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Abstract 

This thesis studies the question of how to utilize automated machine learning in 

industrial condition monitoring. The typical issues encountered are addressed, and a 

modular machine-learning approach is developed to solve them. Namely, it is easily 

applied with little machine learning knowledge due to full automation. It applies to 

various condition monitoring scenarios due to mutually complementing algorithms 

and toolbox-like structures. Its results are physically interpretable, creating an extra 

layer of trust and allowing deeper process understanding, while the prediction quality 

is on par with neural networks in robustness tests. Furthermore, the approach facilitates 

deployment on low-cost, high-efficiency edge hardware close to the sensors. That, in 

turn, reduces energy costs and required communication bandwidth compared to cloud 

computing. Additionally, the approach includes novelty detection and concepts that 

utilize it for outlier detection, monitoring of supervised learning, and detection of 

previously unknown faults. All named capabilities have been extensively and 

successfully compared to other approaches in different exemplary application 

scenarios. This success started the Data Engineering and Smart Sensors group at 

ZeMA and the Lab for Measurement Technology that further researched and extended 

the approach, e.g., by traceable uncertainty estimation following the Guide to the 

Expression of Uncertainty in Measurement. 
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Kurzfassung 

Diese Thesis beschäftigt sich mit der Frage, wie automatisiertes maschinelles Lernen 

für industrielle Zustandsüberwachung eingesetzt werden kann. Ausgehend von dabei 

typischerweise auftretenden Problemen wird ein automatisiertes Konzept zu deren 

Lösung entwickelt. Es ist durch die Automatisierung ohne tiefes Verständnis 

maschinellen Lernens einsetzbar. Weiterhin deckt es mit sich gegenseitig ergänzenden 

Algorithmen und einer offenen Baukastenstruktur ein breites Anwendungsspektrum 

ab. Die gelernten Modelle sind physikalisch interpretierbar, was zu ihrer 

Vertrauenswürdigkeit beiträgt und den Aufbau zusätzlichen Prozessverständnisses 

ermöglicht. Gleichzeitig ist ihre Robustheit der von neuronalen Netzen gewachsen. 

Das Konzept kann auf kostengünstiger Rechenhardware direkt am Sensor umgesetzt 

werden, was im Vergleich zu Cloud-Computing notwendige Bandbreite und 

Energiebedarf reduziert. Darüber hinausgehend werden Konzepte zur 

Anomalieerkennung entwickelt, die Ausreißerdetektion, Überprüfung des 

überwachten Lernens oder Erkennung bisher unbekannter Schäden ermöglichen. Alle 

genannten Fähigkeiten wurden in mehreren Anwendungen mit denen anderer 

Konzepte verglichen. Die erzielten Erfolge führten zur Entstehung der Gruppe für Data 

Engineering and Smart Sensors am ZeMA und am Lehrstuhl für Messtechnik, in der 

diese Forschung weitergeführt und ausgebaut wurde. Zum Beispiel wurde die 

Berechnung der Messunsicherheit nach Guide to the Expression of Uncertainty in 

Measurement erweitert.  
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1 Introduction 

The ongoing process of the fourth Industrial Revolution (Industry 4.0 [1]), among 

other things, aims for better knowledge and control over production facilities [2]. 

Sensors, measurement science, and smart evaluation are the keys to achieving this 

goal. Multiple puublications have recognized and acknowledged this [3, 4]. With the 

industry's increasing focus on industrial services and value to the customer, future 

sensors have to emphasize the value of the measured data to the customer [5]. The goal 

is not to measure data but to gain additional process insight by extending the 

measurement chain by interpreting the measured raw data using machine learning [6]. 

A simple example of such an interpretation is the extraction of fault symptoms from a 

vibration sensor signal that allows deducing the remaining useful lifetime of a machine 

that could be used to schedule condition-based maintenance and reduce repair costs 

and downtime [7, 8]. This deduction process and identifying fault symptoms can at 

least be partially automated by machine learning [9] and was demonstrated among 

other works in the project iCM-Hydraulic [10]. iCM-Hydraulic followed the new 

measurement paradigm of condition monitoring (CM) using data-based modeling 

instead of physical sensor modeling. This paradigm has been identified as one of the 

major trends in measurement science [11]. 

The main research question for this thesis is how to apply this paradigm in a wide 

range of condition monitoring scenarios and how the various encountered issues can 

be solved simultaneously. More specifically, the questions are which algorithms and 

hyperparameters will be chosen for damage detection, how these algorithms are 

applied in real scenarios, and how novelty detection will support that. Note that all 

those questions have to be answered within the limitations of industrial conditions 

monitoring like vast amounts of recorded data, limited bandwidth to the cloud, limited 

computing resources on the edge, limited availability of machine learning experts, low 

trust in black-box models, very diverse sensors signals and high requirements for 

robustness.  
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2 Thesis Structure and 
Publications 

Modernizing industrial smart sensors that offer process insights beyond their direct 

measuring capability by interpreting their signals poses a considerable potential for 

optimization, monitoring, control, and quality control. Section 3 outlines the vision for 

such a sensor and derives the resulting need for an automatic machine learning toolkit. 

Section 4 reviews typical applications expected for smart sensors, the respective 

difficulties for machine learning, and the current state of the art. Note that most of the 

discussed issues can be solved individually by off-the-shelf approaches; however, they 

lack performance when faced with regularly encountered combinations of problems. 

Afterward, Section 0 constitutes the core of this thesis and introduces an automated 

machine learning approach of algorithms that were specifically chosen to cater to the 

needs of smart sensors in Papers 1-3 with goals described in Paper A. Additionally, 

Papers 1-3 show the approach's broad applicability, its application to novelty detection 

and comparisons to other algorithms. 

Subsequently, Section 6 presents further research led by the author of this thesis that 

analyses and extends the suggested approach in Papers B-E and additional research 

projects based on Papers 1-3. Namely, this section shows machine learning limitations 

regarding domain shifts in Paper B. It complements the introduced toolbox's 

predictions with a metrological analysis of effects like measurement uncertainty and 

inaccurate sensor synchronization in sensor networks in Papers C and D, respectively. 

Paper E then extends the field of applications of the algorithm toolbox to structural 

health monitoring before the integration into no-code graphical user interfaces is 

shown. Additional algorithmic capabilities complement these extensions. 

Finally, Section 7 reviews the achieved results and discusses the yet unsolved 

transferability problem and possible approaches to tackle this in future work. 
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2.1 Appended Papers and Author’s 
Contribution as part of the Thesis 

Three of the author’s papers, formally included in the thesis, are listed in this section. 

They represent the main answer on achieving the goals and answering the research 

questions formulated in Section 1. Papers 1 and 2 answer those questions by 

introducing an automated machine learning toolbox for condition monitoring and its 

principles. Paper 3 highlights its extension to Novelty Detection. These papers are 

supplemented by other papers and further research by the author, described in the next 

section. Those are not part of the thesis but highlight the significance of the automated 

machine learning toolbox and provide a deeper understanding of the toolbox and its 

applications. 

Paper 1 T. Schneider, N. Helwig and A. Schütze, “Automatic Feature Extraction 

and Selection for Classification of Cyclical Time Series Data,” tm – 

Technisches Messen (2017) 

 I designed the automated machine learning toolbox, designed and 

performed the shown evaluations, and wrote the main part of the 

manuscript. 

Paper 2 T. Schneider, N. Helwig, and A. Schütze, “Industrial Condition 

Monitoring With Smart Sensors Using Automated Feature Extraction 

and Selection,” IOP Measurement Science and Technology (2018) 

 I extended the automated machine learning toolbox, performed most of 

the shown evaluations and model analysis, and wrote the main part of 

the manuscript. 

Paper 3 T. Schneider, S. Klein, and A. Schütze “Machine Learning in Industrial 

Measurement Technology for Detection of Known and Unknown Faults 

of Equipment and Sensors,” tm – Technisches Messen (2019) 

 I designed the three approaches to the different novelty detection 

applications shown, designed and performed the shown evaluations, and 

wrote the main part of the manuscript. 
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2.2 Other Appended Papers Based on the 
Author’s Work 

This section lists papers that are within the direct scope of this work but are not an 

official contribution. These papers highlight the author’s continued scientific work 

after the research shown in the previous section as head of Data Engineering and Smart 

Sensors at the lab for measurement technology at Saarland University and ZeMA, 

which is highlighted by the position as the last author in most of these papers. Those 

papers and the corresponding research projects based on the automated machine 

learning toolbox will be discussed in detail in Section 6. 

Paper A A. Schütze, N. Helwig and T. Schneider, “Sensors 4.0 – Smart Sensors 

and Measurement Technology Enable Industry 4.0,” Journal of Sensors 

and Sensor Systems (2018) 

Paper B P. Goodarzi, A. Schütze, and Tizian Schneider, “Comparison of 

Different ML Methods Concerning Prediction Quality, Domain 

Adaptation, and Robustness,” tm – Technisches Messen (2022) 

Paper C T. Dorst, T. Schneider, S. Eichstädt and A. Schütze, “Uncertainty-Aware 

Automated Machine Learning Toolbox,” tm – Technisches Messen 

(2023) 

Paper D T. Dorst, Y. Robin, S. Eichstädt, A. Schütze, and T. Schneider, 

“Influence of Synchronization Within a Sensor Network on Machine 

Learning Results,” Journal of Sensors and Sensor Systems (2021) 

Paper E C. Schnur, P. Goodarzi, Y. Lugovtsova, J. Bulling, J. Prager, K. Tschöke, 

J. Moll, A. Schütze and T. Schneider, “Towards Interpretable Machine 

Learning for Automated Damage Detection Based on Ultrasonic Guided 

Waves,” Sensors (2022) 

A complete bibliography of my research up to date is given in Appendix A. It includes 
17 peer-reviewed journal articles and 36 conference papers.  
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3 Vision Sensor 4.0 

Programmable sensor interfaces can already be purchased from suppliers like National 

Instruments [12]. However, for broad applicability, they need to be modularized and 

complemented by an equally modularized algorithm toolkit that can process data from 

various sensor types. In addition to condition monitoring of production equipment [13] 

or remaining useful lifetime services integrated into products [14], such a modular 

approach also opens application scenarios like in-process quality control in 

production [15] and assembly [16] as well as soft-sensing scenarios [17]. 

Given the high frequency of fault symptoms like ultrasonic vibrations [18] or current 

fluctuation [19], the software modules must allow training with big data [20] from 

various sources at high sample rates as well as support for hardware accelerated 

inference on the edge. The on-edge inference is needed to avoid overloading higher 

system components or communication networks with the full data streams. 

Furthermore, automated machine learning must provide explainable models and the 

necessary trust for business decisions made on those models [21]. It also needs to 

support novelty detection to overcome the issue of previously unseen machine 

faults [22]. 

Condensed the Sensor 4.0 with machine learning capabilities needs software toolkits 

that offer: 

• A wide range of application scenarios for classification and novelty detection 

• Model explainability 

• The capability to reduce a massive amount of data to highly relevant features 

on the edge 

• Easy system integration on edge-hardware 

• Training support for BIG Data 

Such a toolkit was developed in Papers 1-3. 

Besides the technical aspects of Sensor 4.0, the development process of such a sensor 

also has to consider economic elements. An exemplary estimate was given by Sosale 

and Gebhardt [23] for condition monitoring of pump aggregates that compares the 

economic prospects of run to failure, manual condition monitoring with regular 

checkups, and automatic condition monitoring with smart sensors. Depending on the 

industry and local wages, the maximum justifiable cost for automatic condition 

monitoring over manual condition monitoring ranges from 30 € (oil and gas industry 

in Asia) to 310 € (oil and gas industry in the North Sea) per sensing point. In every 
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calculated scenario, manual condition monitoring was preferred over run-to-failure 

strategies [23]. 

Some application partners in research projects like MoSeS-Pro, KI-Predict, and KI-

MUSIK4.0 target lower prices, especially for smart sensor integration into products 

that offer self-monitoring capabilities. Note that by most companies, condition 

monitoring integration into products is usually seen as more price-sensitive than 

condition monitoring of production facilities. 

In the context of Sensor 4.0, these costs include, in addition to the costs of the sensor 

itself: 

• Installation, power supply, and communication 

• ML model training 

• ML model inference hardware 

Therefore, costs have to be reduced in all these fields to achieve maximum scalability, 

which is one of the most critical factors for introducing AI in big companies in 

Germany [24]. 

Sensor costs: As will be described in more detail in Paper A, over-instrumentation 

during training data acquisition and subsequent virtual sensor removal or signal 

augmentation can be used to determine the minimal feasible amount of sensors [25]. 

The minimum required sampling rate [26] and minimal signal quality needed, i.e., the 

possibility of using low-cost sensors [25], can be determined similarly. This data 

reduction enables the deployment of a suitably scaled-down sensor network or single 

sensor. An example is shown in Paper 2. 

Installation and wiring costs for energy supply and communication: Wiring costs 

can be reduced by using wireless sensors. Examples of such wireless sensors are the 

ABB Ability™ Smart Sensors or the Bosch CISS (connected industrial sensor 

solution) that transmit, among others, vibration data via Bluetooth™ Low Energy to 

smartphones or IoT Gateways. Combined with a sleep mode that records data only for 

a couple of seconds every hour, they are available with a battery life of up to 15 

years [27]. Alternatively, such sensors could be powered by energy harvesting [28]. 

For ABB Ability™ Smart Sensors, the installation cost is minimized by utilizing 

magnetic mounts or special glue to prevent drill work. An alternative to installing 

dedicated condition monitoring sensors is retrofitting a data evaluation system on top 

of existing sensors, as shown in project iCM-Hydraulic [10]. Note that limited data 

bandwidth on low-power wireless communication protocols and the energy cost per 
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transmitted byte again motivate on-edge data reduction by feature extraction, as 

suggested in Papers 1 and 2. 

ML model building: Utilizing machine learning for condition monitoring can 

eliminate the need for extensive physical modeling [14]. However, this advantage 

must not be traded for the need for extensive algorithm modeling development for 

particular use cases [8]. Therefore, a versatile, automatic ML approach that can be 

automatically adapted to different use cases is needed. Research and development of 

such an approach are crucial contributions of this thesis and are shown in Papers 1-3. 

ML model inference: To fully use the automatic ML approach motivated above, 

model inference (or at least feature extraction and selection) must be integrated into 

the sensor system [29]. This can be done using low-cost microcontrollers or ASIC-

based AI accelerators, as researched in projects KI-Predict [30] and KI-

MUSIK4.0 [31]. Such a system reduces the data load necessary to capture information 

from high-frequency fault symptoms and energy consumption of the wireless data 

connection and, therefore, extends battery life with a suitably optimized accelerator. 

On the downside, the limited resources available for edge computing impose additional 

constraints on the ML modeling algorithms considered in Paper 1. 

Training data acquisition: The gold standard for training data acquisition would be 

an over-instrumented pilot project [32]. Experiments would cover all possible 

operation modes and cross-influences on the sensor data and all their combinations to 

learn the minimal sensor setup needed to achieve the required robustness [25]. 

However, only data from in-line experiments in pilot plants are usually available, i.e., 

a pilot plant is retrofitted with sensors, and data is recorded during regular operation, 

leading to highly imbalanced datasets heavily favoring failure-free operation [29]. 

This data situation naturally leads to Novelty Detection, as discussed in Paper 3. 

Combined with embedding into a framework that starts with novelty detection on the 

regular operation, which can later be used for much more sensitive detection and 

quantification by supervised machine learning, maximum user profit is achieved. Since 

such a framework would require extensive research that could be carried out in another 

thesis, this thesis only focuses on supervised ML (Papers 1 and 2) and the algorithms 

suggested for novelty detection (Paper 3). Since data from regular operations cannot 

be used to determine the features needed for fault detection, all raw data must be 

centralized during this process. On the positive side, this removes the necessity for 

online learning and inference for novelty detection, allowing for a broader spectrum 

of algorithms. 

Note that there are multiple alternatives to the approach described above. For single 

components, careful design of experiment (DoE) on a testbed that covers all expected 
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cross-influences and a limited number of experiments based on Latin Hypercube 

Sampling is usually the better alternative to the data acquisition in pilot facilities. This 

is because of better control that allows for highly reduced experiment times. However, 

this approach is typically too costly for condition monitoring beyond the component 

level, and correctly reproducing typical operation environments on a testbed is likely 

to be complicated. Other alternatives are online learning approaches like one-shot 

learning [33]. Online learning is especially useful if a Sensor 4.0 is intended to replace 

an expensive reference system that can provide target data during training, i.e., parallel 

operation of training data acquisition and reference system. On the negative side, 

online learning further restricts the choice of algorithms, is usually only feasible for 

minimal models, requires an online reference as a target, and eliminates the insight a 

process expert could gain from analyzing stored training data [29]. 
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4 Background, challenges, and 
current research 

Note that most of the challenges discussed in this section can be solved individually 

by off-the-shelf approaches that will be discussed as part of the current research. 

However, those approaches usually lack performance when faced with regularly 

encountered combinations of issues. Papers 1-3 specifically focus on solving 

combinations of multiple challenges at once. 

4.1 Applications and Data Properties 

Since a smart sensor has to adapt to a large variety of different application scenarios 

with very different requirements for data analyses, this section introduces examples of 

machine learning problems. These are typically encountered in condition monitoring 

and quality control and are used to derive the necessary versatility and additional 

properties of the analysis approach. Note that this list of examples is not intended to 

be complete and only aims to show the most often encountered domains from which 

information needs to be extracted. 

In the first example, helpful information is visible in small sections of the signal, 

whereas large portions of the sensor signal are irrelevant for condition monitoring, i.e., 

the information is located in the time domain. For example, Figure 1 shows the 

movement speed of an electromechanical cylinder working against a constant pulling 

force just after replacement and just before failure [34]. As shown, the speed profiles 

differ significantly during and shortly after the acceleration phase on the return stroke 

due to a delay of the worn-out cylinder. In this phase, the position-controlled cylinder 

is accelerated against the pulling load. As wear increases toward failure, the efficiency 

decreases, and the drive fails to achieve the targeted acceleration. This causes the 

cylinder to drive faster for longer to catch up to the controlled target position after 

acceleration. This deviation, called contouring error, is the stopping criterion during 

fault detection. Due to its load dependency, it is only visible during this short high-

load acceleration phase, and a fully automatic machine learning algorithm cannot 

utilize the knowledge about the contouring error. It needs to catch those deviations 

independently of the rest of the signal. An example of such an algorithm is the 

combination of Adaptive Linear Approximation (ALA), which separates the signal 

into linear segments, and a feature selection algorithm that selects signal slope during 
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acceleration and signal mean after acceleration as relevant features for the remaining 

useful lifetime  [35]. 

 
Figure 1: Velocity profile of electromechanical cylinder. At 1.5 seconds, the cylinder accelerates against 
a high load. With increasing wear, reaching the set speed and lag compensation to the controlled position 
is delayed. The wear has negligible effects throughout other parts of the cycle, as seen from the data of 
both lines overlapping everywhere except for the zoomed-out part. Note that this only holds up for this 
specific sensor, while other sensors (e.g., vibration sensors) can detect wear symptoms during different 
segments [26]. 

In some cases, the information relevant to condition monitoring is not located in one 

specific location but is apparent in the same way in multiple parts of the signal. One 

example is shown in Figure 2, which shows the pressure signal of a hydraulic machine 

that was set to hold six different pressure levels for ten seconds each [36]. The pressure 

control can achieve the targeted pressure independent of accumulator pre-pressure. 

However, accumulator leakage increases the time the machine needs to switch to the 

next pressure level. Since pressure switches occur multiple times, a localized feature 

extraction like ALA would need numerous features to capture all comprised 

information. In contrast, a global feature extraction method like Principal Component 

Analysis (PCA) [37] can capture the information from all switching processes 

simultaneously, which is visible in the coefficients of the first principal component 

that show upswings on rising pressure edges and downswings on falling edges. The 

result is a score on the first PC that is a very high quality (yet not perfectly linear) 

feature for accumulator leakage detection (see Figure 2). 
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Figure 2: (top): Pressure cycle of a hydraulic machine with different accumulator pre-pressures. The 
higher the pre-pressure, the faster a new set pressure point can be reached. Given a dataset with multiple 
cycles from four different pressure steps and otherwise perfect working conditions, PCA can quickly 
identify this effect as the dominant factor in the dataset. Therefore, the coefficients of the first principal 
component reflect that by showing significant absolute values only around pressure switches. This also 
combines correlated information from multiple switches. (bottom): The resulting projection on the first 
principal component correlates strongly to the accumulator pressure and can be used to identify this 
fault. 
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For vibration signals typically recorded by a microphone or accelerometer, the fault 

information is usually not found in time but in the frequency domain. For example, 

Figure 3 shows the acceleration's absolute spectra of damaged and undamaged 

bearings [38]. Features useful for damage detection are oscillation energy in certain 

parts of the spectra, like damage frequencies of the inner ring, outer ring, or rolling 

elements. In this case, the expected defect frequency for the inner ring lies below 

105 Hz [39] and nowhere close to 2.5 kHz, where Figure 3 shows the most oscillation 

energy for the damaged bearing. Therefore, in this case, the most significant 

differences cannot be retraced to the damage, highlighting the necessity for feature 

selection. 

 
Figure 3: Two example spectra from the Case Western Reserve University bearing datasets with and 
without damage on the inner ring. Relevant signal differences are localized in the frequency domain 
around 2.5 kHz and 8.4 kHz (zoomed plots). Note that the authors do not offer any physical explanation 
of these differences [39]. 

Similarly to the time and frequency domain transformations shown above, many 

condition monitoring use cases have been shown to profit from the time-frequency 

transformation offered by Wavelet Transform that allows a multiresolutional view of 

the data [40]. 

The last example (see Figure 4) shows how relevant information can be derived from 

the statistical data distribution. It shows data from the same hydraulic machine used to 

create Figure 2. The signal was recorded using an accelerometer mounted on the main 
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pump [41]. As seen in Figure 4, the signal kurtosis on a pressure plateau can be a 

valuable feature in detecting severe accumulator pressure loss. The kurtosis can be 

interpreted similarly to the crest factor. A larger kurtosis means a more significant 

proportion of samples with high deviation from the mean, i.e., higher acceleration 

values. Note that this feature is noisier than the one depicted in Figure 2. Nonetheless, 

it is still preferable in some applications since it is robust against other cross-influences 

like valve sticking that would have a high impact on the PC score due to the valve 

switching delay it causes. Therefore, in this example, there is a strong argument for 

extracting features from the statistical properties of sensor signals. 

 
Figure 4: This figure shows the Kurtosis of vibration signal extracted from time segment 30s-36s and 
correlated accumulator pressure. The sensor is mounted on the main pump of a hydraulic system. The 
kurtosis can be used to identify severe loss of pressure. 

In conclusion, the resulting feature extraction problems typically encountered in 

condition monitoring are too diverse to be solved by one feature extractor. Based on 

an extensive comparison and benchmark of multiple feature extraction 

algorithms [42], Papers 1-3 of this thesis suggest a carefully chosen combination of 

mutually complementing feature extraction algorithms. Papers 1-2 specifically tackle 

the problem of selecting a suitable extractor for supervised learning, while Paper 3 

tackles the same problem for unsupervised learning. 
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4.2 Machine Learning Challenges 

When applying ML to CM, one faces multiple data quality challenges. These arise 

from the data quality typically encountered in industrial applications and modeling 

challenges on this data. Since both these categories require extensive research to be 

covered exhaustively, this section only focuses on the biggest and most commonly 

encountered challenges in industrial CM. It derives requirements for the employed 

machine learning algorithms and their usage. In a typical CM scenario, multiple 

interfering challenges that mutually reinforce and/or mask each other are encountered. 

4.2.1 Data Quality Challenges 

In an open discussion preceding the MST-Congress 2021 [43], multiple industry and 

academic experts agreed that poor data quality is the biggest problem commonly 

encountered in industrial machine-learning scenarios, even in research projects on AI 

for predictive maintenance. 

The most common problem with data quality is the statistical dependency of training 

samples. Although statistical learning theory is one of the foundations of machine 

learning and assumes data that are identically distributed and independently 

drawn [44], industrial data is usually recorded under constant conditions, making the 

data statistically dependent. However essential for ML, the topic is insufficiently 

treated in scientific literature. An example is the famous deep learning review by 

LeCun, Bengio, and Hinton published in Nature [45], which by March 2024 was cited 

more than 76,000 times [46]. This paper contains precisely two sentences about data. 

The first states, "We first collect a large data set of images, of houses, cars, people and 

pets, each labeled with its category" [45]. The second states, "In a typical deep-

learning system, there may be […] hundreds of millions of labeled examples with 

which to train the machine" [45]. None of them state any requirements about data 

quality. Papers from the engineering community usually refer to data quality standards 

inspired by conventional measurement science. Since ML in condition monitoring is 

an extension of the measurement chain, those standards are essential, however 

insufficient for ML, as they neglect the statistical independence of data samples: E.g., 

the 15 IQ dimensions of data quality formulated by Hildebrandt et al. [47] does not 

include statistical independence as the dimensions "completeness" only takes into 

account missing data from individual sensors, and the dimension "sufficient for the 

current task" only names the number of training samples but not their statistical 

properties [47]. Statistical independence can only be achieved by running multiple 

experiments under multiple conditions during training data acquisition (e.g., 
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environmental conditions, load conditions, repeated wear experiments with different 

test objects of the same type). Since such variations in experiments are either extremely 

expensive, can only be performed on testbeds, or are just plain impossible (e.g., fault 

simulation in retrofitting applications), the employed algorithms must be able to handle 

both redundant data sample from experiment repetition under similar circumstances 

and a meager number of independent samples. Therefore, the algorithms suggested in 

Papers 1-3 are chosen to be as robust and straightforward as possible to optimize their 

ability to generalize, which is confirmed in the studies performed in Paper B. 

A second challenge often closely connected with statistically dependent training 

samples is the issue of unrepresentative data. One facet of unrepresentative data is 

the regularly encountered low number of (statistically independent) training samples. 

The principal problem lies in the law of large numbers. It states that the average of the 

results from many trials of the same experiment should be close to the expected value 

and tends to become closer to the expected value as more trials are performed [48]. In 

reverse, this law shows that extreme results (i.e., results far from the expected value) 

concerning statistical evaluations are more likely to appear in small sets of data 

samples. Concerning CM, that means that estimations of validation and test errors on 

small datasets might be far from the actual expectancy values, and the performance of 

a given algorithm cannot be measured reliably. Since this issue cannot be solved with 

statistical approaches, it requires global interpretability of the employed ML method 

to verify its significance with physical process knowledge. Therefore, all algorithms 

employed in Papers 1 and 2 offer global interpretability. 

The same requirement of global interpretability can be derived from the correlation 

versus causality issue that arises from possible correlations between the target variable 

and other interfering variables that influence the sensor signals. If those interfering 

variables cannot be measured during training data acquisition, this problem is not 

detectable with purely statistical approaches and has to be solved by physical model 

interpretation. If the application allows a broad design of experiments, this problem 

can also be solved by the design of experiment that ensures statistical independence of 

controlled variables. 

The last facet of unrepresentative data treated here is errors in datasets that occur in all 

machine learning applications. One example Meske et al. [49] show is the presence of 

source tags in ca. 20% of images of horses that were used to train image classifiers. 

The authors demonstrated the resulting issue by employing explainable AI methods 

that highlight the source tag in images classified as horse and the fact that classifiers 

cannot detect horses when source tags are removed. Also, they showed that classifiers 

would detect a horse if the same source tag is added to a random image, and the 
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explainable AI method will again highlight the source tag [49]. In condition 

monitoring, such errors usually arise from systematic measurement errors during 

training data acquisition. They can be solved by following the conventional rules of 

measurement science, such as using calibrated sensors. However, due to their frequent 

appearance, the ML method should be able to detect such errors. The above example 

shows that local model explainability is sufficient for this task. However, global 

explainability is preferred since it relieves the need to check each example 

individually. 

The last data quality challenge addressed here is the low accessibility and data 

availability that complicates comparisons between different algorithms. This problem 

is manyfold and can have multiple origins prohibiting training data acquisition or 

access to training data. Examples include restrictive data protection policies by 

companies that do not allow open data, the need for expensive and proprietary 

interfaces to read sensor data from control units, or limitations of open interfaces like 

sample rate with OPC-UA. The biggest problem, however, is a missing coherent 

standard for data representation and file formats due to the vast variability in 

applications and respective data structures. This is in direct contrast to, e.g., image 

classification, where the excellent availability of data is one of the reasons for the 

success of deep learning methods. Even preinstalled tools like "Windows Photos" can 

handle 41 file formats [50] to depict or resave them coherently. This problem cannot 

be solved quickly, but it regularly has to be acknowledged. Although it does not 

impose direct requirements on the ML algorithms, it suggests that not all AI research 

on image or audio classification can be transferred to condition monitoring due to this 

missing key component of the success of deep neural networks. Therefore, Papers 1-3 

do not suggest neural networks for condition monitoring, which is also justified by the 

studies in Paper B. 

4.2.2 Modeling Challenges: 

The first challenge a machine learning algorithm encounters during training for 

condition monitoring is the high dimensionality of training data. Most neural networks 

for image classification work on rescaled images from 224x224 to 331x331 pixels [51] 

(i.e., 1.5 − 3 ∗ 10� input dimensions for colored images). At the same time, in 

condition monitoring, the dimensionality of raw data is usually much higher due to the 

high sampling rates necessary for detecting high-frequency wear symptoms like higher 

harmonics in electrical currents [34]. For example, during one working cycle of the 

electromechanical cylinder mentioned in the previous section, nearly 10	 

measurements are recorded. Significant resampling is often possible after confirming 
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the absence or low relevance of high-frequency information [26]. This high 

dimensionality causes problems like overfitting [52, 53], i.e., interpretation of noise, 

and the curse of dimensionality [54, 55], showing diminishing measurement contrast 

in high dimensional space. Aside from the encountered “finding a needle in a 

haystack” problem, algorithms might suffer because the context of the target variable 

might be easier to detect than the target variable itself. As an example, consider the 

electromechanical cylinder use case. As shown in Paper 2, the remaining useful 

lifetime of a single cylinder is easy to predict with a model trained explicitly for this 

cylinder. At the same time, all three analyzed cylinders can be discriminated by an 

unsupervised, linear PCA on the feature level. This constellation allows any complex 

algorithm to learn a model tree that first detects the correct cylinder and then predicts 

its remaining useful lifetime with a cylinder-specific model. This model tree would 

appear very accurate in random cross-validation. However, it would not be transferable 

to new cylinders. It is essential to carefully choose training, validation, and test data to 

detect this. In this example, leave one cylinder out cross-validation would be 

appropriate. To prevent this issue, the model's capacity would have to be reduced, so 

model trees become impossible to learn for the algorithm, as is the case for the 

suggested toolbox from Papers 1-3. 

The abovementioned issue is closely connected with the model challenge of strong 

cross-influences. The ML challenges in industrial datasets are usually relatively easy 

to solve due to typical wear symptoms like increased power consumption, decreased 

efficiency, or increased vibration intensity. At the same time, they can be complicated 

with cross-influences like temperature, load, speed, and others. In machine learning, 

those cross-influences are called domain shifts. For the datasets analyzed in this thesis, 

they are so significant that they are treated in Paper B as a separate issue. It should be 

mentioned that current research suggests simpler methods are less susceptible to 

domain shifts [56]. 

In total, there are three conclusions to be drawn from the challenges mentioned above: 

1. Global interpretability is a massive advantage for algorithms used for CM 

2. Robust methods should be preferred over complex and powerful methods 

3. Training and validation methods need to handle the low statistical 

independence of data samples 

These conclusions explain the use of strictly linear – and therefore inherently and 

globally explainable – classification with physically explainable features in Papers 1 

and 2. At the same time, linear models are the simplest and, therefore, most robust 



 

26 

 

models available to solve the problems at hand (see Paper 2). They especially excel 

when tested for generalization in the presence of statistical dependencies (Paper B). 

4.3 Data Science Approaches 

Proceeding from the data, applications, and challenges shown in the previous section, 

three major scientific communities research machine learning from such or at least 

very similar data. Partitioned by their primary field of research, those are: 

• Mechanical engineering community 

• Time series data mining community 

• Deep learning community 

Having very different scientific backgrounds, each community developed its own 

solutions for the problems at hand that, in turn, offer different advantages and 

disadvantages for the use in condition monitoring. Those solutions will be reviewed 

and discussed in the following.  

Mechanical engineering community: ML in the mechanical engineering community 

evolved from conventional (physical model-based) signal processing and typically 

utilizes conventional machine learning pipelines comprised of feature extraction, 

dimensionality reduction (feature selection and projections), and classification or 

regression [57, 58]. Note that there has been and still is a smooth transition of this 

community towards deep learning algorithms that are increasingly used for condition 

monitoring [57]. However, the main focus of this community is feature extraction. The 

most common transformations whose properties are used for feature extraction are Fast 

Fourie transformation (FFT) [40, 59, 60], wavelet transformation (WT) [60], and 

short-time Fourier transform (STFT) to transform signals from acoustic emission, 

vibration or force sensors [57]. Also, signal statistics like statistical moments, root 

mean squared, crest factor [61], and parameters of fitted autoregressive integrated 

moving average (ARIMA) models [62] are commonly used as features. Typically, 

algorithms are suggested for a specific target application and incorporate substantial 

physical domain knowledge of this specific application. A simple example is the 

damage frequencies of ball bearings [63]. The most common ML algorithms trained 

on these features are (shallow) neural networks, Support Vector Machines, and 

Decision Trees [58]. 

Concerning sensor 4.0, the advantages of this physically motivated approach of this 

community are: 



 

27 

 

• All algorithms directly target and are designed for condition monitoring. 

• Domain knowledge leads to highly sensitive and robust features. 

• Good physical interpretability of features. 

• Features are usually computationally cheap. 

The disadvantages are: 

• Features are tailored for specific applications and require detailed system 

knowledge. 

• Suggested algorithms are typically tested on single, unpublished datasets 

generated by the proposing authors themself and are insufficiently compared 

to other algorithms [64]. While this is forgivable concerning the difficulty of 

obtaining such datasets, especially concerning privacy issues arising from real-

world machine data, this lack of commonly available datasets is considered one 

of the most pressing issues in CM model training [65]. 

• A study found that “Many models reported in the literature lack proper 

validation procedures [… that are … ] now viewed as standard in other 

domains” [58]. This issue leads to algorithms with unknown generalization 

performance. 

Time series data mining community: The development of the time series 

classification community dates back at least to 1993 [66]. However, a review of the 

first decade of research showed that most papers used only a single artificial dataset 

created by the proposing authors themselves for testing [64]. Motivated by the need 

for comparable benchmarks, Keogh and Folias created the UCR Time Series 

Classification Archive in 2002 [67]. They extended it in 2015 [68] and 2019 [69] to 

129 time series datasets with identical data structures. With more than one thousand 

published papers using at least one of the datasets from the archive, it became the core 

of the time series data mining community [69]. 

The research on the UCR repository showed that a simple "one-nearest-neighbor with 

Dynamic Time Warping (DTW) distance is exceptionally difficult to beat" [70]. Since 

2013, the research has focused on ensemble methods that transformed the time series 

into a new feature space, e.g., using shapelets transform [71]. This research culminated 

in the proposal of HIVE-COTE, an algorithm that ensembles 37 different classifiers 

over multiple different time series representations and combines those ensembles with 

a hierarchical structure and probabilistic voting system [72, 73]. Two independent and 

extensive benchmarks of different algorithms on the UCR archive showed HIVE-

COTE to be the best-performing time series classification algorithm [74, 75]. 
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Concerning sensor 4.0, the advantages of this time series classification approach and 

similar approaches from this community are: 

• High versatility that has been tested on a large variety of datasets. 

• Fully automatic training without any manual hyperparameter tuning or 

algorithm selection. 

• The classification performance of HIVE-COTE is unbeaten. 

The disadvantages are: 

• High dependency of HIVE-COTE and similar suggested algorithms on nearest 

neighbors that results in unrealizable (concerning cost constraints) high 

memory requirements during inference on the edge (training data needs to be 

stored). 

• HIVE-COTE utilizes shapelet transformation with an algorithmic complexity 


����� for N samples of length � [76] which results in an infeasible 

computational training cost for most of the targeted applications. 

• The application domain of datasets from the UCR archive is biased towards 

datasets that reflect the personal interests/hobbies of its creators, datasets that 

could be easily obtained or created, and datasets that do not have privacy 

issues [69]. These fields do not include condition monitoring. 

• The UCR archive exclusively comprises classification datasets, whereas sensor 

4.0 applications, such as remaining useful lifetime estimations, also require 

quantification. 

• The UCR archive comprises only small datasets (compared to training datasets 

expected in condition monitoring applications) with a maximum training set 

size of 1000 samples. The complete archive file size (training and test of 129 

datasets) is only 853 MB in uncompressed ASCII file format and 301 MB as 

compressed zip [67]. Larger datasets that comprise a "finding a needle in a 

haystack" problem are not included. 

Deep Learning community: The deep learning community is motivated by the 

success of Alex Krizhevsky’s deep convolutional network in the ImageNet Large 

Scale Visual Recognition Challenge 2012 [77] and aims to adapt those results to other 

ML domains, including condition monitoring. Deep neural networks are currently the 

most widespread algorithm class in machine learning. For condition monitoring, most 

papers use deep multilayer perceptrons, long short-term memory, convolutional neural 

networks, or deep reinforcement learning [57]. Those architectures provide a complete 

end-to-end learning pipeline that automatically learns discriminative features from the 
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training data. The community is divided over whether the many parameters tuned 

during end-to-end learning lead to a high susceptibility to overfitting, as claimed 

by [78], or not, as claimed by [75]. Overall, the deep learning community is highly 

optimistic about the superiority of deep architectures over conventional machine 

learning; however, for condition monitoring, most architectures and hyperparameter 

configurations are again tested only on single, unpublished datasets created by the 

proposing authors [75].  

Concerning sensor 4.0, the advantages of deep neural network architectures are: 

• Neural networks are highly versatile and even universal in theory [79]. 

• They are suitable for hardware acceleration, and multiple hardware 

accelerators are available [80]. 

• There are countless studies claiming superiority over conventional ML 

algorithms [57]. 

• A benchmark on the UCR archive showed deep resNet architectures to be close 

second to HIVE-COTE [75] (providing statistically insignificantly worse 

performance) while being computationally cheaper in training and inference 

since both can be accelerated by hardware. 

The disadvantages are: 

• Unknown impact of the significantly worse dimensionality to the number of 

training samples ratio common in machine learning. As most common image 

classification nets have an input dimensionality of 224 pixels x 224 pixels x 3 

color channels (e.g., googleNet [81], vgg19 [82], resnet101 [83]), i.e., 150.528 

dimensions and are trained on the ImageNet database with more than 14 million 

labeled images [84], there are almost ten training samples per input dimension. 

At the same time, even the relatively small (in data recorded per sample) 

hydraulic condition monitoring dataset [36] has an input dimension of 50,000 

measurements per sample and only roughly 1,500 samples, leading to 0.03 

samples per input dimension. 

• As will be shown in Paper B, deep architectures, in comparison to conventional 

ML algorithms, are more susceptible to commonly expected domain shifts and 

resulting deviations are more complex to compensate. 

• Architectures and hyperparameter configurations are very difficult to choose. 

• Results of neural network training and prediction are still hard to interpret, and 

explainable AI usually focuses on local explainability of individual predictions. 
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In conclusion, none of these approaches satisfies the requirements to be easily applied 

to condition monitoring. 

The approach suggested in Papers 1-3 aims to combine the idea of ensemble learners 

ensembling over multiple different data representations dominant in the time series 

classification community with physically motivated data representations common in 

the mechanical engineering community. Therefore, a subset of five physically 

interpretable and computationally cheap transformations for mutually complementing 

data representations in time-domain, in time-frequency-domain, in frequency-domain, 

by statistical properties, and by signal segmentation were chosen. However, as the 

mechanical engineering community typically does, only the best representation is 

selected for inference to reduce hardware requirements during inference on the edge. 

Exceeding the thesis, the approach was combined with hyperparameter optimization 

techniques that originated from the deep learning community to further increase 

performance [85]. 

4.4 Issues of High Dimensionality 

Independent of the specific algorithm used, all approaches named in the previous 

section are based on similarities of data examples within a given group (classes) and 

differences between groups, i.e., contrast. For regression, it is based on similarities of 

samples in close vicinity of the predictor variable value and differences between very 

different predictor variable values, respectively. Those similarities and dissimilarities 

must be derived from the statistical properties and data distribution of the training data 

during the training process to be recognized in model inference. The different learning 

algorithms constitute different approaches to this analysis and the maximization of 

contrast; however, they all suffer to some extent from the same issues of computational 

cost, overfitting, and curse of dimensionality when applied to the very high 

dimensional data shown in Section 4.1. 

4.4.1 Computational Cost 

The applied algorithm's computational cost and memory requirements must be 

considered for inference on the edge during algorithm selection. For the high 

dimensional data expected in typical target applications, both computational 

complexity and actual computational cost are essential to ensure scalability and 

applicability. An example where this differentiation is crucial is the memory cost of k-

Nearest-Neighbor (KNN) that scales linearly in both the number of features and the 
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number of training samples but is still prohibitively large for the described applications 

due to the limited memory on the targeted low-cost edge devices. The computational 

complexity in the number of measurements per training sample is substantial during 

training. In contrast, complexity in the number of training samples can often be 

neglected due to their low number. However, for massive datasets like Festo electro-

mechanical cylinder lifetime estimation, the availability of Map-Reduce training 

algorithms is highly advantageous. During inference on the edge device, one concern 

is the memory used to store the prediction model with all parameters and intermediate 

calculation results. Therefore, continuous (streaming) data processing algorithms are 

better suited than those requiring buffering the complete input sample (cycle) before 

the processing can start. All algorithms suggested for the first steps of data processing 

and reduction in Papers 1-3 were specifically chosen to be as scalable as possible. 

4.4.2 Overfitting 

Overfitting occurs in models with more parameters than appropriate for the available 

data [52]. It denotes the generation of a model that fits the data too closely due to the 

unintentional extraction of residual noise as if that noise represented the underlying 

model structure with the result of poor generalization performance [53]. One way to 

reduce the probability of overfitting is hyperparameters many algorithms utilize to tune 

the bias-variance tradeoff between model simplicity (bias-error caused by underfitting) 

and performance on the training set (variance-error caused by overfitting) [86]. 

Another way is to control the ratio between the number of features and the number of 

training samples. For example, it should be at least one in ten according to the 

widespread "one in ten rule" of thumb [87]. Note that low or no information content 

of the data and a mismatch between assumptions made by the learning algorithm about 

data distribution and the actual data distribution significantly increases the risk of 

overfitting  [42]. After training, a model should always be checked for overfitting by 

validation (see Paper B). Due to the typically very high number of features in 

applications discussed here, underfitting - the opposite of overfitting - is usually 

irrelevant. 

4.4.3 Curse of Dimensionality 

The curse of dimensionality describes multiple phenomena that only occur in high-

dimensional spaces and, for machine learning, ultimately reduces the quantifiable 

contrast between similar and dissimilar data samples and, therefore, model 

performance [55]. Mathematically, the curse of dimensionality is caused by the 
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volume of the feature space growing exponentially with the number of features [54] 

requiring an exponentially increasing number of samples to maintain constant sample 

density [88]. For example, consider two variables requiring 100 data samples to be 

well sampled. If combined, the variables would need 100x100=10,000 samples to be 

sampled equally well as the individual variables. In a very simplified manner, it could 

be understood as minor differences caused by random noise that accumulates to a 

significant difference even for similar data samples when many noisy features are used 

for model building. This is comparable to measuring slight variations (i.e., differences 

between different samples) on top of a large offset (accumulated minor differences 

between similar samples) in classical measurement science. 

In conclusion of those difficulties, the automated machine learning approach 

introduced in Papers 1-3 emphasizes extensive dimensionality reduction and 

scalability of the feature extraction that constitutes the first step of dimensionality 

reduction. In total, there are four steps of dimensionality reduction. Namely feature 

extraction, univariate feature selection (preselection), multivariate feature selection, 

and projection by Fisher’s Linear Discriminant Analysis [89], whereas the risk of 

overfitting is the main reason for feature extraction being performed unsupervised. To 

counter the curse of dimensionality, the first step of feature selection is performed by 

treating each feature individually before the multivariate feature selection in the next 

step considers feature interactions. The last dimensionality reduction step is the 

projection on discriminant functions (see Paper 1). 

4.5 Feature Extraction 

The first step of dimensionality reduction typically is feature extraction. It refers to 

calculating sensor signal characteristics from raw data that remove correlations 

between individual measurements within the signal and simultaneously describe the 

signal as closely as possible with as few features as possible. While doing so, each 

algorithm should preserve as much signal information as possible. For machine 

learning, similarities and differences between data samples should be preserved, i.e., 

similar (dissimilar) data samples should lead to similar (dissimilar) features. This 

requirement is known as the Lower Bounding Lemma [90]. When this lemma is 

fulfilled, Feature Extraction improves ML performance by mitigating the effects of 

overfitting and the curse of dimensionality. Additionally, it reduces input data 

correlations and concentrates information on a few relevant features, allowing for 

effective further dimensionality reduction by feature selection. 
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However, since the best compression of a given dataset, i.e., the best feature 

representation, is indeterminable [91], no feature extraction algorithm can be proven 

to be optimal for a given dataset. As a result, an automated feature extraction algorithm 

can only suggest but not prove how the data should be represented. Human domain 

experts can create higher-performance features using their domain knowledge. 

Additionally, each feature extraction algorithm has to decide the tradeoff between 

good approximation and the number of features used since signal characteristics 

should be extracted. At the same time, random noise and irrelevant variations should 

be neglected. This tradeoff, again, cannot be decided in general [92]. It is very similar 

to deciding the bias-variance-tradeoff in model building because it involves deciding 

which data variations are model-based and which are random noise. 

A typical feature extraction algorithm is designed to find a data representation that fits 

the signal characteristics as closely as possible. How well a given algorithm can 

capture the contrast between descriptive and noise-representing features highly 

depends on the dataset [64]. The three most relevant approaches to feature extraction 

in literature are physically motivated features, features learned by end-to-end learning 

algorithms like neural networks, and reconstruction-based features. The advantages 

and disadvantages of the first two approaches have already been discussed in 

Section 4.3. 

The reconstruction-based algorithms aim to reduce the approximation error between 

the original signal and its corresponding reconstruction from feature representation. 

The basic assumption of those algorithms is that capturing the most dominant 

characteristics will significantly decrease the approximation error between the original 

and the reconstruction from features while capturing incompressible noise will slightly 

reduce the approximation error. One example is the extraction of Fourier coefficients 

with the highest signal energy from vibration signals. 

The advantages of reconstruction-based algorithms are: 

• Their capability to extract those features that are optimal in the algorithm’s 

respective data representation concerning reconstruction error. 

• Their unsupervised nature reduces the likelihood of overfitting. 

The disadvantages of reconstruction-based methods are: 

• The main characteristics might be unrelated to the actual ML target and the 

algorithm’s inability to test for relevance due to the algorithm’s unsupervised 

nature. 
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• Most algorithms cannot decide the tradeoff between low approximation error 

that will always decrease with more features and a low number of extracted 

features. In the best-case scenario, the number of features to extract can be 

determined heuristically. 

Consequentially, in Papers 1-3, it is suggested to use reconstruction-based feature 

extraction methods that utilize complementary and physically motivated 

representations for automated ML for smart sensors. To increase the applicability of 

smart sensors, it is suggested to relinquish the advantages of ensembling that 

representation and to decide for only the most promising in the respective application. 

This suggestion makes unsupervised feature extraction algorithm selection impossible, 

and a complete benchmark of all considered feature extraction algorithms is required 

to ensure optimal algorithm selection. The suggested algorithms and their respective 

heuristic to decide the number of features to extract are introduced and explained in 

Papers 1 and 3. 

4.6 Feature Selection 

Another method for dimensionality reduction is feature selection, which tries to select 

highly relevant features for the learning target and omit highly correlated or irrelevant 

features. In general, feature selection aims to choose the feature subset that results in 

minimal learning error. However, this de facto goal cannot be achieved due to a series 

of problems with feature selection. Since those problems can only be given a quick 

review in the scope of this thesis, the interested reader is referred to the excellent work 

of Guyon and Elisseeff [93] for more insight and striking examples. 

The three most essential difficulties of feature selection and their consequences are: 

• Features might only be relevant in combination with another feature or 

combinations of features that might or might not seem irrelevant without the 

context of the additional feature. That means the information content of a 

feature can only be evaluated in the context of other features [94]. All feature 

combinations must be tested for relevancy to determine the guaranteed best 

feature subset. This is usually impossible due to the exponential growth of the 

number of feature combinations and corresponding testing time with the 

number of features to choose from. 

• Feature correlation does not imply feature redundancy [94]. Therefore, 

eliminating highly correlated features cannot reduce the exponential number of 

feature combinations. 
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• The features of the best combination of n features might not be part of the best 

combination of n+x features [94]. This so-called nesting problem prevents the 

optimal usage of feature ranking algorithms that, by design, cannot represent 

nesting problems. 

Additionally, there is the general issue that even if there were an algorithm that could 

assign relevance scores to features despite the need to check an exponential amount of 

combinations, it would only allow to omit probably approximately irrelevant features. 

This is due to random variations that would prevent the relevance score from being 

exactly zero (approximately irrelevant) and the limited training data that allows only 

stochastic assessments (probably irrelevant) [93]. 

In conclusion, no (practical) feature selection algorithm can be optimal, and various 

algorithms with different advantages and disadvantages were developed for different 

problems. The algorithms can be categorized as filters, wrappers, and embedded 

methods [93]. 

Filter Methods: Filter methods are ranking methods that rank each feature by its 

individual information content concerning the learning target [93]. 

Advantages: 

• Filter methods are swift and applicable to massive feature sets. 

• The rankings of filter methods are easy to understand. 

• Implementations of many methods used for feature ranking are available on 

various platforms and programming languages. 

Disadvantages: 

• Feature interactions are ignored. 

• Feature redundancy and correlation are ignored, and filters tend to select highly 

correlated features. 

• Filters try to select a generally good feature set instead of choosing the best 

subset for the specific learning algorithm used. 

• The optimal number of features to choose from has to be determined outside 

the algorithm. 

Wrapper Methods: Wrapper Methods are binary search algorithms that wrap around 

the subsequent learning algorithms to find the optimal subset for this specific learning 

algorithm. The search space is binary, and for n features, n-dimensional since each 

feature can either be part of the optimal set or not [94].  
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Advantages: 

• The algorithm searches for the optimal feature subset for the learning 

algorithm. 

• Both feature interaction and redundancy are handled concerning the learning 

algorithm. 

Disadvantages: 

• Wrapper methods are time-consuming compared to filters and embedded 

methods due to their need to train and validate the learning algorithm in every 

step and the exponential size of the search space. 

• Many wrappers, and especially relatively fast algorithms, cannot resolve 

nesting problems. 

• The search algorithms cannot guarantee a global minimum (except for 

exhaustive search). They might select unstable subsets, which is similar to 

overfitting, as such a subset of features would work well for the training data 

without generalizing to new data [94]. 

Embedded methods: Embedded methods are special variants of common learning 

algorithms that have been modified to base their decision process only on highly 

relevant features and to ignore less relevant ones [93]. 

Advantages: 

• Embedded methods are typically faster than wrappers. 

• They take into account feature interactions and redundancies. 

Disadvantages: 

• Embedded methods usually are very complicated, which makes their results 

hard to interpret. 

• There is a wide variety of different embedded methods, and it is unclear how 

to select the best algorithm [42]. 

• For most embedded methods, the optimal number of features needs to be 

decided outside the algorithm. 

Since no applicable algorithm can guarantee optimal performance [94], a combination 

of algorithms is chosen for feature extraction. Namely, RFESVM, RELIEFF, and 

Pearson correlation for feature ranking is suggested in Paper 1 and Paper 2. This 

suggestion is predominantly based on the author’s Master thesis that benchmarked 66 

different feature selection algorithms [42] and was confirmed by the studies shown in 
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Paper B. Study [42] also shows a brute force search for the optimal feature number to 

be best suited to decide the number of features to select. Especially in combination 

with ensemble feature extraction and ranking, this puts strong attention on the 

computational cost of the following processing steps that must be executed to swiftly 

evaluate the selected feature subsets. 

4.7 Projections and Linear Discriminant 
Analysis 

After feature selection, projections are one of the most common approaches to 

dimensionality reduction. They aim to show as much relevant information as possible 

with as few dimensions as possible. In contrast to feature extraction, which has similar 

goals, projections utilize features from different sensors and use the target vector to 

discriminate between relevant and irrelevant information. I.e., in the context of 

machine learning, projections perform information or sensor fusion and reduce the 

learning problem to its intrinsic dimensionality. As the algorithmic approaches of 

different projection algorithms are very diverse, giving a broad overview is left to 

respective review papers [95, 96]. 

However, as described in the previous section, an extremely cheap evaluation of 

feature subsets is needed since those evaluations require cross-validation of all the 

following steps. This need rules out algorithms like autoencoders that require iterative 

optimization procedures during training and algorithms like kernel-based projections 

that scale poorly even with few training samples. Ideally, the utilized algorithm allows 

analytical computation of the solution and scales linearly with the number of training 

samples. Linear Discriminant Analysis (LDA) fulfills those criteria [97]. Also, LDA 

and subsequent classification into the class with the lowest Mahalanobis distance [98, 

99] to the group mean have been shown both in previous work [42] and in more recent 

benchmarks [100] to fall back only slightly behind SVM or KNN in terms of 

classification performance for condition monitoring tasks. Last but not least, after 

calculation, LDA can be represented by a single projection matrix of the size of the 

number of features times the number of groups minus one, which contributes to 

fulfilling memory constraints on smart sensors. 

Given multiple groups with Gaussian-distributed samples with different mean values 

but identical covariance matrices, LDA computes a linear projection. This projection 

is optimal in maximizing between-class scattering (maximizes differences between 

groups) and simultaneously minimizes within-group scattering (maximizes within-
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group similarities) [101]. In terms of measurement science, this is equivalent to finding 

the projection that provides optimal measurement contrast between groups. To do that, 

LDA maximizes the criterion function J(w) [101]: 

 
�����⃗ � = ���⃗ ������⃗

���⃗ ������⃗  

With �� representing the between class scattering and �� the within class scattering. 

Both are computed as follows [101] : 
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In those formulae, ( is the number of classes, �� is the number of training samples in 

class ), ���⃗ � is the mean of class ), � is the dataset's overall mean and #⃗�$ is the feature 

vector of point * in class ). The solution is typically computed analytically by solving 

the eigenvalue problem [101] 

��+!�����⃗ = ���⃗ Λ, Λ = �.!/, … , .1/� 

The eigenvectors of ��+!�� maximize �����⃗ �. The resulting projection matrix w can be 

interpreted as ( − 1 discriminant functions sorted by descending order of 

measurement contrast between classes. The eigenvalue problem also shows a 

numerical issue encountered with highly correlated features that might lead to an ill-

conditioned or even singular and, therefore, un-invertible covariance matrix ��. 

Further disadvantages are the regularly unfulfilled assumption of equally distributed 

groups and the absence of a regularization parameter favoring overfitting. However, 

in the context of preceding feature extraction and selection of a suitable number of 

features, the sensitivity to correlated features and the tendency to overfit favors the 

selection of a small number of features that, in turn, boosts the robustness and 

interpretability of the linear projection. The boost in robustness due to smaller feature 

sets is one of the possible explanations for the performance of LDA, which is 

comparable with SVM and KNN [42]. Therefore, the main issue to be considered is 

violating the equal distribution assumption. Although it does not seem to lead to the 

problems in the evaluations performed in Papers 1 and 2 and Papers A-E, it harbors 

the risk of suboptimal error rates that originate in the LDA’s tendency to project 

multiple sub-groups within a group onto one another to minimize within-group 

scattering. However, separate sub-clusters would provide better (non-linear) 
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separability. Ultimately, the advantages of such non-linear separability need to be 

traded for low computational cost during training and inference. 

4.8 Classification and Regression 

The following data processing step is classification or quantification using 

classification or regression algorithms to derive decision rules from the projected 

features. As for projections, low computational complexity in the number of features, 

low computational cost, and few needed parameters are desired algorithmic features 

deduced from the possibly high number of training samples, the need for many cross-

validated evaluations, and the inference on smart sensors, respectively. 

Classification: 

As LDA aims to project each group onto a single cluster, classification into the group 

with the nearest center is a straightforward solution that requires minimal training 

effort. It only comprises calculating the group means and storing a neglectable number 

of parameters. Those parameters are the ( group means in the low dimensional 

discriminant function space, i.e., ( ∗ 2 parameters. Mahalanobis distance is standing 

to reason as a distance measure to account for the common violation of the LDA’s 

equal covariance assumption [98, 102, 103]. Since the covariance matrices of all 

groups needed for Mahalanobis classification have to be computed for the LDA 

projection, the training procedure comes down to their projection onto the discriminant 

functions and their subsequent inversion. This procedure only adds a term proportional 

to the number of dimensions in feature space to the computational cost due to the fixed 

number of groups and discriminant functions. Therefore, this approach is suggested 

for condition monitoring in Paper 1. 

 

Quantification 

Alternatively, as shown in [25], the discriminant functions can be used for 

quantification and are suggested as such in Paper 1. This approach is based on the idea 

that the first discriminant function is designed to show the best group separation. That 

would be the direction of increasing wear down if suitably chosen quantification steps 

of wear are used as class labels. Therefore, the DF only needs rescaling and offset 

correction to be mapped to the numeric target value. In the context of condition 

monitoring, this approach offers multiple advantages and additional insights not 

provided by the application of common regression methods: 
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• Unlike linear regression algorithms, LDA does not assume a linear correlation 

between wear progress and wear symptoms and still offers inherent and global 

explainability. 

• Visualizing discriminant functions as a scatter plot gives an intuitive insight 

into the extent of nonlinearity between wear progress and wear symptoms. This 

insight is gained in two ways. First, LDA would show groups with more 

significant changes in wear symptoms farther apart or with a greater scattering 

in wear direction as groups in areas with minor changes. Second, a linear 

correlation between wear progress and symptoms could be shown entirely on 

the first DF. However, a nonlinear correlation would require representing 

information on higher DFs orthogonal to the first. Therefore, the amount of 

information on the first DF could be a measure of linearity. 

• Similarly, LDA shows nonlinearities, jumps, and other influences from 

perturbance variables, which cannot be linearly compensated for by LDA (see 

Paper 1). Such jumps in wear symptoms typically occur on breakouts on cutting 

edges of drills and milling tools. 

• Lastly, LDA can provide an implicit plausibility check for the learned model. 

As the LDA is unaware of the natural order of groups given by increasing wear-

down, showing this order in a projection on the DFs proves that LDA could 

rediscover this order from the wear patterns, which supports their causal 

character. An example can be seen in Figure 5. 

These advantages mainly apply during model building and explorative data analysis. 

LDA can be replaced if needed by a suitable regression algorithm for deployment. This 

algorithm must offer low computational cost, compensate for the nonlinear effects 

shown by LDA, or be used with a revised target value with a linear regression 

algorithm like partial least squares regression [104]. 
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Figure 5: Results for determination of the four system faults studied: accumulator pressure (a), internal 
pump leakage (b), valve operation (c), and cooler degradation (d). Full symbols show data used for 
determining the statistical model, and open symbols show additional test data not used in the training, 
which proves that unknown data are interpreted correctly [Paper 2] 

4.9 Validation and Test 

Validation is an essential step of machine learning and tries to estimate the expected 

performance of an algorithm after deployment. Although there are multiple different 

methods for validation, they are all based on the same principle of out-of-sample 

testing. All methods divide the available data into at least two sets, of which one is 

used for training the algorithm and the other to test and report its performance on 

previously unseen data. 

If hyperparameters of the trained algorithm are tuned to fit the data or the best 

algorithm is to be selected from a given set of algorithms, a second split on the 

available data is required to estimate the expected performance of said selection. The 

resulting datasets are training, validation, and test data. Thereby, validation data is used 

to tune hyperparameters or to select the algorithm, and test data is used to evaluate the 

final performance. 

Based on how the data is split, the validation tests for different kinds of robustness, 

e.g., random cross-validation tests for statistical significance and robustness against 

random noise. As shown in Paper B, domain shifts are the most dominant influences 
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on deployed performance in the context of smart sensors. Therefore, the employed 

validation procedure has to test robustness against domain shifts by splitting the data 

into sets that exclusively contain data from a single domain, which could be the same 

component, the same machine, or the same operational setting of a machine. This 

procedure is known as leave one group out and can also be used for interpolation tests, 

as shown in Figure 5. 

Since leave one group out cross-validation is not always possible, k-fold cross-

validation is the most common validation technique used in literature. It splits the 

available data into k, usually randomly drawn groups, trains with k-1 groups, and 

reports performance on the left-out group while iterating over the different groups to 

be the test group. Usually, while samples are randomly assigned to each group, the 

assignment algorithm preserves the overall proportion of the different classes in every 

group (stratified sampling). 

Both random and group-based cross-validation can be used for both validation and 

testing. However, a single fixed test set is usually chosen by random selection (k-fold 

cross-validation) or group (group-based cross-validation) to limit the computational 

cost of nested cross-validation. For group-based cross-validation, the test group is 

usually chosen to pose an interpolation problem when training is performed with the 

remaining groups. However, even when done correctly, error propagation in 

measurement science, according to GUM, as shown in Paper C, is still preferred over 

cross-validation. 

4.10 Edge-AI 

Edge AI currently focuses on the inference of machine learning models or feature 

extraction. The training of those models is usually done offline using open-source 

frameworks like "TensorFlow" [105]. It utilizes already available accelerators, e.g., 

from NVIDIA, Intel (GPU-based), or Xilinx (FPGA-based). However, those 

accelerators' high energy consumption and cost prohibit their use in most smart sensor 

applications. 

For microcomputers (edge-computing), early software solutions for model inference 

like "TensorFlow lite" [106] are available to optimize and deploy models on the edge. 

Also, the first examples of size-limited neural networks that utilize embedded AI to 

detect, e.g., operating modes from current measurements, have been shown [107]. 

The most promising concepts for embedded AI are: 
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• Classical microcontroller with specially adopted networks [108]. 

• Microcontroller with hardware accelerator [109]. 

• Neuromorphic structures (in early research) [110]. 

Many already available AI accelerators are based on hardware-accelerated matrix 

multiplication (e.g., NVIDIA TensorCore [111]) with reduced computational accuracy 

in comparison with conventional CPUs and GPUs (see Figure 6). To what extent this 

reduced computational accuracy, motivated by image recognition with a maximum of 

eight bits per color channel, can be transferred to other applications like audio-based 

fault detection with 16-24-bit measurement resolution is an open research question. 

 

 
Figure 6: Currently available AI accelerators and their computational accuracy [80]. 

Most currently available accelerators target applications in image, video (e.g., Intel 

Movidius is marketed as a Visual Processing Unit [112]), and natural language 

processing. This focus is due to the massive amount of training data available in those 

domains, favoring the huge success of machine learning and accelerators' advantages, 

especially in those applications. 

The hardware accelerators are usually shipped with software frameworks for neural 

network inference. However, it is possible to use them to accelerate other algorithms 

like linear transformations naturally supported by accelerators based on matrix 

multiplication [111] or Support Vector Machines [113]. 

Accelerators optimized for industrial applications that implement the approach 

suggested in Papers 1 and 2 are currently under development [30, 31]. Simultaneously, 

neural network representations of algorithms employed for industrial automatic 

machine learning are being researched as an alternative solution that utilizes generic 

neural network accelerators [114]. 
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5 Automated Machine Learning 
for Condition Monitoring 

5.1 Paper A: Sensors 4.0 – Smart Sensors 
and Measurement Technology Enable 
Industry 4.0 

This paper highlights the vision of Sensors 4.0 introduced in Section 3. It puts it into 

the context of an ongoing sensor evolution from simple indicators to fully integrated 

smart sensors with communication capabilities. It identifies measurement as a service, 

traceability of individual components, self-learning systems, and semantic 

technologies as major trends in sensor technology. It then focuses on Condition 

monitoring using data-based modeling as a new sensing paradigm with examples for 

monitoring machine and sensor faults. This again motivates the research in Papers 1-

3 and shows its significance in measurement science. 

Another contribution of this paper is the demonstration of similarities between 

classical measurements and statistical model-based prediction. Namely, model 

predictions exert characteristics similar to physical sensors, like constant uncertainty 

over a pre-calibrated measurement range or temperature dependency of that 

uncertainty. Last, the paper motivates using a modular algorithmic approach to 

machine learning that will be widely adopted in Papers 1-3. 
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Abstract. “Industrie 4.0” or the Industrial Internet of Things (IIoT) are two terms for the current (r)evolution
seen in industrial automation and control. Everything is getting smarter and data generated at all levels of the
production process are used to improve product quality, flexibility, and productivity. This would not be possible
without smart sensors, which generate the data and allow further functionality from self-monitoring and self-
configuration to condition monitoring of complex processes. In analogy to Industry 4.0, the development of
sensors has undergone distinctive stages culminating in today’s smart sensors or “Sensor 4.0”. This paper briefly
reviews the development of sensor technology over the last 2 centuries, highlights some of the potential that can
be achieved with smart sensors and data evaluation, and discusses success requirements for future developments.
In addition to magnetic sensor technologies which allow self-test and self-calibration and can contribute to many
applications due to their wide spectrum of measured quantities, the paper discusses condition monitoring as
a primary paradigm for introducing smart sensors and data analysis in manufacturing processes based on two
projects performed in our group.

1 Introduction

“Industrie 4.0”, branded the fourth industrial revolution, is in
fact more of a political vision than a new technical paradigm
(see Plattform Industrie 4.0, 2018; Hightech-Strategie: In-
dustrie 4.0, 2018; Dossier: Digitale Transformation in der
Industrie, 2018): it is simply the continuing progression of
achieving better knowledge and control over the entire pro-
duction process that has been ongoing since industrialization
made efficient mass production possible. The main benefit
of this new way of looking at things is the chance to estab-
lish new business models. This is actually expressed better
by the Anglo-Saxon term Industrial Internet of Things or
IIot (Industrial Internet Consortium, 2018) because it hints
at transferring successful business models of the new econ-
omy to industrial application; even more indicative are terms
like digitalization or, short and pithy, Googlification. In fact,
other application fields especially in consumer services are
far ahead of industrial production processes in making use of
the power of digitalization. Note that this is actually one fun-

damental difference between the common approach and the
new thinking: services and hence the value to the customer
are more important than products.

This paper addresses the importance of sensors, instru-
mentation, and measurement science for Industry 4.0 and
discusses potential and trends; it is based on two confer-
ence presentations addressing smart sensors, their relevance
for Industry 4.0, as well as the requirement for an expanded
uncertainty evaluation (Schütze, 2015; Schütze and Helwig,
2017); a shorter German version was recently published else-
where (Schütze and Helwig, 2016). In the field of sensors
and instrumentation the trend towards smart sensors has long
been established in aspects like better performance, higher
integration, and multi-parameter sensing, but also built-in in-
telligence as well as secure and safe networking (Gassmann
and Kottmann, 2002; Sensor-Trends, 2014). Intelligent sen-
sor systems allow e.g. self-identification or diagnosis up to
self-configuration, calibration, and repair, often subsumed
under the term self-X (Akmal Johar and König, 2011). In
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analogy to Industry 4.0 the term Sensor 4.0, coined by Peter
Krause, the chairman of AMA e.V. (AMA, 2018), snappily
designates the current development in sensors and measure-
ment science. Similar to the four phases of industrial devel-
opment, this classification discriminates between purely me-
chanical indicators (e.g. the aneroid barometer, also referred
to as a Vidie can, invented by the French physicist L. Vidie in
1844), electrical sensors (e.g. classic strain gauges invented
simultaneously by E. E. Simmons at Caltech and A. C. Ruge
at MIT in 1937/38), the state-of-the-art electronic sensors
(e.g. electronically compensated pressure sensors available
since approx. 1970), and, finally, smart sensors; cf. Fig. 1.
This overview also shows how strongly the industrial evolu-
tion is connected to sensors and instrumentation. Note that
the importance of sensors is not limited to industrial pro-
cesses, but is in fact strongly influencing all current mega-
trends like smart cities or smart mobility. The best exam-
ples of highly integrated sensor platforms are in fact smart-
phones which typically integrate around 15 different sensors
and heavily make use of multisensory signal evaluation, e.g.
for navigation which relies on accelerometers, gyroscopes,
magnetometers, and pressure sensors. At the same time these
sensors are also used for other services like weather monitor-
ing, screen orientation, step counting, and, last but not least,
gaming. In this case, the sensors are in fact “dumb” sensors,
with the integration and data fusion between different sensors
achieving a smart platform.

The relevance of modern sensors and instrumentation is
also reflected by the economic data which show a continu-
ous growth of more than 6 % CAGR in turnover from 2005
to 2015 and a steady increase in jobs of almost 40 % over
the same period, compared to stagnation in the industry as
a whole (based on an analysis by AMA). The companies in
this field also invest an average of 10 % of their turnover in
research and development and are therefore attractive em-
ployers for young engineers and physicists.

2 State-of-the-art and current trends

A current trend in sensor technologies is the use of active
measurement principles that are used in various sensor el-
ements and systems. Examples are magnetic sensors, e.g.
Hall sensors using spinning current (Munter, 1990), internal
calibration and even correction of offset temperature coef-
ficients through integration of internal chip heaters (Stahl-
Offergeld, 2011), MR sensors using the compensation prin-
ciple to suppress temperature cross-sensitivity (Marien and
Schütze, 2009), micromechanical accelerometers (also us-
ing compensation or internal calibration methods) and gy-
roscopes (using the Coriolis effect with active vibration exci-
tation), and Coriolis-based flow sensors or chemical sensors
using temperature modulation for improved selectivity, sen-
sitivity, and stability (Reimann and Schütze, 2014; Baur et
al., 2015). Active modes of operation also offer additional

potential for self-diagnosis, which is already extensively be-
ing used in automotive applications (Ochs, 2013). This does
not only apply to inertial sensors, where the correct function
is checked with internal excitation, but also to e.g. the lambda
probe: here the time constant for heating to the desired op-
erating temperature is used to detect faults, e.g. cracks of
the ceramic. Self-diagnosis is especially important for appli-
cations in safety and security. Fire detection and explosion
protection could not be addressed with low-cost gas sensors,
which are prone to poisoning. Here, dynamic operation also
allows detection of sensor faults, e.g. poisoning of the sensor
material (Bastuck et al., 2015; Schüler et al., 2015).

Magnetic sensors are especially suitable for self-X meth-
ods as an internal calibration can be realized by coils inte-
grated in the system or directly on the chip. Furthermore,
as the sensors are very small and integrated on silicon chips
with good thermal conductance, heating of the sensors is
also possible, thus allowing direct determination of thermal
cross-sensitivity. Many principles are today already imple-
mented in integrated Hall sensors (e.g. 3-D-HallinOne sen-
sors developed by Fraunhofer IIS), due to their being based
on standard CMOS technology, thus allowing simple integra-
tion with analogue and digital electronics (Stahl-Offergeld,
2011). MR sensors are not yet as advanced due to the differ-
ence in technologies for sensor chips and electronics, but the
potential for self-X technologies is increasingly being stud-
ied (Akmal Johar and König, 2011; MoSeS-Pro, 2015). Note
that future trends might include internal traceability of the
sensor function by making use of quantum standards for SI
units so that sensors might be truly calibrated during opera-
tion as proposed by Kitching et al. (2016) (see also NIST-on-
a-Chip, 2018).

Integrated Hall sensors can serve as one specific example
highlighting the potential of (magnetic) sensors and their in-
tegration with advanced modes of operation and data treat-
ment in the sensor itself. Hall sensors are used in many
applications and are sold in large quantities at surprisingly
low cost considering their performance. While on the out-
side these sensors still resemble the well-known simple Hall
plate, a purely analogue, current, or voltage driven sensor
with voltage output to measure the magnetic field, they are
much more complicated inside. The spinning current princi-
ple, periodically switching driving and output contacts, has
already been used for a long time (Munter, 1990) to com-
pensate for various unwanted aspects (unsymmetrical ge-
ometry, variations in doping of the Hall layer, mechanical
strain, and temperature differences), which would otherwise
result in large offsets and therefore reduced resolution (Stahl-
Offergeld, 2011). Even after spinning current compensation
which is achieved by typically four measurements with cur-
rent induced in all four directions of the Hall plate and sub-
sequent averaging of the results, a residual, temperature-
dependent offset remains. By integrating a small excitation
coil directly on the chip this offset can be determined dur-
ing normal operation. In addition, a small heater can also be
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Figure 1. Historic evolution from “Sensor 1.0” (without electrical output this is not a sensor according to the usual definition) to smart
sensors, i.e. “Sensor 4.0” (based on Peter Krause, chairman of AMA e.V.).

integrated on the chip, which can induce small temperature
changes to determine the temperature coefficient (TC) of the
offset, thus allowing a digital correction of the temperature-
dependent offset with a linear model. To achieve offset com-
pensation over a wide operating temperature range, this pro-
cedure can be repeated at different ambient temperatures.
The resulting residual offset and thus the effective resolu-
tion of the sensor is greatly improved by this procedure
by more than 1 order of magnitude from ±1 mT down to
±50 µT (Stahl-Offergeld et al., 2009; Stahl-Offergeld, 2011).
However, due to cost restraints the sensor only contains one
AD converter, which means that chip temperature and Hall
voltage cannot be measured simultaneously. To avoid er-
rors in the determination of the offset TC the thermal be-
haviour of the chip is therefore modelled with several time
constants. Furthermore, several measurements during this
self-calibration and a statistical evaluation of the resulting
variations are used to check whether the applied external
field has changed during this procedure, which could lead
to false values for offset and offset TC; for further details,
the reader is referred to Stahl-Offergeld et al. (2009). In ad-
dition, other production-related parameters of the sensor chip
can be determined with a suitable strategy combining on-chip
measurements and digital evaluation (Stahl-Offergeld et al.,
2010; Stahl-Offergeld, 2011). This example shows that even
a seemingly simple Hall sensor today determines the required
measurement value based on a complex digital process. Note
that a strict determination of the resulting measurement un-
certainty based on the GUM principles (GUM, 2008) would
result in a very complex process if the complete system and a

full physical model were to be considered. In this case, a suit-
able statistical approach for determination of the uncertainty
would seem more suitable.

Thus, smart sensors with additional functionality provide
a significant added value for higher-level functions, e.g. in
production systems. The correct sensor function is also re-
quired for the condition monitoring of complex systems (see
Sect. 3 below). In this case, the correlation of sensor data
within the system can also be used to verify the correct sen-
sor function; however, in this case, the sensor fault diagnosis
has to be performed on a higher level within the system.

Additional trends that will be initiated or at least pushed
further by the Industry 4.0 paradigm are the following.

– Measurement as a service: this could be a trend similar
to the service provided by Uber in public transport, i.e.
measurement services or even individual results are sold
instead of instruments. Note that the measurement un-
certainty – determined online by self-calibration – will
then influence the price.

– Traceability of individual components down to screws,
individual gears and even gaskets: this additional
knowledge will allow tolerance measurement in the as-
sembly of (sub-)systems and is also required for a com-
prehensive condition monitoring to assess the influence
of individual processing steps and machines on the final
result.

– Self-learning systems: the correlation between sensor
data as well as other process and ambient parameters
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can be evaluated to ensure the correct function of the
system in the sense of a system self-diagnosis by mak-
ing use of machine learning (Cachay and Abele, 2012).
So far it is unclear whether unsupervised methods are
sufficient or whether supervised learning, see Sect. 3
below, is required, i.e. knowledge of the current system
status for training the evaluation.

– Semantic technologies for analysis of complex systems:
interpretation of measurement values beyond the purely
data-based approaches could offer further opportunities,
e.g. for plausibility checks of sensor data and for pro-
viding confidence values for (fault) causes. Note that the
World Wide Web consortium (W3C) started working on
a semantic sensor network ontology as early as 2005
which allows representation of measurement values and
their significance (Semantic Sensor Network Ontology,
2017).

The last example shows that the importance of sensors and
measurement technology was recognized also by other par-
ties, which leads to some parallel and independent develop-
ments. Interestingly, however, aspects like measurement un-
certainty and sensor self-monitoring are not addressed in the
context of semantic technologies even though semantic rep-
resentation would be highly valuable especially for these as-
pects.

3 New measurement paradigm: condition
monitoring using data-based modelling

The potential of data-based sensor signal evaluation is
demonstrated by the iCM Hydraulics project (2013). In this
project a hydraulic model system combining a primary cir-
cuit with variable load and a secondary circuit for cooling
and filtration were used to study the identification of typical
system faults (internal pump leakage, delayed valve switch-
ing, pressure leakage in the accumulator, reduced cooling ef-
ficiency) only based on an evaluation of the usual process
sensors (pressure flow rate, temperature, electrical power).

Figure 2 provides an overview of the approach: the hy-
draulic system is equipped with a total of 17 physical and
virtual (e.g. efficiency calculated from electrical power in-
put and hydraulic power output) sensors, which are read out
with up to 100 Hz. The system was used to simulate a peri-
odic industrial process with a work cycle of 1 min duration.
In each cycle a total of approx. 50 000 raw values is recorded,
which are interpreted as a high-dimensional measurement
vector. A multi-step dimensionality reduction covering sig-
nal pre-processing, feature extraction, and selection yields
a projection obtained by linear discriminant analysis (LDA)
(Duda et al., 2000), which allows classification of the sys-
tem status, i.e. identification and quantification of the fault.
Classification can be performed with various methods, e.g.
k-nearest neighbours, support vector machines (SVMs), or

artificial neural networks (ANNs). Note that pre-processing
and feature extraction are realized with unsupervised meth-
ods, i.e. without making use of the system status, while fea-
ture selection – here based primarily on Pearson correlation
of features and fault status – and LDA projection are super-
vised methods, i.e. require the knowledge of the system sta-
tus (Helwig and Schütze, 2014). The evaluation is based on
a comprehensive training phase in which all combinations
of all fault states are measured. The complete training is
based on several thousand working cycles and requires ap-
prox. 3 days, primarily due to the relatively slow equilibra-
tion of the temperature after changing the cooling efficiency.
The complete training data set contains almost 120 million
raw data points. A systematic validation, e.g. based on k-fold
cross-validation, completes the development of the statistical
model and ensures that no overfitting occurs in spite of the
high-dimensional input data set and the supervised training
methods (Helwig and Schütze, 2014).

In this example statistical methods were primarily used for
feature extraction. The working cycle was divided into 13
sections (complete cycle and 12 sections representing differ-
ent constant or changing pressure levels, respectively) and
the first four statistical moments (mean, standard deviation,
skewness, and kurtosis) were determined for each sensor in
each section. This can be implemented on low-cost hardware
very efficiently, but is still the computationally most costly
step of the training procedure. This step requires a few min-
utes on a standard PC for the complete data set with sev-
eral 1000 cycles. The resulting almost 900 features (17 sen-
sors · 13 sections · 4 statistical moments) result in a feature
space that still has too many dimensions for efficient clas-
sification. Therefore, feature selection based on correlation
between features and target classes, i.e. fault level, is used
which is computationally extremely efficient, same as the
calculation of the LDA projection to obtain the 2-D plots, cf.
Fig. 3, or ideally only one discriminant function (DF) per sys-
tem fault. These two computation steps only require fractions
of a second. Even faster is the classification of a new working
cycle, i.e. extraction of the selected features, projection in the
LDA space for each system fault, and classification based on
a k-nearest neighbour classifier, which can thus be performed
in real time even on a low-cost microcontroller-based system.

The performance of the approach is shown in Fig. 3 for
the four studied system faults: each fault state can be identi-
fied independently and its severity or level can be estimated
with surprisingly high accuracy. The cooler efficiency, for ex-
ample, can be estimated with better than 10 % (the reduced
cooler efficiency was simulated with pulse width modulation
of the power supply, and the percentage gives the duty cycle
used); the accumulator pressure can be determined with an
uncertainty of approx. 5 bar. Projected test data which were
not used to build the model (open symbols) show that the
model allows correct classification of unknown states and
even that an extrapolation of data outside the training range
is possible within limits.
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Figure 2. Hydraulic system and concept for the data analysis within the iCM-Hydraulics project (Helwig and Schütze, 2015). A statistical
model was built allowing for independent identification of various hydraulic system faults as well as identification of sensor defects. System
condition monitoring remained possible even with sensor faults by excluding the identified faulty sensors from the analysis.

In further experiments we have shown that the training can
be transferred from one system to a second, identical sys-
tem after some calibration, i.e. shift of the LDA projections
for the correct system state (Helwig et al., 2015a). Given the
high performance which was not expected when designing
the experiments, we also studied how sensor faults would in-
fluence the classification results. For this, sensor offset, drift,
noise and signal drop-outs were simulated in the recorded
data for all sensor channels and the resulting data were used
to classify the system state. Not surprisingly, the classifica-
tion rate is drastically reduced, especially for monitoring of
pump leakage and the hydraulic accumulator. To allow au-
tomatic recognition of sensor faults, these were defined as
new targets for the classification algorithm and trained using
the same completely automated approach. Again, the simu-
lated sensor faults could be recognized with high reliability
independent of the system state as shown in Fig. 4 for two
exemplary sensor faults. In fact, sensor faults can be diag-
nosed before they lead to false classification of the system
state (Helwig and Schütze, 2015). Correct classification of
the overall system state is still possible by excluding the de-

fective sensor(s) from the evaluation and making use of the
remaining sensors. In fact, up to five of the most important
sensors can be excluded from the evaluation and still a cor-
rect classification rate of more than 80 % is achieved (Helwig
and Schütze, 2015).

The projection shown in Fig. 4a can also be presented in a
different way, as the second discriminant function (DF2) ob-
viously does not provide relevant information for the offset
classification. Plotting the data as a histogram results in the
plot shown in Fig. 5 which shows nearly normal distributions
for all six classes with a constant FWHM (full width at half
maximum) or standard deviation. Thus, this projection could
be used not only to determine or “measure” the sensor offset;
it also provides an estimate for the uncertainty with which
this offset can be determined, considering only type A un-
certainties. Note that this also holds for the two classes with
2 and 10 bar offset, which were not used for calculating the
LDA, i.e. building the statistical model.

Similarly, the histogram for the accumulator pressure
shown in Fig. 6 also yields a constant standard deviation,
which increases with increasing temperature range, thus in-
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Figure 3. Results for determination of the four system faults studied: cooler degradation (a), valve operation (b), internal pump leakage (c),
and accumulator pressure (d). Full symbols show data used for determining the statistical model, and open symbols show additional test data
not used in the training which prove that unknown data are interpreted correctly (Helwig and Schütze, 2015).

dicating a measurement uncertainty depending on ambient
conditions, which is quite common for many sensors. This
also shows that the performance of the condition monitor-
ing approach deteriorates drastically when the temperature
of the system, or more specifically the temperature of the
hydraulic oil and with it the viscosity, changes over a wide
range. While the accumulator pressure can be estimated with
an uncertainty of less than ±5 bar for a temperature range
of 10 ◦C, an increase in the temperature range to 20 ◦C leads
to significant overlap between the different classes with an
uncertainty of at least ±10 bar. Note that narrowing the tem-
perature range further does not reduce the uncertainty cor-
respondingly, probably due to noise of the sensor data con-
tributing to this result (remember that an discriminant func-
tion is a weighted sum of different features, i.e. sensor val-
ues). To take this effect into account the training of the statis-
tical model would either need to be extended to include data
over a wide (oil) temperature range or the exact interpretation
of the system condition can only be done in a typical oper-
ating window. The latter approach is surely better suited for
typical industrial applications, especially as a full condition
monitoring is not required with high temporal resolution, i.e.
for classification of wear processes, due to the normally slow
progression of the system deterioration. On the other hand, if
this approach were to be used for mobile (hydraulic) machin-
ery, i.e. loaders, the ambient and also the operating tempera-

tures would depend drastically on location and weather con-
ditions. In this case, either an expanded training over the full
operating temperature range would be required or perhaps
several different projections selected based on the relevant
temperature level. In any case, training effort would increase
to allow universal condition monitoring.

The examples shown here clearly demonstrate the poten-
tial of data-based statistical modelling for condition moni-
toring of complex systems purely based on existing process
sensors. Thus, a cost-efficient and powerful monitoring can
be achieved which allows interpretation of the results also
in terms of the measurement uncertainty of the systems sta-
tus, i.e. the uncertainty is nearly constant over the full range
from a system in mint condition to near failure, but the un-
certainty increases if additional factors, in this case signif-
icant changes in the oil temperature, have to be taken into
account. Note, however, that this does not apply to all system
faults. In this example a varying uncertainty was observed
for the valve switching behaviour which increased over the
monitored range, which might be due to a non-linear relation
between features and resulting discriminant function and the
fault status. Even more problematic is the observation that
the variation of results for test data does not show a nor-
mal distribution, i.e. a simple interpretation of the standard
deviation as measurement uncertainty is not possible, and,
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Figure 4. Results for identification of sensor faults offset (a), drift (b), noise (c) and peaks (signal drop-outs, d). Full symbols show data
used in determining the model for the sensor faults diagnosis, and open symbols show additional data not used in the training, which again
proves that unknown data are interpreted correctly (Helwig and Schütze, 2015).

Figure 5. Plotting the data from the LDA analysis as a histogram of the first discriminant function (DF) shows that this projection results
in a linear relationship allowing determination of the sensor offset. An estimate of the uncertainty for the offset is also possible due to the
constant standard deviation of the data; note that this includes data at 2 and 10 bar offset, which were not used for building the statistical
model.

furthermore, the interpretation of the statistical results as a
“measurement” of the system state might not be justified.

4 A modular approach for smart sensor networks
and condition monitoring

The successful preliminary work in iCM Hydraulics resulted
in the establishment of a successor project, in which the de-
veloped methods are transferred to an open sensor system

toolbox. In this project (MoSeS-Pro, 2015) magnetoresis-
tive sensors (AMR, GMR, and especially TMR) are primar-
ily used to measure current, position, and angle, but other
(micro)sensors, e.g. MEMS sensors for vibration, pressure,
or thermal radiation, are also used to extend the measure-
ment spectrum. These sensors are also integrated into com-
ponents and subsystems (Helwig et al., 2017b) to allow im-
proved performance and condition monitoring, both as an
end-of-line test in their production and during their opera-
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Figure 6. Histogram of the sensor data/features for classification of
the accumulator pressure vs. first discriminant function. Here, the
data were rescaled (compare Fig. 3d) to centre values for 130 bar
(nominal pressure) at 0 and data for 90 bar at 1. The standard devia-
tion for small temperature range (c) seems to be determined by noise
from the sensors/features, while it is strongly influenced by varia-
tions of the oil temperature for increasing temperature range (a).

tion in manufacturing systems. In this project, modular elec-
tronics and software algorithms are developed, allowing the
required signal pre-processing and feature extraction directly
in the smart sensor. Otherwise, signals recorded at high fre-
quencies of several 100 MHz would result in data rates which
would overload the higher levels. In addition, novel self-X
methods, wireless sensor interfaces, and energy harvesting
are developed for easy integration and initialization of sys-
tem operation. Figure 7 gives an overview of the modular
approach.

As shown above, statistical data analysis is a powerful tool
for condition and process assessment without firm and de-
tailed expert knowledge since most of the underlying algo-
rithms are self-optimizing and can be concentrated in auto-
mated signal processing chains. However, this approach, es-
pecially in the case of supervised learning, requires a suffi-
cient quality of training data, i.e. typically cyclical process-
synchronized sensor data which are annotated with corre-
sponding classes, i.e. the target vector for which the statis-
tical model is to be trained. The typical steps for offline anal-
ysis (Fig. 8a) are signal pre-processing, feature extraction,
and selection as well as classification with subsequent eval-
uation and can be interpreted as a gradual dimensionality
reduction. Feature extraction and selection can be fully au-
tomatized using a modular approach based on complemen-
tary algorithms to extract information from the time domain,
i.e. with adaptive linear approximation (ALA), from the fre-
quency domain, i.e. with Fourier analysis, from the time–
frequency domain, i.e. using wavelet analysis, or the overall
system, i.e. based on principal component analysis (PCA).
Similarly, complementary techniques are used to select suit-

able features and feature combinations, i.e. simple correla-
tion analysis or recursive feature elimination support vector
machines (RFESVMs) for linear or RELIEFF for non-linear
separability (Schneider et al., 2017). In this way, the signal
processing software as part of the sensor kit is realized in
a highly modular design since heterogeneous sensors differ
significantly regarding signal shape, time and spatial resolu-
tion, and target information to be extracted.

An example of the application of this toolbox is shown
in Figs. 9 and 10. A miniaturized sensor system prototype
was designed for integration in an electromechanical cylin-
der (EMC). These are increasingly applied as feed drives in
machine tools, due to their unique combination of high loads,
precision, and flexibility. The sensor system contains a range
of (partially redundant) sensors (linear and rotary encoders,
3-D accelerometers, microphone, temperature and IR radia-
tion sensors). Currently, the sensor prototype consists of two
separate subsystems: first, two stacked sensor printed circuit
boards (PCBs) (Fig. 9) mounted on the front surface of the
ball screw inside the EMC housing (Festo ESBF-BS-63-400-
5P, ∅ 63 mm, 400 mm stroke, 5 mm spindle pitch, axial load
max. 7 kN) containing in total nine MEMS sensors. Further-
more, the rotary position of the spindle shaft is measured by
an AMR Wheatstone bridge sensor (Doms and Slatter, 2014)
with external bias magnet generating the support field which
interacts with ferromagnetic teeth of the spindle shaft. This
sensor is positioned at a fixed position in the cylinder housing
close to the ball bearing (cf. Fig. 1a) pointing to the thread
with a working distance of 1 mm. During rotation, the rela-
tive position of sensor and teeth changes, periodically result-
ing in sine and cosine sensor signals.

To evaluate the sensor system in a condition monitor-
ing scenario, we induced a local abrasion of the spindle at
stroke position 185 mm and recorded several stroke move-
ments with varying velocity and three repetitions. For sig-
nal processing, short-time Fourier transform (STFT) was ap-
plied (length 10 000/overlap 2000 samples) with subsequent
feature extraction and selection as previously demonstrated
(Helwig et al., 2015b). Feature extraction captures a total of
210 statistical parameters such as median, variance, skew-
ness, and kurtosis in different intervals of the amplitude spec-
tra of three acceleration axes. The features are selected by
F -value ranking of univariate ANOVA and dimensionally re-
duced to three discriminant functions (DFs) using LDA to
obtain the maximum class separation. The latter algorithms
are supervised learning methods, i.e. require class-annotated
data which were given as velocity information and a local
spindle condition traversed by the spindle nut. Figure 10a
shows the resulting 3-D projection of sensor data with the
planes DF1–DF2 and DF1–DF3 separating the different ve-
locity levels and spindle conditions, respectively. Here, the
velocity classes with 10, 20, and 50 mm s−1, respectively,
were used for training and the class with 30 mm s−1 veloc-
ity was used for evaluation. The intermediate velocity class
fits well into the data-based model and the fault identification
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Figure 7. Application-specific design of the modular MoSeS-Pro sensor system kit combining various (micro-)sensors, especially xMR
sensors, but also MEMS vibration, sound, pressure or IR radiation sensors, with electronics for data acquisition and pre-processing as well
as communication interfaces in application-specific sensor systems (Helwig et al., 2017a).

Figure 8. (a) Typical steps for offline data analysis and approximation of an exemplary sensor signal with different complimentary feature
extraction methods: (b) adaptive linear approximation, (c) principal component analysis and (d) best wavelet coefficients using the largest
Daubechies-4 wavelet coefficients (BDW: best Daubechies wavelet); in each case, X shows the original signal and X’ the approximated
signal using 16 (b) and 8 (c, d) features, respectively.

rate improves with increasing velocity. Figure 10b shows the
plot of DF3 over stroke position clearly indicating the de-
fect. The maximum is blurred, first, due to the interaction of
balls and spindle defect over a distance of 30 mm and, sec-
ond, also results from the STFT temporal blur. Furthermore,
especially at low speeds with accordingly higher local res-

olution, two local maxima can be seen indicating the entry
and exit points of the spindle nut passing over the defect.
This example shows that the stroke position dependent anal-
ysis of signals can be used for fault diagnosis differentiating
between local anomalies such as defects of the spindle and
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Figure 9. (a) Mechanical integration of the sensor system inside the EMC and (b) realization of the stacked sensor ring PCBs with the
spindle shaft inside a disassembled cylinder (Helwig et al., 2017b).

global disturbances, e.g. of the ambient. For further details,
the reader is referred to Helwig et al. (2017b).

To make full use of the MoSeS-Pro approach, data pre-
processing and feature extraction need to be integrated into
the sensor system to reduce the data load in the network and
the cloud. However, this modular approach can also be used
to design cost-efficient sensor systems for smart monitoring
applications. In this case, a complete “over-instrumented”
sensor set is used and the full sensor data are evaluated with
the automated approach described above. Using the fairly
simple and transparent algorithms allows identification of
relevant sensors and features and, thus, the necessary acqui-
sition bandwidth using an offline analysis. On this basis a
greatly simplified sensor system can be defined for practical
application. This approach would also allow us to choose an
application-specific balance between sensor redundancy, i.e.
to achieve robust operation as shown in Sect. 3, and cost ef-
ficiency.

5 Conclusion and outlook

Sensors and instrumentation are central driving forces for
innovation, not only for Industry 4.0, but also for other
megatrends that are described with the adjective smart, e.g.
smart factory, smart production, smart mobility, smart home,
or smart city. Intelligent decisions of complex systems are
based on the knowledge of the system as well as ambient
conditions and influence factors provided with high accu-
racy by sensors. The importance of sensors, measurement
science, and smart evaluation for Industry 4.0 has been rec-
ognized and acknowledged by various authors (Imkamp et
al., 2016; Sommer and Schütze, 2016; Walter, 2017) and
has already led to the statement “Industry 4.0: nothing goes
without sensor systems” (“Industrie 4.0: Ohne Sensorsys-
teme geht nichts”) (Arnold, 2014). It should be acknowl-
edged that notwithstanding all the euphoria and expectations
for higher sensor production and sales volumes – especially
when thinking about the Trillion sensor roadmap (Bryzek,
2013) – paradigm changes are expected, as is often the case
in the digital revolution. Completely new business models
like Uber and AirBnB already also exist in some sensor ap-

plications. Today, Google already provides the best traffic
data based on mobile phone data with much better actuality
and precision than classic traffic monitoring based on ded-
icated sensors. In this application the network plays an im-
portant role and of course the amount of data: while indi-
vidual movement data provide low quality, data fusion of a
large number of movements provides the required informa-
tion. Similar effects can in the future also be expected for
environmental data, i.e. air quality, when gas sensors are in-
tegrated into smartphones in large numbers. The field of sen-
sors and measurement science and especially the research
community have to address this challenge to ensure that fu-
ture standards are still set by GMA (VDI/VDE-Gesellschaft
Mess- und Automatisierungstechnik), DKE (Deutsche Kom-
mission Elektrotechnik Elektronik Informationstechnik), and
AMA (in Germany), as well as BIPM, CEN/CENELEC and
ISO worldwide, and not in Silicon Valley.

A possible approach for the sensor and measurement sci-
ence community to play a bigger role in this development of
Industry 4.0 might be the area of measurement uncertainty,
which is simply not addressed by the computer science com-
munity today. In addition to making use of quantum stan-
dards integrated in smart sensors, an expanded view of the
Guide for Expression of Uncertainty in Measurement (GUM,
2008) taking into account sensor data fusion and statistical
modelling is highly desirable to make full use of the undis-
puted potentials and to continue with the success story of in-
dustrial production in high cost countries, which is one of the
promises of Industry 4.0. Condition monitoring of complex
production systems – from a single hydraulic press to a com-
plete factory with assembly and test systems – can be one
paradigm for the development of sensors and measurement
science for Industry 4.0 as this immediately offers many eco-
nomic advantages but can also be used for developing and
testing new business models. A highly important aspect here
is data security and with it the question of who owns which
data and who has a right to access certain data. Consider a
critical component being monitored in a complex production
process: while the raw data are produced in the factory, the
know-how for their interpretation lies with the component
manufacturer. Forwarding complete process raw data to the
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Figure 10. (a) LDA projection of 30 selected vibration features, n= 2883, with training based on velocity classes 10, 20, and 50 mm s−1;
classification rate determined for the Mahalanobis distance classifier with 10-fold cross-validation. (b) Deliberate abrasion as a local defect
on the spindle and corresponding signal of DF3 vs. stroke position (moving average over 10 data points) (Helwig et al., 2017b).

component manufacturer is usually not an option, as this will
also include confidential data, e.g. the production volume,
from the factory. A successful business model will therefore
require a certain level of trust between the involved partners
but also a suitable abstraction level of the data from the com-
ponent which would allow the required condition monitoring
but no further insights into the confidential production pro-
cess. This will of course be even more complicated if sev-
eral component and sensor providers are involved to achieve
the holistic condition monitoring approach based on data fu-
sion. Perhaps this will lead to a new approach in data ware-
house management with a novel type of neutral smart service
provider to perform data anonymization and/or data analysis
for all involved parties.
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5.2 Paper 1: Automatic Feature Extraction 
and Selection for Classification of Cyclical 
Time Series Data 

Given the economic and technical restrictions imposed on smart sensors, a set of 

mutually complementing algorithms is proposed and introduced. The individual 

algorithms and their suggested combinations are shown and demonstrated in four 

different examples, namely: 

• Process sensors of a hydraulic test bed to detect accumulator pressure loss, 

• Vibration sensors on a hydraulic test bed to detect accumulator pressure loss 

and degradation of cooling power, 

• Gas sensors with temperature cycled operation (TCO) to quantify Naphthalene 

concentration, 

• Impedance spectroscopy of a gas sensor to discriminate different gases and 

detect sensor poisoning. 

Additionally, a random dataset was generated based on the gas sensor with TCO to 

demonstrate the absence of overfitting in algorithm selection. As intended, the 

automated machine learning toolbox successfully failed to surpass random guessing 

on the randomized dataset while achieving better performance in comparison with 

algorithms previously applied on the other datasets. 
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Abstract: The classification of cyclically recorded time se-
ries plays an important role in measurement technolo-
gies. Example use cases range from gas sensors combined
with temperature cycled operation to condition monitor-
ing using vibration analysis. Before machine learning can
be applied to high dimensional cyclical time series data di-
mensionality reduction has to be performed to avoid the
classifier suffering from overfitting and the “curse of di-
mensionality”. This paper introduces a set of four com-
plementary feature extraction methods and three feature
selection algorithms that can be applied in a fully automa-
tizedmanner to reduce thenumber of dimensions. The fea-
ture extraction algorithms are capable of extracting char-
acteristic features from cyclical time series catching infor-
mation contained in local details and overall cycle shape
as well as in frequency or time-frequency domain. The
methods for feature selection are capable of selecting the
most suitable features for linear and nonlinear classifica-
tion. The methods were chosen to be applicable to a wide
range of applications which is verified by testing the set of
methods on four different use cases.
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Zusammenfassung: Die Klassifikation zyklischer Signal-
verläufe mittels maschinellen Lernens spielt eine wich-
tige Rolle in der Messtechnik. Beispielanwendungen rei-
chen von Gas-Sensoren, die temperaturzyklisch betrieben
werden, bis hin zur Zustandsüberwachung durch Vibra-
tionsanalyse. Bevor maschinelles Lernen auf die hochdi-
mensionalen, zyklischen Signalverläufe angewandt wer-
den kann, muss deren Dimensionalität verringert werden,
um zu verhindern, dass der Klassifikator unter Overfit-
ting und dem „curse of dimensionality“ leidet. In dieser
Veröffentlichung werden vier sich gegenseitig ergänzen-
de Methoden zur Merkmalextraktion und drei Algorith-
men zur Merkmalselektion vorgeschlagen, die automati-
siert genutzt werden können, um die Dimensionalität zu
verringern. Die Algorithmen zur Merkmalextraktion extra-
hieren charakteristischeMerkmale aus demSignalverlauf.
Die in den Merkmalen enthaltene Information beinhal-
tet dabei nicht nur lokale Details und die allgemeine Kur-
venform sondern auch Merkmale aus dem Frequenz- und
Zeit-Frequenz-Bereich. Die Methoden zur Merkmalselekti-
on sind in der Lage die besten Merkmale für lineare und
radialeKlassifikationauszuwählen.DieMethodenwurden
so ausgewählt, dass sie für ein möglichst breites Anwen-
dungsspektrum geeignet sind, was durch die erfolgreiche
Anwendung auf vier verschiedene Beispieldatensätze ge-
zeigt wird.

Schlüsselwörter: Klassifikation von Signalverläufen, Di-
mensionsreduktion, maschinelles Lernen.

1 Introduction
Time series play an important role in measurement tech-
nologies. Thereby cyclical time series, which are for exam-
ple recorded during a fixed working cycle of an industrial
machine, are of special interest. Classification of such sig-
nals can be used for conditionmonitoring of the machine.
If machine faults have different effects during different
parts of the machine working cycle the fault mechanism
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produces a certain “fingerprint” in the cyclical sensor data
that can be used to determine the fault progress allow-
ing predictive maintenance [1, 2]. Using machine learn-
ing trained on a database containing cycles coming from
machines with and without faults these fingerprints can
be identified. The problem addressed in this paper is that
common machine learning algorithms are not suitable for
time series classification due to the high dimensional-
ity of raw data, if each measurement point in a cycle is
treated as a new dimension. One issue is the computa-
tional complexity of the learning algorithm making learn-
ing in high-dimensional space inefficient.More important,
however, are effects like overfitting and the “curse of di-
mensionality” [3] which reduce classifier performance in
high-dimensional space.

2 Dimensionality reduction
To applymachine learning to high-dimensional data, suit-
able dimensionality reduction has to be performed by ex-
tracting characteristic features from the time series (fea-
ture extraction) and selecting the most relevant features
(features selection). Feature extraction is an unsupervised
(i.e. is done without knowledge of the cycle‘s group affili-
ation) process that only depends on the basic shape of the
cycle which should be represented as accurate as possi-
ble by the features. However, feature selection selects the
most relevant featureswith respect to a given classification
target. Therefore, feature selection is a supervised process
which depends on knowing the correct group affiliation of
each cycle.

To reduce the effort spent on dimensionality reduc-
tion, this paper suggests a complementary set of auto-
mated methods for feature extraction and selection. Since
there is no universal method for dimensionality reduction
of time series a set of algorithms is better suited to cover
awide range of possible applications as a single algorithm.
The methods suggested for feature selection were chosen
for working best on different applications of current re-
search, i.e. by offering complementary performance. Ad-
ditionally, the individual algorithms also have to be as ef-
fective and efficient as possible. Efficiency in the context
of time series means being scalable, both with respect to
a high number of data points per cycle, to account for long
cycles and high sampling rates, and a high number of cy-
cles, to account for large databases. Effectiveness of fea-
ture extraction is the ability of the algorithm to represent
the original cycle as accurately as possible using as few
relevant features as possible. In the process the algorithm
must not create new clusters within the database because

new clusters increase model complexity needed to learn
classification rules for fault types. Creating new clusters
is a typical risk when using feature extraction methods
that use features for bookkeeping. With respect to the con-
secutive feature selection the feature extraction algorithm
should concentrate the relevant information in few fea-
tures to allow feature selection to easily identify and select
the most relevant features.

3 Feature extraction
Each of the four feature extraction algorithms described
in this chapter is suitable for representing different types
of information typically contained in time series data. In
this sense the algorithms complement each other to pro-
cessdata fromabroad spectrumof realworld applications.

The four methods suggested for feature extraction
after comparison of a total of 15methods [4] are:

3.1 Adaptive linear approximation (ALA)

Information contained in local details like transients and
edges can be represented by piecewise approximation
of the cycle with linear functions. Piecewise approxima-
tion splits the cycle into several variable length segments
which are represented by the linear fit parameters mean
value and slope. This is particularly useful if relevant in-
formation is only contained in certain cycle segments be-
cause relevant information is concentrated in few features
allowing feature selection to safely discard irrelevant in-
formation. The linear fit function is chosen because it is
computationally cheap and provides first order approx-
imations. Since irrelevant signal components like noise
require higher order approximations they are efficiently
suppressed. In addition, multiple automated algorithms
are available for linear segmentation. The only algorithm
which guarantees minimal regression error over all cycles
for a given number of segments is described in [5]. This
algorithm also automatically suggests a reasonable num-
ber of segments to use and, thus, automatically tunes the
tradeoffbetween lowapproximationerror and lownumber
of features. Figure 1(l) shows the resulting approximation
of the a gas sensor response to TCO.

3.2 Principal Component Analysis (PCA)

The best way to catch the general trend of a cycle in the
time domain is to use the projection onto the first principal
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Figure 1: (l) Approximation X’ using ALA with features x’
1
–x’

16
, compared to the original gas sensor temperature cycle response X (shifted for

better clarity). The eight segments are represented by mean values (uneven indices) and slopes (even indices). (r) Approximation using PCA.
Extracted features x’

1
–x’

8
are projections onto the first principal components that are shown below.

components (PCs) found by PCA. This method is chosen
because the first principal components are the best lin-
ear transformation of the dataset for a given number of
features (projections on PCs) in terms of approximation
error [6]. An alternative view to PCA is that the first PCs
are formed to explain maximum variance and therefore
capture fundamental cycle trends while later PCs capture
details and noise. This enables the PCA to determine the
number of PCs required to represent all non-randomvaria-
tion in the trainingdataset usingBartlett‘s test [7] for equal
variance. Since the last PCs capturing random noise have
equal variance they can be safely discarded. Because PCA
is a global transformation of the dataset trying tominimize
the global approximation error, local details are rarely rep-
resented by the first principal components and are there-
fore often neglected. Thus, PCA is good for a represen-
tation of overall trends and decomposition of the signal
into different characteristics influenced by different driv-
ing forces, while ALA is good to represent localized infor-
mation. How the decomposition of the signal into differ-
ent characteristics can look like is shown in Figure 1(r).
It is clearly visible, how the signal is a consists of an ac-
tual sensor response (visible in principal components one,
two, and seven) and a superimposed beat, that is induced
by sensor electronics and does not carry any relevant in-
formation for gas sensing.

3.3 Best Fourier Coefficients (BFC)

Depending on the nature of the measurement variable the
relevant information might not be represented well in the

time domain. Especially in vibration analysis the informa-
tion is expected to be much better represented in the fre-
quency domain. To capture this information Fourier trans-
formation is applied to transform raw data into the fre-
quency domain. Extracted features are amplitudes and
phase shifts. To reduce the dimensionality initially the
symmetry property of the Fourier transformation is ex-
ploited which allows discarding half of the Fourier coeffi-
cients without loss of information. Then, only the ten per-
cent of the coefficients with highest mean absolute value
over all cycles are extracted as features. Asdescribed in [8],
choosing these coefficients will preserve maximum signal
energy for a reduction factor of ten. Note that using an-
other reduction factor than ten enables the user to con-
trol the tradeoff between low approximation error and low
number of extracted features. Figure 2(l) shows the result-
ing approximationwhen using BFC. As seen the overall cy-
cle shape is more dominant than the superimposed beat
(compare Figure 1(r)) and the beat is therefore discarded.
The same accounts for the sharp edge at measurement
point 80, that is represented by multiple high frequency
coefficients with low amplitude.

3.4 Best Daubechies-Wavelet Coefficients
(BDW)

Wavelet decomposition is applied to capture information
in both the time and frequency domains. The Daube-
chies-4Wavelet hasbeenchosenbecauseof itswidespread
use in signal processing and data compression. Wavelet
decomposition is particularly interesting for providing
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Figure 2: (l) Approximation X’ using BFC with features x’
1
–x’

16
compared to the original gas sensor temperature cycle response X (shifted for

better clarity). The approximation is the superposition of multiple sinus waves represented by amplitude (features with uneven indices) and
phase shifts (features with even indices). (r) Approximation using BDW. Extracted features are wavelet coefficients x’

1
–x’

8
.

a multiresolution view of the data since the first wavelet
coefficients are extracted from global signal sectionswhile
the last coefficients are extracted from local details [8].
As for Fourier transformation the coefficients with highest
mean absolute value over all cycles are extracted as fea-
tures. Again, this method preserves the maximum signal
energy for a given reduction factor and the reduction fac-
tor can be used to control the tradeoff between accuracy
and number of features. The approximation using BDW is
shown in Figure 2(l).

4 Feature selection
After feature extraction feature selection is applied to se-
lect the most relevant features for machine learning. As
Houle et al. suggest [9] the “curse of dimensionality” is
not caused by high dimensionality per se but by many
features providing low contrast regarding classification.
Thus, choosing only the most relevant features and dis-
carding low contrast features efficiently suppresses the
curse of dimensionality. Again, a huge variety of algo-
rithms is available; however, none of these guarantees to
find the optimal solution for all types of data. Therefore,
the following, complementary set of algorithms is sug-
gested:

4.1 Recursive Feature Elimination Support
Vector Machines (RFESVM)

RFESVM is an embedded method for feature selection
combiningmachine learning based on Support Vector Ma-

chines (SVM) with feature selection. The algorithm recur-
sively trains a linear SVM on the current feature set and
eliminates the feature with least relevance for group sep-
aration [10, 11]. As SVMs only address binary classifica-
tion multiclass problems are resolved in the implementa-
tion using one vs. one multiclass encoding and averaging
feature relevance over all binary classifiers. In addition,
the parameter C of the binary SVMs, which controls the
trade-off between training error andmarginmaximization
(with C=∞ leading to a hard margin SVM) [12], was set
to a fixed value of 1,000 and all features are standardized
before each SVM training. In addition, RFESVM was only
applied to the 500 features with highest Pearson correla-
tion to the target value to limit the computational effort.

4.2 Pearson correlation

Pearson correlation is used for quick results and feature
pre-selection due to its low computational cost. Pearson
correlation ranks features according to their individual lin-
ear correlation to the target. Both RFESVM and Pearson
correlation select features for linear classification, but in
contrast toPearson correlationRFESVMtakes into account
feature interactionandanykindofmonotonic relationship
between features and target. This enables RFESVM to find
more effective feature subsets and to eliminate redundan-
cies that will occur when selecting the highest correlated
features.
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4.3 Univariate RELIEFF

For classes that are not linearly separable it seems natu-
ral to use learning algorithms based on nonlinear classi-
fication. RELIEFF is based on radial classification using
k Nearest Neighbors (kNN). The implementation used is
the univariate variant of the algorithm described in [13]
and computes a relevance index based on kNN with k=5.
Since RELIEFF is based on radial classification it is com-
plementary to RFESVM which is based on linear classifi-
cation. However, the implementation of RELIEFF in this
paper rates the relevance of features individually, unlike
RFESVM which rates features in the context of other fea-
tures. RELIEFF is applied to the 1,000 highest correlated
features.

For all methods the optimal number of features is es-
timated by computing the tenfold cross-validation error
of a Linear Discriminant Analysis (LDA) in combination
with Mahalanobis classification as described in [14]. This
means the group affiliation of a new point is predicted by
assigning them to the group with minimum Mahalanobis
distance to the point. Since LDA is computationally cheap
the cross-validation error is computed for all feature sets
with less than 500 features to select the number of fea-
tures that yields minimum classification error. Note that
any other classification algorithm that is suitable for the
learning problem at hand could be used for the final clas-
sification step. The rather simple LDA is chosen here to
demonstrate that dimensionality reduction does not in-
crease model complexity and keeps the learning problem
simple when applied as suggested in this paper.

5 Application of feature extraction
and selection

The algorithms are combined by evaluating datasets with
all combinations of the named feature extraction and se-
lection algorithms as shown in Figure 3. This combination
effectively finds the best features for linear and radial clas-
sification in time, frequency and time-frequency domain.
Please note that this method, like every other one, does
not guarantee finding the optimal feature representation.
Nevertheless, the combination of complementary meth-
ods provides a high probability to find a relevant feature
subset. To prove this concept and to show the applicabil-
ity for different types of data the suggested set of meth-
ods was successfully applied to the following datasets
from four different applications and an additional syn-

Figure 3: Schematic of the suggested algorithms for feature
extraction (left), feature selection (middle) and classification (right)
and their combination for automated dimensionality reduction and
classification. Abbrevations: Adaptive Linear Approximation (ALA),
Principal Component Analysis (PCA), Best Fourier Coefficients (BFC),
Best Daubechies Wavelets (BDW), Recursive Feature Elimination
Support Vector Machines (RFESVM), Linear Discriminant
Analysis (LDA).

thetic data-set to verify the robustness of the algorithms
against overfitting.
– Temperature cycled gas sensors [4, 14]
– Impedance spectroscopy of gas sensors [15]
– Condition monitoring using process sensors [1]
– Condition monitoring using vibration analysis [16]
– Random data

6 Results
Since this paper is focused on feature extraction and se-
lection only results achieved using LDA are reported here.
Since LDA is working best for classes forming single Gaus-
sian distributed clusters low cross-validation errors reflect
the success of representing data in an easily accessible
way. All errors are reported as percentage of misclassi-
fied cycles based on tenfold cross-validationwith LDApro-
jection and consecutive classification using Mahalanobis
distance to the class centers. Furthermore all the tested
datasets have been evaluated using LDA in the respective
paper, whichmakes it possible to trace all achieved results
back to improved feature extraction and selection. Note
that any other machine learning algorithm could have
been used for classification.

6.1 Temperature cycled gas sensor

The first use case shown in this paper is the temperature
cycled operation (TCO) of gas sensors. The goal here is to
determine the concentration of hazardous naphthalene in
the ppb range independent of varying ethanol background
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as required for indoor air quality classification [14]. During
training the gas sensor was exposed to six different con-
centrations of naphthalene, each in three different back-
ground concentrations of ethanol. A total of 1569 cycles
with 160 data points, i.e. measurements of sensor conduc-
tance, per cycle were recorded [4]. The temperature cycled
gas sensor can suffer from sensor drift and a varying con-
centration of background gas that strongly influences the
sensor signal. These nonstationary effects prevent the ap-
plication of time series modeling algorithms like Hidden
Markov Models that require the signal to be stationary.
Using the suggested approach allows the learning algo-
rithm to take into account these effects and to compensate
for them (with LDA only linearly).

For this dataset the choice of the feature extraction
algorithm does not affect the classification performance
significantly since all representations of the cycles lead
to very low classification errors below 1%. However, fea-
ture selection is much more relevant to reduce the cross-
validation error and reveal the basic structure of the data.
This can be shown by comparing ALA applied with and
without consecutive feature selection.When appliedwith-
out feature selection the 20 features extracted by ALA lead
to a cross-validation error of 5% while the best two fea-
tures selected by RFESVM yield an error of 0.3%. This
effect canbe tracedback to the fact, that the targetednaph-
thalene concentrations have been offered in three differ-
ent background gases and do therefore not form Gaussian
distributed clusters in feature space. Given the fact that
LDA finds the low dimensional projection of the feature-
space that maximizes the ratio of between class scattering

Figure 4: (a) LDA scatter plot of TCO gas sensor data using two most relevant features. (b) LDA scatter plot of TCO gas sensor using
20 features. Abbrevations: Linear Discriminant Analysis (LDA), parts per billion (ppb).

and within class scattering, LDA uses the additional fea-
tures in the full set to minimize the within class scatter-
ingbyprojecting thewithingroup clusters, that are formed
by varying background, onto another. This effect increases
overlap between different groups and is prevented by fea-
ture selection since feature selection removes the feature
that allow LDA tomisfit the sample distribution. The corre-
sponding two-dimensional LDA-projections can be found
in Figure 4. Although this problem is caused by the clas-
sifier used and could be circumvented using a nonlin-
ear classifier it shows how feature selection can simplify
a learning problem which comes in handy when applied
to a high dimensional problem that cannot be solved di-
rectly with a nonlinear classifier.

6.2 Impedance spectroscopy of gas sensor

In the second use case impedance spectroscopy was ap-
plied to a gas sensor to discriminate different gases and
to simultaneously assess the sensor’s degradation state
that is increased by several stages throughout the mea-
surement by sensor poisoning. The goal is to find a clas-
sifier that is capable of determining gas type and degra-
dation state. A total of 7983 complex spectra containing
measurements of admittance at 801 different frequen-
cies were recorded [15]. For dimensionality reduction each
spectrum is treated as one cycle consisting of two sensors
measuring real and imaginary part of the admittance. Fea-
ture extraction is applied to each sensor separately. After-
wards features extracted by the samemethod are grouped
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together before feature selection is applied. This approach
is used for all discussed datasets that contain more than
one sensor. For more details see [15].

For this problem the best classification results were
achieved using a combination of ALA and RFESVM. The
reported classification error is 1.8%. This result shows that
the proposed set of methods can easily be applied to eval-
uate data coming frommultiple sensors. Furthermore this
shows the applicability to spectral data. It is worth noting,
that the classification error increases to 4.6%when feature
extraction is performed on sensor impedance instead of
admittance. The fact, that impedance and admittance con-
tain the exact same information but yield different classifi-
cation errors, shows the importance of data representation
for machine learning. This emphasizes the importance of
feature extraction and selection, which can be further in-
creased by improving the raw data by preprocessing.

6.3 Condition monitoring using process
sensors

In the thirduse casemachine learning is applied to classify
the progression of different fault mechanisms of a com-
plex hydraulic system. During training the hydraulic ma-
chine is operated with a fixed work cycle. The setup of
the test system enables the operator to simulate different
fault mechanisms like accumulator pressure decrease in
different states of progression. During training 1,449 cy-
cles with multiple simulated faults were recorded. A to-
tal of 15 process sensors for pressure, temperature, flow,
electrical power and vibration were used to generate sig-
nals between 60 and 6,000 measurement points per cy-
cle. The goal is to classify the progression of a single fault-
mechanism independent of all other fault-mechanisms.
For more details see [1].

In the previous work by Helwig et. al. [1] the work-
ing cycle of the hydraulic machine was split into thir-
teen segments that each cover a static or transient part
of the cycle. Subsequently from all segments of all sensor
signals the features median, variance, slope, position of
maximum, skewness and kurtosis are extracted. From this
feature set the 20 features with highest absolute Pearson
correlation to the respective target are selected for LDA
training. In comparison with this method the automated
approachachieved improvements of the classification rate
while simultaneously the manual effort for feature extrac-
tion was significantly reduced. Regarding classification
performance the highest increase was achieved for accu-
mulator pressure of the hydraulic system. The previously
reported error rate of 9.6% [1] was decreased to only 0.35%

using a combination of ALA and RFESVM. There was no
significant improvement in classification performance for
the other possible fault mechanisms since the previously
achieved resultswere already very goodpreventing signifi-
cant further improvement. Nevertheless, in these cases the
effort required for feature extraction by manually defin-
ing the cycle segments from which features are extracted
was greatly reduced by ALA automatically identifying lin-
ear segments. The good results achieved on this dataset
show that the statistical approach is still applicable if the
machine is too complex for physical modeling.

6.4 Condition monitoring using vibration
analysis

The last use case is vibration analysis for condition mon-
itoring of the hydraulic system described above. Instead
of process sensors an accelerometer at the main oil pump
was used to record vibrations during the 975 working
cycles with 483,328 points per cycle. For more details
see [16].

The application of the described set of features to vi-
brational data both shows the scalability of themethods to
nearly half amillionmeasurement points per cycle and the
applicability for informationbest represented in frequency
and time-frequency domains. Furthermore it shows that
the best data representation depends on the respective
training target, i.e. the fault mechanism to be quantified.
For example the decrease in cooling power is better rep-
resented by raw time domain data (perfect classification
using highest correlated Daubechies-4 Wavelet coeffi-
cients) thanby the amplitude spectrumafter Fourier trans-
formation applied as preprocessing (25% error using high-
est correlated Daubechies-4 Wavelet coefficients). On the
other hand, the decrease in accumulator pressure is better
represented in the frequency domain (0% error usinghigh-
est correlatedDaubechies-4Wavelet coefficients of the am-
plitude spectrum vs. 17.2% error using highest correlated
Fourier coefficients of time domain data).

6.5 Random data

The feature selection step is not included in cross-vali-
dation although being supervised and therefore being po-
tentially prone to overfitting, i.e. possible overfitting in fea-
ture selection will not be suppressed by cross-validation
of the classifier. To estimate the amount of overfitting the
set of algorithms explained above is applied to random-
ized data. This dataset was created by randomly shuffling
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cycles andmeasurement points of the TCOgas sensormea-
surement and assigning each cycle randomly to one of
three classes. The cross-validation errors of all combina-
tions of the four feature extraction and two feature se-
lection algorithms described above are distributed around
the mean value of 66%with a standard deviation of 1.5%.
The expected value for randomly guessing class member-
ship of three classes based on randomdata is 66.7%; thus,
the amount of overfitting in feature selection is small but
might increase for larger datasets. Nevertheless feature se-
lection is not cross-validated to save computation time and
to make results comparable to results reported in previ-
ous publications. Cross-validation of feature selection is
a work in progress.

7 Conclusion
As demonstrated the suggested set of methods can be ap-
plied to a wide range of different applications. In all four
use cases considered in this paper at least one of the sug-
gested methods was able to capture the essential informa-
tion contained in the cyclical data leading to excellent and
often even perfect classification results despite the rather
simple classification algorithm used. This again empha-
sizes the importance of meaningful data representation.
Like every othermethod, this set ofmethods doesnot guar-
antee finding a good data representation but offers a high
probability to work well for real world datasets. Neverthe-
less it is a useful tool for predictive maintenance of com-
plex machines and plants based on sensor networks or
development of smart sensor systems compensation dis-
turbing interferences like aging or poisoning of sensor el-
ement.
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5.3 Paper 2: Industrial Condition Monitoring 
with Smart Sensors Using Automated 
Feature Extraction and Selection 

The following paper extends the previously introduced automated machine learning 

approach. It showcases its ability to quantify faults, trace features to individual sensors, 

and detect faults that are not well detectable by relying on engineering domain 

knowledge. 

In comparison to the previous article, the automated machine learning toolbox is 

improved in the following three ways: 

• Feature extraction by ALA and PCA are fitted with a preceding resampling 

step that provides the necessary scalability in the time series length, which the 

algorithms themselves cannot offer due to their complexity �(�²). 

• Multivariate RELIEFF replaced the previously univariate RELIEFF to account 

for feature interactions. 

• Statistical moments extracted from equally spaced signal segments were added 

as feature extractors to allow information extraction from the data's statistical 

distribution. This addition highlights the automated machine-learning toolbox's 

modular character, allowing to adapt it as needed. 

First, quantifying different machine and sensor faults showcases the toolbox. This 

demonstration included multiple different faults. Also, the discussed plausibilisation 

technique based on correct interpolation between training groups is shown in the same 

use case. 

A defective spindle of an electromagnetic cylinder is used as a second example to 

showcase defect detection, defect localization, and speed detection. This example also 

shows the toolbox's ability to identify fault symptoms that are counterintuitive to 

domain knowledge. 

Lastly, a lifetime experiment of an electromagnetic cylinder comprised of ~11TB of 

data is used to show the toolbox in a remaining useful lifetime scenario, its big data 

capabilities, and its ability to trace features to their individual sensors and frequency 

ranges. 
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1. Introduction: state of the art and current trends

A current trend in sensor technologies is the integration of 
additional functionality by use of active measurement princi-
ples as seen in various sensor elements and systems. Examples 
include

 •  Magnetic sensors like Hall sensors that use spinning-
current, internal calibration and even correction of offset 
temperature coefficients though integration of internal 
chip heaters [1] or magnetoresistive (MR) sensors using 
the compensation principle to suppress temperature cross 
sensitivity [2]; 

 •  Micromechanical accelerometers (also using compensation 
or internal calibration methods) [3] and gyroscopes (using 
the Coriolis effect with active vibration excitation) [4]; 

 •  Coriolis-based flow sensors also using active excitation 
and determination of the resonance frequency to measure 
the density of gases or fluids [5]; 

 •  Chemical sensors using temperature or gate bias modula-
tion for improved selectivity, sensitivity and stability [6].

Active modes of operation also offer additional potential 
for self-diagnosis, which is already extensively being used 
in automotive applications [7]. This does not only apply to 
inertial sensors, where the correct function is checked with 
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internal excitation, but also for e.g. the lambda probe: here the 
time constant for heating to the desired operating temper ature 
is used to detect faults, such as cracks of the ceramic. Self-
diagnosis is especially important for applications in safety 
and security. Fire detection and explosion protection could not 
be addressed with low-cost gas sensors, which are prone to 
poisoning. Here, dynamic operation also allows detection of 
sensor faults, e.g. poisoning of the sensor material [6].

Thus, smart sensors with additional functionality provide a 
significant added value for higher-level functions, e.g. in pro-
duction systems. The correct sensor function is also required 
for condition monitoring of complex systems (see section 2 
below). In this case, the correlation of sensor data within the 
system can also be used to verify the correct sensor function; 
however, in this case, the sensor fault diagnosis has to be per-
formed at a higher level within the system.

Figure 1. Hydraulic system for collection of training data: (top) working circuit with main pump MP1 (orange) with switchable orifice V9, 
switchable accumulators A1–A4 with different precharge pressures (blue) and variable load V10 (green); (bottom) cooling and filtration 
circuit with cooler C1 (red) [12]. All marked components can simulate faults with different steps of severity: the pump, for example, can 
simulate internal leakage by a switchable bypass.

Figure 2. iCM-hydraulic experimental and MoSeS-Pro data analysis approach. (top) Experimental setup with multiple simulated faults 
and process sensors to read sensor responses under different fault conditions. (bottom) Data analysis with gradual dimensionality reduction 
(feature extraction, selection and LDA), machine learning (classification) and cross-validation. Reproduced with permission from [16].
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Additional trends that will be initiated or at least pushed 
further by the Industry 4.0 paradigm are

 •  Measurement as a service: this could be a trend similar 
to the service provided by Uber in public transport, i.e. 
measurement values are sold instead of instruments [8]. 
Note that the measurement uncertainty—determined 
online by self-calibration—will then influence the 
price.

 •  Traceability of individual components down to screws, 
individual gears and even gaskets: this additional knowl-
edge will allow tolerance measurement in the assembly 
of (sub-)systems and is also required for a comprehensive 
condition monitoring to assess the influence of individual 
processing steps and machines on the final result.

 •  Self-learning systems: the correlation between sensor 
data as well as other process and ambient parameters can 
be evaluated to ensure the correct function of the system 
in the sense of a system self-diagnosis by making use 
of machine learning [9]. So far it is unclear if unsuper-
vised methods are sufficient or if supervised learning is 
required, i.e. knowledge of the current system status for 
training the evaluation.

 •  Semantic technologies for analysis of complex systems: 
interpretation of measurement values beyond the purely 
data-based approaches could offer further opportunities, 
e.g. for plausibility checks of sensor data and for pro-
viding confidence values for (fault) causes. Note that the 
World Wide Web consortium (W3C) has started working 
on a semantic sensor network ontology as early as 2005 
which allows representation of measurement values and 
their significance [10].

The last example shows that the importance of sensors 
and measurement technology was recognized also by other 
parties, which leads to some parallel and independent devel-
opments. Interestingly, however, aspects like measurement 
uncertainty and sensor self-monitoring are not addressed in 
the context of semantic technologies even though semantic 
representation would be highly valuable especially for these 
aspects [11].

2. Condition monitoring using data-based 
modeling

The potential of data-based sensor signal evaluation is 
demonstrated by the projects intelligent condition moni-
toring (iCM) Hydraulics and MoSeS-Pro (modular sensor 
systems for real time process control and smart condition 
monitoring). In iCM Hydraulics a hydraulic model system 
combining a primary circuit with variable load and a sec-
ondary circuit for cooling and filtration was used to study 
the identification of typical system faults (internal pump 
leakage, delayed valve switching, pressure leakage in the 
accumulator, reduced cooling efficiency) only based on an 
evaluation of the typical process sensors (pressure flow rate, 
temperature, electrical power). The schematic of the test 
system is shown in figure 1.

Figure 2 provides an overview of the approach: the 
hydraulic system is equipped with a total of 18 physical and 
virtual (e.g. efficiency calculated from electrical power input 
and hydraulic power output) sensors, which are read-out with 
up to 100 Hz.

The system was used to simulate a periodic industrial pro-
cess with a working cycle of 1 min duration that is shown in 
figure 3. In each cycle a total of approx. 50.000 raw sensor 
values is recorded, which are interpreted as a high-dimen-
sional measurement vector. A multi-step dimensionality 
reduction covering feature extraction and selection yields a 
projection obtained by linear discriminant analysis (LDA) 
[13], which allows classification of the system status, i.e. 
identification and quantification of the fault. Classification is 
performed based on the Mahalanobis distance of measured 
vectors to training group centers. Note that feature extraction 
is realized with unsupervised methods, i.e. without making 
use of the system status, while feature selection—here based 
primarily on support vector machines—and LDA projection 
are supervised methods, i.e. require the knowledge of the 
system status [14]. The evaluation is based on a comprehen-
sive training phase in which all combinations of all fault states 
are tested. The complete training is based on several 1000 
working cycles and requires approx. 3 d, primarily due to the 
relatively slow equilibration of the temperature after changing 
the cooling efficiency. The complete training data set contains 
almost 120 Mio raw data points. A systematic validation, e.g. 
based on k-fold cross-validation and projected faults, com-
pletes the development of the statistical model and ensures 
that no overfitting occurs in spite of the high-dimensional 
input data set and the supervised training methods [14].

In this example features were extracted from time domain 
using adaptive linear approximation (for accumulator pres sure 
loss, internal pump leakage and valve faults) and from time-
frequency domain using Best Daubechies Wavelets (for cooler 

Figure 3. Fixed working cycle (measured by PS1) with pre-defined 
load steps with static and transient sections. During the first 10 s 
V10 (see figure 2) is switched off and the system runs into the 
maximum pressure limitation. During the following 50 s the system 
simulates a hydraulic press application by setting different pressure 
levels using valve V10.

Meas. Sci. Technol. 29 (2018) 094002
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faults). The methods are explained in detail in section 3. Both 
methods can be implemented very efficiently on low cost hard-
ware. They require less than 1 min on a standard PC for the 
complete data set with several 1000 cycles. The resulting max-
imum of 500 features result in a feature space that still has too 
many dimensions for efficient classification. Therefore, fea-
ture selection based on recursive feature elimination support 
vector machines (for details see section 3.2) for each target, i.e. 
fault type, is used which is the computationally most expen-
sive step and takes several minutes on a standard PC. Note that 
these algorithms are chosen automatically as described in sec-
tion  3.3. The pressure loss of the accumulator was detected 
using 21 features, 30 for cooler degradation, 10 for internal 
pump leakage and two for valve operation deterioration. The 
subsequent calculation of the LDA projection to obtain the 2D 
plots, see figure 4, or ideally only one discriminant function 
per system fault only takes a fraction of a second on the same 
hardware. Even faster is the classification of a new working 
cycle, i.e. extraction of the selected features, projection in the 
LDA space for each system fault and classification based on a 
Mahalanobis classifier, which can thus be performed in real-
time even on a low-cost microcontroller-based system.

The performance of the approach is demonstrated in 
figure 4 for the four studied system faults: each fault state can 
be identified independently and its severity or level can be esti-
mated with surprisingly high accuracy. The cooler efficiency, 
for example, can be estimated with an accuracy of better than 
10% (the reduced cooler efficiency was simulated with pulse 

width modulation of the power supply, the percentage gives 
the duty cycle used); the accumulator pressure can be deter-
mined with an uncertainty of approx. 10 bar. Projected test 
data which were not used to build the model (open symbols) 
show that the model allows correct classification of unknown 
states and even an extrapolation of data outside the training 
range is possible within limits.

Figure 4. Results for determination of the four system faults studied: accumulator pressure (a), internal pump leakage (b), valve operation 
(c) and cooler degradation (d). Full symbols show data used for determining the statistical model, open symbols show additional test data 
not used in the training which prove that unknown data are interpreted correctly [14], as unknown data are always projected in between the 
correct adjacent training data of the corresponding fault, i.e. they prove the correct interpolation achieved with the data-processing.

Figure 5. Results for identification of sensor drift. Full symbols 
show data used in determining the model for the sensor fault 
diagnosis, open symbols show additional data not used in the 
training to prove that unknown data are interpolated and, in this 
case, even extrapolated correctly [17]. © 2015 IEEE. Reprinted, 
with permission, from [12].

Meas. Sci. Technol. 29 (2018) 094002
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In further experiments we could show that the training can 
be transferred from one system to a second, identical system 
after some calibration, i.e. shift of the LDA projections for the 
correct system state [15]. Because of the high performance, 
which was not expected when designing the experiments, we 
also studied how sensor faults would influence the classifica-
tion results. Typical sensor faults, namely offset, drift, noise 
and signal drop-outs were simulated in the recorded data for 
all sensor channels and the resulting data were used to clas-
sify the system state. Not surprisingly, the classification rate 
is drastically reduced, especially for monitoring of pump 
leakage and hydraulic accumulator. The sensor faults were 
defined as new targets for the classification algorithm to allow 
automatic recognition and train using the same completely 
automated approach. Again, the simulated sensor faults could 
be recognized with high reliability independent of the system 

state as shown in figure 5 for the simulated drift of a pressure 
sensor. In fact, sensor faults can be diagnosed before they lead 
to false classification of the system state [16]. Correct classifi-
cation of the overall system state is still possible by excluding 
the defective sensor(s) from the evaluation and evaluating the 
remaining sensors. In fact, up to five of the most important 
sensors can be excluded from the evaluation and still a cor-
rect classification rate of more than 80% is achieved for the 
various system faults [16].

Another example for data-driven modeling is shown in 
figures 6 and 7. A miniaturized sensor system prototype was 
designed for integration in an electromechanical cylinder 
(EMCs). These are increasingly applied as feed drives in 
machine tools, due to their unique combination of high loads, 
precision, and flexibility. The sensor system combines various 
(partially redundant) sensors: linear and rotary encoders, 3D 
accelerometers, microphone, temperature and IR radiation 
sensors. Currently, the sensor prototype consists of two sepa-
rate subsystems: First, two stacked sensor PCBs mounted on 
the front surface of the ball screw inside the EMC housing 
(Festo ESBF-BS-63-400-5P, ⌀ 63 mm, 400 mm stroke, 5 mm 
spindle pitch, axial load max. 7 kN) carrying a total of nine 
MEMS sensors. Furthermore, the rotary position of the 
spindle shaft is measured by an AMR Wheatstone bridge 
sensor [17] with an external bias magnet generating the sup-
port field which interacts with the ferromagnetic teeth of the 
spindle shaft. This sensor is positioned at a fixed position in 
the cylinder housing close to the ball bearing pointing to the 
thread with a working distance of 1 mm. During rotation, 
the relative position of sensor and teeth changes periodically 
resulting in sine and cosine sensor signals. Note that despite 
the fact that condition monitoring of EMCs and hydraulic 
machines are very different the data structure of time series 
that can be treated as working cycles (actual working cycle for 
the hydraulic machine; sliding windows in case of EMCs) are 
identical and therefore can be treated using the same data pro-
cessing approach. The diversity of the datasets thereby shows 
the versatility of the approach.

To evaluate the sensor system in a condition-monitoring 
scenario, we induced a local abrasion of the spindle at stroke 
position 185 mm and recorded several stroke movements with 
varying velocity and three repetitions. Short-time Fourier trans-
form (STFT) was applied (length 10 000/overlap 2000 samples) 
for signal processing with subsequent feature extraction and 
selection as previously demonstrated [18]. Feature extraction 
captures a total of 210 statistical parameters such as median, 
variance, skewness, and kurtosis in different intervals of the 
amplitude spectra of three acceleration axes (FXLN sensor). 
The features are selected by F-value ranking of univariate 
ANOVA and dimensionally reduced to three discriminant func-
tions (DFs) using linear discriminant analysis (LDA) to obtain 
the maximum class separation. The latter algorithms are super-
vised learning methods, i.e. require class-annotated data which 
were given as velocity information and local spindle condi-
tion traversed by the spindle nut. Figure 6 shows the resulting 
3D-projection of sensor data with the planes DF1–DF2 and 
DF1–DF3 separating the different velocity levels and spindle 
conditions, respectively. Here, the velocity classes with 10, 

Figure 6. LDA projection of 30 automatically selected vibration 
features, with training based on velocity classes 10, 20 and 50 mm 
s−1; classification rate determined for Mahalanobis distance 
classifier with 10-fold cross-validation. The velocity class 30 mm 
s−1 projected with the model again proves the shows correct 
interpolation achieved with the model.

Figure 7. Deliberate abrasion as local defect on the spindle and 
corresponding signal of DF3 versus stroke position (moving average 
over 10 data points) [16]. A simple threshold for the value of DF3 
is sufficient to locate the defect position during the stroke. The 
identification becomes more obvious as the velocity is increased.
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20, and 50 mm s−1, respectively, were used for training and 
the class with 30 mm s−1 velocity was used for evaluation. 
The intermediate velocity class fits well into the data-based 
model and the fault identification rate improves with increasing 
velocity. Figure 7 shows the plot of DF3 over the stroke position 
clearly indicating the defect. The maximum is blurred, first, due 
to the interaction of balls and spindle defect over a distance of 
30 mm and, second, also results from the STFT temporal blur. 
Furthermore, especially at low speeds with accordingly higher 
local resolution, two local maxima can be seen indicating the 
entry and exit points of the spindle nut passing over the defect. 
This example shows that the stroke position dependent anal-
ysis of signals can be used for fault diagnosis differentiating 
between local anomalies such as defects of the spindle and 
global disturbances, e.g. of the bearings in the ball screw or of 
the ambient. Further details can be found in [18].

As shown in figure 8 the vibration sensors ADXL335 and 
FXLN measure sharp axial acceleration peaks when balls trav-
erse the local flank defect that can be seen in time domain signal. 
The peaks are only visible in the signal recorded during the for-
ward stroke, which can easily be explained by different con-
tact angles on forward and back stroke. On the other hand, the 
observed effect, that only a few balls in the ball screw nut interact 
noticeably with the thread defect, makes prediction based on a 
physical model complicated. The pattern observed in figure 8, 
right, fits the expected ball pass frequency of 142 Hz but is not 
deterministic, i.e. not every ball passing over the defect leads to 
an acceleration peak. Nevertheless, the automated pattern rec-
ognition approach is able to identify this pattern and therefore 
can discriminate between good and defective axes (see figure 6).

3. Fully automated modular algorithm toolbox

The successful preliminary work in iCM Hydraulics resulted 
in the establishment of the successor project MoSeS-Pro [19], 

in which the developed methods are transferred to an open 
sensor system toolbox. In this project magnetoresistive sensors 
(anisotropic magnetoresistive (AMR), giant magnetoresistive 
(GMR) and especially tunneling magnetoresistive (TMR)) are 
primarily used as they are versatile tools for measuring cur-
rent, position and angle yielding periodic sine-cosine-signals. 
In addition, other MEMS (micro-electro mechanical system) 
sensors, e.g. for noise, vibration, pressure or thermal radiation, 
are used to extend the measurement spectrum. All sensor prin-
ciples are also integrated into components and subsystems [20] 
to allow improved performance and condition monitoring of 
mechatronic components, both as end-of-line test in their pro-
duction and during their operation in manufacturing systems. 
In MoSeS-Pro, modular electronics and software algorithms 
are developed allowing the required signal pre-processing 
and feature extraction directly in the smart sensor system. 
Otherwise, signals recorded at high frequencies above several 
100 MHz would result in data rates which would overload the 
higher-level systems in a typical production environment. In 
addition, novel self-X methods, wireless sensor interfaces and 
energy harvesting are developed for easy integration and ini-
tialization of system operation.

To make statistical data analysis a powerful tool for condi-
tion and process assessment without firm and detailed expert 

Figure 8. (left) Acceleration signal of forward stroke and backstroke in time domain traversing the prepared thread defect at 200 mm (total 
stroke is 400 mm). (right) Zoom in on defect. Tball is the inverse theoretical ball pass frequency. Only few balls seem to interact with the 
thread defect [16]. Furthermore the fault, i.e. the interaction of balls and thread defect, is only observed during the forward stroke due to 
different contact angles.

Table 1. Advantages and disadvantages of ALA.

Advantages Disadvantages/assumptions

• Extracts information from 
local details in time domain

• Assumes multiple linear signal 
segments within the cycle

• Linear function provides 
first order approximations

• Assumes the same splits can be 
performed on all cycles

•Noise suppression • Signal length has to be limited 
due to computational  
complexity

• Does not create new  
clusters within the data

Meas. Sci. Technol. 29 (2018) 094002



T Schneider et al

7

knowledge, the underlying algorithms need to be self-opti-
mizing and combined in automated signal processing chains. 
Since no machine learning algorithm can guarantee optimal 
results on all datasets a toolbox of automated algorithms 
is used that was designed to solve typical problems faced 
when applying machine learning for condition monitoring. 
However, this approach, especially in the case of supervised 
learning, requires a sufficient quality of training data, i.e. typi-
cally process-synchronized time series sensor data which are 
annotated with corresponding classes, i.e. the target vector 
for which the statistical model is to be trained. The typical 
steps for offline analysis are signal pre-processing, feature 
extraction (FE) and feature selection (FS) as well as classi-
fication with subsequent evaluation and can be interpreted as 
a gradual dimensionality reduction. Feature extraction and 
selection can be fully automated using the developed mod-
ular approach based on complementary algorithms to extract 
information that is usually used for remaining useful lifetime 
estimation and fault classification. Such information is typi-
cally extracted using PCA [21, 22], Fourier transformation 
[23] or wavelet transformation [24]. Similarly, complemen-
tary techniques are also used to select suitable features and 
feature combinations, i.e. by a simple analysis of the signal 
correlation with the target condition or by recursive feature 
elimination support vector machines (RFESVM) for linear or 

RELIEFF for nonlinear class separability [25]. In this way, the 
signal processing software as part of the sensor kit is realized 
in a highly modular design since heterogeneous sensors differ 
significantly regarding signal shape, time and spatial resolu-
tion, as well as target information to be extracted. Most impor-
tant, however, all of these algorithms are simple enough to be 
integrated directly in the smart sensor using either a micropro-
cessor or, for signals with higher data rates, an FPGA board. 
The individual algorithms are introduced in the following 
section.

3.1. Automated feature extraction

All FE methods introduced here are unsupervised and aim 
to reconstruct the original raw data with as few features as 
possible. Simultaneously each method has to preserve simi-
larities within classes, i.e. machine conditions, and differences 
between classes to find good representations for machine 
learning. Of course, there is a trade-off between low approx-
imation error and low number of features. Furthermore, the 
method that extracts the features that provide highest contrast 
between different classes cannot be determined beforehand. 
Therefore multiple simple but complementary methods are 
tested and evaluated to identify the best one. The following 
methods are used for FE:

Figure 9. Approximation X′ using ALA with features x′1–x′16 compared to the original sensor signal X (here a pressure sensor over a 
complete working cycle, shifted for better clarity). The eight segments shown below are represented by mean values (uneven indices) and 
slopes (even indices).

Table 2. Advantages and disadvantages of PCA.

Advantages Disadvantages/assumptions

•Best linear transformation in terms of low approximation error
•Good representation of general signal shape

• Optimal performance only, if signal can be decomposed into 
multiple linear driving forces

•Noise suppression •Local details are neglected
•Does not create new clusters within the data •Signal length has to be limited due to computational complexity
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Adaptive linear approximation (ALA): ALA splits the 
measurement time segment or working cycle into variable 
length, approximately linear segments and extracts slope and 
mean value of each segment, as shown in figure 9. Start and 
end of each segment are chosen to minimize the overall recon-
struction error over all training cycles and all cycle segments 
for a given number of splits performed on the data. Thereby 
the number of splits that controls the trade-off between low 
approximation error and low number of features is chosen 
automatically by monitoring the decrease of approximation 
error when performing one additional split. If the error does 
not decrease significantly with additional splits the major char-
acteristics of the cycle shape are represented by the features 
and the algorithm stops. A detailed description of the algo-
rithm can be found in [26]. This algorithm has been chosen 
over multiple other variants [27–29], because it guarantees to 
perform splits with lowest approximation error. The disadvan-
tage of this method is the high computational complexity of 
O(n2) with the number of data points n per time segment. In 
practice, this requires the maximum signal length to be limited 
to 500 values, e.g. by resampling, in order to achieve reason-
able computing times. The maximum cycle length has been 
determined empirically to match the requirements for low 
computational cost in MoSeS-Pro and the Big-Data applica-
tion shown in section 4 and at same time not to be restrictive in 
one of the applications mentioned in this paper. Nevertheless 

the advantages of a low number of extracted features and good 
representation of local information make ALA an excellent 
algorithm for Feature Extraction in time domain. See table 1 
for a comparison of advantages and disadvantages of ALA.

The n first principal components (PCs) found by principal 
component analysis (PCA) are the optimum linear transfor-
mation of the signal in terms of minimal approximation error 
for a given number of features [30]. This is equivalent to 
PCA disassembling the signal into multiple linear driving 
forces ordered by descending significance [30]. As well as 
for ALA the maximum signal length is limited to 500 due 
to computational complexity O(n2). Again this limitation is 
an empirically found trade-off between necessary accuracy 
and computational cost following the same ideas discussed 
for ALA [31]. Overall, PCA is optimal for representing the 
overall signal shape. Nevertheless, local details like sudden 
changes and edges (see figure 10) might be neglected in the 
first principal components in case they are not traceable to 
linear driving forces or do not significantly affect the global 
approximation error. For a list of advantages and disavan-
tages see table  2. The number of principal components to 
extract is determined by dividing the maximum number of 
features FS can efficiently deal with (in our case approx. 
500, for explanation see section 3.2) by the number of sen-
sors in the dataset to capture as much information of each 
sensor as possible.

Figure 10. Approximation X′ of X using PCA (shifted for better clarity). The extracted features x′1–x′8 are projections onto the first 
eight principal components that are shown below. The reconstruction is achieved by the sum of the PCs weighted with the corresponding 
coefficient (feature).

Table 3. Advantages and disadvantages of BFC.

Advantages Disadvantages/assumptions

•Extracts information from local details in the frequency domain •Assumes information to be located in frequency domain
•Takes into account phase shifts •Fixed data reduction factor
•Low computational complexity (nlogn) •Prone to frequency shifts

• FFT performed on complete signal length blurs  
frequencies from individual segments
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Best Fourier coefficients (BFC) extract amplitude and phase 
of the Fourier coefficients with highest mean absolute value 
over all cycles (see figure 11). These Fourier coefficients are the 
ones that contain the most signal energy and therefore contribute 
most to low approximation error [32]. This algorithm is there-
fore especially suitable for information that is well localized in 
the frequency domain, e.g. for vibration signals or motor cur rent 
analysis. The data reduction factor of this method is fixed to ten, 
as this was shown to be a reasonable tradeoff between low number 
of features and low approximation error (see section 3.4). If, after 
omitting the smaller 90% of the Fourier coefficients, the number 
of features is still too high for efficient multivariate FS the best 
500 features are selected based on the highest absolute Pearson 
correlation to the target value (see section 3.2). A summarized list 
of advantages and disadvantages can be found in table 3.

Best Daubechies wavelet coefficients (BDW) extracts the 
coefficients with highest mean absolute value of a multilevel 
wavelet transformation into the time-frequency domain using 
Daubechies-4 wavelets (see figure 12). As for BFC these coef-
ficients contribute most to achieving a low approx imation 
error [32] and the best 10% of the coefficients are extracted. 
The Daubechies-4 wavelet was chosen because of its wide-
spread use in signal processing and data compression. The 
fixed data reduction factor is again a trade-off between low 
number of features and low approximation error that was 
shown to be reasonable (see section  3.4). Advantages and 
disadvantages can be found in table 4. If necessary, preselec-
tion with Pearson correlation is applied to reduce the number 
of extracted features to 500 (see section 3.3). BDW captures 
information in time-frequency domain and provides a mul-
tiresolutional view to the data because it is applied multiple 
times for multi-level wavelet transformation.

For information that is contained in the statistical distribu-
tion of the measurement values signals are split into a fixed 

number of equally sized segments and the first four statistical 
moments of the data distribution—mean, standard deviation, 
skewness and kurtosis—are extracted for each segment. For 
advantages and disadvantages see table 5.

3.2. Automated feature selection

After each of the feature extraction methods is applied to 
each available (sensor) signal, the features derived with 
each method are pooled and FS is applied to each of the five 
resulting feature pools to select a feature subset suitable for 
the desired classification task. Both this step (including pre-
selection) and the classification step are based on supervised 
learning and therefore rely on the target value being known 
for each training signal. The pooling step is also called data 
fusion since features from multiple sensors are combined. Due 
to multiple problems that arise for feature selection there is 
no FS algorithm that will guarantee an optimal feature subset 
for every classification task other than exhaustive search [33], 
which is of course computationally prohibitive in most cases. 
Therefore, the following complementary feature ranking algo-
rithms are used on every feature pool. The optimal size of the 
feature set to be used is estimated by computing the 10-fold 
cross-validation classification error (see section  3.3) while 

Figure 11. Approximation X′ using BFC with features x′1–x′16 compared to the original signal X (shifted for better clarity). The 
approximation is the superposition of multiple sine waves represented by amplitude (uneven indices) and phase shifts (even indices). As 
shown in comparison to figures 9 and 10, in this case approximation in time-domain is more accurate and will be selected automatically 
(see section 3.3).

Table 4. Advantages and disadvantages of BDW.

Advantages
Disadvantages/
assumptions

• Extracts information from  
time-frequency domain

• Daubechies-4 wavelet 
might not fit every data

• Provides multi-resolutional view for 
both overall shape and local details

• Fixed data reduction 
factor

•Low computational complexity (n)
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adding features according to their relevance ranking until 500 
features are selected. The set with minimal cross-validation 
error is chosen for classification. This method guarantees 
optimal feature subset size and is possible due to the low com-
putational cost of LDA and Mahalanobis distance used for the 
classification (see section 3.3). The maximum number of 500 
features was chosen to be as small as possible to allow fast 
evaluation of the feature sets and as big as possible to include 
sufficient information for the classification algorithm. In 
most applications the training set is too small (usually  <1000 
cycles) to justify more than 500 features and the minimal clas-
sification error is achieved with less than 100 features [34].

Recursive feature elimination support vector machines 
(REFSVM) is a multivariate technique for FS based on 
training a linear SVM in each recursion. The normal vector 
of the found optimal separating hyperplane represents the 
direction of optimal class separation. The feature that con-
tributes least to this vector, i.e. has lowest absolute value, is 
eliminated and the algorithm is repeated for the remaining 
feature set. Details of the algorithm can be found in [35]. 
Multiclass problems are resolved using one versus one 
multiclass encoding and computing the mean of all abso-
lute feature weights. The SVM parameter C is set to 1000 
and features are standardized to have a mean value of 0 and 
a standard deviation of 1 before the algorithm is applied. 
The value of the parameter C defines the penalization of 
missclassifications and is usually a good tradeoff between 
generalization and adaptation to the training data. The 
standardization is necessary to account for different feature 
scales [36]. RFESVM was shown to be very effective and 
reliable in a comparison of 66 FS algorithms for gas sensor 
and condition monitoring data [31]. Nevertheless it relies on 
the classes being linearly separable. A list of advantages and 
disadvantages is given in table 6.

If the classes are not linearly separable RFESVM is com-
plemented by RELIEFF (fixed name), a multivariate FS algo-
rithm that is based on K-nearest-neighbors and therefore a 
nonlinear radial classification. RELIEFF finds the k-nearest 
neighbors for each point of the same group and the k-nearest 
neighbors of different groups and updates the ranking vector 
according to the contrast between nearest hits and misses pro-
vided by the features. Usually the L1 norm is used as distance 
metric [37]. In our case k is set to 3 to prevent a highly frac-
tural decision border in case of overlapping groups and low 
computational cost. A comparison of advantages and disad-
vantages can be found in table 7.

RFESVM and RELIEFF are extremely powerful methods 
for feature selection taking feature interaction into account. 
Nevertheless they internally rely on machine learning and can 
therefore suffer from overfitting, the ‘curse of dimensionality’ 
and nonlinear algorithmic complexity if the number of features 
in the original feature pool is high. When more than 500 fea-
tures are in the pool, feature interaction is neglected and fea-
tures are ranked by their individual Pearson correlation to the 
target value to select the 500 most relevant individual features 
for RFESVM and RELIEFF. Pearson correlation is thus used 
both for preselection and for feature selection itself. Preliminary 
work showed that 500 features are sufficient to solve all fea-
ture selection tasks the methods have been applied to and at the 

Figure 12. Approximation X′ of X using BDW (shifted for better clarity). Extracted features are wavelet coefficients x′1–x′8. The 
reconstruction is achieved by the superposition of the wavelets shown below weighted with the corresponding wavelet coefficients 
(features). As shown in comparison to figures 9 and 10, in this case approximation in time-domain is more accurate and will be selected 
automatically (see section 3.3).

Table 5. Advantages and disadvantages of statistical moments.

Advantages Disadvantages/assumptions

• Extracts information from  
statistical distribution of data 
values

• Equally sized  
segmentation might be 
meaningless

•Low computational complexity (n) • Meaning of features is 
hard to interpret
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same time allow reasonable computing times for training (~1 h 
for RFESVM, training-time depends on FS-problem to solve) 
[34]. Advantages and disadvantages are summarized in table 8.

3.3. LDA and Mahalanobis classification

The classification algorithm used to evaluate the 15 feature 
subsets generated by all combinations of five feature extraction 
and three feature selection algorithms is linear discriminant 
analysis (LDA) followed by Mahalanobis distance classifica-
tion. In case of g groups LDA performs the linear projection 
of the feature space into a g  −  1 dimensional discriminating 
space that minimizes within group scattering and maximizes 
between group scattering [40]. In this discriminating space 
points are classified into that group to which their Mahalanobis 
distance is minimal [31]. The scheme of the full data evalu-
ation is shown in figure 13. First each unsupervised feature 
extraction method is applied to each (sensor) signal available 
generating five feature pools, one for each method. From each 

feature pool the best feature subset is selected using the three 
supervised feature selection methods. Finally, the best combi-
nation of the 15 combinations of feature extraction and feature 
selection is chosen based on the lowest cross-validation error 
of the final classification to solve the problem at hand, i.e. con-
dition monitoring with different fault states as target classes. 
Note that this cross-validation loop has to include not only the 
classification itself but also feature selection and even extrac-
tion to account for possible overfitting in supervised feature 
selection and to ensure statistical stability in feature extrac-
tion. Keep in mind that a second, nested cross-validation loop 
is employed for feature subset size determination. The compu-
tational cost of this nested cross-validation is not prohibitive 
because the LDA projection can be computed analytically and 
is therefore very efficient. Additionally, LDA provides two 
further advantages over more complex classifiers like artificial 
neural networks or (nonlinear) support vector machines. First, 
the low dimensional representation achieved by LDA is easily 
visualized by 2D scatter plots that provide additional insight 

Table 6. Advantages and disadvantages of RFESVM.

Advantages Disadvantages/assumptions

•Most reliable FS algorithm in a comparison of 66 algorithms [31]
• Internally relies on linear SVM and is therefore very robust against 

overfitting
•Takes feature interaction into account

• Assumes different classes to be linearly separable by a single 
hyperplane

• Needs to be limited to 500 features due to high computational 
cost

•Takes redundancy into account •Fixed parameter C might be suboptimal for some applications
•Ignores nesting effects

Table 7. Advantages and disadvantages of RFLIEFF.

Advantages Disadvantages/assumptions

• Second-most reliable FS algorithm in a comparison of  
66 algorithms [31]

• Needs to be limited to 500 features due to high  
computational cost

•Selects features for radial classification •Fixed parameter k might be suboptimal for some applications
•Broadly used [38, 39] •Ignores nesting effects
•Takes feature interaction into account

Table 8. Advantages and disadvantages of Pearson correlation.

Advantages Disadvantages/assumptions

•Applicable to huge number of features due to very low computational cost •Only applicable in case of numerical target
•Results are easy to understand •Ignores nesting effects

• Ignores feature interaction (assumes some 
features are relevant by themselves)

•Ignores redundancy
•Only measures linear correlation

Table 9. Advantages and disadvantages of LDA and Mahalanobis classification.

Advantages Disadvantages/assumptions

• Allows determination of optimal feature subset size by brute force due to low computational 
cost.

• Optimal performance only if groups 
form equal Gauss-distributed clusters

•Offers 2D visualizations • Linear projection can only solve  
simple classification tasks.•Applicable for regression (with quantification) as long as system response is monotonous

• Interpretable decision making due to linear projection and additional insights into feature  
relevance
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into the data allowing intuitive understanding why a certain 
prediction is obtained for a given signal. Second, the linear 
nature of LDA allows analyzing the contribution of individual 
sensors, time segments or frequencies to the overall classifi-
cation result. This information can be used to optimize the 
overall system, i.e. number and types of sensors used, sample 
rate and measurement time. Table 9 contains a summary of 
advantages and disadvantages.

3.4. Evaluation on multiple diverse datasets

To show the versatility of the explained approach and there-
fore its applicability in different classification scenarios it 

was tested on multiple datasets from very different domains. 
The evaluation datasets were intentionally chosen to be more 
diverse than the primary intended application condition moni-
toring. All applications have in common, that data can be 
treated as equal sized cycles that need to be classified. In [34] 
the approach was tested on eight different datasets and 17 dif-
ferent target values. Comparisons with the results previously 
achieved on these datasets show that on five out of eight tested 
datasets better results have been achieved compared to previ-
ously used approaches which were often specifically devel-
oped for the respective datasets. In the three other cases at 
least comparable results have been achieved and the approach 
failed on none of the tested datasets. These results were 
achieved without any manual parameter tuning and although a 
simple, linear classification algorithm was used. Furthermore, 
this set of algorithms is applicable both for smart sensors and 

Figure 15. Ten-fold cross-validated lifetime prediction of an 
EMC averaged over 15 min. The prediction follows the actual 
lifetime of the EMC (blue) almost perfectly. Most prediction errors 
occur due to quantization at the class borders and are therefore 
negligible. Only a small section near the end of lifetime is severely 
misclassified.

Figure 13. Schematic of the suggested algorithms for feature extraction (left), feature selection (center) and classification (right) and their 
combination for automated dimensionality reduction and classification. The performance of all 15 combinations of FE and FS methods are 
evaluated using LDA combined with Mahalanobis classification. The best combination based on the ten-fold cross-validation error is then 
chosen for the condition monitoring task at hand. © 2018 IEEE. Reprinted, with permission, from [25].

Figure 14. Ten-fold cross-validation error plotted over the number of 
features selected by their absolute Pearson correlation to the remaining 
lifetime. Features are added incrementally according to their ranking 
and for each feature subset the error is evaluated using ten-fold cross-
validation. Small feature subsets contain insufficient information 
to predict the ECMs remaining lifetime, thus additional features 
greatly improve the classification performance up to 25% error for 20 
features. Adding further features leads to only a small decrease in the 
prediction error. By adding even more features the classification error 
would rise again due to overfitting (not shown here).
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big data, since all FE algorithms and feature preselection can 
easily be implemented on an FPGA and with the use of Map-
Reduce allowing distributed and parallel computing.

To make full use of this modular and automated approach, 
data pre-processing and feature extraction need to be inte-
grated in the sensor system to reduce the data load in the 
network and the cloud. However, this modular approach can 
also be used to design cost efficient sensor systems for smart 
monitoring applications. In this case, a complete ‘over-instru-
mented’ sensor set is used and the full sensor data are evalu-
ated with the automated approach described above. The fairly 
simple and transparent algorithms allow identification of rel-
evant sensors and features and, thus, the necessary acquisition 
bandwidth using an offline analysis. On this basis a greatly 
simplified sensor system can be defined for practical applica-
tion. This approach would also allow choosing an application 
specific balance between sensor redundancy, i.e. to achieve 
robust operation, and cost efficiency.

4. Lifetime prediction of EMCs

To evaluate the fully automated approach in a big data condition 
monitoring scenario for predictive maintenance a test bench 
for lifetime tests of an EMC (Festo ESBF-BS-63-400-5P, ⌀ 
63 mm, 400 mm stroke, 5 mm spindle pitch, max. axial load 
7 kN) was set up to create a corresponding dataset. The EMC 
was operated at maximum velocity, repeatedly pushing and 
pulling against a load applied by a pneumatic cylinder, until 
failure of the EMC. This operation simulates quick wear-
down of the EMC to record data over its complete lifetime. 
Data was recorded by three 1D vibration sensors sampled at 
100 kHz (mounted on the engine side ball bearing, the end of 
the piston rod and the friction bearing), eight process sensors 

sampled at 10 kHz (axial force, torque, pneumatic pressure, 
velocity, piston position, electrical current, lateral force and 
vibration) and three motor current sensors sampled at 1 MHz. 
With this setup a total of 347.198 cycles (i.e. single push and 
pull) were recorded over a period of 21 d at a raw data rate of 
approx. 650 GB d−1. Note that although condition monitoring 
of EMCs and the hydraulic application previously discussed 
are very different, the data structure of time series data can 
always be treated as working cycles (sliding windows in case 
of EMCs compared to actual working cycles for the hydraulic 
machine). Thus the basic data structure is identical and can 
therefore be treated using the same automated data processing 
approach. The diversity of the tested datasets thereby proves 
the versatility and flexibility of the chosen approach.

For machine learning the complete lifetime was split into 
50 equally sized groups, i.e. representing 2% of the total life-
time each, and the automated approach described above was 
applied to identify differences between these groups. The val-
idation error determined by ten-fold cross-validation shows 
that the most suitable combination of feature extraction and 
feature selection is the combination of statistical moments 
extracted on five equally sized cycle segments and their selec-
tion according to the largest absolute Pearson correlation to 
the target, i.e. the relative axis lifetime. As shown in figure 14 
a minimum error of 9% is achieved when all 300 features are 
evaluated (15 sensors * 5 segments * 4 statistical moments). 
Note that the information about the EMC lifetime state is 
thereby determined for every single cycle, i.e. every 4.8 s. 
Since the system monitors the degradation of the EMC which 
is very slow compared to the cycle time this high information 
rate is unnecessary or even unwanted. Thus, further improve-
ment is possible by averaging over multiple cycles. Figure 15 
shows the results achieved by taking into account the predic-
tions over the last 15 minutes. As shown the prediction fol-
lows the target vector very well. There is only one outlier 
(more than one class difference to target) at 96% lifetime and 
all other misclassifications occur at class boundaries where 
they are neither unexpected nor prohibitive to the application.

In addition, the approach allows to analyze which sensors 
are the most important for lifetime prediction. Figure 16 shows 
the sensors from which the top 50 features are extracted. This 
information can be used to further improve the sensor system 
and give further insight into the degeneration and decision 
making process.

5. Conclusion and outlook

This paper has shown for two relevant applications, a complex 
hydraulic machine and an EMC, how smart sensors combined 
with a well-chosen set of algorithms for machine learning 
can be used for condition monitoring to implement predictive 
maintenance. The suggested approach using complementary 
algorithms for feature extraction and selection automatically 
builds a validated data-based model to predict the learned typ-
ical component faults as well as remaining lifetime. Thereby 
the algorithms are also applicable to big data as shown in 
the EMC example. Additionally the linear character of the 

Figure 16. Best 50 features extracted by BFC and selected by 
Pearson correlation attributed to the underlying sensor. These 
features are selected first to predict the EMCs lifetime and 
therefore capture the most important information concerning the 
wear process. In fact, 28 of the best 30 features can be linked to 
physically relevant frequencies like harmonics of the motor speed. 
This information can be used to further optimize the measurement 
setup or to reduce the number of sensors used by eliminating the 
least relevant sensors.

Meas. Sci. Technol. 29 (2018) 094002
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classifier allows further insight into the decision-making pro-
cess, e.g. importance of different sensors that can be used to 
optim ize the overall system, so as to minimize the number of 
sensors used. The smart sensor is not only capable of moni-
toring the system condition but also the condition of the sensor 
network itself. This self-monitoring allows quantitative evalu-
ation of simulated sensor faults. If a faulty sensor is detected 
the fault can be compensated by removing the affected sensor 
from the database and automatic re-training. As the suggested 
methods are complementary and were tested on several dif-
ferent datasets from different fields of application it should 
achieve comparable results in other condition monitoring 
scenarios.

The current (r)evolution of Industry 4.0 and industrial 
Internet of Things continues and is pushed—among other 
drivers—by the development of smart sensors. Note that only 
some of the capabilities of smart sensors have been addressed 
in this paper. One of the intended extensions is the use of 
unsupervised novelty detection to warn if the current sensor 
signal pattern is generated by an unknown fault scenario that 
does not fit any of the previously learned faults. In this way the 
new fault can be indicated early, although it cannot be identi-
fied yet. This is important since not all possible faults can be 
simulated during training. Another desired extension is online 
learning. Using online learning a previously unknown fault 
indicated by novelty detection and subsequently identified 
during maintenance can be included in the list of known faults 
to correctly identify the fault the next time it occurs.
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5.4 Paper 3: Machine Learning in Industrial 
Measurement Technology for Detection of 
Known and Unknown Faults of Equipment 
and Sensors 

As described in the previous paper, the automated machine learning toolbox is limited 

to detecting known faults that have been sufficiently sampled. However, acquiring 

enough data samples with every possible fault is impossible or at least uneconomical 

in many application cases. In those cases, novelty detection is a good approach. 

However, as shown in the following paper, novelty detection is suitable not only for 

unknown or underrepresented fault detection [115] but also for outlier detection [116] 

and monitoring the validity of supervised machine learning decisions. 

For these applications, novelty detection defines measures of novelty and places 

thresholds on these measures to determine whether a given sample is novel. The 

novelty scores used mainly differ in their approach to defining the novelty 

measure [117]. An overview of the different typical approaches can be found in 

Section 2 of the following paper. 

The following paper presents novelty detection in the context of the automated 

machine learning toolbox machine learning pipeline with feature extraction, selection, 

classification/regression, and the usage of the respective algorithms. Concerning 

novelty detection in general and especially in this context, some remarks have to be 

made: 

Feature standardization: Most novelty scores are sensitive to feature scaling or need 

special precautions to become invariant to feature scaling. Therefore, feature 

standardization is advised before novelty detection. 

Choosing a novelty measure: Many authors recommend receiver operating 

characteristic (ROC-) curves, especially the area under the curve (AUC), to compare 

different scores. As the AUC is a threshold-independent measure of contrast [0,1] 

between normal and novel data provided by the respective measure, this method 

sounds appealing [118]. However, this measure is unreliable for the detection of 

previously unknown faults. First, it requires samples of an unknown fault that are 

likely unavailable. Second, even if samples of a previously unseen fault are available, 

the comparison by AUC will be specific to this fault as a testing error in supervised 

learning is to a specific test set. It does not guarantee that it is transferable to another 

fault that might be better detectable by a different metric. 
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Choosing a suitable threshold: As choosing a suitable threshold is highly dependent 

on the respective application, most literature refers to this fact and limits itself to 

suggesting new novelty measures. Other papers suggest general, application-

independent heuristics [119] or elbow criteria on the ROC curve [118]. As the 

threshold highly depends on the use-case and ROC curves suffer from the 

abovementioned issues, the following paper also suggests methods of use-case-

specific threshold setting for each application. 

Validation: Even though novelty detection is considered unsupervised or semi-

supervised, k-fold or group-based cross-validation is needed to confirm the statistical 

validity of the model of normality built by the respective algorithm. A simple example 

would be a novelty score based on the 1-Nearest-Neighbour distance that is exactly 

zero for all training points since the point would be contained in the training set. 

Therefore, a proper estimate of AUC or other metrics could only be given for samples 

outside the training set. 
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Abstract: This paper focuses on the application of nov-
elty detection in combination with supervised fault clas-
sification for industrial condition monitoring. Its goal is
to provide a guideline for engineers on how to apply nov-
elty detection for outlier detection, monitoring of super-
vised classification and detection of unknown faults with-
out the need of a data scientist. All guidelines are demon-
stratedbymeansof apublicly available conditionmonitor-
ing dataset. In each application case the results achieved
with different common novelty detection algorithms are
compared, advantages and disadvantages of the respec-
tive algorithms are shown. To increase applicability of the
suggested approach visualization of results is emphasized
and all algorithms have been included in a publicly avail-
able data analysis software toolboxwith graphical user in-
terface.

Keywords:Machine learning, novelty detection, condition
monitoring.

Zusammenfassung: Dieser Aufsatz befasst sich mit der
Anwendung von Anomaliedetektion in Kombination mit
überwachter Schadensklassifikation in der industriellen
Messtechnik. Ziel ist es Ingenieuren einen Leitfaden an
die Hand zu geben, wie Anomaliedetektion auch ohne Da-
ta Scientist zur Erkennung von Ausreißern, zur Kontrol-
le der überwachten Schadenserkennung und zur Erken-
nung bisher unbekannter Maschinenstörungen eingesetzt
werden kann. Alle empfohlenen Vorgehensweisen wer-
den an einem öffentlich zugänglichen Datensatz zum The-
maZustandsüberwachungdemonstriert. In jedemAnwen-
dungsszenario werden diemit unterschiedlichen undweit
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Steffen Klein, Andreas Schütze, Universität des Saarlandes,
Lehrstuhl für Messtechnik, 66123 Saarbrücken, Saarland, Germany

verbreiteten erreichten Algorithmen zur Anomaliedetekti-
on verglichen und Vor- und Nachteile aufgezeigt. Um die
Hemmschwelle beim Einsatz der vorgeschlagenen Heran-
gehensweise zu senken wird großer Wert auf Visualisie-
rungen von Ergebnissen gelegt. Weiterhin sind alle ver-
wendetenAlgorithmenTeil einer kostenlosen Software zur
Datenanalyse mit grafischem Benutzerinterface.

Schlagwörter: Maschinelles Lernen, Anomaliedetektion,
Zustandsüberwachung.

1 Introduction

Predictive maintenance and continuous monitoring of
product quality are central promises of Industry 4.0 and
the Industrial Internet of Things (IIoT) [1]. Machine learn-
ing (ML) has been shown to help fulfil these promises
by learning fault-patterns in sensor data and deriving
relevant information that cannot be measured directly,
like wear progression, remaining useful lifetime, expected
product quality before end-of-line testing, brokenmachine
parts, sensor interference and many others, from symp-
toms [2]. This potential of data based modeling has been
shown in multiple research papers [3] and is still an on-
going research subject. However, the usual approach of
learning fault patterns from sensor data, i. e. supervised
learning, requires data from a faulty machine and is there-
fore limited to the recognition of known faults. To detect
unknown faults and faults that have not occurred yet an
unsupervised learning approach is needed. As in the field
of supervised learning a huge variety of available algo-
rithms exists for novelty detection [4] and it is not triv-
ial to select the optimal one or at least a suitable one for
the task at hand. A study of 340 papers proposing new al-
gorithms for data mining by Keogh and Kasetty showed
that in these papers the algorithms were tested on aver-
age on 1.3 different datasets and compared to an average
of only 0.9 similar algorithms [5]. This demonstrates that

https://doi.org/10.1515/teme-2019-0086
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in theML community, the emphasis ismainly on newalgo-
rithms and less on the selection of suitable algorithms for
awide range of applications. In addition,many algorithms
require complex tuning of hyperparameters to adapt to
datasets. Therefore, algorithm selection and hyperparam-
eter tuning require data scientists which increases the cost
ofML projects and slows downwidespread use of the tech-
nology by engineers in industry.

This paper studies simple application rules for nov-
elty detection based on automated algorithms and sim-
ple heuristics to enable engineers to employ ML in their
application cases without the need of data scientists and
therefore aims to lower the barrier for using ML for qual-
ity monitoring and fault detection. To do this the paper
shows how novelty detection can be employed for outlier
detection, monitoring of supervised classification and de-
tection of unknown faults. In this paper several typical
faults of hydraulicmachines, namely coolingpower degra-
dation, valve switching characteristics degradation, accu-
mulator pre-pressure loss and internal pump leakage, are
considered. In each application scenario guidelines for the
application of novelty detection are derived and the re-
sults of different approaches to novelty detection in com-
bination with feature extraction and threshold estimation
are compared on a condition monitoring dataset to allow
choosing a suitable algorithm. To increase interpretability
of the results visualization is emphasized. For applicabil-
ity and user acceptance all algorithms and visualizations
are publicly available as part of a data analysis toolbox
with graphical user interface [6].

2 Algorithms and datasets

This paper is based on a supervised classification frame-
work for industrial condition monitoring [2] following
the typical steps of feature extraction, dimensionality
reduction and classification of faults. This framework
can extract information from time, frequency and time-
frequency domain by automatically applying multiple,
complementary algorithms and choosing the best combi-
nation for the respective classification task. In this study
the framework is complemented and expanded with nov-
elty detection algorithms for outlier detection, justifica-
tion of classification results and for detection of unknown
faults and anomalies.

In all application scenarios a novelty detection algo-
rithm builds a model of normality based on training data
and scores newmeasurements depending on their novelty
or similarity compared to the training data. Consequently,

novelty detection is defining a measure for normality of
sensor data (patterns) and a method of setting a thresh-
old on this measure to decide whether new data is novel
or normal. Different algorithms for novelty detection can
be categorized by their approach to define the measure for
normality [4] however other categorizations exist [7, 8].
The most frequently used approaches following the cate-
gorization of Pimentel et al. [4] are:

Probabilistic: Probabilistic approaches estimate the
probability density function (PDF) D of the training data
[4]. The estimate D� of the PDF is used as similarity mea-
sure for novelty detection. For new data points the value
of D� will be high if it is drawn from the same distribution
as the training data, i. e. if it is normal. A well-known al-
gorithm implementing this approach is the Gaussian Mix-
ture Model (GMM) [9] which models the PDF as a super-
position of multiple Gaussian distributions using Expec-
tation Maximization [7]. The number of Gaussian compo-
nents in the model can be estimated using heuristics such
as the Bayesian Information Criterion [10] which is given
by [−2 log(L) + log(n)d] where L is the likelihood function
and d is the number of parameters to be estimated.

Distance based: Distance based novelty detection
methods use distances (often the Euclidean distance) be-
tween single data points as novelty measure [11]. If new
datapoints lie close to the trainingdata, i. e. if they arenor-
mal, their novelty score will be low. The most commonly
used algorithm of this class is K Nearest Neighbors (KNN).
To balance adaption to the training data, smoothness of
the decision border and performance while avoiding pa-
rameter tuning K is set to 5, i. e. the novelty score is the to-
tal distance to the five nearest neighbors. A study on how
the parameter K affects the novelty score can be found in
[12].

Domain based: Domain based algorithms model the
boundary between novel and normal data points [13]. Sup-
port Vector Machines (SVM) are widely used techniques
for forming decision boundaries separating data of differ-
ent classes. For novelty detection One Class SVM are used
to separate the training data from the origin of the coor-
dinate system. Choosing a radial kernel like the Gaussian
kernel is equivalent to forming a convex shell around the
training data. The distance to this shell is used as similar-
ity measure [14]. This also demonstrates the mathemati-
cal similarity between distance based and domain based
approaches, since SVM use the dot or scalar product be-
tween two training data points as central similarity mea-
sure. However, in domain based approaches this similarity
measure is not used directly to classify normal and novel
data points but is used to derive a hyperplane separating
normal and novel data.
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Figure 1: Processing steps for supervised classification of known faults with potential of and restrictions for novelty detection applied be-
tween these steps. The later novelty detection is applied the stronger the training data is already adapted to the original supervised classi-
fication task. Thus, the data processing steps increase the sensitivity of novelty detection to novelties affecting the classifier and decrease
the sensitivity to general novelties that are suppressed during data processing.

Reconstruction based: Reconstruction based algo-
rithms learn a low-dimensional representation of the
training data that, as in feature extraction, captures char-
acteristics of the data andallows reconstructionwithmini-
mal loss of information. If novel data do not fit the learned
patterns it will be reconstructed with a high approxima-
tion error,which can therefore beused asnoveltymeasure.
Autoencoders (AEC) using neural networks [15] are most
widely used in this field. The network used in this study is
composed of a single hidden layer with sigmoid activation
function. The number of neurons in this layer being cho-
senby theheuristics in [16] is the square root of thenumber
of input neurons. Note that more recent approaches with
deep autoencoders are more promising concerning perfor-
mance. However these approaches require several param-
eters to be tuned (e. g. thenumber of neurons in each layer)
and are therefore not suited for the intended application
by engineers.

This paper shows exemplary results achieved with
GMM, KNN, SVM, and AEC to represent the four ap-
proaches. All algorithms have been integrated into the
Data Analysis, Visualization, Verification and Validation
Environment (DAV3E) toolbox implemented in MATLAB
which is available as open source [6].

For each of these methods the unavoidable tradeoff
between number of false positives and number of false
negatives is decided by the threshold set on the respec-
tive novelty or similarity score. A high threshold will al-
low a low false positive rate (most normal samples will be
assigned to the normal class) but will lead to a high false
negative rate (many novelties remain unnoticed). On the

other hand, a low threshold will lead to a high false posi-
tive rate (many false alarms). For themost commonor pop-
ular algorithms there are heuristics to set the threshold.
However, the applicability of these heuristics strongly de-
pends on the specific dataset and the application scenario.
Therefore, this paper describes an approach for setting a
suitable threshold in every application scenario.

Direct application of novelty detection on raw data is
usually not possible due to overfitting and the “curse of di-
mensionality” [17] that prevents assessing similarities in
high dimensional spaces due to small, random variations
adding up to significant differences which are then inter-
preted as novelties. At the same time the tradeoff between
sensitivity to new faults and sensitivity to novelties that
disturb classification of known faults depends on the data
processing step after which novelty detection is applied.
The typical data processing steps of supervised fault clas-
sification are shown in Figure 1. Every step is designed to
reduce the amount, i. e. dimensionality, of data by con-
centrating the contained information in as few features or
variables as possible, which is usually achieved by remov-
ing sensor characteristics and information not contribut-
ing to the classification of known faults. Therefore, novel-
ties that do not affect the classification of known faults are
suppressed with increasing dimensionality reduction. On
the other hand, small novelties that are highly relevant for
fault classificationmight getmasked by other variations in
the earlier stages of data processing.

To demonstrate the application of novelty detection
a publicly available dataset for condition monitoring is
used. The datasetwas generated froma complex hydraulic
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Figure 2: Design of experiment of the hydraulic condition monitoring dataset used for demonstration of the condition monitoring approach.
During the experiment all possible combinations of faults (cooling power degradation, valve switching degradation, pump leakage, and
accumulator pressure loss) are simulated in multiple grades of severity. (a): One section of the complete experiment showing the variation
of the simulated valve, pump and accumulator fault setpoints. This is repeated for the cooler running at 100% (normal operation), 20% and
3% duty cycle. (b): Pressure measured at the main valve during the machine working cycle which is repeated during the experiment. Cycle
121 represents a normal cycle, cycle 122 an anomaly, i. e. valve switching failure occurring at high temperatures (cooler running at 3% duty
cycle).

machine that is capable of simulating four fault scenar-
ios that are typical for hydraulic machines [18]. The set-up
simulates (a) cooling power decrease by reducing the fan
duty cycle, (b) degradation of valve switching character-
istics by reducing the control current, (c) internal pump
leakage by switchable bypass orifices and (d) gas leakage
of the accumulator by switching between accumulators
at different reduced precharge pressures. The dataset in-
cludes data from experiments simulating the combination
of all possible faults in multiple grades of severity. The de-
sign of experiment for faults b-d is shown in Figure 2 (a);
this is repeated three times for cooler fan duty cycles (DC)
of 100% (normal operation), 20% and 3%, respectively.
During the experiment data is recorded by a total of 23
sensors for pressure, temperature, electrical power, vibra-
tions andflow rate,while themachine performs a constant
working cycle (cycle 121) shown inFigure 2 (b) asmeasured
by a pressure sensor (PS1). Cycle 122 in Figure 2 (b) shows
a randomly occurring anomaly of the main valve, which
does not switch correctly in approx. 20% of the cycles at
high oil temperature (cooler running at 3% DC). This ran-
dom anomaly is one exemplary target for a novelty detec-
tion. The dataset is available for download at the UCI ML
repository [19]. A more detailed description of the set-up
can be found in [18].

For novelty threshold tuning two different types of
validation are employed. The first one is the widely used
10-fold cross validation, in which the training dataset is

randomly split into ten parts. Nine of these partitions are
used as training data while the tenth part is used for test-
ing. The training is repeated ten times with a different test-
ing set in each iteration and the results on all test sets are
reported as final estimation. Cross validation will reveal
overfitting and statistical variations inmodel applications.
The second validation technique is group-based cross val-
idation, in which the training and test data are not parti-
tioned randomly but based on the group affiliation of the
cycles. In the dataset described above the groups are given
by thedifferent grades of severity for thedifferent faults. As
in 10-fold cross validation training is performed on all but
one group which is used as test data. Reporting the results
of each test group provides insight into systematic varia-
tions inmodel applications and checks themodel’s ability
to interpolate between groups.

3 Novelty detection of outliers

The most common application of novelty detection is out-
lier detection. The goal is to gain insight into the data qual-
ity and to find outliers, i. e. data samples that differ sig-
nificantly from the regular data distribution, and remove
them before supervised modeling to increase the classi-
fication performance and to emphasize the regular data
distribution. To achieve this goal only features previously
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Figure 3: Novelty detection results achieved with five Nearest Neighbors (5NN) algorithm shown as histogram plot (a), territorial plot (b) or
progression plot (c). The histogram plot shows the distribution of the novelty scores with outliers being clearly visible as single samples
distinct from the majority of data samples. The territorial plot shows the selected threshold, i. e. decision boundary of 5NN in feature space.
The progression plot shows the novelty score assigned to every working cycle during the experiment (cf. Figure 2 (a)). (d): Working cycle
with highest novelty score (cycle 172) and the preceding cycle causing the novelty (pressure drop from 170bar instead of 120 bar) measured
by pressure sensor two located behind the main valve. The area of information extraction used by the supervised learning approach for
classification of valve switching degradation is indicated.

selected for modeling are considered for outlier detection
since they expose even small variations that might affect
the classifier which is based on these features (compare
Figure 1). The following approach is applied to identify
outliers:
1. Extract and select features for the desired fault classi-

fication task using supervised learning with the auto-
mated algorithm toolbox described in [2].

2. Standardize features used for modeling to compen-
sate scaling effects, i. e. to prevent large scale features
from dominating the novelty score due to their large
variance. For example, the KNN distance score might
solely depend on one feature, if the scale of this fea-
ture is several orders of magnitude larger than that of

all other features. Standardization weighs all features
equally for unsupervised learning.

3. Train the novelty detection algorithmon the standard-
ized features.

4. Use the histogram plot (compare Figure 3 (a)) to iden-
tify outliers as data sampleswith high novelty score or
low similarity score, respectively.

5. Select a suitable novelty threshold based on the ro-
bustness of the classifier used for fault classification.
The more robust the classifier the fewer outliers need
to be removed.

6. Use progression plots (compare Figure 3 (c)) showing
the predicted novelty score over the progression of the
data acquired during the experiment to correlate out-



T. Schneider et al., Machine learning in industrial measurement technology | 711

liers to physical events. Use physical interpretation to
readjust the novelty threshold to exclude actual phys-
ical outliers.

Figure 3 shows the results of the described approach us-
ing KNN novelty detection on the data used for classifi-
cation of valve degradation. The best classification results
are achieved using Adaptive Linear Approximation (ALA)
for feature extraction and Recursive Feature Elimination
Support Vector Machines (RFESVM) for feature selection.
ALA segments the machine’s working cycle into multiple
linear segments. RFESVM recursively eliminates features
from the feature pool which contribute least to the data
separation achieved with a linear SVM. The most relevant
features selected for the classification of valve switching
degradation are the mean value and the slope of pressure
sensor two (PS2) during the first 0.12 seconds of eachwork-
ing cycle. In these 0.12 seconds themain valve is shut com-
pletely (pressure at PS2 drops to 0 bar). The resulting data
distribution of the standardized mean and slope values is
shown in the territorial plot in Figure 3 (b) which – based
on 2D data – provides an intuitive insight into the shape
of the decision boundary of the chosen novelty detection
algorithm. Each of the four clusters represents one sim-
ulated grade of severity for valve switching degradation.
The threshold for the decision boundary has been cho-
sen using the histogram in Figure 3 (a) to exclude severe
outliers. Simultaneously, Figure 3 (a) shows that outliers
can be identified with a high contrast. Physical interpreta-
tion of the outliers is possible using the progression plot
in Figure 3 (c). As shown, all outliers occur within the first
third of the characterizationmeasurement (coolerworking
at 3%). Since the framework used for feature extraction
and selection allows simple trace back of the features to
the original raw data, Figure 3 (d) can be created to pro-
vide additional insight. In fact, the outlier is caused by a
valve switching failure in the cycle before the outlier it-
self, thus the pressure drops to 0 bar from 170 bar instead
of the usual 120 bar. This emphasizes the importance of
physical interpretability since it shows that both the out-
lier cycle itself (affected by the fault) as well as the cycle
before (faulty cycle) should be removed before modeling.
A purely data driven approach would only remove the af-
fected cycle and ignore the root cause. Note that outliers
like cycle 122 shown in Figure 2 (b) are not evident in Fig-
ure 4 because theirwaveformdoes not differ fromanormal
cycle in the area where information is extracted for valve
switching degradation (Figure 3 (d)). Therefore they do not
affect the desired classification of valve switching degra-
dation and are consistently suppressed by the employed
outlier detection.

For an intuitive view on the different approaches to
novelty detection Figure 4 (a), (b) and (c) show the territo-
rial plots of AEC, GMM and SVM, respectively. For all three
algorithms the dense clusters lie within the normal sec-
tion of the data resulting in low novelty scores. However,
only GMM (b) and SVM (c) form tight boundaries around
these dense clusters whereas AEC tries to form a single
cluster resulting in low novelty scores for most outliers.
For comparison of the different approaches Figure 4 (d)
shows the standardized novelty scores for KNN and AEC
and the negative standardized similarity scores for GMM
and SVM. KNN shows the highest peaks and therefore the
strongest contrast between normal data points and out-
liers and should therefore be preferred for outlier detec-
tion. The SVM similarity scores saturate for outliers out-
side the SVM margin at −1 and, thus, result in equally
high peaks in Figure 4 (d). The similarity score of GMM de-
creases exponentially with the distance to the cluster cen-
ter resulting in barely visible contrast for outliers on the
depicted linear scalemaking threshold tuning difficult. Fi-
nally, AEC fails to capture the individual clusters resulting
in practically no contrast between normal data and out-
liers. This is a result of the simple structure of the used
autoencoder with only one hidden layer. As recent pro-
gression in the field of deep autoencoders suggest, autoen-
coders can learn such complex structures. However, this
would require hyperparameter tuning and therefore is un-
suitable for the intended application by engineers. In con-
clusion, KNN should be the preferred algorithm for outlier
detection in this case. In general, the histogram plots of
multiple novelty detection algorithms should be evaluated
in combinationwith rawdata plots (e. g. Figure 3 (c)) to de-
cide which data should be treated as outliers.

Table 1 shows the number of outliers detected for the
different algorithms tested. Note that the number of out-
liers depends on the selected novelty threshold. For exam-
ple KNN also detects 13 outliers when the threshold is set
to 0.2 (cf. Figure 3 (a)). It is therefore recommended to use
rawdataplots (cf. Figure 3 (d)) to decidewhichdata should
be treated as outliers and which should not.

4 Monitoring supervised learning

A second application for novelty detection is monitoring
of supervised fault classification, i. e. checking whether a
newdata sample can be assigned to any of the known fault
groups. If the process generating the data to be classified
changes due to new circumstances, the model trained on
the original training data is no longer applicable and the
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Figure 4: Territorial plots showing the novelty detection boundaries of AEC (a), GMM (b) and SVM (c), respectively, with data samples marked
as normal (red) or novel (blue) by the respective algorithm. (d): Standardized novelty scores of KNN and AEC and negative standardized
similarity scores of SVM and GMM as progression plot over the experiment. High peaks imply high contrast of novel points compared to the
normal variation (standardized with mean = 0 and standard deviation = 1). The saturation of SVM similarity scores for outliers at −1 leads to
peaks with equal height of the standardized novelty scores.

Table 1: Number of outliers detected by different novelty detection
algorithms after the threshold was set according to step 5 in the
above approach and in case of KNN lowered to exclude all 13 known
outliers. Choosing the respective thresholds non false positives are
detected. Lowering the threshold of AEC the algorithm would start to
detect false positives.

Algorithm KNN AEC GMM SVM

Number of outliers 13/13 5/13 13/13 13/13

user needs to be notified to correct the problem. This appli-
cation scenario therefore focuses on the detection of nov-
elties that affect the classifier. Thus, the features used for
novelty detection are the same as those used for the classi-
fication. For detection of unknown faults refer to Section 5.
The main difficulty in this application is choosing a suit-

able threshold on the novelty score that allows the classi-
fier to interpolate different severities of fault scenarios and
at the same time still recognizes small changes in the pro-
cess generating the data. The approach taken is as follows:
1. Extract and select features for the desired fault classi-

fication task using supervised learning with the auto-
mated algorithm toolbox described in [2].

2. Standardize features to be used for modeling to com-
pensate for scaling effects, i. e. to prevent large scale
features from dominating the novelty score due to
their large variance.

3. Train a novelty detection algorithmon these standard-
ized features.

4. Set a threshold using histogram plots and group-
based validation, i. e. groups left out during model
building are just recognized as normal to allow for in-
terpolation between different fault states.
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Figure 5: 2D Principal Component Analysis of features used for detection of accumulator pre-pressure loss when using only samples with
cooler running at 100% DC (a) or valve operating at 100% (b). Despite having been excluded during training the influence of cooling power
reduction (a) and valve switching degradation (b), respectively, are clearly visible in the data and can be detected as novelty.

For group-based validation the novelty detection algo-
rithm is trained with all but one grade of fault severity and
novelty scores are predicted for the left out group. This pro-
cess is repeated for each group and the resulting novelty
scores are shown as histogram. Choosing a threshold that
just accepts fewdata samples asnormalwill thenallow the
classifier to interpolate between grades of fault severity.
Leaving out one group during training increases, in linear
models doubles, the necessary interpolation distance be-
cause the classifier has to interpolate fromone group to the
next but one while, when all groups are considered dur-
ing training, it only needs to interpolate from one group
to the group boundary of the adjacent group. In novelty
detection this leads to selection of rather high threshold
values. However, simply halving the threshold is not pos-
sible even for linear models due to the non-linearity of the
novelty scores and does not guarantee better interpolation
capability.

To show the results of this approach multiple process
change scenarios are generated from the hydraulic dataset
by ignoring the influence of one fault completely and test-
ing how this affects supervised classification of the re-
maining faults. Since one of the intentions of this paper is
to give rules on how to set suitable thresholds on novelty
scores the only evaluation scores that compare the differ-
ent novelty detection algorithms for that specific thresh-
old are shown. Measures of comparison that are indepen-
dent of the threshold (e. g. AUC of ROC-Plot) are not shown
intentionally. There are some examples of classification
tasks which are not affected by variations introduced by
other faults. One of them is cooling power degradation

which is always being recognized simply from a temper-
ature sensor. Thus, even though other variations were not
taken into account during training the cooler fault can al-
ways be classified correctly and every new data sample is
therefore correctly identified as normal. The same holds
for the detection of the valve switchingdegradation,where
a correct classification rate of at least 99% is achieved in-
dependently of all other faults. Both cooler and valve vari-
ations lead to substantial variations in the measurement
data which are easily detected while pump and accumu-
lator faults lead to more subtle changes in the data. This
is shown in Figure 5 depicting the 2D Principal Compo-
nent Analysis (PCA) of the features used for novelty de-
tection in two different scenarios. In both cases features
have been extracted and selected for classification of ac-
cumulator pre-pressure loss, which is shown by color, i. e.
each step of pressure loss is shown in a different color. In
Figure 5 (a) only cycles with the cooler running at 100%
DC have been used for training of the feature extraction
and feature selection, i. e. the influence of cooling power
degradation (cooler working at 20% and 3% DC, respec-
tively) is ignored during training. Similarly, the influence
of valve switching degradation is ignored in Figure 5 (b)
and only cycles with the valve operating at 100% are used
for training the feature extraction and selection. All results
for the analyzed application scenarios can be found in Ta-
ble 2. The table first shows the true positive rate on the
training data indicatinghowmany trainingdata points are
correctly classified as normal. This is 100% if none of the
training data samples are mistaken for novel. Second, the
table shows the percentage of correctly classified samples



714 | T. Schneider et al., Machine learning in industrial measurement technology

Table 2: Novelty detection rates of different algorithms on different monitoring scenarios for supervised classification of the respective
target fault when additional variations are added that were not included in the training. For example, the first row shows results for classifi-
cation of valve switching characteristics when only data with the cooler operating at 100% DC is used for training. The table shows the true
positive rate on the training data in column 3, indicating how many training data points are correctly classified as normal (100% if none of
the training data samples are mistaken as novel). The 4th column shows the percentage of correctly classified samples which are detected
as normal. These are the samples with novel variations that are still correctly classified by the supervised classifier and are identified as
normal by the novelty detection (100% indicates the desired case where none of the samples are identified as novel because the superim-
posed variations do not affect the supervised classification). The 5th column shows the percentage of samples misclassified by the super-
vised classifier due to superimposed variations that are correctly identified as novelty because the variations affect the supervised classifier
(100% indicates the desired case where all samples are identified as novel because the superimposed variation leads to false results of the
supervised classification).

Classification
target

Ignored
variation

True positive rate on
training data for
KNN/SVM/GMM/AEC

Correctly classified samples
detected as normal for
KNN/SVM/GMM/AEC

Misclassified samples
detected as novelty for
KNN/SVM/GMM/AEC

Valve Cooler 100%/100%/100%/100% 100%/82%/100%/100% 0%/62%/0%/0%
Pump Cooler 100%/100%/100%/100% 87%/77%/87%/87% 35%/72%/35%/37%
Accumulator Cooler 100%/100%/100%/100% 77%/77%/77%/77% 100%/100%/100%/100%
Cooler Valve 100%/100%/100%/100% 100%/98%/100%/100% 100%/100%/100%/100%
Pump Valve 98%/100%/100%/99% 71%/66%/70%/99% 95%/95%/95%/11%
Accumulator Valve 98%/100%/100%/97% 67%/58%/86%/71% 77%/100%/34%/71%

detected as normal, i. e. the samples with additional vari-
ations that are still correctly classified by the supervised
classifier and are identified as normal by the novelty de-
tection. 100% indicates the desired casewhere none of the
samples with additional variations which do not affect the
supervised classification are detected as novel. Third, the
table shows the percentage of samplesmisclassified by the
supervised classifier which are correctly identified as nov-
elty, i. e. affecting the supervised classifier; again, 100%
would be the desired rate.

In Figure 5 (a) the target is the classification of ac-
cumulator pre-pressure loss (shown by color) where only
data for cooler working at 100% is available during train-
ing, i. e. cooler variations are treated as novelties that can
affect the supervised learning. Again, the automated tool-
box [2] is used for supervised learning. Introducing cooler
variations the cross-validated classification rate of the re-
sulting classifier drops from 100% for the training data
(cooler working at 100% DC) to only 15%when the cooler
is working at 20% or 3% DC. The target for novelty de-
tection is therefore to detect this decrease in classifica-
tion performance. First of all, note that independent of the
specific novelty detection algorithm used all training data
samples are assigned to the normal class and, thus, the
number of false positives is zero. At the same time all sam-
ples misclassified by the supervised classifier are correctly
identified as novel. However, only 77%of the samples that
are still classified correctly by the supervised approach de-
spite the cooler variation are identified as normal. There-
fore, in this case the novelty detection provides an indica-
tion for the user that a novel influence such as the cooler

variation reduces the classification rate, in this case from
100% to 15%.

In the second example shown in Figure 5 (b), the clas-
sification rate of the accumulator pre-pressure is reduced
from 100% to 25% due to the degradation of the valve
switching characteristics. As in the first case all novelty
detection algorithms can identify the training data as nor-
mal with a maximum of 2.7% identified as novel by AEC.
However, the percentage of correctly identified novel sam-
ples under valve variation varies between 34% (GMM) and
100% (SVM). Therefore, SVM offers the best performance
in this application to detect the superimposed fault. How-
ever, in a real application scenario the novel fault scenario
as well as the percentage of misclassified samples that are
correctly identified as novel are unknown and the user
thus has no chance to select the best algorithm for nov-
elty detection. Therefore it is suggested to use ensemble
methods, i. e. to runmultiple novelty detection algorithms
simultaneously, and identify a novelty, if any of the algo-
rithms assigns the new data sample to the novel group.

5 Detecting unknown faults
A third and highly relevant application for novelty detec-
tion is the detection of so far unknown new faults, even if
they would not disturb supervised classification of known
faults. This scenario ismotivated by the availability of data
samples from machines working at optimal performance
(normal condition of a newmachine) while representative
data samples from different fault conditions are absent in
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industrial application scenarios and especially in retrofit
solutions for data based condition monitoring. The idea is
to start with data samples of the new machine in normal
condition and to apply novelty detection. Once a novelty is
detected, e. g. a machine fault, it can be analyzed and an-
notated by the maintenance crew. This identified fault can
then be added to the training dataset for supervised clas-
sification allowing the system to automatically recognize
this fault if it occurs again. At the same time the novelty
detection algorithm is retrained so that it does not recog-
nize this fault as novelty anymore since it is now known.
This approach allows to successively build a comprehen-
sive ML model of a machine or process during its opera-
tion. Note that a second but distinctly separate step would
be to transfer this model to similar machines or processes.

In this application scenario not only threshold tun-
ing and algorithm selection are critical to detect novelties
while maintaining a low false positive rate. Another crit-
ical aspect is the feature representation of high dimen-
sional raw data that has to capture the characteristics of
the sensor data in low dimensional space to emphasize
novelties and prevent overfitting [20] and the curse of di-
mensionality [17]. The approach taken is the following:
1. Extract features using the automatic feature extrac-

tion algorithm described in [2] providing the lowest
approximation error on the training data of each in-
dividual sensor.

2. Standardize the extracted features to compensate
scaling effects, i. e. to prevent large scale features from
dominating the novelty score due to their large vari-
ance.

3. Perform PCA on the standardized features.
4. Train novelty detection using different algorithms. If

novel data are available use receiver operating char-
acteristic (ROC) plots to select the best algorithm.

5. Set the novelty threshold using histogram plots and
group-based validation, so that left out groups are just
recognized as normal to allow for interpolation. If no
group affiliations are known an SVM with threshold =
0 is usually a good choice.

As in section 4 multiple application cases are simulated
on the hydraulic dataset defining one or more of the four
simulated faults as novelty and ignoring it during train-
ing. Keep in mind that this not only includes training of
the novelty detection algorithm as in section 4 but now
also training of the feature extraction. To illustrate this
the data distribution when ignoring valve degradation is
shown in Figure 6. In this example the valve degradation
is clearly visible despite the fact that in the first two prin-
cipal components, i. e. in the 2D visualization, only 26%

of total variance are shown and that the variations intro-
duced by valve switching degradation were not part of the
PCA calculation. This indicates that the chosen approach
for feature extraction is capable of showing faults, even if
their symptoms, i. e. delayed valve switching, are well lo-
calizedwithin a split second after the switching and donot
affect the overall characteristics of the measurement.

Figure 6: Principal Component Analysis plot used for training of
the novelty detection algorithms. Features are extracted using only
samples with the valve operating at 100% using the automated ap-
proach described before. Although variations due to valve switching
degradation are ignored during PCA calculation (training data) they
are clearly visible in the test data. The variations seen in the training
data originates from cooling power degradation.

Figure 7 shows the novelty scores achieved when
training KNN on the data shown in Figure 6. For the train-
ing data scores validated with 10-fold cross validation
are shown. As expected from Figure 6 KNN provides a
high contrast between samples with the valve operating
at 100% (training data) and with valve switching degra-
dation, i. e. valve operating at less than 100% (test data).
Sincemost training samples are concentrated in the dense
cluster in the lower right corner of Figure 6 (the other clus-
ters are cycles with valve switching failures, i. e. outliers,
cf. section 3) Figure 7 (b) barely changes if group-based
cross validation on one of the other faults is used instead
of 10-fold cross validation. Therefore, even without access
to the test data, a user would set the novelty threshold at
100 providing excellent recognition rates for the test data,
i. e. degraded valve switching, while only identifying out-
liers as false positives.

To compare the different novelty detection algorithms,
Figure 8 shows the histograms of similarity scores gener-
ated on the data from Figure 6 for GMM (a) and SVM (b).
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Figure 7: Progression plot (a) and histogram (b) of novelty scores computed by KNN novelty detection on the PCA shown in Figure 6. Outliers
discussed in Section 3 and variations introduced by valve switching degradation (cf. Figure 2 (a); note that this is repeated for three different
stages of cooling power degradation) are clearly visible. Scores on training data are reported as results of 10-fold cross validation and show
clear separability between normal and novel data (outliers are accepted as novel).

Figure 8: Histogram of novelty scores computed by GMM (a) and SVM (b) on the PCA shown in Figure 6. Outliers discussed in Section 3 are
clearly visible for SVM in data samples with score < 2.5 that are distinctly separated from the bulk of training data samples with score > 2.5.
Scores on training data are reported as results of 10-fold cross validation.

Note that bothGMMandKNNshow theoutliers seen inFig-
ure 6 outside the dense clusters or even overlapping with
the test data. They are the same outliers seen in Figure 3.
As discussed in Section 3, the exponential decrease of the
GMM novelty score and the saturation of the SVM scores,
respectively, make threshold tuning difficult compared to
KNN. Furthermore, the KNN threshold is easier to interpret
and should therefore be preferred in this scenario.

Similarly, KNN offers the highest contrast in almost
all other scenarios, in which all possible combinations of
fault variations had been removed from the training data.
These results are in agreement with [21] where is was con-
cluded that simple methods like KNN are more versatile

than more sophisticated methods, which, however, can
be better adjusted to individual application cases. For use
by machine experts without extensive experience in ML
methods as targeted in this paper simple methods without
hyperparameter tuning are clearly favored.

Although KNN provides the best contrast between
training and test data it is not capable of detecting all
possible faults under all circumstances. Only novel faults
which introduce significant newvariations are detected re-
liably. Accordingly, cooler and valve degradation are al-
ways detectable as novelty since these two faults introduce
themost significant changes in the sensor response, while
accumulator faults are onlydetectedat severepre-pressure
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loss and internal pump leakage is, in fact, not detected at
all. However, this is a basic drawback of novelty detection
since non-significant newvariations are not expected to be
assignedhighnovelty scores because thiswould result in a
high false positive rate,which is of course not desirable. To
detect these faults supervised learning methods that em-
phasize even small differences need to be employed and
trained with suitable experimental simulations.

6 Discussion and outlook
This contribution discussed simple approaches to nov-
elty detection that can be employed by engineers and ma-
chine experts for outlier detection, monitoring of super-
vised learning anddetectionof unknown faultswithout re-
quiring in-depth knowledge of ML algorithms, mainly be-
cause little or no hyperparameter tuning is required. Note
that the detection of unknown faults also includes the de-
tection of sensor faults [22] to improve the robustness of
the overall system. For intuitive application and user ac-
ceptance visualization is emphasized; all algorithms and
plots are available as part of an open-source toolbox with
graphical user interface [6]. It was shown that the de-
scribed systematic approaches achieve reasonable novelty
thresholds from training data alone.However, the user has
to be aware that none of the approaches can solve the basic
challenge, i. e. that novelty detection can only detect nov-
elties which introduce variations in the data that signifi-
cantly differ from the training data. This problem is aggra-
vated further by the application of feature extraction and
especially supervised feature selection which can prevent
the detection of novel signal characteristics which were
not present in the training data and which do not affect
the characteristics captured by the features. On the other
hand, in most application cases this is a necessary limita-
tion due to the high dimensionality of the datawhich often
prevents application of novelty detection directly on the
raw data.

Future work will address the effect smaller steps in
fault severity simulation have on the threshold chosen
from group-based cross validation. Since this reduces the
variations between severity levels that determine the cho-
sen threshold smaller steps could allow a lower novelty
threshold and therefore more sensitive novelty detection.
In this paper, a variety of different novelty detection sce-
narios was evaluated, but all were based on the same
dataset and experimental set-up. In the future, the de-
scribed approaches will be tested on other datasets from
different domains to verify the findings and to generalize
the approaches.
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6 Subsequent Research Lead by 
Author 

The successful research and demonstration of the automated machine learning toolbox 

in the research project MoSeS-Pro formed the foundation of the joint Data Engineering 

and Smart Sensors (DESS) research group at ZeMA and Saarland University. This 

group was funded by multiple further research projects and project participation based 

on the toolbox developed in MoSeS-Pro (see Table 1). It is led by the author of this 

thesis. This continued work is an important part of this thesis and shows the great 

research interest in this field. 

As of December 2023, it comprises nine (temporarily ten) full-time scientists. The 

following scientists at least partially base their doctoral dissertations and scientific 

work on the automated machine learning toolbox described in Papers 1-3: 

• Dr. Tanja Dorst researched how uncertainty in automated machine learning 

for condition monitoring can be expressed following the GUM (see papers C 

and D). She developed a metrological framework providing analytical 

estimates of measurement uncertainty for all algorithms in the automated 

machine learning toolbox  [120]. 

• Christopher Schnur researched whether and how the principles and 

algorithms suggested in this dissertation can be transferred to structural health 

monitoring (see Paper E). Furthermore, he is working on how better data can 

be generated for automated machine learning in condition monitoring and has 

created a guideline for projects that utilize automated machine learning [121]. 

• Steffen Klein focuses on how to apply automated machine learning and 

especially novelty detection in retrofitting scenarios for machines that are 

running in continuous production and do not allow any experimental control 

for training data acquisition. 

• Payman Goodarzi focuses on potential solutions for problems caused by 

domain shifts. He extensively benchmarked the toolbox's algorithms [122] and 

showed their favorability in group-based validation scenarios [56]. 

• Yannick Robin focused on how to apply automated machine learning to 

calibration problems of semiconductor gas sensors and compared it to neural 

networks [123, 124]. 
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• Christian Fuchs researches how labeling errors affect the performance of 

automated machine learning [125] and how to choose a suitable hardware 

platform for smart sensors. 

• Sebastian Pültz researched how to combine different types of feature 

extraction in a single model [85]. He also studied how to specialize this thesis's 

principles to monitor the conditions of helical gears [125]. 

• Julian Schauer works on how generic neural network accelerators can infer 

non-neural network models. He created neural network representations of the 

automated machine learning toolbox hardware-accelerated and energy-

efficient inference [114]. 

• Houssam El Moutaouakil researches how machine learning can be used to 

localize defects in composite materials of hydrogen pressure tanks with 

ultrasonic guided waves independent of interfering effects [126]. 
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6.1 Paper B: Comparison of Different ML 
Methods Concerning Prediction Quality, 
Domain Adaptation and Robustness 

Further evaluations on multiple datasets revealed that domain shifts pose a primary 

challenge for ML-based condition monitoring and can significantly reduce damage 

detection and quantification performance. Those issues can only be identified by 

directly testing for robustness against change in the causative variable by leave one 

out cross-validation or holdout method. The causative variable can be anything that 

influences sensor data, like different operation modes, different individual machines, 

variations in processed materials, or ambient conditions. The extent of the imposed 

domain shift and its impact on classification and regression might vary depending on 

the variable. It might range from neglectable to model-breaking. Also, the notion of 

domain shift is not limited to constant offsets but might also result in linear or non-

linear distortion of the patterns learned from training data. Domain shifts can be both 

seen as a robustness problem and a transferability problem. 

Since the domain shift problem has to be solved for the widespread application of ML-

based condition monitoring, the following paper explores the robustness of different 

algorithms against domain shifts and simple methods for domain adaptation, like offset 

calibration and compensation. The results are shown for classification and regression. 

They include the previously described automated machine learning toolbox, an 

additional feature extraction method, SVM, and different neural network architectures. 

In the shown examples, even simple compensation methods can compensate large 

parts of the deteriorated performance under domain shifts. Additionally, it can be seen 

that classical machine learning approaches based on feature extraction, selection, and 

non-neural network classification/regression outperform neural networks before and 

after domain adaptation in the given examples. 
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Abstract: Nowadays machine learning methods and data-
driven models have been used widely in different fields
including computer vision, biomedicine, and condition
monitoring. However, these models show performance
degradation when meeting real-life situations. Domain
or dataset shift or out-of-distribution (OOD) prediction is
mentioned as the reason for this problem. Especially in
industrial condition monitoring, it is not clear when we
should be concerned about domain shift and which meth-
ods aremore robust against this problem. In this paper pre-
diction results are compared for a conventional machine
learning workflow based on feature extraction, selection,
and classification/regression (FESC/R) and deep neural
networks on two publicly available industrial datasets.We
show that it is possible to visualize the possible shift in
domain using feature extraction and principal component
analysis. Also, experimental competition shows that the
cross-domain validated results of FESC/R are comparable
to the reported state-of-the-art methods. Finally, we show
that the results for simple randomly selected validation
sets do not correctly represent the model performance in
real-world applications.

Keywords: Machine learning, condition monitoring, do-
main adaptation, neural network.

Zusammenfassung: Machine Learning und datenbasier-
te Modelle sind in der Literatur zu Computer Vision, Bio-
medizin oder Zustandsüberwachung weit verbreitet. Al-
lerdings zeigen diese Methoden oft Schwächen in der
realen Anwendung. Domain Shift oder Vorhersagen au-
ßerhalb der Verteilung der Trainingsdaten werden häu-
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fig als Ursache benannt. Besonders bei industrieller Zu-
standsüberwachung ist unklar, wann diese Probleme auf-
treten und welche Algorithmen robust dagegen sind.
In diesem Beitrag werden die Ergebnisse einer klassi-
schen ML-Auswertekette bestehend aus Merkmalsextrak-
tion, Merkmalsselektion und Klassifikation bzw. Regressi-
on (FESC/R) mit jenen von mehrschichtigen neuronalen
Netzen auf zwei öffentlich verfügbaren Datensätzen ver-
glichen. Eswird gezeigt, dassmöglicheDatenverschiebun-
genmittels Merkmalsextraktion und Hauptkomponenten-
analyse sichtbar gemacht werden können. Weiterhin wird
gezeigt, dass die mit FESC/R auf Domain Shift Problemen
erreichten Ergebnisse gleichwertig zu denen von mehr-
schichtigen neuronalen Netzen sind. Letztlich wird ge-
zeigt, dass eine zufällige Kreuzvalidierung die in einer
realen Anwendung zu erwartende Genauigkeit eines ML-
Modells nicht hinreichend abbilden kann.

Schlagwörter: maschinelles Lernen, Zustandsüberwa-
chung, Domänenadaption, neuronale Netze.

1 Introduction
Condition monitoring and predictive maintenance are
important applications for machine learning (ML) algo-
rithms. Input data in these applications comes from differ-
ent industrial sensors, e. g., pressure, temperature, vibra-
tion, or microphones. Targets for these tasks are usually
predicting fault types, remaining useful lifetime (RUL), or
detecting anomalies. Detecting faults or anticipating up-
coming failures can significantly reduce downtime of in-
dustrial systems and furthermore ensure the quality of
products [1], therefore more and more companies start to
invest in predictivemaintenance systems that aremore ap-
plicable within the framework of Industry 4.0 [2].

The performance of modern data-driven models de-
pends on the quality and quantity of supplied observa-
tions, however achieving proper data that covers all pos-
sible variations of a system and its environment to train

https://doi.org/10.1515/teme-2021-0129
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these models is costly. A proper design of experiment
(DoE) should includedifferent control conditions andmul-
tiple recordings of a single target in different process situa-
tions and environments, e. g., for a ball bearing and an at-
tached vibration sensor all possible combinations of tem-
peratures, load and speed levels, lubrication conditions,
vibrations transmitted by other machinery and peculiar-
ity of production tolerances. This is exacerbated further
when taking outdoor applications into account, e. g., for
hydraulic machinery, because of the wider temperature
range and additional environmental factors. Usually, vari-
ables considered less important for a process or expensive
to change are ignored or varied in a limited range or step
size to limit experiment costs. Either control variables are
discrete or continuous, a design of experiment can cover
just a limited number of them and respectively subsets
of the complete target space are available for training [3].
However, generalizing amodel among these subsets is dif-
ficult because the control conditions and the environment
can change the distribution of data and may result in an
OOD problem and domain shifts [4].

Many real-life applications of ML for condition moni-
toring impose domain shift problems onto the algorithms
and thereby decrease its performance. Supervised ML
methods mostly rely on the assumption that both train-
ing and test data come from the same distribution. This
distribution of data can be called a domain and ideally,
there is only one domain in a supervised learning task [5].
As mentioned, in industrial applications it is highly likely
that working conditions affect the data distribution. For
instance, operating temperature, oil or air pressure, rotat-
ing speedare commonoperating conditions that can cause
a significant shift in the data distribution. Consequently,
usually in real-world scenarios we encounter OOD prob-
lems, where the source domain is different from the target
domain.

In classical measurement science, changes in the en-
vironment (computer science: domain shifts) are tackled
with calibration and adjustment of the measurement sys-
tem which is also possible for machine learning algo-
rithms. To perform adjustment of ML algorithms differ-
ent algorithms and approaches are proposed. The work of
Moreno et al. [5] is one of the first attempts to unify the
concepts and nomenclature in this field, because before
that many works had been published about the same con-
cept but with inconsistent naming [6–10]. Former studies
include multi-task learning [11], instance weighting [12],
visual domain transformation [13], maximum mean dis-
crepancy [12] while over the past decademost of the works
have been based on deep learning models [14–19]. In the
field of industrial datasets, some of the recent works in

this field are conditional maximum mean discrepancy-
based ANN [20], the virtual adversarial training and batch
nuclear-norm maximization [21], adaptive batch normal-
ization for networks with wide first-layer kernels [22], and
multi-kernel maximum mean discrepancies in multiple
layers [17]. A common element among the recent meth-
ods that have been proposed for the diagnosis of indus-
trial applications under domain shift is using deep learn-
ing architectures while the comparison with conventional
ML ismissing. In this studywe compare an approachusing
feature extraction, selection, and classification/regression
(FESC/R) with ANNs in terms of robustness against the
cross-domain shift using two publicly available datasets
and study the effect of calibration and adjustment as a do-
main adaptation technique on the defined tasks.

The rest of the paper is structured as follows: Section 2
first introduces a dataset from a hydraulic machine repre-
senting a regression problem and a dataset on damage de-
tection in a ball bearing representing a classification task.
Both datasets comprise domain shifts that are visualized.
Furthermore, Section 2 introduces the two ML approaches
compared in this study, i. e., a more classical approach
based on feature extraction, feature selection and classi-
fication/regression and a more modern approach based
on neural network architecture search. Section 3 shows
how classification and regression results are affected by
domain shifts in the mentioned datasets and how calibra-
tion and adjustment can help to compensate those effects
before the study is concluded in Section 4.

2 Material and methods

In this section,we introducedatasets andmethods that are
used in this study. Methods consist of ANNs and FESC/R
which is based on conventional ML approaches. The two
publicly available datasets are (1) a hydraulic system (HS)
dataset from Center for Mechatronics and Automation
Technology (ZeMA gGmbH) and (2) a bearing dataset from
Case Western Reserve University (CWRU).

2.1 Datasets

2.1.1 ZeMA hydraulic system dataset

The first dataset used in this study is the recorded behavior
of an HS where multiple common faults of such a system
are simulated in a testbed [23]. This is a publicly available
dataset [24] and includes the recording of 17 sensors over
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Figure 1: DoE of ZeMA dataset. All possible combinations of faults were repeated three times (a) for different cooler states, 100% (normal
operation), 20%, and 3% performance (set by varying the duty cycle of the cooler ventilator). The combination of faults for valve, pump, and
accumulator is plotted in figure (b).

typical operating cycleswith 60 seconds duration. Sensors
measure process values like pressures, temperatures, and
volume flows. Sampling frequencies for the sensors range
from 1 to 100Hz resulting in observations with 60 to 6000
data samples per sensor and cycle. The faults simulated in
the ZeMA dataset are decreasing cooler performance, the
main valve switching performance, internal pump leak-
age, and accumulator pre-charge pressure reduction. All
fault conditions could be independently set by the control
system. Figure 1 (a) shows conditions of the cooler, valve,
pump, and accumulator in the dataset; Figure 1 (b) shows
the systematic variation for valve, pump, and accumula-
tor in more detail with these cycles being repeated three
times for three cooler performances, 100%, 20%, and 3%,
respectively, which could also represent different climatic
conditions or domains. We choose this dataset because
changing the process conditionsmay lead to dataset shifts
which is themain topic in this study. The training and vali-
dation scenarios are designed in away that the finalmodel
should be robust against the cooler performance. We di-
vided the data into training and test groups according to
the cooler states. The training data includes cooler states
of 100 and 20 percent, and test data is when the cooler
worked just at 3 percent performance. The valve condition
is considered as the target for the regression task.

The control variable with the biggest influence on the
sensor data is the performance of the cooler. To show
the influence of the process conditions on the distribu-
tion of data, we extracted statistical features of raw data
using StatMom which is described in Section 2.2.1. Then,
Principal Component Analysis (PCA) was applied on the
extracted features, the results for the first two compo-

nents are shown in Figure 2. As is evident from Figure 2,
the cooler has a major influence on the data distribu-
tion and a change of the cooler performance results in a
shift along the first principal component (PC), indicating
the main source of variance in the dataset. Consequently,
for this task the observations that belong to each cooler
state can be considered as separate domains. Additionally,
the cooler state is the most expensive control variable to
change because after each change the machine has to run
for several hours before a new temperature equilibrium
is reached, and conditions are stable again [23]. Because
the cooler state influences the machine’s temperature and
thereby the oil’s viscosity its impact is evident in all mea-
sured sensor signals.

The learning scenario chosen for this dataset is the as-
sessment of the current valve switching characteristic from
72% (barely working) to 100% under the condition that
only data from cooler state 20% (equivalent to 55 °C av-
erage temperature) and 100% (equivalent to 44 °C aver-
age temperature) are used for training. Correctly predict-
ing the valve characteristic at cooler state 3% (equivalent
to 66 °C average temperature) [23] would prove the model
to be robust against environmental changes of tempera-
ture and is therefore the chosen ML task for the evaluated
algorithms.

For calibration and adjustment of the models, data
recorded at 3% cooler state (new domain) and 100% cor-
rect valve operation was considered. This is equivalent to
using few measurements from a new machine (valve at
100%) in a different environment for calibration and ad-
justment. Themodel is then evaluated on all data at cooler
state 3%.
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Figure 2: Features from the ZeMA dataset after PCA. (a) all data samples are colored by the cooler performance. (b) subset of observations
that have more similarities. Shifts in the distribution due to the cooler changes are visible.

2.1.2 CWRU bearing dataset

The seconddataset that is used in this studywaspublished
by the Bearing Data Center of Case Western Reserve Uni-
versity (CWRU) [25]. CWRU is a publicly available dataset
that is frequently used in condition monitoring publica-
tions [22, 26]. Recorded data are vibration signals from the
fan and drive ends of the testbed, the data is available in
both 12 kHz and 48 kHz sampling rates. Four health states
of the system are recorded, three different fault types and
a healthy state without defects, the faults being damages
at the inner and outer ring of the bearings and at the
balls. Additionally, the process conditions were changed
during the experiments; these process conditions are the
rotational speed, fault diameters (0, 7, 14, and 21mil cor-
responding to 0, 180, 360, and 540 µm) and motor load (0,
1, 2, and 3 hp corresponding to 0, 0.75, 1.5 and 2.25 kW).
Note that we keep the original imperial units in the fol-
lowing instead of converting to SI units to avoid confusion
when comparing our results with other evaluations for
this widely used data set. A summary of the dataset is
presented in Table 1. Although CWRU is extremely popu-
lar in the condition monitoring community, most of these

Table 1: Summary of CWRU dataset.

Fault types Fault size
(mil)

Load
(hp)

Rotational
Speed (rpm)

Sensor
Orientation

No Damage 0 0, 1, 2, 3 1725–1796 12
Inner Ring 7, 14, 21 0, 1, 2, 3 1721–1796 12
Outer Ring 7, 14, 21 0, 1, 2, 3 1723–1796 3, 6, 12
Ball 7, 14, 21 0, 1, 2, 3 1721–1796 12

studies have been done in different scenarios of the se-
lected target and validation approach [26]. Predicting all
combinations of fault types and fault sizes (10 classes) is
a common scenario among the published studies, how-
ever the number of observations for each class is limited.
We designed the scenario to cover the generalizability of
the models on different load conditions by choosing the
fault types as the classification target. In this study, the
48 kHz sampling version of recordings is used, and orig-
inal recordings are cut into equal chunks with a length
of 24k to have a constant number of data points in each
observation.

To demonstrate domain shifts and domain adaptation
in classification tasks, the learning scenario was chosen to
be the detection of fault type (vs. fault severity). The four
groups to be detected are damage at the outer ring (OR), in-
ner ring (IR), ball (B) andnodamage (None). In a realworld
application this detection should be possible independent
of the load. Therefore, the training data was chosen to be
the data recorded at 1, 2, and 3 hp load. The test data is the
data recorded at 0 hp load respectively.

As in the ZeMA dataset we extracted features from the
dataset, the result of a PCA performed on the extracted
features is presented in Figure 3. In contrast to the ZeMA
dataset, it is expected that themost relevant features come
from the frequency domain of the vibration sensor. There-
fore, a Time Frequency Extractor (TFEx, Section 2.2.1) was
used for this use-case. Figure 3a shows the PCA plot col-
ored to indicate different loads of the motor and Figure 3b
visualizes the same data by coloring according to the dam-
age target for the defined scenario. The healthy state, high-
lighted with an ellipse in both figures, shows a shift of the
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Figure 3: Features from the CWRU dataset after PCA. Visualizing the features based on the motor loads (a). Visualizing the features based on
the damage types (b).

data for the motor at zero hp, which can cause difficulties
for a model trained only on the other load conditions (1, 2,
3 hp). As this is the most obvious influence of process con-
ditions on the data, it was chosen to be the test set in this
scenario.

2.2 Algorithms

Various data-driven models have been applied in condi-
tion monitoring and predictive maintenance, including
linear discriminant analysis (LDA) [27], support vectorma-
chines (SVM) [28], artificial neural networks (ANN) [29]. To
make a comparison between methods, in this study two
types of ML models are used. The first one is represent-
ing a more classical ML approach based on multivariate
statistics using an automated approach to benchmark and
choose the best algorithms (see Section 2.2.1) and the sec-
ond one is targeting the increasingly popular deep learn-
ing models utilizing neural network architecture search
for end-to-end learning (see Section 2.2.2).

2.2.1 FESC/R

Conventional ML methods have been used for a long time
[30] and are still popular and effective in industrial ap-
plications [31]. One of the advantages of conventional ML
models over neural networks is their explainability and
interpretability. It means that decisions and predictions
of a model can be explained in a human understandable
manner, as a result the model would be more reliable and

trustable [32, 33]. Therefore, conventional ML is preferred
in fields where the model safety is critical and fault diag-
nosis is needed, like industrial and medical applications.
On the other hand, these methods include explicit feature
engineering and sometimes also have problems nowadays
in handling big datasets.

We can formulate the conventional ML methods in
form of a pipeline that consists of feature extraction (FE),
feature selection, and classification (FESC) or regression
(FESR). Depending on the model and input dimensions, it
is also possible to apply a classifier/regression directly on
the raw data, but in general FE methods are needed to re-
duce the dimensionality of the data. FE methods are usu-
ally necessary for condition monitoring applications be-
cause the raw data can be high-dimensional inputs [34],
i. e., vibration signals from a bearing or current signals
from a motor, and it would be difficult to find the relevant
and key features directly from the raw data. These meth-
ods can extract general features independent of the use-
case and observations or engineered features that are ex-
plicitly designed for a specific task. Deciding to use engi-
neered features or using general FE methods depends on
the resources, complexity of the task, and resource con-
straints of the use-case during training. For wide appli-
cation, methods not requiring a trained data scientist are
preferable, thus we will focus on general FE methods here
which allow automation of theMLmethod adaptation [27].
Similarly, feature selection (FS) works for the same pur-
pose to further reduce the data dimensionality, but usu-
ally makes use of supervised methods, while general FE is
based on unsupervised methods. The goal is to reduce the
number of features, decrease the complexity and improve
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the performance of the model, especially to avoid overfit-
ting.

In this study an open-source MATLAB toolbox [34] for
conventional MLmodels was used, and FEFSC/R ismainly
based on this publicly available toolbox. As described
in [27] a fixed structure of methods is utilized to handle
ML tasks. Although the overall structure is fixed, one of
several different, mutually complementing algorithms is
used for feature extractionand selection, respectively. This
toolbox builds a stack from the predefined methods and
searches through different combinations of methods as
well as number of features to select the best-suited stack
for the target task. As finding the best algorithms and hy-
perparameters (HP) in this framework is automatic, one
of the main limitations of conventional machine learning,
explicit feature engineering, is resolved. This framework
shows a reliable performance in diverse applications rang-
ing from industrial fault detection, remaining useful life
(RUL) estimation, classification of human movement pat-
terns to gas sensor systems [34–37], therefore this method
was selected to study its behavior in inter-domain prob-
lems.

Here the focus is on showing these methods charac-
teristics in OOD problems and the goal is measuring the
robustness of the models in an OOD scenario. The tool-
box is used to search for the best methods and HPs for
both datasets then from the results the following methods
are selected. The first FE function is called StatMom [27],
which extracts the first four statistical moments (mean,
variance, skewness, and kurtosis) from the input signal
over defined time intervals. StatMom is simple and reli-
able, therefore it is our first candidate to reflect the general
trend of a dataset. However, relying just on the time do-
main features is not sufficient inmany use cases where the
main information is contained in the frequency domain.
Therefore, the second FE used in this study is the Time Fre-
quency Extractor (TFEx)which extracts features fromboth
time and frequency domains. TFEx extracts the root mean
square (RMS), variance, linear slope, maximum, position
of maximum, skewness, kurtosis, and peak to RMS ratio
values from sections of both the time and frequency repre-
sentation of input signals.

As FSwe used twomethods, namely Relieff [38] for the
classification task and Pearson correlation for the regres-
sion task. After ranking features by the mentioned meth-
ods, a search for the best number of features to maxi-
mize theprediction accuracy is performed [27], then the se-
lected features are transferred to the final block, i. e., clas-
sification or regression, of the training stack. Finally, the
last element of the stack in this study applies a classifi-
cation or regression method. The classification method in

Table 2: Features used in TFEx and StatMom.

TFEx (time and frequency domain) StatMom (time domain)

RMS Mean
Variance Variance
Skewness Skewness
Kurtosis Kurtosis
Position of maximum
Linear slope
Maximum
Peak to RMS ratio

this study combines LDA and Mahalanobis distance (MD)
to group mean [27] as classifier. LDA (also called Fisher
linear discriminant analysis) [39] is a supervised ML ap-
proach that finds discriminant functions (DF) that max-
imize inter-class variance and minimize the intra-class
variances. DFs of the LDAmethod are linear combinations
of features and the best solution is guaranteed under the
assumptions of identical class covariances and Gaussian
distribution of the classes.MD is a simple but effectivemet-
ric that measures the distance between a point and desti-
nation in a multi-dimensional space. Basically, MD is the
Euclidean distance after transforming variables to remove
the correlation and have unit variance, therefore it is not
sensitive to the dimensions and units of data. For regres-
sion partial least squares regression (PLSR) [40] is used.
The number of components for PLSR is chosen by an ex-
haustive search between one to the maximum number of
features that feed to the PLSR method, the selection cri-
terium is the best performance, i. e., lowest error.

2.2.2 Deep learning methods

ANNs with three or more layers are called deep neural
networks (DNN) therefore many modern network archi-
tectures are classified as deep learning methods. Over
the past decade deep learning algorithms have been used
in various applications and achieved outstanding results
[41–43]. Researchers and developers utilize these meth-
ods in almost every purpose, i. e., autonomous driving,
medical diagnosis, recommendation systems, translation,
and predictive maintenance [26]. Conventional ML algo-
rithms either have limited capacity or, when applied to big
datasets, face difficulties during the training process. In
contrast, ANNs are scalable and can be trained efficiently
on big datasets with the help of the simple backpropaga-
tion algorithm. On the other hand, ANNs usually are used
as black-boxes and explaining their predictions is diffi-
cult.
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Table 3: List of HPs for CNN, including the search ranges. An iterative HP optimization approach is used and the ranges for the initial and
final ranges reported.

HP Initial trial Final trial

Initial learning rate (log scale) 10−4–10−2 0.002
Kernel size 2–10 3–5
Depth 3–10 (Conv blocks) 5–10
# of neurons, fully connected layer 1–1000 1–100
# of filters Fixed, relative to the depth Fixed, relative to the depth
1st convolutional layer filter size 10–100 10–35
Batch Size 32 32

Table 4: List of HPs for WaveNet-based network, including the search ranges. An iterative HP optimization approach is used and the ranges
for the initial and final ranges reported.

HP Initial trial Final trial

Initial learning rate (log scale) 10−4–10−1 10−3–10−2
Kernel size 2–10 3–6
Depth 3–10 (Conv blocks) 3–10 (WaveNet blocks)
# of filters 8–100 40–80
1st conv layer filter size 20–100 20–50

Designing and training DNNs requires tuning many
hyper-parameters (HP). Hyper-parameters in ANNs can be
categorized into two groups, the first one contains archi-
tectureHPs and the second learningHPs. ArchitectureHPs
are parameters that specify the structure of a network, i. e.,
number of layers, filter size, number of filters in a layer,
number of neurons in a layer, and of course the type of a
layer. Training HPs specify the training process for a net-
work when the architecture is fixed. Initial learning rate,
mini-batch size, and number of epochs are examples for
the training HPs. The process of choosing the best HPs
is generally called HP optimization and more specifically
for architecture HPs is named Neural Architecture Search
(NAS) [44].

Although NAS showed particularly superior results
outperforming human designed networks [45], most re-
searchers in condition monitoring and predictive mainte-
nance are usingmodified versions of published DNNs [29].
A systematic approach to report an experiment is to de-
scribe not only the methods, model, and architecture but
also the HP optimization process that is used for the task.
Otherwise, an unforeseen overfitting might be neglected
because of non-linearity of DNNs, over-parametrization
and the assumption that training, and test data come from
the same distributions. In this studyMultilayer Perceptron
(MLP), Convolutional Neural Network (CNN), Resnet [46]
andWaveNet-style [47] networkswere used in theNASpro-
cess for both defined tasks (ZeMA and CWRU datasets),

however, we only report the architectures that achieved
good validation accuracy for each scenario. In case of com-
parable error rates, the method with lower complexity is
selected. NAS is a remarkably interesting field of study that
is actively growing [45] and explaining its algorithms and
methods are out of context of this study.

Weused evolutional parametric architectures together
with Bayesian optimization [48] as the NAS process [37].
This algorithm iteratively searches for the best HPs and in
each trial the ranges for the parameters are adjusted ac-
cording to the best results of the last trial and possible con-
straints, i. e., maximum depth or maximum number of fil-
ters. In the end, the network corresponding to the lowest
validation loss is selected. The parametric architectures
and the ranges of the parameters are explained in Tables 3
(for CNN) and 4 (WaveNet); Table 5 lists the HPs which
were kept fixed during the experiments. These HP ranges
were selectedbasedonawork that usedNAS tofindahigh-
performanceANN for a similar dataset [37] and the original
work of the WaveNet [47].

Two types of CNNs are used in this study: conventional
CNN with a single forward path and a WaveNet-style [47]
DNN using dilated convolutions [49] and skipped connec-
tions [46]. The simple CNN is used for the ZeMA dataset
where the information is mostly contained in the time do-
main [23]. CNNs are the building block of many modern
DNNs, moreover after multi-layer perceptron (MLP) net-
works CNNs are the simplest conventional network archi-
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Table 5: List of fixed HPs during experiments.

HP CNN WaveNet-based

Batch Size 32 32
L2-regularization 0.001 0.001
Learn rate drop rate 0.9 0.9
Maximum epochs 100 10
Optimizer ADAM ADAM

tecture. Because of the extremely high capacity of MLPs,
they are very prone to overfitting [50]. Therefore, MLPs are
not chosen in this study and CNNs are the next simplest
network architecture that is selected. While it is possible
to also apply CNNs on complex high-frequency signals,
the WaveNet-style network is used for the CWRU dataset,
where the input is raw vibration signals, to add diversity to
our study. Two losses according to the use cases are used,
the mean squared error (MSE) for the regression task and
the cross-entropy loss for the classification scenario.

2.2.3 Domain adaptation

As mentioned before, many ML approaches suffer from a
degradation of the performance in real world scenarios
due to a shift between training and test data [51]. Many
algorithms have been developed to remedy this prob-
lem which can be categorized into different groups based
on the training scenarios i. e., transfer learning, domain
adaptation, and domain generalization. The idea is in-
spired by humans’ approach to learning new tasks [52]. Al-
though the idea of using transfer learning inANNs training
was first presented already in 1976 [53], it is actively used
nowadays in deep learning applications. Transfer learning
aims to build new knowledge based on a trained model
which was trained in a different task or domain, e. g., ap-
plying the same form of feature extraction to train models
for RUL detection of ball bearing in different sizes. Domain
adaptation is a sub-category of transfer learning, where
the task for source and target models are the same, but
thedomain is changing.Anengineering examplewouldbe

the detection of faults in a hydraulic system that is trained
on a testbed and then transferred to an identical machine
used in a different environment for which only few cal-
ibration data are available for the undamaged machine.
Finally, the last member of this group is domain gener-
alization, i. e., the ideal case where the trained model is
not sensitive to the domains but relies only on features
common to all domains. In the mentioned example of
the hydraulic system this would require the model to be
trained with data from many identical machines in dif-
ferent environments to identify features that are indepen-
dent of the individual machine and environment. On the
other hand, this model could be transferred to any addi-
tional machine without requiring further adaptation. Ta-
ble 6 summarizes the characteristics of domain adaptation
and similar methods.

Note that domain adaptation inML is equivalent to the
calibration and adjustment of conventional measurement
systems. Both for MLmethods and conventional measure-
ments the deviation between the system output and a
known target in few calibration measurements is used to
adjust the output accordingly. This is typically done after a
change in the environment (domain change) of the sensor
system. Because both application examples shown in this
paper can be interpreted as domain adaptation tasks the
rest of this paper will focus on domain adaptation.

3 Experiments and results

In this section the results of evaluations for FESR/FESC
and DNN models are reported side by side to allow easier
comparison.

3.1 ZeMA hydraulic system, regression
use-case

Although the target and other variables in this dataset
are discrete numbers (due to restrictions concerning
DoE), they represent continuous variables, and a model

Table 6: Domain adaptation compared with similar approaches.

Source and target tasks Source and target domains
(joint distribution)

Access to target domain

Supervised Learning Same Same –
Transfer Learning Same/Different Same/Different Yes
Domain Adaptation Same Different Yes, unlabeled, or limited labels
Domain Generalization Same Different No
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Figure 4: Prediction results for ZeMA dataset, linear lines show a fitted function on the training (red points) and test (blue points) predic-
tions, to have a better visual representation a jitter plot is used. (a) Results from trained FESR stack. (b) Results from a trained CNN which is
selected based on the validation loss.

Figure 5: The output of the NAS algorithm for the ZeMA dataset (a). A convolutional block in this network consists of a convolution layer,
a batch normalization layer and a ReLU layer (b).

should generalize over the complete ranges. The pub-
lished dataset [24] has 17 different sensors, for simplicity
we use the pressure sensor at the main valve (PS1 in the
publisheddataset) that is corresponding to the defined tar-
get, the sensor has 100Hz sampling rate.

3.1.1 The effect of domain shift on the trained models

In the earlier sections we illustrated the domain shift in
the ZeMA dataset at the feature level. In this section we
show the effect of this phenomenonwhenwe train amodel
under this condition. The results are from two families of
algorithms, FESR and deep learning models.

Starting with the FESR model, we trained a stack of
selected methods for the defined task as described in Sec-
tion 2.1.1. For the selected stack the FEmethod is StatMom,
the FS is the Pearson correlationmethod, and finally PLSR
is the last method of the stack. The results of predictions
for the training and test data are plotted in Figure 4a. As
there are just four discrete values in the targets a scatter
plot with jittering1 is used to provide a better view of over-
lapping data points – otherwise all samples would occur

1 Jittering is a simple but effective method to improve the visualiza-
tion of discrete values in a scatter plot. By adding randomnoise to the
observations, the overlapping points are separated. Note that it does
not change the data permanently.
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in four vertical lines andwould be less distinguishable. Al-
though the slope of the fitted linear lines for train and test
data are similar, there is a clear shift between them. The
change in temperature causes an offset error of approx.
2%.This is equivalent to a conventional sensor system that
suffers from a small cross-sensitivity to temperature. The
root mean square error (RMSE) increases from 1.53% (val-
idation data) to 2.45% (test data). The reason for this varia-
tion is the shifts of the distributions which was visualized
in Figure 2; as the algorithms are not aware of the distri-
bution of the test data, the shifts are not compensated. In
the followingwe compare the results of a trained deep net-
work for the same task.

Alternatively, we searched for a DNN architecture to
fulfill the same task. The selected DNN is a 9-layer CNN
as the outcome of the NAS algorithm with the architecture
and parameters as reported in Figure 5 and Table 7, respec-
tively, with the HPs ranges for the first and last trials of the
search algorithm given in Table 3. The final ranges for the
parameters are values that led to the best networks (with
lowest validation losses) in earlier trials. Figure 6 shows
the final trial of the NAS progress, each point in the plots
is a trainedmodel with the color representing the iteration
number of the model from blue to yellow. Since the objec-
tive function of this process is the validation loss, the ar-
chitecture corresponding to the lowest value was selected
as the final model. However, the test RMSE of the resulting
model is not as low as the validation RMSE, with valida-
tion and test errors of 1.15% and 9.75%, respectively. To
explain why the trained network generalized so poorly on
the test data, the predictions of the network for both train-
ing and test data are visualized in Figure 4b, also allowing
direct comparison to the FESR model.

Table 7: Summary of parameters of the selected CNN after perform-
ing the NAS.

Layers Filter Size
(H ×W)

Number
of filters

Stride

Conv Block 1 1 × 20 8 1 × 3
Conv Block 2 1 × 4 8 1 × 2
Conv Block 3 1 × 4 16 1 × 2
Conv Block 4 1 × 4 24 1 × 2
Conv Block 5 1 × 4 32 1 × 2
Conv Block 6 1 × 4 40 1 × 2
Conv Block 7 1 × 4 48 1 × 2
Conv Block 8 1 × 4 56 1 × 2
Conv Block 9 1 × 4 64 1 × 2
Fully Conn 1 81 – –
Dropout 50% – – –
Fully Conn 2 1 – –

The deviation between the features of the source and
target domains leads to a shift in the final predictions.
While the selected network performs accurately on the val-
idation data which are selected from the training distribu-
tion, it has difficulty in generalizing to the test data. As
is evident in Figure 4b, the test data are divided into two
groups, with one having a slight shift only from the train-
ing data but the second group being significantly shifted
away leading to approx. 10% error for the predictions.
These two groups are visible also at the feature level in Fig-
ure 2a, where the test data consists of two separate groups.
To allow a better visual representation of this problem,
prediction results of the test data are plotted explicitly in
Figure 7. The slope of the fitted line for both groups is al-
most identical but there is a clear offset between the two
groups. Note that this problem would not be visible if a

Figure 6: Final trial of the NAS algorithm. In this plot the validation data are 20% of the training set which were randomly selected. The test
data is from a different distribution, i. e., a different operating temperature. Each point is a trained network, (a) ZeMA use case, (b) CWRU
use case.
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Figure 7: Predictions on the test dataset by the CNN. The “test group
1” are observations with a low error similar to the training data,
while the “test group 2” are data with a significant shift regarding
the target and thus high error.

simple random choice of test and training data had been
used instead. Therefore, the validation scenario must be
designed precisely to ensure covering cross-domain situa-
tions.

3.1.2 Domain adaptation

As shown in the last section, shifts in the dataset can
significantly degrade the performance of a trained model
on test data, especially if these represent a different do-
main. To reduce this problem and improve the results,
calibration and adjustments are required. Calibration is
performed using the test data of a single class (here: ob-
servations with 100% performance) to simulate the real-
world application of the previously trained model to a

new machine that is working at 100% but in an environ-
ment with a different temperature. As the simplest form
of adjustment, the measured offset is removed in post-
processing. Figure 8 shows the results after recalibration
for both tested models, quantitative results are reported
in Table 8. Recalibration for the ANN model is done just
for the second test group (in Figure 7) that had a domi-
nant shift with regard to the training data. While the re-
sults for both models improve with domain adaptation,
FESR clearly yields a superior result with a test RMSE of
1.58 which is almost as low as the validation RMSE, while
the RMSE of the CNN, although reduced by a factor 3, is
still almost twice as high at 3.34.

3.2 CWRU, classification use-case

3.2.1 The effect of domain shift on the trained models

In the same way as for the HS use case, we first chose a
stack of FESC that works best for this task. As mentioned
above the FEmethod is TFEx (cf. Section 2.2.1), with Relieff
used for FS and finally LDA and Mahalanobis distance for
classification. The test accuracy for the test data is 99%,
which is exceptionally good. To check if the model com-
pensated the shift for the test set, we visualize the pro-
jected features after the LDA. Figure 9a shows the results of

Table 8: Error rates for ZeMA dataset before and after recalibration.

Model Validation RMSE Test RMSE Test RMSE after recalibration

FESR 1.53 2.45 1.58
CNN 1.15 9.74 3.34

Figure 8: The FESR model predictions after recalibration (a). The CNN predictions after recalibration (b).
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Figure 9: LDA projection of the features in the CWRU use case (a). PCA plot of the embedded features from the network in the last convolu-
tion layer, the graph shows the first and second principal components (PCs) of the features (b).

Figure 10: The WaveNet-based model with the lowest validation loss in the NAS algorithm (a). The WaveNet block (b) and a convolution block
(c) that are used in the architecture.

the projection, which shows a small shift between training
and test data for the damaged samples, but a significant
shift for the healthy state (damage type “None”). However,
the projections of those observations are still sufficiently
far away from the other groups to be classified correctly.
Also, it should be noted that the shifts are not in the same
direction for all target groups, due at least in part to the
fact that the targets are categorical and can therefore not
be sorted in a logical order.

As mentioned above we expect relevant features also
from the frequency domain for this use case, therefore

a network architecture that previously showed superior
results for raw audio and vibration signals, WaveNet, is
used. An HPs search for theWaveNet-based network in ac-
cordance with Table 4 was conducted and resulted in the
network shown in Figure 10 with HPs as described in Ta-
ble 9. Similar to the earlier use case the validation accu-
racy of many networks is 100% but selecting a network
that generalizes well to the test set is challenging and still
an open question [54]. We can examine the network per-
formance by visualizing the embedded features after the
global pooling layer. Thefirst twoPCs of the embedded fea-
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Table 9: Summary of parameters used for the WaveNet-based net-
work.

Layers Filter Size
(H ×W)

Number
of filters

Stride Dilation Factor

Conv Block 1 1 × 50 80 1 × 3 1 × 1
WaveNet Block 1 × 5 80 1 × 1 5(BlockNumber-1)

Conv Block 2 1 × 4 80 1 × 2 1 × 1
Pooling 1 1 × 4 – 1 × 4 –
Conv Block 3 1 × 8 80 1 × 1 1 × 1
Conv Block 4 1 × 8 80 1 × 1 1 × 1
Pooling 2 1 × 8 – 1 × 8 –
Final Conv 1 × 1 4 1 × 1 1 × 1
tures are illustrated in Figure 9b, which clearly shows that
features of the test data are significantly shifted from the
training data for all target classes.

3.2.2 Domain adaptation

Although the test accuracy of the trained FESC stack is al-
most perfect (98.8±0.8%), we still use calibration and ad-
justment to compare the results. For this use case shifts
from the target groups are different for each individual
class therefore using a single class to calibrate the test
set is not sufficient. This is evident in Figure 9a; if we
move the test data for the healthy state to the mean value
of the training set and then apply the same distance for
other classes, it increases the observed shifts for the other
classes considerably. One solution is applying standard-
ization using a small portion of the test set fromall classes.
Thus, 20% of test data from each class was used for this

form of calibration and adjustment. The labels of the re-
calibrationdata arenot needed. Figure 11 shows the results
after standardizing the training and test data for both the
FESC stack and the ANN model. Quantitative results are
presented in Table 10; because of the stochastic evaluation
procedure, the mean and standard deviations of 10 differ-
ent runs are reported. Similar to the HS use case, a sig-
nificant improvement is achieved for both ML approaches
with the proposed domain adaptation, however, the per-
formance of the FESC approach for the domain shift is sig-
nificantly better than for the deep network. Furthermore,
it had proved to be more robust to the domain shift even
before domain adaptation, i. e.,might be considered as do-
main generalization.

4 Conclusion and future works

In this paper DNNs were compared with conventional
methods based on feature extraction and selection in sce-
narios with distribution shifts caused by changing ambi-
ent or experimental conditions. By visualizing the data at
different levels, it was shown how shifts from raw data

Table 10: Accuracy the models for CWRU dataset, before and after
recalibration.

Model Validation
Accuracy %

Test Accuracy
%

Test Accuracy %
after recalibration

FESC 100 98.8 99.7 ± 0.3
WaveNet-style 100 81 92.5 ± 0.5

Figure 11: LDA projection of the features in the CWRU use case after recalibration (a). Embedded features from the network in the last convo-
lution layer after recalibration, the graph is the first and second PCs of the features (b).
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can propagate to a model and cause shifts in the predic-
tions. As shifts in the data distribution are inevitable in
many real-life scenarios, this issue needs to be consid-
ered when building a comprehensive ML model, i. e., in
the model selection, validation scenario, training process
adaptation. In the presented scenarios the conventional
FESC/R approaches show better results compared to the
ANN solutions. Although finding a DNN to correctly pre-
dict the training data is not difficult using NAS algorithms
selecting a network that generalizes to the test data is
highly challenging in a cross-domain situation. We also
presented two simple domain adaptation techniques to
improve the results of trained models. This showed that
domain adaptation can be formulated as recalibration es-
pecially for regression use-cases achieving good results
for both ML approaches, but again with significant ad-
vantages for the conventional approach. For classification
tasks this recalibration is not as straightforward due to the
categorical nature of the target data and did not show sig-
nificant improvement. Again, the conventional approach
proved to be more robust against distribution shifts and
did achieve better performance after recalibration by nor-
malization. Moreover, in the CWRU use case the FESC
method achieves near perfect accuracy for a cross-domain
scenario even before recalibration, thus can be considered
as an example for domain generalization.

For future work further investigation is suggested in
why FESC/R performs better than DNNs in inter-domain
scenarios which could help in improving the ANN archi-
tectures making them more robust for real-world applica-
tions. One could assume that this results from the implicit
extraction of useful information from the data during the
feature extraction and selection steps reducing the task
complexity and making the results more stable with re-
spect to possible changes in the input data. On the other
hand, the classical approach can be boosted by explicitly
introducing non-linearities based on polynomial expan-
sion of the features in combination with linear classifica-
tion/regression algorithms as recently suggested [55]. This
might allowbetter adaptation to non-linear dependencies,
which is an area where ANNs are usually superior. Also,
visualization methods are desirable to indicate where do-
main shifts occur. Finally, for industrial applications inves-
tigating applicable domain adaptation methods and algo-
rithms is necessary because almost all real-life scenarios
need to be robust against domain shift situations.
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6.2 Paper C: Uncertainty-aware Automated 
Machine Learning Toolbox 

Consequent error propagation through the toolbox allows comparing errors caused by 

the sensor's measurement uncertainty to systematic errors caused by domain shifts 

(assessable via leave one group out cross-validation). It also enables traceability of 

measurement values. This error propagation was researched in the following paper. 

The resulting analytical formulas were published in addition to the automated machine 

learning toolbox, saving significant computational costs compared to alternative 

Monte Carlo simulations. Additionally, they allow the user to consider uncertainty in 

feature selection, as shown by the suggested uncertainty-weighted Pearson correlation 

coefficient for feature ranking. 
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Abstract: Measurement data can be considered complete
only with an associated measurement uncertainty to ex-
press knowledge about the spread of values reasonably
attributed to the measurand. Measurement uncertainty
also allows to assess the comparability and the reliabil-
ity of measurement results as well as to evaluate decisions
based on the measurement result. Artificial Intelligence
(AI) methods and especially Machine Learning (ML) are
often based on measurements, but so far, uncertainty is
widely neglected in this field. We propose to apply uncer-
tainty propagation in ML to allow estimating the uncer-
tainty of ML results and, furthermore, an optimization of
MLmethods tominimize this uncertainty.Here,wepresent
an extension of a previously published automatedML tool-
box (AMLT), which performs feature extraction, feature
selection and classification in an automated way without
any expert knowledge. To this end, we propose to apply
the principles described in the “Guide to the Expression of
Uncertainty in Measurement” (GUM) and its supplements
to carry out uncertainty propagation for every step in the
AMLT. In previous publications we have presented the un-
certainty propagation for some of the feature extraction
methods in the AMLT. In this contribution, we add some
more elements to this concept by also including statisti-
cal moments as a feature extraction method, add uncer-
tainty propagation to the feature selection methods and
extend it to also include the classification method, lin-
ear discriminant analysis combinedwithMahalanobis dis-
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tance. For these methods, analytical approaches for un-
certainty propagation are derived in detail, and the uncer-
tainty propagation for the other feature extraction and se-
lection methods are briefly revisited. Finally, the use the
uncertainty-aware AMLT is demonstrated for a data set
consisting of uncorrelated measurement data and associ-
ated uncertainties.

Keywords: Measurement uncertainty, uncertainty propa-
gation, statistical moments, linear discriminant analysis,
machine learning.

Zusammenfassung: Messdaten können nur dann als voll-
ständig angesehen werden, wenn sie mit einer Messun-
sicherheit versehen sind, die das Wissen über die Streu-
ung der Werte ausdrückt, die der Messgröße zugeordnet
werden kann. Die Messunsicherheit ermöglicht zudem die
Beurteilung der Vergleichbarkeit und Zuverlässigkeit von
Messergebnissen sowie die Bewertung von Entscheidun-
gen auf der Grundlage von Messergebnissen. Methoden
der künstlichen Intelligenz (KI) und insbesondere des ma-
schinellen Lernens (ML) basieren häufig auf Messungen,
aber bisherwurdedieUnsicherheit in diesemBereichweit-
gehend vernachlässigt. Wir schlagen daher in diesem Bei-
trag vor, die Unsicherheitsfortpflanzung beim ML anzu-
wenden, um die Unsicherheit von ML-Ergebnissen abzu-
schätzen und darüber hinaus eine Optimierung von ML-
Methoden zur Minimierung dieser Unsicherheit zu ermög-
lichen. Dazu stellen wir eine Erweiterung einer bereits
veröffentlichten automatisierten ML-Toolbox (AMLT) vor,
die Merkmalsextraktion, Merkmalsselektion und Klassi-
fikation automatisiert und ohne Expertenwissen durch-
führt. Die im „Guide to the Expression of Uncertainty in
Measurement“ (GUM) und seinen Supplementen beschrie-
benen Prinzipien werden angewandt, um eine Unsicher-
heitsfortpflanzung für jeden Schritt in der AMLT durch-
zuführen. In früheren Veröffentlichungen haben wir be-
reits die Unsicherheitsfortpflanzung für einige der Merk-
malsextraktionsmethoden in der AMLT vorgestellt. In die-
sem Beitrag fügen wir nun diesem Konzept einige weite-
re Elemente hinzu, indem wir auch statistische Momente
als Merkmalsextraktionsmethode einbeziehen, die Unsi-
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cherheitsfortpflanzung zu den Merkmalselektionsmetho-
den hinzufügen und sie auch auf die Klassifikationsme-
thode, die lineare Diskriminanzanalyse in Kombination
mit der Mahalanobis-Distanz, ausweiten. Für diese Me-
thoden werden analytische Ansätze für die Unsicherheits-
fortpflanzung im Detail abgeleitet, und die Unsicherheits-
fortpflanzungen für die anderen Merkmalsextraktions-
und -selektionsmethoden werden kurz aufgegriffen. Ab-
schließend wird die Anwendung der zuvor vorgestell-
ten Version der AMLT, welche Unsicherheiten berück-
sichtig, für einen Datensatz, welcher aus unkorrelierten
Messdaten und dazugehörigen Unsicherheiten besteht,
demonstriert.

Schlagwörter: Messunsicherheit, Unsicherheitsfortpflan-
zung, statistischeMomente, lineare Diskriminanzanalyse,
maschinelles Lernen.

1 Introduction
Whenever decisions are based on machine learning (ML)
inference, it is important to have an assessment of the
reliability of the ML results. This reliability is very much
affected by the quality of the input data, e. g., the mea-
surements. Measurement uncertainties, calibration, and
traceability of measurements to the International System
of Units (SI) belong to the most important basic metrolog-
ical principles.

In [1] and [2], an automated software toolbox for sta-
tistical ML was presented. It is suited for multi-class clas-
sification problems using cyclic sensor data which means
that every cycle must have the same length or continuous
data must be split into cycles of same length. Cycles are
classified to exactly one class. In this contribution, this
automated ML toolbox (AMLT) is extended by consider-
ation of measurement uncertainty. The mathematical fo-
cus is especially on two different methods and their cor-
responding uncertainty propagation: Statistical moments
as feature extraction and Linear Discriminant Analysis
(LDA) as dimensionality reduction method. To complete
the uncertainty-aware AMLT, the uncertainty propagation
for the other feature extraction and selection methods are
briefly revisited.

With the help of statistical moments, characteristics
of the statistical distribution of measurement values can
be described and used as features. In pattern recognition,
LDA is used as a linear dimensionality reduction tech-
nique to achieve a more manageable number of features
before the actual classification and to reduce the compu-
tational cost. Existing classical statistical methods for di-

mensionality reduction have been developed in a time pe-
riod, when data collection and storage was not as readily
available as it is today, and the size of the data sets was
much smaller. In 1936, Fisher introducedLDAon the exam-
ple of thewell-knownmultivariate Fisher’s Iris data set [3].
LDA is a method for finding linear combinations of vari-
ables that separate observations into two or more classes
by minimizing the ratio of intra-class to inter-class vari-
ance. Nowadays, in the era of big data,massive amounts of
data are generated in various application domains world-
wide, leading (in particular) to an increase in dimension-
ality and data size [4]. Computations in high dimensional
spaces can lead to overfitting [5] or the curse of dimension-
ality [6, 7] as high dimensional spaces have counterintu-
itive geometrical properties.

To be capable of evaluating the data quality and there-
fore the quality of the machine learning results within the
framework of a measurement uncertainty analysis, using
data and its associated measurement uncertainty is nec-
essary. The easiest way to determine measurement uncer-
tainty is to use calibration information, e. g., from a cal-
ibration certificate, but a calibration is costly and there-
fore often not performed. In the case of existing assembly
lines and test beds, it could also be difficult or impossible
to dismount process-critical sensors and subsequently re-
calibrate them. In case no calibration information is avail-
able, uncertainty information provided by the manufac-
turers of the sensors in data sheets can be used to obtain
an indication of the data quality in the form of a measure-
mentuncertainty [8, 9]. In both cases, anuncertainty value
can be provided for everymeasured sensor value. This ful-
fills the requirements for the use of the uncertainty-aware
AMLT presented in this contribution.

2 Automated ML toolbox
To use the AMLT without any expert knowledge in a fully
automated way, a data matrix D ∈ ℝm×n for each sensor
must be given. For cyclic sensor data, this means that
the matrix consists of m cycles where each cycle has the
same length of n data points. For non-cyclic sensor data,
windowing approaches must be performed before getting
the data in the format of the data matrix D. The AMLT
is divided into three main parts (cf. Fig. 1): feature ex-
traction (FE), feature selection (FS) and classification. In
the end, to verify the trained model, a validation is per-
formed.
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Figure 1: Scheme of the automated ML toolbox (AMLT) with feature extraction (red), feature selection (green) and classification (blue)
(adapted from [2]).

2.1 Feature extraction

The objective of the unsupervised FE is to concentrate as
much information in as few features as possible. In this
step of the AMLT, features are extracted from cyclic raw
data D in different domains by five complementary algo-
rithms:
– Adaptive Linear Approximation (ALA):

Cycles are split into approximately linear segments.
Mean value and slope of every linear segment are ex-
tracted as features from time domain [10].

– Best Daubechies Wavelet (BDW):
A Daubechies D4 (four wavelet and scaling function
coefficients) wavelet transform is performed [11]. 10%
of theWavelet coefficientswith thehighest average ab-
solute value over all cycles are extracted as features
from time-frequency domain.

– Best Fourier Coefficients (BFC):
10% of amplitudes with the highest average absolute
value over all cycles and their corresponding phases
are extracted as features from frequency domain [12].

– Principal Component Analysis (PCA):
PCA reduces the number of variables of a data set,
while preserving as much information as possible [13,
14, 15, 16]. The projections on the first principal com-
ponents are used as features from time domain.

– Statistical Moments:
The statistical distribution of themeasurement values
also includes information. The cycles are divided into
s = 10 nearly equally sized segments and the four mo-
ments mean, standard deviation (as the root of the
variance), skewness, and kurtosis are extracted for
each segment as features from time domain, resulting
in 4s features per cycle [17].

Using these algorithms leads to five feature sets with a
large number of features included in each one. For each of
the five complementary algorithms, FE can be defined as a
mappingD Ü→ FE, whereFE ∈ ℝm×k, k < n, denotes thema-
trix containing extracted features. As the data reduction is
insufficient for Big Data applications in this step, the num-
ber of features is further reduced in the FS step.

2.2 Feature selection

In the supervised FS step, features with low information
content and redundant features are removed from each
feature set FE and the most relevant features with respect
to the given classification task are selected. Supervised
means that the target value, i. e., the associated class, is
known. In the AMLT, three complementary algorithms are
used for FS.
– Pearson Correlation:

Due to low computational cost, this algorithm is used
for FS itself and for the first preselection step in FS, if
the feature number ismore than 500per feature setFE.
Features are arranged in a descending order accord-
ing to their absolute correlation coefficient. In general,
the coefficient in [−1, 1] indicates the strength and di-
rection (in case it is not the absolute value) of the lin-
ear relationship between a feature and a target value.
A correlation close to 0 indicates no linear relation-
ship.

– Recursive Feature Elimination Support Vector Ma-
chine (RFESVM):
With a linear SVM, an optimal hyperplanewith amax-
imum margin (distance between the hyperplane and
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the support vectors) is calculated by solving the opti-
mization problem

min
w,b

1
2
‖w‖2

subject to yi(w
⊤xi + b) ≥ 1, i = 1, . . . , l. (1)

In this equation,w is a weight vector and b is a scalar,
called bias. xi are the support vectors and yi the labels
which are ±1 for binary classification problems. The
lowest SVM weights w are used to recursively remove
the featureswith lowest contribution to the group sep-
aration from the feature set FE [18, 19]. For multi-class
classification, One-vs-One is used that splits themulti-
class into binary classification problems, i. e., one for
every possible pair of classes, and the results are aver-
aged.

– ReliefF:
In case of an impossible linear group separation, Reli-
efF is used which denotes the sixth algorithm version
(naming from A to F) of Relief [20, 21]. ReliefF deals
withmulti-class problems. It finds the nearest hits and
nearestmisses for eachpoint byusingk-nearest neigh-
bors with the Manhattan metric (induced by 1-norm)
as distance measure [22, 23, 24]. For one point, this
means that this algorithm identifies several nearest
neighbors, one belonging to the same class (nearest
hit) and the others each belonging to different classes
(nearest misses).

After ranking the features according to the FS algorithms,
the following optimization problem is solved. For every
number of features, a 10-fold cross-validation (explained
in Section 2.4) is carried out and the minimum number l
of features with the lowest cross-validation error is deter-
mined. Thus, FS can be defined as a mapping FE Ü→ FS,
where FS ∈ ℝm×l, l < k, denotes thematrix containing only
the optimum number of the most relevant features.

2.3 Classification

The classification step is divided into twoparts. First, there
is a further dimensionality reduction performed by LDA
and then, the classification itself byusing theMahalanobis
distance. In general, the dimensionality reduction does
not only reduce computational costs for a given classifi-
cation task, but it can also avoid overfitting. For g groups,
LDA performs a linear projection of the feature space into
a smaller g̃ = g − 1 dimensional subspace by maximiz-
ing the inter-class variance andminimizing the intra-class
variance [25]. This results in a projection matrix P ∈ ℝl×g̃ ,

where l denotes the optimal number of features and g̃ the
number of separable groups reduced by one.

The actual classification task is carried out by using
the Mahalanobis distance which measures distances rela-
tive to central point of each group [26, 27, 28]. Let x be the
vector with the features of the test data,m the component-
wise arithmetic mean of the features of the training data
and S the covariance matrix of the features of the train-
ing data all appertaining to the class Ci. Then, the Maha-
lanobis distance is defined as

dMahal(x,Ci) = √(x −mi)⊤S−1i (x −mi). (2)

The class that results of the lowest Mahalanobis distance
is assigned to x.

2.4 Validation

To validate the results, a k-fold stratified cross-validation
[29] with k = 10 is automatically performed by the AMLT.
This method equally partitioned the data set into ten sub-
sets where each of the subsets has nearly the same class
distribution as the complete data set. Themodel is trained
with only 90%of the data set (i. e., the training data), then
the trained model is applied to the remaining 10% of the
data set (i. e. the test data) and the cross-validation (CV)
error, i. e., the percentage of misclassified cycles, is calcu-
lated. After performing training, testing and calculation of
the CV error for every fold, the calculated CV error values
are averaged over all folds and the algorithm combination
with lowest averaged CV error is chosen as the best for the
actual classification task.

3 Extension of the automated ML
toolbox

The extension of the AMLT by consideration of measure-
ment uncertainty is based on the Guide to the Expression
of Uncertainty in Measurement (GUM) [30] and its supple-
ments Supplement 1 [31] and Supplement 2 [32]. The three
documents establish general rules for evaluating and ex-
pressing measurement uncertainty. In the GUM, the cal-
culation of the measurement uncertainty consists of four
main steps:
1. Specification of a measurand.
2. Identification and characterization of the quantities

which influence the measurement and evaluation of
the uncertainty for each of these influencing quanti-
ties.
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3. Provision of a mathematical model for the calculation
of the measurand, which relates the values of the in-
fluencing quantities to the value of the measurand.

4. Calculation of the combined standard measurement
uncertainty which is assigned to the measurement re-
sult (more precisely the estimated value of themeasur-
and).

In the GUM, a linearization of the model equation y =
f (x1, x2, . . . , xN ) is used to combine the individual standard
uncertainties according to the Gaussian error propagation
(GEP) law

u2c(y) =
N
∑
i=1
(
àf
àxi
)
2
u2(xi) + 2

N−1
∑
i=1

N
∑
j=i+1

àf
àxi
àf
àxj

u(xi, xj)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0, if uncorrelated input quantities

(3)

which the GUM refers to as “Law of Propagation of Uncer-
tainty” (LPU). Equation (3) is based on a first order Taylor
series approximation and the partial derivatives are called
sensitivity coefficients. In Supplement 1 of the GUM, this
approach of propagation of uncertainties is replaced by a
propagation of probability distributions based on a Monte
Carlo method, which does not require linearization of the
model. Supplement 2 of the GUM defines the linearization
method and the Monte Carlo method for multivariate and
complex-valued quantities.

3.1 Uncertainty-aware feature extraction

Let the mapping D Ü→ FE with D ∈ ℝm×n and FE ∈ ℝm×k,
k ≤ n, be given as described above. Knowledge about the
uncertainty matrix U ∈ ℝm×n, which assigns an uncer-
tainty value uij to a measurement value dij ∀i, j, assumed
to be available which means that correlation between dif-
ferent time instants is neglected. Then, the sensitivity co-
efficients of the mapping D Ü→ FE can be calculated ac-
cording to the rules established in the GUMand its supple-
ments. This means, that for every feature in FE, an associ-
ated uncertainty value can be derived according to Eq. (3)
or a Monte Carlo method which leads to the feature un-
certainty matrix UFE . In this contribution, all covariances
between feature uncertainties are disregarded.

For PCA, an efficient implementation of a Monte Carlo
method for uncertainty evaluation is used [33] as an ana-
lytical approach according to Eq. (3) causes numerical is-
sues for Big Data. However, these analytical approaches
are applied for all other FEmethods included in the AMLT.
For ALA, the derivatives of mean and slope for every lin-
ear segment are calculated and used as sensitivity coeffi-
cients [34, 35]. The derivatives of the real and imaginary

part of the discrete Fourier transform are used to calcu-
late the sensitivity coefficients for the amplitude/phase
representation in the BFC algorithm [36]. An uncertainty-
aware BDW was proposed in [37, 38, 39] and adapted to
Daubechies D4 wavelet in [40].

As the uncertainty propagation for statistical mo-
ments in linewith the GUMhas not been published before,
the formulas for applying GUM to this algorithm of the FE
step are given in brief in this contribution. Using statisti-
cal moments as FE algorithm, the cycles are divided into s
segments. The start index ap and the end index ep of the
p-th segment is given by

ap = (p − 1) ⋅ ⌈
n
s
⌉ + 1 and (4)

ep = min(n, p ⋅ ⌈n
s
⌉), (5)

such that every segment consists of Np = ep − ap + 1 mea-
surement values. For the p-th segment of one cycle (con-
sisting of dj ∈ {dap , . . . , dep }), the four statistical moments
and their associated sensitivity coefficients are derived as
follows, whereas detailed calculations of the formulas can
be found in Appendices A.1 to A.3.
– The mean value is calculated by

μp = dp =
1
Np

ep
∑
j=ap

dj. (6)

As it can be easily seen, the sensitivity coefficients are
given by

αp,j =
àμp
àdj
=

1
Np
. (7)

– The standard deviation can be written as

σp = √
1

Np − 1

ep
∑
j=ap

(dj − dp)2. (8)

The sensitivity coefficients are calculated with

βp,j =
àσp
àdj
=

dj − dp
(Np − 1) ⋅ σp

. (9)

– The formula of the skewness is given by

vp =
1
Np
∑
ep
j=ap
(dj − dp)3

( 1Np
∑
ep
j=ap
(dj − dp)2)

3
2
:=

vdenomp

vnomp
. (10)

To get the sensitivity coefficients, a calculation for the
derivatives of the denominator and the nominator of
vp is performed separately. Then, it holds
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àvdenomp

àdj
=

3
Np
⋅ ((dj − dp)

2 −
1
Np

ep
∑
j=ap

(dj − dp)
2) (11)

and

àvnomp

àdj
=

3
Np
⋅ (

1
Np

ep
∑
j=ap

(dj − dp)
2)

1
2

⋅ (dj − dp). (12)

Both, Eq. (11) and Eq. (12), together with the quotient
rule lead to the sensitivity coefficients γp,j.

– Finally, for the kurtosis

wp =

1
Np
∑
ep
j=ap
(dj − dp)4

( 1Np
∑
ep
j=ap
(dj − dp)2)2

:=
wdenom
p

wnom
p
, (13)

the derivatives of the denominator and nominator of
wp are given by

àwdenom
p

àdj
=

4
Np
⋅ ((dj − dp)

3 −
1
Np

ep
∑
j=ap

(dj − dp)
3) (14)

and

àwnom
p

àdj
=

4
N2
p
⋅ (

ep
∑
j=ap

(dj − dp)
2) ⋅ (dj − dp). (15)

Inserting Eq. (14) and Eq. (15) in the quotient rule re-
sults in the sensitivity coefficients δp,j.

The sensitivity matrix for every q-th cycle is thus given as
a block matrix

Jqα,β,γ,δ =(

A
B
Γ
Δ

) ∈ ℝ4s×n (16)

with the submatrices A ∈ ℝs×n, B ∈ ℝs×n, Γ ∈ ℝs×n and
Δ ∈ ℝs×n. The matrix Jqα,β,γ,δ contains an enormous amount
of zeros, e. g., αp,j = 0 if j ̸∈ {ap, . . . , ep}.

Assume that the covariance matrix Uc ∈ ℝ
n×n for ev-

ery cycle is given. It has the diagonal elements uc(dj, dj)
being the squared standard uncertainties u2c(dj) for j =
1, . . . , n and the off-diagonal elements being the covari-
ances uc(di, dj) = uc(di)uc(dj)r(di, dj) for i, j = 1, . . . , n and
i ̸= j, where r(di, dj) denotes the correlation coefficient. It
holds r(di, dj) = r(dj, di) and r(di, dj) ∈ [−1, 1]. The covari-
ance matrix is symmetric, which means Uc = Uc

⊤. This
leads to a symmetric covariance matrix U ∈ ℝ4s×4s with

Uq = Jqα,β,γ,δ ⋅ Uc ⋅ (J
q
α,β,γ,δ)

⊤

=(

AUcA⊤ AUcB⊤ AUcΓ⊤ AUcΔ⊤

(AUcB⊤)⊤ BUcB⊤ BUcΓ⊤ BUcΔ⊤

(AUcΓ⊤)⊤ (BUcΓ⊤)⊤ ΓUcΓ⊤ ΓUcΔ⊤

(AUcΔ⊤)⊤ (BUcΔ⊤)⊤ (ΓUcΔ⊤)⊤ ΔUcΔ⊤
) .

(17)

As thematrixUq is symmetric, it is only necessary to calcu-
late the upper triangle matrix to save computational cost.
Detailed information for the matrix multiplication above
can be found inAppendixA.4.We assumeonlywhite noise
in this contribution. The roots of the diagonal entries rep-
resent the uncertainty values associated to the features for
the q-th cycle and are stored in the q-th row ofUFE and the
covariances are disregarded. All analytical approaches of
uncertainty propagation for the statistical moments were
verified by a Monte Carlo simulation. Using the suggested
analytical formulas, computational costs can be saved in
comparison to the Monte Carlo simulations.

3.2 Uncertainty-aware feature selection

After FE, a feature matrix FE ∈ ℝm×k and the correspond-
ing uncertainty matrix UFE of the same size are avail-
able. As FS is a supervised step, the target values y ∈ ℝm

are known. The uncertainty is further propagated through
the different analysis steps including FS. To get the
AMLT uncertainty-aware in the FS step, filter methods as
weighted rank algorithms are implemented. For weighted
Pearson correlation [41], a feature with lower rPearson,j but
small uncertainty is preferred over a feature with higher
rPearson,j but high uncertainty. The weighted Pearson cor-
relation coefficient for feature j with target y is given by

rPearson,j =
∑mi=1(wij(xij − xj)(yi − yj))

[∑mi=1(wij(xij − xj)2)∑
m
i=1(wij(yi − yj)2)]1/2

, (18)

where wij denotes a weight for which here the squared re-
ciprocal of the corresponding uncertainty value in UFE is
used, xj and y are the weighted mean of the j-th column of
FE and the vector y, respectively, and n is the number of
cycles. The Pearson correlation used in the AMLT (cf. Sec-
tion 2.2) is achieved by assigningwi the identical weight in
Eq. (18). In addition, a weighted Spearman correlation is
added to the uncertainty-aware AMLT for use if an at least
ordinal scale of the target is used. To get this correlation,
all calculations for the values in Eq. (18) are performed
for tied ranks [42, 43]. In general, Spearman correlation is
used to measure the strength of a monotonic relationship
between two variables.

As the filter method ReliefF is based on theManhattan
distance, this distance measure is used in a weighted ver-
sion in the uncertainty-aware AMLT. Thereby, the distance
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along every dimension isweightedwith the corresponding
uncertainty value.

The wrapper method RFESVM uses a standard binary
SVM model with a linear kernel in the AMLT. A total sup-
port vector classification (TSVC) is implemented to extend
the standard SVM [44]. This support vector classification
for uncertain input data is based on a total least squares
regression [45]. The noise is given by Δxi = xi − x�i in this
algorithm, where xi denotes a vector with noise and x�i one
without noise, respectively. A bounded uncertainty noise
model ‖Δxi‖ ≤ δi with uniform prior is assumed. This leads
to the following optimization problem [44]:

min
w,b,Δxi

1
2
‖w‖2

subject to yi(w
⊤(xi + Δxi) + b) ≥ 1, (19)

‖Δxi‖ ≤ δi, i = 1, . . . , l.

After performing a TSVC, features with the lowest contri-
bution (weight) to the class separation are then recursively
eliminated.

Performing the uncertainty-aware FS yields a feature
matrix FS ∈ ℝm×l and the associated uncertainty matrix
UFS of the same size.

3.3 Uncertainty-aware classification

Let a projection matrix P ∈ ℝl×g̃ be given, where l denotes
the optimum number of features and g̃ is the number
of separable groups reduced by one. P is calculated dur-
ingmodel trainingwithout any uncertainty consideration.
The matrix of the selected features is given by FS ∈ ℝm×l,
wherem denotes the number of cycles.

3.3.1 Uncertainty-aware LDA

For the LDA transform, it holds

L = FS ⋅ P with L ∈ ℝm×g̃ . (20)

The calculation of the uncertainty values for L is based on
the formulas given in section 6.2 (“Propagation of uncer-
tainty for explicit multivariate measurement models”) of
Supplement 2 of the GUM [32]. First, Eq. (20)must be trans-
posed, which leads to

L⊤ = P⊤ ⋅ FS
⊤ (21)

and FS and Pmust be transformed in amatrix-vector nota-
tion. For the columns of FS⊤, it holds

FS
⊤ = (f⊤1 |f

⊤
2 | . . . |f

⊤
m ), (22)

where f⊤j ∈ ℝ
l×1, ∀j = 1, . . . ,m denotes the features for the

j-th cycle. Thus, the matrix-vector representation is given
by

F̃S
⊤ =(

f⊤1
f⊤2
...
f⊤m

) ∈ ℝ(m⋅l)×1 (23)

and

P̃⊤ =((

(

P⊤ 0 0 . . . 0
0 P⊤ 0 . . . 0
0 0 P⊤ . . . 0
...

...
...

. . .
0 . . . P⊤

))

)

∈ ℝ(m⋅g̃)×(m⋅l),

(24)

so that the LDA transform can be expressed by

L̃⊤ = P̃⊤ ⋅ F̃S
⊤, L̃⊤ ∈ ℝ(m⋅g̃)×1. (25)

Further, let an uncertainty matrix UFS of the selected fea-
tures be given by

UFS =(

u11 u12 . . . u1l
u21 u22 . . . u2l
...

...
...

...
um1 um2 . . . uml

) ∈ ℝm×l, (26)

where every feature in FS the corresponding uncertainty
value of UFS is associated. The transpose matrix UFS

⊤ is
transferred to the diagonal matrix

ŨFS
⊤ =((

(

u11 0 0 . . . 0
0 u12 0 . . . 0
0 0 u13 . . . 0
...

...
...

. . .
0 . . . uml

))

)

∈ ℝ(m⋅l)×(m⋅l).

(27)

Using section 6.2.1.3 of [32] leads to the following expres-
sion for the covariance matrix Ũ of L

Ũ = P̃⊤ ⋅ (ŨFS
⊤)

2
⋅ (P̃⊤)⊤ (28)

= P̃⊤ ⋅ (ŨFS
⊤)

2
⋅ P̃ (29)

with Ũ ∈ ℝ(m⋅g̃)×(m⋅g̃). As there is only an interest for the
diagonal elements of Ũ, the formula for calculating the
uncertainty values can be simplified and retransformed
to
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ULDA
⊤ = (P⊤ ∘ P⊤) ⋅ (UFS

⊤ ∘ UFS
⊤) (30)

⇔ ULDA = (UFS ∘ UFS ) ⋅ (P ∘ P) (31)

= UFS
∘2 ⋅ P∘2, (32)

where ∘ denotes the Hadamard (element-wise) product
[46]. The uncertainty values associated with L can be cal-
culated by

UL = (
!!!!UFS
∘2 ⋅ P∘2!!!!)

∘1/2
∈ ℝm×g̃ , (33)

where |.| denotes the element-wise absolute value and
(.)∘1/2 the Hadamard (element-wise) square root [47].

3.3.2 Uncertainty-aware Mahalanobis distance
classification

Let the matrix of the projected points L ∈ ℝm×g̃ and the as-
sociated uncertainty matrix UL of the same size be given.
One projected point is expressed by one row in L and
the associated uncertainty is available in the correspond-
ing row in UL. For a worst case classification, only points
that have themaximumpossible distance from a projected
point under consideration of the uncertainty values are
relevant. In other words, the edges of a hyperrectangle (in
total 2g̃) are the relevant points which can be calculated by
an addition/subtraction of an uncertainty value to the cor-
responding entry of L. For example, let g̃ = 3 be given, so
the three-dimensional space is considered. The resulting
23 points are the vertices of a cuboid. To perform a classifi-
cation, Eq. (2) is applied. It calculates thedistancebetween
the center of every group and all possible point combina-
tions in the g̃-dimensional space. For every point, themin-
imumMahalanobis distance and the corresponding group
is determined. In case the uncertainty has no influence
on the classification, all points were assigned to the same
group. If there is an influence and one or several points
are assigned to other groups, this information is available
in the prediction graph of the AMLT.

3.4 Application of the uncertainty-aware
automated ML toolbox

For the application of the uncertainty-aware AMLT in this
contribution, an hydraulic data set is used [48]. In an hy-
draulic system, different fault conditions of cooler, valve,
pump, and accumulator are simulated and data fromm =
1449 working cycles is recorded using 17 different sensors
[49, 50]. The fourdifferent fault conditions at various levels
of severity are systematically combined, so that the data

Figure 2: Uncertainty-aware LDA plot for training and test data. Un-
certainty is presented as error bar only for every 5th test data point
for better visibility.

set contains cycles with each combination of fault condi-
tions. For the exemplary application of the uncertainty-
aware AMLT in this contribution, only data of the pres-
sure sensor PS1 and the cooler condition as target is cho-
sen. The hydraulic system operates during the working
cycles with cooler conditions of 3% (close to total fail-
ure), 20% (reduced efficiency), and 100% (full efficiency).
Thus, g = 3 separate classes are included in the data set.
The sampling rate of PS1 is 100Hz leading to n = 6000 for
themachine’s 60 sworking cycle. As uncertainty contribu-
tion for themeasured signal,white noisewith standardde-
viation σ = 1 bar (= 1 kPa) is considered. To use the AMLT
for training and application, the data set is divided into
training data (90% corresponding to 1305 cycles) and test
data (10% corresponding to 144 cycles). With statistical
moments as FE and the weighted Pearson correlation as
FS, the optimumnumber of features is determinedas l = 27
by cross-validation on the training data. After the training
of the model, the trained model is applied to the test data.

Figure 2 shows a two-dimensional LDA plot. For better
visibility, only every fifth test data point is depicted with
error bars in two directions which indicate the uncertainty
of this point.

A prediction plot (cf. Fig. 3) shows the test cycles
against the test target and the prediction target with and
without uncertainty consideration. To summarize the per-
formance of the used classification algorithm, a confusion
matrix (cf. Fig. 4) is used. The classification error without
considering uncertainty values is 0% whereas the con-
sideration of uncertainty leads to the conclusion that for
4.86% (resp. 7 cycles) the prediction is correct, however
very susceptible to random noise. This leads to the con-
clusion, that in a real-world example the 0% test error is
unrealistic and an error rate up to 4.86% can be expected
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Figure 3: Prediction plot for test data with (red) and without (blue)
consideration of uncertainty in contrast to the test target (green
dashed).

Figure 4: Confusion matrix for the cooler condition classification
problem.

due to the shown susceptibility to noise. This also shows
the benefits of uncertainty analysis in machine learning,
as it provides amore realistic estimate of the expected per-
formance in the field andat the same timehighlightsweak-
nesses like noise susceptibility that could be used as lever-
age points for further model improvement.

4 Conclusion and future work
In this work, the AMLT presented in [1] and [2] was ex-
tended inspired by some principles outlined in the GUM.
Analytical approaches are presented for four of the five
feature extraction methods either by literature references
or in detail as for the statistical moments method. As
the analytical approach leads to computational problems
for the PCA, an efficient Monte Carlo implementation is
used for the uncertainty calculation. In the feature se-

lection step, filter methods expanded by weights are in-
troduced and an extension of a standard SVM is used as
wrapper method. For the classification step, the uncer-
tainty propagation, especially for the LDA, is mathemat-
ically explained in detail. The code for this uncertainty-
aware AMLT can be found on GitHub (https://github.com/
ZeMA-gGmbH/LMT-UA-ML-Toolbox). Thereby, the deter-
mination of measurement uncertainty does not have to be
regarded as an additional burden, but as a worthwhile ad-
dition with added value. For instance, with the extended
AMLT, it was shown by taking measurement uncertainty
for the sensor data into account, that there is an influ-
ence of measurement uncertainty on the model-based re-
sults. This influence will be investigated further in future
work.

Funding: Part of this work has received funding within
the project 17IND12 Met4FoF from the EMPIR program co-
financed by the Participating States and from the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gram. The basic version of the automated ML toolbox was
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project funded by the German Federal Ministry of Educa-
tion and Research in the call “Sensor-based electronic sys-
tems for applications for Industry 4.0 – SElekt I 4.0”, fund-
ing code 16ES0419K, within the framework of the German
Hightech Strategy.

Appendix A. Derivations of the
sensitivity coefficients and the
covariance matrix for statistical
moments
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A.4 Covariance matrix
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6.3 Paper D: Influence of Synchronization 
within a Sensor Network on Machine 
Learning Results 

Another potential issue for ML-based condition monitoring investigated in the 

following paper is synchronization errors in sensor networks. As data is typically 

recorded by multiple sensors and potentially by different data acquisition systems, 

their exact synchronization is essential and lack of such can cause issues. To 

investigate those influences, a trigger-synchronized dataset for remaining useful 

lifetime estimation is altered with artificially added random time shifts between 

sensors to quantify the performance degradation that became significant for random 

shifts larger than 0.1 ms. Constant time shifts did not alter the performance. 

Additionally, the features the resulting prediction model is based on were physically 

interpreted, and two strategies for time-shift compensations were compared. Those 

strategies are modifying feature extraction to use time shift-invariant features and 

training with augmented data that included time shifts. 
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Abstract. Process sensor data allow for not only the control of industrial processes but also an assessment
of plant conditions to detect fault conditions and wear by using sensor fusion and machine learning (ML). A
fundamental problem is the data quality, which is limited, inter alia, by time synchronization problems. To
examine the influence of time synchronization within a distributed sensor system on the prediction performance,
a test bed for end-of-line tests, lifetime prediction, and condition monitoring of electromechanical cylinders
is considered. The test bed drives the cylinder in a periodic cycle at maximum load, a 1 s period at constant
drive speed is used to predict the remaining useful lifetime (RUL). The various sensors for vibration, force,
etc. integrated into the test bed are sampled at rates between 10 kHz and 1 MHz. The sensor data are used
to train a classification ML model to predict the RUL with a resolution of 1 % based on feature extraction,
feature selection, and linear discriminant analysis (LDA) projection. In this contribution, artificial time shifts
of up to 50 ms between individual sensors’ cycles are introduced, and their influence on the performance of
the RUL prediction is investigated. While the ML model achieves good results if no time shifts are introduced,
we observed that applying the model trained with unmodified data only to data sets with time shifts results
in very poor performance of the RUL prediction even for small time shifts of 0.1 ms. To achieve an acceptable
performance also for time-shifted data and thus achieve a more robust model for application, different approaches
were investigated. One approach is based on a modified feature extraction approach excluding the phase values
after Fourier transformation; a second is based on extending the training data set by including artificially time-
shifted data. This latter approach is thus similar to data augmentation used to improve training of neural networks.

1 Introduction

In the Industry 4.0 paradigm, industrial companies have to
deal with several emerging challenges of which digitaliza-
tion of the factory is one of the most important aspects for
success. In digitalized factories, sometimes also referred to
as “Factories of the Future” (FoF), the “Industrial Internet
of Things” (IIoT) forms the networking basis and allows
users to improve operational effectiveness and strategic flex-
ibility (Eichstädt, 2020; Schütze et al., 2018). Key compo-
nents of FoF and IIoT are intelligent sensor systems, also
called cyber-physical systems, and machine learning (ML),
which allow for the automation and improvement of com-

plex process and business decisions in a wide range of appli-
cation areas. For example, smart sensors can be used to eval-
uate the state of various components, determine the optimum
maintenance schedule, or detect fault conditions (Schneider
et al., 2018b), as well as to control entire production lines
(Usuga Cadavid et al., 2020). To make full use of the wide-
ranging potential of smart sensors, the quality of sensor data
has to be taken into account (Teh et al., 2020). This is lim-
ited by environmental factors, sensor failures, measurement
uncertainty, and – especially in distributed sensor networks
– by time synchronization errors between individual sensors.
Confidence in ML algorithms and their decisions or predic-
tions requires reliable data and therefore a metrological in-
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frastructure allowing for an assessment of the data quality.
In this contribution, a software toolbox for statistical ma-
chine learning (Schneider et al., 2017, 2018b; Dorst et al.,
2021a) is used to evaluate large data sets from distributed
sensor networks under the influence of artificially generated
time shifts to simulate synchronization errors. One aspect to
address time synchronization problems in distributed sensor
networks is improved time synchronization methods to pro-
vide a reliable global time for all sensors. Many different
synchronization methods are proposed for sensor networks
(Sivrikaya and Yener, 2004). However, improved time syn-
chronization might not be possible or be too costly, especially
in existing sensor networks which were often never designed
for sensor data fusion, so the ML approach can be improved
to achieve a more robust model with acceptable results as
demonstrated in this contribution.

2 Test bed for data acquisition

Predictive maintenance, based on reliable condition moni-
toring, is a requirement for reducing repair costs and ma-
chine downtime and, as a consequence, increasing produc-
tivity. Therefore, an estimation of the remaining useful life-
time (RUL) of critical components is required. Since we are
using a data-driven model, this cannot be done directly with-
out reference data. A test bed for electromechanical cylin-
ders (EMCs) with a spindle drive equipped with several sen-
sors is used. This specific test bed was used as it contains
a large variety of sensor domains and allows for physical
interpretation. Because most industrial ML problems only
use a subset of these sensors, the approaches of the chosen
test bed can be transferred. In this test bed, long-term speed
driving and high load tests are carried out until a position er-
ror of the EMC occurs, i.e., until the device under test (DUT)
fails. Characteristic signal patterns and relevant sensors can
be identified for condition monitoring as well as for RUL
estimation of the EMCs. Figure 1 shows the scheme of the
test bed. Simplified, the setup of the test bed consists of the
tested EMC and a pneumatic cylinder which simulates the
variable load on the EMC in axial direction. All parameters
of the working cycle can be set by using a LabVIEW GUI.

A typical working cycle lasts 2.8 s. It consists of a forward
stroke and a return stroke of the EMC as well as a waiting
time of 150 ms between both linear movements. The move-
ments are always carried out with approximately maximum
speed and maximum acceleration. The stroke range of the
EMC is between 100 and 350 mm in the test bed. The com-
bination of high travel speed (200 mm s−1), high axial force
(7 kN), and high acceleration (5 mm s−2) leads to fast wear
of the EMC. The error criterion for failure of the EMC is
defined as a too large deviation between the nominal and ac-
tual position values; i.e., the test is stopped as soon as the
specified position accuracy (position accuracy< 30 mm) is
no longer fulfilled due to increased friction.

To gather as much data as possible from different sensor
domains for a comprehensive condition monitoring, the fol-
lowing 11 sensors are used within the test bed (Schneider
et al., 2018a):

– one microphone with a sampling rate of 100 kHz;

– three accelerometers with 100 kHz sampling rate, at-
tached at the plain bearing, at the piston rod, and at the
ball bearing;

– four process sensors (axial force, pneumatic pressure,
velocity, and active current of the EMC motor) with
10 kHz sampling rate each;

– three electrical motor current sensors with 1 MHz sam-
pling rate each.

In Fig. 2, the raw data for one cycle and all sensors is shown.
The collected data reflect the functionality of the EMC and
its decrease during the long-term test. For data analysis,
which is described in more detail in the next section, vari-
ous EMCs were tested until the position error occurred. The
typical lifetime of an EMC under these test conditions was
approx. 629 000 cycles corresponding to roughly 20 d and
generated an average of 12 TB of raw data.

3 ML toolbox for data analysis

The ML toolbox developed by Schneider et al. (2018b) is
used for RUL analysis in this contribution. It can be applied
in a fully automated way, i.e., without expert knowledge and
without a detailed physical model of the process. After ac-
quisition of the raw data, feature extraction and selection as
well as classification and evaluation are performed, as shown
in Fig. 3.

3.1 Feature extraction

In the beginning, unsupervised feature extraction (FE) is per-
formed, i.e., without knowledge of the group to which the
individual work cycle belongs, in this case the current state
of aging (RUL). Features are generated from the repeating
working cycles of the raw data. As there is no method that
works well for all applications, features are extracted from
different domains by five complementary methods:

– Adaptive linear approximation (ALA) divides the cy-
cles into approximately linear segments. For each linear
segment, mean value and slope are extracted as features
from the time domain (Olszewski et al., 2001).

– Using principal component analysis (PCA), projections
on the principal components are determined and used
as features, representing the overall signal (Wold et al.,
1987).

J. Sens. Sens. Syst., 10, 233–245, 2021 https://doi.org/10.5194/jsss-10-233-2021



T. Dorst et al.: Influence of synchronization within a sensor network on machine learning results 235

Figure 1. Basic scheme of the EMC test bed (Helwig et al., 2017).

Figure 2. Raw data recorded during one cycle by 11 sensors expressed in SI units.
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Figure 3. Schematic of the automatic toolbox for condition monitoring using machine learning, adapted from Dorst et al. (2019).

– The best Fourier coefficient (BFC) method extracts the
10 % of amplitudes with the highest average absolute
value over all cycles and their corresponding phases as
features from the frequency domain (Mörchen, 2003).

– The best Daubechies wavelet (BDW) algorithm is based
on a wavelet transform, and as for BFC, the 10 % of
the wavelet coefficients with the highest average abso-
lute value over all cycles are chosen as features from the
time-frequency domain.

– In general, information is also included in the statistical
distribution of the measurement values. These features
are extracted from a fixed number of equally sized seg-
ments of a cycle by the four statistical moments (SMs)
of mean, variance, skewness, and kurtosis.

The objective of FE is to concentrate information in as few
features as possible whilst achieving a precise prediction of
the RUL. The FE methods are applied to all sensor signals
and all cycles. This results in five feature sets with a large
number of features in each. However, the number of features
is still too high after performing feature extraction for Big
Data applications, such as RUL estimation of the EMC as
described in the previous section. Due to the insufficient data
reduction in this step, feature selection is carried out with the
extracted features to prevent the “curse of dimensionality”
(Beyer et al., 1999).

3.2 Feature selection

Feature selection (FS) is a supervised step; i.e., the group to
which each cycle belongs is known. In the case of the RUL
estimation of the EMC, the target value is the used lifetime
with a resolution of 1 %. As for feature extraction, no method
alone can provide the optimum solution for all applications,
so three different complementary methods are used for fea-
ture selection in the ML toolbox:

– Recursive Feature Elimination Support Vector Machine
(RFESVM) uses a linear support vector machine (SVM)
to recursively remove the features with the smallest con-
tribution to the group separation from the set of all
features (Guyon and Elisseeff, 2003; Rakotomamonjy,
2003).

– The RELIEFF algorithm is used when the groups cannot
be separated linearly. This algorithm finds the nearest
hits and nearest misses for each point by using k-nearest
neighbors with the Manhattan norm (Kononenko and
Hong, 1997; Robnik-Šikonja and Kononenko, 2003).

– Pearson correlation is used as a third method for feature
(pre)selection because of its low computational cost.
The features are sorted by their correlation coefficient
to the target value. This coefficient indicates how large
the linear correlation between a feature and the target
value is.

Preselection based on Pearson correlation is performed to re-
duce the feature set to only 500 features before applying the
RFESVM or RELIEFF algorithms to reduce the computa-
tional costs. After ranking the features with a feature selec-
tion algorithm, a 10-fold cross-validation (explained later) is
carried out for every number of features to find the optimum
number of features. Thus, the most relevant features with re-
spect to the classification task are selected, and features with
redundant or no information content are removed from the
feature set.

In addition to reducing the data set, this step also avoids
overfitting, which often occurs when the number of data
points for developing the classification model is not signif-
icantly greater than the number of features.
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3.3 Classification

The classification is carried out in two steps: a further di-
mensionality reduction followed by the classification itself.
The further dimensionality reduction is based on linear dis-
criminant analysis (LDA). It performs a linear projection
of the feature space into a g− 1-dimensional subspace for
g groups which represent the corresponding system state.
The intraclass variance, the variance within the classes, is
minimized while the interclass variance, the variance be-
tween the classes, is maximized (Duda et al., 2001). Thus,
the distance calculation in the classification step has only a
complexity of g− 1. The actual classification is carried out
using the Mahalanobis distance; see Eq. (1):

dMahal(x)=
√

(x−m)>S−1(x−m). (1)

Here x denotes the vector of the test data, m the component-
wise arithmetic mean, and S the covariance matrix of the
group. For each data point, the Mahalanobis distance indi-
cates how far it is away from the center of the data group,
taking the group scattering into account. In order to classify
the data, each sample is labeled with the class that has the
smallest Mahalanobis distance. Points of equal Mahalanobis
distance from a center graphically form a hyperellipse in the
g− 1-dimensional LDA space.

3.4 Evaluation

The k-fold stratified cross-validation (CV) is used for eval-
uation (Kohavi, 1995). This means the data set is randomly
divided into k subsets, with k ∈ N. Stratified means that each
of the k subsets has approximately the same class distribu-
tion as the whole feature set. In the ML toolbox, k is usually
set to 10. Thus, one group forms the test data set and nine
groups form the training data set, from which the ML model
is generated.

3.5 Automated ML toolbox

The automatic ML toolbox compares the 15 combinations
that are achieved by combining all feature extraction meth-
ods and all selection methods. The cross-validation error,
i.e., the percentage of misclassified cycles by the 10-fold
cross-validation, is automatically calculated for each of the
10 permutations resulting from the 10-fold cross-validation
and for each of the 15 FE/FS combinations. To compare the
result of the different combinations, the mean of the 10 cross-
validation errors (one cross-validation error per fold) per
combination is used. The minimum value of all the 15 cross-
validation errors (one error per combination) leads to the best
combination of FE/FS method. Thus, finding the best com-
bination of one feature extraction and one feature selection
method for the current application case is a fully automated
process that is performed offline. The actual classification is

Figure 4. Working cycle depicted as position (red) and velocity
(blue) consisting of forward stroke, waiting time, and return stroke,
as well as the period (green) evaluated for estimation of the RUL.

then carried out online by using only the best of the 15 com-
binations, which results in a low computational effort during
application.

4 Application of the ML toolbox on test bed data

The basis for this contribution is a lifetime test of an EMC
which originally lasted 20.4 d and consists of 629 485 cy-
cles. Only 1 s of the synchronous phase of the return stroke
(duration 1.2 s) for each working cycle is evaluated with the
ML toolbox. During this 1 s period, the velocity is constant
and the load is highest as the EMC is pulling against a con-
stant load provided by the pneumatic cylinder; see Fig. 4.
Thus, this 1 s period is suitable for ML problems.

For this full data set, where all sensors have their orig-
inal sampling rate, the minimum cross-validation error of
8.9 % was achieved with 499 features and a combination of
BFC and Pearson correlation together with the previously
described LDA classifier (Schneider et al., 2018c). Pearson
correlation was only used as selector due to the high compu-
tational time of RFESVM and RELIEFF for the full data set
with 629 485 cycles. Feature extraction together with feature
selection leads to a data reduction of approximately a factor
of 60 000 in this case; i.e., the originally recorded 12 TB of
raw data for this EMC is reduced to a feature set of approxi-
mately 200 MB.

To reduce computational costs and to allow us to study var-
ious influencing factors on the classification performance, a
reduced data set with only every hundredth cycle is used in
this contribution. A further reduction of the computational
costs could be achieved by reducing the sampling rate of the
data. To test the influence of lower sampling rates, several
data sets with different sampling rates are used, and it can
be observed that the best results across all used sampling
rates are always achieved with a combination of BFC and
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Figure 5. The 10-fold cross-validation error vs. number of selected
features for data sets with different sampling rate using BFC as ex-
tractor and RFESVM as selector.

Table 1. Cross-validation error for different FE/FS combinations.

FS/FE Pearson RFESVM RELIEFF

ALA 77.84 % 42.53 % 94.06 %
BDW 77.29 % 59.20 % 89.89 %
BFC 36.97 % 18.18 % 90.41 %
PCA 31.06 % 28.56 % 96.82 %
SM 57.91 % 38.89 % 99.05 %

RFESVM. As shown in Fig. 5, the minimum 10-fold cross-
validation error of the EMC data sets with sampling rates of
1 kHz and more is nearly the same. Thus, the quality of the
prediction is not influenced by a lower sampling rate. The
minimum cross-validation error (18.15 %) is achieved with
the 5 kHz data set, but with the 2 kHz version, the cross-
validation error increases only slightly in the second deci-
mal place (18.18 %). Thus, it is not necessary to use a data
set with a higher sampling rate, and due to less computa-
tional costs, the 2 kHz data set is chosen for this contribu-
tion. It seems that several relevant features are in the range
between 250 Hz and 1 kHz and, based on the Nyquist crite-
rion, are thus contained in this data set. All further results in
this contribution are based on the 2 kHz resolution data set of
an EMC with 6292 cycles (1.1 GB) and time-shifted versions
of this data set. The 2 kHz raw data set is available online for
further analysis (Dorst, 2019).

For this data set, the lowest cross-validation error is
reached with features extracted from the frequency domain
with BFC and RFESVM as selector. The cross-validation er-
ror for the 15 FE/FS combinations can be found in Table 1.

The lowest cross-validation error with 18.18 % misclas-
sifications occurs when using only 17 features as shown in
Fig. 6. The large increase of the cross-validation error when

Figure 6. The 10-fold cross-validation error vs. number of se-
lected features for the original 2 kHz data set without time shift us-
ing RFESVM as selector. For a better visibility, only results with
RFESVM as selector are shown.

using 54–56 features or more in Figs. 5 and 6 can be un-
derstood considering the covariance matrices S used for cal-
culation of the Mahalanobis distance. These covariance ma-
trices have a reciprocal condition number of about 10−19 in
1-norm, which means that they are ill-conditioned. A reason
for the ill-conditioned covariance matrices is the low number
of cycles (only 62, which results from the 1 % resolution of
the RUL together with 6292 cycles) per target class and the
nearly equal number of features.

Since 11 sensors are used within the test bed, Fig. 7 shows
which sensors are contributing to the 17 most important fea-
tures for the RUL prediction using BFC as the feature ex-
tractor and RFESVM as selector. It can be clearly seen that
five features each (i.e., 29 %) are derived from the micro-
phone and the active current data. For further analysis, it is
important to note that 12 of the 17 best Fourier coefficient
features represent amplitudes.

To check the plausibility of the results, Fig. 8 shows that
these 17 most relevant features are within the range 0 to
640 Hz. Thus, using the 1 kHz data set would lead to a loss
of relevant features (640 Hz). The dominant frequency here
is 120 Hz (five features) which represents the third harmonic
of the rotation frequency. The explanation for the other fre-
quencies can be found in Table 2 (cf. Helwig, 2018).

5 Synchronization problems and their effects on
machine learning results

Synchronization between different sensors is important to
enable data analysis. Correctly performed data fusion is cru-
cial for applications, e.g., in industrial condition monitor-
ing (Helwig, 2018). Synchronization problems there simply
means that the raw data of the sensors’ cycles are shifted
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Figure 7. The 17 most important features by sensors, selected with
RFESVM. Only 6 of the 11 sensors contribute to the 17 most im-
portant features.

Figure 8. Frequency range of the 17 most relevant features. The
frequencies of all relevant features are ≤ 640 Hz.

against each other. The feature extraction is carried out for
every sensor and all features are packed together in the clas-
sifier. As the temporal localization of effects can play a role
in ML, synchronization problems can lead to poor classifica-
tion results like later shown in this contribution.

To analyze the effects of synchronization problems be-
tween the individual sensors installed within the test bed and
their effect on the lifetime prognosis, time-shifted data sets
downsampled to 2 kHz are used. Thereby, the raw data set
with full resolution, mentioned in Sect. 4, serves as basis to
simulate synchronization errors. These errors are simulated
by manipulating the raw data set with random time shifts
between the individual sensors’ cycles in the 1.0 s window
of the return stroke. The maximum time shift of a cycle is
±50 ms in relation to the original time axis to ensure that
only data from the return stroke are used for all sensors. The

Table 2. Explanation of the frequencies of the 17 most relevant
features. The 17 most relevant features are physically explainable.

Frequency Explanation

0 Hz mean value of the signal
40 Hz mechanical driving frequency
120 Hz third harmonic of the rotation frequency
440 Hz rollover frequency of the ball screw drive
480 Hz damage frequency of the spindle nut
640 Hz mechanical resonance

minimal possible time shift is ±0.1 ms as the lowest sam-
pling rate over all sensors is 10 kHz.

Clock synchronization is a topic of research still today
(Yiğitler et al., 2020). As shown in this contribution, it is
important to think about clock synchronization, because if
not, then there will be serious issues with the results. For
distributed sensor networks, the considered time shifts are
in a range that can be expected (Tirado-Andrés and Araujo,
2019).

After simulating these errors with the raw data set, the dif-
ferent time-shifted data sets are downsampled to 2 kHz to re-
duce computational complexity. Analysis is carried out using
time-shifted data sets with a minimum of ±0.1 ms per cycle
(based on the time axis of the 2 kHz raw data set) and sensor
up to a maximum of ±50 ms per cycle and sensor. The time-
shifted values in every cycle for every sensor are randomly
generated with a discrete uniform distribution. This means
that the time shift for all samples of one single cycle is the
same but not for the same cycle over all sensors. The best
combination of FE/FS algorithm for all five time-shifted data
sets is BFC as extractor together with RFESVM as selec-
tor. An increase in the cross-validation error is observed with
increasing random time shifts for all sensors (cf. Table 3).
For random time shifts between 0.1 and 1 ms, the cross-
validation error is nearly the same; the change is only in the
first decimal place. Using random time shifts with more than
±50 ms leads to a significant decrease of the classification
performance. A likely reason for this decrease is probably
that not only data from the synchronous phase of the return
stroke are used, but also some data from the acceleration or
deceleration phase of the return stroke are included in the
evaluated 1 s period. To depict the effect of increasing ran-
dom time shifts on the prediction performance more clearly,
the cross-validation error using BFC as extractor, RFESVM
as selector, and time shifts from 0.1 to 50 ms between all 11
sensors are shown in Fig. 9 vs. the number of features. Ev-
ery model was trained with the specific time-shifted data set.
It can be clearly seen that small time shifts only have a mi-
nor effect on the cross-validation error, whereas time shifts
of 1 ms or more increase the cross-validation error notice-
ably. One reason is that the variance in the data increases
by increasing random time shifts and makes it harder for the
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Figure 9. Cross-validation errors vs. the number of selected BFC
features for different random simulated synchronization errors us-
ing RFESVM as selector.

Figure 10. Cross-validation errors vs. the number of selected BFC
features for constant shifted time windows with RFESVM as selec-
tor.

model to learn. For constant time shifts, on the other hand,
the cross-validation error is nearly the same as for the raw
data set (cf. Fig. 10), because every cycle is shifted by the
same constant time, which does not affect the Fourier coeffi-
cients. Although, random time shifts have no influence on the
amplitude spectrum in theory, but because of the experimen-
tal setup, there can occur cross-influences that make model
building harder.

Since most of the results resulting from time-shifted data
sets are almost equivalent to those obtained for the 2 kHz
raw data set, not all results are explicitly discussed in this
contribution. Only the data set with time shifts of maximum
±50 ms for all sensors’ cycles is considered in more detail

Figure 11. Cross-validation error vs. number of selected features
for a maximum time shift of ±50 ms and RFESVM as selector. For
a better visibility, only the results with RFESVM as selector are
shown.

Figure 12. Best feature according to RFESVM (120 Hz of the ac-
tive current) for the 2 kHz raw data set and the data set with random
time shift of maximum 50 ms for three different cycles.

here. On the one hand, this time shift is the maximum pos-
sible when taking into account the cycle length of 2.8 s and
evaluating a full second of the return stroke, and on the other
hand, this time shift provides the worst cross-validation er-
ror for the combination of BFC and RFESVM. As shown in
Fig. 11, the minimum cross-validation error is now 29.97 %,
which is significantly worse than for the original data set
without time shifts (18.18 %).

Figure 12 shows the frequency spectra for the 120 Hz fea-
ture of the active current (1 of the 17 most relevant features)
for different cycles of the raw data set and the data set with
random time shift of maximum 50 ms. It can be clearly seen
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Table 3. Cross-validation error for the 2 kHz raw data set and 2 kHz data sets with different time shifts with BFC as extractor and RFESVM
as selector.

Random time Sensors with Min mean of Selected features Frequency range Most relevant sensor (extracted features)
shift per time shift 10-fold CV (thereof of selected
cycle error amplitudes) features

without – 18.18 % 17 (71 %) 0–640 Hz microphone, active current (each 29 %)

≤±0.1 ms all 20.49 % 20 (90 %) 0–640 Hz active current (35 %)

≤±0.5 ms all 20.74 % 15 (93 %) 0–640 Hz active current (27 %)

≤±1 ms all 20.68 % 13 (100 %) 0–640 Hz active current (23 %)

≤±10 ms all 24.09 % 18 (100 %) 0–640 Hz acceleration piston rod (22 %)

≤±50 ms all 29.97 % 15 (100 %) 0–840 Hz microphone, acceleration piston rod,
acceleration ball bearing (each 20 %)

that this amplitude feature changes during the lifetime of the
axis, but for different time-shifted data sets, it is nearly the
same for the same cycle as for the raw data set. This is shown
exemplary here with only one time-shifted data set.

For explanation of this behavior, let x(t) denote the
real-valued time domain signal for which information is
available at discrete time points t0, . . . , tN−1. The discrete
Fourier transform (DFT) for the real-valued sequence X =

(X0, . . . ,XN−1)> is defined as

X̂k =

N−1∑
n=0

Xn exp
(
−j

2πn
N

k

)
for k = 0, . . ., N − 1. (2)

If the DFT of the signal x(t) is given by X̂k , the DFT for the
time-shifted signal x(t − s) is given by

X̂k,shifted = X̂k exp
(
−j

2πn
N

s

)
for k = 0, . . ., N − 1. (3)

The spectrum of the time-shifted signal is thus calculated
from X̂k , where each spectral component k experiences a
frequency-proportional (linear) phase shift of exp

(
−j 2π

N
s
)

.
The amplitude spectrum of the time-shifted signal remains
unchanged. Therefore, the amplitudes are robust against time
shifts as seen in Fig. 12.

In industrial environments, there are often two different is-
sues when using machine learning. First, there are synchro-
nization problems within a sensor network which can be sim-
ulated here by training the model with the raw data set and
applying the trained model on the data sets with different ran-
dom time shifts. Figure 13 shows the classification error us-
ing a 10-fold cross-validation, which means the training per
fold is carried out with 5663 random cycles of the 2 kHz raw
data set; the remaining cycles of different data sets are used
for the testing. It can be clearly seen that the classification
error increases the larger the time shifts get. The classifica-
tion error of 17.33 % is reached when applying the model
only to the raw test data without time shifts. Applying the

Figure 13. Classification error for one fold of the 10-fold cross val-
idation using the raw data set for the model training and applying
this model to data sets with different maximum random time shifts.
Red dots represent models based on both amplitude and phase fea-
tures, while green dots represent models using amplitude data only.

model built only with the raw data to time-shifted data with
±0.1 ms already leads to a significant increase of the classifi-
cation error (48.17 %). Thus, it is crucially important that the
different sensors and cycles are synchronized. But when data
are not well synchronized or if there is no information about
the synchronization, the results can be improved somewhat
by excluding the phase features, which can also be seen in
Fig. 13. For the data set with ±1 ms time shift, the result can
be improved from 95.87 % using the model with amplitudes
and the phases to 44.99 % when removing the phases out of
the model.

The second important issue is the choice of the time frame.
Figure 14 shows that the time frame must be chosen ex-
actly the same for all data sets, because the classification
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Figure 14. Classification error for one fold of the 10-fold cross val-
idation using the 2 kHz raw data set for the model training and con-
stant time-shifted data sets for the application of the trained model.
Red dots represent models based on both amplitude and phase fea-
tures, while green dots represent models using amplitude data only.

Table 4. Classification error for the prediction of the data set with
1 ms time shift by using different models.

Model/prediction Without time shift Without time shift,
with 0.1 ms and
0.5 ms time shift

Amplitudes and phases 95.87 % 41.81 %
Only amplitudes 44.99 % 35.93 %

rate for one fold of the 10-fold cross-validation worsens from
17.33 %, applying the raw data for the testing, to 69.63 %, ap-
plying the data set with a time frame shifted by only 0.1 ms
when using the model trained with the 2 kHz raw data set.
In this case, it is also possible to improve the results by re-
moving the phases from the model. For the data with the con-
stant time shift of 0.1 ms, removing the phases and thus using
only a model with amplitudes leads to a classification error
of 22.26 % instead of 69.63 %.

A further improvement of the classification results can be
achieved by training the model not only with the raw data
but also with synthetically time-shifted data and considering
only the amplitude features within the model (cf. Table 4).

To depict the effect of improving the classification error
more clearly, the ±1 ms time-shifted data set is used for the
testing of the model in all four cases in Fig. 15. Two differ-
ent models are considered here. In the upper subfigures, the
model was trained only with the 2 kHz raw data set, whereas
in the lower ones the±0.1 and±0.5 ms time-shifted data are
used for the model training in addition. The two subfigures
on the left show the prediction of the lifetime with a resolu-
tion of 1 % when using the model, as it is resulting from the

ML toolbox which means using both amplitudes and phases,
whereas in the right ones only amplitudes are used. It can
be clearly seen that the best classification error of 35.93 %
for the±1 ms time-shifted data set is reached with the model
which is additionally trained with time shifts and consists of
only amplitudes.

6 Conclusion and outlook

In this contribution, data sets with time synchronization er-
rors were considered to investigate their influence on results
obtained with a ML software toolbox for condition moni-
toring and fault diagnosis. Minimal synchronization errors
between the individual sensors, when already present in the
training data, only have a small effect on the cross-validation
error achieved with the ML toolbox. However, if ML mod-
els are trained without any synchronization errors, applying
these models to data sets even with minimal time shifts of
0.1 ms results in large classification errors, here for the pre-
diction of the RUL of a critical component. This error can be
reduced by modifying the feature extraction and excluding
phase values after Fourier analysis in a first step. By adding
artificially time-shifted data to the training set, a further
improvement of the classification result is achieved. Thus,
the study presented in this contribution provides important
guidelines for improving the setup of distributed measure-
ment systems, especially about the necessary synchroniza-
tion between sensors. If no information about the synchro-
nization within the network is available, it is suggested to
generate artificially time-shifted data sets from the original
data and use this extended data set for training the ML model.
Note that this is similar to data augmentation suggested for
improving the performance and robustness of neural net-
works (Wong et al., 2016).

It is also important to choose the time frame for the 1 s
period correctly. Applying the model to data even with only
a small shift of 0.1 ms of the time frame in comparison to the
training data already leads to very poor classification results.

For future work, measurement uncertainty should be con-
sidered in addition to time synchronization errors as both
contribute to data quality and are therefore expected to have
a strong influence on ML results for condition monitoring
or fault diagnosis. In the European research project “Metrol-
ogy for the Factory of the Future” (Met4FoF), mathematical
models for the consideration of metrological information in
ML models are developed. For example, the project consid-
ers the classification within the ML toolbox by reviewing the
robustness of the LDA as a classifier when using redundant
features. Specifically, we will study how long the quality of
the LDA results continues to improve with additional fea-
tures and when the point is reached where the LDA fails,
because the covariance matrix becomes singular; i.e., its de-
terminant disappears.
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Figure 15. Predictions (blue) of the used EMC lifetime (steps of 1 %) for one fold of the 10-fold cross validation for the data set with
time shifts of up to 1 ms and the assumed used lifetime target from 1 % to 100 % (red). (a) Model trained with raw data only using both
amplitude and phase features. (b) Model trained with raw data only using only amplitude features. (c) Model trained with raw, 0.1, and 0.5 ms
time-shifted data sets using both amplitude and phase features. (d) Model trained with raw, 0.1 and 0.5 ms time-shifted data sets only using
amplitude features.

The current ML toolbox (see Fig. 3) does not take any
measurement uncertainties into account. To overcome this
limitation, the methods included in the toolbox are extended
to allow for more robust and accurate failure analysis or con-
dition monitoring applications such as predicting the RUL of
components as discussed in this paper. The uncertainty evalu-
ation for the BFC method was already presented by Eichstädt
and Wilkens (2016). The uncertainty evaluation for ALA was
recently published (Dorst et al., 2020). The uncertainty eval-
uation for the remaining three feature extraction methods
is already developed and will be published soon. Thus, the
ML toolbox can then provide features together with their un-
certainty as determined from the uncertainty of the raw sen-
sor data. Furthermore, the three feature selection algorithms
can be replaced by filter-based selection algorithms which
weight the features based on their uncertainties. Finally, the
propagation of the uncertainty values through the LDA clas-
sifier is also completed. Thus, the extended ML toolbox, soon
to be published, will be able to take the uncertainty of mea-
sured data into account to achieve improved models. In the
future, we plan to add wrapper and embedded methods for
the feature selection step of the ML toolbox that also con-
sider uncertainties.

Code and data availability. The paper uses data obtained from
a lifetime test of an EMC at the ZeMA test bed. As the full
data set is confidential, a downsampled 2 kHz version of the data
set is available on Zenodo https://doi.org/10.5281/zenodo.3929385
(Dorst, 2019).

The automated ML toolbox (Schneider et al., 2017, 2018b; Dorst
et al., 2021a) includes all the code for data analysis associated
with the current submission and is available at https://github.com/
ZeMA-gGmbH/LMT-ML-Toolbox (last access: 23 August 2021)
(Dorst et al., 2021b).
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6.3 Paper E: Towards Interpretable Machine 
Learning for Automated Damage 
Detection Based on Ultrasonic Guided 
Waves 

Since the algorithmic approach for ML-based condition monitoring assumes the input 

data to be a time series of equal length, the same approach can be applied to a different 

field with a similar signal structure. The following paper shows the application of the 

automated machine learning toolbox to structural health monitoring. It shows the 

exemplary application of ultrasonic-guided waves-based damage detection in a 

composite plate. This work formed the foundation for the project KI-Mono, which will 

further investigate the use of machine learning for structural health monitoring with 

ultrasonic-guided waves. 

This example also shows the combination of the automated machine learning toolbox’s 

purely statistical approach with domain knowledge to perform suitable preprocessing 

for temperature compensation using differential measuring with optimal baseline 

selection (OBS) and baseline signal stretch (BSS). 

The algorithms applied are the automated machine learning toolbox plus SVM for 

classification. Additionally, it is used to define dataset splits for group-based cross-

validation that quantify robustness against variations in temperature and fault location. 

The stepwise approach with feature extraction and selection also allows physical 

interpretation of the most important features used for fault detection. 
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Abstract: Data-driven analysis for damage assessment has a large potential in structural health moni-
toring (SHM) systems, where sensors are permanently attached to the structure, enabling continuous
and frequent measurements. In this contribution, we propose a machine learning (ML) approach
for automated damage detection, based on an ML toolbox for industrial condition monitoring. The
toolbox combines multiple complementary algorithms for feature extraction and selection and au-
tomatically chooses the best combination of methods for the dataset at hand. Here, this toolbox is
applied to a guided wave-based SHM dataset for varying temperatures and damage locations, which
is freely available on the Open Guided Waves platform. A classification rate of 96.2% is achieved,
demonstrating reliable and automated damage detection. Moreover, the ability of the ML model to
identify a damaged structure at untrained damage locations and temperatures is demonstrated.

Keywords: composite structures; structural health monitoring; carbon fibre-reinforced plastic; inter-
pretable machine learning; automotive industry

1. Introduction

Machine learning (ML) techniques require a large number of measurements for ad-
equate training and reliable decision-making. Therefore, ML is well suited for structural
health monitoring (SHM) applications in which one or multiple sensors are permanently
attached to the structure so that structural measurements can be recorded frequently. This
rich data pool can be exploited by ML techniques to train a model that can detect damages
or anomalies, allowing for fully automated damage detection.

Several ML methods have been developed in the last few years to solve various
SHM and damage detection problems, especially by using neural networks (NN) [1–5].
Even though ML methods are already well established in vibration-based SHM [6], their
use in guided wave-based SHM is currently rising [7–9]. For instance, Roy et al. [7]
described an unsupervised learning approach for structural damage identification under
varying temperatures based on an NN. Their methodology is validated with measurements
from coupon samples in a uniaxial testing machine. More recently, Miorelli et al. [8]
demonstrated that support vector machines (SVM) trained on numerical data can be
used to solve the inverse problem for damage detection and sizing from experimental
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guided wave (GW) images. They used a circular array of transducers on an isotropic
metal plate with through-holes of different sizes modelled at different locations. Mariani
et al. [9] showed improvements in automatic damage detection when using a causal dilated
convolutional NN without the need for feature engineering by a human operator. Qiu [1]
studied Gaussian mixture models for GW in SHM systems using measurements from a
full-scale fatigue test.

Keogh et al. [10] found, in a study of 340 papers, that new methods are tested on
average on 1.3 different datasets and compared to 0.9 other methods only, and routine
applications are desired to reduce the requirement for data scientists to adapt the ML meth-
ods for industrial applications. The contribution of this work is therefore the adaptation
and application of an existing ML framework previously used for condition monitoring
of industrial machines to GW-based SHM to enable autonomous damage detection. The
framework is based on a toolbox combining multiple established ML algorithms that was
successfully applied to various other datasets (cf. [11]). A reference dataset from the Open
Guided Waves platform is used in this work, consisting of GW measurements performed
with an array of piezoelectric transducers on a carbon fibre-reinforced polymer (CFRP)
under varying temperatures [12]. The analysis shows that a classification rate of 96.2%
can be achieved, demonstrating reliable and automated damage detection. Moreover, the
ability of the ML model to detect damages at untrained damage locations and temperatures
outside of the trained temperature range is also demonstrated. The methodology presented
in this manuscript should be seen as a general pathfinder rather than a tailored solution.

Neural networks are commonly used in SHM applications but are difficult to inter-
pret, and therefore their use in safety-relevant applications is limited. The methodology
presented in this paper focuses on interpretability, meaning that the ML results must
be physically interpretable to enable the use of ML also in safety-relevant applications.
We compare our methodology against the performance of an NN applied on the same
dataset [9]. Furthermore, we demonstrate that our ML methodology enables a straight-
forward learning procedure without the need for domain-specific knowledge and highly
educated staff like data scientists, which is very important for wider application of these
methods in the industry. On the other hand, it must be noted that even better performance
can be achieved with domain-specific knowledge by highly educated staff.

The outline of the paper is as follows. First, the experimental setup along with
the pre-processing of signals for temperature compensation is presented, followed by
the description of the automated toolbox. Next, the performance of the automated ML
framework is analysed. To do so, a realistic validation scenario is chosen, which is a crucial
step to minimise overfitting. In addition, the selection of the hyper-parameters is motivated
to achieve a higher performance. The Results section first provides a visualisation of the
data using principal component analysis. Then, the performance of different algorithms for
automated damage detection is presented and discussed. Moreover, the robustness of the
algorithms against different damage locations and temperatures is tested and a comparison
to results achieved with a deep learning NN by Mariani et al. [9] is presented. The paper
closes with conclusions and the outlook.

2. Machine Learning Approach
2.1. Description of the Experimental Setup

This study is based on a freely available benchmark dataset for guided wave-based
SHM with varying temperatures, recorded by Moll et al. [12]. Here, multiple ultrasonic
transducers (T1–T12) were attached to a carbon fibre-reinforced plastic (CFRP) plate, as well
as a sequentially added detachable mass (aluminium disc) at four different locations (D04,
D12, D16, D24) to simulate structural damages. The impact of the simulated damages on the
measurements can be considered a rough approximation of real delamination (e.g., decrease
in amplitude and changes in time of flight) [12]. The exact positions of the transducers
and the damage locations as well as their distance to the direct signal path (T4 to T9)
can be found in Table 1. Note that, in the scope of this manuscript, the term “simulated



Sensors 2022, 22, 406 3 of 19

damage” denotes an experimental simulation of a damaged material and does not refer to
numerical simulation.

Table 1. Position of the transducers and the damage locations [12]. The distance of the damage
locations to the direct signal path had been calculated.

Label Position on x-Axis
(mm)

Position on y-Axis
(mm)

Distance to Signal Path
(mm)

Transducer positions
Transducer 4 210 470 0
Transducer 9 290 30 0

Damage positions
Damage 04 65 400 155
Damage 12 195 330 40
Damage 16 335 260 85
Damage 24 450 190 186

A schematic of the CFRP plate with the positions of the transducers and damages
is shown in Figure 1a. The subsequent analysis considers the case of a 40 kHz Hann-
windowed tone-burst signal with five cycles (Figure 1b) sent by T4 and received by T9 for
all four damage locations D04, D12, D16, and D24 as well the undamaged structure. Each
measurement contains only one simulated damage at a time. During the experiment, the
plate was subjected to several temperature cycles between 20 and 60 ◦C in a climatic cham-
ber (Figure 1c) at constant humidity (50% RH, mean: ~50.1%, standard deviation ~0.3%).
For studies concerning the impact of humidity on CFRP the reader is referred to Schubert
et al. [13]. Note that measurements for the undamaged plate were performed on two
temperature cycles instead of only one. For the pre-processing (Section 2.2) the ascending
flank (20 ◦C to 60 ◦C in 0.5 ◦C steps) of the first temperature cycle of the undamaged plate
was used as a database (DB, Figure 1c) for the optimal baseline selection (OBS) of reference
signals (cf. Section 2.2), and the descending flank is labelled “undamaged group 1” (UG1).
The second temperature cycle (ascending and descending flank) is labelled “undamaged
group 2” (UG2). These two different groups are later used in the validation (Section 2.4).

Multiple configurations were analysed and two representative scenarios chosen, one
where the transducers were located in the middle of the CFRP plate (T4 and T9) and the
other where they were located at the edge (T1 and T7; Section 3.3). In the scope of this
study, we focused on one transducer combination at a time to be able to interpret the ML
results more easily and, more importantly, to reduce the complexity and cost of later SHM
configurations. Although the performance could be increased by using the information of
all sensors, the aim of this study was to gain a better understanding of which configuration
is necessary to reliably detect a damaged structure.

2.2. Signal Pre-Processing

Increasing the temperature of the CFRP decreases the phase and group velocity of
guided wave modes and increases material attenuation. Unsupervised principal component
analysis (PCA) on the raw data identifies this effect to be by far the most dominant variation
in the dataset (Appendix A, Figure A1). It masks less significant fault symptoms that
indicate a damage in the CFRP specimen. This may cause the unsupervised and automated
feature extraction strategy described below to miss these symptoms. To mitigate this
effect, differential measurement techniques—optimal baseline selection (OBS) and baseline
signal stretch (BSS)—were employed for temperature compensation [14]. This approach is
schematically shown in Figure 2 and comprises the following steps:

OBS is applied, where the measured signal is compared to all signals of the reference
database from the intact structure covering the full experimental temperature range. The
closest match (reference signal) as determined by the root mean square error (RMSE) is
chosen as the optimal baseline.
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BSS is applied on the baseline signal:

a. The baseline signal is stretched on the time axis to best fit the measured signal, again
as determined by the RMSE.

b. The stretched baseline is shifted on the time axis to achieve the best fit to the measured
signal in terms of RMSE.

c. The shifted baseline’s amplitude is scaled to match the measured signal in terms
of RMSE.
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Figure 1. (a) Schematic of the experimental setup [12]. The analysed sensor combination is indicated
by circles (the red circle indicates the transmitter T4, whereas the green circle indicates the receiver T9).
The considered damage positions (D04, D12, D16, D24) are indicated by filled black dots. (b) 40 kHz
Hann-windowed tone-burst signal with five cycles. (c) Temperature of the climatic chamber for each
measurement number, where the dotted lines indicate the corresponding groups of the database,
undamaged and damaged measurements.

This modified baseline is subtracted from the measured signal to obtain the difference
(residual) signal.

All approaches, methods, and results reported below are based on the signals taken
from the reference database being pre-processed using OBS and BSS algorithms.

The database in this study contained 81 measurements with only one measurement
per 0.5 ◦C temperature step (cf. Section 2.1). Here, we selected the minimum database
that contained all temperatures to keep the computation time low, since OBS compares
measured signals to each signal in the database. In real-life SHM applications, the number
of measurements of an intact structure could be much higher by adding every new mea-
surement (of an intact structure) to the database, rapidly increasing its size. However, we
suggest focussing on the composition of the database rather than its size because a database
representing a high variance of, e.g., environmental conditions like temperature, humidity,
etc., should increase the robustness of the ML model.
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optimal baseline selection (OBS) and baseline signal stretch (BSS).

2.3. Automated Toolbox

Signal classification was performed using a fully automated toolbox for industrial time
series feature extraction and selection [15]. All algorithms are part of the MATLAB-based
open-source Automated ML Toolbox for Cyclic Sensor Data [16] and its compiled version
DAV3E—Data Analysis and Verification/Visualisation/Validation Environment [17] (Sup-
plementary Materials), both developed by the Lab for Measurement Technology at Saarland
University. This automated toolbox combines five unsupervised and complementary fea-
ture extraction (FE) methods with three complementary methods for feature selection (FS)
(Table 2).

Table 2. Feature extraction and selection methods of the automated toolbox [17].

Methods Abbreviation Literature

Feature Extraction Methods
Adaptive linear approximation ALA [18]
Principal component analysis PCA [19]

Best Fourier coefficients BFC [20]
Best Daubechies wavelets BDW [21]

Statistical moments SM [22]
Feature Selection Methods

Recursive feature elimination support vector machines * RFE-SVM [23,24]
RELIEFF * RELIEFF [25,26]

Pearson correlation coefficient PCC [27]
* Before this feature selection method is applied, the number of features is reduced to 500 in a first feature selection
step based on the Pearson correlation coefficient.

To keep the computation within a reasonable time, the extracted number of features
was reduced in a first feature (pre-)selection to the 500 features with the highest PCC. Thus,
15 FE/FS combinations were automatically analysed within the toolbox, using a simple
classification approach based on supervised linear discriminant analysis (LDA) with Maha-
lanobis distance classification [28]. Out of the 15 combinations, the best FE/FS combination
was automatically selected based on the highest test accuracy using 10-fold cross-validation.
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If needed, this approach can be extended using more sophisticated classification
algorithms. In this study, further investigations with a support vector machine (SVM) with
a radial basis function kernel (RBF-Kernel) were performed, because this classifier achieved
the best performance (highest accuracy in the shortest time) in a comparison of 14 different
families of classification algorithms on 115 binary datasets [29]. Other relevant examples of
using SVM in the context of SHM can be found in [6,8].

2.4. Validation Scenario

In real-world applications, the exact position of damage is unknown and generally dif-
fers from simulated or trained ones. Therefore, damage detection is required to also detect
damages located at positions that were not included in the training data by learning certain
global damage characteristics that are robust against changes in damage location. Thus, the
model is trained with the pre-processed data as a binary decision (damaged/undamaged).
The standard stratified 10-fold cross-validation (Figure 3, left) divides the dataset into
10 sub-datasets (folds), where each fold has the same proportion of damaged and un-
damaged data. Here, simple ML approaches can achieve a high accuracy on the Open
Guided Wave data, which shows statistical significance but not the needed robustness
against untrained damage positions, since all simulated damages (D04, D12, D16, D24) are
included in each training set. Stratified CV cannot guarantee that the model learns general
characteristics of a damaged or undamaged structure instead of only damage-specific and
position-related characteristics, which only occur at the locations of the trained damages.
This may result in overfitting, meaning that the ML model is trained only for specific dam-
age locations and is then unable to identify damages at other locations. Therefore, 10-fold
cross-validation is replaced by leave-one-group-out cross-validation (LOGOCV; Figure 3,
right). To do so, the dataset is divided into data subsets with respect to the corresponding
groups (UG1, UG2, D04, D12, D16, D24), allowing for the exclusion of each damage location
from the training data once and thus making this damage location completely unknown to
the ML model. The excluded group is then used to validate the performance of the trained
model. To ensure that the training dataset always contains data of the undamaged sample,
these measurements are split into two groups (UG1, UG2).
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The flowchart of this methodology is depicted in Figure 4. It shows how the sensor
signals are used for the training and automated algorithm selection. After selecting the
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best FE method in combination with the chosen robust feature selection (RELIEFF) and
classification (SVM with RBF kernel) based on testing with LOGOCV, the model is trained
with all available data. It is then applied to new measurements, classifying them as either
damaged or undamaged.
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2.5. Hyper-Parameter Selection

To increase the performance of the ML model, a selection of the hyper-parameters C
(regularisation parameter of the SVM) and the number of features was performed. Here,
a grid search approach was used based on Gui et al., who tested three methods for SVM
optimisation in SHM for damage detection with a grid search, achieving the highest
accuracy [30]. In this approach, an ML model is trained and validated with every possible
combination of hyper-parameters in a pre-defined range. The combination with the highest
validation accuracy is chosen and finally tested with independent data not included in the
training and validation data.

Table 3 shows the values and tested number of values for each parameter. To reduce
computational time and resources while still covering a broad range of values, the step
size for the number of features increased the higher it became. The maximum number of
features was set to 500 based on the feature pre-selection, which reduced the number of
extracted features to 500 to avoid overfitting. Similarly, to cover a wide range of values for
the regularisation parameter C, logarithmic scaling was chosen, i.e., C = 100.5i, i ε (−2, 8).

Table 3. Parameters and values used for the grid search approach to improve the ML model. “Number
of features” means the selected features that are used for classification. Bold numbers indicate the
selected hyper-parameters for Section 3.5.

Hyper-Parameter # of Values Values

Number of features 31 1, 2, . . . , 10, 15, 20, . . . , 25, . . . , 50, 60, 70, . . . , 100, 150, . . . , 500
Regularisation parameter C 11 0.1, 0.3, 1, 3.2, 10, 31.6, 100, 316.2, 1000, 3162.3, 10,000

Note that the parameter σ of Equation (A5) (cf. Appendix B) was not part of the grid
search, as it is automatically optimised by MATLAB. After performing the grid search ap-
proach, the algorithm selects a parameter combination achieving high accuracy while using
as few features as possible. Regarding the regularisation parameter C, if multiple parameter
combinations achieve maximum accuracy, a trade-off can be made. Whereas a larger value
for C suppresses misclassifications, a smaller value for C allows misclassifications to a
certain degree [31]. Here, we preferred a smaller value for C to achieve a higher tolerance
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for misclassifications and higher robustness against outliers [31]. Further information on
the theoretical background of SVMs can be found in [31,32] on the difference between
hyper-parameter tuning as performed here and hyper-parameter optimisation of SVMs as
described in [33–35].

3. Results and Discussion
3.1. Principle Component Analysis

Principal component analysis is a common unsupervised method for visualising data
to gain a better understanding of the nature of the dataset. Figure 5a shows the result of
the scatterplots of the first five principal components (PC) based on the pre-processed data,
with the corresponding variance that each principal component explains and the histograms
on the diagonal. Here, the second and third PC (PC2, PC3), indicated by a red box, showed
better separability than the remaining PCs. Note that PCA is used here for visualisation of
the pre-processed data (OBS + BSS) only, without any additional data treatment.
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Figure 5. (a) Matrix of the first five PCs of the PCA on the pre-processed data (undamaged plate and
all simulated damage locations) with their histograms on the diagonal and the variance explained by
each PC given as a percentage in brackets. The red box indicating the scatterplot of PC 2 and PC 3 is
also shown in (b), where the data points are additionally coloured by their corresponding temperature.

The scatter plot of PC 2 and PC 3 (Figure 5b) reveals good separability for damage
locations D12 and D16 located in the direct signal path between T4 and T9, where waves
reflected from and transmitted through the damage (resulting in decreased amplitudes)
had a higher impact on the measurements. Since D04 and D24 were not in the direct signal
path, their influence on the received signal was smaller. D04, D24, and the undamaged data
formed a cluster in the centre. In addition, Figure 5b shows all pre-processed measurements
coloured by the corresponding temperature. Thus, the crescent-moon shape of the signals
for D12 and D16 was mainly due to the temperature effect, which was not fully compensated
by the OBS + BSS pre-processing. Figure 5b implies that measurements of D12 and D16 at
higher temperatures were more difficult to discriminate, as they lay closer to each other as
well as to the cluster of the undamaged plate and damages D04 and D24.

These plots also show that pre-processing can, at least to a certain degree, suppress
temperature effects and highlight damage symptoms. However, the damage cases D04
and D24 overlapped with the undamaged data UG1 and UG2 in the first five PCs, which
explains 72% of the variance.
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3.2. Results of the Automated Toolbox and Improvement of the Algorithms

In the following, we describe our approach to find a robust model with a high classi-
fication rate. When using the standard classifier of the toolbox, the highest resulting test
accuracy was 88%, achieved using BFC as a feature extractor and RFE-SVM for feature
selection (Table 4). This classification rate is inadequate, especially for safety-relevant appli-
cations. Table 4 provides further information on how the different FE/FS combinations
performed. Here, a user of the toolbox could see that, besides the expected BFC extractor,
the SM extractor might be interesting for further analysis, whereas, e.g., ALA is not suitable
for FE here.

Table 4. Overview of the testing accuracies of all 15 combinations of the automated toolbox, derived
in a previous study [36]. The highest testing accuracy is shown in bold.

Testing Accuracy for Each Algorithm Combination of the Automated Toolbox
PCA BFC BDW ALA SM

Pearson 42% 73% 42% 31% 81%
RELIEFF 42% 80% 43% 31% 78%
RFE-SVM 52% 88% 48% 31% 81%

To increase the performance, the feature extraction method was improved, and the
feature selection and classification methods were replaced. Due to the relatively high
robustness against incomplete and noisy data in real-life applications, RELIEFF was chosen
as the feature selection algorithm [25,26]. As a classifier, SVM with RBF kernel was chosen
due to its good performance in a comparison of 14 families of classification algorithms on
115 binary datasets [19].

The BFC extractor of the toolbox initially extracted 5% (1310 features) of the fre-
quency spectrum by ranking them according to the highest amplitude, and extracted those
frequencies and their corresponding phase angles. This value was increased up to 10%
(2620 features) to also consider features with a lower signal amplitude in the training. To
achieve a reasonable computing time, the resulting 2620 features were first reduced to 500
by selecting the features with the highest Pearson correlation to the damage. The final FS
method, RELIEFF, reduced the number of features down to 20. This number of features
was determined by averaging the obtained feature numbers of the six models in the grid
search. This improvement of the toolbox resulted in a damage classification rate of 96.2%
(Table 5) compared to 88%, i.e., reducing the number of misclassified measurements from
118 to 33. A detailed description of the improved algorithms and the procedure is given in
Appendix B.

Table 5. Overview of the testing accuracy and number of misclassifications of the improved algo-
rithms (BFC, RELIEFF with Pearson pre-selection, RFE-SVM) of the toolbox for GW-based SHM.

Results of the Improved Algorithms of the Toolbox
Damage Case UG1 UG2 D04 D12 D16 D24 Total

Number of samples 80 161 161 161 161 161 885
Misclassifications 1 3 0 0 0 29 33

Accuracy 98.7% 98.1% 100% 100% 100% 82.0% 96.2%

It is worth mentioning that due to the validation strategy (LOGOCV), these results
are robust for temperature variations as well as damages at unknown positions. The
corresponding predictions are shown in Figure 6. Note that most misclassifications occurred
for measurements of damage at position D24, which is the location farthest from the direct
path in this study (186 mm; Table 1), in combination with high temperatures (>45 ◦C).
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misinterpretation of environmental influences but indeed originated from the excitation 
signal. 

Figure 6. Damage classification results of the leave-one-class-out cross-validation. The plot is divided
into six sections by dotted lines. Each section represents a heat cycle with one specific damage
condition (undamaged and damaged D04, D12, D16, D24).

With the proposed transparent FE/FS approach, the ranking of the features that are
most often selected for damage detection can help with a physical interpretation. The five
highest ranks (eight features) are listed in Table 6.

Table 6. Ranked BFC features, i.e., frequencies, for transducer combinations 4 and 9 with their rank,
total selections, amplitude selections, and phase selections. Ranking is based on how often the
respective frequency is selected either as an amplitude or a phase feature in the six different LOGOCV
models. Four frequencies are selected six times each.

Ranked Frequencies (BFC Features)
Nr. Rank Frequency Total Selections Amplitude Selections Phase Selections

1 1 38.9 kHz 10 4 6
2 2 42.7 kHz 9 6 3
3 3 45.0 kHz 8 3 5
4 4 35.9 kHz 7 2 5
5 5 27.5 kHz 6 6 0
6 5 36.6 kHz 6 5 1
7 5 42.0 kHz 6 0 6
8 5 45.8 kHz 6 3 3

These frequencies were all included in the frequency spectrum of the Hann-windowed
excitation frequency, as shown in Figure 7, indicating that they were not a misinterpretation
of environmental influences but indeed originated from the excitation signal.
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Figure 7. (a) 40 kHz excitation signal. (b) Single-sided amplitude spectrum of the 40 kHz ex-
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3.3. Influence of the Distance between Damage Location and Signal Path

Incorrectly classified data samples resulted mostly from signals of damage location
D24, which required a considerable extrapolation since this damage location was furthest
from the signal path (186 mm; Table 1), which is believed to have had a significant influence
on the ML performance, especially at higher temperatures. Therefore, we performed an
additional investigation of the combination of transducers 1 and 7 (Table 7), where D24 lay
in the direct signal path. Table 8 shows the distances of each damage location from the
direct signal path for this transducer combination.

Table 7. Position of transducers 1 and 7.

Label Position on x-Axis (mm) Position on y-Axis (mm)

Transducer 1 450 470
Transducer 7 450 30

Table 8. Distance of the damage locations from the signal path between transducers 1 and 7.

Label Distance from Signal Path (mm)

Damage 04 385
Damage 12 255
Damage 16 11.5
Damage 24 0
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The results given in Table 9 show the same tendency as for the combination of transduc-
ers 4 and 9: D24 and D16 were close to the signal path; thus, they were classified correctly,
whereas the accuracy dropped with increasing distance between damage location and
signal path. The reduced accuracies for the undamaged cases (UG1, UG2) were possibly
due to features present in the damage cases being similar to features of the undamaged
case; however, this needs to be investigated further.

Table 9. Accuracy and number of misclassifications of the improved algorithm (BFC for feature
extraction, RELIEFF for feature selection, SVM with RBF kernel for classification validated with
LOGOCV) for the combination of transducers 1 (sender) and 7 (receiver).

Validation Results of the Improved Algorithm for the Combination of Transducers 1 and 7

Damage case UG1 UG2 D04 D12 D16 D24 Total
Misclassifications 4 39 133 68 0 0 244

Accuracy 94.9% 75.8% 17.4% 57.7% 100% 100% 72%

3.4. Robustness against Temperature Influences

The temperature range tested by Moll et al. [12] simulates conditions from room
temperature up to 60 ◦C in 0.5 ◦C steps, making it suitable primarily for indoor applications,
e.g., lightweight manipulators for robots [37]. To also cover outdoor applications, e.g., rotor
blades of wind turbines, which have to withstand temperatures in the range from −50 ◦C
to +100 ◦C [38], the temperature range needs to be extended in future experiments. To
investigate the influence of a smaller temperature range while training the ML model, i.e.,
to check how well the model can extrapolate, a training temperature range was successively
reduced, extending the required extrapolation from 2 ◦C to 16 ◦C in 2 ◦C steps. In the scope
of this manuscript, extrapolation denotes testing of measurements that were performed
outside the trained temperature range. Thus, a model was first built using the temperature
range 22.5 ◦C to 57.5 ◦C for training and validation, then it was tested for the temperature
ranges 20 ◦C to 22 ◦C and 58 ◦C to 60 ◦C, and then further the training range was further
reduced and the test temperature range increased. Within each case, data from UG1, D12,
and D24 were used for training, and data from D04 and the rising temperature flank of UG2
for validation. The extended temperature range of these data plus the respective data from
D16 and the descending flank of UG2 were used for testing, as shown in Figure 8a,b for
2 ◦C and 16 ◦C extrapolation, respectively.

Note that further extrapolation is not meaningful since the size of the training data set
was reduced with every step, decreasing the statistical significance. For 16 ◦C extrapolation,
the training data (green areas in Figure 8b) only contained 75 measurements in the range of
36.5 ◦C to 43.5 ◦C.

Table 10 shows the test accuracies achieved for each temperature extrapolation step.
The ML model extrapolated up to 6 ◦C without loss of performance and had only a slight
decrease in performance for temperature extrapolations up to 10 ◦C, indicating that the
model is fairly robust to temperature influences. This might allow a model to be built
based on data from a lab environment that could still achieve acceptable performance
under real operating conditions. Note that extrapolation over 12 ◦C corresponds to a
training range from 32.5 ◦C to 47.5 ◦C, i.e., ∆T = 15 ◦C. Thus, only approx. one third of the
overall temperature range is necessary to achieve an accuracy of 93.6% even for previously
unknown damage locations.

Table 10. Resulting testing accuracy over temperature extrapolation. The extrapolated temperatures
were not used for the model building and only used for testing.

Resulting Testing Accuracy for a Certain Temperature Extrapolation

Temperature
extrapolation 2 ◦C 4 ◦C 6 ◦C 8 ◦C 10 ◦C 12 ◦C 14 ◦C

Testing accuracy 100% 100% 100% 97.0% 96.8% 93.6% 83.7%
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3.5. Comparison to a State-of-the-Art Neural Network

Since neural networks (NN) are nowadays often used for SHM applications [39–41],
we benchmarked our approach against a neural network approach reported for the same
dataset [9]. In this study, Mariani et al. first tested several deep learning algorithms, namely,
a multilayer perceptron, a recurrent neural network with long short-term memory, and a
WaveNet-based causal dilated convolutional neural network (CNN), on a reference guided
wave SHM dataset using a threshold-based OBS + BSS as the benchmark. They found
that multilayer perceptrons and recurrent neural networks were not able to significantly
outperform OBS + BSS, whereas the causal dilated CNN delivered high accuracy within
reasonable training time and was therefore applied to the experimental guided wave
dataset for varying temperature [12]. Mariani et al. achieved 100% accuracy on the testing
data for the transducer combination T4 to T10 with a high-pass filter (Butterworth), down
sampling (factor 6), and BSS (undamaged plate at 40 ◦C) as pre-processing. A more detailed
description as well as the architecture of the causal dilated CNN can be found in the original
paper [9].

To compare our approach with these results for the causal dilated CNN, we also
evaluated the transducer combination T4 and T10 for model building and replicated the
grouping of Mariani et al. for training, validation, and testing data. Thus, training data
contained D16, D24, and 50% of UG2; validation data contained D12 and 25% of UG2; and
testing data contain D04 and 25% of UG2. The split of UG2 into the corresponding groups
was based on a training–validation–training–testing pattern with a 1.5 ◦C step size (e.g.,
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data from 20 ◦C–21.5 ◦C were used for training, 22 ◦C–23.5 ◦C for validation, 24 ◦C–25.5 ◦C
for training, 26 ◦C–27.5 ◦C for testing, 28 ◦C–29.5 ◦C again for training, etc.).

The model was built using the improved approach described above, with BFC as a
feature extractor, PCC for feature pre-selection, RELIEFF for the final feature selection,
and SVM with RBF kernel as a classifier. Out of the possible combinations for the hyper-
parameters, the algorithm selected 30 as the best number of features and 10,000 as the
value for parameter C. Actually, a wide range of hyper-parameter combinations achieved a
validation accuracy of 100%, showing that the approach is robust (Appendix C, Figure A2).
After hyper-parameter selection and before applying the model on the test data, it was
again trained with all training and validation data. The achieved prediction accuracy of
100% for damage D04 matches the result reported by Mariani et al.

The computational time for our model was 185 s on an Intel® Core™ i7 8650U CPU,
which is also similar to the 5 min training time for the causal dilated CNN reported by
Mariani et al. using one NVIDIA® Quadro RTX™ 6000 GPU (2000 epochs). Note, however,
that the CPU used in our study only has a theoretical computational performance of
0.442 TFLOPS (tera floating-point operations per second) compared to 16.3 TFLOPS of
the GPU.

At first glance it might seem that the causal dilated CNN required less data pre-
processing. However, hyper-parameter optimisation (HPO) is not described by Mariani
et al. in their study. It is well known that HPO of NN models often requires significant
(hardware and human) resources. Over the last few years, different approaches [42–44] have
been proposed to solve this problem. Existing methods and frameworks to find a proper
architecture and HPO of NNs are often computationally expensive and/or application-
specific [43,44]. On the other hand, HPO for our proposed approach is simple and clear,
as demonstrated by Figure A2 (Appendix C), which is one of the advantages of using
classical ML methods (feature extraction/feature selection/simple classification) instead
of deep NN models. Furthermore, our approach directly provides relevant features, i.e.,
a physically interpretable result, whereas NN models are often a black box and require
significant additional effort to allow for interpretation.

4. Conclusions

This paper presents results of an automated ML framework applied to damage detec-
tion for guided wave-based structural health monitoring. We demonstrate that damage
locations were correctly classified with a success rate of 88% without domain-specific
knowledge or hyper-parameter tuning. By interpreting the results of the automated toolbox
and a slight tuning of the hyper-parameters, an accuracy of 96.2% was achieved using a
realistic group-based validation scenario while keeping the improvement time and effort
low and, more importantly, achieving physically interpretable results.

Due to the small dataset size (for a single transducer combination T4 to T10 at 40 kHz
excitation frequency) with the unbalanced ratio between the number of measurements for
damaged and undamaged structures, plus the lab setup with reduced ambient influences,
no conclusion can be drawn regarding how well the approach would perform in real-life
applications. Edge reflections, boundary conditions, and complex geometries might lead to
lower performance.

Therefore, application of the presented ML framework on real damages and CFRP
components in extended temperature ranges (e.g., −50 ◦C to +100 ◦C), as well as the
influence of the distance between sensors and damages, edge effects, and other damage
types, offer an interesting field for future research.

Supplementary Materials: The Automated ML Toolbox for Cyclic Sensor Data can be downloaded
at: https://github.com/ZeMA-gGmbH/LMT-ML-Toolbox (accessed on 28 December 2021); The
Automated ML Toolbox DAV3E can be downloaded at: https://www.lmt.uni-saarland.de/index.
php/de/forschung/157-dav3e (accessed on 28 December 2021).

https://github.com/ZeMA-gGmbH/LMT-ML-Toolbox
https://www.lmt.uni-saarland.de/index.php/de/forschung/157-dav3e
https://www.lmt.uni-saarland.de/index.php/de/forschung/157-dav3e
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Figure A1. (a) Matrix of the first five PCs of the PCA on the raw data (undamaged plate and all
simulated damage locations) coloured by their corresponding temperature with their histograms on
the diagonal and the variance explained by each PC given as percentage in brackets. (b) First three
PCs plotted into a three-dimensional space.

Appendix B

The following section describes the mathematical background of the applied ML
algorithms (BFC, PCC, RELIEFF, RFE-SVM).

First, from the pre-processed signal with 13,108 samples per measurement, the fre-
quency domain representation is calculated by using a discrete Fourier transform (A1)
as well as the corresponding phase angles. Here, the standard implementations fft() and
phase() of MATLAB 2021a are used [45,46]. It holds

Y(k) =
n
∑

j=1
X(j)W(j−1)(k−1)

n

with Wn = e−2πi/n,
(A1)

where Y(k) denotes the Fourier transform of the input signal X with length n and the
imaginary unit i.

The resulting two-sided spectrum is converted into a single-sided amplitude spectrum.
All necessary steps can be found in [45]. Next, the computed frequencies are ranked
according to the absolute value of their amplitudes, and the highest 10% (1310 amplitudes)
with their corresponding phase angle (1310 angles) are used as features (2620 features).

For the first feature (pre-)selection step with Pearson linear correlation coefficient r
down to 500 features, it holds

r(a, b) = ∑n
i=1(Xa,i−Xa)(Yb,i−Yb)√{

∑n
i=1(Xa,i−Xa)

2
(Yb,i−Yb)

2}
with Xa =

1
n ∑n

i=1(Xa,i),

and Yb = 1
n ∑n

j=1

(
Xb,j

)
,

(A2)

where X denotes the matrix of pre-selected features and Y the target. Xa ∈ Rn×1 represents
a column of matrix X and Yb ∈ Rn×1 a column of matrix Y.
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Before applying RELIEFF as main feature selection method, the preselected features
get standardised. RELIEFF is implemented in MATLAB by using the built-in knnsearch()
function to determine the indexes of the three nearest neighbours (city block distance metric)
of the same group (hits), and the nearest neighbours of the other groups (misses) [47]. The
features are eventually ranked, with the features with a high distance to other groups
(misses) and low distance to the same group (hits) achieving a higher ranking. Another
internal 10-fold CV determines the necessary number of selected features.

The classifier support vector machine with radial basis function kernel (RBF kernel)
tries to find a multidimensional hyperplane

→
w,
→
x + b = 0 , (A3)

with
→
w being a normal vector and b the bias term to optimally separate two classes [32]. The

goal of training an L1-norm SVM is to maximise the generalisability of the model towards
untrained data by minimising

Q
(
→
w, b,

→
ξ

)
=

1
2

∣∣∣→w∣∣∣2 + C
M

∑
i=1

ξi, (A4)

as shown in [31].

Misclassifications need to be tolerated but kept track of using the parameter
→
ξ , where

C acts as a regularisation parameter. Depending on which side of this hyperplane new
datapoints appear on, they are classified as either class one or class two. To also separate
data that show non-linear behaviour, the so-called kernel trick transforms the data into a
higher dimensional feature space, in which the hyperplane might be able to linearly separate
the two classes. The chosen RBF kernel (5) transforms data into an infinite-dimensional
feature space. Here, every support vector is the centre point of a radial Gaussian function

K
(
→
x ,
→
x
′)

= exp

−
∣∣∣∣→x −→x ′ ∣∣∣∣

2σ

 (A5)

where σ corresponds to the radius of the Gaussian function. Note that the parameter σ is
automatically optimised in an heuristic procedure by the MATLAB function fitcecoc() [48]
while using templateSVM() [49] with KernelScale set to auto. To ensure reproducibility, a
seed (default, respectively 0) is specified for the random number generator of MATLAB.
This results in the following optimization problem [31,32]:

maximise Q(α) =
M

∑
i=1

αi −
1
2

M

∑
i,j=1

αiαjyiyjK
(→

x i,
→
x j

)
, (A6)

where M denotes the number of α non-negative Lagrange Multiplicators, y the class, and
K
(→

x i,
→
x j

)
the kernel function. Once the SVM is trained, new data can be classified by using

D
(→

x
)
= ∑

i∈S
αiyiK

(→
xi,
→
xj

)
+ b is classified into

 Class 1, i f D
(→

x
)
> 0

Class 2, i f D
(→

x
)
< 0

, (A7)

where S denotes the set of support vector indices. Strategies for handling multiclass
classification problems can be found in [31].
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Figure A2. Resulting accuracy of the validation data for various parameter combinations (parameter
C of the SVM and number of features selected by RELIEFF). Parameter combinations within the
purple boxes achieve 100% validation accuracy. The gap between the two purple boxes consists of
parameter combinations achieving an accuracy of 99.5%.
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6.4 Further Spread of the Toolbox 

To make the toolbox commonly accessible, it was published under an open-source 

license on GitHub [127]. Additionally, it was integrated into two different frameworks 

(DAV³E and Odion Digital Factory), as described in the following sections. 

6.4.1 EaSy-ML 

To enable the utilization of the automated machine learning Toolbox in an industrial 

environment, five use cases based on the toolbox were integrated into the ODION 

Digital Factory [128] product throughout the project EaSy-ML [129]. They allow the 

user to analyze data recorded by the ODION Digital Factory in the following use cases: 

• Visualization of correlations between parameters 

• Novelty and anomaly detection 

• Sensor error detection 

• Product quality monitoring 

• Process quality monitoring 

In each use-case, the user is supported by a digital assistant, as much automation as 

possible, and numerous visualizations so that only a short introduction to the software 

instead of extensive machine learning knowledge is required. Simultaneously, the 

graphical user interface removes the necessity to write any code and enables 

maintenance staff to use the program. 

6.4.2 DAV³E 

DAV³E [130] is short for Data Analysis and Verification/Visualization/Validation 

Environment. It constitutes a MATLAB toolbox for feature extraction from cyclic 

sensor signals, sensor fusion, data preprocessing, and statistical model building and 

evaluation. DAV³E provides no-code AI through a fully graphical user interface. The 

individual algorithms from the automated machine learning toolbox were added to 

DAV³E as well as additional options for manual hyperparameter tuning. DAV³E has 

been published under open source license on GitHub [131]. 
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6.4.3 Personal Information Assistant 

The Personal Information Assistant (PIA) [132] is a web-based front end developed 

by Schnur to facilitate and document the usage of a checklist for measurement and 

data planning for machine learning projects  [121]. PIA comprises three modules: 

accessibility of (meta)data and knowledge, measurement and data planning, and data 

analysis. 

6.4.4 Ongoing Extensions and Further Research Inspired by 
the Automated Machine Learning Toolbox 

One drawback of the algorithmic composition described in Papers 1-3 is that one 

feature extraction algorithm is chosen to be applied to all sensors. However, a dataset 

could contain sensors with information best extracted by different extractors. Also, 

using brute force to select both algorithms and the number of selected features 

prohibits using more advanced non-linear classification or regression algorithms. Both 

problems were addressed by Pültz [85], who combined the automated machine 

learning toolbox with Bayesian Optimization [133], which is used to search for the 

best feature extraction algorithm for each sensor and simultaneously the best feature 

number to select. This replacement of exhaustive search with Bayesian optimization 

enables choosing a better feature extractor and using other classifiers and regressors 

like Support Vector Machines by greatly reducing the number of calls to the 

classifier/regressor training function. 

Also, extensive comparisons with multiple common neural network architectures and 

using neural networks for classification, regression, and feature selection have been 

performed and are in preparation for publication [56]. 
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7 Discussion and Future Work 

In conclusion, this thesis answered the question of how to utilize automatic machine 

learning in condition monitoring and how to address all associated issues at once by 

designing an automated machine learning toolbox of complementary algorithms. More 

specifically, Paper 1 answered which algorithms and hyperparameters to choose by 

introducing the toolbox. Paper 2 answered how to apply those algorithms by 

demonstrating properties like explainability in multiple examples. Moreover, Paper 3 

answered the question of how to utilize novelty detection by developing detailed 

instructions for three different application goals: outlier detection, monitoring of 

supervised learning, and detection of previously unknown faults. 

As stated in Section 1, any solution to automatic machine learning in industrial 

condition monitoring must address multiple issues simultaneously. As demonstrated 

in numerous application scenarios in this thesis, no other approach does it better. For 

the toolbox developed in this thesis, the issues are addressed as follows: 

The vast amount of data encountered in industrial condition monitoring refers to the 

massive amount of data recorded for each sample. It mainly affects feature extraction 

and partially affects feature selection. Therefore, all feature extraction algorithms 

employed in the toolbox are highly scalable in the amount of data per sample, with the 

worst being the FFT in BFC that, in general, is still considered to be computationally 

cheap. Additionally, univariate feature pre-selection using Pearson correlation is 

linearly scalable in the number of samples and the number of features per sample. Note 

that univariate pre-selection neglects feature interactions, possibly affecting model 

performance. During Training, feature extraction and pre-selection support 

parallelization through Map-Reduce, which has been demonstrated for multiple TB of 

lifetime measurements of electromechanical cylinders. 

The limited bandwidth to the cloud is effectively targeted by the toolbox’s ability to 

infer feature extraction and selection on edge devices, which limits the amount of data 

per sample to a maximum but usually well lower number of 500 features. This 

approach eliminates the need to communicate raw data, cutting the required bandwidth 

by multiple orders of magnitude. Note that by doing so, all additional goals beyond 

toolbox inference, like online learning, are then limited to the selected features which 

might impact performance. 

Scalable algorithms solve the issue of limited resources on the edge, like the vast 

amount of data addressed. CANWAY Technologies GmbH and Fraunhofer IIS have 
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done such implementation in KI-Predict [30]. Additionally, the suggested feature 

extraction algorithms can be implemented using streaming algorithms, eliminating the 

need to cache the complete data of the sample to infer. This allows for the use of 

significantly cheaper edge devices. 

The complete automation of algorithm and hyperparameter selection in supervised 

fault detection and detailed instructions for novelty detection addresses the limited 

availability of machine learning experts. This level of automation enables process 

engineers to apply the toolbox with very little training and little experience in machine 

learning, thus eliminating the need for dedicated machine learning experts. However, 

no automated approach to machine learning can guarantee optimal results. Paper B 

successfully demonstrates the toolbox’s performance against other automatic 

approaches; however, it does not compare to models designed by machine learning 

experts that are expected to outperform the toolbox. 

The limited trust in black box models is addressed by the global explainability of all 

models created by the toolbox, from feature extraction to classification. This enables 

the identification of relevant sensors, signal areas, or frequency bands, as demonstrated 

in Paper 2. The results on the electromagnetic cylinder have easily been shown to be 

physically meaningful, which is extremely hard or even impossible for other automatic 

machine learning approaches. Note that while identifying and interpreting relevant 

features highly increases trust in the models, the interpretation is qualitative, and 

quantitative analysis is still generally complex for humans due to the number of 

features used for decision-making. 

The issue of very diverse sensor signals is addressed by benchmarking multiple 

complementary algorithms and automatic decisions for the most fitting for the specific 

application. Specifically, as described in Paper 1, feature extraction can extract 

information from the overall signal shape (PCA), time domain (ALA), time-frequency 

domain (BFC), frequency domain (BFC), and statistical properties of the signal 

covering a wide variety of sensors typically employed for condition monitoring. 

Additionally, in feature selection, RFESVM offers high performance on classification 

problems that allow linear separability of classes. Complementarily, RELIEFF 

provides high performance to circular separability, and Pearson correlation offers fast 

means of pre-selection. This results in the high versatility of the toolbox, which has 

been demonstrated by high performance in multiple scenarios (Papers 1, 2, and B). 

These demonstrations only compare the toolbox’s performance to other automatic 

approaches. Those results are not guaranteed to be optimal, and it is to be expected 

that algorithms specifically designed for the respective scenario will outperform the 

toolbox. 
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Finally, the requirement for high robustness is addressed by employing linear 

discriminant analysis in combination with Mahalanobis classification. In Paper B, This 

straightforward and robust classification algorithm is up to par with popular algorithm 

classes like neural networks in leave one group out cross-validation. Compared to 

other algorithms, it suffers less decline in prediction performance due to domain shift, 

which shows its robustness. However, domain shifts posing a transferability problem 

are still the largest source of error in a model learned by the toolbox as Paper D showed 

random variations in data to have only a minor influence on prediction quality. 

Solving transferability problems will be critical for a future widespread application of 

machine learning-based condition monitoring, as resulting domain shifts are the most 

common problem encountered during the development of this thesis that led to ML 

models not achieving target accuracies. The underlying root cause is believed to be the 

limited number of training samples and especially their regularly encountered lack of 

statistical independence. Future research needs to solve or counteract those issues. As 

shown in Figure 7, learning from a low number of domains causes additional training 

issues like a weak correlation between validation and test error, which makes the 

induced performance degradation hard to predict. Also, as shown in Paper C, 

deviations expected from error propagation of sensor noise are negligible compared to 

the performance degradation observed under domain shift [100]. 

 

Figure 7: Results of a neural network architecture search under domain shift in test data. In this plot, the 

validation data are 20 % of the training set, which was randomly selected. The test data is from a 

different distribution, i.e., a different operating temperature. Each point is a trained network, (a) ZeMA 

hydraulic test bed detection of valve switching deterioration, (b) Case Western Reserver bearing dataset 

damage detection [100]. 

 

The following approaches can be investigated for their potential to solve the issue: 

• Application of transfer-learning strategies: Domain Adaptation is a sub-

category of transfer-learning commonly used in other application scenarios 

such as spam filtering. Multiple approaches to transferring a model from the 

source domain (training data) to a target domain (actual application data) have 
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been researched for those applications. Those can be categorized into four 

approaches. While reweighting algorithms and iterative algorithms rely on 

typically non-existing labeled data from the target domain, algorithms that aim 

for a common representation space of source and target domain [134, 135] or 

hierarchical Bayesian models seem promising candidates. Hierarchical 

Bayesian models construct a model allowing domain-specific and global latent 

variables [135]. Also, classical metrological approaches like calibration and 

adjustment can be seen as a transfer learning form compensating for an induced 

deviation. However, calibration requires labeled data from the target domain. 

• Usage of extremely simple models: Using simple algorithms and strong 

regularization restricts the model to learning only the most basic correlation 

between patterns and targets. This is equivalent to treating the performance 

degradation induced by domain shifts as a classical overfitting effect. Although 

simple, this approach is only promising under the assumption of simple 

correlations between sensor patterns and targets that are also dominant enough 

to be significant throughout different domains. However, it is to be expected 

that this approach trades robustness against domain shifts for predictive 

performance. 

• Manual feature extraction or selection: If the model trained on the source 

domain is physically interpretable, the gained insights can be used to create 

features invariant to expected domain shifts. Domain knowledge can 

compensate for observed domain shifts by suitable preprocessing or manually 

selecting physically meaningful features from those found to be statistically 

significant during feature selection. Therefore, such an approach would utilize 

physical knowledge to find domain shift-invariant features that would solve the 

domain shift problem. However, this approach is more work-intensive than 

those mentioned earlier. Additionally, qualitative model interpretations do not 

guarantee the quantitative interpretability needed to construct domain shift-

invariant features.  

The following approaches can be investigated or are already investigated by members 

of the DESS group at Saarland University and ZeMA for their potential to circumvent 

the issue: 

• Identification of use cases with a high number of domains: The most 

straightforward way to circumvent domain shift problems is to find 

applications that offer a significant number of domain shifts in their training 

data. Such training data would implicitly allow learning algorithms to learn 

how to suppress or compensate for domain shifts. On the other hand, this 
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approach would ignore most condition monitoring use cases and severely limit 

applications to an extent where widespread use of ML-based condition 

monitoring is not expected. The guidelines created and developed by 

Christopher Schnur can help identify such use cases [121]. 

• In-production experiments for training data: Using data recorded during normal 

production for more training data can be another way for training algorithms to 

become robust against relevant domain shifts. Although training data 

experiments with a well-defined design of experiment are usually costly and 

commonly offer little training data, data from machines during mass production 

over a long period can be acquired at much lower costs. If this data could be 

partially labeled and recorded from different identical machines with sufficient 

production variety, the resulting database would allow an algorithm to become 

robust against domain shifts relevant during mass production. Steffen Klein 

investigates this approach in his thesis. 

• Using model interpretation for physically motivated model building: This 

approach can be instrumental in optimization scenarios. The idea is to apply 

explainable AI algorithms to understand a model, which provides additional 

insight into the application and often helps provide physically motivated 

optimization for machines and processes. While unpublished due to high 

application security and data protection concerns, such scenarios were 

encountered multiple times during the work for this thesis. Typically, in these 

scenarios, ML was meant to circumvent an issue that resulted from physical 

effects or correlations missed by the process engineers and revealed by the 

statistical ML algorithm. That insight was used to solve the underlying issue 

instead of circumventing it.  

Another issue specific to the automated machine learning toolbox revealed in more 

recent research is a blind spot concerning information in the signal envelope. Although 

signal envelope analysis is significant in all sorts of rotating machinery monitoring, 

this significance still needs to be reflected in the automated machine learning toolbox 

because the signal envelope was not relevant for one of the applications for which the 

toolbox was developed. By now, the issue has been fixed using the modular character, 

the easy expandability of the toolbox, and the inclusion of another feature 

extractor [127]. This again highlights the importance of the modular toolbox 

characteristics.  
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9 Used  Tools 

 

The following tools were used for  spell- and  grammar checking: 

• Microsoft Word  

• Grammarly Premium  excluding AI prompt text generation (for examples see 

https://www.grammarly.com/features) 



 

203 

 

Appendix A: List of Publications 

Peer-reviewed journal articles: 17 total, three as main author, four as scientific head: 

• C. Schnur, T. Dorst, K.S. Deshmukh, S. Zimmer, P. Litzenburger, T. Schneider, 

L. Margies, R. Müller, and A. Schütze, „PIA - A Concept for a Personal 

Information Assistant for Data Analysis and Machine Learning of Time-

Continuous Data in Industrial Applications“, in ing.grid 1(2), 2023 doi: 

10.48694/inggrid.3827 

• Y. Robin, J. Amann, T. Schneider, A. Schütze, and C. Bur, „Comparison of 

Transfer Learning and Established Calibration Transfer Methods for Metal 

Oxide Semiconductor Gas Sensors“ in Atmosphere 2023, 14(7), 1123, doi: 

10.3390/atmos14071123 

• T. Dorst, T. Schneider, S. Eichstädt, and A. Schütze, „Influence of measurement 

uncertainty on machine learning results demonstrated for a smart gas 

sensor”, in J. Sens. Sens. Syst., 12, 45–60, 2023, doi: 10.5194/jsss-12-45-2023 

• C. Schnur, S. Klein, A. Schütze, T. Schneider, and A. Blum, „Steigerung der 

Datenqualität in der Montage“, in WT Werkstattstechnik, 112 (2022) NR. 11-

12, S. 783 - 787, doi: 10.37544/1436–4980–2022–11–12–57 

• Y. Robin, J. Amann, P. Goodarzi, T. Schneider, A. Schütze, and C. Bur, „Deep 

Learning Based Calibration Time Reduction for MOS Gas Sensors with 

Transfer Learning”, in Atmosphere 2022, 13(10), 1614, doi: 

10.3390/atmos13101614 

• T. Dorst, T. Schneider, S. Eichstädt, and A. Schütze, „Uncertainty-aware 

automated machine learning toolbox (Automatisierte Toolbox für 

maschinelles Lernen unter Berücksichtigung von Messunsicherheiten)“, in tm 

- Technisches Messen (2023) 90(3), 141 - 153, doi: 10.1515/teme-2022-0042 

• T. Dorst, M. Gruber, B. Seeger, A. P. Vedurmudi, T. Schneider, S. Eichstädt, and 

A. Schütze, „Uncertainty-aware data pipeline of calibrated MEMS sensors 

used for machine learning”, in Measurement: Sensors (2022), 22, 100376, doi: 

10.1016/j.measen.2022.100376 

• P. Goodarzi, A. Schütze, and T. Schneider, „Comparison of different ML 

methods concerning prediction quality, domain adaptation, and robustness” 

in tm - Technisches Messen (2022), vol. 89(4), 224-239, doi: 10.1515/teme-

2021-0129 
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• C. Schnur, P. Goodarzi, Y. Lugovtsova, J. Bulling, J. Prager, K. Tschöke, J. Moll, 

A. Schütze and T. Schneider, „Towards Interpretable Machine Learning for 

Automated Damage Detection Based on Ultrasonic Guided Waves”, in 

Sensors 2022, 22(1), 406, doi: 10.3390/s22010406 

• Y. Robin, J. Amann, T. Baur, P. Goodarzi, C. Schultealbert, T. Schneider and A. 

Schütze, „High-Performance VOC Quantification for IAQ Monitoring Using 

Advanced Sensor Systems and Deep Learning”, in Atmosphere (2021) 12(11), 

1487, DOI 10.3390/atmos12111487 

• A. Blum, S. Klein, K. Kühn, T. Schneider, A. Schütze, and R. Müller, „Inprozess-

Dichtheitsprüfung in der Montage“, in wt Werkstattstechnik online (2021), 9-

2021, S. 650, DOI 10.37544/1436-4980-2021-09-75 

• T. Dorst, Y. Robin, S. Eichstädt, A. Schütze, and T. Schneider, „Influence of 

synchronization within a sensor network on machine learning results”, in J. 

Sens. Sens. Syst., 10 (2021), pp. 233–245, DOI: 10.5194/jsss-10-233-2021 

• T. Schneider, S. Klein, and A. Schütze, „Machine learning in industrial 

measurement technology for detection of known and unknown faults of 

equipment and sensors”, tm - Technisches Messen (2019), 86 (11), 706–718, 

doi: 10.1515/teme-2019-0086 

• T. Schneider, N. Helwig, and A. Schütze, „Industrial condition monitoring with 

smart sensors using automated feature extraction and selection”, in IOP Meas. 

Sci. Technol. (2018) 29 094002, DOI: 10.1088/1361-6501/aad1d4 

• A. Schütze, N. Helwig, and T. Schneider, „Sensors 4.0 - smart sensors and 

measurement technology enable Industry 4.0”, in J. Sens. Sens. Syst. (2018) 7, 

359-371, DOI: 10.5194/jsss-7-359-2018 

• M. Schüler, T. Schneider, T. Sauerwald, and A. Schütze, „Impedance-based 

detection of HMDSO poisoning in metal oxide gas sensors“, in tm - 

Technisches Messen (2017), 84(11), 697-705, doi.org/10.1515/teme-2017-

0002 

• T. Schneider, N. Helwig, and A. Schütze, „Automatic feature extraction and 

selection for classification of cyclical time series data”, in tm - Technisches 

Messen (2017), 84(3), 198-206, doi: 10.1515/teme-2016-0072 

Conference contributions: 38 total, nine as main author, seven as scientific head 

Authors Title Source Year 

E. Holle, F. Knödl, M. 

Mayer, T. Schneider, D. 

Spiehl, A. Blaeser, E. 

Dörsam, A. Schütze 

Control of ink-water balance in 

offset lithography by machine 

learning 

49th Conference of 

iarigai, oral 

presentation, 

September 18-20, 

2023 
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Authors Title Source Year 

2023, Wuppertal, 

Germany 

T. Schneider, T. Dorst, 

C. Schnur, P. Goodarzi, 

A. Schütze 

Einfluss von Datenqualität, 

Domain Shift und 

Messunsicherheit auf die 

Vorhersagequalität smarter 

Sensorsysteme (Influence of 

data quality, domain shift, and 

measurement uncertainty on 

the prediction quality of smart 

sensor systems) 

tm – Technisches 

Messen, 2023, 

90(S1), 33-36, doi: 

10.1515/teme-

2023-0087 

2023 

C. Schnur, Y. Robin, P. 

Goodarzi, T. Dorst, A. 

Schütze, T. Schneider 

Development of a bearing test-

bed for acquiring data for 

robust and transferable 

machine learning 

IEEE I2MTC 2023, 

International 

Instrumentation 

and Measurement 

Technology 

Conference, May 

22 - 25, 2023, Kuala 

Lumpur, Malaysia 

2023 

P. Goodarzi, S. Klein, A. 

Schütze, T. Schneider 

Comparing Different Feature 

Extraction Methods in 

Condition Monitoring 

Applications 

IEEE I2MTC 2023, 

International 

Instrumentation 

and Measurement 

Technology 

Conference, May 

22 - 25, 2023, Kuala 

Lumpur, Malaysia 

2023 

Y. Robin, J. Amann, P. 

Goodarzi, T. Schneider, 

A. Schütze, C. Bur 

Comparison of Explainable 

Machine Learning Algorithms 

for Optimization of Virtual Gas 

Sensor Arrays 

IEEE I2MTC 2023, 

International 

Instrumentation 

and Measurement 

Technology 

Conference, May 

2023 
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Authors Title Source Year 

22 - 25, 2023, Kuala 

Lumpur, Malaysia 

Tizian Schneider 

Condition monitoring and 

process control with magnetic 

sensors and machine learning 

16. XMR-

Symposium 

"Magnetoresistive 

Sensors and 

Magnetic 

Systems", Wetzlar, 

March 8-9, 2023 

2023 

Christian Fuchs, Steffen 

Klein, Payman 

Goodarzi, Andreas 

Schütze, Tizian 

Schneider 

Analyse zum Einfluss von 

Labeling-Fehlern im Kontext 

von Luftschall- und 

Vibrationsdatensätzen für 

maschinelles Lernen 

DAGA 2023 - 49. 

Jahrestagung für 

Akustik, 

Tagungsband, S. 

80-83, Sitzung 

"Akustische 

Messtechnik und 

Sensorik 1", 

Hamburg, 06.-09. 

März 2023 

2023 

Christopher Schnur, 

Steffen Klein, Anne 

Blum, Tizian Schneider, 

Rainer Müller und 

Andreas Schütze 

Mess- und Datenplanung für 

Modelle des maschinellen 

Lernens an Bestandsanlagen 

16. Dresdner 

Sensor-

Symposium, 

Posterbeitrag, 

Dresden, 5.-

7.12.2022 

2022 

Yannick Robin, Jannis 

Morsch, Tizian 

Schneider, Andreas 

Schütze, Christian Bur 

Insight in Dynamically 

Operated Gas Sensor Arrays 

with Shapley Values for Data 

Segments 

MNE 

EUROSENSORS 

2022, Poster T3-

P2-WeA_0, Leuven, 

BE, Sep. 19-23. 

2022 

2022 

S. Pültz, Y. Robin, A. 

Schütze, T. Schneider, 

Automated Condition 

Monitoring for Helical Gears 

Vortrag, Sensoren 

und Messsysteme 
2022 
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Authors Title Source Year 

Y. Koch, E. Kirchner, D. 

Quirnheim Pais, L. 

Rauber 

based on measuring 

Instantaneous Angular Speed 

with Magnetoresistive Sensors 

2022, 

Tagungsband, S. 

283-287 

P. Goodarzi, A. Schütze, 

T. Schneider 

Prediction quality, domain 

adaptation and robustness of 

Machine Learning methods: a 

comparison 

Vortrag, Sensoren 

und Messsysteme 

2022, 

Tagungsband, S. 

281-282 

2022 

Christian Fuchs, Steffen 

Klein, Stefan Saller, 

Daniel Spies, Andreas 

Schütze, Tizian 

Schneider 

Entwicklung akustischer 

Messungen für industrielles 

maschinelles Lernen 

DAGA 2022 - 48. 

Jahrestagung für 

Akustik, 

Vorkolloquium 

„Künstliche 

Intelligenz für 

akustische 

Sensorsysteme“, 

21. - 24. März 2022 

2022 

Yannick Robin, 

Johannes Amann, 

Payman Goodarzi, 

Tobias Baur, Caroline 

Schultealbert, Tizian 

Schneider, Andreas 

Schütze 

Überwachung der Luftqualität 

in Innenräumen mittels 

komplexer Sensorsysteme und 

Deep Learning Ansätzen 

15. Dresdner 

Sensor-

Symposium, 6. - 8. 

Dezember 2021, 

Online Event, 

Vortrag, Session 

Smarte (Gas-

)Sensorik 

2021 

C. Schnur, J. Moll, Y. 

Lugovstova, A. Schütze, 

T. Schneider 

Explainable Machine Learning 

for Damage Detection in 

Carbon Fiber Composite Plates 

Under Varying Temperature 

Conditions 

QNDE 2021 – 48th 

Annual Review of 

Progress in 

Quantitative 

Nondestructive 

Evaluation, July 28-

30, 2021 

2021 
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Authors Title Source Year 

T. Baur, C. 

Schultealbert, Y. Robin, 

P. Goodarzi, T. 

Schneider, and A. 

Schütze 

Accurate Quantification of 

Formaldehyde at ppb Level for 

Indoor Air Quality Monitoring 

IMCS 2021, 

International 

Meeting on 

Chemical Sensors, 

Digital Conference, 

Presentation IMCS 

05-1576, May 30 - 

June 3, 2021 

2021 

Tanja Dorst, Yannick 

Robin, Tizian Schneider 

and Andreas Schütze 

Automated ML Toolbox for 

Cyclic Sensor Data 

Joint Virtual 

Workshop of 

ENBIS and 

MATHMET 

Mathematical and 

Statistical Methods 

for Metrology 

MSMM 2021, 31 

May – 1 June 2021 

2021 

Yannick Robin, Payman 

Goodarzi, Tobias Baur, 

Caroline Schultealbert, 

Andreas Schütze, Tizian 

Schneider 

Machine Learning-Based 

Calibration Time Reduction for 

Gas Sensors in Temperature 

Cycled Operation 

IEEE I2MTC 2021, 

International 

Instrumentation 

and Measurement 

Technology 

Conference, Digital 

Conference, 

Session ´Sensors, 

Instrumentation & 

AI for 

Environmental 

Measurement´, 

May 17-20, 2021 

2021 

Tanja Dorst, Sascha 

Eichstädt, Tizian 

Schneider, Andreas 

Schütze 

GUM2ALA – Uncertainty 

propagation algorithm for the 

Adaptive Linear Approximation 

according to the GUM 

Oral presentation 

D1.1, SMSI 2021, 

Sensor and 

Measurement 

Science 

2021 
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Authors Title Source Year 

International, 

Digital Conference, 

3 - 6 May 2021, 

DOI: 

10.5162/SMSI2021

/D1.1 

T. Dorst, S. Eichstädt, T. 

Schneider, A. Schütze 

Propagation of uncertainty for 

an Adaptive Linear 

Approximation algorithm 

SMSI 2020 - 

Measurement 

Science, pp 366 - 

367, doi: 

10.5162/SMSI2020

/E2.3 

2020 

T. Dorst, S. Eichstädt, T. 

Schneider, A. Schütze 

Metrology for the Factory of 

the Future: Entwicklung und 

Erweiterung metrologischer 

Standards für die digitale 

Fabrik der Zukunft 

Last Minute Poster, 

14. Dresdner 

Sensor-

Symposium, 

Dresden, 2.-4. 

Dezember 2019 

2019 

Tizian Schneider 

Machine Learning in der 

industriellen Messtechnik zur 

Erkennung bekannter und 

unbekannter Anlagen- und 

Sensorfehler 

Vortrag, VDI/VDE-

GMA-

Expertenforum 

Trends in der 

Mess- und 

Automatisierungst

echnik – Von der 

Messung zur 

Information, 

Karlsruhe, 28./29. 

November 2019 

2019 

T. Dorst, T. Schneider, S. 

Klein, S. Eichstädt, A. 

Schütze 

Influence of synchronization 

within a sensor system on 

machine learning results 

oral presentation, 

MATHMET 2019 

International 

Workshop, Lisbon 

2019 
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Authors Title Source Year 

(Portugal), 20–22 

November 2019 

A. Schütze, S. Klein, T. 

Dorst, T. Schneider 

Sensorik 4.0 – smarte 

Sensorsysteme ermöglichen 

Zustandsbewertung, 

Selbstüberwachung und 

Prozessoptimierung 

Vortrag, 

Jahrestreffen der 

ProcessNet-

Fachgemeinschaft

en "Prozess-, 

Apparate- und 

Anlagentechnik" 

unterstützt durch 

„Sustainable 

Production, Energy 

and Resources", 4.-

5. November 2019, 

Dortmund 

2019 

Tizian Schneider, 

Steffen Klein, Anne 

Blum, Leonie Schirmer, 

Rainer Müller, Andreas 

Schütze 

Combination of Human and 

Machine Intelligence to 

Optimize Assembly 

Societal 

Automation - 

Technological & 

Architectural 

Frameworks, 

Krakow (Poland), 

4-6 September 

2019 

2019 

T. Dorst, T. Schneider, S. 

Klein, S. Eichstädt, A. 

Schütze 

Synchronisationsprobleme 

innerhalb eines Sensorsystems 

und deren Auswirkungen auf 

Ergebnisse des maschinellen 

Lernens 

20. GMA/ITG 

Fachtagung 

Sensoren und 

Messsysteme 2019, 

Nürnberg, 25. und 

26. Juni 2019 

2019 

S. Klein, T. Schneider, A. 

Schütze 

Zustandsüberwachung in der 

Automatisierungstechnik 

mittels maschinellem Lernen 

20. GMA/ITG 

Fachtagung 

Sensoren und 

Messsysteme 2019, 

2019 
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Authors Title Source Year 

Nürnberg, 25. und 

26. Juni 2019 

Tanja Dorst, Björn 

Ludwig, Sascha 

Eichstädt, Tizian 

Schneider, Andreas 

Schütze 

Metrology for the factory of 

the future: towards a case 

study in condition monitoring 

IEEE I2MTC 2019 

International 

Instrumentation 

and Measurement 

Technology 

Conference, May 

20 - 23, 2019, 

Auckland, New 

Zealand 

2019 

Tizian Schneider, 

Nikolai Helwig, Steffen 

Klein, Andreas Schütze 

Influence of sensor network 

sampling rate on multivariate 

statistical condition 

monitoring of industrial 

machines and processes 

EUROSENSORS 

2018, poster 

presentation, 

September 9-12, 

2018, Graz, Austria. 

2018 

T. Schneider, S. Klein, N. 

Helwig, A. Schütze, M. 

Selke, C. Nienhaus, D. 

Laumann, M. Siegwart, 

K. Kühn 

Big Data Analytik mit 

automatisierter 

Signalverarbeitung für 

Condition Monitoring 

Sensoren und 

Messsysteme 2018, 

19. ITG/GMA-

Fachtagung, 

Vortrag, Session 

Sensorik für die 

Industrie 4.0, 26. - 

27. Juni 2018, 

Nürnberg, D. in: 

ITG-Fachbericht 

281: Sensoren und 

Messsysteme, 

VDE-Verlag Berlin 

(2018), ISBN 978-

3-8007-4683-5, S. 

259-262. 

2018 

T. Schneider, N. Helwig, 

A. Schütze 
Automatic Feature Extraction 

and Selection for Condition 

I²MTC-2018 - The 

IEEE 2018 
2018 
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Authors Title Source Year 

Monitoring and related 

Datasets 

International 

Instrumentation 

and Measurement 

Technology 

Conference, 

poster, Proc. pp. 

429-434 (ISBN: 

978-1-5386-2222-

3), May 14-17, 

Houston, TX, USA. 

Tizian Schneider, 

Nikolai Helwig, 

Andreas Schütze 

Modular Sensor Systems for 

real-time Process Control and 

Smart Condition Monitoring - 

MoSeS-Pro 

IEEE Sensors 

Conference 2017, 

open poster, 

Glasgow, Scotland, 

Oct 30 - Nov 1, 

2017. 

2017 

Nikolai Helwig, Philip 

Merten, Tizian 

Schneider, Andreas 

Schütze 

Integrated Sensor System for 

Condition Monitoring of 

Electromechanical Cylinders 

MDPI Proceedings 

2017, 1, 626, Proc. 

EUROSENSORS 

2017, Paris, France, 

Sep. 3-6, 2017. 

2017 

N. Helwig, T. Schneider, 

A. Schütze 

Modular sensor systems for 

real-time process control and 

smart condition monitoring 

using XMR technology 

14th xMR-

Symposium 

"Magnetoresistive 

Sensors and 

Magnetic 

Systems", Sensitec 

GmbH (ed.), 

Wetzlar, Germany, 

March 21-22, 2017. 

proceedings page 

15-22." 

2017 
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Authors Title Source Year 

M. Bastuck, T. Baur, T. 

Schneider, A. Schütze 

DAV³E - a comprehensive 

toolbox for multisensor data 

fusion not only for gas sensors 

Proceedings, 6th 

EuNetAir scientific 

meeting, Prague, 

Oct. 05-07, 2016. 

2016 

N. Helwig, T. Schneider, 

A. Schütze 

Modulare Sensorsysteme für 

Echtzeit-Prozesssteuerung und 

smarte Zustandsbewertung 

Vortrag, VDI-

Fachkonferenz 

Intelligente 

Sensoren für 

Industrie 4.0, 

Nürtingen, 

Germany, 20.-21. 

September 2016 

2016 

Tizian Schneider, 

Nikolai Helwig, 

Andreas Schütze 

Automatic feature extraction 

and selection for classification 

of cyclical time series data 

Vortrag, XXX. 

Messtechnisches 

Symposium des 

AHMT, Hannover, 

15.-16. September 

2016. in: Stefan 

Zimmermann 

(Hrsg.): 

Tagungsband des 

XXX. 

Messtechnischen 

Symposium 2016, 

De Gruyter, ISBN 

978-3-11-049487-

7 

2016 

Invited Talks: 

Authors Title Source Year 

Tizian Schneider KI für KMU 

AMA 
Mitgliederversam
mlung 2023, 
eingeladener 
Vortrag, 

2023 



 

214 

 

Authors Title Source Year 

Nürnberg, 
10.05.2023 

Tizian Schneider 

Impulsvortrag 
Trainingsdaten für 
industrielles Machine-
Learning 

Digitale 
Fachkonferenz 
"Forschung für 
Edge Computing 
2023", 24. Januar 
2023 

2023 

Tizian Schneider 

Zustandsüberwachung der 
Mechatronik durch schnelle 
Stromsensoren und 
Algorithmen zur 
automatisierten 
Merkmalextraktion und 
Fehlerklassifikation 

Innovationsplattf
orm Magnetische 
Mikrosysteme 
INNOMAG e.V., 
Mitgliedertreffen, 
Mainz, 05. 
Dezember 2019 

2019 

 

Datasets: 

Authors Title Source Year 

Tizian Schneider, 
Steffen Klein, Manuel 
Bastuck 

Condition monitoring of 
hydraulic systems Data Set 
at ZeMA 

dataset 
published on 
Zenodo, April 26, 
2018 

2018 

Tizian Schneider, 
Steffen Klein, Manuel 
Bastuck 

Condition monitoring of 
hydraulic systems Data Set 

dataset 
published in UCI 
machine learning 
repository, April 
26, 2018 

2018 
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Appendix B: List of Projects in 
DESS Group 

Table 1 lists the projects conducted in the DESS group and the author’s contribution. 

Table 1: Research, transfer, and teaching projects that emerged in the context of the toolbox developed by the 

author totaling 4,079,614€ in third-party research funding. 

Project name (classification, 

start-end, budget DESS) 

Content for group DESS Author’s 

contribution 

MessMo – Measurement 

aided assembly (research; 

04/2018-09/2020; 352,183 €) 

Extension of the toolbox’s 

scope to assembly processes 

(previously wear and 

fabrication) 

Contribution to the 

project proposal 

and consulting on 

the project 

EaSy-ML - Evaluation 

Assistance System for 

Machine Learning (transfer; 

03/2019-02/2021; 92,228 €) 

Toolbox integration with data 

acquisition software for 

Odion GmbH 

Started as a 

scientific staff, 

later as a project 

manager 

Met4FoF - Metrology for 

Factories of the Future 

(research; 06/2018-09/2021; 

132,500 €) 

Metrological framework for 

estimation of measurement 

uncertainty of the toolbox 

according to GUM  

As head of group 

DESS 

KomZet Saar - 

mittelstand4.0 competence 

center Saarbrücken (transfer; 

09/2017-08/2022; 47,596 €)  

Consulting, sensibilization, 

training, and networking for 

small and medium businesses 

on digitalization and AI 

Participation as AI 

trainer, 

coordination of 

DESS 

contributions, 

contribution to the 

project proposal 

extension 

KI-Predict - Electronics for 

on-edge condition monitoring 

with distributed AI (research; 

03/2020-12/2023; 718,200 €) 

Specialization of the toolbox 

to magnetic field and 

vibration sensors as well as 

support for an 

implementation on an FPGA 

and an ASIC (inference only) 

Significant 

contribution to the 

project proposal 

and project 

manager for UdS 

KI-MUSIK4.0 – 

microelectronics-based 

universal sensor interface for 

AI in Industry 4.0 (research; 

04/2020-03/2023; 537,628 €) 

Specialization of the toolbox 

to microphones, a significant 

simplification of the 

employed algorithms for 

application on low-cost 

inference ASICs 

Significant 

contribution to the 

project proposal 

and project 

manager for UdS 

Magie-KI – AI Monitoring 

and control of color-water-

balance for offset printing 

(research; 10/2021-09/2023; 

230,388 €) 

Data analysis on data from 

gas and humidity sensors for 

closed-loop control of color-

water-balance in offset 

printing 

As head of group 

DESS 
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BetoNPP – hybrid 

measurement approach to 

monitoring and surveying 

thick-layered reinforced 

concrete structures in nuclear 

plants 

(research; 05/2021-12/2024; 

273,298 €) 

Sensor fusion of georadar and 

leakage flux for localization 

and assessment of reinforcing 

steel in the concrete of up to 

one-meter thickness, as well 

as automated documentation 

Responsible for 

project proposal, 

project manager 

for UdS 

ITec-Pro – Research and 

development of innovative 

processes and technologies 

for the production of the 

future (research; 06/2021-

08/2022; 108,379 €) 

Guideline for data and 

measurement planning for 

machine learning projects in 

small and medium 

businesses, as well as a 

personal assistant program for 

analysis 

Contribution to the 

project proposal 

and as head of 

group DESS 

Pre-Project Edge-Power -  

Robust and secure edge 

electronics for industrial 

processes and critical 

infrastructure (research; 

10/2020-06/2021; 69,987 €) 

Estimation of potential 

energy savings of intelligent, 

energy-self-sufficient edge 

computing modules for 

condition monitoring vs. 

cloud computing 

As head of group 

DESS 

Edge-Power - Robust and 

secure edge electronics for 

industrial processes and 

critical infrastructure 

(research; 07/2022-08/2025; 

452,793 €) 

Research on concepts for 

distributed training of ML 

algorithms on energy-self-

sufficient edge hardware as 

well as their dimensioning 

Significant 

contribution to the 

project proposal 

and as head of 

group DESS 

DDMI – Digital data 

management for engineering 

(teaching; 06/22-11/2023; 

19,500 €) 

Teaching of data and project 

management by employing 

modern teaching and learning 

methods 

Conception, 

coordination, and 

preparation of 

“Digital Data 

Management for 

Engineering 

Sciences” 

MDZ - Mittelstand 

digitalization center (transfer; 

09/2022-08/2025; 110,584 €) 

Workshops and consulting for 

small and medium businesses 

on ML and AI 

Proposal (part of 

the DESS group), 

coordination of the 

contributions of 

the DESS group 

KI-Mono - AI for monitoring 

hydrogen pressure vessels 

with ultrasonic-guided waves  

 (research; 10/2022-09/2025; 

258,237 €) 

Structural health monitoring 

of hydrogen pressure vessels 

by combining the toolbox and 

ultrasonic guided waves. 

Project proposal 

and project 

manager UdS 

VProSaar – Distributed 

production for the automotive 

industry in Saarland: 

sustainable, connected, 

resilient (research; 10/2022-

09/2026; 458,028 €) 

Research on commonly 

encountered domain shifts, 

transferability issues of ML, 

and concepts for increased 

robustness against domain 

shifts 

Project proposal, 

coordination of 

contributions of 

the DESS group 
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NFDI4Ing – National 

Research Data Infrastructure 

for Engineering Sciences 

(research 10/2020-09/2025, 

50.500€) 

Research data infrastructure 

and systematic 

implementation of FAIR data 

principles 

As head of group 

DESS 

 


