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Abstract

Ni/PU hybrid metal foams are open-cell polyurethane foams that are coated
with a nanocrystalline nickel layer via the electrodeposition process. This
coating process is often challenging due to the complex geometries and mass
transport limitations which lead to a heterogeneous coating thickness. To op-
timize the coating controlling parameters, a two-sided coupled model based
on the mixture theory is developed. This model considers the multi-phase
nature of the process and the main transport mechanisms, i.e. diffusion,
convection, and migration, and a sink term responsible for the deposition
of ions on the struts. In this model, concentration, pressure, and electric
field are used as the primary variables and calculated using a system of
three coupled equations. A back-coupling technique provides the gradual
parameter changes, such as porosity and permeability during the process.
The change in flux velocity is considered by calculating pressure from an
additional Darcy equation. Moreover, by calculation of local electrical cur-
rent using the Butler-Volmer equation, the deposition thickness is estimated
from Faraday’s law. The comparison of numerical and experimental results
demonstrates the strong ability of the proposed model to describe the exper-
imentally observed effects.





Zusammenfassung

Ni/PU-Hybridmetallschäume sind offenzellige Polyurethanschäume, die
im Elektroabscheidungsverfahren mit einer nanokristallinen Nickelschicht
beschichtet werden. Dieser Beschichtungsprozess ist wegen der komplexen
Geometrien und Massentransportbeschränkungen, die zu einer heterogenen
Beschichtungsdicke führen, oft eine Herausforderung. Zur Optimierung der
Beschichtungssteuerungsparameter wird ein zweiseitig gekoppeltes Modell
basierend auf der Mischungstheorie entwickelt. Dieses Modell berücksichtigt
die Mehrphasennatur des Prozesses und die Haupttransportmechanismen, d.
h. Diffusion, Konvektion und Migration, sowie einen Senkenterm, der für
die Abscheidung von Ionen auf den Streben verantwortlich ist. In diesem
Modell werden Konzentration, Druck und elektrisches Feld als Primärvari-
ablen verwendet und mithilfe eines Systems aus drei gekoppelten Gleichungen
berechnet. Eine Rückkopplungstechnik ermöglicht die schrittweise Änderung
von Parametern wie Porosität und Permeabilität während des Prozesses. Die
Änderung der Flussgeschwindigkeit wird durch die Berechnung des Drucks
aus einer zusätzlichen Darcy-Gleichung berücksichtigt. Darüber hinaus wird
durch die Berechnung des lokalen elektrischen Stroms mithilfe der Butler-
Volmer-Gleichung die Beschichtungsdicke anhand des Faradayschen Gesetzes
geschätzt. Der Vergleich von numerischen und experimentellen Ergebnissen
zeigt, dass das vorgeschlagene Modell die experimentell beobachteten Effekte
gut beschreiben kann.
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1
Introduction

The study of mass transport and reaction of fluids in natural and synthetic
porous media is an interesting research topic encountered in a wide range
of engineering and industrial problems, from oil extraction and petroleum
industry to the chemical processes involving catalysts, development of elec-
trodes and batteries [1, 2].
Porous materials are a class of materials typically characterized by their
unique structures and properties, such as pore size distribution, internal sur-
face area, and comprising material. Due to their potential to deal with
various technological challenges, these materials are suitable for specific ap-
plications, including energy storage and insulation, filters, and biomedical
implants [3–5]. However, their application is often limited by their poor me-
chanical strength, stability, and bio-compatibility. As a result, the field of
porous materials research has been rapidly growing and advancing. Metal
coating via electrodeposition offers a solution to some of these challenges by
creating a conformal coating on the surface of the open-cell porous foams,
commonly known as hybrid metal foams, which can improve the mechanical
and geometrical properties of the original substrate material [6].
Electrodeposition ion coating, also known as electroplating, is a process in
which a metal ion is reduced and deposited onto a conductive surface to form
a thin layer of metal. The thickness and quality of the coating can be con-
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2 1. Introduction

trolled by adjusting different process parameters such as the electric current,
the flow of electrolyte, the concentration of the metal ions in the solution, and
the duration of the process. However, the surface modification of open-cell
foams using this coating technique is often challenging due to the complex
geometries and large internal surface areas of these materials [7, 8]. Fur-
thermore, the mass transport limitations [9–11] lead to a non-homogeneous
coating thickness which affects the efficiency of these hybrid foams.
To overcome these limitations, modelling and simulation techniques have
been developed to study and optimize this process. In this context, simu-
lation offers a powerful tool to investigate the underlying mechanisms and
optimize the coating controlling parameters for an improved performance.
Moreover, understanding the flow behaviour through open-cell porous ma-
terials is of great importance to be able to expand their applications and
develop new efficient materials.
The mass transport through the open-cell foam in the electrodeposition pro-
cess is governed by a highly non-linear coupled system. The flow in these
processes is controlled by multiple mechanisms: the convection of the fluid is
realised by a pump, which produces a pressure gradient; the migration of the
ions is realised by an electrical current, which is produced by an electrical
potential gradient; and the diffusion of ions is realised by different ion concen-
trations at the inlet and outlet of the foam. Furthermore, by the deposition
of ions on the struts and the foam’s geometrical evolution, an additional
sink term for the ions is introduced which complicates the problem further
[12, 13].
In order to get a better perception of the electrodeposition process and a
general understanding of flow behaviour inside the porous medium, the first
necessary step is to develop a quantitative model at the macroscale. This
model should be built in such a way that it takes into account all the main
transport mechanisms as well as the multi-phase nature of the process. In
this regard, mixture theory provides an appropriate mathematical framework
to deal with such complex problems.
Mixture theory is a branch of continuum mechanics used to describe and anal-
yse the behaviour of heterogeneous materials which are made up of multiple
constituents or phases, each with their own distinct properties and behaviour
that affect the overall behaviour and deformation of the system. The main
idea is to consider the entire system as superimposed continua and deal with
each phase as a separate continuum with its own governing equations. These
equations take into account the interactions between the constituents, such as
the exchange of mass, momentum, and energy. Hence, the overall behaviour
of the material is the result of the superposition of individual behaviours of
each constituent [14–16].
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1.1 Motivation

The focus of this study is to numerically model the coating process of
polyurethane foams with nanocrystalline nickel via electrodeposition, which
leads to the production of Ni/PU hybrid foams. These hybrid foams not only
have lightweight features of highly porous solids and an increased strength
due to nickel coating but they also are economical in comparison to similar
metal foams. However, some difficulties emerge during the production of
Ni/PU foams such as heterogeneous coating thickness due to mass transport
limitations which leads to a heterogeneous distribution of the mechanical
properties. To improve the production procedure, leveraging the results of
numerical simulations can be valuable.
A mathematical model has been developed which is able to describe the
flow behaviour within the electrodeposition process. It is a two-sided cou-
pled model based on the mixture theory on a macroscopic scale which can
give an insight on the parameter changes under the influence of coating. In
this model, concentration, pressure and electric field can be calculated us-
ing a system of three coupled equations. With the help of a back-coupling
technique, the changes of parameters in each iteration have been taken into
account for the calculation of parameters in the next iteration. Moreover, by
calculation of local electrical current using the Butler-Volmer equation, the
thickness of deposition can be estimated from Faraday’s law.
The obtained system of equations has been solved numerically with the help
of the Finite Difference Method (FDM). Subsequently, the numerical results
have been compared with the experimental results to evaluate the perfor-
mance and efficiency of the proposed model. The desired goal is to improve
the experimental results by proposing suitable values for different parameters
based on the simulations’ predictions.

1.2 Thesis Outline

This study, from the introductory chapter to the conclusive findings, has
been structured and organized into 6 chapters as follows:
After a short introduction on the motivation of the present study in Chap-
ter 1, a brief literature review on porous materials and hybrid foams is given
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in Chapter 2. The electrodeposition process and the influencing factors in
this process are discussed to provide a general perspective on the subject.
The encountered problems are also mentioned so that the necessity of the
present study can be realized.
The fundamentals of mixture theory required for modelling the desired prob-
lem are explained in chapter 3. In this chapter, a mathematical model in the
framework of continuum mechanics is proposed which defines the problem in
terms of process variables and describes different transport mechanisms in
the electrodeposition process.
In chapter 4, the numerical schemes used to approximate the obtained par-
tial differential equations are explained. The accuracy of these numerical
approaches is validated in Chapter 5 and the efficiency and performance
of the method are investigated. Furthermore, by solving some 1D and 2D
examples, the applicability of the proposed model is evaluated. These ap-
proximated results are then compared with the corresponding experimental
measurements to perform a suitable parameter identification. Finally, the
thesis is completed in chapter 6, by discussing the findings of the work and
proposing potential ideas for further improvements of the model.



2
Porous Materials and Hybrid Foams

2.1 Cellular Material

Cellular materials or foams are continuously interconnected frameworks of
materials that contain void spaces or pores. Hence, they are also simply
called porous materials. They exist widely in nature, in different forms and
materials. They can exist in gaseous, liquid, or solid form. Galaxies and beer
foam can be mentioned as an example for the first two forms, respectively
[17]. However, the most common form is the solid form, which is abundantly
found in nature and has increasingly been utilized across various industries.
Cellular solids are made up of a solid phase which is in fact the intercon-
nected porous network of solid struts or plates that forms the edges and
faces of pores or cells, and a fluid phase that fills these pores.
Porous materials can be categorized based on different aspects. They can be
classified into natural and artificial porous materials. Human bones, wood,
cork, pumice, and lava are some examples of natural porous media that are
also very applicable in different engineering areas [3]. Inspired by nature,
scientists started to mimic the same structure to produce man-made or bio-
inspired cellular materials [4, 5].

– 5 –
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Another classification can be done based on the cell type, which introduces
open-cell and closed-cell foams. The first group consists of interconnected
pores that are permeable and have a very high internal surface area. On the
other hand, the pores in closed-cell structures are isolated from each other
by thin solid membranes [4, 5, 18].
Based on cell size and the number of pores (i.e., porosity), they can be clas-
sified as low, middle or high porosity structures [4, 5, 18].
Porous materials can also be categorized based on their structure. Those
consisting of regular cellular structures which can be characterized by a unit
cell, introduce the periodic cellular structure. However, in stochastic struc-
tures, one observes a random distribution of pores with non-uniform pore
and strut dimensions [4, 5, 18].
Due to their unique topology and depending on the base material, porous
materials possess special characteristics that make them suitable to be used
for many purposes. The most significant property of these materials is
their multi-functional light-weight structure, which in combination with their
other properties like high specific strength and structural rigidity, thermal
and acoustic insulation, energy absorption capacity, and vibrational damp-
ing make them an interesting material in many fields of engineering like
aerospace and automotive industries, biomedical implants and construction
applications [3]. Furthermore, permeability and a large internal surface area
especially in open-cell foams, make these materials perfect candidates to be
used as filters, heat exchangers, electrodes, batteries, and bearings [4, 5].
Common materials used to manufacture cellular solids are metals, polymers,
and ceramics. Polymer foams are the most commercialized variety [17]. In
spite of the many advantages of polymer foams like low relative density,
excellent performance of heat and sound insulation, and good energy ab-
sorption, it is difficult for them to fulfill conditions where high strength, high
energy absorption capacity, and high temperature tolerance are needed simul-
taneously. Porous metals, however, not only have the typical characteristics
of metals like weldability and electrical conductivity but also can meet the
above-mentioned characteristics [5]. However, problems such as their expen-
sive manufacturing process and bad reproducibility may result in the limited
application of metal foams [19]. Due to the increasing applications of porous
metals over the past years, great attention was drawn to the improvement of
their different production procedures and the improvement of the resulting
properties. Many innovations were proposed in this field. Two reinforced
types of these materials have been developed, namely cellular composites
and cellular nanocomposites. Furthermore, by combining different materials
(e.g. polymer and metal) hybrid foams can be produced which enhance the
multi-functionality of individual foams [4–6].
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Hybrid metal foams are one of the suggested solutions that could partially
compensate for the mentioned shortcomings. Hybrid metal foams are basi-
cally open-cell foams that are coated by a metallic layer via an electrodeposi-
tion process [6, 20]. The major advantages of this method are twofold: First,
the properties of the foam can be improved based on the mechanical prop-
erties of the chosen coating material and by tailoring the coating thickness.
Second, based on the material of the template, the manufacturing costs can
be significantly reduced [7].
In the following subsection, a comprehensive overview of these materials,
including an in-depth explanation of their manufacturing procedures is pro-
vided.

2.2 Hybrid Foams

With the increasing interest in the application of cellular material in differ-
ent engineering fields, the necessity to optimize these materials started to
gradually draw the attention of many scientists. As such, it was suggested
to treat the base foam with a metal coating to produce the hybrid foams.
The main idea behind these new materials is to develop new properties by
eliminating the weaknesses of each individual component and taking advan-
tage of their strong points. One of the recent types of hybrid foams is the
polyurethane foam that is coated with nanocrystalline nickel which is briefly
referred to as Ni/PU hybrid foam. The main advantages of these hybrid
foams are that they possess the light-weight characteristics of highly porous
solids and an increased strength due to nickel coating while being economical
in comparison to similar metal foams. Jung and Diebels [7] showed that Al
and PU hybrid foams coated with nickel have similar mechanical properties
but Ni/Al is more expensive per volume by an order of magnitude.
One of the methods to produce Ni/PU foams is the electrodeposition method.
Electrodeposition ion coating, also known as electroplating, is a process in
which a metal ion is reduced and deposited onto a conductive surface to form
a thin layer of metal. In the following the production procedure of Ni/PU
hybrid foams using electrodeposition is described step by step.
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2.2.1 Production Procedure of Ni/PU Hybrid Foams

Electrochemical deposition, or shortly electrodeposition, is a conventional
process that uses an electric current to form a thin layer of metal coating
on the surface of a conductive material. In this process positively charged
desired metal ions (cations), which are dissolved in the electrolyte, are de-
posited on the surface of the substrate connected to the negatively charged
electrode (cathode) by the passage of electric current. Electrodeposition has
been a subject of interest to metallurgists due to its capability to produce
new materials with modified properties in any arbitrary three-dimensional
geometries. Comprehensive studies on the production of hybrid foams via
electrodeposition method have been carried out by Jung et al. [6, 7, 19–21]
and they improved the coating process significantly compared to the former
studies by Bouwhuis et al. [22], Boonyongmaneerat et al. [23] and Sun et al.
[24–26]. Jung et al. investigated the metal coating of metallic and polymeric
substrates and compared their mechanical properties with each other as well
as their own properties before and after coating. Jung et al. [7, 8] were
among the first who used an electrodeposition process to produce Ni/PU hy-
brid foams and compared the advantages of this method with conventional
production methods like chemical vapor deposition (CVD) or electroless plat-
ing. Since the focus of this study is the Ni/PU foams, in the following the
electrodeposition process for these hybrid foams is described.

Pretreatment of Polyurethane Foams

For the electrodeposition process, it is required for the substrate to be elec-
trically conductive so that it can be coated by an electrodeposition process.
However, polyurethane is a non-conductive polymer that needs a special
pretreatment procedure. So, the first step is to make PU foams electrically
conductive by dip-coating the open-cell foams in a conductive graphite lac-
quer. To remove the excess lacquer from the pores and struts, a compressed
airflow is blown through the foams [8, 13]. The dip-coated foam is used as a
template for the Ni/PU foam in the electrodeposition process.
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Electrodeposition Process

The aqueous nickel sulfamate electrolyte contains Ni2+ ions as nickel source
for the coating process. During the deposition process, the electrolyte is kept
at a constant temperature of 50◦ C. In the beginning, in the absence of an
electrical current, the porous template is plunged into the aqueous electrolyte
with homogeneously distributed nickel ions and connected to the cathode. It
is assumed that the electrolyte is supplied with an infinite nickel ion source
with the concentration C∞, realized by two sacrificial anodes on both sides
of the foam, according to Fig. 2.1 [21]. These anodes carry spherical nickel
pellets and they are covered with a layer of non-woven fabric to avoid sludge
contamination into the electrolyte [8].

Figure 2.1: Schematic representation of the electrodeposition reactor.

The cylindrical carbon-coated PU foam with the diameter of 210 mm and
thickness of 40 mm, is connected to the cathodic pole of the power supply
using four insulated cables. Under an applied external electrical current den-
sity of 16.5 mA/cm2, positively charged nickel ions (cations) migrate to the
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polyurethane substrate (cathode), where they are discharged and deposited
as metallic nickel layer according to:

Ni2+ + 2e− → Ni (2.1)

This leads to a decreasing ion concentration in the electrolyte filling the
pores of the foam. The resulting inhomogeneity in concentration is reduced
by the diffusion of ions in the electrolyte. A pump has also been used to
drive the flow and to distribute the ions in the foam more homogeneously by
convection, when pure diffusion is too slow due to low concentration gradient
[8, 21].
As a result of the reaction, two zones with different ion concentration will
be developed in the electrolyte. One far away from the cathode (substrate)
with constant concentration C∞, and the other zone in the vicinity of the
cathode with lower concentration. Hence, the mass transport is required to
compensate for the decrease in the ion concentration close to the substrate
driven by the deposition process. The mass transport is mainly governed
by three processes, namely migration, convection, and diffusion due to the
existence of the electrical field, pump, and concentration gradient in the
electrolyte, respectively. Moreover, nickel ions react with the electrons on
the foam cathode, forming a metallic coating layer and hence introducing a
sink term for the ions in the electrolyte which is the responsible term for the
coating process [13].

2.3 Influencing Factors in Electrodeposition/

Background and Shortcomings

Properties of the electrodeposited layer are under the influence of many fac-
tors. The duration of deposition, current density, solution concentration,
pressure and velocity of the flow, and the geometry and properties of the sub-
strate are among the important factors that determine the quality, thickness,
and homogeneity of the coating. One of the most common problems in coat-
ing of porous materials is the mass transport limitation during the electrode-
position process which leads to inhomogeneity of the coating throughout the
foam. Improving the experiments requires very time- and money-consuming
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trials and errors if one wants to depend only on the experimental results.
Therefore, it is important to reach a numerical model which can describe the
process precisely. The goal is to use the model to improve the experiment in
order to achieve a homogeneous distribution of the coating thickness which
results in homogeneous mechanical properties.
Understanding the flow behaviour through the porous medium is one of the
most important steps in developing such a model. K. Terzaghi presented
the first study of flow through porous materials in 1925 [27]. Since then,
the attention of many scientists has been drawn to different problems re-
garding porous materials. M. Biot followed the scientific works of Terzaghi
and developed porous media theories partly based on mechanical principles
and mainly based on ensured experimental data [28]. His extensive work
in poroelasticity, known as Biot’s theory, has been fundamental in under-
standing the coupled behaviour of fluid flow and deformation in compressible
porous materials [29]. M. Hassanizadeh derived the basic equations of mass
transport in porous media using classical balance equations [30]. By further
simplifications and linearizations of constitutive equations and balance laws,
he obtained general extensions of Darcy’s and Fick’s laws, applicable to the
cases where the fluid has more than one main component [31]. In another
study, M. Hassanizadeh and W. G. Gray developed a systematic procedure
for averaging continuum equations over representative regions of multi-phase
systems [32–35]. M. Miyan and P. Pant investigated the multi-phase flow in
porous rocks and derived the diffusion equation and the related Darcy’s law
[36]. Hiltunen et al. gave a comprehensive review of the theory of multi-phase
flows, analysed different mixture models and suggested closure approaches
[37].
Mixture theory is amongst the most common approaches that has been used
to model the flow through porous media. The first works on the mixture
theories were initiated by C. Truesdell [16, 38–40] who presented a system-
atic construction of a continuous approach to multi-component fluid systems
[41]. Later on, this purely mechanical model was extended by other authors
such as I. Müller [42] and R. M. Bowen [14]. Bowen developed field theo-
ries for mixtures and discussed the mathematical foundations of non-linear
mechanical, electrical, and magnetic phenomena that take place in mixtures
[14]. W. Ehlers and J. Bluhm [15] gathered various developments in the
theory of porous media including the basic theoretical concepts in contin-
uum mechanics on porous and multi-phasic materials as well as the wide
range of experimental and numerical applications. Subsequently, it has been
widely used in various fields of engineering, including chemical engineering
and materials science and particularly in analysing complex materials such
as porous materials that exhibit non-homogeneous behaviour [15, 43–49] and
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has proven particularly useful in modelling such problems.
Regarding the current study on the production of hybrid foams via electrode-
position process, a handful of studies on different aspects of this subject have
been performed. Hughes et al. [50] developed the equations for modelling
electrodeposition under forced convection and used numerical algorithms to
set up a simulation. Joekar-Niasar et al. [51] investigated the coupled hydro-
dynamic and electrochemical interactions caused by the presence of charged
solid surfaces, ions in the fluid, and chemical reactions between the ions in
the fluid and the solid surface. However, there are only a few studies on the
simulation of the coating of complex structures like porous materials. Grill
et al. [52, 53] numerically simulated the electroplating process of open-cell
foams and investigated the influence of electrodeposition parameters. In an-
other study, Grill et al. [13] simulated the electrodeposition process of nickel
ions on polyurethane foams and investigated the homogeneity of the coating
thickness and, finally, compared the numerical results with the experimental
data. The model that was developed by Grill et al. is based on the Nernst-
Planck equation, where they deal with a one-sided coupled electrodeposition
process. In their model, they assume constant values for process parameters
such as velocity and electrical field as well as geometrical parameters such as
porosity and permeability. However, in the real process, the changes in the
coating thickness cause changes in the geometry of the foam which means
changes in the surface, permeability and porosity which in turn results in
a change in the flow behaviour. Therefore, the purpose of this study is to
obtain a precise numerical coupled model which can describe the flow be-
haviour inside the porous medium and takes into account all the structural
and physical changes during the coating process.



3
Theory and Material Model

Modelling the flow behaviour through a porous medium requires a formula-
tion in the framework of multi-phase continuum mechanics. In these types
of problems, the representative elementary volume (REV) under study is no
longer a single continuous material, but it rather consists of two or more
constituents which simultaneously occupy the same macroscopic position in
the current configuration, leading to the concept of superimposed continua.
On that account, the problem is investigated in the framework of mixture
theory [14, 15, 49, 54]. This theory is combined with the concept of volume
fractions and yields a consistent framework to describe different fields and
properties.
Mixture theory is developed based on the continuum mechanics assumptions.
It consists of three main concepts namely, kinematics, balance equations, and
constitutive equations. The first two are general statements describing de-
formation, motion, and material body interactions with its surroundings.
They are universal laws of nature for every system. Whereas, constitutive
equations are particular statements related to individual material properties
[14, 15, 55, 56].
Following the concepts of mixture theory, e.g. Trussdell [16], Bowen [14] and
etc., the required basic definitions of mixture theory are presented in section
3.1. Then, the mathematical model for our specific desired problem is devel-

– 13 –
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oped and the governing partial differential equations are derived to be used
in numerical simulations.

3.1 Fundamentals of Mixture Theory

3.1.1 Kinematics

Consider n material bodies Bi, each of which is composed of an infinite set
of continuously distributed material points, as shown in Fig. 3.1.

Figure 3.1: Schematic representation of n material bodies Bi in the reference
and current configurations. Each spatial position x is occupied by different
material points P i.

Each of these material points are carriers of different physical properties and
can be uniquely identified by the position they occupy, at a chosen reference
time t0. By choosing the reference configuration at time t = t0 as the fixed
configuration, one can define the motion function χ to describe the mapping
of the material body Bi (i = 1, ..., n) from the reference configuration to the
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current configuration, as:

x = χi(Xi, t) (3.1)

where Xi is the position of a material point of the ith material body in its
reference configuration or material configuration, t is the time, and x is the
spatial position occupied at the time t by the material point labeled P i.
A fundamental assumption in mixture theory is that for a mixture, individ-
ual components of the mixture can be modeled by superimposed continua.
Therefore, each spatial position x in the current configuration of the mix-
ture is occupied simultaneously by n material points, one from each material
body, as shown in Fig.3.2. Therefore, the definition of the mixture is always
concerning the current configuration.

Figure 3.2: Schematic representation of a material body B. Each spatial
position x is occupied simultaneously by n constituent φi.

Different properties can be defined for each constituent i (i = {1, ..., n})
occupying the same material point x.
The real or intrinsic density ρR (kg/m3) of each constituent i is defined as:

ρiR(x, t) = dmi

dV i
(3.2)

where dmi and dV i are the mass and occupied volume of ith constituent.
On the other hand, the partial density ρ (kg/m3) of each constituent can be
defined as the ratio of its mass to the total volume of the mixture, as shown
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in equation 3.3:

ρi(x, t) = dmi

dV
= dV i

dV
ρiR(x, t) (3.3)

By summing over the densities of all the constituents, the total density of
the mixture at point x and time t is obtained as:

ρ(x, t) =
n∑

i=1
ρi(x, t) (3.4)

The mass concentration c of the ith constituent at (x, t) is defined as:

ci(x, t) = ρi

ρ
(3.5)

It is evident from equation 3.4 that:

n∑
i=1

ci = 1 (3.6)

Similarly, the volume fraction n of each constituent can be defined as:

ni = dV i

dV
(3.7)

which leads to the saturation condition of equation 3.8, since there is no
vacant space in the overall REV.

n∑
i=1

ni = 1 (3.8)

Different velocities can be defined for the mixture as a whole and for each
constituent. The mixture mean velocity v at (x, t) is the velocity of its center
of mass which is defined by:

v(x, t) = 1
ρ

n∑
i=1

ρivi(x, t) =
n∑

i=1
civi(x, t) (3.9)
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where, vi is the velocity of each constituent (m/s).
Another velocity defined in mixture theory is diffusion velocity, d, which is
the relative velocity of constituent i with respect to the center of mass of the
mixture and is formulated as:

di(x, t) = vi(x, t) − v(x, t) (3.10)

Using equations 3.9 and 3.10 along with equation 3.4, it is concluded that:

n∑
i=1

ρidi(x, t) = 0 (3.11)

3.1.2 Balance Equations

As can be seen in the previous section, kinematics serves to describe the
geometry, motion, and deformation of a material body. The next step is to
consider the interactions of the material body with the outside world which
is done with the help of balance equations. These statements which exist
in global and local formulations, describe the temporal change of a material
body’s property at its current configuration. According to Trussdell’s meta-
physical principles [16], the balance equations of individual constituents are
identical to the balance equations of a single-phase continuum except for the
local interactions of the constituents. These interactions are taken into ac-
count by appropriate production terms. In the following, the local axioms of
balance equations of mass and momentum for a mixture are briefly discussed.

Balance of Mass

The mass balance axiom implies the conservation of the total mass within
the mixture. Thus, in the presence of chemical reactions, phase change, or
deposition, the mass of each constituent would change in such a manner that
the total mass of the mixture remains constant. The local form of mass
balance for each constituent i is defined as:

∂ρi/∂t + div(ρivi) = ρ̂i (3.12)
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In equation 3.12, the quantity ρ̂i is called the mass supply (kg/m3 s) of con-
stituent φi, i = {1, ..., n} and it represents the rate of mass supplied to the
ith constituent from the other constituents in the same spatial position.
The local mass balance for the mixture as a whole can be obtained by sum-
mation of the mass balances of all constituents. Moreover, according to the
mass conservation principle, the total mass of the system remains constant
and there will be no total mass production. Hence, the right-hand side of
the equation should be equal to zero.

∂ρ/∂t + div(ρv) = 0 (3.13)

In these equations, ∂

∂t
is the partial derivative with respect to the time,

and div(•) is divergence with respect to the Eulerian system, related to the
gradient operator defined as:

grad(•) = ∂(•)
∂x

(3.14)

Since the mass of the mixture should remain unchanged, the total amount
of mass supply in the mixture is equal to zero. Hence, comparing the two
equations 3.12 and 3.13, it is evident that:

n∑
i=1

ρ̂i = 0 (3.15)

Balance of Momentum

Balance of momentum states that the resultant forces acting on a material
body cause a change in its linear momentum. The local form of the momen-
tum balance for each constituent i is defined as:

∂(ρivi)
∂t

+ div(ρivi ⊗ vi) = divσi + ρig + ŝi (3.16)

where σi is the partial stress tensor (Pa), g is the external body force (e.g.
gravity) (m/s2) and ŝi is the complete local interaction of the constituents
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(kg/m2 s2). This term consists of two parts:

ŝi = p̂i + ρ̂ivi (3.17)

where p̂i is called the momentum supply (kg/m2 s2) which accounts for the
change of momentum of a phase due to stresses imposed on it by the other
phases, and the second term is the resulting momentum induced by the
mass exchange between the constituents. By applying the differentiating
operator on the first product term on the left-hand side of equation 3.16 and
by substituting equation 3.17 in 3.16, it is concluded that:

ρi ∂vi

∂t
+ ρigradvi · vi + [∂ρi

∂t
+ div(ρivi) − ρ̂i]vi = divσi + ρig + p̂i (3.18)

The term in the bracket is equal to zero, as indicated by equation 3.12.
Hence, the local forms of momentum balance for each constituent i and for
the mixture as a whole are written as follows, respectively:

ρi ∂vi

∂t
+ ρigradvi · vi = divσi + ρig + p̂i (3.19)

ρ
∂v
∂t

+ ρgradv · v = divσ + ρg + p̂ (3.20)

3.2 Modelling the Coating Process of Ni/PU

Hybrid Foams

To obtain a numerical representation of the mentioned electrodeposition pro-
cess in section 2.2.1, it is important to choose a method that can depict the
highly coupled governing interactions between different phases of the prob-
lem. On the other hand, due to complexities arising from the multi-scale
characteristic of the problem, it is necessary to simplify the model as much
as possible and only consider the essential features in the macroscale without
going into exact microscale mechanical and geometrical details. Therefore,
mixture theory gives an appropriate framework for the development of such
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a mathematical model.
Consider the REV shown in Fig. 3.3. In this figure, the spatial position x in
the mixture is occupied simultaneously by three constituents. The domain
in the current configuration is occupied by a solid phase, φs, which is in fact
the porous skeleton, and a fluid phase, φf, which fills the pores. The fluid
phase, i.e. the electrolyte, itself is assumed to be a two-component phase,
namely water, φw, and nickel ions, φni. For the sake of simplicity, the other
constituents in the fluid phase are neglected.

Figure 3.3: Schematic representation of the problem as a 3-phase mixture.
A material point on the macroscale can be resolved on the microscale by an
REV.

Following the continuum’s mechanics scheme for mixtures [14, 15, 49, 54],
the first step is to specify the kinematics and field equations. Then by defin-
ing appropriate constitutive equations and considering simplifying thermody-
namically admissible assumptions, the final closed set of governing equations
for this particular mixture model can be obtained.
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3.2.1 Kinematics and Balance Equations

According to Fig. 3.3, each position x at time t is simultaneously occupied
by material points Xs, Xw and Xni. Each constituent follows its own function
of motion at each time t as follows:

x = χs(Xs, t) = χw(Xw, t) = χni(Xni, t) (3.21)

The volume element dV in the current configuration contains the mass of all
the constituents.

dm = dms + dmw + dmni (3.22)

Hence, the total density is defined in terms of the partial densities of each
constituent, as follows:

ρ = dm

dV
= dms

dV
+ dmw

dV
+ dmni

dV
= ρs + ρw + ρni = ρs + ρf (3.23)

where ρf is the partial density of the fluid phase.
Based on the definition of volume fraction in equation 3.7, the porosity can
be defined as the volume fraction of the pore space which is equivalent to the
volume fraction of the fluid part.

nf = dV f

dV
(3.24)

Therefore, equation 3.3 leads to:

ρf = nfρfR (3.25)

According to equation 3.9, the mixture mean velocity is defined as:

v(x, t) = 1
ρ

(ρsvs + ρwvw + ρnivni) (3.26)
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Based on the above-mentioned definitions and according to equation 3.12,
the mass balance equation for each constituent can be written as follows:

∂ρs/∂t + div(ρsvs) = ρ̂s (3.27)

∂ρw/∂t + div(ρwvw) = 0 (3.28)

∂ρni/∂t + div(ρnivni) = ρ̂ni (3.29)

The mass balance equation for the total system can be obtained by summing
the mass balances of each constituent (equations 3.27, 3.28, and 3.29).

∂ρ/∂t + div(ρv) = ρ̂s + ρ̂ni = 0 (3.30)

As it is evident, the total mass of the system should remain constant and
there should be no mass production in the whole mixture. Therefore,

ρ̂s = −ρ̂ni (3.31)

That means that the deducted amount of nickel ions from the electrolyte is
deposited on the solid and will further contribute to the solid’s mass.
The mass balance equation for the fluid phase (water + nickel) is obtained
by summing equations 3.28 and 3.29.

∂ρf/∂t + div(ρfvf) = ρ̂ni (3.32)

Likewise, using equation 3.19 the momentum balance equation for the fluid
phase can be written as:

ρf ∂vf

∂t
+ ρfgradvf · vf = divσf + ρfg + p̂f (3.33)

The solid phase is assumed to be rigid, stationary, and without deformation.
According to the assumption of a rigid solid phase, the momentum balance
of the solid phase is not further investigated.
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3.2.2 Simplifying Assumptions and Constitutive Equations

So far, the fundamental kinematic and kinetic laws, describing the general
state of the considered problem have been demonstrated. The last step in
developing a mathematical model is to characterize the interactions between
different constituents and to consider further simplifying assumptions.
The process can be described by defining appropriate constitutive equations
for the fluid flux. It consists of a diffusion and migration part which can
be described by Fick’s law and a pressure-driven (convective) part that is
described by a generalized Darcy’s law.
The forces acting on the mixture are assumed to be composed of a hydro-
static pressure, which exerts a compressing normal stress, and a part which
produces shear stresses. Hence, the stress tensor applied on the fluid phase
is defined as:

σf = −nfpI + τ f (3.34)

The terms p and τ f in this equation are pressure (Pa) and shear viscous stress
(Pa), respectively [57].
The fluid momentum supply p̂f contains forces such as buoyancy which is
related to average pressure and gradient of volume fraction, and a viscous
drag which might be correlated to volume fractions and average velocity
differences. It can be expressed as follows:

p̂f = K(vs − vf) + p grad nf (3.35)

where K is the drag coefficient (kg/m3 s) due to relative motion, and is
defined as the ratio of viscosity of the flow µ (Pa · s) to the permeability k
(m2) of the porous media [36, 57, 58].

K = µ

k
(3.36)

The porous skeleton is assumed to be rigid and stationary without any de-
formation. Since it is not moving during the process (vs = 0), it is concluded
from the mass balance for the solid phase (equation 3.27), that the solid’s
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density changes with respect to the fluid’s mass supply.

∂ρs/∂t = ρ̂s = −ρ̂f (3.37)

Furthermore, based on Newton’s third law, the pressure and hence, the stress
applied on solid is a reaction force from fluid. Therefore, the momentum
exchange for the solid can be computed from the fluid momentum exchange.

ŝs = −ŝf (3.38)

Therefore, it is possible to neglect the solid phase and it would be simpler if
only the pore fluid phase (water + nickel) is considered instead of the whole
3-phase mixture (solid + water + nickel), and the effect of solid on the fluid
is considered only through forces and stresses. Based on this argument, the
available equations to describe the problem would be reduced to the mass
and momentum balance equations for the fluid phase and its constituents,
i.e. water and nickel ions.
Considering these balance equations of the fluid and the constituents, it can
be noticed that there are many parameters to be determined. Therefore, to
simplify the problem, it is necessary to reduce the number of needed param-
eters as much as possible. One way to do this is to limit the investigation
to the fluid properties and define constituents’ properties in terms of fluid
properties.
Considering the fluid phase as the REV, the mass concentration of nickel
ions can be defined as:

cni = ρni

ρf (3.39)

Equations 3.10 and 3.39 result in:

ρni = cniρf (3.40)

vni = vf + dni (3.41)

In this study, the main variable of interest is the concentration of nickel ions.
So, for simplicity in the rest of this manuscript, it is illustrated by c instead
of cni.
Ultimately, following the mentioned assumptions and considerations, the
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equations required to describe the problem are the mass balance equations
for the fluid phase and for the nickel ions, which describe the changes in the
composition of the fluid phase, and the momentum balance equation for the
fluid phase.

ρf ∂vf

∂t
+ ρfgradvf · vf = divσf + ρfg + p̂f (3.42)

∂ρf/∂t + div(ρfvf) = ρ̂ni (3.43)

∂ρni/∂t + div(ρnivni) = ρ̂ni (3.44)

In this simplified setting, the model can be developed by knowing solely the
fluid mean velocity, which can be derived from the fluid momentum balance
equation. Hence, there is no benefit to investigate the momentum balance
equations for the constituents, explicitly.

Derivation of Darcy’s Law

The most common approach to investigate the flow through porous media is
to apply Darcy’s equation which can be derived as a special case of the fluid
momentum balance [15]. It is generally based on the principle of a linear
relation between the velocity and the pressure gradient of flow through the
porous media [36]. It is assumed that the fluid is a Newtonian fluid with
laminar flow through a porous medium with a rigid solid matrix. Due to the
assumption of a small Reynolds number for the flow, the fluid inertia can
be neglected, compared to the interaction forces of the fluid and the solid
matrix. Also, the flow is assumed to be stationary and hence there is no ac-
celeration. That means the material time derivative of fluid velocity is equal
to zero. Furthermore, the viscous part of stress is negligible and the effects
of viscosity are included in the momentum interaction term. Therefore, by
substituting equations 3.34 and 3.35 into the equation 3.42 and applying the
above-mentioned assumptions, it is concluded that:

0 = div(−nfpI) + ρfg + K(−vf) + p grad nf (3.45)
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By applying the divergence operator on equation 3.45, it results in Darcy’s
law [58].

vf = −1
K

(nfgradp − ρfg) (3.46)

Derivation of Governing Equations

In order to establish a model that accounts for the coating thickness, it is
necessary to derive the equations that determine the distribution of concen-
tration rate within the porous medium. Furthermore, due to the geometry
changes during the coating process, developing a pressure and an electrical
field formulation was of importance, since the concentration rate is coupled
with pressure and electrical potential rates.
By substituting Darcy’s equation 3.46 into the mass balance equation 3.43
of the fluid, and equations 3.40 and 3.41 into the mass balance equation 3.44
of the nickel ions, it is concluded that:

∂ρf

∂t
+ div(−ρf

K
(nfgradp − ρfg)) = ρ̂ni (3.47)

ρf ∂c

∂t
+ −ρf

K
(nfgradp − ρfg) · grad c = (1 − c)ρ̂ni − div(ρnidni) (3.48)

Taking a glance at equations 3.47 and 3.48, it can be seen that they are in
terms of the primary unknowns which are pressure p and concentration c.
However, there are still three more unknowns namely, the partial density of
fluid ρf, the production term ρ̂ni, and the diffusion velocity of ions dni. That
raises the need for defining three more constitutive equations in terms of the
primary unknowns to reach to a closed system of equations.
The diffusive flux ρnidni, relative to the motion of the fluid phase, is partly
due to the concentration gradient of ions in the electrolyte which introduces
a diffusion term, and partly caused by the electrical field which results in a
migration term. The diffusive motion can be described by Fick’s law [14],
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which alongside the migration term [59] will result in the whole flux term as:

ρnidni = −D grad c − zeF

Rθ
Dc grad ϕ (3.49)

In equation 3.49, D is the diffusion constant (kg/m s), ze is the electric
charge of the ions, F is the Faraday constant (C/mol), R is the universal
gas constant (Nm/K mol), θ is the absolute temperature (K) and ϕ is the
electrical potential (V).
The next step is to define a relation for the production term. Evidently, the
larger the available ion concentration is, the larger the production term will
be. Hence, the constitutive equation for the production term can be defined
in the simplest case as:

ρ̂ni = A1c (3.50)

The parameter A1 may additionally depend on further local quantities, e.g.
the electrical potential. Here, for the sake of simplicity, it will be assumed
to be a constant.
The last equation is concerning the fluid density which can be defined as an
equation of state of a barotropic fluid. Moreover, for the sake of simplicity,
only isothermal processes are investigated. There is a direct relation between
fluid density, pressure, and ion concentration. So we can define an equation
based on the first terms in a Taylor series expansion of ρf(c, p) as follows:

ρf = ρ0 + A2c + A3(p − p0) (3.51)

where ρ0 is the density of pure water and p0 is the reference pressure.
However, the fluid is assumed to be incompressible or hardly compressible.
Therefore, the pressure changes should not have a profound influence and its
effect should be way smaller than the effect of the concentration, resulting
in A3 ≪ A2.
The parameters A1, A2, and A3 in equations 3.50 and 3.51 are unknown
constants that must be identified through parameter identification.
Finally by substituting equations 3.49 - 3.51 into equations 3.47 and 3.48
the final coupled governing equation system can be obtained.
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∂c

∂t
= 1

ρ0 + A2c + A3(p − p0)

[
A1c(1 − c) + Ddiv(gradc) (3.52)

+ zeFD

Rθ
(gradc · gradϕ + c div(gradϕ))

]

+ 1
K

(
nfgradp − (ρ0 + A2c + A3(p − p0))g

)
· gradc

∂p

∂t
= 1

A3

 (A1c)
(

1 − A2

ρ0 + A2c + A3(p − p0)
(1 − c)

)
(3.53)

− A2D

ρ0 + A2c + A3(p − p0)

[
div(gradc) + zeF

Rθ
(gradc · gradϕ

+ c div(gradϕ))
]

+ ρ0 + A2c + A3(p − p0)
K

[
nfdiv(gradp) − g · (A2gradc

+ A3gradp)
]

+ A3

K

(
nf(gradp)2 − (ρ0 + A2c + A3(p − p0)) g · gradp

)
Taking a glance at equations 3.52 and 3.53, one can clearly observe the
contribution of different ionic transport mechanisms (diffusion, convection,
migration, and sink term) to the whole electrodeposition process. However,
it is still necessary to describe the electrical potential, ϕ, through the electric
field, E, formed by the applied external current and movement of ions. The
electric field is related to the electrical potential as:

E = −gradϕ (3.54)

The displacement current equation describes the temporal change of the elec-
tric field according to the following equation [60, 61]:

∂E
∂t

= Iext

ϵ
− FzeJ

ϵ
(3.55)

where Iext is the external current density (A/m2), ϵ is the absolute permit-
tivity (C2/Nm2) and J is the flux of ions (mol/m2s) which is described by
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the Nernst-Planck equation.

J = c∗v − D gradc∗ − zeF

Rθ
Dc∗ gradϕ (3.56)

The term c∗ in equation 3.56 is the ion concentration and has the unit
mol/m3. In order to make this compatible with the definition for ion con-
centration in this article, c∗ is replaced by the following relation in terms of
c.

c∗ = cρf

MW ni (3.57)

where MW ni is the molar weight of nickel (kg/mol).
By substituting equation 3.54 and 3.56 into equation 3.55 it is possible to
calculate the rate of gradient of electric potential.

∂E
∂t

= Iext

ϵ
− Fze

ϵ

(
cρf

MW ni v − Dρf

MW ni gradc − zeFρf

RθMW ni Dc gradϕ

)
(3.58)

This equation alongside equations 3.52 and 3.53 yields a coupled system of
equations that should be solved simultaneously. With the help of this system
of equations, the time derivative of concentration, pressure, and electric field
within the foam can be calculated. In the considered simplified model, these
data can be used to estimate the distribution of ions on the foam and finally
to give an estimation of the coating thickness.

3.2.3 Back-coupling and Coating Thickness Formulation

In the previous subsection, the equations to calculate the rate of concentra-
tion, pressure, and electrical field are obtained. However, it is important to
consider the changes within the foam structure during the coating process,
which lead to a change in all the other parameters.
The aim in the present study is to assume the process as simple as possible
so that the number of process parameters can be reduced. Therefore, the
description of the geometrical properties has to be as simple as possible. In
this idealization, the struts are considered as simple cylinders and the nodes
between the struts are disregarded.
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The concentration obtained from equation 3.52 gives information about the
transported nickel ions by diffusion, convection, and migration mechanisms
as well as the deducted nickel ions from the fluid phase which are coated on
the foam struts. Using this concentration data, it is possible to estimate the
coating thickness in each spatial point on the foam.
Moreover, with the start of the coating process, the porosity of the foam
will start to change, which results in a change in permeability.
Hence, a back-coupling calculation is necessary in order to take into account
the above-mentioned geometrical changes and to use the updated values
to calculate the variables in the next time steps. As shown in Fig. 3.4,
the foam is divided into small volume elements. It is assumed that these
volume elements are so small that inside each of them, only one strut can
fit. The struts can be represented by cylindrical figures. Therefore, with
nickel deposition inside each volume element, the radius of these cylinders
will increase.

Figure 3.4: Schematic representation of struts inside each volume element.

To simplify the problem it is assumed that all the struts inside each volume
element have the same size at the beginning of the coating process. Moreover,
it is assumed that the initial total porosity is equal to the initial porosity of
each volume element. The total volume of each volume element, dV el, can
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be obtained as:

dV el = dxdydz (3.59)

The volume, dvs, and surface, dss, of each strut inside each volume element
are:

dvs = πr2(x, t)dz (3.60)

dss = 2πr(x, t)dz (3.61)

Hence, the initial radius of the struts can be calculated from the solidity,

ns = 1 − nf, (3.62)

as:

ns(x, 1) = dvs(x, 1)
dV el (3.63)

With the start of the process, the nickel ions are coated on the surface of the
strut inside the volume element. The rate of change of the coating thickness
will be equivalent to the radius change. Based on Faraday’s law of electrolysis
[62, 63], the amount of deposition on an electrode is directly proportional to
the electrical charge Q (C). This statement can be defined in terms of moles
of reduced metal, M (mol) via charge, as follows:

M = Q

zeF
(3.64)

Using the definition of molar weight of nickel (MW ni), the deposition mass
m (kg) can be obtained from the molar mass of deposition, as follows:

m = MW ni M (3.65)

Moreover, to obtain the amount of total charge being used over the depo-
sition process, the integral of the electrical current, I(x, t) (A), during the



32 3. Theory and Material Model

deposition time should be calculated.

Q =
∫

I(x, t)dt (3.66)

According to the definition of density, the coating thickness δ(x, t) can be
defined in terms of deposition mass m (kg) as:

δ(x, t) = m

ρniA
(3.67)

where ρni is the density of nickel and A is the area of deposition, i.e. the
internal surface of the foam. Substituting equations 3.65 and 3.66 in equation
3.64, and then using the result in equation 3.67, the coating thickness at each
point x and each time t can be computed.

δ(x, t) = MW ni ∫ I(x, t)dt

zeFρniA
(3.68)

Taking a glance at equation 3.68, it can be noticed that the local coating
thickness at any time t is proportional to the integral of local electric current
at that time. The Butler-Volmer equation [63–65] gives a comprehensive
insight in formulation of electrode kinetics and makes it possible to calculate
the local current density, I/A (A/m2), as a function of ion concentration.

I(x, t)
A

= Iext

[
c(x, t)
C∞

exp(0.5zeFη

Rθ
) − exp(−0.5zeFη

Rθ
)
]

(3.69)

where C∞ is the initial reference concentration and η denotes the overpoten-
tial [59, 65, 66].
Therefore, by calculating the coating thickness, the new radius, the new
solidity and therefore the new porosity can be calculated. Many practical
equations are suggested in the literature for porosity-permeability relation,
which have been discussed comprehensively in a review article by Hommel et
al. [67]. Using these equations, e.g. exponential or power law relations, the
new permeability can be obtained. The following relation has been chosen
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from [67] to calculate the new permeability:

K

K0
=
(

nf

nf
0

)β

(3.70)

The exponent β in this equation is an empirical parameter [67], which de-
pends on the local topology of the foam and has to be determined from
experiments.
Hence, based on these updated values of porosity and permeability, the pres-
sure, concentration and electrical field in the next time step will be calculated.
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4
Numerical Implementation

Numerical methods play a crucial role in various fields of science, engineer-
ing, and mathematics. They provide indispensable tools for solving complex
problems that are often intractable through algebraic or analytical calcula-
tions.
Modelling the electrodeposition process is a complex mathematical challenge
which leads to a coupled system of non-linear equations. These equations
are interconnected and influence each other’s solutions. Finding the exact
analytical solution to these types of problems can be very difficult or even
impossible. Therefore, it is important to adopt a method which can result
in an approximate reliable solution and yet be computationally efficient.
Among the various existing computational methods, the Finite Difference
Method (FDM) [68–73] has shown practical and efficient performance in
treating complicated equations which makes it a valuable asset in modelling
and analysis of physical and mathematical problems. The ability to han-
dle high-dimensional systems, accommodate non-linearities within a coupled
system and dealing with complicated problem domains are among the many
advantages of this numerical method. However, there are some challenges as
well. Numerical instability, round-off errors, and the choice of appropriate
algorithms are some of the issues that demand careful considerations.
Taking a glance at equations 3.52, 3.53 and 3.58, it can be easily noticed that

– 35 –
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it is not possible to solve these equations analytically. Due to the complexity
and high non-linear nature of the system choosing a proper method among
the available numerical methods is greatly limited. In the present study, a
finite difference method [68–71] is employed to solve the preceding coupled
system of governing equations obtained in section 3.2 with predefined initial
and boundary conditions. The finite difference method is a very simple and
straightforward numerical approach to solve non-linear partial differential
equations (PDE), which is a suitable choice for the purpose of this study.
Eventually, an error analysis is performed and the convergence and stability
of the solution are investigated.

4.1 Finite Difference Method (FDM)

The set of coupled non-linear PDEs 3.52, 3.53 and 3.58, consists of four main
physical terms; the source/sink term, diffusion, migration and convection. An
explicit approach is used to discretize these time- and space-dependent PDEs,
which avoids the time-consuming, coupled treatment of the set of equations.
FDM offers different discretization schemes for different problems. These
schemes are derived from the Taylor series expansion of a variable u(x),
where u(x) is differentiable up to k-th order. It can be written as a series as
follows:

u(x + ∆x) = u(x) + ∆xu
′(x) + ∆x2

2 u
′′(x) + ... + ∆xk

k! u(k)(x) + O(∆xk)
(4.1)

where ∆x is called the step size and O(∆xk) is the approximation error term
or the truncation error.
The chosen specific scheme can significantly impact the accuracy, stability,
and efficiency of the numerical solution. In the following, the step by step
FDM algorithm to solve the equation system of the presented model is ex-
plained.



4.1. Finite Difference Method (FDM) 37

1. Domain Discretization

The first step is to discretize the spatial and temporal domains into a grid.

xi = i∆x (4.2)

tn = n∆t (4.3)

where ∆x and ∆t are the space and time increments, respectively. The solu-
tion will be approximated at the discrete points (nodes) xi at each time tn on
this grid. The chosen values for ∆x and ∆t have a significant influence on the
performance of the scheme and on the solution. On the one hand, choosing
a smaller value ∆x and ∆t results in a more accurate approximation. On
the other hand, these values must fall within a specific range and maintain a
suitable ratio to each other to ensure adherence to stability criteria. More-
over, smaller time and space increments will increase the computational time.
Furthermore, a very small time increment means more iterations are required
to approximate the solution, which will cause the build-up of more errors.
Hence it is important to find suitable values for space- and time increments
which balance stability with accuracy and computational efficiency.

2. Approximation of the Derivatives

Different FDM schemes can be obtained, from equation 4.1 for the approxi-
mation of first- and second-order derivative terms in the governing equation
system. These schemes are obtained by different choices of ∆x. Common
schemes for the first-order spatial derivatives are

Forward: ∂u

∂x
= un

i+1 − un
i

∆x
+ O(∆x) (4.4)

Backward: ∂u

∂x
= un

i − un
i−1

∆x
+ O(∆x) (4.5)

Central: ∂u

∂x
= un

i+1 − un
i−1

2∆x
+ O(∆x2) (4.6)
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The common scheme to discretize the second-order derivatives is the central
(symmetric) scheme.

Central: ∂2u

∂x2 = un
i+1 − 2un

i + un
i−1

∆x2 + O(∆x2) (4.7)

To approximate the first- and second-order time derivatives in time-
dependent problems, using the above-mentioned schemes, ∆x will be sub-
stituted by ∆t.
In this study, an explicit forward scheme is used for the time derivatives, and
a central scheme is used for second-order spatial derivatives resulting from
diffusive processes (forward in time, central in space (FTCS), see Fig. 4.1).
In this scheme, the values at time tn+1 are calculated from the known values
of previous time tn.

Figure 4.1: Schematic representation of the explicit forward scheme for time
discretization and central scheme for space discretization in solving a 1D
equation. The values at tn−1 and tn are known and the values at tn+1 are to
be calculated.

However, for solving PDEs, which describe phenomena with wave-like be-
haviour, these symmetric schemes are not useful anymore. In these problems,
the spatial derivatives should be approximated by considering the direction
of the flow or propagation of variables. Upwind schemes are designed to han-
dle problems where the variables propagate in a specific direction, and they
are particularly useful when solving convection-dominated problems. Let us
consider the convection equation.
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∂u

∂t
+ v

∂u

∂x
= 0 (4.8)

where v is a non-zero constant velocity. The first-order upwind discretization
scheme for the PDE 4.8 is:

un+1
i − un

i

∆t
=


−v

un
i − un

i−1
∆x

v > 0

−v
un

i+1 − un
i

∆x
v < 0

(4.9)

This scheme is based on the position of the upstream and implies that for
a positive velocity, the information flows from left to right. In this case, a
backward scheme assists to obtain the required information from the point
xi−1 at the left side of the given point xi. But when the velocity is negative
and the flow is from right to left, it makes sense to look to the right side to
know what is going to happen at the given point xi. Fig. 4.2 represents the
first-order upwind scheme for different propagation directions.

(a) (b)

Figure 4.2: Schematic representation of first-order upwind discretization
scheme for (a) v > 0 and (b) v < 0. The values at tn are known and
the values at tn+1 are to be calculated.

Since the convection term in equation (3.52) consists of a term specifying
the direction of flow, an upwind discretization scheme is of interest here.
This argument is also applicable to the migration terms in both equations
because the mathematical structure of the migration term is the same as in
the convective part. The resulting scheme is simple and does not require
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solving a set of coupled equations. As a disadvantage though, the scheme is
of limited stability. Later in this chapter, the stability and convergence of
the adopted FDM schemes will be discussed in more detail.

4.1.1 Solving the System of Discrete Equations

The governing system of equations 3.52, 3.53 and 3.55 can be solved
by applying the chosen discretization schemes in the previous section.
For a better demonstration of the results, the concentration equation
is written in terms of the main transport equations. Considering n
as the time discretization index and i as the space discretization index,
the 1D explicit FDM formulation of these equations can be written as follows:

cn+1
i − cn

i

∆t
= (4.10)

Sink: A1

ρ0 + A2cn
i + A3(pn

i − pn
0i

) [cn
i (1 − cn

i )]+

Diffusion: D

ρ0 + A2cn
i + A3(pn

i − pn
0i

)

[
cn

i+1 − 2cn
i + cn

i−1
∆x2

]
+

Migration: zeFD

(ρ0 + A2cn
i + A3(pn

i − pn
0i

))Rθ

[
gradϕ

cn
i+1 − cn

i−1
2∆x

+
∣∣∣∣∣gradϕ

∣∣∣∣∣cn
i+1 − 2cn

i + cn
i−1

2∆x
+ cn

i div(gradϕ))
]
+

Convection: 1
K

(
nf p

n
i+1 − pn

i−1
2∆x

− (ρ0 + A2c
n
i + A3(pn

i − pn
0i

))g
)

cn
i+1 − cn

i−1
2∆x

+
∣∣∣∣∣∣ 1
K

(
nf p

n
i+1 − pn

i−1
2∆x

− (ρ0 + A2c
n
i + A3(pn

i − pn
0i

))g
) ∣∣∣∣∣∣

cn
i+1 − 2cn

i + cn
i−1

2∆x

As can be seen in equation 4.10, the spatial discretization for each term
correlates to the chosen schemes explained in the previous section and
depends strongly on the nature of these terms and the challenges associated
with numerical stability and accuracy.
Following the same logic, the FDM formulation for the pressure and electric
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field equations can be obtained as follows:

pn+1
i − pn

i

∆t
= 1

A3

 (A1c
n
i )
(

1 − A2

ρ0 + A2cn
i + A3(pn

i − pn
0i

)(1 − cn
i )
)

(4.11)

− A2D

ρ0 + A2cn
i + A3(pn

i − pn
0i

)

[
cn

i+1 − 2cn
i + cn

i−1
∆x2

+ zeF

Rθ
(gradϕ

cn
i+1 − cn

i−1
2∆x

+
∣∣∣∣∣gradϕ

∣∣∣∣∣cn
i+1 − 2cn

i + cn
i−1

2∆x

+ cn
i div(gradϕ))

]
+

ρ0 + A2c
n
i + A3(pn

i − pn
0i

)
K[

nf pn
i+1 − 2pn

i + pn
i−1

∆x2 − g(A2
cn

i − cn
i−1

∆x
+ A3

pn
i − pn

i−1
∆x

)
]

+ A3

K
(nf(pn

i − pn
i−1

∆x
)2 −

(
ρ0 + A2c

n
i + A3(pn

i − pn
0i

)
)

g
pn

i − pn
i−1

∆x
)


En+1
i − En

i

∆t
= 1

ϵ
(Iext − Fze Jn

i+1 − Jn
i

∆x
) (4.12)

4.1.2 Predictor-Corrector Step: Runge-Kutta Method

In this study an explicit Runge-Kutta method [72, 74] has also been adapted
which serves as an additional predictor-corrector step [68]. The idea was to
modify the computations by using a weighted average of old and computed
values and to obtain a method with better convergence characteristics.
The predictor-corrector approach is a two-step process that combines a pre-
dictor step and a corrector step. It’s commonly used in time-dependent
problems where iterative refinement of the solution is desired in order to
achieve accurate results. In the predictor step, based on the current state of
the solution and the governing equations, an initial estimate of the solution
at the next time or spatial step is computed. This step is often simpler and
faster but may introduce some errors. Then this predicted solution is used
as an intermediate solution, and additional correction terms are calculated.
These correction terms are typically based on the residual errors introduced
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in the predictor step. The corrector step aims to refine the solution and
improve accuracy.
Let us consider the differential equation as:

∂u

∂t
= F (u, t) (4.13)

The general k-stage Runge–Kutta method (RK(k)) can be written as:

un+1 = un + ∆t
k∑

i=1
bifi (4.14)

where:

fi = F (tn + ci∆t, un + ∆t
k∑

j=1
aijfj) (4.15)

The coefficients aij are the arrays of the matrix A which indicates the de-
pendence of the stage on the derivatives found at other stages. The vector
b are the weights and the vector c indicates the positions, within the step,
of the evaluated functions. These coefficients are chosen from the arrays in
the Butcher tableau [74] which for a k-stage Runge-Kutta method is of the
general form:

c A
bT

By choosing the following arrays, the second-order Runge-Kutta method
(RK(2)) is obtained.

0 0 0
1 1 0

1/2 1/2

This scheme is also called Heun’s scheme which is second-order accurate and
it is conditionally stable [68]. The method involves two function evaluations
per time step and computes an intermediate estimate using Euler’s method.
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The final estimate is then computed using a weighted average of the initial
and intermediate estimates. The intermediate estimation of the solution can
be served as the predictor step which will yield an initial solution as follows:

ũn+1 = un + ∆tF (un, tn) (4.16)

Then, the update formula for Heun’s method serves as the corrector step
and uses the intermediate estimate for the solution in the previous step and
improves it further.

un+1 = un + ∆t

2 [F (ũn+1, tn+1) + F (un, tn)] (4.17)

4.1.3 Convergence, Stability, and Consistency

The performance of a numerical method should be evaluated based on the
convergence, stability and consistency of the solutions [75]. These criteria
serve as essential benchmarks in ensuring the accuracy, reliability, and ro-
bustness of the method, which ultimately results in the most efficient and
suitable choice of numerical scheme. However, these concepts have been de-
veloped only for special cases. In the case of the complex non-linear coupled
PDEs defined in this study, seeking assistance from the theory in combination
with performing numerical experimentation is the only approach to proceed.
In the following, these concepts are discussed in more detail [75, 76].

Convergence

In numerical simulations, the aim is for the solution of the finite difference
equations to converge to the solution of the corresponding partial differential
equation. In all the grid-based numerical schemes the accuracy of the numer-
ical results depends on the computational grid size. The goal is to achieve to
a grid-converged solution, i.e. a solution that does not change significantly
when more grid points are employed.
Convergence study is a typical way to anticipate the sensibility of the numer-
ical solution. This is done by comparing the results obtained from successive
iterations of mesh refinements. Assuming u to be the exact solution vector
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and uh is the numerical solution vector for a mesh size h. Then the error can
be defined as [75]:

E = ∥u − uh∥2 (4.18)

In this equation, ∥ • ∥ is the Euclidean norm and defined as:

∥u∥2 =

√√√√ N∑
i=1

|ui|2 (4.19)

A finite difference method is called convergent if the error E tends to zero
as the mesh size tends to zero. In the present study, due to the lack of an
exact solution, u is obtained by an extremely fine mesh size.
Based on the Lax Theorem, an FDM scheme for solving a linear PDE can be
proved to be convergent if it is both consistent and stable [75, 76]. Although
this theory can not be directly applied to non-linear PDEs, the study of
consistency and stability gives valid information and contributes to finding a
convergent scheme [72]. Thus in the following these concepts are investigated.

Stability and Consistency

A consistent FD scheme is obtained when the truncation error tends to zero
as the mesh size tends to zero. That means that a consistent scheme should
provide a good approximation to the PDE when the mesh is sufficiently fine.
However, a consistent scheme does not necessarily yield an accurate numer-
ical solution to the PDE. By a Taylor expansion of the relevant functions,
the consistency of the FDM schemes that have been used in this study is
guaranteed. The major issue is to find the stability criteria.
A finite difference scheme is called stable if the errors remain bounded with
time. The FDM scheme used to solve this system of PDEs is an explicit
scheme. The stability of explicit schemes is highly restricted by the max-
imum allowable time step. To find the maximum allowable time step it is
needed to perform a stability analysis. However, the stability analyses have
been developed only for simple and special cases. To find the maximum sta-
ble time step for complex PDEs without analytical solutions, a combination
of theoretical concepts and heuristic calculations is needed.
For explicit finite difference methods, the stability criteria derived from the
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von Neumann analysis depends on the specific PDE being solved and the
discretization scheme being used. In the case of the convection equation
4.8 the von Neumann stability criterion can be expressed in terms of the
Courant–Friedrichs–Lewy (CFL) number [75] which is defined as:

CFL = v∆t

∆x
(4.20)

For the explicit finite difference scheme applied to the convection equation
the stability criterion is typically:

|CFL| ≤ 1 (4.21)

If the CFL number exceeds this critical value, the numerical solution is likely
to be unstable, leading to oscillations or nonphysical behaviour.
For diffusion-dominated problems, the stability considerations are generally
controlled by the diffusion coefficient D. The stability of explicit finite dif-
ference schemes for diffusion problems is generally defined as [75]:

D∆t

(∆x)2 ≤ 1
2 (4.22)

The available stability criteria for simple problems can be used as a general
guideline to reach stability in solving the more complicated PDEs. It should
also be borne in mind that these criteria are just necessary conditions for
stability and hence convergence, and not sufficient [75]. Therefore, some nu-
merical experiments and parameter tuning are needed to achieve the desired
outcome.

4.2 Transformation to Normalized Form

The derived coupled equation system involves numerous parameters and the
discretization of this PDE system can be very sensitive to the range of these
parameters. This phenomenon becomes even more evident when the parame-
ters come from orders of magnitude that are vastly different from each other.
Normalization offers the advantage of scaling the variables to a common scale,
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often between 0 and 1, regardless of their physical dimensions. The aim is
to bring variables onto a comparable scale to improve the numerical stability
and convergence in algorithms and facilitate the interpretation of the results.
The process typically involves mapping the variable values to a specific range
(e.g., [0 1]). To normalize time t ∈ [0 T ] and space x ∈ [0 L] variables in
the equation system 3.52, 3.53 and 3.58, the following normalized parameters
are defined:

t∗ = t

T
(4.23)

x∗ = x

L
(4.24)

Then:

∂

∂t∗ = T
∂

∂t
(4.25)

∂

∂x∗ = L
∂

∂x
(4.26)

∂2

∂x∗2 = L2 ∂2

∂x2 (4.27)

Using the above definitions, the number representing the domain length and
the total process time is 1.
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Results and Discussion

In this chapter, the performance of the proposed method is examined.
Different problems with different conditions will be considered to show the
many potentials of the model to investigate and simulate the electrodeposi-
tion process from different aspects.
In the first section, by breaking down the concentration equation into the
generally known equations, the performance of the solution algorithm and
accuracy of the developed FDM code are validated. This code is developed
in MATLAB®. After making sure that the code yields reliable results, a
simplified model for a one-dimensional domain is considered in the second
section. The general conditions of the experiment and the magnitudes of
physical parameters are specified. In this section, the one- and double-sided
material models are solved and the influence of different parameters is
studied. Moreover, the performance of the numerical method is examined by
doing a convergence study. In the third section, using the proposed model,
the Ni/PU coating process is simulated on a two-dimensional domain and
the numerical results are compared and validated with the experimental
results.

– 47 –
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5.1 Validation of the Developed FDM Code

Before solving the coupled problem of the full deposition process, it is neces-
sary to validate the calculations performed by the developed code and check
the correctness of the results.
The proposed model consists of three coupled non-linear equations. Due to
the complexity of these equations, there is no available analytical solution.
Therefore, they need to be handled according to the general classifications
of PDEs with existing analytical solutions.
To do so, the concentration equation 3.52 is considered and constant values
are assumed for pressure and electrical potential. Equation 3.52 consists of
four terms, each representing different transport mechanisms which can be
reformulated as follows:

Sink term: ∂c

∂t
= A1

ρf [c(1 − c)] (5.1)

Diffusion term: ∂c

∂t
= D

ρf [div(gradc)] (5.2)

Migration term: ∂c

∂t
= zeFD

ρfRθ
[gradc · gradϕ + c div(gradϕ)] (5.3)

Convection term: ∂c

∂t
= 1

K

(
nfgradp − ρfg

)
· gradc (5.4)

The above-mentioned coefficients in front of each term can be substituted by
a single representative coefficient:

λS = A1

ρf (5.5)

λD = D

ρf (5.6)

λM = zeFD

ρfRθ
(5.7)

λC = 1
K

(5.8)
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The pressure is assumed to have a constant linear distribution in the spatial
direction z for all time steps, as:

p(z, t) = (pmax − p0)
N − z

N
(5.9)

where N is the total number of spatial nodes and z is the spatial coordinate
corresponding to each node. Moreover, the electric field is considered as:

dE
dt

= Iext

ϵ
(5.10)

In the following, different benchmark tests corresponding to each elementary
process are presented. By considering all the coefficients equal to zero except
for one, each process can be easily considered one at a time and be compared
with its corresponding analytical solution.

5.1.1 Reaction: Sink

In the present study, the reaction term is a sink-type since electrodeposi-
tion leads to the reduction of ion concentration. Considering the reaction
equation:

∂c

∂t
= λS[c(1 − c)] (5.11)

It can be noticed that there is no spatial derivative in this PDE. Hence,
the variable magnitude changes only in time and not in space direction. To
obtain the analytical solution, we can separate variables and then integrate
them. Solving for c results in:

c(z, t) = BeλSt

1 + BeλSt
(5.12)

where B is a constant which can be specified by the initial condition value.
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Let us assume the following conditions:

0 ≤ t ≤ 1; ∆t = 10−2 (5.13)
0 ≤ z ≤ 1; ∆z = 10−1 (5.14)

Initial Condition: c(z, 0) = f(z) = C∞ (5.15)

The numerical and analytical transient results with 11 spatial grid points
and λS = −2 and C∞ = 10−1 are compared and shown in Fig. 5.1. The
analytical solution is shown with red lines, while the blue asterisks belong to
the numerical results. As can be seen, the results overlapped completely.
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Figure 5.1: The comparison of numerical and analytical solution of reaction
equation.

5.1.2 Diffusion

Diffusion is a transport mechanism which is realized due to random molecular
motions from a lower to higher concentration area. Diffusion equation, also
known as heat conduction equation, is a mathematical equation derived by
Fourier [77, 78]. Therefore, the analytical solution to the diffusion equation
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is based on the Fourier transform series.
Let us consider the diffusion equation on a 1D domain Ω = [0, L] as:

∂c

∂t
= λD[div(gradc)] (5.16)

The general analytical solution to this equation is:

c(z, t) =
∞∑

m=1
Bmexp

(
− (mπ

L
)2λDt

)
sinmπ

L
z (5.17)

where:

Bm = 2
L

∫ L

0
f(z)sinmπ

L
zdz (5.18)

The term f(z) is the initial condition data. To specify the analytical solution,
it is necessary to specify the initial and boundary conditions. The following
initial and Dirichlet boundary conditions are assumed:

c(z, 0) = f(z) = C∞ (5.19)

c(0, t) = c(L, t) = 0 (5.20)

Using the initial and boundary conditions defined in equations 5.19 and 5.20
the analytical solution can be written as:

c(z, t) =
∞∑

m=1

4C∞

(2m − 1)πexp

(
− ((2m − 1)2λDπ2t

L2 )
)

sin(2m − 1)πz

L
(5.21)

Assuming λD = 10−2, the time and spatial steps must be chosen in a way to
satisfy the stability criteria in equation 4.22. The numerical and analytical
responses for the following time and space conditions and C∞ = 10−1 are
presented in Fig. 5.2.

0 ≤ t ≤ 1; ∆t1 = 10−2 (5.22)
0 ≤ z ≤ 1; ∆z1 = 10−1 (5.23)
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The qualitative comparison of the two graphs shows a very good agreement
between the results.
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Figure 5.2: The comparison of numerical and analytical solution of diffusion
equation. The analytical solution is based on Fourier transform series.

To investigate the influence of time and spatial step size, the problem is
solved again by considering a smaller time step and a smaller space grid
(equations 5.24 and 5.25). Therefore, taking into account the stability
criteria of equation 4.22, the following values are considered:

∆t2 = 10−3; ∆z2 = 10−1 (5.24)
∆t3 = 10−3; ∆z3 = 10−2 (5.25)

The results for these two sets of parameters are shown in Fig. 5.3. By a
qualitative comparison of the results, it seems that increasing the time step
size does not improve the results significantly (Fig. 5.2 vs. Fig. 5.3 (a)).
However, by increasing the element number, the precision of the calculations
increases as well and the results overlap even better (Fig. 5.3 (a) vs. Fig.
5.3 (b)).
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Figure 5.3: The comparison of numerical and analytical solution of diffusion
equation with (a) smaller time step size (∆t2 = 10−3) and (b) smaller space
grid size (∆z = 10−2).

To investigate the influence of the size of time and space discretization in
more detail, the error E according to equation 4.18 is calculated for different
sets of discretization parameters. Fig. 5.4 illustrates the calculated errors
for four different spatial mesh sizes ∆z = {10−1, 5 × 10−2, 10−2, 5 × 10−3}
with three time step sizes ∆t = {10−3, 10−4, 10−5}.
The dominant influence of spatial size over time step size is evident in this
graph. While for all the time step sizes, the results show almost the same
behaviour, the error decreases with the decrease of spatial mesh. This can
be due to the nature of the diffusion equation, where the FDM central
scheme used for the second-order spatial derivative is second-order accu-
rate (O(∆x2)) and the error decreases quadratically with the spatial step size.
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Figure 5.4: The comparison of error between numerical and analytical so-
lutions of diffusion equation, for the different sets of time and spatial dis-
cretizations.

Choosing smaller discretization steps in general leads to more precise results.
However, it’s crucial to establish a reasonable limit. Excessive reduction
may result in either high unnecessary computational costs or even unstable
answers.

5.1.3 Convection and Migration

The convection equation, also known as the advection equation, describes the
forced transport of a quantity due to the average velocity of the bulk fluid
motion. The typical analytical solution to the convection equation represents
a wave moving in the direction of the velocity.
In this section, for the sake of simplicity, constant functions for pressure and
electrical potential distribution according to equations 5.9 and 5.10 have been
assumed. Equation 5.10 results in:

E = −gradϕ = Iext

ϵ
t (5.26)
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divE = −div(gradϕ) = Iext

ϵ
(5.27)

With this in mind, by comparing the migration and convection equations 5.3
and 5.4, it can be seen that they have a similar mathematical format. How-
ever, due to the additional term in migration equation, finding an analytical
solution to this equation is not possible. Therefore, in this section, only the
convection equation is considered and validated. However, due to its similar-
ity with convection equation, the same numerical approach has been utilized
to solve the migration equation.
Let us write the convection equation 5.4 as follows:

∂c

∂t
+ vgradc = 0 (5.28)

where

v = −λC

(
nfgradp − ρfg

)
(5.29)

A smooth initial condition consisting of a hill-shaped profile and a periodic
boundary condition are assumed.

c(z, 0) = f(z) =
exp(−100(z − 0.2)2) 0 ≤ z ≤ L

0 otherwise
(5.30)

c(0, t) = c(L, t) (5.31)

The problem is solved for the following choice of parameters:

λC = 10−4

nf = 0.9
ρf = 1000
g = 9.81
pmax = 100; p0 = 0

Considering the CFL stability condition for convection (equation 4.21), the



56 5. Results and Discussion

problem conditions can be written as follows:

0 ≤ t ≤ 1; ∆t = 10−3 (5.32)
0 ≤ z ≤ 1; ∆z = 10−2 (5.33)

The analytical solution to equation 5.28 is:

c(z, t) = f(z − vt) =
exp(−100(z − vt − 0.2)2) 0 ≤ z − vt ≤ L

0 otherwise
(5.34)

The analytical and numerical responses are illustrated in Fig. 5.5. As can
be seen in Fig. 5.5, while the hill travels to the right with constant velocity,
in the numerical approximation the height of the hill profile decreases
with time and the solution experiences damping. This behaviour is often
associated with numerical dispersion, which is an inherent characteristic of
certain FDM schemes. To have a better comparison the results are shown
in Fig. 5.6 for four different time steps.
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Figure 5.5: The qualitative comparison of (a) numerical and (b) analytical
solution of convection equation for ∆t = 10−3 and ∆z = 10−2.
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Figure 5.6: The quantitative comparison of numerical and analytical solution
of convection equation with ∆t = 10−3 and ∆z = 10−2 at (a) t = 0, (b)
t = 0.25, (c) t = 0.5 and (d) t = 0.75.

Many FDM schemes, particularly first-order schemes like the upwind
scheme, can introduce numerical dispersion. As a result, over time, the
solution may become smeared or spread out, leading to the appearance of
the hill getting smaller. The first-order upwind scheme can be reinterpreted
as the second-order central difference scheme plus an artificial diffusion
term which is responsible for the damping. According to the von Neumann
stability analysis and the CFL condition of equation 4.21, the upwind
scheme is conditionally stable. To guarantee stability, the physical velocity
v should be equal to or smaller than the numerical method’s spreading
velocity ∆x/∆t. By choosing a smaller grid size, the difference between
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these two velocities reduces and this effect will disappear [72].
The problem is solved another time with ∆t = 10−3 and ∆z = 10−3. The
results are shown in Fig. 5.7. As can be seen in these graphs, the numeri-
cal dissipation has been omitted by making the spatial discretization smaller.
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Figure 5.7: The comparison of numerical and analytical solution of convec-
tion equation for ∆t = 10−3 and ∆z = 10−3.

The purpose of the previous investigations is to validate the performance of
the adopted FDM schemes and identify the role that each parameter plays in
reaching accurate numerical results. These results can confirm the accuracy
of the developed code and the reliability of the solutions.
However, the full set of governing equations involves multiple parameters and
the values of these parameters significantly influence the outcome. Therefore,
solving the full set of equations is a challenging task due to the high sensitivity
of the equations to parameter values. The focus of the next section is to
discuss the parameter tuning to obtain the desired results. Additionally,
various potentials of the proposed model are discussed.
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5.2 Implementing the Model on a One-

Dimensional Domain

In this section, the solution to the complete sets of coupled equations is ob-
tained using the adopted FDM scheme and parameter tuning. A hypotheti-
cal problem has been defined to investigate the performance of the proposed
model. For the sake of simplicity and an efficient interpretation of results,
normalized values are defined for the time and space domains. Therefore, the
model is validated on a computational domain with a length of 1, as shown in
Fig. 5.8. Moreover, the electric field due to the movement of ions is neglected
and it is assumed that it is only formed by the applied external current (see
equations 5.26 and 5.27). Based on the 1D assumption, the problem is only
solved in the flow direction in the mid-plane of the cylindrical specimen.

Figure 5.8: Problem domain with the direction of flow against gravity.

A general overview of the experiment has been given in section 2.2.1. The
purpose of this section is to illustrate the performance of the solution scheme
and various potentials of the proposed model. Hence, the corresponding
initial and boundary conditions are defined in such a way to represent the
experiment’s conditions in [8] and yet be as simple as possible.
In the following, the normalized parameters are shown simply without an
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asterisk. Therefore:

0 ≤ t ≤ 1; ∆t = 10−2 (5.35)
0 ≤ z ≤ 1; ∆z = 10−3 (5.36)

It is assumed that the process is performed under a constant temperature
of 50◦C, with an external current density of 16.5 A/m2 for 108.5 h. The
height of the PU foam specimen is 40 mm with 90 percent porosity [8]. The
magnitudes of different physical constants in equations 3.52, 3.53 and 3.55
and the back-coupling parameters are listed in Table 5.1.

Table 5.1: Magnitudes of problem’s physical constants

Constant Value Constant Value

ρ0 1000 kg/m3 D 6.8 × 10−10 kg/m s

z 2 F 96485.33 C/mol

R 8.31 Nm/K mol θ 323 K

ϵ 70 C2/Nm2 Iext 16.5 A/m2

K 1.3 × 105 kg/m3 s nf 0.9

MW ni 5.87 × 10−2 kg/mol gz 9.8 m/s2

β 8 η 0.2 V

The diffusion coefficient D is assumed to be equal to the ionic diffusion coef-
ficient of Ni2+ in free water [79]. The drag coefficient K is computed based
on equation 3.36 and according to the magnitudes of foam permeability and
electrolyte viscosity provided by the experiment [8]. Moreover, the exponent
β is an empirical parameter and chosen based on the data found in [67]. For
the sake of simplicity, the over-potential η is assumed to be constant during
the process and its value is chosen based on the Tafel diagram corresponding
to the initial reference condition [80].
It is assumed that at the beginning of the process, the pump is off, and also



5.2. Implementing the Model on a One-Dimensional Domain 61

no electrical current is applied to the system. Keeping this in mind alongside
the assumption of an infinite ion reservoir, the initial conditions are defined
as follows:

c(z, 0) = C∞ (5.37)

p(z, 0) = p0 (5.38)

E(z, 0) = E0 (5.39)

When the pump is turned on, it is assumed that it takes a time t1 to reach
the designated pressure pmax at the inlet. Moreover, the applied external
electric current alongside the infinite ion reservoir results in the definition of
the following boundary conditions at the inlet of the foam:

c(0, t) = C∞ (5.40)

p(0, t) =


pmax (t − 1)

t1
t ≤ t1

pmax t > t1

(5.41)

E(0, t) = E1 (5.42)

On the outlet of the foam, the ion concentration is influenced both by the
flow of electrolyte (the pump), and the the upper anode (see Fig. 2.1).
Hence, a Robin boundary condition can be a suitable choice to describe the
convection and diffusion effects. Moreover, the pressure reaches the constant
outlet pressure p0. Hence, the boundary conditions at the outlet are defined
as:

a c(1, t) + (1 − a) ∂c(1, t)
∂z

= a C∞ (5.43)

p(1, t) = p0 (5.44)

E(1, t) = E1 (5.45)
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The coefficient a in equation 5.43 is the parameter determining the ratio of
convection and diffusion influence.
Using the above-mentioned magnitudes and considering the corresponding
initial and boundary conditions, the concentration, pressure, and electrical
field distributions can be calculated by solving the equation system 3.52,
3.53, and 3.55. By doing a heuristic parameter tuning, the limit of the
input parameters A1, A2 and A3 and the sensitivity of the responses to
their magnitudes are determined. Moreover, by changing the corresponding
coefficients in equations 5.5 - 5.8, the influence of each process can be easily
investigated. In the following, different examples are discussed and the model
is explored from different aspects. In these examples, only the results at the
last time step are illustrated.

5.2.1 Influence of Input Parameters

The magnitudes of the input parameters A1, A2 and A3 are determined by
numerical experimentation while taking into account the definitions of the
constitutive equations. By considering constant values for other parameters
and changing the value of one parameter at a time, the limits and effects of
each parameter are investigated.

According to the defined equation 3.50 for the production term, A1 is
a sink constant and therefore must be negative. Moreover, the value of A1
has a direct influence on the concentration value. Higher magnitudes of
A1 results in more distribution of ion concentration, as shown in Fig. 5.9.
Hence, this parameter should be tuned based on the measured data from
the experiments.

The constants A2 and A3 are mostly influential on the pressure re-
sponses, since the pressure formulation 3.53 developed from the constitutive
equation 3.51.
Based on equation 3.51 and the incompressibility assumption, the effect
of pressure change on the electrolyte density is negligible compared to
the concentration change. Hence, the pressure constant A3 must be much
smaller than the concentration constant A2. However, taking a glance at
equation 3.53 there should be a limit for A3 as the equation is divided by
A3 and it can lead to numerical instabilities.
Fig. 5.10 shows the influence of different choices of A2. From a physical
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point of view, the pressure should neither be negative nor exceed the
maximum pump pressure. Therefore, the values of A2 = 1000 or A2 = 5000
can not be an appropriate choice of numbers. Moreover, the value of A2
should be chosen in a way to guarantee a semi-linear behaviour for the
pressure distribution between the inlet and outlet of the foam. Hence, the
value of A2 = 1500 seems to be a suitable choice.

Meanwhile, the parameter A3 not only should result in physically
meaningful pressure distribution but also should be set in a way to avoid
numerical instabilities. On the one hand, very small values of A3 in the
denominator results in a highly ill-conditioned numerical problem, which will
increase the sensitivity to numerical errors and amplification of fluctuations.
This phenomenon is characterized by a gradual escalation of numerical
instabilities, ultimately leading to divergence in the solution. On the other
hand, this value should be small enough not to contradict the fluid density
definition of equation 3.51.
The lower limit for A3 is equal to 2 × 10−1. Lower values than this result
in instabilities and divergent solutions. Fig. 5.11 depicts the influence of
A3 parameter on the pressure responses. Larger values of A3 lead to faster
changes of the pressure and hence, higher pressure gradients. This parameter
can be tuned according to the fluid velocity data from the experiment.

Figure 5.9: The influence of A1 values on the concentration response.
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Figure 5.10: The influence of A2 values on the pressure response.

Figure 5.11: The influence of A3 values on the pressure response.

The influence of different magnitudes of parameter a in the Robin boundary
condition of equation 5.43 on the concentration trend is illustrated in
Fig. 5.12. The value of parameter a can have a significant impact on
the behaviour of the boundary condition and the overall behaviour of the
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system it describes. As can be seen in Fig. 5.12, when a = 0 the boundary
condition simplifies to the Neumann boundary condition. In this case, there
is no diffusive flux at the boundary z = 1, and the boundary condition is
entirely dominated by convection. It represents a situation where there is
no mass diffusion across the boundary, and the value of C∞ controls the
rate of convection at the boundary. On the other hand, when a = 1 the
boundary condition is Dirichlet type. In this case, there is no convection at
the boundary z = 1, and the boundary condition is entirely dominated by
diffusion. It represents a situation where the value of concentration at the
boundary is fixed at C∞ and there is no convective transfer of mass. For
any other value of 0 ≤ a ≤ 1, the boundary condition is a combination of
both diffusion and convection.

Figure 5.12: The 1D simulation of the concentration response for different
values of Robin boundary condition parameter a.

Hence, to proceed with the model investigations, the input parame-
ters are chosen as listed in Table 5.2. For the back-coupling calculations,
the volume elements are assumed to be cubes with edge length dz = 1×10−2.
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Table 5.2: Assumed magnitudes of input parameters

Constant Value Constant Value

A1 −1 × 103 A2 1.5 × 103

A3 2 × 10−1 a 9 × 10−1

5.2.2 Influence of Back-Coupling Calculations

The following examples deal with the influence of back-coupling calculations
on the results and compare the results obtained from a convection-dominant
process with the results obtained from a diffusion-dominant process. Each
problem is solved once by considering constant geometrical parameters (with-
out back-coupling) and once by considering the changes in geometrical pa-
rameters (with back-coupling).

Convection-Dominant Process

In the first example, the process is mainly driven by convection (λC ≫ λD).
Fig. 5.13 illustrates the concentration and pressure results obtained with and
without back-coupling considerations.
As it is expected the geometry changes have an influence on the coating
process in a convection-dominant process. The coating of the foam reduces
the pore space and, as a consequence, reduces the permeability. This leads to
a reduction in the flow velocity. According to Darcy’s law (see equation 3.46),
velocity has a direct relation with pressure gradient and lower velocity leads
to lower pressure gradient, which can be noticed in Fig. 5.13(b). With the
reduction of flow velocity, the concentration of available ions in the electrolyte
will reduce accordingly (Fig. 5.13(a)).
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Figure 5.13: The comparison of (a) concentration distribution and (b)
pressure distribution with and without back-coupling calculations, in a
convection-dominant process.

The transient concentration response for this example is presented in Fig.
5.14. In these graphs, the green line is the initial state of variables and the
red line is the last time step. The effect of flow velocity reduction due to
permeability reduction is illustrated in these figures clearly.
Taking a glance at Fig. 5.14(a), it can be seen that the rate of concentration
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change remained constant in all the time steps since the permeability is as-
sumed to be constant during the deposition time. While the trends in Fig.
5.14(b) show that the process has become slower over time and the concen-
tration changes at a slower rate as a result of the reduction of permeability
in each time step.

(a)

(b)

Figure 5.14: The transient concentration response in a convection-dominant
process (a) without and (b) with the back-coupling calculations.
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Diffusion-Dominant Process

In the second example, a diffusion-dominant process is considered (λD ≫
λC). Fig. 5.15 shows the concentration and pressure results for such a pro-
cess. As mentioned before, due to the permeability reduction, the velocity is
reduced which, based on Darcy’s law, leads to a decrease in pressure gradi-
ent (Fig. 5.15(b)). However, a diffusion-dominant process is driven mainly
by the concentration gradient and hence, the velocity changes have no con-
siderable effects on the concentration changes. Therefore, as it is shown is
Fig. 5.15(a), in a diffusion-dominant process the concentration responses are
almost independent of back-coupling calculations.

5.2.3 Influence of Diffusion and Convection Intensities

The last example deals with the influence of diffusion and convection intensi-
ties on the concentration trend and compares three cases when the diffusion
is dominant, when the convection is dominant, and when both mechanisms
have the same magnitude of effect. Fig. 5.16 shows the results for the last
time step in these cases. The comparison is made once when the diffusion is
constant and the change in the ratio only happens through changes in the
convection coefficient (Fig. 5.16(a)), and once with the constant convection
and varying diffusion coefficient (Fig. 5.16(b)).
Comparing the results shown in Fig. 5.16, one can notice the high sensitivity
of the process to the convection influence. It is evident from Fig. 5.16(a)
that the change in the convection coefficient, i.e. flow velocity, leads to no-
ticeable changes in the concentration rate. However, by doing a comparable
investigation on the diffusion coefficient, the changes in results are negligible
(Fig. 5.16(b)). Also comparing the magnitude of ratios, it is apparent that a
smaller variation in convection coefficient leads to much noticeable changes
in concentration. While to obtain a specific concentration change due to
variation in diffusion coefficient, the variation should be of higher orders.
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(a)

(b)

Figure 5.15: The comparison of (a) concentration distribution and (b) pres-
sure distribution with and without back-coupling calculations, in a diffusion-
dominant process.
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(a)

(b)

Figure 5.16: Influence of λD\λC on the concentration distribution with (a)
constant diffusion coefficient and (b) constant convection coefficient.
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5.2.4 The Solution to the Full Two-Sided Model

Finally, using the mentioned magnitudes in Table 5.1 and 5.2, and consider-
ing the initial and boundary conditions (equations 5.35 - 5.43), the transient
response of the equation system (3.52) and (3.53) are calculated.
In the presented graphs, the green line is the initial state of variables and
the red line is the last time step. As can be seen in Fig. 5.17(a), the
concentration of available nickel ions in the electrolyte reduces over time
which means that the ions are either deposited on the struts or left the
foam through the outlet. Moreover, the trends suggest that at the inlet and
outlet of the foam, the concentration of ions is considerably higher than for
the areas within the foam. This behaviour has also been observed in the
experiments [8, 13]. On the other hand, Fig. 5.17(b) predicts the behaviour
of pressure. From a physical point of view, it is expected that the pressure
changes show a semi-linear behaviour, which is demonstrated clearly in Fig.
5.17(b).

The back-coupling calculation related to the coating thickness and changes
in permeability is shown in Fig. 5.18.
Fig. 5.18(a) represents the final coating thickness of the foam at the
end of the process. With the start of the coating process, as the coating
thickness increases, the permeability of the foam reduces accordingly. Since
the coating thickness is higher at the inlet and outlet of the foam, the
permeability is smaller in these areas than in the middle part of the foam.

By Knowing the local transient values of permeability and porosity, and
calculating the local pressure gradient at each point of the domain, the local
transient velocity can be calculated using the Darcy equation. Fig. 5.19
shows the influence of coating on the velocity magnitudes over the foam
height. This figure depicts that the velocity generally decreases with time.
This reduction is due to the increasing ion deposition during the time. As
the coating thickness increases, the permeability and hence the flow velocity
will decrease. Comparing Fig. 5.18 (b) and Fig. 5.19, it is noticeable that
the velocity had more significant drops at the inlet and outlet of the foam,
where the permeability showed lower values as well.

In addition, another aspect revealed by the graph is a sharp velocity
difference at the initial time steps of the process. The reason can be that at
the initial stages of the process, it takes some time for the pump to reach
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(a)

(b)

Figure 5.17: The transient distribution of (a) concentration and (b) pressure
within the foam height in the direction of flow.
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(a)

(b)

Figure 5.18: The back-coupling results of (a) coating thickness evolution and
(b) permeability changes within the foam height in the direction of flow.
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its full capacity (see pressure boundary condition equation 5.41) and for the
flow to reach a homogeneous velocity over the foam height and therefore,
the velocity is higher at the inlet, where the pump is. After a short time,
the flow velocity reaches a constant magnitude over the foam height. With
the start of the deposition, the velocity would be mostly influenced by the
changes in the foam geometry.
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Figure 5.19: The transient velocity distribution over the foam height.

The purpose of this investigation was to show some of the many potentials
of the proposed model. This model offers the possibility to investigate the
influence of different parameters on the results and to show the share of each
transfer mechanism in the coating process separately. All the results shown
so far were computed considering a constant coefficient for migration and
sink term. The model can be used for further investigations of the influence
of these mechanisms on the final results. In addition, the definition of the
constitutive equations for the production term and the fluid density gives
three more controlling parameters to adjust the model in order to obtain
physically meaningful results.
The calculated reduced ion concentration as shown in Fig. 5.17(a) is partly
due to the deposition and partly related to the ions that left the volume
element with the flow of electrolyte. The proposed method to calculate the
coating thickness makes it possible to distinguish the share of concentration
related to the deposited ions.
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Furthermore, differences to the experiment may be used to further modify
the model by adjusting the input parameters and the boundary conditions.

5.2.5 Convergence Study

The obtained solutions from numerical methods are accompanied with
deviations from the analytical solutions of PDEs. The magnitudes of these
deviations can be influenced by the size of time and space discretization.
Performing convergence studies on the adopted numerical method is a
standard approach to estimate the sensibility of the numerical solution.
The problem is solved for different values of ∆z and ∆t and the error E
is calculated according to equation 4.18. Table 5.3 lists the corresponding
numerical errors and calculation times for the solved problem in section
5.2.4. For a better comparison, the error is also depicted in Fig. 5.20.

Figure 5.20: Numerical error for the test problem of section 5.2.4 for different
sets of discretization parameters.

As can be seen, choosing a smaller spatial grid size results in a lower magni-
tude of error. However, the size of the time step does not have any influence
on the accuracy of the solution and only results in an unnecessary increase
of the time costs.
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Table 5.3: Numerical comparisons for different sets of discretization param-
eters for the test problem of section 5.2.4

∆t ∆z E × 10−3 Time (s)

1 × 10−3

1 × 10−2 3.9 0.73

5 × 10−2 10.6 0.64

1 × 10−1 16.5 0.68

5 × 10−4

1 × 10−2 4 1.07

5 × 10−2 10.6 0.95

1 × 10−1 16.5 1.02

1 × 10−4

5 × 10−3 2.5 5.85

1 × 10−2 4 5.28

5 × 10−2 10.6 4.31

1 × 10−1 16.5 4.2

5 × 10−5

5 × 10−3 2.5 20.19

1 × 10−2 4 18.79

5 × 10−2 10.6 13.62

1 × 10−1 16.5 14.45

1 × 10−5

5 × 10−3 2.5 455.89

1 × 10−2 4 447.48

5 × 10−2 10.6 387.30

1 × 10−1 16.5 355.53

The proposed model consists of different physical terms. Corresponding
to the nature of each term, a combination of first- and second-order
schemes have been used. For a better comparison of the influence of
each scheme, the convergence study has been performed for a diffusion-
dominant and a convection-dominant problem. The problem is solved
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for three magnitudes of ∆t = {10−5, 10−4, 10−3} and four magnitudes of
∆z = {5 × 10−3, 10−2, 5 × 10−2, 10−1}. As shown in Fig. 5.21, in both
convection- and diffusion-dominant cases, the time step size does not have
any influence on the solution and the error is only reduced by choosing a
smaller spatial discretization. However, it can be seen that the convergence
of the diffusion-dominant problem is second-order which corresponds to
the chosen second-order FDM scheme, while the convection-dominant
problem has a first-order convergence according to the chosen upwind
scheme. Therefore, depending on the problem’s parameters and weighing
of these different effects, the convergence should move between first- and
second-order.

Figure 5.21: Comparison of the order of convergence in a convection-
dominant problem and a diffusion-dominant problem.
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5.3 Modelling the Ni/PU Coating Process: Sim-

ulation vs. Experiment

In this section, the real experimental conditions of the Ni/PU coating pro-
cess are considered and simulated using the proposed model. However, to
investigate the problem numerically it is important to reduce the number of
parameters by assuming the process as simple as possible. Moreover, due to
the large disparity between real time and space domain ranges, divergence
and stability issues can arise. In this case, normalizing can help balance the
discretization and improve the accuracy of simulations. Hence, inspired by
the previous section, by suitable substitutions of variables and characteristic
numbers, temporal and spatial domains as well as the process variables are
normalized. Therefore, the problem is modeled on a square computational
domain with a length of 1, in the y − z plane in the middle of the foam, as
shown in Fig. 5.22. The square numerical domain has been scaled according
to the lengths of the rectangular sample domain.

Figure 5.22: Normalized 2-dimensional problem domain from the y−z foam’s
mid-plane, with the direction of flow against gravity.

The investigated domains for the experimental results are cuboid specimens
with the size of 20 mm × 20 mm × 40 mm, being cut from the cylindrical,
disc-like foam with the diameter of 210 mm and thickness of 40 mm (see Fig.
5.23) [8, 81]. The global investigations are done on the plane y −z parallel to
the flow (Fig. 5.22), as well as the plane x−y perpendicular to the flow (Fig.
5.23(a)). The local and semi-local results are investigated on three specimens
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taken from both sides and the center of the foam and at three positions (top,
bottom, and center) of each of these specimens (Fig. 5.23(b)).

(a)

(b)

Figure 5.23: Cuboid specimens cut out of the disc-like foam specimen and
the analysed top, center, and bottom domains [8, 81].

Hence, for the numerical modelling, the respective dimensions and positions
are specified on the normalized domain according to the experimental
assumptions.
Considering the problem domain in Fig. 5.22, the corresponding initial and
boundary conditions are defined in such a way to represent the experiment’s
conditions in [8] and yet be as simple as possible.

Initially, under the absence of any applied pressure or electrical cur-
rent, the foam is plunged into the electrolyte with a homogeneously
distributed ion concentration realized from the infinite ion reservoirs. Hence,
the initial conditions at any point x = (y, z), are:
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c(x, 0) = C∞ (5.46)

p(x, 0) = p0 (5.47)

E(x, 0) = E0 (5.48)

According to the experiment, the process starts when the pump reaches the
designated pressure Pmax at the inlet. Moreover, an inhomogeneous inlet
flow velocity has been reported in experimental measurements [8, 81]. Hence,
based on Darcy’s law, the pressure distribution at the inlet of the foam should
be inhomogeneous. On the other hand, the lower anode in the reactor setup
of Fig. 2.1 provides an infinite ion reservoir at the inlet. The concentration
of the ions in this area is kept constant via the ion reservoir (anode) and can
be described using a Dirichlet type boundary condition. In the simplified
model, it is assumed that the electrical field at the inlet of the foam is only
affected by the applied external electric current. All in all, the inlet boundary
conditions are:

c(y, 0, t) = C∞ (5.49)

p(y, 0, t) = (Pmax − P0)y (5.50)

E(y, 0, t) = E1 (5.51)

Similar to the arguments in the previous section, the ion concentration on
the outlet of the foam can be described by a Robin boundary condition to
take into account the influence of convection (the pump) and diffusion (the
upper anode). Moreover, the pressure reaches the constant outlet pressure
p0. Hence, considering the same argument about the electrical field at the
inlet, the boundary conditions at the outlet are:

a c(y, 1, t) + (1 − a) ∂c(y, 1, t)
∂z

= a C∞ (5.52)

p(y, 1, t) = p0 (5.53)

E(y, 1, t) = E1 (5.54)
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In the simplified model, it is assumed that there will be no flux from the
right and left sides of the foam. Hence, a Neumann type boundary condition
will be defined for all the variables on both sides:

∂c(0, z, t)
∂z

= ∂c(1, z, t)
∂z

= 0 (5.55)

∂p(0, z, t)
∂z

= ∂p(1, z, t)
∂z

= 0 (5.56)

∂E(0, z, t)
∂z

= ∂E(1, z, t)
∂z

= 0 (5.57)

According to the experiment conditions described in [8, 81], the process tem-
perature is assumed to be kept constant at 50◦ C, and an external current
density of 16.5 A/m2 is applied on a PU foam with 90 percent initial porosity
[8]. The magnitudes of different physical constants in the proposed model
are listed in Table 5.1.
The input parameters in the problem are chosen as listed in Table 5.4.

Table 5.4: Assumed magnitudes of input parameters

Constant Value Constant Value

A1 −1 × 102 A2 1.5 × 103

A3 2 × 10−1 a 9 × 10−1

The representative normalized time and space ranges and steps are defined
as:

0 ≤ t ≤ 1; ∆t = 10−3 (5.58)
0 ≤ y ≤ 1; ∆y = 10−2 (5.59)
0 ≤ z ≤ 1; ∆z = 10−2 (5.60)

In the following, the simulation results using the parameters in Tables 5.1
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and 5.4 are presented. Moreover, the experimental results are simulated with
the proposed model and compared with the respective numerical results.

5.3.1 Numerical Simulation: Global Results

The last time step responses of the defined problem at the considered
domain of Fig. 5.22 are presented in this section.
Fig. 5.24 (a) presents the ion concentration distribution in the foam domain.
The concentration of ions is considerably higher at the inlet and outlet of
the foam and it reaches an almost constant value in the central areas. This
behaviour has been also reported in the experimental observations [8].

The z-component of the electrical field distribution in the domain is
calculated based on the equation (3.55) and depicted in Fig. 5.24 (b). The
experimental analysis of the coating thickness distribution shows signifi-
cantly increased amounts of nickel in the upper (outlet) and lower (inlet)
areas of the foam. The higher coating thicknesses in these areas can be
explained by a higher ion concentration. The decrease of the concentration
towards the foam center can be explained by the reduced mass transport.
The decreasing electric field to the foam center is related to the open porous,
conductive hybrid foam structure as well as the Faraday law.

As mentioned in the previous section, the discretization size plays an
important role in the accuracy of the obtained results. The problem is
solved again for a bigger spatial grid. Fig. 5.25 depicts the concentration
and electric field for ∆z = 5 × 10−2. Comparing Fig. 5.24 and Fig. 5.25, the
influence of discretization size on the boundary layer is evident.

The pressure distribution inside the foam domain is presented in Fig. 5.26
(a). The effect of a heterogeneous inlet flow has been modelled and shown
here. The pressure distribution in Fig. 5.26 (a) represents the velocity
distribution reported in experimental results [8, 81], which gives a qualitative
agreement between the experiment and the simulation results.
Furthermore, it is expected that the pressure change from the inlet to the
outlet has a semi-linear behaviour. The transient pressure response in the
direction of the flow at the middle of the foam at y = 0.5 is shown in Fig.
5.26 (b). In this figure, the green line is the initial pressure and the red line
is the last time step.
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Figure 5.24: The 2D simulation of the distribution of (a) concentration and
(b) electrical field (Ez) in the y − z plane.
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Figure 5.25: The 2D simulation of the distribution of (a) concentration and
(b) electrical field (Ez) in the y − z plane with a bigger spatial grid ∆z =
5 × 10−2.
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Figure 5.26: (a) The 2D pressure distribution simulation in the y − z plane.
(b) The 1D transient pressure distribution at the middle of inlet (y = 0.5) in
the flow direction.
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5.3.2 Numerical vs. Experimental Results: Global Coating

Thickness Distribution

The experimental gravimetric measurements of global specific density distri-
bution in the cuboid specimens of the Ni/PU foam, specified by the red line
(Fig. 5.27 (a)) are depicted in Fig. 5.27 (b) [8, 81].

(a) (b)

Figure 5.27: Experimental results: (b) Gravimetric measurements of
global specific density distribution in the cuboid specimens on the red line
shown in (a). The crossed circles (⊗) show the inlet points of the current
during electrodeposition [8, 81].

To obtain a comparable numerical result corresponding to Fig. 5.27 (b), the
specific density can be associated with the normalized total coating thickness
in each specimen. Using the proposed model, the global coating thickness in
the y − z plane in the middle of the foam is calculated and divided by the
average total coating thickness of all specimens. The result is presented in
Fig. 5.28.
The trends in both experimental and numerical analysis show that the coat-
ing distribution is higher at the edges and it reduces in the inner areas of
the foam. The numerical result shows a good qualitative agreement with the
trend in Fig. 5.27 (b). However, the quantitative comparison of experimental
measurements with numerical calculations, shows 9.5% and 16.5% deviations
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in the highest and lowest magnitudes, respectively.
The coating distribution inhomogeneities can be the result of different fac-
tors such as the locations of introduced electric current (Fig. 5.27 (a)) which
can lead to a non-homogeneous electric field and edge effects [82], or the
non-homogeneous flow velocity. Therefore, in order to reach a more accurate
simulation, it is important to consider the experimental conditions in the
initial and boundary conditions.
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Figure 5.28: Numerical results: Computed global normalized coating
thickness distribution along the red line shown in Fig. 5.27(a).
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5.3.3 Numerical vs. Experimental Results: Local and

Semi-local Coating Thickness Distribution

In this section, the semi-local and local coating thickness is investigated in
three specimens taken from both sides and from the center of the foam (Fig.
5.23 (b)). The experimental results are compared with the simulation results
at the respective positions of the numerical domain.
Fig. 5.29 shows the experimental measurements of the semi-local (Fig. 5.29
(a)) and local (Fig. 5.29 (b)) coating thickness at the intended cuboid spec-
imens and the mentioned locations on each specimen [8, 81].

(a) (b)

Figure 5.29: Experimental results: Analysis of three characteristic cuboid
specimens from the hybrid foam plate in Fig. 5.23 (b). (a) Semi-local coating
thickness distribution with the averaged thickness values of the top, center,
and bottom of the cuboid specimen and (b) local coating thickness distribu-
tion within each analysed cuboid specimen [8, 81].

Fig. 5.30 depicts the simulation results for the semi-local and local coating
distribution in the considered specimens. The semi-local trends depict the
high coating thickness on the top (outlet) and bottom (inlet) parts and lower
coating thickness for the center of the specimens. These trends indicate
the same observations as the previous results, where higher thicknesses are
observed on the edges and the coating distribution decreases toward the inner
of the foam.
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The trends qualitatively show a good agreement between the model and
the experimental results. The quantitative comparison represents a close
agreement of the results for the bottom and center and an offset of 20 µm
for the top of the foam.
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Figure 5.30: Numerical results: Numerical simulations of the analysis of
three characteristic cuboid specimens shown in Fig. 5.23 (b). (a) Semi-local
coating thickness distribution with the averaged thickness values of the top,
center, and bottom of the cuboid specimen and (b) local coating thickness
distribution within each analysed cuboid specimen.

The difference in the semi-local results for the bottom of the specimens is
due to the definition of the boundary condition in this area. For the sake
of simplicity, a constant Dirichlet boundary condition has been defined (see
equation 5.49) and the occurring turbulence on both sides of the inlet near
the walls has been neglected. This turbulent flow can affect the distribu-
tion of ions in these areas and cause a non-homogeneous ion distribution.
Hence, the inlet area can be divided into the parts near the walls with high
ion concentration and an inner central part with lower concentration levels.
Considering the influence of the flow turbulence in the local distribution of
ions in the electrolyte, the inlet concentration boundary condition can be
modified and assumed as follows:
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c(y, 0, t) =



C∞ 0 ≤ y ≤ 0.2

0.7 C∞ 0.2 < y < 0.8

C∞ 0.8 ≤ y ≤ 1

(5.61)

Moreover, taking a look at Fig. 5.27 (a), the local influence of the electrical
field at both sides of the foam should also be considered. Therefore, the
electrical boundary condition at the inlet and outlet of the foam is not of a
homogeneous Dirichlet type; rather, it should be modified as follows:

E(y, 0, t) = E(y, 1, t) =



E1 0 ≤ y ≤ 0.2

0.7 E1 0.2 < y < 0.8

E1 0.8 ≤ y ≤ 1

(5.62)
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Figure 5.31: Numerical results: Using modified boundary conditions in
numerical simulations of the analysis of three characteristic cuboid specimens
shown in Fig. 5.23 (b). (a) Semi-local coating thickness distribution with
the averaged thickness values of the top, center, and bottom of the cuboid
specimen and (b) local coating thickness distribution within each analysed
cuboid specimen.
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The simulation results for the modified boundary condition in equations
(5.61) and (5.62) are shown in Fig. 5.31. They show an improved agreement
with the experimental results of Fig. 5.29. The comparison between Fig.
5.30 and 5.31 gives an emphasis on the importance of the proper choice of
boundary conditions to obtain a more precise simulation.

5.3.4 Numerical vs. Experimental Results: Investigation

of Flow

Investigating and understanding the flow behaviour through the open-cell
foam assists in understanding its influence on the coating characteristics. It
can help identify the coating-related problems and implement appropriate
corrective measures. Fig. 5.32 depicts the components of flow velocity
along the inlet of the foam. This estimation has been derived using CFD
simulation developed by Autodesk. The input data are based on the con-
ditions and measured parameters in the experiment. Moreover, an .stl file
describing the geometry of the foam was used as the input data of software to
compute the internal flow velocity. A detailed description can be found in [8].

The proposed model in this study is capable of the calculation of pressure
distribution in the domain. According to Darcy’s law, the velocity is related
to the negative pressure gradient (v ∝ −gradp). The negative pressure
gradient corresponding to the z- and y-velocity component in the direction of
the inlet is shown in Fig. 5.33. Once more, the qualitative comparison of the
trends reveals the ability of the model to predict the experimental conditions.

The flow velocity has been calculated using the obtained results of
pressure gradient and Darcy’s law. Fig. 5.34 depicts the z and y components
of velocity corresponding to the Fig. 5.32. Comparing the two figures,
the numerical results for Vy show a very good qualitative and quantitative
agreement with the CFD simulations. The obtained result for Vz from
the model, seems to be in an acceptable range, comparing with the CFD
simulation. However, the qualitative comparison shows a different trend
at the start of the foam. This deviation can be due to the simplifying
assumption of laminar condition for the flow and neglecting the turbulence
effects at the inlet which consequently led to the use of Darcy’s law.
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Figure 5.32: Results obtained from experimental input data: CFD
simulation of the electrolyte flow velocity inside the deposition area along
(Vz) and across (Vy) the inlet direction [8].
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Figure 5.33: Numerical results: Numerical modelling of the pressure gra-
dient inside the deposition area along and across the inlet direction.
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Figure 5.34: Numerical results: Numerical modelling of the velocity inside
the deposition area along (Vz) and across (Vy) the inlet direction using the
Darcy relation.



6
Conclusion and Future Works

6.1 Conclusion

The aim of this work was to propose a method to model the coating process
of polyurethane foams with nickel via electrodeposition. A comprehensive
description of the physical process and the experiment’s conditions has been
given and the process variables and the flow behaviour have been accordingly
modelled. The problem has been investigated in the framework of continuum
mechanics for mixtures and the main transport mechanisms, namely, diffu-
sion, convection and migration, have been taken into account. Moreover, the
deposition of ions has been considered via an additional sink term.
In this regard, the governing system of equations for this problem has been
derived using the fundamental balance equations of mass and momentum
for each constituent and the mixture as a whole. Considering simplifying
assumptions and defining suitable constitutive equations for the secondary
unknowns, a closed system of equations has been obtained which results in
the calculation of time-derivatives of concentration and pressure distribution
throughout the foam. Using the displacement current equation, a third equa-
tion has been coupled to the system of equations to calculate the electrical

– 95 –
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potential from the electric field.
The proposed model is capable of dealing with the gradual geometrical
changes with deposition and updating the parameters by introducing a back-
coupling technique. Using the Butler-Volmer equation along with Faraday’s
law of electrolysis, the coating thickness has been calculated. Therefore, the
parameter changes during the process and their influences on the deposition
have been taken into account.
The finite difference method has been used to solve the equations and the
accuracy of the solution has been examined by performing a convergence
study along with other validation techniques.
The results obtained from the simulations exhibit the ability of the model to
describe the experimental observations. The proposed model is able to inves-
tigate the influence of different processes and parameters on the concentration
distribution. The comparison of numerical and experimental results exhibits
a strong qualitative correlation and a promising capability of the model to
improve the coating process and the homogeneity of coating.
The main results and conclusions can be summarized as follows:

• Different fields, such as the transient response of concentration, pres-
sure and electric field distribution, local and global coating thickness
and permeability changes can be obtained from the proposed model.

• Reducing the spatial grid size plays a significant role in the accuracy
and convergence of the responses. Whereas reducing the time step size
does not have any influence on the convergence of the responses and
only results in an unnecessary increase of computational costs.

• The back-coupling calculations play a more noticeable role in a
convection-dominant process in comparison to a diffusion-dominant
process.

• The process parameters are more sensitive to the flow velocity and thus
convection than to the diffusion. Changes in the intensity of convection
result in considerable changes in the concentration responses.

• The simulation results show a higher coating thickness at the bound-
aries of the foam and a decrease towards the centre. This behaviour
has also been observed in the experiments.

• The comparison of the experimental and numerical results shows a very
good qualitative agreement between the trends.

• A quantitative comparison of the coating thickness results shows small
deviations between the simulation and experiment.
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• The results show that an appropriate choice of boundary conditions is
crucial for at least a qualitatively correct simulation of the experiment.

All in all, the model is capable of describing the process and the obtained
simulation results were in an acceptable range in comparison to the experi-
mental results.

6.2 Outlook

This model can be modified in future by modifying the initial simplifying
assumptions and by taking into account the effects which were overlooked in
this study.
Darcy’s law in the current model was obtained based on the laminar flow
assumption. However, the experimental results report a turbulent flow and
hence the flow velocity can be improved by considering the turbulent flow
behaviours and using the Brinkman or Forchheimer Equations.
Moreover, the magnitudes of the input parameters A1, A2, A3 and a have been
identified by numerical experimentation and according to the experimental
results. These input parameters can be identified and related to the local
physical quantities such as conductivity of the foam or electrical field. Know-
ing the physical meanings of these parameters, it will be possible to identify
the best conditions to have a homogeneously coated foam. The optimum
values of different influencing factors can be suggested and the electrodepo-
sition process can be performed under the suggested conditions.
In the present study, the influence of the magnetic and electric forces has
been neglected in the momentum balance. In future studies, the influence of
the magnetic and electric fields in the applied body forces can be taken into
account.
Thus, this study can be extended for future research and investigate the
coating process with more details and from different aspects.
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