributed to MQ1 by specifically focusing on the
hardware-based isolation of TEEs by answering the question (RQ2) Can we use TEEs
to protect the network path and policy enforcement of routers against compromised user
and kernel space services? We presented TrustedGateway, our trusted router architec-
ture, which, in contrast to SENG, leverages a system-level TEE that provides isolation
at the kernel space, user space, and even peripheral level rather than merely for user

153

CHAPTER 6. CONCLUSION

space processes. TrustedGateway showcases the benefits of system-level TEEs like Arm
TrustZone for enabling the protection and guaranteed enforcement of an entire process-
ing pipeline for standalone devices—in this case, the full network I/O path of gateway
routers, including the NIC driver as well as routing and firewall services. Further-
more, TrustedGateway demonstrates that it is possible to achieve such benefits via a
design based on widely-available off-the-shelf TEE hardware extensions and directly
compatible with existing OSes and user space services.

Third, in Chapter 4, we showed how TEEs can tackle open challenges of existing
security schemes by addressing the question (RQ3) Can we use TEEs to overcome the
deployment and account recovery challenges of FIDO2 web authentication based on user
eIDs while preserving user data privacy? We suggested FeIDo, a virtual FIDO2 token,
that leverages TEE-based cloud services to securely derive web credentials based on
sensitive, eID-extracted user information. FeIDo contributes to MQ1 by demonstrat-
ing multiple benefits of TEEs for web authentication services. FeIDo shows how the
protection and remote attestation of TEEs can guarantee that no sensitive user data is
leaked to untrusted third parties—in this case, the cloud and web service vendors. That
way, TEEs enable FeIDo’s innovative design that overcomes the open deployment and
recovery challenges of FIDO2 hardware tokens. In addition, FeIDo shows that TEEs
can enable new features for FIDO2 by adding anonymous user credentials as part of
the secure web authentication process, e.g., pseudonymized age information.

Attack Detection or Prevention for TEE Services (MQ2)

With an increasing adoption of TEEs, solutions for detecting and preventing attacks
inside TEEs become more important. In particular, the upcoming VM-level TEEs,
which host an entire OS with several user services, face a large attack surface prone to
vulnerabilities and cannot rely on service-specific protection designs. Therefore, recent
security extensions of VM-level TEEs, such as AMD’s VM privilege levels (VMPLs),
are an important step to foster research on defenses that mitigate the risks of intra-
TEE attacks. In Chapter 5, we contributed to our second meta question MQ2 on the
feasibility of in-TEE defenses by tackling the research question (RQ4) Can we enable
forensic remote introspection of (potentially) compromised TEE VMs without breaking
their security guarantees? We presented 00SEVen which securely provides TEE VM
owners with full remote VMI capabilities for attack detection, analysis, and prevention,
despite the strong memory protection of SEV-SNP VMs. We explained how SEV-SNP’s
VMPLs allowed us to redesign and extend introspection techniques such that they
integrate into SEV-SNP VMs while fully preserving the VMs’ hardware-based security
guarantees. Thus, VM owners can monitor their VMs for attacks without leaking any
information to third parties, e.g., cloud providers hosting the VMs. In addition, we
identified properties of the current SEV-SNP revision that impose limitations on secure
VMI designs for TEE VMs. Based on these insights, in Section 5.9.4, we suggested
improvements for future SEV-SNP revisions that would benefit secure introspection of
TEE VMs and potentially other in-TEE defenses.

154

6.2. FUTURE RESEARCH DIRECTIONS

6.2 Future Research Directions

In the following, we will discuss ideas for future work that are inspired by this dis-
sertation. They include broader research directions as well as follow-up ideas that are
closely related to our presented solutions. We also refer to the chapter-specific dis-
cussions which already explore some limitations and associated research perspectives,
especially Section 2.13 and Section 5.9.

6.2.1 Further Exploration of TEEs and their Extensions

This dissertation has only scratched the surface of existing TEE technologies and their
potential use cases. There are many opportunities to extend our proposed designs
based on upcoming TEE features, port them to other TEE platforms, or explore new
TEE-based service designs and intra-TEE protection schemes.

Transferring/Porting our Concepts While Chapters 2 to 5 presented designs tailored
to specific TEEs and settings, we regard the transfer of their concepts to other TEE
platforms and use cases as interesting research opportunity. That way, users can ben-
efit from their security features across multiple platforms, and researchers can gather
additional insights into the differences and shared properties of the different TEEs.

SENG’s (Chapter 2) focus has been mainly on gateway firewalls and applications
running on client workstations. However, the concept of secure traffic-to-application
attribution is also interesting in other settings. For instance, we could explore how
to transfer the concepts of SENG to mobile TEE platforms or cloud-based TEE VMs
in order to enable traffic attribution for a wider class of devices and applications,
e.g., cloud services. In order to address the unfortunate deprecation of Intel SGX on
client-side CPUs, it would be interesting to explore alternative solutions to re-enable
SENG for client-side devices (also cf. Section 6.2.3). In addition, the concept of packet
filtering also exists in embedded or non-IP networks, e.g., consider the communication
in or across vehicles. For instance, we could explore how to port SENG’s concepts to
embedded TEEs (e.g., Arm TrustZone-M) in cars to attribute traffic to microcontroller
firmware in order to prevent control message spoofing.

TrustedGateway (Chapter 3) is currently tailored to Arm-based devices, especially
standalone routers. However, there are many x86-based router architectures as well as
virtual network switches and routers running as containers or VMs on servers. There-
fore, it would be useful to explore how we could securely implement TrustedGateway’s
protection architecture on a x86 network or server device, e.g., based on new micro-
hypervisors or Intel’s TEE VMs (TDs). Considering the announcement of trusted I/O
support for Intel TDX version 2.0 [104], an implementation for Intel TDX based on
a trusted I/O channel to the network peripheral (e.g., SmartNIC) seems particularly
promising for future x86-based network devices (also cf. next paragraph).

FeIDo (Chapter 4) has shown how TEEs can process user data in a privacy-
preserving manner, e.g., for web authentication. In particular the concept of anonymous
credentials seems to be a promising direction that needs further exploration. Further-
more, it would be interesting to explore custom firmware extensions for adding FeIDo

155

CHAPTER 6. CONCLUSION

directly to eIDs (also cf. Section 6.2.3), or consider co-designs between TEEs and other
external hardware devices.

We also regard ports of 00SEVen’s (Chapter 5) VMI concepts to Intel TDX and Arm
CCA as important steps to provide protection across all platforms (cf. Section 5.9.1).

Upcoming TEE Features TEE VMs are currently on the rise with the release of Intel
TDX, new feature announcements for AMD SEV-SNP and Intel TDX, as well as the
pending Arm CCA technology. As TEE VMs are easy to adopt from a user perspec-
tive, as applications do not require any changes to run inside TEE VMs, we expect
an increasing adoption of TEE VMs, especially on cloud platforms. Therefore, we re-
gard a further exploration of protection schemes based on TEE VMs as an important
research direction, in particular intra-TEE defenses based on VMPLs (AMD SEV) or
TD partitioning (Intel TDX) as well as designs based on trusted I/O (when released).
Specifically: What security designs can be enabled by upcoming TEE features, and how
could they further improve our proposed designs?

00SEVen shows the potential of VMPLs for enabling secure introspection for SEV-
SNP VMs. However, 00SEVen only leverages two of four VMPLs in order to isolate
the VMI agent and deprivilege the OS. Therefore, an interesting research question is
what protection schemes could be achieved by using all supported VMPLs? Could
we even bypass the limitation of four VMPLs via software-based techniques, e.g., by
dynamically changing VMPL permissions to emulate additional isolation domains? In
this context, one particular idea is if we could use VMPLs in order to split the VM
OS into multiple protection zones with increasing access capabilities, e.g., the user
space in the most restricted VMPL3, closely followed by the system call interface in
VMPL2, core kernel components in VMPL1, and the security-enforcing, most critical
kernel or hardware services in VMPL0. That way, a compromise of parts of the OS
kernel, e.g., the user-facing system call interface, would still not affect the security
policies. Another interesting concept to explore is that of dynamic VMPL switching.
Each VMSA is registered by the VM and hypervisor, and is associated with a set of
virtual CPU registers as well as a VMPL. VMPLs cannot be modified by the hypervisor
at runtime, i.e., to switch a VMPL, the hypervisor must schedule a VMSA with a
different VMPL (cf. Section 5.5.1). It would be interesting to explore in how far VMPL0
could modify VMPLs of existing VMSAs, i.e., execution contexts, on demand, e.g., to
dynamically elevate or lower the privileges of a service call. This might be an interesting
primitive for enabling cross-privilege calls in a multi-VMPL OS design, as proposed
just before, or alternatively, for dynamically quarantining an execution context on
anomalous behavior, e.g., to stop a potential intrusion attempt.

We should not limit our focus on SEV-SNP VM but also explore Intel TDX and
Arm CCA VMs. In particular, Intel TDX has announced TD partitioning for version
1.5 [105], which has similarities to VMPLs. Therefore, future research could investigate
in how far the concepts of 00SEVen and the above ideas for VMPLs could also be applied
to TD partitions, and what additional solutions TD partitions enable. Furthermore,
future research should explore if similar features as those provided by VMPLs and TD
partitions can be implemented for VMs/Realms based on Arm CCA.

Another interesting feature is trusted I/O (TIO) support as announced for fu-

156

6.2. FUTURE RESEARCH DIRECTIONS

ture versions of AMD SEV [6] and Intel TDX [104]. We regard the exploration
of software-hardware co-designs where TEE VMs cooperate with trusted peripherals
based on trusted I/O channels as promising perspective, e.g., see ideas to accelerate
00SEVen’s VMI using SmartNICs (Section 5.9.5) or implement TruGW’s I/O path on
TDX (cf. above).

6.2.2 Enabling Cross-TEE Compatibility

While the exploration of TEE-specific designs is important, a major challenge of the
current TEE landscape are incompatibilities across TEE implementations. It is non-
trivial to port concepts and thus protection designs across TEEs due to different feature
sets, protection boundaries, and development toolchains. For instance, a design like
TrustedGateway requires trusted I/O support as provided by system-level TEEs like
Arm TrustZone, however, user space TEEs like Intel SGX lack this capability. But
even with similar protection boundaries, the concepts of some features might still be
different which makes porting more difficult, e.g., AMD SEV’s VMPLs vs. Intel TDX’s
TD partitioning, or the memory encryption of SEV and TDX vs. the NPT-based access
control model of Arm CCA Realms (cf. Section 5.9.1). The incompatibility challenges
and TEE dependencies of designs not only hinder the availability of security solutions
across platforms but might even render them unfeasible, e.g., as happened on the
cancellation of Intel SGX support for client CPUs. Therefore, we deem the following
research question as important: How can we make TEE-based security designs more
portable across different CPU architectures and TEE implementations?

One way to approach this question is by deriving an abstract TEE API model for
designing protection schemes, which hides the platform-specific details. For instance,
OpenEnclave [171] has been an early project that tried to abstract the APIs of enclaves
and provides a backend for Intel SGX and Arm TrustZone. However, features like
the new intra-TEE isolation or trusted I/O primitives go beyond this model. The
important question is if we can design an abstract API model that is general enough
to cover most use cases while preserving compatibility across different TEE platforms.
In this context, it is also interesting to explore in how far we can emulate certain TEE
features on different platforms, for instance, similar to how vSGX [241] virtualizes Intel
SGX enclaves using AMD SEV. We might also draw inspiration from FIDO2 which
defines different security levels based on the used backend technologies, e.g., software-
based vs. TEE-based. For instance, we could explore different function/security levels
based on the covered protection domain of a TEE, e.g., low for process-level TEEs
like SGX, medium for VM-level TEEs like SEV, and high for system-level TEEs with
trusted I/O like Arm TrustZone or future versions of SEV and TDX. A generalized
TEE API model should then allow to dynamically detect the (un)availability of certain
TEE features, e.g., trusted I/O, and adjust the offered functionality of the TEE-based
service accordingly, optionally emulating missing TEE features if possible (cf. vSGX).

Another way to approach the question could be by trying to develop new TEEs that
cover all the use cases and development models of previous TEE technologies. Flexible
TEE architectures such as CURE [20] provide a first step into that direction. In the
next section, we will focus on more ideas regarding custom hardware extensions.

157

CHAPTER 6. CONCLUSION

6.2.3 Design of Custom Hardware Extensions

This dissertation has build on existing commodity TEEs, which has the benefit of
making our provided designs widely deployable. However, during our projects, we have
observed several limitations of existing TEEs, e.g., the missing trusted I/O support
of Intel SGX, or missing support of AMD SEV for additional VMI features (cf. Sec-
tion 5.9.4). Therefore, a promising future research direction is to develop own hardware
extensions for TEEs or even entirely new types of TEEs. In particular the open RISC-V
architecture enables fast prototyping of CPU extensions on FPGA boards, making it
feasible to test them in realistic setups. Projects like CURE [20], ELASTICLAVE [237],
or Graviton [223] are examples of research projects providing flexible CPU TEEs, user
space enclaves (TEEs) with shared memory support, and GPU TEEs. With the in-
creasing support for FPGAs in server and data center machines, custom hardware
extensions also become much more feasible for practical deployment than before.

One particular type of TEEs that we would like to highlight are client-side TEEs.
We regard the deprecation of the Intel SGX TEE on client-side devices as an unfor-
tunate decision. Many research projects, including SENG (Chapter 2), have shown
the potential for client-side TEEs. Therefore, we regard it as important to explore if
it is possible to design a more versatile, robust client-side TEE based on the insights
gained from the challenges faced by Intel SGX enclaves. While there are still TEEs
available for client devices, e.g., Arm TrustZone on Android phones and Apple’s Secure
Enclave on iOS devices, these TEEs operate in closed environments, lacking SGX’s
flexible support for direct deployment of third-party code.

Another research direction includes firmware and hardware extensions to support
specific TEE-assisted use cases. For instance, similar to how simTPM [38] has added
TPM support to sim cards, we envision adding FeIDo support directly into eIDs, e.g.,
by integrating an embedded TEE inside eIDs that receives the shared KDF secret and
locally derives the FIDO2 credentials based on the user information (cf. Section 4.6.3.2).
Similarly, we regard the OpenTitan [172] hardware root of trust as an interesting project
to explore new extensions that could assist TEE-based designs.

6.2.4 Protection Designs based on Non-TEE CPU Extensions

While the focus of this dissertation and the previous ideas is on TEEs, we want to
emphasize the potential of the many non-TEE CPU extensions, such as memory pro-
tection keys, Intel Process Trace (PT), Intel Control-Flow Enforcement Technology
(CET), Arm Pointer Authentication (PA), Arm Memory Tagging Extension (MTE),
and many more. In this context, projects like GRIFFIN [82], ERIM [220] or Capac-
ity [59] have shown how these CPU extensions can enable powerful OS-based attack
detection or access control mechanisms. Therefore, we regard the exploration of new OS
or hypervisor-level protection designs based on non-TEE CPU extensions as a promis-
ing research direction, with a focus on a slightly weaker threat model than TEE-based
designs. Furthermore, in the long term, we envision many interesting research oppor-
tunities considering the question: Can we design use case-specific protection designs
based on lightweight (non-TEE) CPU extensions that provide similarly strong protec-
tion guarantees as TEEs? This might include the development of new CPU extensions.

158

6.3. CONCLUDING THOUGHTS

6.3 Concluding Thoughts

We see a high potential in TEEs to protect system and user services against strong
system-level attacks and to remotely vouch for the enforcement of security and privacy
policies. Therefore, throughout Chapters 2 to 4 of this dissertation, we showed several
benefits of TEE-based service designs to foster wider adoption of TEEs. There has been
an increasing trend towards hardware extensions (including TEEs) over the last years,
especially with the advent of cloud computing and micro-architectural side-channel
attacks, which we expect to continue. We expect that CPU vendors will develop ad-
ditional TEE features worth exploring (cf. Section 6.2.1) as well as new flexible types
of TEEs, similar to research projects like CURE [20] (cf. Section 6.2.3). In addition,
TEE-like extensions are starting to enhance towards peripherals, e.g., as shown by
TEE solutions for GPUs [223], or new proposals for PCIe device attestation. In this
context, we hope that vendors and researchers tackle the challenge of cross-TEE incom-
patibilities (cf. Section 6.2.2) and avoid introducing new platform- or even peripheral-
specific dependencies, restricting wide deployment of innovative protection designs.
Furthermore, in particular for coarse-grained TEEs, we regard intra-TEE protections
like 00SEVen (Chapter 5) as important in order to strengthen the users’ trust in such
technologies and thus foster their acceptance. While we did not focus on hardware and
micro-architectural side-channel attacks, we want to highlight the need for additional
hardware-software co-designs for protecting against such attacks. Vendors like AMD
have already started providing new side-channel protections for SEV-SNP VMs, but
there are still inherent architectural security-performance tradeoffs that render a full
protection hard to achieve in practice, e.g., regarding CPU optimizations or the choice
of the memory encryption algorithm of TEEs. In the long term, we envision a future
with multiple types of TEEs: (1.) flexible general-purpose TEEs that are easy to adopt
by users and provide a protection for the vast majority of users against a broad set
of direct system-level and hardware attacks, as well as (2.) high-security TEEs for a
limited set of critical components, which might face additional overhead and deploy-
ment costs but provide strong protection, potentially even achieving (full) side-channel
resistance. That way, users can widely benefit from the additional security guarantees
of TEEs without restricting high-end protection designs.

159

Bibliography

Author’s Papers for this Dissertation

[P1] Schwarz, F. and Rossow, C. SENG, the SGX-Enforcing Network Gateway:
Authorizing Communication from Shielded Clients. In: 29th USENIX Security
Symposium. 2020.

[P2] Schwarz, F. TrustedGateway: TEE-Assisted Routing and Firewall Enforcement
Using ARM TrustZone. In: Proceedings of the 25th International Symposium on
Research in Attacks, Intrusions and Defenses. ACM, 2022.

[P3] Schwarz, F., Do, K., Heide, G., Hanzlik, L., and Rossow, C. FeIDo: Recover-
able FIDO2 Tokens Using Electronic IDs. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security. 2022.

[P4] Schwarz, F. and Rossow, C. 00SEVen – Re-enabling Virtual Machine Foren-
sics: Introspecting Confidential VMs using privileged in-VM Agents. In: major
revision (conditional accept) at USENIX Security 2024.

Author’s Technical Reports

[T1] Schwarz, F., Do, K., Heide, G., Hanzlik, L., and Rossow, C. FeIDo: Recover-
able FIDO2 Tokens Using Electronic IDs (Extended Version). Technical Report.
https://publications.cispa.saarland/3894/. 2023.

Open-Source Prototypes of this Dissertation

[S1] SENG Prototypes. url: https://github.com/sengsgx.
[S2] TrustedGateway Prototypes. url: https://github.com/trugw.
[S3] FeIDo Prototypes. url: https://github.com/feido-token.
[S4] 00SEVen Prototypes. url: https://github.com/sev-vmi/00seven.

161

https://publications.cispa.saarland/3894/
https://github.com/sengsgx
https://github.com/trugw
https://github.com/feido-token
https://github.com/sev-vmi/00seven

BIBLIOGRAPHY

Other references

[1] Abdalla, M., Fouque, P.-A., and Pointcheval, D. Password-Based Authenticated
Key Exchange in the Three-Party Setting. In: Public Key Cryptography - PKC.
Springer, 2005.

[2] Abera, T., Asokan, N., Davi, L., Ekberg, J.-E., Nyman, T., Paverd, A., Sadeghi,
A.-R., and Tsudik, G. C-FLAT: Control-Flow Attestation for Embedded Sys-
tems Software. In: Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security. 2016.

[3] Advanced Micro Devices, Inc. AMD SEV-SNP: Strengthening VM Isolation with
Integrity Protection and More. Tech. rep. https://www.amd.com/system/
files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-
integrity-protection-and-more.pdf. Jan. 2020.

[4] Advanced Micro Devices, Inc. Secure VM Service Module for SEV-SNP Guests.
Tech. rep. Revision: 0.50, https://www.amd.com/content/dam/amd/
en/documents/epyc-technical-docs/specifications/58019.pdf.
Aug. 2022.

[5] Advanced Micro Devices, Inc. SEV Secure Nested Paging Firmware ABI Spec-
ification. Tech. rep. https://www.amd.com/system/files/TechDocs/
56860.pdf. Nov. 2022.

[6] Advanced Micro Devices, Inc. AMD SEV-TIO: Trusted I/O for Secure En-
crypted Virtualization. Tech. rep. https://www.amd.com/system/files/
documents/sev-tio-whitepaper.pdf. Mar. 2023.

[7] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual Vol-
ume 2: System Programming. Tech. rep. https://www.amd.com/content/
dam / amd / en / documents / processor - tech - docs / programmer -
references/24593.pdf. 2023.

[8] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual Vol-
ume 3: General-Purpose and System Instructions. Tech. rep. https://www.
amd.com/content/dam/amd/en/documents/processor-tech-docs/
programmer-references/24594.pdf. 2023.

[9] Advanced Micro Devices, Inc. SEV-ES Guest-Hypervisor Communication Block
Standardization. Tech. rep. https://www.amd.com/content/dam/amd/
en/documents/epyc-technical-docs/specifications/56421.pdf.
Jan. 2023.

[10] Ahmad, A., Kim, K., Sarfaraz, M. I., and Lee, B. OBLIVIATE: A Data Oblivi-
ous Filesystem for Intel SGX. In: 25th Annual Network and Distributed System
Security Symposium. The Internet Society, 2018.

[11] Akhawe, D., Weinberger, J., Braun, F., and Marier, F. Subresource Integrity.
W3C Recommendation. https://www.w3.org/TR/2016/REC- SRI-
20160623/. W3C, June 2016.

162

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/58019.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/58019.pdf
https://www.amd.com/system/files/TechDocs/56860.pdf
https://www.amd.com/system/files/TechDocs/56860.pdf
https://www.amd.com/system/files/documents/sev-tio-whitepaper.pdf
https://www.amd.com/system/files/documents/sev-tio-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56421.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56421.pdf
https://www.w3.org/TR/2016/REC-SRI-20160623/
https://www.w3.org/TR/2016/REC-SRI-20160623/

OTHER REFERENCES

[12] Amazon Web Services. Amazon EC2 now supports AMD SEV-SNP. 2023. url:
https : / / aws . amazon . com / about - aws / whats - new / 2023 / 04 /
amazon-ec2-amd-sev-snp/?nc1=h_ls.

[13] Amazon Web Services. Nitro Enclaves. 2023. url: https://aws.amazon.
com/ec2/nitro/nitro-enclaves/.

[14] Arm Limited. Trusted Board Boot Requirements CLIENT (TBBR-CLIENT)
Armv8-A. https://developer.arm.com/documentation/den0006/
latest. 2018.

[15] Arm Limited. Arm Platform Security Architecture Trusted Boot and
Firmware Update 1.0. https : / / developer . arm . com/ - /media /
Arm%20Developer%20Community/PDF/PSA/DEN0072-PSA_TBFU_1-0-
REL.pdf. 2019.

[16] Arm Limited. Arm Confidential Compute Architecture. 2023. url: https :
/ / www . arm . com / architecture / security - features / arm -
confidential-compute-architecture.

[17] Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind,
J., Muthukumaran, D., O’Keeffe, D., Stillwell, M. L., Goltzsche, D., Eyers, D.,
Kapitza, R., Pietzuch, P., and Fetzer, C. SCONE: Secure Linux Containers with
Intel SGX. In: 12th USENIX Symposium on Operating Systems Design and Im-
plementation. 2016.

[18] Asoni, D. E., Sasaki, T., and Perrig, A. Alcatraz: Data Exfiltration-Resilient
Corporate Network Architecture. In: IEEE 4th International Conference on Col-
laboration and Internet Computing. 2018.

[19] Atamli, A., Petracca, G., and Crowcroft, J. IO-Trust: An out-of-Band Trusted
Memory Acquisition for Intrusion Detection and Forensics Investigations in
Cloud IOMMU Based Systems. In: 14th International Conference on Availabil-
ity, Reliability and Security. ACM, 2019.

[20] Bahmani, R., Brasser, F., Dessouky, G., Jauernig, P., Klimmek, M., Sadeghi,
A.-R., and Stapf, E. CURE: A Security Architecture with CUstomizable and
Resilient Enclaves. In: 30th USENIX Security Symposium. 2021.

[21] Barabosch, T., Bergmann, N., Dombeck, A., and Padilla, E. Quincy: Detecting
Host-Based Code Injection Attacks in Memory Dumps. In: Detection of Intru-
sions and Malware, and Vulnerability Assessment. Springer, 2017.

[22] Barabosch, T. and Gerhards-Padilla, E. Host-based code injection attacks: A
popular technique used by malware. Proceedings of IEEE International Confer-
ence on Malicious and Unwanted Software (MALCON) (2014).

[23] Barth, A., Jackson, C., and Mitchell, J. C. Robust Defenses for Cross-Site Re-
quest Forgery. In: Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security. 2008.

[24] Baumann, A., Peinado, M., and Hunt, G. Shielding Applications from an Un-
trusted Cloud with Haven. In: 11th USENIX Symposium on Operating Systems
Design and Implementation. 2014.

163

https://aws.amazon.com/about-aws/whats-new/2023/04/amazon-ec2-amd-sev-snp/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2023/04/amazon-ec2-amd-sev-snp/?nc1=h_ls
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://developer.arm.com/documentation/den0006/latest
https://developer.arm.com/documentation/den0006/latest
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/PSA/DEN0072-PSA_TBFU_1-0-REL.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/PSA/DEN0072-PSA_TBFU_1-0-REL.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/PSA/DEN0072-PSA_TBFU_1-0-REL.pdf
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture

BIBLIOGRAPHY

[25] Beesley, P., Garg, S., and Bailleux, S. Trusted Board Boot. 2020. url: https://
github.com/ARM-software/arm-trusted-firmware/blob/master/
docs/design/trusted-board-boot.rst.

[26] Bellare, M. New proofs for NMAC and HMAC: Security without collision resis-
tance. Journal of Cryptology 28, 4 (2015).

[27] Bender, J., Fischlin, M., and Kügler, D. Security Analysis of the PACE Key-
Agreement Protocol. In: Information Security. Springer, 2009.

[28] Biometrics Research Group, Inc. Apple launches web authentication using
FIDO standard with Touch ID or Face ID biometrics in Safari. 2020. url:
https://www.biometricupdate.com/202006/apple- launches-
web-authentication-using-fido-standard-with-touch-id-or-
face-id-biometrics-in-safari.

[29] Blue Bite LLC. Android NFC Compatibility. 2021. url: https : / / www .
bluebite.com/nfc/android-nfc-compatibility.

[30] Boundary Devices. i.MX6 Embedded Single Board Computer (Nitrogen6X).
2022. url: https://boundarydevices.com/product/nitrogen6x/.

[31] Brasser, F., Gens, D., Jauernig, P., Sadeghi, A.-R., and Stapf, E. SANCTUARY:
ARMing TrustZone with User-space Enclaves. In: 26th Annual Network and
Distributed System Security Symposium. The Internet Society, 2019.

[32] Brenner, S., Wulf, C., Goltzsche, D., Weichbrodt, N., Lorenz, M., Fetzer, C.,
Pietzuch, P., and Kapitza, R. SecureKeeper: Confidential ZooKeeper Using Intel
SGX. In: Middleware Conference. 2016.

[33] Brown, R. Welcome to the OpenWrt Project. 2022. url: https://openwrt.
org/.

[34] Buhren, R., Jacob, H.-N., Krachenfels, T., and Seifert, J.-P. One Glitch to Rule
Them All: Fault Injection Attacks Against AMD’s Secure Encrypted Virtu-
alization. In: Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security. 2021.

[35] Cabuk, S., Brodley, C. E., and Shields, C. IP Covert Timing Channels: Design
and Detection. In: Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security. 2004.

[36] Carlini, M. Secure Boot on Arm systems. In: Linaro Connect San Francisco
(SFO17). https://www.slideshare.net/linaroorg/secure-boot-
on-arm-systems-building-a-complete-chain-of-trust-upon-
existing- industry- standards- using- opensource- firmware-
sfo17201. 2017.

[37] Chakraborty, D. and Bugiel, S. SimFIDO: FIDO2 User Authentication with
simTPM. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2019.

[38] Chakraborty, D., Hanzlik, L., and Bugiel, S. simTPM: User-centric TPM for
Mobile Devices. In: 28th USENIX Security Symposium. 2019.

164

https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/design/trusted-board-boot.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/design/trusted-board-boot.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/design/trusted-board-boot.rst
https://www.biometricupdate.com/202006/apple-launches-web-authentication-using-fido-standard-with-touch-id-or-face-id-biometrics-in-safari
https://www.biometricupdate.com/202006/apple-launches-web-authentication-using-fido-standard-with-touch-id-or-face-id-biometrics-in-safari
https://www.biometricupdate.com/202006/apple-launches-web-authentication-using-fido-standard-with-touch-id-or-face-id-biometrics-in-safari
https://www.bluebite.com/nfc/android-nfc-compatibility
https://www.bluebite.com/nfc/android-nfc-compatibility
https://boundarydevices.com/product/nitrogen6x/
https://openwrt.org/
https://openwrt.org/
https://www.slideshare.net/linaroorg/secure-boot-on-arm-systems-building-a-complete-chain-of-trust-upon-existing-industry-standards-using-opensource-firmware-sfo17201
https://www.slideshare.net/linaroorg/secure-boot-on-arm-systems-building-a-complete-chain-of-trust-upon-existing-industry-standards-using-opensource-firmware-sfo17201
https://www.slideshare.net/linaroorg/secure-boot-on-arm-systems-building-a-complete-chain-of-trust-upon-existing-industry-standards-using-opensource-firmware-sfo17201
https://www.slideshare.net/linaroorg/secure-boot-on-arm-systems-building-a-complete-chain-of-trust-upon-existing-industry-standards-using-opensource-firmware-sfo17201

OTHER REFERENCES

[39] Checkoway, S. and Shacham, H. Iago Attacks: Why the System Call API is a
Bad Untrusted RPC Interface. In: Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 2013.

[40] Chen, Y., Li, J., Xu, G., Zhou, Y., Wang, Z., Wang, C., and Ren, K. SGXLock:
Towards Efficiently Establishing Mutual Distrust Between Host Application and
Enclave for SGX. In: 31st USENIX Security Symposium. 2022.

[41] Cheng, Y. and Ding, X. Guardian: Hypervisor as Security Foothold for Personal
Computers. In: Trust and Trustworthy Computing - 6th International Confer-
ence. Springer, 2013.

[42] Cisco Systems, Inc. Cisco IOS XR Software Release 6.0 Operational Enhance-
ments Data Sheet. Nov. 2015. url: https://www.cisco.com/c/en/us/
products/collateral/ios-nx-os-software/ios-xr-software/
datasheet-c78-736154.html.

[43] Cisco Systems, Inc. KVM App Hosting on a Cisco Router. Mar. 2020. url:
https : / / www . cisco . com / c / en / us / products / collateral /
routers/4000-series-integrated-services-routers-isr/at-a-
glance-c45-737753.html.

[44] Cisco Systems, Inc. Troubleshoot High CPU Usage in Catalyst Switch Platforms
Running IOS-XE 16.x. Jan. 2021. url: https://www.cisco.com/c/en/
us/support/docs/ios- nx- os- software/ios- xe- 16/213549-
troubleshoot-high-cpu-usage-in-catalyst.html.

[45] Cisco Systems, Inc. NVM. url: https://www.cisco.com/c/dam/global/
en_au/assets/pdf/anyconnect-network-visibility.pdf.

[46] The CLIP OS Project. 2020. url: https://clip-os.org/en/.
[47] Cloosters, T., Rodler, M., and Davi, L. TeeRex: Discovery and Exploitation of

Memory Corruption Vulnerabilities in SGX Enclaves. In: 29th USENIX Security
Symposium. 2020.

[48] Corbet, J., Rubini, A., and Kroah-Hartman, G. Linux Device Drivers, 3rd Edi-
tion. O’Reilly Media, Inc., 2005. isbn: 0596005903.

[49] Costan, V. and Devadas, S. Intel SGX Explained. Cryptology ePrint Archive,
Paper 2016/086. https://eprint.iacr.org/2016/086. 2016.

[50] Dagdelen, Ö. and Fischlin, M. Security Analysis of the Extended Access Control
Protocol for Machine Readable Travel Documents. In: Information Security.
Springer, 2011.

[51] Dangl, T., Sentanoe, S., and Reiser, H. P. VMIFresh: Efficient and Fresh Caches
for Virtual Machine Introspection. In: 17th International Conference on Avail-
ability, Reliability and Security. ACM, 2022.

[52] Danial, A. cloc: Count Lines of Code. 2022. url: https://github.com/
AlDanial/cloc.

165

https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-xr-software/datasheet-c78-736154.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-xr-software/datasheet-c78-736154.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-xr-software/datasheet-c78-736154.html
https://www.cisco.com/c/en/us/products/collateral/routers/4000-series-integrated-services-routers-isr/at-a-glance-c45-737753.html
https://www.cisco.com/c/en/us/products/collateral/routers/4000-series-integrated-services-routers-isr/at-a-glance-c45-737753.html
https://www.cisco.com/c/en/us/products/collateral/routers/4000-series-integrated-services-routers-isr/at-a-glance-c45-737753.html
https://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-xe-16/213549-troubleshoot-high-cpu-usage-in-catalyst.html
https://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-xe-16/213549-troubleshoot-high-cpu-usage-in-catalyst.html
https://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-xe-16/213549-troubleshoot-high-cpu-usage-in-catalyst.html
https://www.cisco.com/c/dam/global/en_au/assets/pdf/anyconnect-network-visibility.pdf
https://www.cisco.com/c/dam/global/en_au/assets/pdf/anyconnect-network-visibility.pdf
https://clip-os.org/en/
https://eprint.iacr.org/2016/086
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc

BIBLIOGRAPHY

[53] Danisevskis, J. Android Protected Confirmation: Taking transaction security to
the next level. 2018. url: https://android-developers.googleblog.
com/2018/10/android-protected-confirmation.html.

[54] Dell’Amico, M., Michiardi, P., and Roudier, Y. Password strength: An empirical
analysis. In: Proceedings IEEE INFOCOM. 2010.

[55] Deng, S., Li, M., Tang, Y., Wang, S., Yan, S., and Zhang, Y. CipherH: Au-
tomated Detection of Ciphertext Side-channel Vulnerabilities in Cryptographic
Implementations. In: 32nd USENIX Security Symposium. 2023.

[56] Dessouky, G., Frassetto, T., and Sadeghi, A.-R. HybCache: Hybrid Side-
Channel-Resilient Caches for Trusted Execution Environments. In: 29th
USENIX Security Symposium. 2020.

[57] Diamorphine. url: https://github.com/m0nad/Diamorphine.
[58] Dingledine, R., Mathewson, N., and Syverson, P. Tor: The Second-Generation

Onion Router. In: 13th USENIX Security Symposium. 2004.
[59] Dinh Duy, K., Cho, K., Noh, T., and Lee, H. Capacity: Cryptographically-

Enforced In-Process Capabilities for Modern ARM Architectures. In: Proceed-
ings of the ACM SIGSAC Conference on Computer and Communications Secu-
rity. 2023.

[60] Docker networking. url: https://docs.docker.com/network/.
[61] Donenfeld, J. A. WireGuard: Next Generation Kernel Network Tunnel. In: 24th

Annual Network and Distributed System Security Symposium. The Internet So-
ciety, 2017.

[62] Duan, H., Wang, C., Yuan, X., Zhou, Y., Wang, Q., and Ren, K. LightBox: Full-
Stack Protected Stateful Middlebox at Lightning Speed. In: Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security. 2019.

[63] Duo Labs. WebAuthn.io (Github). 2020. url: https://github.com/duo-
labs/webauthn.io.

[64] Duo Labs. WebAuthn.io: A demo of the WebAuthn specification. 2021. url:
https://webauthn.io/.

[65] Eiband, M., Khamis, M., Von Zezschwitz, E., Hussmann, H., and Alt, F. Un-
derstanding shoulder surfing in the wild: Stories from users and observers. In:
Proceedings of the CHI Conference on Human Factors in Computing Systems.
ACM, 2017.

[66] embeDD GmbH. DD-WRT. 2022. url: https://dd-wrt.com/.
[67] Emscripten Contributors. Emscripten documentation. 2022. url: https://

emscripten.org.
[68] Eskandarian, S., Cogan, J., Birnbaum, S., Brandon, P. C. W., Franke, D., Fraser,

F., Garcia, G., Gong, E., Nguyen, H. T., Sethi, T. K., Subbiah, V., Backes, M.,
Pellegrino, G., and Boneh, D. Fidelius: Protecting User Secrets from Compro-
mised Browsers. In: IEEE Symposium on Security and Privacy. 2019.

166

https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://github.com/m0nad/Diamorphine
https://docs.docker.com/network/
https://github.com/duo-labs/webauthn.io
https://github.com/duo-labs/webauthn.io
https://webauthn.io/
https://dd-wrt.com/
https://emscripten.org
https://emscripten.org

OTHER REFERENCES

[69] Kuvaiskii, D. Add exitless system calls (PR 405). url: https://github.
com/oscarlab/graphene/pull/405.

[70] f1yyy. The Great Escape of ESXi: Breaking Out of a Sandboxed Virtual Machine.
2019. url: https://media.ccc.de/v/36c3- 10505- the_great_
escape_of_esxi.

[71] FIDO Alliance. Using FIDO with eIDAS Services. 2020. url: https :
/ / fidoalliance . org / wp - content / uploads / 2020 / 04 / FIDO -
deploying-FIDO2-eIDAS-QTSPs-eID-schemes-white-paper.pdf.

[72] FIDO Alliance. Choosing FIDO Authenticators for Enterprise Use Cases. 2021.
url: https://fidoalliance.org/wp- content/uploads/2021/
09/FIDO- White- Paper- Choosing- FIDO- Authenticators- for-
Enterprise-Use-Cases.pdf.

[73] FIDO Alliance. FIDO Security Reference. 2021. url: https://fidoalliance.
org / specs / common - specs / fido - security - ref - v2 . 1 - rd -
20210525.html.

[74] FIDO Alliance. How FIDO Addresses a Full Range of Use Cases. 2022. url:
https://fidoalliance.org/wp-content/uploads/2022/03/How-
FIDO-Addresses-a-Full-Range-of-Use-Cases-March24.pdf.

[75] FireEye. M-Trends 2019. url: https : / / web . archive . org / web /
20230329034215/https://content.fireeye.com/m-trends/rpt-
m-trends-2019.

[76] FireMon’s State of the Firewall. 2019. url: https://web.archive.org/
web/20220330075718/www.firemon.com/2019- state- of- the-
firewall-report/.

[77] Franzen, F., Holl, T., Andreas, M., Kirsch, J., and Grossklags, J. Katana: Ro-
bust, Automated, Binary-Only Forensic Analysis of Linux Memory Snapshots.
In: Proceedings of the 25th International Symposium on Research in Attacks,
Intrusions and Defenses. ACM, 2022.

[78] Frisk, U. PCILeech. url: https://github.com/ufrisk/pcileech.
[79] Frisk, U. The LeechCore Physical Memory Acquisition Library. url: https:

//github.com/ufrisk/LeechCore.
[80] Gallenmüller, S., Schöffmann, D., Scholz, D., Geyer, F., and Carle, G. DTLS

Performance - How Expensive is Security? 2019. arXiv: 1904.11423 [cs.NI].
[81] Garfinkel, T. and Rosenblum, M. A Virtual Machine Introspection Based Ar-

chitecture for Intrusion Detection. In: Annual Network and Distributed System
Security Symposium. The Internet Society, 2003.

[82] Ge, X., Cui, W., and Jaeger, T. GRIFFIN: Guarding Control Flows Using Intel
Processor Trace. In: Proceedings of the 22nd ACM International Conference
on Architectural Support for Programming Languages and Operating Systems.
ACM, 2017.

167

https://github.com/oscarlab/graphene/pull/405
https://github.com/oscarlab/graphene/pull/405
https://media.ccc.de/v/36c3-10505-the_great_escape_of_esxi
https://media.ccc.de/v/36c3-10505-the_great_escape_of_esxi
https://fidoalliance.org/wp-content/uploads/2020/04/FIDO-deploying-FIDO2-eIDAS-QTSPs-eID-schemes-white-paper.pdf
https://fidoalliance.org/wp-content/uploads/2020/04/FIDO-deploying-FIDO2-eIDAS-QTSPs-eID-schemes-white-paper.pdf
https://fidoalliance.org/wp-content/uploads/2020/04/FIDO-deploying-FIDO2-eIDAS-QTSPs-eID-schemes-white-paper.pdf
https://fidoalliance.org/wp-content/uploads/2021/09/FIDO-White-Paper-Choosing-FIDO-Authenticators-for-Enterprise-Use-Cases.pdf
https://fidoalliance.org/wp-content/uploads/2021/09/FIDO-White-Paper-Choosing-FIDO-Authenticators-for-Enterprise-Use-Cases.pdf
https://fidoalliance.org/wp-content/uploads/2021/09/FIDO-White-Paper-Choosing-FIDO-Authenticators-for-Enterprise-Use-Cases.pdf
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-rd-20210525.html
https://fidoalliance.org/wp-content/uploads/2022/03/How-FIDO-Addresses-a-Full-Range-of-Use-Cases-March24.pdf
https://fidoalliance.org/wp-content/uploads/2022/03/How-FIDO-Addresses-a-Full-Range-of-Use-Cases-March24.pdf
https://web.archive.org/web/20230329034215/https://content.fireeye.com/m-trends/rpt-m-trends-2019
https://web.archive.org/web/20230329034215/https://content.fireeye.com/m-trends/rpt-m-trends-2019
https://web.archive.org/web/20230329034215/https://content.fireeye.com/m-trends/rpt-m-trends-2019
https://web.archive.org/web/20220330075718/www.firemon.com/2019-state-of-the-firewall-report/
https://web.archive.org/web/20220330075718/www.firemon.com/2019-state-of-the-firewall-report/
https://web.archive.org/web/20220330075718/www.firemon.com/2019-state-of-the-firewall-report/
https://github.com/ufrisk/pcileech
https://github.com/ufrisk/LeechCore
https://github.com/ufrisk/LeechCore
https://arxiv.org/abs/1904.11423

BIBLIOGRAPHY

[83] Ge, X., Kuo, H.-C., and Cui, W. Hecate: Lifting and Shifting On-Premises Work-
loads to an Untrusted Cloud. In: Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security. 2022.

[84] Ghorbani Lyastani, S., Schilling, M., Neumayr, M., Backes, M., and Bugiel, S. Is
FIDO2 the Kingslayer of User Authentication? A Comparative Usability Study
of FIDO2 Passwordless Authentication. In: IEEE Symposium on Security and
Privacy. 2020.

[85] Gkantsidis, C., Karagiannis, T., Naylor, D., Li, R., and Steenkiste, P. And
Then There Were More: Secure Communication for More Than Two Parties.
Tech. rep. MSR-TR-2017-24. https://www.microsoft.com/en- us/
research/publication/therewere-secure-communication-two-
parties/. 2017.

[86] Global Platform Inc. TEE Client API Specification v1.0. https : / /
globalplatform . org / specs - library / tee - client - api -
specification/. 2010.

[87] Goltzsche, D., Rüsch, S., Nieke, M., Vaucher, S., Weichbrodt, N., Schiavoni,
V., Aublin, P., Cosa, P., Fetzer, C., Felber, P., Pietzuch, P., and Kapitza, R.
EndBox: Scalable Middlebox Functions Using Client-Side Trusted Execution.
In: IEEE/IFIP Conference on Dependable Systems and Networks. 2018.

[88] Goltzsche, D., Wulf, C., Muthukumaran, D., Rieck, K., Pietzuch, P. R., and
Kapitza, R. TrustJS: Trusted Client-side Execution of JavaScript. In: Proceed-
ings of the 10th European Workshop on Systems Security. ACM, 2017.

[89] Gonçalves, S., Tomasi, A., Bisegna, A., Pellizzari, G., and Ranise, S. Verifiable
Contracting: A Use Case for Onboarding and Contract Offering in Financial
Services with eIDAS and Verifiable Credentials. In: Computer Security. Springer,
2020.

[90] Google LLC. Trusty TEE | Android Open Source Project. 2020. url: https:
//source.android.com/security/trusty.

[91] Google LLC. chrome.enterprise.platformKeys – Chrome Developers. 2022. url:
https://developer.chrome.com/docs/extensions/reference/
enterprise_platformKeys/.

[92] Google LLC. Hardware-backed Keystore | Android Open Source Project. 2022.
url: https://source.android.com/security/keystore.

[93] Google LLC. Confidential Computing concepts. 2023. url: https://cloud.
google.com/compute/confidential-vm/docs/about-cvm.

[94] Google LLC. GRR Rapid Reponse. url: https://github.com/google/
grr.

[95] Governikus GmbH & Co. KG. AusweisApp2: Passende Smartphones & Tablets
für die Online-Ausweisfunktion. 2022. url: https://www.ausweisapp.
bund.de/mobile-geraete.

168

https://www.microsoft.com/en-us/research/publication/therewere-secure-communication-two-parties/
https://www.microsoft.com/en-us/research/publication/therewere-secure-communication-two-parties/
https://www.microsoft.com/en-us/research/publication/therewere-secure-communication-two-parties/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://source.android.com/security/trusty
https://source.android.com/security/trusty
https://developer.chrome.com/docs/extensions/reference/enterprise_platformKeys/
https://developer.chrome.com/docs/extensions/reference/enterprise_platformKeys/
https://source.android.com/security/keystore
https://cloud.google.com/compute/confidential-vm/docs/about-cvm
https://cloud.google.com/compute/confidential-vm/docs/about-cvm
https://github.com/google/grr
https://github.com/google/grr
https://www.ausweisapp.bund.de/mobile-geraete
https://www.ausweisapp.bund.de/mobile-geraete

OTHER REFERENCES

[96] Gowda, A., Withrow, M., and Bontha, H. Kata confidential containers
with Azure Kubernetes Service. 2023. url: https : / / techcommunity .
microsoft.com/t5/azure-confidential-computing/aligning-
with - kata - confidential - containers - to - achieve - zero -
trust/ba-p/3797876.

[97] Gramine. url: https://gramineproject.io/.
[98] Gu, Z., Deng, Z., Xu, D., and Jiang, X. Process Implanting: A New Active Intro-

spection Framework for Virtualization. In: Symposium on Reliable Distributed
Systems. IEEE Computer Society, 2011.

[99] Guerra, M., Taubmann, B., Reiser, H. P., Yalew, S., and Correia, M. Introspec-
tion for ARM TrustZone with the ITZ Library. In: IEEE International Confer-
ence on Software Quality, Reliability and Security. 2018.

[100] gVisor Authors. What is gVisor? 2024. url: https://gvisor.dev/docs/.
[101] Hanzlik, L., Loss, J., and Wagner, B. Token meets Wallet: Formalizing Privacy

and Revocation for FIDO2. 2022. url: https://ia.cr/2022/084.
[102] Houmansadr, A., Brubaker, C., and Shmatikov, V. The Parrot Is Dead: Observ-

ing Unobservable Network Communications. In: IEEE Symposium on Security
and Privacy. 2013.

[103] Intel Corporation. Intel SGX Data Center Attestation Primitives. 2022. url:
https://download.01.org/intel-sgx/sgx-dcap/1.14/linux/
docs/DCAP_ECDSA_Orientation.pdf.

[104] Intel Corporation. Intel TDX Connect TEE-IO Device Guide. Tech. rep. https:
//cdrdv2.intel.com/v1/dl/getContent/772642. Feb. 2023.

[105] Intel Corporation. Intel TDX Module v1.5 TD Partitioning Architecture Spec-
ification. 2023. url: https : / / www . intel . com / content / www / us /
en / content - details / 773039 / intel - tdx - module - v1 - 5 - td -
partitioning-architecture-specification.html.

[106] Intel Corporation. Intel Trust Domain Extensions (Intel TDX). 2023. url:
https : / / www . intel . com / content / www / us / en / developer /
articles/technical/intel-trust-domain-extensions.html.

[107] Intel Corporation. Intel SGX SDK for Linux OS. url: https://www.intel.
com/content/www/us/en/developer/tools/software- guard-
extensions/linux-overview.html.

[108] International Civil Avaiation Organization. Machine Readable Travel Documents
Part 11: Security Mechanisms for MRTDs. Tech. rep. https://www.icao.
int/publications/documents/9303_p11_cons_en.pdf. 2021.

[109] International Civil Avaiation Organization. Machine Readable Travel Documents
Part 3: Specifications Common to all MRTDs. Tech. rep. https://www.icao.
int/publications/Documents/9303_p3_cons_en.pdf. 2021.

169

https://techcommunity.microsoft.com/t5/azure-confidential-computing/aligning-with-kata-confidential-containers-to-achieve-zero-trust/ba-p/3797876
https://techcommunity.microsoft.com/t5/azure-confidential-computing/aligning-with-kata-confidential-containers-to-achieve-zero-trust/ba-p/3797876
https://techcommunity.microsoft.com/t5/azure-confidential-computing/aligning-with-kata-confidential-containers-to-achieve-zero-trust/ba-p/3797876
https://techcommunity.microsoft.com/t5/azure-confidential-computing/aligning-with-kata-confidential-containers-to-achieve-zero-trust/ba-p/3797876
https://gramineproject.io/
https://gvisor.dev/docs/
https://ia.cr/2022/084
https://download.01.org/intel-sgx/sgx-dcap/1.14/linux/docs/DCAP_ECDSA_Orientation.pdf
https://download.01.org/intel-sgx/sgx-dcap/1.14/linux/docs/DCAP_ECDSA_Orientation.pdf
https://cdrdv2.intel.com/v1/dl/getContent/772642
https://cdrdv2.intel.com/v1/dl/getContent/772642
https://www.intel.com/content/www/us/en/content-details/773039/intel-tdx-module-v1-5-td-partitioning-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773039/intel-tdx-module-v1-5-td-partitioning-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773039/intel-tdx-module-v1-5-td-partitioning-architecture-specification.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/linux-overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/linux-overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/linux-overview.html
https://www.icao.int/publications/documents/9303_p11_cons_en.pdf
https://www.icao.int/publications/documents/9303_p11_cons_en.pdf
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf

BIBLIOGRAPHY

[110] Interpol. I-Checkit - FAQs brochure - Private Sector Partners. 2022. url:
https://www.interpol.int/content/download/12470/file/I-
Checkit _ FAQs _ brochure _ private % 20sector _ EN _ LR _ 02 . pdf ?
inLanguage=eng-GB.

[111] iPerf - The TCP, UDP and SCTP network bandwidth measurement tool. 2022.
url: https://iperf.fr/.

[112] iptables Application level firewalling. 2005. url: https : / / debian -
administration . org / article / 120 / Application _ level _
firewalling.

[113] Islam, M. S., Zamani, M., Kim, C. H., Khan, L., and Hamlen, K. W. Confi-
dential Execution of Deep Learning Inference at the Untrusted Edge with ARM
TrustZone. In: Proceedings of the Thirteenth ACM Conference on Data and Ap-
plication Security and Privacy. 2023.

[114] Jaeger, T., King, D. H., Butler, K. R., Hallyn, S., Latten, J., and Zhang, X.
Leveraging IPsec for Mandatory Per-Packet Access Control. In: Securecomm
and Workshops. IEEE, 2006.

[115] Jain, B., Baig, M. B., Zhang, D., Porter, D. E., and Sion, R. SoK: Introspections
on Trust and the Semantic Gap. In: IEEE Symposium on Security and Privacy.
2014.

[116] Jang, D., Lee, H., Kim, M., Kim, D., Kim, D., and Kang, B. B. ATRA: Address
Translation Redirection Attack against Hardware-Based External Monitors. In:
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security. 2014.

[117] Jang, Y. Building trust in the user I/O in computer systems. https : / /
repository.gatech.edu/entities/publication/d079e6ad-5e2f-
4e46-bb7a-67d456d0a9ca. PhD thesis. 2017.

[118] Juniper Networks, Inc. Junos OS Evolved Overview. May 2022. url: https:
//www.juniper.net/documentation/us/en/software/junos/
overview-evo/topics/concept/evo-overview.html.

[119] Juniper Networks, Inc. Junos OS Overview. May 2022. url: https://www.
juniper . net / documentation / us / en / software / junos / junos -
install-upgrade/topics/topic-map/junos-os-overview.html.

[120] Juniper Networks, Inc. VM Host Overview (Junos OS). May 2022. url: https:
//www.juniper.net/documentation/us/en/software/junos/
junos-install-upgrade/topics/topic-map/vm-host-overview.
html.

[121] Kang, Q., Xue, L., Morrison, A., Tang, Y., Chen, A., and Luo, X. Programmable
In-Network Security for Context-aware BYOD Policies. In: 29th USENIX Secu-
rity Symposium. 2020.

[122] Karande, V., Bauman, E., Lin, Z., and Khan, L. SGX-Log: Securing System
Logs With SGX. In: Proceedings of the ACM on Asia Conference on Computer
and Communications Security. 2017.

170

https://www.interpol.int/content/download/12470/file/I-Checkit_FAQs_brochure_private%20sector_EN_LR_02.pdf?inLanguage=eng-GB
https://www.interpol.int/content/download/12470/file/I-Checkit_FAQs_brochure_private%20sector_EN_LR_02.pdf?inLanguage=eng-GB
https://www.interpol.int/content/download/12470/file/I-Checkit_FAQs_brochure_private%20sector_EN_LR_02.pdf?inLanguage=eng-GB
https://iperf.fr/
https://debian-administration.org/article/120/Application_level_firewalling
https://debian-administration.org/article/120/Application_level_firewalling
https://debian-administration.org/article/120/Application_level_firewalling
https://repository.gatech.edu/entities/publication/d079e6ad-5e2f-4e46-bb7a-67d456d0a9ca
https://repository.gatech.edu/entities/publication/d079e6ad-5e2f-4e46-bb7a-67d456d0a9ca
https://repository.gatech.edu/entities/publication/d079e6ad-5e2f-4e46-bb7a-67d456d0a9ca
https://www.juniper.net/documentation/us/en/software/junos/overview-evo/topics/concept/evo-overview.html
https://www.juniper.net/documentation/us/en/software/junos/overview-evo/topics/concept/evo-overview.html
https://www.juniper.net/documentation/us/en/software/junos/overview-evo/topics/concept/evo-overview.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/junos-os-overview.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/junos-os-overview.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/junos-os-overview.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/vm-host-overview.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/vm-host-overview.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/vm-host-overview.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/vm-host-overview.html

OTHER REFERENCES

[123] Kerrisk, M. ip-route(8) - Linux manual page. 2012. url: https://man7.org/
linux/man-pages/man8/ip-route.8.html.

[124] Keystone Enclave. 2019. url: https://keystone-enclave.org/.
[125] Kim, S. W., Lee, C., Jeon, M., Kwon, H. Y., Lee, H. W., and Yoo, C. Secure de-

vice access for automotive software. In: International Conference on Connected
Vehicles and Expo. IEEE, 2013.

[126] Kim, S., Han, J., Ha, J., Kim, T., and Han, D. Enhancing Security and Privacy
of Tor’s Ecosystem by Using Trusted Execution Environments. In: 14th USENIX
Symposium on Networked Systems Design and Implementation. 2017.

[127] Kim, T. and Zeldovich, N. Practical and Effective Sandboxing for Non-root
Users. In: USENIX Annual Technical Conference. 2013.

[128] Knauth, T., Steiner, M., Chakrabarti, S., Lei, L., Xing, C., and Vij, M. Integrat-
ing Remote Attestation with Transport Layer Security. CoRR abs/1801.05863
(2018). arXiv: 1801.05863.

[129] Krawczyk, H. Cryptographic extraction and key derivation: The HKDF scheme.
In: Annual Cryptology Conference. Springer. 2010.

[130] Kunke, J., Wiefling, S., Ullmann, M., and Lo Iacono, L. Evaluation of Account
Recovery Strategies with FIDO2-based Passwordless Authentication. In: Open
Identity Summit. Gesellschaft für Informatik e.V., 2021.

[131] Lal, R. and Pappachan, P. M. An architecture methodology for secure video
conferencing. In: IEEE International Conference on Technologies for Homeland
Security. 2013.

[132] Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S., Korczyński, M., and
Joosen, W. Tranco: A Research-Oriented Top Sites Ranking Hardened Against
Manipulation. In: 26th Annual Network and Distributed System Security Sym-
posium. The Internet Society, 2019.

[133] Lee, S., Shih, M.-W., Gera, P., Kim, T., Kim, H., and Peinado, M. Inferring
Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing. In:
26th USENIX Security Symposium. 2017.

[134] Lei, Z., Nan, Y., Fratantonio, Y., and Bianchi, A. On the Insecurity of SMS One-
Time Password Messages against Local Attackers in Modern Mobile Devices. In:
28th Annual Network and Distributed System Security Symposium. The Internet
Society, 2021.

[135] Lentz, M., Sen, R., Druschel, P., and Bhattacharjee, B. SeCloak: ARM
Trustzone-Based Mobile Peripheral Control. In: Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services. ACM,
2018.

[136] Leonard, T. QubesOS Mirage Firewall. 2022. url: https://github.com/
mirage/qubes-mirage-firewall/.

171

https://man7.org/linux/man-pages/man8/ip-route.8.html
https://man7.org/linux/man-pages/man8/ip-route.8.html
https://keystone-enclave.org/
https://arxiv.org/abs/1801.05863
https://github.com/mirage/qubes-mirage-firewall/
https://github.com/mirage/qubes-mirage-firewall/

BIBLIOGRAPHY

[137] Li, M., Wilke, L., Wichelmann, J., Eisenbarth, T., Teodorescu, R., and Zhang,
Y. A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP. In:
IEEE Symposium on Security and Privacy. 2022.

[138] Li, M., Zhang, Y., and Lin, Z. CrossLine: Breaking "Security-by-Crash" Based
Memory Isolation in AMD SEV. In: Proceedings of the ACM SIGSAC Confer-
ence on Computer and Communications Security. 2021.

[139] Li, M., Zhang, Y., Lin, Z., and Solihin, Y. Exploiting Unprotected I/O Oper-
ations in AMD’s Secure Encrypted Virtualization. In: 28th USENIX Security
Symposium. 2019.

[140] Li, W., Ma, M., Han, J., Xia, Y., Zang, B., Chu, C.-K., and Li, T. Building
Trusted Path on Untrusted Device Drivers for Mobile Devices. In: Proceedings
of 5th Asia-Pacific Workshop on Systems. ACM, 2014.

[141] libuv. url: https://libuv.org/.
[142] LibVMI Project. LibVMI: Simplified Virtual Machine Introspection. url:

https://github.com/libvmi/libvmi.
[143] Ligh, M. H., Case, A., Levy, J., and Walters, A. The Art of Memory Forensics:

Detecting Malware and Threats in Windows, Linux, and Mac Memory. 1st. Wi-
ley Publishing, 2014. isbn: 1118825098.

[144] Linaro Limited. DeviceTree. 2022. url: https://www.devicetree.org.
[145] Linaro Limited. Open Portable Trusted Execution Environment - OP-TEE. 2022.

url: https://www.op-tee.org/.
[146] Lind, J., Priebe, C., Muthukumaran, D., O’Keeffe, D., Aublin, P.-L., Kelbert,

F., Reiher, T., Goltzsche, D., Eyers, D., Kapitza, R., Fetzer, C., and Pietzuch,
P. Glamdring: Automatic Application Partitioning for Intel SGX. In: USENIX
Annual Technical Conference. 2017.

[147] Liu, H., Xing, J., Huang, Y., Zhuo, D., Devadas, S., and Chen, A. Remote Direct
Memory Introspection. In: 32nd USENIX Security Symposium. 2023.

[148] Liu, R. and Srivastava, M. PROTC: PROTeCting Drone’s Peripherals through
ARM TrustZone. In: Proceedings of the 3rd Workshop on Micro Aerial Vehicle
Networks, Systems, and Applications. ACM, 2017.

[149] Luber, S. and Donner, A. Was ist eine Fritzbox? Nov. 2019. url: https:
//www.ip-insider.de/was-ist-eine-fritzbox-a-883753/.

[150] Lundberg, E., Jones, M., Jones, J., Kumar, A., and Hodges, J. Web Authentica-
tion: An API for accessing Public Key Credentials - Level 2. W3C Recommen-
dation. https://www.w3.org/TR/2021/REC-webauthn-2-20210408/.
W3C, 2021.

[151] lwIP. url: https://savannah.nongnu.org/projects/lwip/.
[152] Matetic, S., Schneider, M., Miller, A., Juels, A., and Capkun, S. DelegaTEE:

Brokered Delegation Using Trusted Execution Environments. In: 27th USENIX
Security Symposium. 2018.

172

https://libuv.org/
https://github.com/libvmi/libvmi
https://www.devicetree.org
https://www.op-tee.org/
https://www.ip-insider.de/was-ist-eine-fritzbox-a-883753/
https://www.ip-insider.de/was-ist-eine-fritzbox-a-883753/
https://www.w3.org/TR/2021/REC-webauthn-2-20210408/
https://savannah.nongnu.org/projects/lwip/

OTHER REFERENCES

[153] McCormack, M., Vasudevan, A., Liu, G., Echeverría, S., O’Meara, K., Lewis, G.,
and Sekar, V. Towards an Architecture for Trusted Edge IoT Security Gateways.
In: 3rd USENIX Workshop on Hot Topics in Edge Computing. 2020.

[154] Ménétrey, J., Göttel, C., Pasin, M., Felber, P., and Schiavoni, V. An Exploratory
Study of Attestation Mechanisms for Trusted Execution Environments. In: 5th
Workshop on System Software for Trusted Execution. 2022.

[155] Morbitzer, M., Proskurin, S., Radev, M., Dorfhuber, M., and Salas, E. SEVerity:
Code Injection Attacks against Encrypted Virtual Machines. In: Security and
Privacy Workshops. IEEE Computer Society, 2021.

[156] Morbitzer, M., Huber, M., and Horsch, J. Extracting Secrets from Encrypted
Virtual Machines. In: Proceedings of the Ninth ACM Conference on Data and
Application Security and Privacy. 2019.

[157] Morbitzer, M., Huber, M., Horsch, J., and Wessel, S. SEVered: Subverting
AMD’s Virtual Machine Encryption. In: Proceedings of the 11th European Work-
shop on Systems Security. ACM, 2018.

[158] Morgner, F., Bastian, P., and Fischlin, M. Securing Transactions with the eIDAS
Protocols. In: Information Security Theory and Practice. Springer, 2016.

[159] Morgner, F. and Oepen, D. OpenPACE. url: https://frankmorgner.
github.io/openpace/.

[160] Nadim, M., Lee, W., and Akopian, D. Kernel-level Rootkit Detection, Prevention
and Behavior Profiling: A Taxonomy and Survey. 2023. arXiv: 2304.00473
[cs.CR].

[161] Narayanan, V., Carvalho, C., Ruocco, A., Almási, G., Bottomley, J., Ye, M.,
Feldman-Fitzthum, T., Buono, D., Franke, H., and Burtsev, A. Remote attesta-
tion of SEV-SNP confidential VMs using e-vTPMs. 2023. arXiv: 2303.16463
[cs.CR].

[162] National ID cards: 2016-2021 facts and trends. 2021. url: https://www.
thalesgroup.com/en/markets/digital-identity-and-security/
government/identity/2016-national-id-card-trends.

[163] netfilter. 2019. url: https://www.netfilter.org/.
[164] NXP Semiconductors. i.MX 6Dual/6Quad Applications Processors for

Consumer Products. https : / / www . nxp . com / docs / en / data -
sheet/IMX6DQCEC.pdf. 2018.

[165] OASIS Open. Virtual I/O Device (VIRTIO) Version 1.1. In: ed. by Tsirkin, M. S.
and Huck, C. https://docs.oasis-open.org/virtio/virtio/v1.1/
virtio-v1.1.html. OASIS Committee, 2019.

[166] Oest, A., Zhang, P., Wardman, B., Nunes, E., Burgis, J., Zand, A., Thomas,
K., Doupé, A., and Ahn, G.-J. Sunrise to sunset: Analyzing the end-to-end life
cycle and effectiveness of phishing attacks at scale. In: 29th USENIX Security
Symposium. 2020.

173

https://frankmorgner.github.io/openpace/
https://frankmorgner.github.io/openpace/
https://arxiv.org/abs/2304.00473
https://arxiv.org/abs/2304.00473
https://arxiv.org/abs/2303.16463
https://arxiv.org/abs/2303.16463
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/identity/2016-national-id-card-trends
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/identity/2016-national-id-card-trends
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/identity/2016-national-id-card-trends
https://www.netfilter.org/
https://www.nxp.com/docs/en/data-sheet/IMX6DQCEC.pdf
https://www.nxp.com/docs/en/data-sheet/IMX6DQCEC.pdf
https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html

BIBLIOGRAPHY

[167] Oku, K., Matsuno, T., Murase, D., and Mitsunari, S. PicoHTTPParser. 2021.
url: https://github.com/h2o/picohttpparser.

[168] Oleksenko, O., Trach, B., Krahn, R., Silberstein, M., and Fetzer, C. Varys: Pro-
tecting SGX Enclaves from Practical Side-Channel Attacks. In: USENIX Annual
Technical Conference. 2018.

[169] Oliveri, A., Dell’Amico, M., and Balzarotti, D. An OS-agnostic Approach to
Memory Forensics. In: 30th Annual Network and Distributed System Security
Symposium. The Internet Society, 2023.

[170] Oostdijk, M. JMRTD: An Open Source Java Implementation of Machine Read-
able Travel Documents. url: https://jmrtd.org/.

[171] Open Enclave SDK. url: https://openenclave.io/sdk/.
[172] Open source silicon root of trust (RoT) | OpenTitan. url: https : / /

opentitan.org/.
[173] Orenbach, M., Lifshits, P., Minkin, M., and Silberstein, M. Eleos: ExitLess OS

Services for SGX Enclaves. In: Proceedings of the Twelfth European Conference
on Computer Systems. ACM, 2017.

[174] Organización Internacional de Normalización. ISO IEC 7816-4: Identification
cards–Integrated circuit cards. Organization, security and commands for inter-
change. ISO, 2020.

[175] Park, H., Zhai, S., Lu, L., and Lin, F. X. StreamBox-TZ: Secure Stream Ana-
lytics at the Edge with TrustZone. In: USENIX Annual Technical Conference.
2019.

[176] Parno, B., Zhou, Z., and Perrig, A. Using Trustworthy Host-based Information
in the Network. In: Workshop on Scalable Trusted Computing (STC). ACM,
2012.

[177] Payne, B. D. An Introduction to Virtual Machine Introspection Using LibVMI
(slides). In: Malware Memory Forensics Workshop (MMF). MMF ’14. 2014.

[178] Pinto, S. and Santos, N. Demystifying Arm TrustZone: A Comprehensive Survey.
ACM Comput. Surv. 51, 6 (2019).

[179] Poddar, R., Lan, C., Popa, R. A., and Ratnasamy, S. SafeBricks: Shielding
Network Functions in the Cloud. In: 15th USENIX Symposium on Networked
Systems Design and Implementation. 2018.

[180] Pontarelli, S., Bifulco, R., Bonola, M., Cascone, C., Spaziani, M., Bruschi, V.,
Sanvito, D., Siracusano, G., Capone, A., Honda, M., Huici, F., and Siracusano,
G. FlowBlaze: Stateful Packet Processing in Hardware. In: 16th USENIX Sym-
posium on Networked Systems Design and Implementation. 2019.

[181] Popular Baby Names (US). 2021. url: https://www.ssa.gov/oact/
babynames/limits.html.

[182] Priebe, C., Vaswani, K., and Costa, M. EnclaveDB: A Secure Database Using
SGX. In: IEEE Symposium on Security and Privacy. 2018.

174

https://github.com/h2o/picohttpparser
https://jmrtd.org/
https://openenclave.io/sdk/
https://opentitan.org/
https://opentitan.org/
https://www.ssa.gov/oact/babynames/limits.html
https://www.ssa.gov/oact/babynames/limits.html

OTHER REFERENCES

[183] Qi, Z., Qu, Y., and Yin, H. LogicMEM: Automatic Profile Generation for Binary-
Only Memory Forensics via Logic Inference. In: 29th Annual Network and Dis-
tributed System Security Symposium. The Internet Society, 2022.

[184] Qian, C., Hu, H., Alharthi, M., Chung, P. H., Kim, T., and Lee, W. RAZOR: A
Framework for Post-deployment Software Debloating. In: 28th USENIX Security
Symposium. 2019.

[185] Quach, A., Prakash, A., and Yan, L. Debloating Software through Piece-Wise
Compilation and Loading. In: 27th USENIX Security Symposium. 2018.

[186] The Qubes OS Project. 2020. url: https://www.qubes-os.org/.
[187] Rasiukevicius, M. NPF-Router: a demo NPF+DPDK application. 2021. url:

https://github.com/rmind/npf/tree/master/app.
[188] Rasiukevicius, M. NPF: stateful packet filter supporting NAT, IP sets, etc. 2021.

url: https://github.com/rmind/npf.
[189] Regulation (EU) 2019/1157 of the European Parliament and of the Council.

2019. url: https://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX:32019R1157.

[190] Rostedt, S. ftrace. 2008. url: https : / / www . kernel . org / doc /
Documentation/trace/ftrace.txt.

[191] Saleem, H. and Naveed, M. SoK: Anatomy of Data Breaches. Proc. Priv. En-
hancing Technol. 2020, 4 (2020).

[192] Sasy, S., Gorbunov, S., and Fletcher, C. W. ZeroTrace : Oblivious Memory
Primitives from Intel SGX. In: 25th Annual Network and Distributed System
Security Symposium. The Internet Society, 2018.

[193] SatoshiLabs s.r.o. Trezor Hardware Wallet. 2022. url: https://trezor.io/.
[194] Schumilo, S., Aschermann, C., Abbasi, A., Wörner, S., and Holz, T. Nyx:

Greybox Hypervisor Fuzzing using Fast Snapshots and Affine Types. In: 30th
USENIX Security Symposium. 2021.

[195] Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S., and Holz, T. kAFL:
Hardware-Assisted Feedback Fuzzing for OS Kernels. In: 26th USENIX Security
Symposium. 2017.

[196] SEG / DrayTek UK. O/S versions on Vigor 2760 Series Routers (DrayOS/Linux).
Dec. 2015. url: https://www.draytek.co.uk/support/guides/os-
versions-on-vigor-2760-series-routers.

[197] SELinux. 2019. url: https://selinuxproject.org/page/NB_LSM.
[198] Seshadri, A., Luk, M., Qu, N., and Perrig, A. SecVisor: A Tiny Hypervisor to

Provide Lifetime Kernel Code Integrity for Commodity OSes. SIGOPS Oper.
Syst. Rev. 41 (2007).

[199] Scarlata, V., Johnson, S., Beaney, J., and Zmijewski, P. Supporting Third
Party Attestation for Intel SGX with Intel Data Center Attestation Primitives.
https://cdrdv2-public.intel.com/671314/intel-sgx-support-
for-third-party-attestation.pdf. 2018.

175

https://www.qubes-os.org/
https://github.com/rmind/npf/tree/master/app
https://github.com/rmind/npf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1157
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1157
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://trezor.io/
https://www.draytek.co.uk/support/guides/os-versions-on-vigor-2760-series-routers
https://www.draytek.co.uk/support/guides/os-versions-on-vigor-2760-series-routers
https://selinuxproject.org/page/NB_LSM
https://cdrdv2-public.intel.com/671314/intel-sgx-support-for-third-party-attestation.pdf
https://cdrdv2-public.intel.com/671314/intel-sgx-support-for-third-party-attestation.pdf

BIBLIOGRAPHY

[200] shadowsocks. url: https://shadowsocks.org/.
[201] Sharif, M. I., Lee, W., Cui, W., and Lanzi, A. Secure In-VM Monitoring Using

Hardware Virtualization. In: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. 2009.

[202] Shen, Y., Tian, H., Chen, Y., Chen, K., Wang, R., Xu, Y., and Xia, Y. Occlum:
Secure and Efficient Multitasking Inside a Single Enclave of Intel SGX. In: Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 2020.

[203] Shih, M.-W., Lee, S., Kim, T., and Peinado, M. T-SGX: Eradicating Controlled-
Channel Attacks Against Enclave Programs. In: Network and Distributed System
Security Symposium. 2017.

[204] Shinde, S., Tien, D. L., Tople, S., and Saxena, P. Panoply: Low-TCB Linux Ap-
plications With SGX Enclaves. In: 24th Annual Network and Distributed System
Security Symposium. The Internet Society, 2017.

[205] SJB Research Ltd. Confirmed: iOS 13 to include support for NFC passport read-
ing - NFCW. 2019. url: https://www.nfcw.com/2019/06/07/362943/
confirmed- ios- 13- to- include- support- for- nfc- passport-
reading/.

[206] Smack (LSM). 2019. url: https://schaufler-ca.com/.
[207] Spy. 2021. url: https://github.com/jarun/spy.
[208] Srivastava, A. and Giffin, J. Tamper-Resistant, Application-Aware Blocking of

Malicious Network Connections. In: Recent Advances in Intrusion Detection,
11th International Symposium. Springer, 2008.

[209] Standardized Digital Identity on National Identity Cards. 2020. url: https:
/ / www . calctopia . com / 2020 / 02 / 14 / standardized - digital -
identity-on-national-identity-cards/.

[210] Suciu, D., McLaughlin, S., Simon, L., and Sion, R. Horizontal Privilege Escala-
tion in Trusted Applications. In: 29th USENIX Security Symposium. 2020.

[211] Sutekh. url: https://github.com/PinkP4nther/Sutekh.
[212] Sweeney, L. Simple demographics often identify people uniquely. Health (San

Francisco) 671, 2000 (2000).
[213] Team libtom. LibTomCrypt. 2022. url: https://github.com/libtom/

libtomcrypt.
[214] The electronic passport in 2021 and beyond. 2021. url: https : / /

www . thalesgroup . com / en / markets / digital - identity - and -
security/government/passport/electronic-passport-trends.

[215] The kernel development community. Interrupts – The Linux Kernel documen-
tation. 2021. url: https://linux-kernel-labs.github.io/refs/
heads/master/lectures/interrupts.html#interrupt-context.

[216] The Linux Foundation. Xen Project. 2022. url: https://xenproject.org/.

176

https://shadowsocks.org/
https://www.nfcw.com/2019/06/07/362943/confirmed-ios-13-to-include-support-for-nfc-passport-reading/
https://www.nfcw.com/2019/06/07/362943/confirmed-ios-13-to-include-support-for-nfc-passport-reading/
https://www.nfcw.com/2019/06/07/362943/confirmed-ios-13-to-include-support-for-nfc-passport-reading/
https://schaufler-ca.com/
https://github.com/jarun/spy
https://www.calctopia.com/2020/02/14/standardized-digital-identity-on-national-identity-cards/
https://www.calctopia.com/2020/02/14/standardized-digital-identity-on-national-identity-cards/
https://www.calctopia.com/2020/02/14/standardized-digital-identity-on-national-identity-cards/
https://github.com/PinkP4nther/Sutekh
https://github.com/libtom/libtomcrypt
https://github.com/libtom/libtomcrypt
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/passport/electronic-passport-trends
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/passport/electronic-passport-trends
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/passport/electronic-passport-trends
https://linux-kernel-labs.github.io/refs/heads/master/lectures/interrupts.html#interrupt-context
https://linux-kernel-labs.github.io/refs/heads/master/lectures/interrupts.html#interrupt-context
https://xenproject.org/

OTHER REFERENCES

[217] The Qubes OS Project and others. Firewall | Qubes OS. 2022. url: https:
//www.qubes-os.org/doc/firewall/.

[218] Trach, B., Krohmer, A., Gregor, F., Arnautov, S., Bhatotia, P., and Fetzer, C.
ShieldBox: Secure Middleboxes Using Shielded Execution. In: Symposium on
SDN Research. ACM.

[219] Tsai, C.-c., Porter, D. E., and Vij, M. Graphene-SGX: A Practical Library OS for
Unmodified Applications on SGX. In: USENIX Annual Technical Conference.
2017.

[220] Vahldiek-Oberwagner, A., Elnikety, E., Duarte, N. O., Sammler, M., Druschel,
P., and Garg, D. ERIM: Secure, Efficient In-process Isolation with Protection
Keys (MPK). In: 28th USENIX Security Symposium. 2019.

[221] VirtIO-drivers-rs. url: https : / / github . com / rcore - os / virtio -
drivers.

[222] Volatility Foundation. The Volatility Foundation - Open Source Memory Foren-
sics. url: https://www.volatilityfoundation.org/.

[223] Volos, S., Vaswani, K., and Bruno, R. Graviton: Trusted Execution Environ-
ments on GPUs. In: 13th USENIX Symposium on Operating Systems Design
and Implementation. 2018.

[224] Vykhodtsev, A. page-load-time. 2021. url: https://github.com/alex-
vv/page-load-time.

[225] Wang, W., Chen, G., Pan, X., Zhang, Y., Wang, X., Bindschaedler, V., Tang, H.,
and Gunter, C. A. Leaky Cauldron on the Dark Land: Understanding Memory
Side-Channel Hazards in SGX. In: Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security. 2017.

[226] Wichelmann, J., Pätschke, A., Wilke, L., and Eisenbarth, T. Cipherfix: Miti-
gating Ciphertext Side-Channel Attacks in Software. In: 32nd USENIX Security
Symposium. 2023.

[227] Wilhelm, F. Tracing Privileged Memory Accesses to Discover Software Vulnera-
bilities. Master Thesis. Operating Systems Group, Karlsruhe Institute of Tech-
nology (KIT), Germany, 2015.

[228] Wilke, L., Wichelmann, J., Morbitzer, M., and Eisenbarth, T. SEVurity: No
Security Without Integrity : Breaking Integrity-Free Memory Encryption with
Minimal Assumptions. In: IEEE Symposium on Security and Privacy. 2020.

[229] Willems, C., Hund, R., and Holz, T. CXPInspector : Hypervisor-Based ,
Hardware-Assisted System Monitoring. In: Ruhr-Universitat Bochum, 2012.

[230] Wilson, A. Website Load Time Statistics. Feb. 2020. url: https://www.
top10-websitehosting.co.uk/website-load-time-statistics/.

[231] Wójcik, B. Windows Hot Patching Mechanism Explained. 2020. url: https://
dev.to/bartosz/windows-hot-patching-mechanism-explained-
2m1f.

177

https://www.qubes-os.org/doc/firewall/
https://www.qubes-os.org/doc/firewall/
https://github.com/rcore-os/virtio-drivers
https://github.com/rcore-os/virtio-drivers
https://www.volatilityfoundation.org/
https://github.com/alex-vv/page-load-time
https://github.com/alex-vv/page-load-time
https://www.top10-websitehosting.co.uk/website-load-time-statistics/
https://www.top10-websitehosting.co.uk/website-load-time-statistics/
https://dev.to/bartosz/windows-hot-patching-mechanism-explained-2m1f
https://dev.to/bartosz/windows-hot-patching-mechanism-explained-2m1f
https://dev.to/bartosz/windows-hot-patching-mechanism-explained-2m1f

BIBLIOGRAPHY

[232] Wu, W., Chen, Y., Xing, X., and Zou, W. KEPLER: Facilitating Control-flow Hi-
jacking Primitive Evaluation for Linux Kernel Vulnerabilities. In: 28th USENIX
Security Symposium. 2019.

[233] Xiao, Y., Li, M., Chen, S., and Zhang, Y. STACCO: Differentially Analyzing
Side-Channel Traces for Detecting SSL/TLS Vulnerabilities in Secure Enclaves.
In: Proceedings of the ACM SIGSAC Conference on Computer and Communi-
cations Security. 2017.

[234] Xing, J., Kang, Q., and Chen, A. NetWarden: Mitigating Network Covert Chan-
nels while Preserving Performance. In: 29th USENIX Security Symposium. 2020.

[235] Yee, B., Sehr, D., Dardyk, G., Chen, B., Muth, R., Ormandy, T., Okasaka, S.,
Narula, N., and Fullagar, N. Native Client: A Sandbox for Portable, Untrusted
x86 Native Code. In: IEEE Symposium on Security and Privacy. 2009.

[236] Ying, K., Ahlawat, A., Alsharifi, B., Jiang, Y., Thavai, P., and Du, W. TruZ-
Droid: Integrating TrustZone with Mobile Operating System. In: Proceedings of
the 16th Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 2018.

[237] Yu, J. Z., Shinde, S., Carlson, T. E., and Saxena, P. Elasticlave: An Efficient
Memory Model for Enclaves. In: 31st USENIX Security Symposium. 2022.

[238] Yubico. Losing Your YubiKey - Yubico. 2021. url: https : / / support .
yubico.com/hc/en-us/articles/360013647620-Losing-Your-
YubiKey.

[239] Yubico. Spare YubiKeys. 2022. url: https://www.yubico.com/spare/.
[240] Yubico. WebAuthn - Account Recovery. 2022. url: https://developers.

yubico . com / WebAuthn / WebAuthn _ Developer _ Guide / Account _
Recovery.html.

[241] Zhao, S., Li, M., Zhangyz, Y., and Lin, Z. vSGX: Virtualizing SGX Enclaves on
AMD SEV. In: IEEE Symposium on Security and Privacy. 2022.

[242] Zhao, S., Ding, X., Xu, W., and Gu, D. Seeing Through The Same Lens: In-
trospecting Guest Address Space At Native Speed. In: 26th USENIX Security
Symposium. 2017.

[243] Zhao, W., Lu, K., Qi, Y., and Qi, S. MPTEE: bringing flexible and efficient
memory protection to Intel SGX. In: Proceedings of the Fifteenth European Con-
ference on Computer Systems. ACM, 2020.

[244] Zhou, L., Ding, X., and Zhang, F. Smile: Secure Memory Introspection for Live
Enclave. In: IEEE Symposium on Security and Privacy. 2022.

[245] Zhou, Z., Gligor, V. D., Newsome, J., and McCune, J. M. Building Verifiable
Trusted Path on Commodity x86 Computers. In: IEEE Symposium on Security
and Privacy. 2012.

[246] Zhou, Z., Yu, M., and Gligor, V. D. Dancing with Giants: Wimpy Kernels for
On-Demand Isolated I/O. In: IEEE Symposium on Security and Privacy. 2014.

178

https://support.yubico.com/hc/en-us/articles/360013647620-Losing-Your-YubiKey
https://support.yubico.com/hc/en-us/articles/360013647620-Losing-Your-YubiKey
https://support.yubico.com/hc/en-us/articles/360013647620-Losing-Your-YubiKey
https://www.yubico.com/spare/
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/Account_Recovery.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/Account_Recovery.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/Account_Recovery.html

OTHER REFERENCES

[247] Zhuo, D., Zhang, K., Zhu, Y., Liu, H. H., Rockett, M., Krishnamurthy, A., and
Anderson, T. Slim: OS Kernel Support for a Low-Overhead Container Over-
lay Network. In: 16th USENIX Symposium on Networked Systems Design and
Implementation. 2019.

[248] Zou, Y.-H., Bai, J.-J., Zhou, J., Tan, J., Qin, C., and Hu, S.-M. TCP-Fuzz:
Detecting Memory and Semantic Bugs in TCP Stacks with Fuzzing. In: USENIX
Annual Technical Conference. 2021.

179

	Introduction
	SENG: the SGX-Enforcing Network Gateway
	Motivation
	Problem Description
	Contributions
	Threat Model
	Related Work
	Background
	Intel SGX and Remote Attestation
	Enclave Development and Graphene-SGX

	Design
	Requirements
	Overview
	Application-Grained Firewall Policies
	Deployment of SENG

	Implementation
	Initialization and Tunnel Setup
	Network Traffic Shielding
	DNS Resolution Shielding
	Application-Grained Policy Enforcement
	Shielded Servers

	Security Analysis
	Prototype Implementation
	Evaluation
	Network Performance
	Client Applications
	Server Application (NGINX)
	Setup Microbenchmark
	Accelerating NGINX using SENG-SDK
	Server Scalability and Memory Overhead

	SENG Netfilter and iptables Extension
	Design of SENG-Netfilter

	Discussion
	Overcoming Memory Limitations of Enclaves
	Frequent Measurement Updates
	Other TEEs and Platforms
	Prototype Limitations

	Artifacts
	Conclusion

	TrustedGateway: TEE-Assisted Routing and Firewalling
	Motivation
	Problem Description
	Contributions
	Setting: Gateway Routers are High-value Targets
	Threat Model

	Towards Secure Network Gateways
	Goals and Requirements
	Design Tradeoffs and their Shortcomings

	TruGW's Design
	Trusted Networking
	Securely Sharing Network Access
	Trusted Policy Configuration

	TruGW Details and Implementation
	Technical Background
	TEE Integration and Networking
	Trusted Network Device I/O
	Address Resolution and Assignment
	Trusted Policy Management
	Deployment

	Security Analysis
	Attacks and their Countermeasures
	Real-World Vulnerabilities

	Evaluation
	Open-source Prototype
	Code Size Analysis
	Performance Evaluation
	Secure Memory Overhead

	Artifacts
	Conclusion

	FeIDo: Recoverable FIDO2 Tokens Using Electronic IDs
	Motivation
	Problem Description
	Contributions
	Background and Related Work
	FIDO2
	eIDs for Authentication

	FeIDo: Design Goals and Threats
	Goals and Requirements
	Threat Model

	FeIDo: Concepts and Design
	Big Picture
	Comparison to Existing Authenticators
	Attribute-based Credentials
	Anonymous Credential Extension
	FIDO2 Integration
	Deployment and Failover

	Security Analysis
	FeIDo's FIDO2 Security
	Security Assumption Verification
	FeIDo Component Theft (or Loss)
	Security of Anonymous Credentials
	Client Device Compromise
	Using an Untrusted Reader Device

	Evaluation
	Prototype
	Performance Evaluation

	Discussion
	FeIDo as Sole Authenticator (Passwordless)
	Enterprise Authentication Use Cases
	eID Migration on Attribute Changes

	Artifacts
	Conclusion

	00SEVen: Secure Remote Forensics for Confidential VMs
	Motivation
	Problem Description
	Contributions
	Setting: Confidential VM In(tro)spection
	Threat Model
	Design Goals and Requirements
	(Un)Applicability of Existing VMI

	Design of 00SEVen
	Design Overview
	VMI Work Flow

	Implementation
	Agent Integration and Startup
	Channel Device and Scheduling
	Attested Remote Communication
	VMI-assisting Hypercalls

	Security Analysis
	Adversary and Goal Recap
	00SEVen's Security Design
	Beyond 00SEVen: Collusion Attacks

	Evaluation
	(Remote) Analysis Performance
	Rootkit Detection and Active Trapping
	In-VM Requirements and Overhead

	Discussion and Outlooks
	Other Confidential (VM) Platforms
	Agent-side Optimizations for Virtual Memory Access
	Isolating Shared Buffers
	Improving AMD SEV for Secure VMI
	Outlook: Trusted I/O Support

	Related Work
	Artifacts
	Conclusion

	Conclusion
	Summary of Contributions
	Future Research Directions
	Further Exploration of TEEs and their Extensions
	Enabling Cross-TEE Compatibility
	Design of Custom Hardware Extensions
	Protection Designs based on Non-TEE CPU Extensions

	Concluding Thoughts

