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Abstract: In this work, we propose a multi-level protocol for routine theoretical studies of chemical
reaction mechanisms. The initial reaction paths of our investigated systems are sampled using the
Nudged Elastic Band (NEB) method driven by a cheap electronic structure method. Forces recalcu-
lated at the more accurate electronic structure theory for a set of points on the path are fitted with a
machine learning technique (in our case symmetric gradient domain machine learning or sGDML)
to produce a semi-local reactive potential energy surface (PES), embracing reactants, products and
transition state (TS) regions. This approach has been successfully applied to a unimolecular (Bergman
cyclization of enediyne) and a bimolecular (SN2 substitution) reaction. In particular, we demonstrate
that with only 50 to 150 energy-force evaluations with the accurate reference methods (here complete-
active-space self-consistent field, CASSCF, and coupled-cluster singles and doubles, CCSD) it is
possible to construct a semi-local PES giving qualitative agreement for stationary-point geometries,
intrinsic reaction coordinates and barriers. Furthermore, we find a qualitative agreement in vibra-
tional frequencies and reaction rate coefficients. The key aspect of the method’s performance is its
multi-level nature, which not only saves computational effort but also allows extracting meaningful
information along the reaction path, characterized by zero gradients in all but one direction. Agnostic
to the nature of the TS and computationally economic, the protocol can be readily automated and
routinely used for mechanistic reaction studies.

Keywords: potential energy surface; transition state; reaction mechanism

1. Introduction

Mechanistic studies of chemical reactions are one of the most important and wide-
spread applications of computational quantum chemistry [1]. A minimal meaningful
workflow consists of locating reactants, products and a corresponding transition state
(TS). This allows one to assess the thermodynamics and kinetics of reactions without
thermal contributions and thereby reveal reaction mechanisms. It is highly desirable to
perform vibrational analysis for stationary points of a potential energy surface (PES) to
elucidate whether the structures correspond to minima or saddle points. This also allows
the computation of reaction rate coefficients via canonical transition-state theory (TST)
taking vibrational degrees of freedom into account [2]. To be more rigorous, one should
also compute reaction paths connecting the stationary points, one option being following
the intrinsic reaction coordinate (IRC) starting from the TS [3].

These objectives are routinely reached by direct dynamics approaches [4], i.e., methods
evaluating energy and its derivatives on the fly. The number of ab initio quantum chemistry
calls typically reaches hundreds and more. One should not ignore unsuccessful attempts to
locate TS and find IRC, which are not uncommon in mechanistic reaction studies. A qualita-
tively accurate description of reaction paths involving the breaking or forming of chemical
bonds can only be achieved with advanced electronic structure methods. Often but not
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always those include static correlation, i.e., multi-reference and multi-configurational wave
function approaches [5]. As an alternative, Density Functional Theory (DFT) with carefully
selected hybrid and double-hybrid functionals can provide accurate results [6]. All these
methods (multi-reference and advanced DFT approximations) are, however, computation-
ally demanding even for moderate-size systems. Therefore, the researchers often apply
computationally cheaper methods for the mechanistic reaction studies, employing more
accurate electronic structure theories only for stationary points (for an example, see the
study of the reaction between ferrocenium and trimethylphosphine [7]). Some such heuris-
tic method combinations are known as composite methods, or recipes, e.g., the Gaussian-n
family [8–10] and CBS-QB3 [11]. Despite many successful applications, these approaches
imply properties inconsistent with geometries. They are designed not for PES exploration
but rather for energy evaluation at stationary points, and are prone to unpredictable errors
(for an example, see [12]).

Ideally, a composite method should provide accurate energies consistent with geo-
metric structures at least in a relevant part of the configuration space, while being compu-
tationally feasible, i.e., based on only a few energy/force evaluations at the high level of
electronic structure theory. This implies obtaining a locally fitted PES: once it is available,
one can complete many tasks “free” of charge, including reactive molecular dynamics
simulations, canonical and variational TST calculations [2], and so on.

A fitted PES can be efficiently generated using one of the rapidly evolving machine
learning (ML) approaches (for a general method overview see review [13] and perspec-
tive [14]). These typically require little, if any, feature design: mainly, the structures with
associated energies, and sometimes also energy gradients, are needed as input. They demon-
strate remarkable flexibility, successfully describing even non-adiabatic processes [15,16]
and systems without a classical atomistic structural formula [17]. The main type of appli-
cation for such ML-PESs is extensive molecular dynamics (MD) sampling (see exemplary
applications to organic crystals [18] and liquid water [19]). The resulting PES is often
called “global” as it embraces vast regions of the configuration space, although its reactive
regions are typically not covered. There are only a handful of applications of ML-PES
fitting to reactive systems: second-order nucleophilic substitution (SN2) [20], pericyclic [21],
decomposition [22], dissociation [23], Diels–Alder [24] and proton-transfer reactions [25].
In addition, ML-PESs have been successfully used for automatic mechanism discovery [26].
All these applications, however, aimed at “global” PES fitting required abundant data:
typical sets include at least thousands of data points. Most of them, therefore, used DFT
methods or cheaper many-body correlated wave functions as an underlying electronic
structure theory. At this point, we would like to highlight that the term “global” here is
applied to the PES, rather than to the nature of an ML descriptor [27].

To facilitate routine mechanistic reaction studies, one should be able to construct a
semi-local reactive PES with only a few hundreds of data points using high-level ab initio
methods. Such work has been performed by Young et al. [28] for several model processes,
although the authors restricted themselves to DFT methods, which are typically insufficient
to describe chemical reactions due to their single-reference character.

In this work, we propose a multi-level protocol for generating a semi-local reactive
PES for routine mechanistic reaction studies based on ML methods with small data sets
and a combination of electronic structure theories. Computationally cheaper DFT is used
to generate relevant structures, whereas high-level ab initio methods are applied to refine
the energetics. The multi-level nature of the protocol makes it suitable for incorporating
evolving quantum computing methods which promise a quantum advantage for correlated
electronic-structure problems [29,30], while remaining non-routine. The feasibility of the ap-
proach is demonstrated with two organic reactions: a monomolecular Bergman cyclization
of enediyne to para-benzyne [31] and a bimolecular SN2 reaction of chloromethane with a
bromide ion [32]. The former is a textbook example of a chemical reaction involving a multi-
reference character [33] and is treated with a complete-active-space self-consistent-field



Int. J. Mol. Sci. 2024, 25, 8530 3 of 12

method, whereas the latter can be described with a single-reference correlated method [34]
and is treated with a coupled-cluster approach.

This paper is organized as follows. In Section 4, we introduce the simulation protocol.
In particular, we focus on obtaining relevant geometries for the investigated reactions, as
well as reference methods and the ML technique of choice. Next, we present the results: PES
sections, energy and force-prediction errors, and performance of the ML-PES for geometry
optimization, vibrations and reaction rates. We conclude and give an outlook for this work
in Section 5.

2. Results

In this section, we present the results for our investigated examples. First, the PES
scans for the reference method and sGDML, as well as the energy differences between the
two methods, will be shown. The next analysis will provide information about the mean
absolute errors of the geometries between the reference and ML method for the reactant
and TS. To perform geometry optimizations for both structures, we used the open-source
package pysisyphus. In addition, we computed and compared harmonic vibrations for the
optimized structures. Besides the intrinsic reaction coordinate we finally compared the
reaction rate coefficients for all methods and reactions. The intrinsic reaction coordinate
was determined with pysisyphus as well, where the Euler-Predictor-Corrector integrator
was used.

2.1. Bergman Cyclization of Enediyne

The reaction is shown in Figure 1, including the optimized reactant and product.

Figure 1. Bergman cyclization of enediyne. The reactant, transition state and product are labeled
with R, TS and P, respectively. Elements are colored as follows: carbon (cyan), hydrogen (white).

2.1.1. Model Training

We created an sGDML model for the data set consisting of 200 data points: we used
150 training, 30 validation and 20 test points. The regularization parameter was set to
λ = 10−15 and the best length scale was found to be σ = 6. With these parameters, we
obtained a model with a mean absolute error (MAE) of 0.0067 kJ/mol and a Root Mean
Square Error (RMSE) of 0.0071 kJ/mol for the energy, whereas the MAE and RMSE for the
forces were 0.0033 kJ/Å·mol and 0.0075 kJ/Å·mol, respectively, on the test data set.

2.1.2. Potential Energy Surface Scan

The PES profiles corresponding to the DFT-optimized NEB path computed with
CASSCF and sGDML are shown in Figure 2a. As expected from the small values of MAE
and RMSE, the two surfaces agree within chemical accuracy (see Figure 2b). Starting from
the reactant state and moving towards the TS, the energy error is small and practically
constant. The smallest error can be found in the vicinity of the TS, increasing signifi-
cantly towards the product state, although still being two orders of magnitude within
chemical accuracy.
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Figure 2. Potential energy profile for the Bergman cyclization of enediyne along the optimized NEB
path. (a) Potential energy surface for CASSCF and sGDML. (b) Energy differences between the
learned and CASSCF potential energy surface.

2.1.3. Geometry Optimization

In Figure 3, we compare the geometric structures of the stationary structures as
obtained by sGDML and the reference method, CASSCF. Directly comparing the optimized
geometries from the two methods, we find that the MAE for all interatomic distances
never reaches the value of 0.01 Å for the reactant state. However, for the TS, the error is
considerably larger reaching a deviation of 0.22 Å in the worst case. Although this is a
significant value, the corresponding distance is between two non-bonded hydrogen atoms
separated by more than 5 Å. For other distances, the error does not exceed 0.1 Å.

Figure 3. Accuracy of geometric structures from the semi-local fitted PES for the Bergman cyclization
of enediyne: position differences (MAE) for sGDML- and CASSCF-optimized structures. Atom
numbering is given in Figure 1.

2.1.4. Vibrations, Intrinsic Reaction Coordinates and Reaction Rate Coefficients

After obtaining the optimized TS, we analyze the connection between it and the basins
of reactants and products by integrating the IRC as shown in Figure 4. On the fitted
semi-local PES, the TS does connect the reactants and products by a minimum energy path,
which is in qualitative agreement with the reference CASSCF calculation along the entire
curve as indicated by the maximum and RMS errors in the gradients.

The successful computation of the IRC gives the first positive accuracy assessment of
vibrational modes on the semi-local fitted PES: the imaginary frequency at the TS is needed
to define the direction of the path. A more detailed look at vibrational frequencies reveals
only semi-qualitative agreement between the sGDML and the reference CASSCF PES (see
Table S1 in the SI): the differences between the frequencies reach up to approximately
200 cm−1 for high-frequency nodes, which is still less than 10%.
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Figure 4. IRC for the Bergman cyclization of enediyne: relative energies and Root Mean Square
gradients. The TS corresponds to the maximum energy value at an IRC displacement value of
approximately 9.5.

Rate coefficients dependent on structures, vibrations and reaction barriers are good
integrated indicators of the fitted PES quality. The barrier heights for the Bergman cycliza-
tion are ∆E‡

CASSCF = 194.59 kJ for the reference method and ∆E‡
sGDML = 194.57 kJ for the

fitted PES, which are in excellent qualitative agreement. Assuming T = 300 K, we obtain
the following reaction rate coefficients from the conventional TST (as described in the
SI, Section S1) for the two methods: kCASSCF = 3.4548 × 10−22 m3s−1 for the CAS(12, 12)
and ksGDML = 4.3856 × 10−22 m3s−1 for sGDML. The agreement is semi-qualitative and
stems from the pre-exponential factors defined by the partition functions, which in turn
depend on vibrations and structures being less accurate than the barriers.

2.2. SN2 Reaction of Chloromethane with Bromide

The reaction between CH3Cl and Br− is shown in Figure 5, including the optimized
reactant and product.

Figure 5. SN2 reaction of chloromethane with bromide. The reactant, TS and product states are
given as R, TS and P, respectively. Elements are colored as follows: carbon (cyan), hydrogen (white),
bromine (pink), chlorine (blue).

2.2.1. Model Training

To generate an ML model, we created a data set with a total of 100 geometric config-
urations separated into 50 training, 30 validation and 20 test points. The regularization
parameter was set to λ = 10−15 and the best length scale was found to be σ = 32. With
these parameters, we obtained a model with both the MAE and RMSE being 0.0013 kJ/mol,
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whereas the MAE and RMSE for the forces were 0.0105 kJ/Å·mol and 0.0293 kJ/Å·mol,
respectively, on the test data set.

2.2.2. Potential Energy Surface

The potential energy profiles of the SN2 reaction for the reference method, CCSD, and
sGDML are shown in Figure 6a. The good agreement between the CCSD and the sGDML
fits along the (DFT) NEB path can be immediately seen in Figure 6b. The energy difference
is of a similar order as that for the Bergman cyclization and does not exceed 0.02 kJ/mol.
However, we observe the higher errors in the TS region rather than in the vicinity of the
product state.

Figure 6. Potential energy profile for the SN2 reaction of chloromethane and bromide along the
optimized NEB path. (a) Potential energy surface for CCSD and sGDML. (b) Energy differences
between the learned and CCSD potential energy surface.

2.2.3. Geometry Optimization

In Figure 7, we compare the geometric structures of the stationary structures obtained
by sGDML and the reference method. The general agreement between the reference and
fitted PES is better than for the Bergman cyclization, where the MAE never exceeds 0.025 Å
for a particular interatomic distance. For the SN2 reaction, the better agreement is reached for
the TS with the MAE staying below a value of 0.01 Å. The largest deviation in the case of the
reactant state can be found for the distances between the non-bonded bromide ion (indicated
by index 2) and the hydrogen atoms from the methylene group (indices 3, 4 and 5).

Figure 7. Accuracy of geometric structures from the semi-local fitted PES for the SN2 reaction of
chloromethane and bromide: position differences (MAE) for sGDML- and CCSD-optimized structures.
Atom numbering is given in Figure 5.

2.2.4. Vibrations, Intrinsic Reaction Coordinates and Reaction Rate Constants

After obtaining the optimized TS, we analyze the connection between it and the basins
of the reactants and products by integrating the IRC as shown in Figure 8. On the fitted
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semi-local PES, the TS does connect the reactants and products by a minimum energy path,
which is in qualitative agreement with the reference CCSD calculation along the entire path
as indicated by the maximum and RMSE in the gradients. Although the latter exhibits
several minor jumps it does not lead to non-smooth IRC, this fact being explained by the
small data set used to fit the PES.

Figure 8. IRC for the SN2 reaction of chloromethane with bromide: relative energies and and Root
Mean Square gradients. The TS corresponds to the maximum energy value at an IRC displacement
value of approximately 4.8.

As in the previous example, successful computation of the IRC indicates the correct
Hessian structure at the TS with the only imaginary eigenvalue corresponding to the same
eigenvector as in the reference method. A more detailed look at vibrational frequencies
reveals only qualitative agreement between the sGDML and the reference CCSD PES (see
Table S2 in the SI): the differences between the frequencies reach several hundreds of cm−1

for both high- and low-frequency modes.
The barrier heights for the SN2 reaction were identical up to the second digit:

∆E‡ = 69.47 kJ for CCSD and the fitted PES. At T = 300 K, the CCSD reaction rate
coefficient is 1.8187 × 10−31 m3s−1, whereas this value is 2.2287 × 10−32 m3s−1 for sGDML,
which is an order of magnitude smaller than the reference method. This difference occurs
due to the larger deviations in the harmonic vibrations, defining the pre-exponential factors
in the TST equations.

3. Discussion

The most important property of the fitted semi-local PES surfaces obtained by the
proposed protocol is the general stability with respect to PES exploration techniques.
Indeed, for both unimolecular and bimolecular reactions geometry optimizations have
converged to the stationary points, connected by physically meaningful minimum energy
paths. This is achieved by the multi-level nature of our approach.

On the one hand, the NEB driven by the cheaper method (here DFT with a PBE
exchange-correlation functional) generates structures relatively close to the reactive region
of the system as defined by more accurate reference electronic structure methods (here,
CASSCF or CCSD). Indeed, DFT methods are known to predict reasonable geometric
structures [6] (even if the energy barriers are not precise). This is illustrated by the SN2
reaction studied in this work: in Figure S1 of the SI we see that the highest energy point on
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the NEB path for both PBE and CCSD is located at similar values of the reaction coordinate,
although the energy barriers differ dramatically.

On the other hand, structures sampled by NEB using the cheaper method should be
far enough from the minimum energy path of the reference method. The points on the
true minimum energy path (approximated by NEB [35]) have only one non-zero gradient
component—the one along the path tangent direction [3]. Keeping in mind that sGDML
uses gradients as inputs for fitting, providing only structures on the minimum energy path
would provide no information about the nature of the PES along orthogonal directions and
make the model very sensitive to numerical noise. Consequently, using a cheaper electronic
structure method for the NEB simulation is not only computational effort saving but also
essential for the quality of the data set used to train a gradient-based ML model.

Despite qualitative agreement achieved by the semi-local fitted PES in structures,
energy barriers and IRC, a more subtle property, the vibrational spectrum, is computed
less accurately. Although the structure of Hessian is qualitatively correct, some frequencies
can differ by several hundreds of cm−1. This is particularly noticeable for the SN2 example
and as a consequence leads to a significant error (order of magnitude) in the reaction
rate coefficient as compared to the reference value. This effect must have to do with a
smaller number of training points (only 50) used for the model as compared to the Bergman
cyclization (150 points). Another reason is the fact that the relevant PES region for the SN2
is flatter than for the Bergman cyclization (compare Figure 4 and Figure 8), one indication
of which is the lower energy barrier for the former reaction. This makes a finite-difference
evaluation of the second derivatives of energy less reliable and requires a better PES
sampling for obtaining qualitative results.

4. Materials and Methods
4.1. Simulation Protocol

We applied the general protocol for fitting a semi-local reactive PES, which includes
the following steps:

1. Optimize reactants and products with a cheaper electronic structure method;
2. Find an approximate reaction path using the Nudged Elastic Band (NEB) method [35]

with a cheaper electronic structure method;
3. Select points along the reaction path to form the data set;
4. Calculate energies and forces with a reference correlated method;
5. Split this data set into training, validation and test subsets;
6. Fit the ML-PES, validate and test using the corresponding subsets.

After being generated, the fitted PES was employed to compute the following prop-
erties: stationary points, harmonic vibrations and intrinsic reaction coordinates in both
directions from the TS. In addition, we calculated rate coefficients using transition-state the-
ory (TST). To evaluate the quality of the fitted semi-local PES the properties were compared
with those obtained directly by the reference electronic structure method with energies and
forces calculated on the fly.

The details of each step are described below.

4.2. Electronic Structure Calculations

We used DFT with the PBE exchange-correlation functional [36] in combination with
the double-zeta split-valence def2-SVP basis set [37] as a cheaper electronic structure
method for both reactions. These calculations have been performed with NWChem [38].

For the Bergman cyclization the complete-active-space self-consistent field (CASSCF) [39]
method with the double-zeta split-valence def2-SVP basis set [37] was used as the reference.
For the initial configuration, we used MP2 natural orbitals to select the active space guess,
which consisted of 12 electrons in 12 orbitals (12, 12) as suggested by Lindh and Persson [40].
The CASSCF wave function for atomic configurations in the data set was calculated with the
previous guess for the molecular orbitals, so that no discontinuities occurred in the potential
energy surface. CASSCF calculations were performed using PySCF [41,42].
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The reference correlated method for the SN2 reaction was coupled-cluster singles
and doubles (CCSD) [43] based on the Hartree–Fock reference within the spin-restricted
formalism. As in the previous example, CCSD calculations were performed with PySCF [42].
The basis set of choice was the double-zeta correlation-consistent basis set cc-PVDZ [44–46].

4.3. Data Set Generation

NWChem [38] was used to generate the data sets by performing NEB [35] calculations.
For both reactions, DFT (the cheaper method) energies and forces were used, with reactants
as start points and products as end points. We used 100 beads for the SN2 reaction and 200
for the Bergman cyclization. The geometries were randomly selected from the optimized
elastic band. Thus, they lie on the approximate transition path of the PES obtained from
the cheaper method, rather than on the path of the reference method.

4.4. Machine Learning Fit of the Semi-Local Reactive PES

We opted for the symmetric gradient domain machine learning (sGDML)
method [47–49] to fit the PES. Based on kernel ridge regression, it efficiently employs
the forces and does not require feature design: inverse atomic distances are used as features
and the interatomic forces as the output. sGDML force field is conservative by construction
and is particularly efficient for small and medium-sized molecules. Importantly, sGDML
has been shown to faithfully reproduce PES from a limited number of structures. More-
over, it has been successfully applied to small molecules using coupled-cluster reference
data [50].

To perform one sGDML fit, a certain number of points from the data set are taken to
define the training, validation and test sets. These numbers are detailed in Section 2. The
first step within one sGDML run is to generate a first model by constructing the kernel
matrix out of the training points and setting values for the hyper-parameters σ and λ. The
regularization parameter is hereby fixed to a certain value and the length scale σ is varied
during the learning process. After the training step, the model is validated against the
validation set, where the energy and gradient errors are determined. This procedure is
continued until the best σ is found. As a last step the optimized model is validated against
the test set, which has no data from either the training or the validation set, and the errors
in energy and gradients are compared.

4.5. Property Calculation

We optimized the stationary points of the PES using DFT-optimized structures as initial
guess and followed the IRC from the TS in both directions with pysisyphus [51]. Both, the
fitted PES and the reference electronic structure method in PySCF [42] were employed as
energy functions. Gradients for both PES types were calculated analytically.

We calculated harmonic vibrations for all stationary points on the PES and computed
the reaction rate coefficients using conventional TST with a harmonic oscillator–rigid rotor
approximation for the partition functions. The working equations and the corresponding
rates are given in the Supporting Information (Section S1).

5. Conclusions

In this work, we have proposed a multi-level protocol for reaction mechanism studies
aiming to match the accurate electronic structure theory description at a reduced computa-
tional cost. The approach involves a cheaper electronic structure method to generate struc-
tures along the reaction path via the NEB method, evaluating energies and gradients for a
restricted set of them with an accurate (reference) theory and fitting a semi-local reactive
PES using an ML method, sGDML. The fitted PES is then used for computing properties.

The protocol has been applied to a unimolecular (Bergman cyclization) and a bimolec-
ular (SN2) reaction using PBE/CASSCF and PBE/CCSD, respectively, as cheap/reference
method pairs, the results being compared with those obtained on the fly by the reference
method. Our approach achieves quantitative agreement in structure optimization for
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the PES stationary points, reaction energy barriers and IRC following using as little as
50–150 training points (corresponding to energy and gradient calculations with the refer-
ence method), whereas the agreement in vibrational frequencies and reaction coefficients
is only (semi-)qualitative. The key to the performance of the protocol is its multi-level
character as the differences between the reference and cheap methods are essential to
provide meaningful information about the reactive PES region. At the same time, the com-
putational gain achieved is significant as the NEB sampling alone would require several
thousand energy and gradient evaluations in the high-level method and is not tractable for
routine calculations.

The results are encouraging as an important objective of mechanistic reaction study
can be performed with a high-level electronic structure method without prior knowledge
of the TS structure (due to the application of the NEB) requiring only a scarce amount of
data. The protocol is simple and can be automatized for routine calculations.

At the same time, we have not considered more complex reactions with multiple steps,
product branching and shallow minima. These cases would require more subtle approaches
to sampling and larger amounts of training data.

Our simple protocol can be further improved by applying the smart selection of
training points using molecular fingerprints [52] and using methods computationally even
cheaper than DFT (such as modern tight binding, GFN2-XTB [53]) for sampling structures.
The moderately accurate reference methods applied here should be substituted by those
providing qualitatively correct PES, such as multi-reference approaches, to match the
experimental accuracy. Furthermore, the potential of different ML fitting techniques should
be explored.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms1010000/s1. Reference [54] are cited in the Supplementary Materials.
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