
Saarland University

Department of Computer Science

Security Testing at Scale: Studying Emerging
Client-side Vulnerabilities in the Modern Web

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

von
Soheil Khodayari

Saarbrücken, 2024

Tag des Kolloquiums: 28. August 2024

Dekan: Prof. Dr. Roland Speicher

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Martina Maggio
Berichterstattende: Dr. Giancarlo Pellegrino

Prof. Bernd Finkbeiner, PhD
Prof. Dr. Martin Johns

Akademischer Mitarbeiter: Dr. Bhupendra Acharya

Zusammenfassung

Die rasante Entwicklung der Client-seitigen Technologien in jüngster Zeit hat neue Varianten
traditioneller Sicherheitsprobleme hervorgebracht, die sich nun ausschließlich auf Client-seitige
JavaScript-Programme beziehen. Wir haben wenig bis gar kein Wissen über diese neuen Bedro-
hungen, und explorative Sicherheitsevaluierungen von JavaScript-basierten Webanwendungen
werden durch den Mangel an zuverlässigen und skalierbaren Testverfahren behindert. In dieser
Arbeit gehen wir diese Herausforderungen an, indem wir JAW vorstellen, ein statisch-dynamisches
Framework zur Untersuchung client-seitiger Schwachstellen im großen Maßstab, wobei wir uns
besonders auf client-seitiges Request Hijacking und DOM Clobbering konzentrieren und deren
Muster, Verbreitung und Auswirkungen in freier Wildbahn untersuchen. Wir instanziieren
JAW auf über einer halben Million Seiten von 10K Top-Websites und verarbeiten insgesamt
über 56B Zeilen Code, was zeigt, dass diese neuen Varianten im Web allgegenwärtig sind. Wir
demonstrieren die Auswirkungen dieser Schwachstellen durch die Konstruktion von Proof-of-
Concept-Exploits, die die Ausführung von beliebigem Code, das Entweichen von Informationen,
offene Umleitungen und CSRF auch gegen beliebte Websites ermöglichen. Schließlich überprüfen
und bewerten wir die Annahme und Wirksamkeit bestehender Gegenmaßnahmen gegen diese
Angriffe, einschließlich Eingabevalidierung und browserbasierte Lösungen wie SameSite-Cookies
und Content Security Policy.

iii

Abstract

The recent rapid evolution of client-side technologies have introduced new variants of
traditional security issues that now manifest exclusively on client-side JavaScript programs. We
have little-to-no knowledge of these new emerging threats, and exploratory security evaluations
of JavaScript-based web applications are impeded by the scarcity of reliable and scalable testing
techniques. In this thesis, we address these challenges by presenting JAW, an open-source,
static-dynamic framework to study client-side vulnerabilities at scale, focusing particularly on
client-side request hijacking and DOM Clobbering vulnerabilities where we investigate their
patterns, prevalence, and impact in the wild. We instantiate JAW on over half a million pages
of top 10K sites, processing over 56B lines of code in total, showing that these new variants are
ubiquitous on the Web. We demonstrate the impact of these vulnerabilities by constructing
proof-of-concept exploits, making it possible to mount arbitrary code execution, information
leakage, open redirections and CSRF also against popular websites that were not reachable
through the traditional attack vectors. Finally, we review and evaluate the adoption and efficacy
of existing countermeasures against these attacks, including input validation and browser-based
solutions like SameSite cookies and Content Security Policy.

v

Background of this Dissertation

This dissertation is based on the following four papers discussed below [P2, P1, P4, P3]. All
four papers have been accepted and published at top peer-reviewed conferences in the field of
IT security. The author of this thesis contributed to all these research projects as the leader
and main author. However, in this section we highlight parts that were conducted by others.

Chapter 3 is based on our work [P1] published at USENIX Security 2021, where we presented
a new system to automatically detect and study vulnerabilities in client-side JavaScript programs,
focusing on a new variant of Cross-Site Request Forgery (CSRF) attacks known as client-side
CSRF [1]. Giancarlo Pellegrino commented and contributed to the writing of the paper in his
role as the author’s supervisor.

In Chapter 4, we extend our study of client-side CSRF, covering new browser APIs and
request types that can be hijacked in our detection tool, and present a large-scale evaluation
of the threat landscape posed by request hijacking vulnerabilities in the wild. This work is
based on our paper accepted at IEEE S&P 2024 [P2]. Thomas Barber implemented the patched
version of Firefox to enable dynamic taint tracking of JavaScript request-sending instructions,
which is why we do not discuss implementation details for this part in the thesis. Both Giancarlo
Pellegrino and Thomas Barber contributed to the writing of the paper.

We present our work published at IEEE S&P 2023 [P3] in Chapter 5, where we explore the
applicability of our vulnerability detection system to code-less injection attacks, focusing on
DOM Clobbering. Our study covers three dimensions: a systematic study of the attack surface,
a large-scale measurement of vulnerable websites, and a comprehensive evaluation of existing
defenses. Giancarlo Pellegrino provided guidance in the writing process of the paper.

Finally, Chapter 6 is based on our publication at IEEE S&P 2022 [P4], where we shift our
focus from attacks to defenses. Specifically, we conduct a systematic and comprehensive study
of SameSite cookie policies, presenting a longitudinal evaluation of their adoption and efficacy
in the wild. Giancarlo Pellegrino guided the paper writing in his capacity as the supervisor.

[P1] Khodayari, S. and Pellegrino, G. JAW: Studying Client-side CSRF with Hybrid Property
Graphs and Declarative Traversals. In: USENIX Security Symposium. 2021.

[P2] Khodayari, S., Barber, T., and Pellegrino, G. The Great Request Robbery: An Empirical
Study of Client-side Request Hijacking Vulnerabilities on the Web. In: IEEE S&P
Symposium. 2024.

[P3] Khodayari, S. and Pellegrino, G. It’s (DOM) Clobbering Time: Attack Techniques,
Prevalence, and Defenses. In: IEEE S&P Symposium. 2023.

[P4] Khodayari, S. and Pellegrino, G. The State of the SameSite: Studying the Usage, Effec-
tiveness, and Adequacy of SameSite Cookies. In: IEEE S&P Symposium. 2022.

Further Contributions of the Author

In addition to these primary works, the author of this thesis was also able to contribute to
two additional publications [S1, S2], of which [S2] was an extension of the work conducted for
author’s master thesis after joining CISPA.

[S1] Likaj, X., Khodayari, S., and Pellegrino, G. Where We Stand (or Fall): An analysis of
CSRF defenses in Web Frameworks. In: International Symposium on Research in Attacks,
Intrusions and Defenses. 2021.

[S2] Sudhodanan, A., Khodayari, S., and Caballero, J. Cross-Origin State Inference (COSI)
Attacks: Leaking Web Site States through XS-Leaks. In: Network and Distributed Systems
Security Symposium. 2020.

vii

Acknowledgments

This thesis has evolved into a captivating adventure, and the credit for making it both
achievable and enjoyable goes to the incredible individuals I have crossed paths with. Your
contributions have turned this scholarly journey into a delightful and enriching experience.

Firstly, a heartfelt thanks to my exceptional advisor, Giancarlo Pellegrino, for being an
awesome mentor and for his continued support and patience that have been invaluable throughout
the years. I am extremely grateful to Juan Caballero and Avinash Sudhodanan for sparking my
interest in Web security and helping me grow my technical skills in my early days of research
during my master’s studies. I would also like to extend my thanks to the reviewers of this thesis
and my defense committee, Martin Johns, Bernd Finkbeiner, Martina Maggio, and Bhupendra
Acharya, for agreeing to review my work and for being there at the final stage of this journey.

I also want to give a big shoutout to my awesome lab mates, Giada Stivala, Andrea Mengascini,
Gianluca De Stefano, Aleksei Stafeev, Sepehr Mirzaei, Lorenzo Cazzaro and Anthony Gavazzi,
who have made my academic journey memorable with insightful discussions, shared successes,
and the everyday camaraderie that added joy to our daily office routine.

In addition, I want to thank my peers at CISPA, Marius Steffens, Hamed Rasifard, Sanam
Lyastani, Faezeh Nasrabadi, Jannis Rautenstrauch, Aurore Fass, Carolyn Guthoff, Alexander
Ponticello, Riccardo Zanotto, Lea Gröber, Simon Anell, Masudul Hasan Masud Bhuiyan, Pouya
Narimani, Sebastian Roth, Shubham Agarwal, Florian Hantke, Saleh Soudijani, Matteo Leonelli,
and Giacomo Santato, for the wonderful time spent together, whether it was during conferences,
at lunch time, or at social events. Furthermore, I would like to express my gratitude to CISPA
faculties, Ben Stock, Katharina Krombholz, and Cristian-Alexandru Staicu, for our fruitful
discussions, Zoom meetings during COVID that helped me retain my sanity, and the little
moments during lunch that created an enjoyable working atmosphere. I am deeply thankful to
everyone I had the privilege of meeting at CISPA, as you all contributed to creating such an
unforgettable experience.

A second round of applause also goes to my co-authors: Giancarlo Pellegrino, Thomas
Barber, Juan Caballero, Avinash Sudhodanan, and Xhelal Likaj, for their collaborative efforts.

Lastly, a heartfelt thank you to my family, whose unwavering support and love have been
instrumental in my success throughout my PhD.

ix

Contents

1 Introduction 1
1.1 Problem Statement . 5

1.1.1 Automatic Detection of Client-side CSRF (RQ1) 5
1.1.2 Studying Request Hijacking Vulnerabilities in the Wild (RQ2) 7
1.1.3 Understanding DOM Clobbering Attacks and Defenses (RQ3) 8
1.1.4 Studying the Effectiveness of SameSite Policies (RQ4) 9

1.2 Contributions . 10
1.3 Thesis Outline . 13

2 Technical Background 15
2.1 Foundational Concepts . 17

2.1.1 Hypertext Markup Language . 17
2.1.2 JavaScript . 17
2.1.3 Document Object Model . 18
2.1.4 Same-Origin Policy . 18
2.1.5 HTTP Cookies . 18

2.2 Vulnerabilities and Attacks . 18
2.2.1 Cross-Site Attacks . 19
2.2.2 Client-Side CSRF . 19
2.2.3 Client-Side Request Hijacking . 21
2.2.4 DOM Clobbering . 23

2.3 Same-Site Policies . 24

3 Automatic Detection of Client-side CSRF Vulnerabilities 27
3.1 Hybrid Property Graph . 29

3.1.1 Code Representation . 30
3.1.2 State Values . 32

3.2 JAW: Javascript Analysis frameWork . 32
3.2.1 Data Collection . 33
3.2.2 Graph Construction . 33
3.2.3 Analysis of Client-side CSRF with HPGs 36

3.3 Evaluation . 38
3.3.1 Experimental Setup and Methodology . 38
3.3.2 Analysis of Collected Data . 39
3.3.3 Prevalence of Forgeable Requests . 40
3.3.4 Analysis of Forgeable Requests . 41
3.3.5 Exploitations and Attacks . 42
3.3.6 Run-time Performance . 44
3.3.7 Impact of Dynamic Snapshotting . 44

3.4 Summary . 46

xi

CONTENTS

4 Studying Request Hijacking Vulnerabilities in the Wild 47
4.1 API Capabilities and Attack Systematization . 49

4.1.1 Browser API Capabilities . 49
4.1.2 Systematization of Request Hijacking Attacks 49
4.1.3 Request API Prevalence . 52

4.2 Vulnerability Detection . 52
4.2.1 Data Collection . 53
4.2.2 Data Modeling . 53
4.2.3 Vulnerability Analysis . 54
4.2.4 Vulnerability Verification . 55
4.2.5 Approach Exemplification . 56

4.3 Empirical Evaluation . 57
4.3.1 Data Collection and Processing . 57
4.3.2 Prevalence in the Wild . 58
4.3.3 Anatomy of Hijacked Requests . 59
4.3.4 Exploitations . 61

4.4 Defenses . 62
4.5 Summary . 65

5 Understanding DOM Clobbering Attacks and Defenses 67
5.1 Attack Techniques . 69

5.1.1 Methodology . 70
5.1.2 Results . 71

5.2 Detection and Prevalence . 75
5.2.1 Detection . 75
5.2.2 Prevalence in the Wild . 78
5.2.3 Confirming Exploitability of Vulnerabilities 79

5.3 Defenses . 81
5.3.1 Evaluation of Existing Countermeasures 81
5.3.2 Secure Code Patterns . 83

5.4 Summary . 85

6 Studying the Effectiveness of SameSite Policies 87
6.1 SameSite Cookie Usage . 90
6.2 Functionality Breakage . 91
6.3 New Default Policy Adequacy and Threats . 93

6.3.1 Threats . 93
6.3.2 Threats Prevalence in the Wild . 96

6.4 Web Browsers and Web Frameworks . 101
6.4.1 Evaluation of Web Browsers . 101
6.4.2 Evaluation of Web Frameworks . 103

6.5 Summary . 104

7 Related Work 105
7.1 Static and Dynamic Program Analysis Techniques 107
7.2 Security Testing of Web Applications . 109

7.2.1 Request Forgery Vulnerabilities . 109
7.2.2 HTML-only Injection Vulnerabilities . 110

7.3 Security Mechanisms for the Web . 110

xii

CONTENTS

8 Concluding Remarks 113
8.1 Ethical Considerations . 115
8.2 Limitations . 115

8.2.1 Soundness of Static Analysis . 116
8.2.2 Web Crawling . 116

8.3 Open Challenges and Future Work . 117
8.3.1 Analysis of Shared Code in Web Applications 117
8.3.2 Testability Patterns and Automatic Transformation 117
8.3.3 Automatic Assessment of Static Data Flows 117
8.3.4 Web Crawling and Deep Application States 118
8.3.5 Characterization of Vulnerable Scripts . 119
8.3.6 The Unexpected Dangers of Code-less HTML Markups 119

8.4 Open Science and Websites . 119
8.5 Conclusion and Discussion . 120

8.5.1 Automatic Detection of Client-side CSRF 120
8.5.2 Studying Request Hijacking Vulnerabilities in the Wild 121
8.5.3 Understanding DOM Clobbering Attacks and Defenses 121
8.5.4 Studying the Effectiveness of SameSite Policies 122

A Appendix 147
A.1 Testbed of Bitnami Applications . 149
A.2 Additional Evaluation Details . 149

xiii

List of Figures

2.1 Example of a COSI and CSRF attack. 19
2.2 Example of client-side CSRF attack. 20
2.3 Example request hijacking attack. 22

3.2 Example of labeled property graph . 29
3.1 HPG for the running example in Listing 2.1. The top part depicts the code

representation, including the AST (black edges), CFG (green edges), IPCG
(orange edges), PDG (blue edges), ERDDG (red edges), and the semantic types
(blue and orange filled circles representing WIN.LOC and REQ types, respectively).
Note that not all nodes and edges are shown for brevity. Edges connected to
dotted boxes reflect that the edge is connected to each node within the box. The
bottom part demonstrates the dynamic state values to augment the static model.
Arrows between the two parts represent the link between the two models. 30

3.3 Architecture of JAW. 32
3.4 Examples of vulnerable code. Orange and blue boxes represent REQ and WIN.LOC

semantic types, respectively. 36
3.5 Forgeable requests per application web page. 43
3.6 Average time required for JAW to construct and analyze a hybrid property graph

categorized by lines of code (LoC). 44

4.1 Architecture of JAW-v2. 53
4.2 Excerpt of the TA-HPG for the example in Listing 4.1. Connections highlighted in

orange and red represent missing PDG and call graph edges that are reconstructed
using dynamic taint flows of Foxhound+, which are necessary for vulnerability
discovery (steps 1-5). Blue and yellow diamonds attached to nodes represent
source and sink semantic types propagated through the TA-HPG. For brevity,
not all nodes and edges are shown. 56

5.1 Architecture of JAW-v3. 75

6.1 SameSite Cookies usage (June 2019 - March 2021). The vertical lines R1 and R2
mark the two rollouts of the new default policy by Chrome. 90

xv

List of Tables

2.1 Contexts where the three SameSite policies apply. We use (∗) for the Lax+POST
exceptional policy, and 3 to show contexts where cookies are included in the
cross-site HTTP request. 24

3.1 List of semantic types supported by JAW. Types are assigned to constructs
representing input sources of a web application, functions that send HTTP
requests, dispatch or register events, and functions with inputs/outputs. 36

3.2 Overview of symbolic modeling for shared JavaScript libraries. 40
3.3 Number of forgeable requests and affected web applications. 41
3.4 Taxonomy of client-side CSRF. Each template reflects the level of attacker’s

control on the outgoing HTTP request. ∗ are the templates for which we found
an exploit. 42

4.1 Overview of security-sensitive JavaScript APIs that inititate client-side requests,
along with their supported capabilities, default constraints and usage in top 10K
Tranco websites. 50

4.2 Overview of client-side request hijacking vulnerabilities and attacks. Rows marked
with¶ are new (i.e., client-side variants of) vulnerabilities and ¶ represent vulner-
abilities for which we consider a new API or exploitation. For new vulnerabilities,
related references refer to their server-side vulnerability counterparts. 50

4.3 Summary of the collected data and preprocessing steps. 57
4.4 Summary of client-side request hijacking vulnerabilities in top 10K sites. 58
4.5 Anatomy of client-side forgeable requests. The table shows 29 distinct request

patterns ordered by the degree of control (descending). 60
4.6 Summary of exploitations for client-side request hijacking vulnerabilities. 61
4.7 Summary of existing defenses and their protective coverage against client-side

hijacks. The table shows the adoption rate of the various defense mechanisms
in the wild. For rows marked with *, the adoption rate only reflects the explicit
inclusion of headers/tokens in the client-side code. 63

4.8 Types of input validation checks in vulnerable data flows. 63
4.9 Summary of program behaviours that can eliminate unique client-side request

hijacking vulnerabilities. 64

5.1 Overview of known DOM Clobbering markups grouped by their corresponding
rules in the HTML [116] and DOM [244] specifications. 71

5.2 Overview of DOM Clobbering markups. 73
5.3 Description of properties of DOM Clobbering sources. 77
5.4 Summary of DOM Clobbering sources and their semantic types based on the

seven cases of Table 5.3. 78

xvii

LIST OF TABLES

5.5 Prevalence and impact of DOM Clobbering in Tranco top 5K sites. The table
shows the number of clobberable data flows to security sensitive sinks of Table A.2,
the number of affected webpages, and websites. 78

5.6 Robustness of top five HTML sanitizers of web programming languages against
DOM Clobbering markups. 82

5.7 Overview of DOM Clobbering code patterns in the wild. 84

6.1 Overview of the affected functionalities. 92
6.2 Overview of threats to SameSite cookies, grouped by those not covered by Lax

(top part) and those covered by Lax (bottom part). Threats marked with * are
new, yet inspired by prior work. 93

6.3 State-chaning GET and POST requests in Alexa top 1K websites. 97
6.4 Summary of CSRF vulnerabilities discovered for a set of randomly selected

requests of Alexa top 1K websites. 97
6.5 Summary of Window Properties (WP) and postMessage (PM) information leakage

vulnerabilities discovered in Alexa top 500 websites. 98
6.6 Summary of the discovered security risks due to the missing Secure flag in

SameSite=None cookies. 98
6.7 Summary of inter-page SameSite cookie inconsistencies in Alexa top 500 websites.100
6.8 Summary of SameSite cookies’ inconsistencies across mobile and desktop clients

of Alexa top 500K websites. The total column shows the number of vulnerable
sites where a policy downgrade can occur. 101

6.9 Overview of web browser’s compliance with RFC 6265bis [28]. Browsers with
similar behaviours are grouped with the same color. The table highlights a total
of seven distinct browsers’ implementations when enforcing the SameSite cookie
policy, each marked by a different color. 102

6.10 Evaluation of SameSite cookie policy in top five frameworks of top five program-
ming languages. 103

A.1 Summary of primitive JavaScript sinks supported by JAW-v2. 150
A.2 Summary of primitive JavaScript sinks and semantic types supported by JAW-v3

grouped by the security risk of manipulating the sink object. The list is obtained
by aggregating the client-side JavaScript sinks considered in existing literature. 151

A.3 List of HTML tags used in §5.1.2.1 that share the same DOM Clobbering
behaviour. 152

A.4 Overview of the categorization of the affected cross-site requests and types of
third-party functionalities. 153

A.5 Top ten invalid SameSite cookie policies in Alexa top 500K sites. 153
A.6 Overview of the IdPs that enable bypass of the new default SameSite cookie

policy and the number of affected websites. 153
A.7 SameSite cookie policy inconsistencies for different user-agents grouped by site

popularity. 153

xviii

List of Algorithms

1 Forward semantic type propagation . 35

xix

1
Introduction

1

Client-side technologies are evolving at a rapid pace. Since the advent of Web 2.0, an
increasing number of online services, from email to collaborative document editing, are accessible
directly through web browsers, ensuring a seamless experience across various devices and
operating systems. Thanks to these advancements, more and more web applications can offer
dynamic and interactive features without the need for frequent page reloads, as processing tasks
are offloaded to the client side, leading to faster response times and improved scalability.

Unfortunately, these numerous benefits have not been without a cost. The growing complexity
of client-side programs has given rise to new variations of known security issues, now exclusively
manifesting on the client side (e.g., [1–4]). Simultaneously, the continuous introduction of new
JavaScript APIs have expanded the threat landscape for Web attacks. For example, recently
introduced APIs such as the Push API [5] for push notifications and the Beacon API [6] for
asynchronous requests have opened up new avenues for request forgery attacks. Even worse,
these attacks are only the tip of the iceberg. Recent advancements in client-side technologies
have introduced unforeseen interactions between client-side JavaScript programs and their
execution environment, rising unexpected security problems like mutation-based Cross-Site
Scripting (XSS) [7], script gadgets [8] and DOM Clobbering [10, 9]. Obviously, understanding
and addressing these issues is imperative to fortify our digital infrastructure. However, traditional
security testing methodologies are struggling to keep pace with the evolving complexities of
these new emerging threats.

Detecting and studying new client-side vulnerabilities on the Web platform is not an easy
task, as it requires the collection and analysis of hundreds or even thousands of webpages per
real web applications. Unfortunately, exploratory security evaluations of JavaScript-based web
applications are primarily impeded by the scarcity of reliable and scalable testing techniques.
Firstly, there is no canonical representation for JavaScript code. Secondly, JavaScript programs
operate in an event-driven manner, necessitating models that can effectively capture and
incorporate this characteristic into the canonical representation. Thirdly, relying solely on
static analysis is often not sufficient due to the dynamic nature of JavaScript programs [11–13]
and their execution environment [14], prompting the need for hybrid static-dynamic analysis
techniques. Finally, a significant portion of code on webpages comprises JavaScript libraries, and
subjecting them to repeated analyses results in inefficient models poorly suitable for detecting
vulnerabilities.

In this thesis, we address these challenges by proposing Hybrid Property Graphs (HPGs),
a canonical representation for client-side JavaScript programs that captures both static and
dynamic program behaviors. Inspired by prior work [15], we employ property graphs for model
representation and use graph traversals to find security-sensitive program instructions that use
data values from attacker-controllable inputs, such as instructions that create and send network
requests. We implement our approach into JAW, an open-source security testing framework
for the client-side of web applications at scale. Starting from a seed URL, JAW monitors the
program execution, collects web resources, and instantiate an HPG for each webpage. Beyond
vulnerability detection, HPGs offer the capability to query program properties, enabling security
analysts to interactively explore security-related program characteristics, such as secure and
insecure code patterns. Having developed the JAW framework, we use it as the vehicle for our
large-scale evaluation of emerging client-side Web vulnerability classes, particularly focusing on
vulnerable program behaviors, prevalence of vulnerabilities, and their impact. Our large-scale
measurements enable up-to-date risk estimation, supporting higher readiness level for risk shifts
in the Web ecosystem.

The first two parts of this thesis center around Cross-Site Request Forgery (CSRF) [17, 1,
16] attacks, where an attacker tricks a user’s web browser into performing unwanted actions
on a trusted website where the user is authenticated, such as changing account settings [18],
making illicit financial transactions [19], or performing other sensitive operations on behalf of the
victim [21, 20]. In this thesis, we study new variants of request forgery attacks that abuse the

3

CHAPTER 1. INTRODUCTION

client-side code. First, we focus on attacks that hijack asynchronous request-sending APIs [23, 22],
known as client-side CSRF [1]. We evaluated the prevalence of client-side CSRF vulnerabilities
among all (i.e., 106) web applications from the Bitnami catalog [24], covering over 228M lines of
JavaScript code, and discovered 12,701 forgeable client-side requests affecting 87 web applications
in total. Then, we explore the threats originating from the hijacking of other client-side request-
sending APIs. Particularly, we systematize request hijacking vulnerabilities and the resulting
attacks by reviewing browser API capabilities and Web specifications, identifying 10 distinct
vulnerability variants, including seven new ones. Then, we instantiate JAW on the top of the
Tranco top 10K sites, performing, to our knowledge, the first investigation into the prevalence
of request hijacking flaws in the wild. Our study uncovers that request hijacking vulnerabilities
are ubiquitous, affecting 9.6% of the top 10K sites. We demonstrated the impact of these
vulnerabilities by constructing 67 proof-of-concept exploits across 49 sites, making it possible to
mount arbitrary code execution, information leakage, open redirections and CSRF also against
popular websites like Microsoft Azure, Reddit, Indeed and Starz.

In the third part of this thesis, we demonstrate the applicability of JAW to other vulnerability
classes, i.e., we study attacks that abuse the execution environment of client-side JavaScript
programs to achieve code execution. Specifically, we focus on a namespace confusion vulnerability
known as DOM Clobbering [25, 10, 9, 26], where attackers confuse a web application by injecting
HTML elements whose name matches the name of sensitive JavaScript variables, ultimately
overshadowing their value. Starting with a dynamic analysis of 19 different mobile and desktop
browsers, we systematized DOM Clobbering attacks, uncovering 31.4K distinct markups that
use five different techniques to unexpectedly overwrite JavaScript variables in at least one
browser. Then, we used our systematization to identify and characterize program instructions
that can be overwritten by DOM Clobbering, and used it to extend JAW, enabling it to detect
clobberable data flows in webpages. We used JAW to assess the prevalence of DOM Clobbering
vulnerabilities on Tranco top 5K sites, identifying a total of 9,467 vulnerable data flows across
491 affected sites.

Finally, our analysis extends to the assessment of existing defenses, emphasizing the critical
need for effective and compatible mitigation strategies against these evolving threats. For
example, we examine the robustness of HTML sanitizers and Content Security Policy [27]
against DOM Clobbering. Furthermore, we review and evaluate the adoption and efficacy
of existing countermeasures against request forgery attacks, including input validation and
browser-based solutions. For example, the SameSite cookie attribute [28] allows developers to
choose from three cookie policies (None, Lax, and Strict), depending on whether cookies should
be attached to different cross-site request contexts or not. Recently, chromium-based browsers
restricted cookies’ scope to a same-site context by default, known as the Lax policy [29, 30]. To
study this change, we conducted a set of large-scale, longitudinal, both automated and manual
measurements of the Alexa top 1K, 10K, 100K, and 500K sites across the main rollout dates
of the SameSite policies, covering both SameSite usage and cross-site functionality breakage
caused by the new default policy. Also, we performed an extensive evaluation of threats against
the new Lax-by-default policy’s effectiveness, looking at the adequacy of the coverage provided
by the Lax policy and bypass caused by website developers’ mistakes. Our study observes a
significant mismatch between the request contexts protected by Lax and the ones actually used
by websites in the wild, making it possible to perform cross-site attacks also against popular
websites such as Tumblr, Twitch, SoundCloud, Mailchimp, and Pixiv. Even when using Lax or
Strict policies, much of their effectiveness depends on developers’ awareness of SameSite policies’
implications, who could introduce vulnerabilities or inconsistent policies, leading to SameSite
policy bypasses.

4

1.1. PROBLEM STATEMENT

1.1 Problem Statement

In today’s dynamic and interconnected digital landscape, Web security stands as a paramount
concern. The exponential growth of web applications [31] and the increasing complexity of online
platforms have given rise to a myriad of security challenges (e.g., [33, 36, 35, 32, 34, 37, 3, 4,
S2]). As organizations and individuals alike become more reliant on web-based technologies, the
vulnerabilities associated with these systems become a focal point for malicious actors seeking
unauthorized access, data breaches, and service disruptions.

This problem statement chapter explores the web of challenges faced in the context of
reusable and scalable security testing for web applications, focusing on client-side JavaScript
programs. By unraveling the complexities of these challenges, we pave the way for innovative
solutions and strategies that can safeguard our online infrastructure. In this chapter, we set
the stage for a comprehensive exploration of the problems, providing context and clarity to the
issues that demand our attention in the pursuit of a secure and resilient Web.

1.1.1 Automatic Detection of Client-side CSRF (RQ1)

Client-side Cross-Site Request Forgery (client-side CSRF) is a new breed of CSRF vulnerabilities
affecting modern web applications. Like the more traditional CSRF, with a brief visit to a
malicious URL, an adversary can trick the victim’s browser into sending an authenticated
security-sensitive HTTP request on the user’s behalf towards a target website without user’s
consent or awareness.

In the traditional CSRF, the vulnerable component is the server-side program, which cannot
distinguish whether the incoming authenticated request was performed intentionally, also known
as the confused deputy problem [39, 38]. CSRF is typically solved by adding a pseudo-random
unpredictable request parameter, preventing forgery (see, e.g., [17]), or by changing the default
browsers’ behavior and avoiding the inclusion of HTTP cookies in cross-site requests (see, e.g., [40,
41]). In the client-side CSRF, the vulnerable component is the JavaScript program instead,
which allows an attacker to generate arbitrary requests by modifying the input parameters of the
JavaScript program. As opposed to the traditional CSRF, existing anti-CSRF countermeasures
(see, e.g., [17, 40, 41]) are not sufficient to protect web applications from client-side CSRF
attacks, making it critical to detect these class of vulnerabilities.

Client-side CSRF is very new—with the first instance affecting Facebook in 2018 [1]—and
we have little-to-no knowledge of the vulnerable behaviors, the severity of this new flaw, and
the exploitation landscape. Studying new vulnerabilities is a challenging task, requiring the
analysis of hundreds of webpages per real web applications. However, such analyses are largely
hindered by the scarcity of reusable and scalable tools suitable for the detection and analysis of
vulnerable JavaScript behaviors. In this thesis, we address these challenges by proposing a new
technique and a corresponding tool for security testing of client-side JavaScript programs at
scale. In the following, we break down our research question in well-defined challenges.
RQ1.1: Static Representational Models. JavaScript programs are incredibly challenging
to be analyzed via static analysis. For example, prior work have proposed inter-procedural
control flow graphs [43, 42], data flow dependency graphs [44, 45], type analyzers [47, 46, 48],
and points-to analysis [50, 49]. Unfortunately, these approaches provide ad-hoc representation of
programs, each focusing on an individual aspect that is alone not sufficient to study client-side
CSRF. Recently, we have seen new ideas unifying static representations with code property
graphs (CPGs) [51, 15]. However, these new ideas are not tailored to JavaScript’s nuances,
such as the asynchronous events [45], or the execution environment [14]. To date, there are no
models for JavaScript that can provide a canonical representation to conduct both detection
and exploratory analysis of the code.

To address this challenge, we propose Hybrid Property Graphs (HPGs), a uniform canonical

5

CHAPTER 1. INTRODUCTION

representation for JavaScript source code, similarly as code property graphs for C/C++ [15]
and PHP [51]. We describe our approach in §3.1.
RQ1.2: Vulnerability-specific Analysis Tools. Over the past years, there have been a
plethora of approaches to detect vulnerabilities in client-side JavaScript programs. To date,
these approaches have been mainly applied to XSS [32, 52, 53, 37, 54], or logic and validation
vulnerabilities [61, 60, 55, 57–59, S2, 56], resulting in tools that are rather tightly coupled with
the specific analysis of the vulnerability. Thus, researchers seeking to study new client-side
vulnerabilities like client-side CSRF are forced to reimplement those approaches rediscovering
tweaks and pitfalls.

We address this challenge by defining HPGs and developing JAW, enabling us to perform a
variety of security tasks, i.e., detection and exploratory analyses of client-side vulnerabilities like
client-side CSRF and DOM Clobbering. We believe that decoupling the code representation
(the graph) from the analysis (traversals) renders JAW more suitable for reuse, similarly to
other CPG-based approaches [51, 15]. We demonstrate this as a part of our measurements and
security analyses for various vulnerability classes (Cf. Sections 1.1.2 to 1.1.4).
RQ1.3: Event-based Transfer of Control. Existing unified representations such as CPGs [51,
15] assume that the transfer of control happens only via function calls, an assumption no longer
valid for JavaScript. In JavaScript, the transfer of control happens also via events which either
originate from the environment, e.g., mouse events, or are user-defined, as shown in Listing 2.1.
When an event is dispatched, one or more registered functions are executed, which can change
the state of the program, register new handlers, and fire new events. Representing the transfer
of control via event handlers is fundamental for the analysis of JavaScript programs. As we
will show in Sections 3.1 and 3.2, HPGs in our approach capture JavaScript nuances such as
event-based transfer of control by proposing the Event Registration, Dispatch and Dependency
Graph (ERDDG).
RQ1.4: Dynamic Web Execution Environment. JavaScript programs rely on many
dynamic behaviors that make it challenging to study them via pure static analysis. A typical
example is the dynamic code loading [12]. In essence, JavaScript programs can be streamed
to the user’s web browser, just like other resources. Thus, contrary to the assumption in most
static analysis approaches, the entire JavaScript code may not be available for the analysis [11].
Another example is the interaction between JavaScript and the DOM tree. Consider, for example,
two variables containing the same DOM tree node; however, the content of one variable is fetched
via document.querySelector("input") and the other by document.form[0].input.
In such a case, it is often important to determine whether the two variables point to the same
object (i.e., point-to analysis). However, it can be considerably hard to determine this by looking
at the source code, as DOM trees are often generated by the same program. As we will show in
§3.1.2, HPGs capture the dynamics of the web execution environment of client-side JavaScript
programs via both snapshots of the DOM environment and traces of JavaScript events.
RQ1.5: Shared Third-party Code. Most modern web applications include at least one
third-party JavaScript library [62], such as jQuery [63], to benefit from their powerful abstractions
over the low-level browser APIs. Detection of client-side CSRF requires the ability to determine
when the program performs HTTP requests, also when the program delegates low-level network
operations to libraries. Similarly, library functions can be part of the data flows of a program.

To date, existing approaches are highly inefficient as they include the source code of libraries
in the analysis. We observe that external libraries account for 60.55% of the total JavaScript
lines of code of each web page1, thus requiring existing techniques to re-process the same code
even when visiting a new page of the same web application. An alternative approach consists of
creating hand-crafted models of libraries (see, e.g., [64]). While such an approach is effective

1We calculated the fraction of library lines of code over the testbed web applications of §3.3.1 using the
crawler and the configuration of the data collection phase of §3.2.1.

6

1.1. PROBLEM STATEMENT

when modeling low-level browser APIs, it does not scale well to external libraries. First, external
libraries are updated more frequently than browser APIs and second, there are many alternative
libraries that a JavaScript program can use [65]. However, as we will show in Sections 3.1
and 3.2, JAW can generate reusable symbolic models of external libraries, that will be used as
proxy in our HPGs.

1.1.2 Studying Request Hijacking Vulnerabilities in the Wild (RQ2)

Request forgery attacks have been one of the most critical threats to web applications since
the early days of the Web, where attackers trick victims’ browsers into making authenticated,
security-sensitive HTTP requests [17, 67, 66, 16, 20]. The fundamental vulnerability enabling
these attacks is the inability of the server-side component to distinguish unintentional from
intentional requests (i.e., the confused deputy flaw [39, 38]), allowing maliciously-forged requests
to cause a persistent state change of the web application, such as resetting passwords [18, 19]
or deleting data from databases [68]. The recent rapid evolution of client-side technologies has
introduced more subtle variants of request forgery vulnerabilities where attackers no longer rely
on the confused deputy flaw but instead exploit insufficient input validation vulnerabilities in
the client-side JavaScript program to hijack outgoing requests. The research community has
only recently started exploring these vulnerabilities, mainly focusing on client-side CSRF [1, 69],
for which we propose a corresponding detection and analysis technique as a part of RQ1 (see,
i.e., [P1]). Unfortunately, client-side CSRF is only one instance of the larger issue of request
hijacking in web applications, as other types of outgoing HTTP requests exist within JavaScript
programs that attackers can hijack, which, to date, are largely unexplored.

Client-side request hijacking vulnerabilities occur when a JavaScript program uses attacker-
controllable inputs, such as URL parameters, to send network requests. A closer look at prior
work [1, 69] reveals that they primarily focus on asynchronous requests generated via the
XMLHttpRequest [22] and fetch [23] APIs, missing other types of outgoing requests and
APIs that a JavaScript program can use, e.g., push notifications, web sockets, and server-sent
events, including the sendBeacon API [6], which accounts for over 35.3% of API calls for
asynchronous requests2. As a result, we still lack a comprehensive exploration and understanding
of this threat on the Web.

To address this research question, we start from the answers of RQ1 in §1.1.1 for the analysis
of JavaScript programs and the client-side CSRF vulnerability, and provide a component-centric
security analysis of requests induced in modern browsers and their potential to be hijacked by
cross-site adversaries. Particularly, we focus on the following research questions:
RQ2.1: Browser Capabilities and Attack Systematization. The recently proposed
client-side CSRF vulnerability [1, 69] allows attackers to generate arbitrary HTTP requests
by manipulating JavaScript program input parameters. However, client-side CSRF is just one
instance of the broader issue of request hijacking in client-side code, i.e., JavaScript programs can
perform different types of requests (e.g., asynchronous vs top-level requests or socket connections)
using numerous APIs (e.g., XMLHttpRequest vs sendBeacon), which presents a diverse
threat landscape. In this thesis, we take a step back and study client-side request hijacking
vulnerabilities. First, we look at various browser methods and APIs for sending requests, and
label each with specific capabilities (e.g., accept javascript URIs, allow setting the request
body, etc). Then, we review existing literature and conduct a comprehensive threat modeling
analysis, systematically assessing the security risks that emerge when an attacker can manipulate
various fields of request-sending APIs. We address this RQ in §4.1.
RQ2.2: Detection, Prevalence, and Impact. Despite being aware of client-side CSRF
since 2018 [1], we still lack a clear understanding of its prevalence and severity across the Web

2We calculated the API usage over Tranco top 10K sites (see §4.1.3) using the data collection setting detailed
in §4.2.1 and §4.3.

7

CHAPTER 1. INTRODUCTION

on a large-scale. Unsurprisingly and by extension, we have little-to-no information about the
overall impact and pervasiveness of the broader issue of request hijacking in real websites. In
this thesis, we aim to fill this gap by quantifying the prevalence of request hijacking in the
wild, identifying vulnerable behaviours, and investigating their impact to gain insights into the
underlying issues and factors that affect the security posture of web applications. We address
this RQ in Sections 4.2 and 4.3.
RQ2.3: Defenses and Effectiveness. While numerous research efforts studied request
forgery countermeasures (e.g., [17, 66, P4, 70, 72, 71, 19]), their focus has been only the
traditional request forgery attacks that abuse the confused deputy flaw, and hence, we still lack a
comprehensive understanding of the protective coverage of various defenses mechanisms against
client-side variants of the request hijacks. As the final part of this chapter, we systematically
assess existing defenses and their efficacy leveraging data collected from the previous answers.
In particular, we measure the efficacy and adoption of browser-based policies, such as CSP [27],
COOP [73] and COEP [74], and examine the discovered vulnerabilities to uncover insecure input
validation patterns and practices adopted by developers. We address this RQ in §4.4.

1.1.3 Understanding DOM Clobbering Attacks and Defenses (RQ3)

The third part of this thesis demonstrates the applicability of JAW to code-less injection attacks.
Arbitrary client-side code execution has been one of the major threats against web applications
since the early days, traditionally achieved by injecting JavaScript code into vulnerable pages,
e.g., Cross-Site Scripting (XSS) attacks [81, 77, 76, 7, 78, 32, 75, 79, 80, 54, 82]. However, over
the past 20 years, the growth of Web technology has introduced unforeseen interactions between
JavaScript programs and the execution environment that can result in execution of arbitrary
code without injecting JavaScript but only by injecting seemingly harmless HTML markups.
The research community has only recently begun studying the security of these interactions,
mainly focusing on small code fragments called script gadgets [8] that react to injected HTML
markups and transform it into code. Yet, script gadgets are only the tip of the iceberg, and other
complex interactions exist that attackers can abuse to hijack the program execution. However,
these interactions have received little attention in research thus far.

DOM Clobbering is a vulnerability that originates from a naming collision between JavaScript
variables and named HTML markups, where browsers replace pre-existing content of an undefined
variable with an HTML element when the variable name and the element’s name (or id) attribute
match. Developers unaware of such behavior may use the content of undefined variables for
sensitive operations, such as URLs for fetching remote content, and attackers can exploit it
by injecting markups with colliding names. In this thesis, we systematically study the various
DOM Clobbering attack techniques in modern browsers, the severity and prevalence of DOM
Clobbering vulnerabilities, and the effectiveness of existing defenses. In particular, we answer
the following research questions:
RQ3.1: DOM Clobbering Attack Techniques. When looking at the evolution of DOM
Clobbering attack markups, we observe a consistent complexity growth, starting from a single
HTML element [83] that can overwrite a variable, evolving with pairs of HTML tags [10,
26] that clobber properties of objects (2013-2015), and then advancing into a wide variety of
browser-specific combinations of different HTML tags and attributes that can not only overwrite
variables, but also native DOM objects (2015-2018) [84, 87, 85, 86], nested object properties,
and loop elements (2018-2022) [88, 89, 9]. Despite the growth of markups’ complexity, the
exploration of the attack surface has not been conducted systematically, and to date, many of the
possible combinations of tags, attributes, markup relationships and possible JavaScript object
manipulations are not considered. In this thesis, we intend to fill this gap and exhaustively
explore such an attack surface by generating clobbering markups and testing modern mobile
and desktop browsers automatically. We answer this RQ in §5.1.

8

1.1. PROBLEM STATEMENT

RQ3.2: DOM Clobbering Patterns and Prevalence. While the existence of DOM
Clobbering is known for more than a decade [10, 83], we still do not have a measurement
about the prevalence, impact, and code patterns of this vulnerability. In this thesis, we intend
to quantify the prevalence of DOM Clobbering in the wild, identify vulnerable behaviours,
and examine their impact to shed some light on possible causes and factors hampering web
applications’ security. Finally, we intend to review developers’ mistakes and identify vulnerable
and secure coding patterns that can fix those issues. We answer this RQ in §5.2.
RQ3.3: Mitigations and Kill Switch. As a final question, we look at the defenses, their
effectiveness, and cost-benefit, leveraging the data generated and collected from the previous
answers, i.e., DOM Clobbering markups, vulnerability prevalence, and developer mistakes. In
particular, we intend to evaluate the cost-benefit trade-off resulting from disabling named
property accesses [90, 91] in browsers and thoroughly assess existing solutions such as HTML
sanitization [78], Content-Security Policy (CSP) [88, 92] and freezing object properties [93]
against DOM Clobbering. We address this RQ in §5.3.

1.1.4 Studying the Effectiveness of SameSite Policies (RQ4)

In the last part of this thesis, we build upon the insights obtained from our examination of
preceding research questions—namely, the prevalent existence of cross-site vulnerabilities such
as client-side request forgery vulnerabilities on the Web, and shift our emphasis from attacks
to defenses. Specifically, we focus on the recently proposed Lax-by-default SameSite cookie
policy [95, 94], studying its adoption and effectiveness against cross-site attacks.

Despite the recent surge of attention toward SameSite cookies, little has been done to
understand how they are used by application developers (see, e.g., [94]) and the hurdles when
using them in practice together with different web application functionalities. This thesis takes
the first step in this direction and explores the security and effectiveness of SameSite cookies by
quantifying their usage in the wild, and also by systematizing known and introducing new web
attacks that can circumvent SameSite cookies, and ultimately compromise web applications’
security. Specifically, we answer the following research questions:
RQ4.1: Trend Analysis of SameSite Cookie Usage. The main benefit of the SameSite
attribute is the new default cookie policy, which can disrupt existing websites. To help developers
transition to the new default policy, Google introduced three gradual changes to Chrome,
introduced in 2016, 2019, and 2020 [94]. First, in April 2016, Chrome 51 introduced support for
the new attribute without modifying the default policy. Later, in September 2019, Chrome 77
started showing console warning messages for cookies without the SameSite attribute. The
final step of this transition took place in 2020, with Chrome 80. Specifically, in February 2020,
Chrome set Lax+POST the new default policy. However, shortly after, Google rolled it back
(April 2020) to ease developers’ transition to the new policy in light of the COVID-19 pandemic.
The Lax-by-default was then restored in July 2020 with Chrome 84 [95, 94].

When looking at the SameSite rollout timeline, one of the first questions we intend to address
is understanding the long rollout approach’s effectiveness by quantitatively measuring how
website developers adapted to the upcoming new policies across the main rollout milestones. In
particular, we intend to quantify the websites that picked one of the three pre-defined SameSite
policies and those that rely on the new default behavior. Also, as supporting the SameSite
attribute requires modifying the server-side component’s code, developers may make mistakes
and use non-existing policies (see, i.e., [96]), inadvertently resulting in deploying a different
policy than the intended one. We answer these questions in §6.1.
RQ4.2: Functionality Breakage. Starting from July 2020, the new default policy for cookies
without the SameSite attribute is Lax [95, 94]. Changing the default policy for cookies can
interfere with cross-site communications between web services. For example, services such as
Single Sign-On (see, i.e., [99, 97, 100, 98]) rely on asynchronous authenticated requests to

9

CHAPTER 1. INTRODUCTION

exchange authentication tokens. Another example is Oracle APEX, a web application that
can run inside iframes (see, i.e., [101]). According to the Lax policy, browsers will not include
cookies in requests originated in iframes, preventing Oracle APEX from sending authenticated
requests. Despite this anecdotal evidence, we lack a comprehensive overview of the websites
whose cross-site functionalities may no longer work due to the new default policy. This thesis
intends to fill this gap, by identifying types of affected functionality and providing a first
quantification of the affected websites. We answer these questions in §6.2.
RQ4.3: Lax Adequacy and Threats. The radical change introduced by the SameSite
attribute is that browsers no longer include cookies to all cross-site requests by default, but
only to those originating from predefined lists of same-site contexts. These lists capture those
contexts typically used in cross-site attacks. For example, the Lax policy forbids including
cookies in cross-site POST submissions as they are typically used in CSRF attacks. However,
prior works (e.g., [21, 102, S2]) suggest that the Lax policy’s coverage may not be adequate.
Developers do not strictly obey the distinction between safe and unsafe HTTP methods and
implement state-changing or state-leaking operations via, for example, GET requests.

One of the questions that we intend to answer in this thesis is the adequacy of the new same-
site policies and their effectiveness. In particular, we want to focus on the tension between the
contexts protected by the new policies and the contexts used by existing websites to implement
security-sensitive operations. Second, non-academic security reports (see, e.g., [103–105]) have
shown that, in certain cases, implementation mistakes can cause a bypass of the protection
offered by the new SameSite policy. For example, web applications may not distinguish between
different HTTP methods when processing incoming HTTP requests, allowing adversaries to forge
protected requests, such as POST, by changing the HTTP method to non-protected methods,
such as GET [104, 105]. However, it is somewhat unclear whether these vulnerabilities are
outliers or widespread security problems. In this thesis, we intend to provide a comprehensive
evaluation of threats against web applications that rely on the same-site policies and determine
their severity by looking for their prevalence in the wild. We answer these questions in §6.3.
RQ4.4: Browser Inconsistencies and Web Frameworks’ Defaults. Our last research
question investigates how consistent different (i) web browsers and (ii) web frameworks apply
SameSite cookies on cross-site requests, and what are the divergent aspects among them. For
example, the default policy in Chrome is Lax, whereas Firefox enforces the None policy. Even
when browsers enforce a default Lax policy, web frameworks’ APIs may downgrade it to None
by default.

1.2 Contributions

In this section, we provide an overview of our contributions for each of the research questions
outlined in §1.1.
RQ1: Automatic Detection of Client-side CSRF. In this thesis, we perform the first
systematic study of client-side CSRF, a new variant of CSRF affecting the client-side JavaScript
program, and present a taxonomy of forgeable requests considering two features, i.e., request
fields, and the type of manipulation. Furthermore, we present hybrid property graphs, a single
and coherent representation for the client-side of web applications, capturing both static and
dynamic program behaviors. We implemented our approach into a multi-purpose and reusable
framework, JAW, that detects client-side CSRF by instantiating a HPG for each web page,
starting from a single seed URL.

In order to assess the efficacy and practicality of our approach and to study client-side
CSRF vulnerabilities, we evaluated JAW with over 228M lines of JavaScript code in 106 popular
applications from the Bitnami catalog [24], identifying 12,701 forgeable requests affecting 87
applications, out of which we created working exploits for 203 requests of seven applications.

10

1.2. CONTRIBUTIONS

Finally, we publicly release the source code of JAW3 to support the future research effort to
study vulnerable behaviors of JavaScript programs.
RQ2: Studying Request Hijacking Vulnerabilities in the Wild. We undertake, to the
best of our knowledge, the first evaluation of client-side request hijacking vulnerabilities in the
wild, covering three main aspects: a systematic exploration of the attack surface, a measurement
of vulnerable websites, and a thorough review and evaluation of request hijacking defenses.
Starting from a comprehensive survey of browser API capabilities, we systematically examine
potential attacks when attackers manipulate one or more inputs of request-sending APIs, covering
various types of sensitive requests in modern browsers.

Then, we propose JAW-v2, a client-side request hijacking detection tool that uses a com-
bination of hybrid program analysis [P1] and in-browser dynamic taint tracking [107, 106] for
the discovery of potentially-vulnerable data flows and dynamic analysis with API instrumen-
tation [108] for the automated vulnerability verification. We instantiate JAW-v2 against the
Tranco top 10K websites to quantify the prevalence and impact of client-side request hijacking in
the wild, processing over 32.4B lines of JavaScript code across 11.5M scripts and 339K webpages.
Finally, we identify and evaluate defenses, covering built-in countermeasures offered by browsers
and custom defenses implemented by applications at code-level. In particular, we assess the
efficacy and adoption of browser policies like Content Security Policy (CSP) [109, 27] and
Cross-Origin Opener Policy (COOP) [73], and examine the client-side code to identify insecure
input validation practices adopted by developers against request hijacking attacks.

Our results show that the attack surface of client-side request hijacking vulnerabilities is large,
with a total of 10 different variants across six request types, of which seven variants are previously
unknown, notably hijacking requests of push notifications, window navigations, EventSource,
and WebSockets. Furthermore, client-side request hijacking data flows are ubiquitous, affecting
9.6% of the Tranco top 10K websites, with a total of 202K instances across 17.9K webpages. Of
these, the new vulnerability types and variants constitute a significant fraction (36.1%), with
over 73.3K instances. To demonstrate the significance of these vulnerabilities, we created 67
proof-of-concept exploits in 49 sites, including popular ones like Microsoft Azure, Indeed, Starz,
Google DoubleClick, TP-Link, and Reddit, leading to critical consequences such as arbitrary
code execution, CSRF, information leakage and open redirections. Finally, the analysis of
existing countermeasures suggest that each can only mitigate a fraction of attacks. For example,
CSP cannot mitigate over 41% of the information leakage and XSS exploitations of the request
hijacking, and COOP and COEP cannot mitigate over 93% and 94.7% of the total request
hijacks, respectively. Our results show that developers can fix request hijacking vulnerabilities
at code level, and we identify eight insecure input validation patterns to avoid.
RQ3: Understanding DOM Clobbering Attacks and Defenses. We conduct the first
comprehensive and systematic study of DOM Clobbering, covering vulnerability, attack tech-
niques, detection, prevalence, impact, and defenses. Starting from a comprehensive survey of
prior DOM Clobbering vulnerabilities, we systematically generate candidate DOM Clobbering
markups, and automatically test desktop and mobile browsers against them, covering all known
HTML tags and attributes–including custom ones–and markup relationships.

Then, we propose JAW-v3, a DOM Clobbering detection tool that amalgamates static
program analysis, i.e., [P1], for the discovery of potentially-vulnerable data flows, with forced
execution, i.e., [110], for the automated vulnerability verification, leveraging the generated DOM
Clobbering markups. We instantiate JAW-v3 against the Tranco top 5K websites to quantify the
prevalence and impact of DOM Clobbering vulnerabilities, processing, in total, over 24.6B lines
of JavaScript code across 18.3M scripts and 205.6K webpages. Finally, we identify, review, and
evaluate defenses, covering existing countermeasures and secure code patterns. In particular, we
first precisely measure the cost-benefit trade-off of browser-level countermeasures and thoroughly

3https://soheilkhodayari.github.io/JAW

11

CHAPTER 1. INTRODUCTION

test HTML sanitizers. Then, we review the vulnerable code discovered by JAW-v3, identify
common developer mistakes, and distill a list of secure coding patterns.

Our findings underscore the extensive attack surface associated with DOM Clobbering
vulnerabilities, with only 481 out of 31,432 generated DOM Clobbering markups are currently
known, and the remainings are either previously-unknown instances (148) or variants of known
cases (30,803). When grouping markups by browser behaviors, we observe ten different behavioral
groups, showing that while most of the attacks are shared across browsers, many others work
with specific browsers only. In addition, our experiments discovered 114 new native browser
APIs that these markups clobber in at least one browser, including security-sensitive APIs like
cache storage [111] and trusted types [112].

Second, DOM Clobbering vulnerabilities are quite widespread, affecting 9.8% of the top 5K
websites, including popular sites like GitHub, Fandom, Trello, Vimeo, TripAdvisor, WikiBooks
and AliExpress, leading to severe consequences such as arbitrary code execution, client-side
CSRF [P1], and open redirections [114, 113].

Third, when looking at the browser-level defenses, disabling named property accesses can
cause more breakage, i.e., 2,561 websites, than benefits, i.e., 491 vulnerable websites, with a
cost-benefit ratio of 5.2:1 websites. In the absence of a browser-level fix, developers need to be
particularly careful when choosing a countermeasure, as they balance protection with usability.
For example, 55% of the most popular HTML sanitizers across the five most used web languages
are vulnerable to at least one of the 31.4K clobbering markups by default. The remaining 45%
sanitizers remove named properties, i.e., id and name attributes, which may interfere with the
DOM manipulation operations. Also, our results show that CSP is insufficient because 85% of
the discovered vulnerabilities can cause code execution without manipulating the src attribute.
Finally, our results show that developers can fix vulnerabilities at the code level, and we identify
eight distinct vulnerable code patterns to avoid and propose four secure patterns to fix them.
RQ4: Studying the Effectiveness of SameSite Policies. As the final part of this thesis,
we perform, to our knowledge, the first security evaluation of the SameSite cookie policy,
systematically studying the trend of its usage from June 2019 to March 2021 on the top 500K
Alexa sites. First, we study the impact of the new default SameSite cookie policy, and present
an overview of the number of affected services and websites by analyzing top 500 Alexa websites.

Then, we comprehensively review the threats against SameSite cookies, and identify seven
known and propose three new threats inspired by prior work. We quantify the impact and
prevalence of vulnerabilities of each threat in the wild by designing large-scale experiments.
Furthermore, we conduct a behavioural analysis of 14 popular web browsers, identifying seven
divergent ways on how browsers enforce the SameSite cookie policy. Finally, we analyze top five
web frameworks of top five programming languages, and show that 24% of the frameworks offer
APIs that, by default, downgrade the new default Lax protection offered by browsers.

Overall, this thesis provides the following insights about the current state of the SameSite
attribute. As expected, after a rapid increment of sites using one of the SameSite policies around
the enforcement dates, we now observe a rather moderate, yet steady, growth. Second, about
19% of the functionalities implemented via cross-site requests without an explicit SameSite policy
does not work after the Lax-by-default enforcement, of which the vast majority are requests for
advertisement online services. Third, uncustomizable, pre-packaged policies like the SameSite
policy are making it particularly challenging for a significant fraction of websites to benefit
from their protections without substantially revisiting websites’ designs and implementations.
For example, while the Lax policy can considerably reduce the attack surface of cross-site
exploitations, we observed a significant mismatch between the cross-site request contexts covered
by Lax and the ones used by websites in the wild, making it possible to perform cross-site
attacks. Such a mismatch may suggest that a user-customizable, per-contexts same-site policy
could be more beneficial for these websites. Fourth, even when using Lax or Strict policies,
much of their effectiveness depends on developers who may introduce inconsistent or conflicting

12

1.3. THESIS OUTLINE

policies, leading to SameSite policy bypasses. Finally, we observed that popular mobile and
desktop browsers exhibit inconsistent behaviors when processing and enforcing SameSite policies
and handling exceptional cases.

1.3 Thesis Outline

This thesis is structured into eight chapters. Chapter 2 provides essential background informa-
tion for a comprehensive understanding of this work. Chapter 3 introduces a security testing
framework for automated detection and interactive exploration of client-side JavaScript vulnera-
bilities, particularly focusing on client-side CSRF. In Chapters 4 and 5, we apply and extend
our analysis framework to the problem of client-side request hijacking and DOM Clobbering
vulnerabilities, studying their prevalence and impact in the wild as well as the efficacy of existing
countermeasures. Drawing from our insights into these attacks and defense mechanisms, Chap-
ter 6 studies the adoption and effectiveness of SameSite cookie policies, especially in countering
request forgery attacks. Chapter 7 discusses the related work, highlighting prior achievements
and comparing this work with existing literature. Finally, Chapter 8 concludes this thesis and
discusses the broader implications of our findings.

13

2
Technical Background

15

2.1. FOUNDATIONAL CONCEPTS

In this chapter, we present the foundational knowledge necessary to understand this work. We
begin by presenting essential Web technologies such as HTML, JavaScript, and security-sensitive
browser APIs, which are often exploited in the context of client-side Web attacks (§2.1), and
follow up with a discusssion of the central security concept of the Web— the Same-Origin
Policy (SOP). Then, we describe fundamental security problems for Web applications that bear
relevance to this thesis (§2.2), such as Cross-Site Leaks (§2.2.1), Cross-Site Request Forgery
or CSRF (Sections 2.2.2 and 2.2.3), and DOM Clobbering vulnerabilities (§2.2.4). Finally, we
introduce SameSite-by-default cookies, an emerging security countermeasure with the potential
to alleviate common variants of cross-site attacks such as CSRF and conclude this chapter (§2.3).

2.1 Foundational Concepts

In this section, we introduce the foundational concepts for the Web technology.

2.1.1 Hypertext Markup Language

Hypertext Markup Language (HTML) is a platform-independent language [115] that web
browsers use to interpret and display Web content to users. It serves as the prevailing de-facto
standard for resources accessible through the Web, and is standardized [116] and maintained
by W3C [117] and WHATWG [118]. At its core, HTML uses a set of predefined tags to define
the structure, layout, and presentation of text, images, links, and other multimedia elements
on a webpage, serving as the building blocks for constructing interactive web applications. For
instance, developers can use HTML anchor links to reference other webpages, or display forms
to users, which they can fill with information and then send back to the application by clicking
a submit button.

As the demand for interactive web applications continues to grow, HTML technology has
and is undergoing a continuous evolution to cater to these ever-expanding needs. For example,
a notable advancement is the incorporation of scripting languages like JavaScript and style
sheets [119], which facilitated the creation of dynamic user experiences and functionalities such
as form validation, real-time data updates, and interactive visual effects, by adding dynamic
logic to the otherwise static client-side code [120]. Similarly, the recent HTML’s built-in support
for audio and video embedding, for which developers needed to rely on external plugins like
Flash [121, 122] in the past, further underscores HTML’s ongoing journey to accommodate
contemporary Web development demands.
The Evolving Attack Landscape of HTML. The rapid integration of new features into
HTML, such as the incorporation of JavaScript, has undeniably ushered in a plethora of
conveniences and functionalities, enhancing the overall Web experience for both developers
and users. However, this progression has not been without its compromises: an expanded
attack surface that exposes web applications to a heightened risk of security issues, such as code
injection vulnerabilities [76, 8, 32, 83, 54, 3].

2.1.2 JavaScript

JavaScript is an event-driven programming language for building modern and interactive web
applications. It allows websites to respond to user interactions in real time, manipulate the
content on the page, and create interactive features like animations, forms, and multimedia
elements. Initially developed to bring client-side scripting to Netscape Navigator [123], JavaScript
has evolved into a general-purpose programming language over the past years. For example, the
advent of Node.js [125, 124] enabled JavaScript to be used not only as a client-side technology,
but also for server-side programs and mobile applications.

17

CHAPTER 2. TECHNICAL BACKGROUND

Dynamic Features and Testability Challenges. JavaScript is an inherently dynamic
language. It has prototype-based inheritance, dynamic property lookups and coercions, allowing
variables to change types and values at runtime, as it follows the ECMAScript specification [126].
While this dynamism is advantageous for creating dynamic and interactive web content, they
pose a considerable challenge when it comes to testing [127], particularly through methods like
static analysis [53, 15, 128]. Static analysis tools rely on the ability to analyze code without
executing it. As a result, accurately identifying potential vulnerabilities becomes a complex
task, demanding specialized techniques that can navigate the intricate nuances of JavaScript’s
dynamic nature (e.g., [129, 11, 12, 14, 50]).

2.1.3 Document Object Model

The Document Object Model (DOM) [130] is a programming interface for web documents. It
provides a tree-structured representation of the webpages, and allows programmatic access and
manipulation to the tree with JavaScript. For example, the HTML DOM is accessible using the
Document interface [131]. DOM APIs [132] provide access to various sensitive browser features
such as tabs and windows, local storage mechanisms, and browser history, creating an appealing
attack surface for hackers (e.g., [78, 8, 32, 54]).

2.1.4 Same-Origin Policy

Modern web browsers can simultaneously load and display resources from multiple websites.
Whether through multiple open tabs or embedded frames from different sites, these resources can
interact with one another. However, allowing unrestricted interaction can have critical security
implications. For example, if a malicious attacker compromises a script, the compromised script
could divulge the entire contents of a user’s browser. The Same-Origin Policy (SOP) [134, 133]
prevents this from happening by blocking read access to resources loaded from a different origin.

In general, SOP is a fundamental security mechanism that controls how documents and
resources (e.g., scripts) on one Web origin can interact with documents and resources on
another origin, with the origin being a combination of protocol, domain, and port. This way,
a document hosted on evil.com cannot access the contents of benign.com because they
belong to two different domains or origins, e.g., consider the case where users open evil.com
and benign.com webpages in two different browser tabs.

2.1.5 HTTP Cookies

HTTP cookies are an intrinsic element of the Web that facilitates the synchronization of the state
between clients and servers, who should communicate over the stateless HTTP protocol [135].
A cookie is a key-value pair along with a number of attributes that control when and where the
cookie is used. Examples of such attributes are the expiration date, or the Secure attribute [136]
which restricts the cookie to be sent exclusively over HTTPS. However, these benefits do not
come without a trade-off: cookies are automatically transmitted to servers for all requests,
including those made by third-party websites, enabling a number of Web attacks (e.g., [17, 137,
16, 102, 20]). The remainder of this chapter present these attacks and discusses countermeasures
against them.

2.2 Vulnerabilities and Attacks

In this section, we provide the essential background information required to comprehend the
vulnerabilities and attacks examined in this thesis.

18

2.2. VULNERABILITIES AND ATTACKS

2.2.1 Cross-Site Attacks

Cross-Site (XS) attacks are a family of web attacks where attackers lure users into visiting a
malicious web page that tricks the user’s web browser to send authenticated cross-site HTTP
requests to a vulnerable target website. One of the first instances of cross-site attacks is Cross-Site
Request Forgery (CSRF) [17, 21, 138, P1, 16, 20], where attackers leverage cross-site requests
to perform security-sensitive, server-side state-changing operations, such as user credential
reset (see, e.g., [139–141]) or money transfers [19], without user’s consent or awareness. CSRF
vulnerabilities are caused by the confused deputy problem [39, 38] where the server-side program
cannot distinguish between unintentional and intentional requests.

Malicious cross-site requests can also target the users making these requests by leaking
sensitive information about user’s login status [142, 144, 143], account type [S2], age range [145],
or user’s identity (i.e., deanonymization attack) [102, S2], bypassing the Same-Origin Policy.
These attacks are often called cross-site information leakage (XS-Leaks) or Cross-Origin State
Inference (COSI) attacks [147, 35, 137, 148, 102, S2, 145, 149, 146]. COSI attacks abuse the
fundamental concept of composability on the Web, which allows webpages to interact with one
another, and exploit browser side channels to leak HTTP responses through this interaction.

Figure 2.1: Example of a COSI and CSRF attack.

Threat Model. CSRF and COSI attacks have a similar two-phases attack pattern: preparation
and attack. Figure 2.1 exemplifies the threat model of these attacks. In the preparation step,
the attacker prepares a malicious webpage referring to resources from the target site. These can
be, for example, a hidden, self-submitting HTML form to reset the user password at the target
site or a JavaScript file hosted by the target site. During the attack phase, the user visits the
attack page (step 1). As a result of the included resource, the user’s browser sends a cross-site
request to the target website, and the browser automatically attaches the user’s authenticated
session cookies to this request (step 2). The target website receives and processes the request
(step 3). In the case of CSRF, the server will perform the requested operation, e.g., by resetting
the user password with an attacker-controlled one. In case of a COSI attack, the attack page
uses browser side-channels to leak sensitive information about the user. For example, consider a
cross-origin HTTP request that returns a 200 response code when the user is logged in and a
404 otherwise.

2.2.2 Client-Side CSRF

Client-side CSRF is a new category of CSRF vulnerability where the adversary can trick the
client-side JavaScript program to send a forged HTTP request to a vulnerable target site by
manipulating the program’s input parameters. In a client-side CSRF attack, the attacker lures
a victim into clicking a malicious URL that belongs to an attacker-controlled web page or an
honest but vulnerable web site, which in turn causes a security-relevant state change of the
target site. These vulnerabilities originate when the JavaScript program uses attacker-controlled
inputs, such as the URL, for the generation of outgoing HTTP requests.

19

CHAPTER 2. TECHNICAL BACKGROUND

Listing 2.1: Example client-side CSRF vulnerability derived from SuiteCRM.
1 var i = document.querySelector(’input’);
2 async function h(e){
3 var uri = window.location.hash.substr(1);
4 if (uri.length > 0) {
5 let req = new asyncRequest("POST", uri);
6 // Add Synchronizer Token
7 req.initHeader(’X-CSRF-TOKEN’, token);
8 var price = await req.send();
9 i.value = price;}}
10 i.addEventListener(’loadInvoice’, h);
...
14 function showInvoicePrice(input_id) {
15 document.getElementById(input_id).dispatchEvent(new CustomEvent(’loadInvoice’, {}));}
16 showInvoicePrice(’input’);

Similarly to the classical CSRF (Cf. §2.2.1), client-side CSRF can be exploited to perform
security-sensitive actions on the server-side and compromise the database integrity. Successful
CSRF attacks can lead to remote code execution [150, 16], illicit money transfers [16, 19], or
impersonation and identity riding [139, 21, 1, 140, 152, 151], to name only a few instances.
Vulnerability. Listing 2.1 exemplifies a vulnerable script–based on a real vulnerability that we
discovered in SuiteCRM–that fetches a shopping invoice with an HTTP request during the page
load. First, the program fetches an HTML input field with id input (line 1), and then defines
an event handler h that is responsible for retrieving the price of the invoice with an asynchronous
request and populating the input with the price (lines 2-9). For asynchronous requests, the
function h uses YUI library [153], that provides a wrapper asyncRequest for the low-level
XMLHttpRequest browser API. Then, the function h is registered as a handler for a custom
event called loadInvoice. This event is dispatched by the function showInvoicePrice
(lines 14-16). The vulnerability occurs (in lines 3-5) when the JavaScript program uses URL
fragments to store the server-side endpoint for the HTTP request, an input that can be modified
by the attacker.
Attack. Figure 2.2 shows an example of attack exploiting the client-side CSRF vulnerabilities
of Listing 2.1. First, the attacker prepares a URL of the vulnerable site, by inserting the URL of
the target site as URL fragment (step 1). Then, the victim is lured into visiting the vulnerable
URL (step 2), as it belongs to an application that the user trusts. Upon completion of the page
load (step 3), the JavaScript code will extract a URL from the URL fragment, and send an
asynchronous HTTP request towards the target site, which in turn causes a security-relevant
state change on the target server.

Figure 2.2: Example of client-side CSRF attack.

Threat Model. The overall goal of an attacker is forging client-side HTTP requests by

20

2.2. VULNERABILITIES AND ATTACKS

Listing 2.2: Example request hijacking vulnerability in Microsoft Azure.
1 var params = (new URL(window.location)).searchParams;
2 var t = params.get("request");
3 if(t != null && t.length){
4 // post message to opener
5 opener && opener.postMessage("reauthPopupOpened", t);
6 // listen for signal
7 window.onmessage = function(){
8 if (event.origin !== opener.origin) return;
9 if (event.data === "sendRequest"){

10 // top-level navigation request
11 document.location.assign(t);}
12 }}

manipulating various JavaScript input sources (e.g., see [32]). In this work, we consider the URL,
window name, document referrer, postMessages, web storage, HTML attributes, and cookies,
each requiring different attacker capabilities. Manipulating the URL, window name, referrer
and postMessages require an attacker able to forge a URL or control a malicious web page. For
example, a web attacker can craft a malicious URL, belonging to the origin of the honest but
vulnerable web site, that when visited by a victim leads to automatic submission of an HTTP
request by the JavaScript program of the target site. Alternatively, a web attacker can control
a malicious page and use browser APIs to trick the vulnerable JavaScript of the target page
to send HTTP requests. For example, a web attacker can use window.open() [154] to open
the target URL in a new window, send postMessages [37] to the opened window, or set the
window name through window.name API [155]. Furthermore, a web attacker can manipulate
document.referrer leveraging the URL of the attacker-controlled web page.

For web storage and HTML attributes, the attacker needs to add ad-hoc data items in the
web storage or DOM tree. A web attacker could achieve that assuming the web application
offers such functionalities (e.g., by HTTP requests). Similarly, a web attacker with a knowledge
of an XSS exploit can manipulate the web storage or DOM tree. Finally, modifying cookies may
require a powerful attacker such as a network attacker. This attacker can implant a persistent
client-side CSRF payload in the victim’s browser by modifying cookies (e.g., see [157, 54, 156]),
which can lie dormant, and exploited later on to attack a victim. We observe that all attacks
performed by the web attacker can be performed by a network attacker too.
Existing Defenses are Ineffective. Over the past years, the community proposed several
defenses against CSRF (e.g., [17, 138, 66, 158, 159, 72]). Recently, browser vendors pro-
posed to introduce a stricter same-site cookies policy [40, 41, 29], by marking all cookies as
SameSite=Lax by default [30]. Unfortunately, existing mechanisms cannot offer a complete
protection against client-side CSRF attacks, e.g., when synchronizer tokens [17, 138] or custom
HTTP headers [17, 20] are used, the JavaScript program will include them in the outgoing
requests as shown in line 7 of Listing 2.1. Also, if the browser or the web site is using the
same-site policy for cookies, JavaScript web pages, once loaded, can perform preliminar same-site
requests to determine whether a pre-established user session exists, circumventing the same-site
policy.

2.2.3 Client-Side Request Hijacking

Client-side request hijacking vulnerabilities arise when attackers can trick the client-side
JavaScript program into manipulating request-sending APIs with attacker-controlled inputs.
The recently proposed client-side CSRF vulnerability [1, P1, 69] is a prominent example of
such request hijacking, where attackers manipulate XMLHttpRequest [22] or fetch [23] API
parameters, and trigger sensitive actions without user awareness and intention. However, other
types of client-side request hijacking also exist.

21

CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.3: Example request hijacking attack.

Listing 2.2 shows a real example of a request hijacking vulnerability that we discovered in
Microsoft Azure (disclosed and patched), where attackers can hijack a top-level HTTP request.
In more detail, the code first retrieves a query parameter value from the URL (lines 1-2), and
checks that it is not empty (line 3). Then, it sends a postMessage to its opener webpage,
and waits to receive back the sendRequest signal (lines 5-9). Finally, it triggers an HTTP
request for navigation by changing the document location to the query parameter value (line
11). The vulnerability originates in the assignment in line 11 because attackers can control the
value of query parameters and, ultimately, pick the URL of their choosing for the navigation
request. Here, the distinctive characteristic of location.assign() as a top-level request
introduces additional security risks for cross-site requests, because unlike XMLHttpRequests
that are constrained by SameSite cookies [P4] and Same-Origin Policy [160], top-level requests
including location.assign() are not, bypassing existing countermeasures.
Threat Model. In this thesis, we consider a web attacker [161, 17] who abuses inputs such as
URL parameters, window name, document referrer, and postMessages, which is in line with
prior work in the area of client-side vulnerabilities and defenses [17, P1, P4, 8, 32, 3]. Figure 2.3
shows an example attack scenario exploiting the vulnerability in Listing 2.2. First, the attacker
prepares a malicious page and lures the victim into visiting it (step 1). The attack page uses
the window.open() API [154] to open the vulnerable webpage in a new window (step 2),
where it injects an attack payload in the query parameter request (say attack model A).
Alternatively, the attacker can share the malicious URL with victims (instead of using browser
APIs) and entice them to click on it, triggering a top-level navigation as shown in [P1] (say
attack model B). When the page is loaded completely (step 3), the JavaScript code extracts the
payload from the query parameter, and triggers a top-level HTTP request towards the payload
value, enabling attackers to hijack the original request. Unfortunately, because this request is
top-level, browsers will attach cookies to it, circumventing the SameSite policy [28, P4]. In
particular, in attack model A, the SameSite=Lax policy (default in Chromium-based browsers)
attaches cookies to window.open() requests but SameSite=Strict policy can mitigate
that. However, in scenario B, even SameSite=Strict is not sufficient, as cookies are always
attached to same-site requests. Consequently, the attacker obtains CSRF by sending arbitrary
requests to any security-sensitive endpoint, resulting in compromise of database integrity (e.g.,
deleting VMs, and changing user settings in Azure). Note that cross-origin policies like CORS
(i.e., access-control-* headers [162]) allow a server to restrict access of any origin other
than its own, thus are ineffective against CSRF exploitations that abuse the same-origin requests.

Then, in this thesis, we consider other types of URLs that are not based on the http scheme.
For example, the location.assign() API also accepts URLs with the javascript scheme,
which enables attackers to escalate request API hijacking to arbitrary client-side code execution

22

2.2. VULNERABILITIES AND ATTACKS

Listing 2.3: Example of DOM Clobbering vulnerability where named properties overshadow JavaScript variables.
1 var s = document.createElement(’script’);
2 let config = window.globalConfig || {href: ’script.js’};
3 s.src = config.href;
4 document.body.appendChild(s);

Listing 2.4: Example of DOM Clobbering vulnerability where named properties overshadow native DOM APIs.
1 var s = document.createElement(’script’);
2 let b = document.documentElement.getAttribute(’baseURI’);
3 s.src = b + ’/script.js’;
4 document.body.appendChild(s);

if there is no or improper input validation, e.g., by injecting javascript:alert(document-
.cookie) in the query parameter request in Listing 2.2 Accordingly, as this example
highlights, hijacking a request API can have a wide range of consequences, including cross-site
request forgery, client-side code execution, open redirection, and sensitive information leakage–to
name only a few examples. As we will show in §4.4, these types of request hijacking attacks
could be mitigated by constraining request APIs with opt-in security policies, e.g., using the
CSP connect-src directive [163].

2.2.4 DOM Clobbering

DOM Clobbering vulnerabilities originate from a naming collision between JavaScript variables
and named HTML markups, i.e., markups with an id or name attribute [164, 25, 26]. When
an undefined variable [166, 165] and an HTML markup have the same name, the browser
replaces the pre-existing content of the variable with the DOM object mirroring the markup
type. Listing 2.3 shows a snippet of vulnerable code, which loads a script whose URL is stored
in a global configuration object, i.e., window.globalConfig. In more details, the code first
creates a script tag (line 1), and then, it retrieves the global configuration object and stores it
in a local variable config (line 2). If the configuration object does not exist, it uses a minimal
default configuration, i.e., {href: ‘script.js’} (line 2). Then, the program sets the src
attribute of the newly created script tag to the href property of the configuration object (line
3) and appends the new script to the DOM tree (line 4).

The vulnerability originates in the assignment in line 2 because attackers can control the
value of window.globalConfig, and ultimately, pick the script src value of their choos-
ing by injecting an HTML tag with id="globalConfig", e.g., <a id="globalConfig"
href="malicious.js">. When parsing such a markup code, the browser maps the anchor
tag element to the window.globalConfig property as mandated by the named property
access rule of the HTML specifications (see [169, 168, 167]). The escalation to arbitrary
code execution happens in line 3, when the code reads the href property of the object win-
dow.globalConfig, which no longer contains the object with the global configuration but it
contains the attacker-controlled anchor tag whose href property value is malicious.js.

Attackers can abuse named property accesses in other ways, where instead of overwriting
variables by HTML nodes, they can overshadow browser APIs. Listing 2.4 illustrates an example
of such an attack. Similarly to Listing 2.3, this code also dynamically creates and loads a
script. Instead of fetching the URL from a global configuration object, the code intends to
use the baseURI attribute of the main HTML tag via the document.documentElement
API (line 2). An attacker can manipulate the content of src in line 3 by shadowing the
native property document.documentElement using an attacker-injected node in the DOM
tree [170], e.g., a form element with name="documentElement" and the custom property
baseURI="malicious.js". When parsing the form tag, the browser maps the property

23

CHAPTER 2. TECHNICAL BACKGROUND

Table 2.1: Contexts where the three SameSite policies apply. We use (∗) for the Lax+POST exceptional
policy, and 3 to show contexts where cookies are included in the cross-site HTTP request.

None Lax Strict Context Example

3 3 - Anchor GET
3 3 - Form GET <form method=GET action=u>
3 3 - Link prerender GET <link rel=prerender href=u/>
3 3 - Link prefetch GET <link rel=prefetch href=u/>
3 3 - win.open() GET window.open(u)
3 3 - win.location GET window.location.href=u

3 3(∗) - Form POST <form method=POST action=u>
3 - - Iframe GET <iframe src=u>
3 - - Object GET <object data=u>
3 - - Embed GET <embed src=u>
3 - - Image GET
3 - - Script GET <script src=u>
3 - - StyleSheet GET <link rel=stylesheet href=u>
3 3(∗) - Async Reqs. Any xmlhttp.open("POST", u)

document.documentElement to the JavaScript object representing the form tag (an instance
of the HTMLFormElement class) which has a function called getAttribute which returns
the value of the attribute baseURI, i.e., the string malicious.js.
Threat Model. In a DOM Clobbering attack, the attacker needs to insert an ad-hoc HTML
payload into a target, vulnerable webpage. A web attacker [161, 17] can achieve that, e.g., adding
a preview of a post to the client-side webpage by leveraging the URL parameters. Another
example is the case where the attacker can implant a persistent DOM Clobbering payload in
the target webpage, which can lie dormant, and exploited later on to attack a victim, e.g.,
adding persistent comments in the UI through Gmail’s dynamic email feature [171] which allows
including HTML content [88], or user-generated Markdown descriptions in code repositories
that are turned into HTML content [172, 173]. Finally, a more powerful web attacker (e.g., [8,
54]) who is aware of a markup injection vulnerability can manipulate the DOM tree.

2.3 Same-Site Policies

A distinctive feature of XS attacks (Cf. §2.2.1) is that browsers include existing valid cookies in
all outgoing requests, regardless of the context of the requests (e.g., user click on anchor tags or
asynchronous HTTP fetch operation) or the origin of the page performing the requests (e.g.,
same-site or cross-site requests). An effective solution to XS attacks is limiting the scope of
cookies by defining the context in which browsers can include cookies.

Limiting the scope of cookies to prevent XS attacks is not a new idea. For example, in 2006,
Johns et al. proposed Request Rodeo [66], an HTTP proxy for browsers that can detect and
remove cookies from cross-site requests that the user did not initiate when interacting with the
webpage. More recently, in 2016, Google revamped a similar idea by introducing in Chrome
a new cookie attribute [174], the SameSite attribute for the Set-Cookie HTTP response
header (see RFC 6265bis [28]), allowing developers to pick one out of three pre-defined cookie
policies, namely, the None, Lax, and Strict policies [28, 175].
SameSite Cookies. The SameSite attribute introduces three pre-defined cookie policies.
The None policy specifies that cookies are attached to all outgoing requests, including cross-site
ones. This policy corresponds to the default policy before the introduction of the SameSite
attribute. At the other end of the spectrum, we have the Strict policy that stipulates that

24

2.3. SAME-SITE POLICIES

cookies are restricted to the same-site only, i.e., cookies are never attached to any cross-site
request. Finally, the Lax policy is the new default policy for cookies, and it defines the contexts
where browsers can include cookies for cross-site requests. For example, browsers include cookies
to same-site requests and top-level navigation requests (e.g., clicking on an anchor link) with
safe HTTP methods [176]. However, browsers will not include cookies to cross-site requests with
unsafe HTTP methods. Table 2.1 summarizes the context where the same-site policies apply.
New Default Policy and Exception. Starting from July 2020, Google Chrome set the
new default policy to Lax [95], meaning that when the SameSite attribute is missing, the
browser will enforce the Lax policy. Other browser vendors adopted [178, 177] or are planning
to adopt [41] the same new default policy.

Unfortunately, enforcing a default Lax policy may break web application functionalities
that rely on cross-site communications and cookies. For example, web-based Single Sign-On
(SSO) implementations, such as OpenIDConnect or SAML SSO implementations, optimize
user experience by avoiding user re-authentication when valid authenticated session cookies are
included in the cross-site requests. Such requests are often implemented via POST asynchronous
requests or HTML POST forms. The new default Lax policy forbids browsers from sending
cookies with these requests, breaking these functionalities. To counter that, Chrome introduced
an exception to the Lax policy—called Lax+POST—where, for all cookies without the SameSite
attribute, Chrome applies the None policy only for the first two minutes after the cookie is set.
Then, Chrome switches to the Lax policy. Table 2.1 lists the contexts covered by SameSite
cookies.

25

3
Automatic Detection of

Client-side CSRF Vulnerabilities

27

3.1. HYBRID PROPERTY GRAPH

In this chapter, we present an automatic technique to detect and study client-side CSRF
vulnerabilities, addressing RQ1 of §1.1. Client-side CSRF is a new variant of CSRF vulnerabilities
that enables attackers to generate arbitrary requests by modifying the input parameters of
JavaScript programs (Cf. §2.2.2).

In general, studying client-side CSRF vulnerabilities in JavaScript-based web applications
is not an easy task. First, there is no canonical representation for JavaScript code. Second,
JavaScript programs are event-driven, and we need models that capture and incorporate this
aspect into the canonical representation. Third, pure static analysis is typically not sufficiently
accurate due to the dynamic nature of JavaScript programs [11–13], and their execution
environment [14], calling for hybrid static-dynamic analysis techniques. Finally, JavaScript
libraries constitute a noteworthy fraction of code across web pages, and analyzing them repeatedly
leads to inefficient models poorly suitable for detecting vulnerabilities.

In this chapter, we address these challenges by proposing hybrid property graphs (HPGs),
a coherent, graph-based representation for client-side JavaScript programs, capturing both
static and dynamic program behaviors. Inspired by prior work [15], we use property graphs for
the model representation and declarative graph traversals to identify security-sensitive HTTP
requests that consume data values from attacker-controllable sources (§3.1). Also, we present
JAW, a framework that detects client-side CSRF by automatically collecting web resources,
monitoring program execution and instantiating a HPG for each web page, starting from a
single seed URL (§3.2). We release the source code of JAW1 to support the future research
effort to study vulnerable behaviors of JavaScript programs.

Finally, we instantiated JAW against all (i.e., 106) web applications of the Bitnami cata-
log [179] to detect and study client-side CSRF, covering, in total, over 228M lines of JavaScript
code over 4,836 web pages (§3.3). Overall, our approach uncovers 12,701 forgeable client-side
requests affecting 87 web applications. For 203 forgeable requests, we successfully created
client-side CSRF exploits against seven web applications that can execute arbitrary server-side
state-changing operations or enable cross-site scripting and SQL injection, that are not reachable
via the classical attack vectors. We analyzed the forgeable requests and identified 25 distinct
patterns, highlighting the fields that can be manipulated and the type of manipulation.

3.1 Hybrid Property Graph

This section introduces hybrid property graphs (HPGs). A HPG comprises of the code rep-
resentation and state values. The code representation unifies multiple representations of a
JavaScript program whereas the state values are a collection of concrete values observed during
the execution of the program. We use a labeled property graph to model both, in which nodes
and edges can have labels and a set of key-value properties. The example below shows a graph
where li is the node label and rj is the relationship label. Nodes and edges can store data by
using properties, a key-value map.

Figure 3.2: Example of labeled property graph

1https://soheilkhodayari.github.io/JAW

29

CHAPTER 3. AUTOMATIC DETECTION OF CLIENT-SIDE CSRF VULNERABILITIES

Figure 3.1: HPG for the running example in Listing 2.1. The top part depicts the code representation, including
the AST (black edges), CFG (green edges), IPCG (orange edges), PDG (blue edges), ERDDG (red edges), and
the semantic types (blue and orange filled circles representing WIN.LOC and REQ types, respectively). Note that
not all nodes and edges are shown for brevity. Edges connected to dotted boxes reflect that the edge is connected
to each node within the box. The bottom part demonstrates the dynamic state values to augment the static
model. Arrows between the two parts represent the link between the two models.

In the rest of this section, we present how we map the code representation and state values
into a graph (Sections 3.1.1 and 3.1.2), and show how we can instantiate and query such a graph
to study client-side CSRF vulnerabilities (§3.2.3).

3.1.1 Code Representation

The code representation models the JavaScript source code and builds on the concept of code
property graph (CPG) which combines three representations for C programs, i.e., abstract
syntax tree, control flow graph, and program dependence graph [15]. Later, the same idea has
been adapted to study PHP programs [51], extending CPGs with call graphs. HPGs further
extend CPGs with the event registration, dispatch, and dependency graph and the concept of
semantic types.
Abstract Syntax Tree (AST). An AST is an ordered tree encoding the hierarchical de-
composition of a program to its syntactical constructs. In an AST, terminal nodes represent
operands (e.g., identifiers), and non-terminal nodes correspond to operators (e.g., assignments).
In Figure 3.1, AST nodes are represented with rounded boxes. Terminal nodes are in bold-italic,
whereas non-terminal nodes are all capitals. AST edges connect AST nodes to each other
following the production rules of the grammar of the language, e.g., in line 10 of Listing 2.1,
i.addEventListener(‘loadInvoice’, h) is a call expression (CALL_EXP) with three
children, the member expression (MMBR_EXP) i.addEventListener, the literal ‘load-
Invoice’ and an identifier h. AST nodes are core nodes of the code representation, providing
the building blocks for the rest of the presented models.
Control Flow Graph (CFG). A CFG describes the order in which program instructions are
executed and the conditions required to transfer the flow of control to a particular path of
execution. In Figure 3.1, CFG is modeled with edges (in green) between non-terminal AST
nodes. There are two types of CFG edges: conditional (from predicates and labeled with true
or false) and unconditional (labeled with ε). A CFG of a function starts with a entry node
and ends with a exit node, marking the boundaries of the function scope. These fragmented

30

3.1. HYBRID PROPERTY GRAPH

intra-procedural flows are connected to each other by inter-procedural call edges, as discussed
next.
Inter-Procedural Call Graph (IPCG). An IPCG allows inter-procedural static analysis of
JavaScript programs. It associates with each call site in a program the set of functions that
may be invoked from that site. For example, the expression showInvoicePrice(‘input’)
of line 16 in Listing 2.1 calls for the execution of the function showInvoicePrice of line 14.
We integrate the IPCG in our code representation with directed call edges, e.g., see the orange
edge between the C_EXP AST node and the F_DECL AST node in Figure 3.1.
Program Dependence Graph (PDG). The value of a variable depends on a series of
statements and predicates, and a PDG [180] models these dependencies. The nodes of a
PDG are non-terminal AST nodes, and edges denote a data, or control dependency. A data
dependency edge specifies that a variable, say x, defined at the source node is afterwards used
at the destination node, labeled with Dx. For example, in Figure 3.1, variable uri is declared
in line 3 (by VAR_DECL), and used in line 4 (in IF_STMT), and thus a PDG edge (in blue)
connects them together. A control dependency edge reflects that the execution of the destination
statement depends on a predicate, and is labeled by Ct, or Cf corresponding to the true, or false
condition, e.g., the execution of the CALL_EXP in line 7 depends on the IF_STMT predicate
in line 4.
Event Registration, Dispatch and Dependency Graph (ERDDG). The ERDDG intends
to model the event-driven execution paradigm of JavaScript programs and the subtle dependencies
between event handlers. In an ERDDG, nodes are non-terminal AST nodes, and we model
execution and dependencies with three types of edges. The first edge models the registration of an
event, e.g., line 10 in Listing 2.1 registers h as the handler for the custom event loadInvoice.
We represent the registration of an event with an edge of type registration between the node
C_EXP (i.e., the call site for addEventListener) and the node F_DECL (i.e., the statement
where the function h is defined). The second edge models the dispatch of events. For example,
line 15 in Listing 2.1 calls the browser API dispatchEvent to schedule the execution of the
handler of the loadInvoice event type. We model the transfer of control with an edge of
type dispatch. See, for example, the edge (in red) between the C_EXP node of line 15 and
the C_EXP registering the handler in Figure 3.1. The last edge models dependencies between
statements and events. We implement the dependency with an edge between the AST node for
the handler’s declaration and the AST nodes of the handler’s statements. Figure 3.1 shows such
an edge from the F_DECL node of line 2 and the body of the function.
Semantic Types. The detection of client-side CSRF requires identifying statements that
send HTTP requests, and that consume data values from pre-defined sources. We model the
properties of statements via semantic types. A semantic type is a pre-defined string assigned to
program elements. Then, types are propagated throughout the code, following the calculation
of a program, e.g., we can assign the type WIN.LOC to window.location and propagate it
to other nodes, following PDG, CFG, IPCG, and ERDDG edges. In Figure 3.1, we use a blue
filled circle for the type WIN.LOC that is propagated following the Duri PDG edge, i.e., the
term uri of line 3, 4, and 5. Semantic types can also be assigned to functions to specify their
behavior abstractly. For example, we can use the string REQ for all browser APIs that allow
JavaScript programs to send HTTP requests, such as fetch, or XMLHttpRequest. HPGs
model semantic types as properties of the AST node.
Symbolic Modeling. When analyzing the source code of a program, we need to take into
account the behaviors of third-party libraries. We extract a symbolic model from each library
and use it as a proxy for the analysis of the application code. In this work, the symbolic model
is an assignment of semantic types to libraries’ functions and object properties. For example, in
Figure 3.1, we can use the semantic type REQ (represented with an orange filled circle) for the
asyncRequest term, and abstract away its actual code. Also, to reconstruct the data flow of

31

CHAPTER 3. AUTOMATIC DETECTION OF CLIENT-SIDE CSRF VULNERABILITIES

Figure 3.3: Architecture of JAW.

programs that use library functions, we define two semantic types modeling intra-procedural
input-output dependencies of library functions. We use the semantic type o← i for functions
whose input data values flow to the return value and the type o ~ i for functions whose output
is conditioned on the input value (e.g., by an IF_STMT). As we will show in §3.2, the symbolic
modeling of libraries is performed automatically by JAW, who creates a mapping between the
library elements and a list of semantic types.

3.1.2 State Values

JavaScript programs feature dynamic behaviors that are challenging to analyze via static analysis.
As such, we augment HPGs to include concrete data values collected at run-time, and link them
to the counterpart code representation.
Event Traces. To capture the possible set of fired events that are not modeled due to the
limitations of the static analysis [12], or auto-triggered events, we augment the static model
with dynamic traces of events. Event traces are a sequence of concrete incidents observed during
the execution of a web page. For example, the load event or a network event for the response
of a HTTP request. We use the trace of events fired upon the page load to activate additional
registration edges in our ERDDG graph when possible. As shown in Figure 3.1, the nodes of the
graph for event traces represent concrete events observed at run-time, and edges denote their
ordering.
Environment Properties. Environment properties are attributes of the global window and
document objects. The execution path of a JavaScript program and the values of variables
may differ based on the values of the environment properties. We enrich HPGs by creating a
graph of concrete values for the properties observed dynamically. We also store a snapshot of
the HTML DOM tree [181]. If the value of a variable is obtained from a DOM API, the actual
value can be resolved from the tree. We use the DOM tree to locate the objects that a DOM
API is referencing. For example, to determine if an event dispatch is targeting a handler, we can
check if the dispatch and registration is done on the same DOM object. We create a node for
each environment property, and store concrete values as properties of the node. As depicted in
Figure 3.1, we connect these nodes by edges representing a property ownership, or a parent-child
relationship.

3.2 JAW: Javascript Analysis frameWork

In this section, we present JAW, a framework to study client-side CSRF vulnerabilities using
HPGs. Starting from a seed URL of a web site, JAW visits web pages using a JavaScript-enabled
web crawler to collect the web resources. During the visit, JAW also collects run-time state values.
Then, given a list of user-defined semantic types and their mapping to JavaScript language
tokens, JAW constructs the HPG. The construction has two phases. First, JAW identifies
external JavaScript used by the program and processes it in isolation to extract a symbolic
model. Then, it constructs the graph of the rest of the JavaScript code, and link elements of the

32

3.2. JAW: JAVASCRIPT ANALYSIS FRAMEWORK

JavaScript program to the state values. Finally, JAW analyzes client-side CSRF by executing
queries on the HPG (§3.2.3). Figure 3.3 shows an overview of the JAW’s architecture.

3.2.1 Data Collection

The data collection module performs two tasks: crawling to discover URLs from different user
states, and collecting the JavaScript code and state values for each web page found.
Input. The input of the data collection module is a seed URL of the web application under
test, and, optionally, test cases to pass the user login, e.g., as scripted Selenium tasks [182] or
via trace recording [183, 184].
Crawler. We developed a crawler that uses a headless instance of Chrome [185] controlled via
Selenium [182]. Starting from the seed URL, the crawler visits the web application to collect
web resources and run-time execution data. It follows the iterative deepening depth-first search
strategy, and terminates when no other URLs are found, or when its allocated time budget runs
out (default is 24h). Optionally, if provided as input, it executes test cases before the crawling
session.
JavaScript Code and State Values. When visiting each page, the crawler stores the web
resources and state values every ti = 10 seconds for m = 2 times (configurable parameters).
The crawler collects the HTML page, JavaScript program, fired events, HTTP requests and
responses, and the JavaScript properties explicitly shown in (bottom left of) Figure 3.1 for each
ti interval. While JavaScript properties are extracted via the Selenium interface, we developed
a Chrome extension for our crawler that resorts to function hooking to intercept calls to the
addEventListener for collecting events and to the chrome.webRequest API to intercept
the network traffic.

3.2.2 Graph Construction

JavaScript code and state values collected are next used to build a HPG. The built graph is
imported into a Neo4j [186] database allowing for fine-grained, declarative path traversals to
detect and study client-side CSRF. This section delineates technical details for constructing
HPGs.
Code Normalization. As the first step, JAW creates a normalized JavaScript program
by concatenating code segments inside the script tags and HTML attributes, preserving the
execution order of program segments. When combining inline code, JAW replaces inline event
handler registration with addEventListener API.
Library Detection. To identify libraries, we use Library Detector [187], a tool that searches
for known library signatures inside the execution environment (e.g., global variables). We used
it as a bundled script injected by Selenium [183]. Library Detector has a series of pre-defined
checks (i.e., usage indicator functions) for each JavaScript library that it supports. It searches
for known library signatures inside the execution environment by appling the usage indicator
functions. For example, global variables set on the Window object by a library are an indicator
of the usage of that library. It returns the list of libraries used in the web page. At the time of
writing this paper, Library Detector provides support for the detection of 114 different library
scripts, including JQuery, React, Angular, and Prototype.
HPG Construction. JAW constructs HPGs as follows. First, a graph is created for the
symbolic modeling of each detected library. This step is skipped if a symbolic model for the
library already exists. Then, it creates a graph for the program under analysis. Regardless the
use of the graph, the rules to construct a HPG do not change, as presented next.

1. AST—JAW uses Esprima [188], a standard-compliant ECMAScript [126] parser to
generate the AST of the normalized source code. The output of Esprima is a JSON representation

33

CHAPTER 3. AUTOMATIC DETECTION OF CLIENT-SIDE CSRF VULNERABILITIES

of the AST. In this representation, a node is a key-value dictionary with a type property (e.g.,
VAR_DECL) and edges are represented with ad-hoc dictionary keys. We mapped the JSON
output to AST nodes and AST edges of our graph.

2. CFG— We extensively reviewed open-source CFG generators, such as escontrol [189],
styx [190], or ast-flow-graph [191], and selected Esgraph [192] because of its popularity, and
compliance with Esprima. Starting from an AST, Esgraph generates a CFG where nodes are
AST nodes for statements or declarations, and an edge is labeled with true or false, for a
conditional branch, or ε for a node of the same basic block.

3. PDG—JAW uses dujs [193], a def-use analysis library based on Esgraph. We modified
dujs to add support for global variables, closures, and anonymous function calls. The output
of dujs is a list of def-use relationships for each variable v between the AST edges, that JAW
import as data dependence edges Dv in our HPG. For the control dependence edges, JAW
calculates post-dominator trees [194] from the CFG, one for each statement s. Then, JAW maps
each edge of the tree to Ct or Cf for the true or false branch, respectively.

4. IPCG—JAW generates the IPCG as follows. During the construction of the AST and
CFG, JAW keeps track of all function definitions and call sites. Then, it associates a call
site to the function definition(s) it may invoke. There are five types of call expressions in
JavaScript: function calls on the global object (e.g., foo()), property calls (e.g., a.foo(),
or a[‘foo’]()), constructor calls (e.g., new Foo()), invocations via the call() [195], and
apply() method [196]. For all cases, the actual function definition name may be aliased. We
resolve the pointers using our PDG, and connect the call edge accordingly. If the value of the
pointer is conditioned, we connect an edge to each respective function definition.

5. ERDDG—For the generation of the ERDDG, JAW keeps track of event dispatches
and handler registrations during the creation of the AST and the CFG. For each event handler
found, JAW creates a registration edge that connects the top-level AST node (i.e., CFG node)
to the handler function, and a dependency edge connecting the handler function to statements
of the body. To associate each event dispatch to a registration site, we check if they target the
same DOM element. For this, we resolve the pointer on which the event is dispatched, and the
pointer on which the handler is registered leveraging our PDG, and check if they refer to the
same variable declaration or different variables with verbatim or semantically same values. We
use the DOM snapshot to check if two different DOM queries can semantically target the same
element. For example, an element can be queried with its id, or alternatively its name attribute.
Once we determine that the pointers reference the same element, we connect an edge between
the dispatch and registration sites.

6. Semantic Types and Propagation— The input for this step is a mapping T between
a semantic type t and a signature for AST node σ, e.g., we map the type WIN.LOC to the
JavaScript property window.location. For each pair (t,σ) ∈ T , JAW stores each type t to
the AST node that is matching the signature σ. Then, JAW propagates the type t through the
HPG.

Algorithm 1 propagates forward a type t from a node n to other nodes. First, the function
propagateLeft assigns the type t to the variable v on the left-hand side (e.g., of an assignment),
if any, and returns it. Then, the function propagateByPDG propagates t following PDG edges
and returns the visited paths P . Then, for each node nt at the end of the path pi ∈ P , we
distinguish three cases. The first case is that nt is a function call that is modeled by the special
semantic types assigned during the symbolic modeling. If so, we taint the output variable o, and
recursively call propagateForward for o. Second, nt is a call expression having an IPCG edge.
In this case, we taint the parameter c on the function definition corresponding to the argument
tainted on the call site, and call propagateForward for c. Then, we check if the last tainted
node from the context of the function definition is a tainted return statement. If so, we call
propagateForward for the variable vleft on the call site that holds the returned result. Third,
nt is an event dispatch expression that passes tainted data. In this case, we jump the dispatch

34

3.2. JAW: JAVASCRIPT ANALYSIS FRAMEWORK

Algorithm 1: Forward semantic type propagation
inputs :Node n with a variable having semantic type t.
outputs :Propagates semantic types and returns the last tainted node.

1 function propagateForward(n, t):
2 v← propagateLeft(n, t) // taint left-hand side
3 nt← n // last tainted node
4 P ← propagateByPDG(n, v, t) // tainted PDG paths
5 for pi ∈ P do
6 nt← pi[pi.length−1] // last CFG-level tainted node
7 vt← getRightHandSideTaintedVariable(nt, t)
8 if hasSymbolicFunctionCall(nt) and hasSemanticType(nt, “o<-i”) then
9 o← propagateLeft(nt, t)

10 propagateForward(o, t) // recursion
11 end
12 if hasCallExpressionWithCallArgOfType(nt, t) then
13 c← traverseCallEdge(nt, vt, t) // call def param
14 ret← propagateForward(c, t) // returned variable
15 if isRetStmt(ret) and hasSemanticType(ret, t) then
16 vleft← propagateLeft(nt, t)
17 if vleft is not null then
18 propagateForward(vleft, t) // recursion
19 end
20 end
21 end
22 if hasDispatchEdgeWithArgOfType(nt, t) then
23 e← traverseDispatchAndRegistrationEdges(nt, vt, t) // handler param
24 propagateForward(e, t)

25 end
26 end
27 return nt // last tainted node

and registration edges, taint the corresponding event variable, and call propagateForward
for the variable. This process terminates when none of the above criteria holds.

JAW performs the semantic type propagation when creating both the HPG for the symbolic
modeling of a library and the HPG of the rest of the code. When creating the HPG for the rest
of the code, the semantic type mapping T includes the mapping created during the symbolic
modeling. Table 3.1 summarizes the list of semantic types supported by JAW. We can use one
semantic type for each of the injection points where the attacker can input data. Semantic
types can also be assigned to functions to specify their behavior abstractly, e.g., functions that
delegate the dispatch of events or the HTTP requests to low-level browser APIs, as discussed in
more detail next.

Symbolic Modeling. The output of this step is a mapping of semantic types and AST nodes,
which is used during the construction of a HPG for the program under analysis. Symbolic
modeling starts with the construction of a HPG from the library source code. Then, after the
propagation of the semantic types, JAW searches for function definitions with intra-procedural
input-output relationships. More specifically, JAW identifies all non-anonymous function
expressions with at least one input parameter, and track the value of its return statement(s), if
any, through a backward program slicing approach. At a high level, we start from where a value
is returned, flow through where it is modified, and end at where it is generated leveraging the
PDG, CFG, IPCG, and ERDDG graphs. If the returned variable, say o, has a PDG control
dependency to a function input, say i, we assign the type o ~ i to the function. If we establish a
PDG data dependency, we mark it with o← i. Finally, JAW selects all function expression and
object property nodes with at least one semantic type, that will be used in the HPG construction
of the JavaScript code.

35

CHAPTER 3. AUTOMATIC DETECTION OF CLIENT-SIDE CSRF VULNERABILITIES

Table 3.1: List of semantic types supported by JAW. Types are assigned to constructs representing input
sources of a web application, functions that send HTTP requests, dispatch or register events, and functions with
inputs/outputs.

Descr. Type Example of use
Window URL WIN.LOC window.location.hash
Cookie DOM.COOKIES doc.cookie
localStorage LOCAL-STORAGE doc.localStorage
sessionStorage SESSION-STORAGE doc.sessionStorage
postMessage POST-MESSAGE addEventListener(evt, h)
Window Name WIN.NAME window.name
Document Referrer DOC.REFERRER doc.referrer
DOM Attribute DOM.READ doc.getElementById(‘x’).value
Client-Side Request REQ XMLHttpRequest
Event Dispatch E-DISPATCH el.triggerHandler(evt)
Handler Registration E-REGISTER el.on(evt, h)
Func. I/O o← i function(i){return o = g(i);}
Func. I/O o ~ i function(i){if(cond(i)) return o;}

Figure 3.4: Examples of vulnerable code. Orange and blue boxes represent REQ and WIN.LOC semantic types,
respectively.

3.2.3 Analysis of Client-side CSRF with HPGs

Given a HPG as described in Sections 3.1.1 and 3.1.2, we now use it to detect and study
client-side CSRF. We say that a JavaScript program is vulnerable to client-side CSRF when
(i) there is a data flow from an attacker-controlled input to a parameter of an outgoing HTTP
request req, and (ii) req is submitted on the page load.

We model both conditions using graph traversals, i.e., queries to retrieve information from
HPGs. In our work, we define graph traversals using the declarative Cypher query language [197],
but in this paper we exemplify Cypher syntax with set notation and predicate logic while retaining
the declarative approach. A query Q contains all nodes n of HPG for which a predicate p (i.e.,
a graph pattern) is true, i.e., Q= {n : p(n)}. We use predicates to define a property of a node.
For example, we use the predicate hasChild(n, c) to say that a node n has an AST child c.
Another example of predicate is hasSemType(n, t), which denotes a node n with a semantic
type t. Predicates can be combined to define more complex queries, e.g., via logical operators.
Detection of Client-side CSRF. The first condition for client-side CSRF vulnerability is
the presence of attacker-controlled input parameters for outgoing requests. Figure 3.4 shows
different instances of vulnerable code taken from real examples, where by construction, we
assigned the WIN.LOC and REQ semantic types to AST nodes, which are shown as blue and

36

3.2. JAW: JAVASCRIPT ANALYSIS FRAMEWORK

orange boxes, respectively. For all three cases of Figure 3.4, the goal is to identify the lines of
code having both orange and blue labels (marked with a red arrow). At a high level, a line of
code is a non-terminal AST node for JavaScript statements or declarations (e.g., EXP_STMT,
VAR_DECL), that we represent with the predicate isDeclOrStmt(n). Then, once we identify
such an AST node n, we need to explore whether the node has two children c1 and c2 where
one is of type REQ and the other is of type WIN.LOC. Following our notation for queries, we
can write:

N1 ={n : isDeclOrStmt(n) ∧ ∃c1, c2, c1 6= c2 ∧
hasChild(n, c1) ∧ hasSemType(c1, “REQ”), ∧
hasChild(n, c2) ∧ hasSemType(c2, “WIN.LOC”)}

(3.1)

Query 3.1 is not a sufficient condition to determine the presence of a client-side CSRF
vulnerability, as the returned nodes may correspond to lines of code not executed at page load.
We refine it with additional checks for reachability. In general, starting from a node n such that
isDeclOrStmt(n), we could follow backward CFG edges (both ε, true, and false) to determine
whether we reach the CFG entry node. Then, whenever we reach a function definition (e.g.,
F_DECL), we jump to all its call sites following the IPCG call edges. But this will not be
sufficient because a function can be executed when a specific event is fired. Accordingly, we need
to visit backward the ERDDG edges i.e., the dependency edge, followed by the registration and
the dispatch edge. We handle separately special cases where events are fired by the browsers
automatically during loading a page. We keep on following backward CFG, ERDDG, and IPCG
edges until either we reach the CFG entry node or when there are no longer nodes matching
any of the previous criteria. We say that a node n is reachable if the CFG entry node is in the
query result set.
Analysis of Vulnerable Behaviors. The previous queries can identify the general vulnerable
behavior of client-side CSRF, i.e., a program that submits a HTTP request using attacker-chosen
data values. However, programs may implement a variety of checks on the inputs, which can
eventually influence the exploitation landscape. In Figure 3.4, for example, Program 1 shows a
vulnerable script whose domain validation of line 1 restrains the attacker from manipulating the
entire request URL. Program 2, however, shows a case where the attacker can chose the complete
URL string, including the path and query string. One aspect of client-side CSRF vulnerabilities
that we intend to study is to identify the extent to which an attacker can manipulate the
outgoing request. For instance, if window.location properties flow to a request parameter
without any sanitization. Query 3.2 captures this aspect:

N2 ={n1 : ∀n1 ∈N1, ∃n2, hasPDGPath(n2, n1) ∧
isAssignment(n2) ∧ ∃c, hasChildOnRight(n2, c) ∧
isMemberExp(c) ∧ hasV alue(c,“window.location”)}

(3.2)

Query 3.2 checks if the node n1 returned by Query 3.1 is connected via PDG edges to an
assignment statement whose right-hand side child is a property of the window.location. The
predicate hasPDGPath(n2, n1) specifies that there is a path from n2 to n1 following PDG
edges, and isAssignment(n2) marks that n2 is a VAR_DECL, or an ASSIGN_EXP node.

Another aspect to consider is the number of attacker-controllable items within a request.
For example, Program 3 of Figure 3.4 shows a more complex example where the attacker can
also control the content of the request body, increasing the flexibility to create an exploit for
the vulnerable behavior. For this, a query can cluster vulnerable lines of code that belong to
the same HTTP request, making use of the PDG dependencies among elements of the same
request. Then, the query can count the number of attacker-controllable injection points (see,
e.g., the two injection points in line 6 of Program 3 as well as the injection point in line 4).

37

CHAPTER 3. AUTOMATIC DETECTION OF CLIENT-SIDE CSRF VULNERABILITIES

3.3 Evaluation

The overarching goal of our evaluation is to study client-side CSRF vulnerabilities and to assess
the efficacy and practicality of JAW. We run JAW on 4,836 web pages, crawled from 106 popular
web applications, generating HPGs for 228,763,028 LoC. During this process, we discover 12,701
forgeable client-side requests split across 87 applications. We find that seven applications suffer
from at least one zero-day client-side CSRF vulnerability that can be exploited to perform
state-changing actions and violate the server’s integrity.

Before presenting the evaluation results, we discuss the experimental setup (§3.3.1) and show
properties of problem space and how JAW tackled them (§3.3.2). Then, we report the findings
of our experiments (§3.3.3), and finally, conclude with the analysis of JAW’s results (§3.3.4).

3.3.1 Experimental Setup and Methodology

Testbed. We select web applications from the Bitnami catalog [179] that offers ready-to-deploy
containers of pre-configured web applications. We choose Bitnami applications due to their
popularity (e.g., see [198]), diversity, and use by prior work (e.g., see [16]). At the time of the
evaluation, Bitnami contains 211 containers. We discard 105 containers without web applications
and duplicates, e.g., the same web application using different web servers. The remaining 106
web applications are: 23 content management system, 15 analytics, 11 customer relationship
management, ten developer tools and bug tracking, eight e-commerce, eight forum and chat, five
email and marketing automation, four e-learning, three media sharing, two project management,
two accounting and poll management, and 15 other. The complete list of web applications is in
Appendix A.1, among which we have WordPress, Drupal, GitLab, phpMyAdmin, and ownCloud.

Then, for each web application, we created one user account for each supported levels of
privilege and a Selenium test case to perform the login. In total, we created 136 test scripts,
ranging from one to five test cases per application.
JAW Inputs. The inputs of JAW are the seed URLs, the Selenium test cases, and a semantic
type mapping. The seed URLs contain the URLs for the user login (total of 113 login URLs),
whereas the test cases are the ones we prepared when configuring the testbed. Then, for all web
applications, we used the semantic types listed in Table 3.1 in §3.2.2.
Methodology for Client-side CSRF Detection. We deployed the web applications under
evaluation locally, and instantiated JAW against each of the targets. After the data collection
and creation of the HPGs, we run a set of queries to identify attacker-controllable requests.
We then use additional queries to identify the request fields under the control of the attacker
and the type of control. We assess the accuracy of the query results via manual verification.
For each forgeable request, we load the page in an instrumented browser and verify whether
the manipulated inputs are observed in the client-side requests. For example, if the request
uses data values of type WIN.LOC, we inject a token in the vulnerable page URL and search
the token in the outgoing request. After confirming the forgeability of the request, we look
for its use in an attack. First, we search for server-side endpoints performing security-relevant
state-changing actions, such as modifying data on the server-side storage. Then, we construct
a string that, when processed by the vulnerable page, it will result in a request towards the
identified endpoint. Finally, we pack the string into a malicious URL and verify whether the
attack works against a web application user with a valid session, who clicks on the URL.
Methodology for Impact of Dynamic Snapshotting. We performed additional experi-
ments to assess the impact of our dynamic snapshotting approach in (i) vulnerability detection,
and (ii) HPG construction. First, we prepared a variant of JAW, hereafter referred to as
JAW-static, which follows a pure static approach for HPG construction and analysis (§3.1.1).
Specifically, JAW-static does not consider the following dynamic information: fired events,

38

3.3. EVALUATION

handler registrations, HTTP messages, global object states, points-to analysis for DOM queries,
dynamic insertion of script tags, and the DOM tree snapshot. We repeated our evaluation using
JAW-static, and determined the lower bound of false negative and false positive vulnerabilities
in JAW-static by comparing it to JAW’s evaluation results. Also, we compare the differences in
HPG nodes, edges and properties.

Then, we logged all the fired events that are not auto-triggered and that JAW failed to find
their line of code for HPG construction. Such cases are an indication of false negative edges in
HPGs generated by JAW. Accordingly, we manually review all cases to uncover the reasons for
false negative edges. Finally, we conducted another experiment to assess the false positive and
false negative edges as a result of using the DOM tree snapshots for points-to analysis of DOM
queries. For all web pages, we instrumented the JavaScript code to log the actual element a
DOM query is referring to, and compared it against the value that JAW resolved. JAW uses
these resolutions to create ERDDG edges, opening the possibility for both false positive and
false negative edges.

3.3.2 Analysis of Collected Data

Size of the Analysis. Starting from 113 seed URLs, JAW extracted 4,836 web pages, ranging
from 1 to 456 web pages per web application, and about 46 web pages per application. The
structural analysis of these URLs reveals that 865 of them have a hash fragment, an indication
that these URLs carry state information for the client-side JavaScript program—a characteristic
of single-page web applications. In total, 39 web applications use URLs with hash fragments.
From the 4,836 pages, JAW extracted 228,763,028 LoC, which amounts to generating 4,836
HPGs by processing about 47,304 LoC per page. When looking at the origin of the code, we
observed that the majority of it, i.e., 60.55%, is from shared libraries, e.g., jQuery (28,645 LoC
per page and 138,525,092 LoC in total), whereas the remaining is application code in script tags
(39.42% or 18,649 LoC per page, over 90,188,256 LoC in total) and a negligible amount is inline
code (0.02% or 10 LoC per page, over 49,680 LoC in total).

Finally, at run-time, we observe that about 2.63% of the script tags are loaded dynamically
(i.e., by inserting a script tag programmatically), over a total of 104,720 script tags. Also,
JAW observed 51,974 events that are fired when loading the page (about 11 events per page)
distributed across 46 event types, of which 38 are HTML5 types (e.g., animation and DOM
mutation events) and 8 are custom. As we will show next, even if the number of run-time
monitored events is negligible, their role in the analysis is fundamental.
Importance of Symbolic Modeling. The analysis of client-side programs requires to
process 228,763,028 LoC of which 138,525,092 of them are for the libraries alone, about 60% of
the total. Our analysis reveals that libraries are largely reused both across web applications and
across pages. First, the 106 web applications in our testbed use in total 31 distinct libraries.
Second, each page contains from zero to seven script libraries, with an average number of two
libraries per page. Third, the total amount of code of the 31 libraries is 412,575 LoC, which is
335 times smaller than the total 138,525,092 LoC across all pages. Accordingly, pre-processing
the library code to extract a symbolic model reduces by more than half (-60.37%) the effort
required to generate HPGs, moving from 228,763,028 LoC to 90,650,511 (i.e., the sum of LoCs
of the application, inline JavaScript, and the 31 libraries).

For each of the 31 libraries, JAW generates one HPG and extract a symbolic model. Table 3.2
shows an overview of the results of the symbolic modeling step. In total, JAW modeled 11,977
functions in around half an hour, half of which have the input-output relationship semantic
types (i.e., 5,923 functions)—a relevant function behavior to correctly reconstruct the data flows
of a program.
Role of ERDDG. In total, JAW generated 4,836 HPGs, one for each page, for a total of
508,810,412 nodes and 652,662,573 edges. Of these edges, the ones that are crucial to analyze

39

CHAPTER 3. AUTOMATIC DETECTION OF CLIENT-SIDE CSRF VULNERABILITIES

Table 3.2: Overview of symbolic modeling for shared JavaScript libraries.

Library Usage % LoC Funcs. I/O Time (s)

JQuery 81.13% 10,872 428 238 57.54
Bootstrap 38.67% 2,377 55 55 41.07
JQuery UI 27.35% 18,706 320 320 82.33
ReactJS 9.43% 3,318 130 40 39.59
ReactDOM 9.43% 25,148 688 368 81.98
RequireJS 8.49% 1,232 50 50 35.72
AngularJS 5.66% 36,431 852 558 82.92
Analytics 5.66% 20,345 244 233 69.21
Backbone 5.66% 2,096 148 50 38.26
Modernizer 5.66% 834 292 21 34.50
Prototype 5.66% 7,764 266 243 54.10
YUI 4.71% 29,168 2,414 637 149.34
JIT 3.77% 17,163 430 255 69.11
ChartJS 2.83% 16,152 263 253 76,75
Dojo 2.83% 18,937 696 313 63.32
LeafletJS 2.83% 14,080 650 208 62.65
Scriptaculous 2.83% 3,588 97 84 46.11
HammerJS 1.88% 2,643 67 47 37.01
MomentJS 1.88% 4,602 138 138 45.44
ExtJS 1.88% 135,630 2,701 1,135 231.86
Vue 1.88% 11,965 638 288 62.77
YUI History 1.88% 789 20 10 18.41
Bootstrap Growl 0.94% 215 7 7 32.21
Bpmn-Modeler 0.94% 19,139 231 228 65.84
CookiesJS 0.94% 79 3 0 31.29
FlotChartsJS 0.94% 1,267 15 15 42.38
GWT WebStarterKit 0.94% 110 3 2 31.15
Gzip-JS 0.94% 280 4 4 31.87
Handlebars 0.94% 6,726 103 103 50.83
SpinJS 0.94% 190 4 4 31.99
SWFObject 0.94% 729 20 16 33.61

Total 412,575 11,977 5,923 1919.84

JavaScript programs are those modeling the transfer of control via event handlers. In total,
JAW identified 64,854,097 event edges (i.e., registration, dependence and dispatch) of which
6,451,582 are dispatch edges, i.e., edges modeling the intention to execute the event handlers. For
comparison, the number of call edges that also transfer the control to other sites of a program,
are 7,179,021, meaning that the ERDDG representation enables the identification of +89.87%
edges transferring the program control.

3.3.3 Prevalence of Forgeable Requests

The first step to detect client-side CSRF is the identification of lines of code that can generate
attacker-controlled requests. For that, we prepared a set of queries as discussed in §3.2.3. Based
on our threat model (§2.2.2), we considered different attacker-controlled inputs for JavaScript
programs (see [32]) that can be forged by different attackers.

JAW identified 49,366 lines of code across 106 applications that can send an HTTP request,
and marked 36,665 of them as unreachable during the page load or not using attacker-controlled
inputs. The remaining 12,701 requests could be controlled by an attacker. We grouped these
requests by the semantic types of the input source corresponding to different attackers (see
§2.2.2), as shown in Table 3.3. We observe that the majority of applications, i.e., 87, sends at
least one forgeable request at page load.
False Positives. Considering the high number of forgeable requests, we could not verify all of
them via manual inspection. Instead, we first selected all requests across all groups, except for
DOM.READ. Then, for DOM.READ, we focused on one request (randomly selected) for each web
application, i.e., 83 requests. In total, we inspected 516 forgeable requests. For the inspection,
we loaded the vulnerable page in an instrumented browser to inject manipulated strings and

40

3.3. EVALUATION

Table 3.3: Number of forgeable requests and affected web applications.

Sources Forgeable Apps

DOM.COOKIES 67 5
DOM.READ 12,268 83
*-STORAGE 76 8
DOC.REFERRER 1 1
POST-MESSAGE 8 8
WIN.NAME 1 1
WIN.LOC 280 12

Total forgeable 12,701 87
Non-reachable code 36,665 101

Total 49,366 106

observe whether the outgoing requests include manipulated strings. We confirmed that all
requests, except for one of the 83 DOM.READ requests include the manipulated content. After
a careful investigation, we observed that the false positive occurs as a result of inaccurate
pointer analysis of the context-sensitive this keyword, which has a run-time binding, and may
be different for each invocation of a function depending on how the function is called, e.g.,
dynamically called functions, or different invocation parameters using a hierarchy of call and
apply methods [196, 195] lead to different bindings of this keyword.
Exploitations. Next, we looked for practical exploitations for the 515 requests manually. In
these experiments, we assumed a web attacker model for all input sources, except for cookies for
which we assumed a network attacker model (see §2.2.2). We were able to generate a working
exploit for 203 forgeable requests affecting seven web applications, all of them using data values
of WIN.LOC, that can be forged by any web attacker. For the other groups of requests, we were
not able to find an exploit. We point out that it is hard to achieve completeness when looking
for exploitations manually as such a task requires extensive knowledge of web applications
for identifying target URLs and the points where an attacker could inject malicious payloads.
The fact that we could not find an exploit does not imply that an exploit does not exist. For
these cases, we confirmed that the JavaScript code sends HTTP requests by processing data
values taken from different data structures unconditionally. A highly motivated attacker could
eventually find a way to inject malicious payloads in these data structures and exploit these
forgeable requests.

3.3.4 Analysis of Forgeable Requests

In this section, we have a closer look at the degree of manipulation an attacker can have on
the forgeable requests of Table 3.3. We extracted the stack trace for the lines of code that send
forgeable requests and characterized the vulnerable behavior along three dimensions: forgeable
request fields, type of manipulation, and the request template.
Forgeable Fields. First, the request field(s) that can be manipulated can determine the
severity of the vulnerability. For example, if the attacker can change the domain name of a
request, the client-side CSRF could be used to perform cross-origin attacks. We grouped web
applications in four categories, based on the field being manipulated and found that in nine,
34, 41, and 41 web applications, an attacker can manipulate the URL domain, the URL path,
the URL query string, and the body parameter, respectively. Also, we grouped applications by
the number of fields that can be manipulated in a request. In total, 55, 34, and 12 applications
allow modifying one, more than one, and all fields, respectively.
Operation to Forge a Field. Another factor that influences the severity is the operation
that copies a manipulated value in one or more fields. We found that 28 applications allow
an attacker to change the value of one or multiple fields. Also, 38 and 28 applications allow
an attacker to add one or multiple fields by appending and prepending the attacker-controlled

41

CHAPTER 3. AUTOMATIC DETECTION OF CLIENT-SIDE CSRF VULNERABILITIES

Table 3.4: Taxonomy of client-side CSRF. Each template reflects the level of attacker’s control on the outgoing
HTTP request. ∗ are the templates for which we found an exploit.

Outgoing HTTP Request Total
Dom. Path Query Body Part Control Reqs Apps

X One -, A, - 16 11
X One -, A, - 5 5
X One W, -, - (∗)166 25
X One -, -, P 1 1

X One W, -, - 28 1
X One -, A, - 7 7
X One -, -, P 6 6

X One -, -, P 11 11
X X Mult -, A, - 4 1
X X Mult W, -, - (∗)20 1
X X Mult W, A, P 6 1

X X Mult W, -, - 2 1
X Mult -, A, - 7 7

X Mult -, -, P 2 2
X Mult -, A, - 3 3

X Mult -, -, P 1 1
X Mult -, A, - 5 5

X Mult -, -, P 6 6
X Mult W, -, - 28 8

X X Any W, -, - 1 1
X X X Any W, -, - (∗)185 8
X X X X Any W, -, - 1 1

X Any W, -, - (∗)1 1
X Any W, A, - 2 2

X X X Any W, -, - 1 1
Legend: A=Appending; P=Prepending; W=Writing.

string to the final string, respectively.
Forgeable Request Templates. We characterize HTTP requests via templates, where we
encode the type and number of fields that can be manipulated as well as the type of operation.
Table 3.4 lists all templates, and for each template, it shows the number of matching requests
and web applications using them. In total, we identified 25 distinct templates. We observed
that the majority of web applications use only one template (i.e., 68 applications) across all
their web pages or two templates (i.e., 17 applications).
Distribution of Forgeable Requests. Figure 3.5 depicts the average number of forgeable
HTTP requests per application web pages against the number of web applications, the cumulative
number of web applications, and their cumulative distribution function (CDF). In this figure,
the average number of forgeable requests per web page is rounded up for each application. The
figure shows that JAW finds on average between one to five forgeable HTTP requests for the
majority of vulnerable applications, i.e., 84, with only a few vulnerable applications, i.e., three,
having more than five forgeable requests in their pages. Also, according to the figure, 82% of
the applications in our testbed have at least one web page with a forgeable client-side HTTP
request, an alarming signal that client-side CSRF vulnerabilities are very prevalent in the wild.

3.3.5 Exploitations and Attacks

The 203 exploitable client-side CSRF affect seven targets, as shown next. Our exploits attack
web applications the same way classical CSRFs do, i.e., by performing security-relevant state-
changing requests. In addition, we found exploitations of client-side CSRF that enable XSS and
SQLi attacks, which cannot be exploited via the classical attack vector.
SuiteCRM and SugarCRM. In total, we found 115 and 38 forgeable requests in SuiteCRM
and SugarCRM, which can be exploited to violate the server’s integrity. In both applications,
the JavaScript code reads a hash fragment parameter, e.g., ajaxUILoc, and uses it verbatim
as the endpoint to which an asynchronous request is submitted. An attacker can forge any

42

3.3. EVALUATION

Figure 3.5: Forgeable requests per application web page.

arbitrary request towards state-changing server-side endpoints to delete accounts, contacts,
cases, or tasks–just to name only a few instances that we confirmed manually.
Neos. We found eight forgeable requests in Neos. In all of them, each parameter p of the
HTTP request originates from the page’s URL parameter moduleArguments[@p]. Among
these, we have, for example, the action and controller parameters that are used by the backend
server to route the request to internal modules. Such behavior allows an attacker to direct a
request to any valid internal module, including those implementing state-changing operations.
For example, we exploited this behavior to delete assets from the file system.
Kibana. We found one forgeable request, generated by Timelion, a Kibana’s component that
combines and visualizes independent data sources. Timelion allows running queries on data
sources using a own query syntax. The JavaScript code can read queries from the page’s URL
fragment and pass them to the server side. As a result, an attacker can execute malicious queries
without the victim’s consent or awareness.
Modx. We discovered 20 forgeable requests in Modx that can be exploited in two distinct
ways. First, Modx’s JavaScript fetches a URL string from the query parameter of the page’s
URL, and uses it verbatim to submit an asynchronous request with a valid anti-CSRF token.
Similarly to SuiteCRM and SugarCRM, an attacker can forge requests towards state-changing
server-side endpoints. Also, in one forgeable request, Modx copies a page’s URL parameter
in a client-side request, which is reflected back in a response and inserted into the DOM tree,
allowing an attacker to use client-side CSRF to mount client-side XSS. Based on our manual
evaluation, the attacker can exploit the client-side XSS only via client-side CSRF.
Odoo. We found one forgeable request that uses an id parameter of the URL fragment to load
a database entity. We discovered that the server uses this parameter in a SQL query which is
not properly validated, resulting in an SQLi vulnerability. We note that, due to a anti-CSRF
token, the exploitation of the SQLi vulnerability via direct requests is extremely hard without
exploiting first the client-side CSRF vulnerability.
Shopware. We found 20 forgeable requests sent by Shopware on page load. The code maps
the page’s URL hash fragment to different parts of the outgoing request. First, the code uses

43

CHAPTER 3. AUTOMATIC DETECTION OF CLIENT-SIDE CSRF VULNERABILITIES

Figure 3.6: Average time required for JAW to construct and analyze a hybrid property graph categorized by
lines of code (LoC).

the first fragment of the hash fragment as URL path of the outgoing request. Then, it uses the
remaining fragments as parameters of the outgoing request body. This allows an attacker, for
instance, to delete products of the shop’s catalog.

3.3.6 Run-time Performance

We deployed the web applications under evaluation on a desktop computer (running MacOS
Mojave 10.14.3 on an Intel Core i5 with 2.4 GHz, 16 GB RAM, and a SSD), and performed
the data collection step (§3.2.1). We let JAW run for a maximum of 24 hours on each web
application, although after a few hours the data collection module typically does not find any
new URLs. Then, we imported the collected data on our own server (running Ubuntu 18.04
on an Intel(R) Xeon(R) CPU E5-2695 v4 with 2.10 GHz and 72 cores, 252 GB RAM), and
instantiated JAW with the data to find client-side CSRF vulnerabilities. We log all processing
times for throughput evaluation. Figure 3.6 depicts the average processing time for each tool
component in order to construct and analyze a HPG. As shown in the figure, the processing time
increases as the LoC grows. The least time consuming operations are AST and intra-procedural
CFG construction. JAW also a incurs a preparation delay in order to import the constructed
property graph into a Neo4j database which typically lasts around 8-11 seconds based on the
LoC. The most time consuming operation is the semantic type propagation.

3.3.7 Impact of Dynamic Snapshotting

We designed and carried out experiments to show the impact of dynamic snapshotting in
vulnerability detection and HPG construction following the methodology that we presented in
§3.3.1). In this section, we present our findings.

3.3.7.1 Vulnerability Detection

We repeated our evaluation using JAW-static, and compared the results with JAW (§3.3.1).
In total, JAW-static found 48,543 requests, out of which 11,878 reported to be forgeable. By
comparing the difference, we observed that JAW-static has detected 840 less forgeable requests
(i.e., a lower bound of +7.07% false negatives). Out of the 840 false negatives, 161 cases are
vulnerabilities for which we found an exploit, i.e., JAW-static does not detect 79.3% of the
exploitable client-side CSRF vulnerabilities that was detected by JAW. Additionally, JAW-static
reported 17 more cases that were not vulnerable (i.e., a lower bound of +0.15% false positives).
We manually examined all the false positive and false negative cases to discover the underlying
reasons.

44

3.3. EVALUATION

False Positives (FP). Out of 17 FPs, 12 were due to non-existing dynamically fetched code
(i.e., by dynamic insertion of script tags) where the value of the tainted variable changed in the
dynamic code. Such FPs are eliminated in JAW because it monitors the program execution
leveraging the DOM tree and HTTP messages. Then, 3 out of the 17 cases were due to
a subsequent removal of the event handlers using dynamic code evaluation constructs with
dynamically generated strings. Finally, the last two FPs occurred due to the removal of elements
from the DOM tree, and thus the implicit removal of their event handlers. Similarly, such FPs
do not occur with JAW, as it monitors the fired events and their handlers at run-time.
False Negatives (FN). We observed that almost half of the FNs, i.e., 405, occurred because
the vulnerability resided in dynamically loaded code. For 78 and 7 FNs, points-to analysis for
DOM queries were not accurate as the state of the DOM tree and environment variables were
necessary for such analysis, respectively. The remaining 350 FNs stemmed from the fact that
the JavaScript program used setTimeout and eval for firing events by generating code at
run-time.

3.3.7.2 HPG Construction

In total, JAW-static generated 498,054,077 nodes and 639,323,601 edges for the 4,836 HPGs,
which is 10,756,335 nodes (-2.11%) and 13,338,972 edges (-2.04%) less than JAW (false negatives).
Out of the total missing edges, 1,048,172 are ERDDG edges that are critical for modeling events,
and the remaining 12,290,800 edges are the AST, CFG, PDG and IPCG edges. Furthermore,
JAW-static misses 16,710 edge properties (set on ERDDG registration edges) that mark if an
event handler has been triggered at run-time, and that has not been marked with static analysis.

Following additional experiments based on our methodology (§3.3.1), we logged the fired
events that JAW cannot map to their line of code. In total, JAW observed 51,974 events at
run-time across 4,836 HPGs, out of which 34,808 were already marked by static analysis and
fired dynamically. The remaining 17,166 events trigger at run-time, while not captured by pure
static analysis. Out of the 17,166 events, JAW fails to find the corresponding event handlers
of 456 events in the code (0.88%), an indication of FN nodes and edges in the HPG. Manual
analysis revealed that the reasons for the majority of cases (387 events) is the use of eval and
setTimeout functions with dynamically constructed strings for firing events. The remaining
69 events are not mapped due to the dynamic loading of code and in ways that JAW does not
monitor (e.g., loading code from inside iframes).

Finally, we assess the FP and FN edges introduced by the usage of the DOM tree snapshots
when performing points-to analysis of DOM queries. In total, JAW encountered 241,428 DOM
query selectors in 4,836 HPGs, out of which in 127 selectors (0.05%) JAW imprecisely resolved
the DOM element the query is pointing to. To determine the ERDDG dispatch edges, JAW
compares the pointers for a total of 87,340 pairs of DOM query selectors against each other (i.e.,
an event dispatched on one DOM query selector is linked to its event handler that uses another
query selector for the event registration). Our evaluation suggests that JAW accurately decides
to connect or not to connect a dispatch edge between the dispatch and registration sites in
87,212 cases (decision accuracy of 99.85%), with 56,923 true positives and 30,289 true negatives.
In the remaining 128 cases, JAW’s decision to create or not to create an edge is inaccurate, with
94 FN and 34 FP edges (decision inaccuracy of 0.15%). Interestingly, we observed that such FP
and FN edges may occur for query selectors that are interpreted within 53.7 mili-seconds of
page load (on average), and a maximum of 92.5 mili-seconds, which is up to ca. ten times lower
than the average access time of all query selectors, i.e., 559.2 mili-seconds. In this experiment,
we used run-time program instrumentation to obtain the ground truth for assessing JAW’s
accuracy in HPG construction. However, such techniques come with performance hits, and are
poorly suitable for large HPGs (e.g., in model construction, and vulnerability detection). We
believe the impact of JAW’s FP and FN edges as a result of DOM snapshots is negligible.

45

CHAPTER 3. AUTOMATIC DETECTION OF CLIENT-SIDE CSRF VULNERABILITIES

3.4 Summary

In this chapter, we presented JAW, to the best of our knowledge the first framework for the
detection and analysis of client-side CSRF vulnerabilities. At the core of JAW is the new
concept of HPG, a canonical, static-dynamic model for client-side JavaScript programs. Our
evaluation of JAW uncovered 12,701 forgeable client-side requests affecting 87 web applications.
For 203 of them, we created a working exploit against seven applications that can be used
to compromise the database integrity. We analyzed the forgeable requests and identified 25
different request templates. This work has successfully demonstrated the capabilities of our
paradigm for detecting client-side CSRF. In the following chapters, we show how this approach
can be useful to study other vulnerability classes.

46

4
Studying Request Hijacking

Vulnerabilities in the Wild

47

4.1. API CAPABILITIES AND ATTACK SYSTEMATIZATION

In this chapter, we conduct the first systematic and comprehensive study of client-side request
hijacking, covering new vulnerability variants, detection, prevalence, and impact, addressing
RQ2 of §1.1. First, we review browser API capabilities and explore potential attacks when
attackers manipulate one or more inputs of request-sending APIs (§4.1), identifying 10 different
client-side request hijacking vulnerabilities, including seven new variants. Then, we present
JAW-v2, an automated tool to detect and study client-side request hijacking vulnerabilities at
scale (§4.2), which we use as our vehicle for a large-scale investigation into this issue in §4.3.
In total, JAW-v2 uncovered 202K vulnerable data flows, affecting 9.6% of the top 10K sites,
of which 49 that we manually confirmed to be exploitable, including Microsoft Azure, Indeed,
Starz, and Reddit. Finally, in §4.4, we identify, review and assess the efficacy and adoption of
existing countermeasures, showing that CSP and COOP cannot mitigate over 41% and 93% of
request hijacking attacks. Also, we analyze coding mistakes of the 961 vulnerable websites and
extract eight common insecure input validation patterns to avoid.

4.1 API Capabilities and Attack Systematization

In this section we address RQ2.1 of §1.1.2, where we systematically assess modern web browser
APIs and their capabilities for sending various types of client-side requests (§4.1.1). Then, we
examine each API call to evaluate the resulting vulnerabilities and attacks when an attacker
controls one or more API inputs (§4.1.2). Finally, we assess the prevalence of request API usage
on the Web platform (§4.1.3).

4.1.1 Browser API Capabilities

Client-side web applications have access to a wide range of browser functionality via JavaScript
Web APIs. An important group of these APIs is responsible for creating and sending network
requests, which malicious actors could exploit for request hijacking. To compile a comprehensive
list of request-sending APIs susceptible to such abuse, we performed a systematic search of
the Web request specifications [6, 23, 199, 5, 201, 200] from WHATWG [202] and W3C [203]
repositories. Our search focused on identifying JavaScript Web APIs capable of creating network
requests.

As a result, we identified a total of 10 request APIs across six broad request categories.
Each API features different characteristics in terms of their supported capabilities, e.g., the
network schemes and methods available for a given API, the configurable fields of the request
(e.g., body and headers), and the constraints the APIs may be subject to by default, such as the
Same-Origin Policy [160]. The resulting APIs are summarized in Table 4.1. By examining these
request APIs, we uncover potential entry points for various forms of request hijacking, and their
consequences.

4.1.2 Systematization of Request Hijacking Attacks

In this section we examine the security impact assuming the threat model presented in §2.2.3.
That is, an attacker can control the URL (and if applicable, the body and header) of network
requests for each of the APIs discovered in §4.1.1. First, we systematically surveyed the existing
academic [17, P1, P4, 204, 8, 32, 211, 212, 16, 206, 213, 207, 109] and non-academic [210, 214,
208, 205, 209] literature, looking for known attacks leveraging these APIs. Then, we conducted
an in-depth analysis of the threat landscape, where we examined the potential attacks resulting
from an attacker’s capability to manipulate different fields of each request-sending API.

As a result, we identify a total of 10 client-side request hijacking vulnerability variants,
of which only three are previously known. Table 4.2 presents the list of request hijacking

49

CHAPTER 4. STUDYING REQUEST HIJACKING VULNERABILITIES IN THE WILD

Table 4.1: Overview of security-sensitive JavaScript APIs that inititate client-side requests, along with their
supported capabilities, default constraints and usage in top 10K Tranco websites (Cf. §4.3). The table is ordered
by the API usage in the wild.

l Capabilities �
ý API � Req. Type Schemes Methods U B H # Specs # Sites # Pages # Calls

#1 Location Href Top-Level Navigation HTTP(S), JS GET [199] §7.2.4 8,044 214,554 1,096,306
#2 XMLHttpRequest Async. Request HTTP(S) Any [200] §3.5 7,522 407,819 2,884,556
#3 sendBeacon Async. Request HTTP(S) POST [6] §3.1 7,061 291,580 2,824,388
#4 Window Open Window Navigation HTTP(S) GET [199] §7.2.2.1 6,972 162,153 559,592
#5 Fetch Async. Request HTTP(S) Any [23] §5.4 5,215 105,463 403,701
#6 Push Push Subscription HTTP(S) GET, POST [5] §3.3 1,528 23,566 40,567
#7 WebSocket Socket Connection WS(S) GET [201] §3.1 1,280 33,724 145,713
#8 Location Assign Top-Level Navigation HTTP(S), JS GET [199] §7.2.4 987 10,092 22,309
#9 Location Replace Top-Level Navigation HTTP(S), JS GET [199] §7.2.4 731 6,421 14,309
#10 EventSource Server-Sent Event HTTP(S) GET [199] §9.2 453 1,690 5,503

Legend: SSC= SameSite Cookies; SOP= Same-Origin Policy; U= URL; B= Body; H= Header;
= Supported Capability or Applicable Constraint; = Otherwise.

Table 4.2: Overview of client-side request hijacking vulnerabilities and attacks. Rows marked with ¶ are new
(i.e., client-side variants of) vulnerabilities and ¶ represent vulnerabilities for which we consider a new API or
exploitation. For new vulnerabilities, related references refer to their server-side vulnerability counterparts.

K Vulnerability Reqs. C
S
R
F

X
S
S

W
S
H
ij
ac
k

S
S
E
H
ij
ac
k

In
f.

L
ea
k

O
p
en

R
ed

.
D
oS

� Related Ref.

¶ Forge. Async Req. URL #2, 3, 5 [P1, P4, 204]
¶ Forge. Async Req. Body #2, 3, 5 [17, P1, 204, 16]
¶ Forge. Async Req. Header #2, 5 -

¶ Forge. Push Req. URL #6 -
¶ Forge. Push Req. Body #6 [205–207]

¶ Forge. EventSource URL #10 [208]

¶ Forge. WebSocket URL #7 -
¶ Forge. WebSocket Body #7 [210, 204, 211, 212, 209]

Forge. Location URL #1, 8, 9 [32, 2, 213]

¶ Forge. Window Open URL #4 -
Legend: Forge.= Forgeable; SSE= Server-Sent Event; WS= WebSocket;

#i= row i in Table 4.1; = Applicable Attack; = Otherwise.

50

4.1. API CAPABILITIES AND ATTACK SYSTEMATIZATION

vulnerabilities, together with the responsible APIs and attacks which are made possible as a
consequence of each vulnerability explained in more detail in the following.

4.1.2.1 Asynchronous Requests

Asynchronous requests such as XMLHttpRequest [200] or the low level fetch API [23] are
typically used to communicate with web services such as REST APIs, without causing the
top-level page to reload. Attacker manipulation of the URL, body, or header of asynchronous
requests in client-side JavaScript programs can lead to the victim performing unwanted actions on
behalf of the attacker, i.e., client-side CSRF [1, P1], similarly to their traditional counterpart [17,
21, 70, 16]

We are currently unaware of studies exploring the manipulation of sendBeacon API [6] for
client-side CSRF attacks. Furthermore, attacker control of asynchronous request URLs can also
lead to information leakage, which was not considered by prior works (e.g., [P1]). In this case
the attacker manipulates the URL host to point to a malicious server, where they can access
sensitive information stored in the request header or body, e.g., login credentials, personally
identifiable information (PIIs), and CSRF tokens.

4.1.2.2 Push Requests

Push notifications [5] allow a web server to asynchronously send messages to a browser, even
if the web application is not currently loaded. The Push API requires subscription to a push
service via an HTTP POST request, and a browser can request new messages via HTTP GET
requests. If Push subscriptions do not have anti-request forgery tokens, attackers can conduct
classical CSRF attacks [205].

While not explored before, similar attacks are possible in the context of client-side programs.
For example, when creating a Push subscription, the client sends information such as the
subscription endpoint and public key in the body of an HTTP POST request. Attacker control
of the request body would allow manipulation of these parameters and hence CSRF [205–207],
e.g., by overwriting the subscription endpoint the application saves in the backend, the attacker
can redirect Push messages to an arbitrary server. We note that in the case of Push requests,
the URL must take a specific value (i.e. the endpoint listening for Push subscriptions), so
URL manipulation will not usually lead to CSRF attacks. However, setting an invalid value
enables attackers to cause a persistent client-side DoS, which can be mitigated when users reset
their browser notification permissions. In addition, control of the Push URL could lead to
information leakage if the request is redirected to an attacker-controlled server, e.g., the leaked
Push endpoint and encryption key can be exploited to send malicious messages to the victim’s
browser.

4.1.2.3 Server-Sent Events

Server-sent events (SSEs) [208, 199] allow servers to push messages to a browser at any time,
without waiting for a new request. SSEs are initiated via an HTTP GET request to a URL
specified in the EventSource constructor. By manipulating the EventSource URL, attackers
can redirect the request to a malicious server and achieve SSE hijacking, whereby malicious
events can be sent to the victim’s browser. Similarly to asynchronous and push requests,
redirection of the EventSource URL can also lead to information leakage.

4.1.2.4 Web Sockets

WebSockets [215, 201] enable full-duplex, event-driven communications between browsers and
servers, initiated via an HTTP GET request. An attacker controling the WebSocket connection

51

CHAPTER 4. STUDYING REQUEST HIJACKING VULNERABILITIES IN THE WILD

can perform cross-site WebSocket hijacks (CSWSH) [204, 212, 209]. In this scenario, an attacker
can embed a WebSocket to a target website on their own site. When a victim visits this malicious
site, the victim’s browser is tricked into performing authenticated actions on behalf of the attacker.
In contrast to write-only CSRF attacks, CSWSH allows full read/write communication. In the
context of client-side vulnerabilities, we show that similar attacks are possible if the attacker can
control the URL used to perform the initial handshake, redirecting the request to a malicious
server. As the attacker controls the WebSocket, this can also lead to information leakage from
the victim’s browser. Finally, controling the data used in WebSocket messages leads to message
hijacking and potentially CSRF.

4.1.2.5 Top-Level Navigation Requests

Top-level navigation requests via the location API allow manipulation of the current browser
URL, and trigger a new HTTP GET request when called [199]. Attacks leveraging this category
of requests have been considered in the past. For example, manipulating the location URL can
lead to client-side XSS by exploiting the javascript protocol if the entire URL is controlled
by the attacker [32, 213]. Alternatively, replacing the full URL with a malicious URL will
force an open redirect of the browser to a different site. Finally, even partial hijack of the
URL (e.g., query parameters) can trigger the application to perform actions on behalf of the
attacker leading to CSRF. This usually occurs if the application implements state-changing
GET requests [21] or allows forging POST requests with GET where it incorrectly accepts and
processes incoming requests regardless of their HTTP method, as shown in [P4].

4.1.2.6 Window Navigation Requests

The window.open API triggers a top level HTTP request in a specific browser context, such
as a new window or the current one (i.e., redirection). Similarly to the location API, control
of the window.open API could also lead to CSRF, XSS and open redirects. However, unlike
location, we are not aware of previous work that has studied this vulnerability.

4.1.3 Request API Prevalence

Having examined the web APIs which are susceptible to request hijacking, we also measured
their prevalence in the wild. The last three columns of Table 4.1 list the number of sites, pages
and calls of a particular API found in the top 10K Tranco websites. More details on the dataset
and crawling strategy can be found in §4.3.

Overall, we find 9,901 domains which contain at least one API related to client-side requests,
with a total of ∼7.9M API calls across 1,032,795≈1M webpages. Top-level navigation requests via
location.href are the most widespread, being present on more than 8K sites. Asynchronous
requests via the XMLHttpRequest API are the most widely-used, with almost 3M calls across
over 400K pages. We observed that request hijacking threats have not been considered for over
44.7% of API calls by prior work given the new vulnerability variants presented in Table 4.2. The
widespread usage of request-related APIs in the wild, coupled with a wide variety of potential
vulnerabilities, presents a tantalizing attack surface for hackers. The remainder of this paper is
dedicated to techniques for the detection and evaluation of these vulnerabilities in the wild.

4.2 Vulnerability Detection

Starting from our systematization of vulnerabilities presented in §4.1, we now formulate our
approach to detect and study request hijacking vulnerabilities, thereby addressing the first part
of RQ2.2. Client-side request hijacking vulnerabilities arise due to the presence of insecure data

52

4.2. VULNERABILITY DETECTION

Figure 4.1: Architecture of JAW-v2.

flows from attacker-controlled inputs to request-sending instructions. In this paper, we design
and implement an open-source, static-dynamic analysis tool, called JAW-v2, to detect such
insecure data flows.

Figure 4.1 depicts the architecture of JAW-v2. Broadly, it comprises four main components:
1 a data collection module that gathers Web resources and dynamic taint flows from webpages,
2 a data modeling module that processes the collected data to identify and model unique
webpages, creating a property graph for each one, 3 a vulnerability analysis module that
traverses this graph following the propagation of unvalidated data flows from input sources
to request-sending functions, and finally 4 a dynamic verification module that confirms the
potential forgeability of requests. The rest of this section describes each component.

4.2.1 Data Collection

The first step of our analysis pipeline involves collecting client-side code and runtime values (e.g.,
DOM snapshots) of web applications for security testing. Starting from a list of sites under test
like Tranco [216], JAW-v2 instantiates N crawling workers and continues orchestration until all
input sites have been crawled. We developed a taint-aware crawler based on Playwright [217],
an instrumented version of Firefox known as Foxhound (v98.0.1) [107, 106], and Firefox De-
vTools [218]. Since Foxhound does not provide instrumentation support for all request APIs
listed in Table 4.1, we added further instrumentation to provide taint tracking support for these
APIs (hereafter, Foxhound+). Given a domain as input, the crawler visits webpages with a
depth-first strategy, and stops when it does not find new URLs or visited a maximum of 200
URLs per site. During the visit, the crawler collects the following information: webpage resources
(e.g., scripts), DOM snapshots, global objects’ properties, event traces, network requests and
responses, and finally dynamic taint flows from program inputs to security-sensitive instructions,
such as request-sending functions.

4.2.2 Data Modeling

Preprocessing Given the webpages’ data collected by the crawler, JAW-v2 performs data
pre-processing for efficiency and scalability reasons. For example, JAW-v2 pre-processes the
client-side code to filter out near-duplicate webpages [220, 219] by comparing SHA-256 script
hashes, which allows it to focus on pages with distinct JavaScript code, reducing the overall
effort for program analysis. Similarly, JAW-v2 can perform other types of data preprocessing,
such as (custom) search-based filtering of data or code normalization, as discussed in §3.2.2.
Model Building After removing duplicate webpages, JAW-v2 instantiates a pool of workers
to generate HPGs of the client-side programs under test, using an extended engine of JAW (Cf.
§3.2). Then, these HPGs are enriched with taint flow information provided by Foxhound+ to
patch missing HPG edges due to static analysis shortcomings, and finally stored in a Neo4j [186]
graph database which we can query for security testing.

53

CHAPTER 4. STUDYING REQUEST HIJACKING VULNERABILITIES IN THE WILD

Taintflow-Augmented (TA) HPGs. In this paper, we formulate the request hijacking
vulnerability detection task over HPGs, where we intend to identify request-sending instructions
that are triggered at page load, and that are susceptible to manipulation by attackers through
program inputs. Unfortunately, conducting such inter-procedural reachability and data flow
analysis tasks is non-trivial due to the dynamic nature of client-side JavaScript programs
(e.g., [129, 11, 12, 14, P1, 50]). While HPG state values (i.e., environment properties and event
traces [P1]) help to alleviate many of JavaScript static analysis shortcomings (e.g., imprecise
control and data flow dependencies) by reasoning on concrete object snapshots (e.g., points-to
analysis and triggered event handlers), they are not sufficient to identify many of the other
missing call and data flow connections in the graph. Accordingly, in this paper, we use fully-
fledged, in-browser dynamic taint tracking to further augment HPGs by adding supplementary
edges and labels to nodes (e.g., to mark reachability, semantic types and runtime variable values),
thus reconstructing missing connections that are reachable at page load, which are otherwise
missed by static analysis.

TA-HPG Construction. We used Foxhound+ to collect dynamic taint flows from input
sources to all sink types, including those that are not request-sending instructions (Cf. Table A.1),
so that we can complement as many potentially missing elements as possible in the HPG.
Specifically, we first extract the dynamic call graph and data flow graph from Foxhound+, and
merge them with static call graph and PDG, respectively. To do the match between the dynamic
and static graphs for merging, we first determine in which script file an instruction or node
is located by comparing the script hash in the two models and, then, use the line of code to
determine the top-level (i.e., CFG) node in the HPG for that instruction. When merging the
dynamic data flow graph with PDG, we create data dependency edges if an edge is missing,
with the labels being the variable name reported in the taint flow whose data is propagated.
Conversely, if a PDG edge already exists between two nodes, we add a label to that edge marking
the runtime value of the propagated variable.

Similarly, when merging the two call graphs, we create a new edge if it is missing and label
it with the invoked function and parameter names as well as concrete parameter values of the
function call. However, when the call edge exists in the HPG, we only enrich its information by
adding the runtime values of the call site parameters. Finally, we added labels to all sources
and sink nodes as semantic types, capturing the semantic of those instructions, e.g., the type
RD_DOC_URL is set for instructions that read the value of document.URI, and then propagated
to other HPG nodes following the calculation of the program. We exemplify our approach in
more detail in §4.2.5. As we will show in §4.3, this configuration facilitates a comprehensive
representation of program dynamics, enabling enhanced analysis capabilities for vulnerability
discovery.

Static Analysis Engine Enhancements. To enhance JAW’s HPG generation, we made
several modifications addressing incomplete ES6 support for improved control transfer modeling
and data flow analysis. For example, we added support for asynchronous operations using the
Promise object and setTimeout() callbacks [221], improving the precision of call graph and
PDG edges. Additionally, we applied multiple optimizations to improve scalability, such as
handling inefficiencies in iteration constructs during the PDG construction and managing Neo4j
graph databases in parallel by creating an orchestrator using ineo [222]. These modifications
resulted in more precise analysis and improved scalability for constructing HPGs.

4.2.3 Vulnerability Analysis

After modeling the client-side code as a TA-HPG, we define the task of detecting request
hijacking vulnerabilities as a graph traversal problem. Specifically, we intend to search for
program instructions that send sensitive requests at page load, whose parameters originate
from attacker-controlled program inputs. As the first step, we identify TA-HPG sources that

54

4.2. VULNERABILITY DETECTION

Listing 4.1: Example client-side request hijacking vulnerability derived from bbc.com, which is not captured
by JAW’s static analysis engine [P1].
1 var c = {}, i = 0;
2 // handle incoming postMessages
3 window.addEventListener("message", h);
4 function h(e){
5 if(e.origin.indexOf("bbc.com") > -1){
6 i = i + 1;
7 // [...]
8 var d = JSON.stringify({
9 "csrf_token": "xyz-token",

10 "state": {...},
11 });
12 var u = e.data + ’/userinfo’;
13 c["r" + i] = new
14 Function("httpPostRequest("+ u + "," + d + ")");
15 }
16 }
17 function httpPostRequest(url, body){
18 // [...]
19 navigator.sendBeacon(url, body)
20 }
21 // remember state upon closing the session
22 window.addEventListener("visibilitychange", saveState);
23 function saveState(e) {
24 if (document.visibilityState === "hidden") {
25 for(let j=1; j<= i; j++){
26 c["r" + j]();
27 }
28 }}

read attacker-controlled inputs (Cf. §2.2.3), and assign them a relevant semantic type similarly
to JAW [P1], e.g., we set a label named RD_WIN_LOC for instructions that read the URL
through window.location API. Then, given a list of browser APIs that are used for sending
requests (Cf. Table 4.1), JAW-v2 searches the TA-HPG to identify nodes using these APIs,
and marks them as a sink by assigning them a relevant semantic type, e.g., the label WR_-
ASYNC_REQ_URL is set for instructions that write the URL of an asynchronous request, such
as XMLHttpRequest.open().

Finally, to discover vulnerable paths, JAW-v2 performs data flow analysis by propagating
semantic types from sources to sinks over PDG, CFG, CG, and ERDDG edges, and selects
unvalidated paths where a node with a sink semantic type is tainted with a source type and
picks up the attacker-controlled values. Then, JAW-v2 performs reachability analysis to check if
the vulnerable path may correspond to lines of code executed at page load. To do that, it starts
from both source and sink nodes and follows backward CFG, ERDDG, and CG edges until it
reaches the CFG entry node or there are no longer edges matching the criteria to backtrack,
and selects data flows where both the source and sink are reachable nodes. Ultimately, this
component outputs a set of paths with potential data flows from a source to a request sink.

4.2.4 Vulnerability Verification

Given a set of candidate request hijacking data flows, the goal of this step is to confirm
the feasibility of each flow dynamically and eliminate potential false positives. We relied on
Playwright [217] and Chrome DevTools Protocol [108] to perform runtime monitoring, where we
instrumented browser APIs responsible for sending requests (Cf. Table 4.1) and intercepted
network messages that occur at page load. Specifically, for each request hijacking data flow,
we input a token to the corresponding source, load the webpage in an instrumented browser
controlled with Playwright and search for the token in the client-side request to check whether
the manipulated inputs are observed. We test each candidate data flow both in the affected
webpage and all its near-duplicate pages, which have the same set of scripts but potentially

55

CHAPTER 4. STUDYING REQUEST HIJACKING VULNERABILITIES IN THE WILD

Figure 4.2: Excerpt of the TA-HPG for the example in Listing 4.1. Connections highlighted in orange and red
represent missing PDG and call graph edges that are reconstructed using dynamic taint flows of Foxhound+,
which are necessary for vulnerability discovery (steps 1-5). Blue and yellow diamonds attached to nodes represent
source and sink semantic types propagated through the TA-HPG. For brevity, not all nodes and edges are shown.

different DOM environments (Cf. §4.2.2). By doing so, we switch DOM trees when testing
the data flow within the affected JavaScript program, as the DOM environment can affect the
execution of the program. To enable this approach, we need to provide the input differently
depending on the type of the source, i.e., URL parameters, postMessages, document referrer
and window name (Cf. §2.2.3). For example, in case of URL parameters, we can control them
directly, and load the manipulated URL for testing. For other sources, we load a test webpage
in the browser, which uses window.open() [154] to open the target webpage in a new window
and set the window name through window.name API [155] or send postMessages to the opened
window [3]. Alternatively, the test page can redirect to the target webpage and control the
document referrer leveraging the URL of the test page. Finally, we perform manual analysis to
validate the decision reported by JAW-v2 and examine the exploitability of the reported data
flows.

4.2.5 Approach Exemplification

In this section, we exemplify the TA-HPG construction and analysis approach presented in
Sections 4.2.2 and 4.2.3 through an example of a real vulnerability derived from bbc.com,
highlighting the need for dynamic information provided by Foxhound+.
Vulnerability. Listing 4.1 shows a real example of client-side request hijacking vulnerability
derived from bbc.com, where the program uses attacker-controlled inputs to specify the endpoint
to which an asynchronous HTTP POST request is sent to. In more detail, the code first listens for
incoming postMessages (line 3), and then uses the message data to construct a URL (lines 4-12).
Afterwards, it creates a closure function using the new Function() API [223] by generating a
string of the target function call dynamically (lines 13-14). The string contains an invocation of
the httpPostRequest function in line 17, with parameters being the constructed URL of line
12 (attacker-controlled), and sensitive data of line 8 (i.e., CSRF tokens). Subsequently, it stores
the closure function as a property of the global object c (line 13). Finally, upon closing the
session (line 22), the program uses dynamic property lookups to retreive the closure function
stored in object c and invokes it (line 26), which in turn sends an HTTP POST request (line
19) to the attacker-controlled endpoint.
TA-HPG Construction and Traversals. The dynamic JavaScript language features used in

56

4.3. EMPIRICAL EVALUATION

Table 4.3: Summary of the collected data and preprocessing steps.

Top 10K Sites � Raw Data Dedupl. Top 50 Flows
Webpages 1,034,521 867,455 339,267

Scripts 46.1 M 36.7 M 11.5 M
LoC 129.8 B 104.1 B 32.4 B

Taint Flows 43,143,773 35,209,216 21,673,167
Req. Flows 8,024,030 7,205,914 3,318,747

Legend: Dedupl.= Page Deduplication.

Listing 4.1 present significant challenges for static analysis-based approaches like JAW [P1] to
capture the aforementioned request hijacking vulnerability. For example, JAW cannot identify
the invoked function and its corresponding arguments in line 26. This is due to dynamic property
reads/writes on lines 13 and 26, as well as dynamic code generation using new Function()
on line 14, which makes it difficult to create a comprehensive representation of the program.

Figure 4.2 presents the TA-HPG that JAW-v2 generates for the code in Listing 4.1, which
alleviates the missing HPG edges due to the dynamic function calls. In particular, JAW-v2 uses
dynamic taintflows provided by Foxhound+ to add (i) a call edge between the call expression
node in line 26 and the function declaration node in line 17, and (ii) PDG data dependency
edges from assignment expression in line 13 to call expression node in line 26 for call arguments
u and d. Accordingly, a TA-HPG traversal can now start from the source node in L12, pass
through L13, L26, and L17 nodes, and finally reach the sink instruction, who picks up the
attacker-controlled values.

4.3 Empirical Evaluation

This section addresses the second part of RQ2.2 (Cf. §1.1.2), where we conduct the largest-
to-date study to quantify the prevalence and impact of request hijacking vulnerabilities in the
wild. To accomplish this, we utilized the Tranco site list downloaded on Sept. 29, 2022 (ID:
N7QWW) [216], where we first selected the top 10K domains by excluding duplicate versions of
websites (e.g., google.com and google.co.uk), and then instantiated JAW-v2 for each of them.
We started our crawling infrastructure of §4.2.1 in Oct. 2022 by deploying 100 parallel browser
instances. To ensure comprehensive coverage, we made up to three repeated attempts for each
failed crawling website, followed by a detailed manual analysis. The entire data collection process
spanned approximately six weeks. The rest of this section details our findings.

4.3.1 Data Collection and Processing

Table 4.3 summarizes the results of data collection and modeling steps. Starting with the 10K
seed URLs, JAW-v2 obtained a grand total of 1,034,521≈1M webpages across all websites. The
number of pages per site spanned from 1 to 200, averaging at 103 pages. These 1M pages
contained around 46.1M scripts with over 129.8B LoC. Page de-duplication (Cf. §4.2.2) enabled
us to focus on pages with unique sets of scripts and reduced the size of the dataset by about
17%, that is, out of the total 1M webpages, 867,455 pages were unique.

Considering the extensive size of the raw data and the need to analyze hundreds of thousands
of webpages, we further reduced the size of our testbed by focusing our testing efforts on the
top 50 pages of each site that exhibit the greatest frequency of dynamic taint flows (originating
from input sources and reaching request-sending sinks), which is based on the higher probability
of these pages containing vulnerabilities. In summary, the 867K unique pages contained ∼7.2M
dynamic taint flows to request-sending sinks which we used for our page selection. Accordingly,

57

CHAPTER 4. STUDYING REQUEST HIJACKING VULNERABILITIES IN THE WILD

Table 4.4: Summary of client-side request hijacking vulnerabilities in top 10K sites. The table shows the total
number of data flows from input sources (columns 3-6) to request sinks (Cf. Table A.1) as well as the affected
webpages and sites. Rows marked with ¶ and ¶ represent new vulnerabilitiy types proposed by our work and
variants for which we also consider a new API, respectively. The table also shows the distribution of data flow
paths in the TA-HPG (static, dynamic, or mixed) based on the type of edges involved in the flow, highlighting
the contribution of dynamic information for vulnerability discovery.

` Flows ç Breakdown �

K Vulnerability WURL WN DR PM Total Verified Dynamic Mixed Static Pages Sites
¶ Fg. Async Req. URL 106,218 105 1,232 46 107,601 91,688 47,631 8,037 36,020 12,908 616
¶ Fg. Async Req. Body 76,517 428 5,209 6,564 88,718 78,240 63,308 7,442 7,490 9,510 819
¶ Fg. Window Open URL 20,574 21 76 3 20,674 16,566 49 652 15,865 8,846 365

Fg. Location URL 4,533 300 108 8 4,949 4,079 1,157 131 2,791 2,610 324
¶ Fg. Async Req. Header 2,401 5 42 372 2,820 2,446 1,710 135 601 1,587 107
¶ Fg. WebSocket URL 5,322 32 320 807 6,482 5,520 2,865 543 2,113 1,096 56
¶ Fg. WebSocket Body 2,867 18 172 434 3,490 2,973 1,543 292 1,137 590 30
¶ Fg. Push Req. URL 592 93 0 0 685 539 0 530 9 497 25
¶ Fg. Push Req. Body 94 61 2 0 157 119 0 115 4 101 9
¶ Fg. EventSource URL 680 2 36 133 851 664 387 66 211 56 3

Total 219,798 1,065 7,197 8,367 236,427 202,834 118,650 17,943 66,241 17,805 961
Legend: Fg.= Forgeable; WURL= Window URL; WN= Window Name; DR= Document Referrer; PM= postMessage.

the 867K webpages were filtered to 339,267 pages. Out of these, JAW-v2 extracted 11,544,754
scripts (32.4B LoC) and 21.6M dynamic taint flows, that we can use to enrich HPGs in order to
remediate missing connections that are not discovered by static analysis. Out of these 21.6M
taint flows, 3,318,747 flows contain request-sending sinks, which can indicate the presence of
request hijacking vulnerabilities. In total, JAW-v2 processed an average of 34 scripts and 95K
LoC per page, generating 339,267 TA-HPGs.

4.3.2 Prevalence in the Wild

After TA-HPG construction, JAW-v2 performed graph traversals for vulnerability discovery
following §4.2.3. In summary, JAW-v2 identified an average of 23 request-sending sinks and 65
sources per webpage, totaling about 7.9M sinks and 22.3M sources. Among these, static analysis
found a total of 236,427 potential data flows from sources to sinks, of which ∼86% (i.e., 202,834)
were verified following runtime experiments. These vulnerable data flows affected around 5.2%
of the tested webpages (17,805 out of 339,267) and 9.6% of the sites (961 out of 10K), which is
alarming. Table 4.4 presents a summary of the results.
Types of Hijacked Requests. Among the various types of requests that can be hijacked,
asynchronous requests are the most widespread (85%), with over 172K instances across 905
sites. Interestingly, forged window loads are the second-most prevalent (8.2%), accounting for
16.5K flows in 365 sites. At the other extreme, hijacked push requests and EventSource occur
the least often, each affecting only about 0.3% of the flows across 25 and three sites, respectively.
Finally, hijacked web sockets and top-level requests demonstrated a moderate level of prevalence,
corresponding to about 6% of the vulnerable data flows in total.
New Vulnerability Types. We observed that the new vulnerability types and variants listed
in Table 4.2 constitute a significant fraction (i.e., 36.1%) of the request hijacks. First, the
new vulnerability types account for over 14.2% (35,159) of the total 236K discovered cases.
Among these, JAW-v2 verified 28,827 vulnerable data flows across 10,925 webpages and 439
sites, highlighting the widespread occurrence of the new vulnerabilities. Then, 21.9% of the
request hijacks are new variants where we considered a new browser API.
Vulnerability Impact. We found that the 202K vulnerable data flows can have different
security implications (Cf. Table 4.2), where each vulnerability could lead to multiple consequences
through different exploitations, amplifying the potential risks. The most common consequence is
client-side CSRF, for which 96% of the vulnerabilities (i.e. 196K) can be abused. However, 48.5%

58

4.3. EMPIRICAL EVALUATION

of the hijackable requests can be abused for information leakage too, as the attacker can control
the endpoint to which the request is sent to, and consequently steal the sensitive information
contained in the request body, such as CSRF tokens, PII, push endpoint and encryption key, as
we will show in §4.3.4. In comparison, the least common consequence is persistent DoS on push
subscriptions that accounts for 0.2% of the total vulnerabilities. Other common consequences
are client-side XSS and open redirections that affect 10.1% of the pages in total. Finally, 4.2%
of the vulnerabilities could lead to cross-site connection hijack of WebSocket and EventSource.
Verification and False Positives. Given the extensive number of reported data flows by
JAW-v2, we performed a semi-automatic verification as elaborated in §4.2.4.

In total, the dynamic verification module confirmed about 86% of the data flows (i.e., 202,834
out of 236,427) and eliminated a total of 33,593 FPs across 1,954 webpages and 28 sites. Notably,
for the majority of the confirmed flows (i.e., 81%), the verification module successfully validated
the vulnerable flow by loading the affected webpage and executing it via Playwright. However,
in the remaining 19% of cases (i.e., 38,522 flows), the verifier required executing between one
to 41 near-duplicate pages before confirming it. We note that the verifier tests the presence
of the data flow also in near-duplicate pages in order to switch the DOM tree with one of the
duplicated pages. This is aimed to determine if the same data flow could be observed across
various DOM environments during page load, capturing different executions of the program (Cf.
§4.2.4).

We manually confirmed and investigated the reason for false positives by focusing on a
random subset. Specifically, we sampled 10 pages per each of the 28 affected sites, which included
5,032 flows in total, and manually inspected them. We observed that a large number of FPs
(i.e., 3,951 or 78.5%) occur during the data flow analysis from sources to sinks, and the rest (i.e.,
1,081 FPs) occur when checking if a request is triggered at page load or not (i.e., reachability
analysis). The former cases happened due to presence of dynamic code evaluation constructs
like eval() that changed the values of tainted variables, usage of prototype chain with late
static binding, generator functions, and inaccurate pointer analysis for property lookups. The
latter cases happened due to dynamically called functions, inaccurate pointer analysis, usage
of reflection, and dynamic removal of event handlers. Accordingly, verification was critical to
eliminate FPs.
Contribution of Dynamic Analysis. We observed that dynamic information plays a crucial
role in identifying 67.3% of the discovered request hijacking data flows, as shown in Table 4.4.
First, dynamic taint analysis detected 118.6K vulnerable data flows that were not found by
the static analyzer, i.e., data flow paths containing only dynamic edges. Second, it aided static
analysis in identifying 17.9K additional data flows by patching missing HPG edges necessary
for vulnerability detection (i.e., mixed data flow paths). However, Table 4.3 highlights a key
challenge of pure dynamic analysis: the large size of reported taint flows, the majority of which
were not under attacker control (Cf. Table 4.9). Conversely, static analysis was able to detect
66.2K data flows. Therefore, a combination of dynamic and static analysis can be advantageous.
Dynamic analysis enhances static analysis by supplementing HPG edges (e.g., call graph), while
static analysis helps eliminate spurious taint flows that are not controllable by attackers, e.g.,
due to input validation.

4.3.3 Anatomy of Hijacked Requests

In this section, we examine the extent of manipulation an attacker can exert on the hijacked
requests of Table 4.4, as the specific forgeable field(s) and the degree of control an attacker
possesses over them may affect the potential risk and severity of vulnerabilities. We used
JAW-v2 to extract the vulnerable lines of code, examined the code stack trace and semantics,
and characterized the request anatomy as a binary pattern, encoding information about the type
and number of request fields that could be manipulated, as well as the type of control in each

59

CHAPTER 4. STUDYING REQUEST HIJACKING VULNERABILITIES IN THE WILD

Table 4.5: Anatomy of client-side forgeable requests. The table shows 29 distinct request patterns ordered by
the degree of control (descending).

� Request Fields W � Prevalence
D P B Q F H S Total Flows Pages Sites

5 2,897 1,103 101
5 1,235 235 26
3 110 34 11
4 88 52 13
3 1 1 1
3 1,456 391 52
2 65 39 5

4 1 1 1
2 973 159 12
2 18 10 2
3 8 6 1
2 672 118 10

5 2 1 1
3 5 4 1
3 10 2 2
1 564 95 9

3 8 6 1
3 1 1 1
2 3 3 1
1 342 124 13
3 3 1 1
3 1 1 1
2 15 1 1
1 9,640 2,024 219

2 92 47 6
1 95,601 12,187 981
2 215 74 5
1 88,009 9,356 747
1 799 400 36

Legend: D= Domain; P= Path; B= Body; Q= Query; F= Fragment;
H=Headers; S=Scheme;

= Not Controllable (00); = Partial Control (01); = Full Control (10);

60

4.3. EMPIRICAL EVALUATION

Table 4.6: Summary of exploitations for client-side request hijacking vulnerabilities. Rows marked with ¶ and
¶ represent new vulnerabilitiy types and variants with a new API or exploitation, respectively.

K Vulnerability C
S
R
F

X
S
S

W
S
H
ij
ac
k

S
S
E
H
ij
ac
k

In
f.

L
ea
k

O
p
en

R
ed

.

D
oS

Total
¶ Forge. Aysnc Req. URL 7/6 - - - 12/7 - - 19/13
¶ Forge. Aysnc Req. Body 4/4 - - - - - - 4/4
¶ Forge. Aysnc Req. Header 1/1 - - - - - - 1/1

¶ Forge. Push Req. URL - - - - 2/2 - 2/2 4/4
¶ Forge. Push Req. Body 1/1 - - - - - - 1/1

¶ Forge. EventSource URL - - - 1/1 1/1 - - 2/2

¶ Forge. WebSocket URL - - 2/2 - 4/2 - - 6/4
¶ Forge. WebSocket Body 2/1 - 2/2 - - - - 4/3

Forge. Location URL 1/1 3/3 - - - 7/6 - 11/7

¶ Forge. Window Open URL 1/1 6/6 - - - 8/8 - 15/10

Total 17/15 9/9 4/4 1/1 19/12 15/14 2/2 67/49
Legend: M/N= M exploits across N sites.

field. As a result, we identified 29 distinct forgeable request patterns. Table 4.5 summarizes our
findings.
Type of Control. Our analysis revealed that 80% of the forgeable request fields are fully
controllable, allowing the attacker to overwrite their values entirely. In the remaining cases, the
attacker has partial control over specific parts of the field, such as one or more parts of query
parameters, hash fragment, or body, but not complete control.
Forgeable Request Field. The severity of the vulnerability can be influenced by the type
of manipulable field. For example, we found that in 8,105 forgeable requests of 161 sites, the
attacker can manipulate the domain, and request hijacking could be used to perform cross-origin
attacks (e.g., leakage of CSRF tokens). We grouped requests in seven categories based on
the specific field(s) being manipulated, where each request may fall into multiple groups. Our
analysis uncovered that the most frequent types of manipulable fields are request body and query
parameters, accounting for over 47% and 45% of the forgeable requests respectively. Additionally,
the forgeability of domain and path fields in ∼11.8% of the requests is concerning. Finally, we
observed that other request fields like headers, hash fragment and scheme are forgeable in about
5.7% of the cases.
Degree of Manipulation. We found that the number of concurrently manipulable request
fields varies from one to five out of a total of seven forgeable fields. For example, for 2,897
forgeable requests from 101 sites, the attacker has full control over all URL fields but lacks
control over request headers and body. In contrast, in 95K requests on 981 sites and 88K
requests on 747 sites, the attacker can manipulate only the request body and query parameters,
respectively. We observed that in the majority of the hijacked requests (i.e., 97%), only one or
two fields can be manipulated. However, such ad-hoc manipulation capability can still lead to
severe consequences (Cf. §4.3.4).

4.3.4 Exploitations

We manually examined the exploitability of the identified vulnerabilities by a web attacker. To
ensure comprehensiveness, we aimed to maximize the coverage of our testing across various sites.
We randomly selected two vulnerable pages from each of the 961 affected sites. Given the high
number of vulnerable data flows within webpages, we used our analysis of §4.3.3 to prioritize
testing efforts by focusing first on requests with a higher degree of manipulation across various

61

CHAPTER 4. STUDYING REQUEST HIJACKING VULNERABILITIES IN THE WILD

types of client-side requests. Then, we confirm the forgeability of requests and look for their use
in attacks that we presented in §4.1. For each attack scenario, we conducted specific checks. For
example, we looked for server-side endpoints that could lead to security-sensitive state changes
(e.g., modifying user settings) for client-side CSRF. For information leakage, we examined the
request body for the presence of sensitive data like PII, authorization keys, and CSRF tokens.
Furthermore, For WebSocket and EventSource, we check whether we can establish arbitrary
connections to attacker-controlled endpoints. Finally, for open redirect and client-side XSS
attacks, we assessed the susceptibility of top-level requests to arbitrary redirections and improper
validation of javascript URIs, respectively. In doing so, we limited our tests exclusively to
user accounts that we created on those sites, and excluded testing requests and functionalities
where we could not control the impact (e.g., publicly accessible content).

Table 4.6 summarizes the attacks we uncovered during our investigation. In total, we
created 67 proof-of-concept exploits across 49 websites, with far-reaching consequences like
CSRF, client-side XSS, open redirections and leakage of sensitive information across various
popular platforms and functionalities. Notably, we discovered an account takeover exploit in
the Starz movie streaming service, user VM deletion in Microsoft Azure, arbitrary redirection
in Google DoubleClick and VK, manipulation of account settings in DW and BBC, tampering
of job applications in Indeed, data exfiltration through WebSocket and EventSource hijacks in
JustWatch and Forbes, CSRF on PushManager subscriptions in Reddit, persistent client-side
DoS on push notifications in Yoox shopping website, and finally client-side XSS in TP-Link, to
name only a few examples. Among these, a total of 33 exploits across 24 sites belong to new
vulnerability types presented in our work.

4.4 Defenses

This section addresses RQ3.3 of §1.1.2, where we review and assess the adoption and efficacy of
existing countermeasures against client-side request hijacking vulnerabilities. We systematically
surveyed academic literature (i.e., [17, 21, 138, 227, 66, 38, P1, P4, 204, 107, 32, 224, 70, 16, 72,
225, 226, 228, 71, 19]), W3C specifications [229], and OWASP CheatSheet Series [69], looking
for classical anti-CSRF countermeasures and those defenses that can mitigate client-side request
hijacking. Table 4.7 summarizes our findings. In total, we identified 10 distinct request forgery
defenses, that we grouped into two broad categories based on the party that enforces them (i.e.,
web application or the browser). For each defense, the table represents whether the defense is
effective against client-side request hijacks, there is built-in browser support to enforce it, it
is enabled-by-default, whether it requires correct configuration (when offered built-in by the
browser), and finally whether it requires custom implementation by web application developers.
The rest of this section discusses adoption and efficacy of each defense.
Traditional Mechanisms. CSRF attacks can be mitigated by employing various counter-
measures, such as anti-forgery tokens [17, 70, 69, 16, 71, 19], CORS preflight requests [70],
Origin/Referer [17, 231, 69, 20] header checks, and SameSite cookies [P4]. Our measurement
in Table 4.7 shows that these countermeasures are well adopted. For example, we found that
130,359 of the 202K forgeable requests (Cf. Table 4.4) include a token in the request body or
header. Among these, 116,002 cases featured a token name containing ‘csrf’ or ‘xsrf’, indicating
it was an anti-forgery token. Then, when looking at JavaScript code, we observed that developers
explicitly included Origin/Referer headers in 42,310 same-site requests. Finally, we observed
that 3,751 vulnerable pages (out of 17.8K) use SameSite cookies with Lax or Strict policies.

While these defenses are necessary to prevent classical request forgery attacks (assuming
correct implemention), they are not sufficient to prevent client-side hijack of requests, because
JavaScript programs and web browsers include these tokens, headers, and cookies in same-site
requests.

62

4.4. DEFENSES

Table 4.7: Summary of existing defenses and their protective coverage against client-side hijacks. The table
shows the adoption rate of the various defense mechanisms in the wild. For rows marked with *, the adoption
rate only reflects the explicit inclusion of headers/tokens in the client-side code.

Category Defense Ó w H l Î References # Pages # Sites

Custom Input Validation [230, P1, 107, 32, 3, 56] 125,738 7,021
(Application) CSRF Tokens* [17, 21, 70, 69, 20, 71, 19] 32,925 7,692

Fetch MetaData* [228] 13,873 910
Origin/Ref. Headers* [17, P4, 70, 69] 9,922 1,745

Policy-based Cross-Origin Resource Sharing [162] 284,984 8,741
(Browser) SameSite Cookies [28, 138, P4, 72] 69,865 5,621

Content Security Policy [204, 8, 109, 27] 25,799 4,616
Cross-Origin Opener Policy [73, 228] 6,581 231
Cross-Origin Embedder Policy [74] 3,314 96

Legend: Ó= Effective; w= Built-in Browser Support; H= Enabled-by-Default; l= Require Configuration;
Î= Require Implementation; = Not Applicable; = Partially Applicable; = Fully Applicable;

*= Server-side enforced.

Table 4.8: Types of input validation checks in vulnerable data flows.

Check Instances Flows Pages Sites
No Check S 95,321 8,876 709

Substring S.indexOf(‘benign.com’) > 0 62,495 3,950 285
Search S.startswith(‘benign.com’) 11,448 821 83

S.includes(‘benign.com’) 2,024 145 32

Not Null typeof S !== ‘undefined’ && S!== null 32,002 2,616 194

Length S && S.length > 0 13,995 1,023 83

Empty String S !== ‘’ 6,179 638 156

Comparison QUERY(Q, S)=== window.name 4,776 445 65
of Forgeable QUERY(Q, S)=== loc.hash.substr(i, j) 556 39 3
Params postMessage(S) === loc.hash.substr(i, j) 102 10 1

URL Fields PATH(S) == ‘index.php’ 1,199 92 10
Check QUERY(Q, S) === ‘benign’ 402 33 5

Faulty if (S === ‘b1.com’ || ‘b2.com’) 130 11 3
Conditionals !! ‘benign.com’ == !! S 629 40 3
(Always S !== undefined + (S === ‘benign.com’) 14 6 1
True) intersection([‘b1.com’, ‘b2.com’], [S]) !== [] 21 5 2

S.length ≤ Math.min() + CONST 5 2 1
Legend: S= Source; QUERY(Q, URL)= query parameter Q in URL

PATH(URL) = URL path.

Input Validation. Robust input validation can ensure data integrity and reliability by requiring
untrusted inputs to conform to specific, expected formats [230], preventing malicious inputs
reaching request-sending instructions. Accordingly, we identified and analyzed secure and
insecure input validation patterns and practices that is employed by websites in the wild against
request hijacking attacks as described below.

First, to identify insecure input validation code patterns, we analyzed vulnerable data
flows discovered in §4.3.2, and extracted the underlying reason why the flow was marked as
vulnerable, focusing on the presence of insufficient, missing or logically flawed input validation
checks. Table 4.8 summarizes our findings, where we grouped the checks into eight different
categories. Our analysis uncovers that ∼47% of vulnerable data flows do not have any input
validation checks, suggesting that developers are largely unaware of risks associated with
controlling client-side requests. Furthermore, over 13.8% of the cases rely solely on a variety
of trivial checks, such as length and type checks, and 24.9% use string operations to search
for existence of trusted domains in URLs or check different URL fields, which is insufficient,
e.g., the check for presence of benign.com can be trivially bypassed if the attacker uses the
payload benign.com.evil.com. Similarly, checks that only test partial URL fields, such as

63

CHAPTER 4. STUDYING REQUEST HIJACKING VULNERABILITIES IN THE WILD

Table 4.9: Summary of program behaviours that can eliminate unique client-side request hijacking vulnerabilities.

Property Instances Flows Pages Sites
Infeasible Source Manipu. SP is URL domain 1,152,266 116,441 3,249

SP is URL path 911,897 95,269 2,657

Reassignment to Source SP = constant 627,460 68,251 3,358
SP : fragment string replace 21,709 3,067 1,502
SP : fragment object assign 4,092 666 434

Whitelist / Equality Check SP === constant 367,024 49,089 2,294
SP : postMessage origin check 40,185 7,634 965
SP includes a set of constants 15,032 2,541 367
arrayConstants.includes(SP) 10,022 899 610

Duplicate Function Calls SP flow executed ≥1 times 8,743 1,228 202

Length Check Length(SP) === 1 3,560 1,155 501

Type Check typeof SP === "number" 12,121 2,001 1,328
typeof SP === "boolean" 1,667 1,001 542
SP instanceof Date 789 300 91
SP is JSON && valid(SP) 443 235 55

Benign Control / Taint SP taints request fragment only 97,528 17,802 1,029
SP taints request scheme only 44,209 10,512 836

Legend: SP= Source Parameter.

path or query parameters are insufficient, because attackers may be able to forge the request
domains, or overwrite query parameters with parameter pollution [232]. We observed that a
different group of data flows (11.1%) apply a combination of these checks simultaneously.

Then, about 2.7% of the data flows contain validation checks that compare two different
attacker-controlled values with one another, e.g., a query parameter value, used to generate
an asynchronous request, is compared with window.name, suggesting that developers treat
window properties as trusted values that can be safely used in sensitive operations. Finally,
less than 0.4% of the input validation checks exhibit logical flaws, where the tested condition
always evaluates to true, which could indicate a potential gap between the semantics of the
JavaScript language and the developers’ comprehension. Also, we examined the input validation
implemented on various data flows within the same webpage and across different pages of a
site, and we observed at least two distinct types of input validation in 699 pages and 412
sites, respectively, which may suggest the presence of multiple developers’ implementations and
differences in their approaches to input validation.

Then, we also examine secure patterns that can hinder request hijacking, both intentionally
and unintentionally. Specifically, out of the ∼3.3M taint flows that Foxhound+ discovered (Cf.
Table 4.3), JAW-v2 marks only ∼118K of them as vulnerable, and discards the rest (∼3.2M)
due to a variety of (preventive) program behaviours, e.g., validity checks, duplicate executions
of the same data flow, and re-assignment of constant values to sources like URL fragment. We
used static analysis to examine more closely the reasons why these 3.2M requests were not
vulnerable, and we grouped them into seven categories (Cf. Table 4.9).

In total, JAW-v2 identified 1,104,104 data flows across 125,738 webpages and 7,021 sites
that implement robust input validation against request hijacking. We found that overwriting
attacker-controlled sources with variable assignments and strict equality / whitelist comparisons
are the most common type of input validation, which prevents request hijacking, with a total of
653K and 432K instances across 3,935 and 2,824 sites, respectively. Then, contrary to these
intentional checks, we found that other program behaviours may prevent request hijacking too.
For example, the most frequent reason for the non-vulnerability of a taint flow was its sole
reliance on the domain or path of the webpage to generate outgoing requests, because modifying
the domain or path of the top-level URL by the attacker would result in the victim accessing a
different webpage altogether.
Content Security Policy (CSP). CSP [109, 27] can limit the impact of request hijacking

64

4.5. SUMMARY

when attackers can forge the URL of requests. In these cases, CSP connect-src directive [163]
can be used to constrain endpoints for asynchronous requests, EventSource and WebSockets
to trusted domains, preventing sensitive data exfiltration to other domains. We found that a
correct configuration of CSP could mitigate information leakage and XSS exploitations in 58.7%
of the request hijacking data flows. However, we observed that only 7.6% of the webpages in
our dataset deploy a CSP using this directive, including 1,265 pages with vulnerable data flows.
While CSP can mitigate information leakage, it does not prevent hijacking requests for CSRF
attacks (i.e., same-site request endpoints, or forging request body).
Cross-Origin Opener Policy (COOP). When attackers use window.open() to open
vulnerable target pages in a new window, COOP [73] can be used to isolate the browsing context
to same-origin documents. For example, if an honest, cross-origin page with COOP is opened in
a new window, the malicious opening page will not have a reference to it, preventing attackers
to set the window name, or send postMessages to the new window, which in turn prevents the
forgery of requests generated by these inputs. We found that about 7% of the request hijacking
data flows could be mitigated by COOP, as they rely on window name, document referrer and
postMessages to provide program inputs. However, we observed that only ∼1.9% of webpages
in the wild implement COOP, and, strikingly, none of the webpages exhibiting request hijacking
data flows had adopted this policy, calling for increased awareness about COOP.
Cross-Origin Embedder Policy (COEP). COEP [74] controls embedded cross-origin re-
sources in a webpage. Developers can use the COEP require-corp policy to restrict fetched
resources to either the same origin or a set of explicitly marked cross-origin resources. As such,
COEP can constrain the fetch() API to trusted domains, mitigating the impact of 5.3% of
the total request hijacks. We observed that only ∼1% of the webpages in our dataset use the
require-corp policy, including 141 pages with vulnerable data flows across 32 sites.
Fetch MetaData. These are a series of HTTP request headers [233, 228] that send additional
provenance meta data about the request, such as the context it originated from. Websites can
use this information to implement policies that block potentially malicious requests. While Fetch
MetaData headers are automatically included in client-side requests by JavaScript programs,
they can still restrict exploitations. For example, websites can use the Sec-Fetch-Mode
header with the navigate option to restrict top-level requests exclusively for page navigation,
and block request hijacking attacks that trigger state changes [P4]. We observed that these
headers are present in 67,221 requests across ∼9% of websites including 85 vulnerable sites.

4.5 Summary

Request forgery attacks are among the oldest threats to Web applications, traditionally caused
by server-side confused deputy vulnerabilities. However, recent advancements in client-side
technologies have introduced more subtle variants of request forgery, where attackers no longer
rely on confused deputy flaws but instead exploit input validation issues in client-side programs
to hijack outgoing requests. Unfortunately, we still lack a comprehensive assessment of these
new client-side variants, including their prevalence, impact, and countermeasures, and in this
thesis, we embark on one of the initial evaluations of the state of client-side request hijacking on
the Web platform.

Starting with a comprehensive review of browser API capabilities and Web specifications,
we systematize request hijacking vulnerabilities and the resulting attacks, identifying 10 distinct
vulnerability variants, including seven new ones. Then, we use our systematization to design
and implement JAW-v2, a static-dynamic tool that detects data flows from attacker-controllable
inputs to request-sending instructions. We instantiate JAW-v2 on the top of the Tranco top
10K sites, performing, to our knowledge, the first investigation into the prevalence of request
hijacking flaws in the wild.

65

CHAPTER 4. STUDYING REQUEST HIJACKING VULNERABILITIES IN THE WILD

Our study uncovers that request hijacking vulnerabilities are ubiquitous, affecting 9.6% of the
top 10K sites. We demonstrate the impact of these vulnerabilities by constructing 67 proof-of-
concept exploits across 49 sites, making it possible to mount arbitrary code execution, information
leakage, open redirections and CSRF also against popular websites like Microsoft Azure, Starz,
Reddit, and Indeed. Finally, we review and evaluate the adoption and efficacy of existing
countermeasures against client-side request hijacking attacks, including browser-based solutions
like CSP, COOP and COEP, and input validation. Our systematic analysis shows that because
request hijacking can be exploited in a variety of ways, existing countermeasures can typically
only mitigate a fraction of the attacks. We present eight insecure input validation patterns
which developers should avoid, and seven behaviours which provide successful mitigation.

66

5
Understanding DOM Clobbering

Attacks and Defenses

67

5.1. ATTACK TECHNIQUES

In this chapter, we extend our security testing framework, JAW, to study the threat posed
by DOM Clobbering attacks, addressing RQ3 of §1.1. As presented in §2.2.4, DOM Clobbering
is a type of HTML-only injection attack, where attackers confuse a web application by injecting
HTML elements whose id or name attribute matches the name of security-sensitive variables
or built-in browser APIs, such as variables used for fetching remote content (e.g., script src),
and overshadow their value.

DOM Clobbering vulnerabilities have been known for over a decade, with the first instance
identified in 2010 [83] where an iframe named self allowed attackers to overwrite the
top window location of webpages containing framebusting code, i.e., assignments such as
top.location = self.location. Since then, security researchers have identified new,
more subtle attack variants, combining pairs of HTML tags (e.g., [10, 26]) or browser-specific
markups and attributes (e.g., [84, 87, 85, 86]), and clobbering not only variables, but also deep
object properties (e.g., [88, 234, 9]), nested window proxies (e.g., [89, 9]) and loops (e.g., [9]).
When looking at the possible combinations of tags, attributes, code features, and runtime
behaviors, prior works have merely scratched the attack surface, and, to date, we still miss a
systematic and comprehensive exploration of this threat.

Recently, DOM Clobbering vulnerabilities in Gmail [88] and Google Analytics [235, 91]
revamped new discussions about defenses, such as proposing to switch off named property
accesses for DOM elements at the browser level (see, e.g., [90, 91, 236]), which has been
dismissed since, according to Google Chrome telemetry data, about 10.5% of the pages in 2021
use named property accesses to implement functionalities that could otherwise break [237]. To
date, the burden of protecting from DOM Clobbering attacks is solely on developers’ hands,
who can use existing countermeasures such as HTML sanitizers tailored to protect against
DOM Clobbering, e.g., DOMPurify [78], or mitigate the risk of code execution via Content
Security Policy (CSP) [238, 239, 92]. Unfortunately, DOMPurify protects only from specific
DOM Clobbering cases, whereas CSP cannot prevent the execution of already-present code
that reacts to markup injections, suggesting that existing countermeasures may be incomplete
or even insufficient. As a last resort, developers can develop their own defenses, requiring
a deep understanding of the main threat and its variants, which, unfortunately, may not be
the case. For example, as witnessed by recent DOM Clobbering vulnerabilities discovered in
HTML sanitizers, e.g., DOMPurify [85] and HTML Janitor [234], developers may still be largely
unaware of the risk posed by DOM Clobbering vulnerabilities.

In this chapter, we conduct the first comprehensive and systematic study of DOM Clobbering,
covering vulnerability, attack techniques, detection, prevalence, impact, and defenses. First,
we propose a systematic technique to identify DOM Clobbering markups and test browsers
automatically, identifying 148 previously-unknown ones, 30,803 new variants, and 114 new
browser APIs that can be clobbered in at least one browser (§5.1). Then, we present JAW-v3,
an automated detection tool for DOM Clobbering that uncovered 9,467 DOM Clobbering
vulnerabilities, affecting 9.8% of the Tranco top 5K sites, of which 44 that we manually confirmed
to be exploitable, including popular sites like GitHub, Fandom, Vimeo, Trello, TripAdvisor,
and AliExpress (§5.2). Finally, we evaluate the robustness of 29 client-side and server-side
HTML sanitizers and CSP, showing that 55% of sanitizers are vulnerable and 85% of the DOM
Clobbering vulnerabilities cannot be mitigated by CSP. Also, we review existing countermeasures,
analyze common mistakes of the 491 vulnerable sites, and distill a list of recommendations and
secure coding patterns (§5.3).

5.1 Attack Techniques

The first part of this paper addresses RQ3.1 of §1.1.3, investigating the different ways DOM
Clobbering markups can manipulate JavaScript variables, object properties, and native APIs.

69

CHAPTER 5. UNDERSTANDING DOM CLOBBERING ATTACKS AND DEFENSES

Before presenting our findings (§5.1.2), we describe the methodology we followed to answer this
RQ (§5.1.1).

5.1.1 Methodology

Our methodology comprises two main steps. First, we review existing works on DOM Clobbering
attacks, looking for the various techniques to generate markups and at the browser specifications
causing the overrides. Then, we apply the information gathered to generate markups exhaustively
and thoroughly test browsers.

5.1.1.1 Systematization of Known Instances

As the first step, we systematically reviewed the existing literature on DOM Clobbering attack
markups, i.e., the academic literature [78, 236, 8, 83], HackerOne vulnerability reports [240],
the CVE database [241], Bugzilla bug reports [84], and non-academic resources (see, i.e., [88,
242, 89, 25, 10, 9, 26, 243, 85]). Then, for each discovered DOM Clobbering instance, we
extracted the HTML tags, attributes, the clobbered target (e.g., variable or window/document
property), the object type of the clobbered target (e.g., HTMLElement or WindowProxy), and
tags relation (i.e., child, srcdoc, or sibling). Then, we looked for the corresponding browser
specification rules that explain the reason why the clobbering instance works. When the rule
defines other variants of the clobbering instance, we add them to the list of the instances.
Accordingly, we reviewed the HTML and DOM specifications [244, 116], and GitHub issues in
the specifications’ repositories, i.e., W3C permissions policy [90], WICG document policy [91, 87],
and WHATWG HTML and DOM standard repositories [86, 245]. Finally, we group instances
together based on their similarity, i.e., tags, attributes, target, and the type of the value it refers
to. Table 5.1 shows the result of our systematization.

5.1.1.2 Markup Generation and Browser Testing

Starting from our systematization, we derived a list of rules for generating DOM Clobbering
markups, covering all HTML tags, attributes, tags’ relations, and attack targets (i.e., a variable,
an object property, or a native browser API). First, we generated candidate HTML markups for
a target ‘x’ using all the 142 valid HTML tags, including a custom tag (e.g., mytag), and all
the 244 valid HTML attributes, including a custom attribute. For each tag, we set the value
of each attribute to ‘x’ and add the JavaScript code that checks whether the markup clobbers
the target ‘x’. Then, we generated markups for object properties ‘x.y’ and ‘x.x’ combining all
pairs of the 142 HTML tags considering three relations: sibling tags, parent-child tags, and
the srcdoc attribute value. The experiments with a single tag showed that only name and
id attributes create named properties. Accordingly, to reduce the number of test cases to a
testable size, the generation of markups for object properties did not consider combinations of
all HTML attributes, but only those of the name and id, e.g., id=x, or id=x, name=y.

After generating all markups, we put each of them in a test webpage, along with a JavaScript
code that verifies if the target is clobbered. Then, we instantiate each browser and visit the
test pages automatically. For web browsers, we used BrowserStack [246] to programmatically
control browser versions, names, and their execution life-cycle in a fully automatic fashion. We
evaluated (the latest versions of) all mobile and desktop browsers available in BrowserStack
(i.e., 16 browsers), and additionally tested the Tor Browser for the sake of completeness. Finally,
for Safari, we considered three different versions that correspond to the three recent macOS
operating systems as Safari cannot be upgraded standalone [247]. In total, we evaluated 19
browsers.

Overall, our generation algorithm produced 3,906,136 candidate test markups, of which
34,648 are for targets ‘x’, i.e., variables or native APIs, and the rest are for object properties ‘x.y’

70

5.1. ATTACK TECHNIQUES

Table 5.1: Overview of known DOM Clobbering markups grouped by their corresponding rules in the HTML [116]
and DOM [244] specifications.

.
Rule(s) Target Ref. Type Tag 1 Tag 2 Attribute 1 Attribute 2 Relation Total References
Named Access Window

R1 win.x, x WindowProxy iframe - n=x - - 1 [90, 167, 243]
win.x, x HTMLElement TS1, TS2 - n=x - - 5 [90, 167, 26, 85]
win.x, x HTMLElement any - id=x - - 141 [88, 90, 10, 9, 167]

DOM Tree Accessors

R2 doc.x WindowProxy iframe - n=x - - 1 [242, 9, 168]
doc.x HTMLElement TS1, TS2 - n=x - - 5 [168, 26]
doc.x HTMLElement object - id=x - - 1 [168]
doc.x HTMLElement img, image - id=x, n=any - - 2 [168, 26, 85]

Form Parent-Child

R3, R1, R2 win.x.y, doc.x.y HTMLElement form TS2, TS3 id=x ‖ n=x id=y ‖ n=y child 36 [234, 9, 26, 85, 86]

Nested Window Proxy

R4, R1, R2 win.x.y, doc.x.y WindowProxy iframe iframe n=x n=y srcdoc attr. 1 [242, 89, 9]

HTMLCollection

R5, R1, R2 win.x.x HTMLCollection any any id=x id=x child, sibling 141 [88, 244, 10]
doc.x.x HTMLCollection TS2 TS2 id=x id=x child, sibling 3 [244, 10, 168]
win.x.y HTMLCollection any any id=x, n=y id=x child, sibling 141 [88, 242, 25, 244, 10, 9]
doc.x.y HTMLCollection TS2 TS2 id=x, n=y id=x child, sibling 3 [244, 10, 168]

Legend: R1= Named Access on Window Rule ([116] §7.3.3); R2= DOM Tree Accessors Rule ([116] §3.1.5); R3= Form Element Rule ([116] §4.10.3);
R4= Iframe srcdoc Rule ([116] §4.8.5); R5= HTMLCollection Rule ([244] §4.2.10.2); win=window; doc=document; n=name;

TS1=form, embed; TS2= object, img; image; TS3=button, fieldset, input, output, select, textarea.

and ‘x.x’. When testing variables, we replace the target ‘x’ with the variable name generating in
total 34,648 test cases for variables. When testing native DOM APIs, we replace the target ‘x’
with the API function or property name (e.g., the cookie property of document), obtaining
34,648 test cases per API function. As of October 2021, the total number of DOM API objects
is 581 [132], of which 347 are window APIs (i.e., 291 properties and 56 methods) [248], and
234 APIs are for the document object (i.e., 178 properties and 56 methods) [131]. In total, we
generated 20,130,488 test cases for native APIs.

5.1.2 Results

This section presents the results of our literature review and browser testing.

5.1.2.1 Systematization of Known Instances

Table 5.1 summarizes the DOM Clobbering markups1. Our review identified 481 DOM Clob-
bering instances that we grouped into 13 classes based on their structural similarity. Each
instance shows how a specific HTML markup (e.g.,) can clobber a specific target,
i.e., variable (e.g., x) or object property (e.g., window.x), and replaced it with a JavaScript
object (e.g., x is shadowed by an HTMLAnchorElement). For each class, the table shows the
clobbered target, the HTML code that can overwrite it, and the object type stored in the target.
Also, the review of the HTML and DOM specifications resulted in the identification of five rules
that instruct the browser to store the reference type in the target, which is mapped to each
known DOM Clobbering instance. The rules are Named Access on Window ([116] §7.3.3), DOM
Tree Accessors ([116] §3.1.5), Form Element ([116] §4.10.3), Iframe srcdoc attribute ([116]
§4.8.5), and HTMLCollection ([244] §4.2.10.2), which we labeled as R1 to R5, respectively. The
rest of this section details each group of clobbering markups and the rules abused by them.
Named Access Window. These group of markups leverage a single HTML element whose
id or name is set to a target variable ‘x’, clobbering window.x due to browsers’ compliance

1An interactive version of the markups available on https://domclob.xyz/domc_markups/list

71

https://domclob.xyz/domc_markups/list

CHAPTER 5. UNDERSTANDING DOM CLOBBERING ATTACKS AND DEFENSES

with the Named Access on the Window Object rule (R1) [167]. We reviewed this rule in §2.2.4.
Note that we use window.x and ‘x’ interchangeably because all global variables belong to the
global window object by default.
DOM Tree Accessors. The markups of this group can shadow document properties because
browsers comply with the DOM Tree Accessors rule (R2) [168], which instructs browsers how to
retrieve properties of the document object (e.g., DOM elements). Similarly to the previous
group, these markups use a single named HTML element (e.g., object, or embed) to clobber
a property ‘x’ of the document.
Form Parent-Child Relationship. These markups clobber properties ‘X.y’ where ‘X’ can
be any of ‘x’, window.x, and document.x. First, they exploit either the rules R1 or R2 to
clobber the base object ‘X’. Then, they use the Form Element rule (R3) to clobber property
‘y’ of object ‘X’, i.e., the form elements’ parent-child relationships where the browser creates a
property of the second element for the first element’s accessor variable [9]. DOM Clobbering
code that rely on this technique comprise a form tag and a child (e.g., an input) named ‘x’
and ‘y’, respectively.
Nested Window Proxies. These markups use the Iframe srcdoc rule (R4) to create nested
window proxies that are named with ‘x’ and ‘y’, respectively. Similarly to the previous group of
markups, it uses the rule R1 or R2 to clobber the base object. Then, the stacked iframes enable
attackers to exploit frame navigation features to clobber object properties like ‘x.y’ [89, 9].
HTMLCollection. The last gour groups of markups rely on a different rule known as HTML-
Collection (R5). Specifically, when two or more elements have the same id in the DOM tree,
browsers create an array-like object called HTMLCollection [10, 249], which contains all
elements with the same id. Elements inside HTMLCollections can be accessed by (i) their
index in the collection and (ii) their id and name, enabling attackers to abuse R5 to clobber
arrays [9] and loop elements (e.g., ‘x’ and ‘x[i]’) as well as object properties like ‘x.x’ and
‘x.y’ [88]. Similarly to the previous techniques, rules R1-2 can be combined with R5 to clobber
nested object properties like window.x.y.

5.1.2.2 Clobbering Variables and Object Properties

Our browser testing experiments uncovered 31,432 distinct DOM Clobbering markups that work
in at least one browser, as summarized in §5.1.2.12, from which 145 clobber a variable ‘x’, and
the remaining 31,287 clobber ‘x.y’ and ‘x.x’.
Post-processing of Results. As the manual review of 31K individual instances is infeasible,
we group instances by similar features. We start with preliminary groups based on the set of
browsers they work in and the target they clobber. Then, we look at the structural features,
i.e., tag1, tag2, attribute1, attribute2, and relationship, and we merge two groups when all
the structural features but one are the same. Accordingly, we reduced the 31K instances to 74
classes, as shown in §5.1.2.1, and map each class to our systematization of known instances. In
summary, out of the 74 classes, 10 classes rely on the Window Named Access, four classes on
DOM Accessors, 13 classes on the Parent-Child Relationship, four classes on Nested Window
Proxies, and finally 43 classes leverage HTMLCollections.
Findings. By comparing the 74 DOM Clobbering classes in §5.1.2.1 with the 13 previously
identified classes in Table 5.1, we discovered that the 31,432 DOM Clobbering markups include
148 new instances, 481 previously known ones, and 30,803 variants of the known ones, which
rely on one of the five DOM Clobbering techniques of §5.1.2.1.

The variants derive from markups that are already known for DOM Clobbering according
to Table 5.1, but now have one or more additional attributes, or are permuted in part with a
different HTML tag. For example, HTMLCollections clobbering window properties may be

2Interactive version: https://soheilkhodayari.github.io/DOMClobbering/domc_markups/list

72

https://soheilkhodayari.github.io/DOMClobbering/domc_markups/list

5.1. ATTACK TECHNIQUES

Table 5.2: Overview of DOM Clobbering markups. Rows marked with E are classes that contain new DOM
Clobbering instances. For all rows, clobbering window.x also implies clobbering the variable x. Browsers with
similar behaviours are grouped with the same color. The table highlights a total of 10 distinct groups of browser
behaviours with respect to DOM Clobbering. Legend: w=window; d=document; Rel.= Relationship; T_i=
Tag set in Table A.3 of Appendix A.2; n= name; ch= child; sib= sibling; (&p)= optional property p; − = minus
operator; TB = Tor Browser; SI= Samsung Internet; UC= UC Browser; = clobbered; = clobbering fails.

Chrome Firefox Opera Edge Safari TB SI UC

HTML Markup 95
.0
.4
63
8

96
.0

92
.0
.4
51
5

94
.1
.2

95
.0

39
.0

65
.2
.3
38
1

82
.0
.4
22
7

3.
2.
3

95
.0
.1
02
0

96
.0
.1
05
4

95
.0
.1
02
0

15
.1

14
.1

13
.1

14
.7
.1

11
.0
.1

15
.0
.6

13
.3
.8

Clobbered Tag 1 Tag 2 Attribute 1 Attribute 2 Rel. Total New � ¿ � ¿ � ¿ � ¿ ¿ ¿ ¿ ¿ � �

Named Access Window
win.x T2 - id=x - - 106

E win.x customtag,iframe,T5 - id=x - - 8 1
win.x T6,bdi,bdo,big - id=x - - 6
win.x T4,embed,form - n=x - - 5
win.x video,wbr,xmp - id=x - - 3
win.x aside,audio,b - id=x - - 3

E win.x applet - n=x - - 1 1
win.x iframe - n=x - - 1
win.x base - id=x - - 1
win.x article - id=x - - 1

DOM Tree Accessors
doc.x T4,embed,form - n=x - - 5

E doc.x applet - id=x ‖ n=x - 2 2
E doc.x iframe - id=x ‖ n=x - - 2 1

doc.x object - id=x - - 1

Form Parent-child
win.x.y form T3,T4 − fieldset id=x ‖ n=x id=y ‖ n=y ch 64

(& id=y)
doc.x.y form T3,T4 n=x (& id=y) id=y (& ch 36

n=x ‖ n=y)
win.x.y form T3,T4 id=x (& n=y) id=x & n=y ch 18
win.x.y form T3,T4,embed n=x id=y & n=x ch 10
doc.x.y form T3,T4,embed, form n=x id=y & n=x ch 10
win.x.x form T3,T4 id=x id=x & n=y ch 9
win.x.y form button id=x ‖ n=x id=y ‖ n=y ch 8

(& id=y)
win.x.x form T3 n=x id=y & n=x ch 6
doc.x.x form T3,T4 n=x id=y & n=x ch 6

E doc/win.x.x form T4,embed n=x id=y & n=x ch 4 1
E doc.x.y form iframe n=x id=y & n=x ch 1 1
E doc/win.x.y form T4,embed id=y & n=x id=y & n=x ch 4 1
E win.x.y form applet n=x id=y & n=x ch 1 1

Nested Window Proxy
doc.x.x iframe iframe n=x id=y & n=x srcdoc 1

E doc.x.y iframe iframe n=x id=y ‖ n=y srcdoc 2 1
win.x.x iframe iframe n=x id=y & n=x srcdoc 1

E win.x.y iframe iframe n=x id=y ‖ n=y srcdoc 2 1

HTMLCollection
win.x.y T1,svg,customtag T1,plaintext id=x id=x & n=y sib 787
win.x.y T1,customtag T1,plaintext id=x id=x & n=y ch 774

− T7,iframe
win.x.y abbr,dl,dt T13 id=x id=x & n=y ch, sib 274
win.x.y abbr,dl,image,img T8,T12,T20 id=x id=x & n=y ch, sib 392
win.x.y T18 T13,T14 id=x id=x & n=y ch, sib 7,480
win.x.y address,dir,dt T15 id=x id=x & n=y ch, sib 338
doc.x.y applet T4,applet id=x id=x & n=y ch 4

E doc.x.y T4,applet,embed T4,applet,embed n=x id=y & n=x sib 13 13
form,iframe form,iframe &

E doc.x.y applet,embed T4,applet,embed n=x id=y & n=x ch 11 11
form,image,img T4,applet,embed

doc.x.y applet,object T4,applet id=x id=x & n=y sib 5
win.x.y dir,div,dt,element T16 id=x id=x & n=y ch, sib 252
win.x.y div T17 id=x id=x & n=y ch, sib 66
win.x.y div,dl T12 id=x id=x & n=y ch, sib 186
win.x.y element,em,embed,fieldset T1,plaintext-iframe id=x id=x & n=y ch, sib 876

E win.x.y embed T4,embed,form n=x id=y & n=x ch, sib 10 10
E doc.x.y T4,embed,form,iframe T4,embed,form,iframe n=x id=y & n=x sib 11 11
E doc.x.y T4,embed,form T4,embed,form n=x id=y & n=x sib 25 25
E doc.x.y embed,image,img iframe n=x id=y & n=x ch 3 3
E doc.x.y embed,image,img T3,T4,embed,form n=x id=y & n=x ch 15 15

win.x.y T9,iframe T1,plaintext-iframe id=x id=x & n=y sib 1,436
win.x.y T9 T1,plaintext-iframe id=x id=x & n=y ch 1,301

E win.x.y form,image T4,embed,form n=x id=y & n=x sib 7 7
E win.x.y T4,form applet n=x id=y & n=x sib 4 4
E win.x.y image embed,form n=x id=y & n=x ch 2 2
E win.x.y image,img T4,embed,form n=x id=y & n=x ch, sib 16 16
E win.x.y T4 applet n=x id=y & n=x ch 3 3

win.x.y ins content,data id=x id=x & n=y ch, sib 4
win.x.y T7, T8 T1,plaintext − iframe id=x id=x & n=y sib 8,848
win.x.y T8 T1,T11,plaintext id=x id=x & n=y ch 7,526

− iframe
E doc/win.x.x object T4,embed,form n=x id=y & n=x ch 5 5

doc.x.y object T4 id=x id=x & n=y sib 3
E doc.x.y object form,image,img n=x id=y & n=x ch 3 3
E doc.x.y object iframe n=x id=y & n=x ch 1 1

doc.x.y object image,img id=x id=x & n=y ch 2
E doc.x.y object embed,object n=x id=y & n=x ch 2 2
E win.x.y object T4,embed,form n=x id=y & n=x ch, sib 1 1
E doc/win.x.y object T4,embed,form id=y & n=x id=y & n=x ch 5 5

win.x.y svg iframe id=x & n=y id=x & n=y sib 1
win.x.y svg T1,plaintext id=x & n=y id=x & n=y sib 125
win.x.y svg,table T1,plaintext − T19 id=x & n=y id=x & n=y ch 157
win.x.x table iframe id=x id=x & n=y ch 1
win.x.x table T1,plaintext,svg − T10 id=x id=x & n=y ch 119 0
win.x.y table iframe id=x & n=y id=x & n=y ch 1

Total 31,432 148 59 59 46 35 35 46 59 59 44 59 59 43 38 45 52 37 35 59 59

73

CHAPTER 5. UNDERSTANDING DOM CLOBBERING ATTACKS AND DEFENSES

formed not only for two similar HTML tags as in Table 5.1 (e.g., two a tags with id=x), but
also for certain combinations of dissimilar tags (e.g., svg and a), which accounts for a large
number of the clobbering instances. Other variants are cases where additional id and name
attributes are added to the existing clobbering markups. For example, when looking at form
elements and their childern in Table 5.1, we observe that each tag of the markup has only one
id or name. However, as demonstrated by the results in §5.1.2.1, these attributes may exist
simultaneously on HTML tags and with similar or dissimilar values, resulting in additional
clobbering variants.

In comparison, the new clobbering instances rely on new (pairs of) HTML tags and attributes
that were previously not known to be applicable for DOM Clobbering. We observed that 28 out
of the 74 identified classes contain at least one new instance, with a total of 148 new instances.
From these, 22 classes contain only new instances (i.e., 142 instances). In the remaining of this
section, we briefly describe the new instances within each DOM Clobbering technique.

Named Access Window and DOM Tree Accessors. We discovered that any custom
HTML tag (e.g., customtag) can be used to clobber a target variable x and window.x in
all web browsers. Also, iframe tags with id=x can clobber document.x and named applet
elements can clobber both window.x and document.x. In total, we found five new instances
across four out of the 14 classes that rely on the Window Named Access and DOM Accessors
techniques.

Form Parent-Child. We discovered that browsers like Firefox and Safari create accessor
properties on JavaScript objects due to element’s ancestral relationship in the DOM tree for
previously unknown pairs of tags and attributes, such as a parent form tag with a embed,
iframe, or applet child with both a name and id attribute. Overall, among the 13 classes
that rely on elements’ parent-child relationships, we found four new markups in four different
classes.

Nested Window Proxy. We identified two new clobbering markups in two out of the four
classes which use the Nested Window Proxies technique. In particular, we discovered that using
the id attribute in the nested frames creates a named property on the base frame, referring to
a WindowProxy, whereas id on the base frame does not create a WindowProxy accessible
through the global window or document.

HTMLCollection. We found 137 new clobbering instances (across 18 classes) that lead to
the construction of HTMLCollections in a different way. Specifically, we discovered that some
browsers (e.g., Chrome and Firefox) create an HTMLCollection not only when two elements
share the same id, but also when they have the same name value. However, we observed that
this happens only for certain (combinations of) HTML tags, e.g., two object tags and two
form tags with the same name can form an HTMLCollection, but not two div tags.
Analysis of Browsers’ Behaviours. Our experiments revealed that browsers exhibit divergent
behaviours when linking named HTML elements to JavaScript variables (§5.1.2.1). For example,
we observed that for a significant fraction of the clobbering markups (i.e., 31,243 out of 31,432),
there is at least one browser that disagrees with others, rendering the task of defending against
DOM Clobbering increasingly more challenging. In summary, we identified 10 distinct groups of
browser behaviours with respect to different DOM Clobbering markups, which are highlighted
in §5.1.2.1 in colors, showing that while most of the attacks are shared across browsers, many
others only work with specific browsers. The table shows that all Safari and iOS-based browsers
have their own distinct behaviours, whereas browsers like Chrome, Opera, and Edge on Desktop
and Android exhibit the same behaviour. Note that, in general, similarities in behaviours are
expected because some browsers rely on the same underlying engine. For example, Chrome, Edge
and Opera on Desktop are all Blink-based browsers [250], whereas iOS browsers are required to
use the WebKit engine of Apple [251]. Finally, we observed that the least and highest amount
of DOM Clobbering risk is associated with using browsers like Firefox Desktop/Android and

74

5.2. DETECTION AND PREVALENCE

Figure 5.1: Architecture of JAW-v3.

Chromium-based browsers on Desktop/Android in which 35 and 59 classes of DOM Clobbering
markups work, respectively.

5.1.2.3 Clobbering Native APIs

Overall, we identified a total of 347 DOM APIs that can be clobbered in at least one browser
using one of the markups of §5.1.2.2, including 233 document and 114 window APIs. We
observed that all document methods and properties except the location property (i.e.,
233 APIs) can be clobbered in all browsers unanimously, as expected by the named property
visibility algorithm [170] of the specification [87, 116]. However, this experiment resulted in
a new finding that for a total of 114/347 window APIs (i.e., 91 properties and 23 methods),
named properties can shadow native properties that would otherwise appear on the object in at
least one browser, resulting in DOM Clobbering. This includes security-sensitive APIs such as
the cache storage [111], notification API [252], trusted types [112], and web storage [253]–to
name only a few instances. We observed that for 57/114 clobbered APIs, there is at least one
browser that disagrees with others.

5.2 Detection and Prevalence

The second part of this chapter intends to evaluate the impact, prevalence and variety of DOM
Clobbering vulnerabilities in real-world web applications (RQ3.2 of §1.1.3). In §5.2.1, we first
present JAW-v3, an automated DOM Clobbering detection tool. Then, in §5.2.2, we present
our experiment results.

5.2.1 Detection

We formulate the problem of detecting DOM Clobbering vulnerabilities into a series of data
flow analysis tasks where we identify clobberable JavaScript variables, object properties, and
native APIs whose value ultimately reach security-sensitive instructions, such as script src and
eval. Identifying such data flows via pure static analysis is not an easy task given the dynamic
nature of client-side JavaScript programs [11, 12, P1] and the scale of the analysis as studying
DOM Clobbering vulnerabilities requires the collection and analysis of hundreds of webpages
of real web applications. Accordingly, we use and extend state-of-the-art property graphs for
JavaScript and graph traversals [P1] to identify potentially-vulnerable data flows and then use
forced execution to confirm the presence of the vulnerability.

Figure 5.1 shows the architecture of JAW-v3. At a high level, it has three main components:
(i) a web crawler to collect webpages’ data and the JavaScript code, (ii) a vulnerability analysis
component that uses property graphs and traversals for identifying potential DOM Clobbering
sources and capturing data flows to security-sensitive sinks, and finally (iii) a vulnerability
verification component that dynamically confirms the candidate data flows by instrumenting
the code and forcefully executing it in a browser to check if the flow can occur at runtime. The
rest of this section details each component.

75

CHAPTER 5. UNDERSTANDING DOM CLOBBERING ATTACKS AND DEFENSES

5.2.1.1 Data Collection

To collect the client-side code of web applications, we developed a JavaScript-enabled crawler
leveraging Puppeteer [254] and Chrome DevTools Protocol (CDP) [108]. Starting from a seed
URL of the website under test, it visits the webpages following a depth-first strategy, and stops
when it doesn’t find new URLs, or the maximum of 100 URLs is reached. During the visit, it
collects the page resources (e.g., scripts) and runtime state values (i.e., fired events and DOM
objects’ properties) using the CDP and Puppeteer.

5.2.1.2 Vulnerability Analysis

Given the webpages’ data collected by the crawler, JAW-v3 creates a property graph of the
client-side JavaScript program leveraging a modified engine of JAW [P1]. Then, we formulate
the problem of finding potential DOM Clobbering data flows into a series of graph traversal
queries.
Hybrid Property Graphs. As presented in §3.1, HPGs are graph-based representations of
client-side JavaScript programs that unify multiple static code representations and runtime state
values. State values are event traces and environment properties, e.g., the values of cookies and
web storage. The static code representation comprises several graphs, e.g., Abstract Syntax Tree
(AST), Control Flow Graph (CFG) and Program Dependence Graph (PDG) that model the
nesting of the syntactical constructs of a program, the order and conditions for the execution of
program instructions, and the data flow and control dependencies within the statements of a
program, respectively. HPGs also model the event-driven transfer of control within JavaScript
programs via the Event Registration, Dispatch and Dependency Graph [P1]. Finally, they
include Semantic Types, which are labels initially assigned to source and sink nodes to capture
the semantic of those instructions and then propagated through the graph following the program
calculation. These representations are encoded in a directed graph in which nodes and edges
can have labels and key-value properties, known as a labeled property graph [P1, 15].
Model Construction. After collecting the webpages’ scripts and state values, JAW-v3 in-
stantiates an HPG, and imports it into a Neo4j docker instance [186], allowing the graph to
be traversed declaratively using the Cypher query language [197]. Unfortunately, we could not
use JAW as-is and modified it to address several of its shortcomings. First, when building a
graph, JAW normalizes the webpage code by combining code inside script tags into a single
script. However, identifying DOM Clobbering sources may require to distinguish the code across
two different scripts due to JavaScript variable hoisting [166] and double-clobbering [85]. For
example, a runtime error in one script causes the browser to stop parsing that script, and
continue with parsing of the rest of the scripts. Hence, variables initialized in the first script
are treated as undefined and can be a candidate DOM Clobbering source. Such runtime errors
can be caused intentionally by attackers by a preliminary clobbering, e.g., clobbering a native
DOM function that is invoked in a script shadows its value to an HTML element, which is not
callable, leading to a runtime error (Cf. Table 5.3). Accordingly, we changed the normalization
procedure to keep track of the script of origin for each AST node.

Second, the semantic types of JAW are tailored for client-side CSRF vulnerabilities and are
not sufficient to model DOM clobbering. Accordingly, we added a new set of generic semantic
types for DOM Clobbering sources (Cf. Tables 5.3 and 5.4) and security-sensitive JavaScript
sinks (Cf. Table A.2).

Third, JAW does not fully support ES6, resulting in imprecise control and data flow
models. Accordingly, we applied several enhancements. For example, we added support to
bind the function call arguments to their definition parameters when the code uses the ES6
Rest parameters [255] and the Spread operator [256] which improves the precision of the call
graph and PDG edges. Also, we created bindings for the this object depending on the calling

76

5.2. DETECTION AND PREVALENCE

Table 5.3: Description of properties of DOM Clobbering sources.

Object DOM Clobbering Source When?
v S1: v ∈ NP, CLOB(v)

S2: v /∈ NP, v and window.v are not assigned before, v is not declared with var, let and const
before

window.v S3: v ∈ NP, CLOB(v)
S4: v /∈ NP, v and window.v are not assigned before, v is not declared with var afterwards within
the same script, or anywhere before
S5: v /∈ NP, v or window.v is assigned or declared with any of the var, let and const keywords
within any previous script that contains an invocation of function f such that f ∈ NP, CLOB(f)

document.v S6: v /∈ NP
S7: v ∈ NP, CLOB(v)
Legend: NP= native property; CLOB(v)= v is a clobberable NP based on §5.1.2.3.

context [257], and the binding for the arguments object for non-arrow functions [258] to
improve pointer analysis tasks.

Analysis Traversals. After construction of an HPG, we traverse it to identify DOM Clobbering
source nodes in the graph. Table 5.3 presents the various types of DOM Clobbering sources
and their properties. The table shows that clobberable native DOM APIs discovered in §5.1.2.3
can act as a DOM Clobbering source. Identifying these objects in the program is a matter of
searching for a pre-defined syntactic structure, which is similar to other taint-style vulnerabilities
like client-side XSS. However, contrary to the traditional taint analysis, not all DOM Clobbering
sources are pre-defined syntactic objects. Instead, they can be a specific property of a program,
identifying which requires tracking the propagation of data flows within the program itself.
This is because any used variable that is undefined within its execution context (i.e., previously
not declared and assigned) can act as a DOM Clobbering source. To identify such sources,
we use PDG data dependency edges, which specify that a variable defined at a source node
is subsequently used at the destination node. Specifically, we query the graph for Identifier
nodes containing a variable v with no incoming PDG edge from any AssignmentExpression or
VariableDeclaration nodes that assign to or declare the variable v. If there is such PDG edge,
we further check whether the declaration/ assignment statement can hinder the clobberability
of v based on the criteria in Table 5.3, which can depend on the declaration scope (i.e., same
script or not), declaration position (i.e., before or after), and the declaration keyword (e.g., var
vs let) of that statement.

After identifying the source nodes, we associate to each of them a label that captures the
semantic type of the source, e.g., a clobberable native property or custom variable (Cf. Table 5.4).
Then, given a list of JavaScript sinks, we identify each of them in the graph and assign each a
relevant semantic type. Semantic types assigned to sink instructions are propagated to other
functions that encapsulate the same semantic, e.g., the type WIN_LOC_WRITE is set for instruc-
tions that set the value of window.location, such as window.location.replace(), and
is then propagated to all other developer-defined functions that can set its value through one of
their parameters. JAW-v3 considers different sink types to enable us to capture the potential
consequences of DOM Clobbering. The complete list of sinks is in Table A.2, which is derived by
surveying and aggregating the JavaScript sinks considered in prior academic and non-academic
resources (see, i.e., [114, 263, 265, 261, 266, 113, 259, 32, 262, 260, 53, 160, 264, 54, 3]). Finally,
we conduct forward data flow analysis by propagating semantic types from sources to sinks, and
select those flows where a node with a sink semantic type is tainted with a source type (i.e.,
pick up the attacker-controlled values). This component outputs a set of paths with potential
data flows from a DOM Clobbering source to a sink.

77

CHAPTER 5. UNDERSTANDING DOM CLOBBERING ATTACKS AND DEFENSES

Table 5.4: Summary of DOM Clobbering sources and their semantic types based on the seven cases of Table 5.3.

ý Source ! Semantic Type
S1: variable v CLOB_CUSTOM_VAR
S4, S5: window.v CLOB_WIN_CUSTOM_VAR
S6: document.v CLOB_DOC_CUSTOM_VAR

S2: property p CLOB_NATIVE_PROP
S3: window.p CLOB_WIN_NATIVE_PROP
S7: document.p CLOB_DOC_NATIVE_PROP

Legend: Si= case Si in Table 5.3;

Table 5.5: Prevalence and impact of DOM Clobbering in Tranco top 5K sites. The table shows the number of
clobberable data flows to security sensitive sinks of Table A.2, the number of affected webpages, and websites.

Threat # Sinks # Flows # Conf. # Pages # Sites
Client-side XSS 37,941,540 3,688 3,677 1,572 474
Request Forgery 2,555,147 1,406 1,403 541 398
Storage Manipulation 1,047,512 1,369 1,365 418 382
Open Redirect 1,306,603 1,228 1,227 391 385
JSON Injection 9,610,162 793 793 345 343
Cookie Manipulation 1,702,340 266 266 204 195
Websocket Hijacking 21,252 367 367 183 147
RegEx Injection 13,325,791 284 284 98 98
Doc. Domain Manip. 55,266 85 85 69 69
postMessage Manip. 119,971 0 0 0 0
File Read Path Manip. 57,789 0 0 0 0

Total 67,743,373 9,486 9,467 3,821 491
Legend: Conf.= Dynamically Confirmed

5.2.1.3 Vulnerability Verification

Given a set of potential DOM Clobbering data flows, the goal of this step is to verify each flow
and eliminate potential false positives. To accomplish this goal, JAW-v3 features a light-weight,
in-browser dynamic taint analysis engine leveraging Iroh.js [110]. After instrumenting the code
with Iroh for dynamic analysis, we first check whether the source variable of the data flow is
clobberable by creating a suitable HTML clobbering payload for that variable using the DOM
Clobbering classes of §5.1. We inject the payload to the DOM tree and subsequently verify the
clobberability of the source variable by dynamically logging its value at the source location.

As the next step, we confirm the existence of the data flow to the sink instructions. To do
that, we first taint each clobberable source, execute the program by loading it via Puppeteer,
and check if we can observe the data flow reported by the static analyzer. If that is not the case,
we forcefully execute the path toward sinks to check if there is an execution of the program
in which the data flow to the target sink occurs. We use forced execution to find candidate
pages among those where Puppeteer could not connect sources with sinks, and later validate
the presence of the vulnerability manually. Specifically, for each branch in the path control flow,
we forcefully execute the program once for the true and once for the false branch, until we hit a
execution path with the target data flow, or we exhaustively checked possible execution paths.
We observed that the number of branches between DOM Clobbering sources and sinks is in
practice small (i.e., less than 10), as we will show in §5.2.2. Finally, as forced execution may
also lead to spurious execution paths, we manually validate the decision reported by JAW-v3
and examine the exploitability.

5.2.2 Prevalence in the Wild

We quantified the prevalence and impact of DOM Clobbering on the top 5K websites using the
Tranco list [216] of Nov 1st, 2021 (ID: Y3JG), where we first selected the top 5K domains by
excluding the duplicates like local versions of websites (e.g., google.com vs google.de), and then
instantiated JAW-v3 for each of the them.

78

5.2. DETECTION AND PREVALENCE

Data Collection Statistics. Starting from the 5K seed URLs, JAW-v3 collected 205,696
webpages, ranging between 1 to 91 pages per site (41 pages on average). Out of the 205,696
webpages, 187,280 are unique pages based on their set of scripts. From the 187K pages, JAW-v3
extracted 18,351,815 scripts with a total of 24,664,686,928 LoC. Accordingly, JAW-v3 generated
187,280 HPGs by processing an average of 98 scripts and 131,700 LoC per page.
Vulnerability Prevalence. The analysis of 187,280 HPGs resulted in the identification of
20,580,350 DOM Clobbering sources and 67,743,373 sinks, which amounts to an average of
110 sources and 362 sinks per webpage. Out of these, static analysis revealed a total of 9,486
potential data flows from the sources to the sinks, from which the majority (i.e., 9,467) were
confirmed dynamically. We observed that these vulnerable data flows affect around 2% of the
webpages (i.e., 3,821 out of 187,280) and 9.8% of the tested websites (i.e., 491 out of 5K) in
total. Table 5.5 summarizes our findings.
Vulnerability Impact. We observed that the 9,467 vulnerabilities can have different security
implications, as shown in Table 5.5. The most common consequence is XSS that accounts
for around 38.8% of the vulnerabilities, whereas the least common consequence is document
domain manipulation [261, 160] that corresponds to less than 1% of the total vulnerabilities.
Other common consequences were client-side state manipulation (17.2%), client-side request
forgery (14.8%) and DOM-based open redirection (12.9%). Finally, the remaining 15.3% of
vulnerabilities had other repercussions like JSON injection and Websocket connection hijack.
We provide more information on each of these threats in Table A.2.
Verification and False Positives. Considering the high number of reported data flows by
the static analyzer (Cf. §5.2.1.2), it was infeasible to verify all of them manually. Instead,
we followed a semi-automatic approach leveraging a combination of dynamic analysis, forceful
execution and manual analysis, as detailed in §5.2.1.3.

We observed that in a large number of cases (46.1%, i.e., 4,373 flows), the dynamic verification
component can successfully confirm the existence of the vulnerability by loading the page and
executing it via Puppetter, whereas in the remaining cases (i.e., 5,113 flows), it needs to force
execute between one to ten conditional branches (four on average) before it can confirm or
reject the data flow and terminate. As a result of this process, the verifier eliminated a total
of 19 FPs across 11 of the 491 vulnerable sites, and confirmed the rest (i.e., 5,094 flows within
2,643 webpages of 491 sites). We manually verified and investigated the reason for each FP,
and discovered that eight FPs occur during the data flow analysis for identification of DOM
Clobbering sources, and 11 during the data flow analysis from sources to sinks. The former
cases happened because a variable was declared or assigned using a dynamic code generation
construct for which the statement nodes and PDG edges were missing in the HPG, and the latter
cases occurred due to dynamically fetched code where the value of the tainted variables changed,
inaccurate pointer analysis for dynamic property lookups, and removal of event handlers that
changed the tainted variables.

Finally, we manually validated the feasibility of the forcefully executed data flows by randomly
selecting two pages per site, from the 2,643 pages of the 491 websites whose data flows were
confirmed by forced execution. Our random sampling included 491 sites, 982 pages and 2076
data flows, out of which we could not determine a realistic execution path for at least 42 data
flows in 42 sites, leaving us with 2,034 vulnerable data flows of 491 websites.

5.2.3 Confirming Exploitability of Vulnerabilities

We manually examined whether the identified vulnerabilities can be effectively exploited by an
attacker. Given the high number of affected webpages, we randomly selected two vulnerable
pages per each of the 491 affected sites, and subsequently checked whether we can insert a DOM
Clobbering markup in the page by leveraging the functionalities offered by the application, or
through URL parameters, which could allow us to overwrite the clobberable variable identified

79

CHAPTER 5. UNDERSTANDING DOM CLOBBERING ATTACKS AND DEFENSES

by JAW-v3. To be able to use protected functionalities offered by the websites (e.g., creating
posts, adding comments, etc) and also prevent any side effects for other users, we created our
own test accounts for 358 sites that supported this feature without monetary costs, and for the
rest, we limited our tests to the public functionalities (e.g., search) without persisting any data.
As a result, we created a proof-of-concept exploit for 44 websites in total, affecting popular sites
and functionalities like Trello boards, Wiki pages in WikiBooks and WikiDot, comments in
Vimeo and VK, reviews in TripAdvisor and OpenTable, posts in Fandom and JustPaste, surveys
in SuveryMonkey, poster designs in PosterMyWall, and finally item searches in GitHub Shop,
AliExpress, AliBaba and Telam News–to name only a few examples. The exploits enable an
attacker to achieve XSS, open redirect, and client-side request forgery in 35, five, and four sites,
respectively.

5.2.3.1 Case Studies

This section reports on a few manually vetted case studies of the confirmed attacks. We note
that the affected parties have been promptly informed of the vulnerability, and have already
patched them (see §8.1).

GitHub. This vulnerability affects the GitHub Shop and originated when loading the Boomerag
JavaScript library [267]. In more details, the code followed the vulnerable pattern G of Table 5.7,
where a variable called BOOMR was defined in an inital script that contained a clobberable,
invoked native method, and a second script that used the object property window.BOOMR.url
as the src of a dynamically added script. Attackers can escalate this vulnerable pattern to
client-side XSS via double clobbering. First, they clobber the invoked native method, caus-
ing a runtime error when the browser parses the first script. Therefore, the browser stops
parsing the rest of the script and BOOMR becomes undefined. Then, attackers can clobber
window.BOOMR.url and consequently control the script src by injecting a DOM Clobbering
markup, e.g., . We dis-
covered that it is possible to inject such non-script markup to the client-side page leveraging the
search functionality and the URL query parameters, which were reflected back to the page.

Trello. We discovered that Trello uses a global object property called window.ClickTale-
ScriptSource to programmatically load a script named wrScript. However, this property
was clobberable as ClickTaleScriptSource was an undefined variable following the vulner-
able pattern A of Table 5.7. Finally, we found that it is possible to insert a persistent, non-script
markup to overwrite this object property by editing a comment for a card in Trello boards,
which resulted in arbitrary client-side code execution.

Fandom. We discovered a DOM Clobbering vulnerability in Fandom affecting the users’
message wall that resulted in open redirection. Specifically, the JavaScript program contained
an assignment to the location.href property of the top-level window, whose value was
tainted with a clobberable object property, i.e., form.elements.targetUsername.value.
Attackers can manipulate the value of this property by, e.g., two nested iframe tags that are
named form and elements, and an additional input element in the nested frame. The input
is named targetUsername, and has a value containing a malicious URL, which will be set
as the window URL. We found that it is possible to inject non-script markup in the page in
two distinct ways: (i) attackers can insert persistent payloads using the post functionality in
the profile message wall, and (ii) a URL parameter in the path was reflected back to the page
without extra validation, enabling transient insertion of clobbering payloads in the page.

80

5.3. DEFENSES

5.3 Defenses

This section addresses RQ3.3 of §1.1.3. First, in §5.3.1, we have a critical look at the existing
countermeasures and evaluate their robustness and cost-benefit tradeoff leveraging what we
learned from Sections 5.1 and 5.2. Then, in §5.3.2, we analyze the common mistakes of the 491
vulnerable sites (see §5.2), and distill a list of recommendations and secure coding patterns that
can resolve those issues.

5.3.1 Evaluation of Existing Countermeasures

Disabling DOM Clobbering Features. DOM Clobbering can be solved by disabling named
properties [90, 91, 87]. According to Chrome telemetry [237], disabling named properties for
clobbered variable accesses could break ∼10.5% of the webpages. Our results of §5.2.2 are in
line with these numbers, and we observed that 13.3% of the webpages use at least an instance
of clobbered variable accesses.

As webpages tend to reuse code via shared scripts, a patch in a script may fix multiple
websites. Accordingly, using the number of webpages may not accurately quantify the cost of
fixing breakage. As an alternative, we can measure the number of affected websites, and our
results show that the affected pages do not concentrate on a small number of sites, but they
scatter over 51.2% of the top 5K sites.

While breakage adequately measures the cost of this solution, it may not be a good indicator
for the actual benefits, i.e., fixed websites. Our results show that 118 websites of 2,561 potentially
broken sites will be fixed, which is about 4.61% of the broken websites (and 2.4% of the total).
However, our results also show that a large fraction of vulnerable websites are not considered by
breakage. In particular, we found 373 websites (76% of the vulnerable ones and 7.5% of the
total) that will benefit from such a solution. Overall, when comparing the cost and benefits, the
ratio of vulnerable over potentially-broken websites is about 1:5.2 (i.e., 491 vulnerable and 2,561
potentially-broken sites).
HTML Sanitization. HTML sanitizers can sanitize the input markups before adding them
to the DOM tree, e.g., by removing the id and name attributes from certain (combinations
of) HTML tags (Cf. §5.1). To assess the robustness of the popular HTML sanitizers against
DOM Clobbering, we dynamically tested them against all of the DOM Clobbering instances
we identified in §5.1. First, we selected the top five web programming languages based on the
GitHub 2021 Octoverse report [296], i.e., JavaScript, Python, Java, C# and PHP. We considered
both client-side and server-side JavaScript (i.e., node.js). Then, we searched for sanitizers of
each language and selected the top five based on their GitHub stars, forks and UsedBy, and the
number of downloads in their respective package managers (e.g., npm for node.js, packagist for
PHP, etc). This process led to the identification of 29 HTML sanitizer libraries, as for Java, we
identified only four sanitizers.

After identifying the popular sanitizers, we input the 31.4K DOM Clobbering markups
identified in §5.1 to each of them, and for each input vetted whether the sanitizer removes or
changes the named properties in the output markup. For each sanitizer, we tested both the
default and most strict configuration that it offers. We marked a sanitizer as vulnerable if there
is at least one clobbering markup that bypasses the sanitizer without being altered. Finally, we
marked sanitizers as partially vulnerable when they encode the < and > symbols of HTML
tags but do not remove or change the DOM Clobbering named properties because encoding
these symbols would not help when applications expect inputs in an HTML format.

Table 5.6 summarizes our findings. In total, we observed that 16 and 13 out of 29 sanitizers are
vulnerable to at least one DOM Clobbering markup in their default and most strict sanitization
configuration, respectively. In both of the configurations, four sanitizers are only partially
vulnerable, as they escape the markup rather than cleansing the named properties. Finally,

81

CHAPTER 5. UNDERSTANDING DOM CLOBBERING ATTACKS AND DEFENSES

Table 5.6: Robustness of top five HTML sanitizers of web programming languages against the 31.4K DOM
Clobbering instances of §5.1.2. The table shows the results for both the default and the most strict sanitizer
configurations.

HTML Sanitizer Version � Ò � � D
ef
au

lt

S
tr
ic
t

Bypassed Pct. Ref.
Client-side JS
1. DOMPurify 2.3.4 8.7K 534 49.7K 7.9M 29,995 95.4% [78]
2. Google Closure Lib. 20211201.0.0 4.3K 1K - 117K - - [268]
3. JS-XSS 1.0.10 4.4K 584 136K 8.7M 25,592 81.4% [269]
4. Sanitize-HTML 2.6.1 2.8K 316 102K 4.7M 79 0.25% [270]
5. Google Caja 6015 1.1K 123 - - 27,951 88.9% [271]

Node.js
1. Insane 2.6.2 394 21 - 55.3K 5 0.02% [272]
2. Bleach 0.3.0 117 19 - 1.6K 2,288 7.2% [273]
3. Angular-sanitize 1.8.2 100 237 49.1K 936K - - [274]
4. Yahoo html-purify 1.1.0 40 6 - 708 28,807 91.6% [275]
5. Arcgis 2.9.0 11 2 - 32.6K - - [276]

Python
1. Mozilla Bleach 4.1.0 2.3K 230 155K 17.5M 31,132 99.05% [277]
2. LXML 4.7.1 2K 481 216K 29.9M 28,211 89.7% [278]
3. HTML Sanitizer 1.9.3 61 19 - 17.9K 332 1.06% [279]
4. Htmllaundry 2.2 27 4 - 1.1K 1,460 4.6% [280]
5. Django-html-sanitizer 0.1.5 20 62 - 2.8K - - [281]

PHP
1. Htmlpurifier 4.14.0 2.4K 284 82.7K 2.5M - - [282]
2. Html-sanitizer 1.5.0 333 36 - 30.8K - - [283]
3. Symfony Sanitizer 1.0.0 104 1 - 7 - - [284]
4. HTMLawed 1.2 30 14 - 390K 21,211 67.4% [285]
5. Typo3 Sanitizer 2.0.13 13 10 - 88.9K 23,942 76.1% [286]

C#
1. AntiXssEncoder 4.3.0 2.6K 1K - 6.4K 31,390 99.8% [287]
2. HtmlSanitizer 7.0.473 1.1K 162 1.8K 108K 654 2.08% [288]
3. AJAX Toolkit 20.1.0 275 133 4.2K 264 - - [289]
4. NSoup 0.8.0 147 46 - 72 - - [290]
5. HtmlRuleSanitizer 1.6.0.1 50 16 30 308 - - [291]

Java
1. Jsoup 1.14.3 9.2K 2K 98.4K - - - [292]
2. OWASP HTML Sanitizer 20211018.2 647 171 - - - - [293]
3. Antisamy 1.6.4 105 72 - - - - [294]
4. HtmlCleaner 2.25 - - - 824 28,951 92.1% [295]

Total Vuln. (+) 16 13
Legend: �= GitHub Stars; Ò= GitHub Forks; �= GitHub UsedBy; �= Monthly Downloads;

= Vulnerable; = Partially Vulnerable; = Not Vulnerable

82

5.3. DEFENSES

when looking at the remaining 13 sanitizers, we observe that they implement a robust, enabled-
by-default defense. However, in all cases, they remove named properties unconditionally, i.e.,
for all input markups including those combinations that do not lead to DOM Clobbering, e.g.,
an anchor tag with name=x does not clobber the variable x. While such a strict approach is
effective, it may hinder the usability of these libraries in cases where developers need to use id
and name attributes for legitimate functionalities.
Content-Security Policy (CSP). When attackers can clobber the src attribute of dynam-
ically created scripts, they can load and execute arbitrary JavaScript code. In these cases,
the CSP script-src directive [92] can be used to constrain the value of script sources to a
set of trusted domains, preventing attacker-loaded code to be executed [88, 8, 238]. However,
unlike malicious JavaScript injected by the attacker, injected HTML code is not blocked by
CSP. Accordingly, CSP does not mitigate other variants of DOM Clobbering that do not require
script src manipulation, e.g., clobbering the parameters of dynamic code evaluation constructs
like new Function() can lead to CSP-bypassable XSS. Our evaluation in §5.2.2 shows that
37.7% of the DOM Clobbering vulnerabilities that lead to XSS (i.e., 1,385 out of 3,677), which
accounts for 14.7% of the total vulnerabilities can be mitigated by CSP, whereas the remaining
ones cannot.
Freezing Object Properties. Another way to mitigate DOM Clobbering is to freeze DOM
objects [93], e.g., via Object.freeze() method [297], which prevents the object to be
overwritten by named DOM elements. While effective, determining all objects and object
properties that need to be frozen is a non-trivial, error-prone task for web developers. Also,
sealed objects cannot be changed anymore, hindering the dynamic composition of webpages.
Finally, native properties cannot be frozen, rendering this approach ineffective when the DOM
Clobbering source is a clobberable native property, which accounts for ∼21.5% of vulnerabilities
(i.e., 2,037 out of 9,467) in §5.2.2.

5.3.2 Secure Code Patterns

Our evaluation of existing DOM Clobbering countermeasures in §5.3.1 revealed that they are
not sufficient for complete protection in a large number of cases. In this section, we have a
closer look at the variety of DOM Clobbering vulnerabilities in real web applications (§5.2.2),
identifying vulnerable behaviours and the common types of coding mistakes. Then, we use these
vulnerable behaviours to distill a list of recommendations and defensive coding patterns that
developers could apply to prevent DOM Clobbering. To achieve this objective, we extracted the
vulnerable lines of code and characterized them based on their high-level syntax and semantics,
identifying eight distinct vulnerable code patterns in the wild.

Table 5.7 summarizes our findings. We observe that the most common mistakes are patterns
A and E, in which the developer references an undefined variable through the window object,
and then use the result in a sensitive instruction, whereas the least common, but also more
complex mistakes are patterns F, G and H where the vulnerability originates due to the position
of the instructions that span across two different script tags. Other common mistakes are
patterns B and C, where developers treat custom and native document and window properties
as trusted values that can be safely used in sensitive operations. The rest of this section presents
secure coding patterns that can prevent DOM Clobbering.
Explicit Variable Declarations. As shown in Table 5.7, a key element enabling DOM
Clobbering is use of the || operator to rely on specific defaults when the primary, intended
variable or property is undefined. As an alternative solution, developers can initialize those
variables with the default value when they are undefined using var declarations, which prevents
named properties to overshadow them according to the named property visibility algorithm [170].
This solution could patch the patterns A, D, E, F, and H. When the value needs to be used in

83

CHAPTER 5. UNDERSTANDING DOM CLOBBERING ATTACKS AND DEFENSES

Table 5.7: Overview of DOM Clobbering code patterns in the wild. Different background colors represent code
in two different script tags.

.
Code Pattern Description # Flows # Pages # Sites

A VAR1 is not declared or assigned yet, thus window.VAR1
is clobberable.

3,134 1,214 143

B BA is a clobberable built-in API (§5.1.2.3), thus BA,
window.BA and document.BA are clobberable.

2,037 832 99

C Assignment to document properties is always shadowed
by DOM Clobbering (§5.1.2.3).

1,896 655 81

D VAR1 is declared with let that does not create property
on window, thus window.VAR1 is clobberable.

367 153 18

E VAR1 is initialized without var in the same script and
after the sink, but this does not result in hoisting.

1,635 792 116

F VAR1 is initialized with var, but in a different script
and after the sink statement.

121 50 12

G VAR1 is initialized in a script where a built-in method
can be clobbered and cause an error in parsing that
script, hence window.VAR1 can be clobbered in a sub-
sequent script (double clobbering).

53 36 7

H VAR1 is initialized in a different script as a property
of the window or without any modifiers after the sink
statement, thus window.VAR1 is clobberable.

224 89 15

Legend: BA= Built-in API; WinDoc = Window or Document Object; [code]= Alternative code statement;
Red= Clobberable; Yellow = script 1; Orange = script 2.

multiple scripts, as in patterns F and H, the declaration should be in the same (or a previous)
script, but not in subsequent ones.

Strict Type Checking. Another common mistake enabling DOM Clobbering is treating DOM
properties, like document and window properties as safe, trusted values (e.g., patterns B, C,
and G). Instead, developers should extend the trust boundary to these properties, verifying their
type before using them in security-sensitive instructions, e.g., using the instanceof [298] and
typeof [299] operators.

Do Not Use Document for Global Variables. Properties of document can always be
overwritten by DOM Clobbering, even immediately after they are assigned a value, as in pattern
C. Accordingly, developers should refrain from using document as a mean to store and retrieve
global values. Instead, they can declare variables with const or var in the global context, or
use the globalThis object [300].

Namespace Isolation. While robust sanitizers in §5.3.1 remove named properties, an alterna-
tive solution is to separate the namespace of variables defined by JavaScript code and named
properties in user-generated markups. For example, we observed that the markdown to HTML
converter of applications like GitHub and BitBucket prefixes id and name attribute values
of user-generated markup with a specific string. Motivated by this solution, one can monitor
runtime changes in the DOM tree via the MutationObserver API [301], and prefix named
properties of all dynamically inserted markups before adding them to the tree, which patches
all patterns in Table 5.7.

84

5.4. SUMMARY

5.4 Summary

DOM Clobbering is a type of code-less injection attack where attackers insert a piece of non-
script, seemingly benign HTML markup into a webpage and transform it to executable code by
exploiting the unforeseen interactions between JavaScript code and the runtime environment.
Surprisingly, the attack techniques, browser behaviors, vulnerable code patterns, and defense
mechanisms associated with DOM Clobbering have not been thoroughly investigated until now.
This thesis addressed this gap, providing an in-depth exploration of the intricacies surrounding
DOM Clobbering, from its underlying techniques to its prevalence and potential defenses.

As the first part of this chapter, we conducted an extensive exploration of the existing
literature regarding DOM Clobbering techniques and performed dynamic analysis of 19 different
web browsers. The outcome is the introduction of the first taxonomy of DOM Clobbering,
revealing a staggering 31.4K distinct markups employing five distinct techniques to manipulate
JavaScript variables. Then, we presented JAW-v3, the first DOM Clobbering detection tool,
and instantiated it on the top of the Tranco top 5K sites, showing that DOM Clobbering
vulnerabilities are prevalent, with a total of 9,467 vulnerable data flows across 491 affected sites,
making it possible to mount arbitrary code execution, open redirections, or client-side request
forgery attacks also against popular websites such as Fandom, Trello, Vimeo, TripAdvisor,
WikiBooks and GitHub, that were not exploitable through the traditional attack vectors.

Finally, we assess the robustness of the existing countermeasures, such as HTML sanitizers
and Content Security Policy, against DOM Clobbering, revealing shortcomings and proposing
recommendations and secure coding patterns for developers. Our study marks a significant
contribution to understanding and addressing DOM Clobbering in the Web increasingly dynamic
landscape.

85

6
Studying the Effectiveness of

SameSite Policies

87

In this chapter, we study the adequacy and effectiveness of same-site policies against cross-site
attacks (XS attacks), such as cross-site information leakage (XS-Leaks) [137, 102, S2, 146] or
cross-site request forgery (CSRF) [21, P1, 16, 20], addressing RQ4 of §1.1. Limiting the scope
of cookies to first-party context is a long known countermeasure [66] to protect web applications
from XS attacks, by stripping authentication cookies from cross-site requests the user nor the web
application intended to initiate. Existing solutions require installing additional components such
as HTTP proxies [66] or browser extensions [72], limiting their impact considerably. However,
only very recently, Google revamped the idea of same-site policies for cookies by proposing and
implementing in Chrome a new cookie attribute [174], the SameSite attribute. The SameSite
attribute introduces three pre-defined same-site policies (None, Lax, and Strict)—one of which
is the new default policy—each defining a set of cross-site requests contexts where the browser
will not include cookies. By switching to a same-site policy by default, the hope is that XS
attacks become old news [302, 303, 306, 305, S2, 304, 30].

The radical change introduced by the SameSite attribute is that browsers no longer include
cookies in all cross-site requests by default. As such a change can disrupt existing websites
and to help developers transition to the new policy, Google rolled out SameSite’s features,
spreading them over a period of four years, starting from April 2016, where it introduced the
support for explicitly-defined SameSite policies, till July 2020 with the enforcement of the new
default policy. As the new policies will play a major role to the security of the web platform, in
this chapter, we take a closer look at the status of SameSite attribute before and after the
enforcement of the new default SameSite policy. We conduct, to the best of our knowledge, the
first evaluation of the SameSite cookie policy, systematically covering the trend of its usage
(§6.1), the impact of its new default (§6.2), and the threats against its effectiveness (§6.3). We
collect and examine the security risks as a result of the way developers are adapting to the
new changes, and systematize the threats that can undermine the Lax protection, with the
overarching purpose of studying the adequacy of the new default SameSite cookie policy.
Adoption and Breakage. First, in §6.1, we start with a longitudinal analysis of the SameSite
cookie usage from June 2019 to March 2021 on the top 500K sites, and show that, even with
a four-year rollout plan, only 18.94% of sites adopted one of the three policies, with a steep
increase of +203.54% and +18.95% at the two dates of the new policy enforcement, respectively.
Interestingly, 3.7% of the sites disable the SameSite protection using the None policy, with a
significant increase towards more popular websites, i.e., 18% for the top 1K sites. Then, as the
new Lax-by-default policy can break functionalities, in §6.2, we provide one of the first systematic
analyses to identify and quantify functionality breakage in the wild due to the Lax policy. Our
results show that, after the rollout of the new policy, about 19% of functionalities implemented
via cross-site requests no longer work, most of which (77.5%) are for online advertisement.
Threats to Effectiveness. In §6.3, we take a look at the adequacy of the Lax policy to protect
existing websites. In particular, we explore the tension between the protected contexts and
the contexts that are used by existing websites to implement security-sensitive operations. In
our evaluation, we first review academic and non-academic literature, and identify ten distinct
threats, including three new threats inspired by prior work [307, 308]. Then, we assess their
prevalence and practicality in the wild, showing a rather concerning scenario.

For example, we showed that 10.3% of state-changing requests of the top 1K sites (i.e.,
721 out of 6,951) are still implemented via GET requests, which are not protected by the Lax
policy, and in 2.6% of them, we successfully verified that CSRF attacks are possible (including
popular sites like Mailchimp and Pixiv). Then, we discovered 1,302 distinct information
leakage vulnerabilities (XS-Leaks) that leak the user’s login status or identity leveraging window
properties and postMessage, via requests that are not protected by the Lax policy. These XS-
Leak attacks affect 40 websites of Alexa top 500, including popular ones such as Tumblr, Twitch,
and SoundCloud. When looking at the requests that are protected by the policy, we identified
known and new vulnerabilities in web applications hampering the SameSite cookies effectiveness.

89

CHAPTER 6. STUDYING THE EFFECTIVENESS OF SAMESITE POLICIES

Figure 6.1: SameSite Cookies usage (June 2019 - March 2021). The vertical lines R1 and R2 mark the two
rollouts of the new default policy by Chrome.

For example, we discovered that 1.5% of the sensitive state-changing POST requests can be
exploited for CSRF attacks by switching the method to GET. Among the vulnerable sites
we found IMDB, PayPal, and Meetup. Also, we discovered a wide-spread behavior of Single
Sign-On identity providers that can be used to abuse the exceptional SameSite policy used by
Chrome (i.e., Lax+POST) to refresh session cookies and perform XS attacks within two minutes
of the cookie refresh. The affected IdPs, among which we have Google, Facebook and Linkedin,
are used by 49% of the top 10K Alexa sites. Finally, we observed three different incorrect and
inconsistent use of the SameSite attribute, that can be exploited by attackers in XS attacks,
i.e., different policies between mobile and desktop, cookies with different policies across web
pages, and duplicated cookies with different SameSite attributes.
Browsers and Web Frameworks. Finally, in §6.4, we conduct a comprehensive analysis of
14 popular web browsers (both mobile and desktop) with regards to the SameSite cookies, and
observed that none of them fully complies with the RFC 6265bis specification [28], exposing
a total of seven divergent behaviours when enforcing the SameSite cookie policy. Even if
browsers offer a Lax-by-default SameSite cookie protection, we show that 24% of the top five
web frameworks of top five programming languages can downgrade that protection by default
when the developer sets a cookie via one of the frameworks’ offered APIs (e.g., in Django [309]
or Pyramid [310]).

6.1 SameSite Cookie Usage

The first part of this chapter addresses RQ4.1 of §1.1.4, where we intend to measure how website
developers adapted to the new cookie policies. In this section, we first review the methodology
that we used to perform our measurements. Then, we present our findings.
Methodology. The methodology of this section consists in grabbing the cookie response
headers of the Alexa top 500K sites (fetched in June 2020), and then extracting and counting
the number of unique cookie attributes. Instead of conducting live measurements, we used the
websites’ copies stored by the Internet Archive, allowing us to retrieve past data enabling a
longitudinal analysis of the usage of the SameSite. In total, we submitted queries to the Internet
Archive for the response headers of the 500K domains archived from June 2019 to March 2021
with a three-months time interval. Fetching headers for 500K took in average six days. We
divided the data collection in two periods: September 2020 and March 2021. At the end of
each period, we performed a live measurement of the 500K domains to estimate the accuracy of

90

6.2. FUNCTIONALITY BREAKAGE

Internet Archive’s data. In both measurements, live measurements resulted in at most +0.5%
more successful responses.
Trend Analysis. Figure 6.1 shows the usage of the different SameSite policies from June 2019
to March 2021. As of March 2021, 80.7% of the sites rely on the default cookie policy (i.e.,
347,251) whereas 18.94% of them adopted one of the three valid policy. When looking at the
trend, the rollout dates R1 and R2 seem to have played a relevant role with a steep increase of
SameSite attribute usage, especially for the None policy within the top 1K sites. A small, yet
non-negligible fraction of sites set an invalid policy (1,430 sites, i.e., 0.33%). An invalid policy is
a string that does not match any of the three known policies, such as SameSite=1, which are
most likely developers’ mistakes. Invalid policies should be treated as the None policy by web
browsers according to RFC 6265bis [28]. We refer interested readers to Table A.5 that shows the
top ten popular invalid policies. Finally, for at most 69,823 sites, a request to Internet Archive
failed due to timeout.
None policy. In total, 18,640 sites use the None policy (i.e., 3.7%). However, we observe that
the fraction of sites using None policy increases with the sites’ popularity, from about one out
of 10 among the top 10K sites (8.1%) to one out of five sites within the top 1K sites (i.e., 18%),
making the None policy the most used policy among the top 1K sites.
Stricter policies. Then, 62,856 sites make it stricter with either the Strict policy or by
explicitly setting the Lax policy. However, we note that the Strict policy is seldomly used (1,854
sites) when compared to the explicitly-set Lax policy, which covers almost all cases (61,002 sites,
i.e., 97%).

6.2 Functionality Breakage

As we have shown in the previous section, 80.7% of the sites did not set the SameSite attribute,
thus may rely on the new default policy which could break cross-site functionalities. In this
section, we first identify the functionalities implemented via cross-site requests and then we
provide a first measurement of the requests and websites that are affected. Before showing our
results, we present the methodology of our analysis.
Methodology. Websites can use cross-site requests to implement various functionalities, e.g.,
advertising, social media buttons, etc. Identifying the functionality starting from a cross-
site request is not trivial, and we are not aware of an automated technique able to do that.
Accordingly, we design this section’s experiments considering a human in the loop.

As we may need to evaluate requests manually, we limit our analysis to Alexa top 500 sites.
We exclude duplicate sites (e.g., google.com and google.co.uk), sites that are not available in
English (i.e., language barrier), and sites that do not offer free account creation and user login,
resulting in 211 websites. Then, we register a user account for each site and crawl all sites
using a browser enforcing the pre-SameSite default policy, searching for cross-site requests with
cookies. We developed a JavaScript-enabled web crawler leveraging Puppeteer [254] and Chrome
DevTools Protocol (CDP) [108]. Our crawler uses Chrome 83.0.4103.61, which does not enforce
the new default Lax policy. Instead, it warns via the CDP Audits [311] when a cookie is attached
to the request without specifying the SameSite, thus potentially breaking after the enforcement
of the new default Lax policy. The seed URLs are the login pages, and after performing the user
login with the manually-created credentials, the crawler follows a breadth-first visiting strategy
to collect new URLs. The crawler stops when one of the two criteria is met first: it doesn’t
find new URLs, or the maximum of 200 URLs is reached. In total, our crawler collected 22,992
cross-site HTTP requests without a SameSite, which were initiated from 9,073 unique URLs.

To determine each request’s high-level purpose, we first label our requests using the Web-
Shrinker API [312]—a URL categorization service based on the industry-standard IAB taxonomy.

91

CHAPTER 6. STUDYING THE EFFECTIVENESS OF SAMESITE POLICIES

Table 6.1: Overview of the affected functionalities.

After R2
Functionality # Requests # Broken # Patched
Advertising / User Tracking 374 93 281
Single-Sign On 81 1 80
Social Media Like / Share 76 11 65
Live Chat Frames 62 8 54
PDF Embed APIs 13 4 9
(Re-) CAPTCHA 12 2 10
Content Servers / CDNs 9 0 9
Survery/Rating Services 6 1 5

Total 633 120 513
Legend: R2= The Second Lax-by-Default Policy Rollout.

The WebShrinker API is limited in regard to the short-lived, continuously changing advertise-
ment domains. Accordingly, we also match the request URLs against the EasyList [313], Host
BlackList [314], and Host BlockList [315]—three popular blocklists specialized for advertisement
domains. Finally, we derive a more fine-grained list of functionalities by manually inspecting the
requests. We pick 633 random requests out of the 22,992, three from each of the 211 websites,
and manually identify the exact functionality implemented by the cross-site request. Then, we
forcefully remove the cookies to observe whether the functionality is broken. Broken requests
are marked as affected.

To precisely evaluate functionality breakage after the new policy’s enforcement, we execute
our experiments before and after the second rollout R2. In June 2020, before R2, we identified
and collected cross-site requests as presented in this section. Then, in February 2021, after
R2, we revisited the affected requests to confirm whether the new policy has indeed broken the
functionality.
Categorization. The mapping between affected cross-site requests and IAB categories is in
Table A.4. In total, our crawler identified 22,992 cross-site HTTP requests without a SameSite,
for a total of 9,073 unique URLs. The mapping identified 16 high-level categories of websites,
providing 32 different types of functionalities. The vast majority of affected requests are for
those sites offering technology and computing functionalities (e.g., file sharing, or live chat)
or business services (e.g., advertising, marketing, or analytics), accounting for over 43.6% and
27.6% of the requests, respectively. For 303 requests of 17 websites, WebShrinker only matches
the uncategorized category (see Table A.4), thus we used EasyList, Host BlackList, and Host
BlockList, and observed that all the 303 requests are for undesired content, e.g., ads.

While the IAB categorization provides insights about the type of the service provided by
third-party sites, it does not help to identify the exact functionality implemented with cross-site
requests. The manual investigation of 633 requests identified eight functionalities, as shown
in Table 6.1. Advertising and user tracking is the first type of functionality implemented via
cross-site requests, covering 59% of the requests. Then, 12.8% of the requests are for Single
Sign-On services, 12% for social media buttons, and 9% for embedded live chat services (e.g.,
livechat.com). The remaining groups are embedded PDF readers (e.g., Adobe Audience Manager),
CAPTCHAs, CDNs (e.g., Gigya), and survey/rating services (e.g., surveymonkey.com).
Breakage. For each of the 633 requests, we manually confirm whether the new policy for
cookies breaks the implemented functionality. We conduct these experiments in February
2021. First, we visit the affected site using a Chrome version enforcing the new Lax-by-default
policy. Then we check whether the developers of the affected websites adopted one of the three
SameSite policies to avoid service discontinuity. About 81% of the affected cross-site requests
are correctly patched, and we do not observe breakage of functionality. However, we observe
that the functionalities implemented by 19% of the affected requests are broken. Out of these,
77.5% of the requests are directed to advertisement networks, 9.2% to social media platforms,

92

6.3. NEW DEFAULT POLICY ADEQUACY AND THREATS

Table 6.2: Overview of threats to SameSite cookies, grouped by those not covered by Lax (top part) and those
covered by Lax (bottom part). Threats marked with * are new, yet inspired by prior work.

Attack Evaluation
Category Threat COSI CSRF References Testbed % Vuln. # UAV # Apps
Not Protected Replaying State-changing GET [105, 328, 331] Top 1K 2.6% G-SCRs 7 4
by Lax Window Properties Leak [34, S2, 334] Top 500 18.48% 1021 39

postMessage Leak [342, 341, S2] Top 500 1.9% 11 4
Pervasive Monitoring [175, 343] Top 500K 0.4% 2,080 2,080

Protected Forging State-changing POST [104, 330, 329] Top 1K 1.5% P-SCRs 7 6
by Lax SSC SSO Redirects Bypass [103, 316, 339] Top 10K 49.3% 6 4,935

SSC Intra-Page Inconsistency* [345, 344] Top 500 1.4% 3 3
SSC Inter-Page Inconsistency* [307] Top 500 3.3% 11 7
SSC User-Agent Inconsistency* [307, 308, 319] Top 500K 1.8% 9,215 9,215
Client-side CSRF vulnerability [1, P1] - - - -

Legend: = threat applicable; = threat not applicable; SSC= SameSite Cookie; UAV= Unique Attack Vectors;
G/P-SCR= GET/POST-based State-Changing Request.

and 13.3% for the remaining functionalities.

6.3 New Default Policy Adequacy and Threats

This section evaluates the adequacy of the new default policy in protecting websites in the wild
and an extensive analysis of threats that can hamper the effectiveness of the new same-site
policies.
Methodology. The first step of our analysis is identifying a list of threats, distinguishing them
in threats leveraging cross-site requests that are not covered by the Lax policy and threats
covered by the Lax policy. We systematically review academic literature (i.e., [21, 307, 318, 316,
317, P1, 308, S2, 319]), the Stack Exchange [320] and the Dev [321] security communities, and 21
non-academic resources (i.e., [103, 323, 325, 326, 104, 336, 322, 338, 330, 324, 105, 329, 328, 335,
331, 333, 327, 339, 332, 337, 334]). We searched for non-academic resources via Google search
(up to page eight of the results). We used the search term “SameSite cookie” in combination
with “bypass”, “attack”, and “vulnerability”, and ignored irrelevant or redundant entries. We
consider in scope those threats that can be exploited by a web attacker, and those that are
relevant for SameSite cookies according to the identified resources (see, e.g., [17, 103, 104, 340,
P1, S2]). Our review identified seven known threats. We also defined three new threats that
are inspired by prior work. We present the threats in §6.3.1. The second step of our analysis
is determining the severity of the threats by looking at their prevalence in the wild. As each
threat requires an ad-hoc testing procedure, we describe our tests in §6.3.2.

6.3.1 Threats

We now present ten threats, of which four are against server-side end-points that are not
protected by the Lax policy, and six due to vulnerabilities introduced by developers that can
hamper the effectiveness of the SameSite attribute. Table 6.2 shows an overview of the threats.

6.3.1.1 Threats not Covered by the Lax Policy

Replaying State-changing GET Requests. The new default policy does not prevent the
inclusion of cookies in top-level navigation requests. If web applications use GET requests
for security-sensitive state-changing operations, attackers can forge authenticated, cross-origin
HTTP requests on behalf of victims, e.g., leveraging the window.open() JavaScript API
(see Table 2.1).

93

CHAPTER 6. STUDYING THE EFFECTIVENESS OF SAMESITE POLICIES

Window Properties Leak. Attackers can issue a top-level navigation request via, for example,
w=window.open(), and read the number of frames in a target webpage using the length
property of the opened JavaScript window objects (note that w.frames.length is the leaking
channel). For example, if the victim is logged in, the attacker will count x frames, and zero
otherwise. By comparing the frame count, attackers can leak the user state. For example,
using this side-channel, it was to possible leak sensitive information about a user and their
friends on Facebook [34], or to determine if a user owns a specific profile in Linkedin (i.e.,
user deanonymization) [S2]. Top-level navigation requests are not covered by the Lax policy,
meaning that top-level requests will include cookies, leaving the leaking channel observable by
the attacker. On the contrary, if developers set the SameSite policy to strict, this XS-Leak is
mitigated.
postMessage Leak. Attackers can issue top-level navigation requests using window.open(),
listen to broadcasted postMessages from the opened web page, and leak the user state by
comparing the set of observed messages [S2]. For the postMessage leak, the attack pattern is
similar to the previous threat. The only difference is that the observable leaking channel is no
longer the number of frames but the attacker is listening for broadcasted postMessages. For
instance, if the victim is logged in, a postMessage m is observed, and no messages otherwise.
Also, in this case, should the cookie not be included in top-level navigation requests, the attacker
would not be able to observe differences across user states (e.g., logged in vs logged out) [S2].
Pervasive Monitoring. Third-party cookies are widely used to track users online, and they
often contain sensitive data. If websites do not set the Secure attribute for these cookies, a
viable threat is pervasive monitoring at network level.

Assume a website W1 that set a privacy-sensitive cookie with SameSite=None and another
website W2 that performs cross-site requests to W1. Because of the policy set by W1, browsers
will include cookies in all requests from W2 to W1. This is the typical setting of third-party
cookies widely used for tracking users. Pervasive (network) monitoring is a threat to these
scenarios because if cookies are not securely transported (i.e., over TLS), they can reveal sensitive
information about user identity. For this reason, browsers like Chrome and Opera reject cookies
that do not set the Secure flag together with SameSite=None policy [340]. However, other
browsers such as Firefox and Safari do not reject these cookies (see Table 6.9), exposing users of
these websites to pervasive monitoring attacks.
Cookie-less Request Authentication. While cookies are one of the most prevalent forms of
request authentication, they are not the only one (see, e.g., [346]). SameSite cookies can protect
those class of request forgery attacks that perform ambient HTTP request authentication with
cookies. Accordingly, other forms of request authentication, such as HTTP authentication, client
certificate authentication [347], or network-based authentication are not protected by SameSite
cookies.

6.3.1.2 Threats Bypassing Protection of Lax or Strict Policy

Forging State-changing POST Requests. One of the fundamental limitations imposed
with the new default Lax policy is that an attack page cannot submit cross-site POST requests
to a third-party context with the victim cookies attached. However, some applications are
vulnerable in the sense that a state-changing POST request can be replayed and forged with
a GET request interchangeably. In other words, the vulnerable application still processes the
incoming request regardless of the HTTP verb used to submit the request. In this setting, the
new default SameSite policy can be bypassed, e.g., by replaying the request using a top-level
navigation GET request.
Single Sign-On HTTP Redirects Bypass. The Lax+POST exceptional policy (see §2.3)

94

6.3. NEW DEFAULT POLICY ADEQUACY AND THREATS

provides a time window of two minutes where Lax protection is not enforced, which is counted
starting from the time of setting of a cookie. A possible attack consists of installing new cookies
using cross-site requests and using the two-minute window to exploit XS vulnerabilities. Fresh
cookies could be installed, for example, by abusing Single Sign-On Identity Providers (IdPs)
that allow for user auto re-login via HTTP GET requests and without requiring user interaction
(e.g., CAPTCHAs) [103]. The attack against a target site is the following. First, the attacker
convinces a user to visit an attack page. Via the window.open() API, the page asks the IdP
to re-login the user at the target site. As a result of the SSO login, the target site establishes
a new authenticated session with the user’s browser. Since the cookie is not older than two
minutes, Lax protection of the target site is not enforced, enabling the attacker to mount XS
attacks.

Listing 6.1: A vulnerable example of a duplicate cookie setting.
// for incompatible clients
Set-cookie: 3pc-legacy=value;
// for newer clients
Set-cookie: 3pc=value; SameSite=Strict;

SameSite Cookie Intra-page Inconsistency (new). When developing web applications,
providing support for older web browsers that are incompatible with the SameSite cookie policy
is challenging. In such incompatible clients, a cookie marked with a SameSite attribute or
an unsupported SameSite policy may be rejected and not set, thus breaking the application
functionality. As a workaround, developers may set redundant cookies, both with and without
the SameSite attribute [345, 344], or with different SameSite policies. However, this can
introduce vulnerabilities if not properly applied. For example, Listing 6.1 shows a vulnerable
cookie setting that can be exploited to mount a CSRF attack. In this example, the application
sets two duplicate cookies, namely 3pc and 3pc-legacy, with Strict and no SameSite policy,
respectively, and resorts to the 3pc-legacy if the 3pc cookie is not included in the request.
For a victim vising a CSRF attack page using a modern client, the 3pc cookie is not attached
to the cross-origin CSRF request, but the 3pc-legacy cookie is still automatically attached
to the request, both when assuming a client enforcing a default None or default Lax policy (i.e.,
using top-level navigation requests), enabling CSRF on server-side.
SameSite Cookie Inter-Page Inconsistency (new). This vulnerability occurs when a web
application sets two different SameSite cookie policies for the same cookie with the same Path
attribute across two different web pages. For example, if an application sets 3pc=value; Same-
Site=Strict; Path=/ when visiting URL1 and 3pc=value; SameSite=None; Path=/
when visiting URL2, then the Strict policy for this cookie can be bypassed. In this example, the
bypass happens by issuing a top-level navigation request to URL2, which overwrites the cookie
with the SameSite=None attribute, relaxing the SameSite policy.
SameSite Cookie User-Agent Inconsistency (new). This vulnerability arises when an
application set inconsistent cookie policies when using two different user agents. For example,
a web application may enforce the Strict or Lax policy for a sensitive cookie when the user is
using a desktop browser, but enforce the None policy if the user uses a mobile browser (or vice
versa). One reason for such inconsistency is that the mobile and the desktop version are two
different applications exposing themselves to the public based on the request user-agent. In such
circumstances, CSRF and COSI attacks are possible provided that the victim uses a user agent
with the less stricter SameSite policy to visit the target website.
Client-side CSRF. When an attacker-controllable input of client-side JavaScript program is
used to generate same-site requests, a web application is exposed to client-side CSRF attacks.
As these requests are same-site, the browser will attach cookies, even when using the Strict
policy. In this paper, we do not examine the prevalence of this threat as it has been extensively
studied in a recent work (see, i.e., [P1]).

95

CHAPTER 6. STUDYING THE EFFECTIVENESS OF SAMESITE POLICIES

6.3.2 Threats Prevalence in the Wild

Starting from the threats of §6.3.1, we now quantify their impact and prevalence in the wild.
Summary of Findings. Our evaluation shows that the coverage of the new default SameSite
cookie policy (i.e., Lax) is not sufficient to protect web applications from a noticeable set of
CSRF and COSI attacks. More specifically, as we show later, the first category of attacks
presented in this section leverage cross-site request contexts that are not covered by the Lax
policy. Then, the second category of attacks demonstrate the prevalence of cases where the
protection of Lax can be circumvented. Table 6.2 summarizes our findings.

Lax Adequacy. In our evaluation, we identified both CSRF and COSI attacks against
popular websites. First, GET requests (not covered by the Lax policy) are still prevalently used
for state-changing operations—accounting for over 10.3% of the total state-changing requests in
top 1K Alexa websites, 2.6% of which can be leveraged for mounting CSRF attacks by replaying
the request (e.g., in Mailchimp or Pixiv). Second, we discovered 1,032 distinct information
leakage (i.e., COSI) vulnerabilities affecting 40 websites of Alexa top 500, including Tumblr,
Twitch and SoundCloud, that leak the user’s login status or identity leveraging window properties
and postMessage side-channels. We detail these threats in Sections 6.3.2.1 to 6.3.2.3.

Bypassing Lax. We identified a wide range of attacks that hamper the effectivenss of
the Lax policy. For example, we discovered that 1.5% of the sensitive state-changing POST
requests can be exploited for a CSRF attack by using the GET HTTP method instead. We
found instances of these CSRF attacks in popular websites, e.g., IMDB, PayPal, or Meetup.
Also, we discovered six unprotected SSO IdPs, including Google, Facebook and Linkedin, that
enable trivial bypass of the Lax policy on over 49% of the top 10K Alexa sites, leveraging the
exceptional Lax+POST policy. When looking at SameSite cookie policy inconsistencies, our
evaluation of popular Alexa top 500 websites revealed seven vulnerable sites with inter-page
policy inconsistencies, including Vimeo, AliExpress and Office365, as well as three vulnerable
sites with intra-page policy inconsistencies, i.e., GitHub, CNN, and Yahoo. Finally, we discovered
9,951 vulnerable websites with inconsistent SameSite cookie policies for different user-agents, by
systematically testing half a million Alexa sites, which can be used to bypass the constraints of
the new SameSite cookie setting. We detail these threats in Sections 6.3.2.4 to 6.3.2.8.

6.3.2.1 Replaying State-changing GET Requests

In this section, we show that state-changing requests that use the GET method and that are
not protected by the new default SameSite cookie policy are prevalent, and we demonstrate
real-world CSRF exploitations in popular websites leveraging such requests.

Quantification of Request Types. Our methodology to quantify the prevalence of state-
changing GET requests are as follows. We use the web crawler of JAW [P1] to crawl Alexa top
1K websites. The crawler stores a JavaScript-enabled, DOM snapshot of the web page after
ten seconds. To identify state-changing requests at large-scale, we create a script that finds all
HTML forms in the DOM snapshots with an anti-forgery token—an indication that the HTTP
request would change the server-side state when the form is submitted. Then, the script filters
all forms based on their HTTP method, quantifying their prevalence. We note that, even if
these requests are seemingly protected by a CSRF token, the implementation of the defense may
have been wrong (e.g., faulty token verification when overriding the HTTP request method [348,
349])—a mistake that may have acted as a contributing factor for the introduction of the new
SameSite cookie setting. Finally, we compare our findings with prior work, i.e., the data of
Mitch [21].

Table 6.3 summarizes the results. In total, the crawler finds 42,571 URLs for 922 websites.
In these pages, our script identifies a total of 6,951 state-changing requests. Out of this number,
the majority, i.e., 6,230 are POST-based requests. Still, a noticeable fraction of all identified

96

6.3. NEW DEFAULT POLICY ADEQUACY AND THREATS

Table 6.3: State-chaning GET and POST requests in Alexa top 1K websites.

Method POST GET Total
Reqs 6,230 (89.6%) 721 (10.3%) 6,951
URLs 1,870 251 2,121 / 42,571
Apps 602 (65.2%) 88 (9.5%) 690 / 922

Table 6.4: Summary of CSRF vulnerabilities discovered for a set of randomly selected requests of Alexa top 1K
websites.

Rank Website Replay Req. Forge Method Total Req.
58 imdb.com 0 2 2
81 fandom.com 0 2 2
102 paypal.com 0 1 1
289 ilovepdf.com 0 1 1
300 investing.com 2 0 2
427 meetup.com 0 2 2
524 mailchimp.com 1 1 2
586 brilio.net 3 0 3
627 pixiv.net 1 0 1

Total Vuln. 9 / 690 7 / 264 9 / 602 16 / 866

state-changing requests are based on the GET HTTP method, i.e., over 10.3%, which as we
will show, is in line with prior research [21]. Specifically, we use the dataset of Mitch [350] to
confirm our findings. The dataset contains a total of 58,828 HTTP requests for 60 popular
Alexa websites. Out of this number, we observe that 938 requests contain an anti-forgery token,
an indication that the request is state-changing. From 939 requests, 121 use the GET HTTP
method, i.e., 12.8%, which is statistically close to our finding of 10.3%. Therefore, GET requests
are still used in practice for state changes, despite the fact that they are not protected with the
default SameSite cookie policy.

Exploitations. We manually explored the collected data to detect concrete GET-based
CSRF exploitations. Given the scale of our data, we randomly selected three GET requests from
each web application for which we detected a GET request, i.e., 88 applications (see Table 6.3),
resulting in a total of 264 requests. Then, for each selected request, we checked if the CSRF
token verification is performed correctly by replaying it. Table 6.4 presents our findings. In
total, we discovered that seven out of the 264 GET requests (i.e., 2.6%) are forgeable due to
faulty CSRF token verification, affecting four websites, i.e., Mailchimp, Brillo, Investing, or
Pixiv. We created a working proof-of-concept exploit for each vulnerable web application. The
exploits allow an attacker to delete user sketches in Pixiv, delete articles, videos and pictures
(i.e., user-generated content) in Brillo, create or remove user portfolios in Investing, and finally
change user settings’ defaults (e.g., notifications) in Mailchimp.

6.3.2.2 Window Properties and postMessage Leaks

We investigate the prevalence of window properties and postMessage XS-Leaks using the data
of our crawl of §6.2 on the Alexa top 500 websites, i.e., 9,073 URLs of 211 websites. We
automatically explore the presence of login detection and user deanonymization attack vectors
leveraging dynamic analysis. Specifically, we create a script that, for each URL in our dataset,
loads a candidate test web page inside the browser in two different user states, i.e., logged
and not logged for login detection and logged as two different users for deanonymization. For
window properties leak, the test web page opens the URL in a new window leveraging the
window.open() API, and reads the length property of the opened window, repeating this
process for both user states under test. Similarly, the same process is performed for postMessage
leaks, but instead of reading the number of frames in the opened window, the test web page
listens for broadcasted postMessages using the window.addEventListener API. Finally,

97

CHAPTER 6. STUDYING THE EFFECTIVENESS OF SAMESITE POLICIES

Table 6.5: Summary of Window Properties (WP) and postMessage (PM) information leakage vulnerabilities
discovered in Alexa top 500 websites.

XS-Leak Login Det. Deanonym. Total
PM # Apps 4 1 4

URLs 9 2 11

WP # Apps 39 8 39
URLs 986 35 1,021

Total # Apps 40 8 40
URLs 995 37 1,032

Table 6.6: Summary of the discovered security risks due to the missing Secure flag in SameSite=None cookies.

Vuln. Alexa Websites
Crawl Top 1K Top 10K Top 100K Top 500K
June 2019 0 0 3 12
Sept. 2019 9 34 70 113
Dec. 2019 1 4 35 135
March 2020 6 29 227 644
June 2020 12 74 556 1,918
Sept. 2020 12 82 609 2,076
Dec. 2021 12 71 597 1,987
March 2021 12 82 634 2,148

the script compares the values collected at the two different states, and outputs the set of
state-dependent, leaky URLs.

Table 6.5 summarizes the results of our experiment. In total, we discovered 1,302 vulnerable
URLs, belonging to a total of 40 distinct websites. Out of 1,302, 37 URLs can be exploited for
deanonimyzing the user’s identity in eight websites, i.e., Tumblr, Twitch, AliExpress, Blogger,
Office365, Tokopedia, Ebay, and SoundCloud, and the rest (i.e., 995) can be trivially exploited
for mounting login detection attacks in all 40 vulnerable websites, including privacy-sensitive
sites, such as PornHub. Note that being logged in implies having an account, which may be
problematic for privacy-sensitive websites. Overall, we observe that 18.4% and 1.9% of the
tested web applications are vulnerable to the window properties and postMessage side-channels,
respectively.

6.3.2.3 Pervasive Monitoring

We reuse the data we collected from Internet Archive between June 2019 to March 2021 (§6.1)
to identify cookies marked with SameSite=None that miss the Secure flag. In total, we
detected 2,148 websites who are at risk of compromising user’s privacy, 12 and 82 of which
belong to the top 1K and 10K websites, respectively. Table 6.6 summarizes the results of our
analysis. We observe that there is an increasing trend on the instances of this security risk in
the wild.

6.3.2.4 Forging State-changing POST Requests

We reuse the data we collected in §6.3.2.1 to assess the prevalence of forgeable state-changing
POST requests. We manually explored the collected data to detect concrete instances of forgeable
POST requests, where attackers can bypass the Lax protection by changing the HTTP method.
As shown in Table 6.3, in total, we identified 6,230 state-changing POST requests in 602 web
applications of Alexa top 1K websites. Given the scale of the data, we randomly selected one
state-changing POST request per web application, resulting in 602 requests. For each selected
request, we checked the susceptibility to a CSRF attack by replaying the request using a different
HTTP method, i.e., GET. In addition to the HTTP method change, we encode the key-value
pairs in the POST request body, if any, in the form of GET request query parameters. Table 6.4

98

6.3. NEW DEFAULT POLICY ADEQUACY AND THREATS

summarizes our findings. In total, we discovered that nine out of the 602 requests (i.e., 1.5%)
are forgeable, affecting six popular websites (e.g., PayPal, IMDB, or Meetup). We created a
proof-of-concept exploit for each of the six vulnerable web applications. The exploits allow an
attacker to add or remove movies from a user watchlist in IMDB, change user settings (e.g.,
name, gender, or profile title) in Fandom, modify user invoices and extend the user session in
PayPal, editing a user’s signature in iLovePDF, and finally creating or removing notification
alerts in Meetup.

6.3.2.5 Single Sign-On HTTP Redirects

To identify SSO IdPs that enable bypass of the Lax policy, we create a web application that
integrates SSO using 13 different popular IdPs, i.e., Google, Facebook, Amazon, Apple, Microsoft,
Linkedin, Github, Twitter, VK, Mail.ru, Twitch, Instagram, and Yahoo. To derive the list of
popular IdPs, we manually review Alexa top 500 sites, and list the IdPs they use for SSO. We
investigate if each IdP can be leveraged to bypass Lax by checking if it offers a cross-origin
GET-based auto re-login feature that does not require any user interaction (e.g., CAPTCHA).
For each affected IdP, we find websites from Alexa top 500 that integrate a SSO feature via that
IdP, and verify if the attack still works in the real-world setting.

To quantify the impact of affected IdPs on websites, We built a JavaScript-enabled, Chrome-
based web crawler on the top of XDriver [318], and used it to detect the IdPs each website is
using for the SSO. The detection of the IdPs is similar to that of [318], and is based on a set
of fine-grained static probes and regular expressions that we design for each IdP. We use our
crawler to detect the IdPs in Alexa top 10K websites, examining tens of thousands of web pages.

Results. In total, we found six SSO IdPs that enable trivial bypass of the new default
policy, i.e., Google, Facebook, Microsoft, Linkedin, VK and GitHub. These IdPs are integrated
in 4,935 websites, accounting for more than 49% of the top 10K Alexa sites. To identify the
affected websites, our crawler examined a total of 208,464 web pages of 9,485 sites in a period of
around two weeks, designating 6,638 login pages, out of which 5,180 are login pages with an
SSO. From these pages, 4,935 are login pages with at least one of the six affected SSO. For 515
sites, our crawler failed because either the website was unresponsive or XDriver failed when
looking for DOM elements. Table A.6 in Appendix A.2 summarizes our findings.

False Positives. To evaluate the potential false positives (FPs) of our automated SSO
detection mechanism, we randomly selected 500 websites, and manually verified the detected
IdPs. This resulted in a total of seven FP IdP instances for four websites. In all cases, the
underlying reason for the FP was that the heuristic used to match the existence of the IdP
was present in the website for non-SSO usecases, e.g., in websites containing tutorials, or
documentation about an SSO. Accordingly, our crawler exhibits an estimated false positive rate
of 7/(13×500) IdP instances, or 4/500 websites (0.8%).

6.3.2.6 SameSite Cookie Inter-Page Inconsistency

We investigate inter-page policy inconsistencies using the data of our crawl of §6.2 on the top
500 Alexa websites. We create a script that compiles a list of cookies set on each website
together with the URL of web pages on which the cookie was set. Then, the script looks for
redundant cookie entries across web pages, and for each matching case, it checks if the value of
the SameSite attribute is consistent in all cases, and otherwise, it reports the inconsistency.
Finally, for each reported case by the automated script, we manually confirm the inconsistency
on the live instance of the application.

In total, out of the 211 websites of the top 500 Alexa, this process led to the detection of
seven vulnerable sites having a total of 11 cookies with policy inconsistencies. This includes,

99

CHAPTER 6. STUDYING THE EFFECTIVENESS OF SAMESITE POLICIES

Table 6.7: Summary of inter-page SameSite cookie inconsistencies in Alexa top 500 websites.

Rank Website Policy Downgrade # Vuln. Cookies
38 aliexpress.com Lax to None 2
148 kompas.com Lax to None 3
151 office365.com Lax to None 1
170 canva.com Strict to None 1
176 vimeo.com Lax to None 1
191 abs-cbn.com Lax to None 2
199 aliyun.com Strict to None 1

Total 7 11

among others, popular websites such as AliExpress, Vimeo, and Office365. In all cases, an
attacker can downgrade the Lax or Strict policy to None. Table 6.7 summarizes the results.

6.3.2.7 SameSite Cookie Intra-Page Inconsistency

We explore the presence of duplicate cookies having inconsistent SameSite cookie policies with a
semi-automated approach, leveraging the data of our crawl of §6.2 on the Alexa top 500 websites.
Specifically, we create a script that compares all the cookies set in a web page with each other.
The script checks if it can find a pair of cookies that have the same value. If a match is found,
it checks if their specified SameSite policy is different, i.e., no SameSite or None policy for
one cookie, and Lax or Strict for the other. Since two session cookies may trivially have the
same value (e.g., an integer), yet do not encode the same semantics, the script also apply certain
heuristics, e.g., the length or type of the strings. Finally, it reports all cookie pairs that match
these properties. For each cookie reported, we manually review and confirm the existence of a
vulnerability to eliminate false positives.

In total, the script reported 22 cookie pairs of eight websites out of the 211 sites under
test. However, manual investigation revealed that only three websites (nine cookie pairs) are
vulnerable, i.e., GitHub, CNN, and Yahoo, accounting for 1.4% of the tested websites. For
example, CNN sets a pair of duplicate cookies named obuid and OB-USER-TOKEN with the
exact same value but with different SameSite cookie policies, i.e., no SameSite attribute and
the Strict policy, respectively. Similarly, Yahoo sets duplicate session cookies with different
policies, i.e., None and Lax. Finally, GitHub uses a pair of cookies named user-session and
-Host-user-session-same-site with inconsistent policies, i.e., no SameSite policy and
Strict, respectively.

6.3.2.8 Inconsistent Policy for Different User-Agents

To determine inconsistent policies based on the user-agent, we performed three web crawls
on live instances of Alexa top 500K websites on June 2020, September 2020, and April 2021
using two different User-Agents for mobile and desktop clients. Accordingly, we compare if
the SameSite cookie policy is set differently for the same cookie across the HTTP responses
captured for desktop and mobile clients.

Table 6.8 summarizes our findings. In total, we identified 5,719, 9,215, and 9,951 vulnerable
websites that allow a policy downgrade in the three web crawls, respectively. Note that not
all entries in Table 6.8 may lead to a policy downgrade, i.e., pairs that have the Lax policy
in one client, and do not set any policy in the other client do not lead to a policy downgrade
assuming the new default policy. Finally, out of the 9,951 vulnerable websites, 138 are among
the top 1K Alexa websites, showing that such inconsistencies are prevalent among popular sites.
We refer interested readers to Table A.7 in Appendix A.2 which shows the number of policy
inconsistencies grouped by site popularity.

100

6.4. WEB BROWSERS AND WEB FRAMEWORKS

Table 6.8: Summary of SameSite cookies’ inconsistencies across mobile and desktop clients of Alexa top 500K
websites. The total column shows the number of vulnerable sites where a policy downgrade can occur.

Crawl (M, N) (M, L) (M, S) (M, NS) (M, I) Total
June 2020 5,719
(D, N) - 2,263 70 213 0
(D, L) 2,382 - 244 157 0
(D, S) 72 244 - 9 0
(D, NS) 217 133 5 - 0
(D, I) 0 0 0 0 -

Sept. 2020 9,215
(D, N) - 3,262 299 1,282 0
(D, L) 3,167 - 381 759 0
(D, S) 234 378 - 26 0
(D, NS) 172 268 13 - 0
(D, I) 0 0 0 1 -

April 2021 9,951
(D, N) - 3,572 328 1,166 0
(D, L) 3,516 - 431 781 0
(D, S) 302 432 - 35 0
(D, NS) 135 278 33 - 0
(D, I) 0 0 0 1 -

Legend: D= Desktop; M= Mobile; N= None; L= Lax; S= Strict;
NS= Not Set; I= Invalid.

6.4 Web Browsers and Web Frameworks

The final analysis of this chapter looks at the inconsistency between browsers when handling
and enforcing the SameSite attribute properties (§6.4.1), and it looks at the default policies
used by popular web frameworks (§6.4.2).

6.4.1 Evaluation of Web Browsers

Browsers exhibit a variety of behaviours when applying SameSite cookies. For example, the
default policy in Chrome and Opera is Lax, whereas Firefox and Safari enforce the None policy by
default. Even with regards to Chrome, the latest IOS version (87.0.4280.77) still uses the None
policy by default [343]. Also, such inconsistencies not only apply to the default setting, but also
to other corner cases where a request is sent in cross-site context, e.g., when SameSite=None
cookies are used without a Secure flag, or when the SameSite attribute has an invalid or
even the Lax or Strict value.
Methodology. We conducted our analysis against 14 web browsers and investigated their
compliance with the new RFC 6265bis specification [28]. The list of popular browsers for testing
is from MDN [175], and we add the iOS Chrome and Tor Browser. Furthermore, for Safari, we
consider three different versions that are frequently used by the three recent macOS operating
systems, since Safari cannot be upgraded standalone [351]. We automated the analysis by
developing three webpages, two in the same origin and the third page in a different origin, where
the first page performs same-site and cross-site requests from different contexts towards the
second and third page, respectively. Then, the analysis of the logs of the web servers reveals
which request was submitted with cookies.
Results. Table 6.9 summarizes our findings. In total, we identified seven distinct ways on how
browsers enforce the SameSite cookie policy in same-site and cross-site context. We observed
that, to date, none of the 14 tested browsers are fully compliant with the new RFC 6265bis
specification [28], including Chrome. The most RFC-compliant browsers are Chrome, Chrome
on Android, Opera, Opera on Android, and Edge, which comply for 11 out of the 12 possible
cases of how the SameSite cookie attribute can be set in same-site and cross-site contexts, as
shown in Table 6.9.

101

CHAPTER 6. STUDYING THE EFFECTIVENESS OF SAMESITE POLICIES

Table 6.9: Overview of web browser’s compliance with RFC 6265bis [28]. Browsers with similar behaviours
are grouped with the same color. The table highlights a total of seven distinct browsers’ implementations when
enforcing the SameSite cookie policy, each marked by a different color.

Set-Cookie HTTP Header

Browser/ Spec Version Scope K
=
V

K
=
V
;
SS

=
N
on

e;
Se

cu
re

K
=
V
;
SS

=
N
on

e

K
=
V
;
SS

=
In
va
lid

K
=
V
;
SS

=
L
ax

K
=
V
;
SS

=
St
ri
ct

Specification RFC 6265bis [28] Same-Site
Cross-Site

Tor Browser 10.0.12 Same-Site 7
Cross-Site 7 7

Chrome 89.0.4389.82 Same-Site
Cross-Site 7

Opera 74.0.3911.218 Same-Site
Cross-Site 7

Edge 89.0.774.54 Same-Site
Cross-Site 7

Firefox 86.0 Same-Site 7
Cross-Site 7 7

Safari 14.0.3 Same-Site 7
Cross-Site 7 7

Safari 12.0.3, 13.1.1 Same-Site 7
Cross-Site 7 7 7

IE 11.0 Same-Site 7
Cross-Site 7 7 7 7

Andr. Chrome 84.0.4147.124 Same-Site
Cross-Site 7

Andr. Opera 61.2.3076.56749 Same-Site
Cross-Site 7

Andr. Firefox 79.0.5 Same-Site 7
Cross-Site 7 7

iOS Safari 14.4 Same-Site 7
Cross-Site 7 7

Samsung Int. 13.2.1.70 Same-Site 7
Cross-Site 7 7

Andr. WebView 84.0.4147.105 Same-Site 7
Cross-Site 7

iOS Chrome 87.0.4280.77 Same-Site 7 7
Cross-Site 7 7

Legend: K= Key; V= Value; SS= SameSite; = Cookie Sent; = Cookie Not Sent;
7 = Divergent From/Not Compliant with Specification.

102

6.4. WEB BROWSERS AND WEB FRAMEWORKS

As of today, web application developers need to be aware of all these seven behaviors if
they want their website to (i) work with all these browsers and (ii) provide the same security
guarantees. One way to achieve that is using user-agent-dependent SameSite policies. While
this may seem a valid solution, we have seen in the past that header inconsistencies can be the
root cause of vulnerabilities (see, e.g., [308] or our SSC User Agent Inconsistency vulnerabilities
in §6.3.2.8).

Chrome on iOS and Lax-by-default. iOS/iPadOS browsers are required to use WebKit
for rendering web pages, possibly limiting browser developers’ liberty in changing the default
SameSite cookies handling. However, even when browsers are required by the AppStore policy
to use iOS WebKit, we observed different behaviors between iOS Safari and iOS Chrome. With
SameSite=Strict, Safari attaches cookies only for SameSite requests (as per RFC 6265bis
specification [28]) whereas iOS Chrome does not do that (Table 6.9). Based on that, we do not
know whether Chrome developers have some form of liberty to control browser’s behavior when
handling SameSite cookies, or if Chrome developers are using a different version of iOS WebKit
from the one used by Safari.

6.4.2 Evaluation of Web Frameworks

Table 6.10: Evaluation of SameSite cookie policy in top five frameworks of top five programming languages.

SameSite Cookies
Language Framework Version Support Default Reference

Python Flask 1.1.2 Not Set [352]
Django 3.1.7 None [309]
Tornado 6.1 Not Set [353]
Pyramid 2.0 None [310]
Web.py 0.62 None [354]

JavaScript Express 4.17.1 Not Set [355]
Meteor 2.1 Not Set [356]
Sails 1.4.1 None [357, 358]
Koa 6.1.0 Not Set [359]
Hapi 20.1.0 Strict [360]

PHP Laravel 8.16.1 Lax [361]
Symfony 5.2 Lax [362, 363]
CakePHP 4.2.4 Not Set [365, 364]
Zend 1.12 Not Set [366]
Slim 4.7.0 Lax [368, 367]

C# ASP WebForms 4.7.2 None [369]
ASP MVC 4.7.2 None [370]
ASP Core 5.0 Not Set [371]
Nancy 1.4.4 Not Set [372]
Service Stack 5.1 Lax [373]

Java Spring 5.3.4 Lax [374]
Play 2.8 Lax [375]
Vaadin 8.0 Not Set [376]
Vert.x-Web 4.03 Not Set [377]
Spark 3.1.1 Not Set [378]

Legend: = Fully Supported; = Partially Supported; = Not Supported;

Even when browsers enforce a default Lax policy, web frameworks’ built-in APIs can
downgrade it to the None policy by default. Accordingly, we examined the top five frameworks
of top five programming languages, with the overarching goal of identifying frameworks that
relax the browser’s default SameSite cookie policy when a cookie is set.
Methodology. First, we select the top five web programming languages based on GitHub’s
2020 Octoverse report [379] (i.e., JavaScript, Python, Java, PHP, and C#). Then, we compile a

103

CHAPTER 6. STUDYING THE EFFECTIVENESS OF SAMESITE POLICIES

list of frameworks for each language, and quantify their popularity based on a series of criteria
(ordered): number of tagged questions in Stack Overflow [380], number of uses by other GitHub
repositories, number of GitHub stars, forks and watches, and the number of downloads in
package managers of each language. Accordingly, we pick the top five frameworks of each
language, resulting in a total of 25 frameworks. Then, we resort to the documentation of each
framework to see if it has built-in support for SameSite cookies. If so, we create a basic web
application using the default configuration of the framework, and use the frameworks’ cookie
APIs to set a cookie. Finally, we run the application and investigate if the framework did set a
SameSite attribute on the cookie by default.
Results. Table 6.10 summarizes our findings. First, out of the 25 frameworks, 21 frameworks
provide built-in APIs to control the SameSite policy when setting a cookie, out of which in three
frameworks, not all the three SameSite policies are supported. Then, we observe that six out of
the 25 frameworks (i.e., 24%) specify the None policy by default for all cookies set. For example,
when a developer uses the API set_cookie(k, v) in Django [309] or Pyramid [310], the
framework sets the cookie k=v; SameSite=None, adding a None policy semi-transparently
to the developer.

6.5 Summary

In this chapter, we performed, to the best of our knowledge, the first security evaluation of
SameSite cookie policy, systematically covering the trend of its usage, the impact of the new
default policy, and the threats against it, with the overarching goal of studying how effectively
SameSite cookies can mitigate XS attacks. We quantified the prevalence of vulnerabilities of each
threat in the wild, showing that (i) XS attacks can still be mounted in popular web applications
leveraging requests that are not protected by the default Lax policy, thus requiring developers to
be aware of the unprotected requests and the additional security risks, and (ii) even if developers
use the default Lax policy correctly and as a defense-in-depth, application-level vulnerabilities,
such as forgeable state-changing POST requests, or intra-page and inter-page cookie policy
inconsistencies can continue to cause XS attacks, despite the presence of the Lax policy. Finally,
we showed that browsers diverge when enforcing SameSite cookies, and that web frameworks’
default APIs can undermine the browser’s enabled-by-default Lax protection. Overall, we believe
SameSite cookies are a powerful defense-in-depth that can help reduce the attack surface for XS
attacks. However, their correct and secure use require developer’s awareness and expertise.

104

7
Related Work

105

7.1. STATIC AND DYNAMIC PROGRAM ANALYSIS TECHNIQUES

In this chapter, we provide an overview of the research domains closely tied to the central
themes explored in this thesis. Firstly, we elaborate on research in the field of static and dynamic
program analysis techniques, with a specific focus on the analysis of JavaScript programs
and code properties, which serve as the fundamental building blocks for the systems that we
design to study vulnerabilities on the Web platform (§7.1). Building upon this foundation, we
explore prior research endeavors that leveraged these program analysis techniques to design and
implement security testing solutions, and then compare the characteristics and capabilities of
those solutions with our hybrid system, JAW, which plays a centeral role in this thesis. Moving
forward, we discuss how these security testing solutions have been instantitated by researchers in
the past, shifting our attention toward the exploration of security issues on the Web, particularly
request forgery and code injection vulnerabilities. We track the historical evolution of these
vulnerabilities and the research efforts dedicated to studying their characteristics, such as
large-scale measurements of their prevalence and impact on the Internet, the identification of
insecure coding patterns, and the recognition of vulnerability indicators (§7.2). Concluding our
exploration, we delve into the research related to security mechanisms designed to safeguard the
Web and their effective and consistent implementation, such as SameSite cookies and HTTP
security headers like Content Security Policy (§7.3).

7.1 Static and Dynamic Program Analysis Techniques

In this thesis, we leveraged a wide array of program analysis concepts to tackle the task of
uncovering vulnerabilities within client-side JavaScript programs. For example, in Chapters 3
to 5, we used static analysis to identify unvalidated data flows from program inputs to security-
sensitive instructions and confirmed them using various runtime monitoring approaches like code
instrumentation and dynamic forced execution. Of course, we are not pioneers in the application
of such program analysis techniques to the realm of the Web (see, e.g., [381, 32, 16, 53, 3, 213]),
as has been used in other domains like software and mobile security too (e.g., [383, 384, 382,
385]).
Static Program Analysis. Static analysis, a technique used in software engineering to analyze
code without executing it, has evolved significantly over the years. The first scientific works on
static analysis date back to the early 1970s, primarily driven by the need to ensure correctness
and reliability in software, with Robert Floyd’s work on program verification [386] and Donald
Knuth’s work on compiler theory [387]. Back then, simple techniques like syntax checking and
type checking were the initial focus. One of the first major advances in static analysis came
in 1977, when William Wulf and his team at Carnegie Mellon University developed the Flow
Analysis System (FAS) [388]. FAS was a tool that could be used to analyze the control flow of a
program and identify potential issues such as unreachable code and type mismatches. Shortly
after, in 1979, Stephen C. Johnson released one of the earliest widely recognized static analysis
tools, "lint," alongside Unix version 7, which was designed to check C programs for errors [389].

During the 1980s to 2000s, research on static analysis continued to advance. For example,
Gary A. Kildall introduced data flow analysis to identify uninitialized variables and use-before-
definition errors [390]. James C. King proposed a symbolic execution technique to symbolically
execute a program and identify potential vulnerabilities such as buffer overflows and null pointer
dereferences [391]. Clarke et. al. proposed a model checking approach to verify that a program
satisfies a given formal specification [392]. Building upon these works, static analysis evolved
with inter-procedural [393] and context-sensitive [394] approaches.

Moving forward and to the JavaScript domain, the 21st century saw the rise of a plethora of
static analysis techniques, ranging from models capturing control [129, 43, 42] and data flow
dependencies [44, 45] to complex type analyzers [47, 46, 48], points-to analysis [50, 49], DOM
tree models [14] and models capturing run-time code evaluation [12]. While these techniques

107

CHAPTER 7. RELATED WORK

lay the foundation to build more complex approaches, they are not sufficient alone for finding
the complex classes of vulnerabilities that we study in this thesis, such as client-side CSRF
and DOM Clobbering. This is due to the fact that these methods are tailored for specific code
analysis tasks, as discussed in §1.1.1. Detecting a vulnerability like DOM Clobbering requires
understanding multiple aspects of a program at the same time, such as control flows, data flows,
injection contexts and runtime behaviours, which the aforementioned models fail to provide as
they create ad-hoc program representations.

To leverage the collective power of these approaches simultaneously, however, recent research
proposed consolidating static models into canonical representations (e.g., [51, 15]), which is
inspired by prior graph-based techniques to analyze the source code [180, 396, 395]. Notably,
Yamaguchi et. al. [15] proposed the notion of CPGs for finding software bugs in C/C++
applications (i.e., a non-web-based execution environment). Backes et. al. [51] later extended
this idea to detect vulnerabilities in the server-side of PHP web applications. However, these
new ideas do not seamlessly adapt to JavaScript’s nuances, such as the dynamic execution
environment [14] and the asynchronous function calls [45]. To date, there are no established
models for client-side JavaScript that offer a comprehensive foundation for both detecting
vulnerabilities and conducting in-depth exploratory analysis of code. In contrast to these works,
our approach adapts the concept of CPGs to the client-side of web applications, and extends
them with dynamic information, i.e., state values. Furthermore, existing CPGs are poorly suited
for large-scale analyses which is a needed feature to analyze web applications (a web application
can have hundreds of pages to analyze, each with thousands of lines of JavaScript code). Backes
et. al. [51] needed up to five days and 7 hours for a single query when analyzing 77M LoC.
In comparison, JAW took three days (sequential execution) to model and query 228M LoC
of Bitnamic applications (Chapter 3). This improvement is largely due to the introduction of
the new notion of symbolic models for shared third-party code (§3.3.2). We believe that these
contributions are key enablers to use graph-based analyses on web applications, at scale.

Dynamic Program Analysis. Dynamic testing is a well-known technique to analyze a
program while it is running. Previous research in this area can be largely divided into black-box
scanning and fuzzing techniques (e.g., [398, 397, 399]), which attempt to discover vulnerabilities
by testing a list of vulnerability-inducing inputs and observing the program behaviour, and
white-box testing techniques that range from code instrumentation and runtime monitoring [108,
110, 400] to more advanced methods like forced execution [401, 3], taint analysis [107, 402], and
symoblic and concolic execution [53, 403].

As we will show next in §7.2, dynamic analysis techniques are invaluable for detecting or
validating statically-found vulnerabilities in web applications. Nevertheless, a fundamental
challenge when applying them in the Web domain lies in establishing a sound and sustainable
implementation. For instance, a significant fraction of the taint analysis and symbolic/force
execution engines heavily depend on modifications to web browsers (see, e.g., [107, 32, 53]).
However, with the rapid evolution of browser code, such as the introduction of new features,
deprecation of APIs, and continuous refactoring of the source code, any analysis closely tied to
these modifications can quickly become outdated. Conversely, non-browser-based implementa-
tions, such as those relying on Jalangi [400], often lack the sophistication required to handle
the intricacies of the JavaScript code or its ever-growing dynamic features. Consequently, these
implementations often fall short when dealing with real-world, in-the-wild source code. We
designed the dynamic testing components in our framework, JAW, with reusability in mind,
offering both types of solutions for different applications. However, we note that JAW does
not aim to solve these challenges, thus also not exempt from (some of) the outlined limitations
above.

108

7.2. SECURITY TESTING OF WEB APPLICATIONS

7.2 Security Testing of Web Applications

In this section, we review the related work in the area of security testing and program analysis
for the Web. An orthogonal line of related work explored the applications of program analysis
techniques outlined in §7.1 for vulnerability discovery, such as static analysis [404, 51, 405, 15],
dynamic analysis [107, 8, 32, 16, 3], and hybrid approaches [381, P1, 204, 53, 213]. For example,
several research efforts studied XSS [32, 52–54] and client-side input validation flaws [P1, 107,
32, 53, 2, 3, 56]. In particular, Klein et. al. [107] used a combination of dynamic taint tracking
and symbolic string analysis to study the robustness of custom sanitization functions in the
wild. Lekies et. al. [32] performed dynamic taint analysis to study the prevalence of client-side
XSS vulnerabilities. The authors modified the JavaScript engine in Chromium and enhanced
it with taint-tracking capabilities to track unvalidated data flows to security-sensitive XSS
sinks. Steffens et. al. assessed the prevalence of persistent [2] and postMessage-based [3] XSS.
Similarly, saxena et. al. proposed Kudzu [53], a tool that performs dynamic taint-tracking to
identify sources and sinks in the current execution using a GUI explorer, and then generates
XSS exploits by applying symbolic analysis to the detected source-sink data flows.

In general, these techniques could be useful to detect more advanced vulnerabilities like
client-side CSRF provided their crawler can trigger the executions that are connecting sources
to sinks. However, crawlers often fall short of visiting modern web UIs, providing low code
coverage when compared with static analysis techniques. As opposed to approaches like [32, 53],
JAW follows a hybrid approach, addressing shortcomings of JavaScript static analysis such as
dynamic loading of script tags and point-to analysis for DOM elements.

Finally, other works studied the presence of script-less attacks in JavaScript programs using
both static and dynamic approaches, e.g., mutation-based XSS [7] and script gadgets [8]. Our
work aligns with these efforts by leveraging and combining common program analysis techniques.
However, in contrast to these works, we focus on developing a general-purpose technique that can
be used to detect also more sophisticated classes of taint-style vulnerabilities, such as client-side
request hijacking and DOM Clobbering [204], to study such vulnerable program behaviors on
the Web platform.

7.2.1 Request Forgery Vulnerabilities

Request forgery vulnerabilities have a long history and have been the the subject of numerous
research endeavors in the past, e.g., SSRF [227, 406], CSWSH [210, 211, 209], CSRF [21, 16,
226, 20], and client-side CSRF [1]. Due to their nefarious consequences, research in this area
has largely focused on request forgery defenses (e.g., [17, 138, 66, 158, 408, P4, 224, 70, 159,
407, 72, 71, 19]), with very few proposing detection techniques that can help security testing
community to uncover CSRF exploits, i.e., dynamic analysis [16], ML-based solutions [21],
and systematic manual inspection [225, 20]. Specifically, only a fraction of these works, most
notably, Deemon [16], and Mitch [21], went beyond manual inspection by presenting semi-
automated approaches. In this thesis, we propose JAW, a comprehensive framework that can be
used for automatic detection or interactive exploration of client-side cross-site request forgery
vulnerabilities (Cf. Chapter 3), as well as the broader issue of client-side request hijacking
vulnerabilities in web applications (Cf. Chapter 4).

Closely related to client-side request hijacking, multiple studies considered the hijack of
HTML tags such as scripts [32, 2] and iframes [83]. In contrast to HTML tags, this thesis focuses
on JavaScript APIs that allow creating and sending network requests. Instead of hijacking
requests, previous research also explored injecting new requests thorough DOM manipulations
and dangling markup injections [410, 409, 78]. Our study complements the missing pieces of
these works by proposing client-side CSRF (i.e., [P1]) and extending it to the larger issue of
request hijacking (i.e., [P2]), quantifying their prevalence and impact in the wild.

109

CHAPTER 7. RELATED WORK

7.2.2 HTML-only Injection Vulnerabilities

Reusing the webpages’ legitimate JavaScript code to obtain arbitrary client-side code execution
have been the topic of several research efforts in the past. Most notably, Lekies et. al. [8]
described a new attack where small fragments of JavaScript code, known as script gadgets, are
unexpectedly executed as a result of a non-script markup injected by attackers. The authors used
a modified browser engine [32] to measure the prevalence of these gadgets, and demonstrated
that they are prevalent and can bypass existing XSS mitigations, such as HTML sanitizers [78]
and CSP [238, 92]. Later, Roth et. al. [411] quantified the impact of script gadgets on CSP in
the wild. Similarly, Heiderich et. al. [7] discovered mutation-based XSS attacks (mXSS), showing
how specific browser-based mutations of DOM content and insecure JavaScript that reads and
rewrites HTML elements can transform initially secure DOM markup to code. While all these
three attacks can transform non-script markup to executable code, the elements enabling DOM
Clobbering is largely different, i.e., script gadgets rely on event handlers and mXSS attacks
abuse innerHTML mutations, whereas DOM Clobbering is the result of a complex interplay
of the default browser behaviors and insecure use of named property accesses in JavaScript
programs. Contrary to these works, our study focuses on DOM Clobbering, systematically
testing mobile and desktop browsers, identifying insecure coding patterns using both static and
dynamic analysis techniques, and demonstrating their exploitability.

Multiple instances of DOM Clobbering vulnerabilities have been discovered in the last 12
years by both academics [412, 78, 83] and security analysts [88, 242, 89, 10, 9], with the first
public instance identified in 2010 by Rydstedt et. al. as a way to circumvent frame busters [83].
The term ‘DOM Clobbering’ itself emerged in 2013, when Gareth Heyes [10] demonstrated how
this class of vulnerabilities can escalate to client-side code execution. Due to such nefarious
consequences of DOM Clobbering, prior academic studies has primarily focused on its defenses
(e.g., [93, 78, 236]). Most notably, Heiderich et. al. proposed the JSAgents library [93] and
later the DOMPurify sanitizer [78] to mitigate the security implications induced by markup
injection, such as DOM Clobbering and client-side XSS [32, 54]. Our research completes the
missing pieces of these works by systematically studying DOM Clobbering attack techniques,
their prevalence, and effectiveness of the existing countermeasures.

7.3 Security Mechanisms for the Web

Previous research on Web security mechanisms centers around studying the correct imple-
mentation and effectiveness of already deployed mechanisms, such as Content Security Policy
(CSP), or proposing new defenses that could mitigate various classes of Web attacks, such as
XS attacks and request forgery discussed throughout this thesis. For example, multiple works
studied the inconsistent deployment of HTTP security headers between the desktop and mobile
variants of a website [308, 319]. Calzavara et. al. [413] proposed extensions to CSP to enable
third-parties to contribute in creating a secure CSP configuration through advanced policy
composition strategies. Roth et. al. [414] conducted a developer study to understand the
challenges developers encounter when deploying a CSP. Other works addressed incoherencies in
browser access control policies and SOP (see, e.g., [416, 133, 415, S2]). More closely related to
the attacks presented in §6.3, Calzavara et. al. studied the inconsistent adoption of security
mechanisms across different web pages of an application [307]. As opposed to these works, in
this thesis, we uncovered inconsistencies of the browsers with regards to the SameSite cookie
policy. Also, we studied the protective coverage of the new default Lax policy, and systematically
identified and proposed attacks that can bypass it, primarily based on incoherencies in the
SameSite cookie attribute.

A orthogonal line of the prior work studied the role of cookies in Web security, such as
cookie integrity attacks (e.g., [417, 419, 420, 418, 156]), and third-party cookies (e.g., [422,

110

7.3. SECURITY MECHANISMS FOR THE WEB

421]). As a response to the notorious role of third-party cookies in XS attacks, previous research
proposed multiple approaches to automatically strip session cookies from cross-site requests,
e.g., using server-side proxies [138, 231], browser extensions [66, 159, 407, 72], or both [224].
Franken et. al. [316] proposed a framework to evaluate the correct enforcement of these cookie
stripping policies on cross-site requests, by analyzing the security mechanisms of browsers and
browser extensions. Other works studied the usage of cookie security attributes. For example,
Sivakorn et. al. explored the adoption of the Secure flag [136], and Singh et. al. measured its
usage [415]. Similarly, Zhou and Evans studied the usage of the HTTPOnly attribute [423]. In
contrast to these works, in this thesis, we focus on the SameSite attribute. Closely related to
our work, Calvano [96, 424] analyzed the usage of SameSite cookie policies using HTTP archive.
Similarly, the proprietary BuiltWith website reports the usage of SameSite cookies [425]. Our
work completes the missing pieces from these analyses, systematically studying the trend of
the adoption of valid and invalid SameSite cookie policies, and the impact and effectiveness of
Lax-by-default cookies.

111

8
Concluding Remarks

113

8.1. ETHICAL CONSIDERATIONS

This chapter provides concluding insights and a discussion of key aspects of our work. First,
we discuss the ethical safeguards, considerations for experiment execution, and measures taken
for vulnerability notifications concerning our study’s findings (§8.1). Then, we outline the
limitations of the approaches adopted in this thesis and their connection to recent research
(§8.2). Building upon our main findings and identified pain points, we highlight and discuss
open challenges for future work (§8.3). Following that, we demonstrate our commitment to open
science by discussing our open-source research artifacts (§8.4). Finally, we present concluding
remarks summarizing the research presented throughout this thesis and discuss the broader
implications of our findings (§8.5).

8.1 Ethical Considerations

Our experiments on live websites do not target any real user. Tests requiring to persist data
(e.g., store a markup) or state-changing operations (e.g., changing profile settings) are exclusively
restricted to user accounts that we created on those sites. Also, to uphold the highest ethical
standards, we excluded testing functionalities where we could not control the request impact or
the visibility of the injected payload (e.g., publicly accessible posts and comments). Tests on
public functionalities was performed without persistently injecting any markup. Throughout
the testing process, we strictly adhered to best practices and guidelines outlined by websites’
vulnerability disclosure programs on platforms like HackerOne [426] and BugCrowd [427],
whenever such programs were available. Furthermore, we minimized the crawling load on
resource servers by limiting the number of pages we visited per site (i.e., maximum 200) and
also by distributing the load in time (round-robin strategy).

In this thesis, we test and measure the occurence of vulnerabilities in real systems. In all
cases, we responsibly disclosed our findings to the affected parties, including web browsers,
sanitizer libraries, web frameworks, IdPs and websites, following the best practices of vulnerability
notification (see [428]). We prioritized our reports by severity, where we send an initial notification
that includes the vulnerability details, or a proof-of-concept exploit, followed by an additional
reminder every month to maximize the remediation rate. Since many of the security issues
we found in Chapters 4 to 6 affected hundreds of websites, we created large-scale vulnerability
notification campaigns, seeking the assistance of our national CSIRT1. We do not disclose the
details of vulnerabilities unless they have been confirmed and patched by the affected vendor. As
a result of our disclosure process, many sites patched their system, including popular ones like
Microsoft Azure, GitHub, Starz, Vimeo, Fandom, TripAdvisor and SuveryMonkey, to name only
a few examples. In addition, we even submitted patches ourself to the affected libraries, such as
the famous DOMPurify sanitizer [429], maintaining the highest ethical standards throughout
our research.

8.2 Limitations

In this section, we discuss potential limitations that affect our experiments presented throughout
this thesis. First, our measurements on client-side CSRF, DOM Clobbering, and request hijacking
vulnerabilities rely on our ability to represent JavaScript behaviour in terms of unvalidated
data flows, largely via static analysis. However, JavaScript programs are incredibly challenging
to be analyzed via static analysis due to their dynamic nature (e.g., [11, 12]). Second, our
analyses on SameSite cookies, DOM Clobbering and request hijacking flaws are confined to the
public surface of the investigated websites, as automated login and registration is a challenging
task [318]. In the remainder of this section, we discuss each limitation in more detail.

1https://www.trusted-introducer.org/

115

https://www.trusted-introducer.org/

CHAPTER 8. CONCLUDING REMARKS

8.2.1 Soundness of Static Analysis

The vulnerabilities found in this work are those captured by our model and traversals. However,
it could happen that a vulnerability in the program (e.g., a forgeable request) is not found
because the construction of the model is bound by the soundness properties offered by the
individual static analysis tools we use for the construction of the property graph (e.g., CFG,
PDG, etc). Accurately building these models by static analysis is a challenging task due to
the streaming nature of JavaScript programs [11], and JavaScript dynamic code generation
capabilities. We point out that, similarly to prior work (e.g., see [12]), JAW extracts the code
executed by dynamic constructs, i.e., eval, setTimeout and new Function(), as long as
the string parameter can be reconstructed statically. As a future work, we plan to incorporate
a modified JavaScript engine (e.g., VisibleV8 [430]) into JAW, to provide better support for
reflection and such dynamic constructs, and to minimize the potential side effects of function
hooking, especially with respect to event handlers.

We observed that using dynamic state values together with traditional static analysis will
help to remove spurious execution traces (§3.3.7). Nevertheless, our extensive manual verification
uncovered that 1/516 requests in §3.3 was a false positive due to inaccurate pointer analysis
of the this statement in dynamically called functions (see §3.3.3). We observed that such a
request is using data values originating from the DOM tree, meaning that 1/83 requests of the
DOM-READ forgeable request category may be a false positive. We addressed this shortcoming
by incorporating a call-sensitive resolution of the this keyword into subsequent versisons of
JAW (i.e., JAW-v2). To counter the limitations of static analysis, in this thesis, we leverage
dynamic analysis and runtime monitoring to complement static analysis. For example, as we
showed in §4.3, dynamic information plays a crucial role in identifying 67.3% of the discovered
request hijacking data flows.

8.2.2 Web Crawling

The vulnerabilities discovered in this thesis affect those pages that JAW reached with our crawler.
However, crawling is a challenging task (see, e.g., [431, 432]) and JAW may have missed pages
with vulnerable code, as our crawlers only visit a portion of the websites under test. In a more
concrete sense, we constrain our crawlers to visit a maximum number of 200 subpages of each site
instead of exhaustive crawling attempts to manage the load on resource servers. Furthermore,
our crawlers adopt a passive approach, merely visiting webpages without executing any actions
that could potentially trigger execution of additional JavaScript code, which is contrary to other
crawlers like BlackWidow [397].

Finally, in this thesis, we did not evaluate at scale pages after the login step accurately. To
the best of our knowledge, Cookie Hunter [318] is the only recent approach able to handle the
sign-up and sign-in automatically. However, the sign-up success rate is quite unsatisfactory, with
88% fail rate in creating accounts. In addition, Cookie Hunter relies on pattern matching which
is too brittle to minor changes in the UIs, requiring creating and maintaining new patterns
throughout the (longitudinal) analysis. For these reasons, we demonstrated the applicability
of JAW at a smaller scale. For example, to study client-side CSRF vulnerabilities, we created
Selenium login scripts for all (i.e., 106) bitnami applications. In addition, we evaluated SameSite
adoption on a smaller scale by creating ad-hoc login scripts, focusing on the protected pages
on the Top 500 sites having the login functionality (211 sites). We observed that 88% of the
sites that do not use SameSite for their cookies on the home page also do not use it on their
protected pages, further supporting the generalizability of our results.

To increase coverage, JAW provides support for the smooth integration of other crawlers.
We emphasize that our results should be interpreted as lower-bound estimates of the actual
threats posed by the studied vulnerabilities.

116

8.3. OPEN CHALLENGES AND FUTURE WORK

8.3 Open Challenges and Future Work

In this section, we discuss some of the open questions and new challenges that arise from our
findings. First, in Sections 8.3.1 to 8.3.4, we focus on several open challenges and future work
concerning the testing techniques to detect vulnerabilities at scale. Then, in Sections 8.3.5
and 8.3.6, our focus shifts to the application of these techniques, presenting new security problems
and aspects that warrant further scrutiny.

8.3.1 Analysis of Shared Code in Web Applications

In this thesis, we showed that JAW can reduce by 60% the effort required to analyze client-side
JavaScript programs via pre-built symbolic models. However, when looking at the unique
application code, we observe that a large fraction of code is also shared between pages. For
example, the 4,836 collected pages of Bitnami applications in Chapter 3 contain in total 104,720
scripts, of which only 4,559 are unique, suggesting that the shared code of different webpages
can be modeled once, and reused through incremental program analysis to streamline the testing
at scale.

Developing such an incremental static analysis technique poses challenges, necessitating
alterations to the design and implementation of existing algorithms that generate program
representations, including Program Dependence Graphs, Control Flow Graphs, and Call Graphs.
This adaptation must (i) sufficiently maintain the soundness properties of static analysis models,
and (ii) ensure that the effort required to construct these models for the entire webpage, starting
from pre-built models of shared code, is no greater than the effort needed to analyze the webpage
from scratch. We plan to address this problem in future work.

8.3.2 Testability Patterns and Automatic Transformation

Testability patterns are problematic code instructions that affect the capability of code analysis
tools for accurate detection of vulnerabilities, such as hindering their detection or leading to
false alarms, as shown by recent research [127]. One avenue for improvement is the automatic
transformation of these patterns into simpler code structures that are more amenable to static
analysis. For instance, consider the transformation of dynamic function calls, where the function
name is provided as a string, into conventional function calls. This conversion can enhance the
capabilities of static analyzers by simplifying the code, making it more conducive to thorough
analysis. However, JavaScript programs can dynamically invoke functions through various
features, including the prototype chain and event-driven calls, adding an additional layer of
complexity to such transformations.

The primary challenges to realizing this approach lie in automatic identification of testability
patterns as well as how transformations should look like for each pattern, ensuring the preservation
of semantics during the transformation process. For example, transforming dynamically generated
JavaScript code that uses code constructs like eval() is a challenging task [12]. Overall, this
approach aims to enhance the testability of code, ultimately leading to more reliable and accurate
results from security testing tools.

8.3.3 Automatic Assessment of Static Data Flows

Despite numerous advancements in static analysis, the verification of the analysis results remains
a significant concern, especially considering the large number of alerts that are prone to false
positives. In these cases, manual analysis is often necessary to investigate and validate these
alerts, as shown in Chapters 3 to 5. To help confirming the presense of data flows automatically, in
this thesis, we employed dynamic analysis techniques, such as code instrumentation and runtime

117

CHAPTER 8. CONCLUDING REMARKS

monitoring (see, e.g., §4.2.4). However, dynamic analysis introduces additional challenges,
including the automatic generation of suitable inputs for testing and coverage of various
execution paths, such as conditional branches, which limit our ability to automatically reason
about the associated risk for a significant fraction of the results.

An alternative approach for future work involves risk-based assessment of results using
machine learning. For instance, a machine learning model can cluster similar data flows and
employ classification techniques to assign a risk score to each flow, pruning potential false
positive results (e.g., data flows with sanitization instructions). By incorporating machine
learning algorithms, we can automate the assessment of the severity of potential vulnerabilities,
which can streamline manual analysis efforts, allowing human analysts to prioritize investigations
based on the alerts with the highest associated risk. Moreover, the integration of machine
learning provides a scalable solution, enabling organizations to manage security assessments
across a larger number of webpages and services.

Despite challenges with respect to the exact machine learning techniques to be used, such as
translating insecure data flow logic into embeddings, creating a model necessitates a dataset
comprising true positive and true negative samples. However, creating a representative dataset
starting from the results of static analysis is challenging as it requires manual investigation
of data flows for thousands of webpages. In Chapter 4, we have already collected a similar
dataset for client-side JavaScript using dynamic analysis, where we visited webpages using a
taint-aware browser. However, there are open questions about how well a model trained on
dynamic data flows would perform when applied to static analysis considering various static
analysis tools and their outputs. Moreover, the transferability of the results to programming
languages beyond JavaScript is also a subject of consideration. Finally, answering these questions
require a ground-truth dataset for model evaluation, presenting a challenge in itself. Overall,
creating such a risk-based approach is challenging but could represent a strategic advancement
in optimizing security workflows and enhancing the overall resilience of web applications against
potential threats.

8.3.4 Web Crawling and Deep Application States

One of the fundamental steps of vulnerability discovery is crawling and data collection. However,
crawlers often fall short of reaching deep application states as well as handling complex workflows
such as following login and account registration procedures. For example, as outlined in
the limitations of this thesis in §8.2, post-login pages were not captured by our large-scale
measurements. To increase coverage over deep application states, one can leverage static analysis,
possibly in combination with the power of large language models for text processing, to guide
the crawling agent with feedback from webpages. Feedback information has proven valuable in
other closely related domains, particularly fuzzing [398, 399].

A feedback-guided crawler that leverages static analysis to determine its next actions offers
a strategic approach to enhance crawling coverage, especially in UI-intensive web applications.
By utilizing static analysis, the crawler can intelligently decide actions based on event handlers
associated with buttons and links, allowing it to navigate through intricate UI interactions.
For example, such an approach can prove invaluable in identifying unique URLs or request
parameters not found by typical crawlers, and in reaching deep application states, such as
progressing through the steps of purchasing a product on a website. However, a notable challenge
to realizing such an approach lies in maintaining an optimal crawling speed, as full-fledged static
analysis, like the CPG generation presented in this thesis, can be computationally intensive.
Perhaps, having an incremental static analysis approach, as suggested in §8.3.1, could potentially
improve the situation. Striking a balance between thorough static analysis and efficient crawling
speed remains a critical consideration for the effectiveness of this solution.

118

8.4. OPEN SCIENCE AND WEBSITES

8.3.5 Characterization of Vulnerable Scripts

An interesting and orthogonal aspect to this thesis pertains to characterizing the first-party and
third-party scripts responsible for vulnerabilities, such as client-side CSRF, request hijacking
and DOM Clobbering vulnerabilities discussed in Chapters 3 to 5. Exploring these scripts could
offer insights into the root causes of issues, possibly contributing to the development of more
effective and compatible defenses. This is particularly important as our analyses of existing
countermeasures in Chapter 6 and sections 4.4 and 5.3 suggest that they fall short in many
situations.

Unfortunately, as of now, we still lack a clear understanding of first-party or third-party
scripts introducing the vulnerable sinks, raising questions about whether vulnerabilities stem
from developer mistakes, or, for instance, are introduced by established advertising providers
or third-party frontend frameworks. For example, Lekies et. al. [8] found that script gadgets
are prevalent in well-known JavaScript libraries, and Squarcina et. al. [433] discovered that
frontend frameworks like Angular set custom HTTP headers for CSRF protection using attacker-
controlled values (e.g., cookies from a subdomain). In the context of client-side JavaScript
programs, characterizing such behavior is non-trivial, as according to recent research [434], over
40% of the applications in the wild use bundled scripts to optimise page loading speeds, making
it challenging to attribute a specific line of code to either a first-party or third-party program.

8.3.6 The Unexpected Dangers of Code-less HTML Markups

The rapid evolution of client-side technologies has led to unforeseen interactions between
JavaScript programs and their execution environment, particularly within browsers. These
interactions can transform initially secure input markups into executable code, providing attackers
with avenues for launching XSS attacks by exploiting the already-existing JavaScript code inside
webpages. In Chapter 5, we investigated the problem of DOM Clobbering, representing a specific
instance of the broader issue of code-less injection attacks. Previous research has also introduced
various instances of such attacks, including script gadgets [8, 411], mXSS vulnerabilities [7, 32],
and CSS-only XSS attacks [36]. Despite these individual explorations, we still lack a systematic
and comprehensive study targeting these class of attacks as a whole in order to (i) understand
the injection points in the DOM tree, (ii) the level of trust developers place in DOM content,
and (iii) how this content is accessed and utilized in security-sensitive instructions. Addressing
these aspects would contribute to a more thorough understanding of code-less injection attacks,
enhancing our ability to design more effective defenses to mitigate associated vulnerabilities.

8.4 Open Science and Websites

To support the future research effort, we open-source the artifacts presented in this thesis.
Specifically, we publicly release three versions of JAW2 enabling security testing of client-side
JavaScript programs at scale, including the detection and study of client-side CSRF, DOM
Clobbering, and request hijacking vulnerabilities. In addition, we create and release a wiki
consolidating our findings on SameSite cookie policies3, including attacks that bypass the
Lax-by-default protection. Finally, we release the automated browser testing pipeline4 that
identifies DOM clobbering markups (see §5.1), and an interactive catalog of clobbering markups5.
We believe that making our artifacts available to the general public could assist developers

2https://github.com/SoheilKhodayari/JAW/releases
3https://soheilkhodayari.github.io/same-site-wiki
4https://github.com/SoheilKhodayari/DOMClobbering
5https://domclob.xyz

119

https://github.com/SoheilKhodayari/JAW/releases
https://soheilkhodayari.github.io/same-site-wiki
https://github.com/SoheilKhodayari/DOMClobbering
https://domclob.xyz

CHAPTER 8. CONCLUDING REMARKS

and security analysts in identifying security vulnerabilities in their systems and allows for
reproducibility in the future.

8.5 Conclusion and Discussion

In this thesis, we proposed a security testing framework, JAW, to study the emerging security
threats and defenses on the Web at scale. We demonstrated the efficacy and practicality of
JAW by evaluating it on all (i.e., 106) bitnami applications, and the top 10K websites, covering
multiple classes of vulnerabilities. We used JAW as our vehicle to conduct security testing
at scale, where we assessed the prevalence and impact of client-side CSRF, DOM Clobbering,
and request hijacking vulnerabilities in the wild, demonstrating an alarming threat landscape.
Finally, we had a look at the adoption and adequacy of browser-based countermeasures, such as
SameSite cookies, CSP, COOP and COEP. In the remaining, we summarize the main findings
of this thesis for each research question outlined in §1.1 and discuss their wider implications.

8.5.1 Automatic Detection of Client-side CSRF

Hybrid Property Graphs. In this thesis, we proposed HPGs, a uniform representation for
client-side of web applications, modeling both static and dynamic program behaviors. Contrary
to CPGs, HPGs can capture the event-based transfer of control via the event registration,
dispatch, and dependency graph, enabling the identification of +89% edges transferring the
control flow (Cf. §3.3.2). In addition, HPGs introduce the concept of semantic types and symbolic
models. By generating reusable symbolic models of shared libraries (Cf. §3.3.2), our approach
reduces by more than half (-60.3%) the effort required to create program representations. Finally,
HPGs provide dynamically observed information, such as environment properties and network
messages.
Contribution of Run-time Monitoring. Our evaluation in §3.3 shows that dynamic infor-
mation increases the transfer of control path by 0.26%. Despite its negligibility, our results
shows that dynamic information is fundamental for the identification of the forgeable requests of
14 out of 87 vulnerable applications and three out of seven exploitable applications (an increase
of +19.1% and +75%, respectively).
Properties of Client-side Forgeable Requests. In Chapter 3, we showed that 82% of the
web applications have at least one web page with a client-side forgeable request that can be
exploited to mount CSRF attacks, suggesting that forgeable requests are prevalent. We also
showed that client-side CSRF can be used to mount other attacks, such as XSS and SQLi, which
cannot be mounted via the traditional attack vectors. Then, the analysis of forgeable requests
(Cf. §3.3.4) suggest that some client-side CSRF patterns are more prevalent than others, e.g., in
28.7% of vulnerable applications, the attacker can overwrite a parameter in the request body.
Interesting Properties of Vulnerable Applications. We found that 39 out of 106 targets
in our testbed in Chapter 3 are single page applications (SPA), i.e., 36.7%. We manually
examined the 87 vulnerable targets and observed that 44.8% of them are SPA’s. Also, we found
exploits in 17.9% of the tested SPAs (§3.3.5). We believe this sheds light into the fact that
client-side CSRF instances are more prevalent among SPA applications.
Vulnerability Originates from the Same Code. In §3.3, the manual analysis of the 515
forgeable HTTP requests reveals that each vulnerability originates from different copies of the
same code used across various pages. The templates for vulnerabilities range between one to
four per application, with a majority of applications (i.e., 78.1%) having only a single template.
These facts suggest that developers tend to repeat the same mistake across different pages.

120

8.5. CONCLUSION AND DISCUSSION

8.5.2 Studying Request Hijacking Vulnerabilities in the Wild

Client-side CSRF Only Tip of the Iceberg. In this thesis, we have shown that client-side
CSRF is only one facet of the larger problem of request hijacking in web applications. In fact,
a considerable fraction of request hijacking data flows that we discovered (36.1%, i.e., 73.3K
out of 202K) as well as more than half of the exploits that we created (Cf. §4.3.4) leverage
the new vulnerability types and variants which have not been considered by previous works on
client-side CSRF [1, P1, 69]. For example, we observed that over 21% of forgeable data flows
affect the sendBeacon API [6].
Request Hijacking Data Flows Ubiquitous. Request hijacking data flows are pervasive in
today’s web, affecting over 9.6% of the websites in the wild and about 5.2% of the tested webpages
in our dataset. Our measurement provides only a lower-bound estimate of the vulnerable data
flows as we limited our tests to 50 unique pages of each website (Cf. §4.3.1).
Request Hijacking has Diverse Consequences. Our work uncovers the diverse range of
security implications resulting from client-side request hijacking, where each vulnerability could
be exploited in multiple ways depending on the affected request type and API, amplifying
the associated risks. For example, we show that the hijack of asynchronous requests not only
results in client-side CSRF, as outlined in previous research [P1], but also exposes the risk
of information leakage, e.g., when attackers gain control over the endpoint of a request that
contains sensitive information in its body. We observed that over 41% of the exploitable data
flows (Cf. §4.3.4) could lead to client-side XSS and information leakage, and 25.3% and 22.4%
lead to client-side CSRF and open redirections, respectively.
Existing Defenses Necessary but Insufficient. The analysis of existing countermeasures
(§4.4) suggests that they are a necessary protection mechanism to prevent classical attacks (e.g.,
CSRF), but do not provide a complete protective coverage as each can only mitigate a fraction of
the resulting attacks. For example, CSP does not mitigate over 41% of the XSS and information
leakage exploitations of request hijacking, and is ineffective against CSRF exploitations, and
COOP cannot prevent ∼93% of the discovered request hijacking vulnerabilities. In the absence
of a full-fledged browser-level defense, developers have to be particularly careful when choosing
or implementing a countermeasure, in order to balance security with usability. For example,
over 9.6% of the applications have insufficient, missing or logically flawed input validation checks
when offering their functionality.

8.5.3 Understanding DOM Clobbering Attacks and Defenses

Clobbering Markups Come In Many Forms. In this thesis, we proposed a systematic
technique to identify DOM Clobbering markups, and showed that they come in many forms,
with a total of 31,432 attack markups that rely on five different techniques, including 148 new
instances and 30,803 new variants. We observed that browsers exhibit divergent behaviours
when handling named properties. For example, for a significant fraction of the markups (i.e.,
99%), there is at least one browser that disagrees with others, making it increasingly more
challenging to enforce robust defenses.
DOM Clobbering is Ubiquitous. DOM Clobbering vulnerabilities are prevalent, affecting
over 9.8% of the top 5K sites, with the consequences ranging from XSS to user state manipulation,
request forgery and client-side open redirects in the majority of the cases, i.e., 83.7% (see §5.2.2).
Defenses Helpful but May not Completely Cut it. The evaluation of existing DOM
Clobbering countermeasures (§5.3) suggests that each can only mitigate a fraction of the attacks.
For example, 55% of the popular HTML sanitizers are vulnerable to at least one of the 31K
clobbering markups by default, and CSP cannot mitigate over 85% of the identified vulnerabilities.
Protecting such a fraction of the attack surface without switching named properties off completely

121

CHAPTER 8. CONCLUDING REMARKS

is a more costly task, requiring developers to be aware of corner case behaviors of browsers
and revisit the design and implementation of their systems, e.g., strict type checking, explicit
variable declarations, or namespace isolation.

8.5.4 Studying the Effectiveness of SameSite Policies

The Hidden Costs of Pre-packaged Policies. In Chapter 6, we quantified a significant
fraction of the attack surface that remains unprotected by the SameSite policy and exposed
to XS attacks. Protecting such a fraction of the attack surface is a considerably harder and
more costly task, requiring developers to revisit the design and implementation of their systems
(e.g., removing state-changing GET) and being aware of both precise corner case behaviors of
browsers and web frameworks. To date, developers must adapt their existing web applications
to three predefined sets of admitted contexts, which is in stark contrast with other web security
policies (e.g., CORS and CSP) where developers have fine-grained options to customize a security
policy to their needs. We believe that such flexibility and customization could help developers
fully protect their web applications. We hope that our work encourages researchers to take on
the challenges of going beyond static, pre-packaged policies and exploring more flexible and
customizable SameSite policies.
Correct and Secure Use Require Awareness. While the Lax-by-default policy is a relatively
new mechanism that could help protect from XS attacks, it requires developers to know the
precise cross-site request contexts that are and are not protected. In this thesis, we identified six
cross-site contexts that are not covered by the Lax policy (Table 2.1), which are exposed to XS
attacks. For example, we observed that over 10.3% of state-changing operations in Alexa top
1K sites use the GET method, and 2.6% of them can be trivially exploited to mount a CSRF
attack.
Advertisement Services Affected the Most. Our functionality breakage analysis showed
that as of February 2021, 19% of cross-site requests without the SameSite attribute are no longer
working, affecting the most the advertising services (77.5%).
SameSite for Defense in Depth. Switching to the new Lax policy requires further care by
developers as even the contexts covered by the Lax policy can be still be abused for XS attacks.
For example, we showed that 1.5% of POST requests of top 1K Alexa sites that are seemingly
protected by Lax can be successfully forged by replaying the request with the GET HTTP verb
that is not protected by Lax. Also, SameSite policies should be used consistently across pages
and across website versions to avoid introducing security gaps.
Browsers Diverge on SameSite Cookie Policy. Our analysis of 14 different web browsers
uncovered seven distinct types of behaviours when enforcing SameSite cookies. These divergent
enforcements may urge application developers to implement ad-hoc solutions to handle cookies
of different user clients differently, e.g., by dynamically generating the SameSite policy per client,
or by setting duplicate cookies, one for each intended client. For example, we discovered that
the Lax policy can be bypassed in 1.4% and 3.3% of the tested top 500 sites due to cookies with
inconsistent SameSite policies, either within a web page (duplicate cookies), or across multiple
pages, respectively. We believe such divergence will narrow down over time.
Change of the Browser’s Flag is the First Step. SameSite cookies are a robust defense-
in-depth mechanism against some classes of XS attacks. However, developers needed to opt-into
its protections by explicitly specifying a SameSite attribute. Accordingly, changing the default
browser’s SameSite cookie flag to Lax helps transition from an “opt-in" to an “opt-out" solution.
While such change is a promising first step, it is not enough to complete this transition. For
example, we observed that 24% of the top 25 web frameworks set the None policy by default
when a cookie is set, which can downgrade the browser’s default SameSite cookie policy, and
requires developers to explicitly opt-into stricter policies. In addition, external functionalities,

122

8.5. CONCLUSION AND DISCUSSION

such as the integration of the application to third-party services, may be leveraged to compromise
the Lax protection, and thus need to be reviewed. For example, for the top 10K Alexa sites,
the Lax policy can be trivially bypassed in over 49% of the sites due to their integration with
vulnerable identity providers.

123

Bibliography

Author’s Papers for this Thesis

[P1] Khodayari, S. and Pellegrino, G. JAW: Studying Client-side CSRF with Hybrid Property
Graphs and Declarative Traversals. In: USENIX Security Symposium. 2021.

[P2] Khodayari, S., Barber, T., and Pellegrino, G. The Great Request Robbery: An Empirical
Study of Client-side Request Hijacking Vulnerabilities on the Web. In: IEEE S&P
Symposium. 2024.

[P3] Khodayari, S. and Pellegrino, G. It’s (DOM) Clobbering Time: Attack Techniques,
Prevalence, and Defenses. In: IEEE S&P Symposium. 2023.

[P4] Khodayari, S. and Pellegrino, G. The State of the SameSite: Studying the Usage, Effec-
tiveness, and Adequacy of SameSite Cookies. In: IEEE S&P Symposium. 2022.

Other Papers of the Author

[S1] Likaj, X., Khodayari, S., and Pellegrino, G. Where We Stand (or Fall): An analysis of
CSRF defenses in Web Frameworks. In: International Symposium on Research in Attacks,
Intrusions and Defenses. 2021.

[S2] Sudhodanan, A., Khodayari, S., and Caballero, J. Cross-Origin State Inference (COSI)
Attacks: Leaking Web Site States through XS-Leaks. In: Network and Distributed Systems
Security Symposium. 2020.

Other references

[1] Client-side CSRF. https://www.facebook.com/notes/facebook-bug-bounty
/client-side-csrf/2056804174333798/. 2018.

[2] Steffens, M., Rossow, C., Johns, M., and Stock, B. Don’t trust the locals: investigating
the prevalence of persistent client-side cross-site scripting in the wild. In: NDSS. 2019.

[3] Steffens, M. and Stock, B. PMForce: Systematically Analyzing postMessage Handlers at
Scale. In: CCS. 2020.

[4] Stock, B., Johns, M., Steffens, M., and Backes, M. How the web tangled itself: uncovering
the history of client-side web (in)security. In: USENIX Security Symposium. 2017.

[5] Push API Specification, W3C Working Draft (2023).
[6] Beacon, W3C Working Draft (2023).
[7] Heiderich, M., Schwenk, J., Frosch, T., Magazinius, J., and Yang, E. Z. mXSS Attacks:

Attacking Well-secured Web Applications by Using innerHTML Mutations. In: CCS.
2013.

125

https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/

BIBLIOGRAPHY

[8] Lekies, S., Kotowicz, K., Groß, S., Vela Nava, E. A., and Johns, M. Code-reuse attacks
for the web: breaking cross-site scripting mitigations via script gadgets. In: CCS. 2017.

[9] Heyes, G. DOM Clobbering strikes back (2020). https://portswigger.net/
research/dom-clobbering-strikes-back.

[10] Heyes, G. DOM Clobbering (2013). http://www.thespanner.co.uk/2013/05/
16/dom-clobbering/.

[11] Guarnieri, S. and Livshits, B. GULFSTREAM: Staged Static Analysis For Stream-
ing JavaScript Applications. In: Proceedings of the 2010 USENIX conference on Web
application development. 2010.

[12] Jensen, S. H., Jonsson, P. A., and Møller, A. Remedying the Eval that Men Do. In: ACM
ISSTA. 2012.

[13] Richards, G., Lebresne, S., Burg, B., and Vitek, J. An Analysis of the Dynamic Behavior
of Javascript Programs. In: Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation. 2010.

[14] Jensen, S. H., Madsen, M., and Møller, A. Modeling the HTML DOM and Browser API
in Static Analysis of Javascript Web Applications. In: Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of software
engineering (ESEC/FSE). 2011.

[15] Yamaguchi, F., Golde, N., Arp, D., and Rieck, K. Modeling and Discovering Vulnerabilities
with Code Property Graphs. In: IEEE S&P Symposium. 2014.

[16] Pellegrino, G., Johns, M., Koch, S., Backes, M., and Rossow, C. Deemon: Detecting
CSRF with dynamic analysis and property graphs. In: ACM CCS. 2017.

[17] Barth, A., Jackson, C., and Mitchell, J. C. Robust defenses for cross-site request forgery.
In: ACM CCS. 2008.

[18] Ferguson, D. Netflix Cross Site Request Forgery Vulnerability. SecList Full Disclosure
Mailing List (2006). https://seclists.org/fulldisclosure/2006/Oct/316.

[19] Zeller, W. and Felten, E. W. Cross-Site Request Forgeries: Exploitation and Prevention.
In: Princeton University. https://www.cs.utexas.edu/~shmat/courses/
cs378/zeller.pdf. 2008.

[20] Sudhodanan, A., Carbone, R., Compagna, L., and Dolgin, N. Large-scale analysis & de-
tection of authentication cross-site request forgeries. In: 2017 IEEE European Symposium
on Security and Privacy. 2017.

[21] Calzavara, S., Conti, M., Focardi, R., Rabitti, A., and Tolomei, G. Mitch: a machine
learning approach to the black-box detection of csrf vulnerabilities. In: IEEE EuroS&P
Symposium. 2019.

[22] XMLHttpRequest API. https://developer.mozilla.org/en-US/docs/Web/
API/XMLHttpRequest.

[23] Fetch Living Standard (). https://fetch.spec.whatwg.org.
[24] Bitnami Application Catalog. https://bitnami.com/stacks.
[25] DOM clobbering. https://portswigger.net/web-security/dom-based/dom-

clobbering.
[26] Jenkins, N. Sanitising HTML – The DOM Clobbering Issue (2015). https://fastmail.

blog/advanced/sanitising-html-the-dom-clobbering-issue/.
[27] West, M. Content Security Policy Level 3. W3C Working Draft (2022). https://w3c.

github.io/webappsec-csp/.

126

https://portswigger.net/research/dom-clobbering-strikes-back
https://portswigger.net/research/dom-clobbering-strikes-back
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
https://seclists.org/fulldisclosure/2006/Oct/316
https://www.cs.utexas.edu/~shmat/courses/cs378/zeller.pdf
https://www.cs.utexas.edu/~shmat/courses/cs378/zeller.pdf
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://fetch.spec.whatwg.org
https://bitnami.com/stacks
https://portswigger.net/web-security/dom-based/dom-clobbering
https://portswigger.net/web-security/dom-based/dom-clobbering
https://fastmail.blog/advanced/sanitising-html-the-dom-clobbering-issue/
https://fastmail.blog/advanced/sanitising-html-the-dom-clobbering-issue/
https://w3c.github.io/webappsec-csp/
https://w3c.github.io/webappsec-csp/

OTHER REFERENCES

[28] Cookies: HTTP State Management Mechanism (2020).
[29] SameSite cookie attribute, Chromium, Blink. https://www.chromestatus.com/

feature/4672634709082112. 2020.
[30] West, M. Incrementally Better Cookies (2019).
[31] Top Website Statistics For 2023. https://www.forbes.com/advisor/in/busin

ess/software/website-statistics. (Visited on 12/12/2023).
[32] Lekies, S., Stock, B., and Johns, M. 25 million flows later: large-scale detection of

DOM-based XSS. In: ACM CCS. 2013.
[33] Hanna, S., Shin, R., Akhawe, D., Boehm, A., Saxena, P., and Song, D. The emperor’s

new apis: on the (in) secure usage of new client-side primitives. In: Web 2.0 Security and
Privacy. 2010.

[34] Masas, R. Patched Facebook Vulnerability Could Have Exposed Private Information About
You and Your Friends. 2018. url: https://www.imperva.com/blog/facebook-
privacy-bug/.

[35] Janc, A. and West, M. How do we Stop Spilling the Beans Across Origins. 2018.
[36] Heiderich, M., Niemietz, M., Schuster, F., Holz, T., and Schwenk, J. Scriptless attacks:

stealing the pie without touching the sill. In: Proceedings of the ACM conference on
computer and communications security. 2012.

[37] Son, S. and Shmatikov, V. The Postman Always Rings Twice: Attacking and Defending
postMessage in HTML5 Websites. In: Proceedings of the Network and Distributed Systems
Security Symposium. 2013.

[38] Käfer, K. Cross site request forgery. In: Hasso-Plattner-Institut, Technical report. 2008.
[39] Hardy, N. The confused deputy: (or why capabilities might have been invented). In: ACM

SIGOPS Operating Systems Review. 1988.
[40] Intent to implement and ship: cookies with SameSite by default. https://groups.

google.com/a/chromium.org/forum/#!msg/blink-dev/AknSSyQTGYs/
SSB1rTEkBgAJ. 2019.

[41] Intent to implement: Cookie SameSite=lax by default and SameSite=none only if secure.
https://groups.google.com/g/mozilla.dev.platform/c/nx2uP0CzA9k/
m/BNVPWDHsAQAJ. 2019.

[42] Park, C. and Ryu, S. Scalable and Precise Static Analysis of JavaScript Applications
via Loop-Sensitivity (Artifact). In: Proceedings of the European Conference on Object-
Oriented Programming. 2015.

[43] Jensen, S. H., Møller, A., and Thiemann, P. Interprocedural Analysis with Lazy Propa-
gation. In: International Static Analysis Symposium, Lecture Notes in Computer Science,
vol 6337. Springer, Berlin, Heidelberg. 2010.

[44] Madsen, M. and Møller, A. Sparse Dataflow Analysis with Pointers and Reachability. In:
International Static Analysis Symposium, Lecture Notes in Computer Science, vol 8723.
Springer, Cham. 2014.

[45] Sotiropoulos, T. and Livshits, B. Static Analysis for Asynchronous Javascript Programs.
In: Proceedings of the European Conference on Object-Oriented Programming. 2019.

[46] Hackett, B., Lebresne, S., Burg, B., and Vitek, J. Fast and Precise Hybrid Type Inference
for Javascript. In: Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2012.

127

https://www.chromestatus.com/feature/4672634709082112
https://www.chromestatus.com/feature/4672634709082112
https://www.forbes.com/advisor/in/business/software/website-statistics
https://www.forbes.com/advisor/in/business/software/website-statistics
https://www.imperva.com/blog/facebook-privacy-bug/
https://www.imperva.com/blog/facebook-privacy-bug/
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/AknSSyQTGYs/SSB1rTEkBgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/AknSSyQTGYs/SSB1rTEkBgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/AknSSyQTGYs/SSB1rTEkBgAJ
https://groups.google.com/g/mozilla.dev.platform/c/nx2uP0CzA9k/m/BNVPWDHsAQAJ
https://groups.google.com/g/mozilla.dev.platform/c/nx2uP0CzA9k/m/BNVPWDHsAQAJ

BIBLIOGRAPHY

[47] Chandra, S., Gordon, C. S., Jeannin, J.-B., Schlesinger, C., Sridharan, M., Tip, F., and
Choi, Y. Type Inference for Static Compilation of Javascript. In: ACM SIGPLAN Notices.
2016.

[48] Jensen, S. H., Møller, A., and Thiemann, P. Type Analysis for Javascript. In: Proceedings
of the 16th International Symposium on Static Analysis. 2009.

[49] Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., and Tip, F. Correlation Tracking
for Points-To Analysis of Javascript. In: Proceedings of the European Conference on
Object-Oriented Programmings. 2012.

[50] Madsen, M., Livshits, B., and Fanning, M. Practical Static Analysis of Javascript Ap-
plications in the Presence of Frameworks and Libraries. In: Proceedings of the ACM
Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). 2013.

[51] Backes, M., Rieck, K., Skoruppa, M., Stock, B., and Yamaguchi, F. Efficient and Flexible
Discovery of PHP Application Vulnerabilities. In: Proceedings of the 2nd IEEE European
Symposium on Security and Privacy. 2017.

[52] Melicher, W., Das, A., Sharif, M., Bauer, L., and Jia, L. Riding out domsday: towards
detecting and preventing dom cross-site scripting. In: 2018 Network and Distributed
System Security Symposium (NDSS). 2018.

[53] Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., and Song, D. A symbolic
execution framework for JavaScript. In: IEEE S&P Symposium. 2010, 513–528.

[54] Steffens, M., Rossow, C., Johns, M., and Stock, B. Don’t Trust the Locals: Investigating
the Prevalence of Persistent Client-Side Cross-Site Scripting in the Wild. In: NDSS. 2019.

[55] Nicolay, J., Spruyt, V., and Roover, C. D. Static Detection of User-specified Security
Vulnerabilities in Client-side JavaScript. In: Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security (PLAS). 2016.

[56] Weissbacher, M., Robertson, W., Kirda, E., Kruegel, C., and Vigna, G. ZigZag: Auto-
matically Hardening Web Applications Against Client-side Validation Vulnerabilities. In:
USENIX Security Symposium. 2015.

[57] Saxena, P., Hanna, S., Poosankam, P., and Song, D. FLAX: Systematic Discovery of
Client-side Validation Vulnerabilities in Rich Web Applications. In: Proceedings of the
Network and Distributed Systems Security Symposium. 2010.

[58] Skrupsky, N., Monshizadeh, M., Bisht, P., Hinrichs, T., Venkatakrishnan, V., and Zuck, L.
WAVES: Automatic Synthesis of Client-side Validation Code for Web Applications. In:
2012 International Conference on Cyber Security. 2012.

[59] Somé, D. F. EmPoWeb: Empowering Web Applications with Browser Extensions. In:
Proceedings of the IEEE Symposium on Security and Privacy. 2019.

[60] Calzavara, S., Bugliesi, M., Crafa, S., and Steffinlongo, E. Fine-Grained Detection of
Privilege Escalation Attacks on Browser Extensions. In: Programming Languages and
Systems - 24th European Symposium on Programming (ESOP). 2015.

[61] Barth, A., Weinberger, J., and Song, D. Cross-Origin JavaScript Capability Leaks:
Detection, Exploitation, and Defense. In: Proceedings of the USENIX Security Symposium.
2009.

[62] Lauinger, T., Chaabane, A., Arshad, S., Robertson, W., Wilson, C., and Kirda, E. Thou
shalt not depend on me: analysing the use of outdated javascript libraries on the web.
NDSS 2017 (2017).

[63] JQuery library. https://jquery.com/.

128

https://jquery.com/

OTHER REFERENCES

[64] Jensen, S. H., Madsen, M., and Møller, A. Modeling the HTML DOM and browser API in
static analysis of JavaScript web applications. In: Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering.
2011, 59–69.

[65] Usage statistics of JavaScript libraries for websites. https://w3techs.com/techno
logies/overview/javascript_library. 2020.

[66] Johns, M. and Winter, J. RequestRodeo: Client-side Protection Against Session Riding.
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf.
2006.

[67] Burns, J. Cross site reference forgery: an introduction to a common web application
weakness. In: Information Security Partners, LLC. 2005.

[68] Critical CSRF Vulnerability on Facebook. https://www.acunetix.com/blog/web-
security-zone/critical-csrf-vulnerability-facebook/. 2019.

[69] OWASP Cross-Site Request Forgery Prevention Cheat Sheet. https://cheatsheets
eries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Preventi
on_Cheat_Sheet.html.

[70] Likaj, X., Khodayari, S., and Pellegrino, G. Where we stand (or fall): an analysis of csrf
defenses in web frameworks. In: RAID Symposium. 2021, 370–385.

[71] Wilander, J. Advanced csrf and stateless anti-csrf (2012).
[72] Ryck, P. D., Desmet, L., Joosen, W., and Piessens, F. Automatic and precise client-side

protection against CSRF attacks. In: ESORICS. 2011.
[73] Cross-Origin Opener Policy. https://developer.mozilla.org/en-US/docs/

Web/HTTP/Headers/Cross-Origin-Opener-Policy.
[74] Cross-Origin Embedder Policy. https://developer.mozilla.org/en-US/docs/

Web/HTTP/Headers/Cross-Origin-Embedder-Policy.
[75] Nadji, Y., Saxena, P., and Song, D. Document Structure Integrity: A Robust Basis for

Cross-site Scripting Defense. In: NDSS. 2009.
[76] Grossman, J., Fogie, S., Hansen, R., Rager, A., and Petkov, P. D. XSS Attacks: Cross-Site

Scripting Exploits and Defense. Syngress, 2007.
[77] Dahse, J. and Holz, T. Static Detection of Second-Order Vulnerabilities in Web Applica-

tions. In: USENIX Security. 2014.
[78] Heiderich, M., Späth, C., and Schwenk, J. DOMPurify: Client-side Protection Against

XSS and Markup Injection. In: ESORICS. 2017.
[79] Samuel, M., Saxena, P., and Song, D. Context-sensitive Auto-sanitization in Web Tem-

plating Languages Using Type Qualifiers. In: CCS. 2011.
[80] Saxena, P., Molnar, D., and Livshits, B. SCRIPTGARD: Automatic Context-sensitive

Sanitization for Large-scale Legacy Web Applications. In: CCS. 2011.
[81] Bates, D., Barth, A., and Jackson, C. Regular Expressions Considered Harmful in

Client-side XSS Filters. In: WWW. 2010, 91–100.
[82] Wurzinger, P., Platzer, C., Ludl, C., Kirda, E., and Kruegel, C. SWAP: Mitigating XSS

attacks using a reverse proxy. In: ICSE Workshop on Software Engineering for Secure
Systems. 2009.

[83] Rydstedt, G., Bursztein, E., Boneh, D., and Jackson, C. Busting Frame Busting: A Study
of Clickjacking Vulnerabilities at Popular Sites. IEEE S&P (2010).

129

https://w3techs.com/technologies/overview/javascript_library
https://w3techs.com/technologies/overview/javascript_library
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy

BIBLIOGRAPHY

[84] document.cookie DOM property can be clobbered using DOM node named cookie. https:
//bugzilla.mozilla.org/show_bug.cgi?id=1420032. 2018.

[85] Pentest-Report DOMPurify. https://cure53.de/pentest-report_dompurify.
pdf. 2015.

[86] Provide an opt-out for inputs overriding form DOM API. https://github.com/
whatwg/html/issues/2212.

[87] Feature Proposal: no [OverrideBuiltins]. https://github.com/WICG/document-
policy/issues/16.

[88] Bentkowski, M. XSS in GMail’s AMP4Email via DOM Clobbering (2019). https:
//research.securitum.com/xss-in-amp4email-dom-clobbering/.

[89] Clobbering the clobbered vol.2. https://terjanq.medium.com/clobbering-the-
clobbered-vol-2-fb199ad7ec41. 2019.

[90] Disabling DOM clobbering. https://github.com/w3c/webappsec-permission
s-policy/issues/349.

[91] Feature proposal: Disable named access on window. https://github.com/WICG/
document-policy/issues/32.

[92] West, M. Content Security Policy Level 3. W3C Working Draft (2022). https://w3c.
github.io/webappsec-csp/#directive-script-src.

[93] Heiderich, M., Niemietz, M., and Schwenk, J. Waiting for CSP – Securing Legacy Web
Applications with JSAgents. In: ESORICS. 2015, 23–42.

[94] The Chromium Projects: SameSite Updates. https://www.chromium.org/update
s/same-site.

[95] Feature: Cookies default to SameSite=Lax. https://www.chromestatus.com/
feature/5088147346030592. 2020.

[96] Calvano, P. SameSite Cookies - Are you Ready? (2020). https://dev.to/httparch
ive/samesite-cookies-are-you-ready-5abd.

[97] Impact of the Changes to the SameSite Cookie Flag Default Behavior in Chrome. https:
//wiki.resolution.de/doc/saml-sso/latest/all/knowledgebase-art
icles/technical/impact-of-the-changes-to-the-samesite-cookie-
flag-default-behavior-in-chrome.

[98] Skokan, F. Upcoming Browser Behavior Changes: What Developers Need to Know (2020).
https://auth0.com/blog/browser-behavior-changes-what-developers
-need-to-know/.

[99] Geesink, B. Default cookie SameSite attribute behaviour change (2020). https://
wiki.surfnet.nl/display/surfconextdev/Default+cookie+SameSite+
attribute+behaviour+change.

[100] PhenixID: SameSite cookie patch. https://document.phenixid.net/m/87804/
l/1201413-samesite-cookie-patch.

[101] Dixon, J. and Paine, M. Upcoming SameSite cookie changes and the impact for APEX
Apps running in an iframe (2020). https://www.jmjcloud.com/blog/upcoming-
samesite-cookie-changes-and-the-impact-for-apex-apps-running-
in-an-iframe.

[102] Staicu, C. A. and Pradel, M. Leaky Images: Targeted Privacy Attacks in the Web. In:
USENIX Security Symposium. 2019.

130

https://bugzilla.mozilla.org/show_bug.cgi?id=1420032
https://bugzilla.mozilla.org/show_bug.cgi?id=1420032
https://cure53.de/pentest-report_dompurify.pdf
https://cure53.de/pentest-report_dompurify.pdf
https://github.com/whatwg/html/issues/2212
https://github.com/whatwg/html/issues/2212
https://github.com/WICG/document-policy/issues/16
https://github.com/WICG/document-policy/issues/16
https://research.securitum.com/xss-in-amp4email-dom-clobbering/
https://research.securitum.com/xss-in-amp4email-dom-clobbering/
https://terjanq.medium.com/clobbering-the-clobbered-vol-2-fb199ad7ec41
https://terjanq.medium.com/clobbering-the-clobbered-vol-2-fb199ad7ec41
https://github.com/w3c/webappsec-permissions-policy/issues/349
https://github.com/w3c/webappsec-permissions-policy/issues/349
https://github.com/WICG/document-policy/issues/32
https://github.com/WICG/document-policy/issues/32
https://w3c.github.io/webappsec-csp/#directive-script-src
https://w3c.github.io/webappsec-csp/#directive-script-src
https://www.chromium.org/updates/same-site
https://www.chromium.org/updates/same-site
https://www.chromestatus.com/feature/5088147346030592
https://www.chromestatus.com/feature/5088147346030592
https://dev.to/httparchive/samesite-cookies-are-you-ready-5abd
https://dev.to/httparchive/samesite-cookies-are-you-ready-5abd
https://wiki.resolution.de/doc/saml-sso/latest/all/knowledgebase-articles/technical/impact-of-the-changes-to-the-samesite-cookie-flag-default-behavior-in-chrome
https://wiki.resolution.de/doc/saml-sso/latest/all/knowledgebase-articles/technical/impact-of-the-changes-to-the-samesite-cookie-flag-default-behavior-in-chrome
https://wiki.resolution.de/doc/saml-sso/latest/all/knowledgebase-articles/technical/impact-of-the-changes-to-the-samesite-cookie-flag-default-behavior-in-chrome
https://wiki.resolution.de/doc/saml-sso/latest/all/knowledgebase-articles/technical/impact-of-the-changes-to-the-samesite-cookie-flag-default-behavior-in-chrome
https://auth0.com/blog/browser-behavior-changes-what-developers-need-to-know/
https://auth0.com/blog/browser-behavior-changes-what-developers-need-to-know/
https://wiki.surfnet.nl/display/surfconextdev/Default+cookie+SameSite+attribute+behaviour+change
https://wiki.surfnet.nl/display/surfconextdev/Default+cookie+SameSite+attribute+behaviour+change
https://wiki.surfnet.nl/display/surfconextdev/Default+cookie+SameSite+attribute+behaviour+change
https://document.phenixid.net/m/87804/l/1201413-samesite-cookie-patch
https://document.phenixid.net/m/87804/l/1201413-samesite-cookie-patch
https://www.jmjcloud.com/blog/upcoming-samesite-cookie-changes-and-the-impact-for-apex-apps-running-in-an-iframe
https://www.jmjcloud.com/blog/upcoming-samesite-cookie-changes-and-the-impact-for-apex-apps-running-in-an-iframe
https://www.jmjcloud.com/blog/upcoming-samesite-cookie-changes-and-the-impact-for-apex-apps-running-in-an-iframe

OTHER REFERENCES

[103] Bypass SameSite Cookies Default to Lax and get CSRF. https://medium.com/
@renwa/bypass- samesite- cookies- default- to- lax- and- get- csrf-
343ba09b9f2b.

[104] Defending against CSRF with SameSite cookies. https://portswigger.net/web-
security/csrf/samesite-cookies.

[105] Rabal, J. Same-Site cookies against CSRF attacks analysis (2017). https://www.
tarlogic.com/en/blog/samesite-cookies-analysis/.

[106] Project Foxhound. https://github.com/SAP/project-foxhound.
[107] Klein, D., Barber, T., Bensalim, S., Stock, B., and Johns, M. Hand Sanitizers in the

Wild: A Large-scale Study of Custom JavaScript Sanitizer Functions. In: IEEE EuroS&P.
2022.

[108] Chrome DevTools Protocol. https://chromedevtools.github.io/devtools-
protocol/.

[109] Weichselbaum, L., Spagnuolo, M., Lekies, S., and Janc, A. Csp is dead, long live csp! on
the insecurity of whitelists and the future of content security policy. In: ACM CCS. 2016,
1376–1387.

[110] Maier, F. Iroh.js: Dynamic Code Analysis for JavaScript. https://maierfelix.
github.io/Iroh/. 2018.

[111] The CacheStorage Web API. https://developer.mozilla.org/en-US/docs/
Web/API/CacheStorage.

[112] Kotowicz, K. Prevent DOM-based cross-site scripting vulnerabilities with Trusted Types
(2020). https://web.dev/trusted-types/.

[113] DOM-based open redirection. https://portswigger.net/web-security/dom-
based/open-redirection.

[114] Banach, Z. Open redirect vulnerabilities and how to avoid them (2021). https://www.
netsparker.com/blog/web-security/open-redirect-vulnerabilities-
netsparker-pauls-security-weekly/.

[115] Berners-Lee, T. and Connolly, D. Hypertext Markup Language - 2.0 (RFC 1866). In:
Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/
rfc1866. 1995.

[116] HTML Living Standard. https://html.spec.whatwg.org/multipage/.
[117] The World Wide Web Consortium (W3C). https://www.w3.org/. (Visited on

08/30/2023).
[118] The Web Hypertext Application Technology Working Group (WHATWG). https://

whatwg.org. (Visited on 08/30/2023).
[119] Hors, A. L. and Jacobs, I. W3C HTML 4.01 Specification (1999). https://www.w3.

org/TR/html401/.
[120] Goodman, D. Dynamic HTML: The definitive reference: A comprehensive resource for

HTML, CSS, DOM & JavaScript. O’Reilly Media, Inc, 2002.
[121] Chromium Blog. Saying goodbye to Flash in Chrome. https://blog.google/

products/chrome/saying-goodbye-flash-chrome/. (Visited on 08/30/2023).
[122] Chromium Blog. So long, and thanks for all the Flash. https://blog.chromium.

org/2017/07/so- long- and- thanks- for- all- flash.html. (Visited on
08/30/2023).

131

https://medium.com/@renwa/bypass-samesite-cookies-default-to-lax-and-get-csrf-343ba09b9f2b
https://medium.com/@renwa/bypass-samesite-cookies-default-to-lax-and-get-csrf-343ba09b9f2b
https://medium.com/@renwa/bypass-samesite-cookies-default-to-lax-and-get-csrf-343ba09b9f2b
https://portswigger.net/web-security/csrf/samesite-cookies
https://portswigger.net/web-security/csrf/samesite-cookies
https://www.tarlogic.com/en/blog/samesite-cookies-analysis/
https://www.tarlogic.com/en/blog/samesite-cookies-analysis/
https://github.com/SAP/project-foxhound
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://maierfelix.github.io/Iroh/
https://maierfelix.github.io/Iroh/
https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage
https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage
https://web.dev/trusted-types/
https://portswigger.net/web-security/dom-based/open-redirection
https://portswigger.net/web-security/dom-based/open-redirection
https://www.netsparker.com/blog/web-security/open-redirect-vulnerabilities-netsparker-pauls-security-weekly/
https://www.netsparker.com/blog/web-security/open-redirect-vulnerabilities-netsparker-pauls-security-weekly/
https://www.netsparker.com/blog/web-security/open-redirect-vulnerabilities-netsparker-pauls-security-weekly/
https://datatracker.ietf.org/doc/html/rfc1866
https://datatracker.ietf.org/doc/html/rfc1866
https://html.spec.whatwg.org/multipage/
https://www.w3.org/
https://whatwg.org
https://whatwg.org
https://www.w3.org/TR/html401/
https://www.w3.org/TR/html401/
https://blog.google/products/chrome/saying-goodbye-flash-chrome/
https://blog.google/products/chrome/saying-goodbye-flash-chrome/
https://blog.chromium.org/2017/07/so-long-and-thanks-for-all-flash.html
https://blog.chromium.org/2017/07/so-long-and-thanks-for-all-flash.html

BIBLIOGRAPHY

[123] Keith, J. A brief history of javascript. DOM Scripting: Web Design with JavaScript and
the Document Object Model (2005), 3–10.

[124] Node.js: An Open-Source, Cross-Platform JavaScript Runtime Environment. https:
//nodejs.org. (Visited on 08/30/2023).

[125] Chaniotis, I. K., Kyriakou, K.-I. D., and Tselikas, N. D. Is node. js a viable option for
building modern web applications? a performance evaluation study. Computing (2015),
1023–1044.

[126] ECMAScript language specification, 14th edition (August 2023) (2023). https://www.
ecma- international.org/publications- and- standards/standards/
ecma-262/.

[127] Al Kassar, F., Clerici, G., Compagna, L., Balzarotti, D., and Yamaguchi, F. Testability
Tarpits: the Impact of Code Patterns on the Security Testing of Web Applications. In:
NDSS Symposium. 2022.

[128] Yamaguchi, F., Lottmann, M., and Rieck, K. Generalized vulnerability extrapolation
using abstract syntax trees. In: Proceedings of the Annual Computer Security Applications
Conference. 2012.

[129] Gallaba, K., Mesbah, A., and Beschastnikh, I. Don’t Call Us, We’ll Call You: Charac-
terizing Callbacks in Javascript. In: Proceedings of the 2015 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. 2015.

[130] What is the Document Object Model? https://www.w3.org/TR/WD-DOM/introdu
ction.html. (Visited on 08/30/2023).

[131] The Document Interface. https://developer.mozilla.org/en-US/docs/Web/
API/Document. (Visited on 08/30/2023).

[132] Web APIs. https://developer.mozilla.org/en-US/docs/Web/API. (Visited
on 08/30/2023).

[133] Schwenk, J., Niemietz, M., and Mainka, C. Same-Origin Policy: Evaluation in Modern
Browsers. In: Proceedings of the 26th USENIX Conference on Security Symposium. 2017.

[134] Same-origin policy (). https://developer.mozilla.org/en-US/docs/Web/
Security/Same-origin_policy.

[135] Barth, A. Http state management mechanism (2011). https://tools.ietf.org/
html/rfc6265.

[136] Sivakorn, S., Polakis, I., and Keromytis, A. D. The Cracked Cookie Jar: HTTP Cookie
Hijacking and the Exposure of Private Information. In: IEEE Symposium on Security
and Privacy. 2016.

[137] Lekies, S., Stock, B., Wentzel, M., and Johns, M. The Unexpected Dangers of Dynamic
JavaScript. In: USENIX Security Symposium. 2015.

[138] Czeskis, A., Moshchuk, A., Kohno, T., and Wang, H. J. Lightweight Server Support for
Browser-based CSRF Protection. In: International Conference on World Wide Web. 2013.

[139] Account Take Over in US Dept of Defense. https://hackerone.com/reports/
410099. 2019. (Visited on 08/30/2023).

[140] Critical CSRF Vulnerability on Facebook. https://www.acunetix.com/blog/web-
security- zone/critical- csrf- vulnerability- facebook/. (Visited on
08/30/2023).

[141] WordPress CVE-2014-9033. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-9033. (Visited on 08/30/2023).

132

https://nodejs.org
https://nodejs.org
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.w3.org/TR/WD-DOM/introduction.html
https://www.w3.org/TR/WD-DOM/introduction.html
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://hackerone.com/reports/410099
https://hackerone.com/reports/410099
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9033
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9033

OTHER REFERENCES

[142] Cardwell, M. Abusing HTTP Status Codes to Expose Private Information (2011). https:
//www.grepular.com/Abusing_HTTP_Status_Codes_to_Expose_Private_
Information.

[143] Yoneuchi, T. Detect the Same-Origin Redirection with a bug in Firefox’s CSP Implemen-
tation (2018). https://diary.shift-js.info/csp-fingerprinting/.

[144] Linus, R. Your Social Media Fingerprint (). https://github.com/RobinLinus/
socialmedia-leak.

[145] Van Goethem, T., Joosen, W., and Nikiforakis, N. The Clock is Still Ticking: Timing
Attacks in the Modern Web. In: ACM SIGSAC Conference on Computer and Communi-
cations Security. 2015.

[146] XS-Leaks Wiki. https://xsleaks.com/.
[147] Chen, S., Wang, R., Wang, X., and Zhang, K. Side-channel Leaks in Web Applications:

A Reality Today, a Challenge Tomorrow. In: IEEE Symposium on Security and Privacy.
2010.

[148] Mao, J., Chen, Y., Shi, F., Jia, Y., and Liang, Z. Toward Exposing Timing-Based Probing
Attacks in Web Applications. In: International Conference on Wireless Algorithms,
Systems, and Applications. 2016.

[149] Weinberg, Z., Chen, E. Y., Jayaraman, P. R., and Jackson, C. I Still Know What You
Visited Last Summer: Leaking Browsing History via User Interaction and Side Channel
Attacks. In: IEEE Symposium on Security and Privacy. 2011.

[150] Johns, M. The three faces of csrf. talk at the deepsec2007 conference. (2007). https:
//deepsec.net/archive/2007.deepsec.net/speakers/index.html.

[151] Two Factor Authentication Cross Site Request Forgery (CSRF) Vulnerability in Wordpress.
CVE-2018-20231. https://www.privacy-wise.com/two-factor-authenti
cation-cross-site-request-forgery-csrf-vulnerability-cve-2018-
20231/. 2018.

[152] CSRF: Adding Optional Two Factor Mobile Number in Slack. https://hackerone.
com/reports/155774. 2016.

[153] YUI library. https://yuilibrary.com/.
[154] window.open() API. https://developer.mozilla.org/en-US/docs/Web/API/

Window/open.
[155] window.name API. https://developer.mozilla.org/en-US/docs/Web/API/

Window/name.
[156] Zheng, X., Jiang, J., Liang, J., Duan, H., Chen, S., and Wan, T. Cookies Lack Integrity:

Real-World Implications. In: USENIX Security Symposium. 2015.
[157] Sivakorn, S., Polakis, I., and Keromytis, A. D. The Cracked Cookie Jar: HTTP Cookie

Hijacking and the Exposure of Private Information. In: Proceedings of the IEEE European
Symposium on Security and Privacy. 2016.

[158] Jovanovic, N., Kirda, E., and Kruegel, C. Preventing cross site request forgery attacks. In:
Second International Conference on Security and Privacy in Communication Networks
and the Workshops (SecureComm). 2006.

[159] Mao, Z., Li, N., and Molloy, I. Defeating Cross-Site Request Forgery Attacks with
Browser-Enforced Authenticity Protection. In: 13th International Conference on Financial
Cryptography and Data Security. 2009.

[160] Schwenk, J., Niemietz, M., and Mainka, C. Same-Origin Policy: Evaluation in Modern
Browsers. In: USENIX Security Symposium. 2017.

133

https://www.grepular.com/Abusing_HTTP_Status_Codes_to_Expose_Private_Information
https://www.grepular.com/Abusing_HTTP_Status_Codes_to_Expose_Private_Information
https://www.grepular.com/Abusing_HTTP_Status_Codes_to_Expose_Private_Information
https://diary.shift-js.info/csp-fingerprinting/
https://github.com/RobinLinus/socialmedia-leak
https://github.com/RobinLinus/socialmedia-leak
https://xsleaks.com/
https://deepsec.net/archive/2007.deepsec.net/speakers/index.html
https://deepsec.net/archive/2007.deepsec.net/speakers/index.html
https://www.privacy-wise.com/two-factor-authentication-cross-site-request-forgery-csrf-vulnerability-cve-2018-20231/
https://www.privacy-wise.com/two-factor-authentication-cross-site-request-forgery-csrf-vulnerability-cve-2018-20231/
https://www.privacy-wise.com/two-factor-authentication-cross-site-request-forgery-csrf-vulnerability-cve-2018-20231/
https://hackerone.com/reports/155774
https://hackerone.com/reports/155774
https://yuilibrary.com/
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://developer.mozilla.org/en-US/docs/Web/API/Window/name
https://developer.mozilla.org/en-US/docs/Web/API/Window/name

BIBLIOGRAPHY

[161] Akhawe, D., Barth, A., Lam, P. E., Mitchell, J., and Song, D. Towards a formal foundation
of web security. In: IEEE CSF. 2010.

[162] Cross-Origin Resource Sharing. https://developer.mozilla.org/en-US/docs/
Web/HTTP/CORS.

[163] CSP connect-src Directive. https://developer.mozilla.org/en-US/docs/
Web/HTTP/Headers/Content-Security-Policy/connect-src.

[164] Braun, F., Heiderich, M., and Vogelheim, D. HTML Sanitizer API, Section 4.2, DOM
Clobbering. W3C Draft Community Group Report (2021). https://wicg.github.
io/sanitizer-api/#dom-clobbering.

[165] Undefined primitive type. https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/undefined.

[166] Rascia, T. Understanding Variables, Scope, and Hoisting in JavaScriptt (2021). https:
//www.digitalocean.com/community/tutorials/understanding-variab
les-scope-hoisting-in-javascript.

[167] HTML Living Standard: Named Access on the Window Object. https://html.spec.
whatwg.org/multipage/window-object.html#named-access-on-the-
window-object.

[168] HTML Living Standard: DOM Tree Accessors. https://html.spec.whatwg.org/
multipage/dom.html#dom-tree-accessors.

[169] Etemad, E. J., Jr., T. A., Çelik, T., Glazman, D., Hickson, I., Linss, P., and Williams, J.
Selectors Level 4, W3C Working Draft (2018).

[170] Web IDL Living Standard - Named Property Visibility Algorithm, Sections 3.4.7 and
3.9.7. https://webidl.spec.whatwg.org/#legacy- platform- object-
abstract-ops.

[171] Dynamic email in Gmail becoming generally available on July 2019 (2019). https://
workspaceupdates.googleblog.com/2019/06/dynamic-email-in-gmail-
becoming-GA.html.

[172] Peek, J. GitHub Handling of Named HTML Elements Generated by Repository Markdown
Code (2014). https://github.com/gjtorikian/html-pipeline/pull/111.

[173] Puzrin, V. DOM Clobbering through Markdown Header anchors (2015). https://
github.com/markdown-it/markdown-it/issues/28.

[174] West, M. Same-site Cookies (2016).
[175] SameSite Cookies. https://developer.mozilla.org/en-US/docs/Web/HTTP/

Headers/Set-Cookie/SameSite.
[176] Safe HTTP Methods. https://developer.mozilla.org/en-US/docs/Glossar

y/safe.
[177] Site compatibility-impacting changes coming to Microsoft Edge. https://docs.mi

crosoft.com/en-us/microsoft-edge/web-platform/site-impacting-
changes.

[178] Can I use SameSite cookie attribute? https://caniuse.com/?search=samesite.
[179] Bitnami application catalog. https://bitnami.com/stacks.
[180] Ferrante, J., Ottenstein, K. J., and Warren, J. D. The program dependence graph and

its use in optimization. In: ACM Transactions on Programming Languages and Systems.
1987.

134

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/connect-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/connect-src
https://wicg.github.io/sanitizer-api/#dom-clobbering
https://wicg.github.io/sanitizer-api/#dom-clobbering
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://www.digitalocean.com/community/tutorials/understanding-variables-scope-hoisting-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-variables-scope-hoisting-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-variables-scope-hoisting-in-javascript
https://html.spec.whatwg.org/multipage/window-object.html#named-access-on-the-window-object
https://html.spec.whatwg.org/multipage/window-object.html#named-access-on-the-window-object
https://html.spec.whatwg.org/multipage/window-object.html#named-access-on-the-window-object
https://html.spec.whatwg.org/multipage/dom.html#dom-tree-accessors
https://html.spec.whatwg.org/multipage/dom.html#dom-tree-accessors
https://webidl.spec.whatwg.org/#legacy-platform-object-abstract-ops
https://webidl.spec.whatwg.org/#legacy-platform-object-abstract-ops
https://workspaceupdates.googleblog.com/2019/06/dynamic-email-in-gmail-becoming-GA.html
https://workspaceupdates.googleblog.com/2019/06/dynamic-email-in-gmail-becoming-GA.html
https://workspaceupdates.googleblog.com/2019/06/dynamic-email-in-gmail-becoming-GA.html
https://github.com/gjtorikian/html-pipeline/pull/111
https://github.com/markdown-it/markdown-it/issues/28
https://github.com/markdown-it/markdown-it/issues/28
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Glossary/safe
https://developer.mozilla.org/en-US/docs/Glossary/safe
https://docs.microsoft.com/en-us/microsoft-edge/web-platform/site-impacting-changes
https://docs.microsoft.com/en-us/microsoft-edge/web-platform/site-impacting-changes
https://docs.microsoft.com/en-us/microsoft-edge/web-platform/site-impacting-changes
https://caniuse.com/?search=samesite
https://bitnami.com/stacks

OTHER REFERENCES

[181] Mozilla. Introduction to the DOM. https://developer.mozilla.org/en-US/
docs/Web/API/Document_Object_Model/Introduction. 2020.

[182] Selenium-Python. https://selenium-python.readthedocs.io/index.html.
[183] Selenium browser automation. https://www.selenium.dev.
[184] Selenium IDE. https://www.selenium.dev/projects.
[185] Headless chromium. https://chromium.googlesource.com/chromium/src/+/

lkgr/headless/README.md.
[186] Neo4j Graph Database. https://neo4j.com/.
[187] Library Detector For chrome. https://www.npmjs.com/package/js-library-

detector.
[188] Esprima. https://esprima.org/.
[189] Escontrol library. https://www.npmjs.com/package/escontrol.
[190] Styx library. https://www.npmjs.com/package/styx.
[191] ast-flow-graph library. https://www.npmjs.com/package/ast-flow-graph.
[192] Esgraph CFG generator. https://github.com/Swatinem/esgraph.
[193] Dujs library. https://github.com/chengfulin/dujs.
[194] Lam., M. S., Avaya, R. S., and Ullman, J. D. Compilers: principles, techniques, and tools

(2nd edition). In: Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2006. ISBN 0321486811. 2006.

[195] Function.prototype.call(). https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Function/call.

[196] Function.prototype.apply(). https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/Function/apply.

[197] Cypher Query Language. https://neo4j.com/developer/cypher/.
[198] Usage statistics of content management systems. https://w3techs.com/technolo

gies/overview/content_management.
[199] HTML Living Standard (2023).
[200] XMLHttpRequest Living Standard (). https://xhr.spec.whatwg.org/.
[201] WebSockets Living Standard (2023).
[202] WHATWG Specifications (). https://spec.whatwg.org/.
[203] W3C Standards and Drafts (). https://www.w3.org/TR/.
[204] Khodayari, S. and Pellegrino, G. It’s (dom) clobbering time: attack techniques, prevalence,

and defenses. In: IEEE S&P Symposium. 2023.
[205] Push API: CSRF on PushManager Subscriptions ().
[206] Subramani, K., Jueckstock, J., Kapravelos, A., and Perdisci, R. Sok: workerounds-

categorizing service worker attacks and mitigations. In: IEEE EuroS&P Symposium.
2022.

[207] Watanabe, T., Shioji, E., Akiyama, M., and Mori, T. Melting pot of origins: compromising
the intermediary web services that rehost websites. In: NDSS Symposium. 2020.

[208] Hickson, I. Server-sent Events. In: W3C Working Draft. 2012.
[209] Schneider, C. Cross-Site WebSocket Hijacking (CSWSH). In: 2019.
[210] Cross-Site WebSocket Hijacking. In:

135

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://selenium-python.readthedocs.io/index.html
https://www.selenium.dev
https://www.selenium.dev/projects
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://neo4j.com/
https://www.npmjs.com/package/js-library-detector
https://www.npmjs.com/package/js-library-detector
https://esprima.org/
https://www.npmjs.com/package/escontrol
https://www.npmjs.com/package/styx
https://www.npmjs.com/package/ast-flow-graph
https://github.com/Swatinem/esgraph
https://github.com/chengfulin/dujs
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://neo4j.com/developer/cypher/
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://xhr.spec.whatwg.org/
https://spec.whatwg.org/
https://www.w3.org/TR/

BIBLIOGRAPHY

[211] Mei, W. and Long, Z. Research and Defense of Cross-Site WebSocket Hijacking Vul-
nerability. In: IEEE International Conference on Artificial Intelligence and Computer
Applications (ICAICA). 2020.

[212] Murley, P., Ma, Z., Mason, J., Bailey, M., and Kharraz, A. WebSocket Adoption and the
Landscape of the Real-Time Web. In: WWW Web Conference. 2021.

[213] Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., and Vigna, G. Cross site
scripting prevention with dynamic data tainting and static analysis. In: NDSS Symposium.
2007.

[214] Exposure of Sensitive Information to Unauthorized Actors in EventSource (2022).
[215] The WebSocket API. url: https://developer.mozilla.org/en-US/docs/

Web/API/WebSockets_API.
[216] Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S., Korczyński, M., and Joosen, W.

Tranco: a research-oriented top sites ranking hardened against manipulation. In: NDSS
Symposium. 2019.

[217] Playwright browser automation framework. https://playwright.dev/.
[218] Firefox developer tools. https://firefox-dev.tools/.
[219] Pletinckx, S., Borgolte, K., and Fiebig, T. Out of Sight, Out of Mind: Detecting Orphaned

Web Pages at Internet-Scale. In: ACM CCS. 2021.
[220] Henzinger, M. Finding near-duplicate web pages: a large-scale evaluation of algorithms.

In: ACM SIGIR conference on Research and development in information retrieval. 2006.
[221] setTimeout global function. https://developer.mozilla.org/en-US/docs/

Web/API/setTimeout.
[222] Ineo: neo4j instance and version manager. https://github.com/cohesivestack/

ineo.
[223] JavaScript Function() constructor. https://developer.mozilla.org/en-US/

docs/Web/JavaScript/Reference/Global_Objects/Function/Function.
[224] Lekies, S., Tighzert, W., and Johns, M. Towards Stateless, Client-side Driven Cross-site

Request Forgery Protection for Web Applications. SAP Research (2012).
[225] Shahriar, H. and Zulkernine, M. Client-side detection of cross-site request forgery at-

tacks. In: Proceedings of the IEEE 21st International Symposium on Software Reliability
Engineering. 2010.

[226] Shernan, E., Carter, H., Tian, D., Traynor, P., and Butler, K. More guidelines than rules:
csrf vulnerabilities from noncompliant oauth 2.0 implementations. In: DIMVA. 2015.

[227] Jabiyev, B., Mirzaei, O., Kharraz, A., and Kirda, E. Preventing server-side request forgery
attacks. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing.
2021, 1626–1635.

[228] Sudhodanan, A., Khodayari, S., and Caballero, J. Cross-origin state inference (COSI)
attacks: Leaking web site states through xs-leaks. In: NDSS Symposium. 2020.

[229] W3C Standards and Drafts. https://www.w3.org/TR/.
[230] Alkhalaf, M., Bultan, T., and Gallegos, J. L. Verifying client-side input validation

functions using string analysis. In: ICSE. 2012.
[231] Kerschbaum, F. Simple cross-site attack prevention. In: International Conference on

Security and Privacy in Communications Networks and the Workshops (SecureComm).
IEEE. 2007.

136

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://playwright.dev/
https://firefox-dev.tools/
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout
https://github.com/cohesivestack/ineo
https://github.com/cohesivestack/ineo
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/Function
https://www.w3.org/TR/

OTHER REFERENCES

[232] Balduzzi, M., Gimenez, C. T., Balzarotti, D., and Kirda, E. Automated discovery of
parameter pollution vulnerabilities in web applications. In: NDSS Symposium. 2011.

[233] Fetch MetaData Sec-Fetch-Dest Header. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Sec-Fetch-Dest.

[234] Bypassing sanitization using DOM clobbering in HTML-Janitor. https://hackerone.
com/reports/308158. 2018.

[235] DOM Clobbering affecting Google Analytics script. https://twitter.com/zachlea
t/status/1387460811522813953.

[236] Janc, A. and West, M. Oh, the Places You’ll Go! Finding Our Way Back from the Web
Platform’s Ill-conceived Jaunts. In: IEEE EuroS&P Workshops. 2020, 673–680.

[237] Chrome Platform Status: DOM Clobbered Variable Accessed. https://chromestatus.
com/metrics/feature/timeline/popularity/1824.

[238] Roth, S., Barron, T., Calzavara, S., Nikiforakis, N., and Stock, B. Complex security
policy? a longitudinal analysis of deployed content security policies. In: NDSS. 2020.

[239] Stamm, S., Sterne, B., and Markham, G. Reining in the Web with Content Security
Policy. In: WWW. 2010, 921–930.

[240] DOM Clobbering Vulnerability Reports in HackerOne. https://hackerone.com/
hacktivity?querystring=dom%20clobbering.

[241] DOM Clobbering Vulnerability Reports in Mitre. https://cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=dom+clobbering.

[242] Clobbering the clobbered — Advanced DOM Clobbering. https://terjanq.medium.
com/dom-clobbering-techniques-8443547ebe94. 2019.

[243] Nafeez, A. DomFlow - Untangling the DOM for easy juicy bugs (2015). https://
www.blackhat.com/docs/us-15/materials/us-15-Nafeez-Dom-Flow-
Untangling-The-DOM-For-More-Easy-Juicy-Bugs.pdf.

[244] DOM Living Standard. https://dom.spec.whatwg.org/.
[245] WHATWG DOM repository issues. https://github.com/whatwg/dom/issues.
[246] BrowserStack. https://www.browserstack.com/.
[247] H., S. How to Update Safari without upgrading MacOS? (2021). https://browserhow.

com/how-to-update-safari-without-upgrading-macos/.
[248] The Window Interface. https://developer.mozilla.org/en-US/docs/Web/

API/Window.
[249] The HTMLCollection Interface. https://developer.mozilla.org/en- US/

docs/Web/API/HTMLCollection. 2021.
[250] The Blink Rendering Engine. https://www.chromium.org/blink/.
[251] Charlton, H. Should Apple Continue to Ban Rival Browser Engines on iOS? (2022).

https://www.macrumors.com/2022/02/25/should-apple-ban-rival-
browser-engines/.

[252] The Notification Web API. https://developer.mozilla.org/en-US/docs/
Web/API/notification.

[253] The WebStorage API. https://developer.mozilla.org/en-US/docs/Web/
API/Web_Storage_API.

[254] Puppeteer. https://github.com/puppeteer/puppeteer.

137

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Dest
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Dest
https://hackerone.com/reports/308158
https://hackerone.com/reports/308158
https://twitter.com/zachleat/status/1387460811522813953
https://twitter.com/zachleat/status/1387460811522813953
https://chromestatus.com/metrics/feature/timeline/popularity/1824
https://chromestatus.com/metrics/feature/timeline/popularity/1824
https://hackerone.com/hacktivity?querystring=dom%20clobbering
https://hackerone.com/hacktivity?querystring=dom%20clobbering
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=dom+clobbering
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=dom+clobbering
https://terjanq.medium.com/dom-clobbering-techniques-8443547ebe94
https://terjanq.medium.com/dom-clobbering-techniques-8443547ebe94
https://www.blackhat.com/docs/us-15/materials/us-15-Nafeez-Dom-Flow-Untangling-The-DOM-For-More-Easy-Juicy-Bugs.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Nafeez-Dom-Flow-Untangling-The-DOM-For-More-Easy-Juicy-Bugs.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Nafeez-Dom-Flow-Untangling-The-DOM-For-More-Easy-Juicy-Bugs.pdf
https://dom.spec.whatwg.org/
https://github.com/whatwg/dom/issues
https://www.browserstack.com/
https://browserhow.com/how-to-update-safari-without-upgrading-macos/
https://browserhow.com/how-to-update-safari-without-upgrading-macos/
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection
https://www.chromium.org/blink/
https://www.macrumors.com/2022/02/25/should-apple-ban-rival-browser-engines/
https://www.macrumors.com/2022/02/25/should-apple-ban-rival-browser-engines/
https://developer.mozilla.org/en-US/docs/Web/API/notification
https://developer.mozilla.org/en-US/docs/Web/API/notification
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://github.com/puppeteer/puppeteer

BIBLIOGRAPHY

[255] Rest Parameters. https://developer.mozilla.org/en-US/docs/Web/Java
Script/Reference/Functions/rest_parameters.

[256] Spread Operator Syntax. https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Operators/Spread_syntax.

[257] Guarnieri, S. and Livshits, V. B. GATEKEEPER: Mostly Static Enforcement of Security
and Reliability Policies for JavaScript Code. In: USENIX Security. 2009.

[258] The arguments object. https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Functions/arguments.

[259] DOM-based WebSocket-URL poisoning. https://portswigger.net/web-securit
y/dom-based/websocket-url-poisoning.

[260] Polop, C. Cross-site WebSocket hijacking (2022). https://book.hacktricks.xyz/
pentesting-web/cross-site-websocket-hijacking-cswsh.

[261] DOM-based document-domain manipulation. https://portswigger.net/web-
security/dom-based/document-domain-manipulation.

[262] Nideck, T. A. What Are JSON Injections? (2019). https://www.acunetix.com/
blog/web-security-zone/what-are-json-injections.

[263] Client-side JSON injection. https://portswigger.net/kb/issues/00200370_
client-side-json-injection-dom-based.

[264] Staicu, C.-A. and Pradel, M. Freezing the Web: A Study of ReDoS Vulnerabilities in
JavaScript-based Web Servers. In: USENIX Security. 2018, 361–376.

[265] Davis, J. C., Coghlan, C. A., Servant, F., and Lee, D. The impact of regular expression
denial of service (redos) in practice: an empirical study at the ecosystem scale. In:
ESEC/FSE. 2018, 246–256.

[266] DOM-based Local File-path Manipulation. https://portswigger.net/web-secur
ity/dom-based/local-file-path-manipulation.

[267] Boomerang Library. https://developer.akamai.com/tools/boomerang.
[268] Google Closure Library HTML Sanitizer. https://github.com/google/closure-

library/blob/master/closure/goog/html/sanitizer/htmlsanitizer.
js.

[269] JS-XSS HTML Sanitizer. https://github.com/leizongmin/js-xss.
[270] Sanitize-HTML Library. https://github.com/apostrophecms/sanitize-

html.
[271] Google Caja Sanitizer. https://code.google.com/archive/p/google-caja/

wikis/JsHtmlSanitizer.wiki.
[272] Insane HTML Sanitizer. https://github.com/bevacqua/insane.
[273] JavaScript Bleach Sanitizer. https://www.npmjs.com/package/bleach.
[274] Angular-sanitize Library. https://www.npmjs.com/package/bleach.
[275] HTML-Purify Library. https://www.npmjs.com/package/html-purify.
[276] Arcgis HTML Sanitizer. https://www.npmjs.com/package/@esri/arcgis-

html-sanitizer.
[277] Python Mozilla Bleach Sanitizer. https://pypi.org/project/bleach/.
[278] LXML Library. https://pypi.org/project/lxml/.
[279] Python HTML-sanitizer Library. https://pypi.org/project/html-sanitizer

/.

138

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://portswigger.net/web-security/dom-based/websocket-url-poisoning
https://portswigger.net/web-security/dom-based/websocket-url-poisoning
https://book.hacktricks.xyz/pentesting-web/cross-site-websocket-hijacking-cswsh
https://book.hacktricks.xyz/pentesting-web/cross-site-websocket-hijacking-cswsh
https://portswigger.net/web-security/dom-based/document-domain-manipulation
https://portswigger.net/web-security/dom-based/document-domain-manipulation
https://www.acunetix.com/blog/web-security-zone/what-are-json-injections
https://www.acunetix.com/blog/web-security-zone/what-are-json-injections
https://portswigger.net/kb/issues/00200370_client-side-json-injection-dom-based
https://portswigger.net/kb/issues/00200370_client-side-json-injection-dom-based
https://portswigger.net/web-security/dom-based/local-file-path-manipulation
https://portswigger.net/web-security/dom-based/local-file-path-manipulation
https://developer.akamai.com/tools/boomerang
https://github.com/google/closure-library/blob/master/closure/goog/html/sanitizer/htmlsanitizer.js
https://github.com/google/closure-library/blob/master/closure/goog/html/sanitizer/htmlsanitizer.js
https://github.com/google/closure-library/blob/master/closure/goog/html/sanitizer/htmlsanitizer.js
https://github.com/leizongmin/js-xss
https://github.com/apostrophecms/sanitize-html
https://github.com/apostrophecms/sanitize-html
https://code.google.com/archive/p/google-caja/wikis/JsHtmlSanitizer.wiki
https://code.google.com/archive/p/google-caja/wikis/JsHtmlSanitizer.wiki
https://github.com/bevacqua/insane
https://www.npmjs.com/package/bleach
https://www.npmjs.com/package/bleach
https://www.npmjs.com/package/html-purify
https://www.npmjs.com/package/@esri/arcgis-html-sanitizer
https://www.npmjs.com/package/@esri/arcgis-html-sanitizer
https://pypi.org/project/bleach/
https://pypi.org/project/lxml/
https://pypi.org/project/html-sanitizer/
https://pypi.org/project/html-sanitizer/

OTHER REFERENCES

[280] HTMLLaundry Library. https://pypi.org/project/htmllaundry/.
[281] Django HTML Sanitizer. https://pypi.org/project/django-html_sanitize

r/.
[282] PHP HTML Purifier. https://packagist.org/packages/ezyang/htmlpurif

ier.
[283] PHP HTML-Sanitizer. https://packagist.org/packages/tgalopin/html-

sanitizer.
[284] Symfony HTML Sanitizer. https://packagist.org/packages/symfony/html-

sanitizer.
[285] HTMLawed Library. https://packagist.org/packages/htmlawed/htmlawed.
[286] Typo3 HTML Sanitizer. https://packagist.org/packages/typo3/html-

sanitizer.
[287] HTML Encoder of AntiXSS Library. https://docs.microsoft.com/en-us/do

tnet/api/system.web.security.antixss.antixssencoder.htmlencode?
view=netframework-4.8.

[288] C# HtmlSanitizer. https://www.nuget.org/packages/HtmlSanitizer.
[289] ASP.NET Ajax Control Toolkit. https://www.nuget.org/packages/AjaxContr

olToolkit.HtmlEditor.Sanitizer/.
[290] NSoup HTML Parser and Sanitizer for .NET Framework. https://www.nuget.org/

packages/NSoup/.
[291] HTMLRuleSanitier Library. https://www.nuget.org/packages/Vereyon.Web.

HtmlSanitizer.
[292] JSoup: Java HTML Parser. https://github.com/jhy/jsoup.
[293] OWASP Java HTML Sanitizer. https://github.com/OWASP/java-html-sanit

izer.
[294] Java AntiSamy Library. https://github.com/nahsra/antisamy.
[295] HtmlCleaner Library. http://htmlcleaner.sourceforge.net/index.php.
[296] GitHub Octoverse report. https://octoverse.github.com/.
[297] Object Freeze API. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Object/freeze.
[298] The instanceof Operator. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Operators/instanceof.
[299] The typeof Operator. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Operators/typeof.
[300] The globalThis object. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/globalThis.
[301] The MutationObserver API. https://developer.mozilla.org/en-US/docs/

Web/API/MutationObserver.
[302] Helme, S. CSRF is (really) dead (). https://scotthelme.co.uk/csrf-is-

really-dead/.
[303] Rees-Carter, S. CSRF is dead, long live SameSite=Lax (or is it?) (). https://stephe

nreescarter.net/csrf-is-dead-long-live-samesite-lax/.

139

https://pypi.org/project/htmllaundry/
https://pypi.org/project/django-html_sanitizer/
https://pypi.org/project/django-html_sanitizer/
https://packagist.org/packages/ezyang/htmlpurifier
https://packagist.org/packages/ezyang/htmlpurifier
https://packagist.org/packages/tgalopin/html-sanitizer
https://packagist.org/packages/tgalopin/html-sanitizer
https://packagist.org/packages/symfony/html-sanitizer
https://packagist.org/packages/symfony/html-sanitizer
https://packagist.org/packages/htmlawed/htmlawed
https://packagist.org/packages/typo3/html-sanitizer
https://packagist.org/packages/typo3/html-sanitizer
https://docs.microsoft.com/en-us/dotnet/api/system.web.security.antixss.antixssencoder.htmlencode?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.web.security.antixss.antixssencoder.htmlencode?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.web.security.antixss.antixssencoder.htmlencode?view=netframework-4.8
https://www.nuget.org/packages/HtmlSanitizer
https://www.nuget.org/packages/AjaxControlToolkit.HtmlEditor.Sanitizer/
https://www.nuget.org/packages/AjaxControlToolkit.HtmlEditor.Sanitizer/
https://www.nuget.org/packages/NSoup/
https://www.nuget.org/packages/NSoup/
https://www.nuget.org/packages/Vereyon.Web.HtmlSanitizer
https://www.nuget.org/packages/Vereyon.Web.HtmlSanitizer
https://github.com/jhy/jsoup
https://github.com/OWASP/java-html-sanitizer
https://github.com/OWASP/java-html-sanitizer
https://github.com/nahsra/antisamy
http://htmlcleaner.sourceforge.net/index.php
https://octoverse.github.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/globalThis
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/globalThis
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://scotthelme.co.uk/csrf-is-really-dead/
https://scotthelme.co.uk/csrf-is-really-dead/
https://stephenreescarter.net/csrf-is-dead-long-live-samesite-lax/
https://stephenreescarter.net/csrf-is-dead-long-live-samesite-lax/

BIBLIOGRAPHY

[304] Using the Same-Site Cookie Attribute to Prevent CSRF Attacks. https://www.netsp
arker.com/blog/web-security/same-site-cookie-attribute-prevent-
cross-site-request-forgery/.

[305] Sharma, R. Preventing Cross-Site Attacks Using SameSite Cookies (). https://
dropbox.tech/security/preventing-cross-site-attacks-using-same-
site-cookies.

[306] Riramar, P. K. OWASP: SameSite Attribute. https://owasp.org/www-community/
SameSite.

[307] Calzavara, S., Urban, T., Tatang, D., Steffens, M., and Stock, B. Reining in the Web’s
Inconsistencies with Site Policy. In: Network and Distributed Systems Security Symposium.
2021.

[308] Mendoza, A., Chinprutthiwong, P., and Gu, G. Uncovering HTTP Header Inconsistencies
and the Impact on Desktop/Mobile Websites. In: World Wide Web Conference. 2018.

[309] Django HttpResponse.set_cookie() API. https://docs.djangoproject.com/en/
3.1/ref/request-response/.

[310] Pyramid Response.set_cookie() API. https://docs.pylonsproject.org/proje
cts/pyramid/en/latest/api/response.html.

[311] Chrome DevTools Protocol Audits. https://chromedevtools.github.io/devto
ols-protocol/tot/Audits/.

[312] Web Shrinker API. https://www.webshrinker.com/.
[313] EasyList. https://easylist.to/.
[314] Host BlackList. https://github.com/anudeepND/blacklist.
[315] Host BlockList. https://github.com/notracking/hosts-blocklists.
[316] Franken, G., Van Goethem, T., and Joosen, W. Who Left Open the Cookie Jar? A

Comprehensive Evaluation of Third-party Cookie Policies. In: 27th USENIX Security
Symposium. 2018.

[317] Franken, G., Van Goethem, T., and Joosen, W. Exposing Cookie Policy Flaws Through
an Extensive Evaluation of Browsers and Their Extensions. In: IEEE Symposium on
Security and Privacy. 2019.

[318] Drakonakis, K., Ioannidis, S., and Polakis, J. The Cookie Hunter: Automated Black-box
Auditing for Web Authentication and Authorization Flaws. In: ACM SIGSAC Conference
on Computer and Communications Security. 2020.

[319] Van Goethem, T., Le Pochat, V., and Joosen, W. Mobile Friendly or Attacker Friendly?
A Large-Scale Security Evaluation of Mobile-First Websites. In: ACM Asia Conference
on Computer and Communications Security. 2019.

[320] StackExchange Security Community. https://security.stackexchange.com/.
[321] Dev Security Community. https://dev.to/t/security.
[322] Issue 831725: SameSite cookie bypass via prerender. https://bugs.chromium.org/

p/chromium/issues/detail?id=831725.
[323] Cookies with SameSite=None or SameSite=invalid treated as Strict. https://bugs.

webkit.org/show_bug.cgi?id=198181.
[324] Mozilla CVE-2018-12370. https://www.cvedetails.com/cve/CVE- 2018-

12370/.
[325] CVE-2018-18351. https://nvd.nist.gov/vuln/detail/CVE-2018-18351.

140

https://www.netsparker.com/blog/web-security/same-site-cookie-attribute-prevent-cross-site-request-forgery/
https://www.netsparker.com/blog/web-security/same-site-cookie-attribute-prevent-cross-site-request-forgery/
https://www.netsparker.com/blog/web-security/same-site-cookie-attribute-prevent-cross-site-request-forgery/
https://dropbox.tech/security/preventing-cross-site-attacks-using-same-site-cookies
https://dropbox.tech/security/preventing-cross-site-attacks-using-same-site-cookies
https://dropbox.tech/security/preventing-cross-site-attacks-using-same-site-cookies
https://owasp.org/www-community/SameSite
https://owasp.org/www-community/SameSite
https://docs.djangoproject.com/en/3.1/ref/request-response/
https://docs.djangoproject.com/en/3.1/ref/request-response/
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/response.html
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/response.html
https://chromedevtools.github.io/devtools-protocol/tot/Audits/
https://chromedevtools.github.io/devtools-protocol/tot/Audits/
https://www.webshrinker.com/
https://easylist.to/
https://github.com/anudeepND/blacklist
https://github.com/notracking/hosts-blocklists
https://security.stackexchange.com/
https://dev.to/t/security
https://bugs.chromium.org/p/chromium/issues/detail?id=831725
https://bugs.chromium.org/p/chromium/issues/detail?id=831725
https://bugs.webkit.org/show_bug.cgi?id=198181
https://bugs.webkit.org/show_bug.cgi?id=198181
https://www.cvedetails.com/cve/CVE-2018-12370/
https://www.cvedetails.com/cve/CVE-2018-12370/
https://nvd.nist.gov/vuln/detail/CVE-2018-18351

OTHER REFERENCES

[326] CVE-2019-5880: SameSite cookie bypass. https://bugzilla.redhat.com/show_
bug.cgi?id=1762378.

[327] SameSite cookies aren’t sent on credentialed CORS requests. https://github.com/
whatwg/fetch/issues/769.

[328] Sabol, C. It’s Okay, We’re All On the SameSite (2020). https://securityboulevard.
com/2020/02/its-okay-were-all-on-the-samesite/.

[329] Rees-Carter, S. SameSite Cookies Deep Dive / CSRF is dead (or is it?) https://
stephenreescarter.net/talks/samesite-cookies/.

[330] Li, V. Bypassing CSRF Protection (2020). https://vickieli.dev/csrf/bypass-
csrf-protection/.

[331] SameSite cookies. https://makandracards.com/makandra/71018-samesite-
cookies.

[332] Walton, J. Avoiding CSRF Attacks with API Design (2020). http://www.thedreami
ng.org/2020/05/26/avoid-csrf-attacks-with-api-design/.

[333] SameSite Cookies and CSRF Attacks. https://symfonycasts.com/screencast/
api-platform-security/samesite-csrf.

[334] XS-Leaks Wiki: SameSite Cookies. https://xsleaks.dev/docs/defenses/opt-
in/same-site-cookies/.

[335] SameSite Cookie Attribute and Synchronizer Token Pattern. https://security.
stackexchange.com/questions/201396/samesite- cookie- attribute-
and-synchronizer-token-pattern.

[336] How is the lack of the “SameSite” cookie flag a risk? https://security.stack
exchange.com/questions/154106/how-is-the-lack-of-the-samesite-
cookie-flag-a-risk.

[337] Will same-site cookies be sufficent protection against CSRF and XSS? https://secu
rity.stackexchange.com/questions/121971/will-same-site-cookies-
be-sufficent-protection-against-csrf-and-xss.

[338] Jubeau, D. Secure your cookies to the next level with SameSite attribute (2017). https:
//dev.to/damienjubeau/secure-your-cookies-to-the-next-level-
with-samesite-attribute.

[339] Valverde, F. Everybody hates CSRF (2020). https://dev.to/fdoxyz/everybody-
hates-csrf-4fek.

[340] Feature: Reject insecure SameSite=None cookies. https://www.chromestatus.
com/feature/5633521622188032.

[341] Guan, C., Sun, K., Wang, Z., and Zhu, W. Privacy Breach by Exploiting postMessage in
HTML5: Identification, Evaluation, and Countermeasure. In: ACM Asia Conference on
Computer and Communications Security. 2016.

[342] Ballarano, A., Colace, F., De Santo, M., and Greco, L. The Postman Always Rings Twice”:
Evaluating E-Learning Platform a Decade Later. International Journal of Emerging
Technologies in Learning (2016).

[343] SameSite Frequently Asked Questions (FAQ). https://www.chromium.org/updat
es/same-site/faq.

[344] SameSite Cookie Attribute explained. https://cookie-script.com/documentat
ion/samesite-cookie-attribute-explained.

[345] Merewood, R. SameSite cookie recipes (). https://web.dev/samesite-cookie-
recipes/.

141

https://bugzilla.redhat.com/show_bug.cgi?id=1762378
https://bugzilla.redhat.com/show_bug.cgi?id=1762378
https://github.com/whatwg/fetch/issues/769
https://github.com/whatwg/fetch/issues/769
https://securityboulevard.com/2020/02/its-okay-were-all-on-the-samesite/
https://securityboulevard.com/2020/02/its-okay-were-all-on-the-samesite/
https://stephenreescarter.net/talks/samesite-cookies/
https://stephenreescarter.net/talks/samesite-cookies/
https://vickieli.dev/csrf/bypass-csrf-protection/
https://vickieli.dev/csrf/bypass-csrf-protection/
https://makandracards.com/makandra/71018-samesite-cookies
https://makandracards.com/makandra/71018-samesite-cookies
http://www.thedreaming.org/2020/05/26/avoid-csrf-attacks-with-api-design/
http://www.thedreaming.org/2020/05/26/avoid-csrf-attacks-with-api-design/
https://symfonycasts.com/screencast/api-platform-security/samesite-csrf
https://symfonycasts.com/screencast/api-platform-security/samesite-csrf
https://xsleaks.dev/docs/defenses/opt-in/same-site-cookies/
https://xsleaks.dev/docs/defenses/opt-in/same-site-cookies/
https://security.stackexchange.com/questions/201396/samesite-cookie-attribute-and-synchronizer-token-pattern
https://security.stackexchange.com/questions/201396/samesite-cookie-attribute-and-synchronizer-token-pattern
https://security.stackexchange.com/questions/201396/samesite-cookie-attribute-and-synchronizer-token-pattern
https://security.stackexchange.com/questions/154106/how-is-the-lack-of-the-samesite-cookie-flag-a-risk
https://security.stackexchange.com/questions/154106/how-is-the-lack-of-the-samesite-cookie-flag-a-risk
https://security.stackexchange.com/questions/154106/how-is-the-lack-of-the-samesite-cookie-flag-a-risk
https://security.stackexchange.com/questions/121971/will-same-site-cookies-be-sufficent-protection-against-csrf-and-xss
https://security.stackexchange.com/questions/121971/will-same-site-cookies-be-sufficent-protection-against-csrf-and-xss
https://security.stackexchange.com/questions/121971/will-same-site-cookies-be-sufficent-protection-against-csrf-and-xss
https://dev.to/damienjubeau/secure-your-cookies-to-the-next-level-with-samesite-attribute
https://dev.to/damienjubeau/secure-your-cookies-to-the-next-level-with-samesite-attribute
https://dev.to/damienjubeau/secure-your-cookies-to-the-next-level-with-samesite-attribute
https://dev.to/fdoxyz/everybody-hates-csrf-4fek
https://dev.to/fdoxyz/everybody-hates-csrf-4fek
https://www.chromestatus.com/feature/5633521622188032
https://www.chromestatus.com/feature/5633521622188032
https://www.chromium.org/updates/same-site/faq
https://www.chromium.org/updates/same-site/faq
https://cookie-script.com/documentation/samesite-cookie-attribute-explained
https://cookie-script.com/documentation/samesite-cookie-attribute-explained
https://web.dev/samesite-cookie-recipes/
https://web.dev/samesite-cookie-recipes/

BIBLIOGRAPHY

[346] Likaj, X., Khodayari, S., and Pellegrino, G. Where We Stand (or Fall): An Analysis of
CSRF Defenses in Web Frameworks. In: 24th International Symposium on Research in
Attacks, Intrusions and Defenses. 2021.

[347] Parsovs, A. Practical Issues with TLS Client Certificate Authentication. In: Network and
Distributed Systems Security Symposium. 2014.

[348] Caretton, L. Node.js Connect CSRF Bypass Abusing Method Override Middleware ().
http://blog.nibblesec.org/2014/05/nodejs-connect-csrf-bypass-
abusing.html.

[349] Often Misused: HTTP Method Override. https://vulncat.fortify.com/en/de
tail?id=desc.dynamic.xtended_preview.often_misused_http_method_
override.

[350] Mitch Dataset. https://github.com/alviser/mitch/tree/master/dataset.
[351] Update or reinstall Safari for your computer. https://support.apple.com/en-

us/HT204416.
[352] Flask Response.set_cookie() API. https://tedboy.github.io/flask/generate

d/generated/flask.Response.set_cookie.html.
[353] Tornado RequestHandler.set_cookie() API. https://www.tornadoweb.org/en/

stable/web.html?highlight=set_cookie#tornado.web.RequestHandler.
set_cookie.

[354] Web.py setcookie() API. https://webpy.org/cookbook/cookies.
[355] Express SameSite Cookie Attribute. https://expressjs.com/en/resources/

middleware/session.html.
[356] Meteor Cookie.set() API. https://docs.meteor.com/.
[357] Sails Response.cookie() API. https://sailsjs.com/documentation/referenc

e/response-res/res-cookie.
[358] Sails SameSite Cookies. https://github.com/balderdashy/sails/issues/

6942.
[359] Koa SameSite Attribute. https://github.com/koajs/session/issues/174.
[360] Hapi Server.state() API and isSameSite Option. https://hapi.dev/api/?v=20.1.

0.
[361] Laravel SameSite Cookie Attribute. https://laracasts.com/discuss/channe

ls/laravel/some-cookies-are-misusing-the-recommended-samesite-
attribute.

[362] Symfony Cookie API. https://symfony.com/doc/current/components/http_
foundation.html#setting-cookies.

[363] Symfony Default SameSite Cookie Attribute. https://github.com/symfony/sym
fony/blob/c377a795f579e5417d106c94ae5d5fe4b4300dca/src/Symfony/
Component/HttpFoundation/Cookie.php.

[364] CakePHP withCookie() API. https://book.cakephp.org/4/en/controllers/
request-response.html#setting-cookies.

[365] CakePHP Default SameSite Cookie Attribute. https://github.com/cakephp/
cakephp/blob/d4b68a6dd2404d0b8cc7431838a39ec44b3f5f6b/src/Http/
Cookie/Cookie.php.

[366] Zend Default SameSite Cookie Attribute. https://github.com/zendframework/
zend-http/commit/0d99103d391f4f746e267a00507d753660550f7b.

142

http://blog.nibblesec.org/2014/05/nodejs-connect-csrf-bypass-abusing.html
http://blog.nibblesec.org/2014/05/nodejs-connect-csrf-bypass-abusing.html
https://vulncat.fortify.com/en/detail?id=desc.dynamic.xtended_preview.often_misused_http_method_override
https://vulncat.fortify.com/en/detail?id=desc.dynamic.xtended_preview.often_misused_http_method_override
https://vulncat.fortify.com/en/detail?id=desc.dynamic.xtended_preview.often_misused_http_method_override
https://github.com/alviser/mitch/tree/master/dataset
https://support.apple.com/en-us/HT204416
https://support.apple.com/en-us/HT204416
https://tedboy.github.io/flask/generated/generated/flask.Response.set_cookie.html
https://tedboy.github.io/flask/generated/generated/flask.Response.set_cookie.html
https://www.tornadoweb.org/en/stable/web.html?highlight=set_cookie#tornado.web.RequestHandler.set_cookie
https://www.tornadoweb.org/en/stable/web.html?highlight=set_cookie#tornado.web.RequestHandler.set_cookie
https://www.tornadoweb.org/en/stable/web.html?highlight=set_cookie#tornado.web.RequestHandler.set_cookie
https://webpy.org/cookbook/cookies
https://expressjs.com/en/resources/middleware/session.html
https://expressjs.com/en/resources/middleware/session.html
https://docs.meteor.com/
https://sailsjs.com/documentation/reference/response-res/res-cookie
https://sailsjs.com/documentation/reference/response-res/res-cookie
https://github.com/balderdashy/sails/issues/6942
https://github.com/balderdashy/sails/issues/6942
https://github.com/koajs/session/issues/174
https://hapi.dev/api/?v=20.1.0
https://hapi.dev/api/?v=20.1.0
https://laracasts.com/discuss/channels/laravel/some-cookies-are-misusing-the-recommended-samesite-attribute
https://laracasts.com/discuss/channels/laravel/some-cookies-are-misusing-the-recommended-samesite-attribute
https://laracasts.com/discuss/channels/laravel/some-cookies-are-misusing-the-recommended-samesite-attribute
https://symfony.com/doc/current/components/http_foundation.html#setting-cookies
https://symfony.com/doc/current/components/http_foundation.html#setting-cookies
https://github.com/symfony/symfony/blob/c377a795f579e5417d106c94ae5d5fe4b4300dca/src/Symfony/Component/HttpFoundation/Cookie.php
https://github.com/symfony/symfony/blob/c377a795f579e5417d106c94ae5d5fe4b4300dca/src/Symfony/Component/HttpFoundation/Cookie.php
https://github.com/symfony/symfony/blob/c377a795f579e5417d106c94ae5d5fe4b4300dca/src/Symfony/Component/HttpFoundation/Cookie.php
https://book.cakephp.org/4/en/controllers/request-response.html#setting-cookies
https://book.cakephp.org/4/en/controllers/request-response.html#setting-cookies
https://github.com/cakephp/cakephp/blob/d4b68a6dd2404d0b8cc7431838a39ec44b3f5f6b/src/Http/Cookie/Cookie.php
https://github.com/cakephp/cakephp/blob/d4b68a6dd2404d0b8cc7431838a39ec44b3f5f6b/src/Http/Cookie/Cookie.php
https://github.com/cakephp/cakephp/blob/d4b68a6dd2404d0b8cc7431838a39ec44b3f5f6b/src/Http/Cookie/Cookie.php
https://github.com/zendframework/zend-http/commit/0d99103d391f4f746e267a00507d753660550f7b
https://github.com/zendframework/zend-http/commit/0d99103d391f4f746e267a00507d753660550f7b

OTHER REFERENCES

[367] Slim setCookie() API. https://www.slimframework.com/docs/v2/response/
cookies.html.

[368] Slim SameSite Cookie Attribute. https://github.com/bryanjhv/slim-session
/issues/54.

[369] ASP.NET WebForms HttpCookie. https://docs.microsoft.com/en-us/aspne
t/samesite/csharpwebforms.

[370] ASP.NET HttpCookie. https://docs.microsoft.com/en-us/aspnet/samesi
te/csmvc.

[371] ASP.NET Core CookieBuilder. https://docs.microsoft.com/en-us/aspnet/
core/security/samesite?view=aspnetcore-5.0.

[372] Nancy Web Framework. https://github.com/NancyFx/Nancy.
[373] Service Stack UseSameSiteCookies Configuration. https://docs.servicestack.

net/sessions.
[374] Spring SameSite Cookie Attribute. https://docs.spring.io/spring-session/

docs/current/reference/html5/guides/java-custom-cookie.html.
[375] Play Cookie.builder() API. https://www.playframework.com/documentation/

2.8.x/Migration26#SameSite-attribute,-enabled-for-session-and-
flash.

[376] Vaadin Cookie.SetCookie() API. https://vaadin.com/docs/v8/framework/
articles/SettingAndReadingCookies.

[377] Vert.X-Web setCookieSameSite API. https://github.com/vert-x3/vertx-
web/blob/f7902ccd4f5da70908a68611119d77ef4aa3f8d4/vertx-web/src
/main/java/io/vertx/ext/web/handler/SessionHandler.java.

[378] Spark Response.cookie() API. https://sparkjava.com/documentation#gettin
g-started.

[379] GitHub 2020 Octoverse Report. https://octoverse.github.com/.
[380] Stackoverflow Tags. https://stackoverflow.com/help/tagging.
[381] Alhuzali, A., Gjomemo, R., Eshete, B., and Venkatakrishnan, V. NAVEX: precise and

scalable exploit generation for dynamic web applications. In: USENIX Security Symposium.
2018.

[382] Nielsen, B. B., Hassanshahi, B., and Gauthier, F. Nodest: feedback-driven static analysis
of node. js applications. In: 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 2019.

[383] Landman, D., Serebrenik, A., and Vinju, J. J. Challenges for static analysis of java
reflection-literature review and empirical study. In: IEEE/ACM 39th International
Conference on Software Engineering (ICSE). 2017.

[384] Li, L., Bissyandé, T. F., Papadakis, M., Rasthofer, S., Bartel, A., Octeau, D., Klein, J.,
and Traon, L. Static analysis of android apps: a systematic literature review. Information
and Software Technology (2017).

[385] Seo, S.-H., Gupta, A., Sallam, A. M., Bertino, E., and Yim, K. Detecting mobile malware
threats to homeland security through static analysis. Journal of Network and Computer
Applications (2014).

[386] Floyd, R. W. Assigning meanings to programs. In: Proceedings of Symposium on Applied
Mathematics. 1967.

143

https://www.slimframework.com/docs/v2/response/cookies.html
https://www.slimframework.com/docs/v2/response/cookies.html
https://github.com/bryanjhv/slim-session/issues/54
https://github.com/bryanjhv/slim-session/issues/54
https://docs.microsoft.com/en-us/aspnet/samesite/csharpwebforms
https://docs.microsoft.com/en-us/aspnet/samesite/csharpwebforms
https://docs.microsoft.com/en-us/aspnet/samesite/csmvc
https://docs.microsoft.com/en-us/aspnet/samesite/csmvc
https://docs.microsoft.com/en-us/aspnet/core/security/samesite?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/samesite?view=aspnetcore-5.0
https://github.com/NancyFx/Nancy
https://docs.servicestack.net/sessions
https://docs.servicestack.net/sessions
https://docs.spring.io/spring-session/docs/current/reference/html5/guides/java-custom-cookie.html
https://docs.spring.io/spring-session/docs/current/reference/html5/guides/java-custom-cookie.html
https://www.playframework.com/documentation/2.8.x/Migration26#SameSite-attribute,-enabled-for-session-and-flash
https://www.playframework.com/documentation/2.8.x/Migration26#SameSite-attribute,-enabled-for-session-and-flash
https://www.playframework.com/documentation/2.8.x/Migration26#SameSite-attribute,-enabled-for-session-and-flash
https://vaadin.com/docs/v8/framework/articles/SettingAndReadingCookies
https://vaadin.com/docs/v8/framework/articles/SettingAndReadingCookies
https://github.com/vert-x3/vertx-web/blob/f7902ccd4f5da70908a68611119d77ef4aa3f8d4/vertx-web/src/main/java/io/vertx/ext/web/handler/SessionHandler.java
https://github.com/vert-x3/vertx-web/blob/f7902ccd4f5da70908a68611119d77ef4aa3f8d4/vertx-web/src/main/java/io/vertx/ext/web/handler/SessionHandler.java
https://github.com/vert-x3/vertx-web/blob/f7902ccd4f5da70908a68611119d77ef4aa3f8d4/vertx-web/src/main/java/io/vertx/ext/web/handler/SessionHandler.java
https://sparkjava.com/documentation#getting-started
https://sparkjava.com/documentation#getting-started
https://octoverse.github.com/
https://stackoverflow.com/help/tagging

BIBLIOGRAPHY

[387] Knuth, D. E. The art of computer programming. The Art of Computer Programming,
Volume 1: Fundamental Algorithms, Addison-Wesley, 1968.

[388] Wulf, W. A., London, R. L., and Shaw, M. The Flow Analysis of Computer Programs.
Prentice-Hall, 1976.

[389] Johnson", " C. "Lint, a C Program Checker". 1979.
[390] Kildall, G. A. A unified approach to global program optimization. In: ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages. ACM. 1973.
[391] King, J. C. Symbolic execution and program testing. In: Communications of the ACM.

1976.
[392] Clarke, E. M., Emerson, E. A., and Sifakis, J. Automatic Verification of Finite-State

Concurrent Systems Using Temporal Logic. 1986.
[393] Horwitz, S., Reps, T., and Binkley, D. Interprocedural slicing using dependence graphs.

In: ACM Transactions on Programming Languages and Systems. 1990.
[394] Wilson, R. P. and Lam, M. S. Efficient context-sensitive pointer analysis for c programs.

In: ACM Sigplan Notices. 1995.
[395] Reps, T. Program analysis via graph reachability. In: Information and Software Technol-

ogy, 40(11):701–726. 1998.
[396] Kinloch, D. A. and Munro, M. Understanding c programs using the combined c graph

representation. In: Proceedings of the International Conference on Software Maintenance.
1994.

[397] Eriksson, B., Pellegrino, G., and Sabelfeld, A. Black widow: blackbox data-driven web
scanning. In: IEEE Symposium on Security and Privacy. 2021.

[398] Duchene, F., Rawat, S., Richier, J.-L., and Groz, R. Kameleonfuzz: evolutionary fuzzing
for black-box xss detection. In: Proceedings of the 4th ACM conference on Data and
application security and privacy. 2014.

[399] Trickel, E., Pagani, F., Zhu, C., Dresel, L., Vigna, G., Kruegel, C., Wang, R., Bao,
T., Shoshitaishvili, Y., and Doupé, A. Toss a fault to your witcher: applying grey-box
coverage-guided mutational fuzzing to detect sql and command injection vulnerabilities.
In: IEEE symposium on security and privacy. 2023.

[400] Sen, K., Kalasapur, S., Brutch, T., and Gibbs, S. Jalangi: a selective record-replay and
dynamic analysis framework for javascript. In: Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. 2013.

[401] Hu, X., Cheng, Y., Duan, Y., Henderson, A., and Yin, H. Jsforce: a forced execution
engine for malicious javascript detection. In: 13th International Conference on Security
and Privacy in Communication Networks (SecureComm). 2018.

[402] Newsome, J. and Song, D. X. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: NDSS. 2005.

[403] Schwartz, E. J., Avgerinos, T., and Brumley, D. All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid to
ask). In: IEEE symposium on Security and privacy. IEEE. 2010.

[404] Al Kassar, F., Clerici, G., Compagna, L., Yamaguchi, F., and Balzarotti, D. Testability
tarpits: the impact of code patterns on the security testing of web applications (2022).

[405] Brito, T., Lopes, P., Santos, N., and Santos, J. F. Wasmati: An efficient static vulnerability
scanner for WebAssembly. Computers & Security (2022).

[406] Pellegrino, G., Catakoglu, O., Balzarotti, D., and Rossow, C. Uses and abuses of server-side
requests. In: RAID Symposium. 2016.

144

OTHER REFERENCES

[407] Ryck, P. D., Desmet, L., Heyman, T., Piessens, F., and Joosen, W. CsFire: Transparent
Client-Side Mitigation of Malicious Cross-Domain Requests. In: International Symposium
on Engineering Secure Software and Systems. 2010.

[408] Kerschbaum, F. Simple cross-site attack prevention. In: Third International Conference
on Security and Privacy in Communications Networks and the Workshops (SecureComm).
2007.

[409] Hantke, F. and Stock, B. HTML violations and where to find them: a longitudinal analysis
of specification violations in HTML. In: ACM Internet Measurement Conference. 2022.

[410] Dangling markup injection. https://portswigger.net/web-security/cross-
site-scripting/dangling-markup.

[411] Roth, S., Backes, M., and Stock, B. Assessing the impact of script gadgets on csp at
scale. In: ACM Asia CCS. 2020, 420–431.

[412] Heiderich, M. ToStaticHTML for Everyone! About DOMPurify, Security in the DOM,
and Why We Really Need Both (2016).

[413] Calzavara, S., Rabitti, A., and Bugliesi, M. CCSP: controlled relaxation of content
security policies by runtime policy composition. In: USENIX Security Symposium. 2017.

[414] Roth, S., Gröber, L., Backes, M., Krombholz, K., and Stock, B. 12 angry developers-a
qualitative study on developers’ struggles with csp. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. 2021.

[415] Singh, K., Moshchuk, A., Wang, H. J., and Lee, W. On the Incoherencies in Web Browser
Access Control Policies. In: IEEE Symposium on Security and Privacy. 2010.

[416] Aggarwal, G., Bursztein, E., Jackson, C., and Boneh, D. An Analysis of Private Browsing
Modes in Modern Browsers. In: USENIX security symposium. 2010.

[417] Bortz, A., Barth, A., and Czeskis, A. Origin Cookies: Session Integrity for Web Applica-
tions. In: ACM Transactions on Internet Technology (TOIT). 2012.

[418] Nikiforakis, N., Meert, W., Younan, Y., Johns, M., and Joosen, W. SessionShield:
Lightweight protection against session hijacking. In: International Symposium on Engi-
neering Secure Software and Systems. 2011.

[419] Bugliesi, M., Calzavara, S., Focardi, R., and Khan, W. CookiExt: Patching the browser
against session hijacking attacks. In: Journal of Computer Security. 2015.

[420] Calzavara, S., Rabitti, A., and Bugliesi, M. Sub-session hijacking on the web: Root causes
and prevention (2019).

[421] Roesner, F., Kohno, T., and Wetherall, D. Detecting and defending against third-party
tracking on the web. In: 9th USENIX Symposium on Networked Systems Design and
Implementation. 2012.

[422] Dhawan, M., Kreibich, C., and Weaver, N. Priv3: A third party cookie policy. In: W3C
Workshop: Do Not Track and Beyond. 2012.

[423] Zhou, Y. and Evans, D. Why aren’t HTTP-only cookies more widely deployed. In:
Proceedings of 4th Web 2.0 Security and Privacy Workshop. 2010.

[424] Calvano, P. SameSite Cookies Analysis (2020). https://discuss.httparchive.
org/t/samesite-cookies-analysis/1988.

[425] SameSite Strict Usage Statistics. https://trends.builtwith.com/docinfo/
SameSite-Strict.

[426] Hackerone. https://hackerone.com.
[427] Bugcrowd. https://www.bugcrowd.com.

145

https://portswigger.net/web-security/cross-site-scripting/dangling-markup
https://portswigger.net/web-security/cross-site-scripting/dangling-markup
https://discuss.httparchive.org/t/samesite-cookies-analysis/1988
https://discuss.httparchive.org/t/samesite-cookies-analysis/1988
https://trends.builtwith.com/docinfo/SameSite-Strict
https://trends.builtwith.com/docinfo/SameSite-Strict
https://hackerone.com
https://www.bugcrowd.com

APPENDIX

[428] Stock, B., Pellegrino, G., Rossow, C., Johns, M., and Backes, M. Hey, you have a problem:
On the feasibility of large-scale web vulnerability notification. In: USENIX Security
Symposium. 2016.

[429] Extra DOM Clobbering protection. https://github.com/cure53/DOMPurify/
pull/710.

[430] Jueckstock, J. and Kapravelos, A. VisibleV8: In-browser Monitoring of JavaScript in the
Wild. In: Proceedings of the ACM Internet Measurement Conference (IMC). 2019.

[431] Doupé, A., Cavedon, L., Kruegel, C., and Vigna, G. Enemy of the State: A State-Aware
Black-Box Web Vulnerability Scanner. In: Proceedings of the 21st USENIX Security
Symposium. 2012.

[432] Pellegrino, G., Tschürtz, C., Bodden, E., and Rossow, C. Jäk: Using Dynamic Analysis
to Crawl and Test Modern Web Applications. In: Proceedings of the 18th International
Symposium on Research in Attacks, Intrusions and Defenses. 2015.

[433] Squarcina, M., Adão, P., Veronese, L., and Maffei, M. Cookie crumbles: breaking and
fixing web session integrity. In: USENIX Security Symposium. 2023.

[434] Rack, J. and Staicu, C.-A. Jack-in-the-box: an empirical study of javascript bundling on
the web and its security implications. In: ACM SIGSAC Conference on Computer and
Communications Security. 2023.

146

https://github.com/cure53/DOMPurify/pull/710
https://github.com/cure53/DOMPurify/pull/710

A
Appendix

147

A.1. TESTBED OF BITNAMI APPLICATIONS

A.1 Testbed of Bitnami Applications

This appendix contains the complete list of the Bitnami web applications (alphabetically ordered)
and the specific versions that we used for our experiments in §3.3.
Bitnami Applications. AbanteCart 1.2.16, Akeneo 3.2.26, Alfresco Community 201911,
Apache Airflow UI 1.10.8, Axelor 5.3.0, Bonita 7.6, CMS Made Simple 2.2.14, CanvasLMS
2020.01.01.05, CiviCRM 5.25.0, Ckan 2.8.0, Collabtive 3.1, Composr 10.0.30, Concrete5 8.5.2,
Coppermine 1.6.08, Cotonti 0.9.19, Diaspora 0.7.13.0, Discourse 2.4.5, DokuWiki 20180422c,
Dolibarr 11.0.4, DreamFactory 4.2.2, Drupal 8.8.6, ELK 7.6.0, ERPNext 12.9.3, EspoCRM
5.9.1, FatFreeCRM 0.18.1, Fluentd UI 1.10.3, Ghost 3.17.1, Gitlab CE 13.0.3, Grafana 6.5.2,
Horde Groupware Webmail 5.2.22, JFrog Artifactory Open Source 6.19.1, JasperReports 7.5.0,
Jenkins 2.204.1, JetBrains YouTrack 2019.3.62973, Joomla 3.9.18, Kibana 7.5.1, Kong Admin UI
0.4.1, Kubeapps 1.9.0, Let’s Chat 0.4.8, Liferay 7.2.1, LimeSurvery 4.2.5, Live Helper Chat 3.27,
LotusCMS 3.0.5, Magento 2.3.5, Mahara 19.10.1, Mantis 2.24.1, Matomo 3.13.1, Mattermost
5.14.0, Mautic 2.16.2, MediaWiki 1.34.1, Moalyss 7.3.0.0, Modx 2.7.3pl, Moodle 3.8.3, MyBB
Forum 1.8.22, Neos 5.2.0, OXID eShop 6.2.1, Odoo 13.0.20200515, Open Atrium 2.646, Open
edX ironwood.2.8, OpenCart 3.0.3.2, OpenProject 10.5.1, Openfire 4.4.4.1, OrangeHRM 4.4,
OroCRM 4.1.4, Osclass 3.9.0, Parse Server 4.2.0, ParseDashboard 2.0.5, Phabricator 2020.21,
Pimcore 6.6.4, Plone 5.2.1, Pootle 2.8.2, PrestaShop 1.7.6.2, ProcessMaker Community 3.3.6,
ProcessWire 3.0.148, Prometheus 2.18.1, Publify 9.1.0, Re:dash 8.0.0, Redmine 4.1.1, Report
Server Community 3.1.1.6020, Report Server Enterprise 3.1.1.6020, ResourceSpace 9.2.14719,
ReviewBoard 3.0.17, Roundcube 1.4.5, SEO Panel 4.3.0, Shopware 6.1.0, Silverstripe 4.5.2, Simple
Machines Forum 2.0.17, SonarQube 8.2.0.32929, Spree 4.1.6, SugarCRM 6.5.13, SuiteCRM 7.1.1,
TestLink 1.9.20, Tiki Wiki CMS Groupware 21, Tiny Tiny RSS 202006, Trac 1.5.1, Typo3 10.4.3,
Weblate 4.0.3, Webmail Prop PHP 8.3.20, Wordpress 5.4.1, Xoops 2.5.10, Zurmo 3.2.7, eXo
Platform 5.3.0, ownCloud 10.4.1, phpBB 3.3.0, phpList 3.5.4, and phpMyAdmin 5.0.1.

A.2 Additional Evaluation Details

This appendix contains the additional evaluation details for Chapters 4 to 6.

149

APPENDIX

Table A.1: Summary of primitive JavaScript sinks supported by JAW-v2. Rows marked with E show APIs for
which we implemented extra instrumentation in Foxhound+.

� Category ý JavaScript Sink
Request Hijacking E navigator.sendBeacon(T1, T2)
[P1, 5, 6, 154, 204, 208, 211] fetch(T1, T2)

XMLHttpRequest.open(T)
xhr.send(T)
xhr.setRequestHeader(T1, T2)

E new WebSocket(T)
E socket.send(T)
E new EventSource(T)
E PushManager.subscribe(T)

window.open(T)
location.href = T
location.replace(T)
location.assign(T)

Code Execution eval(T)
[2, 32, 53, 107] new Function(T)

setInterval(T)
setTimeout(T)
script.text = T
script.src = T
script.innerHTML = T

Markup Injection document.write(T)
[7, 8, 204] document.writeln(T)

elm.innerHTML = T
elm.outerHTML = T
elm.insertAdjacentHTML(T)
elm.insertAdjacentText(T)

State Manipulation document.cookie = T
[2, 204] localStorage.setItem(T)

sessionStorage.setItem(T)

PostMessage Spoofing postMessage(T)
[3]

Legend: Ti= Tainted Variable.

150

A.2. ADDITIONAL EVALUATION DETAILS

Table A.2: Summary of primitive JavaScript sinks and semantic types supported by JAW-v3 grouped by the
security risk of manipulating the sink object. The list is obtained by aggregating the client-side JavaScript sinks
considered in existing literature.

Ë Security Threat ! Semantic Type Description Reference ý JavaScript Sink
Client-side Open Redirect WIN_LOC_WRITE Redirecting the Window URL [113, 114] window.location = T

Websocket Hijacking WEBSOCK_URL_WRITE Hijacking Websocket Connections [259, 260] new WebSocket(T)

Cookie Manipulation DOC_COOKIE_WRITE Manipulating Cookie State [3, 32, 54] document.cookie = T

Doc. Domain Manipulation DOC_DOMAIN_WRITE Bypassing SOP [160, 261] document.domain = T

Client-side JSON Injection JSON_PARSE Parsing Untrusted JSON [53, 262, 263] JSON.parse(T)

RegEx Injection REGEX_BUILD Injecting Regex for ReDoS [264, 265] new RegExp(T)

postMessage Manipulation POST_MSG_WRITE Manipulating postMessages [3] window.postMessage(T)

Local File Path Manipulation FILE_PATH_WRITE Manipulating Path of Read Files [266] new FileReader().readAsText(T)

Cross-site Scripting (XSS) CODE_LOADING Loading New Scripts [25, 32, 88] script.src = T

CODE_EXEC Executing Arbitrary JavaScript [32, 78] script.textContent = T
eval(T)
setTimeout(T)
setInterval(T)
new Function(T)

DOM_NODE_INJECT Injecting DOM Elements [8, 32, 53, 78] document.write(T)
document.writeln(T)
elm.innerHTML = T
elm.outerHTML = T
elm.insertAdjacentHTML(T)
elm.insertAdjacentElement(T)
elm.replaceChild(T)
elm.append(T)
elm.appendChild(T)

Web Storage Manipulation DOC_STORAGE_WRITE Manipulating Storage State [3, 32, 54] localStorage.setItem()
sessionStorage.setItem()

Client-side Request Forgery REQ Manipulating Asynchronous Reqs. [P1, 1] fetch(T)
XMLHttpRequest.open(T)
asyncRequest(T)
$.ajax(T)

Legend: T= Tainted Variable;

151

APPENDIX

Table A.3: List of HTML tags used in §5.1.2.1 that share the same DOM Clobbering behaviour.

Name Î HTML Tags

TS1 a, abbr, acronym, address, applet, area, article, aside, audio, b, base, basefont, bdi, bdo, bgsound, big, blink,
blockquote, br, button, canvas, center, cite, code, command, content, data, datalist, dd, del, details, dfn, dialog,
dir, div, dl, dt, element, em, embed, fieldset, figcaption, figure, font, footer, form, h1, header, hgroup, hr, i, iframe,
image, img, input, ins, isindex, kbd, keygen, label, legend, li, link, listing, main, map, mark, marquee, menu,
menuitem, meta, meter, multicol, nav, nextid, nobr, noembed, noframes, noscript, object, ol, optgroup, option,
output, p, param, picture, pre, progress, q, rb, rp, rt, rtc, ruby, s, samp, script, section, select, shadow, slot, small,
source, spacer, span, strike, strong, style, sub, summary, sup, table, template, textarea, time, title, track, tt, u, ul,
var, video, wbr, xmp

TS2 blockquote, br, button, canvas, center, cite, code, command, content, data, datalist, dd, del, details, dfn, dialog,
dir, div, dl, dt, element, em, embed, fieldset, figcaption, figure, font, footer, form, h1, header, hgroup, hr, i, image,
img, input, ins, isindex, kbd, keygen, label, legend, li, link, listing, main, map, mark, marquee, menu, menuitem,
meta, meter, multicol, nav, nextid, nobr, noembed, noframes, noscript, object, ol, optgroup, option, output, p,
param, picture, plaintext, pre, progress, q, rb, rp, rt, rtc, ruby, s, samp, script, section, select, shadow, slot, small,
source, spacer, span, strike, strong, style, sub, summary, sup, svg, table, template, textarea, time, title, track, tt,
u, ul, var

TS3 button, fieldset, input, output, select, textarea

TS4 image, img, object

TS5 a, abbr, acronym, address, applet, area

TS6 basefont, bgsound, blink

TS7 noembed, noframes, noscript, script, style, template, textarea, title, xmp

TS8 ins, isindex, kbd, keygen, label, legend, li, link, listing, main, map, mark, marquee, menu, menuitem, meta, meter,
multicol, nav, nextid, nobr, object, ol, optgroup, option, output, p, param, picture, pre, progress, q, rb, rp, rt,
rtc, ruby, s, samp, section, select, shadow, slot, small, source, spacer, span, strike, strong, sub, summary, sup, svg,
table, time, track, tt, u, ul, var, video, wbr

TS9 fieldset, figcaption, figure, font, footer, form, h1, header, hgroup, hr, i, image

TS10 form, iframe, image, img, script, style, table, template

TS11 caption, col, colgroup, tbody, td, tfoot, th, thead, tr

TS12 p, param, picture, plaintext, pre, progress, q, rb, rp, rt, rtc, ruby, s, samp, script, section, select, shadow, slot,
small, source, spacer, span, strike, strong, style, sub, summary, sup, table, template, textarea, time, title, track,
tt, u, ul, var, video, wbr, xmp, a, abbr, acronym, address, applet, area, article, aside, audio, b, base, basefont,
bdi, bdo, bgsound, big, blink, blockquote, br, button, canvas, center, cite, code, command, content, data, datalist,
dd, del, details, dfn, dialog, dir, div, dl, dt, element, em, embed, fieldset, figcaption, figure, font, footer, form, h1,
header, hgroup, hr, i

TS13 h1, header, hgroup, hr, i, image, img, input, ins, isindex, kbd, keygen, label, legend, li, link, listing, main, map,
mark, marquee, menu, menuitem, meta, meter, multicol, nav, nextid, nobr, noembed, noframes, noscript, object,
ol, optgroup, option, output, p, param, picture, plaintext, pre, progress, q, rb, rp, rt, rtc, ruby, s, samp, script,
section, select, shadow, slot, small, source, spacer, span, strike, strong, style, sub, summary, sup, table, template,
textarea, time, title, track, tt, u, ul, var, video, wbr, xmp, a, abbr, acronym, address, applet, area, article, aside,
audio

TS14 form, b, base, basefont, bdi, bdo, bgsound, big, blink, blockquote, br, button, canvas, center, cite, code, command,
content, data, datalist, dd, del, details, dfn, dialog, dir, div, dl, dt, element, em, embed, fieldset, figcaption, figure,
font, footer

TS15 data, datalist, dd, del, details, dfn, dialog, dir, div, dl, dt, element, em, embed, fieldset, figcaption, figure, font,
footer, form, h1, header, hgroup, hr, i, image, img, input, ins, isindex, kbd, keygen, label, legend, li, link, list-
ing, main, map, mark, marquee, menu, menuitem, meta, meter, multicol, nav, nextid, nobr, noembed, noframes,
noscript, object, ol, optgroup, option, output, p, param, picture, plaintext, pre, progress, q, rb, rp, rt, b, base,
basefont, bdi, bdo, bgsound, big, blink, blockquote, br, button, canvas, center, cite, code, command, content, rtc,
ruby, s, samp, script, section, select, shadow

TS16 rtc, ruby, s, samp, script, section, select, shadow, slot, small, source, spacer, span, strike, strong, style, sub,
summary, sup, table, template, textarea, time, title, track, tt, u, ul, var, video, wbr, xmp, a, abbr, acronym,
address, applet, area, article, aside, audio, b, base, basefont, bdi, bdo, bgsound, big, blink, blockquote, br, button,
canvas, center, cite, code, command, content, data, datalist, dd, del, details, dfn, dialog, dir, div, dl, dt, element,
em, embed, fieldset, figcaption, figure, font, footer, form, h1, header, hgroup, hr, i, image

TS17 br, button, canvas, center, cite, code, command, content, data, datalist, dd, del, details, dfn, dialog, dir, div, dl,
dt, element, em, embed, fieldset, figcaption, figure, font, footer, form, h1, header, hgroup, hr, i

TS18 address, applet, area, article, aside, audio, b, base, basefont, bdi, bdo, bgsound, big, blink, blockquote, br, button,
canvas, center, cite, code, command, content, data, datalist, dd, del, details, dfn, dialog, dir

TS19 form, iframe, script, style, template

TS20 image, img, input, noembed, noframes, noscript

152

A.2. ADDITIONAL EVALUATION DETAILS

Table A.4: Overview of the categorization of the affected cross-site requests and types of third-party functional-
ities.

IAB ID Category Sub-categories # Requests # Cookies # Websites
IAB19 Technology & Computing File Sharing, Web Search, Email / Chat / Messaging, Data Centers, Desktop Publishing 10,026 37,612 188
IAB3 Business Advertising, Marketing, Business Software 6,354 19,917 186
IAB12 News / Weather / Information News / Weather / Information 1,969 10,795 32
IAB9 Hobbies & Interests Video & Computer Games, Freelance Writing / Getting Published, Photography 1,365 10,508 34
IAB5 Education Distance Learning 1,120 10,705 23
IAB1 Arts & Entertainment Books & Literature, Movies, Music & Audio, Television & Video 867 4,341 25
IAB4 Careers Job Search 399 2,005 21
IAB6 Family & Parenting Babies & Toddlers 351 1,918 18
IAB24 Uncategorized Uncategorized 303 1,025 17
IAB21 Real Estate Buying / Selling Homes 62 489 10
IAB22 Shopping Content Server, Streaming Media, Adult Content, Contests & Freebies 57 411 17
IAB14 Society Social Networking, Weddings 46 283 13
IAB18 Fashion Jewelry, Clothing 40 142 16
IAB11 Law, Government, & Politics Politics 12 55 8
IAB13 Personal Finance Credit / Debit & Loans 9 22 5
IAB2 Automotive Buying/Selling Cars 8 14 4
IAB7 Health & Fitness Exercise / Weight Loss 4 9 3

Total 16 32 22,992 89,743 211

Table A.5: Top ten invalid SameSite cookie policies in Alexa top 500K sites.

Invalid Policies # Websites
SameSite=secure 287
SameSite=1 245
SameSite=true 138
SameSite=undefined 124
SameSite=; 106
SameSite= 72
SameSite=false 68
SameSite=-1 55
SameSite:Lax 53
SameSite=0 40

Table A.6: Overview of the IdPs that enable bypass of the new default SameSite cookie policy and the number
of affected websites.

IdP Vuln. # Websites
Google 3,450
Amazon 679
Facebook 3,328
Apple 1,593
Microsoft 1,921
Linkedin 983
GitHub 198
Twitter 2,591
VK 1,241
Mail.ru 49
Twitch 168
Yahoo 379
Instagram 1,485

Total Vuln. 6 4,935
Total 13 9,485
Legend: = vuln. ; = not vuln.

Table A.7: SameSite cookie policy inconsistencies for different user-agents grouped by site popularity.

Testbed June 2020 Sept. 2020 April 2021
Alexa Top 500K 5,719 9,215 9,951
Alexa Top 100K 1,903 2,949 3,242
Alexa Top 10K 339 565 645
Alexa Top 1K 64 128 138

153

	Introduction
	Problem Statement
	Automatic Detection of Client-side CSRF (RQ1)
	Studying Request Hijacking Vulnerabilities in the Wild (RQ2)
	Understanding DOM Clobbering Attacks and Defenses (RQ3)
	Studying the Effectiveness of SameSite Policies (RQ4)

	Contributions
	Thesis Outline

	Technical Background
	Foundational Concepts
	Hypertext Markup Language
	JavaScript
	Document Object Model
	Same-Origin Policy
	HTTP Cookies

	Vulnerabilities and Attacks
	Cross-Site Attacks
	Client-Side CSRF
	Client-Side Request Hijacking
	DOM Clobbering

	Same-Site Policies

	Automatic Detection of Client-side CSRF Vulnerabilities
	Hybrid Property Graph
	Code Representation
	State Values

	JAW: Javascript Analysis frameWork
	Data Collection
	Graph Construction
	Analysis of Client-side CSRF with HPGs

	Evaluation
	Experimental Setup and Methodology
	Analysis of Collected Data
	Prevalence of Forgeable Requests
	Analysis of Forgeable Requests
	Exploitations and Attacks
	Run-time Performance
	Impact of Dynamic Snapshotting

	Summary

	Studying Request Hijacking Vulnerabilities in the Wild
	API Capabilities and Attack Systematization
	Browser API Capabilities
	Systematization of Request Hijacking Attacks
	Request API Prevalence

	Vulnerability Detection
	Data Collection
	Data Modeling
	Vulnerability Analysis
	Vulnerability Verification
	Approach Exemplification

	Empirical Evaluation
	Data Collection and Processing
	Prevalence in the Wild
	Anatomy of Hijacked Requests
	Exploitations

	Defenses
	Summary

	Understanding DOM Clobbering Attacks and Defenses
	Attack Techniques
	Methodology
	Results

	Detection and Prevalence
	Detection
	Prevalence in the Wild
	Confirming Exploitability of Vulnerabilities

	Defenses
	Evaluation of Existing Countermeasures
	Secure Code Patterns

	Summary

	Studying the Effectiveness of SameSite Policies
	SameSite Cookie Usage
	Functionality Breakage
	New Default Policy Adequacy and Threats
	Threats
	Threats Prevalence in the Wild

	Web Browsers and Web Frameworks
	Evaluation of Web Browsers
	Evaluation of Web Frameworks

	Summary

	Related Work
	Static and Dynamic Program Analysis Techniques
	Security Testing of Web Applications
	Request Forgery Vulnerabilities
	HTML-only Injection Vulnerabilities

	Security Mechanisms for the Web

	Concluding Remarks
	Ethical Considerations
	Limitations
	Soundness of Static Analysis
	Web Crawling

	Open Challenges and Future Work
	Analysis of Shared Code in Web Applications
	Testability Patterns and Automatic Transformation
	Automatic Assessment of Static Data Flows
	Web Crawling and Deep Application States
	Characterization of Vulnerable Scripts
	The Unexpected Dangers of Code-less HTML Markups

	Open Science and Websites
	Conclusion and Discussion
	Automatic Detection of Client-side CSRF
	Studying Request Hijacking Vulnerabilities in the Wild
	Understanding DOM Clobbering Attacks and Defenses
	Studying the Effectiveness of SameSite Policies

	Appendix
	Testbed of Bitnami Applications
	Additional Evaluation Details

