
Predictable Data Transport: A Delay

and Energy Perspective

Dissertation zur Erlangung des Grades des

Doktors der Ingenierwissenschaften (Dr.-Ing.)
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

vorgelegt von

Pablo Gil Pereira

Saarbrücken,

2024

ii

Tag des Kolloquiums

24. Juni 2024

Dekan der Fakultät

Prof. Dr. Roland Speicher

Prüfingsausschuss

Vorsitz

Prof. Dr. Isabel Valera

Berichterstatter

Prof. Dr.-Ing. Thorsten Herfet
Prof. Dr.-Ing. Timo Hönig
Prof. Dr.-Ing. Pietro Manzoni

Beisitzer

Dr.-Ing. Andreas Schmidt

iii

Short Abstract

Cyber-physical systems extend the digital revolution to almost every aspect of our lives
by bridging the gap between the digital and physical worlds. These systems demand un-
precedented timeliness and reliability guarantees that the current operating and network
systems do not provide. Transport layer protocols are the direct communication interface
for the application layer and, hence, are key to providing end-to-end guarantees to the
application. This thesis addresses how transport layer protocols should be designed to
support cyber-physical systems. A clear candidate is the Predictably Reliable Real-time
Transport (PRRT) protocol, which provides the application with a predictably reliable
service within the specified time budget. This thesis makes original contributions to
PRRT’s error control function, which decides when and how much redundancy must be
transmitted to meet the reliability and delay requirements of the application. The main
contributions of this thesis are threefold: i) the SHARQ algorithm, which obtains the
optimal error control configuration meeting the application constraints, and has been op-
timized to achieve predictably quick reactions to channel changes, ii) the DeepSHARQ
algorithm, which leverages neural networks and a novel output regularization method to
bring this predictability to resource-constrained devices, and iii) a systematic analysis
of binary codes as an energy-efficient alternative for error coding at the transport layer,
questioning the long-held belief that Vandermonde codes are a more suitable alternative
due to their better error correction capabilities.

Kurze Zusammenfassung

Cyber-physikalische Systeme erweitern die digitale Revolution auf nahezu jeden Aspekt
unseres Lebens, indem sie die Kluft zwischen der digitalen und physikalischen Welt
überbrücken. Diese Systeme erfordern beispiellose zeitliche und beispiellose Garantien
bzgl. Zeit-Verbrauch und Fehlerraten, die das aktuelle Betriebssystem und das Net-
zwerk nicht bieten. Transport-Protokolle sind die direkte Kommunikationsschnittstelle
für die Anwendungsebene und sind daher entscheidend für die Bereitstellung von Ende-
zu-Ende-Garantien für die Anwendungen. Diese Dissertation beschäftigt sich damit,
wie Transport-Protokolle gestaltet sein sollten, um Cyber-physikalische Systeme zu un-
terstützen. Ein ausgezeichneter Kandidat ist das PRRT-Protokoll, das der Anwen-
dung einen vorhersagbar zuverlässigen Dienst innerhalb des festgelegten Zeitbudgets bi-
etet. Diese Dissertation leistet originelle Beiträge zur Fehlerkontrollfunktion von PRRT,
die entscheidet, wie viel, und wann Redundanz übertragen werden muss, um die Zu-
verlässigkeits- und Verzögerungsanforderungen der Anwendung zu erfüllen. Die Haupt-
beiträge dieser Dissertation sind in drei Teile auf: i) Der SHARQ-Algorithmus, der die
optimale Konfiguration der Fehlerkontrolle gemäß den Einschränkungen ermittelt, wurde
optimiert um vorhersehbare schnelle Reaktionen auf Kanaländerungen zu erzielen, ii)
Der DeepSHARQ-Algorithmus, welcher Neuronale Netzwerke nutzt, und eine neuartige
Ausgabe-Regularisierungsmethode, um diese Vorhersagbarkeit auf ressourcenbeschränkte
Geräte zu übertragen, iii) eine systematische Analyse von Binärcodes als energieeffiziente

iv

Alternative für die Fehlercodierung auf der Transport-Schicht, wobei die langjährige
Überzeugung hinterfragt wird, ob Vandermonde-Codes aufgrund ihrer besseren Fehlerko-
rrekturfähigkeiten wirklich die bessere Alternative sind.

Abstract

Cyber-physical systems bridge the gap between the digital and physical worlds by clos-
ing control loops over embedded computers and networks. Given their positive impact
on improved efficiency and performance, they are slowly permeating more and more as-
pects of our lives (i.e., connected vehicles, smart industry, distributed energy generation,
telemedicine, etc.), extending the digital revolution beyond purely information-intensive
processes to safety-critical applications. For digital systems to be deployed in safety-
critical environments, their timeliness and reliability guarantees must be brought to
unprecedented levels to ensure they do not put human lives at risk.

Current computing and networking systems do not offer abstractions to applications
that guarantee predictable timing and reliability. Therefore, these abstraction layers
must be redesigned to provide a dependable substrate for the deployment of cyber-
physical systems. Transport layer protocols are the direct communication interface for
the application layer and, hence, are key to providing end-to-end guarantees to the
application. This thesis addresses how transport layer protocols should be designed
to provide a predictable communication channel to the application, even on resource-
constrained devices, the natural components of cyber-physical systems.

Traditional transport protocols either fail to provide delay guarantees (TCP) and
reliability guarantees (UDP) or operate far from the channel capacity (RTP). The Pre-
dictably Reliable Real-time Transport (PRRT) protocol developed at the Telecommuni-
cations Lab at Saarland Informatics Campus addresses these issues by providing a pre-
dictably reliable service within a delay budget. PRRT implements a novel error control
mechanism that finds the balance between proactive and reactive redundancy that best
approaches the channel capacity—i.e., transmits the minimum redundancy. This thesis
makes original contributions to the components of this error control mechanism with the
highest computational complexity, namely the optimization algorithm that searches for
the optimal configuration meeting the application requirements and the coding of parity
packets to correct losses.

First, a computational complexity analysis of the optimization algorithm is pre-
sented together with the SHARQ algorithm. SHARQ reduces the number of CPU cycles
required to find the optimal configuration meeting the application constraints for the
current channel conditions. SHARQ improves upon previous search algorithms with a
more efficient solution space exploration and a fast parity packet scheduling among the
repair cycles. As a result of its low inference times, SHARQ enables PRRT to pro-

v

vi

vide predictable communication channels on high-end devices due to the fast reaction
to channel changes. However, SHARQ’s computational complexity is still too high for
PRRT to be deployed on resource-constrained embedded devices.

DeepSHARQ leverages neural networks to reduce the inference time further, thereby
sacrificing optimality while improving the runtime predictability on low-end devices. An
advantage of neural networks is their constant computational complexity, so their infer-
ence time solely depends on the network architecture and the platform on which it is
executed. DeepSHARQ’s neural networks are trained with a novel output regularization
mechanism that reduces the learning complexity of the problem to obtain smaller neural
networks than if traditional learning methods were employed. Output regularization
allows DeepSHARQ to learn a set of configurations that maintain the transmitted re-
dundancy within configurable margins from the minimum redundancy. In other words,
the deviation from the optimum is predictable and configurable. The presented re-
sults show that DeepSHARQ brings predictably quick reactions to channel changes to
resource-constrained devices for the first time.

Finally, the thesis also addresses energy aspects of the parity packet coding mecha-
nisms in PRRT. The complexity dilemma has driven the development of error coding in
the last decades such that deviations from the channel capacity were allowed to reduce
computational complexity with algorithms that do not implicitly invert the generator
matrix. As throughput—and hence block length—increases with new physical layer
technologies, the redundancy overhead becomes negligible. This thesis proves that the
complexity dilemma is entirely different in the transport layer, where the complexity is
no longer dominated by the matrix inversion but by the matrix-vector multiplication
instead, which must be iterated throughout complete packets. In light of this result, and
to the best of our knowledge, we provide the first systematic analysis of the suitabil-
ity of binary codes as an energy-efficient alternative to the optimal Maximum Distance
Separable (MDS) codes in the transport layer. Despite the significant redundancy in-
crease binary codes introduce in the transport layer, this thesis shows that binary codes
demand less energy in a broad range of different network conditions and application
requirements.

Acknowledgments

First and foremost I would like to thank Thorsten Herfet for giving me the opportunity
to pursue a Ph.D., and for his guidance and advice in the last 6 years that helped keep
my curious and wandering mind on track. I will certainly miss the work environment
at the Telecommunications Lab, where I was allowed to pursue my own ideas and learn
from my mistakes. I would also like to thank Timo Hönig for acting as a reviewer of
this thesis and for his insights and pieces of advice throughout the LARN and e.LARN
project. I am also grateful to Pietro Manzoni not only for acting as a reviewer for this
thesis but also for organizing several editions of the CCNC conference, a venue I loved
attending for its wonderful community.

It has been a pleasure to work at the Telecommunications Lab with some of the most
talented people I have ever met. I am sincerely grateful to Andreas for accepting me
as a master’s student more than 7 years ago, whose eye for detail, disposition toward
open discussions, and ability to create an excellent team environment greatly influenced
my decision to pursue a Ph.D. I also want to thank Tobias for guiding my first steps
at the chair and always being ready to help despite the ton of work that sat at his
desk. Thanks to Kai for our insightful discussions and the fun we had either optimizing
algorithms or climbing routes in KBA. Thanks to Marlene for your inspiring work ethic
and positivity, and Robin for being an excellent office mate, who was always willing to
discuss scientific topics outside of our research areas. Thanks to my “hermano” Misha
for having popped up in my last months at the chair with his sharp sense of humor and
Russian sweets. I have also been lucky to work with many students, namely Amina,
Sven, Moritz, Nikolai, and Julius, from whom I probably learned more than they could
ever learn from my advice. I am also thankful to Zakaria for all his support and advice,
as well as our complaints about how poorly Bayern and Sevilla played over some tasty
food at Philo Cafe. Lastly, I want to thank Diane for always being ready to help with
any non-scientific process, and making them always run smoothly.

I am also thankful to Pascal for cheering me up with his extremely bad dad jokes, and
Nicolas for being an excellent gym partner, which helped me keep both my physical and
mental health through the arduous process of writing this document. I would also like
to thank Edoardo and Herbert for sticking together since our first month in Saarbrücken
more than 7 years ago. They made my first year in Germany one of the most exciting
of my life, full of thrilling trips and funny anecdotes. I am grateful to Edoardo for his
unique sense of humor, the never-ending recommendations of good blues music, and his

vii

viii

crazy bike trip from Vernante to Huelva. Thanks to Herbert for being the funniest and
most unpredictable guide in Prague one could have. I am also grateful to Elena, Vale,
and Hossein for our remote book club and Among Us sessions, which made being stuck
at home for months significantly less burdensome.

I would also like to mention Eloy, Javi, and Andrés, who make it feel as if we all had
never left Huelva after all these years. Although our busy lives made them more sporadic,
I still love our long chats, and their support was always felt despite the distance. I want
to thank Eloy for being an excellent friend who never gives up on others and is one of
the most determined and resilient people I know. Thanks to Javi for still being there
after more than 30 years. Thanks to Andrés for stimulating my critical thinking with
many insightful conversations. I want to thank Paula and Marce as well for their warm
welcome back home and their amazing amaretto sour, both of which made writing the
last chapters of this thesis a more enjoyable experience.

I would also like to thank my siblings Marta and Jorge for their support despite the
strange looks they give me every time I try to explain what I do. Thanks to my par-
ents Macarena and Emilio for their strenuous work in the hardest circumstances, which
fundamentally shaped who I am. I am also grateful to have two lovely grandparents,
Enrique and Mari Carmen, who taught me how to enjoy life since I was little. Finally, I
want to thank Kay for still loving me despite having to cope with a continuous stream
of dummy jokes and for her endless patience. I love you too and I am looking forward
to our next chapter.

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Question . 3

1.3 Contributions . 4

1.4 Outline . 6

2 Distributed Cyber-Physical Systems 9

2.1 Cyber-Physical Systems . 9

2.2 Energy, Power, and Sustainability . 12

2.3 The Centrality of the Transport Layer . 15

2.4 Conclusion . 23

3 Predictably Reliable, Real-Time Transport 25

3.1 Design Principles . 25

3.2 Cross-Layer Pacing . 28

3.3 Adaptive HARQ . 30

3.4 Packet Format . 35

3.5 Optimal Hybrid Erasure Coding . 36

3.6 The need for HARQ . 40

3.7 Discussion . 42

4 Search Algorithms for Adaptive HARQ 45

4.1 Predictable Communication Channel . 47

4.2 Full Search . 50

4.3 SHARQ: Scheduled HARQ . 52

4.4 Search Comparison . 59

4.5 Discussion . 66

4.6 Related Work . 68

4.7 Conclusion . 69

5 Deep Learning for Adaptive HARQ 71

5.1 Learning How to Balance . 71

5.2 DeepSHARQ: Hybrid Error Coding using Deep Learning 76

ix

x Contents

5.3 Model Training . 82
5.4 Performance Analysis . 90
5.5 Discussion . 94
5.6 Related Work . 97
5.7 Conclusion . 99

6 Energy-Aware Adaptive HARQ 101
6.1 The Complexity Dilemma (Revisited) . 101
6.2 Binary Erasure Codes . 105
6.3 Theoretical Analysis . 112
6.4 Energy-Aware HARQ . 118
6.5 Practical Analysis . 124
6.6 Discussion . 127
6.7 Related Work . 129
6.8 Conclusion . 131

7 Conclusion 133
7.1 Summary . 133
7.2 Future Work . 135

A Computational Complexity Packet Loss Rate 137

B Computational Complexity Redundancy Information 139

Own Publications 141

Bibliography 143

List of Figures

1.1 Summary of Contributions . 6

2.1 Error control schemes . 18
2.2 Systematic coding . 19

3.1 PRRT Architecture . 28
3.2 Paced vs. unpaced communication . 29
3.3 X-Pace architecture . 29
3.4 Loss detection algorithm . 30
3.5 Loss detection delay . 31
3.6 Matrix-vector multiplication . 34
3.7 PRRT General Header . 35
3.8 PRRT Data Header . 35
3.9 PRRT Parity Header . 36
3.10 PRRT Feedback Header . 36
3.11 PRRT NAK Header . 37
3.12 HARQ delay budget . 38
3.13 Redundancy information increase . 43

4.1 Solution space non-linearities . 46
4.2 Performance predictability . 49
4.3 Number of restricted integer compositions 52
4.4 PLRHARQ(k, p), popt(k), and RI(k,NC , NP) functions 54
4.5 Decreasing cycle probability . 55
4.6 Graph search example . 57
4.7 Number of evaluated configurations by search algorithm 62
4.8 CDF number of configurations . 63
4.9 SHARQ inference time . 64

5.1 Artificial neuron . 72
5.2 Search algorithms information flow . 80
5.3 DeepSHARQ’s neural network architecture 81
5.4 Impact of learning rate and schedule on model performance 85
5.5 RI increase by neural network architecture and ∆ 87

xi

xii List of Figures

5.6 Neural network inference time . 89
5.7 Model conversion pipeline. 90
5.8 DeepSHARQ inference time . 92
5.9 Optimal vs. Simple Schedule Inference Time 94
5.10 Optimal vs. Simple Schedule Data Rate Increase 95

6.1 Computational complexity of matrix operations 104
6.2 Cumulative distribution function of the optimal k and p 105
6.3 Tanner graph representation of a binary generator matrix 106
6.4 Decoding failure probability of a random fountain code 107
6.5 Probability of losing the complete codeword in multicast 110
6.6 Encoding complexity of MDS and random fountain codes 113
6.7 Number of excess packets in random fountain codes vs. LT codes 114
6.8 Erasure recovery probability in MDS, random fountain, and polar codes . 116
6.9 Number of parity packets in MDS, random fountain, and polar codes . . . 117
6.10 Energy measurement hardware setup . 120
6.11 Power draw borders detection . 121
6.12 Coding energy demand in MDS and binary codes 123
6.13 Energy demand of packet transmission and reception 123
6.14 Energy-aware performance comparison . 125
6.15 MDS and binary codes’ energy demand by application requirements . . . 126

List of Tables

3.1 Comparison of transport protocols . 27
3.2 Dataset parameters . 41
3.3 Valid configurations by error control scheme 42

4.1 Run-time complexity of the basic performance metrics 61
4.2 SHARQ predictability requirements . 66
4.3 SHARQ ϵ-fulfilling analysis . 66

5.1 Hyperparameter analysis of regularization and epochs 86
5.2 DeepSHARQ neural network performance ∆ = 0.1 88
5.3 DeepSHARQopt neural network performance 89
5.4 DeepSHARQfull neural network performance 90
5.5 DeepSHARQ ϵ-fulfilling analysis . 93

6.1 Binary codes and their adoption in cellular networks. 103
6.2 Linear functions to obtain the energy demand in milliJules 122
6.3 Linear functions to obtain the delay in milliseconds. 124
6.4 Energy demand comparison between MDS and binary codes 126

xiii

xiv List of Tables

Acronyms

3G Third-generation broadband cellular networks. 19, 103, 130

4G Fourth-generation broadband cellular networks. 41, 83, 103

5G Fifth-generation broadband cellular networks. 4, 19, 25, 41, 83, 103, 110, 135

ABR Adaptive Bit Rate. 39, 98

ACK Acknowledgment. 17, 20, 21, 30–32, 36, 39, 68, 69, 79, 98

AI Artificial Intelligence. 73

API Application Programming Interface. 26, 27, 29, 44

ARM Advanced RISC Machines. 131

ARQ Automatic Repeat reQuest. 3, 4, 17, 21, 22, 27, 30–32, 38–40, 42, 43, 50, 79, 95,
133

BBR Bottleneck Bandwidth and Round-trip propagation time. 20, 29, 33, 98

BEC Binary Erasure Channel. 110, 111, 117

CCA Congestion Control Algorithm. 16, 20

CDF Cumulative Distribution Function. 42, 43, 63, 64, 89, 91, 92, 105, 115, 116, 125

CNN Convolutional Neural Network. 74, 75, 97

CPN Cyber-Physical Networking. 1, 4, 10

CPS Cyber-Physical System. 1–7, 9–15, 19, 23, 25–27, 31, 41–43, 47, 48, 59, 61, 66,
67, 70, 74, 76, 101, 127, 133–135

CPU Central Processing Unit. v, 2, 12, 14, 44, 61, 67, 74, 85, 91, 94, 95, 105, 118, 124,
127, 130

DASH Dynamic Adaptive Streaming over HTTP. 20, 22, 39, 98

xv

xvi Acronyms

DCCP Datagram Congestion Control Protocol. 22, 25

DCTPC Data Center TCP. 20

DeepSHARQ Deep-learned, Scheduled HARQ. iii, vi, 5–7, 76–83, 86, 88–97, 99, 124,
128, 135, 136

DetNet Deterministic Networking. 12, 25

DL Deep Learning. 71, 72, 74, 97–99, 128, 134

DNN Deep Neural Network. 71–75, 97–99

DTLS Datagram Transport Layer Security. 27

DUT Device Under Test. 119, 120

E2E End-To-End. 29

ECN Explicit Congestion Notification. 20, 68

FCT Flow Completion Time. 19, 20, 69

FEC Forward Error Coding. 4, 17, 20–22, 27, 30, 32, 38–40, 42, 43, 52, 68, 69, 79, 97,
98, 133

GCC Google Congestion Control. 22

GPU Graphics Processing Unit. 74, 127, 129, 130

GreenAI Green Artificial Intelligence. 73, 74

HARQ Hybrid Automatic Repeat reQuest. 4–7, 17–19, 25, 27, 30, 33, 36–44, 48, 50,
63, 69, 71, 75–77, 89, 94–96, 99, 103, 118, 119, 122, 124, 126, 128, 129, 131, 133–137

HEC Hybrid Error Coding. 4

HPCC High Precision Congestion Control. 20

HTTP Hypertext Transfer Protocol. 3, 15

I2C Inter-Integrated Circuit. 9, 119

IETF Internet Engineering Task Force. 48

IoT Internet of Things. 2, 11, 14, 16, 101, 117, 130, 131

IP Internet Protocol. 1, 3, 15, 19, 34, 41, 69, 83, 103, 129, 130, 135

IPCC Intergovernmental Panel on Climate Change. 2, 12, 13

Acronyms xvii

LDPC Low-Density Parity Check. 21, 103

LLS Linear Least Squares. 121, 122

LSTM Long Short-Term Memory. 44, 97, 98, 135

LT Luby Transform. 21, 106, 108, 109, 112–114, 130, 131

LTP Loss-tolerant Transmission Protocol. 22

MAE Mean Absolute Error. 71

MDS Maximum Distance Separable. vi, 6, 32, 37, 39, 44, 57, 80, 101–104, 106–109,
112–115, 117, 119–128, 130, 131, 134, 137

ML Machine Learning. 44

MP Message Passing. 105, 108, 120

MPTCP Multipath TCP. 69

MSE Mean Squared Error. 71

MTU Maximum Transmission Unit. 19, 21, 41, 83, 103

NAK Negative Acknowledgment. 31, 32, 35–37, 130

NAS Neural Architecture Search. 75

NN Neural Network. 86, 91, 93

NTP Network Time Protocol. 44

ONNX Open Neural Network Exchange. 91

OS Operating System. 3, 15

PC Personal Computer. 59, 61, 63–66, 70, 71, 86, 89–91, 93, 94, 119, 121, 124, 127, 134

PCC Performance-oriented Congestion Control. 20

PLR Packet Loss Rate. 40, 51, 53, 54, 61, 62, 80, 117, 137, 138

PRRT Predictably Reliable Real-time Transport. iii, v, vi, 3–7, 19, 23, 25–37, 39–41,
44, 45, 47, 48, 50, 54, 65–67, 69, 70, 74, 76, 81, 101–104, 117, 119, 124, 127–130,
133–135

PTP Precision Time Protocol. 44

QoE Quality-of-Experience. 22, 26

xviii Acronyms

QoS Quality-of-Service. 2, 98

QUIC Quick UDP Internet Connections. 3, 21, 22, 25, 27, 43, 69

RACK Recent Acknowledgment. 68

RAM Random Access Memory. 130

ReLU Rectified Linear Unit. 72, 79

RI Redundancy Information. 3, 4, 17, 22, 36–38, 41–44, 50, 54, 56, 57, 63, 68, 69, 75,
77–80, 83, 84, 86–88, 93–95, 97, 98, 103, 112, 113, 117, 118, 124, 125, 128, 133–135,
139

RL Reinforcement Learning. 96

RLNC Random Linear Network Coding. 69, 128–131

RTP Real-time Transport Protocol. v, 22, 25, 27

RTT Round-Trip Time. 4, 16, 17, 20, 22, 31–34, 38, 43, 49, 50, 65, 68, 69

SACK Selective Acknowledgment. 68

SHARQ Scheduled Hybrid Automatic Repeat reQuest. iii, v, vi, 5–7, 52, 53, 55, 59,
60, 62–67, 69–71, 74–78, 80, 88, 90, 92–95, 99, 104, 108, 124, 134

SIMD Single Instruction/Multiple Data. 91, 127

SRT Secure Reliable Transport. 22

SRTP Secure Real-Time Protocol. 27

TCP Transmission Control Protocol. v, 3, 12, 15–17, 19–22, 25, 27, 31, 42, 43, 68, 97,
130, 135

TIMELY Transport Informed by MEasurement of LatencY. 20

TinyML Tiny Machine Learning. 74, 96, 129

TLP Tail Loss Probe. 68

TLS Transport Layer Security. 27

TPU Tensor Processing Unit. 74

TSN Time-Sensitive Networking. 12, 25, 135

UART Universal Asynchronous Receiver-Transmitter. 9

Acronyms xix

UDP User Datagram Protocol. v, 3, 12, 22, 25, 27, 119

URLLC Ultra-Reliable and Low-Latency Communication. 25

USB Universal Serial Bus. 119

VoD Video-on-Demand. 2, 26

VoIP Voice over IP. 2

X-Pace Cross-Layer Pacing. 27, 29, 33, 39

XOR Exclusive or. 69, 102–106, 108, 112, 113, 118, 127

xx Acronyms

Symbols

C Channel capacity. 21

DT Delay target. 37, 40, 41, 45–51, 53, 54, 61, 62, 66, 69, 75, 77, 83, 126, 129

DPL Packet loss detection delay. 30–32, 39, 41, 43, 54, 83

DRS Sender and receiver processing delay per packet. 32, 39, 41, 51, 53, 54, 83

Dtx Transmission delay. 39

Ik Random variable for the number of lost data packets. 39, 40, 108, 112, 137, 138

Lp Packet length. 33, 40, 41, 54, 62, 83, 103–106

M Number of receivers in a multicast group. 38, 56, 58, 109, 110, 112

NC Number of repair cycles. 32, 37–40, 45–47, 50–60, 62, 69, 75–77, 79–81, 89, 90, 96,
118, 124, 139

NP Repair schedule. 32, 37–41, 50–52, 54–60, 69, 76, 77, 79, 96, 118, 119, 124, 139

NC,max Maximum number of repair cycles allowed by the delay constraint. 50–52, 58,
59

NC,opt Optimal number of repair cycles that minimizes the transmitted Redundancy
Information. 54–56, 60

PLRT Target packet loss rate. 37, 40, 41, 45, 46, 53, 54, 56, 60–62, 69, 77, 83, 112, 113,
115, 117, 126

RTT Round-Trip Time. 31–33, 39–41, 43, 45, 46, 50, 51, 53, 54, 62, 65, 66, 77, 83, 124

RC Channel data rate. 33, 37, 40–42, 45, 46, 50, 54, 62, 77, 83

Tc Channel coherence time. 47, 48

Tr Protocol reaction time. 47–50, 65, 66

Ts Source packet interval. 30, 31, 38–41, 45, 46, 51, 53, 54, 62, 77, 83

xxi

xxii Symbols

∆rr Repair cycle interval. 31, 32

∆ DeepSHARQ’s RI increase factor. 77, 82, 83, 86–89, 91, 93, 95, 96

α Field element. 32

β0 Linear least squares population parameter. 122, 124

β1 Linear least squares population parameter. 122, 124

θ Neural network vector of learnable parameters. 71, 73, 74

w Vector of probabilities of cycles failing. 78

x Neural network vector of inputs. 71, 74, 77, 80

δ Binary matrix decoding failure probability. 106–109, 114, 115

λ Loss detection timeout. 30, 31, 39

G Generator matrix. 18, 19, 34, 101, 102, 105, 106, 111, 112

c Codeword vector. 18, 34, 51, 52, 101

m Message vector. 18, 34, 101, 102, 105

n Cumulative codeword length vector in an HARQ scheme. 38, 55, 57, 78, 108, 139

C Code. 18, 80, 102, 115

θ Neural network parameter. 72

ε Number of excess packets. 107, 109, 113, 114

b CPU bit width. 105, 106

c Free parameter of the Robust Soliton distribution. 109

dmin Minimum distance between codewords. 102

d Binary matrix column degree. 105–109, 114

e Number of erased symbols. 33, 40, 102, 103, 107, 114, 115

fD Maximum Doppler frequency. 47

k Block length. 18, 19, 32–34, 37–41, 45–47, 50–63, 69, 75–83, 88–90, 96, 101–109,
111–115, 118, 119, 122, 124, 125, 127, 130, 137–140

lossCount Event count in loss detection algorithm. 30

loss threshold Loss count threshold for loss detection. 30, 31, 39

Symbols xxiii

m Number of bits per symbol in the Galois Field. 18, 33, 57, 80, 81, 103, 104

n Codeword length. 18, 32, 33, 40, 57, 101–103, 106–111, 114, 115, 117, 118, 138, 139

pe Channel erasure rate. 21, 33, 34, 38, 40, 41, 45, 46, 50, 54, 57, 60, 62, 63, 77, 79, 83,
108, 110, 111, 113–117, 137–140

px Probability distribution of the random variable X. 21, 81, 82

p Number of parity packets. 18, 19, 32–34, 37–40, 45–47, 50–62, 69, 75–81, 89, 90, 96,
104–108, 112, 114, 115, 118, 122, 124, 137–140

qx Probability distribution of the random variable X. 81, 82

q Galois Field order. 18, 32, 33

r Code rate. 21, 106

Chapter 1

Introduction

These days, we live in a world where digital technologies seem to permeate every aspect
of society. The rapid increase in computing, storage, and communication capabilities
drives this wide adoption of digital technologies. Low-cost hardware proliferates thanks
to improved manufacturing processes and the introduction of economies of scale, en-
abling developers to implement a myriad of digital applications. The dynamic software
sector that has flourished in the last decades has arguably been a product of the avail-
able infrastructure in terms of open communication protocols and operating systems.
However, this digital world is still limited to domains with an intensive information
processing component—e.g., management in the firm and the government, retail, or en-
tertainment. A similar level of adoption has not yet occurred in critical infrastructure
such as transportation, logistics, heavy industry, and health care. The slow-paced adop-
tion in these sectors could be explained by the higher dependability demands that led
to using expensive, special-purpose hardware and software tailored for the task instead
of cheap commodity components.

Cyber-Physical Systems (CPSs) have been proposed to bridge the gap between the
digital (i.e., cyber) and the physical world by closing control loops monitoring physical
processes over an infrastructure of embedded devices and networks. Edward A. Lee [54]
claims that the applications resulting from coupling the digital and the physical world
would have a far greater impact on society than the digital revolution did. However,
these two worlds are qualitatively different. Time is inexorable in the physical world,
and concurrency is intrinsic to it, while precise timing in current software is a challenging
problem, especially in the presence of concurrency, which introduces intractable behavior.
Moreover, CPSs impose safety and reliability demands on digital components, which they
are not designed to uphold. The abstraction layers in the computing and networking
substrate must be redesigned to achieve the required dependability level.

Similar to how the Internet has become the de facto standard for any communica-
tion, ruling out previous infrastructure—e.g., telephony, television, or radio—, Cyber-
Physical Networking (CPN) could enable distributed CPSs over IP networks by fulfilling
their specific performance needs. Such a deployment would only be possible due to the
versatility of the Internet protocols, which create a layer of abstraction presented to a

1

2 Chapter 1.1: Problem Statement

myriad of applications over a common infrastructure, thereby diminishing the cost of
deploying new services on top of the existing infrastructure. According to David D.
Clark [137], this decoupling between network infrastructure and protocols allows us to
envision many future Internets and, in particular, an Internet in which the requirements
of CPSs for predictable reliability and delay are guaranteed.

1.1 Problem Statement

The demand for lower delays has been ever-increasing in the last decades, with the
Internet infrastructure going from purely serving time-insensitive web content to more
demanding services such as Voice over IP (VoIP) [77, 121], Video-on-Demand (VoD) [81,
126, 155, 183], or real-time video conferencing [110, 121, 197]. The appearance of CPSs
has pushed the need for timeliness to unprecedented limits [54], as they close control
loops over communications networks that connect sensors, actuators, and controllers.
For CPSs, it is no longer enough to run tasks as fast as possible, but running them at
the right point in time is key to ensure the control loop stability [48, 136, 177], which
represents a paradigm shift from traditional trends in computer and network design.1

Achieving the desired Quality-of-Service (QoS) on top of the unpredictable substrate the
current operating systems and protocol stacks provide has proved difficult. From a purely
information theoretical standpoint, delay-constrained data transmissions are bound to
be unreliable [13, 70]. CPSs can operate on top of unreliable communication channels,
as they are resilient towards deadline misses [30, 124, 177, 196], whether they are in the
form of packet losses or late packets. Therefore, i) reliability and ii) timeliness become
functional requirements the communication protocol stack must ensure to support CPSs.

CPS deployment is framed in what is known as the Internet of Things (IoT) [105]:
inter-connected devices exchanging information in real-time to improve their operation in
several sectors—e.g., agriculture, transportation, or industry. In other words, CPSs are
expected to permeate our societies within the next decades. Given the sheer number of
devices to be deployed, sustainability aspects should be considered in such a deployment.
According to the 2023 report from the Intergovernmental Panel on Climate Change
(IPCC) [219], a “rapid” and “deep” reduction of greenhouse gas emissions across all
sectors and systems is required before 2030 to limit global warming to 1.5◦C or 2◦C,
thereby reducing the heat-related hazards for life on the planet. CPSs play a key role in
fulfilling such requirements—e.g., in the deployment of smart grids to reduce the CO2

footprint of energy supply [71] —, but a sustainable deployment is only possible by
improving their energy efficiency [34, 55, 199, 216]. Energy efficiency is a non-functional
requirement that conflicts with the two aforementioned functional requirements—i.e.,
redundancy information is required to recover from packet losses, increasing the power
draw. The system’s energy demand should be reduced if possible so that the system’s
resource footprint is minimized [5, 111].

1See the trend towards higher throughput and lower delay with each new generation of mobile com-
munication, or increasing CPU frequency and number of cores.

Chapter 1.2: Research Question 3

1.2 Research Question

In IP networks, the transport protocol provides the communication entry point to the
application via sockets, and hence, it is the lowest layer with an end-to-end perspective
of the communication channel as perceived by the application. Following the end-to-end
argument in systems design [18], the transport layer is key to fulfilling the application
requirements. Therefore, this layer must implement the mechanisms to provide per-
formance guarantees to the application—or inform the application whenever meeting
the requirements is impossible. For example, since web content request and delivery is
based on Hypertext Transfer Protocol (HTTP), the World Wide Web revolution would
arguably not have been possible without the Transmission Control Protocol (TCP) that
HTTP uses as transport protocol.2 The superiority of TCP over other protocols has re-
sulted in its adoption even for real-time applications that it was not originally designed
to support [81] as a result of its wide availability, since most Operating Systems (OSs)
implement it nowadays to provide web browsing and most firewalls admit it for the same
purpose, which is not the case for other transport protocols.3 If the wide adoption of
web applications has been fostered by the broad availability of TCP, it stands to reason
that the widespread use of CPSs will also require a transport protocol that provides a
simple-to-use interface on top of which developers can implement CPSs. The objective
of this thesis is to answer the research question:

Research Question: how should transport protocols be designed to provide broad sup-
port for Cyber-Physical Systems?

According to the problem statement above, what CPSs demand is predictably re-
liable, real-time communications that at the same time are energy-efficient. The Pre-
dictably Reliable Real-time Transport (PRRT) protocol [57, 86, 163] seems a suitable
candidate: it is a time-aware protocol that takes the target delay and reliability level
from the application and adapts its performance to fulfill them. The fundamental trans-
port layer function providing the predictable performance is the error control function:
it transmits the minimum amount of Redundancy Information (RI) required to recover
lost packets, thereby achieving the desired reliability level within the application time
budget.

The reactive Automatic Repeat reQuest (ARQ) is the most used error control scheme
as it is implemented in TCP. It implements a feedback mechanism to trigger packet
retransmissions when losses are detected. So long as packet losses can be perfectly de-
tected, the sender transmits the minimum required RI to recover the losses. Nevertheless,
a proactive scheme may be a more suitable option if: i) there is not enough time to wait
an entire round-trip time for feedback, ii) there are so many receivers in a multicast
group that the feedback causes what is called feedback implosion, or iii) a feedback chan-

2It has not been until late 2022 that a version of HTTP was standardized [200] to support a different
transport protocol, namely the Quick UDP Internet Connections (QUIC) protocol.

3As more web browsers implement the QUIC protocol, it is expected that firewalls will stop filtering
the User Datagram Protocol (UDP) as QUIC connections are deployed on top of it.

4 Chapter 1.3: Contributions

nel is not available. The proactive Forward Error Coding (FEC) encodes parity packets,
linear combinations of data packets that can be used at the receiver to recover packet
losses. Parity packets can be encoded without waiting for feedback from the receiver
about lost packets to transmit redundancy proactively. Under delay constraints, the
delay of the reactive ARQ depends on the Round-Trip Time (RTT), while FEC’s delay
depends on the source packet interval of the application that is required to collect data
packets before encoding. The different delay nature of these two approaches makes the
combination of the two, which Hybrid Automatic Repeat reQuest (HARQ)4 implements,
ideal for delay-aware error control. This thesis looks into two different components of
delay-aware error control to answer the aforementioned research question:

• C1 Optimizer: finds the optimal HARQ configuration that minimizes the trans-
mitted RI while meeting the application delay and reliability constraints. In a
dynamic environment, it should react to network changes fast enough to avoid
blackout periods in which the fulfillment of the constraints is not guaranteed.

• C2 Coder: en-/decodes parity packets to recover from losses. The coding step—
especially the decoding part, as it performs a matrix inversion and matrix-vector
multiplication while encoding only performs the latter—is typically a computa-
tionally expensive process, whose realization depends on the implemented coding
technique [26, 72].

To answer the aforementioned research question, this thesis looks at these two com-
ponents implemented in PRRT through the CPS glasses, thereby making original con-
tributions to the field of CPN.

1.3 Contributions

This section introduces the theoretical analysis, empirical evaluations, and practical
implementations resulting from the research question above, which are all crucial contri-
butions to the Energy-, Latency- And Resilience-aware Networking (e.LARN) project.5

The implemented code is available as Rust libraries to facilitate its deployment in other
projects, and has already been integrated into PRRT’s source code.6

Predictably Fast Reaction to Channel Changes

For PRRT to provide the application with a predictable communication channel, it must
react in a timely manner to changes in the underlying dynamic channel to ensure the

4The terms HEC and Hybrid Automatic Repeat reQuest (HARQ) have been used in the literature to
refer to the combination of FEC and ARQ into a single error correction scheme. In 5G [173], the term
HARQ refers to a coded version of ARQ that does not use the proactive FEC cycle. In opposition to
this definition, HEC could be understood as a scheme that also uses the proactive cycle. Nevertheless,
we do not make such a distinction here and use both terms interchangeably.

5https://www.nt.uni-saarland.de/projects/elarn/ (accessed January 23rd 2024)
6https://git.nt.uni-saarland.de/LARN/PRRT (accessed January 23rd 2024)

https://www.nt.uni-saarland.de/projects/elarn/
https://git.nt.uni-saarland.de/LARN/PRRT

Chapter 1.3: Contributions 5

constraints are always fulfilled. This thesis provides a computational complexity analysis
of the optimization algorithm that finds the optimal HARQ configuration meeting the
constraints. Due to the lack of a closed-form expression to obtain the optimal configura-
tion, computationally expensive search algorithms have been employed so far [86]. Two
different approaches are presented in this thesis that improve the predictability of the
communication channel: i) SHARQ is a purely algorithmic approach that, thanks to its
more efficient solution space exploration, reduces the computational complexity of find-
ing the optimal configuration, and ii) DeepSHARQ combines the algorithmic optimiza-
tions in SHARQ with deep learning algorithms and a novel solution space regularization
mechanism to construct small neural networks, thereby bringing predictable commu-
nication channels to resource-constrained embedded devices, the natural component of
CPSs, for the first time.

Energy-Aware Redundancy Coding

PRRT’s redundancy is generated with Vandermonde codes that solve a linear equation
system in high-order Galois Field to en-/decode parity packets. This process was origi-
nally assumed to occur infinitely fast, as the delay and energy demand are negligible on
high-end computers. However, this assumption does not hold when the protocol is de-
ployed on resource-constrained devices due to the high complexity of the matrix-vector
multiplication performed to solve the equation system. This finding led to the reformu-
lation of the complexity dilemma that has guided the development of codes for the last
decades: in the transport layer, the matrix inversion does not govern the coding com-
plexity, but the matrix-vector multiplication does. To the best of our knowledge, this
thesis presents the first systematic analysis of the suitability of binary codes as an al-
ternative to Vandermonde codes in the transport layer. Binary codes implement a more
efficient matrix-vector multiplication, at the cost of a redundancy overhead. In other
words, the processing complexity is reduced at the expense of the network complexity.
Based on energy and delay models constructed for the coding function running on a
Raspberry Pi Zero W, we show that binary codes are a more energy-efficient alternative
in the transport layer for a wide range of applications, especially as the delay constraint
becomes more stringent.

1.3.1 Summary

A summary of the contributions of this thesis, and how they interact within PRRT’s
error control function, is depicted in Fig. 1.1. The contributions, highlighted in red in
the figure, are qualitatively compared in terms of their ability to adapt to CPS demands
for predictable reliability and timeliness, as well as how they use the available comput-
ing and networking resources. Two different optimizers have been proposed, namely
SHARQ and DeepSHARQ, whose main difference is the achieved reliability level and
their computational complexity. For an arbitrarily small subset of channel conditions,
SHARQ can find suitable configurations but DeepSHARQ does not. This suboptimality
is a result of the employed deep learning method, which at the same time has the benefit

6 Chapter 1.4: Outline

Error Control

Optimizer

SHARQ

 �

 /

 A

○

○ §

DeepSHARQ

○ �

 /

○ A

○

○ §

Configures

Coder

MDS

 �

 /

 A

○

○ §

Binary

 �

 /

○ A

○

○ §

Figure 1.1: Summary of the Contributions of this thesis (highlighted in red). The
boxes describe how every contribution impacts the reliability (�) and timeliness (/)
requirements of CPSs, as well as the throughput (A), memory () and computational
complexity(§). The circles next to each element compare them to alternative compo-
nents in terms of higher (○), lower (○), or optimal () values.

of reducing DeepSHARQ’s computational complexity. As a result, the optimizer can be
brought to low-end devices on which SHARQ takes too long to infer the configurations.
Another aspect to consider is the memory footprint of the algorithms because SHARQ
has a large memory footprint, while DeepSHARQ’s memory footprint is two orders of
magnitude smaller. As will be discussed later in the thesis, CPSs may have limited
resources at their disposal, whether it is throughput, memory or processing power, or
any combination of the three. The trade-offs between the two proposed algorithms al-
low PRRT to adapt its performance between optimum throughput on high-end devices
(SHARQ) or a throughput overhead but reduced memory and computational complex-
ity (DeepSHARQ). A similar trade-off is present in the coder that is configured by the
optimizer. PRRT originally implemented the optimal MDS codes, which produce the
optimal amount of redundancy at the cost of high computational overhead. The binary
coding library analyzed in this thesis shows that again, by giving up optimality in net-
working resources, the memory and computational resources employed by the protocol
can be reduced, thereby reducing the energy demand of the system at the same time.

1.4 Outline

This thesis can be split into two differentiated parts: Chapters 2 and 3 lay the foundations
of this work, while Chapters 4, 5 and 6, present the original contributions of this thesis,
which focus on the optimization algorithm finding HARQ configurations (Chapters 4
and 5) and energy-awareness for PRRT’s coding function (Chapter 6).

First, Chapter 2 introduces CPSs, their domain applications, and the requirements
that impose strict constraints on the underlying communication and computational sub-

Chapter 1.4: Outline 7

strates. The chapter discusses the transport layer’s central role in fulfilling those re-
quirements so that CPSs could be widely adopted. A literature review of timeliness
in the transport protocol, followed by a discussion of the theoretical limits of delay-
constrained communications closes this chapter. Chapter 3 begins with a literature
review of timeliness in the transport protocol, followed by a discussion of the theoretical
limits of delay-constrained communications. The chapter then presents the PRRT pro-
tocol, including a detailed description of its two main transport layer functions, namely
cross-layer pacing and adaptive HARQ. The chapter ends with the formal definition of
the optimization problem PRRT solves to find the optimal HARQ configuration that
meets the application constraints.

Second, Chapter 4 begins with the theoretical framework used in the thesis to com-
pare search algorithms by assessing their ability to provide predictable communication
channels to the application. The chapter also presents the SHARQ algorithm, which
has been optimized to achieve a high predictability level on high-end computers but has
failed to achieve similar predictability on resource-constrained devices. This poor per-
formance motivated the DeepSHARQ algorithm presented in Chapter 5, which is based
on a novel output space regularization technique that reduces the complexity of the
learning problem. Combining this learning technique with the algorithmic optimizations
presented in the previous chapter and a simple parity packet scheduler results in signifi-
cantly shorter inference times, thereby bringing predictable communication channels to
resource-constrained devices for the first time.

Third, Chapter 6 revisits the complexity dilemma when designing coding techniques
that must balance processing and network complexity for redundancy generation and
transmission. Several alternative codes are presented that could improve the energy
efficiency of the coding function in PRRT. The chapter then continues with a theoretical
and practical analysis of these alternatives, to finish with empirical proof that binary
codes are an energy-efficient alternative for a significant number of application scenarios,
but not enough cases to rule Vandermonde codes out.

Finally, Chapter 7 concludes the thesis with a summary of the contributions and
provides directions for future research that would complement the results presented in
this thesis.

8 Chapter 1.4: Outline

Chapter 2

Distributed Cyber-Physical
Systems

CPSs have the potential to revolutionize the world as we know it by bridging the gap
between the digital and physical world. Nevertheless, for CPSs to reach their full po-
tential, they should flourish in the right ecosystem, offering the software and hardware
infrastructure for developers. This chapter formally defines CPSs, their requirements,
and application domains. Moreover, this chapter makes the case for the transport layer
as the key component in the protocol stack to enable the kind of communication that
CPSs demand for their correct operation.

2.1 Cyber-Physical Systems

According to Lee [116], the term cyber-physical systems was first introduced in 2006
by Helen Gill at the National Science Foundation in the United States of America.
The root of this term can be found in the closely related field of cybernetics, which in
the second half of the 20th century grouped the fields of control and communication
theory. The term cybernetics was coined by Norbert Wiener and it comes from the
Greek χνβϵρνήτης or steersman [14], an appropriate metaphor for the control systems
he studied, whether in the machine or the animal. Although Wiener did not use digital
computers, the control logic is effectively a computation, hence the relation to CPSs, as
they are both a conjunction of digital and physical processes.

Definition 2.1.1 (Cyber-Physical System). A Cyber-Physical System (CPS) integrates
computation and physical processes using embedded computers and networks that mon-
itor the physical process with sensors and control it with actuators [54].

CPSs differ from other systems in their demands for predictable timeliness and relia-
bility, as discussed in Sec. 2.1.2. Traditional CPSs embed all their components into a sin-
gle chassis, thereby simplifying their design due to the dedicated access to resources. The
communication in these systems is performed via Inter-Integrated Circuit (I2C) or Uni-
versal Asynchronous Receiver-Transmitter (UART) for synchronous and asynchronous,

9

10 Chapter 2.1: Cyber-Physical Systems

respectively. These communication technologies provide a predictable communication
substrate due to the short distances between components and the dedicated access to
the medium. However, some CPSs are distributed in nature (see Sec. 2.1.1 below), such
that sensing, actuation, and computation may be performed at completely different loca-
tions. For these systems to leverage the existing Internet infrastructure, a paradigmatic
change is required from the throughput-oriented communication that is currently seen in
data-intensive industries—e.g., web-browsing or social media—, to a real-time-oriented
design with performance guarantees. The term Cyber-Physical Networking (CPN) was
coined to group the technologies developed under this umbrella.

Definition 2.1.2 (Cyber-Physical Networking). Cyber-Physical Networking (CPN) refers
to the set of communication protocol standards and implementations, whether in hard-
ware or software, that enable communication in distributed CPSs with their real-time
guarantees.

The formal definitions above may seem too general, but they contain all the funda-
mental building blocks required for digital systems to interact with the physical world,
while changes in the physical world alter the state of the digital model simultaneously.
Based on these definitions, the list of application domains whose capabilities could be
enhanced by applying CPSs seems endless.

2.1.1 Application Domains

The list of application domains includes, but is not limited to, logistics, healthcare and
medicine, transportation, manufacturing, energy generation, agriculture, or critical in-
frastructure control. As information-processing components are embedded within these
domains, their capabilities could be enhanced to achieve a more rational control of the
social metabolism.1 Given the time of climate change in which we currently live, as
described in Sec. 2.2, the term rational is inevitably linked to the concept of sustainabil-
ity. The following examples illustrate the potential of CPSs to improve efficiency in a
broad set of processes, thereby enabling sustainable development on a global scale. Traf-
fic control could be improved with autonomous vehicles exchanging information among
themselves and with roadside infrastructure for a more efficient and safer transportation
system. This infrastructure could also be leveraged by the logistics sector, which is cur-
rently experiencing a revolution driven by swarm robotics. A better healthcare system
could be possible thanks to precise medical devices and telemedicine, which could bridge
the gap between urban and rural areas, especially in remote areas. The real-time con-
trol of critical infrastructure—i.e., power, water, and communication grids—could result
in better waste management and the integration of distributed green energy genera-
tion. Precision agriculture could monitor crops to optimize the nutrients and pesticides
employed. Manufacturing automation could be brought to the next level with the cen-

1By social metabolism, here we mean all the flows of materials and energy between nature and society
so that a society can reproduce itself. Although the term dates back to the 19th century, it was not
until the late 20th century and early 21st century that it gained relevance with the surge in interest in
environmental science [98].

Chapter 2.1: Cyber-Physical Systems 11

tralized digitization of the end-to-end chain, including real-time information on product
demand and supply chains.

Judging by these examples, CPSs are related to other currently popular trends in
the industry and the scientific community [85, 101, 105], such as IoT, Industry 4.0, fog
computing, digital twins, or the Tactile Internet. However, we believe CPS is a more
general term that does not refer to particular approaches or implementations but to the
fundamental challenges that arise in the intersection of the cyber and physical worlds.
These challenges originate from their requirements in terms of predictable reliability and
timeliness in order to ensure their safe operation.

2.1.2 Requirements

The examples above show that CPSs are expected to interact with safety-critical infras-
tructure. Failing to operate in such environments correctly may result in unrecoverable
losses of equipment and lives or put entire countries at risk. Moreover, the physical world
is inherently unpredictable, and thus CPSs must be robust to unexpected conditions that
could not have been foreseen at the time of their design. In other words, timeliness and
reliability are functional requirements of CPSs—i.e., they define the correct behavior of
the system rather than being a simple performance metric.

Reliability

Advances in computing and communication techniques have resulted in highly reliable
systems able to store trillions of bytes (memory), perform billions of operations per
second (processors), or transmit billions of bits over dynamic channels in the time and
frequency domains (network card). Nevertheless, since no component is perfectly reli-
able, the probability of at least one failing becomes high as the number of components
drastically increases to build complex CPSs. In such heterogeneous systems, failures can
have different origins, e.g., sensors may run out of battery, packets with critical informa-
tion may be dropped in the channel, and concurrency may introduce non-deterministic
behavior in the software. Luckily, the control loops CPSs rely upon are not hard real-
time systems that would fail as soon as a deadline fails or data is lost. These control
loops can be modeled as weakly hard real-time systems instead [30]: the stability of the
control loop can be guaranteed in the sense of Lyapunov as long as deadline misses [124]
and data losses [122] occur predictably. These theoretical results have been confirmed
in practice as well [196, 209, 224]

Robustness could also be extended to other abstraction layers in system design.
Lee [54] proposes the following principle: “when feasible, components at any level of
abstraction should be made predictable and reliable. Otherwise, the next level of ab-
straction above these components must compensate with robustness”. This principle is
just another version of the end-to-end principle [18] that is discussed in more detail in
Sec. 2.3.

12 Chapter 2.2: Energy, Power, and Sustainability

Timeliness

In the physical world, time is inexorable, and concurrency is an intrinsic feature. How-
ever, although these properties are present in current computing and networking systems,
they are lost in the abstraction layers currently used in systems design [54]. Despite be-
ing deployed on a nearly perfectly predictable substrate, namely digital circuits, current
software does not have access to high-level abstractions that leverage such predictabil-
ity [54]. CPU instruction sets, programming languages, or operating systems do not
include timing semantics and when they do, they are inherently imprecise—see timers
in operating systems [180]. A similar scenario occurs with the networking components:
wireless protocols have precise symbol durations and implement a distributed synchro-
nization mechanism to detect transmissions correctly. This information is kept within
the network card, and operating systems do not forward it to the upper layers of the
protocol stack. In the wired domain, Time-Sensitive Networking (TSN) [139] and Deter-
ministic Networking (DetNet) [149] provide deterministic layer 2 and 3 protocols. TSN
provides synchronization mechanisms for all the devices in the network to have a shared
sense of time, thereby executing the required operations at the precise point in time.
Unlike Internet protocols, which are best-effort, TSN reserves throughput and transmis-
sion slots for low latency applications not to spend time buffering. DetNet extends the
same rationale one layer above in the protocol stack. Nevertheless, Transmission Con-
trol Protocol (TCP) [205] and User Datagram Protocol (UDP) [17], the two de facto
transport protocols for reliable and unreliable data transmission, respectively, do not
provide any deterministic guarantees (see Secs. 2.3.2 and 2.3.4).

2.2 Energy, Power, and Sustainability

The concern over climate change has significantly grown in the last decade, positioning
it as one of the major challenges for the 21st century. To prevent climate change’s most
pernicious effects, policies are already being put in place at a global scale, which will likely
impact a pervasive technology such as CPS. As an introduction to the causes and effects
of climate change, this section considers the reports published by the Intergovernmental
Panel on Climate Change (IPCC). As a body dependent on the United Nations, the
IPCC assesses the science related to climate change to provide governments with useful
information for developing climate policies. Its members are volunteers reflecting a range
of scientific, technical, and socio-economic backgrounds selected to avoid bias toward the
views of a single country or groups of countries. These members review scientific papers
published each year on topics related to climate change to analyze the scientific consensus
on the area. Such an analysis results in the Assessment Reports published over the years.
This section has been based on the sixth report published in 2023 [219].

The report is crystal clear in pointing out that “human activities, principally through
emissions of greenhouse gases, have unequivocally caused global warming”. Particularly,
the focus is put on three greenhouse gases as the major contributors to global warming,
namely carbon dioxide (CO2), Methane (CH4), and nitrous oxide (N2O).

Chapter 2.2: Energy, Power, and Sustainability 13

The accumulation of these gases in the atmosphere has produced an increase in global
surface temperature of approximately 1.09◦C by 2011–2020 compared to the temperature
in 1850–1900. This increase has already affected the weather and climate in every region
globally, reducing food and water security and increasing extreme heat events, resulting
in mortality and morbidity. There is evidence of changes in extreme weather, such as
heatwaves, heavy precipitation, droughts, and tropical cyclones. Researchers are highly
confident that climate change has already increased food-borne, water-borne, and vector-
borne diseases. Further global warming would make these risks “increasingly complex
and more difficult to manage”.

Estimations show that in 2019 79% of greenhouse gas emissions came from energy,
industry, transport, and building sectors, whereas 22% of these emissions came from
agriculture, forestry, and other land use.2

2.2.1 Sustainable Cyber-Physical Systems

There is a clear overlap between the aforementioned sectors contributing the most to
greenhouse gas emissions and the application domains for CPSs in Sec. 2.1.1. This
overlap shows the potential of CPSs to enable more efficient processes in our society
by reducing their carbon footprint.3 However, CPSs come hand in hand with a large-
scale deployment of sensors, actuators, and new computing power, which demand energy
and resources. Failing to address the causes of climate change in time could turn the
Earth into an inhospitable planet for human beings. Therefore, ensuring a sustainable
deployment of CPSs is key from an environmental standpoint. Hence, energy efficiency
becomes a requirement that must be considered when designing and deploying these
systems.

Energy Efficiency

Energy efficiency is a conflicting requirement with the aforementioned reliability and
timeliness requirements: the generation and transmission of parity packets to reach the
desired reliability level presupposes a power draw excess from the system, as do the
channel and system monitoring code to implement awareness. While reliability and
timeliness are functional requirements governing the correctness of the system’s opera-
tion, in safety-critical applications, energy efficiency is a non-functional requirement as
it is a desired property, but it should not be enforced to the detriment of correctness.

2The authors of the report point at rounding errors aggregating the data for these digits not adding
up to 100%.

3The IPCC report highlights that, despite the improvements in energy intensity of gross domestic
product and carbon intensity of energy, they do not offset the increase in global activity levels. This
behavior resembles the rebound effect theorized by Jevons in [12], whose hypothesis was about the di-
minished gains of technological improvements leading to more efficient use of resources due to behavioral
or societal responses. Nevertheless, Ostrom [21] showed that humans can build societal institutions that
efficiently administer shared resources, not always mediated by markets but by sophisticated decision
mechanisms and compliance with standards. All in all, even though CPSs could help mitigate the effects
of climate change, the solution to this problem will probably not be purely technical but societal.

14 Chapter 2.2: Energy, Power, and Sustainability

In other words, energy-awareness should be implemented to reduce the energy demand
whenever possible while ensuring its correct operation.

For a sustainable deployment, the energy efficiency of the system should be holisti-
cally studied, including the low-end devices for sensors and actuators at the edge, the
data center running the control algorithms either in the edge (i.e., fog) or deeper in the
network (i.e., cloud), and the communication infrastructure bridging both ends. Most
of the attention has been directed towards the energy efficiency of data centers [111,
140, 195, 186, 199], as they can consume a significant percentage of the electricity of
a country [65, 222]. The interconnection of low-end devices has also drawn a lot of
attention recently, especially with the design of protocol stacks that target their re-
quirements [35, 37, 176, 204]—i.e., lightweight stacks with a low resource footprint and
physical layer protocols designed to demand little energy. After some early research by
Gupta et al. [34], the Internet infrastructure remains one of the least studied compo-
nents, which [216] argues could be due to the “lack of awareness of the problem; a lack
of standards for who should be responsible for collecting and attesting to what data;
and a lack of tools for collecting data.” [216] highlights the need to go beyond energy
efficiency by considering the carbon footprint as well.

Scarcity of Resources

As described above, sustainability concerns make it imperative to reduce the CO2 foot-
print of CPSs, whether these emissions come from the system’s energy demand—i.e.,
power grid—or the materials it is made of—i.e., mining, manufacturing, and transporta-
tion systems. In the last decades, the deployment of the most performant applications
has been driven by the exponential growth in the capabilities of digital systems in terms
of processing speed, memory size, and throughput, together with a reduction in produc-
tion costs. As this option is not available to CPSs, the most challenging aspect in their
deployment is that their stringent performance demands must be achieved while reduc-
ing the resource footprint of the systems. System designers should take into account
the reduced availability of resources such as the transmission and reception data rates,
memory size, CPU clock speed, or battery capacity.

For example, the physical components, such as sensors and actuators, may have con-
straints in terms of accuracy, resolution, or responsiveness to reduce their deployment
costs. Hence, control algorithms must be robust enough to operate with these low-
accuracy samples, frequently obtained at a lower sampling rate than if resources were
abundant. Communication for IoT devices trade energy efficiency for lower through-
puts than in standard WiFi and 5G. Secure communication protocols, cryptographic
operations, and authentication processes must be redesigned to work on such resource-
constrained devices. Consequently, the advancement and cooperation in fields such as
hardware design, software and control engineering, telecommunications, or algorithms
are crucial to CPSs.

Chapter 2.3: The Centrality of the Transport Layer 15

2.3 The Centrality of the Transport Layer

As its name already suggests, the Internet is a set of interconnected computers exchang-
ing digital information in the shape of data packets. At its core are the IP and TCP
protocols. The former routes and forward packets so that the sender and receiver com-
puters can communicate, and thus IP runs in the end nodes and intermediary nodes—i.e.,
routers. The latter is only executed in the end nodes and provides the mechanisms to
achieve a fully reliable, in-order stream of bytes from the sender to the receiver, despite
the bit errors and packet losses that may occur in the underlying network.

Maintaining the core specification—i.e., packet format, provided services, and main
interfaces–of these two protocols unchanged has a double advantage: i) application de-
signers only need to understand the interface with the protocol and forget about the tech-
nicalities below it, and ii) the designers of the underlying communication technologies—
i.e., physical and link layers—must ensure they support these protocols but do not need
to bother about specific applications. Clark [137] argues that this architectural design is
behind the success of the Internet as a network, as it fosters a highly diverse ecosystem
of applications on top of TCP (e.g., web, email, chatting, or video streaming) and a sim-
ilarly diverse set of communication technologies below IP—e.g., Ethernet, broadband,
WiFi, or cellular networks.

Another essential aspect of such widespread adoption of Internet technologies is the
availability of open-source protocol implementations. The paradigmatic example is the
web, with the HTTP protocol and open-source web servers available in the different
distributions of the Linux OS.

2.3.1 Rationale

We ask ourselves whether a similar ecosystem could be built to encourage the wide
deployment of CPSs, which would call for redesigning operating systems and network
protocols as we understand them nowadays. This thesis focuses on networking aspects,
but the reader interested in how CPS performance guarantees are implemented in oper-
ating systems is referred to [5, 180]. The current Internet architecture is a consequence
of the end-to-end argument, a design principle formulated by Saltzer et al. [18] in 1984.
According to this principle, the functions placed at the low levels of a distributed com-
puter system may be redundant or incur a high cost. Although functionalities in the low
levels could be justified as long as they provide performance enhancements, the func-
tionalities should be brought as close as possible to the application because only the
endpoints of the communication channel can ensure the correctness of the functionality.
For example, ensuring fully reliable communication at the router level would require a
costly information exchange mechanism to confirm the correct packet reception at every
hop. Even if this mechanism were available, routers could not guarantee data reception
once it is handed over to the transport layer, e.g., a flipped bit in the end node before
it is forwarded to the application. Therefore, only the highest level—i.e., the transport
layer in an IP stack—can provide such reliability guarantees to the application.

16 Chapter 2.3: The Centrality of the Transport Layer

Following this principle, most Internet functionalities are implemented in TCP and
hence the end-node only. The three fundamental transport layer functions implemented
in TCP are flow control, congestion control, and error control. The relevance of these
functions is reflected in the cross-layer effects [1, 89]: the algorithms implemented in the
transport layer impact the application’s performance, and thus, the underlying proto-
cols should be kept in mind during the application design phase. Although deterministic
networking is available in the lower layers [139, 149] and transport layer functions have
also been deployed in routers to improve the protocol’s performance [106, 130, 127], ulti-
mately the performance perceived by the application depends on the transport protocol
at the end node with which it has a direct interface.

Flow Control

If the sender’s transmission rate is higher than the receiver’s processing rate, some of the
transmitted packets will be dropped at the receiving end, with the waste of resources it
entails. The flow control function ensures that the sender does not overwhelm the receiver
with more data than it can process [205]. TCP implements a sliding window mechanism
in which the receiver announces how much data it is willing to accept. The sender
uses this information so that the number of outstanding bytes—i.e., the transmitted
bytes whose reception has not been acknowledged by the receiver yet—must be smaller
or equal to the announced buffer size. The receiving buffer was a limiting factor in
the early age of the Internet when memory was expensive and scarce. Although it has
become a lesser issue due to the abundant cheap memory now available, slow-processing
receivers may become the limiting factor in data transmission again in IoT scenarios
with resource-constrained devices.

Congestion Control

Similarly to flow control, the sender may transmit data faster than the network can
process, thereby producing network congestion. When a link is congested, packets are
stored in a buffer in the router. Packet buffering increases the Round-Trip Time (RTT)
of the link not only for the flow causing congestion but for all the flows sharing that same
link as well. If congestion persists, the buffer eventually overflows, causing packet losses
that need to be recovered since TCP is fully reliable. TCP implements a Congestion
Control Algorithm (CCA) that detects congestion and adapts the sender’s data rate to
avoid congestion in normal conditions and recover from congestion when it is detected.
CUBIC [53] is the default CCA in Linux, and uses buffer overflows as the congestion
signal. However, recently proposed algorithms [64, 102, 108, 112, 134, 158] aim at
avoiding buffer queues in order to reduce the RTT. These algorithms are further analyzed
in Sec. 2.3.2.

Chapter 2.3: The Centrality of the Transport Layer 17

Error Control

TCP implements an in-order, fully reliable bytes stream service. Therefore, packets
must carry a sequence number indicating the position in the sequence of the first byte
in it (a random sequence number is used in the first transmission in a connection), and
the receiver transmits Acknowledgments (ACK) with the sequence number of the last
in-order, received byte. The error control function specifies that the receiver must issue a
duplicate ACK upon receiving an out-of-sequence packet. In the default mode specified
in [59], the sender can detect losses upon a timeout or the reception of three duplicate
ACKs. The latter allows for a fast recovery since it assumes the network still operates
correctly, but at least one packet was dropped by a sporadic congestion event or some
noise in the channel, whereas the former assumes a major breakdown due to factors
such as persistent congestion or link failure, and hence begins the retransmission at a
low transmission rate not to overwhelm the network until the failure is solved. More
advanced error control schemes have been proposed in the literature to reduce the loss
recovery time [63, 79, 93, 109, 187], which are described in more detail in Sec. 2.3.2.

Error Control Schemes

The ACK-based mechanism implemented in TCP is known as Automatic Repeat re-
Quest (ARQ). Such a reactive retransmission scheme makes the error control’s delay
proportional to the RTT elapsing between a packet transmission and the reception of
its ACK.

Alternatively, a transport protocol could implement the Forward Error Coding (FEC)
scheme, which does not require feedback from the receiver. FEC proactively transmits
the Redundancy Information (RI) required to recover from losses. As no information
about lost packets is available at the time of transmitting the redundancy, FEC must
encode parity packets, which are a linear combination of data packets, so that losses can
be recovered by solving a linear equation system at the receiver. As a result, the loss
recovery delay is no longer RTT-dependent, but it is proportional to the source packet
intervals that the sender must wait to collect packets before encoding.

From an information theoretical standpoint, an error control scheme is deemed opti-
mal if, and only if, it minimizes the transmitted RI. ARQ and FEC fundamentally differ
in two aspects: the nature of their delay (i.e., reactive vs. proactive) and the certainty
about packet losses (loss detection vs. loss prediction). Therefore, it stands to reason
that both approaches should be combined to provide optimal, predictable reliability un-
der delay constraints so that the optimal balance between proactive (FEC) and reactive
(ARQ) that minimizes the transmitted RI is found. Hybrid Automatic Repeat reQuest
(HARQ) implements precisely that behavior: parity packets can be transmitted in the
proactive or reactive cycles, and the sender stops transmitting redundancy when the
receiver signals it has enough to recover the losses or until it is too late to recover them
in time. Fig. 2.1 provides a graphical comparison of the three aforementioned schemes.

18 Chapter 2.3: The Centrality of the Transport Layer

Data packet Transmitted parity packet Skipped parity packet

ARQ

t

d1

d2

d3

d4

d5

d6

d2

d3

timeout

d3

d5

FEC

d1

d2

d3

d4

d5

d6
p1
p2
p3
p4
p5
p6
p7
p8

HARQ

d1

d2

d3

d4

d5

d6
p1
p2

p3
p4
p5

p6
p7
p8

Figure 2.1: Comparison of the different redundancy transmission schemes for error
control.

Parity Packet Coding

HARQ transmits parity packets—or, more generally, parity symbols—to recover losses.
From all the available mechanisms (i.e., codes) to generate these parity packets, in
this thesis we focus on block codes. For the curious reader interested in other coding
techniques, a good introduction is available in [16].

A block code C(n, k) : Fk
q → Fn

q transforms a message vector m into a codeword
c ∈ C. The finite field Fq has a size q. Typically, the field is selected from the family
of GF (2m) for binary representation, where m is the number of bits per symbol in the
alphabet. Here, k is the block length—number of symbols in m—, and n the codeword
length—number of symbols in c. The symbols are encoded by performing a matrix-
vector multiplication with the generator matrix G (c = m · G). At the receiver, the

original message vector is recovered by performing the inverse operation (m = ĉ · Ĝ−1
).

Ĝ is a k × k submatrix of G, whose columns have been selected based on the position
of the received symbols ĉ. Fig. 2.2 shows how the encoding operation is performed.
We assume a systematic code is used—i.e., the k × k identity matrix is part of G, and
thus the codeword contains a verbatim copy of the message vector. Systematic codes
reduce the coding complexity as only p = n − k symbols are encoded instead of n,
achieve better error correction capabilities: if the linear system cannot be solved—e.g.,
it is undetermined because fewer than k packets were received—, they can still forward

Chapter 2.3: The Centrality of the Transport Layer 19

=

1

0

0

0

1

0

0

0

1

k × n generator matrix Gk symbols

M
T
U

b
y
te
s

verbatim data p symbols

M
T
U

b
y
te
s

Figure 2.2: Encoding process of a systematic code with a block length k, p parity
packets and a generator matrix G. Symbols are packets of MTU bytes.

the received verbatim data without decoding, and they also allow for data transmission
before all the k packets are collected for encoding, which reduces the end-to-end delay.

While the physical layer performs the coding operation at the symbol level—i.e.,
directly in bits—, IP networks are packetized erasure channels, meaning that full packets
are lost in the network because packets with uncorrectable bit flips are not forwarded
to the upper layer, or full packets are dropped due to buffer overflows. As a result,
HARQ at the transport layer must be capable of recovering full packets. The length of
IP packets is determined by the Maximum Transmission Unit (MTU) of the underlying
physical channel, which in Ethernet is 1,500 bytes. A common solution to coding with
large packets is virtual interleaving, which splits the packet into smaller symbols of
m bits. The interleaver buffer collects k packets; hence, the coding operations are
iterated throughout the complete packet length. PRRT implements precisely this coding
mechanism in GF (28) and is described in more details in Sec. 3.3.3.

2.3.2 Timing and Transport

Every new generation of wired and wireless communication technology has witnessed
an increase in the available throughput. For example, the evolution to Gigabit Ether-
net and beyond, or the increase from single Mbps to double-digit Gbps from 3G to 5G
mobile technologies. Nevertheless, corresponding reductions in latency have not kept
pace [38, 80, 100], making latency the limiting factor for the deployment of new ap-
plications such as CPSs or the Tactile Internet. While a predictable Flow Completion
Time (FCT) is crucial for real-time applications, it has also been demonstrated to im-
pact the user experiences in less time-sensitive applications such as web browsing or
file downloads [82, 100]. Even in these soft real-time applications that do not impose
strict timing constraints, having predictably low delays is highly beneficial. TCP is the
most widely deployed transport protocol and consequently, the FCT minimization prob-
lem has drawn significant attention from the TCP community over the last decade [64,
82, 91, 93, 112]. The rise of data-intensive applications such as machine learning has
pushed the FCT down to the baseline fabric latency [108, 158], thereby approaching the
theoretical minimum FCT of a fully reliable protocol such as TCP.

One line of research has focused on minimizing queueing delays via more efficient con-
gestion control. Congestion control is the main mechanism behind TCP’s performance,

20 Chapter 2.3: The Centrality of the Transport Layer

as it regulates how much and when data is sent into the channel. Most CCAs use packet
loss due to buffer overflow as the congestion signal—e.g., NewReno [87] or CUBIC [53].
However, these loss-based CCAs often suffer from bufferbloat : network buffers are kept
full, thereby causing a queueing delay that is in the order of tens or hundreds of millisec-
onds for most packets [84], although it may be as large as several seconds in extreme
cases [66, 75, 84]. Various CCAs, including DCTPC [64], PCC [102], TIMELY [108],
BBR [112, 201], Copa [134] or HPCC [158] have emerged to address this issue by directly
aiming to eliminate queues, thereby achieving lower and more predictable latency. Some
of these algorithms [64, 201] leverage network support with Explicit Congestion Notifi-
cation (ECN) [31, 175], which marks packets that experienced congestion for faster and
more precise congestion detection. Precise in-network telemetry may also be used for
more precise reactions to channel changes [158]. An alternative approach involves mak-
ing congestion control aware of timing requirements [82, 91, 113]. For instance, per-flow
timing information is distributed in [82] so that routers can reserve resources to meet the
deadline of as many flows as possible. Vamanan et al. [91] leverage timing information
in the congestion avoidance phase such that flows with a closer deadline get a larger
proportion of the bottleneck data rate. A deadline-aware NewReno implementation is
proposed in [113] which favors flows with a closer deadline to get a throughput above
their fair share.

A second research direction has focused on enhancing loss recovery mechanisms in
TCP to enable faster responses to packet losses. TCP’s fully reliable, in-order delivery
causes head-of-line blocking when packets are lost: out-of-sequence packets must be
buffered at the receiver until losses are recovered before they can be forwarded to the
application. Fast Retransmit [27] was originally proposed to trigger retransmissions upon
the arrival of duplicated ACKs, instead of solely relying on slow timeouts. However,
Fast Retransmit fails to operate effectively at the end of a transmission burst when
no further packets are transmitted, which may trigger the duplicate ACKs mechanism.
This problem, known as the tail loss recovery problem [93, 109], may increase the FCT
by several orders of magnitude. In such cases, the flow experiences long tail latency,
i.e., a few packets experience a delay significantly larger than the average packet delay,
resulting in a characteristic tail-shaped probability density function as it approaches the
x-axis. Flach et al. [93] have shown that proactively retransmitting packets without
duplicate ACKs or timeouts reduces the tail latency and recent loss recovery standards
already include this behavior by default [187]. Other standards propose better timeout
management that adapts the waiting time to network conditions [79], thereby reducing
the loss recovery time by one RTT [109]. Moreover, FEC has been introduced in TCP to
recover losses without retransmissions [63, 93]. Sundararajan et al. [63] show that FEC
significantly improves TCP’s achievable throughput over lossy links, whereas Flach et
al. [93] transmit a forward-encoded packet at the end of a transmission burst to mitigate
tail latency.

As a result of the aforementioned performance improvements, TCP has become
the prevalent protocol even in some time-sensitive niches—e.g., see Dynamic Adaptive
Streaming over HTTP (DASH) [81] or datacenters [64, 91]. Nevertheless, as a fully

Chapter 2.3: The Centrality of the Transport Layer 21

reliable protocol, TCP has some inherent theoretical limits to the timing guarantees it
can provide.

2.3.3 Theoretical Limits

Shannon’s channel coding theorem [13] states that the channel capacity C is defined in
terms of the mutual information I(x, y) as

C = max
px

(I(x, y))

and fulfills the following property: for any ϵ > 0 and R < C, for large enough N , there
exists a code of length N and rate r ≥ R such that the probability of block error is
pe ≤ ϵ. In the limit—i.e., large enough N—, the number of symbol losses is close to the
expected value. When operating in the finite block length regime, the number of losses
deviates from the expected value, which introduces two inefficiency sources:

1. Fewer losses than expected occurred. More redundancy information is transmitted
than required. The code operates below the channel capacity.

2. More losses than expected occurred. Less redundancy was transmitted than finally
required, and thus pe > ϵ.

These inefficiencies prevent codes operating in the finite block length regime from
reaching the optimal operation point. Polyanski et al. [70] derived a hard limit to how
well these codes may approach the channel capacity.

Increasing data rates and the ability to directly operate with symbols (instead of
packets) has enabled capacity-approaching codes in the lower layers of the stack—see
Turbo [23], LT [32], or LDPC [15] codes. However, a different approach has been adopted
in the packetized transport layer. The most widely deployed protocols, namely TCP
and Quick UDP Internet Connections (QUIC), implement an ARQ-based error control
mechanism. Thanks to feedback from the receiver, the protocol has precise knowledge
of what data must be re-transmitted [24, 187]. ARQ approaches the channel capacity
at the cost of some redundancy in the back channel in the form of acknowledgments.
TCP does not have dedicated ACK messages but it incorporates this information in the
headers of the packets sent by the other end in bidirectional communication, or in an
empty packet if the communication is unidirectional. Throughput-intensive applications
tend to utilize the complete MTU allowed by the physical channel, which in Ethernet-
dominated networks such as the Internet typically is 1, 500 bytes. In contrast, the
header field for the acknowledgments is 4 bytes long, thereby introducing a negligible
redundancy overhead.

Shannon’s coding theorem is completely time-agnostic. However, when strict time
constraints are introduced, the ability of a code to achieve the desired reliability level
depends on the time taken by the symbols to traverse the channel. Every packet trans-
mission has an associated erasure probability, but the time constraint may prevent new
retransmission cycles in ARQ or the transmission of enough parity packets in FEC. In

22 Chapter 2.3: The Centrality of the Transport Layer

other words, there is a limit to the reliability level that can be achieved in time-constraint
communications. A paradigm shift is required that puts the focus on predictable relia-
bility instead.

2.3.4 Predictable Reliability

As long as transport protocols maintain full reliability as a core principle, time pre-
dictability may be improved, but a fully predictable delay remains impossible. Loss-
triggered redundancy has been instrumental to the design of capacity-approaching error
control in fully reliable protocols due to its low redundancy overhead. Nevertheless,
when the deadline is too close to trigger any retransmission, less efficient proactive re-
dundancy must be sent to reach the desired reliability level. To provide broad support
for applications demanding a lower and more predictable delay [54, 101] and accomplish
a sustainable deployment [34, 55, 216, 199], a transport protocol should be designed
that:

1. Enforces a maximum tolerable delay, dictated by the application, between accept-
ing data from the application and delivering it to the receiving end.

2. Provides predictable reliability within that time window, maintaining a packet loss
rate that allows the application to operate safely.

3. Approaches the channel capacity by minimizing the transmitted redundancy so
that it is close to the optimal minimum required to fulfill the timing and reliability
requirements mentioned above.

The delay profiles of ARQ and FEC differ in nature. While the ARQ delay depends
on the round-trip time between retransmission cycles, the FEC delay depends on the
time required to collect symbols before encoding, typically in the form of packets in
the transport layer—i.e., the inter-packet time. Therefore, the three design principles
mentioned above aim to strike the optimal balance between FEC and ARQ, minimizing
the required RI to achieve a target delay and packet loss rate.

The Real-time Transport Protocol (RTP) [36], originally designed for real-time media
streaming, already implements some of the mechanisms to provide such a service. These
include jitter compensation, timestamps for clock synchronization, sequence numbers for
loss detection, and out-of-order delivery. RTP can also use FEC to correct losses without
incurring an RTT [50] and the GCC [121] congestion control algorithm has been proposed
to reduce queueing delay. The Datagram Congestion Control Protocol (DCCP) [44] is
a straightforward mechanism to add congestion control to UDP for real-time applica-
tions. The Secure Reliable Transport (SRT) protocol [182] offers a time-aware delivery
service that ignores late packets, implements congestion control, and combines FEC and
ARQ for error control. Unreliable QUIC streams [212] have been proven to outperform
TCP for the delivery of Video-on-Demand [144]. Zhang et al. [215] have made QUIC
time-aware and added an FEC scheme to avoid slow retransmissions, thereby improving
the QoE in DASH. The Loss-tolerant Transmission Protocol (LTP) [218] has been in-

Chapter 2.4: Conclusion 23

tegrated into PyTorch to speed up the training of large, distributed Machine Learning
models. Nevertheless, none of the aforementioned protocols combines time awareness
with a predictably reliable, capacity-approaching error control scheme that minimizes
the transmitted redundancy. The PRRT protocol [86, 163] developed at the Telecom-
munications Lab in Saarland University has been designed to fill that precise gap.

2.4 Conclusion

CPSs bridge the gap between the physical and the digital world by closing real-time con-
trol loops over embedded computers and networks. Given the broad set of application
domains, these systems have the potential to permeate our day-to-day lives and dwarf
the digital revolution we have experienced in the last decades. Thanks to the more ra-
tional use of resources and the real-time monitoring and control of processes, CPSs are
a promising tool to face one of the major societal challenges of this century, namely cli-
mate change. However, current computing abstractions do not guarantee reliability and
timeliness, the two functional requirements for correctness in CPSs. Additionally, energy
efficiency should be considered as a non-functional requirement to ensure a sustainable
deployment, so that the energy demand of these systems is only reduced as long as it
has no negative impact on their correct operation. We envision open-source operating
systems with open protocol stacks to play a similar role to the broad adoption of CPSs
as they did for web-based applications. In particular, this thesis focuses on the transport
layer, which is central to the communication process of distributed CPSs because it is
their direct access to the communication channel. The end-to-end perspective of the
communication channel allows the transport layer to ensure that the data is forwarded
to the application within a specified delay budget while ensuring a target packet loss
rate. However, widely deployed transport protocols have some foundational shortcom-
ings that prevent them from fulfilling CPS requirements. The following chapter presents
the PRRT protocol, which addresses these shortcomings, thereby enabling CPSs on a
wide scale.

24 Chapter 2.4: Conclusion

Chapter 3

Predictably Reliable, Real-Time
Transport

Current standardization efforts aimed at meeting the predictable reliability and tim-
ing CPSs demand are restricted to deterministic performance guarantees in layers 2
with Time-Sensitive Networking (TSN) [139] and 3 with Deterministic Networking (Det-
Net) [149]. However, this determinism is not extended to the fourth layer, namely the
transport layer, where commonly used protocols such as TCP, UDP, QUIC, RTP, and
DCCP do not offer similar performance abstractions to the upper levels of the protocol
stack. Consequently, applications lack a straightforward interface to the deterministic
channels.

The fifth generation of mobile communication, also known as 5G, includes Ultra-
Reliable and Low-Latency Communication (URLLC) as a target application. 5G-TSN
deployments [143, 152, 225] have become common to support wireless CPSs such as
swarm robotics [128, 159, 185, 226], or connected vehicles [2, 4, 78, 110]. Neverthe-
less, providing the same performance guarantees in the wireless scenario is a much more
challenging task due to the dynamic behavior of the channel, which has been corrobo-
rated both in simulations [152] and real deployments [184]. There is a clear need for a
transport protocol that not only provides performance guarantees to the application in
terms of reliability and timeliness, but that is able to adapt to changes in the underlying
channel to ensure the performance with a minimum resource footprint. The Predictably
Reliable Real-time Transport (PRRT) protocol has been specifically designed to address
this gap. This chapter presents the rationale behind the PRRT protocol and introduces
the fundamental components that enable it to support CPSs.

3.1 Design Principles

The PRRT is the first of its kind to enable CPSs through a unique combination of cross-
layer pacing and adaptive HARQ, which allows it to transmit data with the desired
performance assurances—or alternatively, inform the application when the channel does
not allow it—while minimizing its resource consumption.

25

26 Chapter 3.1: Design Principles

3.1.1 Supported Applications

The target applications of a protocol greatly influence the set of available tools and
techniques available for its design. While originally designed for real-time multimedia
applications [86], PRRT has been later extended to accommodate CPSs as well [163].
This extension is justified by the shared characteristics of both application types, par-
ticularly in terms of latency and reliability requirements.

Real-time multimedia streaming applications demand a relatively constant data ar-
rival rate to ensure seamless playback. Receiver buffers are employed to compensate for
jitter, allowing for a certain reaction time before performance degradation becomes per-
ceptible to the user. The size of the buffer is determined by the maximum tolerable delay
for the specific application. For instance, a Video-on-Demand (VoD) service may employ
buffers spanning several seconds [183], whereas video conference applications typically
use buffers in the range of tens to hundreds of milliseconds [77]. In these applications,
delayed packets are usually discarded without significant performance degradation due
to error concealment—e.g., interpolating missing samples from neighboring ones—and
even if they produce visible artifacts, often they are recovered after a few frames and they
do not significantly impact the Quality-of-Experience (QoE) perceived by the user [107].
In summary, real-time multimedia applications are loss-tolerant, as no notable QoE drop
appears as long as losses are maintained within a predictable threshold, but demand the
data to be available before the hard deadline of the playback time.

Similarly, CPS data must be delivered with time and reliability assurances to ensure
safe operation. However, CPSs introduce a nuance in the timing aspect that is frequently
overlooked: although there are CPSs that do demand low latency [101], their main
concern lies in time predictability so that messages are delivered and actions occur
precisely when required [54]. It is important to note that not all the data must be
received before the deadline as CPSs are weakly hard real-time systems that accept
deadline misses so long as they occur in a predictable manner [30, 124, 196].

3.1.2 Self-Aware Transport

For PRRT to fulfill the reliability and timeliness requirements of the aforementioned
applications, it must first implement an Application Programming Interface (API) for
the CPSs to state its requirements. Once they are known, the protocol must be aware
of the channel it operates on, as well as self-induced delays and packet losses that would
also contribute to these targets. In other words, it must be a self-aware protocol as
defined in [104], for which it must fulfill the following three properties:

1. Self-reflective: aware of its software architecture, execution environment, and
hardware infrastructure on which it is running, as well as its operational goals.

2. Self-predictive: able to predict the effect of dynamic changes and the effect of
possible adaptation actions.

3. Self-adaptive: proactively adapting as the environment evolves to ensure its op-
erational goals are continuously met.

Chapter 3.1: Design Principles 27

TCP UDP QUIC RTP PRRT

Reliability Full None Full/Partial Partial Predictable

Timeliness None None None Real-Time Predictable

Congestion control Yes No Yes Yes Yes

Error Control ARQ None ARQ/FEC FEC HARQ

Self-Awareness No No No Partial Yes

Security TLS None TLS SRTP DTLS

Table 3.1: Qualitative comparison of the most common transport protocols with PRRT.

The PRRT protocol fulfills these three properties. First, it provides an API for the
application to state its target packet loss rate for reliability and delay for timeliness (i.e.,
self-reflective). Second, in order to meet these two requirements, it measures process-
ing and network delays (i.e., self-reflective) and builds a channel model to predict the
expected packet loss rate and end-to-end delay (i.e., self-predictive). Third, the model
is continuously updated so that the protocol can adapt its configuration under dynamic
channel conditions (i.e., self-adaptive). Table 3.1 provides a qualitative comparison of
PRRT with the most frequently used transport protocols, showing that only PRRT
provides the desired characteristics to support CPSs.

3.1.3 Protocol Architecture

Fig. 3.1 illustrates the different components of the PRRT protocol. Time awareness is
achieved by adding a timestamp and a timeout to every transmitted data packet. At
the receiving end, only in-time packets are forwarded to the application using either
the asap—i.e., as soon as possible—or in-order reception modes. On the one hand, the
asap mode forwards every in-time packet as soon as they are received, and hence the
application must tolerate packet reordering. On the other hand, in the in-order mode,
the protocol waits for a reordering window upon the reception of every packet, in which
out-of-sequence packets arriving in time may be reordered.

In order to fulfill the application constraints, the protocol must first be aware of
them. PRRT provides an API for the application to state:

• Target delay: the maximum time that can elapse between data being accepted
by the protocol and it being forwarded to the application on the receiver.

• Target packet loss rate: percentage of packets that can be lost at maximum by
the protocol.

Once these constraints are known, the protocol leverages its tailored congestion and
error control functions to ensure their compliance. Cross-Layer Pacing (X-Pace) extends
congestion control to other layers of the protocol stack to avoid self-inflicted queueing
delay not only in network buffers but in every buffer in the end-to-end pipeline. Adaptive
HARQ finds the optimal balance between FEC and ARQ, such that the redundancy is
minimized while ensuring that losses are corrected in time.

28 Chapter 3.2: Cross-Layer Pacing

PRRT

Adaptive HARQ

Encoder

SchedulerX-Pace Loss Detection

Application Layer

Network Layer

pace

RC , RTT
pe

d
a
ta

re
d
u
n
d
a
n
c
y

NP

(k, n)

round trigger

feedback

constraints

Figure 3.1: PRRT Architecture

3.2 Cross-Layer Pacing

Buffers have become an essential component in modern systems, facilitating asynchronous
process-to-process communication and preventing data loss during sporadic bursts. How-
ever, a side effect of buffers is the emergence of bufferbloat whenever the arrival rate is
consistently above the consumption rate [74, 84], thereby introducing a queueing delay.
This issue is exemplified in Fig. 3.2a, which represents a system with three data process-
ing steps (S1, S2, and S3) and the buffers between these steps (B1,2 and B2,3). It can
be observed that, as S1 is not aware of the bottleneck of the system—i.e., the step that
takes the longest to process a data unit, in this case S2—, the packets it transmits are
queued in B1,2 until they can be processed. The four blue bars at the bottom represent
the time elapsed since the creation of the data by the application, which increases as
packets spend more time in B1,2.

In order to tackle bufferbloat, pacing has been introduced in the transport layer [102,
112, 201] so that, instead of transmitting packets in bursts, they are spaced to achieve
the desired data rate. In Fig. 3.2b pacing is applied to the previous example. S1 is now
aware of how long S2 takes to process a data unit. Packets are consequently delayed—
i.e., paced—so that they arrive at B1,2 at the precise point in time that ensures the
buffering time is minimum. As a result, packets experience a lower and more predictable
delay when they arrive at S3.

Chapter 3.2: Cross-Layer Pacing 29

S1

B1,2

S2

B2,3

S3

1 2 3 4

1 2 3 3,4 4

1 2 3 4

1 2 3 4

1 2 3 4

D1

D2

D3

D4

(a) Unpaced

S1

B1,2

S2

B2,3

S3

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

D1

D2

D3

D4

(b) Paced

Figure 3.2: Pacing keeps the bottleneck throughput but avoids excessive buffering la-
tencies (marked as red striped) and increased E2E latencies (marked as blue hatched) [3]

Sender

Receiver

Application

P (send)

Send

Queue

PRRT

P (transmit)

Network
Rbtl, PLR,Dprop,

Dqueue, Dtrans

Application

P (deliver)

Recv

Queue

PRRT

P (receive)

max(P (deliver), P (receive), P (transmit), P (nw))

P (nw)

P (deliver)
max

(
P (deliver),

P (receive)

)

P (receive)

max

(
P (send),

P (transmit),

P (nw)

)
P (send)implicit

pacing

explicit
backward

pacing

explicit
forward

pacing

Figure 3.3: X-Pace system architecture. X-Pace measures and communicates the pace
of the different steps, and adapts the paces across the entire system [3]

Buffers are present in several steps in the end-to-end pipeline seen by the application—
e.g., in the transport layer, network cards, routers, etc. Therefore, in order to minimize
the end-to-end delay, the pacing concept must be extended to more layers of the protocol
stack. PRRT does so with X-Pace [3, 6, 163] to avoid the creation of permanent queues,
regardless of where the buffers are.

Fig. 3.3 provides an overview of how X-Pace works within the context of PRRT. The
protocol measures the pace—i.e., how long the system takes to process a data unit, for
example, a packet—of the different steps. The sender and receiver application paces
can be either directly provided by the application via an API or measured by PRRT.
The protocol also measures the pace for the transmit and receive steps, as well as the
network pace. X-Pace determines how long a packet takes to traverse the network
with the bottleneck data rate and round-trip time estimators implemented in the BBR
congestion control [203]. Once the protocol gathers the pacing information from all
steps, it can determine where the bottleneck of the system—i.e., the step with the
highest pace—is. Every step before this bottleneck must adapt to the bottleneck pace,

30 Chapter 3.3: Adaptive HARQ

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

d13

timeout
lossCount[2] = 1

lossCount[2] = 2

lossCount[2] = 3; erasureCount++

timeout
lossCount[7] = 1

timeout
lossCount[7] = 2; lossCount[8] = 1

timeout
lossCount[7] = 3; lossCount[8] = 2; lossCount[9] = 1; erasureCount++

lossCount[8] = 3; lossCount[9] = 2; lossCount[10] = 1; erasureCount++

lossCount[9] = 3; lossCount[10] = 2; erasureCount++

lossCount[10] = 3; erasureCount++

Figure 3.4: Loss detection algorithm with loss threshold = 3 and the timeout set to
one inter-packet time (DPL = 3 · Ts). No packet reordering is considered.

or else queues would appear, whereas the steps behind the bottleneck may decide to
adapt to the bottleneck—e.g., to reduce their resource footprint [5]—, but they are not
strictly required to do so.

3.3 Adaptive HARQ

Error control in PRRT is based on HARQ, and its main components are depicted
in Fig. 3.1. The HARQ-based error correction function employs an encoder to generate
parity packets for loss recovery. Loss detection triggers reactive retransmission rounds,
and a scheduler controls the number of parity packets transmitted in each round. Orches-
trating the error control process is an Adaptive HARQ function that senses the channel
to estimate its characteristics and configures the whole system to fulfill the application’s
target delay and packet loss rate constraints.

3.3.1 Loss Detection

Error control requires a mechanism to detect packet losses to either trigger repair cycles
in ARQ or HARQ, or obtain the correct generator matrix based on the packets that
have been received in FEC or HARQ. In PRRT, packets always carry a sequence number
that is monotonically increased with the transmission of every new packet, and packet
reception is acknowledged with positive ACKs.

The loss detection algorithm proposed in [68] operates on the receiver side, as il-
lustrated in Fig. 3.4. A lossCount is maintained for every outstanding packet, which
is increased upon two events: i) an out-of-sequence packet arrives, or ii) a timeout oc-
curs before the packet’s arrival. The timeout can take any value between one and two
inter-packet times—i.e., λ ∈ [Ts, 2 · Ts]. Once the counter reaches a specific thresh-
old (lossCount ≥ loss threshold), the packet is considered lost and a global erasure
counter (erasureCount) is increased and notified to the sender (see Sec. 3.4). The algo-

Chapter 3.3: Adaptive HARQ 31

t
RTT + DRS + 4.5 · Ts

t
RTT + DRS + 6 · Ts

Target Delay

loss threshold = 3

loss threshold = 4

Figure 3.5: Impact of the loss threshold parameter in loss detection on the ARQ delay.
The sender must wait for losses to be detected before triggering a new round. In the
worst case, the sender must wait for loss threshold timeouts. The figure considers a
timeout λ = 1.5 · Ts and loss threshold = [3, 4].

rithm’s robustness towards misclassifications caused by packet reordering is determined
by loss threshold, which also affects the loss detection delay DPL. On the one hand,
out-of-sequence packets or if λ = Ts produce the fastest loss detection, in which case
DPL ≥ loss threshold · Ts. On the other hand, if λ = 2 · Ts, loss detection can take at
most loss threshold timeouts to be detected, and hence DPL ≤ 2 · loss threshold · Ts.
The timeout in PRRT is configured to λ = 1.5 · Ts to avoid waiting long times in the
presence of long bursts of lost packets.

Under delay constraints, delayed packets arriving beyond the time budget are equiva-
lent to lost packets. In addition, an excessive delay in loss detection may trigger retrans-
mission cycles too late to meet the constraints, thereby forcing more parity packets into
earlier cycles (see Fig. 3.5). Therefore, in the trade-off between loss miss-classification
due to packet reordering and loss detection delay, PRRT is configured with a low thresh-
old (loss threshold = 3) that avoids waiting a long time to trigger retransmission cycles.
Such a threshold is in line with TCP’s Fast Retransmit mechanism [27], which uses three
duplicated ACKs as the signal to retransmit a packet.

The loss detection algorithm presented so far provides quick detection so long as the
application has a relatively constant inter-packet time, which is the case for real-time
applications and CPSs. However, the transmission of parity packets occurs at a different
rate that depends on the RTT between retransmission cycles instead of the Ts as the
data packets. If Ts ≪ RTT , timeouts expire faster than the sender transmits parity
packets. Conversely, if RTT ≪ Ts, parity packet loss detection takes significantly longer
than the parity packet arrival time. The latter scenario is akin to the tail loss recovery
problem encountered in TCP [93, 109], where the absence of duplicated ACKs at the
end of a transmission burst results in slow error recovery. The tail loss recovery problem
has been solved by taking proactive measures at the end of the burst to avoid waiting
for timeouts [93, 187]. PRRT addresses this issue by implementing Preemptive Loss
Notifications. Upon receiving the first parity packet for a block, the receiver expects the
subsequent parity packet to arrive within the next ∆rr milliseconds, defined as the time
between retransmission cycles (see Eq. (3.1)). If no parity packet is received within this
timeframe, the receiver sends a preemptive Negative Acknowledgment (NAK), allowing

32 Chapter 3.3: Adaptive HARQ

parity packet loss recovery within one RTT . The sender treats the NAK as a loss if it
had already transmitted the corresponding parity packet; otherwise, the NAK is ignored.

3.3.2 Scheduler

The scheduler determines how parity packets are injected into the stream of data packets.
The parameter NP governs whether they are transmitted in the proactive FEC cycle or
one of the NC reactive ARQ cycles, where every entry NP [i] is the number of parity
packets transmitted in the i’th cycle. i = 0 corresponds to FEC and is always scheduled
immediately after transmitting the k’th packet in the block. On the other hand, time-
triggered scheduling is used for ARQ cycles: the sender must wait for at least one RTT
for the ACK of the last transmitted packet, and at most RTT +DPL to account for the
loss detection below (see the loss detection algorithm above). The term DRS is added
to account for the packet processing time at the receiver and ACK processing time at
the sender, thereby avoiding retransmission cycles being triggered too early.

∆rr = RTT +DPL +DRS (3.1)

For every block, a timer is set to trigger a new retransmission cycle after ∆rr mil-
liseconds (see Eq. (3.1)) if a loss has been detected. If no loss is detected, the cycle is
skipped and a new timer is set. This process continues until either the receiver signals
that k packets have been received or the sender exhausts all the available rounds for the
block.

3.3.3 En-/Decoder

PRRT’s encoder and decoder use systematic MDS Vandermonde code in the Galois Field
GF (28) and hence the en-/decoding operations are performed byte-wise. This compo-
nent is fully configurable, i.e., PRRT can use any C(n, k) code with k, p ∈ [0, 255]; s.t. n ≤
255.1 The two basic coding operations, namely matrix-vector multiplication and matrix
inversion, have been implemented with dynamic programming to avoid costly modulo
operations [26]. Given a non-zero field element x = αkx (here kx can be considered the
logarithm of x), field multiplication and division can be computed with Eq. (3.2) and
Eq. (3.3), respectively.

x · y = α|kx+ky |q−1 (3.2)

1

x
= αq−1−kx (3.3)

PRRT pre-computes four tables offline, consisting of i) every field in the element
indexed by their exponent, ii) the logarithm of every field element, iii) the division of

1In systematic form, a code in GF (28) allows for n ≤ 510. However, we have limited n ∈ [0, 255]
to reduce the solution search space (see Sec. 4.2), where n = 0 signals that no valid configuration is
available that meets the constraints (more on this in Sec. 3.5.1).

Chapter 3.3: Adaptive HARQ 33

every field element, and iv) the multiplication of every two field elements. The size of
these tables depends on the field size q = 2m. They have a memory complexity O(2m)
except for the multiplication table, which has a complexity O(22m).

Multiplication and division operations boil down to a table lookup. The complexity
for the matrix-vector multiplication is O(ke) and O(ke2) for the matrix inversion, where
e ≤ min(k, n − k) the number of lost packets. The Gauss-Jordan algorithm is used to
perform the matrix inversion, which benefits from the code being systematic because row
reduction must only be used in the e columns stemming from parity packets. Fig. 3.6
depicts how the matrix-vector multiplication is performed over complete packets. Given
that symbols are one byte long, the operation must be iterated throughout the complete
packet length (Lp), both for encoding and decoding, whereas the matrix inversion must
only be done once per decoding operation.

CMDS
mul = O(keLp) (3.4)

CMDS
inv = O(ke2) (3.5)

In Ethernet deployments, Lp = MTU = 1, 500 bytes. Therefore, Lp ≫ e—i.e., at
maximum p packets can be lost and p ≤ 255 in GF (28)—, and hence the complexity
of the multiplication (Cmul) dominates over the complexity of the inversion (Cinv). A
higher-order field would increase the symbol length and shorten the iteration throughout
the complete packet. However, this complexity reduction approach would turn PRRT
unable to run on constrained devices because the size of the dynamic tables mentioned
above grows exponentially with the number of bits per symbol. Chapter 6 addresses
this issue more in detail and proposes an alternative, energy-efficient coding function for
PRRT.

3.3.4 Channel Estimation

For the adaptive HARQ function to adapt its performance to the underlying channel,
it receives estimates for the data rate (RC), round-trip time (RTT) and erasure rate
(pe) from the X-Pace and Loss Detection components (see Fig. 3.1. X-Pace implements
BBR’s channel estimation [112, 203] with the data rate and RTT estimations in Eqs. (3.6)
and (3.7), respectively.

R̂C = max(RC [t]) ∀ t ∈ [T −WB, T] (3.6)

R̂TT = min(RTT [t]) ∀ t ∈ [T −WR, T] (3.7)

The vectors RC and RTT contain samples for each metric obtained in the time
window WB and WR, respectively. The algorithm in [203] samples the data rate and
round-trip time at two different granularities: the time window WB is typically six to
ten RTTs, while the window WR is typically tens of seconds to minutes. These window

34 Chapter 3.3: Adaptive HARQ

c[x][y] =
∑k−1

i=0 m[i][y] ·G[x][i]

k

MTU

p

MTU

p

k

Figure 3.6: Visualization of the matrix-vector multiplication performed by the PRRT
protocol. Given the message vector m, the parity vector c is c = m ·G, where G is the
generator matrix of a systematic code. In a packetized layer with virtual interleaving, m
and c are matrices of size k×MTU and p×MTU , respectively. Therefore, the operation
must be iterated throughout the complete packet length to encode a complete packet.
Each square in the picture represents an element in GF (28)—i.e., a byte.

values assume fast-changing data rates due to congestion while the RTT is relatively
stable for longer periods because path changes occur on larger time scales [112].

PRRT’s Loss Detection function keeps track of whether a packet is marked as received
or lost in the loss vector, in which a 0 denotes a received packet and a 1 means the packet
was lost. The channel erasure rate is estimated as the sample mean of the lost packets
in a sequence of WL packets (see Eq. (3.8)), which is the maximum-likelihood estimator
for the pe [86]. The window size can be configured to achieve a specific accuracy of ±ape
with a confidence level ν with Eq. (3.9). According to [86], WL = 16, 500 samples can
estimate a channel erasure rate of 1% with an accuracy of ±0.2 with 99% confidence
level.

p̂e =
1

WL
·
WL∑

t=1

loss sequence[t] ∀ t ∈ [T −WL, T] (3.8)

WL =

(
1

p̂e
− 1

)
·
(

ν

ape

)2

(3.9)

This thesis considers the simple i.i.d. channel model, which does not model the
temporal correlation of packet losses that are common in IP networks—e.g., if a network
buffer overflows. [86] shows that the low precision of such a channel model can be
compensated with more conservative decisions for the PRRT parameters. Therefore,

Chapter 3.4: Packet Format 35

Type Priority Index Sequence Number

0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Packet Specific Header

Figure 3.7: PRRT General Header

0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timestamp

Sender Pace

Data Length

Round-Trip Time

Packet Timeout

Bottleneck Data Rate

Figure 3.8: PRRT Data Header

the implementation of more sophisticated channel models, such as the Gilbert-Elliot
model, is not justified in PRRT given their higher complexity.

3.4 Packet Format

Every PRRT packet begins with the General Header depicted in Fig. 3.7. This header
begins with the packet Type—i.e., Data, Parity, Feedback, or NAK—, followed by the
Priority field, which is currently unused. The Index field signals the position of the
packet in the coding block it belongs to (see Sec. 2.3.1 for more details). The Sequence
Number is independently treated for every packet type—i.e., the Sequence Number does
not univocally identify a packet, but the (Type, Sequence Number) tuple does.

Every General Header is followed by a packet-specific header. The Data Header
(Fig. 3.8) begins with the Timestamp, which represents the acceptance time of the
data in the payload by the protocol stack. Sender Pace is the maximum pace at the
sender side, which is followed by the length of the payload in bytes (Data Length). The
estimated round-trip time and bottleneck data rate are communicated in the Round-
Trip Time and Bottleneck Data Rate fields, respectively. The packet expiration time,
calculated by adding the application target delay to the Timestamp, is put in tthe Packet
Timeout field.

Parity packets carry all the necessary information to configure the decoder in its
header, depicted in Fig. 3.9. As in the Data Header, the packet creation timestamp
(Timestamp) and the sender pace (Sender Pace) are the first two fields in the header.
The parity-specific fields are the codeword length (n), block length (k) and Base Sequence

36 Chapter 3.5: Optimal Hybrid Erasure Coding

0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timestamp

Sender Pace

n k Base Sequence Number

Figure 3.9: PRRT Parity Header

0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Forward Trip Time

Receiver Pace

Erasure Count Packet Count

Gap Length Gap Count

Burst Length Burst Count

ACK Type ACK Sequence Number

Figure 3.10: PRRT Feedback Header

Number fields. The latter is the sequence number of the first data packet in the block
the parity packet belongs to, and is used by PRRT for block indexing.

Feedback packets notify timing information (Forward Trip Time and Receiver Pace),
packet reception statistics (Erasure Count and Packet Count), information on bursts of
lost (Gap Length and Gap Count) and received packets (Burst Length and Burst Count).
In addition, the header (see Fig. 3.10) contains information to univocally identify the
acknowledged packet (ACK Type and ACK Sequence Number).

NAKs are only used in PRRT to preemptively signal the loss of parity packets.
Therefore, their header only contains the sequence number of the parity packet deemed
as lost (NAK Sequence Number) and the base sequence number of the block it belongs
to (NAK Base Sequence Number).

3.5 Optimal Hybrid Erasure Coding

For the adaptive HARQ function to adapt its performance, it does not only require
the application constraints and a channel model but also the definition of a desired
metric the system must be optimized against. Minimizing the transmitted redundancy
is essential for any networked system because it reduces the resource footprint—i.e.,
fewer packets are encoded and transmitted, with the power draw it entails—, and is
fair with other systems the network resources are shared with, one of the fundamental
aspects in transport layer design [169]. The centrality of the RI motivates its selection as

Chapter 3.5: Optimal Hybrid Erasure Coding 37

0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NAK Sequence Number NAK Base Sequence Number

Figure 3.11: PRRT NAK Header

the function to minimize. In the following, a formal model of the optimization problem
adaptive HARQ solves is presented.

3.5.1 The Optimization Problem

Every HARQ scheme is fully determined by two parameters: the block length (k) and the
repair schedule (NP), which in turn dictates the number of parity packets (p = ||NP ||1,
with ||NP ||1 the 1-norm of the repair schedule vector) and the number of retransmission
cycles (NC). Therefore, adaptive HARQ’s task is finding the optimal (k,NP) tuple that
minimizes the RI. The optimization problem is formally defined in Eq. (3.10).

k∗, NP
∗ =argmin

k,NP

RI(k,NC , NP)

such that:DHARQ(k,NC , NP) ≤ DT

PLRHARQ(k, ∥NP ∥1) ≤ PLRT

Dr(k,NC , NP) ≤ RC

k, p,NC ∈ N
k, p,NC ≤ 255

(3.10)

The selected configuration must fulfill five constraints:

(i) The delay of any packet in the block (DHARQ(k,NC , NP)) must be below the
application’s target delay (DT).

(ii) The average packet loss rate (PLRHARQ(k, ||NP ||1)) must be below the applica-
tion’s target loss rate (PLRT).

(iii) The transmitted data rate (Dr(k,NC , NP)) must be below the channel’s bottleneck
data rate to avoid congestion (RC).

(iv) The variables k, p, and NC are natural numbers because the coder can only operate
on full symbols and a fraction of a repair cycle cannot exist.

(v) The employed MDS code forces k, p ∈ [0, 255]—the optimization algorithms out-
puts k = 0 only when no configuration is found that satisfies all the configurations
at the same time. Since every repair cycle must transmit at least one parity packet,
NC ≤ 255 also holds.

38 Chapter 3.5: Optimal Hybrid Erasure Coding

t

d1

d2

d3

d4

d5

d6

k = 6

p1
p2NP [0] = 2

p3
p4
p5

NP [1] = 3

p6
p7
p8

NP [2] = 3

RTT
2

k · Ts

NP [0] ·Dtx

RTT

NP [1] ·Dtx

RTT

NP [2] ·Dtx

Data packet

Transmitted parity packet

Skipped parity packet

Figure 3.12: HARQ delay budget

Channel Model

The RI is defined in Eq. (3.11), which is no more than the weighted sum of the trans-
mitted parity packets in each cycle. The weight pMf [c] is the probability of each new
cycle being triggered in a multicast group with M receivers—see Eq. (3.12). From the
perspective of a single receiver, a new repair cycle must be triggered if less than k packets
were received but no more packets were lost than can be recovered with the remaining
parity packets in the schedule. In the latter case, the equation system remains under-
determined even in the event of receiving all the remaining parity packets, and hence
their transmission is futile. For example, if k = 10 and NP = [0, 1, 1], if three losses are
detected before triggering the first ARQ cycle, the repair cycles need not be scheduled.
This repair cycle scheduling mechanism is modeled in Eq. (3.13). We assume the sender
keeps triggering retransmission cycles until all receivers receive k packets.

RI(k,NC , NP) =
1

k
NP [0] +

1

k

NC∑

c=1

pMf [c] ·NP [c] (3.11)

pMf [c] = 1− (1− pf [c])
M (3.12)

pf [c] =

k−1∑

i=max(0,n[c−1]−p)

(
n[c− 1]

i

)
(1− pe)

ipe
n[c−1]−i (3.13)

While the FEC delay Eq. (3.14) depends on the source packet interval Ts to collect
k data packets before encoding, the ARQ delay Eq. (3.15) is RTT-dominated due to the

Chapter 3.5: Optimal Hybrid Erasure Coding 39

ACK-triggered retransmission process. The HARQ delay Eq. (3.16) can be represented
as the combination of its FEC and ARQ components, as depicted in Fig. 3.12.2 Retrans-
mission cycles are only triggered upon the detection of packet losses (see Sec. 3.3.1), and
thus the time the system takes to detect losses must be considered in the model. The loss
detection algorithm introduced in Sec. 3.3.1 is configured with a timeout λ = 1.5 ·Ts and
a threshold loss threshold = 3, which results in a loss detection delay DPL = 4.5 · Ts.
This configuration has been selected because it provides a good trade-off between loss
misclassification and fast retransmission cycles. Finally, DRS models the processing
delay introduced by the protocol, which can be obtained from X-Pace (see Sec. 3.2).

DFEC(k,NP) =
RTT +DRS

2
+ k · Ts +NP [0] ·Dtx (3.14)

DARQ(NC , NP) =
RTT

2
+

NC∑

c=1

(RTT +NP [c] ·Dtx +DRS +DPL)

=
RTT

2
+NC · (RTT +DRS +DPL) + (||NP ||1 −NP [0]) ·Dtx

(3.15)

DHARQ(k,NC , NP) = DFEC(k,NP) +DARQ(NC , NP)−
RTT

2
(3.16)

The constant inter-packet time in Eq. (3.14) assumes some periodic behavior from
the application—e.g., video streaming with a constant frame rate, sensors in CPS with
a constant sampling rate, or periodic control messages as the controller reacts to those
sensor samples. In some cases, these real-time applications react to changes in network
conditions by adapting their data rate. For example, Adaptive Bit Rate (ABR) algo-
rithms in DASH [126, 183] and adaptive sampling rate in networked control systems [99].
Nevertheless, the data rate is still governed by the application and this information could
be provided via PRRT’s API. On the contrary, the Ts estimation function must be able
to detect bursts for PRRT to support bursty, time-aware traffic. PRRT can detect a
burst when no more data is provided after Ts, in which case a new constraint is added
that caps k to the maximum achievable block length for such a burst.

The packet loss rate is given in (3.17), where P (Ik = i) is the probability of being
unable to decode exactly i data packets—i.e., the loss rate as seen by the application—
when a systematic MDS code is used. The expression considers binary erasure channels
with i.i.d. losses.

PLRHARQ(k, p) =
1

k

k∑

i=1

i · Pr(Ik = i) (3.17)

2The delay models presented here assume symmetrical network delays for simplicity. However, the
X-Pace function in PRRT provides precise timing information for both directions of the communication
channel, and hence the protocol can be easily extended to channel with asymmetrical delays.

40 Chapter 3.6: The need for HARQ

Pr(Ik = i) =

p+i∑

e=max(p+1,i)

(
n

e

)
· pee · (1− pe)

n−e · pd
(
e

i

)
(3.18)

pd

(
e

i

)
=

(
k
i

)(
n−k
e−i

)
(
n
e

) (3.19)

While the previous two constraints deal purely with application constraints, the
data rate constraint avoids network congestion by ensuring that the transmitted data
rate (3.20) is below the bottleneck data rate of the network RC .

Dr(k,NC , NP) = (1 +RI(k,NC , NP)) ·
Lp

Ts
(3.20)

The three constraints are expected to be checked relatively often, since PRRT must
check them before taking any (k,NP) pair as a valid configuration. Therefore, reducing
the run-time complexity of the constraints check becomes imperative. While the delay
expression can be directly evaluated in O(1)—see Eq. (3.16)—, a recursive approach has
been used to reduce the complexity of the PLR and data rate evaluation. Appendix A
presents an algorithm to obtain Eq. (3.17) with run-time complexity O(k + log(p)),
whereas Eq. (3.20) can be evaluated in O(k + p), as shown in Appendix B.

3.6 The need for HARQ

The formal definition of the time-aware error control problem provided in Eq. (3.10)
enables us to test the fundamental hypothesis behind the PRRT protocol: an HARQ-
enabled error control function is essential for the efficient transport of time-aware data.
A dataset of 2.5 million samples resembling realistic network conditions has been cre-
ated to test this hypothesis. The samples are input into three different versions of the
optimization problem in Eq. (3.10): i) an HARQ version with the problem as it is, ii)
a pure ARQ version, and iii) a pure FEC version. Pure ARQ is enforced by ensuring
that no packet is encoded (k ≤ 1), the proactive cycle cannot be used (NP [0] = 0), and
no proactive packets are transmitted in later rounds (NP [i] ≤ 1 ∀ i > 1). On the other
hand, pure FEC is enforced with the constraint NC = 0 so that redundancy is solely
transmitted in the proactive cycle.

3.6.1 Methodology

The design of a dataset that represents realistic network conditions is instrumental for
the evaluation of the hypothesis. The dataset considers 6 input parameters:

• Application parameters: target delay (DT), packet loss rate (PLRT), and source
packet interval (Ts).

• Network parameters: channel erasure rate (pe), round-trip time (RTT), and bot-
tleneck data rate (RC).

Chapter 3.6: The need for HARQ 41

Table 3.2: Selected orders of magnitude for the generation of the parameter dataset.

Parameter Orders of Magnitude Unit Reference

PLRT 10−3, 10−4, 10−5 rate [77]

DT 100, 101, 102 ms [77, 101, 125]

pe 10−1, 10−2, 10−3, 10−4 rate [131, 184]

RTT 100, 101, 102 ms [120, 184]

RC 10−1, 100, 101, 102, 103 Mbps [120, 126, 145, 184]

Ts 10−1,100, 101 ms [94, 136]

Faithfulness is achieved by considering throughput, round-trip time, and loss rate
traces collected in the wild for the most common network deployments—i.e., broad-
band [126], 4G [145], 5G [178, 184], and WiFi [120, 131]. When it comes to application
parameters, the dataset considers the requirements the PRRT has been designed to sup-
port: real-time multimedia applications [77, 94] and CPSs [101, 125, 136]. For every
parameter, Table 3.2 collects orders of magnitude that are frequently found in the wild,
according to the aforementioned references. For the generation of the dataset, an order
of magnitude in Table 3.2 is randomly selected for every parameter, together with a
leading number between 1 and 9. This process is repeated 2.5 million times in order to
achieve good generalizability.

The delay and loss rate models consider three other parameters that have not been
included in the dataset here presented (see Eq. (3.16) and Eq. (3.17)). The packet length
is assumed to be fixed (Lp) to the MTU of the underlying physical medium, which in IP
networks is typically limited by the Ethernet MTU (i.e., Lp = 1, 500 bytes). Although
precise processing delay information could be fed into the algorithm [3, 6], a rather
conservative constant processing delay DRS = 1 ms has been considered for a device-
agnostic analysis. Finally, given the loss detection mechanism implemented in PRRT
(see Sec. 3.3), DPL = 4.5 · Ts, which is the upper bound to the loss detection delay.

Definition 3.6.1 (Valid Configuration). An HARQ configuration (k,NP) is a valid
configuration if, given the channel modelM(pe, RTT ,RC) observed by the protocol, it
fulfills the DT , PLRT and RC constraints in Eq. (3.10).

Definition 3.6.2 (Optimal Configuration). An HARQ configuration (k,NP) is an opti-
mal configuration if, given the channel modelM(pe, RTT ,RC) observed by the protocol,
it fulfills the DT , PLRT and RC constraints in Eq. (3.10) with minimum RI—i.e., it is
the solution to the optimization problem in Eq. (3.10).

For the comparison of the error control schemes, it is important to differentiate
between the concepts of a valid configuration and an optimal configuration, which are
defined in Def. 3.6.1 and Def. 3.6.2, respectively. While the latter is a measure of opti-
mality,3 the former measures the ability of a scheme to provide broad support for CPSs

3It should be noted that optimality here refers to the optimal configuration for a fixed coding tech-
nique and not the overall optimal configuration for all available codes. The latter is a more complex
optimization problem that is further discussed in Sec. 6.6.4.

42 Chapter 3.7: Discussion

Table 3.3: Total number and rate of valid and optimal configurations for every error
control scheme. The results have been obtained after running Eq. (3.10) through the
complete dataset. As HARQ supports any combination of the other two schemes, its
number of valid configurations is taken as the reference of the maximum possible sup-
ported configurations. The rate normalized to the number of valid configurations for
HARQ is presented in the normalized column.

Scheme
Valid Configurations Optimal Configurations

Total Rate Normalized Total Rate Normalized

ARQ 530,188 21.20% 49.70% 67,508 2.70% 6.32%

FEC 970,085 38.80% 90.95% 287,090 11.48% 26.91%

HARQ 1,066,628 42.66% 100% 1,066,628 42.66% 100%

on a wide range of network conditions. HARQ is taken as the reference for the other two
schemes because it can configure any combination of proactive and reactive redundancy,
including pure FEC and pure ARQ. Therefore, if HARQ finds no configuration that
fulfills the constraints, neither will FEC nor ARQ.

3.6.2 Evaluation

Table 3.3 shows the total number and rate of supported configurations by every error
control scheme. A scheme is considered to provide a valid configuration for an input if it
is able to fulfill all the constraints of the optimization problem at the same time. HARQ
clearly outperforms the other two schemes, supporting more than twice the number of
cases as ARQ and 9.05% more cases than FEC. Although FEC’s coverage of valid con-
figurations is close to HARQ’s, it produces a constant redundancy overhead regardless
of the number of packet losses experienced in a transmission. Fig. 3.13 shows the Cu-
mulative Distribution Function (CDF) of the RI obtained by every scheme. To enable
a direct comparison among the schemes, the depicted CDFs show the results for the
complete dataset—i.e., the remaining probabilities up to 1 correspond to the invalid
configurations. Despite its low valid configuration coverage, ARQ achieves lower RI
than FEC in a significant number of cases. Such a low overhead is most likely a result
of the feedback mechanism, which enables precision loss recovery only when packets are
known to be lost. On the contrary, FEC approaches the coverage of HARQ at the cost
of large RI due to the more conservative decisions resulting from the lack of a feedback
channel. Therefore, the remaining 3.86% that FEC does not support but HARQ does
are probably cases in which the data rate exceeded the channel data rate (RC) due to
the large RI increase.

3.7 Discussion

The fully reliable paradigm followed by TCP fails to provide the timing guarantees that
CPSs demand for a correct operation. This chapter has highlighted the need for a

Chapter 3.7: Discussion 43

10−4 10−3 10−2 10−1 100 101

Redundancy Information

0.0

0.2

0.4

C
D

F

FEC

ARQ

HARQ

Figure 3.13: CDF of the RI increase in percentage for the ARQ and FEC schemes in
comparison to the optimal achieved by HARQ.

double paradigm shift: i) from pure ARQ to adaptive HARQ to provide timely error
recovery, and ii) from fully reliable, time-insensitive transport to predictably reliable,
timely transport. A thorough discussion of this affirmation is provided in the following.

The need for HARQ

As shown in Sec. 3.6, pure ARQ and FEC fail to i) support time-aware transport in a
broad number of network scenarios, ii) and provide efficient time-aware error control,
respectively. On the one hand, the poor performance of a purely reactive scheme comes
from a large amount of time spent on detecting packet losses (DPL) and triggering
retransmissions (RTT). On the other hand, purely proactive redundancy causes a fixed
transmission of parity packets regardless of whether they are required. A fully adaptive
HARQ scheme brings the best of both worlds: as the deadline approaches, proactive
redundancy may be transmitted to reach the desired reliability level, while feedback
can be obtained if time allows in order to avoid unnecessary transmissions. Moreover,
HARQ still allows for a pure ARQ to be configured in those platforms for which packet
coding is deemed computationally expensive. Despite the proposals to include it into
TCP [41, 63], it has not been until the release of QUIC that HARQ has been deployed at
a wide scale [144, 151, 160, 193, 198, 211]. Nevertheless, HARQ alone is not enough to
support the stringent requirements of CPSs and a paradigm shift is required in transport
protocol design in order to support applications with stringent timing requirements such
as CPSs.

Paradigm Shift

Decades of research in TCP have reduced its delay down to the fabric delay due to im-
proved congestion avoidance that prevents queues from being created at the switches and
routers [108, 158]. Consequently, fully reliable transport has reached its theoretical lim-
its to predictable delay. The head-of-line blocking and tail loss recovery problems, both
increasing the delay by several RTTs, are a direct consequence of a fully reliable trans-
port service. Therefore, a more predictable delay must be accompanied by a paradigm
shift at the core of the transport layer [166] to provide a partially reliable service. Aware
of this issue from early on, the networking community has proposed multiple protocols

44 Chapter 3.7: Discussion

that provide such a service [36, 44, 182, 212, 215]. Although all these protocols fail
to provide predictable reliability within the application’s delay constraint, most of the
components that are required to do so have been developed around them throughout
the years: MDS codes for packetized layers [26] to enable HARQ at the transport layer,
time-awareness [36, 182] and a common sense of time in distributed deployments with
the NTP [67] or PTP [156] protocols, transport protocols obtaining the application re-
quirements via an API [223], and channel sensing in the transport layer [36, 112]. The
original contribution of the PRRT protocol is the combination of these components to go
one step ahead and provide predictable reliability instead. Similarly to other real-time
protocols, PRRT avoids waiting for late packet retransmissions with an addition: the
application specifies the maximum tolerable delay, and hence PRRT discards late pack-
ets even when they are not lost. Unlike other protocols, PRRT ensures the percentage
of lost packets is never above a threshold that is also configurable by the application.

Predictable Reliability

PRRT’s ability to fulfill the application constraints depends on i) how much its channel
model resembles the actual communication channel, and ii) how quickly it adapts its
performance to changes in the channel. Although channel sensing is out of the scope of
this thesis, it is a prolific research topic on its own [47, 86, 146, 171, 191, 203], and future
work should investigate whether PRRT could benefit from some of the recently proposed
models. Long Short-Term Memory (LSTM) neural networks have shown promising re-
sults when applied to this problem [146, 171, 191], which has been shown to outperform
non-ML solutions [146]. However, this thesis focuses on PRRT’s ability to react to chan-
nel changes. While the optimization problem described in Sec. 3.5 is executed, PRRT
does not have any guarantees regarding its ability to meet the performance levels re-
quested by the application. In the worst case, the channel coherence time is shorter
than PRRT’s reaction time, thereby making it impossible to provide any guarantees at
all. Chapter 4 shows the optimization problem is a computationally complex process,
meaning that the aforementioned worst case is not actually too farfetched. Another
important aspect to consider is the resource footprint of the system. Minimizing the
transmitted RI does indeed optimize the protocol resource footprint but only in the net-
work. Executing a computationally expensive algorithm to do so puts a heavier burden
on the CPU that must be accounted for. All in all, there is a need for a computationally
efficient adaptive HARQ function.

Chapter 4

Search Algorithms for Adaptive
HARQ

PRRT’s ability to optimally adapt its performance to network changes is determined by
how fast it is able to solve the optimization problem presented in Sec. 3.5. To the best of
our knowledge, there is no known closed-form expression to obtain the optimal solution
to the problem. The objective function and constraints defined in Eq. (3.10) are neither
linear—except for the delay constraint—nor convex—see the binomial probabilities in
Eq. (3.17) and Eq. (3.11). Therefore, mixed-integer linear/convex optimization cannot
be applied to the optimization problem. Search algorithms have been proposed to explore
the solution space until the optimal solution is found [11, 86]. However, the quantization
of the variables k, p, and NC produces a non-linear solution space that makes the efficient
search for the optimal solution a challenging problem to solve.

Fig. 4.1 shows the optimal k, p, and NC as functions of different channel (pe, RC , and
RTT) and application parameters (DT , PLRT , and Ts). In every subplot, a different
input parameter is linearly increased, while the remaining baseline conditions are kept
constant (PLRT = 0.0001, DT = 200 ms, RC = 10 Mbps, pe = 0.05, Ts = 4 ms, and
RTT = 5 ms). Although some output parameters have a relatively smooth behavior
—i.e., they are either constant or monotonically increasing/decreasing—, small, linear
increases in the input may produce sharp changes in the output in other cases. Bear
in mind that, although the behaviors depicted cannot be directly generalized for any
arbitrary input, Fig. 4.1 illustrates how irregular the output space can be. The precise
description of the solution spaces requires a multifactorial analysis that is out of the scope
of this thesis. Chapter 5 sheds some light on the impact of these non-linearities on the
complexity of the problem at hand, whereas this chapter shows that exploring the entire
solution space is computationally expensive and unfeasible even on high-end personal
computers (see Sec. 4.2). Alternatively, greedy algorithms that give up optimality have
been proposed in favor of a faster execution [86].

The PRRT protocol continuously senses the channel and executes the search algo-
rithm whenever the conditions change in order to find the new optimal configuration or
inform the application when no configuration exists that meets the constraints. There-

45

46 Chapter 4. Search Algorithms for Adaptive HARQ

0.000025 0.000050 0.000075 0.000100
PLR target (PLRT)

0

10

20
B

lo
ck

L
en

gt
h

(k
)

100 200
Delay target (DT)

20 40
Data rate (RC)

0.025 0.050 0.075 0.100
Channel erasure rate (pe)

0

10

20

B
lo

ck
L

en
gt

h
(k

)

5 10 15 20
Inter-Packet Time (Ts)

0 20 40
Round-Trip Time (RTT)

(a) Optimal block length

0.000025 0.000050 0.000075 0.000100
PLR target (PLRT)

2

4

6

P
ar

it
y

P
ac

ke
ts

(p
)

100 200
Delay target (DT)

20 40
Data rate (RC)

0.025 0.050 0.075 0.100
Channel erasure rate (pe)

2

4

6

P
ar

it
y

P
ac

ke
ts

(p
)

5 10 15 20
Inter-Packet Time (Ts)

0 20 40
Round-Trip Time (RTT)

(b) Optimal number of parity packets

0.000025 0.000050 0.000075 0.000100
PLR target (PLRT)

0

2

4

6

R
ep

ai
r

C
yc

le
s

(N
C

)

100 200
Delay target (DT)

20 40
Data rate (RC)

0.025 0.050 0.075 0.100
Channel erasure rate (pe)

0

2

4

6

R
ep

ai
r

C
yc

le
s

(N
C

)

5 10 15 20
Inter-Packet Time (Ts)

0 20 40
Round-Trip Time (RTT)

(c) Optimal number of repair cycles

Figure 4.1: Optimal k, p, and NC as a function of channel and application parameters.
In every subplot, a different input parameter is linearly increased, while the remaining
baseline conditions are kept constant (PLRT = 0.0001, DT = 200 ms, RC = 10 Mbps,
pe = 0.05, Ts = 4 ms, and RTT = 5 ms).

Chapter 4.1: Predictable Communication Channel 47

fore, the search algorithm has a double purpose: i) finding the optimal configuration
according to a certain metric, and ii) ensuring that any configured configuration meets
the application constraints. It can be shown that evaluating the constraints for a single
configuration can be done relatively faster when compared to the complete search. How-
ever, if the channel change is sufficiently large so the protocol configuration no longer
meets the constraints, the complete search algorithm must be executed. It is in this case
that PRRT’s performance guarantees are lost as the protocol does not know whether
a configuration exists that meets the constraints until the search is complete. Ideally,
the search execution time would be predictably low in order to minimize and upper
bound the time the performance guarantees are lost. This predictable behavior is key for
safety-critical CPSs, which demand a predictable channel to ensure their operation. The
algorithm’s inference time depends on how it treats the recursive dependencies among
k, p, and NC , which in turn depend on the application constraints—e.g., the larger the
time budget, the more repair cycles could be configured, the number of required parity
packets will depend on how wide the gap between the channel erasure rate and the target
loss rate is, etc. This chapter introduces different search algorithms [11, 86] and com-
pares their efficiency in the exploration of the solution space. The chapter also shows
that the predictability of the search algorithm can be improved via the decomposition
of the optimization into smaller sub-problems, which enables a more structured search
that reduces the number of evaluated configurations by several orders of magnitude.

4.1 Predictable Communication Channel

Whenever the channel state changes, PRRT must solve the optimization problem in
Sec. 3.5 to find a configuration that meets the application constraints. If no configuration
is found, it informs the application that meeting its demands is not possible with the
current channel. While the search algorithm is executing, the performance guarantees
are lost as a result of the uncertainty regarding the algorithm’s output.

Definition 4.1.1 (Channel Coherence Time). The Channel Coherence Time (Tc) is the
time period in which the channel can be assumed to be constant in the time domain,
such that the amplitude of two samples of the channel are correlated [76].

Different formal definitions of channel coherence time exist in the literature [76], but
a frequently used threshold is 0.5 of the channel autocorrelation function. The channel
coherence can be expressed as a function of the maximum Doppler frequency (fD) [76]:
Tc = 1

2fD
. Alternative functions exist in the literature for special Doppler spectra as

well. Nevertheless, it is not the objective of this thesis to provide an in-depth analysis of
the channel coherence time. Instead, we assume that Tc ≥ DT . Otherwise, no solution
exists for the optimization problem in Eq. (3.10) that holds within the delay budget
specified by the application.

Definition 4.1.2 (Protocol Reaction Time). The Protocol Reaction Time (Tr) is the
elapsed time between the protocol detecting a change in the channel state and it obtain-
ing the optimal configuration from the search algorithm in Eq. (3.10).

48 Chapter 4.1: Predictable Communication Channel

For PRRT to provide a predictable communication channel to the application, the
hard requirement Tr ≤ Tc must hold. Otherwise, the channel changes before a new
configuration is found, making the protocol configuration oscillate without providing any
guarantees. Adaptive HARQ configuration changes take place on a per-block basis—i.e.,
once the first packet in the block is transmitted, the configuration cannot be changed
until a new block begins approximately DT later. In other words, DT establishes the
lowest granularity at which the protocol may change its configuration. In the worst case,
a channel state change is detected immediately before one of these configuration change
opportunities, leaving no reaction time to execute the search before the end of the block.
In order to limit the number of blocks that may not fulfill the constraints1 to only one,
the soft requirement Tr < DT should hold.

As PRRT is designed to support a wide range of application target delays (see
Sec. 3.1), a stricter version of the aforementioned second requirement exists: the proto-
col reaction time should be below the target delay of the most stringent application the
protocol is designed to support (Tr < DT

min). This third requirement does not improve
the predictability of the performance guarantees per se, which is already fulfilled with
the previous two requirements, but it improves the protocol’s non-functional properties
as follows:

1. It reduces the resource footprint of the system due to the lower processing overhead,
thereby enabling PRRT on the resource-constrained embedded platforms many
CPSs are executed on [128, 159, 4].

2. It provides a more predictable execution time that CPSs can use for precise task
scheduling [180]—e.g., in slowly changing channels with Tc ≫ Tr, the search al-
gorithm could be more sporadically executed in order to save resources, or in
real-time systems where the unpredictable execution time of the search algorithm
would negatively impact the performance of other tasks it shares the resources
with.

The three aforementioned requirements for the protocol reaction time can be sum-
marized as follows:

Requirement 4.1.1 (Tr < Tc). The search algorithm MUST have a faster inference
time than the channel coherence time.

Requirement 4.1.2 (Tr < DT). The search algorithm SHOULD have a faster inference
time than DT .

Requirement 4.1.3 (Tr < DT
min). The search algorithm MAY have a faster inference

time than DT
min.

The verbs MUST, SHOULD, and MAY here indicate requirement levels as defined
by the Internet Engineering Task Force (IETF) [25]. Fig. 4.2 shows an example of

1Bear in mind that it may still be that the old configuration still meets the constraints for the new
channel conditions, but this does not occur in a predictable manner.

Chapter 4.1: Predictable Communication Channel 49

t

DT

DT

DT

DT

RTT increase

k = 3

NP = [1]

pe increase
k = 2

NP = [1, 2]

(a) Tr = 0

t

DT

DT

DT

DT

RTT increase

k = 3

NP = [1]

pe increase

k = 2

NP = [1, 2]

(b) 0 < Tr < DT

t

DT

DT

DT

DT

RTT increase

k = 3

NP = [1]

pe increase

k = 2

NP = [1, 2]

(c) 0 < Tr < DT
min

Figure 4.2: Impact of the protocol reaction time on the predictability of the commu-
nication channel. The delay budget shades represent valid configurations (green), and
invalid configurations (red).

the impact of Req. 4.1.2 and Req. 4.1.3 on the protocol’s predictability. If none of
the aforementioned requirements hold, the search algorithm is non-performant. If only
Req. 4.1.1 holds for every input, the search algorithm is said to provide soft performance
guarantees. The term “soft” here relates to the ability of the algorithm to eventually
reach a valid configuration (see Def. 3.6.1) without an upper bound to how many blocks
are impacted until it does so. If both Req. 4.1.1 and Req. 4.1.2 hold, the search algorithm
is said to provide strong performance guarantees. The term “strong” here relates to the
ability of the algorithm to reach a valid configuration (see the definition in Def. 3.6.1)
before the end of the following block.

Fig. 4.2a represents the optimal case in which the search algorithm can be executed
infinitely fast (Tr = 0), and the new optimal configuration is obtained as soon as a
channel change is detected, which is applied by the protocol for the block immediately
after the current one. The presented example considers two changes in the channel state.
Firstly, the RTT is doubled in the middle of the first block so that the protocol switches
the parity packet from the reactive to the proactive cycle in the later blocks. This

50 Chapter 4.2: Full Search

paradigmatic case clearly represents the concept of a valid configuration (see Def. 3.6.1).
It can be observed that, due to the RTT increase, the parity packet arrives after the target
delay and hence it cannot be used to correct any losses. Nevertheless, the configuration
is still considered valid because it met the constraints for the channel state at the start of
the block transmission. The second channel change is an increase in the channel erasure
rate at the end of the third block. The protocol reacts to the new pe by incrementing the
number of parity packets from 1 to 3. To accommodate the extra redundancy, the block
length is decreased by one, which in turn leaves enough time budget to use a reactive
cycle.

If Tr < DT , the protocol fails to fulfill the constraints in two blocks (see Fig. 4.2b).
How often the protocol does not fulfill the constraints depends on how much time is left
until the beginning of the next block since channel changes are detected. In the best
case, the channel change is always at the beginning of a block and hence all blocks fulfill
the constraints because 0 < Tr < DT . In the worst case, the channel change is always
detected at the end of a block so that the number of invalid blocks equals the number
of channel changes. Assume a channel change is detected ϵ · DT before the end of the
target delay, a search algorithm that can react before the beginning of the next block is
called a ϵ-fulfilling algorithm as defined in Def. 4.1.3.

Definition 4.1.3 (ϵ-fulfilling Algorithm). A search algorithm is ϵ-fulfilling if, for any
channel modelM(pe, RTT ,RC), its reaction time is Tr ≤ ϵ ·DT with 0 ≤ ϵ ≤ 1.

Given the application types PRRT is designed to support (see Sec. 3.1), for the third
requirement to hold, the search inference time must be below the millisecond range
for any channel and application. Although a faster reaction improves the performance
predictability, there may still be cases in which the channel change is detected so close to
the deadline that the following block cannot be adapted in time, as shown in the fourth
block in Fig. 4.2c.

In the following, different search algorithms are presented and evaluated according
to this definition of communication channel predictability.

4.2 Full Search

The Full Search proposed in [86] checks all possible combinations and outputs the one
with the minimum RI. As PRRT operates in the Galois Field GF (28), then k, p,NC ∈
[0, 255]. While k and p are directly limited by the field size, p bounds the number of
repair cycles—i.e., each cycle must have at least one parity packet—, and hence the three
parameters are defined within the same range. A straightforward implementation of the
Full Search would check all possible combinations ∀ k, p,NC ∈ [0, 255]. Nevertheless,
the search space can be reduced by ignoring parameters that do not fulfill the delay
constraint.

The number of repair cycles is upper bounded by NC,max (see Eq. (4.1)) the max-
imum number of repair cycles when pure ARQ is used with a single parity packet per
round—i.e., NP [i] = 1 ∀ i ∈ [1, NC]. Therefore, the HARQ delay must fulfill the in-

Chapter 4.2: Full Search 51

Algorithm 1 Full Search

Require: NC,max

Ensure: k∗, NP
∗ = argmin

k,NP

RI(k,NC , NP)

1: k∗ ← 0
2: NP

∗ ← 0
3: ri∗ ←∞
4: for NC = 0→ NC,max do
5: for k = 1→ kmax(NC) do
6: p← derive p(k)
7: for NP ∈ gen compositions(p,NC , 1, p−NC + 1) do
8: ri← RI(k,NC , NP)
9: if meets constraints(k,NP) ∧ ri < ri∗ then

10: k∗ ← k
11: NP

∗ ← NP

12: ri∗ ← ri
13: end if
14: end for
15: end for
16: end for
17: return (k∗, NP

∗)

equality DHARQ(1, [0, ones(NC)]) ≤ DT to meet the delay constraint. Eq. (4.1) shows
how the upper bound NC,max can be obtained. Once the number of repair cycles is
known, the upper bound to the block length depends on how many parity packets can
be collected within the remaining time budget that is not required to transmit the NC

cycles. The number of parity packets per cycle is again assumed to be one so that
DHARQ(kmax, [0, ones(NC)]) ≤ DT must hold true. Eq. (4.2) shows how the maximum
block length can be obtained from the inequality above.

NC,max =

⌊
DT −DFEC(1, [0, 1])

DARQ([0, 1])− RTT
2

⌋
(4.1)

kmax(NC) =

⌊
DT − RTT+DRS

2 −NC ·DARQ([0, 1])

Ts

⌋
(4.2)

The Full Search algorithm is shown in Alg. 1. For every (k,NC) pair, the algo-
rithm obtains p and all possible repair schedules NP . The derive p(k) in line 6 returns
the optimal number of parity packets—i.e., the smallest p for k that meets the PLR
constraint—, which is found increasing p from 0 to 255 until the optimal value is found.2

How to optimally distribute those p packets among the NC repair cycles corresponds

2The maximum codeword (cmax) in a Vandermonde code in GF (28) is 255 if the code is non-
systematic and 510 if it is in the systematic form. In the latter case, the matrix is constructed by

52 Chapter 4.3: SHARQ: Scheduled HARQ

6 8 10 12 14

Number of parity packets (p)

0

200

400

600

C
om

p
os

it
io

n
s NC = 2

NC = 3

NC = 4

NC = 5

Figure 4.3: Number of restricted integer compositions by number of parity packets (p)
and retransmission cycles (NC).

to the well-known restricted integer compositions problem [69]: the integer p must be
split into NC components where the minimum possible value for any component is 1—at
least one parity packet must be transmitted per cycle—and the maximum p − NC + 1
so that no cycle is assigned too many packets. The gen compositions(p,NC , a, b) algo-
rithm presented in [69] finds all the compositions of p into NC sets with minimum and
maximum values a and b, respectively, with linear complexity O(NC). Therefore, the
number of different configurations checked by Alg. 1 is

NFull =

NC,max∑

NC=0

kmax∑

k=1

popt−NC∑

i=0

C
(
popt − i,NC , 1, popt − i−NC + 1

)
(4.3)

where C(p,NC , a, b) is the number of restricted integer compositions and popt =
||NP

∗||1 the optimal number of parity packets. Bear in mind that the FEC cycle may
have, at most, popt −NC to ensure that all repair cycles are occupied, which is modeled
by the most inner summation term. Fig. 4.3 depicts how C(p,NC , a, b) increases as a
function of p and NC . Already for a relatively small number of cycles, the number of
partitions can reach the order of hundreds, suggesting that running the Full Search may
be impractical even on commodity hardware, which is confirmed in Sec. 4.4.

4.3 SHARQ: Scheduled HARQ

The Scheduled Hybrid Automatic Repeat reQuest (SHARQ) [11] algorithm reduces the
search inference time with the combination of i) a more efficient exploration of the three-
dimensional solution space formed by k, p, and NC , and ii) a Graph Search algorithm
for a faster repair schedule construction.

appending the 255×255 identity matrix to the 255×255 Vandermonde matrix. Unless stated otherwise,
this thesis assumes cmax = 255 in order to reduce the search space and the coding complexity.

Chapter 4.3: SHARQ: Scheduled HARQ 53

Algorithm 2 Derive number of parity packets

Require: k
Ensure: p = derive p(k)
1: pmin = 0
2: pmax = 255− k
3: while pmax − pmin > 1 do
4: pmid = pmin + round(pmax−pmin

2)
5: if PLRHARQ(k, [pmid]) ≤ PLRT then
6: pmax = pmid

7: else
8: pmin = pmid

9: end if
10: end while
11: return pmax

4.3.1 Efficient Solution Space Exploration

SHARQ decouples the delay and loss rate constraints to reduce the computational com-
plexity of the search. According to Eq. (3.17), the PLR constraint solely depends on
k and p. In an i.i.d. channel, the probability of recovering the data packets does not
depend on when the parity packets are sent, but on how many of them are transmitted.
Although the optimal number of parity packets only depends on k (see Eq. (4.4)), Full
Search evaluates Eq. (4.4) for every (k,NC) pair that fulfills the delay constraint.

popt(k) = min{p |PLRHARQ(k, p) ≤ PLRT } (4.4)

The set KNC
= {k ∈ N | 1 ≤ k ≤ kmax(NC)} corresponds to all k’s that, given a

number of repair cycles NC , meet the delay constraint. As kmax(NC) ≤ kmax(NC + 1),
then KNC

⊆ KNC+1 holds. Therefore, Full Search incurs a computational overhead due
to the repeated evaluation of Eq. (4.4) for the same set of block lengths. This overhead
is a direct consequence of the coupling between the delay and PLR constraints when the
algorithm performs the joint search for k, p, and NC .

klim = min
(
kDT
lim, kPLRT

lim

)
(4.5)

kDT
lim =

⌊
DT − RTT+DRS

2

Ts

⌋
(4.6)

kPLRT
lim = max{k |PLRHARQ(k, 255− k) ≤ PLRT } (4.7)

Given the largest block length that fulfills the delay constraint (Eq. (4.6)) and the
largest block length that meets the PLR constraint (Eq. (4.7)), the minimum of the
two (klim, see Eq. (4.5)) is the largest block length that meets both constraints at the
same time. The required number of parity packets to meet the PLR constraint with

54 Chapter 4.3: SHARQ: Scheduled HARQ

0 50 100 150 200
Block length (k)

0.00

0.05

0.10

P
L
R
H
A
R
Q

(k
,p

)

pe = 0.1

p = 2

p = 4

p = 6

p = 8

p = 10

p = 12

p = 14

(a)

0 25 50 75 100 125 150 175 200
Block length (k)

5

10

15

p o
pt

(k
)

PLRT = 0.005

pe = 0.02

pe = 0.03

pe = 0.04

pe = 0.05

(b)

0 50 100 150 200
Block length (k)

0.0

0.5

1.0

R
I

(k
,0
,[
p o
pt

(k
)]

)

PLRT = 0.005

pe = 0.02

pe = 0.03

pe = 0.04

pe = 0.05

(c)

Figure 4.4: For a fixed number of parity packets p, the packet loss rate PLRHARQ(k, p)
and the optimal number of parity packets popt(k) a monotonically increasing function
of the block length k, whereas the redundancy information (RI(k,NC , NP)) is a non-
convex function due to quantization effects as k, p ∈ N.

klim can be obtained in logarithmic complexity with the binary search in Alg. 2. The
binary search is only possible because popt(k) is a monotonically increasing function: as k
increases and p is kept constant, every parity packet carries information from more data
packets. Therefore, every packet loss is more harmful as no extra parity packet is added,
i.e., PLRHARQ(k, p) < PLRHARQ(k+1, p). It directly follows that popt(k) ≤ popt(k+1),
with the equality holding true when PLRHARQ(k+1, popt(k)) ≤ PLRT . Fig. 4.4a depicts
the monotonically increasing behavior of PLRHARQ(k, p). As expected, Fig. 4.4b shows
that the larger the block length, the more parity packets are required to reach a PLR
below a constant PLRT . However, the fact that popt(k) < popt(k+1) should not support
the intuition that smaller block lengths are generally preferred due to their smaller RI.
Although RI(k,NC , NP) is a non-convex function due to quantization effects, there is a
clear tendency towards smaller RIs the larger the block length is, as shown in Fig. 4.4c.
Finally, Fig. 4.4b shows that several block lengths share the same popt and when it differs,
the popt for neighboring k’s is often increased just by one. Therefore, derive p(k) need
only be executed once for klim, and popt for smaller block lengths can be obtained with
an exploration around the optimal p from the previous block length.

Once p is fixed by the PLR constraint, the delay constraint fully determines NC .
Fig. 4.5 shows that the probability of later cycles being triggered decreases with every
new parity packet transmission. Every transmitted parity packet has a probability 1−pe
of arriving at the receiver. When it is the k’th received packet for a block, PRRT’s
feedback mechanism prevents later cycles from being triggered (see Sec. 3.3). In other
words, the transmission of at least one parity packet in every repair cycle decreases the
probability of triggering later cycles. Therefore, the protocol should always use all the
repair cycles that fit into the remaining time budget (see Eq. (4.8)).

NC,opt(k, p) = min

(
p,

⌊
DT − k · Ts − p · Lp

RC
− RTT+DRS

2

RTT +DRS +DPL

⌋)
(4.8)

Chapter 4.3: SHARQ: Scheduled HARQ 55

0 2 4 6
Cycle (c)

0.00

0.25

0.50

0.75

1.00

C
yc

le
p

ro
b

ab
ili

ty
(p
f
[c

])

Erasure rate (pe = 0.05)

k = 10

k = 30

k = 50

k = 70

k = 90

0 2 4 6
Cycle (c)

Block length (k = 50)

pe = 0.02

pe = 0.04

pe = 0.06

pe = 0.08

pe = 0.1

Figure 4.5: The probability of decreasing new repair cycles decreases with every par-
ity packet transmission. The results here presented have been obtained with a repair
schedule NP = [0, 1, 1, 1, 1, 1, 1].

NExplore =

klim∑

k=1

popt−NC,opt∑

i=0

C
(
popt − i,NC,opt, 1, popt − i−NC,opt + 1

)
(4.9)

The Fast Exploration algorithm in Alg. 3 shows the integration of this more efficient
solution space exploration into the Full Search algorithm. The algorithm has purely
been included to independently analyze the two algorithmic optimizations introduced in
SHARQ on the search efficiency. The number of configurations evaluated by Fast Ex-
ploration is given in Eq. (4.9), which still depends on the restricted integer compositions
C(p,NC , a, b).

4.3.2 Fast Parity Packet Scheduling

This section introduces a Graph Search3 that finds the optimal repair schedule in poly-
nomial complexity, thereby reducing the number of evaluated configurations compared
to the Full Search.

The probability of triggering a cycle pf [c]—see Eq. (3.13)—solely depends on the
number of parity packets in previous cycles (n[c− 1]), but not on how these packets are
scheduled. Based on this observation, all possible schedules for a (p,NC) tuple can be
modeled with the graph in Eq. (4.10), where each path from the start node to (p,NC)
corresponds to a schedule. The edges are chosen to enforce that every retransmission
cycle has at least one parity packet assigned to it—i.e., NP [c] > 0 ∀ c ∈ [1, NC]. Fig. 4.6
depicts an example of the resulting graph for (p,NC) = (6, 3).

3This algorithm has been developed solely by Kai Vogelgesang and published in a joint conference
article in 2023 [11]. I would like to thank Kai not only for this contribution but for all the discussions
and exchanges of ideas over the last couple of years as well.

56 Chapter 4.3: SHARQ: Scheduled HARQ

Algorithm 3 Fast Exploration

Require: klim
Ensure: k∗, NP

∗ = argmin
k,NP

RI(k,NC , NP)

1: p← popt(klim)
2: for k = klim → 1 do
3: while PLRHARQ(k, p− 1) ≤ PLRT do
4: p← p− 1
5: end while
6: NC ← NC,opt(k, p)
7: if NC < 0 then
8: continue
9: end if

10: for NP ∈ gen compositions(p,NC , 1, p−NC + 1) do
11: ri← RI(k,NC , NP)
12: if meets constraints(k,NP) ∧ ri < ri∗ then
13: k∗ ← k
14: NP

∗ ← NP

15: ri∗ ← ri
16: end if
17: end for
18: end for
19: return (k∗, NP

∗)

G = (V,E,wE)

V = {start} ∪
{
(x, y) | 0 ≤ x ≤ p, 0 ≤ y ≤ NC

}

E =
{
(start, (x, 1)) | 0 ≤ x ≤ p−NC

}

∪
{
((x′, y), (x, y + 1)) | 0 ≤ y < NC − 1

∧ x− x′ ≥ 1 ∧ y ≤ x′ ≤ p−NC + y
}

∪
{
((x,NC − 1), (p,NC)) | NC − 1 ≤ x < p

}

(4.10)

The edge weights, defined in Eq. (4.11), reflect the RI cost of assigning x− x′ parity
packets to the y cycle. Given this weight definition, finding the schedule with minimum
RI corresponds to finding the shortest path.

wE(((x
′, y − 1), (x, y))) =

1

k
· pMf [x′] · (x− x′),

wE((start, (x, 1))) =
1

k
· x

(4.11)

The graph can be computed following the dynamic programming approach presented
in Alg. 4. To ensure that every repair cycle has at least one parity packet, no more than

Chapter 4.3: SHARQ: Scheduled HARQ 57

NP [0] = 0

NP [1] = 3

NP [2] = 1

NP [3] = 2
N

C
+
1
=

4
ro
w
s

p+ 1 = 7 columns

Figure 4.6: Graph for p = 6 and NC = 3. Each path represents a choice of NP . The
edge weights are set such that the NP with the lowest RI corresponds to the shortest
path. The highlighted edges represent NP = [0, 3, 1, 2].

p −NC parity packets may be assigned in the 0th round and no repair cycle may have
more than p − NC + 1. The algorithm controls it with the lower and upper bound
variables. The minimum distance for every vertex is stored in the D[x, y] array, whereas
the Parent[x, y] array allows for reconstructing the optimal schedule at the end. Since
Eq. (3.12) must be evaluated for every edge, the algorithm pre-computes the pp table,
in which every entry is defined as pp[n, k] =

∑k
i=0

(
n
i

)
(1 − pe)

ipe
(n−i). As a result, the

probability pf [c] can be directly evaluated inO(1) with Eq. (4.12) and the edge weights in
each layer can be obtained with O(p). Each layer has O(p) nodes with O(p) predecessors
each. Since there are O(NC) layers, the time complexity of the Graph Search algorithm
is O(p2NC).

pf [c] = pp[n[c− 1], k]− pp[n[c− 1],max(0,n[c− 1]− p)] (4.12)

The pp table must be recomputed when a new pe is measured due to changes in the
network conditions. Since it is a 2m×2m table, with 2m = 256 the size of the Galois Field
employed in the MDS code (see Sec. 3.1.2), the table can be computed with polynomial
complexity O(2562) following the recursive expression in Eq. (4.13). This operation can
be computed with polynomial complexity O(k2) following the recursive expression in
Eq. (4.13). The recursive loop is initialized with dp[0, 0] = 1 and the dp[n, k] array is
created for n, k ≤ 255. Every column of the pp table is then iteratively calculated as
pp[n, k] =

∑k
i=0 dp[n, i].

dp[n, k] =

(
n

k

)
· pek · (1− pe)

n−k

= pe · dp[n− 1, i] + (1− pe) · dp[n− 1, k − 1]

(4.13)

58 Chapter 4.3: SHARQ: Scheduled HARQ

Algorithm 4 Graph Search

Require: k, p,NC

Ensure: NP
∗ = argmin

NP

RI(k,NC , NP)

1: D[x, y] =∞; Parent[x, y] = 0 for 0 ≤ x ≤ p and 0 ≤ y ≤ NC

2: lower ← 0; upper ← (p−NC)
3: for x = lower → upper do
4: D[x, 0]← x; Parent[x, 0]← x
5: end for
6: for y = 1→ NC do
7: lower ++; upper ++
8: for x = lower → upper do
9: for x′ = (lower − 1)→ x− 1 do

10: step← x− x′

11: current← D[x′, y − 1] + step · pMf [x′]
12: if current < D[x, y] then
13: D[x, y]← current
14: Parent[x, y]← step
15: end if
16: end for
17: end for
18: end for
19: x← p
20: for y = NC → 0 do
21: step← Parent[x, y]
22: NP

∗[y]← step
23: x← x− step
24: end for
25: RI = 1

k ·D[p,NC]
26: return (NP

∗, RI)

NSchedule =

NC,max∑

NC=0

kmax(NC) (4.14)

The Fast Schedule algorithm presented in Alg. 5 follows a similar structure to the Full
Search (see Sec. 4.2) but, instead of evaluating all possible schedules, obtains the optimal
schedule from the Graph Search. As a result, a single schedule is considered for every
k and NC . Despite the significant reduction in the number of checked configurations in
comparison to the Full Search (see Eq. (4.3) and Eq. (4.14)), the Fast Schedule algorithm
still performs a suboptimal exploration of the solution space.

Chapter 4.4: Search Comparison 59

Algorithm 5 Fast Schedule

Require: NC,max

Ensure: k∗, NP
∗ = argmin

k,NP

RI(k,NC , NP)

1: k∗ ← 0
2: NP

∗ ← 0
3: ri∗ ←∞
4: for NC = 0→ NC,max do
5: for k = 1→ kmax(NC) do
6: p← derive p(k)
7: (NP , ri)← graph search(k, p,NC)
8: if meets constraints(k,NP) ∧ ri < ri∗ then
9: k∗ ← k

10: NP
∗ ← NP

11: ri∗ ← ri
12: end if
13: end for
14: end for
15: return (k∗, NP

∗)

4.3.3 The Algorithm

The SHARQ algorithm combines the benefits of a more efficient expiration (Fast Explo-
ration) and a fast repair schedule construction (Fast Schedule) into a single algorithm
(see Alg. 6).

NSHARQ = klim (4.15)

SHARQ checks a single configuration in every iteration (See Eq. (4.15), which is the
most efficient exploration among the presented algorithms. As shown in the following,
this efficiency allows SHARQ to provide a predictable communication channel to the
application when running on a desktop PC.

4.4 Search Comparison

This section compares the aforementioned search algorithms in terms of their efficiency
in exploring the solution space. SHARQ significantly reduces the complexity of find-
ing the optimal configuration in comparison to previous algorithms, thereby enabling a
predictable transport for CPSs.

4.4.1 Methodology

Fundamentally, all the algorithms—i.e., Full Search, Fast Exploration, Fast Schedule,
and SHARQ—provide the same solution to the optimization problem in Eq. (3.10).

60 Chapter 4.4: Search Comparison

Algorithm 6 SHARQ

Require: klim
Ensure: k∗, NP

∗ = argmin
k,NP

RI(k,NC , NP)

1: p← popt(klim)
2: for k = klim → 1 do
3: while PLRHARQ(k, p− 1) ≤ PLRT do
4: p← p− 1
5: end while
6: NC ← NC,opt(k, p)
7: if NC < 0 then
8: continue
9: end if

10: (NP , RI)← graph search(k, p,NC)
11: if RI < RI(k∗, NC

∗, NP
∗) then

12: (k∗, NP
∗)← (k,NP)

13: end if
14: end for
15: return (k∗, NP

∗)

Their main difference lies in how they explore the solution space until the optimal so-
lution is found. The comparison of the four search algorithms has been based on three
metrics: i) the number of evaluated configurations that are evaluated in an interaction
of the algorithm,4 ii) the communication channel predictability, which is based on the
predictability requirements defined in Sec. 4.1, and iii) the inference time predictability
over a dataset of realistic network traces. While the number of evaluated configura-
tions provides a direct metric to evaluate the solution space exploration efficiency, the
inference time of the search determines the protocol’s predictability.

Unless otherwise stated, the inference times for the Fast Schedule and SHARQ al-
gorithms include i) the algorithmic search, and ii) the pp table computation. The algo-
rithmic search corresponds to Alg. 5, and Alg. 6 for the Fast Schedule, and SHARQ,
respectively. The pp table computation depends on the parameter pe and hence it must
be re-computed when changes in the channel erasure rate are detected. Therefore, the
pp table computation has been included in the measurements in order to obtain the
worst-case execution time.

To analyze the performance of the algorithms under different network conditions,
the dataset in Sec. 3.6 has been used for the inference time evaluation. A test dataset

4This metric should not be confused with the number of valid configurations reported in Sec. 3.6. The
number of valid configurations refers to the ability of an error control scheme to provide configurations
that meet the constraints. On the contrary, the number of evaluated configurations refers to the number
of times a search algorithm must check whether a configuration meets the constraints or not. While the
former measures the generalizability of an error control scheme, the latter measures the computational
complexity of a search algorithm.

Chapter 4.4: Search Comparison 61

Table 4.1: Run-time complexity of the basic performance metrics that every search
algorithm must evaluate to ensure the constraints are fulfilled and detect the optimal
configuration.

Metric Reference Run-Time Complexity

Redundancy Information Eq. (3.11) O(k + p)

Delay Eq. (3.16) O(1)
Packet Loss Rate Eq. (3.17) O(k + log(p))

Data Rate Eq. (3.20) O(k + p)

consisting of 87,700 samples has been built in order to provide a faster evaluation of
the algorithms. The test dataset avoids spurious cases whose solution space is empty
by only containing inputs that are known to provide a valid configuration that fulfills
all the constraints. Otherwise, the algorithm could directly output no configuration
without performing any search, thereby resulting in an abnormally small inference time.
Meaningful inference times are obtained by running the algorithms 50 times over the
complete dataset in order to filter system noise such as interrupts to and from the CPU.
The complete dataset is shifted by 1

50 in order to avoid the samples always being executed
in the same order in the dataset.

For every configuration, the algorithms evaluate the basic operations in Table 4.1
to check that the constraints are met and whether the configuration is the best one
so far. Given how frequently these operations must be evaluated, the optimizations in
Appendix A and Appendix B have been implemented to reduce their computational
complexity. The search algorithms have been implemented in Rust and compiled with
the release flag to enable compiler optimizations. The evaluations have been executed
on two different devices. A desktop PC running Ubuntu 22.04.2 LTS with Linux kernel
5.19 on an Intel Core i7-7700 CPU at 3.6 GHz, and a Raspberry Pi Zero W running
the Raspbian Buster operating system with Linux Kernel 4.19. These devices have been
selected to cover both ends of the spectrum when it comes to computational power:
while the former platform represents high-end devices such as edge servers where the
controller in a distributed CPS may run [85], the latter is a resource-constrained platform
that typically carries sensors and actuators [128, 159, 4].

4.4.2 Evaluation

In the following, solution space exploration efficiency and predictability results are pre-
sented for the different algorithms with the objective of analyzing their performance for
CPS support.

Number of Evaluated Configurations

Fig. 4.7 compares the number of configurations the algorithms check for different target
delays (Fig. 4.7a with PLRT = 0.0001) and target PLR (Fig. 4.7b with DT = 150 ms).

62 Chapter 4.4: Search Comparison

100 200 300 400 500 600

Target Delay (DT) [ms]

101

102

103

104

105

#
of

C
on

fig
u

ra
ti

on
s

SHARQ

Fast Exploration

Fast Schedule

Full Search

(a) Target Delay

0.00002 0.00004 0.00006 0.00008 0.00010

Target Packet Loss Rate (PLRT) [%]

101

102

#
of

C
on

fig
u

ra
ti

on
s

(b) Target Packet Loss Rate

Figure 4.7: Number of configurations evaluated by the search algorithms as a function
of the target delay (DT) and target packet loss rate (PLRT). The baseline parameters
are RC = 10 Mbps, pe = 0.05, Ts = 4 ms, Lp = 1500 B, RTT = 20 ms. In (a)
PLRT = 0.0001, and in (b) DT = 150 ms are fixed.

The remaining parameters are the same for the two figures: RC = 10 Mbps, pe = 0.05,
Ts = 4 ms, Lp = 1500 B, RTT = 5 ms.

For the depicted scenarios, the delay has a major impact on the size of the solution
space than the PLR. A larger time budget increases the number of cycles to evaluate
in Full Search and Fast Schedule (see Eq. (4.1)), whereas the largest block length may
also increase in SHARQ and Fast Exploration (see Eq. (4.6))—i.e., in SHARQ it only
increases if the PLR constraint allows, see Eq. (4.5) for more details. The inference time
achieved by SHARQ is up to four orders of magnitude smaller than in Full Search in the
high delay target regime. The major contributor to the fewer evaluated configurations
is the structured search space exploration (see Sec. 4.3.1). While p = NC—i.e., in the
largest five delay targets—the Fast Exploration must only check one restricted integer
composition per block length, and hence it explores the same solution space explored by
SHARQ. If p ̸= NC , the restricted integer compositions increase but, for this particular
case, Fast Exploration still checks fewer configurations than Fast Schedule. Despite the
similar performance to Full Search in the low DT regime, the impact of evaluating fewer
schedules becomes visible in the high DT regime, with Fast Schedule evaluating two
orders of magnitude fewer configurations.

Changes in the PLRT directly impact the number of parity packets p, which in turn
may modify k and NC in order to accommodate the extra parity packets. However, the
latter is unlikely in current networks due to their high data rate (see Table 3.2). On
the one hand, Fast Schedule’s solution space is only affected if transmitting more parity
packets can only be done at the expense of a retransmission cycle (see Eq. (4.14)). Its
constant number of configurations in Fig. 4.7b suggest that NC remains unchanged. On
the other hand, the constant number of configurations for SHARQ means that the block
length is also unchanged (see Eq. (4.5)). Therefore, the changes experienced by Full
Search and Fast Exploration are a result of more packets to distribute among the repair
cycles, as more parity packets are required the more stringent the PLR constraint is.

Chapter 4.4: Search Comparison 63

102 105 108 1011 1014 1017

of Configurations

0.0

0.5

1.0

C
D

F
SHARQ

Fast Exploration

Fast Schedule

Full Search

Figure 4.8: CDF of the number of configurations evaluated by every algorithm. The
x-axis is on a logarithmic scale.

These are some examples of how intricate the relations among channel, applica-
tion, and HARQ parameters are. To understand how the algorithms perform over a
wider range of conditions, the number of configurations they evaluate has been ob-
tained for every sample in the test dataset (see Fig. 4.8). All the algorithms evaluate a
similar number of configurations for the first quartile of the dataset. SHARQ outper-
forms all the other algorithms since its upper limit to the number of configurations is
klim ≤ 255 (see Eq. (4.15)). Fast Exploration and Fast Schedule are relatively close
except for the last quartile. While Fast Exploration evaluates fewer configurations than
Fast Schedule up to the 94th percentile, its tail is 9 orders of magnitude larger. Although
few samples in the dataset benefit from the Graph Search, fast scheduling plays a ma-
jor role in the tail latency—i.e., inference time predictability—of the search algorithm.
SHARQ has reduced the maximum evaluated configurations by 16 orders of magnitude
without sacrificing RI optimality. Whether it is able to do it in real-time and with high
predictability depends on the device-dependent inference time, which is evaluated in the
following.

Inference Time

Fig. 4.9a depicts the average inference time over the 50 runs of the test dataset. When
executed on the PC, SHARQ maintains the inference time below the millisecond mark
up to the 96th percentile. However, the inference time is in the ten-millisecond range
up to the 99th percentile on the Raspberry Pi. Despite the long tail, both curves show
predictable behavior for the majority of the samples. On the PC, the inference time
deviates less than 10% from the mean in 79.24% of the cases, whereas the percentage
increases to 80.56% of the samples on the more predictable Pi.

To shed some light on where the predictability comes from, Fig. 4.9b depicts the
split between algorithmic search and pp table. The pp table construction marks the
absolute lower bound to the inference time at 0.3 and 15 milliseconds on the PC and
Pi, respectively. The table always has the same size and the pe value plays no role

64 Chapter 4.4: Search Comparison

106 107 108

Inference Time (ns)

0.0

0.5

1.0

C
D

F

SHARQ PC

SHARQ Pi

(a) CDF of the average inference time on the PC and the Raspberry Pi Zero W.

103 104 105 106 107 108

Inference Time (ns)

0.0

0.5

1.0

C
D

F

PC table

PC search

Pi table

Pi search

(b) CDF of the inference time split into pp table construction and algorithmic search.

106 107 108

Inference Time (ns)

0.0

0.5

1.0

C
D

F

PC Median

PC Mininum

PC Maximum

Pi Median

Pi Mininum

Pi Maximum

(c) CDF of the mean, minimum, and maximum inference time over the 50 executions
of the test dataset.

Figure 4.9: SHARQ inference time analysis.

Chapter 4.4: Search Comparison 65

in its computational complexity (see Sec. 4.3.2). Therefore, the pp table construction
always entails the same number of operations. This predictability, in addition to the fact
that it dominates the delay budget in 92.4% of the samples in both platforms, explains
the observed predictable inference time in Fig. 4.9a. Not only is the inference time
predictable across samples but across executions of the same sample as well. Fig. 4.9c
depicts the mean, minimum, and maximum inference time out of the 50 runs over the test
dataset. Although the search seems more sensitive to operative system noise in the sub-
millisecond range when executed on the PC, the variance across executions is negligible
outside of this band. As expected, a lower variance is perceived on the Raspberry Pi
due to the more controlled execution environment as fewer services are running on its
operating system that could interfere with the experiments.

It is important to note that predictability in this section solely refers to the ex-
pected inference time across different inputs to the algorithm and not to the ability of
the algorithm to ensure the predictability of the communication channel. The latter
predictability aspect will be analyzed in the following section.

Communication Channel Predictability

When it comes to the predictability of the communication channel, the search algorithm
must fulfill the requirements in Sec. 4.1. Independently of the underlying channel co-
herence time, PRRT collects packets for a time window of 10 RTTs before applying
any estimation filter. Therefore, the channel state is updated on an RTT basis: in the
worst case, for fast-changing channels, PRRT’s channel state is updated every round-trip
time (Tr ≤ RTT). The results presented in this section also consider a case in which no
channel change is detected within the complete estimation window (Tr ≤ 10 ·RTT).

Table 4.2 shows for how many samples in the test dataset the SHARQ algorithm
meets the requirements. The algorithm always reacts to channel changes within the
time budget—soft requirement in Sec. 4.1 or fourth column in Table 4.2. In fast-changing
channels—i.e., second column—, SHARQ cannot provide predictable communication in
0.31% of the cases even when it runs on a desktop PC. On the resource-constrained
Pi, the number of unpredictable channels increases to 63.38%. On the contrary, when
the channel is stable—i.e., the third column—full predictability is achieved on the PC,
while coverage of 91.77% is achieved on the Pi. Thanks to the fast execution of the
PC, SHARQ is able to fulfill the most stringent of the requirements (Req. 4.1.3) up to
the 99th percentile. However, it does not achieve the same low resource footprint and
predictable inference time on the Pi.

The ability of the algorithms to channel changes within the current block is analyzed
in Table 4.3. When executing on a desktop PC, SHARQ can react to channel changes
without impacting later blocks even when the channel changes occur within a fourth of
the target delay. On the other hand, on a more constrained platform, the predictability
sharply decreases below 50% of the samples once 10% of the target delay is reached.

66 Chapter 4.5: Discussion

Device
Requirement

Tr < RTT Tr < 10 ·RTT Tr < DT Tr < DT
min

PC 99.69% 100% 100% 99.17%

Pi 36.62% 91.77% 92.07% 0%

Table 4.2: SHARQ percentage of inferences on the test dataset meeting the predictabil-
ity requirements.

Device
ϵ

0.75 0.5 0.25 0.1 0.05 0.01

PC 100% 100% 100% 99.68% 96.51% 84.12%

Pi 91.81% 88.87% 74.72% 44.6% 27.86% 0%

Table 4.3: SHARQ percentage of inferences on the test dataset meeting the ϵ-fulfilling
requirement.

4.5 Discussion

This chapter has introduced two different predictability concepts that are relevant for
error control in transport protocols in order to support CPSs. Firstly, the predictability
of the communication channel offered to the application is the protocol’s ability to timely
adapt its configuration to cope with performance changes in the underlying physical
channel so that the application constraints are always fulfilled. Sec. 4.1 has shown
that this first predictability type depends on how the search inference time relates to
the channel coherence time and the application target delay. Secondly, inference time
predictability enables precise task scheduling in CPSs. As the size of the explored
solution space depends on the application and channel parameters, achieving this second
predictability type is a challenging task. This section discusses SHARQ’s performance
with regard to both predictability types.

Communication Channel Predictability

SHARQ combines the Graph Search presented in Sec. 4.3.2 for optimal repair sched-
ule construction in polynomial time, with the structured search of the solution space in
Sec. 4.3.1 to achieve a more predictable and faster reaction to channel changes. The eval-
uations presented in this chapter have shown that SHARQ is the first search algorithm
that solves the optimization problem in Sec. 3.5 within the target delay of the appli-
cation. In other words, SHARQ is the first algorithm providing a predictable optimal
communication channel to the application. However, this performance is only achievable
on a relatively powerful desktop PC. When the algorithm runs on a resource-constrained
device, its predictability vanishes for a high percentage of the channels it is supposed
to operate with. Although SHARQ is a first step toward supporting CPSs with PRRT,
the tail inference time of the search algorithm must be reduced by several orders of

Chapter 4.5: Discussion 67

magnitude in order to extend the predictability to resource-constrained devices, which
are the natural component of CPSs.

Despite its high predictability, SHARQ’s long tail in the inference time prevents
it from achieving high predictability on fast-changing channels. Being unable to re-
act before the beginning of the following block has a different impact on the protocol
performance depending on how stable the channel is. When the channel state remains
constant for long periods, the impact of a slow reaction can be spread out over more
blocks than if the channel state quickly changes again. SHARQ’s poor performance on
the resource-constrained Pi precludes its deployability on fast-changing channels. These
channels are very common in high-mobility scenarios in which the sender, the receiver,
or both may change their position in any dimension, which is a very common use case
in CPSs ([4, 78, 110, 128, 159, 185, 226]). Another aspect to consider in fast-changing
channels is the granularity of the configuration adaptation function. As the protocol
performs adaptation on a per-block basis, the faster a block is transmitted the more
opportunities there will be for changes. Therefore, not only should the search be quick
enough to find the configuration before the next block, but the protocol may favor blocks
that do not consume the complete time budget—e.g., limiting the block length, or the
number of repair cycles.

For PRRT to support high predictability on resource-constrained devices and fast-
changing channels, a common requisite for the search algorithm exists: the inference
time of the search algorithm must be reduced. The inference time results presented in
Sec. 4.4 point in two different directions. First, the large tail latency results from the
algorithmic search, which only explores one dimension in SHARQ, namely the block
length (see Eq. (4.15)). Therefore, further algorithmic optimizations are required to
reduce the tail latency. Secondly, the pp table construction currently is the lower bound
to the inference time. It is an open question whether optimal scheduling can be provided
on embedded devices with limited computational power and, in case it is not, what the
impact on the overall protocol performance is.

Predictably Low Inference Time

This chapter has also extended the predictability concept to the inference time of the
search algorithm. This second concept represents a non-functional requirement of the
protocol that does not impact its main purpose, namely providing data transport with
predictable end-to-end latency and reliability. On the contrary, a predictable execution
time allows for precise task scheduling, which is a broad topic on its own that spans real-
time operating systems [56], multi-core CPU management [162], or precise timers [180],
among others. This precise task execution concept has already been applied to transport
layer function design in congestion control [161]. However, this chapter has focused on
its applicability to error control design.

The observed predictability in the inference time is a direct consequence of the dy-
namic programming approach followed in SHARQ with the pp table construction. Nev-
ertheless, SHARQ’s predictability is not high enough yet for precise task scheduling due
to its long tail latency. In addition, the section above proposes to omit the pp table to

68 Chapter 4.6: Related Work

increase the predictability of the communication channel. However, not constructing the
pp table would increase the unpredictability of the inference time, as shown in Fig. 4.9b.
Ideally, the search algorithm should have a predictable low inference time so that it can
predictably react to channel changes in a wide range of devices, and thus the inference
time predictability should not be dismissed.

4.6 Related Work

Error control in transport protocols has typically been approached with loss detection
and the retransmission of loss packets (see Sec. 3.1). This reactive mechanism allows
transport protocols to approach the channel capacity as long as the loss detection does
not produce misclassifications. TCP’s Fast Retransmit [27] detects packet losses upon
the reception of three duplicated ACKs. However, this loss detection mechanism per-
forms poorly with bursts of lost packets because duplicated ACKs only detect the first
loss in the burst. Selective Acknowledgments (SACKs) [24] have been proposed to
solve this issue by providing precise information about the received packets. The most
recent proposal is RACK-TLP [187], which transmits less redundancy than previous
approaches in the presence of packet reordering and reacts faster to packet losses in
application-limited scenarios. On the one hand, Recent Acknowledgment (RACK) per-
forms a time-based loss detection for a more robust detection than duplicated ACKs.
Packet losses are detected upon a timer expiration. The timer accounts for the RTT
elapsed between the packet transmission and its expected ACK arrival time, plus a con-
figurable window that accounts for possible reordering that would delay the ACK. On
the other hand, Tail Loss Probe (TLP) proactively retransmits packets in application-
limited scenarios so that, when RACK does not operate because of the sparse ACKs,
losses can be detected faster.

As more transport protocols implement FEC, the amount of transmitted redundancy
depends on the algorithm that detects how many parity packets are transmitted instead
of the loss detection mechanism. These algorithms must predict losses before they oc-
cur in order to decide how much redundancy must be put into the channel. Therefore,
they observe the channel and build models to predict future channel dynamics. Orig-
inally, the proposed algorithms used relatively simple metrics to decide how much RI
to transmit [41, 58, 138, 151]. Tickoo et al. [41] proposed a loss-tolerant TCP version
that distinguishes congestion-caused losses—followed by packets marked by ECN—and
losses caused by the poor quality of the communication channel. Such a distinction is
instrumental in TCP to avoid the throughput drop—the default behavior when conges-
tion is detected—when losses appear in wireless channels. The transmitted proactive
redundancy is proportional to the estimated channel erasure rate, whereas reactive re-
dundancy is still transmitted when the receiver does not get enough packets to decode
the block. The authors show that this combination of proactive and reactive redundancy
achieves higher throughput over lossy links than standard TCP. Ahmad et al. [58] im-
plement a pure FEC scheme with rateless codes for time-constrained scenarios. The
protocol implements a feedback mechanism that signals the correct decoding of each

Chapter 4.7: Conclusion 69

block. The RI is proportional to the measured packet loss rate, which is adjusted when
no ACK is received in order to increase the probability of the next block being decoded.
Adaptive FEC has also been applied to time-sensitive applications to avoid head-of-line
blocking when transmitting over Multipath TCP (MPTCP) [138]. The authors imple-
ment a zero-RTT, XOR-based FEC scheme that dynamically adjusts the transmitted
redundancy to achieve a target residual loss rate. A similar dynamic approach has been
implemented in QUIC as well [151].

The aforementioned solutions have been proposed for fully reliable transport, and
hence they complement proactive redundancy, which achieves zero-RTT loss recovery,
with reactive redundancy to ensure full reliability. However, similarly to PRRT, more
recent approaches exploit the proactive and reactive combination to reduce the transmit-
ted redundancy [154, 172, 188, 211]. This trend towards more efficient error control has
motivated the development of more advanced metrics and channel models to fine-tune
the transmitted RI. [154] adds a coding layer between IP and MPTCP to reduce the
FCT of short flows in datacenter communication by avoiding head-of-line blocking. The
proposed mechanism jointly balances the traffic overhead—i.e., the transmitted RI—and
decoding delay—i.e., time to obtain enough packets to decode a block—by transmitting
more parity packets in those flows with a higher head-of-line blocking probability. Co-
hen et al. [172] also aim at reducing the in-order delivery in fully reliable transport
with an adaptive HARQ scheme based on Random Linear Network Coding (RLNC). A
receiver feedback mechanism is used to estimate the erasure probability, channel vari-
ance, and expected loss burst pattern. These parameters are used to find the optimal
balance between a prior and a posterior redundancy such that the transmitted RI is min-
imized. Based on the observed loss patterns in the channel, [188] adaptively parametrize
a streaming code with two parameters: the maximum recoverable burst length, and the
maximum number of arbitrary losses. To the best of our knowledge, the most similar
search solution is proposed in [211]. The authors implement RLNC into QUIC and pro-
pose an adaptive search algorithm for optimal RI scheduling. The proposed scheme takes
as an input the applications’ sensitivity to delay, as well as how desirable it is for the
application to rely on the proactive FEC cycle for a faster loss recovery. The resulting
QUIC version is able to provide different reliability levels according to the application
demands.

4.7 Conclusion

In order for PRRT’s performance to be predictable—i.e., the DT and PLRT constraints
configured by the application are fulfilled with a high probability—, it must timely
react to channel changes. Designing an algorithm that solves Eq. (3.10) is challenging
because traditional optimization tools cannot be applied. This chapter has shown that
performing a Full Search of the solution space is unfeasible due to the large number of
configurations to evaluate. The search algorithm must efficiently explore the solution
spaced formed by k, p, and NC , and quickly find the optimal schedule NP . SHARQ is,
to the best of our knowledge, the first search algorithm capable of solving Eq. (3.10)

70 Chapter 4.7: Conclusion

in real-time. This algorithm involves a more structured search of the solution space
that, with more efficient use of the application constraints, avoids evaluating the same
solution several times. In addition, thanks to the Graph Search in Sec. 4.3.2, it can
find the optimal schedule in polynomial time. The evaluations presented in this chapter
have shown that SHARQ needs to evaluate significantly fewer configurations than the
Full Search to find the optimum. As a result, SHARQ is able to provide a predictable
communication channel to the application when executed on a computationally powerful
desktop PC. However, it still fails to achieve similar predictability levels on resource-
constrained devices. Therefore, in order to bring PRRT’s performance guarantees to
embedded devices with limited computational power, which are the natural component
of CPSs, the computational complexity of the adaptive error control function must be
further reduced.

Chapter 5

Deep Learning for Adaptive
HARQ

The algorithmic optimizations presented in Chapter 4 have reduced the tail latency
of finding the optimal HARQ configuration by several orders of magnitude. Despite its
more predictable and lower inference time, SHARQ still fails to provide full predictability
even on a computationally powerful desktop PC, not to mention its poor predictability
on resource-constrained devices. This chapter departs from a purely algorithmic ap-
proach and explores learning-based solutions to the problem, which enable predictable
performance on resource-constrained devices for the first time.

5.1 Learning How to Balance

Advances in algorithms, hardware, and software frameworks have led to more power-
ful neural networks, and hence Deep Learning (DL) has permeated almost every field
as of today, including protocol design. The efficient feature extraction of Deep Neural
Networks (DNNs) has enabled resource-constrained embedded devices to solve complex
problems that were previously limited to more powerful computers. This section intro-
duces the fundamentals of DL and how they could be leveraged to design more efficient
search algorithms capable of providing predictable communication channels even on em-
bedded devices.

5.1.1 Deep Learning Fundamentals

DNNs arguably are the most common machine learning models nowadays. Their goal
is to approximate some mathematical function f∗. For example, given some classifier
y = f∗(x) that maps the input vector x to the class y, the neural network defines
a mapping ŷ = f(x;θ). The parameters θ are learned to provide the best function
approximation according to a loss function L(y, ŷ). Common loss functions are the
Mean Absolute Error (MAE) or Mean Squared Error (MSE) for regression problems, or
the cross-entropy function for classification problems.

71

72 Chapter 5.1: Learning How to Balance

∑
x1

θ1

x2
θ2

xn

θn

b

Activation
ŷ = activation(xθT + b)

Figure 5.1: Artificial neuron architecture [207]

The most basic component of DNNs is the artificial neuron, whose architecture is
depicted in Fig. 5.1. The artificial neuron applies a linear combination of the inputs,
weighted by the parameters θi. If the summation of the inputs is above a certain thresh-
old determined by the bias b and activation function, the artificial neuron triggers and
propagates its output further. Nowadays, the most frequently used activation functions
are the Rectified Linear Unit (ReLU) (see Eq. (5.1)) and sigmoid (see Eq. (5.2)) func-
tions. Multiple neurons are collected into a layer, to which an input and output layer
could be prepended and appended, respectively, in order to form a neural network.

ReLU(x) = max(0, x) (5.1)

sigmoid(x) =
1

1 + e−x
(5.2)

An important concept for neural networks is their depth: when the network has more
than one layer—a.k.a. hidden layers—, then it is known as a deep neural network. It can
be mathematically proved that DNNs can approximate any mathematical function [20],
which explains the broad generalizability of these models. As a result, DL has gained
traction in nearly every field in recent years [221].

Being able to approximate any mathematical function is the same as saying that
neural networks are non-linear functions, which is at the same time one of the major
disadvantages of neural networks. Non-linearities cause the loss functions that are fre-
quently used in other machine learning algorithms to be non-convex [114]. Therefore, the
gradient descent algorithm has no convergence guarantees for neural networks. DNNs
are trained with iterative, gradient-based optimizers that explore the solution space to
avoid local minima far from the optimum [103]. For typical training, the dataset is
split into batches, and every sample in the batch is fed into the neural network in what
is called the forward pass. Once the complete batch has been processed, the loss is
computed at the output of the network, and the back-propagation algorithm distributes
this information in the backward pass by computing the gradient for each layer. The

Chapter 5.1: Learning How to Balance 73

parameters θ are usually updated after every batch to reduce the memory footprint for
large models. One iteration over the complete dataset is known as an epoch.

The hyperparameter tuning phase is instrumental in obtaining accurate models due
to the lack of convergence guarantees. If hyperparameters—e.g., learning rate, number
of layers and neurons per layer, batch size, number of epochs, weight initialization, etc.—
are not correctly configured, the optimizer will not be able to bring the loss to a low
value [164]. The wrong set of hyperparameters can also lead to overfitting: matching
the training set so well that the neural network does not generalize for data it has
not seen while training. A common practice to detect overfitting early in the training
phase is splitting the dataset into the training, validation, and test dataset. Only the
training dataset is used to update the weights. When the loss for the training dataset
is significantly lower than for the validation dataset, the model is overfitting and the
hyperparameters must be adjusted. The test dataset is a final check to avoid overfitting
with data that has not been used in the training phase, neither for the weight tuning
(training set) nor for the hyperparameter tuning (validation set). A common split is
60%, 20%, and 20% for the training, validation, and test dataset, respectively.

Advances in algorithms, hardware, and software frameworks have enabled the train-
ing of deeper models with more layers and parameters, and neural networks have become
more accurate and capable, which has led to DNNs outperforming traditional methods
in a plethora of use cases. On the one hand, large DNNs have motivated a performance
leap in fields such as visual computing [90] or natural language processing [170]. On the
other hand, larger models demand greater computational resources, with an increase
in the energy demand and training costs that it entails, both at training and inference
time [165, 181]. The training time for the best-performing models has experienced an
exponential increase in the last decade [181], which has raised sustainability [165, 181,
227] and reproducibility [194] concerns from the research community.

5.1.2 Sustainable Deep Learning on Embedded Devices

The lack of a carbon-neutral energy grid makes power-hungry neural networks respon-
sible for a significant portion of greenhouse emissions. Strubell et al. [165] estimate
that training a single unit of these models can emit as much CO2 as approximately
5 cars throughout their complete lifetime, including fuel. Another important aspect
that is frequently overlooked is the competition for limited energy resources. Even if
CO2-neutral energy sources were available, the question remains whether those energy
resources may be better allocated for other purposes instead. Improving the energy
efficiency of deep learning is of the utmost importance in order to reduce its environ-
mental impact. The GreenAI concept refers to the set of good practices leading to the
development of a sustainable AI ecosystem in a broad sense [181]—i.e., developing sus-
tainable practices in every stage of the pipeline. A wide range of proposals around this
GreenAI paradigm have appeared in the last years. Energy-efficiency metrics should be
reported for each model’s training and hyperparameter tuning phases so that researchers
take energy efficiency into account alongside accuracy when designing new models [181].
Some researchers have gone a step further, making the hyperparameter tuning carbon-

74 Chapter 5.1: Learning How to Balance

aware [227] to favor search architecture strategies based on their carbon intensity. Power
draw models have been proposed to estimate the energy demand at inference time when
executing the model on CPUs and GPUs [117], or TPUs [208]. At the core of this thesis
is the sustainable design and deployment of CPSs, as discussed in Sec. 2.2.1. Therefore,
if PRRT is extended with any DL component, it should be done following the GreenAI
guidelines.

The remarkable success of DNNs has led to their introduction into embedded de-
vices [135, 167, 192, 217], despite their limited computational power and memory size.
The design of specific-purpose hardware, such as Google Coral Edge TPU1 or NVIDIA
Jetson Nano2, has paved the way with faster and more efficient inference than is possi-
ble on edge CPUs, whereas TinyML has emerged to reduce neural network sizes to fit
into low-power embedded devices without a significant accuracy drop. Most TinyML
models are conceived as a compressed version of previously trained models. For exam-
ple, weight pruning [118, 133] avoids executing weights that have little impact on the
model’s accuracy, weight quantization converts floating point weights into integers to
operate with integer-only arithmetic and reduce the model size [115, 141], or knowledge
distillation [42, 96] compresses a trained model into a smaller one without a significant
loss of performance. While TinyML models are not necessarily “green”—e.g., if com-
pressing the model requires more resources than what is saved at inference time—, both
approaches have synergies that are instrumental for the sustainable deployment of data-
driven systems at scale. Given SHARQ’s poor performance on embedded devices, and
the potential offered by deep learning, TinyML seems an ideal candidate for the design
of a more efficient search algorithm.

5.1.3 Learning-based, Predictable Error Control

Machine learning algorithms can learn arbitrary functions if the architecture of the
algorithm is powerful enough. In other words, the size of the DNN depends on the
complexity of the problem to be learned. The term complexity here does not have the
traditional meaning of ”computational complexity” as expressed with the big-O notation,
but it is related to the learnability of the problem.

Definition 5.1.1 (Learning complexity). Given two functions f∗
1 (x) and f∗

2 (x), and
their learned counterparts f1(x;θ) and f2(x;θ), respectively. The function f∗

1 (x) has a
higher learning complexity than f∗

2 (x) if f1(x;θ) requires more floating point operations
than f2(x;θ) to achieve the same accuracy level.

The learning complexity metric defined in Def. 5.1.1 should be carefully used in order
to avoid unfair comparisons. For example, comparing a Convolutional Neural Network
(CNN) and a network with fully connected layers both solving the same visual comput-
ing problem would be unfair because CNNs have been specifically designed to better

1https://www.coral.ai/products/accelerator (accessed January 23rd 2024)
2https://developer.nvidia.com/embedded/jetson-nano-developer-kit (accessed January 23rd

2024)

https://www.coral.ai/products/accelerator
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

Chapter 5.1: Learning How to Balance 75

extract features for such kind of problems by exploring spatial relations between neigh-
boring pixels. The learning complexity of the problem remains constant but the CNN
likely requires fewer floating point operations than the network with fully connected
layers. This example belongs to what is called Neural Architecture Search (NAS), which
explores the large set of architectural parameters to find the most efficient model to
solve a problem. On the contrary, the full potential of the learning complexity metric
is deployed in the initial phases of the machine learning pipeline, when deciding how to
model the problem to learn. In the particular case of error control, instead of learning
the complete error control function, which may result in an unnecessarily large DNN,
learning could be solely applied to those specific components that would benefit from
it. When designing a search algorithm for which an optimal algorithmic solution al-
ready exists (see Sec. 4.3), precisely narrowing down the components to be learned is
fundamental. Otherwise, if the resulting DNN required more floating point operations
to obtain the HARQ configuration, applying a learning-based approach would not be
justified from a sustainability standpoint.

The remainder of this chapter builds on top of the results presented in Chapter 4 in
order to reduce the size of the DNN. SHARQ spends most of the time on the optimal
repair schedule construction and exploring the complete set of possible block lengths,
while p and NC are efficiently found with a binary search and a closed-form expression,
respectively.

Hypothesis 5.1.1 (Adaptive HARQ learning complexity). Predicting all HARQ pa-
rameters unnecessarily increases the complexity of the learning problem and hence only
the block length should be learned in order to reduce the DNN size.

Solely learning the block length instead of the complete set of parameters (k, p,NC)
would already avoid the most outer loop in Eq. (3.10). The algorithm would go from
evaluating klim configurations in SHARQ to a single one if k is learned.

Introducing DNNs into the search algorithm deviates from the original optimization
problem defined in Eq. (3.10): the search no longer outputs the optimal configuration
with minimal RI in all cases. A model that perfectly fits the training set with 100%
accuracy is likely to achieve poor generalization to unseen inputs due to overfitting.
Even in the unlikely event that full accuracy and good generalizability are achieved,
the DNN may misclassify an input that is in neither of the datasets. Unlike purely
algorithmic solutions, DNNs do not provide classification assurances for every input.
However, this sub-optimality could be turned into a feature that reduces the learning
complexity of the problem as long as the RI increase is kept within tolerable bounds.
Fig. 4.1 shows that small changes in the input parameters produce large changes in the
output parameters. This behavior is a direct effect of the quantization of the output,
which hinders the clustering of input samples that are close together into a single block
length, thereby increasing the learning complexity of the problem. Instead, a smoother
solution space could be obtained, e.g., using fewer retransmission cycles or a smaller
block length than allowed by DT despite the RI increase they would entail.

76 Chapter 5.2: DeepSHARQ: Hybrid Error Coding using Deep Learning

Hypothesis 5.1.2 (Quantization effects). The regularization of the output parameters
would avoid the complexity introduced by quantization effects, thereby reducing the
resulting model size.

The following section introduces a search algorithm that has been designed following
Hyp. 5.1.1 and Hyp. 5.1.2, and provides results that confirm the validity of both hypothe-
ses, thereby showing that reducing the learning complexity of the problem with support
for the algorithmic components inherited from SHARQ achieves a lower inference time,
which in turn improves the predictability of PRRT’s performance guarantees.

5.2 DeepSHARQ: Hybrid Error Coding using Deep Learn-
ing

Based on SHARQ’s search structure, Deep-learned, Scheduled HARQ (DeepSHARQ) [10]
applies learning algorithms to estimate the block length and implements a simple sched-
ule construction to reduce the run-time complexity compared to algorithms that use
purely learning and algorithmic solutions.

5.2.1 Design Principles

The SHARQ algorithm has enabled the search for the optimal HARQ configuration
in real-time for the first time, mainly due to its three algorithmic optimizations: the
reduced computational complexity of the basic performance metrics for the validation
of the performance guarantees (see Table 4.1), the Graph Search in Sec. 4.3.2, which
reduces the computational complexity of the optimal schedule construction, and the
efficient search space exploration in Sec. 4.3.1. Despite these optimizations, the search
still fails to provide predictable performance guarantees to the application, especially
on embedded devices with limited computational resources, the natural component on
CPSs. There are two main contributors to the inference time. Most of the resources are
spent on the Graph Search for the pp table construction, which marks a constant lower
bound to the inference time, while the full search for all valid block lengths is responsible
for the tail latency shown in Sec. 4.4.2. These shortcomings of the SHARQ algorithm are
addressed by DeepSHARQ thanks to its two design principles: i) in contrast to purely
learning-based approaches, DeepSHARQ exploits SHARQ’s search structure to simplify
the learning problem by applying domain knowledge, which reduces the size of the neural
networks, and ii) DeepSHARQ relaxes the optimality constraint to provide predictable
performance guarantees thanks to a lower and more predictable inference time.

DeepSHARQ reuses from SHARQ the binary search for the optimal p (Alg. 2) and
the closed-form expression for the optimal NC (Eq. (4.8)). For the remaining variables,
k and NP , DeepSHARQ uses a neural network and a simple schedule construction,
respectively.

Chapter 5.2: DeepSHARQ: Hybrid Error Coding using Deep Learning 77

5.2.2 Output Space Regularization

The universal approximation theorem shows that neural networks can approach virtually
any function with arbitrarily high accuracy, provided they have a sufficient number of
parameters [20]. Formally, an adaptive HARQ search algorithm maps the (continuous)
channel and application parameters to the (discrete) block length:

Adaptive HARQ = {f | f : Ru → Nv} (5.3)

where u = 6 is the size of input vector x = [DT , PLRT , Ts, RC , pe, RTT], and v = NC+2
accounts for a single output to predict the block length (k), and NC +1 outputs for the
NC + 1 elements in the vector NP . Although neural networks that predict vectors of
arbitrary length exist, an alternative faster construction for the vector NP is provided
in Sec. 5.2.3. A neural network trained to estimate the remaining optimal parameters
performs the mapping:

NN full = {f | f : x ∈ R6 → [k∗, p∗, NC
∗] ∈ [1, 255]3} (5.4)

where k∗, p∗, and NC
∗ are the parameters with the minimum RI obtained by SHARQ.

Nevertheless, the neural network in DeepSHARQ has been designed to reduce its size
so that it can achieve a lower average inference time that would allow it to run on
resource-constrained devices. SHARQ’s structured search shows that p can be found in
logarithmic time, whereas a closed-form expression is available for NC once the (k, p)
tuple is known. Therefore, modeling the complete optimization problem in Sec. 3.5 with
deep learning unnecessarily increases the size of the problem to be learned. DeepSHARQ
only applies deep learning to the block length inference:

NN kopt = {f | f : x ∈ R6 → k∗ ∈ [1, 255]} (5.5)

As hypothesized in Sec. 5.1.3, the learning complexity of Eq. (5.5) is high due to
the quantization effects depicted in Fig. 4.1. In order to reduce the size of the neural
network, DeepSHARQ learns a simpler mapping between input and output space. This
is achieved with what we call output space regularization, which smoothes the output
space as follows: instead of predicting k∗, a set of valid block lengths is defined such that
the RI increase is within a certain range of the minimum RI. Formally, given the set
Kv of all block lengths that fulfill the requirements—see Sec. 3.5—, any block length in
the set K∆

v ⊂ Kv such that RI(k,NC , NP (k)) ≤ (1 + ∆) · RI(k∗, NC
∗, NP

∗) ∀ k ∈ K∆
v is

considered a valid label. Therefore, DeepSHARQ’s neural network learns the mapping:

NN reg = {f | f : x ∈ R6 → {k | ∀ k ∈ K∆
v }} (5.6)

The transition from Eq. (5.4) to Eq. (5.6) has

1. reduced the dimensions of the output, which on its own divides the number of
weights in the output layer by three, a significant number given the final model
architectures (see Sec. 5.2.4), and

78 Chapter 5.2: DeepSHARQ: Hybrid Error Coding using Deep Learning

2. simplified the mapping from a single valid label to a set of labels, thereby increasing
the probability of smaller neural networks finding a valid class.

The three neural networks have been trained and evaluated in Sec. 5.3.2, which shows
that the output space regularization here presented reduces the neural network number
of parameters required to achieve 99% accuracy by two orders of magnitude.

Finally, it should be noted that the regularization mechanism here presented differs
from the early version of DeepSHARQ presented in [10]. In [10], regularization is only
applied to configurations whose block length was limited by the constraints, namely
k∗ < 255. If the channel capacity is enough to meet the application constraints without
any redundancy—i.e., k∗ = 1 and p∗ = 0—, the neural network was trained to map
the input to the minimum block length k = 1. The assumption behind this regular-
ization mechanism was that the latter cases should be easily detectable by the neural
network due to their straightforward optimal solution, and hence no regularization is re-
quired. Nevertheless, later evaluations proved this assumption wrong: higher accuracy
is achieved by smaller neural networks when regularization is extended to all cases, and
hence this is the regularization that has been finally used for DeepSHARQ.

5.2.3 Repair Schedule Construction

The repair schedule construction is responsible for the long inference times in SHARQ
due to the pp table calculation (see Sec. 4.4.2). Two alternative repair schedule con-
structions are presented in the following: i) an optimal scheduler that does not need to
obtain the pp table, and ii) a suboptimal but simple scheduler that follows a fixed par-
ity packet distribution mechanism without the need for RI evaluations. We have finally
opted for the simple schedule for DeepSHARQ because Sec. 5.4 shows that it achieves
faster inference without a large increase in the transmitted data rate.

Optimal Schedule without pp Table

The objective of the pp table in the Graph Search algorithm (see Alg. 4) is to provide
a fast mechanism to evaluate the probability of a cycle failing (see Eq. (4.12)). The
full table is required by SHARQ because it explores the complete range of valid block
lengths. On the contrary, DeepSHARQ is limited to a single block length, which provides
an opportunity to avoid the expensive pp table calculation.

Given n[c] the number of parity packets transmitted in the c’th repair cycle, Alg. 8 in
Appendix B provides a mechanism to obtain the vectorw, wherew[j] is the probability of
a repair cycle failing if n[c−1] = j. Formally, w[n[c−1]−k] = pf [c]. Therefore, the vector
w initialized for a fixed k and j ∈ [0, p] contains all the weights the Graph Search needs
to obtain the optimal repair schedule. The substitution of the pp table by the w vector
is evaluated in Sec. 5.4, which shows that it still introduces an excessive computational
overhead. DeepSHARQ implements a simple schedule construction instead.

Chapter 5.2: DeepSHARQ: Hybrid Error Coding using Deep Learning 79

Simple Schedule

For every transmission in a binary erasure channel, a pe’th of the transmitted data gets
lost. Therefore, the minimum required redundancy to correct all the erasures in such a
channel is:

RImin =

(∞∑

i=0

pe
i

)
− 1 =

pe
1− pe

(5.7)

The long tail for Fast Exploration in Fig. 4.8 suggests that few samples in the dataset
really benefit from the faster schedule provided by Graph Search. This section explores
a simple schedule construction that can be evaluated in constant run-time complexity,
which was originally proposed in [57].

Assuming a time-unbound ARQ scheme is used, the probability of every new cycle
being triggered reduces exponentially with every newly transmitted packet. Therefore,
retransmitting a single packet per round approaches the RI in Eq. (5.7), and only the
feedback in the back channel prevents the channel capacity from being achieved. How-
ever, in the packetized transport layer ACKs are usually two orders of magnitude smaller
than packets, and hence their overhead is negligible.

Inspired by this theoretically optimum schedule for pure ARQ, DeepSHARQ imple-
ments a simple schedule construction. In the time-bound case, a single parity packet per
cycle is not enough. If more than one parity packet have not been transmitted before
the last cycle, they must all be proactively transmitted. The simple repair schedule is
constructed as follows: if NC = 0, then p parity packets are transmitted in the FEC
cycle, whereas for NC ∈ [1, p] the FEC is kept empty, followed by the all-ones cycles and
p − NC + 1 in the last cycle. Despite being suboptimal, such a naive schedule can be
constructed in O(1). Moreover, the results in Sec. 5.4 corroborate the original intuition
that few scenarios benefit from the optimal schedule provided by Graph Search.

5.2.4 System Architecture

DeepSHARQ’s pipeline is depicted in the central column of Fig. 5.2. The block length
is predicted by a neural network that has a configurable number of fully connected
hidden layers and neurons, which varies depending on the target predictability level
and deviation from the optimum RI. As a rule of thumb, smaller architectures have a
low inference time—i.e., are more suitable for low-end embedded devices—at the cost
of lower predictability, a higher deviation from the optimum RI(k∗, NC , NP

∗), or both.
These trade-offs are further analyzed in Sec. 5.3.2. The activation function in the hidden
layers is the ReLU function, while the output layer uses the softmax activation function
(see Eq. (5.8)). The activation function takes as input the vector z ∈ RK , where K is the
number of classes. The normalization term makes

∑K
j=1 softmax(z)i = 1. Therefore,

the neural network outputs can be interpreted as the probability of each block length
being the correct one. Fig. 5.3 depicts the smallest neural network architecture evaluated
in this chapter, having 3 hidden layers with 10 neurons each. This neural network
achieves 99% accuracy for ∆ = ∞, and hence it is the lower bound of how small the

80 Chapter 5.2: DeepSHARQ: Hybrid Error Coding using Deep Learning

Application & Channel Model
x = [DT , PLRT , Ts, RC , pe, RTT]

Full Search
(k, p,NC) = f(x)

RICs
NP = f(p,NC)

Full Search
k = f(klim,x)

Binary Search
p = f(k,x)

Closed-Form Expression
NC = f(k, p,x)

GraphSearch
NP = f(p,NC ,x)

Neural Network (NN reg)
k = f(x)

Binary Search
p = f(k,x)

Closed-Form Expression
NC = f(k, p,x)

Simple Schedule
NP = f(p,NC)

Neural Network (NN kopt)
k = f(x)

Binary Search
p = f(k,x)

Closed-Form Expression
NC = f(k, p,x)

Simple Schedule
NP = f(p,NC)

Neural Network (NN full)
(k, p,NC) = f(x)

Simple Schedule
NP = f(p,NC)

Coding Configuration
C = (k,NP)

Full Search

SH
AR

Q

D
eep

S
H
A
R
Q

DeepSHARQ
opt

DeepSHARQfull

Figure 5.2: Architecture and Information Flow for the different Search Algorithms.
Each column represents one algorithm implementation. The vector x includes the ap-
plication and channel model

models obtained with the DeepSHARQ methodology here presented can be while still
achieving high accuracy. Whether the number of parameters, and hence inference time,
can be further reduced with other techniques such as weight quantization [115, 141] or
weight pruning [118, 133] is left for future work. In the remainder of this chapter, we
constrain ourselves to evaluate the performance achieved by DeepSHARQ alone.

softmax(z)i =
ezi

∑K
j=1 e

zj
(5.8)

The binary search for p and the closed-form expression for NC are taken from the
SHARQ algorithm (see Sec. 4.3). Finally, the graph search in Sec. 4.3.2 has been substi-
tuted by a simpler repair schedule construction (see Sec. 5.2.3). The block length estima-
tion, the repair schedule construction, and obtaining the optimal number of repair cycles
have run-time complexity O(1). Therefore, the major contributors to DeepSHARQ’s
complexity are the binary search for p and the RI calculation to ensure that the re-
quirements are fulfilled. According to Table 4.1, the RI calculation has a computational
complexity O(klim+popt). The binary search evaluates Eq. (3.17) at maximum m times,
where m is the number of bits per symbol in the employed Galois Field GF (2m)—see
Sec. 3.1.2. The binary search has a computational complexity O

(
m ·(klim+ log(popt))

)
—

see Table 4.1 for the complexity of the PLR function. In the transport layer, m = 8
so that symbols are one-byte long and kmax = pmax = 2m,3 resulting in DeepSHARQ’s
run-time complexity O(m · kmax + pmax).

3Given a systematic code in GF (2m), it is theoretically possible to construct a C(kmax, pmax) code
with kmax = pmax = 2m. However, the MDS coder implementation considered in this paper enforces

Chapter 5.2: DeepSHARQ: Hybrid Error Coding using Deep Learning 81

1 6

1 10 1 10 1 10 25
6

SOFT

Figure 5.3: DeepSHARQ’s neural network architecture.

Fig. 5.2 shows other two versions of DeepSHARQ whose main difference is the imple-
mented neural network. DeepSHARQopt’s neural network estimates the optimal block
length—i.e., it implements Eq. (5.5)—, whereas DeepSHARQfull implements Eq. (5.4)
to estimate the three parameters k, p, and NC . These algorithms are only provided to
prove Hyp. 5.1.1 and Hyp. 5.1.2 and the PRRT protocol does not support any of them.

5.2.5 Loss Function

Given a discrete random variable X taking values in an alphabet X , the cross-entropy
between two probability distributions px : X → [0, 1] and qx : X → [0, 1] is:

H(px, qx) = −
∑

x∈X
px(x) · log(qx(x)) (5.9)

Since the cross-entropy is a measure of the difference between the distributions px and
qx, it has been frequently used in the context of classification problems as a loss function,
where px is the probability distribution of the true labels and qx is the probability
distribution predicted by the neural network. Provided one-hot coding is used for the
target vector—i.e., px(x) = 0 ∀ x ∈ X \xtrue and px(xtrue) = 1, where xtrue is the true
class—, Eq. (5.9) boils down to what is known as the categorical cross-entropy :

H(px, qx) = −
∑

x∈X
px(x) · log(qx(x)) = −log(qx(xtrue)) (5.10)

The categorical cross-entropy loss can be used with an arbitrary number of classes.
However, if X = {x1, x2} is a binary random variable, Eq. (5.9) boils down to the binary
cross-entropy :

H(px, qx) = −px(x1) · log(qx(x1))− (1− px(x1)) · log(1− qx(x1)) (5.11)

the code (k, p) to fulfill that k+ p ≤ 2m. Therefore, both variables must be independently treated in the
complexity analysis.

82 Chapter 5.3: Model Training

In the particular case of DeepSHARQ, the problem combines multi-class and binary
classification. Multi-class because the neural network predicts one out of 256 classes—
i.e., block lengths with k = 0 denoting there is no valid configuration that meets the
constraints, see Sec. 3.5.1. Binary because the model training is guided by a new binary
cross-entropy loss that considers the probability of predicting a block length belonging to
one of the two sets—i.e., the sets of valid and invalid block lengths. The random variable
X : [0, 255] → {1,−1} is defined to group the block lengths into the valid and invalid
set with the mappings k ∈ K∆

v → 1 and k /∈ K∆
v → −1. Therefore, the probability

distribution functions in the binary cross-entropy loss are px(x) the probability that
the true label belongs to the valid set (see Eq. (5.12)), and qx(x) the probability of
picking any block length that belongs to the valid set predicted by the neural network
(see Eq. (5.13)).

p(x) = Prob[k ∈ K∆
v] =

{
1 if x = 1

0 if x = −1
(5.12)

q(x) = Prob[k̂ ∈ K∆
v] =

{∑
k∈K∆

v
softmax(z)k if x = 1∑

k/∈K∆
v
softmax(z)k if x = −1

(5.13)

The major disadvantage of such a loss definition is that it operates with tensors of
different sizes, as the range [kmin, kmax] may differ between any two inputs. Therefore,
unlike the cross-entropy loss, DeepSHARQ’s loss must be evaluated on a per-sample basis
instead of a per-batch basis, which introduces a non-negligible overhead in the training
phase. The following section analyzes how the models have been trained, including an
analysis of such a drawback.

5.3 Model Training

Both the dataset generation and the ablation study are central to any deep learning
pipeline. The dataset should be generated such that it represents the conditions the
model will face once deployed. The ablation study ensures that the selected neural
network generalizes to unseen samples and it is not larger than required to achieve
high prediction accuracy. How these two steps have been realized for DeepSHARQ is
presented in the following.

5.3.1 Dataset Generation

Carefully designing a dataset generation methodology is instrumental for any machine
learning project. The model’s ability to generalize to unseen inputs and its performance
under real conditions depend on it. With this in mind, the dataset should fulfill two
requirements:

Requirement 5.3.1 (Faithfulness). Failing to faithfully represent network conditions
may go unnoticed in the training phase if the model achieves high accuracy in all datasets

Chapter 5.3: Model Training 83

and poor performance will only be experienced once the model is deployed. Therefore,
the dataset must represent realistic conditions that the protocol will experience once
deployed in real networks.

Requirement 5.3.2 (Generalizability). Small datasets are likely to misrepresent the
conditions that the model encounters in practice. This lack of generalizability is visible
when the model overfits the training dataset while performing poorly in the validation
dataset. Therefore, the dataset must be large enough so that the training and validation
losses are not too far apart.

All the models have the same 6 input parameters:

• Application parameters: target delay (DT), packet loss rate (PLRT), and source
packet interval (Ts).

• Network parameters: channel erasure rate (pe), round-trip time (RTT), and bot-
tleneck data rate (RC).

Throughput, round-trip time and loss rate traces are widely available for the most com-
mon network deployments nowadays—i.e., broadband [126], 4G [145], 5G [178, 184], and
WiFi [120, 131]. When it comes to application parameters, the dataset includes delay
and reliability constraints of traditional applications, e.g., real-time video and audio [77],
as well as more demanding application, e.g., the Tactile Internet [101] or Virtual Real-
ity [125]. The source packet interval of multimedia applications [94] as well as control
applications [136] has also been considered. Having been generated with the aforemen-
tioned network and application parameters, the dataset in Sec. 3.6 fulfills Req. 5.3.1.
The results presented in Sec. 5.3.2 show that it fulfills Req. 5.3.2 as well. The dataset
has been extended so that not only the optimal block length is logged, but DeepSHARQ
needs that kmin and kmax are also obtained, which are the minimum and maximum
block lengths that ensure the RI only deviates ∆ from the optimum (see Sec. 5.2.2).

The delay and loss rate models in Sec. 3.3 consider other three parameters that have
not been included in the dataset here presented. The packet length (Lp) is assumed to be
fixed to the MTU of the underlying physical medium, which in IP networks is typically
limited by the Ethernet MTU (i.e., Lp = 1, 500 bytes). Although precise processing
delay information could be fed into the algorithm [3, 6], doing so would increase the
dimensions of the dataset and likely the complexity of the resulting neural networks as
well. Therefore, a rather conservative constant processing delay DRS = 1 ms has been
considered. Finally, the packet loss detection delay (DPL) is linearly dependent on the
source packet interval, and hence it adds no new information the neural network can
learn from.

5.3.2 Ablation Study

Tuning the learning rate hyperparameter is instrumental to successfully training neural
networks. An ablation study consists of the removal of different components of the
system in order to better understand and analyze their impact on the performance of

84 Chapter 5.3: Model Training

the complete system. The different hyperparameters can be fine-tuned based on such a
study, thereby improving the training methodology and model performance.

Models trained with a constant learning rate showed poor performance from the
beginning of the ablation study. While constant high learning rates fail to converge,
low learning rates converge very slowly, resulting in long training sessions. PyTorch
implements various dynamic learning rates policies, such as super-convergence4 [164] or
plateau5. Both policies combine a high learning rate phase for solution space exploration
with a low learning rate phase to fine-tune the model parameters. The plateau learn-
ing rate policy monitors the validation loss to estimate the effectiveness of the current
learning rate: if after patience epochs the validation loss did not decrease by at least
threshold amount, it decays the learning rate by a constant factor until the min lr has
been reached. Super-convergence begins with a rising phase that goes from start lr to
max lr, after which it decays towards end lr a substantially lower learning rate than
start lr. The super-convergence policy requires an optimizer with momentum, and hence
we trained all the models with momentum-enabled stochastic gradient descent. Super-
convergence varies the momentum between 0.85 and 0.95, while it is constant at 0.9 for
the plateau policy.

Fig. 5.4 shows the accuracy and learning rate evolution for models trained for 150
epochs (more on why this is the selected number of epochs later) with both policies.
The configured patience and reduction factors in the plateau policy result in opposed
learning rate schedules: the fastest convergence towards low learning rates is achieved by
Plateau (0.4,5), while the slow adaptation in Plateau (0.8,10) makes the schedule stay in
high learning rates throughout the complete training. Nevertheless, super-convergence
outperforms plateau in all the evaluated scenarios due to its extended high learning
rate exploration phase. Super-convergence with max lr = 0.04 has been the selected
learning rate policy to train the models for the remainder of this section, as it achieves a
better performance than lower maximum learning rates (see 0.02 and 0.03) and further
increasing the learning rate does not increase the accuracy (see 0.05).

The model performance comparison is based on two different metrics. On the one
hand, the accuracy measures the percentage of correctly predicted samples, and hence
it measures a model’s performance from a learning point of view. On the other hand,
the percentage of valid configurations measures the ability of the neural network to
predict a block length that meets all the constraints independently of the produced RI
overhead, and hence it measures the model performance from an information-theoretical
standpoint. Unless stated otherwise, the values for these two metrics presented in the
following have been obtained with the test dataset. All models presented in the following
have been trained with PyTorch 1.12.1.

Chapter 5.3: Model Training 85

92

94

96

98

100

A
cc

u
ra

cy

0 20 40 60 80 100 120 140

Epoch

0.00

0.02

0.04

L
ea

rn
in

g
R

at
e

Super-Convergence (0.02)

Super-Convergence (0.03)

Super-Convergence (0.04)

Super-Convergence (0.05)

Plateau (0.4, 5)

Plateau (0.4, 10)

Plateau (0.8, 5)

Plateau (0.8, 10)

Figure 5.4: Validation accuracy and learning rate evolution for different learning rate
policies. Three maximum learning rates have been used for super-convergence (i.e.,
0.02, 0.03, 0.04, and 0.05), whereas two different patience (5 and 10) and learning rate
reduction factors (0.4 and 0.8) have been used for plateau.

DeepSHARQ

The number of epochs to train the models has been selected based on the results pre-
sented in Table 5.1. Assuming the regularization factor is fixed to 10−5, the model
trained for 150 epochs outperforms for more than 1% the model trained for 50 epochs.
Although increasing the epochs to 250 further increases the model’s accuracy, these im-
provements become asymptotically small as the training time keeps increasing. On an
Intel Xeon E3-1241 v3 CPU at 3.5GHz and 8 cores, training for 150 and 250 epochs
results in training sessions of 4-5 and 6-7 hours, respectively. The training times re-
ported here are the observed upper and lower bounds for the models presented later in
Table 5.2, which vary with the number of parameters in the model. Training the mod-
els for two additional hours for marginal accuracy improvements is not justified from a
sustainability standpoint (see Sec. 5.1.2) and hence 150 epochs are used in the following.

Table 5.1 also compares different factors for L2 regularization. The high learning rates
in the super-convergence policy already introduce some regularization in the model [164].
Therefore, a high regularization factor such as 10−4 prevents the model from achieving

4https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html

(accessed January 23rd 2024)
5https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.

ReduceLROnPlateau.html (accessed January 23rd 2024)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

86 Chapter 5.3: Model Training

Table 5.1: Effects of the number of epochs and regularization factor on the model
accuracy and the number of valid configurations. All the models have been trained for
∆ = 0.3 and their architecture is 3 hidden layers and 20 neurons per layer.

Epochs Regularization Accuracy Valid Configurations

50 10−5 96.69% 98.18%

150 10−4 96.14% 97.86%

150 10−5 97.80% 98.90%

150 10−6 97.96% 98.99%

250 10−5 97.80% 98.78%

enough complexity for highly accurate predictions. On the contrary, low regularization
factors such as 10−5 and 10−6 do increase the model accuracy. Although 10−6 mod-
els outperform 10−5 from a pure learning perspective—i.e., higher accuracy—and an
information theoretical point of view—i.e., lower percentage of valid configurations—,
models with a lower number of parameters trained for such a low regularization factor
experience exploding gradient. As larger models are more prone to overfitting, since
they can learn more complex mathematical functions, we have finally opted for the more
conservative 10−5 to prevent overfitting in these cases.

The accuracy and number of valid configurations for different neural network archi-
tectures and ∆ = [0.1, 0.3, 0.5,∞] are collected in Table 5.2. As expected, larger ∆’s
allow smaller models to achieve high accuracy and percentage of valid configurations
due to the reduced complexity of the problem to learn. When the models are allowed
to learn any valid configuration—i.e., ∆ = ∞—, all the trained models achieve 99%
accuracy. These models set the upper bound to the achievable accuracy as the models
become smaller for the output regularization mechanism with the training methodology
here presented. On the other end of the spectrum are the models trained with ∆ = 0.1,
which fail to achieve high accuracy with all network architectures. As the learning
complexity increases, larger and more computationally expensive neural networks are
required to learn the problem with high accuracy.

To better understand the relation between network and learning complexity, Fig. 5.5
shows the RI increase from the optimum introduced by every model. The RI deviation
from the optimum in DeepSHARQ can come either from misclassifications that still meet
the constraints...i.e., valid configurations—, or the simple repair schedule construction.
Fig. 5.5a shows a clear performance gap between ∆ ∈ [0.1, 0.3, 0.5] and ∆ =∞ for a fixed
neural network architecture. However, for a fixed ∆, Fig. 5.5 shows the neural network
size has little impact on the RI increase distribution, despite the clear differences in terms
of accuracy and number of valid configurations (see Table 5.2). The median inference
time for the different NN architectures is depicted in Fig. 5.6. The depicted results have
been obtained for the samples in the test dataset executed on the same desktop PC and
Raspberry Pi Zero W described in Sec. 4.4.1. As expected, the predictability of the
inference time is high across all the samples in the test dataset. In order to support as
many resource-constrained devices as possible due to its low inference time, the model

Chapter 5.3: Model Training 87

10−4 10−2 100 102 104 106

RI Increase (%)

0.5

1.0
C

D
F

∆ = 0.1

∆ = 0.3

∆ = 0.5

∆ =∞

(a) RI increase by ∆ for (3, 20) neural network.

0.0

0.5

1.0

C
D

F

∆ = 0.1

(3,10)

(3,20)

(4,20)

(4,30)

(5,30)

0.0

0.5

1.0

C
D

F

∆ = 0.3

0.0

0.5

1.0

C
D

F

∆ = 0.5

10−4 10−2 100 102 104 106

RI Increase (%)

0.0

0.5

1.0

C
D

F

∆ =∞

(b) RI increase by neural network architecture for different ∆s.

Figure 5.5: RI increase by neural network architecture and ∆.

88 Chapter 5.3: Model Training

Table 5.2: Accuracy and percentage of valid configurations for DeepSHARQ’s neural
networks trained for 150 epochs with L2 regularization with a factor of 10−5.

Parameters Layers Neurons ∆ Accuracy Valid Configurations Train Time

3,106 3 10 0.1 90.09% 96.25% 285 min

3,106 3 10 0.3 96.31% 98.34% 299 min

3,106 3 10 0.5 97.83% 98.60% 304 min

3,106 3 10 ∞ 99.01% 99.01% 322 min

6,356 3 20 0.1 94.90% 98.10% 288 min

6,356 3 20 0.3 97.80% 98.90% 302 min

6,356 3 20 0.5 98.60% 99.05% 306 min

6,356 3 20 ∞ 99.17% 99.17% 364 min

6,776 4 20 0.1 95.63% 98.26% 313 min

6,776 4 20 0.3 97.80% 98.68% 319 min

6,776 4 20 0.5 98.95% 99.20% 335 min

6,776 4 20 ∞ 99.28% 99.28% 353 min

10,936 4 30 0.1 96.36% 98.43% 309 min

10,936 4 30 0.3 98.52% 99.09% 304 min

10,936 4 30 0.5 99.07% 99.27% 309 min

10,936 4 30 ∞ 99.30% 99.30% 329 min

11,866 5 30 0.1 96.91% 98.55% 302 min

11,866 5 30 0.3 98.40% 98.91% 315 min

11,866 5 30 0.5 99.19% 99.33% 309 min

11,866 5 30 ∞ 99.38% 99.38% 328 min

with 3 hidden layers and 10 neurons per layer has been selected as the default model for
DeepSHARQ. Nevertheless, the methodology here presented could be used to redesign
the neural network to better fit the particular needs of other devices for which such a
neural network may still be too large.

DeepSHARQopt

Unlike DeepSHARQ, the neural network in DeepSHARQopt is trained to predict the
optimal block length k∗—i.e., the block length minimizing the RI as obtained by the
SHARQ algorithm. The results of the ablation study for DeepSHARQopt are presented
in Table 5.3. The largest evaluated neural network for DeepSHARQ has 5 hidden layers
with 30 neurons and was trained for 150 epochs (see Table 5.2). When the same neural
network is trained to predict k∗ instead, not only does it achieve lower accuracy, but
a lower percentage of valid configurations as well. Increasing the number of epochs to
1,000 improves the model accuracy, but longer training sessions must be accompanied
by larger neural networks in order to achieve high accuracy. While DeepSHARQ only
needs neural networks with 3,106 parameters to achieve 99.86% valid configurations for
∆ =∞, DeepSHARQopt’s neural networks require at least 213,656 parameters to do so.

Chapter 5.3: Model Training 89

0.0

0.5

1.0
C

D
F

Desktop PC

(3,10)

(3,20)

(4,20)

(4,30)

(5,30)

104 105

Inference Time (ns)

0.0

0.5

1.0

C
D

F

Raspberry Pi Zero W

(3,10)

(3,20)

(4,20)

(4,30)

(5,30)

Figure 5.6: CDF of the median inference time for different neural network architectures
on the Desktop PC and the Raspberry Pi Zero W.

Table 5.3: Accuracy and percentage of valid configurations for DeepSHARQopt’s neural
networks trained with L2 regularization with a factor of 10−5.

Parameters Layers Neurons Epochs Accuracy Valid Configs Train Time

11,866 5 30 150 72.64% 94.36% 14 min

11,866 5 30 1,000 77.45% 93.17% 93 min

130,306 5 150 1,000 98.81% 99.68% 157 min

213,656 5 200 1,000 99.72% 99.86% 178 min

254,256 4 250 1,000 99.66% 99.85% 204 min

317,006 5 250 1,000 99.83% 99.91% 229 min

On the other hand, as DeepSHARQopt is trained with the cross-entropy loss, the
models are trained significantly faster than DeepSHARQ’s even when they have several
orders of magnitude more parameters and are trained for 1,000 epochs. Comparing
again the models with 99.86% valid configurations, (5,150) DeepSHARQopt takes ap-
proximately two hours less than (5,30) DeepSHARQ with ∆ =∞.

DeepSHARQfull

As the learning complexity of the problem increases, so does the neural network size
required to cover a higher percentage of valid configurations. DeepSHARQfull predicts
the optimal parameters k∗, p∗, and NC

∗, hence its output layer has 768 neurons, which
are split into three groups of 256 for the classification of each of the HARQ parame-
ters. An early version of this algorithm has been published in [9] with a different repair

90 Chapter 5.4: Performance Analysis

Table 5.4: Accuracy and percentage of valid configurations for DeepSHARQfull’s neural
networks trained for 1,000 epochs with L2 regularization with a factor of 10−5.

Parameters Layers Neurons
Accuracy

Valid Configurations
k p NC

162,318 3 150 92.71% 91.64% 99.42% 95.45%

184,968 4 150 96.34% 96.02% 99.76% 97.64%

276,368 4 200 97.87% 97.50% 99.87% 98.52%

316,568 5 200 98.95% 98.84% 99.95% 99.26%

382,768 4 250 98.67% 98.49% 99.94% 99.03%

445,518 5 250 99.63% 99.61% 99.97% 99.7%

model.torch
PyTorch

model.onnx ONNX
TensorFlow Backend

model.pb
TensorFlow

model.tflite

Figure 5.7: Model conversion pipeline.

schedule construction, which is not presented here as it introduces a high computational
complexity without achieving significant performance improvements over the simple re-
pair schedule construction in Sec. 5.2.3. Table 5.4 shows the results of the ablation
study. DeepSHARQfull requires 4.3× and 143× more parameters than DeepSHARQopt

and DeepSHARQ, respectively, to achieve 99% valid configurations.

Despite using the same loss function as DeepSHARQopt, DeepSHARQfull models
take longer to train due to the high number of neural network parameters. The fastest
training session took 339 minutes for the model with 5 hidden layers and 200 neurons
per layer, whereas the slowest one took 451 minutes for the model with 4 hidden layers
and 250 neurons per layer.

5.4 Performance Analysis

Once the neural network architecture has been decided based on the results of the
ablation study, the performance of the new proposed approach is evaluated and compared
to previous algorithms.

5.4.1 Methodology

The methodology that has been followed to evaluate the performance of DeepSHARQ
algorithm is the same as in Sec. 4.4.2 for SHARQ. The same platforms have been used to
carry out the evaluations: a desktop PC running Ubuntu 22.04.2 LTS with Linux kernel
5.19 on an Intel Core i7-7700 CPU at 3.6 GHz, and a Raspberry Pi Zero W running
the Raspbian Buster operating system with Linux Kernel 4.19. The predictability of the
performance guarantees and the inference time are again the metrics used to compare
the performance of the algorithms.

Chapter 5.4: Performance Analysis 91

Although PyTorch is a powerful tool for the research of deep learning models, it is
not suited for production due to its slow inference and its large binary size. The two
major frameworks for the deployment of neural networks on edge devices are PyTorch
Mobile6 and TensorFlow Lite7, which are the production-ready counterparts to PyTorch
and TensorFlow, respectively. While the networks have been trained in PyTorch due
to its flexibility, which allows to re-design of almost every step in the learning pipeline,
TensorFlow Lite has been selected over PyTorch Mobile because it achieves a faster
execution of fully connected models. The tflite8 crate has been used to integrate
neural network execution into Rust, which provides Rust wrappers for TensorFlow Lite.
The model conversion pipeline depicted in Fig. 5.7 has been implemented to convert
PyTorch models into TensorFlow Lite models. PyTorch can save models with the Open
Neural Network Exchange (ONNX) format, which is an open standard for representing
machine learning models. The TensorFlow Backend for ONNX converts ONNX models
into TensorFlow models. Finally, TensorFlow converts the model into the lite format
used by TensorFlow Lite. Implementation differences between PyTorch and TensorFlow
introduce variations in the output from the originally trained model. However, the
networks are robust enough to make these variations negligible. For example, all models
trained for ∆ =∞ predict the same output with PyTorch (model.torch) and TensorFlow
Lite (model.tflite) for the complete test dataset, but this flawless conversion does not
necessarily generalize for every model.

5.4.2 Evaluation

This section evaluates DeepSHARQ’s inference time and channel predictability guar-
antees, comparing it to other search algorithms, and analyzes its underlying design
principles and their impact on the overall protocol performance.

Inference Time

The median inference time of the complete algorithm is depicted in Fig. 5.8a together
with the split between NN and algorithmic search. In both platforms, the neural net-
work takes longer to execute than the search components, thereby resulting in a more
predictable inference time than previous algorithms (see Sec. 4.4). The difference be-
tween NN and search inference time is shorter on the PC than on the Pi, most likely
because its CPU provides instructions that better support NN inference—e.g., Single
Instruction/Multiple Data (SIMD) instructions. As a result, the CDF of DeepSHARQ’s
inference time has a longer tail on the PC. Although smaller NNs may be required to
support more constrained devices, they would result in lower predictability as the search
components dominate the inference time.

6https://pytorch.org/mobile/home/ (accessed January 23rd 2024)
7https://www.tensorflow.org/lite (accessed January 23rd 2024)
8https://crates.io/crates/tflite/0.1.0 (accessed January 23rd 2024)

https://pytorch.org/mobile/home/
https://www.tensorflow.org/lite
https://crates.io/crates/tflite/0.1.0

92 Chapter 5.4: Performance Analysis

0.0

0.5

1.0

C
D

F

Desktop PC

Complete

Neural Network

Search Algorithm

103 104 105

Inference Time (ns)

0.0

0.5

1.0

C
D

F

Raspberry Pi Zero W

Complete

Neural Network

Search Algorithm

(a) CDF of the median inference time split by neural network’s and search algorithm’s
contribution to the complete algorithm

0.0

0.5

1.0

C
D

F

Desktop PC

DeepSHARQ

SHARQ

104 105 106 107 108

Inference Time (ns)

0.0

0.5

1.0

C
D

F

Raspberry Pi Zero W

DeepSHARQ

SHARQ

(b) Inference time comparison between DeepSHARQ and SHARQ.

Figure 5.8: DeepSHARQ inference time analysis.

Chapter 5.4: Performance Analysis 93

Table 5.5: DeepSHARQ percentage of inferences on the test dataset meeting the ϵ-
fulfilling requirement.

Device
ϵ

0.75 0.5 0.25 0.1 0.05 0.01

PC 100% 100% 100% 100% 100% 100%

Pi 100% 100% 100% 100% 99.9% 92.21%

DeepSHARQ’s inference time its two orders of magnitude smaller than SHARQ’s
(see Fig. 5.8b). Moreover, DeepSHARQ presents a more predictable inference time with
a tail latency that is in the same order of magnitude as the average inference time.

Communication Channel Predictability

When running on the Raspberry Pi Zero W, DeepSHARQ achieves sub-millisecond in-
ference time, thereby bringing a fast reaction to channel changes to resource-constrained
devices for the first time. DeepSHARQ meets all the performance predictability re-
quirements defined in Sec. 4.1 for every single sample in the dataset and on both plat-
forms, the desktop PC and the Raspberry Pi Zero W. In addition, Table 5.5 shows that
DeepSHARQ can react to every channel change that occurs within the first 99% of the
time budget—i.e., it is 0.01-fulfilling—when executed on a powerful desktop PC. On the
Pi, DeepSHARQ reacts to channel changes occurring 5% and 1% before the end of the
deadline in 99.9% and 92.21% of the dataset samples, which is a significantly higher
performance predictability than SHARQ’s (see Sec. 4.4.2).

Optimality

As DeepSHARQ neither predicts the optimal block length nor uses the optimal repair
schedule construction, the remainder of this section analyses the impact of such a design
decision on the inference time and the RI. DeepSHARQ (3,10)—i.e., 3 hidden layers
with 10 neurons each—and ∆ =∞ is compared to DeepSHARQopt (5,150). The neural
network of DeepSHARQopt has been selected because it is the smallest one that achieves
more than 99% of valid configurations. The two neural networks have been evaluated
for three repair schedule policies: i) the simple schedule in Sec. 5.2.3, ii) the optimal
schedule without pp table in Sec. 5.2.3, and iii) the optimal schedule with pp table
in Sec. 4.3.2.

Fig. 5.9 compares the inference time of the six configurations. When the pp table is
used to construct the optimal schedule, the inference time with both neural networks is
very similar because the pp table construction dominates the inference time and takes
one or two orders of magnitude longer than the NN inference. Without the pp table,
the inference time is in the same order of magnitude as the inference of the (5,150) neu-
ral network, which explains the more perceivable difference between DeepSHARQ and
DeepSHARQopt. Finally, thanks to the reduced size of its neural network, DeepSHARQ
with the simple schedule achieves the lowest inference time of the six configurations.

94 Chapter 5.5: Discussion

0

1
C

D
F

Optimal Schedule pp table

DeepSHARQ

DeepSHARQopt

0

1

C
D

F

Optimal Schedule no pp table

104 105

Inference Time (ns)

0

1

C
D

F

Simple Schedule

Figure 5.9: DeepSHARQ and DeepSHARQopt inference time on the desktop PC with
the optimal and simple schedule constructions.

On the one hand, the inference time provides a measure of the CPU resources that
are devoted to obtaining the optimal block length and repair schedule. On the other
hand, the data rate increase with respect to the minimum data rate achieved by SHARQ
provides a measure of the communication resources that are wasted when configuring
a suboptimal block length and repair schedule. Fig. 5.10 depicts the results for the
latter. The difference between DeepSHARQ and DeepSHARQopt is clear at first sight,
which stems from the neural network design—i.e., whether it is trained to predict the
optimal block length or not. Nevertheless, the upper quartile and the maximum data rate
increase are 0.2% and 2% higher than DeepSHARQopt’s, respectively. DeepSHARQopt

achieves the same data rate with the simple and optimal schedules in 98.44% of the
cases, whereas DeepSHARQ does so in 98.16% of the cases. Therefore, the inference
time increase does not seem justified for a schedule difference that only affects less than
2% of the samples in the dataset, especially for DeepSHARQ given its low inference
time.

5.5 Discussion

At the core of DeepSHARQ’s design principles is the deviation from the original opti-
mization problem, namely finding the HARQ configuration with minimum RI as SHARQ
does. This section discusses the trade-offs of these two opposed search algorithm designs.

Chapter 5.5: Discussion 95

Figure 5.10: DeepSHARQ and DeepSHARQopt data rate increase with the optimal
and simple schedule constructions.

5.5.1 The Cost of Optimality

DeepSHARQ introduces two sources of suboptimal HARQ configurations. Firstly, the
neural networks can experience misclassifications even when trained to predict the op-
timum, but the regularization mechanism presented in this chapter even encourages
suboptimal block lengths in order to reduce the learning complexity of the problem.
Secondly, the simple schedule avoids the computationally expensive Graph Search with
a suboptimal schedule construction inspired by pure ARQ retransmissions.

DeepSHARQ does not only predict suboptimal HARQ configurations, it provides pre-
dictably suboptimal HARQ configurations. The parameter ∆ controls the RI overhead
that the predicted block lengths can introduce. However, ∆ also controls the learning
complexity of the problem and thus the trade-off between CPU and network resources
(see Sec. 5.4 for more details on the trade-off). Small ∆’s approach the optimal HARQ
configuration more closely, which in turn increases the inference time due to the larger
neural network required to learn the problem. Conversely, large ∆’s accept more block
lengths as valid, thereby enabling smaller neural networks to support a high percentage of
valid configurations. On the other hand, the simple schedule construction further reduces
the computational complexity of the algorithm at the cost of suboptimal configurations.
Sec. 5.4 shows that aiming at the optimal configuration with DeepSHARQ increases the
inference time by an order of magnitude but has negligible impact on the transmitted RI.
Devoting so many resources to finding the optimum when few configurations really ben-
efit from it defeats one of the main design targets of DeepSHARQ—i.e., the sustainable
deployment on embedded systems discussed in Sec. 5.1.2. Until a more efficient search
algorithm is found that solves Eq. (3.10) with fewer resources than SHARQ, adaptive
HARQ on resource-constrained devices will be limited to suboptimal algorithms such as
DeepSHARQ.

96 Chapter 5.5: Discussion

5.5.2 The Cost of Suboptimality

The downside of DeepSHARQ’s suboptimality is the long training sessions, despite train-
ing smaller neural networks. Such an increase in the training time should be analyzed
from a sustainability standpoint. DeepSHARQ uses a modified version of the binary
cross-entropy (see Sec. 5.2.5), which instead of taking a single valid label as the tra-
ditional binary cross-entropy, considers a range of valid labels. The impact of such a
loss function in the training phase is two-fold: the number of epochs to achieve a high
accuracy is reduced by an order of magnitude—in Sec. 5.3.2 we show that it goes from
1,000 to 150 epochs—but epochs take significantly longer to be processed. These results
suggest that the proposed output regularization is better suited for TinyML than it is for
large models because the longer training could be compensated for with more efficient
inference once the model is deployed.

For the particular case of DeepSHARQ, Sec. 5.3.2 shows that its training sessions take
longer but are not far from models learning the optimal block length. DeepSHARQ has
enabled predictable performance guarantees on resource-constrained devices for the first
time, thereby increasing its chances of being deployed at scale. Once deployed at scale,
the longer training should be quickly compensated with a more energy-efficient reaction
to channel changes than if DeepSHARQopt models would be used instead. Moreover,
embedded systems are usually powered by batteries so a more energy-efficient operation
increases their operation lifetime.

A final aspect to consider is the free parameter ∆. The neural network will have to be
retrained in order for DeepSHARQ to accommodate applications with different reliability
requirements. Transfer learning [46] could be used to quickly adapt pre-trained models
to new ∆ configurations without going through the complete learning cycle.

5.5.3 Striking the Right Balance

DeepSHARQ learns to find the right balance between proactive and reactive redundancy
subject to reliability, delay, and data rate restrictions. However, its design consisted of
finding yet another balance: that of addressing the different components of the system
with either algorithmic or learning solutions.

Reinforcement Learning (RL) could have been applied to learn complete transport
layer functions [157, 174, 214] and more specifically error control [202, 206]. RL models
learn to take actions that maximize a reward function in an environment [207]. With
such a general problem abstraction, RL can be applied to a broad range of problems.
In the particular case of search algorithm design for adaptive HARQ, RL could be used
to decide when to encode (i.e., block length), and when to transmit parity packets (i.e.,
repair schedule). However, the results here presented discourage such an approach.
Sec. 5.4 has shown that learning the complete set of parameters (k, p,NC) unnecessarily
increases the neural network size and hence the inference time. Therefore, it stands to
reason that learning yet another parameter, namely NP , is likely to increase the network
size even further.

Chapter 5.6: Related Work 97

The effect of increasing network size could be compensated with more advanced
layers. The fully connected layer has been selected because no a priori structure was
found in the data that could be exploited as other network architectures such as CNNs do.
The memory mechanism implemented in LSTM networks makes it a good candidate, as it
can remember previous actions in the learning phase better than a plain fully connected
network, thereby improving its feature extraction capabilities. However, LSTMs also
have a more complex structure [191] that could lead to longer training and low inference.

Whether a pure learning solution exists that would be able to achieve the predictably
lower inference times is still an open question that is left for future work. In the mean-
time, DeepSHARQ has achieved unprecedented performance levels when it comes to
providing a predictably reliable, real-time transport. By striking the right balance be-
tween learning and algorithmic components, DeepSHARQ has reduced the complexity of
the learning problem to learning a regularized version of the block length while leaving
the remaining parameters to optimized algorithmic implementations with low computa-
tional complexity.

5.6 Related Work

Given their good performance in other fields, it was just a matter of time before deep
learning models spread into the networked communications field as well. At its core, the
Internet protocol stack is designed to support a diversity of applications and communi-
cation technologies [137]. Two well-known drawbacks imposed by such an assumption
are i) the presence of conflicting optimal operation points [83, 89, 169], and ii) the need
to generalize to a wide range of network conditions [120, 126, 145, 184]. Adapting the
protocols to particular use cases has been common practice when facing these two issues.
The different versions of TCP for every generation of mobile communication [106, 119]
are a clear example.

Thanks to their efficient feature extraction capabilities, DNNs have the potential
to learn different policies that adapt to the underlying channel [126, 155, 214] and
provide different quality levels depending on the application [202, 206, 210]. Despite
their proven better performance, transport protocol updates usually take several years
to be widely deployed [137, 148]. Instead of redesigning the system as new applications
and communication channels develop, DL models can use online learning to retrain for a
few epochs when new conditions are detected that significantly deviate from samples in
the training dataset [174, 210]. In the highly diverse ecosystem the Internet has become
in the last decades, DNNs provide richer adaptation policies with better adaptation to
unseen conditions.

DL has already been applied to the parameterization of different error control schemes,
although always assuming a pure FEC scheme [171, 202, 206]. DeepRS [171] implements
a Reed-Solom FEC scheme powered by an LSTM network that predicts future loss pat-
terns in a block. Although the neural network fails to predict the exact packets that will
be lost, it achieves high accuracy in predicting the number of losses in the block, which
the authors use as an estimator of the required amount of RI. In the context of real-time

98 Chapter 5.6: Related Work

video streaming, Chen et al. [202] select the amount of redundancy in FEC based on a
video quality metric. The DNN trained by the authors maps video quality to RI, thereby
achieving higher loss protection levels the more relevant the frames are. While the two
aforementioned articles apply DL to block codes, Emara et al. [206] trained an LSTM
network to infer the parameters of streaming codes.

The application of deep learning to congestion control has also been fruitful. To the
best of our knowledge, [157] is the first deep-learned congestion control algorithm, which
was trained on emulated network traces. Eagle [174] applies imitation learning for a
faster training phase. Similar to how humans learn from teachers, Eagle uses BBR [112]
to guide its training until a model is learned that outperforms BBR. Most similar to
the approach presented in this chapter are, to the best of our knowledge, [210] due to
its application interface to state the requirements and [214] due to its fast reaction to
channel changes. Ma et al. [210] designed a congestion control algorithm that adapts
its performance to specific application requirements—i.e., throughput, delay, and loss
rate. As the requirements are included in the input to the model, the model can learn
independent policies for different application types, thereby avoiding the aforementioned
conflicting operating points issue. The proposed algorithm must generalize to new ap-
plications with different requirements that were not considered in the training. The
authors leverage transfer learning to quickly transfer the knowledge acquired to new
applications. In [214] the authors propose a two-step mechanism to congestion control
in order to avoid the frequent computationally expensive execution of the DNN. Upon
an ACK reception, a traditional congestion algorithm is executed to obtain a quick re-
action to congestion signals. On a larger time scale, a policy adaptation DNN runs that
fine-tunes the congestion algorithm to the channel conditions.

Channel estimation requires statistical algorithms that exploit temporal relations in
the data to predict future channel states. LSTM networks excel precisely at this task
thanks to their feedback mechanisms that introduce memory in the network. Deep-
Q [146] implements a deep generative network with LSTM for QoS estimation in data-
center networks. The feedback mechanism in LSTM networks makes them more compu-
tationally expensive than other DNNs—e.g., fully connected or convolutional networks.
Instead of training a single, large LSTM model, LightFEC [191] predicts packet loss
patterns with a divide and conquer approach: channel states producing similar loss pat-
terns are clustered together, and a smaller network is trained for each of them. Finally,
weight pruning is applied to further reduce the model size.

Deep learning has successfully been applied to other layers of the stack apart from
the transport layer. Adaptive video streaming has been one of the first areas in which
deep reinforcement learning was applied for networked systems. Pensieve [126] and
Comyco [155] automatically learn ABR policies for DASH. Other areas worth mentioning
are the optimization of wireless systems [168] or fast traffic analysis [213].

Chapter 5.7: Conclusion 99

5.7 Conclusion

SHARQ’s efficient solution space exploration and repair schedule construction enable it
to find the optimal HARQ configuration significantly faster than previous search algo-
rithms. However, its inference time is too high to provide predictable performance on
resource-constrained embedded systems. The advent of DL presents a unique oppor-
tunity to bring adaptive HARQ to embedded systems thanks to the ability of DNNs
to extract patterns from large datasets and automatically learn mathematical functions
that minimize a target cost function. This chapter has introduced DeepSHARQ, a DL-
based search algorithm that applies expert knowledge to target the specific parts in the
search pipeline that would benefit from a DL approach the most. DeepSHARQ combines
learning and algorithmic components with a novel output regularization mechanism to
further reduce the learning complexity of the problem. As a result, DeepSHARQ achieves
high accuracy with significantly smaller DNNs than if the complete problem would have
been modeled as a learning problem. The evaluations presented in this chapter have
shown that DeepSHARQ achieves unprecedented predictable performance on embedded
systems with limited computational capabilities.

100 Chapter 5.7: Conclusion

Chapter 6

Energy-Aware Adaptive HARQ

The cost and energy efficiency of embedded devices have made them the natural compo-
nent of CPSs [54, 116]. Energy efficiency, in particular, is key to guarantee a sustainable
deployment of CPSs and a large operation lifespan once deployed. CPSs are expected
to permeate our society in what is typically known as the Internet of Things (IoT) [85].
In an age of climate crisis due to the effects of greenhouse gases, taking sustainability
aspects into account in CPS design is of utmost importance [220, 216], given the CO2

intensity of our current power grids. Moreover, as embedded devices are frequently
battery-powered, an energy-aware operation extends their battery life, thereby enabling
them to operate for a longer time. This chapter looks at PRRT, and more precisely its
error control function, from this standpoint.

MDS codes are at the core of PRRT’s error control (see Sec. 3.3), which perform
operations in high-order fields—i.e., GF (28) in the case of PRRT—with little hardware
support on embedded devices. Although algorithmic optimizations have been proposed
to alleviate this lack of support [26, 52], the results in this chapter show that PRRT
experiences large en-/decoding delays when deployed on embedded devices. This new
delay source must be accounted for in the delay budget. A case study is presented
that systematically analyzes the introduction of binary codes as a more energy-efficient
alternative to MDS codes for the deployment of PRRT on low-end devices.

6.1 The Complexity Dilemma (Revisited)

As discussed in more detail in Sec. 2.3.1, block codes perform a matrix-vector multipli-
cation to encode a message m with k symbols into a codeword c—i.e., c = m ·G, where
G is a k × n generator matrix. This operation has a computational complexity O(kn).
At the receiving end, the original message is decoded by solving m = ĉ · Ĝ−1

, where ĉ
is a subset of k symbols of c and Ĝ is a k × k submatrix of G. The matrix inversion
has complexity O(k3) if the Gauss-Jordan algorithm is employed.1 Motivated by the

1For matrices fulfilling certain characteristics, other algorithms bring the complexity of matrix in-
version down to ∼ O(2). Nevertheless, PRRT implements Gauss-Jordan and hence this algorithm is
considered in the following

101

102 Chapter 6.1: The Complexity Dilemma (Revisited)

computationally expensive matrix inversion in MDS codes, which makes it difficult to
achieve high data rates, codes have historically changed from perfect MDS codes towards
imperfect binary codes that introduce a higher error floor but can be implemented more
efficiently.

6.1.1 MDS Codes

The principal characteristic of MDS codes is that they fulfill the Singleton Bound with
equality: dmin = e + 1 where dmin is the minimum distance between codewords and
e = n− k the number of correctable erasures [16].

Definition 6.1.1 (Hamming Distance). The Hamming Distance dH(x, y) is defined as
the number of different symbols between the codewords x and y.

Definition 6.1.2 (Minimum Distance). The Minimum Distance dmin of a block code is
defined as the minimum Hamming Distance between any two codewords x and y in C.

dmin = min{dH(x, y) | x, y ∈ C, x ̸= y} (6.1)

Fulfilling the Singleton Bound with equality guarantees that the number of cor-
rectable losses equals the number of coded parity packets. To be able to correct e
erasures with any k received symbols, any k × k submatrix of G must be invertible.
Out of the available mechanisms to construct such a generator matrix [22, 26], PRRT
implements systematic Vandermonde MDS codes in GF (28) (see Sec. 3.3.3 for more
details). Therefore, the analysis in the following focuses on this type of code without
loss of generality, since the basic operations remain the same regardless of the matrix
construction.

6.1.2 Binary Codes

Unlike MDS codes, binary codes do not fulfill the Singleton Bound with equality, which
is a direct consequence of being defined in the binary field GF (2). Linearly independent
columns in the generator matrix must be constructed by introducing the 0th element and
thus parity packets do not carry information from all the input symbols in the message
m. Therefore, binary generator matrices do not ensure that any k × k submatrix is
invertible. As a result, binary codes have a residual decoding error probability even
when k or more packets are received, and require excess packets to approach the channel
capacity and achieve the same reliability level as MDS codes. On the other hand, the
computational complexity of binary codes is lower because i) the matrix-vector operation
can be implemented with simple XORs instead of arithmetic operations in higher-order
fields, ii) they need fewer operations on average to construct the parity packets due to
the presence of the 0th element in G, and iii) graph-based algorithms can be used for
decoding that do not explicitly invert the generator matrix [16]. The complexity dilemma
refers to this trade-off between redundancy excess and low complexity.

Chapter 6.1: The Complexity Dilemma (Revisited) 103

Table 6.1: Binary codes and their adoption in cellular networks.

Code Cellular generation Reference

Turbo 3G, 4G [23]

LDPC 4G, 5G [15]

Polar 5G [60]

Luby showed that the portion of the RI stemming from the higher error floor becomes
negligible for sufficiently large block lengths [32] and proposed a binary code construction
that reduces the complexity of the decoding operation to O(n · log(n)). Given the trend
towards increasing data rates with every new wireless generation, binary codes have
become the standard for error coding in the physical layer—see Table 6.1.

6.1.3 The Role of the Transport Layer

In IP networks, bit flips in a packet prevent it from being forwarded to the upper layers
of the protocol stack and entire packets may be dropped in congested routers. Therefore,
although HARQ in the lower layers operates directly on bits, at the transport layer it
should recover entire packets. PRRT addresses this issue with a virtual interleaver,
which iterates the same coding operation throughout the complete packet length (see
Secs. 2.3.1 and 3.3.3). As multiple symbols are grouped in each packet, and k packets
must be collected before encoding, applications with tight delay constraints allow for a
maximum block length that is several orders of magnitude smaller than in the physical
layer. For example, a video conference stream generating data at 10 Mb/s with a target
delay of 100 ms can collect 83 packets at maximum with the typical MTU in IP networks
of 1,500 B. In contrast, typical block lengths in the lower layers are in the order of 10,000
symbols [32, 45]. While a single matrix inversion is required per block, the matrix-vector
multiplication is iterated throughout the packet length. For the systematic Vandermonde
code implemented in PRRT, Sec. 3.3.3 derives the computational complexity of the
matrix-vector multiplication (Eq. (6.2)) and matrix inversion (Eq. (6.3)), where e ≤
min(k, n− k) is the number of lost packets and Lp the packet length.

CMDS
mul = O(keLp) (6.2)

CMDS
inv = O(ke2) (6.3)

The computational complexity of the encoding and decoding in an MDS can also be
expressed as a function of the basic algebraic operations defined in GF (2m), namely mul-
tiplication (mulq), division (divq), subtraction (subq), and addition (addq)—in GF (2m)
the addition and subtraction can be obtained by a binary XOR and hence are equivalent.
While both encoding and decoding perform a matrix-vector multiplication (Eq. (6.4)),
decoding performs a matrix inversion as well (Eq. (6.5)). The Gauss-Jordan algo-
rithm performs subtractions and divisions, and has the computational complexity in
Eq. (6.6) [19].

104 Chapter 6.1: The Complexity Dilemma (Revisited)

500 1000 1500 2000

Packet length (Bytes)

103

104

105

106

107

C
om

p
le

x
it

y
(S

te
p

s)

k=176 p=77

Cmul
Cinv

500 1000 1500 2000

Packet length (Bytes)

k=50 p=5

Figure 6.1: Computational complexities Cmul and Cinv as a function of the packet
length parameterized by k and p.

encmds(k, p, Lp,m) = (k · mulq + (k − 1) · addq) · p ·
⌈
Lp

m

⌉
(6.4)

decmds(k, p, Lp,m) = encmds(k, p, Lp,m) + invq(k) (6.5)

invq(k) = k2 · divq +
k3 − k

2
· (mulq + subq) (6.6)

Given an MDS code in GF (28),
⌈
Lp

m

⌉
= MTU in bytes since symbols are one-byte

long. For a time-constrained protocol such as PRRT, MTU ≫ k and MTU ≫ p. It
directly follows that Cmul ≫ Cinv [7, 8]. Fig. 6.1 compares the complexity of the two
matrix operations parameterized by k and p. On the one hand, k = 176 and p = 77
have been selected because it is the configuration in the dataset in Sec. 3.6.1 with the
highest Cinv. On the other hand, k = 50 and p = 5 have been selected because it is
a more representative configuration of the dataset, as shown in Fig. 6.2, which depicts
the probability distribution of the optimal block length and number of parity packets
found by the SHARQ algorithm (see Sec. 4.3). Even for the highest complexity of the
matrix inversion, the complexity of the multiplication is an order of magnitude higher
for MTU = 1, 500 B.

Multiple proposals bringing binary codes to the transport layer have been published
in recent years [8, 138, 151]. However, none of them systematically analyzes how the
transport layer has turned the tables when it comes to the complexity dilemma: the
matrix inversion no longer dominates the computational complexity and the redundancy
excess cannot be compensated with large block lengths. The remaining advantages of
binary codes over MDS are the sparse generator matrix and the purely XOR-based parity
packet creation. The remainder of this chapter explores whether these advantages still

Chapter 6.2: Binary Erasure Codes 105

0 50 100 150 200 250

Number of symbols

0.5

1.0
C

D
F

k∗

p∗

Figure 6.2: Cumulative Distribution Function (CDF) of the optimal block length and
number of parity packets in the dataset in Sec. 3.6.1.

compensate for the redundancy excess, thereby resolving the complexity dilemma in
favor of or against binary codes in the transport layer as well.

6.2 Binary Erasure Codes

Linear block codes operating in GF (2) are called binary codes as symbols are one-bit
long. Since the generator matrix G contains the zero element, the multiplication of the
message vector m and the i-th column of the generator matrix (i ∈ [0, p−1]) boils down
to the XOR of the input packets in those positions where the column contains a one.
Formally,

ci = ⊕{mx | 0 ≤ x ≤ k − 1 ∧ Gx,i == 1} (6.7)

Consequently, the number of operations in the multiplication is proportional to the
degree (d) of the column, i.e., the number of 1s in that column. Although the symbol
length is a single bit, the XOR operation has the advantage that multiple symbols can
be grouped in a single CPU instruction. Therefore, the number of performed XOR
operations (xorb) depends on the CPU architecture, where b is the bit width of the
CPU. For example, b = 32 for a 32-bit architecture and b = 64 for a 64-bit architecture.
The number of operations in the encoding function of a binary code is

encbin(d̄, p, Lp, b) = (d̄− 1) · xorb · p ·
⌈
Lp

b

⌉
(6.8)

where d̄ is the average column degree of the generator matrix, which depends on the
binary code construction (more on this later).

The binary generator matrix can be represented as a bipartite Tanner graph [95],
as depicted in Fig. 6.3. For input symbol decoding, the Message Passing (MP) algo-
rithm [40] is executed on this graph, which performs back-substitution without the need
for an explicit matrix inversion. The algorithm begins with a received symbol of degree
one, which already contains a verbatim copy of one of the input symbols in the message
vector m. The decoded input vector is then propagated into the graph by XORing it

106 Chapter 6.2: Binary Erasure Codes

1 0 0 1 1
1 1 0 0 0
1 0 1 0 0
1 1 1 0 1

(a) Matrix representation of a binary
generator matrix

(b) Tanner graph representation of a binary
generator matrix

Figure 6.3: Binary generator matrix (a) and its representation as a Tanner graph (b).

to the received symbols it is connected with, thereby reducing their degree by one. This
process is iterated until either all input symbols have been decoded or no degree-one
received symbol is found. Similarly to the matrix inversion for MDS codes, the overhead
to find the degree-one columns is negligible for Lp = MTU = 1, 500 B (see Sec. 6.4),
and thus the decoding complexity is upper bound by the encoding complexity:

decbin(d̄, p, Lp, b) ≤ encbin(d̄, p, Lp, b) (6.9)

Not all excess packets are necessarily used in decoding, hence the inequality between the
two complexity terms.

Unlike MDS codes, binary codes do not have a canonical mechanism for building the
generator matrix. Randomly generated binary codes [28, 32, 40, 45] set the entries of
the generator matrix to one or zero following a probability distribution for the column
degree. This degree distribution is designed such that the probability of the randomly
generated matrix not being invertible (δ) is below a target threshold. Random fountain
codes [40] apply a uniform degree distribution, thereby achieving an average degree
d̄ = k

2 . Luby Transform (LT) codes [32] use an ideal degree distribution that reduces
the density of G and the number of excess packets. Raptor codes [45] further reduce
the density of the generator matrix. In order to recover from the higher error floor
that a low-density matrix introduces, raptor codes implement a pre-coding step with an
optimal block erasure code.

6.2.1 Random Fountain Codes

The metaphor of the fountain refers to an encoder that generates an unlimited number
of coded symbols (i.e., drops) [28] n → ∞, where the coded symbols are generated by
XORing a randomly chosen number of input symbols. Since the encoder can indefinitely
keep generating coded symbols, this kind of code is known as rateless (r = k

n → 0). As
mentioned before, fountain codes reduce the complexity when compared to MDS codes
due to their sparse binary matrix and the absence of an explicit matrix inversion. The
receiver can obtain the k input symbols with a subset k′ ≥ k of the coded symbols,

Chapter 6.2: Binary Erasure Codes 107

2 4 6 8 10

Excess packets (ε)

0.0

0.1

0.2

0.3

0.4

0.5
D

ec
o
d

in
g

fa
il

u
re

p
ro

b
.

(δ
)

2−ε

1−∏k+ε
j=ε+1(1− 2−j)

2 4 6 8 10

Excess packets (ε)

10−3

10−2

10−1

Figure 6.4: Probability of decoding failure of a random fountain code as a function of
the number of excess packets for k = 10.

for which it requires information on how the parity packets were encoded in the first
place—i.e., how the generator matrix was constructed. This information can either be
exchanged with some signaling mechanism with low overhead or using pseudo-random
codes with a common seed for the sender and receiver.

In random fountain codes as described in [40], input symbols are included in a par-
ity packet with 50% probability. Therefore, it has an average column degree d̄ = k

2 .
MacKay [40] proves that the probability of a random k× n binary matrix to contain an
invertible k × k matrix is bounded by

1−
k+ε∏

j=ε+1

(1− 2−j) ≤ δ ≤ 2−ε (6.10)

where ε is the number of excess packets such that n = k + ε. Fig. 6.4 shows that both
bounds converge very quickly even for a small block length of k = 10. Therefore, the
required number of excess packets for random fountain codes can be expressed as

εrand = log2

(1
δ

)
(6.11)

Input packet losses no longer occur only when less than k packets are received, but
even when the receiver gets k or more packets, but it cannot invert any k×k submatrix.
This new source of unreliability must be considered when implementing a predictably
reliable transport service based on binary codes. Eq. (6.13) provides the probability of
losing i input packets with a binary code, which differs in two aspects from the same
probability for an MDS code (see Eq. (3.18)): i) the lower bound for the number of
erasures e, and ii) the term δ(n, k, e). Packets can be lost even with e ≤ k if the
matrix cannot be inverted, and δ(n, k, e) models the probability that the receiver has
no invertible k × k after e packets losses (see Eq. (6.14)). If more than p packets are
lost, δ(n, k, e) = 1 because the receiver cannot construct a square matrix. If p or fewer
packets are lost, the probability of decoding failure depends on the number of received
packets beyond k, as shown in Eq. (6.10). The latter case is modeled with the upper
bound in Eq. (6.10), which results in a more conservative parity packet selection.

108 Chapter 6.2: Binary Erasure Codes

PLRbin
HARQ(k, p) =

1

k

k∑

i=1

i · Pr(Ik = i)|bin (6.12)

Pr(Ik = i)|bin =

n−k+i∑

e=i

δ(n, k, e) ·
(
n

e

)
pe

e(1− pe)
n−e · pd

(
e

i

)
(6.13)

δ(n, k, e) =

{
2−(n−k−e) if 0 ≤ e ≤ n− k

1 if n− k < e ≤ n
(6.14)

pbinf [c] =

k−1∑

i=max(0,n[c−1]−p)

δ
(
n[c−1], k,n[c−1]− i

)
·
(
n[c− 1]

i

)
(1−pe)

ipe
n[c−1]−i (6.15)

For random binary codes to be fully integrated into the SHARQ algorithm in Sec. 4.3,
the probability of a cycle to be triggered needs to be adapted to consider the decoding
failure probability as well (see Eq. (6.15), and Eq. (3.13) for the MDS counterpart). The
term δ

(
n[c−1], k,n[c−1]− i

)
models the decoding failure probability for the k×n[c−1]

generator matrix that can be built for all the packets sent up to the (c− 1)th cycle. It
can be proved that δ

(
n[c− 1], k,n[c− 1]− i

)
= 1 ∀ i ∈ [max(0,n[c− 1]− p), k− 1], and

hence pbinf [c] = pf [c].

6.2.2 Luby Transform Codes

Luby Transform (LT) codes [32] also belong to the family of random binary codes, but
they implement a more sophisticated degree distribution than random fountain codes.
The design of this kind of code is motivated by the LT process described in [32]: Initially,
all input symbols are uncovered. The decoding process with the MP algorithm described
above must always start with a degree-one node, which in turn covers an input symbol.
The set of all degree-one nodes is called the ripple, which contains all covered input
symbols that have not been processed yet. In every step, a node is extracted from the
ripple and processed by XORing it with all neighboring nodes—i.e., all nodes it shares
an edge with. This process may uncover more degree one-nodes, thereby increasing
the ripple size. The LT process ends when the ripple is empty. The objective of LT
codes is designing a degree distribution ρ(d) ∀ k ∈ [1, d] that provides a high success
probability by maintaining the ripple full until all input symbols are covered. The
design objectives for the degree distribution described in [32] are a clear example of the
complexity dilemma introduced in Sec. 6.1: the degree distribution should produce i) as
few encoding symbols as possible to achieve a high decoding probability (i.e., minimize
the required excess packets), and ii) an average degree of the generator matrix that is
as low as possible (i.e., minimize the computational complexity).

Luby proposed two different degree distributions. The Ideal Soliton distribution
(see Eq. (6.16)) displays ideal behavior in terms of the excess parity packets required to

Chapter 6.2: Binary Erasure Codes 109

decode all input symbols. However, this distribution is very fragile because it adds input
symbols to the ripple at the same time as they are processed. Maintaining the ripple
size of one makes this ideal distribution very sensitive to variances from the expected
behavior.

ρ(d) =

{
1
k if d = 1

1
d(d−1) if 2 ≤ d ≤ k

(6.16)

On the other hand, the Robust Soliton distribution (see Eq. (6.19)) ensures that a
large size of the ripple is maintained throughout the whole process with high probability.
Instead of 1, the expected number of degree-one nodes is S defined in Eq. (6.17), where
δ is the target decoding failure probability and c > 0 a free parameter (c < 1 is known
to achieve good performance [40]).

S =

⌈
c · ln

(k
δ

)√
k

⌉
(6.17)

τ(d) =

S
k
1
d if 1 ≤ d ≤ k

S − 1
S
k log

(
S
δ

)
if d = k

S

0 if d > k
S

(6.18)

µ(d) =
ρ(d) + τ(d)

Z
(6.19)

εLT = O
(
2 · ln

(
S

δ

)
S

)
(6.20)

With the Robust Soliton distribution, the LT codes have an average degree distribu-
tion d̄ = O

(
ln
(
k
δ

))
and the required excess packets to achieve a probability of decoding

failure δ is shown in Eq. (6.20) [40].

6.2.3 Multicast-Enabled Polar Codes

With the advent of swarm robotics [128, 159, 185], timely information needs to be dis-
tributed to large groups of receivers [226]. The computationally efficient binary codes are
ideal in this scenario, in which the robots in the swarm typically have low computational
power. Unlike MDS codes, parity packets in binary codes do not include information
from every input symbol because the zero element is present in the generator matrix. In
unicast scenarios, the decoding failure probability δ can be made arbitrarily low by in-
cluding excess packets. However, reducing the column degree is undesirable in multicast
scenarios where the probability of every packet being lost by at least one receiver is high.
When multiple receivers experience different loss patterns, requesting a new randomly
generated parity packet does not ensure that the information they are missing will be
transmitted. Assume n packets are transmitted to M receivers, the probability that
every packet is lost by at least one of the receivers is shown in Eq. (6.21). For simplicity,

110 Chapter 6.2: Binary Erasure Codes

25 50 75 100 125 150 175 200

Number of receivers (R)

0.0

0.5

1.0

P
ro

b
.

al
l
n

lo
st

n = 10

n = 25

n = 50

Figure 6.5: Probability that all n packets in the block are lost by at least one receiver
in multicast on an i.i.d. channel with pe = 0.05 as a function of the number of receivers
M .

Eq. (6.21) assumes a BEC with the same packet erasure rate for every receiver in the
multicast group. Fig. 6.5 depicts Eq. (6.21) for different values of n in the short block
length regime, with all probabilities approaching 1 in the low one hundred range.

Pr(All n lost multicast) =
(
1− (1− pe)

M
)n

(6.21)

Included in the 5G standard, polar codes [60] implement a deterministic matrix
construction that can be exploited to improve the performance of binary codes in mul-
ticast [8]. Polar codes exploit the polarization effect of binary codes: a binary code can
be seen as a combination of n independent binary channels whose capacity polarizes to
either almost perfect or almost fully noisy. If the columns of the n × n polar matrix
correspond to the different channels, then the row in the matrix with the most 1s dis-
perses the source symbol over the most channels, thereby achieving the highest channel
capacity. Given the polarization effect, polar codes complement the input symbols with
frozen symbols located in the positions with the lowest channel capacity. Frozen sym-
bols are typically fixed to 0, and since their position is known, at the receiver end they
convey information about the channel and can be used to enhance the decoding process.
However, when polar codes are used in erasure channels, frozen symbols only convey
information when they are erased and thus their transmission can be omitted as they
do not enhance the decoding capabilities.

Arikan [60] proposed the Bhattacharyya parameter to measure the quality of the
different channels in the generator matrix. Given W : X → Y a generic binary-input
discrete memoryless channel with input alphabet X , output alphabet Y, and transition
probabilities W (y|x), x ∈ X , y ∈ Y, the Bhattacharyya parameter is defined as

Z(W) ≜
∑

y∈Y

√
W (y|0)W (y|1) (6.22)

Chapter 6.2: Binary Erasure Codes 111

An n × n polar matrix operates on n independent W channels to create a set of

polarizing channels {W (j)
n : 1 ≤ i ≤ n}, where n = 2i and i ≥ 0. The smallest

combination of channels is W2, which is generated with the matrix

F ≜

[
1 0
1 1

]
(6.23)

More generally, the polar matrixGn = BnF
⊗j
n , whereBn is the bit-reversal permutation

matrix and F⊗j
n is the Kronecker power of the matrix F . The Kronecker power A⊗j is

defined as A⊗A⊗(j−1) for all j ≥ 1, where

A⊗B =

A11B · · · A1jB

...
. . .

...
Ai1B · · · AijB

 (6.24)

is an i × j matrix resulting from the Kronecker product of the matrices A and B. In
the particular case of the BEC, this polar matrix construction allows for a recursive
calculation of the Bhattacharyya parameter:

Z
(
W (2j−1)

n

)
= 2Z

(
W

(j)
n/2

)
− Z

(
W

(j)
n/2

)2
(6.25)

Z
(
W (2j)

n

)
= Z

(
W

(j)
n/2

)2
(6.26)

with Z
(
W

(1)
1

)
= pe and 1 ≤ j ≤ n

2 . [60] shows that a similar recursive approach can be

used for en-/decoding with a computational complexity O(n · log(n)).
The matrix resulting from Kronecker power has a persymmetric structure—i.e., the

matrix is symmetric with respect to the upper-right to the lower-left diagonal:

F⊗4 =

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

 (6.27)

The last row in F⊗4 corresponds to the largest temporal dispersion, as it disperses the
information over all the channels. Conversely, the first column in F⊗4 is the column with
the largest dispersion over receivers in a multicast group, as it includes information from
every input symbol that may be lost in the block. Therefore, the same Bhattacharyya
parameter used to calculate each channel’s reliability can be mirrored to measure the
quality of each column for multicast. This property can be used to generate incremental
redundancy for multicast groups.

Assume a vector A containing the indices of the k best channels in decreasing quality
order as measured by the Bhattacharyya parameter, and the complementary vector AC

with the remaining n − k channels in increasing quality order. For example, for the
16× 16 polar matrix, the indices of the channel in decreasing quality order are

[16, 15, 14, 12, 8, 13, 11, 10, 7, 6, 4, 9, 5, 3, 2, 1]

112 Chapter 6.3: Theoretical Analysis

so that A = [16, 15, 14, 12, 8, 13, 11, 10], and AC = [1, 2, 3, 5, 9, 4, 6, 7]. The multicast-
enabled polar code creates a systematic generator matrix as follows: the worst channels
are used for the frozen bits—i.e., the rows in AC are ignored because they only contribute
0s to the packet XOR. Instead of using the channels in A as a non-systematic polar code
would do, a precode is used that turns these channels into the systematic part of the
matrix. Therefore, the k columns with indices in A are substituted by the columns in
the k× k identity matrix. Since G−1 = G in polar codes [60], this precode is equivalent
to multiplying with the matrix G(A,A). The parity packets are iteratively generated
with the columns in AC . The persymmetric structure of the generator matrix means
that ordering the channels in decreasing quality is equivalent to ordering the columns in
increasing generalizability. Therefore, the parity packets should be transmitted in the
order specified in AC , so that every parity packet transmission maximizes the number
of receivers able to correct their losses.

To the best of our knowledge, there is no known analytical expression to obtain the
probability of losing i data packets—i.e., Pr(Ik = i)—for polar codes. Therefore, for
the evaluations presented in Sec. 6.3, this probability has been empirically calculated by
constructing the polar matrix, emulating M receivers ([8] shows M = 50, 000 achieves a
low error estimation when compared to the ground truth), and calculating how many of
them could recover from losses by running Gaussian elimination.

6.3 Theoretical Analysis

Random fountain, LT, and polar codes are by no means the only binary codes proposed
in the literature. Still, they do represent the different trends that binary code design
has experienced in the last decades. Random binary codes have gone from high average
column degree (random fountain) to sparse generator matrix (LT), whereas the more
recent polar codes deviate from sparsity with their deterministic matrix construction.
This section presents a theoretical analysis of the three codes above to address the
research question posed in this chapter, namely whether binary codes are a more energy-
efficient alternative to MDS codes for time-sensitive transport protocols despite their RI
overhead.

6.3.1 Complexity and Suboptimality

The packet loss probability model in Sec. 6.2.1 enables their computational complexity
comparison with MDS codes. The computational complexity and the optimal number
of parity packets for both codes are depicted in Fig. 6.6. The codes are compared in
their systematic form and the optimal numbers of parity packets have been obtained as
follows:

pmds
opt (k) = min{ p | PLRHARQ(k, p) ≤ PLRT } (6.28)

pbinopt(k) = min{ p | PLRbin
HARQ(k, p) ≤ PLRT } (6.29)

Since the number of excess packets in random fountain codes is independent of k (see
Eq. (6.11)), the gap between pmds

opt (k) and pbinopt(k) becomes smaller as the block length

Chapter 6.3: Theoretical Analysis 113

105

106

107
C

om
p

le
x
it

y
(S

te
p

s)

encmds(k, p
mds
opt (k), 1500 · 8, 8)

encbin(k2 , p
bin
opt(k), 1500 · 8, 32)

20 30 40 50 60 70 80 90 100

Block length (k)

10

20

30

P
ar

it
y

p
ac

ke
ts

(p
)

pmdsopt (k)

pbinopt(k)

Figure 6.6: Comparison of the encoding complexity for MDS and random fountain
codes for PLRT = 0.002 and pe = 0.1.

increases, as it can be observed in the second plot in Fig. 6.6. This property supports the
aforementioned intuition that the relative portion to the RI used by the excess symbols
diminishes for large block lengths.

Despite their parity packet overhead, the computational complexity of random foun-
tain codes is an order of magnitude smaller for the complete range of block lengths
depicted in the figure. This result suggests that binary codes could be an efficient al-
ternative to MDS codes, even in the short block length regime of delay-bound transport
protocols.

6.3.2 The Impact of Sparsity

Generator matrix sparsity is at the core of the complexity dilemma (see Sec. 6.1), as
it affects the required number of excess packets and the number of edges in the Tan-
ner graph, and hence the required XORs for en-/decoding. Fig. 6.7 compares random
fountain and LT codes in terms of these two variables. The codes are compared in their
systematic (i.e., only ε packets are encoded) and non-systematic (i.e., k + ε packets are
encoded) forms. The number of excess packets in LT codes has a log-linear relation with
the free parameter c (see Eq. (6.20)). Providing a detailed analysis of this parameter
is out of the scope of this thesis and hence it has been set to the frequently used value
c = 0.2 [40].

Sparser binary generator matrices do not necessarily reduce the complexity of the
code in the short block length regime. For small k values, LT’s generator matrix has
more edges than random fountain’s in both forms, systematic and non-systematic, which
is a result of the higher number of excess packets. As the block length increases, the

114 Chapter 6.3: Theoretical Analysis

101

102

103

E
x
ce

ss
p

ac
ke

ts
(ε

)

Random Fountain (non-systematic)

Random Fountain (systematic)

LT (non-systematic)

LT (systematic)

20 30 40 50 60 70 80 90 100

Block length (k)

102

103

N
u

m
b

er
of

ed
ge

s

Figure 6.7: Number of excess packets that random fountain and LT codes require to
achieve a decoding failure probability δ = 0.01. The free parameter c = 0.2 has been
configured for the LT code.

number of edges2 in non-systematic random fountain codes grows quadratically with k
due to their average column degree d̄ = k

2 . This result is in line with the dominance of
sparse codes in the lower layers of the protocol stack. However, random fountain codes
in their systematic form outperform the other three configurations in terms of excess
packets and number of edges. In the design of binary codes for the transport layer,
non-sparse binary matrices producing a low number of excess packets are preferable to
sparse codes.

6.3.3 Multicast Performance

To analyze the performance in multicast, a multicast group has been simulated with
many receivers as different erasure patterns exist for i ∈ [1, e] erasures in a block, where
e is the number of correctable erasures in an MDS code transmitting e = p parity packets.
MDS codes are used as a reference as every parity packet can correct one erasure in every
receiver, regardless of the pattern. After the transmission of every packet in the block,
every receiver in the group performs Gaussian elimination to check how many erasures
it can correct. Since each erasure pattern has a different probability, each receiver is
weighted differently depending on the number of erasures it originally experienced. The
probability of that erasure pattern with an erasure count of i occurring is

Pr(pattern with i erasures) = pe
i(1− pe)

n−i (6.30)

2The number of edges for random fountain codes is k
2
·(k+εrand) in non-systematic form and k

2
·εrand

in systematic form. The edges in the graph for LT codes is (k + εLT (δ, k, c)) · log(kδ) in non-systematic
form and εLT (δ, k, c) · log(kδ) in systematic form.

Chapter 6.3: Theoretical Analysis 115

The weight for a receiver with i erasures is obtained with Eq. (6.31), in which the
probability of that pattern to occur is normalized to the total probability of the patterns
considered for the evaluation to occur (see Eq. (6.32)).

wi =
1

wT
Pr(pattern with i erasures) (6.31)

wT =
e∑

i=1

(
n

i

)
Pr(pattern with i erasures) (6.32)

The evaluation of random fountain codes must also account for the randomness in
the generator matrix. An erased symbol is included in a parity packet with probability
Pr(symbol) = 0.5, and hence the symbol is included in at least one of the p transmitted
parity packets with probability 1−Pr(symbol)p. A receiver can recover all its losses with
a random fountain code C(n, k) if i) all e lost symbols are included within the transmitted
p parity packets, and ii) the binary generator matrix is invertible. The probability of
these two cases to occur is

Pr(repair e fountain) =
(
1− δ(n, k, e)

)(
1− Pr(symbol)p

)e
(6.33)

and the receiver weight for random fountain codes is

wf
i = wi · Pr(repair e fountain) (6.34)

Fig. 6.8 shows the CDF of the erasure recovering probability for all receivers in the
multicast group experiencing i ∈ [1, e] erasures. The performance of the multicast-
enabled polar codes proposed in Sec. 6.2.3 approaches the optimal performance of MDS
codes. Although both binary codes converge as the number of parity packets increases,
the first parity packets in random fountain codes provide a significantly lower receiver
coverage on average due to their randomness.

A closer look at the multicast-enabled polar codes shows that there is still room
for improvement. Ordering the columns according to the Bhattacharyya parameter
results in a decreasing column degree. For example, for k = 10 the column degrees are
[16, 8, 8, 8, 8, 4]. As the frozen positions do not contribute any information to the parity
packets, the column degree is reduced in practice to [10, 6, 6, 7, 7, 3]. However, since the
degree difference is small, so is the expected gain of re-sorting. Therefore, this feature
has not been implemented to avoid a code-rate-dependent reordering that would increase
the complexity of the matrix construction.

6.3.4 Error Correction Capabilities

The final aspect to consider in the code comparison is their error correction capabili-
ties. A WiFi-like simulation has been considered, with an erasure probability pe = 0.05
as well as two different reliability targets—i.e., PLRT = {0.01, 0.001}. Fig. 6.9 de-
picts the optimal number of parity packets—i.e., the minimum p that meets the PLRT

constraint—for MDS, multicast-enabled polar, and random fountain codes. Although

116 Chapter 6.3: Theoretical Analysis

0.6

0.7

0.8

0.9

1.0

C
D

F

(n, k) = (16, 8), e = 2

0.4

0.6

0.8

1.0

(n, k) = (32, 25), e = 2

0.4

0.6

0.8

1.0

(n, k) = (32, 27), e = 2

1 2 3 4 5 6 7 8

Sent Parity Packets

0.6

0.7

0.8

0.9

1.0

C
D

F

(n, k) = (16, 8), e = 3

1 2 3 4 5 6 7

Sent Parity Packets

0.4

0.6

0.8

1.0

(n, k) = (32, 25), e = 3

1 2 3 4 5

Sent Parity Packets

0.4

0.6

0.8

1.0

(n, k) = (32, 27), e = 3

MDS Code

Polar Code

Fountain Code

(a) pe = 0.01

0.6

0.8

1.0

C
D

F

(n, k) = (16, 8), e = 2

0.4

0.6

0.8

1.0

(n, k) = (32, 25), e = 2

0.2

0.4

0.6

0.8

1.0

(n, k) = (32, 27), e = 2

1 2 3 4 5 6 7 8

Sent Parity Packets

0.6

0.8

1.0

C
D

F

(n, k) = (16, 8), e = 3

1 2 3 4 5 6 7

Sent Parity Packets

0.2

0.4

0.6

0.8

1.0

(n, k) = (32, 25), e = 3

1 2 3 4 5

Sent Parity Packets

0.2

0.4

0.6

0.8

1.0

(n, k) = (32, 27), e = 3

MDS Code

Polar Code

Fountain Code

(b) pe = 0.05

Figure 6.8: Cumulative Distribution Function (CDF) of the erasure recovering proba-
bility for all receivers in a multicast group.

Chapter 6.3: Theoretical Analysis 117

20 25 30 35 40 45 50

Block length (k)

4

6

P
ar

it
y

P
ac

ke
ts

(p
)

pe = 0.05, PLRT = 0.01

20 25 30 35 40 45 50

Block length (k)

5.0

7.5

10.0

12.5

pe = 0.05, PLRT = 0.001

MDS Code

Fountain Code

Polar Code

Figure 6.9: Required number of parity packets by MDS, multicast-enabled polar, and
random fountain codes to meet a target packet loss rate PLRT = {0.01, 0.001} in a BEC
with erasure probability pe = 0.05.

the proposed polar code construction in Sec. 6.2.3 outperforms random fountain codes
in the short block length regime, they require the most parity packets for large block
lengths and a tight reliability constraint.

A drawback of the analysis here presented is the considered target packet loss rates—
i.e., PLRT = {0.01, 0.001}—, which are in the higher range of the application require-
ments the PRRT protocol is designed to support (see Table 3.2). The selection of these
target values has been motivated by the employed methodology: due to the lack of a
closed-form expression for the PLR for polar codes, Gaussian elimination must be eval-
uated for all possible combinations of lost packets in n. Therefore, this methodology
becomes computationally intractable for the most stringent PLRT values. Nevertheless,
polar codes still have a lower parity packet overhead than random fountain codes in
the short-block-length regime, which makes polar codes an interesting alternative for
multicast applications in the IoT domain if the target delay is in the single-millisecond
range. Therefore, the suitability of polar codes for packetized layers should be further
analyzed in future work.

6.3.5 Conclusion

This section has shown that, despite their RI excess, binary codes are an interesting
alternative to the optimal MDS codes due to their low complexity. Even in the trans-
port layer operating in the short block length regime, where the redundancy excess
accounts for a non-negligible portion of the overall data rate, random fountain codes
reduce the computational complexity by an order of magnitude in comparison to MDS
(see Sec. 6.3.1).

When addressing the complexity dilemma, the results presented in this section sug-
gest there is not a one-size-fits-all solution that achieves the best performance—neither
in terms of transmitted RI nor computational complexity—in every scenario. Sparse bi-
nary codes have been discarded due to their poor performance in the short block length
regime (Sec. 6.3.2). However, the decision is not clear between multicast-enabled polar
and random fountain codes. Polar codes approach the performance of MDS in multicast

118 Chapter 6.4: Energy-Aware HARQ

(Sec. 6.3.3) and, although they require less excess packet with small block lengths than
random fountain codes, they experience an excess packet explosion with applications
demanding high reliability (Sec. 6.3.4). On the other hand, random fountain codes need
more parity packets to achieve a high receiver coverage in multicast, but the required
number of excess packets is more stable.

The analyzed codes achieve different trade-offs between network complexity (optimal
redundancy vs. excess packets) and processing complexity (operations in high order
fields vs. simple XOR operations). While optimizing for the transmitted RI solely
focuses on the network complexity, the energy demand of the system seems a better
alternative to find the code with the lowest resource footprint, regardless of where the
complexity is put. However, no code seems to demand the lowest energy in all scenarios,
which makes energy-aware error control a challenging optimization problem to solve
Sec. 3.5.1. Not only should different codes be considered due to their heterogeneous
performance depending on the application requirements and network conditions, but the
device-specific energy demand should be considered. Precise energy models for a plethora
of CPUs and network interfaces—including different wireless technologies, such as WiFi,
Bluetooth, Bluetooth Low Energy, etc.—are required to make energy-aware decisions.
The remainder of this chapter explores the idea of an energy-aware, adaptive HARQ
implementation. For simplicity, the analysis has been limited to random fountain codes
and a Raspberry Pi Zero W as the target code and platform, respectively. Extending
the same analysis to other codes and platforms is left for future work.

6.4 Energy-Aware HARQ

Sec. 6.3.5 puts into question the suitability of the RI as the optimization metric for
binary codes, which are suboptimal from the RI standpoint but reduce the processing
time due to their lower computational complexity. The energy demand of the system
seems a better optimization metric a priori, since it offers a single metric to account
for the resource demand regardless of whether they are spent on the communication or
processing part. Formally, given a code C(n, k) with p = n− k, the total energy demand
that the code adds to the transmission of the k input symbols is

E(k, p) ≤ ETx(k + p) + ERx(k + p)︸ ︷︷ ︸
Communication resources

+Eencode(k, p) + Edecode(k, p)︸ ︷︷ ︸
Processing resources

(6.35)

where the upper bound stems from the fact that not all n packets are necessarily received
due to erasures that may occur in the channel. The terms ETx(p), ERx(p), Eencode(k, p),
and Edecode(k, p) correspond to the energy demand of transmitting, receiving, encoding,
and decoding k+p packets, respectively. Sec. 6.4.1 presents how these models have been
built for the Raspberry Pi Zero W.

EHARQ(k,NC , NP) =
1

k
· E(k,NP [0]) +

1

k

NC∑

c=1

pRf [c] · E(k,NP [c]) (6.36)

Chapter 6.4: Energy-Aware HARQ 119

Eq. (6.35) calculates the total energy demand when the packets are always encoded
and transmitted. However, PRRT implements an incremental redundancy scheme, in
which parity packets in the reactive cycles are only encoded and transmitted if triggered
by the receiver. The energy demand of such an HARQ scheme is provided in Eq. (6.36)
which is the energy counterpart of Eq. (3.11). The normalization by the block length
allows the comparison between codes with different block lengths, as Eq. (6.36) de facto
is the average energy demand increase per input symbol the HARQ configuration (k,NP)
introduces.

6.4.1 Energy Models

For the analysis of the energy efficiency of different coding techniques, energy models
for the basic operations of a code must be constructed. The four basic operations are
i) encoding, ii) decoding, iii) transmission, and iv) reception. The remainder of this
section introduces the methodology followed to obtain energy measurements for these
functions and the resulting energy models.

Methodology

The four aforementioned basic operations have been isolated from other protocol func-
tions and executed on a Device Under Test (DUT), in this case, a Raspberry Pi Zero
W. The Raspberry Pi Zero W runs the Raspbian Buster operating system with Linux
Kernel 4.19, i.e. the same device employed in Chapter 4 and Chapter 5. The Raspbian
operating system has been configured to run as few processes as possible, thereby re-
ducing the noise experienced by the measurements. Executing the isolated basic coding
operations allows for precise energy measurements.

The setup presented in [179] has been used to obtain the energy measurements.
Fig. 6.10 presents a schematic of such a setup. The host PC sends execution commands
to the DUT via WiFi. The energy measurement board intercepts the power supply at
the USB of the DUT. The power measurements are obtained with a shunt resistor and
the LTC29913 voltage and current monitor sensor, which has a 14-bit ADC. An Arduino
Nano4 microcontroller obtains the power draw from an Inter-Integrated Circuit (I2C)
interface to the LTC2991 chip. The aggregated power measurements are communicated
to the host PC via USB.

The host PC can send three different execution commands, each corresponding to
an isolated piece of code. The communication command uses iperf5 to transmit and
receive data on a UDP socket. The MDS code command executes PRRT’s MDS code
implementation, which is described in detail in Sec. 3.3.3. Finally, the random fountain
code command executes the encoding and decoding functions in the Rust library devel-
oped in [189]. This library has been optimized based on low-level benchmarks of binary
code’s fundamental coding atom—i.e., the xorb function introduced in Sec. 6.2—and the

3https://www.analog.com/en/products/ltc2991.html (accessed January 23rd 2024)
4https://store.arduino.cc/products/arduino-nano (accessed January 23rd 2024)
5https://iperf.fr/ (accessed January 23rd 2024)

https://www.analog.com/en/products/ltc2991.html
https://store.arduino.cc/products/arduino-nano
https://iperf.fr/

120 Chapter 6.4: Energy-Aware HARQ

Host PC

WiFi

USB

Sampling Chip

(Arduino)

USB

E

I2C
ADC

(LTC2991)

E

I2C

E E

Power Supply

(5V DC)
E

DUT
(Raspberry Pi)

WiFi

USB

Data

Energy

Figure 6.10: Hardware setup for the energy measurements. Reproduced from [179].

custom binary matrix. The custom binary matrix avoids bound checks at execution time
when iterating through all elements—these checks occur at compilation time instead. As
a result, the matrix performs faster lookups than other existing Rust crates, thereby out-
performing them in the execution of the MP algorithm. According to [189], the best
performance on the Raspberry Pi Zero W is achieved by xor64 and the u32-based binary
matrix.

The communication command takes as input the number of packets to transmit or
receive, the two code commands take the block length and number of parity packets as
inputs. The output of the commands is the time it takes to execute the operation in
milliseconds. Fig. 6.11 depicts an energy measurement example for some of these com-
mands. Every piece of code is iterated multiple times in order to produce a perceivable
power draw that can be isolated from the background power the DUT draws when idle.
For example, MDS en-/decode operations are iterated 500 times, packet transmission
and reception 1,000 times, and random fountain en-/decode 3,000 times. Measurements
have been collected for 25 executions of each command, grouped in sets of 5 executions
with a sleep time of 5 seconds between executions in the case of MDS and random
fountain codes, and a sleep time of 15 seconds in the transmission due to the noisier
measurements obtained in this case.

A post-processing step is applied to the raw measurements from the setup to extract
the power draw resulting from the command execution. The background power draw

Chapter 6.4: Energy-Aware HARQ 121

10 20 30 40

Time (s)

0.6

0.8

1.0

1.2

1.4

1.6

P
ow

er
(W

)
Encode MDS k=50 p=5

Borders

Thresholds

0 20 40 60

Time (s)

Transmit p=5

10 20 30 40

Time (s)

Encode Binary k=50 p=5

Figure 6.11: Automatic detection of the power draw caused by data transmission and
block encoding with MDS and binary codes.

(background) is measured at the beginning of the experiment when no code is executed.
The upper (thresholdup) and lower (thresholdlow) thresholds are obtained as follows:

thresholdup =
max+middle

2
(6.37)

thresholdlow =
background+middle

2
(6.38)

where max is the maximum measured power draw, and middle = 1
2 ·(background+max)

is the middle point between the background and maximum power. The script searches
for the code execution only within the two thresholds and uses the timing information
output by the commands to find the two borders around the code execution depicted in
Fig. 6.11. This code detection mechanism avoids misclassification—e.g., see the power
draw peak before the second execution in the MDS figure. Once the borders are found,
the host PC obtains the average energy demand per iteration dividing the power draw
between the borders by the sampling period—i.e., 4ms—and the aforementioned number
of iterations per command.

Model Construction

Sec. 6.1 shows that the matrix-vector multiplication dominates the en-/decoding com-
plexity in the transport layer. For a fixed packet length and number of parity packets
to en-/decode, Eq. (6.4), Eq. (6.5), Eq. (6.8), and Eq. (6.9) show that the number of
operations grows linearly with the block length.6 Given X and Y a set of N samples
generated with the linear function f : X → Y . Linear Least Squares (LLS) enables the

6In the decoding case, the behavior is superlinear due to the matrix inversion component, but the
results presented in this section show that linear estimation still achieves a low estimation error nonethe-
less.

122 Chapter 6.4: Energy-Aware HARQ

construction of an estimator of the function f that minimizes the sum of squared errors
as follows

ŷ = m · x+ b (6.39)

m =
N ·∑x∈X ,y∈Y xy −∑x∈X x

∑
yY y

N ·∑x∈X x2 − (
∑

x∈X x)2
(6.40)

b =
1

N
·
(∑

y∈Y
y −m ·

∑

x∈X
x

)
(6.41)

In the particular case of energy demand in HARQ, x ∈ R and y ∈ Q. Eq. (6.35)
introduced four different energy models that are required in HARQ. Eq. (6.42) and
Eq. (6.43) show how these models have been constructed with LLS. Table 6.2 collects
the parameters β1 and β0.

Een/decoding(k, p) = p · (β1en/decoding · k + β0en/decoding) (6.42)

ETx/Rx(p) = β1Tx/Rx · p+ β0Tx/Rx (6.43)

Table 6.2: Linear functions to obtain the energy demand in milliJules

Function Description β1 β0

EMDS
encoding(k, p) MDS Encoding 0.0065578 -0.0168258

EMDS
decoding(k, p) MDS Decoding 0.0062807 -0.0146655

EBin
encoding(k, p) Binary Encoding 0.0006568 -0.0026564

EBin
decoding(k, p) Binary Decoding 0.000638 -0.002844

ETx(p) Data Transmission 0.3315099 0.0937526

ERx(p) Data Reception 0.0472131 0.007368

Fig. 6.12 compares the estimated energy demand of MDS and random fountain bi-
nary codes with the measured values. For every k and p, 25 measurements have been
performed in batches of 5 (see the methodology above). The error bars in the measured
lines in the standard deviation measured in the 25 executions. The estimation error is
within the standard deviation in all cases, thereby proving the robustness of LLS for the
model construction. Fig. 6.13 shows the same model robustness for the energy demand
of the data transmission and reception.

6.4.2 Delay Model

The energy demand difference between MDS and random fountain codes stems from the
time they take to en-/decode the parity packets. The faster coding in random fountain

Chapter 6.4: Energy-Aware HARQ 123

1

2

E
n

er
gy

(m
J
)

MDS Encoding

Estimated p = 2

Estimated p = 3

Estimated p = 4

Estimated p = 5

Measured p = 2

Measured p = 3

Measured p = 4

Measured p = 5

1

2

E
n

er
gy

(m
J
)

MDS Decoding

0.0

0.2

E
n

er
gy

(m
J
)

Binary Encoding

10 20 30 40 50 60
Block length (k)

0.0

0.1

E
n

er
gy

(m
J
)

Binary Decoding

Figure 6.12: En-/decoding energy demand for MDS and random fountain codes on a
Raspberry Pi Zero W. Measured lines correspond to the average energy demand with
the standard deviation as error lines.

2 4 6 8 10
Number of packets (p)

0

2

E
n

er
gy

(m
J
) Estimated Tx

Estimated Rx

Measured Tx

Measured Rx

Figure 6.13: Packet transmission and reception energy demand on a Raspberry Pi
Zero W. Measured lines correspond to the average energy demand with the standard
deviation as error lines.

124 Chapter 6.5: Practical Analysis

codes results in fewer CPU cycles per parity packet than MDS-generated parity packets,
thereby reducing its power draw. Similarly to the energy models for the Raspberry Pi
Zero W presented above, delay models for the encoding and decoding operations can
also be generated (see Eq. (6.44) and Table 6.3).

Den/decoding(k, p) = p · (men/decoding · k + ben/decoding) (6.44)

Table 6.3: Linear functions to obtain the delay in milliseconds.

Function Description β1 β0

DMDS
encoding(k, p) MDS Encoding 0.0190005 -0.0216464

DMDS
decoding(k, p) MDS Decoding 0.0183721 -0.0212933

DBin
encoding(k, p) Binary Encoding 0.0020142 -0.0038370

DBin
decoding(k, p) Binary Decoding 0.0019384 -0.0046915

DPi Zero
HARQ(k,NC , NP) = DFEC(k,NP)+DARQ(NC , NP)−

RTT

2
+DPi Zero

MDS/Bin(k, p) (6.45)

DPi Zero
MDS/Bin(k, p) = D

MDS/Bin
encoding (k, p) +D

MDS/Bin
decoding (k, p) (6.46)

The delay model in the SHARQ and DeepSHARQ algorithms assumes that parity
packets can be en-/decoded infinitely fast (see Eq. (3.16)). This assumption is based
on the en-/decoding delay on high-end desktop PCs, which is in the order of tens to
hundreds of microseconds. Such delays are one to two orders of magnitude smaller
than the delay target of the most stringent applications, namely 1ms (see Table 3.2).
However, as PRRT is brought to embedded devices such as the Raspberry Pi Zero W,
these delays become non-negligible. The delay budget for the Raspberry Pi Zero W is
shown in Eq. (6.45), where DPi Zero

MDS/Bin(k, p) is the coding delay model for either MDS or
random fountain codes.

6.5 Practical Analysis

As the parity packet en-/decoding delay becomes larger, it takes a more significant
portion of the available delay budget. Consequently, the available time for the HARQ
scheme to recover packet losses is inversely proportional to the en-/decoding delay. This
reduction of the effective time budget is expected to produce an RI increase from the
optimum found for MDS codes when the en-/decoding delays are zero. Fig. 6.14a depicts
the RI increase distribution for i) MDS codes running on the Raspberry Pi Zero W (MDS
Pi Zero), ii) random fountain codes with parity packets being en-/decoded infinitely fast

Chapter 6.5: Practical Analysis 125

10−3 10−2 10−1 100 101 102

RI Difference (%)

0.4

0.6

0.8

1.0
C

D
F

MDS Pi Zero

Fountain Optimum

Fountain Pi Zero

(a)

−100 −50 0 50 100 150

Energy demand difference (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

MDS is
better

Fountain is
better

sender+receiver

sender

receiver

(b)

Figure 6.14: (a) RI increase when en-/decoding delay takes a portion of the delay bud-
get and/or excess parity packets are required. (b) CDF of the energy demand difference
between random fountain and MDS codes.

(Fountain Optimum), and iii) random fountain codes running on the Raspberry Pi Zero
W (Fountain Pi Zero). When the code processing delay is included in the delay budget,
MDS and random fountain codes introduce no RI increase in 86.6% and 35.24% of the
cases, respectively. More configurations experience an RI increase with random fountain
codes as a result of the excess parity packets. Nevertheless, the RI increase is kept low
for a significant number of cases, e.g., less than 1% and 10% in 72% and 89% of the
cases, respectively. Despite the excess parity packets they require, the tail RI increase
is smaller for random fountain codes (106.38%) than for MDS codes (123.65%). This
result is explained by the smaller portion of the delay budget binary codes take to en-
/decode—e.g., encoding 2 parity packets with a block length k = 20 takes approximately
700µs with MDS codes and 70µs with random fountain codes.

The higher efficiency of MDS codes in terms of transmitted RI is not reflected in
their energy efficiency. Fig. 6.14b depicts the CDF of the energy demand difference
between random fountain and MDS. A negative percentage means that the fountain
code demands less energy than MDS, and vice versa. Three different configurations
have been depicted: i) sender+receiver assumes that both the sender and the receiver in
the communication are Raspberry Pi Zero W, ii) in sender only the sender is a Raspberry
Pi Zero W, and iii) in receiver only the receiver is a Raspberry Pi Zero W. The latter two
simulate systems with resource-constrained embedded systems in one of the two ends
of the communication, and hence the other end is assumed to be able to en-/decode
infinitely fast. Table 6.4 complements the figure with the exact percentages of samples
in which each code outperforms the other. Even in their worst-case scenario (sender)
the random fountain codes demand less or the same amount of energy in approximately
75% of all cases. The most extreme differences are found in the sender+receiver case,
with the lowest difference at -83% and the largest one at 166.6%. Nevertheless, fountain
codes introduce an increase of 50% and 100% to less than 2% and 0.1% of the samples,
respectively. Although random fountain codes demand less energy than MDS codes in
63% of the cases, the latter are better in 15% of the cases, which is a significant portion

126 Chapter 6.5: Practical Analysis

Table 6.4: Percentage of samples in which the random fountain code demands less, the
same, or more energy than an MDS code when both run on a Raspberry Pi Zero W.

Configuration EBin
HARQ < EMDS

HARQ EBin
HARQ = EMDS

HARQ EBin
HARQ > EMDS

HARQ

sender+receiver 62.219% 15.300% 22.479%

sender 59.937% 15.342% 24.720%

receiver 60.361% 15.283% 24.355%

Figure 6.15: Total energy demand of random fountain codes (blue) and MDS codes
(purple) on the Raspberry Pi Zero W split by orders of magnitude in the DT and PLRT

constraints. Both the sender and receiver are assumed to run on a Raspberry Pi Zero
W for the results depicted here.

of the dataset for MDS to be neglected. As predicted in the theoretical analysis in
Sec. 6.3, there is no one-size-fits-all code when it comes to implementing an energy-
aware, predictably reliable, real-time transport service.

Fig. 6.15 depicts the distribution of the total energy demand split by different ranges
of the target delay (DT) and packet loss rate (PLRT) constraints. Scenarios operating
with a small time budget tend to favor proactive cycles due to the lack of time for receiver
feedback collection, which explains the inversely proportional relation between EHARQ

and DT depicted on the left figure in Fig. 6.15. Therefore, binary codes seem a more
suitable option for applications with stringent delay constraints. The difference between
random fountain and MDS codes diminishes as DT increases. This behavior could be
explained by the fact that the relative portion of the time budget spent on parity packet
en-/decoding is lower in this case. Unlike the distributions for the target delay, the
PLRT -sorted distributions seem more homogeneous for the different ranges. This result
may seem counter-intuitive at first sight, since binary codes have a higher error floor (see
Sec. 6.1.2) that would hinder their performance for the low target loss rates. However,
in an HARQ scheme, the contribution of excess packets is weighted by the probability
of their cycle being triggered (see Eq. (6.36)). The optimal repair schedule construction

Chapter 6.6: Discussion 127

in Sec. 4.3.2 minimizes their contribution to the total energy demand of a configuration,
whereas the simple schedule in Sec. 5.2.3 puts them in the last cycle.

6.6 Discussion

This section discusses the theoretical and practical evaluations of the complexity dilemma
that emerges with the introduction of binary codes.

6.6.1 Complexity Dilemma

The complexity dilemma in error coding takes a completely different shape when ob-
served from the perspective of delay-constrained communication. The matrix inversion
has been the main target in every new code proposal for the physical layer, which plays
little to no role when a code is used in packetized layers (see Sec. 6.1.3). Reducing the
average column degree decreases the number of operations required to generate a parity
packet. However, Sec. 6.3.1 has shown that the impact of the CPU’s bit-width plays
a more important role in the transport layer. The MDS code implemented in PRRT
processes the packets byte-by-byte since it operates in GF (28). The number of bits
per symbol could be increased by using a higher order field, but that would increase
the size of the tables employed to reduce the complexity of the field multiplication (see
Sec. 3.3.3 for more details). On the contrary, binary codes perform the matrix-vector
multiplication with plain XOR operations, so that the number of bits grouped in a single
instruction does not depend on the underlying field, but the bit-width instead. On the
one hand, the average column degree in random fountain codes is k

2 , which halves the
number of operations per column in comparison to MDS. On the other hand, XORing
two packets requires 4 or 8 fewer instructions on 32-bit and 64-bit CPUs, respectively.
The higher energy efficiency of random fountain codes shown in Sec. 6.5 is a result of
the combined effect of these two complexity reduction sources.

6.6.2 Delay Budget

Previous models for delay-constrained communication have ignored the processing delay
for parity packet en-/decoding (see Sec. 3.5.1, which is based on [57, 86]), as they assume
that parity packets can be generated infinitely quickly. This assumption is based on
en-/decoding delays on desktop PCs and servers, typically several orders of magnitude
smaller than other delay sources such as the propagation delay. Not only is the low delay
a result of higher CPU clock speed, but of features that are not typically supported on
low-end devices, e.g., specific CPU instructions to operate on high-order Galois Fields,
multiple CPU cores [52], SIMD instructions [61], or even GPUs [62].

As transport protocols are brought to resource-constrained embedded devices, the
natural component of CPSs, the en-/decoding delay becomes non-negligible and can
take a significant portion of the delay budget, especially for applications with the most
stringent delay requirements. Therefore, the available time budget for erasure coding is
effectively reduced. Sec. 6.5 has shown that this budget reduction results in an average

128 Chapter 6.6: Discussion

RI increase of 10% in MDS codes when compared to the optimum, device-independent
RI. However, MDS and random fountain codes introduce no RI increase in 86.6% and
35.24% of the cases, respectively. In other words, from a purely information-theoretical
standpoint, MDS codes remain the best option on average. This statement does not
hold true for all samples though, since Fig. 6.14a has shown that random fountain codes
have a smaller tail RI increase than MDS. Nevertheless, this performance inversion is
negligible due to the small number of samples for which it occurs. Since the effective
time budget is inversely proportional to the code complexity, Sec. 6.5 has also shown
that the more efficient binary codes introduce an average RI increase of only 1%, despite
the parity packet excess introduced due to the lack of generator matrix invertibility
guarantees. These results suggest that binary codes are a better candidate as delay
constraints become tighter and/or the PRRT protocol is deployed on low-end devices
with fewer computational resources.

6.6.3 Energy Awareness

The systematic analysis of the energy demand of the coding function in HARQ here
presented is a first step towards a truly energy-aware transport protocol that brings
predictably reliable, real-time transport to embedded devices. The results suggest there
is not a fit-all code that outperforms the others in terms of energy efficiency in all
scenarios. However, the myriad of codes in the literature [15, 23, 26, 32, 40, 45, 60, 123,
129] makes it unfeasible to extend the same analysis to every code with their different
complexity and energy footprint, not to mention that the energy models are completely
platform-dependent. The intractability of the impact of the different system variables
on its energy demand is a well-known problem in the energy-aware community [111,
190]. Providing developers with the expected energy demand of a code on different
platforms [88, 97] or automatically constructing energy models based on the powerful
feature extraction of machine learning [153] are some of the solutions that have been
applied in that field. Little attention has been paid to the application of these energy-
aware solutions to transport protocols, but it seems a promising research field that
will attract attention as transport protocols are deployed on constrained devices [176].
The modular design of transport protocols [148] creates the opportunity to perform
energy-aware selections of the transport layer functions based on the scenario they will
be deployed on. DL-based heuristics could play an important role in enabling such a
dynamic protocol configuration, as they can be designed to achieve good performance for
different target metrics and application scenarios [210]. For example, the DeepSHARQ
algorithm in Chapter 5 could be retrained with transfer learning [46, 73] in order to
support a different code—e.g., random fountain—or a new target metric—e.g., energy
demand.

6.6.4 Other Codes

This chapter has only considered MDS and binary block codes. However, Random
Linear Network Coding (RLNC) codes [43] have also been implemented in packetized

Chapter 6.7: Related Work 129

layers, both in the block [72, 92, 132, 211] and stream [129, 150, 188, 206] form. RLNC
codes were originally proposed in the context of what is called the network information
flow problem [29] in multisource multicast networks. Ahlswede et al. [29] show that
bandwidth can be saved in this scenario by employing coding at the network nodes
instead of applying solely routing and forwarding as IP routers do. An in-depth analysis
of this problem is out of the scope of this thesis, and the remainder of this section focuses
on the suitability of RLNC codes for delay-constrained communication on embedded
devices.

RLNC follows a similar philosophy to random fountain codes: the elements of the
generator matrix are randomly selected from an underlying field. However, in order to
increase the probability of obtaining linearly independent columns, they employ higher-
order fields instead of GF (2). Ho et al. [43] prove that these codes are capacity ap-
proaching with probability exponentially approaching 1 with the block length. Shojania
et al. [52, 61, 62] bring RLNC to low-end devices by employing parallel computing—i.e.,
multithreading [52] and GPUs [62]—to reduce the computational complexity of the ma-
trix inversion, as these codes operate in the large block length regime. [72] shows that
RLNC codes achieve a lower en-/decoding throughput than binary codes due to their
higher complexity. It is precisely their high complexity that prevents them from being a
performant option for delay-constrained applications on embedded devices. Since GPUs
are becoming more common on embedded devices due to the broad adoption of TinyML
(see Sec. 5.1.2), it is an open question as to whether RLNC codes will be viable in this
setup in the near future as energy-efficient GPUs are released.

Stream codes make different use of the time budget than the block codes employed by
PRRT. In a delay-constrained block code, only the full budget of the first data packet in
the block is fully employed: PRRT optimizes the HARQ scheme so that the first packet
in the block is never delivered to the application later than its target delay. As a result,
there is a residual delay budget for later data packets in the block left unused, even
though there would still be time left for those packets to be recovered. On the contrary,
stream codes [129, 150] make the end-to-end delay independent of the block length by
evenly spreading the parity packets over the source data packets. Stream codes can gen-
erate parity packets at any time by computing a linear combination of the source packets
within a DT -dependent sliding window. Fong et al. [150] show the complexity of creat-
ing a windowed generator matrix whose invertibility is not guaranteed for two reasons:
i) the random nature of the matrix elements does not ensure the columns are linearly
independent, and ii) the cross dependencies between different windows. Therefore, al-
though they make a more efficient use of the time budget, stream codes are suboptimal
from the matrix construction point of view.

6.7 Related Work

Two main trends have emerged in the last two decades when it comes to energy aware-
ness in packetized protocols—i.e., layers 2 to 4 of the protocol stack—, namely sustain-
able large-scale deployments [34, 216, 220] and energy-efficient protocols for low-end

130 Chapter 6.7: Related Work

devices [33, 35, 37, 39, 49, 51, 176, 204]. Gupta et al. [34] perform an extensive analysis
of the energy demand of Internet devices, and proposed changes in the network archi-
tecture to increase the average sleeping time of network devices. Fotino et al. [49] reach
a similar conclusion after analyzing the energy demand of routing algorithms in ad hoc
networks built by the interconnection of low-end devices. Two decades later, [220] and
[216] extend the focus of the sustainability debate to introduce CO2 emissions to the
analysis as well, so that the usage of low-emissions energy sources is favored. Jacob
et al. [220] propose still longer sleeping times for network devices as one of the major
vectors when it comes to energy efficiency, which should be combined with an extended
device lifespan to reduce the Internet’s carbon footprint. Zilberman et al. [216] go a step
further in their proposal by exploiting network telemetry and programmable network
devices to implement a carbon-aware Internet that selects routes based on their carbon
footprint.

To the best of our knowledge, [33] is the first full IP/TCP stack implementation
targeted at resource-constrained devices. Code size, effective RAM usage, and com-
munication performance in terms of throughput and delay are the main focuses of the
article, but energy efficiency is out of its scope. Wan et al. [37] implement an energy-
efficient congestion control algorithm for event-driven sensor networks, which configures
a channel sampling rate at the receiver that reduces the sampling time and the energy
demand it entails, and applies backpreasure to avoid congestion. Since full reliability
increases the energy demand when the same event is detected by multiple receivers,
which in turn communicate it to a central node, [35] implements another receiver-based
congestion detection providing event detection reliability instead of packet-level relia-
bility. Iyer et al. [39] offload the end nodes by deploying the transport layer functions,
such as partial reliability, and congestion detection and avoidance, on the base stations.
Similarly to PRRT, the proposed protocol supports different per-flow reliability levels,
and NAKs are only triggered if a flow reliability level is below the target. TinyNet [204]
is a lightweight protocol stack tailored for low-power networks. The authors report that
TinyNet has a low memory footprint, and it outperforms similar stacks in terms of delay
and energy efficiency. Kumar et al. [176] show that off-the-shelf implementations of TCP
achieve poor performance on IoT deployments. The authors systematically analyze the
reasons for such a poor performance—i.e., small packet size, hidden-node problem, and
unsynchronized layer 2 and 4 protocols—and provide a custom adaptation of an existing
TCP stack that overcomes them.

Most similar to the analysis presented in this chapter are, to the best of our knowl-
edge, [61, 62, 72, 132]. Shojania et al. [61] provide a systematic performance analysis
of RLNC codes in an IoT deployment. The target platform is an iPhone 3G, which has
the same ARMv6 CPU architecture as the Raspberry Pi Zero W. The major difference
from the analysis presented in this chapter is the block length regime, as [61] focuses
on k = 4096 for which the matrix-vector multiplication implemented in PRRT (see
Sec. 3.1.2) is unfeasible due to the size of the tables. As a result, the authors have opted
for an algorithm that leverages parallel processing with either multithreading in [52] or
GPUs in [62]. The Tenor platform in [72] supports LT, RLNC and MDS codes optimized

Chapter 6.8: Conclusion 131

for ARM platforms, and shows that the binary LT codes achieve the higher en-/decoding
throughput on constrained devices. Finally, Wunderlich et al. [132] bring RLNC codes
to IoT devices with big.LITTLE multicore architecture with multiple big—i.e., fast but
power-hungry—cores and multiple LITTLE—i.e., slow but power-efficient—cores.

6.8 Conclusion

In the large block length regime, sparse binary codes have a low computational complex-
ity and their excess symbols become negligible. Hence, they have become the de facto
standard in the lower layers of the stack. In the short block length regime that is com-
mon in delay-constrained transport, sparse codes become unfeasible due to the significant
amount of resources that are devoted to transmitting excess packets. This chapter has
shown that binary codes are nonetheless an energy-efficient alternative to MDS codes
on resource-constrained embedded devices, so long as the number of excess packets is
kept low. The non-sparse random fountain and polar codes emerge as an alternative
to bring predictable reliability, and delay-constrained transport to devices with limited
computational resources. Random fountain codes can reduce the energy demand by 83%,
outperforming MDS codes in 59-63% of the cases. However, in a smaller percentage of
cases, they introduce an energy demand excess that can reach up to a 166% increase.
Therefore, due to the lack of a one-size-fits-all code, an energy-aware HARQ scheme
is required to optimize the energy demand depending on the scenario and application
requirements. In particular, the results presented here suggest that binary codes are an
efficient alternative for applications with the most stringent delay constraints when they
are deployed on low-end devices with limited computational and energy resources. This
chapter has laid the foundations for the systematic design of these energy-aware HARQ
schemes, a new research track that should be further investigated in future work.

132 Chapter 6.8: Conclusion

Chapter 7

Conclusion

Cyber-Physical Systems (CPSs) bridge the gap between the digital and physical world by
closing control loops over embedded computers and networks. Reliability and timeliness
are key functional requirements for the correct operation of these systems to ensure a
safe operation and the stability of the control loops. As CPSs are expected to permeate
our societies, the non-functional requirement of energy efficiency must be considered to
ensure a sustainable deployment that has the potential to enable unprecedented efficiency
levels in almost any human process to tackle climate change. For CPSs to unfold all their
potential, they should leverage open operating systems and protocol stacks providing
performance guarantees off the shelf, thereby enabling an ecosystem for developers to
focus on the application solely. The PRRT protocol provides a predictably reliable, real-
time service to deliver the data to the receiving end within the delay budget and with the
reliability level specified by the application. PRRT is a self-aware protocol that monitors
self- and channel-induced delays and packet losses to meet the application requirements.
The protocol also leverages interfaces with the operating system for precise time and
energy-aware decisions. These properties make PRRT an ideal candidate to enable data
communication for CPSs.

7.1 Summary

In answering the research question how should transport protocols be designed to provide
broad support for Cyber-Physical Systems?, this thesis has made original contributions
to the design of predictably reliable, delay-aware error control. The main conclusions
obtained while performing the research presented here are summarized in the following:

• The data-driven analysis presented in Chapter 3 has shown that even when made
delay- and reliability-aware, a pure ARQ parameter search fails to obtain valid
configurations meeting the constraints on a wide range of network conditions, while
a pure FEC search introduces large RI increases from the optimum. The results
prove the need for adaptive HARQ in the transport layer in order to support CPSs

133

134 Chapter 7.1: Summary

on a wide range of conditions while approaching the channel capacity, thereby
optimizing the transmitted RI.

• The computational complexity analysis of the HARQ scheme implemented in
PRRT points to the error control function, and more precisely the optimizer
and coder components, as the major limiting factor for PRRT to be brought to
resource-constrained platforms, i.e., the natural components of CPSs. Currently,
no closed-form expression exists to obtain the optimal HARQ configuration fulfill-
ing the constraints. Chapter 4 has presented algorithmic optimizations for a faster
exploration of the solution space and construction of the repair schedule. These
complexity optimizations reduce the search algorithms’ inference time, allowing
PRRT to provide a predictable communication channel on high-end PCs.

• Despite the algorithmic optimizations, the inference time of the search algorithms
is still too high to bring predictability to resource-constrained devices. We hy-
pothesize that most of the complexity comes from the quantization of the solution
space, which makes the search algorithm sensitive to noise such that small vari-
ations in the input produce large variations in the output. Chapter 5 presents a
DL-based solution that turns these quantization effects into a feature by allowing
neural networks to learn any block length that keeps the RI deviation from the
optimum within a configurable margin. We show this solution outperforms purely
learning-based approaches in terms of the size of the obtained neural networks,
thereby bringing predictable transport to low-end devices for the first time.

• Coding at the transport layer demands a revision of the complexity dilemma that
has driven code design in the last decades. Chapter 6 shows that this dilemma
fundamentally differs in packetized layers because the matrix inversion no longer
dominates the coding complexity, but the matrix-vector multiplication does be-
cause it must be iterated over full packets. Based on this finding, we systematically
analyzed binary code’s ability to bring efficient and predictable reliability to delay-
aware communications. Using a purely information theoretical metric such as the
RI, MDS codes are optimal as every parity packet can correct one lost packet,
and hence, they were considered the best option for this type of communication.
However, the results presented in this thesis show that, when looking at the overall
resource consumption of the platform, binary codes can be more efficient in a sig-
nificant portion of network conditions, especially when delay constraints are more
stringent.

These findings led to the development of three main components that have been im-
plemented as Rust libraries for their simple integration into existing transport protocols:

1. SHARQ: this search algorithm has been designed to provide the optimum HARQ
configuration in terms of the RI in predictable time. With a fast schedule and
solution space exploration, it can bring predictably reliable, real-time transport to
high-end devices.

Chapter 7.2: Future Work 135

2. DeepSHARQ: this search algorithm combines algorithmic and deep learning com-
ponents to reduce the inference time of finding HARQ configurations. Despite
sacrificing optimality, it maintains the RI deviation within configurable bounds,
thereby enabling PRRT on resource-constrained devices.

3. Packetized binary coder: a random binary coder implementing a custom ma-
trix object that avoids unnecessary memory checks in the existing Rust crates
that hinder performance. This component implements an encoder and decoder
operating on packets of configurable length.

7.2 Future Work

Despite the original contributions in the area of predictably reliable, delay- and energy-
aware transport presented in this thesis, there is still room for future investigations to
enable CPSs over IP networks.

Performance in the Wild

This thesis has performed a data-driven analysis of the error control function. Although
the dataset is based on traces collected in the wild, they do not portray PRRT’s per-
formance when interacting with other protocols and devices once it is deployed. These
interactions have been broadly studied for congestion control in TCP [112, 147, 169].
However, TCP’s operation point fundamentally differs from PRRT’s: while TCP aims
to fill the channel to maximize throughput, PRRT must operate below this point to
allow for the transmission of parity packets. Similar large-scale experiments should be
performed with PRRT, extending the analysis to error control. Particularly relevant
would be the evaluations on top of TSN and 5G testbeds, which are the main candidates
for wired and wireless CPSs, respectively.

Moreover, cross-layer effects have already been encountered for other real-time appli-
cations [1, 89]. Cross-layer effects prevent the application from obtaining the intended
performance due to diminishing effects between heuristics in the transport and applica-
tion layers. Similar effects may occur when control loops are deployed on top of PRRT.
Ideally, PRRT could be integrated into some control algorithm performance tool such
as [209] so that the impact of cross-layer effects on control performance could be studied.

Channel Estimation

While this thesis has focused on error control, channel estimation is equally relevant for
transport predictability. As requirements become more stringent, high-precision channel
models will be required to cope with the increased demands for performance guarantees.
LSTM-based channel estimation has already achieved good performance when it comes
to predicting future channel behavior [146, 171, 191]. An interesting avenue for research
would be to leverage information from the lower layers obtained from the large-scale
evaluations mentioned above to feed LSTM models.

136 Chapter 7.2: Future Work

Energy-Aware Adaptation

The energy-awareness results presented in this thesis show the complexity of the problem
at hand: picking the optimal coding technique is a multifactorial problem depending on
i) the network conditions, ii) the application requirements, iii) the platform the protocol
operates on, and iv) the set of available coding techniques. The DeepSHARQ algorithm
can be easily adapted to make device-aware decisions and/or support a different coding
technique: transfer learning allows a model to be retrained to fit a slightly different
set without going through a complete training session. For example, the new dataset
should reflect the optimal configurations for a different code or restrict the supported
block lengths due to the coding delays introduced by the device. However, if no code
outperforms the others in all circumstances, when to select the coding technique remains
an open research question.

The concept of pluginizing transport protocols to enable the fast evolution of its
internal functions has been proposed by several authors [142, 148]. Different coding
mechanisms could be provided as plugins—e.g., using Rust crates and features for con-
ditional compilation. The plugin mechanism would require a heuristic at compilation
time that selects the optimal coding technique based on, e.g., the platform or applica-
tion the protocol is expected to operate with. Alternatively, the selection of the coding
mechanism could be integrated into the adaptive HARQ optimization heuristics, which
would increase the optimization problem’s complexity.

Appendix A

Computational Complexity
Packet Loss Rate

The run-time complexity of the HARQ packet loss rate in Eq. (3.17) can be reduced to
linear complexity if some optimizations are taken into account. Splitting the PLR into
the two components in Eq. (A.1), it can be shown that each of the components can be
calculated in O(kmax+ log(pmax)) (see Eq. (A.2) and Eq. (A.4)). Bear in mind that the
derivations here presented do consider the alternative expression for the probability of i
packet losses in systematic MDS codes presented in Eq. (A.5).

PLRHARQ(k, p) =

1

k

min(k,p)∑

i=1

i · Pr(Ik = i)

︸ ︷︷ ︸
PLR1(k, p)

+
1

k

k∑

i=p+1

i · Pr(Ik = i)

︸ ︷︷ ︸
PLR2(k, p)

(A.1)

PLR1(k, p) =
1

k
· pep(1− pe)

k ·
min(k,p)∑

i=1

i ·
(
k

i

)
· PSp(p, i) (A.2)

PSp(p, i) =
pe

1− pe

((
p

i

)
+ PSp(p, i− 1)

)
(A.3)

PLR2(k, p) =
1

k

k∑

i=p+1

i ·
(
k

i

)
pe

i(1− pe)
k−i (A.4)

Pr(Ik = i) =
{(

k
i

)
pe

i(1− pe)
k−i i > p(

k
i

)∑i
f=1

(
p

p−i+f

)
pe

p+f (1− pe)
k−f i ≤ p

(A.5)

137

138 Appendix A. Computational Complexity Packet Loss Rate

The complete algorithm to obtain the PLR is shown in Alg. 7, where PSP (p, 0) = 0.
BINOM is a 256 × 256 table computed at compilation time so that any

(
n
k

)
can be

obtained in O(1).

Algorithm 7 PLR

Require: k, p, pe,BINOM
Ensure: PLR = 1

k

∑k
i=1 i · Pr(Ik = i)

1: psp ← 0
2: plr1 ← 0
3: for i = 0→ min(k, p) do
4: plr1 ← plr1 + i · BINOM[k][i] · psp
5: psp ← pe

1−pe
·
(
BINOM[p][p− i] + psp

)

6: end for
7: plr1 ← plr1 · pep · (1− pe)

k

8: plr2 ← 0
9: if p ≤ k then

10: pow ← pe
p · (1− pe)

k−p

11: for j = p+ 1→ k do
12: pow ← pow · pe

1−pe
13: plr2 ← plr2 + j · BINOM[k][j] · pow
14: end for
15: end if
16: return (plr1+plr2)

k

Appendix B

Computational Complexity
Redundancy Information

The RI expression, originally defined in Eq. (3.11), can be reformulated as shown in
Eq. (B.1), where w(j) is the probability that the code C(n, k) fails after the transmis-
sion of j ≤ p = n − k parity packets—see Eq. (B.2). Binomial coefficients fulfill that(
n
k

)
=
(
n−1
k−1

)
+
(
n−k
k

)
for 1 ≤ k < n Following this property of binomial coefficients, the

recursive expression for w(j) in Eq. (B.4) can be obtained. The run-time complexity of
evaluating Eq. (3.11) with Alg. 8 is O(n), where BINOM is a 256× 256 table computed
at compilation time so that any

(
n
k

)
can be obtained in O(1).

RI(k,NC , NP) =
1

k
NP 0 +

1

k

NC∑

c=1

wR
(
nc− 1− k

)
·NP c (B.1)

w(j) =

k−1∑

i=max(0,k−p+j)

(
k + j

i

)
(1− pe)

ipe
k+j−i (B.2)

wR(j) = 1− (1− w(j))R (B.3)

w(j) =

{
pe
(
w(j − 1)− a11(j)

)
+ (1− pe)

(
w(j − 1)− a2(j)

)
+ pe

k+j if k − p+ j < 0

pe
(
w(j − 1)− a21(j)

)
+ (1− pe)

(
w(j − 1)− a2(j)

)
if k − p+ j ≥ 0

(B.4)

a11(j) = pe
k+j−1 (B.5)

a21(j) =

(
k + j − 1

k + j − p− 1

)
(1− pe)

k+j−p−1pe
p (B.6)

a2(j) =

(
k + j − 1

k − 1

)
(1− pe)

k−1pe
j (B.7)

139

140 Appendix B. Computational Complexity Redundancy Information

Algorithm 8 RI

Require: k, p, pe,BINOM
Ensure: w is a vector with w[j] =

∑k−1
i=max(0,k−p+j)

(
k+j
i

)
(1− pe)

ipe
k+j−i

1: w ← zeroes(p+ 1)
2: m← max(0, k − p)
3: a← (1− pe)

mpe
k−m

4: for j = m→ k − 1 do
5: w[0]← w[0] + BINOM[k][j] · a
6: a← a · 1−pe

pe
7: end for
8: afirst ← (1− pe)

mpe
k−m

9: alast ← (1− pe)
k−1pe

10: for j = 1→ p− 1 do
11: if k − p+ j − 1 ≥ 0 then
12: a1 ← BINOM[k + j − 1][k − p+ j − 1] · afirst
13: afirst ← afirst · (1− pe)
14: else
15: a1 ← afirst
16: afirst ← afirst · pe
17: end if
18: a2 ← BINOM[k + j − 1][k − 1] · alast
19: alast ← alast · pe
20: w[j]← pe(w[j − 1]− a1) + (1− pe)(w[j − 1]− a2)
21: if k − p+ j − 1 < 0 then
22: w[j]← w[j] + afirst
23: end if
24: end for
25: return w

Own Publications

[1] P. Gil Pereira, A. Schmidt, and T. Herfet. “Cross-Layer Effects on Training Neu-
ral Algorithms for Video Streaming”. In: Proceedings of the 28th ACM SIGMM
Workshop on Network and Operating Systems Support for Digital Audio and
Video. 2018, pp. 43–48.

[2] P. Gil Pereira and T. Herfet. “Minimal Startup Delay in HAS with Staggered
Segments”. In: Proceedings of the 16th IEEE Annual Consumer Communications
& Networking Conference. 2019, pp. 1–6.

[3] A. Schmidt, S. Reif, P. Gil Pereira, T. Honig, T. Herfet, and W. Schröder-
Preikschat. “Cross-Layer Pacing for Predictably Low Latency”. In: Proceedings of
the 6th IEEE Intl. Workshop on Ultra-Low Latency in Wireless Networks. 2019,
pp. 1–6.

[4] M. Böhmer, A. Schmidt, P. Gil Pereira, and T. Herfet. “Latency-Aware and
-Predictable Communication with Open Protocol Stacks for Remote Drone Con-
trol”. In: Proceedings of the 2nd IEEE Int. Workshop on Wireless Sensors and
Drones in Internet of Things. 2020, pp. 304–311.

[5] S. Reif, B. Herzog, P. Gil Pereira, A. Schmidt, T. Büttner, T. Hönig, W. Schröder-
Preikschat, and T. Herfet. “X-Leep: Leveraging Cross-Layer Pacing for Energy-
Efficient Edge Systems”. In: Proceedings of the 1st ACM Workshop on Energy
Efficiency at the Edge. 2020, pp. 548–553.

[6] A. Schmidt, P. Gil Pereira, and T. Herfet. “Predictably Reliable Real-time Trans-
port Services for Wireless Cyber-Physical Systems”. In: Proceedings of the 21st
IFAC World Congress. 2020, pp. 2638–2641.

[7] P. Gil Pereira and T. Herfet. “Reducing FEC-Complexity in Cross-Layer Pre-
dictable Data Communication”. In: Proceedings of the 18th IEEE Consumer Com-
munications & Networking Conference (Poster Session). 2021, pp. 1–2.

[8] P. Gil Pereira and T. Herfet. “Polar Coding for Efficient Transport Layer Multi-
cast”. In: Proceedings of the 19th IEEE Consumer Communications & Networking
Conference. 2022, pp. 313–318.

[9] P. Gil Pereira, A. Schmidt, and T. Herfet. “DeepHEC: Hybrid Error Coding
Using Deep Learning”. In: Proceedings of the 18th IEEE European Dependable
Computing Conference. 2022.

141

142 Own Publications

[10] P. Gil Pereira, K. Vogelgesang, M. Miodek, A. Schmidt, and T. Herfet. “DeepSHARQ:
Hybrid Error Coding Using Deep Learning”. In: Journal of Reliable Intelligent
Environments (2023), pp. 1–19.

[11] K. Vogelgesang, P. Gil Pereira, and T. Herfet. “SHARQ: Scheduled HARQ for
Time- and Loss-Rate-Sensitive Networks”. In: Proceedings of the 20th IEEE Con-
sumer Communications & Networking Conference. 2023, pp. 640–643.

Bibliography

[12] W. S. Jevons. The Coal Question; An Inquiry Concerning the Progress of the Na-
tion, and the Probable Exhaustion of Our Coal Mines. Macmillan & Co. London,
1865.

[13] C. E. Shannon. “AMathematical Theory of Communication”. In: The Bell System
Technical Journal 27.3 (1948), pp. 379–423.

[14] N. Wiener. Cybernetics or Control and Communication in the Animal and the
Machine. MIT press, 1961.

[15] R. Gallager. “Low-Density Parity-Check Codes”. In: IRE Transactions on infor-
mation theory 8.1 (1962), pp. 21–28.

[16] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes.
Elsevier, 1977.

[17] J. Postel. User Datagram Protocol. RFC 768. IETF, 1980.

[18] J. H. Saltzer, D. P. Reed, and D. D. Clark. “End-to-End Arguments in System
Design”. In: ACM Transactions on Computer Systems 2.4 (1984), pp. 277–288.

[19] R. W. Farebrother. Linear Least Squares Computations. CRC Press, 1988.

[20] K. Hornik, M. Stinchcombe, and H. White. “Multilayer Feedforward Networks
are Universal Approximators”. In: Neural networks 2.5 (1989), pp. 359–366.

[21] E. Ostrom. Governing the Commons: The Evolution of Institutions for Collective
Action. Cambridge University Press, 1990.

[22] J. Blömer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuckerman.
An XOR-Based Erasure-Resilient Coding Scheme. Tech. rep. TR-95-048. ICSI,
Berkeley, California, 1992.

[23] C. Berrou, A. Glavieux, and P. Thitimajshima. “Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo-Codes”. In: Proceedings of the 3rd IEEE
Int. Conference on Communications. Vol. 2. 1993, pp. 1064–1070.

[24] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledg-
ment Options. RFC 2018. IETF, 1996.

[25] S. Bradner. Key Words for Use in RFCs to Indicate Requirement Levels. RFC
2119. IETF, 1997.

143

144 Bibliography

[26] L. Rizzo. “Effective Erasure Codes for Reliable Computer Communication Pro-
tocols”. In: ACM SIGCOMM Computer Communication Review 27.2 (1997),
pp. 24–36.

[27] W. R. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms. RFC 2001. IETF, 1997.

[28] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. “A Digital Fountain
Approach to Reliable Distribution of Bulk Data”. In: ACM SIGCOMM Computer
Communication Review 28.4 (1998), pp. 56–67.

[29] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. “Network Information Flow”.
In: IEEE Transactions on Information Theory 46.4 (2000), pp. 1204–1216.

[30] G. Bernat, A. Burns, and A. Liamosi. “Weakly Hard Real-Time Systems”. In:
IEEE Transactions on Computers 50.4 (2001), pp. 308–321.

[31] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168. IETF, 2001.

[32] M. Luby. “LT Codes”. In: Proceedings of the 43rd IEEE Symposium on Founda-
tions of Computer Science. 2002, pp. 271–271.

[33] A. Dunkels. “Full TCP/IP for 8-bit Architectures”. In: Proceedings of the 1st Int.
Conference on Mobile Systems, Applications and Services. 2003, pp. 85–98.

[34] M. Gupta and S. Singh. “Greening of the Internet”. In: Proceedings of the 17th
ACM SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications. 2003, pp. 19–26.

[35] Y. Sankarasubramaniam, Ö. B. Akan, and I. F. Akyildiz. “ESRT: Event-to-Sink
Reliable Transport in Wireless Sensor Networks”. In: Proceedings of the 4th ACM
Int. Symposium on Mobile Ad Hoc Networking & Computing. 2003, pp. 177–188.

[36] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550. IETF, 2003.

[37] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell. “CODA: Congestion Detection
and Avoidance in Sensor Networks”. In: Proceedings of the 1st Int. Conference
on Embedded Networked Sensor Systems. 2003, pp. 266–279.

[38] D. A. Patterson. “Latency Lags Bandwith”. In: Communications of the ACM
47.10 (2004), pp. 71–75.

[39] Y. G. Iyer, S. Gandham, and S. Venkatesan. “STCP: a Generic Transport Layer
Protocol for Wireless Sensor Networks”. In: Proceedings of the 14th IEEE Int.
Conference on Computer Communications and Networks. 2005, pp. 449–454.

[40] D. J. C. MacKay. “Fountain Codes”. In: IEE Proceedings-Communications 152.6
(2005), pp. 1062–1068.

Bibliography 145

[41] O. Tickoo, V. Subramanian, S. Kalyanaraman, and K. K. Ramakrishnan. “LT-
TCP: End-to-End Framework to Improve TCP Performance over Networks with
Lossy Channels”. In: Proceedings of the 13th Int. Workshop on Quality of Service.
Springer. 2005, pp. 81–93.

[42] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. “Model Compression”. In: Pro-
ceedings of the 12th ACM SIGKDD Int. Conference on Knowledge Discovery and
Data Mining. 2006, pp. 535–541.

[43] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong. “A
Random Linear Network Coding Approach to Multicast”. In: IEEE Transactions
on Information Theory 52.10 (2006), pp. 4413–4430.

[44] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol
(DCCP). RFC 4340. IETF, 2006.

[45] A. Shokrollahi. “Raptor Codes”. In: IEEE Transactions on Information Theory
52.6 (2006), pp. 2551–2567.

[46] M. Asadi and M. Huber. “Effective Control Knowledge Transfer through Learn-
ing Skill and Representation Hierarchies”. In: Proceedings of the 16th Int. Joint
Conference on Artificial Intelligence. Vol. 7. 2007, pp. 2054–2059.

[47] A. F. Atiya, S. G. Yoo, K. T. Chong, and H. Kim. “Packet Loss Rate Prediction
Using the Sparse Basis Prediction Model”. In: IEEE Transactions on Neural
Networks 18.3 (2007), pp. 950–954.

[48] J. Baillieul and P. J. Antsaklis. “Control and Communication Challenges in Net-
worked Real-Time Systems”. In: Proceedings of the IEEE 95.1 (2007), pp. 9–28.

[49] M. Fotino, A. Gozzi, F. De Rango, S. Marano, J. C. Cano, C. Calafate, and
P. Manzoni. “Evaluating Energy-Aware Behaviour of Proactive and Reactive
Routing Protocols for Mobile Ad Hoc Networks”. In: Proceedings of the 10th
Int. Symposium on Performance Evaluation of Computer and Telecommunica-
tion Systems. 2007, pp. 16–18.

[50] A. Li. RTP Payload Format for Generic Forward Error Correction. RFC 5109.
IETF, 2007.

[51] J. Paek and R. Govindan. “RCRT: Rate-Controlled Reliable Transport for Wire-
less Sensor Networks”. In: Proceedings of the 5th Int. Conference on Embedded
Networked Sensor Systems. 2007, pp. 305–319.

[52] H. Shojania and B. Li. “Parallelized Progressive Network Coding with Hardware
Acceleration”. In: Proceedings of the 15th IEEE Int. Workshop on Quality of
Service. 2007, pp. 47–55.

[53] S. Ha, I. Rhee, and L. Xu. “CUBIC: a New TCP-Friendly High-Speed TCP
Variant”. In: ACM SIGOPS Operating Systems Review 42.5 (2008), pp. 64–74.

[54] E. A. Lee. “Cyber Physical Systems: Design Challenges”. In: Proceedings of the
11th IEEE Int. Symposium on Object and Component-Oriented Real-time Dis-
tributed Computing. 2008, pp. 363–369.

146 Bibliography

[55] S. Murugesan. “Harnessing Green IT: Principles and Practices”. In: IT Profes-
sional 10.1 (2008), pp. 24–33.

[56] P. Regnier, G. Lima, and L. Barreto. “Evaluation of Interrupt Handling Timeli-
ness in Real-Time Linux Operating Systems”. In: ACM SIGOPS Operating Sys-
tems Review 42.6 (2008), pp. 52–63.

[57] G. Tan. “Optimum Hybrid Error Correction Scheme under Strict Delay Con-
straints”. PhD thesis. Saarland Informatics Campus, 2008.

[58] S. Ahmad, R. Hamzaoui, and M. Al-Akaidi. “Adaptive Unicast Video Stream-
ing with Rateless Codes and Feedback”. In: IEEE Transactions on Circuits and
Systems for Video Technology 20.2 (2009), pp. 275–285.

[59] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681.
IETF, 2009.

[60] E. Arikan. “Channel Polarization: A Method for Constructing Capacity-Achieving
Codes for Symmetric Binary-Input Memoryless Channels”. In: IEEE Transac-
tions on Information Theory 55.7 (2009), pp. 3051–3073.

[61] H. Shojania and B. Li. “Random Network Coding on the iPhone: Fact or Fiction?”
In: Proceedings of the 18th Int. Workshop on Network and Operating Systems
Support for Digital Audio and Video. 2009, pp. 37–42.

[62] H. Shojania, B. Li, and X. Wang. “Nuclei: GPU-Accelerated Many-Core Net-
work Coding”. In: Proceedings of the 28th IEEE Int. Conference on Computer
Communications. 2009, pp. 459–467.

[63] J. K. Sundararajan, D. Shah, M. Médard, M. Mitzenmacher, and J. Barros. “Net-
work Coding Meets TCP”. In: Proceedings of the 28th IEEE Int. Conference on
Computer Communications. 2009, pp. 280–288.

[64] M. Alizadeh, A. Greenberg, D. Maltz A, J. Padhye, P. Patel, B. Prabhakar, S.
Sengupta, and M. Sridharan. “Data Center TCP (DCTCP)”. In: Proceedings of
the 24th ACM SIGCOMM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication. 2010, pp. 63–74.

[65] J. Baliga, R. W. A. Ayre, K. Hinton, and R. S. Tucker. “Green Cloud Computing:
Balancing Energy in Processing, Storage, and Transport”. In: Proceedings of the
IEEE 99.1 (2010), pp. 149–167.

[66] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. “Netalyzr: Illuminating the
Edge Network”. In: Proceedings of the 10th ACM Internet Measurement Confer-
ence. 2010, pp. 246–259.

[67] D. Mills, J. Martin, J. Burbank, and W. Kasch. Network Time Protocol Version
4: Protocol and Algorithms Specification. RFC 5905. IETF, 2010.

[68] B. H. Oh, J. Han, and J. Lee. “Timer and Sequence Based Packet Loss Detec-
tion Scheme for Efficient Selective Retransmission in DCCP”. In: Proceedings of
the 5th Int. Conference on Future Generation Communication and Networking.
Springer. 2010, pp. 112–120.

Bibliography 147

[69] J. D. Opdyke and John Douglas. “A Unified Approach to Algorithms Generating
Unrestricted and Restricted Integer Compositions and Integer Partitions”. In:
Journal of Mathematical Modelling and Algorithms 9.1 (2010), pp. 53–97.

[70] Y. Polyanskiy, H. V. Poor, and S. Verdú. “Channel Coding Rate in the Finite
Blocklength Regime”. In: IEEE Transactions on Information Theory 56.5 (2010),
pp. 2307–2359.

[71] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. “Cyber-Physical Systems: The
Next Computing Revolution”. In: Proceedings of the 47th Design Automation
Conference. 2010, pp. 731–736.

[72] H. Shojania and B. Li. “Tenor: Making Coding Practical from Servers to Smart-
phones”. In: Proceedings of the 18th ACM Int. Conference on Multimedia. 2010,
pp. 45–54.

[73] L. Torrey and J. Shavlik. “Transfer Learning”. In: Handbook of Research on Ma-
chine Learning Applications and Trends: Algorithms, Methods, and Techniques.
IGI Global, 2010, pp. 242–264.

[74] J. Gettys. “Bufferbloat: Dark Buffers in the Internet”. In: IEEE Internet Com-
puting 15.3 (2011), pp. 96–96.

[75] J. Gettys and K. Nichols. “Bufferbloat: Dark Buffers in the Internet: Networks
without Effective AQM May Again Be Vulnerable to Congestion Collapse.” In:
ACM Queue Magazine 9.11 (2011), pp. 40–54.

[76] S. S. Haykin and M. Moher. Modern Wireless Communications. Pearson Educa-
tion India, 2011.

[77] ITU-T Y.1541: Network Performance Objectives for IP-Based Services. Tech. rep.
ITU, 2011.

[78] S. Kaul, M. Gruteser, V. Rai, and J. Kenney. “Minimizing Age of Information in
Vehicular Networks”. In: Proceedings of the 8th IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks. 2011,
pp. 350–358.

[79] V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s Retransmission
Timer. RFC 6298. IETF, 2011.

[80] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K. Ousterhout.
“It’s Time for Low Latency”. In: Proceedings of the 13th Workshop on Hot Topics
in Operating Systems. 2011, pp. 1–11.

[81] T. Stockhammer. “Dynamic Adaptive Streaming over HTTP– Standards and
Design Principles”. In: Proceedings of the 2nd ACM Conference on Multimedia
Systems. 2011, pp. 133–144.

[82] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. “Better Never than
Late: Meeting Deadlines in Datacenter Networks”. In: ACM SIGCOMM Com-
puter Communication Review 41.4 (2011), pp. 50–61.

148 Bibliography

[83] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda.
“Less is More: Trading a Little Bandwidth for Ultra-Low Latency in the Data
Center”. In: Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation. 2012, pp. 253–266.

[84] M. Allman. “Comments on Bufferbloat”. In: ACM SIGCOMM Computer Com-
munication Review 43.1 (2012), pp. 30–37.

[85] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. “Fog Computing and Its Role
in the Internet of Things”. In: Proceedings of the 1st MCC Workshop on Mobile
Cloud Computing. 2012, pp. 13–16.

[86] M. Gorius. “Adaptive Delay-Constrained Internet Media Transport”. PhD thesis.
Saarland Informatics Campus, 2012.

[87] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno Modification
to TCP’s Fast Recovery Algorithm. RFC 6582. IETF, 2012.

[88] T. Hönig, C. Eibel, R. Kapitza, and W. Schröder-Preikschat. “SEEP: Exploiting
Symbolic Execution for Energy-Aware Programming”. In: ACM SIGOPS Oper-
ating Systems Review 45.3 (2012), pp. 58–62.

[89] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. “Confused,
Timid, and Unstable: Picking a Video Streaming Rate is Hard”. In: Proceedings
of the 12th ACM Internet Measurement Conference. 2012, pp. 225–238.

[90] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Proceedings of the 26th Conference on
Neural Information Processing Systems 25 (2012).

[91] B. Vamanan, J. Hasan, and T. N. Vijaykumar. “Deadline-Aware Datacenter TCP
(D2TCP)”. In: Proceedings of the 26th ACM SIGCOMM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication
42.4 (2012), pp. 115–126.

[92] J. Cloud, F. du Pin Calmon, W. Zeng, G. Pau, L. M. Zeger, and M. Medard.
“Multi-Path TCP with Network Coding for Mobile Devices in Heterogeneous
Networks”. In: Proceedings of the 78th IEEE Vehicular Technology Conference.
2013, pp. 1–5.

[93] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng, A. Jain,
S. Hao, E. Katz-Bassett, and R. Govindan. “Reducing Web Latency: The Virtue
of Gentle Aggression”. In: Proceedings of the 27th ACM SIGCOMM Conference
on Applications, Technologies, Architectures, and Protocols for Computer Com-
munication. 2013, pp. 159–170.

[94] S. Lederer, C. Mueller, C. Timmerer, C. Concolato, J. Le Feuvre, and K. Fliegel.
“Distributed DASH Dataset”. In: Proceedings of the 4th ACM Multimedia Sys-
tems Conference. 2013, pp. 131–135.

Bibliography 149

[95] J. Qureshi, C. Heng Foh, and J. Cai. “Primer and Recent Developments on Foun-
tain Codes”. In: Recent Advances in Communications and Networking Technology
2.1 (2013), pp. 2–11.

[96] J. Ba and R. Caruana. “Do Deep Nets Really Need to Be Deep?” In: Proceedings
of the 28th Conference on Neural Information Processing Systems 27 (2014),
pp. 1–9.

[97] T. Hönig, H. Janker, C. Eibel, O. Mihelic, and R. Kapitza. “Proactive Energy-
Aware Programming with PEEK”. In: Proceedings of the 2nd Conference on
Timely Results in Operating Systems. 2014, pp. 1–14.

[98] M. González De Molina and V. M. Toledo. The Social Metabolism: A Socio-
Ecological Theory of Historical Change. Vol. 3. Springer, 2014.

[99] A. Saifullah, C. Wu, P. B. Tiwari, Y. Xu, Y. Fu, C. Lu, and Yixin Y. Chen. “Near
Optimal Rate Selection for Wireless Control Systems”. In: ACM Transactions on
Embedded Computing Systems 13.4s (2014), pp. 1–25.

[100] A. Singla, B. Chandrasekaran, P. B. Godfrey, and Bruce B. Maggs. “The Internet
at the Speed of Light”. In: Proceedings of the 13th ACM Workshop on Hot Topics
in Networks. 2014, pp. 1–7.

[101] The Tactile Internet - ITU-T Technology Watch Report. Tech. rep. ITU, 2014.

[102] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and Michael M. Schapira. “PCC:
Re-Architecting Congestion Control for Consistent High Performance”. In: Pro-
ceedings of the 12th USENIX Symposium on Networked Systems Design and Im-
plementation. 2015, pp. 395–408.

[103] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In:
Proceedings of the 3rd Int. Conference on Learning Representations. 2015, pp. 1–
15.

[104] S. Kounev, X. Zhu, J. O. Kephart, and M. Kwiatkowska. Model-Driven Algo-
rithms and Architectures for Self-Aware Computing Systems. Dagstuhl Seminar
15041. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2015.

[105] S. Li, L. D. Xu, and S. Zhao. “The Internet of Things: A Survey”. In: Information
Systems Frontiers 17.2 (2015), pp. 243–259.

[106] K. Liu and J. Y. B. Lee. “On Improving TCP Performance over Mobile Data
Networks”. In: IEEE Transactions on Mobile Computing 15.10 (2015), pp. 2522–
2536.

[107] Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao. “Deriving and Validating
User Experience Model for DASH Video Streaming”. In: IEEE Transactions on
Broadcasting 61.4 (2015), pp. 651–665.

[108] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat,
Y. Wang, D. Wetherall, and D. Zats. “TIMELY: RTT-Based Congestion Control
for the Datacenter”. In: ACM SIGCOMM Computer Communication Review 45.4
(2015), pp. 537–550.

150 Bibliography

[109] M. Rajiullah, P. Hurtig, A. Brunstrom, A. Petlund, and M. Welzl. “An Evaluation
of Tail Loss Recovery Mechanisms for TCP”. In: ACM SIGCOMM Computer
Communication Review 45.1 (2015), pp. 5–11.

[110] A. Torres, C. T. Calafate, J. C. Cano, P. Manzoni, and Y. Ji. “Evaluation of
Flooding Schemes for Real-Time Video Transmission in VANETs”. In: Ad Hoc
Networks Journal 24 (2015), pp. 3–20.

[111] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman, C. Kozyrakis, and E.
Bugnion. “The IX Operating System: Combining Low Latency, High Throughput,
and Efficiency in a Protected Dataplane”. In: ACM Transactions on Computer
Systems 34.4 (2016), pp. 1–39.

[112] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and Van V. Jacobson.
“BBR: Congestion-Based Congestion Control: Measuring Bottleneck Bandwidth
and Round-Trip Propagation Time”. In: ACM Queue Magazine 14.5 (2016),
pp. 20–53.

[113] M. Claeys, N. Bouten, D. De Vleeschauwer, K. De Schepper, W. Van Leekwijck,
S. Latré, and F. De Turck. “Deadline-Aware TCP Congestion Control for Video
Streaming Services”. In: Proceedings of the 12th IEEE Int. Conference on Network
and Service Management. 2016, pp. 100–108.

[114] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT press, 2016.

[115] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. “Binarized
Neural Networks”. In: Proceedings of the 30th Conference on Neural Information
Processing Systems 29 (2016), pp. 1–9.

[116] E. A. Lee and S. A. Seshia. Introduction to Embedded Systems: A Cyber-Physical
Systems Approach. MIT press, 2016.

[117] D. Li, X. Chen, M. Becchi, and Z. Zong. “Evaluating the Energy Efficiency of
Deep Convolutional Neural Networks on CPUs and GPUs”. In: Proceedings of the
3rd IEEE Int. Conferences on Big Data and Cloud Computing, Social Computing
and Networking, Sustainable Computing and Communications. 2016, pp. 477–484.

[118] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. “Learning Structured Sparsity
in Deep Neural Networks”. In: Proceedings of the 30th Conference on Neural
Information Processing Systems 29 (2016), pp. 1–9.

[119] T. Azzino, M. Drago, M. Polese, A. Zanella, and M. Zorzi. “X-TCP: A Cross
Layer Approach for TCP Uplink Flows in mmWave Networks”. In: Proceedings
of the 16th IEEE Annual Mediterranean Ad Hoc Networking Workshop. 2017,
pp. 1–6.

[120] A. Bhartia, B. Chen, F. Wang, D. Pallas, R. Musaloiu-E, T. T.-T. Lai, and H. Ma.
“Measurement-Based, Practical Techniques to Improve 802.11ac Performance”.
In: Proceedings of the 17th Internet Measurement Conference. 2017, pp. 205–219.

Bibliography 151

[121] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo. “Congestion Control for
Web Real-Time Communication”. In: IEEE/ACM Transactions on Networking
25.5 (2017), pp. 2629–2642.

[122] R. M. Jungers, A. Kundu, and W. P. M. H. Heemels. “Observability and Con-
trollability Analysis of Linear Systems Subject to Data Losses”. In: IEEE Trans-
actions on Automatic Control 63.10 (2017), pp. 3361–3376.

[123] M. Karzand, D. J. Leith, J. Cloud, and M. Medard. “Design of FEC for Low Delay
in 5G”. In: IEEE Journal on Selected Areas in Communications 35.8 (2017),
pp. 1783–1793.

[124] S. Linsenmayer and F. Allgower. “Stabilization of Networked Control Systems
with Weakly Hard Real-Time Dropout Description”. In: Proceedings of the 56th
IEEE Conference on Decision and Control. 2017, pp. 4765–4770.

[125] S. Mangiante, G. Klas, A. Navon, Z. GuanHua, J. Ran, and M. D. Silva. “VR
is on the Edge: How to Deliver 360 Videos in Mobile Networks”. In: Proceedings
of the 1st Workshop on Virtual Reality and Augmented Reality Network. 2017,
pp. 30–35.

[126] H. Mao, R. Netravali, and M. Alizadeh. “Neural Adaptive Video Streaming
with Pensieve”. In: Proceedings of the 31st ACM SIGCOMM Conference. 2017,
pp. 197–210.

[127] M. Polese, M. Mezzavilla, M. Zhang, J. Zhu, S. Rangan, S. Panwar, and M. Zorzi.
“milliProxy: A TCP Proxy Architecture for 5G mmWave Cellular Systems”. In:
Proceedings of the 51st IEEE Asilomar Conference on Signals, Systems, and Com-
puters. 2017, pp. 951–957.

[128] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian. “Crazyswarm: A Large
Nano-Quadcopter Swarm”. In: Proceedings of the 33rd IEEE Int. Conference on
Robotics and Automation. 2017, pp. 3299–3304.

[129] V. Roca, B. Teibi, C. Burdinat, T. Tran, and C. Thienot. “Less Latency and
Better Protection with AL-FEC Sliding Window Codes: A Robust Multimedia
CBR Broadcast Case Study”. In: Proceedings of the 13th IEEE Int. Conference on
Wireless and Mobile Computing, Networking and Communications. 2017, pp. 1–
8.

[130] A. Schmidt and T. Herfet. “Transparent Transmission Segmentation in Software-
Defined Networks”. In: Proceedings of the 3rd IEEE Conference on Network Soft-
warization. 2017, pp. 1–5.

[131] R. K. Sheshadri and D. Koutsonikolas. “On Packet Loss Rates in Modern 802.11
Networks”. In: Proceedings of the 36th IEEE IEEE Int. Conference on Computer
Communications. 2017, pp. 1–9.

[132] S. Wunderlich, J. A. Cabrera, F. H. P. Fitzek, and M. Reisslein. “Network Coding
in Heterogeneous Multicore IoT Nodes with DAG Scheduling of Parallel Matrix
Block Operations”. In: IEEE Internet of Things Journal 4.4 (2017), pp. 917–933.

152 Bibliography

[133] M. Zhu and S. Gupta. “To Prune, or Not to Prune: Exploring the Efficacy of
Pruning for Model Compression”. In: arXiv (2017), pp. 1–11.

[134] V. Arun and H. Balakrishnan. “Copa: Practical Delay-Based Congestion Control
for the Internet”. In: Proceedings of the 15th USENIX Symposium on Networked
Systems Design and Implementation. 2018, pp. 329–342.

[135] S. Bateni, H. Zhou, Y. Zhu, and C. Liu. “Predjoule: A Timing-Predictable Energy
Optimization Framework for Deep Neural Networks”. In: Proceedings of the 39th
IEEE Real-Time Systems Symposium. 2018, pp. 107–118.

[136] H. S. Chwa, K. G. Shin, and J. Lee. “Closing the gap between stability and
schedulability: A new task model for cyber-physical systems”. In: Proceedings of
the 24th IEEE Real-Time and Embedded Technology and Applications Symposium.
2018, pp. 327–337.

[137] D. D. Clark. Designing an Internet. MIT Press, 2018.

[138] S. Ferlin, S. Kucera, H. Claussen, and Ö. Alay. “MPTCP Meets FEC: Supporting
Latency-Sensitive Applications over Heterogeneous Networks”. In: IEEE/ACM
Transactions on Networking 26.5 (2018), pp. 2005–2018.

[139] N. Finn. “Introduction to Time-Sensitive Networking”. In: IEEE Communica-
tions Standards Magazine 2.2 (2018), pp. 22–28.

[140] T. Hönig, C. Eibel, A. Wagenhäuser, M. Wagner, and W. Schröder-Preikschat.
“How to Make Profit: Exploiting Fluctuating Electricity Prices with Albatross,
a Runtime System for Heterogeneous HPC Clusters”. In: Proceedings of the 8th
ACM Int. Workshop on Runtime and Operating Systems for Supercomputers.
2018, pp. 1–9.

[141] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
S. Kalenichenko. “Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-only Inference”. In: Proceedings of the 27th IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 2704–2713.

[142] A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal, S. Narayana, R. Mittal, M. Al-
izadeh, and H. Balakrishnan. “Restructuring Endpoint Congestion Control”. In:
Proceedings of the 32nd ACM SIGCOMM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication. 2018, pp. 30–
43.

[143] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein, and
H. ElBakoury. “Ultra-Low Latency (ULL) Networks: The IEEE TSN and IETF
DetNet Standards and Related 5G ULL Research”. In: IEEE Communications
Surveys & Tutorials 21.1 (2018), pp. 88–145.

[144] M. Palmer, T. Krüger, B. Chandrasekaran, and A. Feldmann. “The QUIC Fix
For Optimal Video Streaming”. In: Proceedings of the 1st ACM Workshop on the
Evolution, Performance, and Interoperability of QUIC. 2018, pp. 43–49.

Bibliography 153

[145] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan. “Beyond Throughput:
A 4G LTE Dataset with Channel and Context Metrics”. In: Proceedings of the
9th ACM Multimedia Systems Conference. 2018, pp. 460–465.

[146] S. Xiao, D. He, and Z. Gong. “Deep-Q: Traffic-Driven QoS Inference Using Deep
Generative Network”. In: Proceedings of the 1st ACM Workshop on Network
Meets AI & ML. 2018, pp. 67–73.

[147] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and K.
Winstein. “Pantheon: The Training Ground for Internet Congestion-Control Re-
search”. In: Proceedings of the 29th USENIX Annual Technical Conference. 2018,
pp. 731–743.

[148] Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson, A. Legay,
O. Pereira, and O. Bonaventure. “Pluginizing QUIC”. In: Proceedings of the 33rd
ACM SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication. 2019, pp. 59–74.

[149] N. Finn, P. Thubert, B. Varga, and J. Farkas. Deterministic Networking Archi-
tecture. RFC 8655. IETF, 2019.

[150] S. L. Fong, A. Khisti, B. Li, W.-T. Tan, X. Zhu, and J. Apostolopoulos. “Optimal
Streaming Codes for Channels with Burst and Arbitrary Erasures”. In: IEEE
Transactions on Information Theory 65.7 (2019), pp. 4274–4292.

[151] P. Garrido, I. Sanchez, S. Ferlin, R. Aguero, and O. Alay. “rQUIC: Integrating
FEC with QUIC for Robust Wireless Communications”. In: Proceedings of the
34th IEEE Global Communications Conference. 2019, pp. 1–7.

[152] D. Ginthör, J. von Hoyningen-Huene, R. Guillaume, and H. Schotten. “Analysis of
Multi-User Scheduling in a TSN-Enabled 5G System for Industrial Applications”.
In: Proceedings of the 2nd IEEE Int. Conference on Industrial Internet. 2019,
pp. 190–199.

[153] T. Hönig, B. Herzog, and W. Schröder-Preikschat. “Energy-Demand Estimation
of Embedded Devices Using Deep Artificial Neural Networks”. In: Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing. 2019, pp. 617–624.

[154] J. Hu, J. Huang, W. Lv, Y. Zhou, J. Wang, and T. He. “CAPS: Coding-Based
Adaptive Packet Spraying to Reduce Flow Completion Time in Data Center”. In:
IEEE/ACM Transactions on Networking 27.6 (2019), pp. 2338–2353.

[155] T. Huang, C. Zhou, R.-X. Zhang, C. Wu, X. Yao, and L. Sun. “Comyco: Quality-
Aware Adaptive Video Streaming via Imitation Learning”. In: Proceedings of the
27th ACM Int. Conference on Multimedia. 2019, pp. 429–437.

[156] IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems. IEEE 1588-2019. IEEE, 2019.

[157] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar. “A Deep Reinforce-
ment Learning Perspective on Internet Congestion Control”. In: Proceedings of
the 36th Int. Conference on Machine Learning. 2019, pp. 3050–3059.

154 Bibliography

[158] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao, M. Zhang, F.
Kelly, M. Alizadeh, and M. Yu. “HPCC: High Precision Congestion Control”. In:
Proceedings of the 33rd ACM SIGCOMM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication. 2019, pp. 44–
58.

[159] K. N. McGuire, C. De Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E. de Croon.
“Minimal Navigation Solution for a Swarm of Tiny Flying Robots to Explore an
Unknown Environment”. In: Science Robotics Journal 4.35 (2019), pp. 1–14.

[160] F. Michel, Q. De Coninck, and O. Bonaventure. “QUIC-FEC: Bringing the Ben-
efits of Forward Erasure Correction to QUIC”. In: Proceedings of the 7th IEEE
IFIP Networking Conference. 2019, pp. 1–9.

[161] A. Ousterhout, A. Belay, and I. Zhang. “Just in Time Delivery: Leveraging Op-
erating Systems Knowledge for Better Datacenter Congestion Control”. In: Pro-
ceedings of the 11th USENIX Workshop on Hot Topics in Cloud Computing. 2019,
pp. 1–9.

[162] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and Hari H. Balakrishnan. “Shenango:
Achieving High CPU Efficiency for Latency-Sensitive Datacenter Workloads”. In:
Proceedings of the 16th USENIX Symposium on Networked Systems Design and
Implementation. 2019, pp. 361–378.

[163] A. Schmidt. “Cross-Layer Latency-Aware and -Predictable Data Communica-
tion”. PhD thesis. Saarland Informatics Campus, 2019.

[164] L. N. Smith and N. Topin. “Super-Convergence: Very Fast Training of Neural
Networks Using Large Learning Rates”. In: Proceedings of the 31st SPIE Defense
& Commercial Sensing Conference. 2019, pp. 369–386.

[165] E. Strubell, A. Ganesh, and A. McCallum. “Energy and Policy Considerations
for Deep Learning in NLP”. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. 2019, pp. 3645–3650.

[166] J. Xia, G. Zeng, J. Zhang, W. Wang, W. Bai, J. Jiang, and K. Chen. “Rethinking
Transport Layer Design for Distributed Machine Learning”. In: Proceedings of
the 3rd ACM Asia-Pacific Workshop on Networking. 2019, pp. 22–28.

[167] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu. “A First Look at Deep
Learning Apps on Smartphones”. In: Proceedings of the 1st ACM Web Confer-
ence. 2019, pp. 2125–2136.

[168] A. Zappone, M. Di Renzo, M. Debbah, T. Lam Tu, and X. Qian. “Model-Aided
Wireless Artificial Intelligence: Embedding Expert Knowledge in Deep Neural
Networks for Wireless System Optimization”. In: IEEE Vehicular Technology
Magazine 14.3 (2019), pp. 60–69.

[169] D. Zarchy, R. Mittal, M. Schapira, and S. Shenker. “Axiomatizing Congestion
Control”. In: Proceedings of the ACM on Measurement and Analysis of Computing
Systems 3.2 (2019), pp. 1–33.

Bibliography 155

[170] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei. “Language Models Are Few-Shot
Learners”. In: Proceedings of the 34th Conference on Neural Information Process-
ing Systems 33 (2020), pp. 1877–1901.

[171] S. Cheng, H. Hu, X. Zhang, and Z. Guo. “DeepRS: Deep-Learning Based Network-
Adaptive FEC for Real-Time Video Communications”. In: Proceedings of the 32nd
IEEE Int. Symposium on Circuits and Systems. 2020, pp. 1–5.

[172] A. Cohen, D. Malak, V. B. Bracha, and M. Médard. “Adaptive Causal Network
Coding with Feedback”. In: IEEE Transactions on Communications 68.7 (2020),
pp. 4325–4341.

[173] E. Dahlman, S. Parkvall, and Johan J. Skold. 5G NR: The Next Generation
Wireless Access Technology. Academic Press, 2020.

[174] S. Emara, B. Li, and Y. Chen. “Eagle: Refining Congestion Control by Learning
from the Experts”. In: Proceedings of the 39th IEEE Int. Conference on Computer
Communications. 2020, pp. 676–685.

[175] P. Goyal, A. Agarwal, R. Netravali, M. Alizadeh, and H. Balakrishnan. “ABC: A
Simple Explicit Congestion Controller for Wireless Networks”. In: Proceedings of
the 17th USENIX Symposium on Networked Systems Design and Implementation.
2020, pp. 353–372.

[176] S. Kumar, M. P. Andersen, H.-S. Kim, and D. E. Culler. “Performant TCP for
Low-Power Wireless Networks”. In: Proceedings of the 17th USENIX Symposium
on Networked Systems Design and Implementation. 2020, pp. 911–932.

[177] M. Maggio, A. Hamann, E. Mayer-John, and D. Ziegenbein. “Control-System
Stability under Consecutive Deadline Misses Constraints”. In: Proceedings of the
32nd Euromicro Conference on Real-Time Systems. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik. 2020, 21:1–21:24.

[178] A. Narayanan, E. Ramadan, J. Carpenter, Q. Liu, Y. Liu, F. Qian, and Z.-L.
Zhang. “A First Look at Commercial 5G Performance on Smartphones”. In: Pro-
ceedings of the 2nd ACM Web Conference. 2020, pp. 894–905.

[179] S. Reif, B. Herzog, J. Hemp, T. Hönig, and W. Schröder-Preikschat. “Precious:
Resource-Demand Estimation for Embedded Neural Network Accelerators”. In:
Proceedings of the 1st Int. Workshop on Benchmarking Machine Learning Work-
loads on Emerging Hardware. 2020, pp. 1–9.

[180] S. Reif and Wolfgang W: Schröder-Preikschat. “Precisely Timed Task Execution”.
In: Proceedings of the 23rd IEEE Int. Symposium on Real-Time Distributed Com-
puting. 2020, pp. 10–19.

156 Bibliography

[181] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni. “Green AI”. In: Communi-
cations of the ACM 63.12 (2020), pp. 54–63.

[182] M.P. Sharabayko, M.A. Sharabayko, J. Dube, JS. Kim, and JW. Kim. The SRT
Protocol. Internet Draft. IETF, 2020.

[183] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. “BOLA: Near-Optimal Bitrate
Adaptation for Online Videos”. In: IEEE/ACM Transactions on Networking 28.4
(2020), pp. 1698–1711.

[184] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu, and H. Ma.
“Understanding Operational 5G: A First Measurement Study on Its Coverage,
Performance and Energy Consumption”. In: Proceedings of the 34th ACM SIG-
COMM Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication. 2020, pp. 479–494.

[185] T. Zeng, O. Semiari, M. Mozaffari, M. Chen, W. Saad, and M. Bennis. “Fed-
erated Learning in the Sky: Joint Power Allocation and Scheduling with UAV
Swarms”. In: Proceedings of the 30th IEEE Int. Conference on Communications.
2020, pp. 1–6.

[186] A. Agarwal, J. Sun, S. Noghabi, S. Iyengar, A. Badam, R. Chandra, S. Seshan,
and S. Kalyanaraman. “Redesigning Data Centers for Renewable Energy”. In:
Proceedings of the 20th ACM Workshop on Hot Topics in Networks. 2021, pp. 45–
52.

[187] Y. Cheng, N. Cardwell, N. Dukkipati, and P. Jha. The RACK-TLP Loss Detection
Algorithm for TCP. RFC 8985. IETF, 2021.

[188] S. Emara, S. L. Fong, B. Li, A. Khisti, W.-T. Tan, X. Zhu, and J. Apostolopoulos.
“Low-Latency Network-Adaptive Error Control for Interactive Streaming”. In:
IEEE Transactions on Multimedia 24 (2021), pp. 1691–1706.

[189] M.-A. Gütschow. Low-Level Design of Energy-Efficient HARQ at the Transport
Layer. Bachelor thesis. 2021.

[190] B. Herzog, F. Hügel, S. Reif, T. Hönig, and W. Schröder-Preikschat. “Automated
Selection of Energy-Efficient Operating System Configurations”. In: Proceedings
of the 12th ACM Int. Conference on Future Energy Systems. 2021, pp. 309–315.

[191] H. Hu, S. Cheng, X. Zhang, and Z. Guo. “LightFEC: Network Adaptive FEC
with a Lightweight Deep-Learning Approach”. In: Proceedings of the 29th ACM
Int. Conference on Multimedia. 2021, pp. 3592–3600.

[192] L. Zhang Lyna, S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang, and Y. Liu. “nn-
Meter: Towards Accurate Latency Prediction of Deep-Learning Model Inference
on Diverse Edge Devices”. In: Proceedings of the 19th Int. Conference on Mobile
Systems, Applications, and Services. 2021, pp. 81–93.

Bibliography 157

[193] M. Palmer, M. Appel, K. Spiteri, B. Chandrasekaran, A. Feldmann, and R. K.
Sitaraman. “VOXEL: Cross-Layer Optimization for Video Streaming with Im-
perfect Transmission”. In: Proceedings of the 17th Int. Conference on Emerging
Networking Experiments and Technologies. 2021, pp. 359–374.

[194] J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Larivière, A. Beygelzimer, F. d’Alché
Buc, E. Fox, and H. Larochelle. “Improving Reproducibility in Machine Learn-
ing Research (A Report from the NeueIPS 2019 Reproducibility Program)”. In:
Journal of Machine Learning Research 22.1 (2021), pp. 7459–7478.

[195] A. Radovanovic, R. Koningstein, I. Schneider, B. Chen, A. Duarte, B. Roy, D.
Xiao, M. Haridasan, P. Hung, Nick N. Care, S. Talukdar, E. Mullen, K. Smith, M.
Cottman, and W. Cirne. “Carbon-Aware Computing for Datacenters”. In: IEEE
Transactions on Power Systems 38.2 (2021), pp. 1270–1280.

[196] N. Vreman, A. Cervin, and M. Maggio. “Stability and Performance Analysis of
Control Systems Subject to Bursts of Deadline Misses”. In: Proceedings of the 33rd
Euromicro Conference on Real-Time Systems. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik. 2021, 15:1–15:23.

[197] L. Zhang, Y. Cui, J. Pan, and Y. Jiang. “Deadline-Aware Transmission Control for
Real-Time Video Streaming”. In: Proceedings of the 29th IEEE Int. Conference
on Network Protocols. 2021, pp. 1–6.

[198] M. Zverev, P. Garrido, F. Fernández, J. Bilbao, Ö. Alay, S. Ferlin, A. Brunstrom,
and R. Agüero. “Robust QUIC: Integrating Practical Coding in a Low Latency
Transport Protocol”. In: IEEE Access 9 (2021), pp. 138225–138244.

[199] T. Anderson, A. Belay, M. Chowdhury, A. Cidon, and I. Zhang. “Treehouse: A
Case For Carbon-Aware Datacenter Software”. In: ACM SIGENERGY Energy
Informatics Review 3.3 (2022), pp. 64–70.

[200] M. Bishop. HTTP/3. RFC 9114. IETF, 2022.

[201] N. Cardwell, Y. Cheng, S. Hassas Yeganeh, I. Swett, and V. Jacobson. BBR
Congestion Control. Internet Draft. IETF, 2022.

[202] K. Chen, H. Wang, S. Fang, X. Li, M. Ye, and H. J. Chao. “RL-AFEC: Adap-
tive Forward Error Correction for Real-Time Video Communication Based on
Reinforcement Learning”. In: Proceedings of the 13th ACM Multimedia Systems
Conference. 2022, pp. 96–108.

[203] Y. Cheng, N. Cardwell, S. H. Yeganeh, and V. Jacobson. Delivery Rate Estima-
tion. Internet Draft. IETF, 2022.

[204] W. Dong, J. Lv, G. Chen, Y. Wang, H. Li, Y. Gao, and D. Bharadia. “TinyNet:
A Lightweight, Modular, and Unified Network Architecture for the Internet of
Things”. In: Proceedings of the 20th Int. Conference on Mobile Systems, Appli-
cations and Services. 2022, pp. 248–260.

[205] W. Eddy. Transmission Control Protocol (TCP). RFC 9293. IETF, 2022.

158 Bibliography

[206] S. Emara, F. Wang, I. Kaplan, and B. Li. “Ivory: Learning Network Adaptive
Streaming Codes”. In: Proceedings of the 30th IEEE/ACM Int. Symposium on
Quality of Service. 2022, pp. 1–10.

[207] A. Géron. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow.
O’Reilly Media, Inc., 2022.

[208] B. Herzog, S. Reif, J. Hemp, T. Hönig, and W. Schröder-Preikschat. “Resource-
Demand Estimation for Edge Tensor Processing Units”. In: ACM Transactions
on Embedded Computing Systems 21.5 (2022), pp. 1–24.

[209] B. Josephrexon Jeniefer and M. Maggio. “Experimenting with Networked Control
Software Subject to Faults”. In: Proceedings of the 61st IEEE Conference on
Decision and Control. 2022, pp. 1547–1552.

[210] Y. Ma, H. Tian, X. Liao, J. Zhang, W. Wang, K. Chen, and X. Jin. “Multi-
Objective Congestion Control”. In: Proceedings of the 17th European Conference
on Computer Systems. 2022, pp. 218–235.

[211] F. Michel, A. Cohen, D. Malak, Q. De Coninck, M. Médard, and O. Bonaventure.
“FlEC: Enhancing QUIC with Application-Tailored Reliability Mechanisms”. In:
IEEE/ACM Transactions on Networking 2 (2022), pp. 606–619.

[212] T. Pauly, E. Kinnear, and D. Schinazi. An Unreliable Datagram Extension to
QUIC. RFC 9221. IETF, 2022.

[213] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh, G. Antichi, P. Costa, H.
Haddadi, and R. Bifulco. “Re-Architecting Traffic Analysis with Neural Network
Interface Cards”. In: Proceedings of the 19th USENIX Symposium on Networked
Systems Design and Implementation. 2022, pp. 513–533.

[214] H. Tian, X. Liao, C. Zeng, J. Zhang, and K. Chen. “Spine: An Efficient DRL-
Based Congestion Control with Ultra-Low Overhead”. In: Proceedings of the 18th
Int. Conference on Emerging Networking Experiments and Technologies. 2022,
pp. 261–275.

[215] J. Zhang, H. Shi, Y. Cui, F. Qian, W. Wang, K. Zheng, and J. Wu. “To Punctu-
ality and Beyond: Meeting Application Deadlines with DTP”. In: Proceedings of
the 30th IEEE Int. Conference on Network Protocols. 2022, pp. 1–11.

[216] N. Zilberman, E. M. Schooler, U. Cummings, R. Manohar, D. Nafus, R. Soulé, and
R. Taylor. “Toward Carbon-Aware Networking”. In: ACM SIGENERGY Energy
Informatics Review 3.3 (2022), pp. 15–20.

[217] B. Arratia, J. Prades, S. Peña-Haro, J. M. Cecilia, and P. Manzoni. “BODOQUE:
An Energy-Efficient Flow Monitoring System for Ephemeral Streams”. In: Pro-
ceedings of the 24th ACM Int. Symposium on Theory, Algorithmic Foundations,
and Protocol Design for Mobile Networks and Mobile Computing. 2023, pp. 358–
363.

Bibliography 159

[218] Z. Chen, L. Shi, X. Liu, X. Ai, S. Liu, and Y. Xu. “Boosting Distributed Machine
Learning Training Through Loss-Tolerant Transmission Protocol”. In: Proceed-
ings of the 31st IEEE/ACM Int. Symposium on Quality of Service. 2023, pp. 1–
4.

[219] IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups
I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)] Tech. rep.
IPCC, Geneva, Switzerland, 2023, pp. 35–115.

[220] R. Jacob and L. Vanbever. “The Internet of Tomorrow Must Sleep More and
Grow Old”. In: ACM SIGENERGY Energy Informatics Review 3 (2023), pp. 27–
32.

[221] N. Maslej, L. Fattorini, E. Brynjolfsson, J. Etchemendy, K. Ligett, T. Lyons, J.
Manyika, H. Ngo, J. C. Niebles, V. Parli, Y. Shoham, R. Wald, J. Clark, and
R. Perrault. The AI Index 2023 Annual Report. Tech. rep. Institute for Human-
Centered AI, Stanford University, 2023.

[222] J. Park, K. Han, and B. Lee. “Green Cloud? An Empirical Analysis of Cloud Com-
puting and Energy Efficiency”. In: Management Science 69.3 (2023), pp. 1639–
1664.

[223] T. Pauly, B. Trammell, A. Brunstrom, G. Fairhurst, and C. Perkins. An Archi-
tecture for Transport Services. Internet Draft. IETF, 2023.

[224] T. Rheinfels, M. Gaukler, and P. Ulbrich. “A New Perspective on Criticality:
Efficient State Abstraction and Run-Time Monitoring of Mixed-Criticality Real-
Time Control Systems”. In: Proceedings of the 35th Euromicro Conference on
Real-Time Systems. Schloss-Dagstuhl-Leibniz Zentrum für Informatik. 2023.

[225] S. Senk, H. K. Nazari, H.-H. Liu, G. T. Nguyen, and F. H. P. Fitzek. “Open-
Source Testbeds for Integrating Time-Sensitive Networking with 5G and beyond”.
In: Proceedings of the 20th IEEE Consumer Communications & Networking Con-
ference. 2023, pp. 1–7.

[226] V. Tripathi, I. Kadota, E. Tal, M. S. Rahman, A. Warren, S. Karaman, and E.
Modiano. “WiSwarm: Age-of-Information-Based Wireless Networking for Collab-
orative Teams of UAVs”. In: Proceedings of the 42nd IEEE Int. Conference on
Computer Communications. 2023.

[227] Y. Zhao and T. Guo. “Carbon-Efficient Neural Architecture Search”. In: Proceed-
ings of the 2nd Workshop on Sustainable Computer Systems Design and Imple-
mentation. 2023.

	Introduction
	Problem Statement
	Research Question
	Contributions
	Outline

	Distributed Cyber-Physical Systems
	Cyber-Physical Systems
	Energy, Power, and Sustainability
	The Centrality of the Transport Layer
	Conclusion

	Predictably Reliable, Real-Time Transport
	Design Principles
	Cross-Layer Pacing
	Adaptive HARQ
	Packet Format
	Optimal Hybrid Erasure Coding
	The need for HARQ
	Discussion

	Search Algorithms for Adaptive HARQ
	Predictable Communication Channel
	Full Search
	SHARQ: Scheduled HARQ
	Search Comparison
	Discussion
	Related Work
	Conclusion

	Deep Learning for Adaptive HARQ
	Learning How to Balance
	DeepSHARQ: Hybrid Error Coding using Deep Learning
	Model Training
	Performance Analysis
	Discussion
	Related Work
	Conclusion

	Energy-Aware Adaptive HARQ
	The Complexity Dilemma (Revisited)
	Binary Erasure Codes
	Theoretical Analysis
	Energy-Aware HARQ
	Practical Analysis
	Discussion
	Related Work
	Conclusion

	Conclusion
	Summary
	Future Work

	Computational Complexity Packet Loss Rate
	Computational Complexity Redundancy Information
	Own Publications
	Bibliography

