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Zusammenfassung

Das Aufkommen intelligenter Handheld- und Wearable-Gerätetechnologien sowie
Fortschritte auf dem Gebiet der künstlichen Intelligenz und des maschinellen Lernens
haben den Lebensstil der Menschen im letzten Jahrzehnt nach und nach enorm verändert.
Unter ihnen sind Online Social Networks (OSNs) und Fitness-Tracker zu integralen
Bestandteilen des täglichen Lebens von Millionen von Menschen auf der ganzen Welt
geworden. Diese Tools bieten nicht nur eine breite Palette an Funktionalitäten, sondern
ermöglichen es den Menschen auch, jeden Tag riesige Datenmengen zu teilen, was aus
Sicht des Datenschutzes ein ernstes Problem darstellt. Darüber hinaus reagieren die
Algorithmen des maschinellen Lernens, die den Kern vieler von OSNs und Fitness-
Trackern angebotener Funktionen bilden, sehr empfindlich gegenüber Verzerrungen, die
in den Trainingsdaten vorherrschen.

Diese Dissertation präsentiert eine Analyse von Datenschutz- und Fairness-Problemen,
die sich aus der nachgelagerten Verarbeitung solcher benutzergenerierten Daten ergeben.
Wir präsentieren zunächst eine Analyse der Privatsphäre für mehrere Szenarien, nämlich:
Rückschluss auf den Standort des Benutzers, soziale Beziehungen, sensible Benutzerat-
tribute, nämlich Geschlecht, Alter und Bildung, sowie Benutzerverknüpfbarkeit entlang
der zeitlichen Dimension. Wir demonstrieren die Schwere der Datenschutzangriffe durch
eine umfassende Auswertung realer Datensätze und leiten daraus wichtige Erkenntnisse
ab. Wir stellen ein System namens Tagvisor vor, das verschiedene Verschleierungstech-
niken verwendet, um einen der Angriffe zu vereiteln, nämlich die Standortinduktion
aus Hashtags. Zweitens analysieren wir die Fairness von node2vec, einer beliebten
Methode zur Grapheneinbettung, die wir in unserer Analyse von OSNs verwenden.
Unsere Experimente zeigen die Existenz von Bias in node2vec, wenn es für Freundschaft-
sempfehlungen verwendet wird. Wir schlagen eine fairnessbewusste Einbettungsmethode
vor, nämlich Fairwalk, die node2vec erweitert und zeigen, dass Fairwalk die Verzerrung
unter mehreren Fairness-Metriken reduziert und gleichzeitig den Nutzen beibehält.
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Abstract

The advent of smart handheld and wearable device technologies along with advances
in the field of Artificial Intelligence and Machine Learning have progressively changed
people’s lifestyle immensely over the last decade. Among them, Online Social Networks
(OSNs) and fitness trackers have become integral parts of daily lives of millions of people
around the world. In addition to offering a wide range of functionalities, these tools
allow people to share huge amounts of data everyday, which becomes a serious concern
from the privacy point of view. Moreover, the machine learning algorithms which are at
the core of many features offered by OSNs and fitness trackers are quite sensitive to
bias that is prevalent in the training data.

This dissertation presents an analysis of privacy and fairness issues that arise out
of downstream processing of such user generated data. We first present an analysis of
privacy for multiple scenarios namely: inference of user location, social relationships,
sensitive user attributes namely gender, age and education as well as user linkability
along the temporal dimension. We demonstrate the severity of the privacy attacks by
an extensive evaluation on real life datasets and derive key insights. We introduce a
system called Tagvisor, that uses various obfuscation techniques for thwarting one of
the attacks, namely location inference from hashtags. Secondly, we analyze the fairness
of node2vec, a popular graph embedding method, which we use in our analysis of OSNs.
Our experiments demonstrate the existence of bias in node2vec when used for friendship
recommendation. We propose a fairness-aware embedding method, namely Fairwalk,
which extends node2vec and demonstrate that Fairwalk reduces bias under multiple
fairness metrics while still preserving the utility.
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Nowadays, people widely use online social networks (OSNs) and instant messaging
to communicate with friends and maintain social relationships. This has paved the
way for new concepts such as ‘like’, ‘follow’ and ‘share’ which have assimilated into the
daily vocabulary of OSN users within no time. Among these, the “hashtag” has gained
huge popularity in online culture and campaigns. While bringing significant utility
benefits, hashtags may carry sensitive private information about people using them.
However, its implications on people’s privacy had not been investigated earlier. In the
first part of this dissertation, we address privacy raised by hashtags. We concentrate in
particular on location, which is recognized as one of the key privacy concerns in the
Internet era. We show that a user’s precise location from hashtags can be inferred with
a very high accuracy. To address this threat, we introduce a system called Tagvisor
that systematically suggests alternative hashtags if the user-selected ones constitute a
threat to location privacy. Tagvisor realizes this by means of three conceptually different
obfuscation techniques and a semantics-based metric for measuring the consequent
utility loss. Our findings show that obfuscating as little as two hashtags already provides
a near-optimal trade-off between privacy and utility in our dataset. This in particular
renders Tagvisor highly time-efficient, and thus, practical in real-world settings.

Meanwhile, we noticed that most previous works in privacy of OSNs focus on a
restricted scenario of using one type of information to infer another type of information
or using only static profile data such as username, profile picture or home location.
However the multimedia footprints of users has become extremely diverse nowadays.
In reality, an adversary would exploit all types of information obtainable over time, to
achieve its goal. The second part of this dissertation analyses OSN privacy by jointly
exploiting long term multimodal information. We focus in particular on inference of
social relationships. We consider five popular components of posts shared by users,
namely images, hashtags, captions, geo-locations and published friendships. Large scale
evaluation on a real-world OSN dataset shows that while our monomodal attacks achieve
strong predictions, our multimodal attack leads to a much stronger performance. Our
results highlight the need for multimodal obfuscation approaches towards protecting
privacy in an era where multimedia footprints of users get increasingly diverse.

In addition to OSNs, another technology that the modern society has closely em-
braced which also generates a huge amount of user data is wearable physical activity
tracking devices. These devices collect health data that is privacy sensitive, however
they had not yet received the necessary attention from privacy researchers. In the third
part of this dissertation, we performed the first systematic study of privacy risks arising
from actimetry data. In particular we focus on attribute inference for gender, age and
education and temporal linkability of users. We demonstrate the severity of the privacy
attacks by an extensive evaluation on a real life dataset and derive key insights.

While studying social networks, we noticed that often the machine learning algorithms
that we used for our analysis were very sensitive to any bias in the training data. We
had been using the power of the popular tool “graph embeddings”, to analyze social
networks. However, no prior works had studied potential bias issues inherent within
graph embeddings. The last and final part of this dissertation explores the direction
of fairness of machine learning algorithms. Specifically, we analyze the fairness of
node2vec, a popular graph embedding method. Our analyses on two real-world datasets
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demonstrate the existence of bias in node2vec when used for friendship recommendation.
We proposed a fairness-aware embedding method, namely Fairwalk, which extends
node2vec. Experimental results demonstrate that Fairwalk reduces bias under multiple
fairness metrics while still preserving the utility.
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2.1. LOCATION INFERENCE AND HASHTAGS

Here, we present the previous research in the related areas of privacy in Online
Social Networks(OSNs), wearable devices as well as a brief summary of the field of
Algorithmic Fairness. We also explain how they relate to or motivate our work.

2.1 Location inference and hashtags

Location privacy. Shokri et al. [102] propose a comprehensive framework for quan-
tifying location privacy. This framework is able to capture various prior information
available to an attacker and attacks the attacker can perform. The authors of [102] also
propose several privacy metrics, which inspire the metrics used in this paper. Ağır et
al. [4] further analyze the impact of revealing location semantics, such as restaurant
or cinema, by extending the underlying graphical model used for location inference
in [102]. Experimental results on a Foursquare dataset demonstrate that location
semantics can raise severe privacy concerns. Bilogrevic et al. [10] concentrate on the
utility implications of one popular privacy-preserving mechanism, namely generalization
(both geographically and semantically). Through the data collected from 77 OSN users,
their model is able to accurately predict the motivation behind location sharing, which
enables design of privacy-preserving location-sharing applications. Other interesting
works in this field include [84, 95, 96]. Contrary to these previous works, ours focuses
on the location-privacy risks of hashtag sharing, and propose mechanisms to mitigate
these risks.
Hashtag analysis. Highfield and Leaver [46] point out the research challenges for
Instagram, especially in comparison to Twitter, by examining hashtags in the two OSNs.
Based on a dataset collected from Instagram users’ profiles and hashtags, Han et al. [40]
identify teens and adults using popular supervised learning techniques and additionally
reveal significant behavioral differences between the two age groups. The authors of [104]
use #selfie in Instagram to study the phenomenal ubiquitous convention of self-portrait,
while the authors of [71] study the health implications and obesity patterns associated
with the use of #foodporn. More recently, Lamba et al. [63] study #selfie in Twitter
that can potentially cause life threat. Although no previous work has addressed privacy
issues arising out of hashtags to the best of our knowledge, the aforementioned works
have been very influential in shaping our approach of using hashtags for training our
attacker model.
Location prediction in OSNs. Multiple works aim at estimating a user’s home
location using the posts he has published in OSNs. Cheng et al. [18] identify words in
tweets with a strong local geo-scope and estimate several possible locations for each
user with decreasing probabilities. Chandra et al. [17] predict city-level user location
relying on a communication model in Twitter’s conversation. Jurgens et al. [55] recently
provide a survey on the related works in this direction. Different from these studies, we
address the problem of identifying the precise location of users’ posts.

Some other works concentrate on estimating the location of each post, which is
closer to the problem we address. Li et al. [64] use KL-Divergence to build a language
model for each location. Due to the insufficient number of tweets for each location,
they incorporate texts in web pages returned by search engines to support their model.
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Agerwal et al. [3] also use geographic gazeteer data as vocabulary to identify location
names from phrases in tweets. The approach of Dalvi et al. [24] assumes that a geo-
located object is mentioned in the tweet. Our attack however does not need any external
knowledge and already shows a high accuracy in predicting the exact point of interest.
Moreover, we propose a tool for privacy-preserving hashtag sharing.

2.2 Friendship inference from multiple modalities

We present literature review in each of the 5 components of OSN data that we consider
namely, link prediction, locations, text, images and hashtags followed by research on
OSN data in general.
Link Prediction. Liben-Nowell et al. [65] were among the earliest to formalize the link
prediction problem in social networks. Since then, link prediction has been extensively
studied [36], [88], [112], [67], [32], [76] We exploit an advanced deep-learning based
approach node2vec [38] which is shown to outperform other approaches. Other lines
of work use social links for attribute inference such as Gong et al. [34] infer attributes
such as major, employer, and cities lived from friendship and behavioural links. We,
however, try to infer social links from 5 types of user generated content.
Location. Early works such as [29], [22], [92], [100], [111] infer social ties from co-
occurrence in time and space and require two users to share common friends or locations.
Olteanu et al. [81] study the effect of co-location information on location privacy. More
recently, Zhou et al. [122] infer social links from friendships and mobility data. Finally,
Backes et al. [8] take a deep learning approach to learn users’ mobility features and use
them for social relationship inference. We adopt this approach for our location based
attack since it best fits our user and adversary model, and is shown to significantly
outperform prior approaches [92], [100], [111].
Text. The growth of textual data in OSNs has been exploited by a plethora of advances
in NLP and text mining. Kim et al. [61] study the influence of offline friendship on
tweeting behavior, Adamic et al. [2] proposed a matchmaking algorithm that leverages
text, mailing list, and in and out-link information to analyze the structure of a social
network. Preotiuc-Pietro et al. [94] study use language features like unigrams, word
clusters and emotions to predict political ideologies of users. Tan et al. [107] characterize
relations between ideas in texts using co-occurrence within documents and prevalence
correlation over time. However friendship inference from textual content has not yet
been studied to the best of our knowledge.
Images. Shoshitaishvili et al. [103] combine facial recognition, and spatial analysis to
determine user pairs that are dating amongst people represented in a large corpus of
pictures shared on a social network. Ilia et al. [50] propose an access control mechanism
that allows users to manage the visibility of their face in photos published by other users.
Research on defenses also mainly focuses on obfuscation of faces such as person image
generation [69], face replacement [106], redaction [82] etc. Recent work by Orekondy et
al. [82] focuses on localized segments containing text-like attributes such as license plate,
datetime, name, etc . However these approaches are tested only on small self-annotated
datasets and their applicability to friendship inference in large scale real life datasets is
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yet to be explored.
Hashtags. Highfield and Leaver [47] examine research challenges of working with
hashtags in Instagram in comparison to Twitter. Han et al. [41] use Instagram and
hashtag data to identify teens and adult age groups via behavioral differences between
them. Using the hashtag #selfie, authors of [104] study the collective behavior of sharing
selfies on Instagram and [63] study the potential dangers of self portraits. Authors of
[71] study the association between emotion and health with the hashtag #foodporn.
Prior work on privacy implications of hashtags studies location privacy using hashtags
and friendship inference [P1]. A recent work [117] uses a user-hashtag bipartite graph
embedding model to infer friendships, but are hugely outperformed by our method.
OSNs and Privacy. There has been extensive research on OSN user deanonymization,
based on the network topology [77] or using metadata of tweets [90]. However the
adversary needs to already have access to the true identity of the target users alongwith
metadata of their older tweets for the latter work. Works on cross-site profile matching
such as [33, 66] utilize only user profile metadata such as name, profile picture, home
location etc. In contrast, we focus on user generated content, i.e. the multimedia
footprint of users built up over time from the data they post everyday, since this
collectively gives a faithful reflection of the user’s interests. Liu et al. [66] do consider
tweets posted over time as well as friendships but they perform cross platform linkability.
We address a different problem, i.e., friendship inference and additionally include
hashtags, images, location check-ins as well.

2.3 Fairness and graph embedding

Algorithmic bias has received a lot of attention in the recent years [9, 98]. Prior work
distinguishes between group unfairness and individual unfairness. Group unfairness
(disparate impact) occurs when the decision outcomes disproportionately benefit or hurt
people of different groups based on their sensitive attribute value. Examples of group
fairness are statistical parity [30], disparate mistreatment [115], equality of opportunity
[42] and calibration [62]. Individual unfairness occurs when the decision of an algorithm
is different for two individuals having the same non-sensitive attributes but different
values for the sensitive attribute [28].

Different fairness-aware algorithms have been proposed to achieve group and individ-
ual fairness, mostly for predictive tasks. [16] extend naive Bayes models by modifying
the learning algorithm. [56] modify the entropy-based splitting criterion in decision tree
induction to account for sensitive attributes. [57] apply a regularization to probabilistic
discriminative models, such as logistic regression. Other works include fairness in OSN
timelines [43] and extension of group fairness to fair rankings, [116, 113]. Contrary to the
above, we focus on obtaining fair features that can later be used for plethora of machine
learning tasks. We tackle group fairness and not individual fairness since two individuals
that have identical neighborhoods would have similar embeddings, independent of the
sensitive attributes of their neighbors and would be treated equally.

In the area of graph embeddings, after invention of word2vec [73], many prominent
graph data mining techniques were developed adopting the skip-gram model, namely
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DeepWalk [91], node2vec [38], LINE [109] and PTE [108], and walk2friends [8]. In this
paper we study the fairness of node2vec - the most widely used one∗.

2.4 Privacy of step count data

It has been shown, that it is possible to fingerprint Android devices by accessing the
accelerometer API [12, 27] from a website opened on the phone. Bittel et al. [11] shown
that iPhone’s accelerometer is just as accurate and precise as biomedical measurement
devices. Accelerometer data from a phone carried in a pants pocket is sufficient to predict
owner’s activity (e.g. sitting, standing, walking, running) [39, 5, 89]. Accelerometer
sensor data reveals how users hold and touch smartphones by hand, based on which
Davarci et al. [25] perform child/adult detection.

The potential benefits of activity tracking for health and well-being has received
a lot of attention from both academia and industry. Shameli et al. [101] study how
competitions affect physical activity using a dataset of competitions within the Argus
smartphone app. Althoff et al. [7] study activity distribution from smartphones of
717,527 people across 111 countries. Using the same dataset, Pierson et al. [93] use
Cyclic Hidden Markov Models to detect and model activity cycles.

However, few have studied users’ behaviors when sharing such personal fitness data
and the privacy concerns that arise from the collection, aggregation, and sharing of this
data. Vitak et al. [110] highlight the relationship between users’ demographics, data
sharing behaviors, privacy concerns, and internet skills. Hassan et al. [44] demonstrate
an attack against Endpoint Privacy Zones, that infers users’ protected locations from
their information in public posts using activity data collected from the Strava app.
Meteriz et al. [72] predict the location trajectory of users from publicly available
elevation profiles. Nguyen et al. [78] demonstrate high accuracy location tracking just
through smartphone accelerometer and magnetometer’s footprints.

∗according to citation count from GoogleScholar
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3.1. MOTIVATION

3.1 Motivation

Online Social Networks have now become an inseparable part of people’s lives and
introduced several new terms into the vocabulary of the modern society. “Hashtag” is
one of these terms that has emerged as a widely used concept of popular culture and
campaigns. Defined as a word or non-spaced phrase preceded by the hash character
#, hashtag was created to serve as a metadata tag for people to efficiently search for
information. Originally created on Twitter, hashtags have been widely adopted in many
areas. Media campaigns are increasingly using hashtags to attract and engage customers
(e.g., #ShareACoke). Hashtags also enable people to stay updated on trending news
stories. For instance, #imwithher has been extensively used during the US 2016 election.

Hashtags have seen significant usage in online communication recently. Users have
created many hashtags to convey meanings which previously did not exist in the English
vocabulary. For instance, #like4like indicates a promise of the users to like back the posts
of those who like their post in OSNs [118]; #nofilter means the associated photo has been
posted directly as taken, without being edited. The large amount of hashtags provide
us with an unprecedented chance to understand the modern society, and researchers
are increasingly leveraging hashtags to conduct their study [104, 71]. While bringing
significant utility benefits, hashtags may carry sensitive private information about
people using them. However, privacy threats arising out of hashtags have been largely
overlooked.

In this work, we address privacy raised by hashtags. Among all the private infor-
mation, we concentrate in particular on mobility information, which is recognized as
one of the key privacy concerns in the modern society [49, 85, 10, 80]. In fact, location
arguably even constitutes the most sensitive information being collected by service
providers [75] (e.g., being able to infer that a user is staying at a hospital can severely
threaten his privacy), and it can be used to infer additional sensitive information such as
friendship [99, 8] and demographics [120, 86]. A user can disclose his location informa-
tion through many different ways such as sharing location in OSNs (often referred to as
check-in) and allowing mobile applications to collect their geo-coordinates through GPS
sensors in the smartphone. Many users have recognized the inherent risks towards their
location privacy and abstain from explicitly sharing their locations. However, hashtags
may also leak the exact location of a user, which is the primary focus of the first part of
this dissertation paper.

3.2 Contributions

Our contributions are two-fold:

1. A novel inference attack for uncovering a user’s fine-grained location based on
posted hashtags, along with a comprehensive evaluation on a real-life OSN dataset,

2. A privacy-enhancing system, namely Tagvisor, that uses various obfuscation
techniques for thwarting the aforementioned attack.
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3.2.1 Attack

Our inference attack aims at predicting the fine-grained location of a user’s post given
its hashtags by learning the associations between hashtags and locations. The attack
relies on a random forest classifier and achieves remarkable accuracy.

We empirically evaluate our attack based on a comprehensive dataset of 239,000
Instagram posts with corresponding locations and hashtags from three of the largest
English-speaking cities (New York, Los Angeles and London). The locations we predict
are the exact points of interest (POI) within each of the three cities, such as Land of
Plenty, a Chinese restaurant in New York. The experiments show that our hashtag-based
location-inference attack achieves an accuracy of 70% in New York (for a number of
around 500 considered locations) and 76% in Los Angeles and London (for around 270
and 140 locations, respectively). We also compare our classification method with other
popular algorithms such as support vector machine and gradient boosting machine,
and show that our classifier outperforms them by at least 7%. Furthermore, we
empirically identify the number of hashtags maximizing the attack success to be seven.
Additionally, we evaluate our attack on a global level without prior knowledge of the
city, and demonstrate that it can still reach an accuracy of more than 70%. Finally,
by considering two types of attackers, one with prior knowledge on the targeted users’
hashtags and locations, and the other without, we show that the accuracy drops by
around 20% for the latter attacker. This demonstrates that the adversary can enhance
his model by learning per-user associations between hashtags and locations.

We stress that our work is not intended for users who intentionally use hashtags to
reveal their locations, for example, when a user publishes a post with #statueofliberty as
one of the hashtags. Instead, our work aims at helping users that might unintentionally
disclose where they are. The examples below, taken from the evaluation of the inference
attack, illustrate this point further. A user’s post shared with hashtags #music,
#musicphotography, #soul, #fujifilm, #thephotoladies, and #pancakesandwhiskey
may not reveal anything significant about the location to most individuals. Our attack
however correctly predicts that the user is at the Highline Ballroom, a music venue in
New York. In another example from Los Angeles, a user sharing #fighton #trojans
#band #ftfo is correctly located by our attack at University of Southern California.

3.2.2 Defense

To counter the aforementioned privacy violations, we develop Tagvisor: a system that
provides recommendations, e.g., to an OSN user who wants to share hashtags without
disclosing his location information. In particular, Tagvisor implements three different
obfuscation-based mechanisms: hiding (a subset of) hashtags, replacing hashtags by
semantically similar hashtags, and generalizing hashtags with higher-level semantic
categories (e.g., Starbucks into coffee shop). Tagvisor returns an optimal subset of
obfuscated hashtags that, at the same time, guarantees some predefined level of location
privacy and retains as much utility as possible. To accurately quantify utility, we rely
on an advanced natural language processing model, namely word2vec [73, 74].

The empirical evaluation of our privacy-enhancing system shows that:

• the replacement mechanism outperforms both hiding and generalization methods.
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• the higher number of original hashtags, the better the utility for similar levels of
privacy,

• regardless of the original number of hashtags, obfuscating two hashtags provides
the best trade-off between utility, privacy, and time efficiency.

The latter finding notably demonstrates the practical feasibility of our privacy-preserving
system given the computational capabilities of current mobile devices.

3.3 Model

In this section, we describe the user and adversarial models, as well as the privacy
metrics used throughout the paper.

3.3.1 User Model

We use two sets U and L to represent users and locations, respectively. A single user is
denoted by u and a location (POI) is denoted by `. All users’ posts are in set P, and
a single post p ∈ P is defined as a quadruplet 〈u, `, t, Hp〉: semantically, it means u
shares the post p at ` (checks in at `) at time t, and Hp = {h1

p, h
2
p, . . . , h

m
p } contains all

hashtags associated with the post. In addition, Hp ⊆ H` ⊆ H where H` represents the
entire set of hashtags shared (in posts) at location ` and H is the set of all hashtags in
our dataset.

3.3.2 Adversarial Model

In this work, we consider an adversary who intends to infer the hidden location ` of
a post p by observing the set of hashtags Hp published with the post. The adversary
can be anyone who is able to crawl the data from OSNs such as Facebook, Twitter and
Instagram. Moreover, it could also model a service provider which does not have access
to all its users’ real locations.

In order to accurately infer hidden locations based on hashtags, the adversary needs
to build an accurate knowledge K of associations between hashtags and locations. In
this work, we assume he learns these associations based on previously disclosed posts
that included both hashtags and location check-ins. This learning phase is explained
in Section 3.4. The associations can be learned in different ways. We consider here
two different adversarial models. The first adversary, namely A1, uses all the publicly
shared posts he is able to collect, including those shared by the targeted users (users
whose posts’ locations the adversary intends to infer). In other words, in this model, we
assume the targeted users have already shared some of their posts with both hashtags
and check-ins. In the second model, the adversary (A2) does not have access to any
previous location-hashtag data shared by the targeted users. This models the case when
the targeted users are particularly privacy-cautious [79] and do not share any location
with their posts. In this case, the adversary has to rely only on the location and hashtag
data shared by other users to build his knowledge K .
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The output of our hashtag-based location inference attack on a post p is the posterior
probability distribution over all locations ` ∈ L given the set of observed hashtags Hp:

Pr(Lp = `|Hp,K ), (3.1)

where Lp is the random variable representing the location of post p. Based on this
posterior distribution, the most likely location is:

`∗p = arg max
`∈L

Pr(Lp = `|Hp,K ). (3.2)

Equation 3.2 is the core concept behind our inference attack, and we will describe its
instantiation in detail in Section 3.4.

3.3.3 Privacy Metrics

We measure the location privacy of a user who shares a post p and its corresponding
hashtags Hp by using the expected estimation error, as proposed in [102]. Formally,
given the posterior probability distribution Pr(Lp = `|Hp,K), the location privacy is
defined as: ∑

`∈L
Pr(Lp = `|Hp,K ) · d(`, `rp), (3.3)

where `rp is the real location of the user sharing the post p, and d(·, ·) denotes a distance
function. If the geographical distance dg(`, `rp) is used, we will generally refer to this
metric as the expected distance. In this paper, we rely on the haversine distance to
measure the geographical distance. If the binary distance, defined as

db(`, `rp) =
{

0 if ` = `rp
1 otherwise

(3.4)

is used, Equation 3.3 is then equal to 1 − Pr(Lp = `rp|Hp,K) and is referred to as
the incorrectness [102]. We also use the correctness (to quantify the performance of
the inference attack), which is the opposite of the incorrectness, and is simply equal
to Pr(Lp = `rp|Hp,K). We further use the accuracy, defined in the machine learning
context, as another privacy metric. Formally, accuracy is defined as 1− db(`∗p, `rp), where
db(·, ·) is the binary distance defined above. We can alternatively use the inaccuracy, i.e.,
db(`∗p, `rp). Note that, depending on the context, the accuracy can refer to one sample or
multiple. In the latter case, the accuracy represents in fact the average accuracy over
all samples (e.g., from a testing set).

3.4 Inference Attack

Our location inference attack relies on a random forest classifier. We encode the presence
of a hashtag hi in a post p as a binary value xip, being equal to 1 if it is published with
the post, and 0 otherwise. Each post p with its set of hashtags Hp at location ` can
be represented by a feature vector ~xp = (x1

p, . . . , x
n
p ), where n = |H|, and by the label
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Figure 3.1: Distribution of the proportion of posts with a certain number of hashtag(s),
from 0 to 30 hashtags.

Table 3.1: Pre-processed data statistics.

New York Los Angeles London
No. of posts 144,263 61,767 34,018
No. of hashtags 8,552 4,600 2,395
No. of users 3,911 1,625 992
No. of locations 498 268 141

or class yp, where yp = `rp. The length of the feature vector is thus equal to the total
number of unique hashtags in the entire dataset.

For training the random forest, the adversary uses as input the samples (~xp, yp) ∀p ∈
Ptrain where ~xp = (x1

p, . . . , x
n
p ) and Ptrain refers to posts in the training set that contains

the auxiliary knowledge of the adversary. The adversary carries out his attack on the
set Ptar by trying to classify each sample post p ∈ Ptar using the features ~xp on the
trained forest. Among several ways of obtaining class probabilities in an ensemble of
decision trees [13], we employ averaging of the votes of all the trees of the forest. The
total number of trees that vote for each class is divided by the total number of trees to
obtain the posterior probability distribution Pr(Lp = `|Hp,K ) ∀` ∈ L. This outcome is
used to quantify privacy with the metrics defined in Section 3.3.3.

3.5 Dataset

We collect our experimental data from Instagram, one of the most popular OSNs and
the major platform for hashtag sharing. Besides, Instagram users have been shown
to share their locations an order of magnitude more often than in Twitter [70], and
Instagram’s localization function was linked with Foursquare, which enabled us to enrich
each location with name and category, not just geograpical coordinates as in many
existing datasets [20]. The category information is in fact a building block for one of
our defense mechanisms, namely the semantic generalization (Section 3.7).

Our data collection was conducted in January 2016. We concentrate on three of
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Table 3.2: Performance of location inference across all the cities for different adversary
models and baseline.

Correctness Expected distance (km) Accuracy
A1 A2 baseline A1 A2 baseline A1 A2 baseline

New York 0.613 0.468 0.015 0.917 1.272 4.198 0.697 0.556 0.053
Los Angeles 0.685 0.502 0.015 1.870 3.046 11.275 0.758 0.597 0.048
London 0.686 0.552 0.020 0.857 1.575 4.518 0.761 0.617 0.051
All cities 0.624 0.465 0.010 211.471 345.980 3563.082 0.712 0.560 0.045

the largest cities in the English-speaking world, namely New York, Los Angeles and
London. In the first step, we rely on the Foursquare API to crawl all the location
IDs in the three cities, and extract these locations’ names and categories. Then, we
use the function /locations/search provided by Instagram’s public API to map
the previously obtained Foursquare’s location IDs to their corresponding Instagram’s
location IDs. Finally, for each Instagram location, we collect its publicly available posts’
metadata (user ID, time and hashtags) in the second half of 2015 (2015.7.1-2015.12.31).

As in [20, 99, 119, 87, 8], we perform the following filtering operations on our
collected data.

• We filter out user accounts whose number of followers are above the 90th percentile
(celebrities) or under the 10th percentile (bots). To address the data sparseness
issue, we also filter out users with less than 20 check-ins in each city.

• We filter out hashtags appearing less than 20 times in each city, following a
classical filtering strategy used by the natural language processing community.

• For each city, we concentrate on locations with at least 50 check-ins. This helps
us filter out the locations that are rarely visited by people while still ensuring that
we are not only concentrating on the most famous places. Knowing a user being at
the considered locations still threatens his privacy to a large extent. Additionally,
from a supervised learning point of view, we need sufficient data for each class
(each location) to train a robust classifier, such that a meaningful attack can be
conducted.

After the filtering, we obtain 144,263 posts in New York, 61,767 posts in Los Angeles
and 34,018 posts in London (Table 3.1). Despite the filtering strategies, we are still left
with a large dataset with substantially more users and fine-grained locations compared
to previous works. For instance, the dataset used in [102] contains 20 users’ mobility
data in a 5× 8 grid over the city of San Francisco.

Figure 3.1 displays the distribution of the number of hashtags per post over our
entire dataset. For all three cities, there are around 40% of posts without any single
hashtag, between 11 and 14% with one hashtag, 8-9% with two hashtags, and 8% with
three hashtags. The general curve (in red) represents the distribution of number of
hashtags for posts without location check-in. The latter dataset is collected following
the same methodology as in [104]. We randomly sample over 10 million user IDs on
Instagram and collect all their published posts’ hashtags. In the general set of posts,
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there are 46% of the posts that include at least one hashtag. This shows that, almost
half of the posts could be targeted by our hashtag-based location inference attack. The
similar trend between the general curve and those with location information shows that
users who do not reveal their location may nevertheless disclose hashtags that could
then be used by an adversary to infer their locations. As expected, the distribution
drops quite fast with an increasing number of hashtags, for both datasets with and
without location information. The small increase close to 30 is due to Instagram’s upper
bound of 30 hashtags per post.

3.6 Attack Evaluation

In this section, we present the evaluation results of our location inference attack.

3.6.1 Experimental Setup

As described in Section 3.4, our attack relies on a random forest classifier, and we set
the number of trees for the random forest to be 100 following common practice [83].

To comply with the different background knowledge of A1 and A2, we split the
dataset as the following. For adversary A1, we randomly assign 80% of the posts for
training and 20% for testing. For adversary A2, we split all users randomly: posts from
80% of the users are put into the training set and posts from the other 20% are in the
testing set. The random split is repeated 10 times, and we report the average results.

3.6.2 General Inference Results

3.6.2.1 Adversaries

We present the performance of our location inference attack in Table 3.2. In each city,
our attack achieves a strong prediction. For instance, the accuracy is around 70% for the
New York dataset under adversary A1, which indicates the attacker is able to predict
the exact locations (out of 498) of 20,196 posts (out of 28,852 testing posts). The small
expected distance in all cities further indicates that even when the prediction is wrong,
the attacker is still able to narrow down the target’s location into a small area. The
performance of adversary A2, however, drops in all the cities. This is because adversary
A2 has no prior knowledge of the hashtag-location association of the targeted users.
Nevertheless, adversary A2 still achieves a relatively high prediction success (e.g., the
correctness is above 0.55 in London) showing that learning per-user associations between
hashtags and locations is helpful but not absolutely needed.

3.6.2.2 Cities

Both adversaries achieve the strongest prediction in London, followed by Los Angeles
and New York. The reasons are manifold, ranging from cultural differences to hashtag
usage. We notice that New York has the largest number of locations (498), i.e., the
highest number of classes for the random forest model, thus making the classification
the most difficult. Meanwhile, even though both adversaries in Los Angeles achieve
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the second highest accuracy and correctness, they perform the worst in the expected
distance metric. This is due to the different densities of the three cities: Los Angeles
covers a larger area with places being more uniformly distributed in the geographical
space than New York and London.

3.6.2.3 Baseline

To demonstrate that our high prediction performance is not due to the skewed distribu-
tion of the location check-ins, we further establish a baseline model that relies only on
the locations’ distribution (in the training set) to predict a targeted user’s location. The
adversary infers that the user is at the most likely location, i.e., the location with most
check-ins in the training set, independently of the hashtags. As depicted in Table 3.2,
both A1 and A2 achieve at least a 10-time higher accuracy than the baseline, and
a 27-time higher correctness than the baseline. We observe similar results when the
adversary targets all cities at the same time. As for the expected distance metric, the
baseline is outperformed by 3 to 5 times depending on the considered adversary and
city.

3.6.2.4 Other classifiers

Besides random forest, we further experiment with two other classifiers: gradient
boosting machine (GBM) and support vector machine (SVM). For GBM, we observe
that 100 trees provide the best accuracy, and for SVM, we use the radial basis function
kernel. GBM’s accuracy is around 7% worse than random forest in all the cities, and
SVM achieves the worst performance with accuracy in London of only 0.15. This
suggests that random forest is the most suitable algorithm for learning the association
between hashtags and locations.

3.6.3 Privacy vs. Number of Hashtags

Next, we study the relation between the number of shared hashtags and the prediction
performance, i.e., how many hashtags are necessary to determine where a post is shared.
To this end, we group the posts in the testing set by the number of hashtags they
contain and compute the correctness for each group.

Figure 3.2 depicts the average correctness for the two adversary models (results
for accuracy follow a very similar trend). As we can see, for posts appended with
only one hashtag, the prediction performances are relatively weak in all the cases since
one hashtag does not provide enough information. However, when the number of
hashtags increases to two, we observe significant increases under both adversary models.
Especially for A1, the correctness is increased by more than 40% for all the cities. This
shows that hashtags contain highly location sensitive information. The performance of
both adversary models is strongest when the targeted post contain around 7 hashtags.
Beyond this number, we observe an interesting difference. On one hand, the average
correctness of adversary A1 remains stable for posts with more hashtags. We can observe
a small decrease only for London due the relatively smaller size of testing data which
probably creates more noisy results. On the other hand, the performance of adversary
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A2 decreases for all cities when it faces posts with increasing number of hashtags. This
happens because, by including more hashtags, a user confuses the classifier which has
no information about the past activity of the user, as A2 has not built user-specific
associations between hashtags and locations. Therefore, a user who has never shared
any locations (the assumption of A2) is less vulnerable to the attack. This, along with
the conclusions drawn from Table 3.2 that A2 performs worse than A1 in general, further
suggests that a cautious user is always rewarded in matters of privacy.

Figure 3.2: Correctness of adversary A1 and A2 with respect to the number of hashtags
shared in posts.

3.6.4 Privacy across All the Cities

So far, our inference attack is conducted at the city level. However, it is also interesting
to see whether our attack can be generalized to the global level: Given a post with
hashtags, can we predict where it is published among all the locations in New York,
Los Angeles and London. To this end, we combine the datasets from the three cities
together and perform the aforementioned split with respect to the two adversary models
for training and testing. As shown in Table 3.2, the performance of the global level
attack drops compared to the city level attack, especially for London and Los Angeles.
However, the attack is still rather effective, e.g, adversary A1 achieves 0.712 accuracy
and 0.624 correctness. Meanwhile, the expected distance grows much larger, which is
mainly due to the misclassification among different cities. However, considering the
actual distances between the three cities, this expected distance is still very small, and
both A1 and A2 perform much better than the baseline model.

Through the above experiments, we have demonstrated the severe privacy threat
carried by hashtags. In the next section, we propose a first of its kind privacy advisor
which we coin Tagvisor, that uses three defensive mechanisms to provide users with
advice when sharing hashtags.
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3.7 Countermeasures

In this section, we present Tagvisor, a privacy advisor that is based on different
obfuscation mechanisms for enhancing the user’s privacy and preserving as much
semantic utility as possible. We first introduce the different components of Tagvisor.
Then, we describe our approach for measuring hashtags’ utility. Finally, we present the
three obfuscation mechanisms.

3.7.1 Tagvisor

Tagvisor resides on the user’s device and, whenever the user wishes to share a post
with some hashtags without revealing his location, Tagvisor tests whether its classifier
can correctly predict the post’s location, i.e., whether the user’s location privacy is
compromised. If so, Tagvisor suggests alternate sets of hashtags that result in an
enhancement of privacy without significant utility loss. The system can also suggest the
optimal set of hashtags that minimizes the utility loss while providing a certain level of
location privacy.

Formally, the Tagvisor’s defense mechanism can be interpreted as an optimization
problem. For each new post p that a user wants to share with an original set of hashtags
Hp, Tagvisor suggests the optimal set of hashtags H ∗p as follows:

H ∗p = arg min
H ′

p∈Hp

∆Hp,H ′
p

subject to LPH ′
p
≥ α. (3.5)

Here, ∆Hp,H ′
p
represents the utility loss, quantified by the semantic distance between Hp

and H ′p. LPH ′
p
represents the privacy level for the set H ′p, which can be quantified with

any of the metrics defined in Section 3.3, and α is the minimal privacy level desired
by the user. For example, a simple and intuitive profile would be to set α = 1 with
LP measured by db(`∗p, `rp), the inaccuracy. This requirement ensures that the user only
shares hashtags that do not enable the attacker to infer his exact location `rp.
Hp can be as big as the power set of H. In order to keep complexity at a reasonable

level, we can restrain it to a smaller subset depending on the different protection
mechanisms and the original set of hashtags Hp. The user can also set a maximum
number of hashtags that the privacy mechanism can modify. We evaluate these more
practical constraints in Section 3.8.

Tagvisor consists of four main blocks. Figure 3.3 shows the main components of the
Tagvisor system. R, H and G in Recommender represents obfuscation by Replacement,
Hiding and Generalization, respectively. If the privacy is preserved with the original set
of hashtags chosen by the user, they are directly published (1:YES). Otherwise, they go
to the obfuscator (1:NO) which then sends the modified sets to the privacy quantifier.

3.7.1.1 Privacy quantifier

The privacy quantifier contains the trained classifier, i.e., our random forest model, and
a condition checker. The trained classifier is regularly updated with new knowledge
from the external classifier trainer. This classifier trainer uses the data K to constantly
improve its random forest model. It could be running on the user’s personal computer, or
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Figure 3.3: Main building blocks of Tagvisor

deployed by a non-governmental organization such as the Electronic Frontier Foundation.
The condition checker checks whether the level of location privacy of the user (using
the classifier output) is above the threshold α. If not, the user chosen hashtags are sent
to the obfuscator for determining alternative hashtag sets. Among these suggested sets
of hashtags, those for which the privacy condition in the condition checker is satisfied
are then fed to the utility quantifier.

3.7.1.2 Obfuscator

The obfuscator consists of three components that represent the different obfuscation
mechanisms: hiding, replacement and generalization. Each component produces a set
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of hashtags by employing the corresponding defense mechanism. These hashtag sets
are fed to the privacy quantifier which filters out those that do not meet the required
privacy threshold α (2:YES in Figure 3.3).

3.7.1.3 Utility quantifier

The utility quantifier also resides on the user’s device. It maintains records of the
utility model and periodically updates itself by querying the external word2vec converter
(which continuously updates itself with any new data from the knowledge database
K). As will be described in Subsection 3.7.2, the utility quantifier uses the semantic
representation of each hashtag in the set of input hashtags that it receives from the
privacy quantifier to calculate their utility with respect to the original set of hashtags.
Finally, it returns the hashtag set(s) providing minimal utility loss to the recommender.
Depending on the user’s preferences, it can return one recommended hashtag set per
obfuscation method (as shown in Figure 3.3), or only one optimal hashtag set for all
methods.

3.7.1.4 Recommender

The recommender suggests, for each obfuscation method, location-privacy-preserving
hashtag sets having minimum semantic distance to the original hashtags chosen by the
user. It can also suggest the optimal hashtag set among all methods, if the user does not
want to make a decision by himself. It could also provide additional recommendations
for a desired obfuscation method and a desired maximum number of hashtags to be
obfuscated.

3.7.2 Utility Metric

The defense mechanisms should yield hashtags that retain the semantics of the original
hashtags to the largest possible extent, while still defeating the attacker by misleading
the random forest classifier. Removal of all hashtags, for example, reduces the attacker
to a random guesser. However, for the user, the consequence is a complete loss of utility.

We rely on the semantic distance between the original set of hashtags and the
sanitized set to quantify the corresponding utility loss. We capture the semantic
meaning of each hashtag, and set of hashtags, by using word2vec, the state-of-the-art
method for representing language semantics [73, 74]. word2vec maps each hashtag into
a continuous vector space of d dimension,∗ i.e.,

word2vec : H → Rd, (3.6)

using a (shallow) neural network with one hidden layer. The objective function of
word2vec is designed to preserve each hashtag’s context, i.e., neighboring hashtags.
Therefore, if two hashtags are often shared together in posts, they will be close to each
other in the learned vector space. The concept that word2vec can represent a word’s
semantic meaning originates from the distributional hypothesis in linguistics, which

∗Following the original works [73, 74], d is set to 100 in our experiments.
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states that words with similar contexts have similar meanings. For example, in our
dataset, #travel and #tourist are semantically close under word2vec. We define the
word2vec representation of a hashtag h as ~vh = word2vec(h).

We train our word2vec model on the whole set of posts available to obtain a semantic
vector for each hashtag in H . Following previous works [114, 60], we express the semantic
meaning of hashtags Hp in a post p as the average of their semantic vectors:

~mHp =
∑
h∈Hp

~vh

|Hp|
. (3.7)

Then, the utility loss of replacing the original set Hp by H ′p is measured as the Euclidean
distance between ~mHp and ~mH ′

p
:

∆Hp,H ′
p

= ||~mHp − ~mH ′
p
||. (3.8)

We use Euclidean distance since it is the most common method to measure distances in
the word2vec generated vector space [73, 74].

3.7.3 Obfuscation Mechanisms

We now describe the three obfuscation mechanisms used by Tagvisor for protecting
location privacy.

3.7.3.1 Hiding

Hiding (also referred to as deletion) simply suggests a subset of the original hashtags Hp

chosen by the user. There are in total 2|Hp| − 1 such subsets. One can limit the number
of hashtags to be removed by the threshold th to optimize the running time, or utility.
All generated subsets of hashtags are sent to the condition checker to verify whether
they satisfy the location privacy constraint. The subsets providing enough privacy are
sent to the utility quantifier that picks the one that minimizes utility loss.

3.7.3.2 Replacement

This mechanism replaces the original hashtags by others in the set of hashtags H to
mislead the adversary. In order to keep the search complexity reasonable, we have to
restrain the set of potential hashtags to replace each original hashtag with. We fix a
threshold ts and focus on the ts hashtags that are semantically closest to the original
hashtag, as defined in Equation 3.8. This ensures that the set of candidate hashtags
minimizes utility loss. This bounds the search space from above by (ts + 1)|Hp| − 1.
As in the hiding mechanism, one can further reduce the time complexity by bounding
the number of hashtags to be replaced by a threshold tr similar to th. The generated
subsets are eventually sent to the privacy condition checker and the utility quantifier.

3.7.3.3 Generalization

This mechanism generalizes each original hashtag by one representing a semantically
broader category. Our evaluation only focuses on hashtags corresponding to locations in
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Foursquare. Every location identifier in Foursquare is mapped to a category identifier at
two levels. For example, Harrods has the category department store at the second, lower,
level and category shop at the first, higher, level. Since not all hashtags are generalizable
(e.g., #love or #instagood), we represent the subset of generalizable hashtags in a
given post as Hg ⊆ Hp. The search space is then equal to 3Hg − 1. To reduce the time
complexity, we can also fix a threshold tg of the maximum number of hashtags to be
generalized.

3.8 Defense Evaluation

In this section, we present the evaluation results of the defense mechanisms presented in
the previous section. We concentrate on the results for the strongest adversary, A1, in
New York since it includes the maximum number of users and locations. The results for
Los Angeles and London follow a similar trend, which we skip due to space constraints.
We consider ts = 2 for the replacement mechanism in order to reduce the search space,
and thus improve the time efficiency. The other parameters th, tr and tg are left free
and their impact is evaluated in our experiments.

We begin with the impact of obfuscating hashtags on the attack accuracy (thus
privacy) with respect to each obfuscation mechanism. Then, we compare the utility
(corresponding to the obtained privacy level) between the hashtags suggested by the
three obfuscation mechanisms separately and the optimal global solution. Finally, we
evaluate the time efficiency of Tagvisor.

3.8.1 Accuracy vs. Obfuscation Level

Figure 3.4 shows the impact of (a) hiding, (b) replacement, and (c) generalization on
the attack accuracy in New York. Except for generalization, we notice that the larger
the number of hashtags obfuscated, the lower the average accuracy (different curves),
thus the higher the privacy, as expected. We additionally observe that, even with 10
original number of hashtags, the average accuracy with two obfuscated hashtags only is
already very low (smaller than 0.2). This means that the attacker is able to correctly
infer the location of only less than 20% of the sample posts. These results demonstrate
the effectiveness of the hiding and replacement mechanisms. However, generalization
(Figure 3.4c) cannot bound the accuracy of the attack when the number of hashtags to
be shared increases. Note that the curves are less smooth in this latter case because we
have more constraint on our testing set: our testing set is much smaller for this scenario
since not all hashtags are generalizable.

3.8.2 Utility vs. Privacy

While the previous subsection does not consider any optimization of utility, in this
subsection we assume that the user relies on the optimization problem defined in (3.5).
For our experiments, we measure location privacy by the inaccuracy and set α = 1.
This means that the user wants to release a subset H ′p that leads to a misclassification
of the location and minimizes the utility loss. Note that, for a very few samples in the
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testing set, the adversary can still infer the correct location based solely on the locations
distribution (baseline in Section 3.6), against which Tagvisor cannot help.

Figure 3.5a shows the cumulative distribution function of the minimal utility loss
over all test samples, for the three obfuscation mechanisms, and the optimal one (when
the optimization considers all mechanisms together). First, we observe that replacement
provides close to optimal utility and is selected for the optimal solution in 85% of the
cases, against 14% for hiding, and 1% for generalization. We also notice that hiding
provides higher utility than generalization if the mechanisms are considered separately.
We explain this result as follows: First, replacement misleads the classifier but at
the same time keeps enough utility as the fake hashtags are by design chosen to be
semantically close to the original hashtags. Second, generalization provides worse utility
than hiding because it must modify more hashtags than hiding to reach the same privacy
level, thereby increasing the semantic distance.

We further compare the absolute semantic distances given by all four approaches and
the semantic distance in random pairs of posts (purple plain curve). This baseline utility
curve is constructed by randomly sampling 10,000 pairs of posts in our dataset. We
observe in Figure 3.5a that 90% of the privacy-preserving hashtag sets have a semantic
distance smaller than 3 to the original hashtag sets for replacement whereas, for deletion
and generalization, the corresponding distance is around 6, and the distance between
random pairs goes up to 11. This demonstrates that we can keep a relatively fair amount
of semantic utility with the replacement mechanism.

Finally, we observe in Figure 3.5b (“unbounded” curve) that the utility loss is in
general smaller when the original number of hashtags is larger. This can be explained
by the fact that, when we increase the number of hashtags, we have a larger set of
hashtags to obfuscate. Obfuscating 2 or 3 hashtags already brings enough privacy, as
shown in Figure 3.4. In other words, the relative change in the semantics of hashtags is
smaller when we have a larger original set of hashtags. When the user has originally
one or two hashtags with which the adversary correctly infers his location, he has to
remove one or two hashtags to mislead the adversary, and thus loses most of his utility.

3.8.3 Time Performance

We now present the running time which is an important factor for Tagvisor’s usability,
and we propose solutions for trading off time efficiency with optimality. All the
experiments are conducted on a laptop computer with 3.3 GHz CPU and 16 GB
memory, and are implemented relying on Python packages such as pandas, numpy,
and scikit-learn. It is worth noting that our experiments can be further optimized
by using more efficient programming languages or libraries, and by parallelizing the
computations, e.g., of the three obfuscation methods. Also, current smartphones’
computing capabilities are shown to be close to those of laptops [51].

Figure 3.5c shows how the running time evolves with an increasing number of
hashtags. It clearly demonstrates that the optimal solution (“unbounded” curve) is not
practical when the original number of hashtags goes beyond 5. For instance, it takes
more than 2 seconds for 6 hashtags. Even if most posts are shared with fewer than
6 hashtags, we want to provide a (nearly) optimal and efficient mechanism for users
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willing to share 6 or more hashtags.
Each curve in Figure 3.5c denotes a different maximum number of hashtags that

can be obfuscated. We observe that, by bounding this maximum number to two, we
obtain a total running time of around one second for any number of original hashtags,
which is very satisfactory. We can even reach half a second by bounding it to one
hashtag. At the same time, we can observe in Figure 3.5b that the utility obtained
with this maximum number bounded by one is very close to the optimal utility already.
With this number bounded by two, the corresponding utility curve and the optimal
one can hardly be differentiated. From a privacy perspective, even by bounding to two
obfuscated hashtags, we get an average accuracy equal to 0.038, which is smaller than
the baseline value (0.053) reported in Section 3.6. Only with an upperbound of one
hashtag, we get an accuracy (equal to 0.21) greater than the baseline. This shows that
bounding the number of possible hashtags to be obfuscated to two provides the best
utility-privacy-efficiency trade-off.
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(a)

(b)

(c)

Figure 3.4: Evolution of the accuracy (A1) with respect to different original numbers of
hashtags to be shared (x-axis) and numbers of hashtags to be obfuscated (from 0 to 3)
for (a) hiding, (b) replacement, and (c) generalization in New York. 29
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(a)

(b)

(c)

Figure 3.5: (a) Cumulative distribution function (CDF) of the minimum utility loss, i.e.,
semantic distance, for maximum privacy constraint, of the three obfuscation mecha-
nisms and the optimal one among all mechanisms. (b) Average minimum semantic
distance of the original hashtags from the optimal solution (unbounded) and solutions
with an upperbound on the number of hashtags to be obfuscated with respect to the
number of original hashtags (x-axis) (c) Average running time of Tagvisor (per sample)
with respect to the number of original hashtags.
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3.9 Discussion

We discuss here some important details of our proposal. First of all, our attack is
orthogonal to the use of computer vision techniques as it does not rely on the photo
content or any visual background at all. It relies only on hashtags to make it applicable
to a wider variety of settings. Of course, if the posts contain photos in addition to
hashtags and the background of the photos is comprehensible, a human or advances in
computer vision might sometimes have better chances of identifying the location of a
photo. The evaluation of the privacy impact of such cases is left for future work.

Second, one may think that the set of sanitized hashtags shared via Tagvisor could
be used by the adversary to improve his machine-learning model. Despite being intuitive,
this statement does not hold. First, the location is by definition not shared with the
hashtags released using Tagvisor, thus cannot be used to train the adversary’s classifier.
Indeed, someone uses Tagvisor if he wants to hide his location. Moreover, the location
that the adversary infers via hashtags does not provide him with any extra information
than what is already contained in his trained classifier. Only the new knowledge brought
by users sharing both hashtags and their locations (i.e., not using Tagvisor) will be
incorporated into the knowledge base K.

Third, our semantics-based utility metric does not necessarily encompass the purposes
of all users. This motivated us to leave some degrees of freedom to the users in Tagvisor,
as explained in Section 3.7. Concretely, the user can decide to either let the application
directly suggest the optimal set of hashtags, or suggest the best sets for each obfuscation
mechanism. The user can even set a minimum/maximum number of hashtags to be
shared, also for each mechanism, and receive recommendations. We believe that this
approach brings both usability and maximal utility for all users. A user study to analyze
the acceptance of Tagvisor among OSN users would be an interesting future work.

Finally, by requiring that posts contain both hashtags and locations, our dataset
may be biased towards users that are more willing to share locations. Our high accuracy
in the location inference attack could be partially attributed to this bias in the testing
set. However, one must realize that we cannot avoid such a restriction as we need
the ground truth on the location to evaluate the attack performance. In the worst
case, our attack evaluation provides a lower bound on the average privacy of sharing
hashtags. Moreover, as shown in Figure 3.1, users usually share hashtags, to a large
extent regardless of whether they jointly share their location. The training set is a
priori not biased, as even the adversary must have access to both location and hashtag
information to train his classifier.

3.10 Conclusion

The rapid adoption of new concepts and tools in the modern society poses novel risks
towards privacy that users are not always aware of. In this paper, we thoroughly
investigate the impact of hashtag sharing on location privacy. We present and show the
effectiveness of a random forest classifier that uses hashtags for fine-grained location
inference within and across cities. In order to counter the proposed attack, we propose
three obfuscation mechanisms and an efficient system that determines the optimal/near-
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optimal set of hashtags to preserve privacy without degrading significantly the original
utility.

Our work demonstrates a clear threat towards location privacy stemming from the
use of hashtags. Even though some users intentionally use hashtags to reveal their
(more or less accurate) locations, many of them do not make use of hashtags that are
clearly linked to location information, and thus should expect some level of location
privacy. In the context of privacy, even a moderately large absolute number of affected
individuals represents a serious enough negative effect [23], which is effectively reduced
by our proposed privacy-preserving system, Tagvisor.

As future work, we plan to study how the publication time of the post can help
improve the classifier’s success. Besides temporal information, other cues could boost
the accuracy of the inference attack, for example, social proximity to already geo-
located users or use of deep learning on the images to identify background locations,
etc. All these can further degrade users’ location privacy, and it will be interesting to
incorporate them in our framework in the future. Another direction for future work
would be to incorporate defenses against other privacy threats arising out of hashtags
such as demographics, linkability and friendship between users.
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Figure 4.1: Example of an Instagram post containing multimodal information. We
investigate privacy threats emerging in such a multimodal setting against an adversary
that uses a combination of images, locations, text and hashtags shared with a post as
well as already revealed friendships between users of an OSN.

4.1 Motivation

As discussed earlier, Online Social Networks (OSNs) have become an indispensable
part of people’s life in the modern society. Leading players in the businesses, such
as Facebook and Instagram, have acquired a large number of users. Initially, people
used OSNs mostly to articulate their friendships. With time, online activities have
become increasingly elaborate and diverse. Users publish tweets on Twitter, statuses on
Facebook and captions on Instagram. Photos constitute a large proportion of the social
media content. People also share their locations, popularly known as check-ins, via GPS-
enabled smartphones. More recently, hashtags have become very popular for content
discovery and advertisement. Figure 4.1 shows an example of a typical OSN/Instagram
post that consists of a photo, shared with a textual caption, supplemented with hashtags,
and a geo-tagged location.

Extensive amounts of such diverse user data is generated in OSNs everyday which
has been exploited by various parties to gain a deeper understanding of our society. On
the downside, privacy risks stemming from data sharing in OSNs have become a major
concern. Researchers have highlighted potential attacks on various aspects, e.g., social
security number prediction [1], stalking and re-identification [37] and various inference
attacks. However, most prior works in this direction explore only a single kind of user
generated content to infer another hidden attribute. For example, Backes et al. [8] infer
social relations from users’ locations; Zhang et al. [P1] infer user locations from hashtags;
Shoshitaishvili et al. [103] infer pairs that are dating using facial recognition. In a
realistic scenario, adversaries would utilize not just a single kind but as many different
kinds of data as possible to achieve their goal. Works that do consider heterogeneous
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data [33] utilize only a single instance of static profile data such as username, profile
picture, home location, etc or a footprint of only one modality [66]. However, users
generate much more than only one kind of content and they generate this multimodal
content continuously. The multimodal footprint of users built up over time from the
data they post everyday, collectively gives a much more faithful reflection of the user’s
interests. Such multimedia footprints of users are also getting increasingly diverse.

In order to fully assess the privacy risks arising from such multimodal footprints
over time, a comprehensive evaluation is needed which, to our knowledge, has not
been addressed in the literature. This paper aims to fill this gap with a framework
incorporating multimodal data in OSNs to assess users’ privacy risks.

Out of the various privacy risks in OSNs, we concentrate on inferring social relations.
Social relationships are recognized to pose high threats to user privacy. In addition to
revealing users’ social identities, social relationships can potentially leak further sensitive
attributes about a user, which the user explicitly intends to hide in their own profile.
In practice, OSN users have also begun to increasingly hide their social circles [26].

4.2 Contributions

We conduct the first large-scale privacy assessment of collective multimodal information
shared continuously over time in OSNs against an adversary that leverages not just a
single component but combines all available components of user-generated content. In
particular, we consider five kinds of information: images, texts, location, hashtag, and
(incomplete) social relations. We evaluate on a real-life dataset containing 22 million
user posts in two cities which we collected from Instagram.

Our contributions are two-fold. First, we introduce three novel monomodal friendship
inference attacks based on hashtags, images, and text, respectively. To the best of
our knowledge, this is the first work that uses text and image modalities to conduct
friendship inference in social networks. Our hashtag attack massively outperforms the
only prior work on friendship inference from hashtags [117] by 7%. We use self-engineered
statistical features, such as the entropy and frequency of usage patterns for our hashtag
and text based attacks. For images, we rely on a state-of-the-art ResNet model to
extract information from images. Experiments show that our hashtag and text attacks
achieve strong performance with AUCs above 0.86 and 0.83 respectively. Our image
attack, while being the weakest, still performs well with AUCs up to 0.637.

Second, we design a multimodal attack that combines five components of posts
to infer social relations. Extensive experiments show that this attack outperforms
all monomodal attacks with AUCs above 0.9. We also show that the multimodal
attack exploits post components that compliment each other and the success of most
attacks increases significantly when combined with additional components. We further
demonstrate the robustness of the multimodal attack against information hiding, and
show that even after deleting 50% of the users’ posts, the drop in the attack performance
is relatively low.
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4.3 Model

4.3.1 User Model

We define an OSN by an undirected, unweighted graph G = (U , E), where the set U
contains all the users and E ⊆ {{u, v}|u ∈ U , v ∈ U , u 6= v} is the set of friendships.
An edge exists between 2 users if they mutually and visibly declare each other as friends
in their profiles.

A user u shares a set of posts Pu which can be composed of images, texts, hashtags
and location check-ins. We define a single post pu ∈ Pu as a 4-tuple 〈ip, `p, tp, Hp〉
which denotes that a user u ∈ U posts an image ip, at location `p (checks in at `),
with a text tp annotated with the set of hashtags Hp. All the posts of u is defined by
Pu = {p1

u, p
2
u . . . p

|Pu|
u }.

We denote the overall set of posts by P, images by I , textual posts by T , the set of
hashtags by H and the set of locations L. Accordingly, for u, Iu ⊂ I represents the set
of images, Hu ⊂ H represents the set of hashtags, Tu ⊂ T the set of texts and Lu ⊂ L
the set of check-ins shared by u.

4.3.2 Adversary Model

We consider an adversary that tries to predict whether a pair of individuals u and v
that explicitly hide their friendship are socially related or not. A pair of users can hide
their friendship in different ways depending on the OSN application, for example by not
following each other or not enlisting each other in their respective friend lists.

Users may want to do so for several reasons such as suppressing a workplace romance,
or protecting themselves from target development by surveillance agencies ([48] reveals
how NSA collects mobility and travel habit data to spot new unknown associates from
already known targets). The adversary could be any party with the ability to crawl an
OSN and access user posts.

Our method can also be used as a tool by users who want to maintain some social
distance online from certain people. To this end, our attacks output a probability score
of a user pair being related, based on their (as well as other people’s) past activity on
the social network. This score is an indication of the closeness or similarity of the user
pair in the current state of the social network. The knowledge of the current state is
publicly available and can be assumed to exist in a regularly trained machine learning
model that resides on the user device. Whenever a privacy conscious user wants to
make a post on social media, (s)he can first use such a tool on users that she does not
want to be associated with, to check the closeness scores that would result after making
the post.

The adversary has access to posts shared by the pair of users {u, v} namely Pu
and Pu as well as the friendships explicitly published on the OSN, E. A feature ~xD

{u,v}
for a pair {u, v}, is a function of the posts Pu and Pv shared by them and friendships
published on the OSN, G. The adversary constructs features ~xD

{u,v} from each component
of posts: hashtags, location check-ins, texts and images as well as published friendships
such that D ⊆ {H ,T , I ,L, E}. The prediction attack is then a binary classification
task f : ~xD

{u,v} → {0, 1}, where we encode the existence of friendship by the positive
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class and the absence of friendship by the negative class. In the upcoming sections, we
describe the process of constructing the features ~xD

{u,v} from each of the individual data
components.

We distinguish between 2 kinds of adversaries for ease of readability. The first kind
of adversary has access to and utilizes only a single component of OSN posts. We name
them according to the information they have access to/use:

1. The Text Adversary, TA which uses the text component of OSN posts. We denote
the feature vector used for the corresponding prediction task by ~xT

{u,v}.
2. The Hashtag Adversary, HA which uses the hashtag component of OSN posts. We

denote the corresponding feature vector by ~xH
{u,v}.

3. The Image Adversary, IA which uses the image component of OSN posts. We
denote the corresponding feature vector by ~xI

{u,v}. 4. The Location Adversary, LA which
uses the location component of OSN posts. We denote the corresponding feature vector
by ~xL

{u,v}.
5. The Network Adversary, NA which uses the friendships explicitly published by

OSN users. Since friendships on the OSN are represented by edges E, we denote the
corresponding feature vector by ~xE{u,v}.

We refer to this group of attacks as monomodal attacks.
The second kind of adversary combines multiple information components shared

by users of OSNs. We name such an adversary as the Multimodal AdversaryM and
this group of attacks as multimodal attacks. When the M uses a subset D′ of post
components, we call it a Subset Adversary SAD

′ , D′ ⊂ {H,T, I, L,E} and 2 ≤ |D′| ≤ 4.

4.4 Dataset

To evaluate our attacks, we use a dataset of Instagram, one of the largest OSNs ∗ of
this era, which has been used previously for other works [8], [P1], [P4], [117]. Ideal as
it might be, it remains infeasible to obtain the ground truth for a dataset where people
hide their friendship online in spite of secretly being friends in real life. Therefore we
adopt the best possible alternative and evaluate our attacks on a simulation of the ideal
dataset by using a real life Instagram dataset. Compared to other OSNs like Twitter
which is mainly used for sharing news, current events and public statements, Instagram
is better suited for friendship inference as it is mainly used to share topics related to
lifestyle, interests, hobbies, leisure and travel etc. Consequently, Instagram friends tend
to be socially closer in real life as well. On the other hand, crawling Facebook (the
largest OSN) is prohibited. Moreover, Instagram focuses more on sharing of visual
content and hashtags and is used by many brands to humanize their content for better
connecting customers and growing brand awareness. A typical Instagram post as shown
in Figure 4.1 consists of a photo(s) or video along with captions and hashtags and is
geo-tagged with locations or Points of Interest (POIs).

The dataset contains 8,309,482 posts from 10430 users in Los Angeles and 14,671,556
posts from users in New York comprising of photos, captions, hashtags and tagged
locations that were publicly posted along with the corresponding user ID, and for each

∗https://www.dreamgrow.com/top-15-most-popular-social-networking-sites/
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user, the respective followers. Moreover, there are 18,221 friend pairs for LA out of which
we obtain 17,043 pairs that have at least 1 out of the 5 types of feature data. From NY
we collected 41,501 friend pairs, out of which 40,883 pairs have feature data in at least
1 out of the 5 attack groups. For individual attacks, we eliminate friend pairs that do
not have the corresponding feature data. We further do not target friendship inference
between Instagram accounts that are likely to be celebrities or bots. Therefore, we filter
out accounts whose numbers of followers are above the 90th percentile (celebrities) or
below the 10th percentile (bots) following prior works, [19, P1, 100, 8].
Ethics. Our institution neither provides an IRB nor mandates (or enables) approval for
such experiments. Nevertheless, only publicly available data is collected via Instagram’s
public API in 2016. We anonymize the datasets by removing all users’ screen names,
and replacing their Instagram IDs with randomly generated numbers. Only these
anonymized datasets are then stored for experiments in a central server with up-to-date
software, encrypted hard drives and access only possible from two white-listed internal
IP addresses using authorized SSH keys.

4.5 Attack using Text

In this section, we describe our friendship inference attack for the Text Adversary TA
followed by an experimental evaluation.

4.5.1 Attack Methodology

The Text Adversary TA has access to the text like tweets, statuses or captions shared by
users. We design features for this attack in two phases:

4.5.1.1 Phase I

We first collect all textual data shared by each user and tokenize the text sequences.
We weigh the tokens according to the number of users in the overall OSN that use them
such that tokens used by a majority of users have lower weight than those used by fewer
users. To this end we use a Bag of Words model with TF-IDF (Term-Frequency Inverse
Document-Frequency). For a term t and a document d, TF-IDF(t,d) is the product of
the term frequency tf(t,d) and inverse document frequency idf(t).

TF-IDF(t,d) = tf(t,d)× idf(t)

where term frequency is defined as tf(t,d) = nt,d∑
t′∈d

nt′,d
with nt,d as the number of

times term t appears in document d and ∑t′∈d nt′,d as the total number of terms in
d. Meanwhile, inverse document frequency is idf(t) = log nd

1+df(d,t) with nd as the total
number of documents and df(d, t) as the number of documents that contain term t. As
we see, the IDF reweights the popular but less interesting words.

The resulting TF-IDF vectors are then normalized by the Euclidean norm:

vnorm = v

||v||2
= v√

v12 + v22 + · · ·+ vn2 .
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We therefore convert the text sequences of all users into a matrix of TF-IDF vectors.
Assuming W is the overall set of words in the textual dataset for a city or in other
words, the vocabulary of the Text Adversary TA, we denote each user’s TF-IDF vector
by ~Tu ∈ R|W | such that ~Tu = (TF-IDF(t1, u), TF-IDF(t2, u), . . . ,TF-IDF(t|W |, u)).

4.5.1.2 Phase II

For each user pair {u, v}, we compare the TF-IDF vectors ~Tu and ~Tv. We calculate 8
common pairwise distances to form the feature vector for the Text Adversary namely
~xT
{u,v} = (cosine( ~Tu, ~Tv), euclidean( ~Tu, ~Tv), correlation( ~Tu, ~Tv),

chebyshev( ~Tu, ~Tv), bray_curtis( ~Tu, ~Tv), canberra( ~Tu, ~Tv),
manhattan( ~Tu, ~Tv), sq_Euclidean( ~Tu, ~Tv)). Table 4.1 contains the definitions of each
measure.

Table 4.1: Definitions of the common pairwise distance measures used for the textual
attack. ~Tu represents the mean of ~Tu. ~Tui represents the ith element in ~Tu.

measure definition

cosine( ~Tu, ~Tv)
~Tu· ~Tv

|| ~Tu||2 || ~Tv ||2

euclidean( ~Tu, ~Tv) || ~Tu − ~Tv||2

correlation( ~Tu, ~Tv) ( ~Tu− ~Tu)·( ~Tv− ~Tv)
|| ~Tu− ~Tu||2 || ~Tv− ~Tv ||2

chebyshev( ~Tu, ~Tv) maxdi=1 | ~Tui − ~Tvi|

bray_curtis( ~Tu, ~Tv)
∑d

i=1 |
~Tui− ~Tvi|∑d

i=1 |
~Tui+ ~Tvi|

canberra( ~Tu, ~Tv)
∑d
i=1

| ~Tui− ~Tvi|
| ~Tui|+| ~Tvi|

manhattan( ~Tu, ~Tv)
∑d
i=1 | ~Tui − ~Tvi|

sq_Euclidean( ~Tu, ~Tv) || ~Tu − ~Tv||22

4.5.2 Evaluation

We now present the preprocessing performed on the raw dataset, followed by the
experimental set-up and the metric we use for evaluating the prediction performance.
Finally we present the results of the experiments.

4.5.2.1 Data preprocessing

In LA, we have 10,018 users that share a total of 7,146,810 captions with their Instagram
posts. For NY we have 12,756,384 captions shared by 18,713 users. In order to remove
terms that are too rare and too frequent, we filter out words that appear in caption
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sequences of more than 100 users and less than 2 users. Following this step, we obtain
16,878 out of a total of 17,043 friend pairs from LA and 40,228 out of 40,883 friend pairs
from NY. We randomly sample an equal number of stranger pairs. Table 4.2 shows the
number of users, terms and friend pairs that we have after pre-processing.

Table 4.2: Pre-processed caption data statistics.

LA NY
users 10,018 18,713
terms 587,190 886,120
friend pairs 16,878 40,228

4.5.2.2 Experimental Set-up

We rely on a random forest with 100 trees to carry out this and all further attacks as
it outperforms other classifiers like Gradient Boosting Machine, Ada Boost, Support
Vector Machine and Logistic Regression in our experiments. Increasing the number of
trees beyond 100 did not significantly change our performance. We perform a 5-fold
cross validation with a 80-20 split into training and test set and repeat it 5 times with
shuffle. We do not tune any parameters and therefore do not require a validation subset.

4.5.2.3 Metric

We evaluate our attack using the AUC (Area Under the receiver operating characteristic
(ROC) Curve) metric. AUC exhibits a number of desirable properties when compared
to accuracy such as decision threshold independence and invariance to a priori class
probabilities. The latter is particularly desired for friendship inference in OSNs in
order to correctly evaluate the attacks in our down-sampled prediction space. Moreover,
there exists a conventional standard for interpreting AUC in a rather intuitive manner.
For AUCs in the range [0.5, 1], with 0.5 associated with random guessing and 1 with
perfect guessing, values above 0.8 represent a very good prediction and values above
0.9 represent excellent prediction. This simplicity renders comparison against baseline
models dispensable.

4.5.2.4 Results

We first assess how each the 8 individual distance measures perform on their own and
thus compare their AUC values in the unsupervised setting in Figure 4.2. We see that
correlation achieves the highest score in both cities, with an AUC value of 0.82 for LA
and 0.84 for NY. Squared Euclidean, Bray-Curtis, Euclidean and cosine distance achieve
only slightly lower AUCs. This shows that the success of our attack is not dependant
on the city from which we collect our data. In the supervised setting, we further achieve
a much stronger performance in both cities with AUC of 0.83 for LA and 0.85 for NY.

It is worth noting that newer, more advanced NLP techniques might be more optimal
for the prediction task. However, this paper is focussed on highlighting the privacy risks
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Figure 4.2: Comparison of individual features for our Text Adversary

from an adversary that combines multiple modalities and the need to defend against
such multimodal attacks. Other state-of-the-art techniques can be adopted similarly in
a straightforward manner.

4.6 Attacks using Hashtags

We now describe our friendship inference attack for the Hashtag Adversary HA along
with an experimental evaluation.

4.6.1 Attack Methodology

We train a machine learning classifier with the auxiliary knowledge of the adversary
which consists of a 10-dimensional feature space which we present below. The adversary
uses the trained classifier and carries out his inference attack on a target user pair by
computing these scores for the pair using their hashtag sharing information.

Our feature design is influenced by certain properties we observed during preliminary
analyses on our dataset. These properties fall into 2 main directions namely the
hashtags shared in common by a user pair and the information content or the relevance
of individual hashtags.

Firstly in Figure 4.3 we observe that in both cities, friends tend to have a higher
number of hashtags in common as compared to strangers. The fraction of common
hashtags, (number of overlapping hashtags divided by the total number of hashtags
shared by both users), also shows a similar property; a high fraction of the overall
hashtags shared by a user overlaps with the hashtags shared by a friend of the user.
Moreover, we only consider stranger pairs that have at least 1 hashtag in common.
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Figure 4.3: CCDF of the number and fraction of hashtags in common between friends
versus strangers.

Including stranger pairs with no common hashtags would only further increase the gap
between the friend and stranger curves. The number of common hashtags shared by a
user pair therefore appears to be a very good indicator of the existence of friendships
between them which motivates the design of our first 4 features. Denoting the set of
hashtags shared by user u and user v by Hu and Hv respectively, we define xcomm and
xfrac as the number and fraction respectively of hashtags shared by both users.

xcomm = |Hu ∩Hv| (4.1)

xfrac = |Hu ∩Hv|
|Hu ∪Hv|

(4.2)

We define xdotp as the (dot product of) number of times the common hashtags were
shared by both users. We represent the number of times a particular user u shares each
hashtag hi ∈ H as a user-hashtag count vector ~nu = (nu,h1 , nu,h2 , . . . nu,h|H|), where
nu,hi

is the number of times hi is shared by u. We use ~nv analogously for user v in a
pair. We define xcos as the cosine similarity between the user-hashtag count vectors ~nu
and ~nv for a user pair {u, v}. Thus,

xdotpro = ~nu ~nv (4.3)

xcosine = ~nu ~nv√
~nu

2 ~nv
2

(4.4)

The second property that can be observed in Figure 4.4 (left) is that hashtags shared
by only a small number of users regularly are more likely to hold special significance
for them, such as hobbies, places visited, private clubs, jargon, acronyms and idioms
and so on. Conversely, hashtags shared at least as frequently but by a larger number of
users are likely to be merely common terms and not characteristic of a socially related
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Figure 4.4: Average probability that two users who share the same hashtag are friends
as a function of (left) overall popularity of the hashtag and (right) entropy of the
hashtag usage. The left x-axis marks the usage count which is the total number of times
the corresponding hashtag was shared by all users in the OSN. The right x-axis marks
the entropy of the vector counting the number of times the corresponding hashtag
was shared by various users.

users. We therefore formalize the notion that a shared hashtag is more likely to reveal
the relationship between users if it is less popular in general. We denote the number of
times a particular hashtag h was shared by each user ui ∈ U as a hashtag-user count
vector ~nh = (nh,u1 , nh,u2 , . . . nh,u|U|), where nh,ui

is the number of times ui shares h. We
define xminH as the minimum of the total number of times all users shared a hashtag
among the set of common hashtags between u and v. We represent the total number of
times all users U shared a hashtag hi by nhi

= ∑
u∈U nhi,u.

xminH = min(nhi
: (hi ∈ Hu ∩Hv)) (4.5)

Following the common Adamic Adar (Frequency-Weighted Common Neighbors) [2]
score, we define xaaH as the sum of the reciprocals of the logarithm of nhi

which is the
number of times a hashtag hi common between u and v was shared by all users.

xaaH =
∑

hi∈Hu∩Hv

1
lognhi

(4.6)

The Adamic Adar measure improves counting of common features by giving more
weight to rarer features. We adapt the measure in an Information Theoretic approach
to formalize the intuitive notion that lower entropies are more informative. We define
entropy E of a hashtag hi as the entropy of its hashtag-user count vector over all users U
such that Ei = E( ~nhi

). Therefore, we define xminE as the minimum among the entropies
of all common hashtags,

xminE = min(Ei : (hi ∈ Hu ∩Hv)) (4.7)
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and xaa as the sum of the reciprocals of entropies of each common hashtag

xaaE =
∑

hi∈Hu∩Hv

1
Ei

(4.8)

In the direction of the second property, we also measure the number of times different
users share a particular hashtag as a count vector for a hashtag and then calculate the
entropy of the count vectors for all hashtags in our dataset. Figure 4.4 (right) further
shows that hashtags whose usage count vectors have lower entropies are more indicative
of social relations between their users. We therefore formalize the property that rare
hashtags with lower entropies are more useful. We define xw_aaE as xaa weighted by the
number of hashtags shared by both users and xf _aaE as xaa weighted by the sum of the
reciprocals of entropies of hashtags shared by both users.

xw_aaE = xaaE
|Hu ∪Hv|

(4.9)

xf _aaE = xaaE∑
hi∈Hu∪Hv

1
Ei

(4.10)

Thus we represent the feature vector for the Hashtag Adversary HA for a pair of users
{u, v} as ~xH

{u,v} = (xcomm , xfrac, xdotpro, xcosine, xminH , xaaH , xminE , xaaE , xw_aaE , xf _aaE)

4.6.2 Evaluation

We evaluate the attack in the same way as for the caption attack, i.e. using AUC for a
random forest with five-fold cross validation. We first explain the data preprocessing,
followed by a baseline method proposed in a recent work. Finally we present the results
of the experiments.

Table 4.3: Pre-processed hashtag data statistics.

LA NY
posts 1,712,500 2,999,603
users 10,359 18,896
hashtags 406,692 595,502
friend pairs 5,229 12,765

4.6.2.1 Data preprocessing

We have 2,306,631 unique hashtags shared by 10,418 users in our raw dataset from LA.
For NY, we have 3,090,451 unique hashtags shared by 19,015 users.In order to remove
hashtags that are shared too frequently and too infrequently, we filter out hashtags
that are shared by less than 2 and more than 10 users. Following this step, we obtain
5229 out of a total of 17,043 friend pairs from LA and 12,765 out of 40,883 friend pairs
from NY. We randomly sample an equal number of stranger pairs. Table 4.3 shows the
number of users, terms and friend pairs that we have after preprocessing.
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4.6.2.2 Baseline

We consider as baseline, the only prior work by Zhang et al. [117] that rely on hashtags
to perform friendship prediction. This method uses a user-hashtag bipartite graph
embedding model to automatically summarize hashtag profiles as features for users.

4.6.2.3 Results

We first compare the performance of the 10 individual features on their own by evaluate
each in an unsupervised setting. Figure 4.5 shows the AUC values. We see that xw_aaE
achieves the highest score with an AUC of 0.87 for NY and 0.85 for LA, closely followed
by xf _aaE with an AUC of 0.87 for NY and 0.85 for LA. Both features are based on the
property that rare hashtags with lower entropies are more informative. At the third
place is the cosine distance between the user-hashtag count vectors xcosine followed by
xaaH , xminH and xfrac. We see that the remaining features are significantly outperformed.
Nevertheless, they perform much better than random guessing. These results show that
the success of our hashtag attack is independent of the city from which we collect our
data. Although 6 out the 10 features perform sufficiently well on their own, using them
in a supervised setting with the random forest yields stronger performances in both
cities, with an AUC value of 0.86 for LA and 0.87 for NY.

In contrast, the baseline method achieves an AUC of 0.8 in Los Angeles and 0.82 in
New York. Its also noteworthy that this method involves training many hyperparameters
using cross validation just for learning features. This huge overhead in processing required
in this baseline, combined with around 7% lower AUC compared to our method, clearly
demonstrates the strength of hand-engineered features for a privacy attack such as
friendship inference.

4.7 Attack using Images

In this section, we describe our friendship inference attack using images followed by an
experimental evaluation.

4.7.1 Attack Methodology

The Image Adversary (IA) tries to infer social relationships using the content of the
images posted by users on an OSN. We do not use facial recognition in these images
following the assumption that users who wish to hide their friendship with a certain
people would refrain from posting a picture with them in the first place.

4.7.1.1 Extracting Information from Images.

The recent advent of deep neural networks (NNs) and the availability of massive
computing power and datasets, has facilitated huge breakthroughs in image classification.
In addition to high image classification accuracies, pre-trained NNs can directly be used
on any image to automatically obtain a meaningful feature representation of the image.
This is why we choose a NN based approach for our Image Adversary.
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Figure 4.5: Comparison of individual features for our Hashtag Adversary

We use a Residual Neural Network (ResNet) which is an advanced type of a
convolutional NN for meaningfully extracting information from images. ResNets solve
the problem of degrading/saturating accuracy that is faced by increasing the depth
of deep convolutional NNs [45]. Moreover, training ResNets is easier than training
convolutional NNs when they need to get deeper in order to solve increasingly complex
tasks. We adopt a ResNet namely the Places365-ResNet18 model for PyTorch trained
on the Places365-Standard Database [121] which allows learning of deep scene features
for various scene recognition tasks. The training set consists of 1.8 million images from
365 scene categories, with at most 5000 images per category, consistent with real-world
frequencies of occurrence. †

4.7.1.2 Feature Design.

We extract the final softmax output layer produced by the neural network for each of
the images shared by users in our dataset. For an image Ii, the final layer is a posterior
probability distribution over the 365 classes that correspond to the 365 different scene
categories c1, . . . , c365 which we represent by ~Ci =Pr(c1, . . . , c365|Ii). For each user u
we count the number of images that belong to each of the 365 scene categories. An
image belongs to a category if its corresponding class membership probability outputted
by the ResNet is higher than a certain percentile threshold (which we describe during
the dataset pre-processing in section 4.7.2.1). We denote this count by the vector

†The scene category list can be found on https://github.com/metalbubble/places_
devkit/blob/master/categories_places365.txt
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~nu = (nu,1, nu,2, . . . nu,365) where nu,c represents the number of images shared by user u
that depict the scene corresponding to category number c. We use ~nv analogously for
user v in a pair. We then design a set of 4 feature types for each user pair {u, v} as
follows:

1. We define the feature min_count as the category-wise minimum of the 2 count
vectors ~nu and ~nv i.e. out of the number of images posted by both users in each of the 365
categories, we count the minimums, min_count = (min (nu,1, nv,1), min(nu,2, nv,2), . . .
min (nu,365, nv,365))

2. We define the feature xcosine as the cosine distance between the category-wise
count vectors ~nu and ~nv.

3. We define the feature xF_maxcat as the maximum over the 365 components of
the vector min_count, which represents the frequency of the mutually most frequently
shared category in images shared by both users. xF_maxcat =
max(min(nu,1, nv,1), min(nu,2, nv,2), . . . min(nu,365, nv,365))

4. We perform a category-wise sum of the posterior probabilities over all images
shared by each user which we represent by a usage-vector ~sc = (sc,u1 , sc,u2 , . . . sc,u|U|),
where sc,uj represents the summed up probability that a category c is depicted over all
images shared by uj . We define the feature xE_maxcat as the entropy of the usage-vector
~smaxcat of the mutually most frequently shared category maxcat.
Finally, we represent the feature vector for the Image Adversary for a pair of users

{u, v} as ~xI
{u,v} = (min_count, xcosine, xF_maxcat, xE_maxcat).

Table 4.4: Pre-processed image data statistics.

LA NY
users 5,082 12,575
images 2,052,619 4,840,670
friend pairs 4,262 18,847

4.7.2 Evaluation

We evaluate the attack in the same way as for the previous attacks, i.e. using the AUC
metric for a random forest classifier and assigning 80% of each of the friend and stranger
pairs for training and 20% of each of the friend and stranger pairs for testing.

4.7.2.1 Data preprocessing

We could download 4,857,971 photos from 8,309,482 urls for our image-based attack
from LA and 5,092,951 photos from 14,671,592 urls from NY. We feed each of these
photos onto our pre-trained ResNet model and extract the final layer, i,e the probability
distribution over the 365 scene categories. We only require the significant scene categories
that are predicted to be depicted in an image. Therefore, we first remove the category
probabilities lower than 5% by setting them to 0. We obtain 4,262 out of a total of
17,043 friend pairs from LA and 18,837 out of a total of 40,883 friend pairs from NY.
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Figure 4.6: Comparison of individual features for our Image Adversary

We randomly sample an equal number of stranger pairs. Table 4.4 shows the number of
users, images and friend pairs that we have after preprocessing.

4.7.2.2 Results

In order to evaluate how each of the features perform on their own, we evaluate each of
them in an unsupervised setting. Figure 4.6 shows the AUC values for the individual
features for our attack namely min_count, xcosine, xF_maxcat and xE_maxcat. We see
that both min_count and xcosine perform equally in both cities. In NY, min_count
performs the best (AUC 0.63) followed by xcosine (AUC 0.61). In LA, xcosine performs
the best (AUC 0.58) followed by min_count (AUC 0.57). In the supervised setting, we
achieve an AUC value of 0.64 for NY and 0.60 for LA. Figure 4.7 shows the AUC values
of the image attack in the supervised setting compared with the other attacks using
hashtag, text, location, partial network data as well as the multimodal attack.

Although the performance is relatively weak, we can still infer a signal and perform
much better than random guessing. Inferring the content of images is an inherently
hard problem. Technology has not yet been able to achieve what an average human can
in terms of drawing conclusions from the contents of a single image. Most research on
computer vision and face recognition techniques work only with small labelled datasets
and the scalability to real world, unseen data is yet to be explored. We are the first to
perform image content analysis on a large scale real world dataset. Since in the large
scale, an adversary using computer vision techniques can perform inference attacks in a
matter of seconds, privacy analysis of image content remains an important problem.

4.8 Attack using Locations and Network Information

In this section we present the details of our Location Adversary LA and Network
Adversary NA, both of which are based on state-of-the-art methods. We follow up with
experimental evaluation.
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4.8.1 Location Adversary

The Location Adversary (LA) has access to locations shared by users and tries to infer
whether a pair of users are socially related. Using check-in information for inference
of users’ social relations has been extensively studied. We adopt the state-of-the-art
method walk2friends[8] that has been shown to outperform other approaches.

The walk2friends method can be explained in three steps: First, we organize users
and locations into a bipartite graph, with the number of visits by a user to a location as
the weight of the corresponding edge. Second, multiple random walks are performed on
the graph to generate a set of walk traces with the transition probability from one node
to another defined over the edge weight. Finally, we utilize the skip-gram model [73, 74]
to embed each user into a continuous vector. The vector for a user u, is denoted by ~Eu.

To perform friendship prediction, we follow the image and text attacks above.
Concretely, for two users u and v, we define the following feature vector ~xL

{u,v} =
(cosine( ~Eu, ~Ev), euclidean( ~Eu, ~Ev), correlation( ~Eu, ~Ev), chebyshev( ~Eu, ~Ev),
bray_curtis( ~Eu, ~Ev), canberra( ~Eu, ~Ev),manhattan( ~Eu, ~Ev), sq_Euclidean( ~Eu, ~Ev))
and train a random forest classifier to perform our attack.

4.8.2 Network Adversary

Our network adversary (NA) has access to a limited fraction of relationships in the
online social network and tries to predict these missing relationships. This is inline with
the traditional setting of link prediction. We leverage state-of-the-art tool node2vec to
implement NA [38], which has been shown to outperform traditional methods, such as
Jaccard Index, Adamic-Adar score, and Preferential Attachment.

node2vec first performs random walk on the partial social network, this again results
in a set of truncated random walk traces.‡ Then, skip-gram is adopted to embed each
user u into a vector ~Fu. For two users u and v, we define their feature vector as the
Hadamard product between their vectors [38], i.e., ~xE{u,v} = ~Fu ◦ ~Fv.

Table 4.5: Pre-processed location and network data statistics

(a)

LA NY
users 10,430 19,038
locations 23,452 30,073
friend pairs 17,043 40,883

(b)

LA NY
users 9,347 17,853
friend pairs 16,294 39,756

‡We follow the default parameter setting of node2vec in the random walk.
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4.8.3 Evaluation

We evaluate the attacks in the same way as described previously, i.e. using the AUC
metric for a random forest classifier and assigning 80% of each of the friend and stranger
pairs for training and 20% of each of the friend and stranger pairs for testing.

4.8.3.1 Data Preprocessing

For the Location Adversary, following [8], we filter out users who have not visited at
least two different locations since such accounts with many check-ins at one location are
most likely to be local businesses for example bars and pubs. We further filter out users
with less than 20 check-ins, whom we consider to be active users. We obtain 17,043
friends pairs from LA and 40,883 from NY.

For the Network Adversary, we start with the friend pairs generated for the hashtag,
location, image, and text based attacks as described above. Since we perform 5 fold
cross validation, we use 80% of the friend pairs to generate a partial network graph G′
which we use for building the node2vec embedding for users. These set of edges in our
training set is a proper subset of the original graph G. We obtain 16,294 friends pairs
from LA and 39,756 from NY. For both attacks, we randomly select an equal number
of stranger pairs out of the set of already sampled stranger pairs for the hashtag, image,
and text attacks. Tables 4.5a and 4.5b present the pre processed data statistics for both
attacks. We repeat the feature generation process (random walk followed by embedding
generation and hadamard distance calculation) 5 times with a 80-20 split, leaving a
different set of 20% pairs for testing each time. We further shuffle the samples and
repeat the 5 fold cross validation 5 times overall.

4.8.3.2 Results

We achieve AUC values of 0.77 in average with standard deviation of 0.005 in LA and
0.76 with 0.003 in NY, for the location based monomodal attack. For the network
based mononmodal attack, we achieve a mean AUC value of 0.58 for both cities and a
standard deviation of 0.004 and 0.007 for LA and NY respectively .

4.9 Multimodal Attack

We now present the Multimodal AdversaryM, which leverages information from all 5
components of user posts presented in the previous sections, to infer social relationships.
We first present the attack methodology along with a variant called the subset adversary.
We follow up with an empirical evaluation as well as robustness of the attacks against
information hiding.
Overview of the Fusion Mechanism The previous attacks were based on training
a machine learning classifier which required a feature design process (hand-engineered
or aided by deep learning techniques). For this attack, we use the features already
designed for the 5 individual post components as described in each previous attack
section. However, we weigh the information from each of the 5 components according to
their relative trustworthiness, which we infer from the strength of the individual attacks.
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To this end, we divide the training set Vtrain into 2 sets. We use one set to train the 5
random forest classifiers using the 5 respective feature vectors. We use the second set
to assign a confidence score a to each of the 5 trained classifiers using their respective
AUC values. We use these AUC values as indicators of the strength or trustworthiness
of the predictions made by the 5 classifiers on the target set Vtar.

4.9.1 Attack Methodology

We describe this attack in 4 stages.
In the first stage, we divide the training set Vtrain into 2 parts: Vtrain-train and

Vtrain-test. We train the classifiers for the five modalities separately using the feature
vectors ~xH

{u,v}, ~x
T
{u,v}, ~x

I
{u,v}, ~x

L
{u,v} and ~xE{u,v} on the set Vtrain-train.

In the second stage, from each of the 5 trained random forests, we extract the
respective posterior probabilities for the friend class, i.e. the probability with which
a sample pair in the set Vtar is socially related. In a random forest, the predicted
posterior probabilities of an input sample are computed as the mean predicted class
probabilities of the trees. The class probability of a single tree is the fraction of samples
of the same class in a leaf.

Let xH , xT , xI , xL and xE denote the posterior probabilities for the friend class
for a sample {u, v} ∈ Vtar as predicted by the classifier trained using hashtag, text,
image, location and friendship information respectively. Therefore we have for D ∈
{H ,T , I ,L, E} , xD

{u,v} = Pr(R{u,v} = 1|~xD
{u,v}), where R{u,v} is the random variable

representing the relationship between the user pair {u, v}.
In the third stage, we calculate a confidence score a for each of the 5 attack

components above. Let aH , aT , aI , aL and aE denote the confidence scores of the
hashtag, text, image, location and friendship attacks respectively. We use the Area
under the ROC curve (AUC) score between the true class labels and the predicted
posterior probabilities for the set Vtrain-test for the friend class as the confidence score.
Therefore we have for D ∈ {H ,T , I ,L, E} and {u, v} ∈ Vtrain-test,

aD = AUC(y{u,v}, xD
{u,v})

where y denotes true class labels and xD
{u,v} denotes the predicted posterior probabilities.

In the fourth and final stage, we perform a weighted averaging of the 5 posterior
probabilities for each sample {u, v} ∈ Vtar using their normalized confidence scores. We
obtain the final score sM{u,v} for a sample {u, v} ∈ Vtar for the Multimodal Adversary
M as,

sM{u,v} =
∑

D∈{H ,T ,I ,L,E}
xD
{u,v} ∗

aD∑
D∈{H ,T ,I ,L,E}

aD

This score represents the likelihood that {u, v} are friends.

4.9.2 Subset Adversaries

We further analyze how various combinations of individual post components perform
towards inferring friendship between OSN user pairs. To this end we model a reduced
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Multimodal Adversary which uses a proper subset of the set of texts, hashtags, images,
locations and friendship-edges published by OSN users, such that the adversary does not
use at least 1 component out of the 5 post components. We call such an adversary that
uses a subset D′ of post components, a Subset Adversary SAD

′ . The adversary uses any
combination of a minimum of 2 upto a maximum of 4 out of the 5 post components, thus
we have 25 different possible combination. Therefore we calculate the corresponding
score sD′

{u,v} as:

sD
′

{u,v} =
∑

D∈D′

xD
{u,v} ∗

aD∑
D∈D′

aD

where D′ ⊂ {H,T, I, L,E} and 2 ≤ |D′| ≤ 4

4.9.3 Evaluation

We first present a baseline approach which we design to evaluate the multimodal attack.
We then describe the dataset and evaluation metric. We then discuss the results, followed
by an analysis of the interplay between the different modalities. We end the section
with an analysis of the robustness of the attack against the amount of data present in
the OSN.

4.9.3.1 Baseline

We implement a baseline that performs a simple averaging of the posterior probabilities
from each data component. Thus the baseline score sBL{u,v} for a sample {u, v} ∈ Vtar

with posterior probabilities xD
{u,v} where D denotes the individual data component which

is used by each attack is defined as sBL{u,v} =
∑

D∈{H,T,I,L,E} x
D
{u,v}

|D|

4.9.3.2 Dataset

We use the same dataset as for the individual attacks. As mentioned earlier, we obtained
17,043 friend pairs for Los Angeles and 40,883 friend pairs for New York. We collect
the stranger pairs sampled in the hashtag, image, and textual attacks. Each pair in this
resultant dataset for the Multimodal Adversary has feature values for at least one out
of the set {~xH

{u,v} (hashtag), ~xI
{u,v} (image), ~xT

{u,v} (text), ~xL
{u,v} (location) and ~xE{u,v}

(partial network) }.

4.9.3.3 Metric

Unlike the monomodal attacks, for the multimodal attack, we only calculate a score
s{u,v} for each sample pair in our target set instead of designing a set of features. The
score sM{u,v} represents the likelihood that {u, v} are friends, i.e.

f(xM{u,v}) = sM{u,v}
?
> t

for a threshold t. Experimenting with different values of t gives us a range of false and
true positive values. Plotting the false-positive rate on the x-axis and the true-positive
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Table 4.6: Performance (mean and standard deviation of AUCs) of the subset adver-
saries (multimodal attacks using size-2, size-3 and size-4 subsets of the 5 post compo-
nents) for Los Angeles and New York. The best performance for subsets of each size is
marked in bold.

(a) Attacks using 2 components

Data subset Los Angeles New York
{T ,L} 0.897 ±0.003 0.874 ±0.002
{T , E} 0.828 ±0.004 0.845 ±0.003
{L, E} 0.836 ±0.005 0.772 ±0.003
{H ,T} 0.822 ±0.004 0.840 ±0.003
{H , I} 0.767 ±0.007 0.764 ±0.003
{H ,L} 0.805 ±0.005 0.796 ±0.002
{H , E} 0.673 ±0.006 0.682 ±0.003
{T , I} 0.819 ±0.004 0.835 ±0.003
{L, I} 0.836 ±0.004 0.771 ±0.003
{I , E} 0.626 ±0.006 0.652 ±0.004

(b) Attacks using 3 components

Data subset Los Angeles New York
{T ,L, I} 0.901 ±0.003 0.876 ±0.002
{T ,L, E} 0.900 ±0.003 0.878 ±0.002
{T ,L,H} 0.899 ±0.003 0.875 ±0.002
{H ,L, E} 0.853 ±0.005 0.805 ±0.003
{H ,T , I} 0.819 ±0.004 0.836 ±0.003
{H ,T , E} 0.831 ±0.004 0.846 ±0.003
{H , I ,L} 0.853 ±0.004 0.802 ±0.003
{H , I , E} 0.710 ±0.006 0.731 ±0.003
{T , I , E} 0.833 ±0.004 0.850 ±0.003
{I ,L, E} 0.846 ±0.004 0.784 ±0.003

(c) Attacks using 4 components

Data subset Los Angeles New York
{T ,L, I , E} 0.904 ±0.003 0.881 ±0.002
{T ,L,H , E} 0.901 ±0.003 0.879 ±0.002
{T ,L,H , I} 0.902 ±0.003 0.876 ±0.002
{H ,T , I , E} 0.836 ±0.004 0.851 ±0.003
{H , I ,L, E} 0.863±0.004 0.816 ±0.003
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Figure 4.7: Comparison of the AUC values (mean and standard deviation) across all
folds and iterations achieved by all 6 adversaries (the Hashtag (HA), Image (IA), Text
(TA), Location (LA), Network (NA) and the Multimodal AdversaryM) for Los Angeles in
blue and New York in orange.

rate on the y-axis produces the ROC (Receiver Operating Characteristic) curve. We
use the area under this curve (AUC), to analyze the success of the attack. Unlike
other metrics, AUC summarizes the performance in a straightforward manner: 0.5 is as
bad as random guessing and 1.0 indicates perfect performance. AUC also exhibits a
number of desirable properties when compared to accuracy such as decision threshold
independence and invariance to a priori class probabilities. We assume the attacker
to know the best threshold. Nevertheless we also report the precision and recall for a
threshold that corresponds to the percentage of friends in the training set.

4.9.3.4 Results

We now discuss the results of our multimodal and subset adversaries. We perform a
5-fold cross validation, with different target pairs each time and shuffle and repeat the
5-fold cross validation 5 times. For each attack, we report the mean and standard
deviation.
Multimodal Adversary M. For our Multimodal Adversary using the weighted
average score sM{u,v} as described above, we achieve a strong performance in both cities
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with a mean AUC of 0.91 (standard deviation of 0.003) for Los Angeles and 0.884
(standard deviation of 0.002) for New York. For the baseline approach, using the simple
average score sBL{u,v}, we achieved an AUC of 0.899 on average with standard deviation
of 0.003 for Los Angeles and 0.880 with a standard deviation of 0.002 for New York.

We also compare the multimodal attack with the 5 monomodal attacks in Figure 4.7.
The multimodal attack achieves the strongest performance for both cities. Moreover,
the attacks using only hashtags and only text significantly outperform the attacks using
only images, only locations and only friendship edges.

Let p denote the percentage of true friends in a training set. We label the top p%
pairs ranked by their scores sM{u,v}, as positive (predict as friends). At thresholds chosen
this way, both precision and recall are the same: an average of 0.817 for Los Angeles
with standard deviation of 0.005 and an average of 0.807 for New York with the same
standard deviation.
Subset Adversaries SAD

′. Table 4.6 presents the AUCs of size-2, size-3 and size-4
subset adversaries. The best performance for subsets of each size is marked in bold.
Among all subset sizes, the subsets containing both text and locations perform the best
overall in both cities.

The best performing size-4 subset consists of texts, locations, friendship edges and
images with a mean AUC of 0.904 for Los Angeles and 0.881 for New York. The best
performing size-3 subset for Los Angeles consists of texts, locations and images with a
mean AUC of 0.901 and for New York consists of text, locations and friendship edges
with a mean AUC of 0.878. The highest performance among size-2 subsets is achieved
by the combination of text and locations (means of 0.897 for Los Angeles and 0.874 for
New York).

The worst performance in both cities is seen in the attacks combining images and
friendship-edges. This result is not surprising given that the individual attacks using
only image have the worst performance for both cities and for Los Angeles, the attack
using only friendship-edges is the second worst.

4.9.3.5 Interplay between Modalities

We now discuss some interesting observations on the effect of different modalities on
each other.
Complementary Components. The diagonal elements in Figure 4.8 further show
the AUCs of the monomodal adversaries and the non-diagonal elements show size-2
subset adversaries. The greener elements show increasing AUCs and the redder elements
show decreasing AUCs. We see from Figure 4.8 that certain components complement
each other e.g. for the Los Angeles dataset, friendship edges and images on their own
achieve very low AUCs of 0.58 and 0.59 respectively but when combined together the
AUC goes up to 0.63! Location achieve an AUC of 0.77 on its own, but when it is
combined with images, the AUC shoots to 0.84! Yet another example is text which
achieves an AUC of 0.82 on its own but together with locations achieves a much higher
AUC of 0.90! The same patterns can be seen for the New York dataset. These examples
demonstrate that our fusion mechanism for the Multimodal Adversary exploits these
complementing components. Hashtag however does not perform well in combination
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Figure 4.8: Matrix showing AUCs (average across all folds and iterations) achieved by
complementary components (size-2 subset adversary) left: New York, right: Los Angeles.

with any other component for both cities. We investigated by looking at examples of
friend pairs where the hashtag only classifier gave high probabilities for the friend class
and found that for many of those pairs, at least one of the other components had high
probabilities for the stranger class. For example one friend pair used some hashtags
for a social event they went to in New York, however they actually lived in different
continents and one of them was a food blogger whereas the other one didn’t post about
food at all.

Combination of Weaker Components. The monomodal attacks using images, loca-
tions and friendship edges showed the weakest performances individually. However, when
combined with only 1 additional component, their performance improves tremendously
in all cases. For Los Angeles, the size-3 subset of images, location and edges (mean
AUC of 0.84) and even the size-2 subsets of location and edges and location and images
(both having mean AUC of 0.83), significantly outperform the AUC achieved by the
best of them individually i.e. 0.77 by location. Results for New York follows the same
patterns.

Thus we deduce that even though some components are clearly outperformed by
others when used individually, they may contribute significantly towards a much stronger
inference attack when combined together with other weak components.
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Increasing Number of Components, In a majority of the cases, we see from Table
4.6 that combining additional components improves the attack success. For example
adding one component to either of the size-3 subsets {H ,T , I}, {H , I ,L}, {T , I ,L}
and {H ,T ,L} to get the size-4 subset {T ,L,H , I} always improved the AUC. The
same can be observed for other size-3 to size-4 transitions such as {T ,L,H}, {H ,T , E}
or {H ,L, E} to get {T ,L,H , E} as well as size-2 to size-3 transitions such as {T , E},
{T ,L} and {E,L} to {T ,L, E}. This underlines the effectiveness of our proposed fusion
mechanism for the Multimodal Adversary. Further, the success of the attacks continue
to increase consistently across cities as well.

Thus, increasing the number of components increases the attack success for almost
all cases. Moreover, the Multimodal AdversaryM using all 5 modalities does not have a
significant increase in performance over the best performing size-3 or the size-4 subsets
adversaries. This can be explained by the impact of the relatively weak image and
network adversaries, which are unable to contribute to the inference attack anymore
beyond the performance achieved by the remaining components.

We summarize our key observations as follows:

1. Various pairs of components complement each others’ attack success when com-
bined.

2. A combination of weaker components often increased the attack performance more
than a combination of stronger components.

3. Increasing the number of components almost always increase the attack success.

4.9.4 Robustness

So far we have seen the severity of privacy risks arising from sharing various types of
posts on an OSN. An immediate question that arises at this point is: Is the problem
solved when users simply shared posts less frequently, how is the performance is affected
if users shared a lower number of posts. We therefore evaluate the robustness of the
four attacks namely the attacks using hashtags, texts, images and a combination of
all three of them in the multimodal setting. Robustness of the Location and Network
Adversaries has been extensively studied in prior work that proposed walk2friends and
node2vec.

We first randomly remove a certain proportion of posts published by users and collect
the images, hashtags, texts contained in the remaining posts. Then we recompute the
corresponding feature values for the training set of user pairs with which we then train
three random forest classifiers, one each for hashtags, texts and images. We also use
these three feature sets to carry out the multimodal attack on the subset D′ = {H,C, I}
as described in table 4.6. We begin by removing 10% of the original number of posts in
either dataset and increase the amount of posts to be removed in steps of 10% until
50% of the original number of posts are removed. The selection of posts to be removed
is random.

Figure 4.9 shows the robustness of the attacks against removal for New York. The
y-axis shows the AUC attained at various percentage of posts removed shown in the
x-axis. Results for Los Angeles follow a similar trend and can be found in the appendix
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Figure 4.9: Robustness of our attacks in the New York dataset against removing posts.

0 10% 20% 30% 40% 50%
percentage of posts removed

0.6

0.7

0.8

A
U

C text
image
hashtag
multimodal

Figure 4.10: Robustness of our attacks in the LA dataset. The y-axis shows the AUC
attained at various percentage of posts removed shown in the x-axis

in Figure 4.10. We see that the performance drops gradually for all attacks except
the attack using images only. However the performance does not degrade significantly
even with 50% of the posts removed from the dataset. This shows that the attacks are
quite robust to the amount of data present in the OSN. This calls for advanced defense
mechanisms against adversaries that utilize multiple kinds of user information on OSNs
for preserving both privacy as well as utility.
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4.10 Discussion and Future Work

Our main goal is to show whether a combination of multiple modalities improves the
strength of an inference attack. The three individual monomodal attacks, i.e., text,
images, and hashtags, presented in this paper are first of its kind, and use the most
popular and standard techniques. However, they may be further optimized using newer
techniques. Secondly, some of the unsupervised methods work almost as good as the
supervised attacks, which demonstrates the power of the features we proposed. Thirdly,
our attack may results in false positives in case of users who are not socially related but
post about similar, popular or trending topics or events. However, our attacks eliminate
this effect, by favoring hashtags with low entropy and using TF-IDF for text.

We demonstrated that our attacks are robust to the amount of information shared
by users. This highlights potential future work in analysis of the attack performance
by obfuscating components or posts whose components have the highest contribution
in predicting friendship. A recent work AttriGuard [52] takes an adversarial example
based approach towards classification evasion to defend against users location (city)
inference. However, these defenses are only on the personal attribute level and uses
only type of public data (user’s app rating scores in case of AttriGuard), whereas our
attack deals with multimodal data shared by the user (thousands of images, captions,
hashtags, locations). Applicability of evasion or poisoning attacks requires further
research. Secondly, we demonstrated that the privacy threat is equally severe in datasets
from two different cities. The same framework can be used to analyse data collected
from other OSNs or other cities all around the world. Finally, we only provide a lower
bound on the performance of the attacks. Considering factors like the date or time
when 2 users shared certain posts can potentially make the attacker stronger.

4.11 Conclusion

We present novel attacks on the privacy of social relationships using hashtags, images
and caption data. We also evaluate state-of-the-art tools to infer friendships using
locations and friendships (between other pairs) shared on OSNs. We finally focus on
adversaries that use not just one type of user information but combine all available
types of information for the inference attack. We demonstrate that the success of the
friendship inference attacks are greatly amplified when multiple modes are combined,
for example in the LA dataset, our multimodal attack achieves an AUC of 0.92 whereas
the maximum AUC achieved by any of our monomodal attacks is only 0.8555 (using
hashtags). Our experiments on the subset adversaries demonstrate that although some
components clearly outperform others when used individually, they contribute towards
a much stronger inference when combined together with additional components. The
fusion mechanism for our multimodal adversary is capable of exploiting post components
that complement each other.

We demonstrate that our attacks are robust to the amount of information shared
by users. As newer data types or trends will emerge in the world of OSNs in future,
the multimedia footprints of users would get increasingly diverse. The threat to user
privacy arising from such multimodal adversaries would potentially be much larger.
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4.11. CONCLUSION

Development of effective defense mechanisms or privacy advisors is therefore the need
of the hour.
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5
You Are How You Walk

Quantifying Privacy Risks in Actimetry Data
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5.1. MOTIVATION

5.1 Motivation

In the current era of the Internet of Things, extensive amounts of data are generated
by users not just from internet browsing and social media but also smart devices like
wearables, cars or even household appliances. While some data is shared willingly
and purposely by the users themselves (e.g. social media posts), some data is shared
unknowingly (e.g. web browser telemetry, tracking pixels). Yet some other data, such as
biomedical or genomic data is shared only with a trusted party for a specific purpose (e.g.
health situation monitoring and improvement, activity tracking and analysis, dietary
and lifestyle advice/consultation). This has led to huge interest in privacy concerns
arising out of such data. Recently, acts like the General Data Privacy Regulation or
the California Consumer Privacy Act have imposed strict regulations for collecting,
processing and sharing user data.

Certain types of data are classified as personal or even sensitive personal∗. However,
many kinds of biomedical data (e.g. step counts, heart rate, SpO2, nutrition and
sleep data) are in the gray zone, which are considered sensitive personal information
only under special circumstances when they indicate diseases or disabilities. In case
of biomedical services, the user typically does not have fine grained control over the
data shared, i.e., it is an all or nothing scenario. Such data is extremely sensitive, as it
can expose other information about the user, such as their medical condition, ethnicity,
habits, kinship or financial status. Therefore, biomedical data needs to be treated
with extreme caution by the service provider. Especially in the recent years, wearable
devices have gained huge popularity and become inseparable parts of people’s lives.
Data collected from these devices is used for a plethora of purposes by multiple parties,
such as private companies, health organizations and government agencies. On the other
hand, this gives rise to increasing concerns over privacy of the user.

In two recent works [53, 54] Jiang et al. devise a new deep neural network model to
predict age and gender from pedometer data. The authors use number of steps made
each day collected over 259 consecutive days and are able to find different walking
behaviors during week days, weekends and holidays. If an attacker wanted to use such
a technique for attribute inference, they would need data collected over hundreds of
days, which is not very practical.

In this paper, we perform the first, extensive study of privacy risks arising from
fine grained user’s step count data collected over much shorter time spans such as
one week or even a single day. Such data is collected by various activity trackers (e.g.
Endomondo, FitBit, Apple’s Health), but can also be collected from the accelerometer
on smartphones either by an app or an opened website. Such accelerometer data is not
considered sensitive and therefore can be collected without explicit permission from the
user. While concerns about privacy of walking patterns data were raised before †, to
the best of our knowledge, a systematic in-depth analysis of the privacy issues has not
been performed yet.

∗https://www.burges-salmon.com/news-and-insight/legal-updates/gdpr-personal-data-and-
sensitive-personal-data/

†https://w3c.github.io/sensors/#user-identifying
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5.2 Contributions

We perform the first large-scale study of the privacy issues within fine grained user’s
step count data. In particular, we design various attribute inference and linkability
attacks. For the attribute inference attack, we assume that the adversary has access to
the step count data of the target user for example collected from a smartphone. The
adversary then tries to infer certain personal attributes to which he normally would not
have access. For the linkability attack, the adversary has access to target user’s step
count data as well as an anonymized database containing further sensitive information
along with the step count data collected at a certain point in time. The adversary then
tries to link the target user with the record in the database. This could have a wide
variety of implications like targeted advertisements, surveillance, unfair credit score
and pricing by insurance companies or banks, to name a few. We demonstrate the
performance of the attacks with an extensive evaluation on a real world dataset of 1000
participants.

We make the following key contributions:

• In order to leverage the power of deep learning, we develop three conceptually
different feature extraction methods, namely, statistical, distributions and autoen-
coders.

• Our attribute inference attack is aimed at finding the correlation between the
walking patterns of the user and three personal attributes namely gender, age and
education. We find that gender and age can be inferred with a high confidence,
while education does not show a strong correspondence with our data.

• We also run an ensemble version of our attribute inference attack by splitting the
user step data into actions based on active and non-active periods. We classify
each action separately and infer the users’ attribute based on all the actions of a
user.

• We make a comparison between all the feature selection methods and classifiers
on all the attribute inference tasks.

• We run three different types on linkability attacks. The first one is unsupervised
and it relies on the distance (under some metric) between feature vectors of
different samples. The second attack uses a pairwise vector similarity metric
between features of different samples to fit a traditional machine learning classifier,
namely, random forest. The third one uses the One Shot Learning method with
Siamese networks.

5.2.1 Organization

The chapter is organized as follows: We introduce our dataset in Section 5.3. In
Section 5.4 we describe how we extract features from the raw data. Next in Section
5.5 we present our attribute inference attack followed by the experimental evaluation
in Section 5.6. In Section 5.7 we present our user linkability attack, followed by its
experimental evaluation in Section 5.8. Finally we conclude our paper in Section 5.9.
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Figure 5.1: Distribution of age in our dataset

Users 997

gender Males 44.13%
Females 55.76%

education
High 52.35%
Medium 45.13%
Low 1.80%

Table 5.1: Statistics of our dataset

5.3 Dataset

Our step count dataset was collected by a medical organization among inhabitants of a
middle-size German city.‡

The data was collected using an ActivPal Sensor, a small device worn on the thigh ,
which was carried by users for 7 consecutive days. This can, to a good extent, simulate
step count data collected from any other wearable device (e.g. smartwatch) or from a
phone kept in a pocket throughout the day.

5.3.1 Data description

Our raw dataset consists of number of step in each 15s period, for 1000 participants.
We exclude 3 users due to incomplete data. Each user has age, gender and education
attributes.

‡We omit the detail of the organization for complying with the anonymous submission policy, and
will disclose it upon acceptance.
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Figure 5.2: Distribution of users between all three attributes, the darker the color the
more users with identical attributes

age education
education -0.209
gender -0.034 -0.130

Table 5.2: Correlation coefficients between all three attributes of users

The age of participants in our dataset ranges from 30 to 91 years old. Figure 5.1
shows the distribution of users of different ages in our dataset. We divide users into two
classes based on the median age (55 years).

Table 5.1 shows the percentage of users in each class by gender and education. For
education there are 3 levels:

• Low. Early childhood education up to lower secondary education.

• Middle. Upper secondary education up to Bachelor degree or equivalent level.

• High. Master degree or equivalent level up to Doctoral degree or equivalent level.

For the classification task of education, we discard users with low education, since they
comprise only 1.8% of all participants.

Figure 5.2 shows distribution of users among all 3 attributes. You can notice weak
negative correlation of age and education. To measure it we encode education as 0, 1, 2
for low, medium, high respectively and gender as 0 for male and 1 for female. Table 5.2
confirms our observations.

Figure 5.3 shows the result of performing Principal Component Analysis (PCA)
on users’ raw step counts. The two colors denote the two classes for each attribute.
We note that PCA on raw data does not suffice to separate users by gender, age or
education.

Therefore, in the next section we present methods to preprocess this raw data in
order to extract meaningful features for our tasks.
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Figure 5.3: PCA of users raw step counts over the whole week (top) and split over 7
days (bottom) for each of our 3 attributes

5.3.2 Ethical Considerations

We note that our primary institution does not provide an IRB nor mandate (or en-
able) approval for such experiments. Meanwhile, the organization who collected the
data followed the standard protocol for all the ethical compliance. We also store the
anonymized data encrypted in an independent server with access only from white listed
internal IP addresses and during experiments, we strictly follow the data processing
guideline defined by the data collecting organization.

5.4 Feature Extraction

In this section we describe our three conceptually different feature extraction methods,
followed by three different normalization techniques we use.

We refer to the sequence of the number of steps made by a user u every 15 seconds,
as the raw step count vector, ~sraw,u. These raw step count vectors ~sraw,u are time
series and thus are hard to work with when directly used as feature vectors for machine
learning tasks. Most standard machine learning techniques learn based on features that
should be comparable between data points, which is not the case for time series. A
small displacement of an event in time would result in a feature vector much different
from the original one (e.g., by cosine similarity). For example if a user begins a morning
walk even five minutes later than usual, the beginning and the end of the walk are now
different features and this cannot be captured by traditional machine learning models.
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To this end, we use different feature extraction methods as described next.
For a user u, we collectively refer to the set of step count feature vectors from

different days by Su, and a feature vector for a day d as ~s du . These ~s du can either be
the raw step counts or features created according to one of the methods below or their
normalized versions. We omit subscript u when it is clear that we are talking about one
specific user. Similarly, we omit the superscript d when the d is irrelevant.

5.4.1 Statistical Method

For each user, we first split ~sraw into smaller, non overlapping subvectors of a defined
window size w (the last subvector might be smaller). Then we calculate basic statistical
values, which reflect different characteristics of a user’s walking behavior: sum (how
much the user walks), maximum (highest speed of the user), mean (how fast the user
walked on average), median (around what speed did user use most of the time) and
standard deviation (how much acceleration / deceleration did user do) on each subvector
and combine all the calculated values in a single output vector ~sstat . We use different
subsets of statistics and different values of w in our experiments.
Example 5.4.1. Let ~sraw = (5, 0, 0, 2, 3, 4, 3, 0), w = 3, stat = {sum,mean}. We split
~sraw into three subvectors (5, 0, 0), (2, 3, 4) and (3, 0). Thus ~s{sum,mean} = (sum(5, 0, 0),
mean(5, 0, 0), sum(2, 3, 4),mean(2, 3, 4), sum(3, 0),mean(3, 0)) = (5, 1.67, 9, 3, 3, 1.5).

5.4.2 Distributional Method

We want to capture a distribution of steps done in every 15s period. We also want to
retain the information about time of a day when users walk more or less. Therefore, we
split the ~sraw into subvectors, calculate distributions on them and finally concatenate
them.

Precisely, we find the maximal number of steps max_steps any user makes in 15s.
Then, for each user, we split ~sraw into smaller, non overlapping subvectors of a defined
window size w (the last subvector might be smaller). We group all possible number
of steps 0, 1, 2, . . . ,max_steps into buckets of size b. Then for each resulting vector,
we count the number of occurrences of steps in each bucket. Since 0 steps is the most
common event, we have a bucket containing just 0 steps, and further buckets containing
b different number of steps. We combine the calculated value counts into a single output
vector ~sdist .
Example 5.4.2. For ~sraw = (5, 0, 0, 2, 3, 4, 3, 0), w = 3, b = 3, max_steps = 6. We
split ~sraw into three subvectors (5, 0, 0), (2, 3, 4) and (3, 0). Each subvector will have three
buckets, i.e., {0}, [1, 3], and [4, 6]. For the first subvector (5, 0, 0), we have 2 instances
in the first bucket, i.e., {0}, 0 instances in the second bucket, i.e., [1, 3] and 1 instance
in the third, i.e, [4, 6]. Analogous calculations are done for the next two subvectors. The
resulting feature vector is then ~sdist = (2, 0, 1, 0, 2, 1, 1, 1, 0).

5.4.3 Autoencoder

Autoencoders are a type of neural networks consisting of an encoder and decoder. In
general, the encoder compresses the input into a lower dimensional vector and the
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Figure 5.4: Illustration of a basic Autoencoder

decoder recreates the original input from it. The unsupervised training objective of the
network is to reconstruct the original input with as little loss as possible. Because of
the created “bottleneck”, a data compression method is learnt by the neural network.

Once trained, the autoencoder model can be used to transform data into their
compressed representations by only using the encoder part. Autoencoders are widely
used for denoising, anomaly detection, feature extraction and more.

In this work, we first train an autoencoder with the normalized ~sraw of all the users
in our training set to train the model. We then encode each vector into a compressed
representation ~sae with the trained encoder part of our network. We then use the
resulting ~sae as feature vectors for attacks. We create two variants of autoencoders: one
consisting of densely connected layers and the other one consisting of 1 dimensional
Convolutional Neural Network (1D CNN) layers.

5.4.4 Normalization

We now describe the normalization techniques we use on the raw data as well as the
features generated by the methods above.

5.4.4.1 Feature-wise normalization

In this method, each i-th value of a feature vector is divided by the maximum of i-th
values of all feature vectors. This normalization is mostly useful for statistics and
distribution features.

5.4.4.2 Vector-wise normalization

In this method, each element of an input vector is divided by the value of the largest
element of this vector. For raw step count data, such processing removes information of
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how fast a user can walk, but keeps information when does she walk more and when
less.

5.4.4.3 Probability distribution

In this method, each element of a vector is divided by the sum of all of its elements. Such
processing preserves information about the overall relative walking speed of a person,
but loses information about the total amount of steps made during the concerned time
period.

5.5 Attribute inference attack

It has been shown that social network user’s personal attributes, e.g., gender, age,
political believes, location, occupation, even if not disclosed, can be inferred from their
friends [6], online behaviours [35] or from the content of their messages [21]. In this
work we study whether gender, age and education can be inferred from user’s step count
data itself.

Using a wide range of feature vectors extracted from raw step data, we train multiple
different machine learning and deep neural network models on the attribute classification
task and report the results in Section 5.6.

5.5.1 Experimental Setup

Out of 1000 users in our dataset we need to filter out 3 of them due to step measurement
errors. We focus on binary classification of 3 attributes: gender, age and education. For
gender, we classify between male and female, where 56% of participants are female. For
education, we focus on middle and high level education as explained before. Age of the
participants range from 30 to 91 years old, we choose the median (55 years) and classify
participants as younger than 55, or 55 and older, giving us 50% of users in each group.

We assume an adversary that has access to some amount of user’s data with their
attributes for training her models and unlabeled step count data of users whose attributes
she wants to infer. To simulate this settings, for each attribute, we randomly choose
80% of users of each class as training data set and the remaining 20% as testing data
set.

We run an extensive amounts of attacks for attribute inference. We first use a wide
range of feature extraction techniques on the raw dataset, and then train and test many
different classifiers on those feature vectors.

5.5.2 Feature Extraction

We will show our methods for feature extraction in a step by step manner.

1. The raw step vector of each user ~sraw we take as a whole week ~sDraw or split it into
different days, resulting in 7 ~s draw for each user. This results in 2 feature vector
types.
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2. We run statistical methods (as described in 5.4.1) for all possible subsets of
{max,mean,median, std, sum} (other then ∅) for window sizes w ∈ {12, 24, 48, 60,
120, 240, 480, 720, 960, 1440, 1920, 2880, 5760} on ~s draw and for window sizes w ∈
{240, 480, 720, 960, 1440, 1920, 2880, 5760, 40320} on ~sDraw . This results in (25− 1) ∗
(13 + 9) = 682 feature vector types.

3. We run distributions as described in 5.4.2 on ~sDraw and ~s draw for window sizes
w ∈ {240, 720, 1440, 2880} and for bucket sizes b ∈ {2, 4, 8}. This results in
2 ∗ 4 ∗ 3 = 24 feature vector types.

4. We apply three different normalization methods as described in 5.4.4 to all feature
vector types we made so far. This results in (2 + 682 + 24) ∗ 3 = 2124 normalized
feature vector types.

5. On each normalized feature vector type we train a densely connected auto encoder.
Because some of them are much shorter then others we need to adjust the layer sizes
to avoid compressing a shorter vector into a single value. The densely connected
auto encoder consists of five densely connected layers of sizes (l1, l2, l3, l4, l5), where
l1 is equal to the length of the input feature vector,

l2 =
{

min(2048, bl1/4c), if l1 > 255
bl1/2c, otherwise,

l3 =
{
bl2/4c, if l2 > 127
bl2/2c, otherwise,

l4 = l2, l5 = l1. We then take third layer and use it as a new feature vector, which
results in 2124 feature vector types.

6. On each normalized feature vector type we train a convolution auto encoder. It con-
sists of two convolution layers with 8 filters each, k1 and k2 kernel sizes respectively
and a max pooling layer in between with the pool size of p. Then two transposed
convolution layers with an unpooling layer between them with corresponding
parameters follow. Because of how long it takes to train a cnn autoencoder, we
use the following sets of parameters (k1, k2) ∈ {(6, 6), (9, 6), (9, 9), (21, 9)} and
p ∈ {2, 4} only on weekly feature vectors ~sDraw normalized with feature-wise normal-
ization and k1 = 21, k2 = 9, p = 4 for the rest. This results in 4∗2∗1+2121 = 2129
feature vector types.

7. Additionally, we use a third type of data splitting from step 1, that we call actions.
We take a whole week of step data and extract all periods of maximal length that
have no subperiod of 8 consecutive periods with 0 steps done (2min of rest) and
use each such action together with the length, and time of beginning of the action
as a feature vector. We then apply statistics (all statistics together) from step
2 and distributions from step 3 with the window size equal to action length to
obtain 3 (together with raw) feature vector types. The reasoning behind it is that
maybe a combination of shorter activities are better suited to predict person’s
attributes.
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In total we are testing 7085 feature vector types of either seven or one vector per
user and 3 actions feature vector types.

5.5.3 Classifiers

We classify on three different binary tasks: gender (male or female), education (medium
or high) and age (below 55 or above). We use the following classifiers from sklearn on
each task with each feature vector type: Random Forest, Linear Regression, Support
Vector Machine, Linear Support Vector Machine and 3 Densely Connected Neural
Networks, all consisting of a densely connected and dropout layers. If l is the feature
vector length and d is a 20% dropout layer, then the networks will look as follows:
(l, 1

4 l, d, 1), (l, 1
2 l, d,

1
8 l, 1), (l, 1

2 l, d,
1
4 l, d,

1
16 l, 1).

Now each feature vector set is split into 80% training and 20% testing data in a
balanced way (e.g., if the classification is to be performed for gender, the 80 - 20 split is
done on male and female separately and only then combined and shuffled together for
both training and testing). For the feature vector sets, where we have 7 vectors per user,
we make sure, that all the vectors are in either training or testing set for each user.

In addition for actions feature vectors an additional aggregation step is needed,
because our objective is to classify an attribute of a person and not the action itself.
After obtaining scores from the classifier for each action of a specific person we discard
50% of the results, that are the least sure about the attribute and then calculate both
arithmetic mean and majority vote.

Due to long training time, we run CNN classifiers only on selected feature sets, namely
raw daily and weekly step count with both feature-wise vector-wise normalization, all 3
actions, 4 distributions and 4 statistics (2 best performing on average and 2 with highest
performance, as measured on other classifiers). Each CNN classifier looks as follows: 2
convolution layers with 16 filters each, k1 and k2 kernel sizes respectively, 50% dropout
layer, max pooling layer with the pool size of p, fully connected layer with 100 neurons
and a fully connected layer with a single perceptron. We use (k1, k2) ∈ ((21, 9), (6, 6))
and p ∈ (2, 4, 8)

We run 3 LSTM classifier types, regular LSTM, bidirectional LSTM and bidirectional
LSTM with attention. We use a Luong-style dot-product attention layer, [68]. We
only run LSTMs on feature vectors resulting from fixed window size aggregations,
i.e. statistical (with window size w ∈ {60, 240, 720}), distributional (with window size
w ∈ {60, 240, 720}, bucket size b ∈ {2, 4}, statistical activities (with all the statistics
combined) and distributional activities (with bucket size b = 2). We split the feature
vectors according to actions or windows and feed each subvector one by one to the
LSTM. With an analogy to training an LSTM on a sentence of words, where each word
is encoded in a fixed size vector, each window or activity is a separate word and the
result of distribution or statistics function is the embedding. All three LSTMs consist
of one respecive LSTM layer with 16 or 32 units, one dropout layer with 0.2 dropout
rate and a fully connected layer with a single perceptron.
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5.6 Attribute inference evaluation

Our goal was not to train the best possible classifier for the attribute inference task,
but rather to cover a wide range of different classifiers and feature vectors. We use
AUC (Area Under ROC Curve) for measuring the performance of our classifiers. As a
result, we have 149433 classification results in total: 7 non-CNN classifiers for 3 different
attribute types run on 7085 feature vector types, 3 actions feature vector sets with
either mean or majority vote, 6 CNN classifiers for 3 different attribute types run on
12 selected feature vector types and 3 actions feature vector sets with either mean or
majority vote and 6 LSTM classifiers 3 different attribute types run on 9 selected feature
vector types and 2 action feature vector sets.

5.6.1 Normalization Method

The normalization methods do not have a strong influence on the results. On average
the best performing is feature-wise normalization, with the exception of random forest
classifier, where normalization is not needed and it would, in almost all cases, cause a
small drop in performance.

5.6.2 Statistical Method

We first look at the best window size for the statistical methods. On Fig. 5.5 we can
see best results for single statistics on different windows on the task of predicting age.
Additionally we also plot highest and average result of all the (combined) statistics.
We can see that the best results are obtained for w = 720 and w = 1920, which are 3
and 8 hours periods correspondingly. The best performing single statistic is maximal
number of steps and the worst is median. Sum and mean of the steps are overlapping
on the plot, since mean is just sum divided by a constant. Especially interesting is
the 8 hours period since it reflects differences in people’s habits during the night (from
midnight to 8 a.m.), working period (from 8 a.m. to 4 p.m.) and leisure time (4 p.m. to
midnight). With only the maximal number of steps done in each period we can already
infer person’s age with the AUC score of 0.74 with a linear regression classifier.

On Fig. 5.6 we analyze best performing subsets of statistics on the window size
w = 720. We can see that the easiest classification task is to predict user’s age, then
education and the hardest one is gender. Interestingly the best performing for both
gender and age prediction is a combination of maximal and median values - the best
and worst performing when taken alone. In general, combinations of more then two
statistic values do not perform well. When a classifier has too many features and not
enough data to train on, its performance will usually be lower then with less but well
chosen features.

For all attributes the best results are found on week long step count series. The
best performing for age was a random forest classifier trained on maximal and median
values on windows of size w = 720 (3 hours), achieving 0.78 AUC. The best result for
education is achieved by the smallest densely connected neural network classifier (with
only 1 hidden layer) trained on maximal value of windows of size w = 240 (1 hour) with
feature-wise normalization, achieving 0.68 AUC. The best performance for gender was
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a random forest classifier trained on maximal values of windows of size w = 1440 (6
hours), achieving 0.65 AUC. We can see that for age and gender the best discriminator
is how fast and how fast on average are people walking, while for education it is more
important how much are people walking. We are confident with prediction regarding
age, but much less so when it comes to education or gender.
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Figure 5.5: Influence of window size on age prediction
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Figure 5.6: Influence of statistics subset on age predictions

5.6.3 Distributional Method

On Fig. 5.7 we can see best results for all bucket sizes, window sizes and target attributes.
We can observe, that bucket size b = 2 has always the best (or almost best) performance,
meaning more fine grained distribution has a positive impact on the results (even though
it generates more features that classifier will need to learn how to process). The best
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result for each attribute are as follows:

• Age. Random forest classifier trained on b = 2 and w = 240 (1 hour) achieves
0.73 AUC,

• Gender. Support vector classifier trained on b = 2 and w = 1440 (6 hours)
achieves 0.67 AUC,

• Education. Densely connected neural network (with 2 hidden layers) trained on
b = 8 and w = 720 (3 hours) achieves 0.66 AUC.
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Figure 5.7: Influence of the window size for distributional method on the prediction
quality

5.6.4 Autoencoders

We observe that autoencoders almost always cause a drop in AUC as compared to
the feature vectors on which they were trained. The best autoencoder was a densly
connected auto encoder on weekly max and mean statistics on windows of size 960
with feature-wise normalization, age classificiation logistic regression achieved 0.77 AUC
value, while the same classifier with the same feature vectors but without auto encoder
step achieved 0.73 AUC. The improvement, although non-negligable, is an exception
rather than a trend. It might be the case, that we do not have enough data for the
autoencoders to efficiently learn an intermediate representations, and training directly
for the task of prediction show better results. It might, however, still be a useful
technique if we have access to big number of unlabeled step count timeseries and we
only know attributes of a small percentage of them.

5.6.5 Actions

On average arithmetical mean outperforms majority voting of the result scores, by a
small margin. However in some of the best performing cases, mean can have a drastic
improvement (e.g., for plain steps and a CNN gender classifier, after cross validation,
majority vote achieves 0.53 AUC, while mean gives 0.78). The best results were obtained
for gender prediction with raw actions and a random forest classifier resulting in AUC of
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0.87. For age the best was a densely connected neural network classifier (with 2 hidden
layers) trained on distribution of actions and achieved AUC of 0.69. For education the
best was logistic regression trained on distributions of actions achieving AUC of 0.61.
While with all other methods, gender was difficult to predict, actions can do it with a
very high confidence. It suggests that there exists certain walking patterns characteristic
for either man or woman.

5.6.6 LSTMs

Because LSTMs use feature vectors as a 2d matrix rather then a long vector we do
not include them in the previous evaluations of the feature selection methods, but
instead dedicate them this section. For gender and education, distributional method
outperforms statistical ones, while for age the statistical gives best results. Splitting the
data based on activities rather then a fixed window size causes a big drop in the AUC
score for all the attributes. For both gender and age, window size w = 240 gives the
best result. For distributional methods, the bucket size does not seem to have a big
influence on the AUC score, but best results are achieved for b = 2. Making the LSTM
bidirectional or adding attention both improve the results for gender prediction, but
do not achieve higher performance on the other two attributes. It is possible that due
to larger amount of trainable weights, more data would be needed to make use these
additions to the basic LSTM.

5.6.7 Summary

Because of the amount of classifiers trained, we were not able to cross validate each
experiment and rather we take the best performing ones (described in details in previous
subsections) and run them again with 5 fold cross validation. This approach results in
us reporting potentially lower best performance values then possible, since we might
have missed some well performing methods due to unlucky split into training and testing
data, while ensuring, that we do not report high, lucky performance scores.

In general, weekly walking patterns are much better then daily for the attribute
prediction task. Daily patterns can differ drastically between weekdays and weekends
and thus, looking at a person’s whole week is advised.

The result for age prediction are in Fig. 5.9. It is the easiest attribute to predict and
many classifiers achieve AUC greater then 0.7. Great performance of statistical feature
vector generation confirms our observations, that for age inference the most important is
how fast (in steps per minute) a person walks, as older people tend to walk slower. Data
split into activities instead of fixed size windows does not improve the predictions, which
means that no activities were found that would clearly indicate person’s age. LSTMs
perform very well on both statistical and distributional methods, however the best result
is achieved by a CNN consisting of 2 convolution layers with 6 filters of size 16 each, a
0.5 dropout layer, max pooling layer of pool size 8, dense layer with 100 perceptrons
and finally dense layer with 1 perceptron, run on a single maximum statistic on window
of size 240 (maximum number of steps done every hour). The average AUC over 5 fold
validated training-test split is 0.778 with standard deviation of 0.047. In Fig. 5.8 we
show the Receiver Operating Characteristic curve for the best cross validation run.
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Figure 5.8: ROC curve for best performing age classifier (in blue). The gray line indicates
the baseline (random guess).

The results for gender prediction are in Fig. 5.10. In case of gender prediction, simple
statistics are not enough and distributional method seems superior, as it contains more
information. Again LSTMs and CNN outperform simpler machine learning methods.
On most classifiers we can observe that activities perform better then fixed window size
split. This indicates existence of certain walking patterns characteristic for males or
females. We do not have data saying what were users doing during those activities, but
it would be very interesting to study, which activities expose our gender. The best result
is achieved by a CNN consisting of 2 convolution layers with 6 filters of size 16 each, a
0.5 dropout layer, max pooling layer of pool size 4, dense layer with 100 perceptrons
and finally dense layer with 1 perceptron run on plain activities with the prediction
for a specific user being an arithmetical mean of predictions of all their activities. The
average AUC over 5 fold validated training-test split is 0.780 with standard deviation of
0.024.

The results for education prediction are in Fig. 5.11. Education is by far the hardest
attribute to predict and we are not able to train a reliable classifier. LSTMs seem to
perform slightly better then other methods, with the best being a standard LSTM with
16 units and a 0.2 dropout layer, trained on distributions with b = 4 and w = 720
(3h). The average AUC over 5 fold validated training-test split is 0.650 with standard
deviation of 0.037. The reason why we are able to perform better then a random guess
is probably because of the correlation of age and education in our data. To verify this
claim we use the best performing (for age) CNN classifier, train it on statistical file for
the task of predicting age and use it to predict education. In such setting we managed
to achieve AUC of 0.637, which confirms our hypothesis.
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5.7 Linkability

Our linkability attack tries to identify whether two observations of stepcount data
belong to the same individual. In our experiments we focus on daily observations,
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Figure 5.9: Best AUC scores for age prediction
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meaning for each user u we have 7 daily feature vectors ~s du , where d ∈ D and D =
{Monday,Tuesday, . . . ,Sunday}.

Formally, let ~s d1
u and ~s d2

v , d1 6= d2 be the step count feature vectors from two days
of users u and v. The adversary’s objective is to predict the probability that u and v
are the same user, where one or both are anonymous.

f link(~s d1
u , ~s d2

v ) = (u ?= v)

d1, d2 ∈ D, d1 6= d2. The adversary can use the daily raw step counts per 15s interval
~s draw,u, features created by the statistical and distributional methods or their normalized
versions as described in sections 5.4.1, 5.4.2 and 5.4.4.

The attack function f link can be instantiated in three different ways as follows:

5.7.1 Similarity based Attack

This attack is unsupervised and is the simplest one. It involves calculating a distance
metric between two samples ~s d1

u and ~s d2
v and comparing it to a threshold t. If the

distance is smaller than t, then we predict that the samples came from the same user.
We use the euclidean distance and the cosine distance. Other distance metrics have
similar or lower performance and are therefore not included. For the euclidean distance,
the attack function is instantiated as:

f link
eucl(~s d1

u , ~s d1
v ) =

√√√√ n∑
i=1

(s d1
u,i − s

d2
v,i)2 < teucl
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Figure 5.11: Best AUC scores for education prediction
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Similarly, for the cosine distance, the attack function is instantiated as:

f link
cos (~s d1

u , ~s d2
v ) = 1− ~s d1

u ~s
d2 T
v

||~su||||~sv||
< tcos

where ·T denotes vector transposition and || · || denotes the L2 norm of the vector. tcos
and teucl denotes thresholds for each attack.

Experimenting with different values of thresholds tcos and teucl gives us a range of
false and true positive values. Plotting the false-positive rate on the x-axis and the
true-positive rate on the y-axis produces the ROC (Receiver Operating Characteristic)
curve. We use the area under this curve, referred to as AUC, to analyze the success of
the attack. Unlike other metrics, AUC summarizes the performance in a straightforward
manner: 0.5 is as bad as random guessing and 1.0 indicates perfect prediction. We
assume the attacker knows the best threshold tcos or teucl and therefore get an upper
bound for the privacy threat resulting from the unsupervised attack. We denote these
attacks by Euclidean and Cosine.

5.7.2 Random Forest Classifier based Attack

This attack uses random forest classifier, which is a state-of-the-art supervised machine
learning approach. We first apply a vector distance metric, namely, L1 distance between
the pair of samples. We then use the resulting distance vectors as features to fit random
forest classifiers. As above, we use the AUC between the positive class probability of the
random forest and the true class labels to evaluate the performance of the attack. L2,
element-wise arithmetic mean and Hadamard distance have similar or lower performance
and are therefore not included. We denote this attack by RF_standard.

5.7.3 Siamese Neural Network based Attack

One Shot Learning has become the state of the art solution when large amounts of
labelled training data is not available for standard classification with deep neural
networks. This attack uses One Shot Learning with Siamese Neural Networks [14].
Siamese networks are a special type of neural network architecture that contain two
identical sub-networks that have the same configuration, the same parameters and
weights, and mirrored updates during training. Instead of learning to classify its
inputs, this model learns to differentiate between two inputs and finds a similarity
or relationship between them. Specifically, our Siamese Network Model leverages the
semantic similarities between pairs of step count vectors of the same user and the
differences between pairs of step count vectors of different users. Just one sample of the
true identity of a user in training may be sufficient to predict or recognize this user in
the future.

Figure 5.12 shows an illustration of a basic Siamese Neural Network.
We use L1 distance to combine the output of the shared networks, followed by a

fully connected layer with sigmoid activation function. The hypothesis is that two
inputs from different users will produce different feature embeddings at the inner layers,
and inputs from the same user will result in similar feature embeddings. Hence the
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Figure 5.12: Illustration of a basic Siamese Network

element-wise absolute difference between the two feature embeddings must also be very
different between the two cases. Therefore the score generated by the output sigmoid
layer must also be different in both cases.

This model is similar to having an auto encoder and a distinguishing classifier, but
instead we learn encodings useful for this exact purpose of our task. We found that
using auto encoders for this task does not produce representations resulting in good
predictions and thus we exclude those experiments in the paper.

We instantiate the two shared subnetworks with different state of the art neural
network layers to get five different attack variants as follows:

5.7.3.1 Dense layers

In the first variant, we use two densely connected layers for the shared subnetworks.
The first dense layer contains half the number of neurons as the size of the input. The
second dense layer further contains half the number of neurons as the first one. We
denote this attack by Dense_siamese.
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5.7.3.2 LSTM layers

In this variant, the shared subnetworks consist of an LSTM layer with 8 units, and
dropout of 0.2. We denote this attack by LSTM_siamese.

5.7.3.3 Bidirectional LSTM layers

In this variant, the shared subnetworks consist of a Bidirectional LSTM layer with 8
units, and dropout of 0.2. We denote this attack by biLSTM_siamese.

5.7.3.4 Attention layers

In this variant, the shared subnetworks consist of a Luong-style dot-product attention
layer, [68] applied to the output of the Bidirectional LSTM layer in biLSTM_siamese.
We denote this attack by Attention_siamese.

5.7.3.5 1D CNN layers

In this variant, the shared subnetworks consist of two 1D CNN layers, followed by a
max pooling layer of size 8. Each CNN layer had a filter size of 16 and a kernel size of
6. The max pooling layer is followed by a flatten layer, which is followed by a densely
connected layer of 100 neurons. The result of using a pooling layer and creating down
sampled or pooled feature maps is a summarized version of the features detected in
the input. They are useful as small changes in the location of the feature in the input
detected by the convolutional layer will result in a pooled feature map with the feature
in the same location. We denote this attack by CNN_siamese.

As before, we calculate the AUC between the true class labels and the result of the
sigmoid function to evaluate the success of the attack.

5.8 Linkability - Evaluation

We now present the experimental evaluation of our linkability attacks, namely our unsu-
pervised attacks Euclidean and Cosine, our random forest attack RF_standard and
our three Siamese network attacks CNN_siamese, LSTM_siamese and Dense_siamese
on our dataset.

5.8.1 Experimental Setup

We evaluate our linkability attacks on various stepcount features ~s du which include raw
step counts ~s draw,u as well as ~s dstat,u, stat ∈ {sum,max,median,mean} and distributions
~s ddist,u, over a period of 24 hours on a day d ∈ D. We also evaluate the attacks on the
normalized (feature-wise normalization) versions of each feature as described in 5.4.4.1
and denote the results by the suffix _norm. For example we denote the results of the
attack Euclidean on the normalized features by Euclidean_norm. We remove features
with variance less than 0.001 before fitting into each model.

We create all possible pairs of daily step counts ~s du out of 7 days of data for each
user to obtain positive class samples (vectors representing two different days of the
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same user). Thus for each user u we have
(7

2
)
, i.e. 21 positive samples in the form

{~s d1
u , ~s d2

u }, d1, d2 ∈ D, d1 6= d2. For negative samples, we randomly pick an equal number
of pairs of daily step counts from different users in the form {~s d1

u , ~s d2
v }, d1, d2 ∈ D, u 6= v.

We perform a 5-fold cross validation to evaluate our attacks. The positive and
negative samples are equally divided into both sets. We do not optimize any parameters
for the supervised attacks. The results of our supervised attacks are therefore a lower
bound on the privacy risk arising out of such an adversary model.

Following the above strategies and removing symmetric user pairs, we get 20937
samples in each class and 41874 samples in total. We train on 33500 samples, test on
8374 samples in each iteration.

5.8.2 Results

Figure 5.13 shows the results of our attacks on the features ~sdist . The y-axis indicates the
AUC (mean and the standard deviation via an error bar over all cross validation folds).
The x-axis indicates different bucket size b and window size w combinations for the
distributions in the input file. We notice that the unsupervised attacks Euclidean and
Cosine and the standard random forest classifier RF_standard have very low perfor-
mance. However our Dense_siamese and CNN_siamese classifiers hugely outperform
them and achieves AUC higher than 0.75 for most of the inputs. The RNN based
classifiers have only a slightly lower performance; the LSTM_siamese is outperformed
by the biLSTM_siamese, which is further outperformed by the Attention_siamese
as expected. For big bucket and window sizes, we have lower number of features.
Therefore the Dense_siamese attack does not have a significant advantage over the
simpler attacks. We notice that its performance is almost the same as the unsupervised
attacks for b_w = 8_2880.

Figures 5.14-5.15 shows the results of our attacks on the features ~smax , ~smean , ~smedi
and ~ssum . The x-axis shows increasing window size w over which the statistic is calculated.
We observe that our neural network based siamese attacks outperform the RF_standard,
Euclidean and Cosine for smaller window sizes. However as window size increases, the
performance of the siamese attacks drops quite fast. We also observe that CNN_siamese
and biLSTM_siamese always achieved the top AUCs for each of the 5 feature extraction
methods, closely followed by LSTM_siamese. The Attention_siamese struggles for
small window sizes (larger number of timesteps), however as the number of timesteps
increase, it outperforms biLSTM_siamese and LSTM_siamese. This shows that the
success of attention mechanism is limited to sequences of smaller length.

We further compare the five different feature extraction methods with each other
to see which captured the most information for user linkability. Figure 5.18 shows the
AUCs (mean and standard deviation over all cross validation folds) achieved by the
three best performing inputs of each feature extraction method. We see that features
extracted by the distribution method ~sdist outperform the rest and as expected ~smedi ,
i.e. the median statistic shows the poorest performances. The highest average AUC,
achieved by ~sdist with b_w = 4_720, is 0.78 using Dense_siamese.
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Figure 5.13: Performance of all attacks on distribution feature ~sdist . The x-axis indicates
the bucket size bfollowed by the window size w.

5.9 Conclusion

We perform the first systematic analysis of privacy risks arising from physical activity
data. Via an extensive evaluation on a real life dataset, we demonstrate that indeed
step count data poses significant threat to various aspects of users’ privacy.

With a relatively small dataset of 1000 users only and using simple machine learning
classifiers, we find that an adversary having access to actimetry (step count) data
of different users can perform a linkability attack with a high confidence. Attribute
inference is harder, but still possible. Among all three attributes, prediction of age is the
easiest, while education cannot be predicted reliably. For gender inference specifically,
we obtain promising results by averaging predictions from classifying shorter walking
periods (activities). Some of these short patterns strongly indicate users’ gender but
not education or age. Exploring such smaller patterns for different attributes would be
an interesting direction for future work. Note that our goal is not to quantify the worst
case privacy risk of a specific attack but to explore a wide range of different feature
extraction methods and classifiers in a spectrum of privacy attacks.

Actimetry data is not currently regarded as privacy sensitive, but big players, having
access to an even bigger dataset could deanonymize users and infer their hidden attributes
much easier. This highlights the need for further research on privacy preserving ways of
collecting such data.
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Figure 5.14: Performance of all attacks on the statistical feature ~smax

4 20 40 60 12
0

24
0

48
0

14
40

28
80

57
60

window size

0.50

0.55

0.60

0.65

0.70

0.75

AU
C

feature: s_sum

Cosine
Euclidean
Dense_siamese
RF_standard

CNN_siamese
LSTM_siamese
Attention_siamese
biLSTM_siamese

Figure 5.15: Performance of all attacks on statistical feature ~ssum

87



CHAPTER 5. YOU ARE HOW YOU WALK: QUANTIFYING PRIVACY RISKS IN
ACTIMETRY DATA

4 20 40 60 12
0

24
0

48
0

14
40

28
80

57
60

window size

0.50

0.55

0.60

0.65

0.70

0.75

AU
C

feature: s_mean

Cosine
Euclidean
Dense_siamese
RF_standard

CNN_siamese
LSTM_siamese
Attention_siamese
biLSTM_siamese

Figure 5.16: Performance of all attacks on statistical feature ~smean
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Figure 5.17: Performance of all attacks on statistical feature ~smedi

feature extraction methods
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

di
st

 _4
_7

20

0.78

di
st

 _2
_1

44
0

0.77

di
st

 _2
_7

20

0.77

su
m

 2
40

0.73

su
m

 1
20

0.73

su
m

 4
80

0.72

m
ax

 2
40

0.73

m
ax

 4
80

0.73

m
ax

 1
20

0.73

m
ea

n 
24

0

0.73

m
ea

n 
12

0

0.73

m
ea

n 
48

0

0.73

m
ed

i 2
0

0.66

m
ed

i 4

0.65

m
ed

i 4
0

0.63

Figure 5.18: Top 3 AUCs achieved by input features from each feature extraction
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6.1. MOTIVATION

6.1 Motivation

The rapid assimilation of online social networks (OSNs) into people’s daily lives has
resulted in a massive wealth of user generated data. Researchers have created various
tools to mine this rich and diverse data. One of the most prominent tools in this
domain is graph embedding, which maps each user into a lower dimension vector that
reflects the user’s structural information within the network, such as her neighborhood,
communities she belongs to, her popularity, etc. Embedding vectors have been used in
various tasks, such as friendship recommendation and personal attribute prediction.

Most network embedding methods rely on deep neural networks and are often treated
as a black box. The resulting vectors may have captured undesired sensitive information,
that reinforces the bias already existing in the network. When used for more advanced
tasks, e.g., friendship recommendation, they may result in unanticipated fairness issues.
Indeed, different groups based on ethnicity, gender, levels of urbanization, or wealth
are usually unequally represented in the social network graph. Analyzing bias issues
inherent in such embedding based algorithms is therefore especially important but has
not received attention from academia so far.

In this paper, we take the first step towards quantifying and addressing fairness
issues of graph embedding methods. In particular, we concentrate on one of the most
prominent methods in this field, namely node2vec [38], and investigate its fairness with
respect to friendship recommendation. As pointed in [105], a recommendation system
biased towards a majority in an OSN can prevent minorities from rising in the network
(becoming influencers with high reach). This is further confirmed by studies on strongly
homophilic networks and their negative implications on minorities [58].

Anti-discrimination laws in various countries prohibit unfair treatment based on
certain traits such as race, religion, gender (sensitive attributes). The Title VII of the
Civil Rights Act of 1964 is one of the most noteworthy examples. However, these laws
typically are too abstract for computation, hence there exist a variety of interpretation
and the resulting proposals for mathematical formulations. In this paper, we focus on
disparate impact also known as group fairness [9]. Disparate impact occurs when the
decision of an algorithm benefits or hurts (a) certain sensitive feature group(s) more
frequently than other group(s).

6.2 Contributions

First, we conduct the first-of-its-kind study of algorithmic fairness in the setting of
graph embedding methods. We specifically analyze group fairness (disparate impact) of
the state-of-the-art graph embedding: node2vec.

Second, we extend statistical parity, a well-known measure of disparate impact to
measure fairness for groups based on sensitive attributes of pairs of users. We further
propose a novel notion of Equality of Representation to measure fairness in friendship
recommendation systems.

Third, we apply node2vec for friendship recommendation in real world OSN datasets
as a case study. Using the fairness metrics above, we find biases in the recommendations
caused by unfair graph embeddings.
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Fourth, to mitigate the aforementioned biases, we propose a novel fairness-aware
graph embedding algorithm Fairwalk, that extends node2vec. Evaluations on our OSN
demonstrate the effectiveness of Fairwalk on both datasets w.r.t. all fairness metrics.
Compared to node2vec, Fairwalk increases fairness in each case by a large margin. We
also compare the utility of Fairwalk and node2vec.

6.3 Fairness Metrics

In this section, we present the notations used throughout the paper, followed by
definitions of the fairness metrics. We focus on the notion of disparate impact. Firstly,
we leverage the most well-known measure of disparate impact, namely statistical parity.
Secondly, since our work is aimed at improving the representation of under-represented
groups, we propose our own notion of Equality of Representation which comes in two
variants - the user and the network level.

6.3.1 Notations

We define an OSN as an undirected, unweighted graph G = (U , E), where the set of
vertices U represents the set of users and the set of edges E ⊆ {{u, v} : u ∈ U , v ∈
U , u 6= v} represents the set of friendships. Note that since G is undirected (u, v) ∈ E
implies (v, u) ∈ E. We define neighbors of a node u as ω(u) = {v : (u, v) ∈ E}.

We denote a sensitive attribute by S, and gender as S = g and race as S = r. We
represent the set of all possible values of S by ZS and denote a specific value by zS ∈ ZS .
The function ζS : U → ZS maps users to their attribute values. For example, for an
Asian male u, ζg(u) = “male” and ζr(u) = “asian”. We denote neighbors of u with an
attribute value z as ωz(u) = {v : v ∈ ω(u) ∧ ζ(v) = z}. Note that ⋃z∈Z ωz(u) = ω(u).
We define a set of users recommended to user u as ρ : U → 2U and set of users with a
specific attribute value z recommended to u as ρz(u) = {v : v ∈ ρ(u) ∧ ζ(v) = z}.

We partition user pairs {u, v} ∈ U ×U into groups GSij based on the attribute values
of both u and v, specifically, for i, j ∈ ZS , GSij = {{u, v} : ζ(u) = i∧ζ(v) = j∧u, v ∈ U}.
We collectively refer to the set of all groups based on a sensitive attribute S as GS .

6.3.2 Statistical Parity

Statistical Parity also known as Demographic Parity or Independence is the statistical
equivalent of the legal doctrine of disparate impact [30]. Statistical Parity (typically
defined in terms of two groups) requires the acceptance rates of the candidates from both
groups to be equal. This allows us to measure recommendation fairness independent
of the ground truth (existing friendships) which in our case is itself biased. Given a
partitioning of user pairs based on an attribute S, into two groups GSab and GScd, let
P (GSij) denote the acceptance rate for group GSij ,

P (GSij) =
∣∣{{u, v} : v ∈ ρ(u) ∧ {u, v} ∈ GSij}

∣∣/∣∣GSij∣∣
The bias, or statistical parity, w.r.t. GSab and GScd is then the difference between P (GSab)
and P (GScd).
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We extend the above definition to account for multiple groups that we have for
friendship recommendation. Since our groups consider the attribute values of both users
in a pair, we have at least 4 groups when we consider a binary attribute like gender and
in general

∣∣Z∣∣2 groups when we consider any n-ary attribute like race. To capture the
differences between multiple groups, we calculate the variance between the acceptance
(recommendation) rates of each group in GS .

biasSI(GS) = Var({P (GSij)} : GSij ∈ GS) (6.1)

6.3.3 Equality of Representation

Modern online recommendation systems suffer from problems of echo chambers or the
information bubble effect [31, 97]. Usually users get recommendations based on their
interests, which isolates them from other contradicting interests or viewpoints and
reinforces the existing viewpoints. This also manifests in friendship recommendations
in OSNs, where users who join a network into some well-established community, rarely
see anything or anybody outside of it, although it might be interesting for them. As
a direct consequence minority communities get isolated and are not seen by others.
Our work aims to improve the representation of such under-represented groups in the
OSN graph embeddings. To promote recommendations where all groups are equally
represented, we define bias by Equality of Representation in two variants: biasERg at the
network level and biasERu at the user level.

Network level. At the network level, we measure bias between different groups GSij ,
among all recommendations given in the network. Denoting the number of recommen-
dations from a group GSij as N(GSij) = |{{u, v} : v ∈ ρ(u) ∧ {u, v} ∈ GSij}|,

biasERg(GS) = Var({N(GSij)} : GSij ∈ GS) (6.2)

User level. At the user level, among the recommendations ρ(u) given to each user u, we
measure the fraction of users having attribute value z and denote it as z-share(u) = |ρz(u)|

|ρ(u)| .
Specifically, for a given attribute value z, bias is measured as the difference between a
fair fraction (where each attribute value has an equal share) and the average z-share
over all users.

biasERu(z) = 1∣∣ZS ∣∣ −
∑
u∈U z-share(u)∣∣U ∣∣ (6.3)

This definition allows for measuring the bias for each sensitive attribute value indepen-
dently.

6.4 Friendship Recommendation with node2vec

In this section, we first review the graph embedding algorithm node2vec, then describe
a node2vec based recommendation system and finally analyze its fairness.
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6.4.1 Graph Embedding - node2vec

A graph embedding is a mapping from nodes in a graph to a vector space f : U → Rd
where d is a hyperparameter capturing the number of dimensions of the vector space.
Resulting vectors can be used for multiple machine learning tasks, e.g., link prediction
for friend recommendation. Node2vec [38] first uses a random walk over a graph to
generate walk traces and then extracts features based on learned traces.

Random walk. Given a graph G, for each node u ∈ U , node2vec performs a single
random walk walk_num number of times. The result is a list of traces, where each
trace is a list of nodes’ ids resulting from single random walks. Single random walk is a
standard random walk over graphs without weights, i.e., at each step the next node is
chosen uniformly at random among all neighbors of the current node. Both walk_num
and walk_len are hyperparameters of node2vec.

Feature learning. Next, node2vec uses the generated traces to train a neural network
and learn embedding vectors. Let us define a network neighborhood Ns(u) as the set of
nodes preceding and succeeding node u in the generated walk traces. The skip-gram
architecture is adapted to the network traces with a goal to maximize the log-probability
of observing a network neighborhood Ns(u) based on the feature vector of node u. The
corresponding objective function is defined as:

arg max
f

∏
u∈U

∏
u′∈Ns(u)

P (u′|f(u)) (6.4)

Here, the conditional probability P (u′|f(u)) is modeled as a softmax function.

6.4.2 Recommendation System

We take a supervised learning approach towards the recommendation task. For each user,
we use the graph embedding as described above in 6.4.1 to learn embeddings. We further
define a feature vector ~x{u,v} for a user pair {u, v} as the Hadamard distance∗ between
embeddings of u and v. Given two vectors f(u) and f(v), the Hadamard operator � is
defined as: [f(u) � f(v)]i = [f(u)]i[f(v)]i. We train a random forest classifier to learn
associations between the feature vectors of user pairs ~x{u,v} and presence or absence of
friendships between them.

The trained model is then used to predict class probabilities for unseen candidate pairs
using their corresponding feature vectors ~x{u,v}. We use the positive class probability as
the recommendation score. A friend v is recommended to a user u, if the recommendation
score for the pair {u, v} 6∈ E is within the top k% of all the scores received by all candidate
pairs. We denote the resulting friendship recommendations given to a user u by ρ(u).

∗While other binary operators (e.g., average, L1, L2 distance) could be used, we chose Hadamard
distance, as it performed the best in original node2vec paper [38]
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6.4.3 Fairness of node2vec

We now evaluate the fairness of node2vec-based friendship recommendation using
Equality of Representation at user level, biasERu (Eq. (6.3)). In a fair recommendation
system, we would expect the bias to be lower than the initial bias. To calculate the
initial bias in the network, we modify Eq. (6.3) by using the neighborhood function
ω instead of recommendation ρ. We do a rigorous bias evaluation using all metrics in
Section 6.6.

We distinguish between two genders Zg = {zg0 , z
g
1} and three races: Zr = {zr0, zr1, zr2}

and the protected (minority) groups are: zg1 , zr0, zr2 (we describe our dataset in details
in Section 6.6.1). Figure 6.1 shows the distribution of z-share values for all users. The
distribution of z-share indeed follows the original distribution in the network, and so
does the bias. This demonstrates that node2vec based recommendations mirrors the
gap between minorities and majorities.
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Figure 6.1: z-share distributions of node2vec and original network. The vertical line shows
the fair fraction (0.5 and 0.3)

6.5 Fairwalk

Since graph embeddings aim to find the best structural representation of nodes, the
algorithm also unintentionally learns some information about people’s sensitive at-
tributes and relations between them. Recommendations based on this further reinforces
differences between minorities and majorities. As a countermeasure to this problem, we
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Algorithm 6.1 Fair random walk trace generation
1: procedure rand_walk(U , ω,walk_num,walk_len)
2: traces ← empty_list
3: for all u ∈ U do
4: for i← 0,walk_num do
5: trace ← empty_list
6: u1 ← u
7: for j ← 0,walk_len do
8: trace.append(u1)
9: Zu ← {z : z ∈ Z ∧

∣∣ωz(u1)
∣∣ > 0}

10: z1
R←− Zu

11: v
R←− ωz1(u1)

12: u1 ← v
13: end for
14: traces.append(trace)
15: end for
16: end for
17: return traces
18: end procedure

propose Fairwalk, a modified version of random walk, which results in a more diverse
network neighborhood representation thereby producing less biased graph embedding.

6.5.1 Random Walk

We are modifying the random walk procedure from original node2vec. Instead of
randomly selecting a node to jump to from amongst all neighbors, we now partition
neighbors into groups based on their sensitive attribute values and give each group the
same probability of being chosen regardless of their sizes. Then a random node from the
chosen group is selected for the jump. The modified random walk procedure is shown in
Algorithm 6.1. By R←− A we denote drawing an element of set A uniformly at random.

6.5.2 Resulting Traces

While detailed evaluation of the resulting modified embedding is in Section 6.6, we can
already discuss differences in the walk traces themselves. From Figure 6.2 we can see that
minorities appear more often in the fair random walk. Not only does it result in higher
network neighborhood diversity with respect to sensitive attribute, but also minorities
appear more frequently in the traces. This provides more network neighborhood data
for minorities which enables the neural network give more importance to obtain their
best vector representation while optimizing the overall objective function.
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Figure 6.2: Ratio of each gender and race in the original network and regular and fair
random walk traces in Los Angeles dataset

Gender groups
i− j for Gij 0-0 0-1 1-0 1-1
LA 37.78 21.00 21.99 19.21
London 38.96 18.19 20.74 22.10

Table 6.1: Percentage of existing friendships in each gender based group in our original
dataset

6.6 Evaluation

In this section, we first describe our dataset, followed by the set-up of the machine learn-
ing model for our experiments. We then present the evaluation results for our Fairwalk
using the fairness metrics defined in Section 6.3 and finally show the recommendation
utility in terms of precision and recall.

6.6.1 Dataset

We use Instagram data collected from two of the biggest cities in different English
speaking countries, namely London and Los Angeles (LA). The data was collected in
2016 using the Instagram API. An edge exists between two users if they mutually follow
each other (e.g., [20]). We concentrate on two sensitive attributes, gender and race,

Race groups
i− j for Gij 0-0 0-1 1-0 1-1 0-2 1-2 2-0 2-1 2-2
LA 5.97 12.55 12.65 57.92 1.17 3.87 1.16 3.74 0.96
London 3.55 9.52 9.83 70.31 0.47 2.57 0.56 2.76 0.41

Table 6.2: Percentage of existing friendships in each race based group in our original
dataset
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LA London
No. users 82,607 53,902
No. social links 482,305 165,184
gender 0 62.6% 62.3%
gender 1 37.4% 37.7%
race 0 21.9% 15.9%
race 1 72.2% 80.7%
race 2 5.9% 3.4%

Table 6.3: Statistics of both datasets.

which we extract by querying Face++ with users’ profile pictures. Tools such as Face++
have limitations [15]. To this end, we choose users for whom the attribute with highest
confidence is at least 20 percentage points higher then the second best. We distinguish
between female or male gender, and denote them as 0 or 1, i.e., Zg = {0, 1}, and between
African, Caucasian or Asian race and denote them as 0, 1 or 2, i.e., Zr = {0, 1, 2}.
Table 6.3 shows the sizes of datasets and the proportions of different genders and races.
We thus have 4 pairwise groups for gender namely Gz0,z0 , Gz0,z1 , Gz1,z0 , Gz1,z1 and 9
pairwise groups for race namely Gzi,zj , i, j ∈ {0, 1, 2}. Table 6.1 and 6.2 shows the
proportions of friendships in different groups.

6.6.2 Experimental Setup

We iterate our experiments 5 times. To this end we divide our dataset into 5 equal
slices. We train a random forest with 100 trees using 4 out of 5 slices, leaving out a
different slice each time. We use Hadamard distance between the feature embeddings of
each user pair as input features to the random forest. Graph embeddings are trained
5 times, each time with the same 4 slices as used for training. We use the following
hyper-parameters (following [38]), i.e., length of each walk: walk_len = 80, number of
walks starting from each node in the graph: walk_num = 20, number of dimensions of
the resulting vector space: d = 128. For the recommendation candidates, of each node
u we rank all non-friend nodes by the cosine similarity of their embeddings with the
embedding of u and select the top 100. This approach gives us a candidate set likely
to be recommended. For scalability reasons (for bigger datasets), non-friend pairs can
be sampled randomly. For the quantity of top recommendations, we experiment with
a variety of values for k and do not observe any significant differences. Therefore we
show results below only for k = 20 i.e., when the top 20% of all candidates are selected
for recommendation. We denote node2vec based recommendations by “regular" and
Fairwalk based recommendation by “fair".

6.6.3 Statistical Imparity

Figure 6.3 shows the acceptance rates P (GSij)(fraction of recommended users pairs out of
all possible pairs in each group) for both the regular and the Fairwalk. We observe that,
Fairwalk increases the probability of the under represented groups being recommended
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LA London
gender race gender race

ER
g regular 1.3e10 2.5e7 6.5e9 2.4e7

fair 0.8e10 1.9e7 4.8e9 1.9e7
SI

regular 4.7e−9 1.4e−12 1.1e−8 7.1e−11

ft fair 1.7e−9 0.4e−12 0.2e−8 2.8e−11

Table 6.4: biasSI and biasERg for both cities (lower, the better)
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Figure 6.3: Fraction of recommended users pairs out of all possible pairs in each group.
The x-axes marks the Type-2 groups Gzi,zj

with the corresponding i− j

to a very large extent. Additionally, it is noteworthy to see that the probabilities of
same gender and same race friendship recommendations are always reduced by Fairwalk
and the probabilities of diverse friendships are always increased.

Table 6.4 shows biasSI compared to node2vec for both cities. Fairwalk reduces
biasSI(Gg) by 61% and biasSI(Gr) by 68% for LA. For London, Fairwalk reduces
biasSI(Gg) by 91% and biasSI(Gr) by 61% compared to node2vec.
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Figure 6.4: Number of recommended users pairs from each group. The x-axes marks
groups Gij with the corresponding i− j

6.6.4 Equality of Representation

Group Level. Figure 6.4 highlights the differences between the representations of
different groups among the top recommendations. We see that as compared to node2vec,
Fairwalk decreases the share for the over-represented groups, e.g., Gr11 and Gg00 and
increases the share for most underrepresented groups which can be clearly seen for
Gr01, Gr10, Gr02, Gr12 and Gg10, G

g
01. For Gg11 and Gr00, Fairwalk could not increase the

representation anymore since they are already very strongly connected as seen in
Fig 6.3. Table 6.4 shows biasERg for both cities. Compared to node2vec, Fairwalk
reduces biasERg(Gg) by 36% and biasERg(Gr) by 23% for LA and biasERg(Gg) by 26% and
biasERg(Gr) by 21% for London.

User Level. On the distribution plots on Figures 6.5 we can see that Fairwalk reduces
the gap between different groups, by leaning towards the fair fraction (where each
attribute value has an equal share). We skipped the distribution for gender 1 since it’s
symmetrical to gender 0. The exact values of biasERu for different groups for the original
network (initial bias) for node2vec and Fairwalk can be found in Table 6.5. We see that
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gender race
0 1 0 1 2

LA
network 0.104 0.104 0.117 0.392 0.275
node2vec 0.103 0.103 0.115 0.387 0.272
fairwalk 0.068 0.068 0.054 0.288 0.234

Lo
nd

on network 0.097 0.097 0.183 0.481 0.298
node2vec 0.112 0.112 0.176 0.474 0.298
fairwalk 0.095 0.095 0.135 0.417 0.282

Table 6.5: Bias by Equality of Representation at user level for both genders and all three
races (lower, the better).
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Figure 6.5: z-share distributions of node2vec and Fairwalk. The vertical line shows the fair
fraction.

Fairwalk decreased the bias in all cases, for LA the average improvement is 32% and for
London 14%. The best result is for race 0 in LA, with an improvement of 53%.

6.6.5 Precision and Recall

We also evaluate whether our recommendations capture any friendship edges that would
otherwise have been formed naturally without users following any recommendations at
all. To this end, we use the 20% of friendship edges unused during training for each
iteration as described in Sec. 6.6.2 as ground truth. We calculate precision and recall
for Fairwalk, and compare with the regular node2vec recommendations.
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Figure 6.6: Precision and recall for different number of recommendations.

Figure 6.6 shows precision and recall for different number of recommendations for
LA. Unsurprisingly, we see that precision and recall are always lower for Fairwalk as
compared to node2vec. This indicates that we deviate more from the original biased
growth of the network compared to regular recommendations thereby not amplifying the
initial bias in the network. We also see that for race, Fairwalk deviates the most since
it tries to balance more groups compared to gender, and given that race 1 alone makes
up a huge proportion of our OSN dataset. Nevertheless, we capture a large number of
true positives. Results for London follow the same trend.

6.7 Conclusion and Future Work

We study fairness issues in a state-of-the-art graph embedding method node2vec. Using
the metrics of Statistical Parity and Equality of Representations we find bias in node2vec.
We propose a fairness-aware Fairwalk and demonstrate its effectiveness in mitigating
the aforementioned biases by a large scale evaluation on real world OSN datasets for
friendship recommendation.

While Fairwalk already improves Statistical Parity and Equality of Representations to
a large extent, there exist multiple other notions of fairness in the community dependent
on the task at hand. Our Fairwalk can be tuned with parameters to fulfill any such
fairness notion, for example maintaining the real-world ratio between groups. One could
also iteratively perform further recommendation to achieve a higher balance or parity.
Using a weighted ensemble-like approach that allow optimizing for a combination of
sensitive attributes (e.g Asian females) can account for cross-attribute biases in the
network. This can also be done following recent work on rich subgroup fairness [59].

104



7
Conclusion

105





7.1. CONCLUSION

7.1 Conclusion

In the past decade, the field of information and communication technologies has made
remarkable achievements. Tools such as Online Social Networks and fitness trackers
have become a part-and-parcel of people’s daily lives, serving a myriad of purposes.
Online social networks are used not only for maintaining relationships with people
far and near, but also as a platform for self expression, advertising and exchanging
information and news at the touch of a finger (to name a few). Fitness trackers are
increasingly used by people to monitor the quality of their lives such as physical activity,
sleep, heart rate etc. Additionally, smartphones, smart watches and other wearables
also measure physical activity of their users regardless of whether the users are actively
conscious of their health or not. This results in users generating a plethora of data
continuously every minute. Therefore, the implications of these data on the privacy of
the users has become an extremely pressing matter. These data are increasingly used to
further train machine learning algorithms, with an aim to automate several prediction,
classification and recommendation tasks which otherwise take countless days to be done
by humans. These tasks are in turn at the core of many functionalities offered by OSNs
and fitness trackers. The data that is generated, collected and used for training however
is not always perfect in every respect and suffer from various kinds of biases. Therefore
algorithms are often quite sensitive to bias that is prevalent in the training data and
sometimes produces undesirable and unfair consequences. in this dissertation, we have
systematically and extensively analyzed privacy and fairness issues relating to data
generated by users of online social networks and activity trackers.

The first work presents the first scientific analysis of privacy issues induced by
hashtag sharing behaviour of users. We concentrate in particular on location, which has
been recognized as one of the key privacy concerns in the modern era. We empirically
evaluate our attack based on a comprehensive dataset of 239,000 Instagram posts with
corresponding locations and hashtags from three of the largest English-speaking cities
(New York, Los Angeles and London). By relying on a random forest model, we show
that we can infer a user’s precise location with accuracy of 70% to 76%, depending on
the city. We also compare our classification method with other popular algorithms such
as support vector machine and gradient boosting machine, and show that our classifier
outperforms them by at least 7%. Furthermore, we empirically identify the number
of hashtags maximizing the attack success to be seven. Additionally, we evaluate our
attack on a global level without prior knowledge of the city, and demonstrate that
it can still reach an accuracy of more than 70%. Finally, by considering two types
of attackers, one with prior knowledge on the targeted users’ hashtags and locations,
and the other without, we show that the accuracy drops by around 20% for the latter
attacker. This demonstrates that the adversary can enhance his model by learning
per-user associations between hashtags and locations. To remedy this situation, we
introduce a system called Tagvisor that systematically suggests alternative hashtags
if the user-selected ones constitute a threat to location privacy. Tagvisor realizes this
by means of three conceptually different obfuscation techniques: hiding (a subset of)
hashtags, replacing hashtags by semantically similar hashtags, and generalizing hashtags
with higher-level semantic categories (e.g., Starbucks into coffee shop). It also uses a
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semantics-based metric for measuring the consequent utility loss. Our findings show that
the higher number of original hashtags, the better the utility for similar levels of privacy.
Moreover, obfuscating as little as two hashtags already provides a near-optimal trade-off
between privacy and utility in our dataset. The latter finding notably demonstrates the
practical feasibility of our privacy-preserving system given the computational capabilities
of current mobile devices.

In the second work, we analysed OSN privacy by jointly exploiting long term
multimodal information. We focussed in particular on inference of social relationships.
We introduce three novel monomodal friendship inference attacks based on hashtags,
images, and text, respectively. To the best of our knowledge, this is the first work that
uses text and image modalities to conduct friendship inference in social networks. Our
hashtag attack massively outperforms the only prior work on friendship inference from
hashtags by 7%. We use self-engineered statistical features, such as the entropy and
frequency of usage patterns for our hashtag and text based attacks. For images, we rely
on a state-of-the-art ResNet model to extract information from images. Experiments
show that our hashtag and text attacks achieve strong performance with AUCs above
0.86 and 0.83 respectively. Our image attack, while being the weakest, still performs
well with AUCs up to 0.637. Further, we design a multimodal attack that combines five
components of posts namely images, hashtags, captions, geo-locations and published
friendships, to infer social relations. Extensive experiments show that this attack
outperforms all monomodal attacks with AUCs above 0.9. We also show that the
multimodal attack exploits post components that compliment each other and the success
of most attacks increases significantly when combined with additional components.
We further demonstrate the robustness of the multimodal attack against information
hiding, and show that even after deleting 50% of the users’ posts, the drop in the attack
performance is relatively low. Potential future works would be to analyse data collected
from other OSNs or other cities all around the world and considering the date or time
component when two users shared certain posts to make the attacker stronger.

In the third work, we performed the first systematic study of privacy risks arising
from step count data. In particular we focus on attribute inference for gender, age
and education and temporal linkability of users. With a relatively small dataset of
1000 users only and using simple machine learning classifiers, we find that an adversary
having access to actimetry (step count) data of different users can perform a linkability
attack with a high confidence. Attribute inference is harder, but still possible. Among
all three attributes, prediction of age is the easiest, while education cannot be predicted
reliably. For gender inference specifically, we obtain promising results by averaging
predictions from classifying shorter walking periods (activities). Some of these short
patterns strongly indicate users’ gender but not education or age. Exploring such
smaller patterns for different attributes would be an interesting direction for future
work. Actimetry data is not currently regarded as privacy sensitive, but big players,
having access to an even bigger dataset could deanonymize users and infer their hidden
attributes much easier. We would like to bring the attention of policymakers to the
sensitivity of pedometer data and propose that users should be made aware of the risks
of sharing their step count data. This highlights the need for further research on privacy
preserving ways of collecting such data.
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In the final work we conduct the first-of-its-kind study of algorithmic fairness
in the setting of graph embedding methods. We specifically analyze group fairness
(disparate impact) of the state-of-the-art graph embedding: node2vec. We extend
statistical parity, a well-known measure of disparate impact to measure fairness for
groups based on sensitive attributes of pairs of users. We further propose a novel notion
of Equality of Representation to measure fairness in friendship recommendation systems.
We apply node2vec for friendship recommendation in real world OSN datasets as a
case study. Using the fairness metrics above, we find biases in the recommendations
caused by unfair graph embeddings. To mitigate the aforementioned biases, we propose
a novel fairness-aware graph embedding algorithm Fairwalk, that extends node2vec.
Evaluations on our OSN demonstrate the effectiveness of Fairwalk on both datasets
w.r.t. all fairness metrics. Compared to node2vec, Fairwalk increases fairness in each
case by a large margin. While Fairwalk already improves Statistical Parity and Equality
of Representations to a large extent, there exist multiple other notions of fairness in
the community dependent on the task at hand. Interesting directions for future work
include accounting for cross-attribute biases and parameterizing Fairwalk to fulfill any
alternative fairness notion, for example maintaining the real-world ratio between groups.
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